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hadronic radiation inside a cone around the photon. In this paper, we perform a detailed
factorization analysis of the QCD effects associated with photon isolation. We show that for
small cone radius R, photon isolation effects can be captured by a fragmentation function
describing the decay of a parton into a photon accompanied by hadronic radiation. We
compute this fragmentation function for different isolation criteria and solve the associated
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cone fragmentation function factorizes further, into collinear functions describing energetic
quarks and gluons near the cone boundary and functions encoding their soft radiation
emitted into the cone. Based on this factorization we also resum the non-global logarithms of
the ratio of the photon energy and the isolation energy, so that we control all logarithmically
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1 Introduction

An important category of physics probes at high-energy colliders are processes with elec-
troweak bosons in the final state. Among these, photons present special challenges: since
they are massless, they are abundant and are produced not only during the hard interaction,
but can also arise as secondary emissions during jet fragmentation, hadronization and
hadron decay. The fragmentation process involves non-perturbative physics encoded in
photon fragmentation functions, originating from partons becoming collinear to the photon.

To reduce the contribution from secondary emissions, experiments impose isolation
requirements. To isolate a hard photon they put a cone of angular size R around it and
restrict the hadronic energy inside the cone to be lower than a certain cutoff E0. How
this cutoff is imposed depends on the isolation criterion. The simplest way is to impose
a constraint on the total hadronic energy Etot(R) inside the cone. At an e+e− collider
one requires

fixed-cone isolation: Econe
tot (R) < E0 = εγEγ (1.1)

and the quantity R corresponds to the opening half-angle of the cone, i.e. a particle is inside
the cone if θ < R, where θ is the angle between the particle and the photon. At hadron
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colliders, one instead imposes the constraint on the total transverse energy ET inside the
cone and defines E0 = εγE

γ
T .1 In the following, we will use the term energy to refer to either

the conventional or the transverse energy, depending on the collider under consideration.
At a hadron collider a particle is inside the cone if r < R with r =

√
(∆η)2 + (∆φ)2. Here,

∆η and ∆φ are the pseudorapidity and azimuthal angle differences between the photon and
the particle. Fixed-cone isolation is used in all experimental measurements by ATLAS [1–3]
and CMS [4–6], but with this isolation criterion the cross section computations need to
include the non-perturbative photon fragmentation functions to be collinear finite. The
photon fragmentation functions are poorly known and the presence of final-state collinear
divergences complicates the perturbative calculations.

Frixione [7] has introduced an alternative isolation criterion designed to eliminate
radiation collinear to the photon. Rather than restricting the radiation inside a fixed cone
of radius R, it imposes

smooth-cone isolation: Econe
tot (r) < E0(r) = εγEγ

( 1− cos r
1− cosR

)n
(1.2)

for all r < R where the parameter n must be chosen to be n ≥ 1
2 . As is obvious from

this definition, the isolation becomes stricter as particles get more collinear to the photon
and together with collinear radiation, the smooth-cone isolation also eliminates the non-
perturbative fragmentation function. Having infrared finite cross sections without the need
to subtract collinear final state singularities is a significant technical simplification and in
the past all next-to-next-to-leading order (NNLO) computations of photon production were
carried out imposing smooth-cone isolation. Such computations are by now available not
only for inclusive-photon [8, 9], photon-plus-jet [9, 10] di-photon [11–16] and even tri-photon
production [17, 18]. However, the finite granularity of the detectors makes it impossible
to directly implement the criterion (1.2) experimentally. While a discretized version was
studied for the LHC [19] and, following earlier work on democratic clustering [20], new
isolation criteria based on jet substructure [21] were proposed, all LHC measurements
currently impose fixed-cone isolation.

To compare to the experimental results, the above theoretical papers choose parameters
n and εγ of the smooth-cone isolation to mimic the fixed-cone isolation applied in the
measurement. In the literature, a variety of parameter choices is found, typically motivated
by next-to-leading order (NLO) computations, which are available both with fixed cone and
smooth-cone isolation [22]. Given that the two isolation criteria are qualitatively different,
the situation is unsatisfactory, especially since the experimental measurements now reach few
per-cent accuracy. The paper [14] has shown that photon isolation is a substantial source of
uncertainty in precision calculations and has advocated the use of a hybrid isolation scheme,
in which a small smooth cone is placed into the center of a fixed cone, to mitigate this
problem [14, 23]. Very recently the antenna subtraction method [24–26] has been extended
to final state singularities [27] and by now the first NNLO fixed-cone result is available [28],
eliminating the mismatch between the prediction and the experimental measurements.

1The transverse energy of a particle is defined as ET = E sin θb, where θb is its angle with respect to the
beam axis.
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By construction, the isolation requirement introduces low scales into the cross section,
which leads to logarithmically enhanced higher-order terms which can spoil perturbative
predictions. The paper [22] has computed the photon cross section at NLO and has
shown that for small radius the prediction for the isolated cross section becomes larger
than the inclusive cross section, clearly indicating a breakdown of fixed-order perturbation
theory. The leading ln(R) terms were then resummed in [29] curing this pathology. The
resummation can be obtained by evolving the fragmentation contribution from the hard
scale µh ∼ Eγ to the scale µj ∼ REγ associated with the invariant mass of the radiation in
and around the cone. In our paper we perform a detailed factorization analysis of the QCD
effects arising due to photon isolation in the framework of Soft-Collinear Effective Theory
(SCET) [30–32]. In addition to the logarithms of the isolation-cone radius R, we will also
resum logarithms of εγ = E0/Eγ . These involve the scale µ0 ∼ RE0, which is typically
quite low for experimentally imposed isolation criteria.

The factorization of the photon cross section involves two steps. First, we show that for
small isolation cone size R, the isolation effects can be captured by an isolation fragmentation
function, i.e. a fragmentation function which describes the fragmentation of a parton into
a photon plus the accompanying collinear radiation constrained by the isolation criterion.
The fragmentation function factorization makes it easy to study the effect of different
isolation criteria and the dependence on isolation parameters. It also makes it possible
to convert results obtained in one isolation scheme to another, since the cross section
difference is driven by the difference in the associated fragmentation functions. Generalized
fragmentation functions similar to the one we introduce have been used in a variety of
other contexts starting with [33], who considered hadron fragmentation inside a jet. The
fragmentation function approach can be used to resum logarithms of the isolation-cone
radius R by solving evolution equations to evolve from the hard scale µh ∼ Eγ down to
the typical scale of the fragmentation function µj ∼ EγR. The same technique has been
used earlier for inclusive jet production, where one can consider fragmentation into a jet to
resum logarithms of R, as was done in SCET in [34–36], following analogous computations
in QCD factorization [37, 38]. The resummation of ln(R) terms has also been studied for
exclusive jet production [39–41] and inclusive jet production near threshold [42, 43], where
the R dependence is captured by jet functions instead of fragmentation functions.

In addition to the collinear scale µj ∼ EγR, the fragmentation function involves the
scale µ0 ∼ E0R associated with radiation inside the isolation cone. We will show that in the
limit of small E0, the cone fragmentation function itself factorizes. This second factorization
step then allows us to also resum the logarithms of εγ , as shown in [44]. The isolation cone is
obviously a non-global observable [45] and we use the RG approach of [40, 41] implemented
in the code NGLresum [46] to resum them. In this way we control all large logarithms
associated with photon isolation.

Our paper is organized as follows. We first present factorization a theorem for photon
production with a small isolation cone in section 2. The leading-order fragmentation
functions which encode the isolation are computed in section 3. Using these, we can study
the differences among isolation criteria and their parameter dependence. We can also resum
contributions enhanced by logarithms of the cone radius R by solving the Dokshitzer-Gribov-
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Figure 1. Pictorial representation of the factorization theorems (2.1) and (5.1). The gray blob
represents the hard function, which describes the production of an energetic parton, which then
fragments into a photon plus additional radiation (blue region), as encoded by the cone fragmentation
function Fi→γ in (2.1). For small isolation energy, this function factorizes further. The energetic
partons (blue lines) produced in the fragmentation are part of the jet function Ji→γ+l and must lie
outside the isolation cone. These partons can then radiate soft partons (red) into the isolation cone
(green). This radiation is encoded in the functions U l, which depend on the directions and color
charges of the energetic partons.

Lipatov-Altarelli-Parisi (DGLAP) evolution equation for the fragmentation functions as
explained in section 4. We then discuss the factorization of the fragmentation function
in the limit of small isolation energy in section 5. The leading jet function arising in this
factorization theorem is computed in section 6, together with the function describing the
soft radiation into the cone. These results are then used to derive a formula to convert
smooth-cone cross section results to fixed-cone isolation in the limit of small εγ . In section 7
we then perform the resummation of logarithms of εγ . We summarize our results and
conclude in section 8.

2 Factorization for isolated photon production at small cone radius R

For small isolation cone radius R a factorization theorem for isolated photon production
was presented in [44]. It reads

dσ(E0, R)
dEγ

=
dσdir

γ+X
dEγ

+
∑

i=q,q̄,g

∫
dz

dσi+X
dEi

Fi→γ(z, Eγ , E0, R) +O(R) , (2.1)

where the isolation-cone fragmentation function Fi→γ describes the fragmentation of the
hard parton with energy Ei into a photon with energy Eγ = zEi plus accompanying hadronic
radiation which is restricted to have energy smaller than E0 inside the cone, see figure 1.
The precise definition of this function is given below. The quantity σdir

γ+X is the perturbative
cross section for producing a photon without imposing any isolation. The direct part is
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Figure 2. The scales arising in the factorization theorems (2.1) and (5.1), together with the type of
RG evolution needed to resum the associated logarithms. On the left we show the factorization when
R is small and the isolation energy E0 is parametrically of the same size as the photon energy Eγ . On
the right we show the factorization for R� 1 and εγ = E0/Eγ � 1. In this limit non-perturbative
fragmentation effects are suppressed by εγ .

not collinear safe by itself, but its divergences cancel against the fragmentation part of the
cross section. A more compact (and slightly more general) way of writing formula (2.1) is

dσ(εγ , R)
dEγ

=
∑

i=γ,q,q̄,g

∫
dz

dσi+X
dEi

Fi→γ(z, Eγ , E0, R) . (2.2)

Note that in this second form the sum over partons includes the photon. Throughout our
paper, we work at leading order in the electromagnetic coupling α and neglect its running
so that we have

Fγ→γ = δ(1− z) , (2.3)

which leads back to the original form (2.1) of the equation.
The fact that the photon cross section involves a fragmentation function which describes

the conversion of a parton into a photon plus collinear partons is well known [47–49], see [50]
for a recent review. What is different in our case is the definition and role of the fragmentation
function. The standard fragmentation functions encode non-perturbative effects in photon
production, while our function includes all physics associated with photon-isolation and
therefore also has a perturbative component. The function Fi→γ in (2.2) describes the
fragmentation of the energetic parton i into a photon in the presence of the isolation cone,
up to corrections suppressed by powers of R. Since we expand in small R, the isolation
cone radius is set to zero when the partonic cross section dσi+X is computed, which leads
to infrared (IR) divergences which match the UV divergences of the fragmentation function.

In SCET, the fragmentation function is obtained as a matrix element of collinear fields,
whose light-cone momentum components scale as

(n · p, n̄ · p, p⊥) ∼ Eγ(R2, 1, R) , (2.4)

where nµ is a reference vector along the direction of the fragmenting parton. The ⊥-
directions are perpendicular to the fragmenting parton, not the beam. In this section, we do
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not consider the hierarchy between Eγ and E0, i.e. we treat Eγ ∼ E0, corresponding to the
situation shown on the left-hand side of figure 2. The limit of small E0 will be considered
later in section 5 and will lead to an additional factorization of the fragmentation functions.

The definition of the fragmentation functions for quarks and gluons reads
n/αβ

2 δabFq→γ(z, Eγ , E0, R, µ)

=
∑∫
γ+X

〈0|χaqα(0)|γ+X〉〈γ+X| χ̄bqβ(0) |0〉 θ(2E0 − n̄ · pin
X) δ

(
z − n̄ · pγ

Q

)

(2π)d−1δ(Q− n̄ · (pγ + pX)) δ(d−2)
(
p⊥γ + p⊥X

)
, (2.5)

− g⊥αβ g2
sδ
abFg→γ(z, Eγ , E0, R, µ)

=
∑∫
γ+X

〈0|A⊥aα (0)|γ+X〉〈γ+X| A⊥bβ (0) |0〉 θ(2E0 − n̄ · pin
X) δ

(
z − n̄ · pγ

Q

)

(2π)d−1Qδ(Q− n̄ · (pγ + pX)) δ(d−2)
(
p⊥γ + p⊥X

)
, (2.6)

where we sum over states X containing collinear QCD partons and integrate over the phase
space of the partons in X and the photon. The fields χq = W †cψc,q and A⊥aα ta = W †c iD

⊥
c,αWc

are the collinear quark and gluon fields in SCET times their associated collinear Wilson
lines Wc. The indices a, b and α, β are associated with color and spin, respectively. The
coupling gs is the bare strong coupling constant. The Wilson lines Wc make the fields
χq and A⊥µ invariant under collinear gauge transformations and are a product of a QED
and a QCD Wilson line. The total momentum of the partons inside the cone of radius
R is denoted by pin

X and its large component, not the energy, is bounded by the isolation
criterion. Up to power corrections in R the large component n̄ · p is equal to twice the
energy. The large light-cone component of the momentum of the incoming parton is Q
and is given in terms of photon energy as Q = 2Eγ/z. We have written the constraint for
fixed-cone isolation (1.1), but it can easily be adapted for smooth-cone case (1.2).

In general, the fragmentation functions (2.5) and (2.6) also contain a non-perturbative
component from partons whose momentum scales as

(n · p, n̄ · p, p⊥) ∼ Eγ
(
λ2, 1, λ

)
, (2.7)

with λ ∼ ΛQCD/Eγ . These energetic partons are highly collinear to the photon. They are
therefore always inside the isolation cone and their energy is constrained. After integrating
out the perturbative modes (2.4), one ends up with a low-energy effective theory containing
only the modes (2.7) and the fragmentation function becomes of convolution of perturbative
coefficients Ii→j times non-perturbative fragmentation functions Dj→γ . The associated two-
step fragmentation process is depicted in figure 3. For fixed-cone isolation, the associated
factorization formula reads

Fi→γ(z, Eγ , E0, R, µ) =
∑

j=γ,q,q̄,g

∫ 1

z

dzh
zh

∫
dEin θ

(
E0 − Ein −

1− zh
zh

Eγ

)
Ii→j(z/zh, Eγ , Ein, R, µ)Dj→γ(zh, µ) . (2.8)
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Ei Ej = zpEi

Eh

Ein + Eout

Ii!j Dj!γ

Eγ = zhEj = zEi

Figure 3. Kinematics of the factorization (2.8) of the cone fragmentation function Fi→γ into a
perturbative and non-perturbative part. The radiated partons in the perturbative part Ii→j can be
inside or outside the isolation cone, while the non-perturbative radiation in Dj→γ is always inside.
The perturbative momentum fraction is zp = z/zh.

The θ-function is due to photon isolation and constrains the energy inside the cone, which
gets contributions from perturbative partons in Ii→j as well as the non-perturbative partons
in Dj→γ , which carry the hadronic energy

Eh = (1− zh)Ej = (1− zh) · zp · Ei = 1− zh
zh

Eγ , (2.9)

where we used that zp = z/zh, see figure 3. While the non-perturbative partons are
always inside the cone, the perturbative ones scaling as (2.4) can be inside or outside. The
constraint only acts on the inside part Ein of their energy. The constraint on the energy
inside the cone implies that zh > 1/(1 + εγ). In the limit εγ → 0, the zh integration in (2.8)
no longer has any support. In this situation, the only contribution arises from j = γ

Dγ→γ(zh, µ) = δ(1− zh) , (2.10)

rendering the fragmentation purely perturbative up to power corrections in εγ . The limit of
small isolation energy will be considered in detail below.

The scaling (2.7) and the structure of (2.8) make it clear why there is no non-
perturbative contribution for smooth-cone isolation (1.2). Since the non-perturbative
partons (2.7) are very close to the center of the isolation cone, they are not allowed to carry
any energy since E0(r)→ 0 for r → 0. This enforces zh → 1 and the integral over zh has
no support and the only contribution arises again from Dγ→γ in (2.10). The smooth-cone
fragmentation function is purely perturbative up to corrections suppressed by ΛQCD/Eγ .

The factorization formula (2.1) is only valid up to corrections suppressed by the cone
radius R, but has the advantage that it captures all dependence on photon isolation. As
such it is well suited to analyze the dependence of cross sections on isolation parameters
and can also be used to convert a result from one isolation criterion to another. We may, for
example, convert a result computed using Frixione isolation to a result in fixed-cone isolation
by evaluating the difference of the relevant fragmentation functions. A second advantage of
the factorization (2.1) is that it separates the hard scale Eγ ∼

√
ŝ from the collinear scale

EγR associated with the fragmentation. This enables us to use renormalization-group (RG)
evolution to resum logarithms of R, the ratio of the two scales, as discussed in detail in the
next sections.
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3 Isolation fragmentation functions

We will now analyze the factorization discussed in section 2 in more detail. Let us start by
evaluating the isolation fragmentation functions at O(αs). At this order, the only nontrivial
fragmentation process is q → γ(k) + q(p) and the matrix element in (2.5) is the usual
splitting function in d = 4− 2ε dimensions

〈0|χbβ(0)|γ+q〉〈γ+q|χ̄aα(0)|0〉 = δab
(
n/

2

)
αβ

e2Q2
q

(
(d− 2)(n̄ · k)2 + 4 n̄ · k n̄ · p+ 4(n̄ · p)2)

2p · k n̄ · k ,

= δab
(
n/

2

)
αβ

e2Q2
q Q

k · p

[
1 + (1− z)2

z
− ε z

]
, (3.1)

where we have denoted the photon momentum by k and the quark momentum by p and the
charge Qq is +2/3 for up-type and −1/3 for down-type quarks. In the second line the large
light-cone components were written as k · n̄ = z Q and p · n̄ = (1 − z)Q. The expression
in square brackets is the spin averaged splitting kernel in d dimensions. To obtain the
fragmentation function, we need to integrate the matrix element (3.1) over the phase space
of the photon and quark in the presence of the kinematic constraints in (2.5). Expanding
away components which are power suppressed according to (2.4), the cone constraint is
formulated in terms of the angular quantity

δ2
γq = 2p · k

n̄ · p n̄ · k
, (3.2)

which scales as O(R2). Up to higher order terms, we can approximate

δγq ≈ tan
(θγq

2
)
≈ θγq

2 . (3.3)

For the fragmentation process q → γ(k) + q(p), the isolation cone constraint in (2.5) takes
the explicit form

θ(2E0 − n̄ · pin
X) = θ(δ2 − δ2

γq) θ(2E0 − n̄ · p) + θ
(
δ2
γq − δ2

)
. (3.4)

The first term on the right-hand side imposes an energy constraint if the quark is inside the
cone. The relation of δ to the cone size R depends on the collider. In the limit of small R
we have

e+e− collider: δ = R ,

proton collider: δ = R sin θγ = R/ cosh(ηγ) .
(3.5)

The hadron-collider result follows from analyzing r < R with r2 = (∆η)2 + (∆φ)2 near the
limit where the quark is collinear to the photon. To present results independent of the
collider, we will express them in terms of the quantities δ and Q. For the product of the
two at a hadron collider, we have

Qδ =
2ETγ
z sin θγ

R sin θγ =
2ETγ
z

R , (3.6)

while we get Qδ = 2EγR/z at a lepton collider.
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Due to (3.4) the leading-order fragmentation function can naturally be split into two
terms, depending on whether the quark in the final state is inside or outside the isolation cone

Fq→γ(z, Eγ , E0, R, µ) = F in
q→γ(z, Eγ , E0, R, µ) + Fout

q→γ(z,REγ , µ) , (3.7)

where the outside part is independent of the isolation. The bare result for the outside
part reads

Fout
q→γ(z,REγ) =

αEMQ2
q

2π

{
P (z)

[
1
ε
− ln

(
δ2Q2

µ2 (1− z)2z2
)]
− z

}
, (3.8)

with the d = 4 splitting kernel

P (z) = 1 + (1− z)2

z
(3.9)

and after expressing the bare electromagnetic coupling α0 through the MS result via
α0 = ZααEM(µ2 eγE/(4π))ε, where γE is the Euler-Mascheroni constant. The renormalized
result is then obtained by subtracting the divergence in (3.8). The inside part for smooth-
cone isolation (1.2) is given by

F in
q→γ(z, Eγ , E0, R, µ) =

αEMQ
2
q

2π P (z) 1
n

ln
(
z εγ

1− z

)
θ

(
z − 1

1 + εγ

)
, (3.10)

where n is the exponent parameter of the smooth-cone isolation condition (1.2). The
function F in

q→γ is finite and independent of of the cone radius, while the outside part has
logarithmic R dependence tied to its divergence. As it should be, the total fragmentation
function has a divergence proportional to the splitting kernel. Due to the constraint on the
inside energy, the inside fragmentation function has only support for large enough z and
vanishes in the limit εγ → 0. Expanding around this limit, we find

F in
q→γ(z, Eγ , E0, R, µ) =

αEMQ
2
q

2π
1
n
εγ δ(1− z) +O

(
ε2γ

)
. (3.11)

The εγ suppression is expected since the collinear quark becomes soft and soft quarks are
power suppressed.

Let us now consider the inside fragmentation for fixed-cone isolation (1.1). This case
is more complicated because the isolation fragmentation also involves non-perturbative
fragmentation, see (2.8). At zeroth order in αs, there are two contributions. We can either
have a trivial perturbative part

Ii→j(z,R,Eγ , Ein, µ) = δij δ(1− z) +O(αs) (3.12)

together with a non-perturbative fragmentation contribution, or we have photon production
from a quark or anti-quark in the perturbative part Ii→γ followed by the trivial photon-to-
photon fragmentation Dγ→γ = δ(1− z). Up to corrections of order αs, we can thus write
the inside part for fixed-cone isolation as

F in
i→γ(z,R,Eγ , E0, µ) =

Di→γ(z, µ) +
∑
k=q,q̄

δik I in
k→γ(z,R,Eγ , µ)

 θ(z − 1
1 + εγ

)
(3.13)
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√
s = 13 TeV EγT > Emin

T = 125 GeV |ηγ | < 2.37

NNPDF23_nlo_as_0119_qed_mc PDFs [51] αs(MZ) = 0.119 αEM = 1/132.507

Table 1. Kinematics and input parameters used for the cross section computations in this paper.
For our fixed-order computations in section 3 we use the default scales µa = µf = µr = 125 GeV,
where µr and µf are the renormalization and factorization scales, respectively, and µa is the scale
associated with the non-perturbative fragmentation function. For the resummed results, we use
µh = µf = µr = EγT , µj = REγT and µ0 = RE0 as the default.
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Figure 4. Dependence of ∆σ on the cone radius R for smooth-cone isolation (1.2). The lines labeled
∆σNLO are the difference of the full NLO cross sections. For the lines labeled ∆σg/ in the right plot
gluons inside the isolation cones were vetoed. The dots represent ∆σ = σi ⊗∆Fi→γ computed with
the fragmentation function according to (3.16), which is independent of εγ for εγ = εref

γ .

and for the perturbative part, we find

I in
q→γ(z,R,Eγ , µ) =

αEMQ2
q

2π

{
P (z)

[
−1
ε

+ ln
(
δ2Q2

µ2 (1− z)2z2
)]

+ z

}
. (3.14)

Note that this is the opposite of Fout
q→γ in (3.8). In the absence of the isolation energy

constraint in (3.13), the two contributions would exactly cancel since the perturbative
part of the fragmentation function becomes scaleless. This is sensible: without the energy
constraint, the isolation becomes trivial and the entire fragmentation reduces to the non-
perturbative fragmentation function Di→γ . We also note that the anomalous dimension of
the fragmentation function is the same for smooth-cone and fixed-cone isolation. Since the
same anomalous dimension also drives the evolution of the hard part given by the partonic
amplitudes dσi+X in (2.1) it cannot depend on the isolation requirement.

The fragmentation function factorization is valid up to power corrections in R and
with the functions at hand, it is interesting to check numerically whether (2.1) describes
the isolation effects in the NLO photon production cross section at the experimentally
used value R = 0.4. To this end, we consider proton proton collisions at

√
s = 13 TeV
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Figure 5. Dependence of ∆σ on the value of the parameter n of the smooth-cone isolation (1.2).
The lines labeled ∆σNLO are the difference of the full NLO cross sections. For the lines labeled ∆σg/
in the right plot gluons inside the isolation cones were vetoed. The dots represent ∆σ = σi⊗∆Fi→γ
computed with the fragmentation function according to (3.16) and is independent of R for R = Rref .

and compute the cross section for isolated photons with EγT > Emin
T = 125 GeV. For our

numerical studies of photon isolation effects, we will use the kinematic setup and input
parameters listed in table 1 throughout the paper. Our formalism can also be used to study
differential distributions, but the focus of our paper is on the effects of photon isolation and
these are not strongly dependent on the photon kinematics.

To study the dependence on isolation parameters, we consider smooth-cone isolation (1.2)
and compute the difference to a reference cross section

∆σ = σ (εγ , n,R)− σ
(
εrefγ , n

ref, Rref
)
. (3.15)

In the difference ∆σ the direct photon part in (2.1) drops out so that it is given by a
convolution of the partonic cross section with the fragmentation function. At this order,
the fragmenting parton is either a quark or anti-quark so that we have

∆σ =
∑
i=q,q̄

∫ ∞
Emin
T

dEi

∫ 1

zmin
dz
dσi+X
dEi

∆Fi→γ , (3.16)

where
∆Fi→γ = Fi→γ (z,R, εγ , n)−Fi→γ

(
z,Rref, εrefγ , n

ref
)

(3.17)

and zmin = Emin
T /Ei.

To be able to convert the values for ∆σ into results for the full cross section, we
computed some reference cross section values with MCFM [52] for the kinematics listed in
table 1. The LO cross section is of course independent of the isolation requirement and
corresponds to

σLO = 229−20
+22 pb , (3.18)

where the upper and lower values correspond to the change in cross section after increasing
and lowering µf = µr from the default value by a factor 2, respectively. The NLO cross
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section values depend on isolation and we obtain

σNLO
∣∣∣
no isolation

= 495−51
+68 pb ,

σNLO
∣∣∣
fixed cone,R=0.4,εγ=0.02

= 413−35
+46 pb . (3.19)

The cross section predictions in (3.19) depend on the non-perturbative fragmentation
functions Di→γ and we used the GdRG [53, 54] set as implemented in MCFM. The code
offers a second choice, the BFGS sets [55], which would lead to a value of the cross section
without isolation which is about 35 pb lower. With fixed-cone isolation, the BFGS cross
section would be 11 pb lower than the value in (3.19). These fragmentation function
sets were determined about 25 years ago based on LEP data [56, 57] and models of the
non-perturbative physics. For smooth-cone isolation, we obtain the reference values

σNLO
∣∣∣
R=0.4, n=1, εγ=1.0

= 459−43
+56 pb ,

σNLO
∣∣∣
R=0.4, n=1, εγ=0.5

= 445−40
+53 pb , (3.20)

σNLO
∣∣∣
R=0.4, n=1, εγ=0.02

= 414−35
+46 pb .

As a consistency check, we have computed cross sections with several available NLO
codes and for convenience we provide precise reference values in appendix D. We have also
extracted the direct cross section in (2.1) by computing the cross section at different R values,
subtracting the fragmentation contribution and extrapolating to R→ 0. For the default
scales in table 1, we find σNLO

dir ≈ 308 pb, with some uncertainty due to the extrapolation
since we cannot run the fixed order codes at too small R due to numerical instabilities.

From our results for the fragmentation function in (3.10) and (3.8), we can immediately
read off the parameter dependence for a number of special cases, for example

∆σ ∝ ln
(
Rref

R

)
for n = nref and εγ = εrefγ ,

∆σ ∝
( 1
n
− 1
nref

)
for R = Rref and εγ = εrefγ . (3.21)

In addition to the n and R dependence, we can also analyze the εγ dependence, but this
case is more complicated because the difference of fragmentation functions has nontrivial
dependence on the parameter εγ even for R = Rref and n = nref:

∆Fi→γ = αEMQ
2
i

2π P (z) 1
n

[
θ

(
z − 1

1 + εγ

)
ln
(

1− z
z εγ

)
− θ

(
z − 1

1 + εrefγ

)
ln
(

1− z
z εrefγ

)]
.

(3.22)
Of course, as is the case for the factorization formula (3.16), these results only hold up

to terms which are power suppressed by the cone radius R and it is interesting to check
how big the power corrections are numerically by comparing to fixed-order results for ∆σ.
To this end, we plot the cross section as a function the isolation parameters R, n and εγ in
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Figure 6. Dependence of the cross section on εγ for smooth-cone isolation (1.2). The lines labeled
∆σNLO show the difference of the full NLO cross sections. The dots represent ∆σ = σi ⊗∆Fi→γ
computed with the fragmentation function according to (3.16) and are independent of R for R = Rref .
For the lines labeled ∆σg/ in the right plot gluons inside the isolation cones were vetoed.

figures 4, 5 and 6. The dots in these figures correspond to fragmentation function results
obtained using (3.16), while the lines are the NLO fixed-order result for ∆σ computed
using MadGraph5_aMC@NLO [58]. The fixed-order photon production cross section
only becomes sensitive to isolation at NLO and the cross section difference is insensitive
to virtual corrections. We can thus extract the difference directly from a LO computation
of the process pp→ γjj, where one of the “jets” is recoiling against the photon, while the
second one is inside the isolation cone. The details of this fixed-order computation are
described in appendix C.

The differences between the full fixed-order results (lines in the plots) and the frag-
mentation result (dots) are due to power suppressed contributions such as initial state
radiation into the cone. Figures 5 and 6 show that even for R = 0.4, the power corrections
are numerically quite small and the factorization theorem (2.1) accurately describes the
photon isolation effects. In figure 4 the difference is zero by construction at the reference
point R = Rref = 0.4. Since the power corrections vanish for R→ 0, the difference in this
region arises from power corrections to the reference cross section with Rref = 0.4. Since
the fragmentation contribution can only have (anti-)quarks inside the cone at this order,
contributions with gluons inside the cone are suppressed by R. In the right-hand plots
in figures 4, 5 and 6, we have removed the contributions of gluons inside the cone. The
close agreement of the fragmentation result with the full fixed-order result shows that gluon
radiation into the cone is the main source of power corrections. Indeed, since the power
corrections are so small, once gluons are excluded from the isolation cone, the three lines in
each plot overlap almost completely.

In figures 4, 5 and 6 we considered the parameter dependence of cross sections with
smooth-cone isolation. It is now interesting to compare to the case of fixed-cone isolation.
Since the outside part is obviously the same, different behavior is related to the inside
part F in

q→γ given in (3.10) and (3.13), respectively. In addition to the contribution from
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Figure 7. Radius dependence for fixed-cone isolation for different εγ with Rref = 0.4. The lines show
the full NLO cross sections, the dots correspond the the result obtained using the cone fragmentation
functions. In contrast to the smooth-cone result shown in figure 4, the result depends on εγ .

the non-perturbative fragmentation, a key difference between the two functions is that for
fixed-cone isolation, the inside part of the function depends on the cone radius. Setting
εγ = εref

γ and computing the difference between the cross section at a given R to a reference
value Rref , the non-perturbative part drops out and we obtain

∆Fi→γ = Q2
iαEM
π

P (z) ln
(
Rref

R

)
θ

(
1

1 + εγ
− z

)
. (3.23)

We see that due to the presence of the θ-function the coefficient of the logarithm of R
now depends on εγ , in contrast to smooth-cone result shown in figure 4. The smaller the
value of εγ , the bigger the range over which the z-integral has support, resulting in a larger
coefficient of the ln(R) term. This is indeed what we observe in figure 7. In the limit εγ → 0,
the θ-function becomes trivial and we recover the smooth-cone result for the R dependence
of the cross section. This observation is surprising at first sight, but the underlying physics
is easy to understand. For small εγ , the R dependence is driven by energetic partons outside
the cone that are close to its boundary. These are independent of the isolation criterion so
that the ln(R) dependence becomes universal. More generally, since the inside part F in

i→γ
involves a soft quark, its contribution is power suppressed for εγ → 0 and R→ 0. In this
limit, a dependence on the isolation criterion first arises in the NNLO cross section and
will be computed below. To illustrate that the different isolation criteria lead to the similar
NLO cross section for εγ → 0, we have tabulated cross sections values for different isolation
criteria in table 2. We observe that the cross section differences indeed decrease for small
εγ . Interestingly, the n = 1 cross section is fairly close to the fixed-cone cross section over a
fairly wide range of εγ values.

Having illustrated the parameter dependence of the isolation cross section in different
examples and demonstrated that power suppressed effects in R are small, we now turn to
the all-order resummation of ln(R) terms.
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σ [pb] fixed cone n = 1 n = 2
εγ = 0.02 414.56± 0.34 413.31± 0.36 410.41± 0.37
εγ = 0.1 420.58± 0.38 422.05± 0.40 416.57± 0.39
εγ = 0.2 429.35± 0.32 429.10± 0.41 421.71± 0.40

Table 2. Cross-section at R = 0.4 for different photon isolation criteria computed using MCFM [52].
The cross section values correspond to the kinematics and input specified in table 1 with µf = µr =
125 GeV. For this scale choice, the direct part of the cross section is σdir ≈ 308 pb.

4 Resummation of ln(R) terms

Working with the form (2.2) of the factorization theorem, the renormalized fragmentation
functions fulfills the usual DGLAP evolution equation

d

d lnµFi→γ(z, µ) =
∑

j=γ,q,q̄,g
Pi→j ⊗Fj→γ

≡
∑

j=γ,q,q̄,g

∫ 1

z

dz′

z′
Pi→j

(
z

z′

)
Fj→γ(z′, µ) , (4.1)

where we suppress the dependence on the fragmentation function on the additional arguments
Eγ , E0, R and further parameters such as n. As is conventional, we use here the symbol ⊗
to denote the Mellin convolution

(f ⊗ g)(z) =
∫ 1

0
dx

∫ 1

0
dy δ(z − xy)f(x)f(y) =

∫ 1

z

dz′

z′
f

(
z

z′

)
g(z′) . (4.2)

Separating out the trivial Fγ→γ contribution as in (2.3), we can write the DGLAP
evolution equation purely in terms of QCD partons

d

d lnµFi→γ(z, µ) = Pi→γ(z) +
∑

j=q,q̄,g
Pi→j ⊗Fj→γ , (4.3)

with i = q, q̄, g. In this form, the equation involves an inhomogeneous term. To resum
the logarithms of R we will solve (4.3) numerically and evolve the functions Fi→γ from
their characteristic scale µc ∼ REγ to the hard scale µh ∼ Eγ . The initial condition
Fq→γ(z, Eγ , E0, R, µ) for µ = µc was computed in the previous section both for fixed-cone
and smooth-cone isolation.

An important simplification for the case of smooth-cone isolation is that the fragmenta-
tion function is purely perturbative. The same is true in the limit of small E0 considered in
the next section, since the non-perturbative part involves a soft quark inside the fragmenta-
tion cone, which is power suppressed in the limit E0 → 0. In the absence of non-perturbative
effects, and since we do not include the top quark and set the masses of the other quarks
to zero, our fragmentation functions have a flavor symmetry: all down-type quarks and
anti-quarks have the same fragmentation function, and similarly all up-type quarks and
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anti-quarks. Instead of evolving the individual flavors, we thus only need the combinations

Σ =
nf∑
i=1

(Fqi→γ + Fq̄i→γ) ,

∆ = Fd→γ −Fu→γ , (4.4)

G = Fg→γ ,

where d and u denote the down- and up-type quarks respectively. The function ∆ is decoupled
from the gluon fragmentation function, and satisfies the simple evolution equation

d

d lnµ∆ = (Pd→γ(z)− Pu→γ(z)) + Pq→q ⊗∆ . (4.5)

The other two functions Σ and g fulfill the coupled equations

d

d lnµ

(
Σ
G

)
=
(∑nf

i=1(Pqi→γ + Pq̄i→γ)
Pg→γ

)
+
(
Pq→q 2nfPq→g
Pg→q Pg→g

)
⊗
(

Σ
G

)
. (4.6)

The parton-to-parton splitting kernels relevant for the homogenous part take the form

Pi→j(z) = αs
π
P

(1)
i→j +O

(
α2
s

)
, (4.7)

and the parton-to-photon splitting kernels which constitute the inhomogeneous part of the
equation are expanded as

Pi→γ = α

π

(
P

(0)
i→γ + αs

π
P

(1)
i→γ +O

(
α2
s

))
. (4.8)

We solve this equation at leading order in RG-improved QCD perturbation theory and
therefore need to include the order αs corrections to the evolution kernels, including the
ones to Pi→γ . These can be found in [59] and are listed in appendix A. In traditional
terminology, this amounts to next-to-leading logarithmic (NLL) accuracy.

There are two commonly used techniques to solve evolution equations such as (4.3).
One possibility is to solve the equations directly in momentum space by interpolating the
fragmentation functions over a grid of z values. In this approach computes the µ-dependence
step by step and interpolates the result in z at each step. Alternatively, one can solve the
equations in Mellin moment space

f(N) =
∫ 1

0
dzzN−1f(z) , (4.9)

which converts Mellin convolutions (4.2) into products

(f ⊗ g)(N) = f(N) · g(N) . (4.10)

In moment space (4.3) turns into a set of coupled differential equations for the moments.
One can view the flavor indices as matrix indices so that the solution boils down to the
solution of a matrix equation. The the inhomogeneous equation (4.3) takes the form

d

d lnµFi→γ(N,µ) = Pi→γ(N) +
∑

j=q,q̄,g
Pi→j(N)Fj→γ(N,µ) . (4.11)

– 16 –



J
H
E
P
0
1
(
2
0
2
3
)
0
0
5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 8. Effect of RG-evolution on the cone fragmentation functions Fi→γ . The gray lines shows
the initial condition given by the LO fixed-order result at µ = 10 GeV and correspond to smooth-cone
isolation with R = 0.4 with εγ = 1 and n = 1. The derivative of the initial condition is discontinuous
at z = (1 + εγ)−1 = 0.5 due to the contribution (3.10). The gluon fragmentation function vanishes
at this order. The other lines are the results after evolution to µ = 200 GeV by solving the RG
equations either in moment space (red lines) or in momentum space (dashed lines).

Introducing the flavor combinations in (4.4), we get a differential equation for ∆ and a
matrix differential equation for Σ and G, see (4.6). After diagonalizing this two-by-two
matrix, one can solve the equations analytically and obtain the exact µ-dependence of the
moments. The evaluation then reduces to computing the inverse Mellin transformation
numerically. The moment-space solution is detailed in appendix B. The discussion in this
appendix shows that for full NLL accuracy, one will need to include the two-loop correction
to the parton-to-parton splitting kernels in (4.7) since Fi→γ formally counts as O(1/αs). If
the jet scale is not much lower than the hard scale, these corrections will be small and we
omit them for simplicity.

Both methods to solve the evolution equations are commonly used. The solution in
moment space is, for example, the basis of the PEGASUS code [60], while the APFEL
code solves the RGs in z-space [61, 62]. As a cross check, we have implemented both
approaches. In figure 8, we compare results for some benchmark values of the scales and
find that they are compatible with each other. The moment space method becomes delicate
for z → 1 because the Mellin inversion integral suffers from slow numerical convergence.
To improve the convergence, we use the same integration contour as the PEGASUS code.
The momentum space method, on the other hand, requires a careful choice of the z grid
and interpolation and larger numerical resources to calculate the µ-dependence since it
needs to proceed in small steps, but yields similarly precise results for all z-values. In our
event-based resummation framework, we prefer to work with the moment-space approach,
since a single numerical integral immediately yields the result for any desired µ value. Of
course, one could interpolate the results for the fragmentation functions as is done for PDFs,
but one would need different grids for different initial conditions, i.e. different isolation
parameter choices.
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Figure 9. Effect of ln(R) resummation, plotted as the difference to the fixed-order cross section at
Rref = 0.4. Shown are the resummed result (red) and its fixed-order expansion (dashed) obtained
by setting µj = µh. We also show the full fixed-order result (black) evaluated with µr = µf = µh,
which also includes terms which are power suppressed in R. Above the orange dot-dashed line, the
cross section with isolation becomes larger than the inclusive cross section, which is unphysical.

To compute the cross section resummed at NLL, we first evaluate the NLO photon-
production cross section with MadGraph5_aMC@NLO [58]. Then we evaluate

dσNLO+NLL

dEγ
=
dσNLO

γ+X
dEγ

+
∑

i=q,q̄,g

∫
dz
dσi+X
dEi

∆Fi→γ , (4.12)

where
∆Fi→γ = Fi→γ(z, Eγ , E0, R, µj)−Fi→γ(z, Eγ , E0, R, µh) . (4.13)

Here µh ∼ Eγ is the scale at which the fixed-order computation was performed. The second
term in ∆Fi→γ in (4.12) subtracts the fixed-order result of the fragmentation contribution
and adds the RG-improved result obtained from solving the evolution equation (4.3) to
evolve from the hard scale µh at which σi+X is computed to the collinear scale µj ∼ EγR.
The RG evolution resums the logarithms of R and the subtraction is necessary to avoid a
double counting of the fragmentation contribution which is contained in the NLO result.

To compute the fragmentation contribution in (4.12), we use MadGraph5_aMC@NLO
as an event generator to produce the leading-order cross section dσi+X/dEi for different
QCD partons i. We then perform the integral over z in (2.1) by randomly choosing a value
of z for each event and evaluating the fragmentation function for this value. Since the scales
depend on the photon energy Eγ = zEi, we have a different µ-values for each event and the
moment-space technique to solve DGLAP is very efficient since we control the µ dependence
analytically and only need a numerical integration to obtain the fragmentation function at
the desired z value. To have a fast way of computing the fragmentation function we have
written a small C++ code.

The effect of the resummation of the logarithms of the radius R is shown in figure 9.
To show the dependence on R, we again compute the difference to a reference cross
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section at R = 0.4. Before discussing the resummed result, let us compare the full NLO
prediction (solid black line) of MadGraph5_aMC@NLO to the result obtained using
the fragmentation formalism without resummation (dashed line). They must agree up to
small power corrections and we observe that the difference is indeed quite small. Since we
subtract the reference cross section, the difference is zero by construction at the reference
point R = 0.4. The small deviation at small R is due to the difference of the reference cross
sections as in figures 4 and 7. The red curve shows the difference of the resummed result
to the reference cross section without resummation. As expected, resummation lowers the
cross section since it dampens the logarithmic growth of the NLO result. We also show the
difference between the inclusive photon cross section and the reference cross section obtained
from (3.20) as an orange, dash-dotted line in the figure. To be physical, the isolated cross
section has to be smaller than the inclusive cross section. The fact that the isolated NLO
cross section overshoots the inclusive result for R < 0.2 shows that the fixed-order expansion
breaks down for small R, as was observed earlier in [22]. Resummation cures this problem.
Of course, this unitarity bound has to be taken with a grain of salt, since the inclusive cross
section depends on the non-perturbative fragmentation functions, which are poorly known.

5 Factorization for small isolation energy E0

If the isolation energy E0 is much smaller than the photon energy Eγ , a scale hierarchy
arises in the fragmentation function Fi→γ . In the limit of small εγ = E0/Eγ , energetic
partons can no longer enter the isolation cone, however, energetic partons outside the cone
can radiate back into the cone. This structure is at the heart of a second factorization,
which is depicted in figure 1,

Fi→γ(z,REγ , RE0, µ) =
∞∑
l=1
〈Ji→γ+l({n}, REγ , z, µ)⊗ U l ({n}, RE0, µ)〉 , (5.1)

and is valid in the limit of small εγ . The fragmentation function factorizes into jet functions
Ji→γ+l describing the energetic partons accompanying the photon and functions U l de-
scribing the low-energy radiation into the cone. This radiation is sensitive to the directions
{n} = {n1, . . . , nl} and color charges of the l energetic partons. The symbol ⊗ denotes the
integral over the directions of the hard partons and the photon. The same symbol was used
in section 4 to denote the Mellin convolution; the context makes it clear what the symbol
indicates. The notation 〈. . . 〉 indicates the color sum, which can be taken after computing
the emissions. In addition to directions of the l energetic partons, the functions also depend
on the vectors n and n̄ introduced in defining Fi→γ and on the direction of the photon nγ .
More precisely, the functions will depend on scalar products of the different vectors, as we
will detail below.

The fragmentation of parton i into a photon of momentum k is encapsulated by the
jet functions

Ji→γ+l({n}, REγ , z, µ) (5.2)

=
∑
spins

l∏
j=1

∫ dEj E
d−3
j

(2π)d−2

∫
dEk E

d−3
k

(2π)d−2 Θcone
({
p
})

|Ml(pi; {k, p})〉〈Ml(pi; {k, p})|2 (2π)d−1 δ(n̄ · pi − n̄ · k − n̄ · pXc) δ(d−2)
(
k⊥ + p⊥Xc

)
,
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where the constraint Θcone
({
p
})

enforces that the energetic partons must lie outside the
isolation cone. The amplitudes in this formula are the splitting functions for the incoming
parton with momentum pi along the direction n to fragment into the photon and additional
l energetic partons {p} = {p1, . . . , pl},

|Ml(pi; {p})〉 = 〈k, p|Φαa
c (0) |0〉 , (5.3)

where pi = k+ pXc = k+
∑l
j=1 pj and Φαa

c is a collinear field with the quantum numbers of
the incoming parton, i.e. Φαa

c = χαac for an incoming quark and Φαa
c = A⊥,αac for an incoming

gluon, with spin and color indices α and a. The definition of the jet function includes a
sum over spins of the outgoing partons, which for the quark-case produces the structure

Jq→γ+l({n}, REγ , z, µ) =
(
n/

2

)
αβ
δabJq→γ+l({n}, REγ , z, µ) , (5.4)

with a scalar jet function Ji→γ+l, and where α and β are the Dirac indices of the collinear
fields in the amplitude and the conjugate amplitude. For an incoming gluon, we instead get

n̄ · pi Jg→γ+l({n}, REγ , z, µ) = −g⊥αβ g2
sδ
ab Jg→γ+l({n}, REγ , z, µ) . (5.5)

The extra factor of n̄ · pi on the left hand side arises because the gluon field has mass
dimension 1, while the quark field has dimension 3

2 . While we integrate over the full phase
space of the photon with momentum k, the directions of the energetic partons are fixed.
Note that the collinear fields in the jet functions scale as (2.4). The integrals in (5.2) are
integrals over the large light-cone components Ej ≡ n̄ · pj/2.

The energetic partons in the jet functions source soft radiation which can enter the
isolation cone. The momenta of this radiation scale as(

n · pt, n̄ · pt, p⊥t
)
∼ E0

(
R2, 1, R

)
. (5.6)

It has small energy E ∼ εγEγ and is collinear to the photon. Since it is both collinear
and soft it was called coft in [40] and denoted with a subscript t. The coft radiation
can be obtained by taking matrix elements of Wilson line operators along the directions
n1, . . . , nl of the outgoing collinear partons and an additional one along the direction n̄,
which captures the radiation of all other partons not collinear to the photon. A detailed
derivation of the Wilson line structure can be found in [41]. The operator definition for the
coft functions reads

U l({n}, E0R)

=
∫
Xt

∑
〈0|U †0 (n̄)U †1 (n1) . . .U †l (nl) |Xt〉〈Xt|U0(n̄) . . .Ul(nl) |0〉 θ

(
2E0 − n̄ · pcone

Xt

)
. (5.7)

In the limit under consideration, the energy measurement translates into a measurement of
the large component of the radiation. Note that the coft radiation can be inside or outside
the cone, but only the energy of the partons inside the cone is bounded by E0.
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In the following, we will resum the leading logarithms associated with the scale ratios
shown on the right-hand side of figure 2. The resummation of logarithms of the cone
radius R, the ratio of the collinear scale REγ to hard scale Eγ is carried out as before
by numerically solving the DGLAP evolution equation. However, for small εγ = E0/Eγ ,
a second evolution step is required to evolve from the collinear scale µj ∼ REγ to the
low-energy scale µ0 ∼ RE0 to resum the logarithms of εγ . These are non-global logarithms
and we resum them using a parton-shower algorithm [44, 46] analogous the one originally
proposed by Dasgupta and Salam [45].

6 Computation of the jet and coft function

As a starting point of the second evolution, we need to compute the jet functions at a
scale µ = µj ∼ REγ . There are no large logarithms for this scale choice and all higher-
multiplicity jet functions are suppressed by powers of αs. We thus only need the case l = 1,
corresponding to the fragmentation process q → γ + q.

The jet functions depends on the light-cone reference vector nµ along the direction
of the parton that fragments into the jet, as well as a conjugate reference vector n̄µ with
n · n̄ = 2. In addition, the jet functions will depend on the light-cone reference vectors of
the collinear partons produced in the fragmentation. For the lowest-order fragmentation
process q → γ+ q we need a reference vector nq for the final-state quark and a vector nγ for
the photon. The scalar jet functions Jq→l+γ defined in (5.4) will depend on scalar products
of these reference vectors and to compute them, we introduce angular variables that are
suited to the limit under consideration. A set of variables which scales as O(1) is [41]

Θi = 1
δ

√
n · ni
n̄ · ni

, (6.1)

Φij = 2
δ2

ni · nj
n̄ · ni n̄ · nj

. (6.2)

The first set of variables measures the angle with respect to the axis n, the second one the
angle between i and j. In four dimensions, we have

Θi = 1
δ

tan
(
θi
2

)
, (6.3)

Φij = Θ2
i + Θ2

i − 2ΘiΘj cos(∆φij) . (6.4)

For the leading order fragmentation process q → γ + q these variables are not independent.
Momentum conservation enforces ∆φqγ = π and we therefore have Φqγ = (Θq + Θγ)2.
Transverse momentum conservation also relates the ratio of the two angles to the momentum
fraction z of the photon

Θγ

Θq
= z

1− z +O
(
δ2
)
. (6.5)

This implies that there is only single independent angular variable and for convenience we
choose it as

Θ̃ = 1√
Φqγ

= δ cot θqγ2 +O
(
δ2
)
. (6.6)
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Up to power corrections, we have Θ̃ ∈ [0, 1]. The limit Θ̃ = 1 corresponds to the quark
touching the cone, while Θ̃ = 0 corresponds to the configuration where the photon and
the quark are back to back. To rewrite the angular convolution integral in this variable,
we insert

1 =
∫ 1

0
dΘ̃ 2

Θ̃3
δ

(
Θ̃−2 − 2

δ2
nq · nγ

n̄ · nq n̄ · nγ

)
, (6.7)

into the original angular convolution, perform the angular integrals and write the result in
the form

Jq→γ+q({nq, nγ}, REγ , z, µ)⊗ Uq ({nq, nγ}, RE0, µ)

=
∫ 1

0
dΘ̃ Jq→γ+q

(
Θ̃, REγ , z, µ

)
Uq

(
Θ̃, RE0, µ

)
. (6.8)

To compute the jet function for the process q → γ(k) + q(p), we split the momenta into
their light-cone components and write

pµ = n · pn̄
µ

2 + n̄ · pn
µ

2 + pµ⊥ (6.9)

and analogously for the photon momentum k. We note that

2p · k
n̄ · p n̄ · k

= 2nq · nγ
n̄ · nq n̄ · nγ

= δ2

Θ̃2
. (6.10)

According to the definition (5.2), the jet function only involves the energy integrals instead
of full phase-space integrations, but in (6.8) we carry out the angular integrals after inserting
the δ-function (6.7). Doing so, we recover full phase-space integrals for k and p together
with the δ-function constraint (6.7) which keeps the angle between the quark and the photon
fixed. This gives

Jq→γ+q
(
Θ̃, REγ , z, µ

)
δab
(
n/

2

)
αβ

=
∫

[dp] [dk] 〈0|χbβ (0) |γ+q〉〈γ+q|χaα (0) |0〉

(2π)d−1 δ(d−2)
(
~p⊥ + ~k⊥

)
δ
(
n̄ (p+ k)− Q̃

)
δ

(
z − n̄k

Q̃

) 2
Θ̃3

δ

( 2p · k
δ2n̄ · p n̄ · k

− 1
Θ̃2

)
,

(6.11)

where Q̃ = 2Eγ/z is the large light-cone component of the quark before fragmentation.
The matrix element is the same we encountered in the computation of the fragmentation
function and was given in (3.1). The only difference to the earlier computation of the
fragmentation function is the angular constraint. For the fragmentation function, the quark
could be either inside or outside the cone according to (3.4) and we integrated over its
direction. The particles inside the jet function, on the other hand, are energetic and cannot
be inside the isolation cone. Furthermore we need the result differential in the direction Θ̃
of the quark, because the soft radiation depends on it. After inserting (3.1) into (6.11), we
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can immediately carry out the integrations which leads to the result

Jq→γ+q
(
Θ̃, REγ , z, µ

)
= µ2eγE

Γ (1− ε)
Q2
iαEM
π

2− 2z + (1− ε) z2

z

(
δ2Q2(z−1)2z2

Θ̃2

)−ε
Θ̃

= Q2
iαEM
2π

P (z)

δ
(
Θ̃
)

ε
− δ

(
Θ̃
)

ln
(
δ2Q2

µ2 (z − 1)2 z2
)

+ 2
[ 1

Θ̃

]
+

− zδ (Θ̃
) .

(6.12)

The splitting kernel P (z) was given in (3.9). The renormalized jet function is obtained by
dropping the divergent term in the second line.

With the jet function at hand, we can now obtain Fi→γ at leading order from (5.1) by
convoluting with the trivial lowest-order coft function Uq = 1:∫ 1

0
dΘ̃Jq→γ+q

(
Θ̃, REγ , z, µ

)
= Q2

iαEM
2π

[
P (z)

(
1
ε
− ln

(
δ2Q2

µ2 (z − 1)2z2
))
− z

]
.

(6.13)

This result indeed agrees with Fout
q→γ(z,REγ) given in (3.8). In the limit of small εγ the

inside part is power suppressed, since soft quarks are power suppressed compared to soft
gluons.

To resum the leading non-global logarithms, it is sufficient to use the trivial LO coft
function since the function evaluated at µ = µ0 is free of large logarithms. It is nevertheless
useful to calculate the NLO function U (1)

q , relevant for the process q → γ + q so that
we have an analytic result for the one-loop logarithm and and an idea of the size of the
non-logarithmic O(αs) corrections. The perturbative expansion of the coft functions takes
the form

U l({n}, RE0, µ) = 1 + αs
4πU (1)

l ({n}, RE0, µ) +O
(
α2
s

)
(6.14)

and the NLO correction to the coft function for q → γ + q is obtained by computing the
emission of a coft gluon into the isolation cone

αs
4πU (1)

q

(
Θ̃, RE0, µ

)
= 2g2

sCF1
∫

[dk] n̄ · nq
n̄ · k nq · k

θ

(
δ2 − 2nγ · k

n̄ · nγn̄ · k

)
θ(Q0 − n̄ · k) .

(6.15)
The first θ-function forces the emission to lie inside the cone, the second one restricts the
energy, or more precisely the large component of the coft momentum. The expression (6.15)
is relevant for fixed-cone isolation. For smooth-cone isolation in the limit of small δ
one replaces

θ(Q0 − n̄ · k)→ θ

(
Q0

(
2nγ · k

δ2n̄ · nγn̄ · k

)n
− n̄ · k

)
(6.16)

and identifies Q0 = 2εγEγ . Note that the one recovers the fixed-cone isolation for n = 0. If
the coft gluon is outside the cone its energy is unrestricted leading to a scaleless integral.
The squared amplitude is from the emissions from the Wilson line along the direction
nq of the outgoing quark and the Wilson line along the n̄ direction which represents the
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emission from the remaining hard partons in the event. Performing the integrations for
smooth-cone isolation, expressing the bare coupling gs through the MS coupling, and
defining U (1)

q = U (1)
q 1, we obtain

U (1)
q = 2CF

ε
ln
(
1−Θ̃2

)
−2CF

[
ln
(
1−Θ̃2

)
2ln

(
Q0δ

µ

)
+ln2

(
1−Θ̃2

)
+(1+2n)Li2

(
Θ̃2
)]
.

(6.17)
The renormalized one-loop function is obtained by dropping the divergent part of this result.
For µ ∼ Qδ, the result contains a large logarithm ln(Q0/Q) = ln(εγ). The rest of the terms
enter at NLL.

Given the simple form of the coft function (6.17), we can analytically evaluate the
convolution with the leading jet function in (6.12). Note that U (1)

q vanishes for Θ̃ = 0. For
this reason, only the plus-distribution part in (6.12) contributes. Evaluating the angular
integral, we obtain〈

Jq→γ+q ⊗ U (1)
q

〉
=
Q2
qαEM

π
CFP (z)

[
−π

2

6ε + π2

3 ln Q0δ

µ
− (2n+ 3) ζ3

]
. (6.18)

This convolution of the jet and coft function corresponds exactly to the situation depicted
in figure 1.

The result (6.18) has a very important application. Consider two cross sections
computed at small εγ but with the same cone radius R. The difference (3.16) is proportional
to the difference of fragmentation functions. Since the fragmentation contribution as a
whole is suppressed by O(αs), we only need the fragmentation function difference to O(αs)
to evaluate ∆σ. In the limit of small εγ the fragmentation functions factorize into jet and
coft functions and only the coft functions are sensitive to the isolation requirements. Since
the jet functions are independent of the isolation criterion, the only contribution to the
difference of cross sections

∆σ = σfixedcone (R, εγ)− σsmoothcone
(
R, εref

γ , n
)
, (6.19)

arises from (6.18) and takes the extremely simple form

∆σ =
∑
i=q,q̄

∫ ∞
Emin
T

dEi

∫ 1

zmin
dz
dσi+X
dEi

Q2
qαEM

π

CFαs
4π P (z)

[
π2

3 ln εγ
εref
γ

+ 2n ζ3

]
. (6.20)

This formula holds at NNLO up to corrections suppressed by powers of R or εγ . As we have
shown in the earlier sections, even at R = 0.4, power suppressed effects are numerically
small and experimental measurements use small values of εγ . For reference, figure 7 shows
the size of the power suppressed effects at NLO. For εγ = 0.02, the R dependence at NLO is
indeed very close to the one for smooth-cone isolation. We also provided NLO cross section
values in table 2 to indicate the size of the remaining differences. Of course, to make optimal
use of the formula (6.20), one would only use it to convert the NNLO corrections and
separately compute the NLO fixed-cone results so that the power suppressed corrections to
the formula are also suppressed by α2

s. Numerically, the value of ∆σ obtained from (6.20) is
quite small. Computing it for our standard setup detailed in table 1 for n = 1 and εγ = εref

γ ,
we obtain

∆σ = −1.3 pb . (6.21)
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inout

nq

n̄

Θ̃

Figure 10. Kinematics and example diagrams arising in the the parton shower computation of
ULL
q (Θ̃, t). We use the rescaling invariance (7.1) and Lorentz invariance of the shower to evaluate

the function in a frame where n̄ and nγ are back-to-back and the isolation cone covers the entire
right hemisphere. The left diagram shows an example of a two-loop global contribution, the right
one a non-global one.

7 Resummation of ln(εγ) terms

To resum the leading logarithms of εγ we solve the RG equations and run the jet function
from the jet scale µj ∼ QR down to the scale µ0 ∼ Q0R = QεγR, where we combine it
with the coft functions. To perform the resummation we will use the parton-shower code
NGL_resum [46]. This code was developed to numerically perform the RG evolution
and the angular integrals over the directions of the additional partons that are emitted
during the evolution. It is not possible to apply the code directly to our problem, since we
work in the limit R → 0, where the size of the isolation region goes to zero and the MC
integration over the angles would become highly inefficient, as additional emissions would
be enhanced by logarithms of δ. To use the code, we use the fact that the coft function
is not depending on δ and Q0 individually, but only on the product. This is explicit in
the one-loop result (6.17), but can be proven formally by noting that the coft function is
invariant under the rescaling

δ → δ

λ
, Q0 → λQ0 , n̄→ λ n̄ , nγ →

nγ
λ
, ni →

ni
λ
. (7.1)

To see this, note that the Wilson lines in (5.7) are invariant under rescalings of the light-
cone vectors and the rescaling also leaves the constraints on the energy and the angular
variables (6.1) and (6.2) invariant. Setting λ = δ, the invariance implies that we can run
the shower for δ = 1, where the opening angle is π/2 after rescaling the energy to Q0δ. The
shower computes the leading-logarithmic (LL) evolution

ULL
q

(
Θ̃, RE0, µ0

)
=
∞∑
m=2

〈
U2m({n̄, nq, n}, µj , µ0) ⊗̂1

〉
, (7.2)

where the evolution matrix

U({n̄, nq, n}, µj , µ0) = P exp
[∫ µj

µ0

dµ

µ
ΓH({n}, µ)

]
, (7.3)
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Figure 11. The left plot shows the coft function ULL
q (Θ̃, t). The right plot shows the convolution

of the jet and coft function, more precisely the convolution with the plus distribution shown in (7.7).
The orange dots correspond to the results of the parton shower; the dotted line is the fourth-order
polynomial in t fitted to these results.

produces additional partons along the directions {n} and the symbol ⊗̂ indicates the integral
over their directions. For LL resummation the exponent of the evolution matrix reduces to∫ µj

µ0

dµ

µ
ΓH =

∫ αs(µj)

αs(µ0)

dα

β(α)
α

4π Γ(1) = 1
2β0

ln αs(µ0)
αs(µj)

Γ(1) ≡ tΓ(1) . (7.4)

The “evolution time” t measures the separation of the scales µj and µ0. The relevant
one-loop anomalous dimension Γ(1) can be found in [41] (by now also the two-loop result is
known [63]) and the solution of the evolution equation is detailed in [44, 46]. The shower
starts with a quark along the direction n̄ which fragments into a photon and a quark along
the nq direction with angular separation Θ̃q. We use that the shower is Lorentz invariant
to choose a frame where

nµγ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , nµq = (1, sin θγq, 0, cos θγq) , (7.5)

so that Θ̃ = cot(θγq/2) for our choice δ = 1. The shower then generates successive emissions
outside the isolation cone (or hemisphere for δ = 1), until one emission is inside the cone
after which it terminates. The resulting function ULL

q (Θ̃, t) is plotted on the left hand side
of figure 11. One thing that is obvious in the one-loop result (6.17) and in the plot is that
the function is trivial for Θ̃ = 0, where ULL

q (Θ̃, t) = 1 independently of t. For Θ̃ = 0, the
outgoing quark lies along the direction n̄ of the fragmenting quark. In this configuration, the
radiation of the two exactly cancels. One can view the fragmenting quark in the initial state
as an anti-quark in the final state to make the cancellation manifest. The most radiation
arises for Θ̃ = 1, which corresponds to a configuration where the quark is at the edge of the
isolation cone.

One can interpolate the function ULL
q (Θ̃, t) and then evaluate the angular convolution

with the jet function (6.8), but it is more efficient to also Monte-Carlo integrate over Θ̃ and
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directly compute the convolution (6.8) inside the parton shower code. To do so, we we first
use ULL

q (0, t) = 1 to compute the δ-function terms and obtain∫ 1

0
dΘ̃

〈
Jq→γ+q

(
Θ̃, REγ , z, µj

)
ULL
q

(
Θ̃, t

)〉
= Q2

iαEM
2π

[
−P (z) ln

(
δ2Q2

µ2
j

(z − 1)2 z2
)
− z + 2P (z)

∫ 1

0
dΘ̃

[ 1
Θ̃

]
+
ULL
q

(
Θ̃, t

)]
.

(7.6)

The variable t ≡ t(µj , µ0) encodes the dependence on the low scale. Since ULL
q (0, t) = 1, we

can drop the plus-prescription and evaluate∫ 1

0

dΘ̃
Θ̃
ULL
q

(
Θ̃, t

)
≈ −π

2

2 t− 31.5t2 + 105. t3 − 535. t4 , (7.7)

where the result on the right-hand side was obtained by fitting a fourth order polynomial to
the numerical parton shower results, obtained by sampling the Θ̃ integral with 25×105 values
and running 500 showers at each value. The results of the parton shower are compared to
the fit results in the right panel of figure 11 and agree quite well up to values of t relevant for
phenomenological applications. Up to running effects, the different powers of t correspond
to the successive terms in the expansion in αs since

t = αs
4π ln µj

µ0
+O

(
α2
s

)
. (7.8)

The leading term in the expansion in t can be obtained analytically by integrating the
logarithmic term in our result (6.17). In addition to performing the resummation, our parton
shower also computes this term and the numerical value agrees with the analytic result to
an accuracy better than a permille. The term linear in t is captured by NNLO fixed-order
computations of photon production. NNLO is necessary since σi+X , the cross section to
produce the fragmenting parton, is αs suppressed. Our parton shower also computes the
coefficient of the t2 term, with an accuracy of order of a few per cent. The remaining
two terms were determined by fitting to the shower results. Taking the exponential of
the one-loop contribution yields the “global” logarithms. Adopting this terminology, the
two-loop term is split into

− 31.5 = −43.7 (“non-global”) + 12.2 (“global”) , (7.9)

where we approximated π4/8 ≈ 12.2. The non-global part is thus significantly larger
than the global part and the same remains true at higher orders. Diagrams for the two
contributions are shown in figure 10. The global contribution arises from emissions from the
quark before or after the fragmentation as indicated on the left diagram in figure 10. The
non-global terms arise from sequential emissions off gluons emitted outside the isolation
cone, see the right diagram. In the shower, we include a collinear cutoff ηcut = 6 (see [44, 46])
as well as a technical cutoff Θ̃ > κcut ≈ 10−3 in the angular integral. We have checked
that for t < 0.2 our results are insensitive to these cutoffs. The fact that we are able to
fit the shower results with a polynomial in t implies that the fixed-order expansion of the
logarithmic terms is well-behaved in the region we perform our computation.
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Figure 12. Effect of the resummation of ln(R) and ln(εγ) terms for R = 0.2 (upper plot) and
R = 0.4 (lower plot). The solid black curve shows the result without resummation, the dashed curve
includes the resummation of ln(R) terms. The red curve resums both types of logarithms. Only the
fragmentation contribution is shown, to obtain the full cross section the direct photon production
contribution with σdir ≈ 290 pb has to be added. (The direct cross section is somewhat lower than
the one given in section 3 because we use dynamic scales rather than fixed ones, see table 1.).

Let us now look at the effect of the resummation on the cross section. For illustration,
we will again consider proton proton collisions at

√
s = 13 TeV and compute the cross section

for isolated photons with EγT > Emin
T = 125 GeV and |ηγ | < 2.37 following ATLAS [2]. The

result shown in figure 12 includes both the resummation of ln(R) and ln(εγ) terms. The
resummation is achieved by first evolving from the hard scale µh ∼ Eγ to the jet scale
µj ∼ REγ by solving the DGLAP equation as discussed in section (4) and then evolving
to the coft scale µ0 ∼ εγ REγ using the parton shower framework. We can distinguish the
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effect of the two resummations by choosing different scales. Setting µj = µh switches off
the ln(R) resummation, while the choice µj = µ0 eliminates the higher-order ln(εγ) terms.
The effect of these choices is shown in figure 12. Since we work at fixed R = 0.2, the
ln(R) resummation amounts to an overall reduction of the cross section. The ln(εγ) become
important for εγ . 0.1. The plot shows fixed-order results for smooth-cone isolation with
n = 1, but our leading-logarithmic (LL) resummation of NGLs is insensitive to the isolation
prescription since it only depends on the isolation via the associated scale µ0. The isolation
requirement changes the one-loop term (6.17), but this is a NLL effect.

ATLAS imposes E0 = εETγ + ETth with ETth = 4.8 GeV and ε = 0.0042, which which
corresponds to a value εγ = E0/E

T
γ ≈ 0.04 for ETγ = 125 GeV. The threshold term ETth is

added by ATLAS to avoid that E0 reaches non-perturbative values, but our analysis makes
it clear that the lowest scale in the problem is RE0 which is close to 1 GeV for R = 0.2
and ETγ = 125 GeV. This corresponds to a value t ≈ 0.066. (The value of t very slowly
increases for larger ETγ and reaches t ≈ 0.07 for ETγ = 1 TeV.) Figure 12 shows that for
R = 0.2 the resummation lowers the cross section by about 39 pb, about half of which is due
to ln(R) resummation, while the other half is due to ln(εγ) terms. For R = 0.4, the ln(R)
resummation effects are about half as large, while the size ln(εγ) remains about the same.

8 Summary and conclusion

In this paper, we have studied in detail the structure of QCD effects associated with
isolation requirements imposed in experimental measurements of photon production at
high-energy colliders. We have have shown that for small cone radius R, the isolation
effects can be described by cone fragmentation functions Fi→γ describing the transition of
an energetic quark or gluon into a photon plus accompanying QCD radiation. For small
isolation energy E0 = εγEγ , these fragmentation function factorize further into jet functions
Ji→γ+l describing the l energetic partons outside the isolation cone boundary, and Wilson
line matrix elements U l encoding the soft radiation emitted from these partons into the
cone. Our factorization theorem separates the different scales present in the cross section:
the hard scale µh ∼ Eγ , the jet scale µj ∼ REγ and the isolation energy scale µ0 ∼ RE0.
Using RG methods, we have resummed the leading logarithms of R and the non-global
logarithms of εγ . The renormalization group also lets us evaluate each contribution at its
natural scale.

To avoid low scales in the relevant perturbative computations current experimental
measurements impose E0 & 5 GeV, but our analysis demonstrates that for low jet radii one
still reaches the dangerously low scale µ0 ∼ RE0. Values around R = 0.2 are commonly
used in diphoton measurements, for example in [4, 64]. The presence of the low scale µ0 is
problematic for precision computations of photon production and higher-order problems
might not immediately be visible since the isolation is a NLO effect which only affects a
certain region of phase space. Even if the perturbative expansion fails for the isolation
effects this might not yet be visible at NNLO, since there are other higher-order effects
which are of the same size. Indeed, the NNLO cross sections are higher than the NLO
results while the resummation effects we computed reduce the cross section.
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Another simple but important result of our analysis is that the effect of non-perturbative
fragmentation is suppressed by εγ . For small isolation energy this effect can thus be
neglected, which is good news since the non-perturbative fragmentation functions are quite
poorly known.

Our formalism cannot only be used to perform resummation, but also to convert results
from one isolation prescription to another. Indeed, in our paper we have often discussed the
difference between cross sections since it is directly proportional to the cone fragmentation
functions. An interesting application of our fragmentation framework is to convert NNLO
results computed with smooth-cone isolation to results in the fixed-cone scheme. We have
presented a simple formula, which achieves this conversion in the limit of small εγ , which
should be sufficient for most applications. Interestingly, the cross section difference is
proportional to n ζ3, where n is the parameter of smooth-cone isolation. One could extend
this result to arbitrary εγ by computing Fi→γ at NLO.

Our computations were carried out in RG-improved perturbation theory at NLO. Since
the fragmentation contribution only arises at O(αs), this corresponds to NLL resummation
of the ln(R) terms and LL resummation of the ln(εγ) contributions. To match the accuracy
of fixed-order NNLO computations, we should extend the resummation to subleading
logarithms of R and εγ . For the ln(R) resummation, the α2

s corrections to Pq→γ(z) and
Pg→γ(z) are as of yet unknown and would need to be computed. For the resummation of
ln(εγ) the most important ingredient, namely the two-loop evolution, is available [63, 65, 66].
Only the one-loop boundary conditions, in particular the jet function with an additional
parton, will need to be determined and implemented. We look forward to doing so in
the future.
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A Splitting functions

The expansion coefficients of the splitting functions were defined in (4.7) and (4.8). The
well-known leading-order QCD splitting functions are

P (1)
q→q(z) = P

(1)
q̄→q̄(z) = CF

((
1 + z2

) [ 1
1− z

]
+

+ 3
2δ(1− z)

)
,

P (1)
g→g(z) = CA

(
z

[ 1
1− z

]
+

+ 1− z
z

+ z(1− z)
)

+ β0
2 δ(1− z) ,

– 30 –



J
H
E
P
0
1
(
2
0
2
3
)
0
0
5

P (1)
g→q(z) = P

(1)
g→q̄(z) = TF

(
z2 + (1− z)2

)
,

P (1)
q→g(z) = P

(1)
q̄→g(z) = CF P (z) = CF

1 + (1− z)2

z
, (A.1)

with β0 = 11
3 Nc − 4

3nfTF . The coefficients of the parton-to-photon splitting kernels can be
found in [53] and are given by

P (0)
g→γ(z) = 0 ,

P (0)
q→γ(z) =P

(0)
q̄→γ(z) =Q2

q P (z) ,

P (1)
q→γ(z) =P

(1)
q̄→γ(z) =

CFQ
2
q

2

(
−1

2 + 9
2z+

(
z

2−8
)

lnz+2z ln(1−z)+
(

1− z2

)
ln2 z

+
[
ln2(1−z)+4lnz ln(1−z)+8Li2(1−z)− 4π2

3

]
P (z)

)
,

P (1)
g→γ(z) =

TF
∑nf
q=1Q

2
q

2

(
−2+6z− 82

9 z
2+ 46

9z+
(

5+7z+ 8
3z

2+ 8
3z

)
lnz+(1+z) ln2 z

)
.

(A.2)

The factor
∑nf
q=1Q

2
q is due to a quark loop and is 11/9 for nf = 5 quark flavors. We note

that the kernels P (1)
q→γ(z) and P (1)

g→γ(z) differ from the ones relevant for the space-like case,
which are given in [59]. Note that compared to the expressions in [53, 59] we have an
additional factor 1

2 in P (1)
q→γ and P (1)

g→γ due different conventions: these references expand in
αs
2π instead of αsπ and writes the evolution equations in the variable µ2 instead of µ.

B Solution of the RG equations of the fragmentation functions

In order to solve (4.11), we perform a transformation of the fragmentation function such that
the differential equations are decoupled from each other, i.e. one performs a basis change

F̂i→γ(N,µ) = Uij(N)Fj→γ(N,µ) (B.1)

and chooses the matrix Uij(N) in such a way that the splitting kernel becomes diagonal

Uij(N)Pj→k(N,µ)U−1
kl (N) = P̂i→i(N,µ)δil . (B.2)

This diagonalization step is only necessary for Σ and G in (4.6) since ∆ is already decoupled
from the other two quantities. The diagonalized evolution equation (4.11) takes the form

d

d lnµ F̂i→γ(N,µ) = P̂i→γ(N,µ) + P̂i→i(N,µ)F̂i→γ(N,µ) . (B.3)

The solution of this differential equation is

F̂i→γ(N,µ)

= exp
[∫ µ

µ0
d lnµ′ P̂i→i(N,µ′)

]
{
F̂i→γ(N,µ0) +

∫ µ

µ0
d lnµ′′ exp

[
−
∫ µ′′

µ0
d lnµ′ P̂i→i(N,µ′)

]
P̂i→γ(N,µ′′)

}
. (B.4)
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Because P̂i→i(N,µ) only depends on µ via the strong coupling,

P̂i→i(N,µ) = αs(µ)
π

P̂
(1)
i→i(N) +

(
αs(µ)
π

)2
P̂

(2)
i→i(N) + . . . , (B.5)

we can rewrite the exponential as

K(αs(µ0), αs(µ)) = exp
[∫ µ

µ0
d lnµ′P̂i→i(N,µ′)

]
= exp

[∫ αs(µ)

αs(µ0)

dα

β(α) P̂i→i(N,µ
′)
]

=
(
αs(µ0)
αs(µ)

) 2P̂ (1)
i→i

(N)
β0

[
1 + αs(µ)− αs(µ0)

4π
2
β0

(
β1
β0
P̂

(1)
i→i(N)− 4P̂ (2)

i→i(N)
)]

(B.6)

in which we have expanded

β(α) = −2αs

(
β0

αs
4π + β1

(
αs
4π

)2
+ . . .

)
(B.7)

and dropped higher-order terms. The solution can thus be rewritten as

F̂i→γ(N,µ) = K(αs(µ0), αs(µ))
[
F̂i→γ(N,µ0) +

∫ αs(µ)

αs(µ0)

dα

β(α)K(α, αs(µ0))P̂i→γ(α)
]
,

(B.8)

where we suppressed the argument N of the splitting function on the right-hand side of the
equation. Expanding also the inhomogeneous P̂i→γ(N,µ) as

P̂i→γ(N,µ) = αEM
π

(
P̂

(0)
i→γ(N) + αs

π
P̂

(1)
i→γ(N)

)
, (B.9)

the final form of the solution reads

F̂i→γ(N,µ) =
2αEM P̂

(0)
i→γ

αs(µ)(β0 − 2P̂ (1)
i→i)

(
1− αs(µ)

αs(µ0)K(αs(µ0), αs(µ))
)

− αEM
π

 P̂ (1)
i→γ

P̂
(1)
i→i
− β1

4β0

P̂
(0)
i→γ

P̂
(1)
i→i
−

β1P̂
(0)
i→γ

2β0
(
β0 − 2P̂ (1)

i→i

)
 (1−K(αs(µ0), αs(µ)))

+K(αs(µ0), αs(µ))F̂i→γ(N,µ0) . (B.10)

The first term in this solution corresponds to LL resummation and is proportional 1/αs,
the remaining two terms are the NLL corrections. In these two terms one can omit the
O(αs) corrections to K in (B.6). In our numerical evaluation, we do not include β1 terms
and the corrections from P̂

(2)
i→i(N) in the first line of (B.10) for simplicity, even though they

would formally be needed for NLL accuracy and are available [67]. We verified that the β1
terms are numerically very small.
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I
II

III

R

Rref

Figure 13. Isolation cones of radius R and Rref and associated angular regions. The difference ∆σ
is obtained from partonic configurations which fulfill the isolation criterion for cone radius R, but
fail it for Rref.

After solving for F̂i→γ(N,µ) we first undo the decoupling change of variables (B.1)
and go back to the original functions Fj→γ(N,µ). We then use the same Mellin inversion
contour as in [68] to transform the Fi→γ(N,µ) back to z space:

Fj→γ(z, µ) = 1
π

∫ ∞
0

dr Im
[
eiφz−c−re

iφFj→γ
(
N = c+ reiφ, µ

)]
, (B.11)

where φ and c are parameters chosen as φ = 3π
4 and c = 1.8 in our numerical evolution code.

C Computation of ∆σ

To study the dependence on the parameters (εγ , n,R) of the smooth-cone isolation (1.2) we
compute the difference to a reference cross section,

∆σ = σ (εγ , n,R)− σ
(
εrefγ , n

ref, Rref
)
.

In order for the difference to be be positive we require that the reference isolation(
εrefγ , n

ref, Rref
)
is the more restrictive one and we impose

εγ ≥ εrefγ , n ≤ nref , R ≤ Rref . (C.1)

In this appendix, we provide details on the fixed-order determination of ∆σ and the
computation of the difference based on cone fragmentation functions using (3.16).

C.1 Event-based fixed-order computation

Rather than computing the difference of NLO photon production cross sections, it is much
more efficient to directly extract the cross section difference from the process p p→ γ j j

at LO by imposing suitable cuts on the partons. Working in this way, we can compute
the difference from event files generated with MadGraph5_aMC@NLO [58] instead of
needing individual NLO runs for all parameter values.

In order to get a contribution to ∆σ we need that at least one of the partons in the
p p → γ j j event to be inside the larger cone with radius Rref. The second parton will
be outside the cone, since it is recoiling against the energetic photon. For an event to
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contribute to ∆σ it should respect the constraint imposed by isolation (εγ , n,R) but fail
the one with the reference values

(
εrefγ , n

ref, Rref
)
. To formulate the resulting constraints

on the transverse momenta pTi of the two final-state QCD partons i ∈ {1, 2} in the event
explicitly, we distinguish three angular regions indicated in figure 13:

(I) ri > Rref: at most one parton, no constraint on pTi ,

(II) R < ri < Rref: εrefγ
(

1−cos ri
1−cosRref

)nref

≤ pTi
pTγ

,

(III) ri < R: εrefγ
(

1−cos ri
1−cosRref

)nref

≤ pTi
pTγ
≤ εγ

(
1−cos ri
1−cosR

)n
,

where ri is the angular distance of the parton to the photon. The implementation of these
non-standard cuts in MadGraph5_aMC@NLO is achieved by modifying the file cuts.f.

C.2 Fragmentation contribution

The fixed-order results are then compared with (3.16) based on the factorization theo-
rem (2.1). According to (3.16) the leading contribution to the difference of cross sections is
given by the partonic cross section dσi+X/dEi convoluted with the difference of fragmenta-
tion functions

∆Fi→γ = Fi→γ (z,R, εγ , n)−Fi→γ
(
z,Rref, εrefγ , n

ref
)
. (C.2)

We obtain the partonic cross section by using MadGraph5_aMC@NLO to generate event
files for the process p p→ j j at leading order. These have two QCD partons in the final
state, each one of which can then fragment into a photon.

In the main text, we computed and plotted ∆σ for three different cases and we now
list the relevant ∆Fi→γ . To study the n-dependence of ∆σ, we set R = Rref and εγ = εrefγ
which yields

∆Fi→γ = αEMQ
2
i

2π P (z) θ
(
z − 1

1 + εγ

)
ln
(

1− z
zεγ

)( 1
n
− 1
nref

)
. (C.3)

To study the R dependence, we set εγ = εrefγ and n = nref which leads to

∆Fi→γ = αEMQ
2
i

π
P (z) ln

(
Rref

R

)
. (C.4)

The most complicated case is the εγ-dependence for which the relevant ∆Fi→γ for R = Rref

and n = nref was given in the main text in (3.22).

D Reference cross section values

In the main text we used MadGraph5_aMC@NLO [58] and MCFM [52] for our com-
putations. The authors of [28] have compared their NNLOjet fixed-energy cone results
at NLO to the JetPhoX code [22] and have provided reference cross section numbers for

– 34 –



J
H
E
P
0
1
(
2
0
2
3
)
0
0
5

fixed-cone isolation in their paper. We have verified that MCFM reproduces the reference
cross section in [28] within numerical uncertainties. The authors of [28] were kind enough to
also provide us with reference cross section numbers for smooth-cone isolation with R = 0.4,
n = 1.0 and εγ = 0.0042 and we have verified that all the above codes produce compatible
results within numerical uncertainties. These reference cross sections were computed for
αEM = 1/137 and NNPDF31_nnlo_as_0118_mc PDFs, after imposing ETγ ≥ 125 GeV,
|ηγ | ≤ 2.37 and setting µF = µR = pTγ . For the leading order cross section and the NLO
correction, they obtain

σLO = (192.524± 0.015) pb , ∆σNLO = (163.44± 0.11) pb . (D.1)

After requiring at least one jet with pTjet ≥ 100 GeV and |ηjet| ≤ 2.37 defined using the kT
algorithm with Rjet = 0.4, the NLO correction reduces to

∆σNLO = (121.441± 0.065) pb . (D.2)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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