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The determination of a confidence interval is a key requirement for any
measurement. In particle image velocimetry (PIV), the quantification of the
measurement uncertainty strengthens the suitability of the technique for the
discovery of new physics of fluid flows, as well as for the validation of numerical
simulations by computational fluid dynamics.

The present special issue on uncertainty quantification (UQ) in PIV and
Lagrangian particle tracking (LPT) follows the successful one published in 2015
[1], which focused on the a-posteriori UQ of instantaneous two-component PIV
measurements. Since then, the PIV technique has greatly advanced, further
extending its range of applicability from micrometric scales to metre-scale
three-dimensional flow measurements. In this special issue, the uncertainty
associated with different aspects of the PIV and LPT techniques is addressed,
including seeding particles, system calibration and imaging, the evaluation of
derived flow properties, and novel processing algorithms based on neural
networks.

Bias errors in PIV statistics caused by the temporal and spatial inhomogeneity
of seeding particles (intermittent particle seeding or conditional particle
sampling) as well as by the particle lag are investigated by Martins et al [2]. By
making use of a synthetic PIV experiment based on large eddy simulations, the
authors show that particle lag and intermittent seeding yield bias errors on the
local average velocities. The errors are even larger for derived flow quantities,
such as Reynolds stresses, turbulent fluxes and velocity gradients.

Paolillo and Astarita [3] analyse the contribution to the measurement
uncertainty of different calibration models applied to optical systems that include
refractive surfaces, i.e. interfaces separating two media with different refractive
indexes. Models based on physical laws (refractive camera model, relying on the
pinhole camera model and on a ray-tracing procedure) as well as analytical
models (based on polynomials, multi-plane polynomials and rational functions)
are comparatively assessed. The results show that the refractive camera model
outperforms the analytical models, and that the latter require high-order
polynomials to minimise the calibration errors.

Qureshi et al [4] investigate the measurement errors of PIV and PTV in
presence of particle image streaks, often caused by the relatively long exposure
times in supersonic or hypersonic flows or bio-medical applications. The results
based on the analysis of synthetic and experimental images show that the PTV
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algorithm performs well only for short streaks, whereas larger streaks yield a
significant reduction of the particle match reliability and an increase of the RMS
displacement error. In contrast, the PIV algorithm exhibits higher robustness and
is able to handle long-exposure particle streaks, with little sensitivity to the
particle image diameter and intensity.

Two of the works of this special issue deal with peak locking, arguably the
most reported error in PIV measurements. Nogueira et al [5] further develop their
recently proposed multi-∆t strategy for the correction of peak-locking errors in
statistical ensembles, namely the local velocity average and the fluctuations
root-mean-square. In particular, the authors address the problem of the calibration
of the error model coefficients based on real experimental data. The application of
their error correction strategy to a jet flow results in a reduction of the peak
locking errors by 30% for the average velocity, and by factor 2.5 for the
fluctuations root-mean-square. Similarly, Adatrao et al [6] investigate the
systematic UQ and peak locking error correction of velocity statistics (time
average and Reynolds stress) via a multi-∆t approach. In the proposed approach,
image recordings are acquired with multiple time separations, and a least-square
regression is performed to achieve more accurate flow statistics and an estimate of
the confidence interval.

Rajendran et al [7] introduce a method to estimate the sensitivity and reliability
of a-posteriori PIV–UQ approaches. The method, named meta-uncertainty, is
based on the perturbation of the recorded particle images, and the quantification
of the uncertainty from both original and perturbed images. The authors also
propose to apply the meta-uncertainty as a weighting metric to combine the
uncertainty estimates from different PIV–UQ algorithms, showing improved
performance of the combined UQ scheme compared to the individual ones.

Recent advances in the application of machine-learning methods to PIV image
processing are posing new research questions on the corresponding UQ, as well
as paving the way to new strategies embedding UQ in the processing. Barnkob
et al [8] present an assessment of the uncertainty of particle image model
functions, normalized cross-correlation and neural networks for defocusing
particle tracking. The authors explore different levels of astigmatism, noise and
particle image overlap. Their results show that particle image model functions
perform best for low levels of noise and particle images overlap, while
cross-correlation is more robust in presence of large noise and particle image
density. Neural networks show worse performances, although the authors remark
the margin of improvement of deep-learning methods. Morrell et al [9] introduce
Bayesian convolutional neural networks (BCNNs) as a technique to process PIV
images and simultaneously quantify the uncertainty. The method is based on
learning distributions of the weights of the CNN using variational Bayes. The
authors investigate BCNNs with input based on image interrogation regions,
cross-correlation maps, and a combination of both, obtaining the best results
when the input is only based on cross-correlation maps.

Uncertainty on derived flow properties data is another flourishing research line
in UQ from PIV. In this special issue four contributions are ascribed to this
category.

A grid-free least-square method for pressure evaluation from scattered LPT
data is assessed by Brobov et al [10]. The least-squares method can be used for
reconstruction on irregular or regular grids and aims to minimization of random
noise. The authors assess the accuracy of the method with synthetic images based
on DNS of the flow over a hemisphere mounted on a surface, focusing on the
effect of the particle image densities up to 0.02 particles per pixel and different
image noise level.

Castellanos et al [11] developed a framework to estimate a-priori the
uncertainty of boundary-layer parameters from ensemble particle tracking
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velocimetry (EPTV). The tool mimics systematic errors due to finite spatial
resolution and random errors due to convergence using analytical
composite-profile formulations or simulations at matched conditions when
available. The statistical dispersion of the estimated parameters from a set of
simulated profiles is then used to infer the uncertainty range of the EPTV
measurement.

The contribution by Faiella et al [12] is focused on the error propagation in
pressure fields computed from velocimetry measurements. The authors
demonstrate an analogy between the error propagation in pressure field
calculations from velocity data with buckling theory of elastic bodies. The
analogy is then exploited to analyze the effects of spatial frequency and location
of the error on the error propagation from velocimetry data and pressure fields.

Spoelstra et al [13] examined the uncertainty of the drag measurement for the
case of a cyclist riding through the measurement domain, in a configuration for
aerodynamic drag measurement referred as Ring of Fire (RoF). The authors
found that the procedure to detect the edge of the momentum deficit region has a
relevant influence on the uncertainty of the measured drag. The effect of spatial
resolution is shown to be less significant, provided that the interrogation window
size lays within 5%–25% of the characteristic length scale of the object transiting
in the RoF.

We sincerely hope that the readers of Measurement Science and Technology
will find this special issue useful to support the quantification of the uncertainty
of future PIV and LPT measurements.
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