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A B S T R A C T

The exploration of unknown environments is a challenge in robotics. The proposed method approaches this
problem by combining the Fast Marching Square path planning technique with the machine learning method
called Gaussian processes (GP). The Fast Marching Square method is used to determine the most unexplored
areas of the environment and to plan the path of the vehicle from the current position to the selected point.
The GP model is used to obtain predictions about the unexplored regions of the environment based on the
collected data so far during the exploration. The use of Unmanned Aerial Vehicles (UAVs) for exploration and
surveillance has increased exponentially in the recent years, due to their sensor equipment capabilities and
their versatility for flying over difficult terrain. By defining the weight each method has on the selection of
the next point to explore, we can focus the UAV on the points with more interesting data defined by the user
(i.e. bodies of water), the most unexplored regions, or a combination of both. We present an study on the
influence of these weights on the mean absolute error (MAE) and predictive variance obtained from the GP
model and test the algorithm on a real environment obtained from a satellite image. We show that we are
able to generate an accurate depiction of the environment way faster than traditional methods such as the
Boustrophedon.
1. Introduction

Informative path planning (IPP) of unknown areas is the problem
of choosing a path for a robot that maximizes the sensor information
obtained about an underlying field of interest (Binney et al., 2013).
n the other hand, exploration of an unknown environment is defined
s the task of mapping an unseen environment while optimizing the
ath taken to avoid passing over already visited areas. The difference
etween IPP and basic exploration is that the IPP is usually focused
n obtaining certain information about the environment and focusing
n those discoveries to gain a better understanding of the whole area,
hile the exploration of an area frequently gives an equal value to
very point of the space and targets mapping the whole region. Fur-
hermore, IPP algorithms usually start from an outdated map on the
nvironment and use that information to select the points to visit in
rder to obtain the most information while doing the smaller number
f data collections possible.
Depending on the exact nature of the mission, IPP or exploration,
specific algorithm has to be designed for each task. In this paper,
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roject. Grant agreement H2020-MG-2019-TwoStages-861696.
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we introduce an algorithm capable of adapting to both IPP and explo-
ration missions, using a mixture of Gaussian Processes (GPs) and the
Fast Marching Square method (FM2) to leverage the algorithm either
towards data collection of important features of the environment or
towards exploring the whole extension of the environment minimizing
the distance transversed which results in a shorter mission with a
smaller energy consumption. We use a GP to build a model of the
environment that gets updated as the UAV moves through the area.
Then, we use the predictive mean obtained from the GP model output
for all points of the map and the velocity map obtained from the FM2

method to select the next point of the environment to visit. Finally,
we use the FM2 path planner to travel to that desired point, marking
the already visited points as obstacles so we obtain a safe and smooth
trajectory that traverses the most unexplored areas of the environment,
allowing for better data collection and thus improving the GP model. By
using two different weights, we can guide the exploration towards the
highest values of the GP model outputs or towards the most unexplored
areas marked by the highest values in the velocity map.

To solve the IPP problem, Binney et al. (2010) use GPs to model
the area of interest given a set of static waypoints to visit, and then
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use a modified recursive greedy algorithm to find the best path that
limits the energy consumption of the underwater glider while reducing
the uncertainty in the field being measured. Our approach has an
advantage over this method in that the vehicle’s movements are not
restricted to a limited number of nodes on a graph, as we use the
full resolution of the map to plan paths with the FM2 method. Ma
et al. (2017) use sparse online Gaussian processes (SOGP) to perform
ocean monitoring tasks. The next point for the marine vehicle to
visit is determined via mutual information, aiming to obtain the most
information-rich data. By visiting these points and using SOGP, they
are able to build a map of the environment. However, they greatly
reduce the resolution of the map to improve the computational cost
and travel between sampling points using straight lines. Chen and
Liu (2021) present an anytime multi-objective informative planning
method called Pareto Monte Carlo tree search which allows the robot
to handle potentially competing objectives such as exploration versus
exploitation. Our proposed approach has a major advantage over their
method in that we actively avoid revisiting previously visited points in
the environment by modifying the velocity matrix of the FM2 method.
Yang et al. (2013) use a Gaussian process based RRT planner for the
exploration of an unknown and cluttered environment with a UAV.
They take the laser scans from the sensor and build a Gaussian process
obstacle probability map, and use an RRT planner with constraints and
address replanning strategies based on probability of collision along
the path produced by the GP map. These movement constraints can be
easily achieved by modifying the velocity matrix of the FM2 method,
as previously demonstrated in our work (Garrido et al., 2022). Viseras
et al. (2016) propose a GP based multi-agent exploration algorithm
that leverages what information to transmit to achieve multi-agent
coordination, how to implement a light-weight collision avoidance
strategy and how to learn the data’s model without prior information.
They achieve the best results by using pre-set hyperparameters learned
from previous missions, whereas we estimate the hyperparameters from
scratch for each mission. Luo and Sycara (2018) use a mixture of locally
learned GPs to perform adaptative sampling and online learning of the
model of the environment with a team of UAVs. Jadidi et al. (2014)
se GPs to handle sparse sensor measurements to build a gradient field
f occupancy probability distribution, providing frontier boundaries
or further exploration. They expand this proposal in Ghaffari Jadidi
t al. (2018) by adding a mutual information-based greedy exploration
echnique that takes into account all possible future observations. Xu
t al. (2011) propose a centralized navigation algorithm for mobile
ensor networks to move in order to reduce prediction error variances
t selected locations using spatiotemporal GPs.
More recent approaches such as Zhu et al. (2021) present a method

or actively gathering information about a 3D surface using a robotic
latform. The method combines a GP model of the surface with an
PP algorithm called the information gain-driven adaptive A* (IG-
*) to quickly gather accurate information about the surface while
inimizing the travel time. They connect the waypoints with a poly-
omial trajectory, which is not as smooth and straight-forward as the
M2 path planner. Di Caro and Yousaf (2021) propose a method for
oordinating the movement of multiple robots to gather information
bout an unknown environment using a leader–follower architecture.
he leader robot uses a GP model of the environment to plan paths
hat will reduce uncertainty as quickly as possible and followers robots
se this information to plan their own paths while avoiding collisions.
he method is able to quickly gather accurate information about the
nvironment while minimizing the travel time. They start the missions
ssuming they already have previously collected some data from the en-
ironment, while our proposed method starts with no prior information
bout the environment.
Previous works in our group Gómez et al. (2013) propose using the

elocity map of the Fast Marching Square method to calculate the most
nexplored areas, and then move the robot to that point. They mark
he visited points as obstacles and calculate the velocity map again to

alculate the next point.

2

In this paper, we propose an IPP method that combines GPs and the
ast Marching Square method to focus the exploration on either the
ost valued areas based on the user criteria or the most unexplored
reas. Other methods use metrics such as the predictive variance ob-
ained from the GP model to guide the exploration and use straight
ines or traditional path planning methods to plan the path for the
ehicle, while the proposed method uses the Fast Marching Square
ethod to determine the most unexplored areas of the map and to
lan the path for the UAV, which is a smooth path that travels across
nexplored regions instead of a straight line. As the UAV explores the
rea, a GP model of the environment is built, which gives information
bout the most valued areas and guides the exploration prioritizing the
bservation of those points.
The paper is structured as follows. Section 2 details the IPP problem

tatement. Section 3 showcases the results obtained when applying our
roposed method to a real environment. Finally, Section 4 provides the
onclusions obtained from this work.

. Problem statement

In this section, we present the methods used to develop the in-
ormative path planning and exploration algorithm based on Gaussian
rocesses and the Fast Marching Square method.

.1. Gaussian process regression

Regression is the problem of estimating a function ℎ given a set
f input vectors 𝑥𝑖 ∈ R𝐷 and observations 𝑦𝑖 = ℎ(𝑥𝑖) + 𝜖𝑖 ∈ R of
he corresponding function values, where 𝜖𝑖 is a noise term. Due to
initeness of measurements 𝑦𝑖, and the presence of noise, the estimate
unction ℎ is uncertain (Deisenroth, 2010). A Gaussian process (GP)
rovides the concept of a distribution over functions, which allows
s to express this uncertainty in terms of probability distributions. An
xample of GP regression can be seen in Fig. 1.
A GP can be defined as a collection of random variables, any

inite number of which have a consistent joint Gaussian distribu-
ion (Williams and Rasmussen, 2006), i.e. every finite linear combi-
ation of them is normally distributed. Gaussian processes are useful
n statistical modeling, benefiting from properties inherited from the
ormal distribution. One main advantage of GPs is that they are non-
arametric, which allows to determine the shape of the underlying
unction ℎ from the data and higher-level assumptions. This does not
mply that the model has no parameters, but that the effective number
f parameters is flexible and grows with the sample size.
To estimate function ℎ, that is, the model of the environment, we

se the squared exponential kernel (Eq. (1)).

(𝑥1, 𝑥2) = 𝜎𝑓 exp

(

−
‖𝑥1 − 𝑥2‖2

2𝜎2𝑙

)

(1)

where 𝜎𝑓 is the signal standard deviation and 𝜎𝑙 is the characteristic
length scale.

The process of training a GP consists on optimizing the set of
hyperparameters 𝜃 ≜ {𝜎𝑓 , 𝜎𝑙} so the kernel function can describe the
underlying environment as accurately as possible. A common approach
to learning the hyperparameters is via the quasi-Newton optimizer,
which uses a trust-region method with a dense, symmetric rank-1-
based (SR1), quasi-Newton approximation to the Hessian (Dennis and
Schnabel, 1996).

One major disadvantage of Gaussian processes is that they become
computationally expensive as the number of data points grow. Since the
computation of the inverse of an 𝑛 × 𝑛 matrix, where 𝑛 is the number
of data points, is needed to make predictions. This computation has a
complexity of (𝑛3). To tackle this problem, methods such as the Subset
of Datapoints (Williams and Rasmussen, 2006) were developed. This
method proposes to keep the GP predictor, but only on a subset of size 𝑚
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Fig. 1. The top panel shows ten samples drawn from the prior distribution. The bottom panel shows the posterior distribution after twenty datapoints have been observed. In
both plots the shaded region denotes twice the standard deviation at each input value X, which represents the 95% confidence interval.
of the data. This subset is called the active set vector. Even though this
implies that some data is wasted, it can make sense if the predictions
obtained with 𝑚 points is accurate enough for our needs. This reduces
the complexity of the algorithm to (𝑚3). There are several approaches
to selecting the most valuable points for the active set (Lawrence,
2003). To choose the next point for inclusion into the active set, we will
use the differential entropy score 𝛥𝑗 ≜ 𝐻[𝑝(𝑓𝑗 )] − 𝐻[𝑝𝑛𝑒𝑤(𝑓𝑗 )], where
𝐻[𝑝(𝑓𝑗 )] is the entropy of the Gaussian at site 𝑗 ∈ 𝑅 and 𝐻[𝑝𝑛𝑒𝑤(𝑓𝑗 )] is
the entropy at this site once the observation at site 𝑗 has been included.
In this work, the selected number of points in the active set is 128.

For applications where the data is being collected constantly, we
need a method to add data points to the Gaussian process during
the mission (Ranganathan et al., 2010). In this work, we build a
ew GP model adding the recently explored points to the data pre-
iously collected. To avoid training the GP model again, the same
yperparameters are kept for the new GP model.

.2. Fast Marching Square method

The Fast Marching Square (FM2) method (Gómez et al., 2013) is
variation of the original Fast Marching method (Sethian, 1999). It

creates a velocity map given a binary map of occupation by propagating
a wavefront that takes all the obstacles as source points. Then, another
3

wavefront is propagated from the desired end point to the current
position of the vehicle. The result is a potential map that contains
no local minima, with a single global minimum at the end point. An
example of velocity map can be seen in Fig. 2.

To calculate the path, gradient descent is performed on the potential
map from the current position of the vehicle. To better illustrate the
differences between the two methods, paths are calculated with both
methods for the same environment and shown in Figs. 3 and 4. Both
figures show that the path obtained with the FM2 method is more
smooth and reproducible by a robot, thanks to the computation of the
velocity map.

The velocity map values range from 0 to 1, representing the maxi-
mum speed allowed for the vehicle. Obstacles will imply speeds equal
to zero, whilst points in space far enough away from obstacles will
allow maximum speeds. When computing a path for the vehicles to
follow, the FM2 method will get the shortest path from the initial
position to the goal position that lets the vehicles navigate at the
highest speeds.

As the velocity map indicates the distances from the points in the
space to obstacles, it can also be seen as a measure of the unexplored
points in the environment (Garrido et al., 2011). If we mark the points
already visited by the robot as obstacles, we can easily obtain the next
point to explore by propagating the wave again. An example of this
evolution of the velocity map can be seen in Fig. 5.



J. Muñoz, B. López, F. Quevedo et al. Engineering Applications of Artificial Intelligence 121 (2023) 106054

Fig. 2. Obtention of the velocity map by applying the Euclidean distance transform to the binary obstacle map.

Fig. 3. (a) initial obstacle map, (b) time of arrival of the wavefront. The red line shows the path obtained with the Fast Marching Method (FMM).

Fig. 4. (a) velocity map, (b) time of arrival of the wavefront. The red line shows the path obtained with Fast Marching Square (FM2).

4
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Fig. 5. Evolution of the velocity map as the UAV moves around the environment and the visited points are marked as obstacles.
Fig. 6. Process to obtain the next point to explore by the UAV. The previously selected points are marked as red dots and connected by red lines.
.3. Proposed methodology

In this paper, we propose a method that mixes both GP regression
nd the Fast Marching Square method. At every iteration of the algo-
ithm, the velocity map and a GP predictive mean for all points in the
ap are calculated. Then, based on the weight given to each map, the
ext target point for the UAV is obtained (see Eq. (2)), and the path
is calculated using FM2 while considering the already visited points as
5

obstacles. Note that if we consider the already visited points as hard
constraints, the map would eventually get cut in half and no feasible
path could be calculated from one side to the other. To tackle that
problem, the velocity map value for already visited points is changed
from 0 to 0.01 so the UAV only crosses those zones when absolutely
necessary.

𝑛𝑒𝑥𝑡𝑃 𝑜𝑖𝑛𝑡 = 𝑚𝑎𝑥(𝑎 ∗ 𝑊 + 𝑏 ∗ 𝐺𝑃 ) (2)
𝑚𝑎𝑝
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Fig. 7. Test maps used to study the effects of 𝑎 and 𝑏 on the MAE and predictive variance. All maps consist of 4 randomly created and located Gaussian mixtures.
1
1
1

here 𝑎 is the weight given to the velocity map, 𝑏 is the weight given to
he GP prediction map, 𝑊 is the velocity map given by the Euclidean
istance transform of the binary map and 𝐺𝑃𝑚𝑎𝑝 is a matrix containing
he GP predictive mean for every point in the map. 𝑊 and 𝐺𝑃𝑚𝑎𝑝 are
escaled between 0 and 1. An example of next point selection can be
een in Fig. 6. Fig. 6(a) shows the original map used, composed of
our Gaussian mixtures that represent the areas of interest. Fig. 6(b)
hows the velocity map after the UAV has followed a set of paths, the
lready visited zones have a 0 value and are marked as dark blue,
hile the most unexplored areas are marked in yellow. Fig. 6(c) shows
he prediction map obtained from the GP model, which has captured
he high interest zones accurately. Fig. 6(d) shows the combination
f the velocity map and the prediction map for 𝑎 = 𝑏 = 5. The next
oint selected is located in the top right corner, where the value of the
ombined map is the highest.
The algorithm is ran for 30 iterations to study the evolution of the

btained GP prediction map, but for real applications a condition such
percentage of the area covered can be set to stop the algorithm,
nd the hyperparameter optimization is done at iterations 1 and 5 to
enerate an initial assessment of the map to explore, and then every
5 iterations. Algorithm 1 shows the detailed steps of the proposed
xploration algorithm.
6

Algorithm 1 Routine of the FM2+GP exploration strategy
1: Define limits of the area to explore
2: Load the UAV at its initial position
3: Generate an initial GP model with the points around the UAV
4: while 𝑖𝑡𝑒𝑟 < 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do
5: Calculate velocity map
6: Calculate GP prediction for all points in the map
7: Select next point to visit based on Eq. (2)
8: Add points observed by the UAV’s sensors to the GP model
9: if 𝑖𝑡𝑒𝑟 = 5 or 𝑖𝑡𝑒𝑟 = 15 then
0: Update hyperparameters of the GP model
1: end if
2: end while

3. Results

In order to test the algorithm and study the effects of the selection
of 𝑎 and 𝑏 in the mean absolute error (MAE) and mean variance, five
artificial maps composed of four Gaussian mixtures rescaled between
0 and 1 are built (Fig. 7) and the algorithm is tested for all possible
combinations of 𝑎 and 𝑏. Figs. 8 and 9 show the mean and standard
deviation obtained for the MAE and the predictive variance.
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Fig. 8. Mean absolute error (MAE) calculated at each iteration of the algorithm for every combination of weights in every test map.
Fig. 9. Predictive variance calculated at each iteration of the algorithm for every combination of weights in every test map.
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As it can be seen in Fig. 8, the MAE results improve as 𝑎 improves
nd 𝑏 decreases, and they can be clearly divided into three distinct
roups: 𝑎 = 0 and 𝑏 = 10, 1 ≤ 𝑎 ≤ 3 and 7 ≤ 𝑏 ≤ 9 and 𝑎 ≥ 4
and 𝑏 ≤ 6. For 𝑎 = 0 and 𝑏 = 10, the algorithm is too greedy and
ocuses on the zones with the highest value, leaving the rest of the
ap unexplored, hence the unsatisfactory results. For 1 ≤ 𝑎 ≤ 3 and
≤ 𝑏 ≤ 9, there is a balance between the greediness of the GP prediction
nd the need to explore unexplored areas of the velocity map. This
ombination of parameters can be useful when we want to focus on
etting to the highest valued areas first without getting stuck like in the
revious case. For 𝑎 ≥ 4 and 𝑏 ≤ 6, the velocity map leads the algorithm
o explore unexplored areas, which overall gives a better coverage of
he area and allows to get better predictions faster. Notice that after
he hyperparameter updates in iterations 5 and 15 the MAE is reduced
reatly.
Concerning the predictive variance results in Fig. 9, the distinction

nto three groups is not that clear, but for 𝑎 = 0 and 𝑏 = 10 it is still
lear that the algorithm is too greedy and does not perform a thorough
xploration of the environment, resulting in a high predictive variance
t the end of the mission. As in Fig. 8, we can see that the predictive
ariance values go down after the hyperparameter updates.
 g

7

3.1. Variance effect in exploration efficiency

Other IPP approaches commonly use the variance as a variable to
select the most unexplored areas, while in this work we use the velocity
map W. To further test our algorithm, we use a measure of variance to
modify the weight assigned to W, so the desire to explore unvisited
zones is greater when the measure of variance is bigger. The formula
used to modify the weight of W when selecting the next point for
exploration can be seen in Ec. (3).

𝑛𝑒𝑥𝑡𝑃 𝑜𝑖𝑛𝑡 = 𝑚𝑎𝑥(𝑎 ∗ 𝑊 ∗ 𝜎2 + 𝑏 ∗ 𝐺𝑃𝑚𝑎𝑝) (3)

here 𝑎 is the weight given to the velocity map, 𝑏 is the weight given
o the GP prediction map, 𝜎2 is a matrix containing the GP predictive
ariance for every point in the map, 𝑊 is the velocity map obtained
ith the first propagation of the FM2 method and 𝐺𝑃𝑚𝑎𝑝 is a matrix
ontaining the GP predictive mean for every point in the map. 𝑊 , 𝜎2
nd 𝐺𝑃𝑚𝑎𝑝 are rescaled between 0 and 1.
Using the same weight combinations as in the previous experiment,

e obtain the following results in Figs. 10 and 11.
Figs. 10 and 11 show that the orange and blue lines, which give
greater 𝑎 value and therefore give more importance to 𝑊 and 𝜎2,
reatly improve their performance in the early stages of the exploration
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Fig. 10. Mean absolute error (MAE) calculated at each iteration of the algorithm for every combination of weights in every test map when taking into account the predictive
ariance for the next point selection.
Fig. 11. Predictive variance calculated at each iteration of the algorithm for every combination of weights in every test map when taking into account the predictive variance for
the next point selection.
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mission when compared to the previous experiment, which demon-
strates that using the variance helps guide the exploration and is a good
complement to the velocity map.

Now that we have studied the effects of the parameter selection on
the MAE and the mean variance, we test the algorithm on a real en-
vironment. Fig. 12 shows a LANDSAT (USGS) image of the Gallocanta
lagoon in Aragón, Spain. The image has a resolution of 30 × 30 meters
per cell and has been rescaled between 0 and 1. The yellow points
represent values closer to 1, in this cases bodies of water, and the blue
points represent values closer to 0.

Based on the study of the parameters 𝑎 and 𝑏, we select three sets
of parameters to perform the exploration. The results for the MAE and
the mean variance can be seen in Figs. 13 and 14.

Figs. 13 and 14 prove the assumptions we made with the test
environments related to 𝑎 and 𝑏. When observing the resulting final
alues of the missions, we notice that the minimum MAE is achieved
hen 𝑎 = 8 and 𝑏 = 2 and the minimum variance is achieved when
= 10 and 𝑏 = 0. This makes sense due to the fact that we are using
he variance with 𝑏 in order to get more coverage of the environment.
verall, the minimum sum of the MAE and the variance is achieved
 U

8

ith 𝑎 = 8 and 𝑏 = 2. To better see how the algorithm performs in
real time, the GP prediction map and the variance map are plotted at
iterations 5, 10, 20 and 30 for 𝑎 = 8, 𝑏 = 2 and 𝑎 = 10, 𝑏 = 0 in Figs 15,
16 and 17, 18, respectively.

Figs. 15 and 17 show that for 𝑎 = 8 and 𝑏 = 2, the algorithm is
able to identify the main body of water at the center and the smaller
body of water at the top at iteration 10, while for 𝑎 = 10 and 𝑏 = 0 the
ody of water at the top remains unidentified even after 30 iterations
nd the shape of the main body of water is better represented for 𝑎 = 8
nd 𝑏 = 2 than for 𝑎 = 10 and 𝑏 = 0. For both cases, the variance is
onstant at all points in the map at iteration 5 except for the already
isited points, which have zero variance. This is due to the fact that
t iteration 5 the number of explored points is smaller or really close
o the number of points considered in the active set, so all points are
onsidered for making the prediction. The lack of understanding of the
ain body of water in Fig. 17 makes the need for 𝑏 > 0 evident, as we

can use the GP prediction values to guide the exploration to these more
interesting zones of the environment.

Figs. 16 and 18 show that the variance map gets ‘‘flattened’’ as the
AV explores the area, which reduces the uncertainty about the terrain.
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Fig. 12. Original map used for the exploration test.
Fig. 13. Mean absolute error (MAE) calculated at each iteration of the algorithm for every combination of weights.
See that for 𝑎 = 8 and 𝑏 = 2 the variance converges faster at iteration
10 than for 𝑎 = 10 and 𝑏 = 0, and has a less bumpy appearance. The
variance is always higher at the edges of the map, since those points do
not give much information and are usually not considered in the active
set. Notice that for 𝑎 = 10 and 𝑏 = 0 the model is overall uncertain
about the predicted values of the map.

Finally, we test the proposed algorithm against the Boustrophedon
coverage (Choset and Pignon, 1998; Muñoz et al., 2021b,a). Fig. 19
9

shows that the proposed method is able to generate an accurate pre-
diction on the whole map with a path of the same length as the one
calculated by the Boustrophedon method.

4. Conclusions and future work

The main objective of this work was to study and implement an in-
formative path planning/exploration algorithm based on GP regression
models and the Fast Marching Square method. The weight given to each
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Fig. 14. Variance calculated at each iteration of the algorithm for every combination of weights.
Fig. 15. Prediction map obtained from the GP model for 𝑎 = 8 and 𝑏 = 2.
method is selected by performing tests on five simulated environments
and selecting two samples to apply to a real environment obtained from
a LANDSAT image. The algorithm is simulated in this environment and
measures of the mean absolute error and the variance are given. The
results show that the algorithm is able to rapidly explore and generate
an accurate representation of the environment by using the GP to
make predictions on all points of the environment. Results improve for
greater weights of the velocity map W when a measure of the variance
is added to increase the need to visit unexplored regions. However,
decreasing 𝑏 to 𝑏 = 0 is not efficient as we are neglecting the importance
10
of the GP predictions when selecting the next point to explore. The
proposed method is compared against the traditional Boustrophedon
coverage method, and the results show that for a path of the same
length, our algorithm yields better results and an accurate depiction
of the area to explore.

Some future works for this approach are to use optimization meth-
ods such as Differential Evolution or Particle Swarm Optimization to
select 𝑎 and 𝑏 or more complex methods such as Bayesian optimization
in order to reduce the number of tests needed to obtain the optimal
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Fig. 16. Variance map obtained from the GP model for 𝑎 = 8 and 𝑏 = 2.

Fig. 17. Prediction map obtained from the GP model for 𝑎 = 10 and 𝑏 = 0.

11
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Fig. 18. Variance map obtained from the GP model for 𝑎 = 10 and 𝑏 = 0.

Fig. 19. Comparison between our proposed algorithm with 𝑎 = 8 and 𝑏 = 2 and the classic Boustrophedon method for a path length of 1622 points.

12
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parameters. These methods can also be used to change the frequency
of the hyperparameter optimizations.
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