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SUMMARY
The structure of solutions of the three dimensional chemostat competition system with the yield functions

δ1=A1+B1Sn and δ2=A2+B2Sm, is analysed. The stability of equilibrium points and the three dimensional Hopf
bifurcation of the system are discussed. The conditions of the existence of limit cycles on the two dimensional stable
manifold when one microorganism vanishes are obtained. Some examples are used to show the applicability of the
results.
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1. INTRODUCTION

The chemostat, sometimes also referred to as
bioreactor, serves as a basic model in the continuous
culture vessel. It often serves as a starting model of the
open system in biology ecology, and also it is used in
modelling the waste water treatment and in the
mammalian large intestine (see, for instance, [14]).
Many of these models and references can be found in
[1]. Usually, a chemostat consists of three vessels: the
culture vessel, the feed bottle, and the overflow vessel.
The feed bottle contains medium with all of the
nutrients needed for growth which is pumped at a
constant rate into the culture vessel. The culture vessel
is charged with one or more microorganisms which
compete for the nutrient. The contents of the culture
vessel are pumped into the overflow vessel at a constant
rate to keep the volume of the reactor constant. The
basic assumptions are that the culture vessel is well
stirred, and the temperature, pH, etc., are kept constant.

Let S(t) denote the concentration of nutrient in the
culture vessel, xi(t), i=1,2, denote the concentration of

two microorganisms. Let S0 denote the input
concentration of nutrient, and D, the dilution rate (flow
rate/volume), mi, the maximal growth rates, ki, the
Michaelis-Menton constants, and δi, i=1,2, the yield
coefficients, which are all positive. This is usually
called the Monod model or the model with Michaelis-
Menten dynamics. The model takes the form:
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1

1
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2
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0
1 2

m S m SdS 1 1( S S )D x x
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S(0 ) S 0, x (0 ), x (0 ) 0.

δ δ
= − − −
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⎛ ⎞
= −⎜ ⎟

+⎝ ⎠
⎛ ⎞

= −⎜ ⎟
+⎝ ⎠

= > >

(1)

Most of the models in the chemostat assume that
the yield coefficient is a constant [1, 5-7]. But the
accumulation of experimental data indicates that a
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constant yield fails to explain the observed oscillatory
behavior in the vessel (see Dorofeev, et al. [2,7]).
Therefore, to modify the model becomes necessary.
Crooke [3,4] suggested a linear function for the yield
coefficient and declared a limit cycle may exist in his
model. Huang (1990 [8]), and Pilyugin and Waltman
(2003 [7]) constructed a model with a general yield
function, and studied the limit cycles and their relative
positions. However, all the above models considered
only one microorganism in the vessel. In Ref. [16], a
three dimensional chemostat with two microorganisms
was studied. In the model the functional reaction
functions were in the Monod type, and the yield
coefficients were assumed to be δi=Ai+BS, i=1,2.
Also, in Ref. [17] the yield coefficients were assumed
as δ1=A+BS2, and δ2=const. Some properties of the
equilibrium points were discussed there [16,17]. Ref.
[7] gave a numerical example with δ1=1+50S3, and
δ2=120 and it obtained five limit cycles through a
bifurcation numerically. Recently, Ref. [19] studied the
chemostat with quadratic yields: δ1=A+BS2, and
δ2=C+DS2, and proved the conditions of the existence
of two limit cycles in the model.

In this paper, we study a three dimensional
chemostat of which both the yield coefficients are
functions of the nutrient in the general forms:
δ1=A+BSn, and δ2=C+DSm. The model is useful in
modelling the case when the microorganism is very
sensitive to the nutrient. We shall analyze analytically
the equilibrium points, global stability and the Hopf
bifurcation of the three dimensional system. It is easy
to see that the model in this paper includes almost all
the previous results as special cases (for example, see
those in Refs. [3, 4,16-19]). Our model and the main
theorems with proofs are in Section 2.

It is always of interest in both theory and
applications to study the existence and properties of
periodic solutions of the n-dimensional autonomous
differential system for n≥3. The situation of n≥3 is
much complicated than the one in the plane. This is
because some powerful tools in the plane system like
Poincare-Bendixson theorem cannot be applied
directly in the cases of n≥3. We use the Hopf
bifurcation method directly to the three dimensional
system to show the existence of limit cycles. Not many
of the results for n≥3 are reported in the literature [13].
Some examples are applied to illustrate our theorems
in Section 3, which will help us to understand our
results.

2. THE MODEL AND MAIN THEOREMS

Performing the standard scaling for the continuous
fermentation, let:

0 0 0

i i
i i

0

S x yS , x , y , Dt ,
S S S
m k Lm , k , L ,
D S D

τ= = = =

= = =

and then drop the bars, and replace τ with t, B1(S0)n

with B1, B2(S0)m with B2, the system (1) becomes:

1 1 2 2
n m

1 1 1 2 2 2

1 1
1

1

2 2
2

2

x m S x m SdS 1 S
dt A B S k S A B S k S

dx m S 1 x
dt k S

dx m S 1 x .
dt k S

= − − −
+ + + +

⎛ ⎞
= −⎜ ⎟

+⎝ ⎠
⎛ ⎞

= −⎜ ⎟+⎝ ⎠

(2)

The parameters have been scaled by the operating
environment of the continuous fermentation,
determined by S0 and D. The variables are non-
dimensional and the discussion is in:

( ){ }3
1 2 1 2R S ,x ,x 0 S 1, x 0, x 0+ = ≤ ≤ ≥ ≥

Let 1 2
1 2

1 2

k k, .
m 1 m 1

λ λ= =
− −

It is easy to see that:

1 2
i

t 1 t 2

1
1 t 1

2
2 t 2

dx dx( i ) if 0 m 1, i 1,2, then 0, 0 and
dt dt

lim x ( t ) lim x ( t ) 0;
dx( ii ) if 1, then 0 and lim x ( t ) 0;
dt
dx( iii ) if 1, then 0 and lim x ( t ) 0.
dt

λ

λ

→+∞ →+∞

→+∞

→+∞

< < = < <

= =

≥ < =

≥ < =

(3)

So in order to avoid the microorganisms vanishing,
we need to assume that: 0<λi<1, i=1,2 (which imply
mi>1, i=1,2).

Let:
n 1 2 n n 2

1 1 1 1 1 1 1 1 1 1
1 2

1 1 1 1 1

(1 )[ n ( k ) m k ] ( k )R ,
( k ) m k (1 )

λ λ λ λ λ λ
λ λ

−− + − − +
≡

+ + −

(4)
m 1 2 m m 2

2 2 2 2 2 2 2 2 2 2
2 2

2 2 2 2 2

(1 )[ m ( k ) m k ] ( k )R .
( k ) m k (1 )

λ λ λ λ λ λ
λ λ

−− + − − +
≡

+ + −

(5)
Theorem 1. The system (2) has three equilibrium

points in 3R+ :

( ) ( )
( )

n
0 1 1 1 1 1 1

m
2 2 2 2 2 2

E 1,0,0 , E ,( A B )(1 ),0

and E ,0,( A B )(1 )

λ λ λ

λ λ λ

+ −

+ −
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in which is E0 unstable (saddle); E1 is asymptotically

stable if 1
1

1

A R
B

>  and λ1<λ2, unstable if either

inequality is reversed; E2 is asymptotically stable if

2
2

2

A R
B

>  and λ1>λ2, unstable if either inequality is

reversed.
Proof. We only prove the cases for E1 and E2. From
the Jacobians of the system (2) at E1 and E2, the
corresponding characteristic equations take the form:

(r − ai)(r2 + bir + ci)=0,   i=1,2 (6)
where:

( )

( )

2 1
1

2 1

n 1
1 1 1 1

1 1 n3 2
1 1 1 1 1

1 1
1 1 2

1 1

ma 1
k

nB m kb 1 1
A B ( k )

m kc 1 ( which is 0 );
( k )

λ
λ

λ
λ

λ λ

λ
λ

−

= −
+

⎛ ⎞−
= + − +⎜ ⎟+ +⎝ ⎠

= − >
+

(7)

( )

( )

1 2
2

1 2

m 1
2 2 2 2

2 2 m 2
2 2 2 2 2

2 2
2 2 2

2 2

ma 1
k

mB m kb 1 1
A B ( k )

m kc 1 ( which is 0 ).
( k )

λ
λ

λ
λ

λ λ

λ
λ

−

= −
+

⎛ ⎞−
= + − +⎜ ⎟+ +⎝ ⎠

= − >
+

(8)

When 1
1 1

1

A R , b 0
B

> > , the roots of r2 + b1r + c1=0

have negative real parts. The stability of E1 is

determined by the sign of a1. Thus E1 is stable if a1<0,

(or λ1<λ2), unstable if λ1>λ2. When 2
2 2

2

A R , b 0
B

> >

the roots of r2 + b1r + c1=0 have positive real parts, E1

is unstable.

Similarly, when 2
2 2

2

A R , b 0
B

> > , the roots of the

equation  r2 + b2r + c2=0  have negative real parts. The

stability of E2 is determined by the sign of

1 2
2

1 2

ma 1
k

λ
λ

= −
+

. Thus, if (or if λ1>λ2), E2 is stable; it

is unstable if λ1<λ2. When 2
2 2

2

A R , b 0
B

< < , E2 is

always unstable. The proof of Theorem 1 is

completed.

Theorem 2. (i) If λ1<λ2, and 1
1

1

A R
B

> , the equilibrium

point E1 is globally asymptotically stable in 3R+ ; (ii) if

λ1>λ2, and 2
2

2

A R
B

> , the equilibrium point E2 is

globally asymptotically stable.
Proof. Let:

1 2 1 2
n

1 1 1 1 1 0
m

2 2 2 2 2 0

0

{( S ,x ,x )|0 S l x x ,
0 x (1 )( A B ) ,
0 x ( 1 )( A B ) ,
0 l , 0 }.

Ω

λ λ ε

λ λ ε
ε

= ≤ ≤ − −

≤ ≤ − + +

≤ ≤ − + +

< < +∞ >

(9)

We first prove that Ω is a positively invariant set of
(2).

Consider on the face S=0 and, by system (2),

S 0

dS 1 0
dt =

= > . Thus, any trajectory inwill go through

into 3R+  but the reverse is not true. For the face

M=S+x1+x2−l=0 (0<l<+∞):

M 0

1 1 2
1 n

1 1 1 2 1 1 2

2 1 2
2 m

2 2 1 2 2 1 2

dM 1 l
dt

m ( l x x )1x 1
A B ( l x x ) k ( l x x )

m ( l x x )1x 1 .
A B ( l x x ) k ( l x x )

=

= − −

⎛ ⎞ − −
− − −⎜ ⎟+ − − + − −⎝ ⎠

⎛ ⎞ − −
− −⎜ ⎟+ − − + − −⎝ ⎠

(10)

Since both x1 and x2 are bounded and all the

parameters are positive, 
M 0

dM 0
dt =

<  if l is sufficiently

larger. That is, any trajectory in 3R+  will cross the plane

M=S+x1+x2−l=0 into Ω. Moreover, because x1=0,

x2=0 both are the solutions of system (2), Ω is a

positively invariant set of system (2). In other words,

any trajectory initiating in 3R+  will go to Ω when t→+∞.

Therefore, both E1 and E2 are globally asymptotically

stable. We thus complete the proof of Theorem 2.

It follows from Theorem 2 that:

(i) if λ1<λ2, and 1
1

1

A R
B

> , then, for any trajectory in 3R+ ,
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t 1
n

t 1 1 1 1 1

t 2

lim S( t ) ,
lim x ( t ) ( 1 )( A B ),
lim x ( t ) 0

λ

λ λ
→+∞

→+∞

→+∞

=

= − +

= and:

(ii) if λ1>λ2, and 2
2

2

A R
B

> , then, for any trajectory in

3R+ ,

t 2

t 1
m

t 2 2 2 2 2

lim S( t ) ,
lim x ( t ) 0,

lim x ( t ) (1 )( A B ).

λ

λ λ

→+∞

→+∞

→+∞

=

=

= − +

Before we prove the theorem of the Hopf

bifurcation for the three dimensional system, we must

first study the stability of E1 when 1
1

1

A R
B

= , and E2

when 2
2

2

A R ,
B

=  by using the LaSalle corollary to the

Liapunov stability theorem. Since our Liapunov

function is not necessarily continuous on the closure

of the region, we shall use the extension that was used

by Wolkowicz and Lu [15]. The extension states that

V is a Liapunov function for a system 
dX f ( X )
dt

=  in

a region if:
(i) V is continuous on G;

(ii) V is not continuous at a point X G∈  implies that

X X
X G

lim V( X )→
∈

= ∞ ;

(iii) V`=∇V ⋅ f ≤ 0 on G.

It is different from Theorem 2 that the condition of

1
1

1

A R
B

>  or 2
2

2

A R
B

>  is no longer needed in the

following theorem.

Theorem 3. Assume Ai≥1, i=1,2. (i) If λ1<λ2, then

the equilibrium point E1 of (2) is always globally

asymptotically stable in 3R+ ; (ii) if λ1>λ2, then E2 is

globally asymptotically stable.

Proof. We prove the case of (i) first. Let:

1

11

xS *
1 1

1 2 1 2 2
x *

xV( S ,x ,x ) d c d c x
λ

η λ ηη η
η η
− −

= + +∫ ∫ (11)

where x1* = (1-λ1)⋅(A1+B1λ1n), and c1, c2 are

determined late. Then:

1 1 1 2 2
n m

1 1 1 2 2 2

*
1 1 1 2

1 1 2 2
1 1 2

1 1 1
n

1 1 1

* 1 2 1
1 1 1 2 2

1 2 1

2 2 1
2 2

2 2

S x m S x m SV ' 1 S
S A B S k S A B S k S

x x m S m Sc x 1 c x 1
x k S k S

S x m S1 S
S A B S k S

m S mc ( x x )( 1) c x 1
k S k

m S mx c (
k S k

λ

λ

λ
λ

λ

⎛ ⎞−
= − − − +⎜ ⎟+ + + +⎝ ⎠

⎛ ⎞ ⎛ ⎞−
+ − + − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞−
= − − +⎜ ⎟+ +⎝ ⎠

⎛ ⎞
+ − − + − +⎜ ⎟+ +⎝ ⎠

+ −
+ +

1 2
m

1 2 2 2

1 2 3

S m S1)
S A B S k S

V V V .

λ
λ

⎛ ⎞−
−⎜ ⎟+ +⎝ ⎠

≡ + +

It follows that:

n1 1
1 1 1 1 1 1

1

1 1 1 1
1 1n

1 1 1 1

11 12

S m SV (1 S ) c (1 )( A B )( 1)
S k S

S x m S m S
c x ( 1)

S A B S k S k S
V V .

λ
λ λ

λ

−
≡ − − − + − +

+

⎛ ⎞−
+ − + −⎜ ⎟+ + +⎝ ⎠

= +

Note that:

1 1 1

1 1

m S ( m 1)( S )1
k S k S

λ− −
− =

+ + .

We have:

( )

1 1 1
12 1 1 1n

1 1 1 1

1 1 1
1 1 1 1n

1 1 1 1

n1 1
1 1 1 1 1n

1 1 1

x m m SV ( S ) c x ( 1)
A B S k S k S

x m m 1( S ) c x ( S )
A B S k S k S

x ( S ) c ( m 1)( A B S ) m .
( k S )( A B S )

λ

λ λ

λ

≡ − − + −
+ + +

−
= − − + −

+ + +
−

= − + −
+ +

(12)

In order to have V12≤0, we determine c1 as it
follows:

(1) if S≤λ1, choose 1
1

1

mc
m 1

=
−

 such that:

n
1 1 1 1 1 1 1c ( m 1)( A B S ) c ( m 1) m− + ≥ − = , and V12≤0.

Then, we have:

n1 1 1 1
11 1 1 1 1

1 1

1 1 1
1 1

1 1 1

2 1 1
1

1 1

S m ( m 1)( S )V ( 1 S ) ( 1 )( A B )
S m 1 k S

m k1 S( S ) ( 1 )
S k S m

S k( S ) 0.
S( k S )

λ λλ λ

λλ λ
λ

λ
λ

λ

− − −
= − − − +

− +

⎛ ⎞+−
≤ − − −⎜ ⎟+⎝ ⎠

+
= − − ≤

+
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(2) if S>λ1, choose 1
1 n

1 1 1 1

mc
( m 1)( A B )λ

=
− +

 such

that:
n n

1 1 1 1 1 1 1 1 1 1c ( m 1)( A B S ) c ( m 1)( A B ) m ,λ− + ≥ − + =

hence V11≤0.

Also, since m1λ1=k1+λ1, one has:

1
11

n1 1 1
1 1 1 1n

1 1 1 1 1

1 1 1
1 1

1 1 1

1 1 1
1

1 1

2 1 1
1

1

1

SV (1 S )
S

m ( m 1)( S )(1 )( A B )
( m 1)( A B ) k S

m k1 S( S ) (1 )
S k S m

( S k )( S )( S )
S( k S )

S k( S )
S( k S )

0, ( the equal sign holds only when S ).

λ

λ
λ λ

λ

λ
λ λ

λ
λ λ

λ
λ

λ
λ

λ

λ

−
≡ − −

− −
− − + =

− + +

⎛ ⎞+−
= − − −⎜ ⎟

+⎝ ⎠
− + −

= −
+
+

= − −
+

≤ =

Thus V1≤0.

Furthermore, since λ1<λ2,

2 1 2 2
2 2 2 2 2

2 1 2 2

2 2

m mV c x 1 c x 1 0,
k k

( since c 0 and x 0 ).

λ λ
λ λ

⎛ ⎞ ⎛ ⎞
≡ − ≤ − =⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

> ≥

Now we shall choose c2 so that V3=0:

2 2 2 1 2 1
3 2 m

2 2 1 2 2 1 2

2 2 1 2 2
m

2 2 1 2 2 1

c m k ( S ) m ( S )V x
( k S )( k ) ( A B )( k S )

x m ( S ) c k 1 .
k S k A B

λ λ
λ λ

λ
λ λ

⎛ ⎞− −
≡ −⎜ ⎟

+ + + +⎝ ⎠
⎛ ⎞−

= −⎜ ⎟+ + +⎝ ⎠

V3 is less or equal to 0 if it determines c2 as it
follows:

2 1
2 1

2 2 2

kc if S since S 1;
k ( A B )

λ λ+
= ≥ ≤

+

 
2 1

2 1
2 2

kc if S since S 0.
k A

λ λ+
= < ≥

Therefore:
V`=V1+V2+V3≤0 (13)

and by the LaSally corollary, all trajectories tend to the
largest invariant set in 1 2{( S ,x ,x )|V ' 0 }∆ = = . This
requires S≡λ1 and X2≡0.

To make 1{ S | S }λ=  invariant, under the
condition x2=0, it requires:

1 1 n
1 1 1

1S ' 1 x 0
A B

λ
λ

= − − =
+ (14)

which implies x1=(1−λ1)(A1+B1λ1n). Therefore 1{ E }
is the unique invariant set in ∆. We thus complete the
proof of the theorem 3-(i). A similar argument will
prove Theorem 3-(ii).

The teorem 3 indicates that the stability of the

equilibrium points E1 and E2 are now established for

1
1

1

A R ,
B

=  and 2
2

2

A R ,
B

=  respectively. We are now in a

position to prove the three dimensional Hopf bifurcation

theorem for the system (2). We first introduce the

following Lemma (Theorem 1, p. 254 [13]).

Lemma 1. Let W be an open set in R3, (0,0,0) ∈ W.
Let f:W×(−µ0,µ0)→R3 be an analytic function on
W×(−µ0,µ0) where µ0 is a small positive number.
Denote the Jacobian of f at (X,µ)=(0,0,0),0) as
J(f(0,0)) and assume that:
(i) the system:

dX f ( X , )
dt

µ= (15)µ

has (0,0,0) as its equilibrium point for any µ;

(ii) the eigenvalues of J(f(0,0)) are:

0 0i ( )| i (0 ), ( )| (0 )µ µβ µ β δ µ δ= =± = ± =
with β(0)>0, δ(0)<0.

Then if (0,0,0) is asymptotically stable at µ=0,
there exists a sufficiently small µ, µ>0 such that the
system (15)µ has an asymptotically stable closed orbit
surrounding (0,0,0).

The proof of the Lemma 1 is based on the Liapunov
second method which can be found in Ref. [13] or
any advanced level books on bifurcations [20].

Theorem 4. (i) If λ1<λ2, the system (2) undergoes a

Hopf bifurcation at 1
1

1

AR
B

= , and the periodic solution

created by the Hopf bifurcation is asymptotically stable

for 1
1

1

A0 R 1;
B

< − <<  (ii) If λ2<λ1, the system (2)

undergoes a Hopf bifurcation at 2
2

2

AR
B

= , and the

periodic solution created by the Hopf bifurcation is

asymptotically stable for 1
1

1

A0 R 1;
B

< − <<

Proof. Make the variable change:
n

1 1 1 1 1 1 1 2 2S S , x x (1 )( A B ), x xλ λ λ= − = − − + = ,
and denote the Jacobian of the system (2) in variables

1 2S , x , x  as 1 2J( S ,x ,x ) .
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Choose 1
1

1

AR
B

µ = − , R1 as in Eq. (4), as the Hopf

bifurcation parameter, and consider the system (2) in

variables 1 2S , x , x  as dX f ( X , )
dt

µ=  in Eq. (15)µ. Then:

1 2

n
1 2 1 1 1 1 1

1 2 ( S ,x ,x ) ( 0,0 ,0 )
0

1 2 ( S ,x ,x ) ( ,( 1 )( A B ),0 )
0

J( f ( 0,0 )) J( S ,x ,x )

J( S ,x ,x )

µ

λ λ λ
µ

=
=

= − +
=

= =

=

The corresponding characteristic equation is:

22 1 1 1
1 2

2 1 1 1

m m kr 1 r ( 1 ) 0.
k ( k )

λ
λ

λ λ
⎛ ⎞⎛ ⎞

− + + − =⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠
(16)

The eigenvalues of Eq. (16) are ±iβ(0) and δ(0), where:

1 1 1
1 1

2 1 2 1 2 2

2 1 2 1 2 2

1 2

1(0 ) (1 )m k 0,
k
m m m(0 ) 1 0,

k k k
( since ),

β λ
λ
λ λ λ

δ
λ λ λ

λ λ

= − >
+

= − < − <
+ + +
<

(17)

and the hypotheses of the Lemma 1 are satisfied. From
Theorems 3 and 2, it follows that:
1) The equilibrium of the system (2): (0,0,0) in the

coordinate system, or (λ1, (1−λ1) (A1+B1λ1n), 0)
in 1 2S , x , x , is asymptotically stable;

2) (0,0,0) in 1 2S , x , x , or in (λ1, (1−λ1) (A1+B1λ1n),
0), is unstable if µ>0.

Therefore, the system (15)µ, (or (2)), undergoes a

Hopf bifurcation at µ>0 (or, 1
1

1

AR
B

= ). Lemma 1

implies that for a sufficient small µ, µ>0, the system

(15)µ has an asymptotically stable closed orbit

surrounding (0,0,0), that is, for 1
1

1

A0 R 1
B

< − << , the

system (2) has an asymptotically stable closed orbit

surrounding E1(λ1, (1−λ1) (A1+B1λ1n), 0). Theorem

4-(i) is obtained.
A similar argument can prove Theorem 4-(ii).
Regarding the behavior of the trajectories near the

equilibrium points, we have the following results.
For E1, in the solution plane of x2=0 the system (2)

is reduced to:

1 1
n

1 1 1

1 1
1

1

x m SdS 1 S
dt A B S k S

dx m S 1 x .
dt k S

= − −
+ +

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

(18)

This is a special case of the following system ([8])

( )dx x g( y ) 1
dt
dy g( y )1 y x,
dt F( y )

= −

= − −
(19)

with n1
1 1

1

m Sy S , g( y ) , F( y ) A B S ,
k S

= = = +
+

 and

x=x1.
The system (19) has two equilibrium pints (0,1),

and (x*,y*), where:
x*=(1−y*)F(y*), y*=g−1(1)

with the condition g(1)>1.
It is easy to see that (0,1) is a saddle. Denote:

y y*

d gp 1 x*
dy F =

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

(20)

The following theorem is proved in Ref. [8].

Lemma 2. Assume g(1)>1. If p>0 then (x*,y*) is
stable; if p<0, it is unstable and there exists at least
one limit cycle in Eqs. (19) surrounding the equilibrium
(x*,y*).

Thus, by Lemma 2, one has:

Theorem 5. Assume m1>k1+1. The system (18) has

two equilibrium points: M1(1,0), which is a saddle, and

M2(λ1, (1−λ1)(A1+B1λ1n)), which is stable if 1
1

1

A R
B

> ,

and unstable if 1
1

1

A R
B

< . In the case when M2 is

unstable, there is at least one limit cycle in system (18)

surrounding M2.
For E2, in the face x1=0 we have the similar result

for the two dimensional system:

2 2
m

2 2 2

2 2
2

2

x m SdS 1 S
dt A B S k S

dx m S 1 x .
dt k S

= − −
+ +

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

(21)

Theorem 6. Assume m2>k2+1. The system (21) has

two equilibrium points: N1(1,0), which is a saddle, and

N2(λ1, (1−λ1)(A1+B1λ1n)), which is stable if 2
2

2

A R
B

> ,

and unstable if 2
2

2

A R
B

< . In the case when N2 is

unstable, there is at least one limit cycle in system (21)

surrounding N2.
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3. EXAMPLES

Example 1. Consider:

3

dS x 2S y 9.85S1 S
dt 1 50S 0.7 S 120 6.5 S
dx 2Sx( 1 )
dt 0.7 S
dy 9.85Sy( 1),
dt 6.5 S
S( 0 ) 0.4, x( 0 ) 2.0, y( 0 ) 0.

= − − −
+ + +

= −
+

= −
+

= = =

(22)

The system (22) has shown numerically that
multiple limit cycles exist [7]. It follows that λ1=0.7,

λ2=0.73, 1

1

A 1 0.2,
B 50

= =  and by formula (4):

( ) ( )( ) ( )

( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( )

2 22 3 3
1 1 1 1 1 1 1 1 11

1 2
1 1 1 1 1

2 22 3 3

2

1 3 k m k k
R

k 1 m k

1 0.7 3 0.7 0.7 0.7 2 0.7 0.7 0.7 0.7 0.7

0.7 0.7 1 0.7 2 0.7
0.048 0.02.

2.4

λ λ λ λ λ λ

λ λ

− + − − +
= =

+ + −

− + − − +
= =

+ + −

= =

(23)

From Theorem 4, the system (22) undergoes a
Hopf bifurcation and there exist limit cycles
surrounding the equilibrium (0.7,5.445,0). This is an
analytic proof of the numerical result shown in Ref.
[7].
Example 2. Consider the system (2) with δ1=A+BS2

and δ2=C+DS2. In Ref. [19] the stability and the
existences of two limit cycles were studied but the
bifurcation for the three dimensional system is not
considered. Following Theorem 4, we have:

Theorem 7. The system (2) with the yields δ1=A+BS2

and δ2=C+DS2 undergoes a Hopf bifurcation at

1
A R
B
=  if λ1<λ2, where R1 is calculated by formula

(4) for n=2.
We would like to mention that the corresponding

two dimensional chemostat, that is, x2≡0 in Example
2, was studied in Ref. [18]. However, the discussion
of the conditions for the Hopf bifurcation in the two
dimensional case required that one more condition
g3<0 (Theorem 2, p. 389, [18]) is needed to guarantee
the bifurcation. Since the formula [18] for g3 is:

3 1 1 1 2 1 2 2 2 4 3
1 7 23 23 5 1 3g a b a a b b a b b a
2 6 12 12 3 4 4
⎛ ⎞= − − + + +⎜ ⎟
⎝ ⎠

(24)
and ai, i=1,2,3, bj, j=1,2,3,4  are involved some
original variables, which is impossible to be valued.
Because in their proof [18], before using the Friedrich
method, a variable transformation:

( )

( )
( )

1

1 1
1 12 2

1 0 1

2 2
1 1 0 1 1

S m L 1

m k
x x

x A BS

t m k A BS x t

λ

λ

= − +

= ⋅
+

= + ⋅

was made, which resulted in that the coefficients a1,
a1, a3, a4, b2, b3, b4, b5 all have old variable x1 such
that the calculation for g3 was impossible in this way
and is definitely wrong.

We would like to conclude our article with the
following remark.

Remark.The structure of the solutions of the
systems (2) with the yields δ1=A+BSn, δ2=A+BSm  has
quite similar property as in the case of any particular n
and m (see Refs. [3, 4, 7, 8, 15-19]). Hence, a further
study for the yields:

δ1=a0+a1S+a2S2+...+anSn,

δ2=b0+b1S+b2S2+...+bmSm

may be very interesting.
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3-D BIFURKACIJA U BIOREAKTORU S N-TIM I M-TIM PRIRASTIMA

SA@ETAK

U ovom radu analizirana je konstrukcija rješenja trodimenzionalnog bioreaktorskog kompeticijskog sustava s
funkcijama prirasta δ1=A1+B1Sn i d2=A2+B2Sm. Prodiskutirana je stabilnost to~aka ravnote`e i trodimenzionalna
Hopf-ova bifurkacija sustava. Definirani su uvjeti postojanja grani~nih krugova na dvodimenzionalnoj stabilnoj
plohi kad nestane jedan mikroorganizam. Primjenjljivost rezultata pokazana je na nekoliko rješenih primjera.
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