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Quantifying ethnic segregation in cities
through random walks

Sandro Sousa 1,2 & Vincenzo Nicosia 1

Socioeconomic segregation has an important role in the emergence of large-
scale inequalities in urban areas. Most of the available measures of spatial
segregation dependon the scale and size of the systemunder study, or neglect
large-scale spatial correlations, or rely on ad-hoc parameters,making it hard to
comparedifferent systemson equal grounds.Wepropose here a family of non-
parametric measures for spatial distributions, based on the statistics of the
trajectories of random walks on graphs associated to a spatial system. These
quantities provide a consistent estimation of segregation in synthetic spatial
patterns, and we use them to analyse the ethnic segregation of metropolitan
areas in the US and the UK. We show that the spatial diversity of ethnic dis-
tributions, as measured through diffusion on graphs, allow us to compare the
ethnic segregation of urban areas having different size, shape, or peculiar
microscopic characteristics, and exhibits a strong association with socio-
economic deprivation.

Spatial heterogeneity is a characteristic aspect of a variety of complex
systems, from urban areas to ecosystems1,2, and the presence of non-
trivial spatial patterns in the organisation of such systems has a sub-
stantial impact on their functioning and dynamics3. This is the main
reason why the quantitative characterisation of complex spatial
patterns has received much attention in different fields, from urban
studies to biology, from geography to economics, and from trans-
portation to engineering4–6.

A particularly compelling problem in this field is the quanti-
fication of spatial segregation, i.e., the tendency of the units of a
system to form uniform agglomerates around closely-located
areas (regions, neighbourhoods, census tracts, etc.). The typical
example is that of segregation of urban areas by socio-economic
indicators, including ethnicity, income, education or religion,
which is known to be associated with urban wealth, security, and
livability2,3. The standard approach in this case is to devise mea-
sures of how the local density and heterogeneity of the property
under study, as obtained from census data at a given scale,
compares with the distribution at the system level, under the
assumption that in a non-segregated system the local distribution
of, say, ethnicity would closely mirror the overall distribution at
the city level7–13.

There is general agreement about the fact that spatial segregation
is a multifaceted characteristic of a system, and that it is quite hard to
capture by using a single measure. Indeed, the literature distinguishes
different dimensions of the phenomenon9,14, namely spatial exposure/
isolation—the extent to which the members of one group are in close
contact with members of another group due to their placement in
space—and spatial evenness/clustering—how uniformly groups are
distributed in space. Despite this framework being extensively used
when referring to spatial segregation patterns, there is no consensus
on how these aspects of spatial segregation should bequantified, or on
how to compare the levels of segregation in different urban systems1–3.
In fact, quantifying spatial segregation is still problematic, mainly
because most of the measures proposed in the literature depend on
the scale at which neighbourhoods are defined, on the granularity of
the census data available, or on the presence of free parameters15,16.
Recently, the hypothesis that the processes behind segregation might
be operating at multiple scales simultaneously has gained more
support17–23, though, the question of whether there is a specific spatial
scale at which segregation should be measured still remains open. A
growing body of literature has recently started examining urban seg-
regation within the paradigm of network science2,24,25. This approach
consists in analysing one or more graphs associated to an urban
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system—e.g., census tract adjacency, urban transportation, commut-
ing, etc.—and deriving descriptive statistics from the ratios of within-
group and between-group connectivity in those graphs26–30.

Here we propose a principled framework to quantify the multi-
level heterogeneity and segregation of a spatial system, and to com-
pare the segregation of different systems, based on the statistics of
random walks on graphs31–35. We consider the symbolic time series of
node properties generated by the trajectories of an unbiased random
walker through thegraph, andweanalyse the spatial distributionof the
Class Coverage Time (CCT), that is the expected number of steps
required by a random walk to visit a certain fraction of all the classes
present in the system,when starting from a generic node. This process
is reminiscent with the concept of “zoom lenses” introduced in
refs. 21, 23. However, here we do not use any procedure to aggregate
population distributions or to compare local abundances with global
levels. Indeed, the CCT is purely the result of diffusion on the graph
and depends at the same time on the structural characteristic of the
graph and on the actual distribution of node properties. A similar
approach has been used for instance in ref. 35 to measure exposure to
specific classes. We purposely avoid the challenge of directly defining
segregation, assuming that the absence of segregation is indicated by
the concordance of the statistics of class coverage time with those
observed in an appropriate null-model. Moreover, since the measures
we propose effectively associate a local level of segregation to each
node, they make it possible to compare the local segregation of dif-
ferent areas of the same urban system, or of different urban systems,
on equal grounds.

We start by showing how this framework applies to synthetically
generated colour distributions on two-dimensional lattices, and then
we use it to quantify the ethnic segregation of urban systems in the US
and the UK. We find that the distribution of class coverage times
provides quite useful insight on the microscopic, meso-scopic, and
macro-scopic organisation of ethnicities throughout a city. Further-
more, we find that class coverage times correlate with many depriva-
tion indices, and more strongly than other classical segregation
measures do. These results suggest that measuring multi-scale urban
segregation by means of random walk statistics is potentially more
informative than many of the other current approaches.

Results
Model
Let us consider a spatial graph G(V, E) consisting of N = ∣V∣ nodes and
K = ∣E∣ edges24, and assume that each node i is associated to a certain
variable of interest xi, which can in principle be either a scalar or vec-
torial value. For instance, if nodes represent the neighbourhoods of an
urban area, xi could be the average income of people living in the area
represented by node i or the ethnic distribution at node i. We are
interested in characterising the spatial distribution of xi, that is, to
which extent nodes being close to each other in the graph also have
similar values of xi and tend to form homogeneous clusters. In the
specific case of urban segregation, we actually want to quantify how
homogeneous is the distribution of Γ distinct groups across a city,
where the groups can represent ethnicities, income classes, education
levels, etc. Hence, the variable of interest at each node i is the vector
xi = {mi,1,mi,2,…,mi,Γ}, wheremi,α is equal to the number of citizens of
class α living in the census tract associated to node i.

Moving from the observation that uniform discrete randomwalks
on a graph preserve a lot of information about the structure of the
graph36–38, we propose to quantify the heterogeneity of the spatial
distribution of xi by means of the temporal statistics of the symbolic
dynamics fφi0

, φi1
, φi2

, . . .g associated to the generic trajectory {i0, i1,
i2,…} of a uniform random walk on G34, where φit

is an appropriately-
chosen function of xit . It is worth stressing that in general φit

can be
constructed inmany different ways, according to the specific aspect of
segregation that onewants to focus on. In particular,φit

could depend

not only on the specific quantity xi, but also on the actual number of
steps t between the moment the walker started from node i0 and its
visit of node i.

To illustrate this idea, we assume that we want to quantify the
heterogeneity of the distribution of ethnicities across a urban area.
Here, each census tract is a node of G, and two tracts are connected
with a link if they border each other. Each node is associated to a
vectorial variable xi = {mi,1,mi,2,…,mi,Γ}, representing the distribution
of Γ ethnicities of citizens living in that tract. To simplify the example,
we associate each node to a representative class, corresponding to the
most abundant ethnicity in the census tract, so that we can label each
tractwith oneof afinite number of colours. In otherwords, the variable
φi associated to node i is the most abundant ethnicity found in the
corresponding tract. In Fig. 1 we show two possible fictitious dis-
tributions of classes superimposed on the map of wards in London.
Figure 1a is what a uniformly random distribution of the most abun-
dant ethnicities would look like. In this case, the system is homo-
geneous, there is no segregation of ethnicities in specific clusters, and
the probability that the neighbours of a certain tract belong to any of
the available classes does not depend on their position in the map.
Conversely, in Fig. 1b we show an artificially imposed clustering of
most abundant ethnicities around neighbouring areas. This arrange-
ment of classes is visually more similar to the actual spatial organisa-
tion of ethnicities (and of other socio-economic indicators) observed
in many modern metropolitan areas, where the emergence of homo-
geneous clusters is the norm rather than the exception. This second
example is the typical spatial pattern that we would consider segre-
gated. Again, remember that the actual association of colours to
London wards in the two panels of Fig. 1 is purely illustrative.

Note that a randomwalker starting at anyof the areas inFig. 1a and
moving on the graph G of census tracts will in general require a small
amount of time to visit an area characterised by any specific majority
ethnicity. For instance, if a walker starts from a red tract, it will nor-
mally encounter a light-yellow tract after a small number of steps. This
is because the spatial pattern in Fig. 1a is not segregated, as there are
no homogeneous clusters of any colour. In other words, a light-yellow
tract is available within a small distance of any other tract in the map.
Conversely, if a walker starts from one of the tracts of the large red
cluster on the right-hand side of Fig. 1b, it will in general require a
considerably larger amount of time to visit a light-yellow tract. This is
because all the tracts in Fig. 1b are organised in conspicuous spatial
clusters. In particular, all the light-yellow clusters are located much

a Randomly distributed

Low Class Coverage Time High Class Coverage Time

b Clusters of same ethnicity

Fig. 1 | Fictitious maps of the association of seven ethnicities to the wards of
Greater London. a The ethnicities are distributed uniformly at random across the
city, to simulate a "maximally'' homogeneous and unsegregated pattern. In this
case, a randomwalker starting from any wardwill get in touchwith all the available
ethnicities within a relatively small number of steps. b The same map with a sub-
stantial clustering of ethnicities imposed artificially. In this case, a walker starting in
themiddle of a cluster will need a lotmore time to visit all the other ethnicities. This
observation leads to the idea of using the statistics of Class Coverage Time to
quantify the level of segregation and heterogeneity of anurban areawith respect to
a given variable of interest.
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farther away from the cluster of red tracts on the right-hand side of the
map. This simple example suggests that the number of steps (time)
needed to a random walker to leave a homogeneous cluster of nodes,
and visit all the other ethnicities represented in a urban area, actually
contains very useful information about the spatial organisation of
ethnicities across the system.

We propose here to quantify the level of segregation of an urban
area with respect to a categorical variable by means of the Class Cov-
erage Time (CCT) of a random walk on the corresponding graph G.
This is the expected number of steps needed by a walker started at a
generic node i0 to visit a prescribed fraction c of all the Γ classes
present in the system. If classes are distributed evenly across the city,
the class coverage timewill not depend heavily on the starting node i0.
Conversely, if classes tend to form segregated homogeneous groups
and clusters, then the amount of steps needed to visit a given fraction c
of all the ethnic groups present in the city will actually depend on the
starting node, as well as on the shape, size, and depth of the cluster to
which the starting node belongs and of the other clusters present in
the system. In general, higher heterogeneity in the spatial distribution
of class coverage times will correspond to higher and more rigid
spatial constraints, and will signal the presence of segregation.

More formally, let us consider a random walk that starts from a
node i of G and visits the sequence of nodes {i = i0, i1, i2,…, it,…} at
subsequent discrete time steps t =0, 1, 2,…, t,…. We call W iðtÞ the
fraction of distinct classes encountered by the walker up to time t
when it started from node i at time 0, and we compute the average
over R independent realisations of the walk:

W iðtÞ=
1
R

XR
1

W iðtÞ ð1Þ

Wedefine the Class Coverage Time (CCT) of node i at level c as the
expected number of steps after which a walker started at i has
encountered a fraction c of the Γ classes for the first time, that is:

CiðcÞ= argmin
t

W iðtÞ≥ c
� �

ð2Þ

Wecharacterise the distribution ofClass CoverageTimeof a given
system by looking at its mean:

μðcÞ= 1
N

XN
i= 1

CiðcÞ, ð3Þ

its coefficient of variation:

σðcÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðCiðcÞÞ

p
μðcÞ , ð4Þ

and at the level of local spatial diversity, as measured by:

ϱðcÞ= 1
K

XN
i= 1

X
j<i

aij ∣CiðcÞ � CjðcÞ∣: ð5Þ

where {aij} are the entries of the adjacency matrix of the graph G.
In general, larger values of μ(c) indicate a more heterogeneous

distribution of classes through the system. Similarly, larger values of
σ(c) correspond to a larger dependence of CCT on the starting point,
i.e., σ(c) is measuring the overall spatial variance of class coverage
times. Finally, larger values of ϱ(c) indicate that neighbouring nodes
have very different class coverage times, signalling the presence of
local spatial diversity.

As we will show in the following, all these three measures are
somehow affected by the relative abundance of each class and by the
size of the graph. For this reason, we will consider the average devia-
tion of each quantity from the corresponding quantity measured in a

null-model:

Δμ=
Z 1

0
dc ∣μðcÞ � μðcÞnull∣, ð6Þ

Δσ =
Z 1

0
dc ∣σðcÞ � σðcÞnull∣ ð7Þ

and

Δϱ=
Z 1

0
dc ∣ϱðcÞ � ϱðcÞnull∣ ð8Þ

The null-model consists of the same graph G as the original sys-
tem, where the class distributions {xi} have been reassigned to nodes
uniformly at random. By doing so, we preserve the overall relative
abundance of classes, as well as the way classes tend to be distributed
in a single area, but we destroy any existing spatial organisation of
classes2,23 (see Methods for details). The average over the ensemble of
random spatial permutations takes into account the many possible
ways in which a city can be spatially organised, and removes any bias
due to the relative abundance of different classes and any assumption
about how the unsegregated spatial distribution should look like. The
deviations of μ(c), σ(c) and ϱ(c) from the null-model expectations are a
set of principled measures which allow us to compare spatial systems
with different number of classes, and characterised by distinct shapes,
sizes, and scales. In the following,we callΔμ "spatial heterogeneity”,Δσ
"spatial variance” and Δϱ "spatial diversity”, for obvious reasons.

Simple geometries and synthetic class distributions. In the follow-
ing sections we explore the behaviour of the three measures based on
Class Coverage Time that we have introduced, by considering planar
lattices with meaningful pre-assigned class distributions.

Random class assignments. We start from the simple case of two-
dimensional square lattices—with or without periodic boundary con-
ditions—where each node is associated to one of the Γ available classes
with uniform probability. In Fig. 2a we report the plot of μ(c) as a
function of the fraction c of classes reached by the walker on 8 × 8 (left
panel) and 16 × 16 grid lattices (right panel) with coordination number
equal to 4, for Γ = {2, 4, 8, 16, 32}. As expected, μ(c) is a non-linear
increasing function of c, meaning that reaching a higher fraction of the
classes becomes harder and harder as c increases. Moreover, μ(c) is
also an increasing function of Γ for a fixed fraction c, meaning that
configurations with more classes typically exhibit larger coverage
times, as expected. By comparing the two panels it becomes clear that
covering a given percentage c of classes requires comparatively more
time on a larger lattice.

These results are quite intuitive and not much surprising, if we
consider that even when classes are distributed uniformly at random,
local clusters of nodes of the same class eventually emerge. In parti-
cular, smaller values of Γ and larger lattice sizes have a higher prob-
ability of producing larger clusters, which effectively contribute to
reducing the probability that the randomwalkfinds a new class at each
time step. Indeed, a walker that enters a homogeneous cluster will
keep visiting nodes of the same class with high probability, so that it
will needmore time to find a node belonging to a different class. These
observations are confirmed in Fig. 2b, where we report the distribu-
tions of cluster sizes for different values of Γ (the case Γ = 2 is in the
insets). The larger values ofμ(c) observed in 16 × 16 graph in Fig. 2a can
indeed be associated to the presence of somehow bigger uniform
clusters of the same colour.
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Large synthetic clusters. To study the effect of the relative shape and
placement of different clusters, we considered finite lattices with pre-
assigned class distributions organised in specific patterns. In Fig. 3a we
show four arrangements of five classes in a 16 × 16 square lattice
without periodic boundary conditions. In each arrangement, four of
the classes contain N/4 − 4 nodes, and form homogeneous clusters
which occupy a quadrant each. The sixteen nodes in the fifth class,
instead, (i) either form a single cluster in the centre (top panel), or (ii)
in one corner of the lattice (second panel from the top), or (iii) are
scattered within another cluster (third panel from the top), or (iv)
placed at the four corners (bottom panel). Notice that all these four
patterns are associated to the same null-model, since the relative
abundances of the five classes are kept constant. However, these four
arrangements represent typical stylised distributions, which are the
building blocks of more complicated spatial patterns. We report in
Fig. 3b–d the values of Δμ, Δσ and Δϱ, respectively, and we show in
Fig. 3e, f how these patterns are located in the Δμ −Δσ and in the
Δσ −Δϱ planes. Indeed, pattern (i) and (ii) exhibit the largest values of
local spatial diversity and spatial heterogeneity (e) and the smallest
values of spatial variance (f). This is consistent with the fact that the
presence of big clusters is responsible for larger average class cover-
age times, and makes the CCT of each node depend quite heavily on
the actual position of the node inside a cluster, with nodes placed close
to the periphery of a cluster normally characterised by smaller values
of CCT.

On the contrary, pattern (iii) and pattern (iv) have smaller values
of local spatial diversity and larger values of spatial variance (f). This
is mainly due to the fact that the nodes in the smallest cluster has
fewer internal links to nodes of the same colour. However, the min-
ority class can be found in a smaller number of steps compared to (i)
and (ii), as its nodes are spread more uniformly across the domain.
Despite patterns (i) and (iv) have a proportion of links to theminority
class that is comparable to pattern (ii) and (iii), the clustered pattern
in the former yields higher coverage times, as properly detected by
Δϱ and Δμ (e). Indeed, a spatial pattern consisting of an isolated
cluster yields the longest trajectories to find other classes, as it was

also noted in ref. 23. Conversely, a more uniform distribution of the
minority colour throughout the domain produces a sensible reduc-
tion of coverage times.

Note that the profile of μ(c) for the null-model (dashed black line
in Fig. 3b) behaves as expected, i.e., the mean coverage times increase
steadily as a function of c up to 0.8 (four classes), mainly due to the
uniform abundance and displacement of the four large clusters. We
notice a sharp increase for c ≈ 1, which accounts for the time needed to
find nodes belonging to the fifth class, i.e., the smaller one.We provide
additional distributions and heat-maps in Supplementary Fig. 1 where
the values for c = 1 are removed to isolate this effect.

Effect of domain shape and cluster size. In Fig. 4awe considered four
different random tilings of the same 16 × 16 square lattice considered
in Fig. 3, with the aim of isolating the role of the size and shape of local
clusters. The tiling consist of 32 classes, respectively organised (from
top to bottom) in (i) 32 rectangular clusters of size 2 × 4 (cluster-8), (ii)
64 square clusters of size 2 × 2 (cluster-4), (iii) 64 rectangular clusters
of size 1 × 4 (stripe-4) and (iv) 128 rectangular clusters of size 1 × 2
(stripe-2). Notice that configuration (i) (cluster-8) corresponds to the
largest possible value of spatial diversity and spatial heterogeneity. On
the other hand, configuration (iv) (stripe-2), which is indeed the most
similar to the null-model (d-f), yields the smallest values of spatial
diversity and spatial heterogeneity (b), as expected. The relative
positions of intermediate configurations (ii) and (iii) in theΔσ/Δϱ plane
(c) can be explained by the fact that a tiling with square clusters pro-
vides comparatively lower values of spatial diversity and spatial var-
iance than clusters of four nodes arranged in a line, mainly because a
square of size N has a smaller perimeter than a rectangle of the same
size, hence more neighbours pointing to clusters of different colour.
However, on average the walker needs slightly more time to leave a
cluster (ii) than a stripe (iii) of same size (See the relative positions of
the two configurations in the Δμ/Δϱ plane (b)).

Finally, we show that Δμ and Δϱ are also able to capture differ-
ences in the shape of the domain, by considering the 2D lattice with a
lateral appendix in Fig. 4g. Indeed, for the same number of classes and
the same cluster shapes and sizes as in Fig. 4b, the arrangements in
Fig. 4h correspond to much larger values of spatial heterogeneity and
local spatial diversity. This is due to two concurring effects. On the one
hand, a walker started at the nodes belonging to the lateral appendix
will require a much larger amount of time to visit a certain fraction of
the classes than the walkers started at nodes in the bulk (see Supple-
mentary Figure 2 for additional details). This is due to the fact that
there are very fewways to exit from the appendix and join the bulk. On
the other hand, walkers started fromnodes in the bulkwill have a hard
time finding any rare class which is only present in the appendix, since
there are very fewways of getting into the appendix from the bulk. The
fact that these measures can detect such differences is a quite inter-
esting property, as in metropolitan areas the presence of natural and
human-made physical barriers (e.g., rivers, hills, or canals) tends to
increase the fragmentation of the social network structure, and pro-
duces highermeasurable levels of social segregation, as also suggested
by a recent work39.

We have also performed a more in-depth analysis of how well the
three measures capture the differences in the typical scale of homo-
geneous clusters when the relative spatial arrangement of the classes
remains the same. In particular, we have considered checkboard-like
arrangements of four classes on a 2D lattice, with homogeneous
clusters of size 1 × 1, 2 × 2, 4 × 4 and 8 × 8. Also in that case, the different
arrangements are associated to the very same null-model, as the
relative abundance of colours is preserved across all the configura-
tions. These results are reported in Supplementary Fig. 3, and confirm
that all the three measures are sensible to the typical scale of clusters,
even when the relative arrangement of colours is kept intact across
scales.
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Despite it is easier and somehow convenient to assign a single
measure of segregation to a spatial pattern, we argue that the com-
bination of Δμ/Δϱ and Δσ/Δϱ provides a more comprehensive and
complete picture of the local and global organisation of classes across
a given spatial domain, in particular due to the inherent complexity
and ambiguity of some spatial patterns of segregation as seen in Figs. 3
and 4.

Ethnic residential segregation in the US and UK. After having shown
how spatial diversity (Δϱ) combined with spatial heterogeneity (Δμ)
and spatial variance (Δσ) can distinguish different stylised spatial dis-
tributions, we show that these measures can be effectively used to
quantify and compare the ethnic residential segregation of metropo-
litan areas. We used geo–referenced census data for metropolitan
areas in the US and theUK, and for each urban areawe constructed the
graph G of physical adjacency between census tracts (US) and wards
(UK), respectively. Each node is associated to the distribution of eth-
nicities in the corresponding area. In the UK data set, ethnicities are
divided in 250 classes, while the US data reports 64 different classes
(see Methods for details). We computed the coverage time from each
node as in Eq. (2), and the corresponding values of spatial varianceΔσ,
spatial heterogeneity Δμ and local spatial diversity Δϱ. In Fig. 5a we
report each urban area in the Δμ/Δϱ and Δσ/Δϱ planes, and a selection
of maps showing the values of normalised CCT Ci(c)/Ci(c)null, for c =0.7
for each census tract of some representative metropolitan areas (see
Methods formoredetails about the data sets, aswell as Supplementary
Table 2 and Supplementary Figs. 4–7 for additional information on
values for each urban system and their corresponding CCT
distributions).

From the analysis of synthetic class distributions, we have learned
that higher levels of spatial variance Δσ≫0 are associated to more
unbalanced spatial distributions of classes. In the case of cities and

ethnicities, this means that citizens experience large variations in the
timeneeded to encounter all the other ethnicities depending onwhere
they live. Conversely, low spatial variance indicates that on average the
spatial distribution of ethnicities is relatively uniform across the city
and individuals living in different areas are similarly exposed to all the
ethnicities present in the system. Low levels of local spatial diversityΔϱ
indicate that there is no significant difference on the coverage time of
neighbouring areas, that is, the constraints driven by spatial shape are
not too important. When Δϱ≫0, the differences between neighbour-
ing nodes is substantial and segregation is influenced by clusters with
similar ethnicity distributions, which indicates the presence of a pre-
ferencemechanism, often resulting from social or economic pressure.
The spatial heterogeneityΔμ is linkeddirectly to the size of the clusters
with similar ethnicity composition. In general, smaller clusters yield
shorter coverage times, since walkers need less steps to leave them
and find other ethnicity compositions in the neighbouring nodes. On
the contrary, walkers need more steps to leave larger clusters and find
new ethnicities.

We start by noting that Boston is placed at the very far ends of
both theΔμ/Δϱ andΔσ/Δϱplane, as shown in Fig. 5a. Indeed, the spatial
distribution of eCiðcÞ=CiðcÞ=Cnull

i ðcÞ across Boston, (map visible in
Fig. 5c) shows that the city exhibits clearly opposing patterns of eCiðcÞ.
The blue and green areas, corresponding to regions having smaller
values of eCiðcÞ, i.e., easier access to all the ethnicities, are placed in the
southern part of the city, while most of the northern side is char-
acterised by a large number of areas with eCiðcÞ up to three times larger
than in the null model, indicating the presence of a somehow higher
ethnic segregation. Los Angeles, which has a similar wide hot spot of
segregated areas in the centre, shows comparably high spatial variance
but lower levels of spatial heterogeneity.

Another interesting example is that of Manchester and Sheffield,
which have a similar range of eCiðcÞ values and are placed closely in the
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Fig. 3 | Dependence of class coverage times on size, type and location of
homogeneous clusters in a 2-dimensional lattice with synthetic node-class
associations. a The nodes are divided in 4 homogeneous clusters of 60 cells
each, placed in the four quadrants, while the remaining 16 nodes in the fifth
class are arranged, from top to bottom, as: a central cluster (cluster-center), a
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quadrant), and as four small 4 × 4 clusters on each of the corners of the lattice

(spread-corners). The heat-maps reporting the normalised coverage time
Ci(c)/Ci(c)null for c = 0.7 clearly show the dependency on the starting node. We
also report the corresponding profiles of μ(c) (b), σ(c) (c) and ϱ(c) (d), and
their values in the corresponding null-model (black dashed lines). The distinct
spatial constraints are consistently discriminated by the measure of spatial
diversity Δϱwhilst the planes with Δμ e and Δσ (f) provide a fuller classification
of the patterns.
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Δσ/Δϱ (a) plane. These similarities can also be confirmed in the cor-
responding maps. Moreover, Atlanta and the UK Northeast Metropo-
litan area (indicated as Northeast in the figure) are placed closely in the
Δμ/Δϱ plane and show a similar range of eCiðcÞ values. However, we can
not observe similarities in the spatial distribution, which is mostly due
to the fact that Atlanta is characterised by amuch lower value of spatial
variance. In this respect, Atlanta has a spatial pattern more similar to
Dallas, which might be due to similar historical and urban planning
artefacts.

In Fig. 5b we look closely at the behaviour of μ(c), σ(c) and ϱ(c) in
London, which is well-known for being characterised by strong ethnic
segregation40,41. Indeed, there are some areas of the city which clearly

exhibit substantially larger values of class coverage time as indicated
by high Δσ. However, the local spatial diversity is relatively low, indi-
cating that adjacent regions tend to be organised in small clusters
having very similar distribution of ethnicities. Interestingly, New York
shows a quite different organisation, with relatively lower spatial var-
iance and higher spatial diversity, suggesting the presence of larger
cluster with very distinct local distribution of ethnicities. Indeed, this is
confirmed by the relatively higher values of Δμ in New York (Fig. 5a),
indicating that the class coverage times fromeachof the census tract is
comparatively larger than in London.

It is worth noting that all the urban areas analysed in this study
present some level of spatial variance or spatial diversity, despite the
sizes and population of the areas considered span relatively large
ranges. These results are definitely related to the actual distribution of
ethnicities across the urban areas with respect to the corresponding
null-model (see Supplementary Fig. 8). Interestingly, these result do
not seem to depend that much on the granularity at which spatial
patterns are sampled, as confirmed by a detrended fluctuation analysis
(DFA) of the trajectories of random walks on graphs obtained at dif-
ferent spatial resolutions (see Supplementary Table 1 and Supple-
mentary Fig. 9). A key point of the DFA results is that, despite distinct
spatial scales yield small fluctuations, the typical geographic distance
at which the random walk still detects large-scale correlations among
ethnicity distributions remains quite stable and does not depend on
the size of the tracts considered. In other words, this approach based
on diffusion effectively removes most of the undesired traditional
biases caused by differences in size and spatial scales.

Relationwith socio-economic variables. The quantification of spatial
segregation, especially in urban areas, is not just interesting per se.
Indeed, spatial segregation is quite often correlated with other socio-
economic indicators, including income level, education, socio-
economic deprivation, etc. As a consequence, segregation measures
are frequently used as proxies of the wealth, livability, and overall
quality of a metropolitan area.

Here we show that the explanatory power of the CCT measures
introduced in this paper, in terms of correlations with interesting
socio-economic indicators, is consistently higher than that of several
other widely used segregation indices. We considered a data set of
several socio-economic indicators obtained from the US Census
American Community Survey 2011 5-Year estimates42, including
employment, commuting, occupation, income, and security (see
Methods for details). We used the Pysal library43 to compute a variety
of classical and more recently devised ethnic segregation measures in
US cities, and we correlated them with those socio-economic indica-
tors. The segregation measures are computed on the same data set of
US census tracts with ethnicities divided in 64 classes, as in the pre-
vious section. We could not consider UK cities as the UK census
database does not provide equivalent key statistics at the same spatial
scale. The results are reported in Table 1, where we compare the two-
sided Spearman correlation coefficient and the associated values of R2

of the diffusion-based segregation measures we introduced here and
of a variety of other segregation indices, i.e.,Moran’s I (MI), Spatial Gini
(SG), Spatial dissimilarity (SD), Distance decay exposure (DDE), Dis-
tance decay isolation (DDI), Perimeter spatial dissimilarity (PSD) and
Boundary spatial dissimilarity (BSD). The 〈Γ〉 index denotes the quan-
tities obtained by averaging the segregation of all classes in a city while
e[Γ] denotes segregation computedover the entropy of thepopulation
distribution at the node.

In general, there is good agreement of our Spatial Diversity Δϱ
with ~σhΓi

35 and Moran’s I M〈Γ〉. The former is a random walk-based
segregationmeasure that quantifies isolationwhile the latter quantifies
local spatial correlation, which is directly related to the local spatial
diversity measured by Δϱ. However, Δϱ consistently yields higher
values of R2 with better confidence intervals for most of the socio-
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economic variable considered. In particular, the correlation is
remarkably high for Employment, Income, and Social Security.

The high levels of correlations shown in Table 1 suggest with
sufficient strength that – in particular agreement with other mea-
sures— these socio economic factors surely contribute to the segre-
gation patterns we observe in metropolitan areas. The most relevant
result is that the set of measures based on first principles that we
have introduced here is able to capture these patterns better than
most of the state-of-the-art indicators. By looking at these results, it
is not too far-fetched to conclude that diffusion might indeed be
capturing some salient aspect behind ethnic segregation that other
measures cannot completely encompass. We believe that this is due
to the ability of diffusion segregation measures to integrate infor-
mation at all the relevant spatial scales of a system. However, it is
important to stress here that the results shown in Table 1 do not allow
us to suggest a causation relation between diffusion-based segrega-
tion and measurable socio-economic status, or vice-versa. Such an
analysis would require a data set providing consistent longitudinal
data about ethnicities and socio-economic indicators, and the for-
mulation of some sort of regressive model to reveal the role of
segregation on the variation (increase/decrease) of each indicator.
However, understanding the potential impact of diffusion segrega-
tion on socio-economic deprivation would definitely be beyond the
scope of the present paper, which is methodological in nature.

Hence, we have decided to investigate this interesting relation in a
forthcoming work.

Discussion
Despite we have focused exclusively on the characterisation of ethnic
segregation, themethodology introducedhere canbe used toquantify
the spatial variance and spatial diversity of the distribution of any
categorical variable, including socio-economic indicators like income,
access to services, education level, and so forth44. The consistent
behaviour of Δμ, Δσ and Δϱ across different scales is indeed a very
desirable property of segregation measures, as also pointed out by
both classical andmore recent works45,46. The fact that thesemeasures
are appropriately normalised by comparing with the corresponding
null-models, make them suitable for comparing the spatial hetero-
geneity of the same variable in different systems, irrespective of their
peculiar size and shape, of the actual number of different classes or
categories available in each system, and of the granularity at which
spatial information is aggregated.

The framework proposed here is quite flexible and extensible.
Although we have mostly focused here on the time to find a certain
ethnic group, irrespective of its relative abundance, one can refine the
analysis by using an appropriate definition of the node quantity φi,t to
take this aspect into account, e.g., by setting it equal to the vector of
local abundances of each ethnic group. One possible shortcoming of
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using a very detailed classification of ethnicities is that rare ethnicities
will bias the class coverage times towards higher values (see Supple-
mentary Fig. 8). In some extreme situations, a walker will take a con-
siderably large amount of time to encounter a given ethnicity if there
are only a handful of citizens belonging to it, and they are all con-
centrated in one node. Nevertheless, a similar approach has recently
been shown to be particularly useful when dealing with coarse-grained
ethnic data44, where the absence of rare ethnicities avoids the emer-
gence of spurious effects on the statistics of the random walk. We
believe that the choice we made avoids the many potential biases
introduced by aggregating all the rare ethnicities in a small number of
arbitrary classes, since these aggregations vary across countries and
administrations. Indeed, the presence of a large number of ethnic
classes is not a limiting factorwhen analysingurban spatial segregation
through diffusion, while it might introduce serious biases in the
computation of other indicators.

It is important to stress here that the scale at which segregation is
measured and quantified is a fundamental aspect of the problem. In
particular, quantifying the segregation of a specific neighbourhood of
a citymakes asmuch sense as assessing the overall segregation level of
a much larger geographical region that contains several metropolitan
areas.Whenwe say that diffusion-based segregationmeasures allow to
wash out size-dependence, we do not intend to say that those mea-
sures are insensible to the differences between a large metropolitan
area and one of its neighbourhoods. Instead, we refer to the impor-
tance of considering the issues arising when comparing the segrega-
tion of two areas characterised by different spatial scales, e.g., the
segregation of East London at the level of wards and the segregation of
Greater London at the level of boroughs. We acknowledge that no
researcher working on segregation would be tempted to compare
these two systems, as their relative scales are obviously distinct, and
the mechanism responsible for the emergence of segregation are dif-
ferent at the level of neighbourhood and regions.

However, the same problem potentially arises when one com-
pares the segregation of more than one different metropolitan
areas, using data coming frommore than one single census source.
In other words, scale-dependence is at work when we compare the
segregation levels of London, UK, with those of Houston, TX, or
with Sao Paulo, Brazil. Even considering only the case of UK and US
cities, there are substantial differences in the definition of census
tracts and in the granularity of ethnicity classification, as well as
differences in the total numberof distinct ethnicities: theUKcensus
considers as many as 250, while the US census has only 64 classes.
By employing a normalisation with respect to a meaningful null-
model, the diffusion-based measures of segregation proposed in
this work allow to take into account this kind of size-dependence,
thus allowing us to make a fair comparison between, say, a city in
the UK and a city in the US.

A very interesting finding of this study is that the measures based
on Class Coverage Times signal the presence of some level of segre-
gation in all systems, independently of their shape and size. This is in
line with some recent results20 showing that the tendency of high
income households to cluster increases with the size of the city, but is
present in all the analysed settlements. The fact that none of the urban
systems analysed in this study presents a distribution of Class Cover-
age Times compatible with the corresponding null-model suggests
that segregation is a robust emergent phenomena. Even when it is not
determined by actual spatial constrains, it is most often driven by the
local population distribution, and by some intrinsic aggregation
dynamics that let a segregated pattern emerge and consolidate over
time. Finally, the high association between the distribution of Class
Coverage Times and several socio-economic indicators potentially
allows us to use the diffusion properties of a metropolitan area as a
principled and reliable proxy for the livability of a city.

Methods
Ethnicity data
We used the UK Office for National Statistics 2011 Census quick sta-
tistics tables, which include population estimates classified by ethnic
group. The available territorial divisions are regions, districts, unitary
authorities, MSOAs, LSOAs and OAs in England and Wales. The
households are divided in 250 ethnic groups for the detailed tables. All
data of the 2011 British Census are available from the Office for
National Statistics47. The delineations of the statistical areas are avail-
able from the UK Data Service48.

For US cities, we used the American Census Bureau’s 2010
Decennial Census data49, which include race/ethnicity of individuals at
the Census Block level. The households are divided in 64 race/ethnic
groups for the detailed tables within the corresponding combined
statistical area. The delineations of the Census blocks are available
from the same agency at the Geography section50. For metropolitan
areas containing islands as part of the territory, we focused on the
largest surface to avoid the presence of disconnected components on
the corresponding graph.

Socio-economic indicators data set. To compute the correlations
with socio-economic variables reported in Table 1 we used the Amer-
ican Community Survey (ACS), 2011 5-Year Estimates Data Profiles,
which is integrally connected with the US Census 2010. The 5-Year
estimates provide all tabulation areas irrespective of population size.
The ACS is a nationwide survey conducted by the Census Bureau
designed to provide more frequently updated demographics for
national and sub-national geography than provided by the decennial
census program. It collects and produces population and housing
information at census tract up level every year, and has an annual
sample size of about 3.5 million addresses.

Randomwalk trajectories andCCTprofiles. The computationofCCT
profiles are based on extensive simulations of independent random
walks on the adjacency graph of wards/tracts, keeping track of the
fraction W iðtÞ of classes visited up to each step t of each walk. We
considered R = 1000 independent walkers starting from each of the
nodes of a graph, and we stop a walk only when it has visited all the
classes in the system. All the trajectories starting from the same node
are padded to the length Ti of the longest of those trajectories. In
practice, if a realisation of the walk reaches all the classes in τ < Ti, then
we set W iðtÞ= 1 for all τ < t ≤ Ti for that trajectory. This simply means
that if a walk would continue after having visited all the classes at time
τ, the valueofW iðtÞ for t > τwill remain equal to 1.We compute theCCT
profile of node i by considering, for each time t, the average over the R
realisations ofW iðtÞ.

Nullmodel. Given a graphG and an assignment of classes to nodes, we
considered the null model where node class distributions are ran-
domly reassignedwhilepreserving the structure of the graphG and the
local population distribution at each node. It is worth noting that the
spatial scale at which the null-model is defined is the same of the
systemunder study, so thatproblemsgeneratedby comparing cities at
different scales are reduced to a minimum.

Synthetic systems. The synthetic systems presented in the first
example correspond to grids of 256 and 64 cells with periodic
boundary conditions, where each node is associated to a single class,
chosen uniformly at random. The CCT for each node is averaged over
1000 trajectories, and the results shown are averaged across 100
realisations of class assignments for each setup. Similarly, for each of
the synthetic geometries shown in Figs. 4 and 3, the null-model was
obtained by considering 100 independent realisations of the corre-
sponding class assignment.
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Spurious effects for c≃ 1. Coverage time distributions for a city will in
general depend on the abundance of the classes and on how they are
distributed in space. In particular, if a class is very rare, i.e., present
only in a few tracts, then the time needed to visit all the classes will
effectively become comparable with the cover time, which is known to
scale exponentially with the size of the graph34. We decided to mini-
mise these spurious effects by removing from the analysis of CCT the
case c = 1.

Measures of segregation. The set of measures of spatial segregation
reported in Table 1 include:
– The random walk based normalised segregation index35 denoted

by ~σhΓi is defined as the probability that an individual meets an
individual from the same social group.

– The classical Spatial Dissimilarity (SD) index51 which can be inter-
preted as a measure of how different the social composition of
neighbourhoods is, on average, from the social composition of the
study area.

– Two variations of spatial dissimilarity index, the Boundary (BSD)
and Perimeter/Area ratio (PSD)52 which take into account the
length of the commonboundary between two areal units and their
shapes.

– The Distance Decay Exposure (DDE) and the Distance Decay Iso-
lation (DDI) indices proposed by ref. 53. The former indicates the
probability that an individual belonging to a group meets any-
where in space someone fromother groupwhile the later accounts
for the probability of meeting someone from the same group.

– The Spatial Gini (G) index, that infers the contribution of spatial
neighbouring pairs to overall inequality across a set of regions.We
considered the shareof inequality in non-neighbour component to
obtain the correlations54. The entropy-based version was com-
puted using as node variable the Shannon entropy of the ethnicity
distribution in the corresponding area, denoted here by xi. It is
given by:

SG=

PN
i= 1

PN
j = 1 wij ∣ xi � xj ∣+ ð1�wijÞ∣ xi � xj ∣

2n2hxi
ð9Þ

whereN is the number of neighbourhoods and hxi= 1
N

P
ixi is themean

of the variable of interest. The spatial weightwij is defined according to
the adjacency matrix Awherewij= 1 if two areas are neighbours, and 0
otherwise. The diagonal elements wii = 0 as defined in A and W corre-
sponds to the sum of all weights.
– TheMoran’s I (M) Global Auto-correlation, whichmeasures spatial

auto-correlation based on both feature locations and feature
values simultaneously55. Similarly to Gini, the entropy based values
were given by:

I =
N
W

P
i

P
jwijðxi � hxiÞðxj � hxiÞP

iðxi � hxiÞ2 ð10Þ

The indices considered row standardisation of the spatial weights
matrices which were based on binary associations, i.e., 1 for neigh-
bouring areas and 0 otherwise. The measures were computed using
the PySAL package43. For all measures (except entropy-based Gini and
Moran), we obtained the value for each of the Γ classes and computed
the average, so that the comparison with the diffusion segregation is
meaningful.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The ethnicity data that supports the findings of this study section is
openly available at the respective Census agencies47,49. A cleaned ver-
sion of the input files is available in the repository: https://github.com/
segregation-rw/ethnic-segregation-rw. The data generated by the
random walk process for all experiments are available in the reposi-
tory: https://doi.org/10.5281/zenodo.5521053.

Code availability
The code to simulate the random walk process on geographic net-
works and synthetic systems is open source and available in the Github
repository: https://github.com/segregation-rw/ethnic-segregation-rw.
We have alsomade a static release in the repository https://doi.org/10.
5281/zenodo.6874241
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