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Abstract 

A biased Newton direction is introduced for minimizing quasiconver functions with bounded 

level sets. It is a generalization of the usual Newton’s direction for strictly convex quadratic 

functions. This new direction can be derived from the intersection of approzimating hyper- 

planes to the epigraph at points on the boundary of the same level set. Based on that direc- 

tion, an unconstrained minimization algorithm is presented. It is proved to have global and 

local-quadratic convergence under standard hypotheses. These theoretical results may lead to 

different methods based on computing search directions using only first order information at 

points on the level sets. Most of all if the computational cost can be reduced by relaxing some 

of the conditions according for instance to the results presented in the Appendix. Some tests 

are presented to show the qualitative behavior of the new direction and with the purpose to 

stimulate further research on these kind of algorithms. 

Keywords: quasiconvex functions, level sets, discretization methods. 

  

1 Introduction 

We propose a new descent direction for solving the problem minzea f(x), f € C7(Q), 
where (2 C R” is an open set, and f is such that its level sets are convex and 

bounded. The aim of this paper is to derive a descent direction by gathering non 
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local geometric information of the function at suitable chosen points on the boundary 
of the same level set. The gradients at those points lead to a finite difference system 
of equations whose solution gives a search direction which is Newton’s when f 

is a convex quadratic function. Such direction comes from a linear interpolation 

of gradients at those points. Since the discretization steps are distances between 

points on the level set corresponding to the current iteration, this method is unlikely 

trapped by poor local models. Geometrically speaking, at the current iteration such 

a direction is obtained by computing the intersection of the hyperplane tangent to 

the epigraph of the function with approximating hyperplanes at the points chosen 

on the level set. In Gaudioso and Monaco [11](1994) the authors show that, for 
strictly convex quadratic functions, the Newton’s direction may be obtained via an 

appropiate definition of a set of shifted supporting hyperplanes to the epigraph of the 

function. Analogously we presented similar results and geometrical interpretations 

in [7](1993) and [8] (1994) which led to the current paper. 

We present a minimization algorithm based on this new descent direction and 

prove that the generated sequence is globally convergent. If in addition we assume 

Lipschitz continuity of the second derivatives, then we also prove that the algorithm 

is locally quadratically convergent. 

With the purpose of studying the behavior of an algorithm based on this new 

direction we implemented it using a routine for determining points sufficiently close 

to the level sets instead of exact ones as used for deriving the theoretical results. The 

effects of this special relaxation, which aims at reducing the computational cost, is 

studied in the Appendix showing that it is possible to preserve the main theoretical 

properties of the algorithm. 

The paper is organized as follows: in Section 2 the algorithm defining the descent 

direction is described. In Section 3 the minimization algorithm is defined and global 
convergence is proved. In Section 4 we prove that our method is locally quadratically 

convergent to stationary points where the Hessian is positive definite. In Section 5 

special results for pseudo-convex functions are given. In Section 6 some numerical 

experiences are described with the purpose of showing the qualitative behavior of 

the new direction. 

In order to improve readability some auxiliary results needed are proved in the 

Appendix. We also present there a practical implementation of the algorithm in- 

troduced in Section 2, which determines approximate points on the level sets while 

keeping essential properties of Algorithm 3.1. 

2 The search direction 

In this section we shall obtain the descent direction at the current point z,, using 

the gradients of f(x) calculated at specially chosen points on the level surface. 
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We assume f € C?(Q), where 2 is a convex set in R”. Further f is quasiconvex in 
Q and its level sets are compact. For the sake of completeness we include the following 

definition: 

Definition 2.1: The function f is said to be quasiconvex if, for each 7; and x2 € 0, 

the following is true: 

flAzi + (1- A)z2) < marimun! f (21), f(x2)) for each A € (0, 1) 

It is known that a quasiconvex function can be characterized by the convexity of 

its level sets ([1]). 

We denote by L(x.) = (x : f(x) < f(xc)) the level set at x., and the corresponding 
level surface C(xzc) = (x: f(x) = f(xc)) 

The l2 norm will be used throughout this paper. 

The definition of the descent direction will take into account a property shared 

by convex and quasiconvex functions, that is the convexity of their level sets. 

It is known that the minimizer of a convex quadratic function can be obtained as 

the solution of a system of linear equations involving only the first derivatives. In 
Friedlander, Martinez and Scolnik [10](1979) this result was extended to the rank de- 
ficient case and more recently is presented in the paper by Gaudioso and Monaco [11]. 

Given f(z) = 511 Hx+b*x+c, H =H" positive definite, we have 

Theorem 2.1: Given y°® € R” arbitrary and p®,...,p"~+ linearly independent direc- 
tions in R”, and y? = Hp’, i =0,...,n —1, then 2* = argminf (zx) is obtained from 
the solution of the system 

{(y',2—y°) = —(, VE (y°)),6 = 0,...,n — 1p. (2.1) 
Proof.(see [11], Proposition 1.1) O 

When considering points y%,y!,...,y” determining linearly independent direc- 
tions p’-! = y* — y®, for i=1,..., n, since 

Hp'' = H(y'— y°®) = VF (y*) — Vf (y®), the system (2.1) can be written as 

VI) - VIEW) (249) = VI (y y), 1=1,...,n). (2.2) 
In particular, if the points defining the directions belong to 

C(yº) = fy: f(y) = f(y9)), from the fact that f is quadratic, the following equalities 
hold : 

VE) y 9%) = VE) (y — y), i=1,...,.n (2.3) 
VEy)Y la —y) =V Ay) (a — y), i=1,...,n, (2.4) 

where z* = argminf (2). 

In this case, we obtain 
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Lemma 2.1: If 2* = argminf(x), y‘ € C(y®), i=1,... and the directions p! — 
y' — yº are linearly independent, then x* is the solution of the system 

(VIEW) ey) = VA) (2-y) i=1,...,n) (2.5) 

Moreover, the systems (2.2) and (2.5) are equivalent. 

Proof. That x* is solution of (2.5) follows straightforwardly from (2.4). Using (2.3) 
a simple calculation shows that both systems are equivalent. m 

The above results have an interesting geometrical interpretation ([7],[11]). That 
is, x* coincides with the abscissa of the intersection of the supporting hyperplanes to 

the epigraph of f at the points (y’, f(y°)), which arising from the points chosen on 
C(y°). This result agrees with the geometric observation that, due to the symmetry, 
the supporting hyperplanes at points on the same level surface of a strictly convex 

quadratic function meet at the minimizer. 

It is worthwhile to analyze the solution of the system (2.2) and (2.5) when the 
points y!,...,y' with j <n on C(y®) are sequentially obtained from yº, so that 

yay theap (2.6) 

where p®,...,p’—! are H conjugate directions. 

From the very well-known properties of the conjugate directions ((9], [13]), it 
follows easily that: 

(VA) -Vf¥y),y° -y°) =0 forl<i<j, (2.7) 

yy —y VE) —VS(y®)) =0 for1<i<j. (2.8) 
Further, using (2.8) and (2.3), we have 

(Vi(y’) — VE(y°),y? — y°) = 2(-VF(y"), y* — y?) (2.9) 

for1<i<j. 

Then it is easy to prove that r+ = (y® + y’)/2 is a solution of the system 

using (2.9) and the substitution + — y? = (y? — y%) /2 in the equivalent expression 

UVA (Y) - VI), 2 y) = (VI), yy), 1=1,...,3) (2.11) 

Now, let us denote by [y! — y?,...,yÍ — y%] the subspace spanned by the vectors 
ly! —y%,..., y? — y) and by V(y?, y! — y°, y? —y®,...,y? — y®) the affine subspace 
which contains yº. 
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Lemma 2.2: Assuming the conjugacy of the directions and the definition of the points 
given by (2.6), the solution xt = (y° + y’)/2 of the system (2.10) is the minimizer of 
the given quadratic function over V(y%, y! — y?,..., y? — y?). 

Moreover, when V f(yº) belongs to [y! —yº,...,y! —yº] and the subspace [V f(y!)— 
Vi (y°),-.--, VF (y2) — Vf(yº)] coincides with [y! — 9º,...,y! — y®], then x* is equal 
to x*. 

Proof. The first part follows from x* = y% + (y? — y%)/2 and the fact that 
Vif(at) = (VF (y®) + Vf(y*))/2 is orthogonal to [yt — y®,...,y7 — yº]. This can be 
deduced from the fact that for every i = 1,...,7 (Vf(y2) + Vf(y®), y* — y®) = 0, 
using (2.7) and (2.3). 

The second part follows from the relation —V f(yº) = 5 m(V$(y)— Vf(yº)), 
since by hypothesis the subspaces [yt — y®,...,y4 — yº] and [Vf(y!) — 
Vi (y°),---, Vf(y2) — VF(y°)] are equal. Then, from 2* — y® = H-'(-Vf(y°)), it 
follows x* — y? = Y,_,?pi(y? — y?). Hence, 2* € V(y?, y! — y?,..., y? — y?) which 
implies that is equal to xt.E 

From the previous results, it follows that if Vf(y%) € [y! — y?,...,y — y?] 
and the procedure defined by (2.6) leads to a point y? for which the gradients 
[Vf(y9),..., Vf(y?)) are linearly dependent, then Vf(y’) = —Vf(y°). Thus, in 
this case x*, is the intersection of the supporting hyperplanes to the epigraph at the 

points (y’, f(y°)), coincides with the midpoint «* = (y' + y°)/2. Moreover, since a 
convex combination of the gradients {Vf (y*)}{_, exists equal to zero, z* satisfies 

z* = argmin(maz{V f(y*)? (2 — y*) ,i =0,1,...,9}). 

The geometrical interpretation and the conclusions given for quadratic functions 

above were the basis for extending the procedure described in (2.6) to quasiconvex 
functions with bounded level sets. Like in the previous particular case we shall 

choose suitable points on the level set of each iterate and the descent direction will 

be obtained by solving a linear system. When that systems is underdetermined we 

adopt the closest solution to the current iterate. 

Denoting y° = 2c, let us define from it points y”,...,y? j<mn on C(x¿). We shall 
prove, in this more general framework, that the mid-point (y + yº)/2 is a solution of 
the system 

LY y) = VI) (90), i=1,...,3) (2.12) 
where y*, and g’ = a;Vf(y*) for a suitable scalar a; are formally defined below in 
Algorithm 2.1. 

For each point y? determined by the procedure in L(z,), we consider a quadratic 
approximating function Q;(z) which interpolates the values of f at the points y and 
y*. We define the gradient g% in y% coincident with Vf(y9), and the gradient g* in y’ 
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as the scaled a;V f (y*). The scalar a; allows to satisfy the requirement for quadratic 
functions (997 (y' — yº) = (997 (yº — y*), when Q:(y°) = Q;(y?) 

The ith equation of (2.12) comes from considering the intersection of the support- 
ing hyperplanes of Q; in (y°, f(y°)) and (y’, f(y°)) respectivelly. Such intersection 
contains the minimizer of Q;. Thus, the solution (yº + y?)/2 to the proposed system 
(2.12) is in the intersection of the approximating hyperplanes defined before. 

2.1 A strategy for determining the points on the level surface 

In order to validate the algorithm for obtaining the points y* € C(z-), 

1=1,...,j, the following lemmas are required. 

Lemma 2.3: Given y € C(xc), z € L(z¿), such that y £ z, then the following inequal- 
ities hold: 

VE(y) (2-y) <0 (2.13) 
(VI) - VA) E=y)>0, if 2 € Cleo) (2.14) 

Proof. (2.13) and (2.14) follow from the properties of f(x) (Crouzeix and Ferland 
[5], Greenberg and Pierskalla [14]). E 

In particular, if the segment joining y and z contains a point w such that f(w) < 

f(xc), the following result holds (Rockafellar [18]): 

Lemma 2.4: Given y, ze C(xo), vz, with Vf(y) £0, if 
w=Ay+(1—A)z,0<A< 1, exists such that f(w) < f(xc), then 

Vi ly) (z-y) <0. 

Proof. By Lemma 2.3, we know that Vf(y)?(z — y) < 0. Suppose now that 
Vif(y)t(z — y) = 0. From hypotheses about w and f, it follows that there exists 
e > 0 such that, for all w’ with ||w — w'|| < €, where w’ =w+dVf(y), 6 > 0, they 
satisfy f(w') < f(a). 

Clearly, the assumption Vf(y)’(z — y) = 0 and the definition of w’ implies 
Vif (y)t (w' — y) > 0, which contradicts Lemma 2.3. m 

Now we can define the algorithm for determining the points on C(x.) which will 
define the search direction as the solution of a finite difference system of equations 

similar to (2.2). 

Let us define y° = x, g° = Vf (xc). The definition of the points y*, i > 1 will be 
done sequentially by means of linearly independent directions pº,...,p'! in such a 
way that y* = y*-! + hj_ip*', satisfying f(y’) = f(y*') forl<i<n. 

We shall take p? = —gº as the first direction. The directions p* at the following 
points y' used for determining y'*! will be taken orthogonal to the differences 
9! — 9º,...,9' — 9º a condition identical to (2.8). Therefore, we shall write 
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p' = P*(—g®) where P? is the orthogonal projector onto the orthogonal subspace to 
[g' — 9º,...,9' — 9º]. From this definition when for some j < n is p’ = 0, it follows 
that 9º E [gl — g%,...,gÍ — g%]. Furthermore, as we shall justify later, in such a 
case the point zt = yº + (y' — x,)/2 is the solution of the finite difference system of 
equations and corresponds to the intersection of the supporting hyperplanes at the 

points y’. 

In order to formalize the algorithm for computing the points on C(z.), the 
following notation will be used: 

A; the matrix whose rows are {(g/ — g°)?, 7 =1,..., i}, 

R(A,_ ) the subspace spanned by the columns of A,’ , 

P% = I,, In n X n identity matrix. 

P* is formally updated by([2], [9]) 

Pi = pil _ pil (gi — go rg — go) T Pia (gi — g®)T Pi-1(gi — 9°) (2.15) 

In the numerical implementation, the standard orthogonalization procedure is 

used ([3]). 

From the definition of p*, as a consequence of P'(g' —- 9º) = 0, we can use either 

p’ = P*(—g°) or P*(—g’). 

Algorithm 2.1 : 

Given te, Vf(2¿) 40, 
Step 1: 

Define y? = z.,, g° = Vf (a-), i = 0. 
Step2: 

If P*(—g*) = 0, define 7 = i. Stop. 

Else, 

Step 3: 

Take p' = P*(—g'); y*t! = y’ + hip’, such that f(y") = f(y’). 
If Vf (y?t!) 4 0 define g**t = ays VF (y**') satisfying 

aig VE (yt)? (y@tt — y°) = VF (y)7 (y? — y*) . 

Else, g’tt = 0. 
Update Pt. 
i=i+1; go to Step 2. e 

The Algorithm 2.1 stops after having computed points y!,...,y?,  <nonC(z4). 

The index j is the first index for which PJ(—g’) = 0, meaning that gí € R(A;*). 
In the Appendix an implementation of the Step 3 is described, which computes 

approximate points on the level set while keeping the essential properties of the 
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resulting descent direction. 

The aim of proving the following results is twofold: first, to show the directions 
p' are well defined, and second, to derive some suitable properties arising from the 

way in which the auxiliary points are defined. 

Lemma 2.5: If P*(—g*) £ 0 and if y**! is defined as in Step 3 of Algorithm 2.1, then 

a) (9°)? (y*** — y°) <0 

b) Vi (yt*)T (yt? —y°) > 0, if VA(y't") £0. 

Proof. Since y?+! — y? = Dio hip! = Dio hy P!(—g'), then (g°)? (y*++ — y°) <0 

considering that P!(—g') = P!(—g°). 

From a), Vf(y’tt) 4 0 and Lemma 2.4, it follows b). E 

Remark 2.1: The coefficients a; in Step 3 of Algorithm 2.1 are well defined as a 

consequence of Lemma 2.5 b). 

Theorem 2.2: If the Algorithm 2.1 does not terminate at y’ (i.e. p’ 0) then 

a) 19º,9!,...,9') are linearly independent. 

b) [9º,9',...,9] = [9º,p!,...,9']. 

Moreover, if y't!, g't! are defined as in Algorithm 2.1, then 

cg — g°, g' — g®,...,g' — g®} are linearly independent. 

Proof. We prove a), b) and c) simultaneously by induction. Clearly, a) and b) 
hold for à = 0. 

To prove c), we consider ||g* — g°|? = ||g°||? + |lg°ll? + 2(9°)* (—g°) = llg° II’, as a 
consequence of (2.13). Since g? 4 0, then g! — g° £0. 

Now, assuming a), b) and c) are valid for i, we will prove they also hold for i+1. 

We have, p’t! = P*t1(—g*t!) 4 0, then the subspace 

[gt -— 9°, 9’ —9°,.--.9° — 9°, 9°] = [9't* - 9,9 -9%,...,9 -99,p*"] 
has rank i+2 Since [gt —- g®°,g* — g®,...,g' — g®,gt'] is included in 
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gg", ... 959°; we obtain a). 

From the definition, p’t! € [g*t! — g°,...,g' — g°,g**1] = [g**',g’,...,9', 9°. 

Furthermore, p’t' ¢ [g°,...,9°] = [pº,...,p'], since otherwise pitt) = 1724] 

which contradicts that P*(g‘t' — 9º) # O (the inductive hypothesis on c) guar- 
antees that gt! — 9º is linearly independent of (g' — 9º,...,9! — 9º). Thus 

(9°, 9',---, 9°] = ppt)... pe], 

To prove c), since ptt! = P*tt(-g°) 2 0, by Lemma 2.4 we get 
(g't? — g°)F pt! > 0. Thus, we conclude that {g! — git? are linearly independent.m™ 

Remark 2.2: Asa consequence of the proof of Theorem 2.2, if P'(—g') #0 fori > 1, 
the subspace [g* — g®°,...,g' — g°, p’] is coincident with the subspace [g’,..., 9", 9%, 
and has rank 7+ 1. 

Corollary 2.1: If 7, 1 < 7 < n, is the first index for which P3(—g’) = 0 then [gt — 

9º,...,9 — 9º] = [p°,...,p?—+). 

Proof. Since gi e lg! — g°,...,9% —g®], then g°, g',...,g—+ are in that subspace. 
Therefore, by Theorem 2.2 we conclude the proof.m 

2.2 Defining the search direction 

We can now define the search direction from x, and prove its properties. 

Lemma 2.6: When Algorithm 2.1 stops, y? — x, is a descent direction. 

Proof. It follows from Lemma 2.5 a) for i = j — 1m 

Let us call $;,7 <n, the matrix whose rows are (y! — y9)?,..., (y? — y0y?. 

Lemma 2.7: When the Algorithm 2.1 stops at a point y? such that V f(y’) 4 0, then 
% = (y? + 2,)/2 is a solution of the system 

A; (a — 22) = Si(—V f(xc)). 

Furthermore, d, =  — xc is the minimum norm solution to the system 

Ajd = Si(-V f(to)) - 

Proof. The point % is a solution because d. = Z— t. = (y? — x¿)/2 sat- 
isfies each one of the equations since y — z. = (y? — y?) + (y? — z¿) and 

(9-9) (4 e)/2 = (g' — 9) (y — 2c)/2 == 9" (y! — ze) as a consequence of 
the definitions of p* and g’. 

Since d. = ¿— 2. = (y — 2.)/2, de € R(S;") and also d. € R(As*) because 
of Corollary 2.1, then it is the minimum norm solution to the system. Therefore 
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de = AJSH(—V f(xc)) 

We choose the descent direction d. = £ — xe = (y' — 2) /2. As a consequence of 

Lemma 2.7 such direction is the solution of the system (2.12). Moreover, when f is a 
convex quadratic function d, is the Newton’s direction according to Lemma 2.2. 

3 The general algorithm and global convergence 

Now we are able to define a general minimization algorithm for quasiconvex functions 

under the stated hypotheses in Section 2, using the descent direction previously 

introduced, and to prove that it is globally convergent. 

Algorithm 3.1 

Given the starting point zo, f(xo), Vf(xzo) and the parameters my, ma such that 
O<m<1/2,m<mo<1. Set k:=0 

Step 1. If “convergence” stop. Else, 

Step 2. Define y%,...,y? € C(2g), 1<j<mn using Algorithm 2.1. 

Step 3. Define dy = (y? — x;)/2 and perform a line search along it, starting with 
Az = 1, until finding a value of Az > 0 such that 

far + Ande) < f(x) + mA V f(x) de (3.1) 

Vi (te + Ande) de > mad Vf (ox) da (3.2) 

Define xk,1 = tk + Axdk, and compute Vf(tg+y1), 

k:=k+1 and goto Step 1. e 

Remark 3.1: Under the hypotheses stated for f some Az > O satisfying both (3.1) 
and (3.2) always exist due to the fact that f(y’) = f(xx)([9])- 

We shall give in the following some results required for proving the global conver- 

gence of Algorithm 3.1. 

Lemma 3.1: At any iteration & of Algorithm 3.1, there exists a constant c > 0 such 

that for y*, ¿ < 7, obtained in Step 2 the following relations hold: 

~Vf (an) (y — 24) < (1/2) ely? — es ll (3.3) 

ly? xe > (/0) IV (ge) (3.4) 
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Proof. Taking into account that f(y’) = f(x») and Taylor’s expansion, we 

have f(y’) = f(2x) + Vf) (y — 24) + 1/2y! — 24) H(y! — 24), where 
H denotes the Hessian matrix at an intermediate point between y* and Zx. 

Thus, —Vf(rg)? (y* — xe) = (1/2)(y* — ap)? A(y* — zx), from which we get 

~V f(a)" (yt — xe) < (1/2)ellyé — xs] considering that f € C?(L(xo)) and the 
compactness of L(xzo). This proves (3.3). 

By (3.3) and the definition of pº, |ly! — x¿|| > (2/0) IV f(xg)!1. 

Furthermore, for 1 < i < j, we have that |ly* — z,|| > Ijy! — x;|| due to 

lly’ — al = ly 1é + ly! — al? + 2g? — y) (y! — 2) and the fact that 
(y! — y')? (y! — xp) > 0. Therefore, (3.4) follows. 

Theorem 3.1: Under the hypotheses stated for f, the sequence (xp) given by Algo- 
rithm 3.1 is well defined and lime co ||V f(x+)|| = 0 

Proof. From Lemma 2.6 we know that dp is a descent direction. As a consequence 

of the hypotheses some Ay exist satisfying (3.1) and (3.2). 

Moreover, since the gradient is Lipschitz continuous in L(xo) we get that 
lime oo(V Ff (2x4) de)/I|de || = 0 (Wolfe [19], [20], Zoutendijk [21]). 

From the definition of dy in Algorithm 3.1, we know that dy = (y’ — xp) /2, where 

f(y") = Fx). Since V f(x)" (gy! — xx) < VE (cK)? (y* — 2%) = |V f(x) ly! — xa], 
using (3.4) and the compactness of L(x), we get Vf (ax)? de/||del| < —y IV fe)! 
with y = 1/(cM) and ||d,|| < M. From that, it follows that limp-—»c0 || Vf(xx)|| = 0. 1 

Since Algorithm 3.1 defines a descent method and L(xo) is a compact set, it 
turns out that the sequence (x; + has limit points which are stationary ones of f(z). 
Therefore, we obtain 

Theorem 3.2: Under the hypotheses stated for f, the sequence (xp) given by Algo- 
rithm 3.1 has at least a limit point, and every limit point is a stationary one. 

4 Local quadratic convergence 

We have proved Algorithm 3.1 is globally convergent in the sense that every limit 

point of the sequence (xp | must satisfy the first order stationary condition. 

We shall prove here that under the hypotheses stated in Section 3, the sequence 

(z+) generated using Algorithm 3.1 is locally convergent to stationary points x* at 
which the Hessian matrix is positive definite. 
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If we also assume the Hessian is Lipschitz continuous over 92, that is a constant 

L > 0 exists such that for all x,y € Q 

IV? f(x) — V?F (9) < La — gl), (4.1) 

then we will prove an index k, exists such that {z,} satisfies the Wolfe conditions 
(3.1) and (3.2) with Ap = 1 for k > k,, and moreover the sequence is quadratically 
convergent. This key result will be proved in Theorem 4.2. 

For that purpose we shall state in the following some results for the sequence x; 

given by Algorithm 3.1. 

Lemma 4.1: Tf limp +00 % = x* where H(x*) > 0, then an index ko exists such that 

for every k > ko 

a) f is uniformly convex on L(x,). 

b) |ldel] < A/mm) IV Fee) IL. 

Proof. Since H(x*) > 0, let us denote by 2m > 0 its least eigenvalue. Then € > 0 

exists such that for all z with ||z — x*|| < €, the least eigenvalue of H(x) is greater or 
equal than m. Hence, in such domain 

mllyll’ < y7 H(a)y < ellyll’, for y eR”. (4.2) 

Taking into account that x' = argmin(f) in |lx — x*|]| = e, then an e' exists, 
0 < el < e, such that for all x, |lx— a*|] < e, f(x) < f(x”) hold. This follows from 
the hypotheses and considering that 

Ha) - $(07) = (1/2)(@ — 2) A (a — 2º) < (1/2)elle — e]? < (2) — f(2*), 

where É is the Hessian at the corresponding intermediate point, and defining 

e“ =minte, (2(J (2) — fa))/0)'23. 

Since limp-— +00 Lk = Z*, ko exists such that for all k > ko, |zr — x*|| < e”; then 

f (xp) < f(x’). Hence, for all k > ko, L(zz) is included in 
{a : lx — x*|] < e) where f is uniformly convex. 

b) By definition given in Step 3 of the Algorithm 3.1 dy, = (y? —x;)/2, y? being the 
point in L(x,) with f(y?) = f(x») given by Algorithm 2.1. Then using the Taylor’s 
expansion of f(y’) at x we get 

—V f(x)" (y4 — 24) =1/2y? — 2) H(y! — ze), 

where H is the Hessian at the corresponding intermediate point. 
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Using a), for all k > ko is 

Ufa) y — 24)/2 > ml(yÍ — 24)/211. (4.3) 

Thus, for k > ko it follows that |ldz || < (1/m)|lVf(x+)||-m 

Lemma 4.2: Tf limp oo 24 =2* and H(2*) > 0 and 241 = Tk + Agdz as defined by 

Algorithm 3.1, Az satisfying (3.1) and (3.2), then there is an index k, > ko such that 
for every k > k;, Ax = 1 is admissible. 

Proof. From Lemma 4.1, for all k > ko, |ldkl| < (1/m) |V f(x+)|| and 

Vi (aK) dy < —ml|ldel” (4.4) 

The choice de = (y' — ag)/2 with f(y’) = f(x), implies that dP Vf (xx) + 

d? Hydy = o(|\dg||”). Using the Lipschitz continuity of the Hessian, and ||dg|| < 
1/ml|Vf(x+)|| there is an index k' > ko such that di (Vf(xx) + Hide) < 

5\|dy||? and ||Vf(a_ + de) — Vf (ae) — Hyde|| < 6||dg|| for all k > k', where 
6 = m min(1/2 — m1,m2/2). Furthermore, there is an index k, > k' such that 
for all k > ky, ||dg|| < 6/L. Then for k > ki, we get that f(x, + dk) — f(zk) = 

Vf (xn)? dy + 1/2d47 Hedge + 1/24" (5 — Hy)dy < 1/2VS (xn)? dg + 6|\dg||’. There- 
fore, 

f (ae +d) — f(@n) — mi VS (aK) "de < (1/2 — mi) VF (we) de + |ldell” 

from which, using (4.4) for k > k, we get that Az = 1 satisfies (3.1). 

Analogously, and using the same arguments, we deduce that for k > k; 

Vi (cx + de)? dy = (VF (ax + dp) — VF (en) — Hedy)? dy + (Vf (ap) + Hedy)! dy 

> —óllde || — d||del|” 

Hence, using (4.4) it follows that for k > k1 

Vi (xn + dy) dy — mo Vf (24) de > (mma — 26) dg ||? > 0. 

Therefore Ap = 1 satisfies (3.2). 

It is known that for quasiconvex functions every strict local minimizer is the 
unique global minimizer, a fact we shall use in the following theorem. 

Theorem 4.1: Under the hypotheses stated in Section 3, if x* € Q is a stationary point 

where H(z*) > 0, then e > 0 exists such that for all zo satisfying ||zo — x*|| < € the 
sequence {x;,} generated by Algorithm 3.1 converges to x*. 
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Proof. As a consequence of the hypotheses on x*, and using the same arguments 

given in the proof of Lemma 4.1, there is an € > 0 such that for all zo, ||ao — x*|| < e, 
f is strictly convex on the level set L(xo). The result follows straightforwardly from 
the compactness of L(xo), the uniqueness of x* in L(x), and the fact that dy is a 
descent direction. m 

The purpose of the following results is to prove the local quadratic convergence of 

the sequence defined by Algorithm 3.1, under the hypotheses stated at the beginning 

of this Section when x; tends to «* with H (x*) > 0. 

Lemma 4.3: If limp... 2, = 2* and H(x*) > 0, then k, exists such that for all 

k > ki, ze = 2 + dy and |V f(ze+)]] = O(NIV f(xe)|P). 

Proof. It follows from Lemma 4.1, 4.2 and Lemma B.6. E 

Theorem 4.2: Tf limp +00 tr = 2“ and H(x*) > 0, then under the hypotheses stated 

above, the rate of convergence is quadratic. 

Proof. From Lemma 4.3 , there exists an index k, such that for all k > ky, 

IVF (ee+1)] = OV F (eI). 

Since |lex41 — 2*|| = O(||Vf(we41)|l), then |lex41 — 2*|| = O(lex — 2*||") and 
thus quadratic convergence follows. m 

5 Quadratic global convergence for pseudo-convex functions 

The local quadratic convergence of the sequence given by Algorithm 3.1 to stationary 

points x* at which the Hessian matrices are nonsingular has been proved in Section 

4 under some restrictive hypotheses. 

Let us consider now a particular subclass of the quasiconvex functions, the pseu- 

doconvex functions, under the same hypotheses of Section 4. 

Definition 5.1: f is said to be pseudoconvex if for each x1, t2 € such that f(x2) < 

f(a1) then Vf(21)" (2 — a1) < 0. 

This function is characterized by the fact that every stationary point is a global 

minimizer ([1]). Using the same hypotheses of Section 4 we shall be able to prove 
the global quadratic convergence of the sequence given by Algorithm 3.1 in the next 

theorem. 

Theorem 5.1: Under the stated hypotheses, and if x* € 2 is a stationary point where 

H(x*) > 0, then the sequence {x,} generated by Algorithm 3.1 converges quadrati- 
cally to x*, the global minimizer of f(z). 
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Proof. Since f(x) is a pseudoconvex function and has the stationary point x* 
such that H(x*) > 0, z* must be the unique stationary point of f(x) on L(x0). 

Moreover, due to the compactness of D(a) and the fact x* is the only possible 
limit point of (xx), we have that limpo Zk = 2". 

On the other hand, using the same arguments of Theorem 4.2 we can prove that 

the sequence fx; + generated by Algorithm 3.1 converges 
quadratically to c*.= 

6 Numerical Experiences 

The aim of the following experiences is just to assess the qualitative behavior of 

the search direction introduced in this paper. We have performed those experiences 

using only three convex functions. Two of them are the Penalty I and the Variably 
dimensioned functions ([12],[16]) and the third is an extension of the one presented 
in [4] in order to use higher dimensions and for showing the direction’s behavior 
when the level sets correspond to ill-conditioned problems. We have compared the 

number of iterations required to achieve convergence using different Newton type 

algorithms, like Newton with trust regions, TRON of Chih-Jen Lin and Jorge J. 
Moré ([15]), the Truncated Newton TN of Stephen G. Nash ([17]), and the NMTR 
of the Minpack-2 Project headed by J.J. Moré. The executable versions are TRON 

as available in http://www.mcs.anl.gov/~more, TN from NETLIB, and NMTR 
is the version run in the NEOS SERVER of Argonne National Laboratory and 
Northwestern University (http://www-neos.mcs.anl.gov). We have also tested the 
results with our implementation of Newton’s method (NW) with line searches based 
on LINPACK routines and the subroutine GSRCH developed for M.J.D. Powell, 

using the standard stopping condition ||Vf (az + Ards)? dg|| < grhtol||V (rn)? dg|| 
with grhtol = 0.1. 

An experimental Fortran 90 program in double precision was written implement- 

ing Algorithm 3.1 and which uses in Step 2 the computation of the approximate 

points on the level set for Algorithm A.1 as described in the Appendix. The Step 

2 is done using an implementation of Algorithm A.1 with parameters «q = 10, 

6g = 107°, a= 1074, = 1074, m% = 10-4, and 8=3. A point y is accepted if 
||P7(—g?)|| < 10-®||g°|| (see Algorithm A.2 in the Appendix). Projections were calcu- 
lated using the modified Gram-Schmidt algorithm [3]. The line search of Step 3 is also 
performed with GSRCH using grhtol = 0.1. The stopping criterion for Algorithm 

3.1(QSI) and Newton's(NW) is ||V f(x)llo < e with e = 10º. For TN and NMRT we 
used the default values; in TRON the condition ||Vf(x)|l2 < gtol||Vf(x°)|l2, adapts 
gtol for obtaining a point with a lower values of the gradient’s norm, indicating that 

in the Table by TRON(gtol) (gtol=1.d-5, 1.d-10, 1.d-16 or 1.d-20) according to the 
starting gradient for each problem. 

The definition of the Extended Convex function ([4]) with variable para-meter o 
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is as follows: Given € R”, A and D € RP 

f(x) = 527 Dx +0(5a7 Ax)? where A= | o , | » A= 

D was defined as : (a) D = diag(1,...,1), or (b) D = diag(1,...,i2,...,n?). The 
starting point is xo = (-1,1,...,—1,1). 

The Penalty I function ([12]) was run from two different starting points: (a)xo = 1, 
and (b) zp = (—1)**! fori =1,...,n. 

First, we will compare for n = 100 the function reduction obtained in each iteration 
with the codes QSI, NW(Newton) and TRON(the last two use second derivatives), 
together with the comparison with the approximation to the optimal solution of each 
problem. Those results are given for each problem in the following tables where it 
is possible to see that in all cases the direction used in QSI leads to a fast descent 
and approximation to the solution although we were using just an approximation 
to the real direction defined in Section 3. The same tendency is observed in higher 
dimensions. In each of the following tables fx — f. gives the decrease obtained in each 
iteration and the approximation to the solution is given by ||z, — x*||», for the least 
number of iterations needed for achieving convergence, 

  

  

  

  

                
  

  

  

  

  

                
  

  

  

  

  

                

QSI NW TRON 

iter | fe—=fe | les —2 ll | fe—fe | les —e ll | ff | lles — 2" || 
0 2.70d+05 | 1.00d+01 | 2.70d+05 | 1.00d+01 | 2.70d+05 | 1.00d+01 

1 3.86d-08 2.78d-04 | 1.12d+04 | 4.52d+00 | 5.34d+04 | 6.67d+00 

2 1.68d-18 1.83d-09 | 4.64d+02 | 2.04d+00 | 5.14d+03 | 3.64d+00 

Extended Convex function (a), o = 100. 

QSI NW TRON 

iter | fe— fe | Ilex—2"ll | fe-fe | les —ell | ff | lles — «*ll 
0 3.20d+02 | 1.00d+01 | 3.20d+02 | 1.00d+01 | 3.20d+02 | 1.00d+01 

1 7.01d-07 1.18d-03 | 1.58d+01 | 4.06d+00 | 6.82d+01 | 6.45d+00 

2 1.28d-18 1.60d-09 | 0.49d+00 | 0.96d+00 | 1.50d+01 | 3.99d+00 

Extended Convex function (a), o = 0.1. 

QSI NW TRON 

iter | fe— fe | Ilee—2"ll | fe—fe | les —e ll | ff | lles — 2" || 
0 1.69d+05 | 1.00d=01 | 1.69d+05 | 1.00d+01 | 1.69d+05 | 1.00d+01 

1 8.17d-02 3.90d-02 | 4.29d+01 | 2.66d+00 | 4.66d+01 | 2.64d+00 

2 1.21d-13 3.85d-07 | 1.82d=00 | 1.13d=00 | 2.79d+00 | 1.35d+00 
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QSI NW TRON 

iter | ff | Ilee—2" ll | feo—f | lee —*ll | fe—f | les —=*l| 
0 4.39d+05. | 1.00d+01 4.3d+05 1.00d+00 | 4.39d+05 | 1.00d+00 

1 8.58d-02 1.31d-02 1.64d+04 | 4.02d+00 | 8.56d+04 | 6.20d+00 

2 1.18d-06 3.96d-04 8.72d+02 | 1.84d+00 | 5.36d+03 | 2.76d+00 

3 2.91d-08 1.79d-05 6.07d+01 | 0.86d+00 | 1.51d+03 | 2.02d+00 

4 1.09d-09 1.02d-06 4.76d=00 | 0.41d=00 | 4.92d+02 | 1.50d+00 

5 2.27d-13 1.59d-08 0.36d+00 | 0.18d+00 | 6.58d+01 | 0.85d=00 

6 1.92d-16 4.30d-10 2.63d-02 8.08d-02 6.20d+00 | 0.49d+00 

Extended Convex function (b), o = 100 

QSI NW TRON 

iter | fie—fe | |lze—2"|l | fe-fe | Ilee—2'll | ff [leres 
0 1.31d+14 | 5.82d=00 | 1.31d+14 | 5.82d+00 | 1.31d4+14 | 5.82d+00 

1 2.31d-02 2.58d-04 | 5.43d+12 | 2.62d+00 | 5.66d+09 | 0.47d+00 

2 4.55d-16 3.67d-11 2.25d+11 | 1.18d+00 | 7.24d+08 | 0.28d+00 

Variably Dimensioned. 

QSI NW TRON 

iter | fe—f« | Ilze—2"|| | ff | |lte—2' ll | ff | lle —e*l 
0 1.15d+08 | 5.74d+02 | 1.15d+08 | 5.74d+02 | 1.15d+08 | 5.74d+02 

1 9.23d+01 | 8.68d+00 | 4.78d+06 | 2.54d+02 | 9.23d+01 | 8.68d+00 

2 2.69d-03 0.430d-01 | 2.01d+05 | 1.10d+02 | 2.59d+00 1.31 

3 1.51d-09 0.25d-04 8.71d+03 | 4.38d+01 1.82d-01 0.36d+00 

4 5.80d-10 1.06d-09 3.09d+02 | 1.30d+01 1.25d-02 0.9d-01 

Penalty I (a) 

QSI NW TRON 

iter | fe—f (leer) fe fe | ler —e ll | ff | les —=*l 
0 2.03d+02 | 1.33d4+01 | 2.03d+02 | 1.33d+01 | 2.03d+02 | 1.33d+01 

1 3.06d+00 | 1.48d+00 | 3.59d+00 | 1.63d+00 1.81d-01 0.35d+00 

2 0.92d-03 0.25d-01 0.22d-03 0.13d-01 0.59d-03 0.02d+00 

3 5.99D-10 0.36d-05 5.82d-10 0.13d-05 0.40d-04 0.01d+00 

4 5.800d-10 0.43d-09 5.800d-10 0.10d-06 0.278d-5 0.138d-02 
                    

Penalty I (b) 

In the last Table it is possible to observe fastest initial descents for NW and 

TRON with regard to QSI; which differs from what happened in the previous 

problems. The reason seems to be the use of approximate points in the vicinity of 

the solution. 

For higher dimensions the tables 1-4 use the following notation: in the first 
column the name of the problem is given. In the next columns under Method the 

name of the program ; iter the number of iterations; nfu the number of function 

evaluations; ngr the number of gradient evaluations; gnor is the lz norm of the 

gradient at the final point, and fmin is the best function value. In particular for the 

methods TN and TRON under iter we write between parenthesis the number of CG 

iterations used. In Table 1 the first row gives the results of Algorithm 3.1(QSI), the 

second with Newton (NW), the third with TN, the fourth with TRON, and the fifth 
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with NMTR. 

Problem Method iter nfu ngr gnor fmin 

Extend. QSI 2 818 | 407 | 0.3d-05 | 0.4d-14 
Convex NW 6 37 37 0.5d-04 | 0.2 d-11 

(b) TN 23(63) 24 24 0.1d-05 | 0.5d-16 
o =0.1 | TRON(-10) 9(8) 9 9 0.1d-10 | 0.6d-22 

NMTR 8 10 9 0.0d+00 | 0.0d+00 
Extend. QSI 6 2267 | 1125 | 0.2d-4 0.3d-14 
Convex NW 12 73 73 0.1d-04 | 0.3 d-14 

(b) TN 28(126) | 40 40 0.1d-06 | 0.4d-17 
o = 100 | TRON(-10) | 19(18) 19 19 0.5d-04 | 0.1d-08 

NMTR 17 19 18 | 0.0d+00 | 0.0d+00 
Table 1: n= 250 

  
Those results show that for defining the direction, the method QSI computed 

almost n points close to the level set and their gradients, something which is 

computationally expensive. On the other hand they also show that only a few major 
iterations are needed in spite of approximate points were used. The same situation 

occurred with ill-conditioned problems using different dimensions. An example is the 

results of Table 2 absolutely similar to those of Table 1, except for NMTR because 

its use in NEOS is restricted to n < 250. 

  

  

  

Problem method iter nfu ngr gnor fmin 

Extend. QSI 4 6334 | 3166 | 0.1d-04 | 0.1d-15 

Convex NW 7 43 43 | 0.5d-08 | 0.3d-20 
(b) TN 31(143) 32 32 | 0.5d-06 | 0.6d-17 

o =0.1 | TRON(-10) 9(8) 9 9 0.1d-05 | 0.5d-12 

Extend. QSI 5 6493 | 3239 | 0.2d-04 | 0.3d-15 
Convex NW 14 85 85 | 0.5d-09 | 0.5d-24 

(b) TN 38(251) 43 43 | 0.1d-05 | 0.1d-16 
o = 100 | TRON(-10) | 27(26) 27 27 | 0.2d-03 | 0.3d-07                   

Table 2: n = 1000 The output of TRON code also shows the number of Matrix-Vector 

products, which in this case takes a considerable amount of time because the Hessians are 

dense. 

Contrariwise to what it was observed in the previous tests in regard to the number 

of inner iterations required for obtaining the search direction, it can be observed that 

when the ill-conditioned case was excluded, only a few points close to the level set were 

enough. In those cases, except for the problem Penalty I (b), the number of major 
iterations needed for achieving convergence is less than for the other algorithms. 

A substantial saving of CPU time was required, because of fewer gradients were 

computed in the inner iterations. Table 3 illustrates this situation 
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Problem Method iter nfu ngr gnor fmin 

QSI 2 22 7 0.3d-06 0.4d-13 
Extend. NW 5 32 32 0.9d-10 0.4d-20 
Convex TN 5(12) 9 9 0.1d-09 0.7d-20 

(a) TRON(-5) 9(8) 9 9 0.8d-06 0.3d-12 
o =0.1 MNTR 8 10 9 0.7d-16 0.3d-32 

QSI 2 25 9 0.5d-09 0.1d-18 
Extend. NW 9 do 55 0.2d-05 0.2d-11 

Convex TN 7(17) 14 14 0.2d-08 0.1d-17 
(a) TRON(-10) 19(18) 19 19 0.1d-06 0.6d-14 

o = 100 MNTR 16 18 17 0.2d-11 0.2d-23 

QSI 5 39 18 0.1d-06 | 0.35d+02 
Penalty NW 9 do 55 0.2d-07 | 0.35d+02 

(a) TN 484(1498) 490 490 | 0.6d-01 | 0.4d+02 
TRON(-20) 21(21) 22 21 0.5d-2 0.4d+02 
MNTR 15 17 16 0.1d-07 | 0.4d+02 

QSI 4 32 14 0.8d-04 | 0.4d+02 
Penalty NW 4 26 26 0.2d-07 | 0.4d+02 

(b) TN 7(19) 10 10 0.3d-04 | 0.4d+02 
TRON(-10) 18(18) 19 18 0.7d-02 | 0.4d+02 
MNTR 4 6 5 0.3d-08 | 0.4d+02 

QSI 2 20 5 0.2d-04 0.1d-16 
Variably NW 80 254 254 | 0.8d-09 0.7d-25 
Dimens. TN 9 (16) 26 26 0.1d-05 0.6d-18 

TRON(-16) 20(51) 52 20 0.9d-04 0.1d-09 
MNTR 3976 4000 (F) | 3977 | 0.4d+08 | 0.4d+05 

Table 3: n= 250 

(F) means that the maximum allowed number of evaluations was reached without getting 
convergence. 

In the previous Table, QSI sistematically required fewer iterations than the other 
methods. This trend kept unchanged when using different dimensions (n=100, n=300, 
n=1000). In Table 4 the results for n = 1000 are given. 
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Problem Method iter nfu ngr gnor fmin 

Extend. QSI 2 25 8 0.3d-11 | 0.6d-23 
Convex NW 6 38 38 | 0.4d-14 | 0.7d-29 

(a) TN 8(17) 11 11 | 0.3d-11 | 0.3d-23 
o =0.1 | TRON(-10) 11(10) 11 11 | 0.1d-10 | 0.9d-22 

Extend. (SI 2 27 9 0.2d-07 | 0.2d-15 
Convex NW 10 61 61 | 0.2d-07 | 0.4d-15 

(a) TN 15(49) 45 45 | 0.2d-11 | 0.1d-22 
o = 100 | TRON(-10) 19(18) 19 19 | 0.8d-05 | 0.3d-10 

QSI 5 49 17 | 0.3d-06 | 0.3d+03 
Penalty NW 13 167 | 167 | 0.1d-02 | 0.3d+03 

(a) TN 1294(3276) | 2877 | 2877 | 0.6d-01 | 0.3d+03 
TRON(-20) 54(56) 57 54 | 0.8d-01 | 0.3d+03 

QSI 4 34 15 | 0.3d-04 | 0.3d+03 
Penalty NW 5 119 | 119 | 0.1d-01 | 0.3d+03 

(b) TN 11(30) 31 31 | 0.4d-04 | 0.3d+03 
TRON(-10) 63(62) 62 62 | O.7d-01 | 0.3d+03 

QSI 2 30 5 0.9d-07 | 0.7d-23 
Variably NW 981 2131 | 2131 | 0.1d-04 | 0.2d-18 
Dimens. TN 12(17) 33 33 | 0.1d-05 | 0.1d-19 

TRON(-20) 19(52) 53 19 | O.7d-05 | 0.5d-11 
  

Table 4: n= 1000 

The reported results are not conclusive for evaluating the efficiency of Algorithm 
3.1 and its implementation QSI using the approximation described in Section A. 

As we said at the beginning of this section, these experiences had the purpose of 

illustrating the behavior of the new direction when it was derived by means of a 
feasible implementation. As shown by the former Tables the new direction led to, 

except for the Penalty I (b), a better functional decrease and final approximation to 

g*. 

7 Conclusions 

This paper shows that first order information gathered in points close to the level set 

at a certain iteration, together with the intersection of the corresponding considered 

hyperplanes, allow us to define an efficient descent direction. Such direction for convex 

quadratics functions coincides with Newton’s, and for non quadratic functions leads 

to sharp functional reductions. Needless to say, the question of how to obtain a good 

but cheaper approximation to this new direction keeping its theoretical properties, 

remains as a research challenge. 
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A Line Search Procedure for obtaining points in step 2 of 

Algorithm 3.1 

The theoretical characterization of Algorithm 2.1 according to which the direction 

d, in Step 3 of Algorithm 3.1 is defined, leads naturally to consider its practical 

implementation. Then, the points yº,y!,...,y! of step 2 of Algorithm 3.1 will be 
now obtained by the following approximate procedure. 

At the beginning of the k-th iteration we define y° = xp. Each point y**! is 
obtained from y* by performing a linear search along the direction p’, whose definition 

is the same as the one given in Algorithm 2.1, to determine an approximation to the 

root h; > 0 of the equation 

y(h) = f(y’ + hp’) — f(y’) =0 

The function y(h) shares the properties of f and satisfies y(0) = 0, 
(0) = Vi(y NT p' < 0, recalling that Vf(y°)?p* = (g')?p* due to the defini- 
tion of p’ = P*(—g’) as given in Section 2. 

The Search Algorithm generates a finite sequence {h'}, | > 0, and stops when 
h! > O exists such that 

y(h!) > y(0) + ah'y'(0), O0< a < 1/2 (A.1) 

and at least one of the three following criteria is fulfilled: 

(i) If p(h!) < 0, and a h exists such that 0 < h < h! where y(h) < y(h!), making 
sure that y?+! = y! + htp? is sufficiently far away from y* and that it preserves the 
property Vf (y*+1)? (y? — y*+') < 0 as a consequence of Lemma 2.4. 

(ii) If p(A) > 0, k> 1 and 

(h') < minfeymaz(| f(y") |, 1), (f(@e-1) — f(y"))/2}, 0< a <1 (A.2) 

(iii) or, si A? € [hmin, hmae], such that y(hmin) < 0,0 < Y(hmae) < f(%p-1) — 

f(y’), and 
maz < (1 + €2) * Amin» 0 < €2 < 1 (A.3) 

When (A.1) and (i) hold we accept A; = h! making sure that that y*+t = y*+h'p? 
satisfies Vf (y*t!)? (y* —y**+) < 0. Analogously when (A.1) and the second condition 
both hold, we accept h; = h!, making sure that in y*++ = y* + hyp’, f(y***) is close to 
f(y"), keeping also Vf (y**!)? (y* — y*++) < 0. Moreover, in this case we accept y*+! 
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if it satisfies f(y't") < f(y’) + (f(we-1) — fly’))/2, being f(y’) < f(as-1) due to 
the constraints on y? for being accepted in the previous internal iteration. Therefore, 

we also keep that ||y’++ — y*|| bounded by the radius of the ball containing L(x,_1), 
and L(ze-1) contained in L(xo). 

If (A.1) and the third alternative are satisfied, an interval is computed which 
contains the seeked h; with the desired precision, and in such a case taking 

into account that h = Aminthmos we define hj = h if y(h) > Plhmin) and 

y(h) > v(0) + ahy'(0), or hi = hmaz otherwise. Consequently we are sure that for 
y’t1, the condition Vf(y't')? (y? — y*+!) < 0 is satisfied, and moreover we assure 
that ||y’tt — y*|| < (1 + €2)Amin||pi||, is bounded by the radius of the ball which 
contains L(zp-1). 

With the purpose of defining the scheme of the algorithm for approximate 

searches we give the following definitions and notations. 

From the initial guess h° we define hmin = hº if p(AR%) < 0 or hmae = h° and 
hmin = 0 otherwise. 

When the process declares that a current h!, | > O is not successful, the next 

candidate h!+! is obtained by quadratic interpolation using 

(¿(0), y' (0), y(h')), or using the values of y at the best three lower or upper bounds 
obtained up to that moment of h;, with the necessary safeguards to guarantee 

convergence. More precisely, 

Line Search Procedure 

Given y?, pi, g', v'(0) = (9) Fp’ = Vi (y?) Fp’, 0< a <1,0<e <1, 
1 > 0,7 >0,0<a< 1/2, 6>1, and the initial guess hº. 
Step 0: Set Amin =0,1=0. 

Step 1 : Compute p(h!) = f(y’ + hip’) — f(y’). 
If y(h') > 0, set hmae = h!. Else, set Amin = A. 
If y(h') < y(0) + ah!y'(0), go to Step 3. 
Else, 

Step 2 : Stopping criteria 

If condition (i) is satisfied define h; = h!, go to Step 5. 

otherwise, 

If (ii) holds, define A; = h! = hmaz go to Step 5. 

otherwise, 

If hmaz > 0 and if Amin 4 0 and (iii) is satisfied 

set hi = maz, or hi = (Amin + Amaz)/2 according to (iii) 

go to Step 5. 

Else, 

Step 3 : Il Amas is still undefined, go to Step 4. 

Else, set / = 1+ 1. 

Set A! equal to the zero of the quadratic interpolating polynomial, 
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and the safeguard 

h! = min|[maz(Amin + Ta (Ama > Amin)» AD), Rmar — 72 (Ama — hmin)], 

is imposed. 

go to Step 1. 

Step 4: Set ] =1+ 1 and define h! equal to the zero of the quadratic 

interpolating polynomial (using for example (~(0), p(Amin), p'(0)), 
or the three best values of y(h) already found). 
If h! > hmin define A! = min(maz((1 + 71)hmin, h!), 9hmin). Else, 

set h! = Bhmin, 

Return to Step 1. 

Step 5 : Define y*t! = y? + hyp’. 
Stop.e 

The safeguards imposed in Steps 3 and 4 guarantee convergence in a finite number 

of iterations. 

The Algorithm 2.1 is replaced by the following, using the same notation of Section 

2. 

Algorithm A.2 : 

Given ze, Vf (x) £0, 
Step 1: Define y° = xz, g° = Vf (zz), 1 = 0. 
Step 2: If P’(—g*) = 0, define 7 = 1. Stop. 

Else, 

Step 3: Take p’ = P*(—g*); y*t+ = y’ + hip’, with h; calculated as 
in Algorithm A.1. 

If VS (yt*)7 (y® — yt) <0 define g** = aii VS (yt) 
satisfying aj41Vf(y**?)? (y*** — yO) = V Ay) (yO — yA) . 
Else, g’t! = 0. 
Update Pt. 
i=i+1; go to Step 2. e 

Remark A.1: The imposed condition (A.1), and the alternatives (i), (ii) or (iii) for ac- 
cepting each y**! as an approximation to the point on the level set, do not necessarily 

lead to Vf (y**)? (y't! — y°) > 0, in spite of the condition V f(y**')? (y*t! — y*) > 0 
has been preserved. Hence, in order to guarantee the good definition of g*t! the 

modification in the step 3 of algorithm A.2 has been introduced. 

The final accepted point y’, and the search direction d, = y/ — 2, of Al 
gorithm 3.1, satisfy ly? — xl] < DL, lly’ — y* "|| < n* M, if M is the bound 
of the radius of the ball containing L(a9), which is a rough bound but easy to compute. 

Moreover, as a consequence of condition (A.1) each i = 1,...,7 satisfies f(y*) > 

f(y") +0 VJ (24) (y — y). Thus 
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fly’) > fu) +0Vf(cr) (y! — 24) (A.4) 

Remark A.2: i) The direction dy = y? — x, obtained in Step 3 of Algorithm 3.1 using 
the point y? given by the above procedure is a descent direction as a consequence of 

the definition of p? and the arguments of Lemma 2.5 a). 

ii) Furthermore, the condition (A.4) satisfied for each y* i = 1,...,9, together 
with the bound on dk = y' — x, make sure the results of Lemma 3.1 hold, and 

therefore also Theorem 3.1 is valid. This follows from the fact that for each y? 

f(y’) — (te) = VF (an)" (y’ — ee) +:1/2(y* — xe)” Hy’ — xx), where H denotes the 
Hessian matrix at an intermediate point between y! and zz. 

Since f(y') — f(zn) > aVf (us) (y — 24), we get VE(we)* (y’ — 24) + 1/2y* — 
tr)’ H(y' — te) > aVS (re)? (y* — 24) 

Such a condition makes sure that 1/2(y’—2,)? H(y’ — 2x) > (a— DV f(x) (y' — 
az). Then, we obtain —(1—a)V f(x)" (yt— 2x) < (1/2)ellyé — 24 ]]? considering that 
f € C?(L(zo)) and the compactness of L(xo). This proves (3.3) modified by a factor 
(1- a). 

In particular, for i = 1 we have —(1 — a) V f(x) (y! — 24) < c/2ly! — xe), 

obtaining (1 — a)||Vf(xx)|] < (1/2)elly* — axl 

Since —V f(x)" (y? — te) > Via)" (y! — 24) = [Vf (es) lllly? — vel], and 
using the previous remark which shows that ||dx|| is bounded , we get 

—Vf (ex)? de/\\del| > r2llVF(ex)|/° with ya =2(1— 0)/(cM) and [Ide | < M. 

That result is identical to the one used for proving Theorem 3.1. Hence, Theorem 

3.2 still holds proving that Algorithm 3.1 is globally convergent when the direction 

dy is used, arising from the y/ obtained by the inexact search. 

B 

Let us assume the hypotheses on f(z) stated in Section 4. Let (xr) be the sequence 
given by Algorithm 3.1 satisfying that there is an index ko such that for all k > ko, 
f(x) is uniformly convex on L(z,%), ic. a constant m > 0 exists such that for x € 
L(zz), y € R”, we get 

milyl’ <y7V?f(a)y < ellyll’. (B.1) 

Lemma B.1: At the Ath iteration of Algorithm 3.1, k > ko, the following relations 

hold among the directions, step sizes, and coefficients defined for alli =1,...,7 <n: 

2 2 

| | a) (1/2)mlly* — E < (Ve) (y! — 9º) < (1/2)elly" — y 
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b) |ly* — 9° ll < Q/m)I|V f(zs)!| 

e) (A/2)aamlly’ — y IP < 9" (gi — 9º) < (1/2)azelly? — pºIP 

d) Ig] > (1/2)mailly* — y*l 

e) Since o; = V f(x) (yº -y)/V fly) (y' - yo) we get E <a < + 

f) |a;—1|< (L/m)|ly’ — y°|| < QL/m*)||V F(z) 

9) IIVFQ)II < wIlVF (ce) ||, where w = (2c/m) + 1. 

h) From the definition of h¿, we get 2/c << hy <2/m,0<i<j-1. 

Proof. a) Follows from (B.1) and f(y’) = f(y®). 

b) Follows from the first inequality of a). 

c) From the definition of y’, g’, and the uniform convexity on L(x,). 

d) From c). 

e) From f(y’) = f(z;) and the uniform convexity of f. 

f) From the definitions of a; and g’, using the hypotheses and e). 

g) From the uniform convexity of f and e). 

h) From the definition of the points y* and y't!, the Taylor's expansion for 
f(y’**) at y*, and (B.1).m 

Lemma B.2: Under the above stated hypotheses, u > O exists such that 

cost,’ =(9 — 9 y y e — 9 ly! = 9H >u 

1<:3<j<n,for k > ko. 

Proof. Due to the definition of g*, g*7*, y*, y71, condition (B.1), Lemma B.1 f), 
and the Taylor's expansion at y?7* and y? we have that 

(9 - gn y -yA0) =(1/Das(y - y DH (y! - yt?) (B.2) 

+(1/204-1(y? - y DT Á(yi — yi72) > (1/D(a; + 4-1) ml y* — y* 1 |? 

> (m*/olly' - vi II, 
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where H and Fi are the Hessians at the corresponding intermediate points. 

Using the definitions of a; and a;_1 we shall bound the denominator of the 

expression for cosO,’. 

From 

aj = (aii V Ey) 9) FV FY) — Y) VI (y — y) 
we get that 

o 01 =041Vf(y5) (y — 4) /VEy9* (y — y?) 

+(ai-1(VF(y**) = VD (yo! 93 + VII YA YO) VI y — y). 
This implies that 

| o; — aa | ||[VF(y*)]| 

< aa (VE) — VE) ll — 9 IV SF) (1/2) ly? = 9 IP) 

HIV + 01 VE ll — yl INV (5)11/(1/2)mlly* — 9211. 

Using Lemmas 3.1 and B.l, it is easy to prove a constant a > 0 exists such 

that the right hand side of the above expression can be bounded by ally? — y*—'||. 

Therefore, | a; — a-1 | IV f(y5!| < olly* — yl. 

Taking into account the definition of g’, g*~', the hypotheses, and the previous 
bounds, we have that 

Ig -— 9 < | 0052 1 IV AGIA Lesa | VI) — VE! 

< olly? — y] +(/m)lly? — y |] = (o + ?/m)lly? — y. 

Therefore, 

i i— i i— i i—1||2 
Ig — 9 ly — HI <(o+(/m)ly' - 9 1 É. (B.3) 

Hence, because of (B.2) and (B.3), y > O exists such that cos0,* > ym 

We shall denote by P,’, Ax’, and Sy, the matrices generated within Step 2 of 

Algorithm 3.1 by means of Algorithm 2.1. 

Lemma B.3: If P,’~'(—Vf(xz)) 4 0, and under the hypotheses stated for L(x,), then 
a constant q exists suchthat0O <a <1 and |; (-V f(x) || < PTH V f(x) ||, 
I<i<j. 

© Investigación Operativa 2000



Investigacion Operativa © Volume 9, Numbers 1,2 and 3, March—July 2000 161 
  

Proof. Using Greville’s formula (Ben Israel and Greville [2]) 

Pe! (—VF (te) = Pa" (-VF (ae) — 

il poi i- i i- i— il pi ¿—1y 12 A A VR | 
from which it follows that > 

I|Pe'(-VF(te))|| = 

IPEM (e IP — (gi — gi)? Pei (e) IPES (gi — gi DP. 
Since cos6;,’ > uy > 0 according to Lemma B.2, we get 

IPA fm É < (1 — PE (2). 

Defining a = (1 — pa 2. the proof is complete.m 

We shall denote by e; the vectors of the canonical basis. 

Lemma B.4: Under the stated hypotheses, if y°, y',...,y4 and g°, g',...,g? are the vec- 
tors generated by the kth iteration of Algorithm 3.1, then the 

j xn matrix Ty whose ith row is (y’—y*—1)7, 1 < i < j, is such that its pseudoinverse 

Ti? ' has columns Ty e; satisfying 

+ . so . 

[Pk ell<1/4ly' = 9H, with y>0. 

Proof. For the non trivial case ¿ > 2 we shall denote by y; for 2 < 1 < 3, the 

angle between the ith row of T,’ and the subspace spanned by the 

4 — 1 first rows. 

Let us denote by T;” ! the matrix composed of the first i — 1 rows of Ty”, and by 

Pr,i-1 the projection matrix onto its null space. Then 

sina = (Poyo — ly — 91 = (Pr We I 
Since RT) = RUA) U {p*-7}) as a consequence of Remark 2.2, using 
Greville’s formula we get 

Pri = Pi = (Pap) (Papi?) epi 

= Po = pi dp. 
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Thus, 

sinys = Ip? pS lA 

Using the fact the numerator is the orthogonal projection of p?7* onto the orthog- 

onal subspace to p*~? we have that 

. ¿1112 ¿1114 ¿9112 j— 

sings = (PTW = 55/92 p=" 

Due to Lemma B.3, a constant a exists such that 0 < a < 1 and 
9\1/2 

siny > (1— at)". 

Hence, if 9; is the angle between the ith row of T;/ and the subspace spanned by 

the remaining rows ( Dennis et al. [6]) we obtain 

sin > (1-0) Ds (DP =, 

Then, using the same arguments of Dennis et al. [6], we can prove that the 

pseudoinverse Ty)! = (bi, ...,b;) is such that []b;] < 1/Glly?— y). 0 

Lemma B.5: Under the stated hypotheses for the kth iteration, k > ko, 

(a; — cs )V Eu) (y' ~ y°) = (y ~ vou, for i= 1, 2.07 Í 

where || v; ||= O(|| Vf(2x) 115 
i—1 Proof. Taking into account the definition of a; and y* — y?! we can write 

(a; — a1) VF (y*)? (y* — 9°) = -il(VE(y**) + VEY)? yt - y') 

+(V f(y") = VIU) (yo! = 99]. 
Using the Taylor’s expansion at y? and y** and the equality f(y’) = f(y*') in the 
first term of the right hand side we get 

(VE9ED + VEO yA — y) = (y! - ya (A, - Ey — y). 

Considering that y* — y*-! = hy_1 Py’ (—Vf(a,)) and using the Taylor’s expansion, 
the second term of the right hand side can be written as 

(Vy *) — VEY) Gt - 9) = (yt — y*) Hily 1 - y®) 

= (y — y* 1)" [g't — VF (we) + (1 — a4-1) VF (y*!) + (Hi — Ho) (y** - y°)] 

© Investigación Operativa 2000



Investigacion Operativa © Volume 9, Numbers 1,2 and 3, March—July 2000 163 
  

= (y — yt)" [(1 — a1) VE (y**) + (Hi — Ho) (y** — y°)). 
Then, from the Lipschitz continuity of the Hessian and the relationships of Lemma 

B.1, we obtain 

(a; — a1) VF (y')* (y' — 9) = (go! - y') 0, 

with Ifoil] = O(I]V (xx) ||) 

Theorem B.1: Under the stated hypotheses for all k > ko, if j is the first index in the 

kth iteration such that Py’ (—Vf(#,)) = 0, then 

IV F(y4) + VF) ll = OVS (ee) II"). 

Proof. The search direction given by Algorithm 3.1 is the solution of the system 

Ajó dy = SV f (ag). (B.4) 

Because the matrix Sp? can be written as Sp? = Ex T4?, where the j x j matrix 
Ex is such that its ith row is si. 1 ep! , and the matrix Ay = E, By’ where B;? is 

a j X n matrix such that the ¿th row is g! — g*7!, we have that the system (B.4) is 
equivalent to 

By dy = Th! (—VF (ae). (B.5) 

Due to the fact that dy = (yí — yº)/2 and the definition of 9º and Ty”, the left 
hand side of B.5 can be written as 

By' dy = Be (y' — yº)/2 

= Y esla: — VS) — (01 = DVI (DI (uy! — 9º)/2 
i=1 

+ VI) VW 4)/2 

= SS ellos — VS) — (04 — DUST — y) /2 

+ » ed — Ho(y' = y DV (y' — 9)/2+ Té Hely” — y°)/2, 

where Hp = Vº f(x») and H; is the Hessian at an intermediate point. 
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Multiplying both members of (B.5) by Ty? r using the equality 

Hely? — y°)/2 = (VF(y") — VE (y))/2 + (He — Ho)(y? — y°)/2, 

rearranging terms, and considering that Vf (xz), Vf(y*) € R((Tx7)" ) due to Corollary 
2.1, we obtain 

(Vi (y4) + VE (we) /2 = Te! Te! (Ho — He) (yi — y®)/2 (B.6) 

Tó? Se [1 — 0) 1 f(y%) — (101) V y] (y — y°)/2 

j 
+ . so — - 

TIO ely y) (Hs — Hi)(y’ — y°)/2. 
i=1 

Then, because of Lemma B.1 (f), the second term of the right hand side can be written 
as 

Tó! » ei[(ai_1 — ai) VF (y*)" (y* — y°)/2 

—(1 = a_1)(VF(y*) -— VEY)" (y? - y°)/2 + wi? (y? — 9/2], 

where ||w4|| = O(||VF (zs) ||"). 

Also, using the Lipschitz continuity of the Hessian and Lemmas B.3, B.4 and B.5 

it is easy to see that the norm of the right hand side of (B.6) is O(|| Vf(ax)||”). 

Therefore, it follows that |V f(y?) + Vf(«x)|| = O(||VF (ax) ||”). 

Lemma B.6: Under the stated hypotheses, if k > ko and re41 = Ex + de, then 

IVF (we41)ll = O(VS(ze) II”). 

Proof. From Taylor’s expansion, the Lipschitz continuity of the Hessian and 

Lemma B.1 b), 

Vi (ve41) = VE (ee) + He (tags — te) + O(||VF(ze)|I”) (B.7) 

Vf (t4+1) = VE(y) + He (tags — 9”) + OVE (za) II") (B.8) 

By adding (B.7) and (B.8) and considering that 2,41 = (xz + y’)/2, we get 

Vf (wets) = (VE(y") + VF(@e))/2 + O(1VF(24)11). 
Therefore, from Theorem B.1 it follows that ||V f(ag+41)|| = O(||Vf (ae) ||"). m
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