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Abstract: Alzheimer’s disease (AD) is an aging-related neurodegenerative disease, leading to the
progressive loss of memory and other cognitive functions. As there is still no cure for AD, the
growth in the number of susceptible individuals represents a major emerging threat to public
health. Currently, the pathogenesis and etiology of AD remain poorly understood, while no efficient
treatments are available to slow down the degenerative effects of AD. Metabolomics allows the study
of biochemical alterations in pathological processes which may be involved in AD progression and
to discover new therapeutic targets. In this review, we summarized and analyzed the results from
studies on metabolomics analysis performed in biological samples of AD subjects and AD animal
models. Then this information was analyzed by using MetaboAnalyst to find the disturbed pathways
among different sample types in human and animal models at different disease stages. We discuss
the underlying biochemical mechanisms involved, and the extent to which they could impact the
specific hallmarks of AD. Then we identify gaps and challenges and provide recommendations for
future metabolomics approaches to better understand AD pathogenesis.
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1. Introduction

Alzheimer’s disease (AD), the most common form of dementia in aging population,
leads to the progressive loss of memory and other cognitive functions [1]. In 1907, Dr.
Alois Alzheimer discovered the first patient with senile plaques and NFTs, which represent
the major hallmarks of AD which has become a major public health problem due to the
increase in the elder population worldwide [2]. AD can be divided into two types: familial
AD (5%) and sporadic AD (95%). Familial AD (FAD) has an early onset (<65 years of age)
and it is caused by mutations in the genes encoding amyloid precursor protein (APP) and
presenilin 1 and 2 (PS1 and PS2) [3]. Age is a major risk factor for AD, but inactivity (lack
of exercise), obesity, diabetes, high blood pressure, high cholesterol, and too high alcohol
consumption also increase the incidence of AD. Furthermore, it seems that low educational
level, social isolation, and cognitive inactivity also contributes to AD [4]. Today, diagnosis
of AD is based on several neuropsychological tests, imaging, and biological analyses, which
all indicate AD in a later stage. Currently, there is no efficient treatment available, although
treatment by the recently approved drug lecanemab seems to delay AD progression [5],
and provides some hope.

Currently, we know that brain extracellular amyloid deposits, called neuritic senile or
amyloid-β plaques, and fibrillary protein deposits inside neurons, known as neurofibrillary
bundles or tau tangles, appear mainly in the frontal and temporal lobes and contribute to
AD progression [6]. However, there are still many questions about how AD initiates and
how it progresses.
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Information on factors in and mechanism of initiation and progression, therefore, is
crucial for earlier diagnosis, as well as to find targets to treat AD in a stage-dependent man-
ner. AD is very complex, and a systems biological approach is warranted. Metabolomics
allows such an approach as it can be used to measure biochemical alterations underlying
pathological processes thus offering great potential for the diagnosis and prognosis of
neurodegenerative diseases. This is because a subject’s metabolome reflects alterations
in genetic, transcript, and protein profiles as well as influences from the environment [7].
Moreover, since metabolic pathways are largely conserved between species, metabolomics
could improve the translation of preclinical research conducted in animal models of
AD into humans. Furthermore, the brain has a high lipid content, which indicates that
lipidomics may be a highly valuable omics technique as well, to provide novel insights into
AD pathogenesis.

In this review, we provide an overview of the current state of application of
metabolomics (including lipidomics) research on AD in human and animal models, to-
gether with the metabolite information that has been obtained from plasma, brain, and
cerebrospinal fluid (CSF) samples in human studies and animal studies. We then analyze
this information using MetaboAnalyst to find the disturbed pathways among different
sample types in human and animal models of different disease stages. Then we identify
gaps and challenges and provide recommendations for future metabolomics approaches to
better understand AD pathogenesis.

2. Metabolomics

Metabolites are substrates, intermediates, and products of metabolic body processes,
which typically are small molecules with a molecular weight of less than ~1.5 kDa [8].
Since low molecular weight metabolites are intermediates or end products of cellular
metabolism, metabolomics, or the study of metabolism can be considered one of the core
disciplines of systems biology. It can help in improving our understanding of changes
in biochemical pathways, revealing crucial information that is closely related to human
disease or therapeutic status [9–13].

Metabolomics allows the systematic study of unique metabolomic fingerprints that
result from the body functioning in different conditions, such as healthy and diseased.
These fingerprints can be viewed as biomarkers of normal biological processes, pathological
processes, or pharmacological responses to a therapeutic intervention [14–16].

Metabolism refers to the biochemical reactions that occur throughout the body within
each cell and that provide the body with energy. This energy is needed for vital body
processes and the synthesis of new body components [17]. Some of these are mediated by
enzymes, with specialized functions in anabolism and catabolism. To that end, the body
needs nutrients and energy that come from the diet. Metabolism is affected by many factors
such as sex, race, exercise, diet, age, and diseases such as Parkinson’s or Alzheimer’s. The
biggest impacts on metabolites are genetics and environment.

Lipidomics, a subfield of metabolomics, is the study of the lipidome, i.e., all the lipids
within cells, organs, or biological systems. Lipids are vital in the biological processes of
living organisms. They not only serve as structural components of cell membranes, but also
play an important role in the source of chemical energy and cell signaling molecules [18].
Apart from adipose tissue, which is the most lipid-rich organ, the brain is the body’s second
lipid-rich organ; 10% to 12% of the fresh weight and more than 50% of the dry weight
is composed of lipids [19]. With significant structural diversity, major lipid species in
the brain can be categorized as sphingolipids, glycerolipids, glycerophospholipids, fatty
acids, cholesterol, and cholesterol ester. Among them, phospholipids account for 50% of
total lipid content [20]. Plasma abnormal lipid profiles have been known to be associated
with AD for several decades [21–23]. Lipidomics profiling of plasma and tissues has the
potential to discover biomarkers of aging or AD, which can contribute to understanding
the pathological mechanism of AD.
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2.1. Metabolomics Platforms for Identification of AD Biomarkers

There are a number of metabolomics platforms available, each with its specific ad-
vantages and disadvantages, most notably differences in sensitivity, reproducibility, and
equipment costs [24]. Due to the diversity of the metabolome and the complexity of biolog-
ical systems, it is impossible to give a fully comprehensive metabolite profile of a biological
sample by using a single analytical platform [25]. Therefore, the choice of analytical plat-
forms will be determined by the nature of the biological specimen to be analyzed, the goal of
the analysis, the nature of the compounds under investigation (i.e., polar or apolar, volatile
or non-volatile), and the resources of the laboratory [24,26,27]. Numerous metabolomics
platforms are commonly used in both targeted and untargeted studies, and include gas
chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrome-
try (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), direct-infusion mass
spectrometry (DI-MS), and nuclear magnetic resonance (NMR).

GC-MS is generally considered a versatile platform given its excellent separation
power, sensitivity, and reproducibility [28]. This platform often requires a chemical deriva-
tization procedure to create volatile compounds, which means the compounds profiled
are limited to those that are volatile or can be made volatile using this complex and time-
consuming procedure [29]. In addition, derivatization can improve volatility, thermal
stability, sensitivity, chromatographic selectivity, and peak shapes [30]. GC-MS uses elec-
tron ionization (EI) or chemical ionization (CI) to analyze volatile metabolites. EI-MS is a
hard ionization technique that does not suffer from ion suppression, which means it can
generate quantitative data and extensive and predictable fragmentation for the structural
characterization of metabolites [31]. As EI mass spectra are consistent across instruments
and laboratories, sample identification in GC-MS is based on the use of EI mass spec-
tral libraries by matching mass spectral fragment ion patterns, which can be seen as a
compound-specific “fingerprint” [32,33].

LC-MS, which is also known as high-performance LC-MS (HPLC-MS) or ultra-HPLC
(UHPLC or UPLC), is predominantly used in metabolomics and can provide analysis of
thermally non-volatile, unstable, high- or low-molecular weight compounds with wide
polarity range. LC-MS does not need a derivatization step, which makes sample preparation
simpler and more amenable to high throughput analysis [25]. The columns used in liquid
chromatography separate metabolites based on the physical properties of the molecules.
Two classes of stationary phases commonly used in metabolomics analysis are hydrophilic
interaction liquid chromatography (HILIC) and reversed-phase (RP). HILIC is good at
analyzing highly hydrophilic and ionic compounds and therefore suitable for profiling
polar metabolites, whereas RP with C8 or C18 columns is widely used in providing good
separation of non-polar or weakly polar compounds [34].

CE-MS has been recognized recently as an attractive complementary technique for
metabolomic studies and is particularly suitable for the separation of polar and ionic
compounds based on a charge-to-mass ratio. The separation of CE is fast and highly
efficient and does not need extensive sample pretreatment [35]. In addition, CE-MS only
needs very low or even no organic solvents. A drawback of CE is the poor concentration
sensitivity due to the limited sample volume. The currently available CE-MS techniques
only allow sample loading of up to 1µL, and usually only utilize 10–100 nL [36]. In addition,
migration times of metabolites can fluctuate with changing environmental temperatures,
which can lead to reduced reproducibility [37].

DI-MS is a high throughput method with a short analysis time where the sample is
directly introduced into the ESI source without chromatographic separation by using a
syringe pump or nanospray chip [38]. However, its quantitative performance is inferior
to LC-MS because of the strong matrix effect. A stable isotope labeling strategy has been
applied to overcome the matrix effect [39].

NMR spectroscopy is an analytical technique based on the exploitation of the mag-
netic properties of atomic nuclei such as 1H, 13C, and 31P, allowing the identification of
different atomic nuclei based on their resonant frequencies, which are dependent on their
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location in the molecule [14,24,40]. The NMR technique can uniquely and simultaneously
quantify a wide range of organic compounds as well as provide unbiased information
about metabolic profiles [29]. The applications of NMR spectroscopy are not only limited
to liquid samples [41–44] but can also be used on solid [45,46] and tissue samples [47–50].
This platform is straightforward, largely automated, and non-destructive, so samples can be
reused for further studies [15,29]. The major limitation of NMR for comprehensive metabo-
lite profiling is its relatively low sensitivity, which makes it inappropriate for analyzing
low-abundance metabolites [29].

Metabolomics techniques can be divided into untargeted and targeted. Untargeted
metabolomics is a global, unbiased analysis of all small-molecule metabolites within a
biological system, under a given set of conditions [51]. It measures hundreds of metabolites
to identify metabolic changes, in a relative or non-quantitative way, and may serve to
identify changed pathways for hypothesis building and further targeted studies [52]. Com-
pared to targeted metabolomics, it is impossible to quantify all metabolites in untargeted
metabolomics due to the large number of variables as well as the identity of metabolites
is often unknown [53–55]. An important advantage of the untargeted approach is that it
may also identify new metabolism areas [56,57]. The principal challenges of untargeted
metabolomics lie in several aspects: (i) the protocols and time required to process the
generated a large amount of raw data, (ii) the bias towards detection of molecules in
high-abundance, (iii) the reliance on the intrinsic analytical coverage of the platform used,
(iv) identifying and characterizing unknown small molecules [58]. In contrast, targeted
metabolomics is the (semi-)quantitative measurement of a predefined set of metabolites [7].
It is commonly driven by a hypothesis or a specific biochemical question [59]. Targeted
metabolomics can be effectively used for a pharmacokinetic study of drug metabolism as
well as for measuring the influence of therapeutics or genetic modifications on specific
enzymes [60].

There are many public databases available for metabolomics studies, such as the
Human Metabolome Database (HMDB), METLIN, PubChem, and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [61]. MetaboAnalyst (https://www.metaboanalyst.ca/)
(accessed on 1 October 2022) is a powerful tool designed for processing and analyzing LC-
MS-based global metabolomics data including spectral processing, functional interpretation,
statistical analysis with complex metadata, and multi-omics integration [62].

2.2. Metabolomics Studies Related to AD

To investigate the current status of knowledge on metabolomics and insights into
AD, for this review, an advanced literature search was performed using the following
words: “Alzheimer’s disease [Title] AND (metabolomics OR lipidomics)”, until October
2022. It gave 498 results. We included experimental articles which compared the results
of metabolomics analysis performed in biological samples taken from controls and from
pathological conditions, both in AD animal models and in AD subjects. Case reports,
reviews, editorials, conference summaries, and communications articles were excluded.

2.2.1. Metabolomics in AD Human Studies

We found 44 articles that reported the outcomes of metabolomics analyses on CSF,
plasma, saliva, and brain tissue samples from human subjects (Table 1) [63–106]. Among
them, 5 articles used CSF sample alone, 25 articles used plasma samples alone, 8 articles
used brain samples alone, 4 articles used plasma along with CSF samples, 1 article used
postmortem CSF samples, and 1 article used saliva samples alone. These human studies
have used metabolomics to establish disease-related plasma, brain, and CSF metabolite
differences between cognitively normal (CN) individuals, mild cognitive impairment (MCI),
and AD patients as predictors of AD progression.

https://www.metaboanalyst.ca/
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Table 1. Summary of the included articles related to metabolomics studies performed on human subjects.

No. Reference Study
Population

Sample
Type Analytical Platform Altered Metabolites

1 Czech, et al., 2012 [63] 51 HC,
79 AD CSF LC-MS, GC-MS

Citrulline, Cortisol, Creatinine, Cysteine, Dopamine, Erythrol, Galactitol, Histamine, Methionine,
Noradrenaline, Normetanephrine, Phenylalanine, Pseudouridine, Pyruvate (incl.
Phosphoenolpyruvate), Quinic acid (incl. Chlorogenic acid), Ribonic acid, Scyllo-inositol, Serine,
Sorbitol (incl. Mannitol, Galactitol), Tyrosine, Uridine, Ornithine (incl. Arginine, Citrulline)

2 Ibáñez, et al., 2012 [64]

19 HC,
22 MCI,
9 MCI-AD,
23 AD

CSF CE-TOF-MS Choline, Valine, Arginine, Tripeptide, Carnitine, Dimethy-L-arginine, Creatine

3 Sato, et al., 2012 [65] 10 HC,
10 AD

Plasma,
CSF LC/APCI-MS Cholesterol, Desmosterol

4 Ibáñez, et al., 2013 [66]

21 HC,
21 MCI-S,
12
MCI-AD,
21 AD

CSF UHPLC-TOF-MS
Uracil, Xanthine, Uridine, Tyrosyl-serine, Methylsalsolinol, Nonanoylglycine, Dopamine-quinone,
Caproic acid, Vanylglycol, Histidine, Pipecolic acid, Hydroxyphosphinyl-pyruvate, Creatinine, Taurine,
Sphingosine-1-phosphate, Tryptophan, Methylthioadenosine

5 Luliano, et al., 2013 [67]
30 HC,
14 MCI,
30 AD

Plasma GC-MS Arachidic acid, Cerotic acid, cis-Vaccenic acid, Erucic acid, Linoleic acid, Mead acid

6 González-Domínguez, et al.,
2014 [68]

37 HC,
14 MCI,
42 AD

Plasma CE-MS Choline, Creatinine, Asparagine, Proline betaine, Methionine, Histidine, Carnitine, N-acetyl-spermidine,
Asymmetric dimethyl-Arginine, Tripeptide

7 González-Domínguez, et al.,
2014 [69]

18 HC,
22 AD Plasma DIMS/MS

Caprylic acid, Capric acid, Lauric acid, Myristic acid, Palmitoleic acid, Palmitic acid, Linoleic acid,
Docosahexaenoic acid, Leukotriene B4, Prostaglandin, Choline, Valine, Creatine, Glutamine, Glutamate,
Dopamine, Histidine, Carnitine, Arginine, N-acetyl glutamine, Glucose, Glycerophosphocholine,
Lyso-phospholipids, Phospholipids

8 González-Domínguez, et al.,
2014 [70]

18 HC,
22 AD Plasma ESI-Q-TOFMS Arginine, Guanidine, Histidine, Imidazole, Kynurenine, Oleamide, P18:0/C22:6-PlsEt,

P18:1/C20:4-PlsEt, Prostaglandins, Putrescine, Taurine

9 Wang, et al., 2014 [71]
57 HC,
58 MCI,
57 AD

Plasma UPLC-QTOF-MS
Panel for MCI: Thymine, Arachidonic acid, 2-Aminoadipic acid, N,N-dimethylglycine,
5,8-Tetradecadienoic acid
Panel for AD: Arachidonic acid, N,N-dimethylglycine, Thymine, Glutamine, Glutamic acid, Cytidine
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Table 1. Cont.

No. Reference Study
Population

Sample
Type Analytical Platform Altered Metabolites

10 González-Domínguez, et al.,
2015 [72]

30 HC,
30 AD Plasma FIA-APPI-QTOFMS

Palmitoleamide, Palmitamide, Linolenamide, Linoleamide, Oleamide, Stearamide, Palmitoleic acid,
Palmitic acid, Oleic acid, Urea, Alanine, Taurine, Picolinic acid, Creatine, Malic acid, Dopamine,
Serotonin, Ceramides (Cers), Diacylglycerols (DAG)

11 González-Domínguez, et al.,
2015 [73]

21 HC,
23 AD Plasma GC-MS

Adenosine, Asparagine, Aspartic acid, Cholesterol, Cystine, Glucose, Glutamine, Histidine, Isocitric
acid, Lactic acid, Oleic acid, Ornithine, Palmitic acid, Phenylalanine, Pipecolic acid, Pyroglutamic acid,
Stearic acid, Tryptophan, Tyrosine, Urea, Uric acid, Valine, α-Ketoglutarate

12 Graham, et al., 2015 [74]

37 HC,
16 MCI,
19
MCI-AD

Plasma LC-QTOF-MS
4-Aminobutanal, Creatine, γ-aminobutyric acid (GABA), L-ornithine, N1-diacetlyspermine,
N-acetylputrescine, Spermine, L-arginine, Methylthioadenosine, N1-acetyl-spermidine, Putrescine,
Spermidine

13 González-Domínguez, et al.,
2016 [75]

45 HC,
17 MCI,
75 AD

Plasma UPLC-QTOF-MS Lyso-phospholipids, Phospholipids, S1P, Cers, Sphingomyelins, Glycosphingolipids, Monoglycerides,
Acyl-carnitines, Histidine, Phenyl-acetyl-glutamine, Oleamide

14 Paglia, et al., 2016 [76] 19 HC,
21 AD

Frontal
cortex UPLC-MS

Acetylaspartic acid, Acetylglutamic acid, ADP, ADP-ribose, Alanine, AMP, Arginine, Asparagine,
Aspartic acid, Choline, Cystine, Glutamic acid, Glutamine, GMP, Guanosine, Hydroxyproline,
Hypoxanthine, IMP, Inosine, Methionine, Pantothenic acid, Pentose 5-phosphate, Proline, Pyruvate,
SAH, SAMe, Serine, Succinic acid, Threonine, Tryptophan, Uric acid, Valine, Xanthine, Xanthosine

15 Vaňková, et al., 2016 [77] 22 HC,
16 AD Plasma GC-MS

17-Hydroxypregnenolone, 17-Hydroxyprogesterone, 20α-Dihydroprogesterone, Allopregnanolone,
Allopregnanolone sulfate, Androstenedione, Conjugated 5α-androstane-3b,17b-diol, Isopregnanolone,
Pregnanolone, Pregnenolone sulfate, steroid

16 Xu, et al., 2016 [78] 9 HC,
9 AD Brain GC-MS 55 altered metabolites belonging to glucose utilization/clearance and brain energetics metabolism, and

urea and amino-acid metabolism

17 Chouraki, et al., 2017 [79] 1974HC,
93AD Plasma LC-MS Anthranilic acid, Glutamic acid, Taurine, Hypoxanthine

18 de Leeuw, et al., 2017 [80] 121 HC,
127 AD Plasma

Multiple Mass
spectrometry
platforms

Tyrosine, Glycylglycine, Glutamine, Lysophosphatic acid C18:2

19 Oberacher, et al., 2017 [81]
18 HC,
15 MCI,
21 AD

Plasma FIA-MS/MS PCaa C32:0, PCaa C34:1, PCaa C36:5, PCaa C36:6, PCaa C38:0, PCaa C38:3, PCae C32:1, PCae C32:2,
PCae C34:1, PCae C40:4, lysoPC aC16:0, lysoPC aC18:1, lysoPC aC18:2, SM (OH) C14:1



Int. J. Mol. Sci. 2023, 24, 4960 7 of 40

Table 1. Cont.

No. Reference Study
Population

Sample
Type Analytical Platform Altered Metabolites

20 Snowden, et al., 2017 [82] 14 HC,
14 AD Brain LC-MS and GC-MS Linoleic acid, Linolenic acid, Eicosapentaenoic acid, Oleic acid, Arachidonic acid

21 Hao, et al., 2018 [83] 14 HC,
16 AD CSF LC-MS/MS

142 metabolites belong to carboxylic acids, amino acids, fatty acyls, fatty acids and conjugates,
pyrimidines, nucleosides, and analogs. E.g.: 3-Oxododecanoic acid, Dodecanedioic acid,
Methylerythritol phosphate, Glutamine, Dihydrothioctic acid, Deoxyinosine, Succinyl-glutamate

22 Kim, et al., 2018 [84]
13 HC,
23 MCI,
14 AD

Plasma UHPLC-ESI-
MS/MS

PE (34:2), PE (36:2), PE (38:4), PE (38:5), PA (18:1/22:6), PI (18:0/20:4), PI (18:1/16:1), PI (18:2/16:1), Cer
(d18:1/22:0), Cer (d18:1/24:1), HexCer (d18:1/24:0), DG (18:0/22:6), DG (18:1/18:1), TG (50:1)

23 Muguruma, et al.,
2018 [85]

10 HC,
10 AD

Postmortem
CSF
(pCSF)

UHPLC-MS/MS Polyamine and tryptophan-kynurenine (Trp-Kyn) metabolisms, such as methionine sulfoxide,
3-methoxy-anthranilate, cadaverine, guanine, and histamine

24 Nasaruddin, et al.,
2018 [86]

27 HC,
16 AD Brain GC-MS

Arachidic acid, Arachidonic acid, Behenic acid, Cis-10-heptanoic acid, Cis-11,14,17-eicosatrienoic acid,
Cis-13,16-docosadienoic acid, Erucic acid, Lignoceric acid, Linolenic acid, Nervonic acid, Oleic acid,
Palmitic acid, Stearic acid

25 van der Lee, et al.,
2018 [87]

23,882 HC,
1356 AD Plasma NMR spectroscopy High-density lipoprotein subfractions, Docosahexaenoic acid, Ornithine, Glutamine, Glycoprotein

acetyls

26 Kim, et al., 2019 [88] 9 HC,
9 AD

Postmortem,
brain UPLC-MS Hypotaurine, Myo-inositol, Oxo-proline, Glutamate, N-acetyl-aspartate, Cortisol, N-acetylaspartate

(NAA), N-acetylaspartylglutamate (NAAG), Acetylcholine, Alanine

27 Lin, et al., 2019 [89]
15 HC,
10 MCI,
15 AD

Plasma LC-MS/MS Propionylcarnitine, Valerylcarnitine, Glutarylcarnitine/Hydroxyhexanoylcarnitine, Arginine,
Phenylalanine, Creatinine, Symmetric dimethylarginine (SDMA)

28 MahmoudianDehkordi, et al.,
2019 [90]

37 HC,
284 early
MCI, 505
late MCI,
305 AD

Plasma UPLC-MS/MS Cholic acid, Deoxycholic acid (DCA), Glycodeoxycholic acid (GDCA), Glycolithocholic acid (GLCA),
Taurolithocholic acid (TLCA)

29 Marksteiner, et al.,
2019 [91]

25 HC,
26 MCI,
27 AD

Saliva FIA-MS/MS PCae C34:1-2, PCae C36:1-2-3, PCaeC38:1-3, PCae C40:2-3, PCae C36: (1-2-3)
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Table 1. Cont.

No. Reference Study
Population

Sample
Type Analytical Platform Altered Metabolites

30 Peña-Bautista, et al., 2019 [92] 29 HC,
29 AD Plasma UPLC-Q-TOF-MS Choline, L-carnitine, 4-Deoxyphysalolactone, Rescinnamine, Chlorohydrin, Brassinin, Nicotinamide

ribotide, Cyasterone

31 Snowden, et al., 2019, [93] 14 HC,
14 AD Brain LC-MS Aminobutanal, Arginine, Aspartate, Dihydroxy-phenylalanine, Dopamine, Gamma-aminobutanoate,

Glutamate, Glycine, Guanidinobutanoate, Guanosine, Ornithine, Serotonin, Tryptophan, Tyrosine

32 van der Velpen, et al., 2019
[94]

34 HC,
40 AD

Plasma,
CSF LC-MS/MS

Acetylcarnitine, Acylcarnitines C14, Acylcarnitines C16, Acylcarnitines C18, cis-Aconitate, Citrate,
Creatinine, Decanoylcarnitine, Hexanoylcarnitine, Kynurenic acid, Lauroylcarnitine, L-carnitine,
Octanoylcarnitine, Quinolinic acid, Tryptophan, α-Ketoglutarate

33 Ahmad, et al., 2020
[95]

Two inde-
pendent
cohorts:
142 MCI
and 40
MCI

CSF and
plasma UHPLC-MS/MS LPA (C16:0), LPA (C16:1), LPA (C22:4), LPA (C22:6), and isomer-LPA (C22:5)

34 Shao, et al., 2020 [96] 94 HC,
44 AD Plasma UPLC-MS

Polyunsaturated fatty acids (PUFAs), Docosahexaenoic acid (DHA, C22:6), medium- and long-chain
Acyl-Carnitines, Cholic acid (CA), Chenodeoxycholic acid (CDCA), Allocholic acid, Tryptophan,
Serotonin, Indolelactic acid

35 Byeon, et al., 2021 [97]
18 HC,
15 MCI,
17 AD

CSF LC-MS LPC, PC, LdMePE, LPE, dMePE, PE class

36 Liu, et al., 2021 [98] 19 HC,
25 AD

Brain
tissue LC-MS/MS

3-Methylguanine, Acetylcholine, Cytosine, Glycylproline, Guanosine, Histidinyl-aspartate,
Imidazoleacetic acid, Indole-3-propionic acid, Inosine, Ketoleucine, Linoleamide, L-methionine,
L-norleucine, L-valine, N6-methyladenosine, N-acetylglutamic acid, N-acetyl-L-aspartic acid,
N-acetyl-L-phenylalanine, Palmitoleic acid, Phenylalanine, Phenylpyruvic acid, Piperidine, Sarcosine,
Serylglycine, S-formylglutathione, Sphingosine, Theaflavin

37 Liu, et al., 2021 [99] 42 HC,
40 AD Plasma LC-MS/MS Cer, ChE, DG, LPC, PC, PE, PI, SM, and TG class

38 Nielsen, et al., 2020 [100]
10 HC,
10 MCI,
10 AD

Plasma LC-MS and NMR,
spectroscopy Valine, Histidine, Allopurinol riboside, Inosine, 4-Pyridoxic acid, Guanosine
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Table 1. Cont.

No. Reference Study
Population

Sample
Type Analytical Platform Altered Metabolites

39 Horgusluoglu, et al.,
2022 [101]

362 HC,
270 early
MCI,
494 late
MCI,
298 AD

Plasma HPLC-MS/MS Short-chain Acylcarnitines/amino acids and medium/long-chain Acylcarnitines

40 Khan, et al., 2022 [102] 54 HC,
59 AD Plasma LC-MS/MS PS (18:0/18:0), PS (18:0/20:0), PC (16:0/22:6), PC (18:0/22:6), PS (18:1/22:6)

41 Maffioli, et al., 2022 [103] 20 HC,
23 AD

Hippocampal
tissue LC-MS and GC-MS

Glycerol 3 phosphate, Erythrose 4 phosphate, Glucose, Deoxyuridine, Lactic acid, Saccharopine, Uridine
5′ diphosphate, Oxidized glutathione, Urea, Uracil, Succinic acid, Arginine, Beta D Glucose 6 phosphate,
Glucosamine 6 phosphate, AICAR, Citrulline, Alanine, Pyruvic acid, Glutathione, Guanidoacetic acid,
Mevalonate P, Lysine

42 Ozaki, et al., 2022 [104]
40 HC,
26 MCI,
40 AD

Plasma CE-TOF-MS Ornithine, Uracil, Lysine

43 Peña-Bautista, et al.,
2022 [105]

20 HC,
11 AD,
31
MCI-AD

Plasma UPLC-TOF/MS
Cer, LPE, LPC, MG, and SM were observed as being altered significantly between the preclinical AD
and healthy groups. DG, MG, and PE were observed as being altered significantly between the MCI-AD
and healthy groups.

44 Weng, et al., 2022 [106] 19 HC,
16 AD Plasma NMR spectroscopy

3-Phosphoglycerate, Fructose-6-phosphate, Glucose-6-phosphate, Betaine, Methyl-histidine,
Glycerylphosphorylcholine, 2-Oxoglutarate, Citrate, Malate, Ergothioneine, Glutathione disulfide,
Taurine, Carnosine, Ornithine, Glycine, Alanine, Serine, Glutamine, Tryptophan, Valine
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In humans, CSF is the only fluid that can be sampled from the CNS, and therefore
CSF is often used to obtain some information about what is happening in the brain. The
composition of CSF reflects, to some extent, the composition of the brain’s extracellular
space environment, which is in close connection with the metabolic processes occurring in
this fluid and in the brain cells [107]. Several studies have shown that high CSF-total tau
(tTau) and CSF-hyperphosphorylated tau (pTau) levels were found in early AD [108,109].
It is hypothesized that the metabolome in CSF may be altered in MCI or AD [64]. For
that reason, the number of metabolomics-based studies investigating CSF composition is
rapidly increasing. However, the collection of CSF through a lumbar puncture procedure is
invasive and can be painful. It requires a patient’s cooperation which may be challenging
especially for elderly people [15].

Blood samples are collected more easily compared to CSF, and would reduce the
need for expensive, invasive, and time-consuming tests [110]. However, the difficulty in
developing blood-based biomarkers for AD is underscored by the often-unknown ability of
the molecule to pass through blood–brain barrier (BBB) and the difficulty in directly linking
peripheral markers with brain processes [15]. Nevertheless, it is generally stated that the
BBB is disrupted, which will increase permeability, with aging and in AD. Moreover, BBB
disruption worsens as cognitive impairment increases, which means the relationships
between metabolite concentrations in blood and the brain are strengthened [111]. However,
there needs to be a somewhat better specification on what is meant by BBB permeability
and conclusions on altered BBB transport [112].

Below we describe the results that have been reported in the metabolomics studies
and summarize them in Table 1.

Maffioli et al. [103] explored the metabolome of healthy (n = 20) and AD-affected
(n = 23) individuals by performing an untargeted metabolomics analysis on hippocam-
pal samples. They detected 126 metabolites in total; 13 and 11 were up- and down-
regulated, respectively, when comparing HC with AD samples. Enrichment analysis
revealed that the most significantly upregulated pathways in AD samples were Arg/Pro
metabolism and the pentose phosphate pathway. In contrast, the most significantly down-
regulated ones in AD samples were Ala/Asp/Glu metabolism, pyruvate metabolism,
glycolysis/gluconeogenesis, pyrimidine metabolism, and aminoacyl-tRNA biosynthesis.
In addition, gender-specific hallmarks of AD were explored. They found women with AD
display a decrease in the D-serine/total serine ratio compared with men with AD.

To investigate the association between fatty acid metabolism and AD,
Snowden et al. [82] conducted an untargeted metabolomics study. The samples were
brain tissue from 43 individuals (14 AD, 14 healthy controls (HC), and 15 asymptomatic
AD), ranging from 57 to 95 years old. They found that lower tissue levels of linoleic acid,
linolenic acid, eicosapentaenoic acid, oleic acid, and arachidonic acid were related to worse
cognitive performance, whereas higher brain DHA levels were associated with poorer
cognitive performance.

Three potential biomarkers (ornithine, uracil, lysine) were identified by CE-TOF-MS
on plasma samples from 40 HC, 26 MCI, and 40 AD patients [104]. For ornithine, there
were significant differences between the HC and AD groups and between the MCI and
AD groups. For uracil and lysine, there were significant differences between the HC and
AD groups. They also measured mRNA expression levels of the metabolic enzymes in
ornithine pathways, spermine synthase (SMS), nitric oxide synthase2 (NOS2), and ornithine
transcarbamylase (OTC) mRNA levels were significantly different among the three groups.

Gonzalez-Dominguez et al. [68] utilized CE-TOF-MS to discover the early diagnostic
biomarkers of Alzheimer’s disease. The serum samples were obtained from different
stages of the disease (42 AD, 14 MCI, 37 HC). They found that with the progression of
the disease, the levels of choline, creatinine, asymmetric dimethyl-arginine, homocysteine-
cysteine disulfide, phenylalanyl-phenylalanine, and different medium-chain acylcarnitines
were observed to increase significantly, while asparagine, methionine, histidine, carnitine,
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acetyl-spermidine, and C5-carnitine levels were reduced. Those metabolites are related to
oxidative stress and defects in energy metabolism.

Shao et al. [96] used RP-UPLC-MS based untargeted metabolomics to measure the
concentration of plasma metabolites among AD (n = 44) and cognitively normal control
(n = 94) groups. Then, another cohort (43 HC, 31 neurological disease controls, 30 AD) was
used to validate the result. They identified five metabolites that were able to distinguish
AD patients from the HC group, which are allocholic acid, cholic acid, chenodeoxycholic
acid, indolelactic acid, and tryptophan. This finding suggested that altered bile acid profiles
in AD and MCI might indicate an early risk for AD development.

Wang et al. [71] applied UPLC-MS and GC-MS to analyze plasma samples from HC,
MCI, and AD patients. They found a biomarker panel consisting of six metabolites (glu-
tamine, glutamic acid, arachidonic acid, N,N-dimethylglycine, thymine, and cytidine) that
can discriminate AD patients from control. Another panel of five metabolites (arachidonic
acid, N,N-dimethylglycine, 2-aminoadipic acid, thymine, and 5,8-tetradecadienoic acid)
was able to differentiate MCI patients from control subjects.

Peña-Bautista et al. [105] performed an untargeted lipidomics analysis on plasma
samples from 20 healthy participants, 31 MCI-AD, and 11 preclinical AD. Statistically
significant differences in the levels of Cer, lysophosphatidylethanolamine (LPE), lysophos-
phatidylcholine (LPC), and monoglyceride (MG) were observed between the preclinical
AD and healthy groups. Statistically significant differences were also observed in the levels
of diglycerol (DG), MG, and phosphatidylethanolamines (PE) between healthy groups
and MCI-AD. In addition, LPE (18:1) showed significant differences between healthy
participants and early AD (MCI and preclinical).

To determine whether the lipidome in AD has racial and ethnic disparities, Khan
et al. [102] conducted a targeted lipidomics analysis of plasma samples from 54 HC and
59 AD from African American/Black (n = 56) and non-Hispanic White (n = 57) backgrounds.
Five lipids (PS (18:0/18:0), PS (18:0/20:0), PC (16:0/22:6), PC (18:0/22:6), and PS (18:1/22:6))
were altered between the AD and HC sample groups. As for racial analysis, PS (20:0/20:1)
was found reduced in AD in samples from non-Hispanic White but not altered in African
American/Black samples.

Chouraki et al. [79] conducted a longitudinal assessment for 2067 participants with
an average period of 15.6 ± 5.2 years to identify the novel biomarkers association with
AD. Among 2067 participants, 93 developed dementia, including 68 with AD. Plasma
samples were collected every 4 to 8 years. Four candidate plasma biomarkers were found
for dementia through the metabolomics technique. Anthranilic acid, glutamic acid, taurine,
and hypoxanthine levels were found to be associated with the risk of dementia.

Van der Lee [87] studied 299 metabolites in two discovery cohorts (n = 55,658) to find
the associations with cognition. A total of 15 metabolites were discovered and replicated
associated with cognition including subfractions of high-density lipoprotein (HDL), docosa-
hexaenoic acid, ornithine, glutamine, and glycoprotein acetyls. Moreover, fish (oil) intake
was found to be strongly associated with DHA blood concentrations (p = 9.9 × 10−53).
Physical activity was found to be associated with increased (p < 0.05) levels of metabolites
that were associated with higher cognitive function (medium and large HDL subfractions)
and decreased levels of metabolites that were associated with lower cognitive function
(glycoprotein acetyls, ornithine, and glutamine). Smokers were found to have decreased
concentrations of all HDL subfractions associated with higher cognitive function and
increased concentrations of metabolites associated with decreased cognitive function.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) began in 2004, and unites
researchers who are investigating longitudinal data in AD. Here, clinical, neuroimaging,
cognitive, biofluid biomarkers, and genetic data were collected to define the progression
of AD [113]. Horgusluoglu et al. [101] systematically interrogated metabolomic, genetic,
transcriptomic, proteomic, and clinical data from ADNI and found that short-chain acylcar-
nitines/amino acids and medium/long-chain acylcarnitines are most associated with AD
clinical severity. Arnold et al. [114] used metabolomics data from 1571 participants of ADNI
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to investigate AD group-specific metabolic alterations. Fifteen metabolites were found to be
associated with the female sex and APOE ε4 genotype: For CSF Aβ1–42, threonine showed
a sex-specific effect with a greater effect size in males, while valine showed a larger effect in
females. For CSF p-tau, acylcarnitines C5-DC (C6-OH), C8, C10, C2, and histidine showed
stronger associations in females, whereas the related ether-containing PCs, PC ae C36:1, PC
ae C36:2, asparagine, glycine, and one hydroxy-SM (SM (OH) C16:1) yielded stronger asso-
ciations in males. MahmoudianDehkordi et al. [90] measured 15 primary and secondary
bile acids in serum levels of 1464 subjects (37 CN older adults, 284 early mild cognitive
impaired patients, 505 late mild cognitive impaired patients, and 305 AD). Primary bile
acid cholic acid was found to be significantly lower serum levels in AD patients compared
to CN subjects, whereas higher levels of secondary bile acids deoxycholic acid (DCA) and
its conjugated forms (glycodeoxycholic acid (GDCA), glycolithocholic acid (GLCA), and
taurolithocholic acid (TLCA)) were significantly associated with worse cognitive function.

Taken together, metabolomics allows the detection of metabolic alterations by monitor-
ing multiple metabolites simultaneously. Multiple human studies have used
metabolomics to distinguish age and sex-specific changes in plasma, brain, or CSF samples
between CN subjects, MCI, and AD patients as predictors of AD progression which were
then tested in animal models of AD to identify possible underlying causal mechanisms.

2.2.2. Metabolomics in Animal Models of AD

More insights have been obtained on changes in metabolic pathways in AD, however,
the lack of substantial time course data in humans is hindering understanding the sequence
of disease stage-dependent changes in metabolic pathways. In other words, if we do not
follow the change of metabolites and lipids over time, we cannot understand what changes
along with disease progression and what may be important for developing adequate (stage-
dependent) treatment of AD. This knowledge gap in biomarkers indicates that the onset
and early stage of AD cannot be bridged by human studies since extensively obtaining
human samples is by far more costly and time-consuming than obtaining samples from
animals, it is also impossible to obtain human brain samples in longitudinal studies from
the human aging population. Therefore, there is a need for alternative approaches to obtain
the relation between the changes in biomarkers and AD stages, which can be achieved
through animal model studies [115].

The most commonly used experimental animal models are transgenic mice that express
human genes associated with familial AD (FAD) that result in the formation of amyloid
plaques (by expression of human APP alone or in combination with human PSEN1),
whereas human familial AD accounts for only 5% of cases [115–119]. Though not ideal,
animal models provide an opportunity to study the early pathological disease mechanisms
that can help to unravel processes associated with the development of AD. Additionally,
animal models allow the investigation of (brain) tissues and fluids, and longitudinal studies
can be performed to track disease progression, which cannot be accomplished in humans.
Currently, along with the popular animal models of FAD including APP (Tg2576), APP/PS1,
or 3xTg AD mice, the development of humanized mouse models expressing genetic risk
factors, such as APOE ε4 allele, allows researchers to study mechanisms of late-onset
sporadic AD [120–122].

In the present review, we specifically summarized AD mouse model research as only
mouse research included age information in young mice. As summarized in Table 2, we
found 42 articles [123–164] that carried out metabolomics analyses on samples of the brain,
plasma, feces, spleen, and pancreas in mouse models of AD. Among them, nine articles
studied plasma samples. A total of 21 articles only studied brain samples, and 9 articles
conducted metabolomics experiments on plasma and brain samples. One study profiled
spleen and brain samples, one study used serum and pancreas samples, one study used
pancreas and serum samples, and one article used serum, brain, and feces samples on AD
research. The results are described below.
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Table 2. Summary of the included articles related to metabolomics studies performed on animal models.

Reference Study Population Sample
Type Analytical Platform Altered Metabolites

1 Salek, et al., 2010 [123]

Two age groups (2–3 months
and 12–13 months) of
transgenic CRND8 APP
695 and non-transgenic
littermates (controls)

Brain samples with
seven different brain
regions

NMR-based
metabolomics

Lactate, Aspartate, Glycine, Alanine, Leucine, Iso-leucine, Valine,
N-acetyl-L-aspartate, Glutamate, Glutamine, Taurine, Gamma-amino
butyric acid, Choline, Phosphocholine, Creatine, Phosphocreatine, Succinate

2 Hu, et al., 2012 [124]

50-week-old TASTPM
transgenic AD mice and
5-month old wild type
C57BL/6J mice

Plasma and brain
tissues GC-MS AA, Androstenedione, Cortisol, D-fructose, D-galactose, D-glucose,

Gluconic acid, Linoleic acid, L-serine, L-threonine, L-valine, Palmitic acid

3 Trushina, et al., 2012 [125]
APP/PS1 mice at 16 months
of age and age-matched nTg
controls

Hippocampus GC-MS Threonic acid, Ethanolamine, Alanine, Mannitol, Glycerol 3-P, Pyroglutamic
acid, N-acetyl-aspartate, Lactic Acid

4 Tajima, et al., 2013 [126]
APP/tau mice at 4, 10, and
15 months of age and
age-matched wild-type mice

Brain tissue, Plasma RPLC-ESI-TOFMS

12-HETE, 19,20-diHDoPE, 17,18-diHETE, 19,20-EpDPE, 17,18-EpETE,
Prostaglandin D2, 15-HETE, Phosphatidylcholines, PEs with
Polyunsaturated fatty acids, Docosahexaenoyl (22:6) Cholesterol Ester
(ChE), Ethanolamine Plasmalogens (pPEs), Sphingomyelins (SMs)

5 González-Domínguez, et al.,
2014 [127]

6-month-old APP/PS1 mice
and age-matched controls

Brain tissue with
different regions

GC-MS and
UPLC-MS

40 significant differences in metabolites related to abnormal purine
metabolism, bioenergetic failures, dyshomeostasis of amino acids, and
disturbances in membrane lipids

6 Kim, et al., 2014 [128]

Model: mice receive an
intracerebroventricular
infusion of Aβ, Control:
age-matched untreated mice

Plasma NMR-MS
Niacinamide, AMP, Hypoxanthine, Citrate, Lactate, Pyruvate, Creatine,
Choline, Acetate, Phenylalanine, Glycine, Valine, Tyrosine, Alanine,
Glucose, Glutamine

7 Lalande, et al., 2014 [129]

Single-transgenic Tg2576
mice at 1, 3, 6, and 11 months
of age, and age-matched
controls

Brain tissues with
five different brain
regions

NMR-MS γ-Aminobutyric acid, Glutamate, N-acetylaspartate (NAA), Myo-Inositol,
Creatine, Phosphocholine, Glu, Creatine, Taurine

8 González-Domínguez, et al.,
2015 [130]

APP/PS1 mice at 6 months
old, and age-matched nTg
controls

Plasma FI-APPI-MS,
DI-ESI-MS

Choline, Serine, Valine, Threonine, Pyroglutamate, Creatine,
Phosphoethanolamine, Histidine, Carnitine, Glucose, Tyrosine, Tryptophan,
GPE, Inosine, Urea, Myristic Acid, Palmitoleic acid, HEPE,
Lysophosphocholines, Phosphocholines, Diacylglycerols, Cholesteryl esters,
Triacylglycerols
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Table 2. Cont.

Reference Study Population Sample
Type Analytical Platform Altered Metabolites

9 González-Domínguez, et al.,
2015 [131]

APP/PS1 mice at 6 months of
age and age-matched nTg
controls

Plasma GC-MS, UHPLC-MS

Phosphoethanolamine, Adenosine monophosphate, Citrulline, Citric acid,
Monostearin, Bile acids, Eicosanoids, Fatty acid amides, Sphingoid bases,
Lyso-phospholipids, Phospholipids, Sphingomyelins, Lactic acid,
B-hydroxybutyric acid, Urea, Phosphoric acid, Glycine, Succinic acid,
Threonine, Malic acid, Pyroglutamic Acid, Creatinine, Proline,
Glycerol-3-phosphate, Citric acid, Glucose, Tyrosine, 6Myoinositol, Uric
Acid, Glucose-6-phosphate, Tryptophan, Stearic acid,
Myoinositol-1-phosphate, Serotonin, 1,3-Bisphosphoglycerate, Cholesterol

10 González-Domínguez, et al.,
2015 [132]

6-month-old APP/PS1 mice
and age-matched controls

Brain tissue with
different regions LC-QTOF-MS

52 significant differences in metabolites including phospholipids, fatty acids,
purine and pyrimidine metabolites, acylcarnitines, sterols, and amino acids
which related to the homeostasis of lipids, energy management, and
metabolism of amino acids and nucleotides

11 Li, et al., 2015 [133]

Model: mice receive
hippocampal region infusion
of Aβ1-42, Control:
age-matched untreated mice

Plasma, Brain
tissues UPLC-MS/MS Phenylalanine, Tryptophan, Dihydrosphingosine, LPC (18:2), LPC (20:4),

LPC (22:6), LPC (16:0), LPC (16:0), LPC (18:1), LPC (18:0)

12 Li, et al., 2016 [134]
APP/PS1 mice at 1 month old
and age-matched nTg
controls

Brain tissues UPLC-MS
Hypoxanthine, Hexadecasphinganine, Dihydrosphingosine,
Phytosphingosine, LPC (13:0), LPC (15:1), LPC (15:0), LPC (16:0), LPC (18:3),
LPC (18:1), LPC (18:0)

13 Pan, et al., 2016 [135]
APP/PS1 mice at 1, 8, 10, 12,
and 18 months of age, and
age-matched nTg controls

Plasma and brain
tissues UPLC-TQ-MS

Phenylalanine, Trypotophan, Tyrosine, a-Aminoadipic acid, Asparagine,
Histidine, Phenylalanine, Valine, Isoleucine, Methionine, Tyrosine,
Methionine sulfoxide, Serotonin, Taurine

14 Nuriel, et al., 2017 [136] APOE mice at 14.5 months of
age and age-matched controls Brain tissues UPLC-MS

Myristic acid, DHA, Stearic acid, 12-Hydroxydodecanoic acid, Arachidic
acid, Palmitic acid, Trisaccharide, Tetrasaccharide, Disaccharide,
Phylloquinone, Tocopherol, Dehydroascorbic acid, Inosine
5′-monophosphate (IMP), D-fructose 6-phosphate, Succinoadenosine,
Carnitine, Citric acid/Isocitric acid, Malic acid, ATP, Lanosterol, Cholesteryl
19acetate, Leucine, Proline, Glycine, Quinaldic acid, Kynurenine, Kynurenic
acid, S-Adenosylhomocysteine, Carnosine, 4-Oxoproline, Tyramine,
Thymidine, Uracil, GMP, Methylglutarylcarnitine, Trimethylamine N-oxide,
2-Hydroxypyridine, N-acetylneuraminic acid, Hydroxybutyric acid
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Table 2. Cont.

Reference Study Population Sample
Type Analytical Platform Altered Metabolites

15 Pan, et al., 2017 [137]
APP/PS1 mice at 6 and
12 months of age and
age-matched controls

Plasma and brain
tissues LC-MS/MS

Cholic acid, Hyodeoxycholic acid, Lithocholic acid, Taurocholic acid,
Tauromuricholic acid (α and β), Tauroursodeoxycholic acid, β-Muricholic
acid, Ω-Muricholic acid

16 Bergin, et al., 2018 [138]
APP/PS1 mice at 7 and
13 months of age and
age-matched nTg controls

Brain tissues,
Plasma HPLC-MS Arginine, Citrulline, Ornithine, Agmatine, Putrescine, Spermine,

Spermidine

17 Gao, et al., 2018 [139]
APP/PS1 mice at 12 months
of age and age-matched nTg
controls

Plasma UPLC-MS

Acetoacetyl-CoA, 21-Deoxycortisol, 9 (10)-EpOME,
3α-Hydroxy-5β-androstan-17-one, PGF2α, Dehydroepiandrosterone,
3α,21-Dihydroxy-5β-pregnane-11,20-dione, Sphinganine, Sphingosine,
DHA, Linoleic acid, 4,4-Dimethyl-5α-cholest-7-en-3β-ol, Arachidonic acid,
PC (20:4 (5Z,8Z,11Z,14Z)/0:0), 9-Cis-retinoic acid, LTA4

18 Sun, et al., 2018 [140] 21-week-old APP/PS1 mice
and age-matched controls Plasma UPLC-QTOF/MS

Arachidonic acid, Cer (d18:0/12:0), Glycerophosphocholine, Leukotriene B4,
Linoleic acid, L-tryptophan, Phosphorylcholine, Phytosphingosine,
Prostaglandin F2a, Prostaglandin G2, Sphinganine

19 Zheng, et al., 2018 [141]
APP/PS1 mice at 5 and
10 months of age and
age-matched controls

Brain tissues NMR-based
metabolomics

Adenosine monophosphate, ADP, Alanine, Aspartate, Choline,
Creatine/phosphocreatine, Glutamate, Glutamine, Glycerolphorylcholine,
Glycine, Inosine, Inosine monophosphate, Lactate, Myo-inositol,
N-acetylaspartate, Nicotinamide adenine dinucleotide, Phosphocholine,
Succinate, γ-Aminobutyric acid

20 Zhou, et al., 2018 [142]
10-month-old APP/PS1
double transgenic mice and
age-matched controls

Brain tissues 13C NMR based
metabolomic

Glutamate, Glutamine, γ-Aminobutyric acid, Aspartate, Succinate, Lactate,
Alanine

21 Chang, et al., 2019 [143] 5-month-old APP/PS1 mice
and age-matched controls

Brain tissue with
different regions GC-TOF-MS

2-Hydroxyglutaric acid, 4-Guanidinobutyric acid, Aspartic acid,
Beta-alanine, Citric acid, Creatinine, Ethanolamine, Fumaric acid, GABA,
Glucose, Glucose-6-phosphate, Glutamic acid, Glycerol, Glycine, Inosine,
Lactic acid, Leucine, Malic acid, N-acetyl-L-aspartic acid, Oleic acid, Proline,
Pyroglutamic acid, Ribose-5-phosphate, Serine, Succinic acid, Threonine,
Threonolactone, Tyrosine, Uracil, Urea, Valine

22 Li, et al., 2019 [144]
3xTg-AD mice at 19 months
of age and age-matched nTg
controls

Plasma UPLC-Q/TOF-MS
Linoleic acid, 9 (10)-EpOME, DHA, Arachidonic acid, 11b-PGF2a,
Sphingosine, Pyruvate, L-Leucine, Ursocholic acid, Corticosterone,
L-Tryptophan, Dodecanoic acid, L-lysine



Int. J. Mol. Sci. 2023, 24, 4960 16 of 40

Table 2. Cont.

Reference Study Population Sample
Type Analytical Platform Altered Metabolites

23 Liu, et al., 2019 [145]
APP/PS1 mice at 6 and
9 months of age and
age-matched controls

Pancreas and serum NMR-based
metabolomics

2-Aminobutyrate, Acetate, Adenosine-monophosphate, AMP,
Adenosine-triphosphate, ATP, Alanine, Allantoin, Aspartate, Betaine,
Choline, Citrate, Fumarate, Glucose, Glucose 1-phosphate, Glutamine,
Glycine, Lactate, Leucine, Malate, Nicotinurate, Pyruvate, Reduced
nicotinamide adenine dinucleotide phosphate, NADPH, Serine, Succinate,
Taurine, Valine

24 Liu, et al., 2019 [146]

3-month-old C57BL/6 mouse
with local administration of
Aβ peptide into brain, and
3-month-old controls

Hippocampus UPLC-QTOF/MS Adenine, Adenosine, Citrulline, Inosine, L-Arginine, L-Isoleucine,
L-Threonine, Normetanephrine

25 Pan, et al., 2019 [147] 8-month-old PLB4 mice and
age-matched controls Brain tissues LC-MS Leucine, Creatinine, Putrescine and species of Acylcarnitines, LysoPC, PCs,

Sphingomyelin

26 Rong, et al., 2019 [148]

Model: SD rats (200 ± 20 g)
induced by D-Gal and
Aβ25–35 injection, Control:
age-matched untreated rats

Plasma, Brain tissue UPLC-Q/TOF-MS LysoPC (17:0), LysoPC (20:2), LysoPC (20:4), LysoPC (16:0), LysoPC (18:0),
LysoPE (20:4), PE (18:1), PE (22:4)

27 Hunsberger, et al., 2020 [149]
APP/PS1 mice at 6, 12, and
24 months of age and
age-matched controls

Prefrontal cortex,
Hippocampus,
Spleen

LC-MS and GC-MS

1-Methyl nicotinamide, 2-Methylbutyroylcarnitine, 7-Methylguanine,
Arginine, Argininosuccinic acid, Azelaic acid, Dimethylglycine,
Formiminoglutamic acid, Glutathione, Glycerate, Glycolic acid,
Guanidinobutanoic acid, Hydroxyproline, Hydroxypyruvic acid,
Isovalerylcarnitine, L-glutamic acid, L-methionine, L-tyrosine,
Methylhistamine, Methylhistidine, N6-acetyl-L-lysine, N-acetyl L-aspartic
acid, N-acetylneuraminic acid, Orotate, Phenylpyruvic acid,
Phosphocreatine, Propionylcarnitine, Pyroglutamic acid, Pyruvate,
S-adenosylmethionine, SAICAR, Sphingosine-1-phosphate, Uracil, Uridine

28 Kim, et al., 2020 [150]
5xFAD mice at 8 and 12
months of age and
age-matched controls

Hippocampus UPLC-MS Nicotinamide, Adenosine monophosphate, LysoPC (16:0), LysoPC (18:0),
and LysoPE (16:0)

29 Sun, et al., 2020 [151]

Model: SD rats (weight
260 ± 20 g) receive an
infusion of Aβ1-42. Control:
age-matched untreated rats.

Plasma HPLC-MS

Arachidic acid, FA (18:0), FA (18:1), FA (18:2), FA (18:3), CE (20:5), CE (22:6),
Cer (d18:0/20:0), Cer (d18:1/24:0), MG (16:0/0:0/0:0), DG (18:0/16:0/0:0),
TG (16:0/18:0/18:1), LPC (18:0), LPC (20:4), LPC (20:5), LPC (20:1), LPC
(O-18:0), LPC (P-16:0), LPC (P-18:0), PC (18:2/18:0), PC (18:2/18:2), PC
(18:2/20:4), PC (35:1), PC (35:4), PC (36:1), PC (O-32:0), SM (d18:0/16:1), SM
(d40:2)
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Table 2. Cont.

Reference Study Population Sample
Type Analytical Platform Altered Metabolites

30 Tondo, et al., 2020 [152] 4-month-old 16 rTg4510 mice
and age-matched controls Brain LC-MS Glutamine, Serotonin, Sphingomyelin C18:0

31 Yi, et al., 2020 [153]

SD rats (180 ± 40 g) were
induced by Aβ1-42 injection,
Control: age-matched
untreated rats

Prefrontal cortex UPLC-
TripleTOF/MS

Cer (d18:1/16:0), Cer (d18:1/24:1 (15Z)), GlcCer (d14:1/20:0), Galbeta-cer
(d18:1/20:0), Cer (d18:1/18:0), PI (18:0/0:0), LysoPE (16:1 (9Z)/0:0),
Glucosylceramide (d18:1/18:0), PE (18:1 (9Z)/16:0), LysoPC (16:1 (9Z)/0:0),
PI (20:4 (5Z,8Z,11Z,14Z)/0:0), PE (16:1 (9Z)/P-16:0), 4-Nitrophenol, LysoPE
(0:0/22:6 (4Z,7Z,10Z,13Z,16Z,19Z)), PE (15:0/14:1 (9Z)), Cer (d18:1/20:0), PC
(18:1 (11Z)/18:2 (9Z,12Z)), PS (20:1 (11Z)/18:0), PC (18:1 (11Z)/20:4
(5Z,8Z,11Z,14Z)), PE (18:3 (9Z,12Z,15Z)/22:1 (13Z)), Cer (d18:0/22:0), PE
(15:0/22:0)

32 Zhang, et al., 2020 [154]
APP/tau mice at 7 months of
age and age-matched
wild-type mice

Brain tissue UHPLC-QTOF/MS
Hydroxy-E4-neuroprostane, Prostaglandin D3, PS (18:0/22:5), PC
(14:0/16:0), PC (16:0/19:0), PE (22:5/22:6), PE (15:0/22:4), PE (18:1/20:2),
Leukotriene D4, Cer (d18:1/18:1)

33 Zhang, et al., 2020 [155]
APP/tau mice at 2, 3, and
7 months of age and
age-matched wild-type mice

Brain tissue, Plasma UHPLC-QTOF/MS Lysophospholipids, PCs, Pes, Cer, Fatty acids, Diacylglycerols (DGs),
Triacylglycerols (TGs)

34 Dejakaisaya, et al., 2021 [156]
Six-month-old mixed-sex
Tg2576 mice and c57 × SJL
(WT) littermates

Cortex LC-MS

2′-Deoxyguanosine 5′-monophosphate, Lysophosphatidylethanolamines
(18:0), Diglyceride (P-32:1), 3–4-Hydroxyphenyllactate,
Npi-methyl-l-histidine, O-butanoylcarnitine, O-propanoylcarnitine,
Phosphatidylethanolamine (44:3), Phosphatidylserine (36:2),
Phosphatidylserine (40:7), Phosphatidylserine (44:12)

35 Speers, et al., 2021 [157] 8-month-old 5xFAD mice and
age-matched controls Cortical tissue HPLC-MS

Betaine, Lysine, Pyridoxamine, Urate, NAD, Erythritol, Spermine,
N-Acetylmannosamine, Glycerol 2-phosphate, Lauroyl-L-carnitine,
Nicotinamide hypoxanthine Dinucleotide, Sodium taurocholate,
Homocysteine, Betaine, N-acetyl-mannosamine, S-adenosyl-homocysteine,
Adenosine 3′5′-cyclic monophosphate

36 Sun, et al., 2021 [158]
Model: SD rats with Aβ1-42
protein injection. Control:
age-matched untreated rats.

Brain tissue HPLC/FT-ICR MS

DG (20:4/16:0), DG (22:6/16:0), TG (10:0/18:0/16:0), TG (16:0/16:0/18:1),
TG (43:1), TG (16:0/14:0/16:1), Glucosylceramide (d18:1/24:1), PA
(22:6/22:5), PG (18:0/22:4), PG (40:5), PG (43:6), PI (18:0/20:4), PI (36:4), PI
(18:1/20:4), PS (18:0/20:4), LPE (22:6), PC (17:1/18:1), PC (20:0), PC (34:5),
Adrenic acid

37 Zhao, et al., 2021 [159]
3×Tg-AD mice at 2 and
6 months of age and
age-matched nTg controls

Hippocampus UPLC-MRM-MS
84 significant differences in metabolites related to abnormal purine,
pyrimidine, arginine, and proline metabolism, glycerophospholipid
metabolism
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Table 2. Cont.

Reference Study Population Sample
Type Analytical Platform Altered Metabolites

38 Cheng, et al., 2022 [160]
9-month-old male APP/PS1
mice and age-matched
controls

Plasma UHPLC-MS/MS

3-Indole carboxylic acid glucuronide, Cyclic dAMP,
(5Z,9Z)-2-Methoxy-hexacosadienoic acid, Caffeoyl aspartic acid, Saccharin,
(Z)-13-Oxo-9-octadecenoic acid, 5C-Aglycone, PS (O-16:0/20:2 (11Z,14Z)),
Bisacurone Epoxide, PS (22:0/15:0), 6-Hydroxymelatonin glucuronide,
Methyl 2-undecynoate, Cis-3-hexenyl trans-4-hexenoate

39 Dai, et al., 2022 [161]

4-month old
APPswe/PS1∆E9 (PAP)
transgenic mice and
age-matched controls

Brain and plasma LC-MS

23-Nordeoxycholic acid, 23-Norcholic acid, 7-Ketodeoxycholic acid,
Deoxycholic acid, β-muricholic acid, Cholic acid, Cholecalciferol, Pyridoxal,
Flavin adenine dinucleotide, Riboflavin, Arachidic acid, Eicosapentaenoic
acid, Neuronic acid, Erucic acid, Acetoacetate, Fumaric acid, Estradiol,
Progesterone, Testosterone

40 Dehghan, et al., 2022 [162]
50-week-old Abca7 knockout
mice and age-matched
controls

Brain UPLC-MS LacCer, Sphingomyelins, Cers, Hexosylceramides

41 Dunham, et al., 2022 [163]
4, 8, 12, and 18 months
5xFAD and wild-type
littermates

Plasma UPLC-MRMs
Glycine, Carnosine, Serine, SM C24:1, Serotonin, Serotonin, Spermidine,
Spermine, Aspartic acid phosphatidylcholines (PCs), α-Aminoadipic acid,
Serotonin, Glutamic acid

42 Sun, et al., 2022 [164] 4-month-old APP/PS1 mice
and age-matched controls

Serum, Brain
Tissues, Feces LC-MS

88 significant differences in metabolites related to neurotransmitters
metabolism, lipid metabolism, aromatic amino acids metabolism, energy
metabolism, vitamin digestion and absorption, and bile metabolism
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Speers et al. [157] conducted metabolomics analysis of cortical tissue in 8-month-old
male and female 5xFAD mice and their aged-match wild-type littermates. Sex differ-
ences were observed: 12 metabolites (betaine, lysine, pyridoxamine, urate, NAD, erythri-
tol, spermine, N-acetylmannosamine, glycerol 2-phosphate, lauroyl-L-carnitine, sodium
taurocholate, nicotinamide hypoxanthine dinucleotide) were significantly altered by the
transgene in the female 5xFAD mice, whereas only five (homocysteine, betaine, N-Acetyl-
mannosamine, S-Adenosyl-homocysteine, Adenosine 3′,5′-cyclic monophosphate) signifi-
cantly altered metabolites in male 5xFAD.

Zhao et al. [159] applied targeted metabolomics on the hippocampi of 2- and 6-month-
old triple transgenic AD male mice and age-sex-matched wild-type mice (WT). A total
of 70 differential metabolites were identified, among them 24 metabolites were found
changed in 2-month-old AD mice compared to WT, 60 metabolites were found changed in
6-month-old AD mice compared to WT. Fourteen metabolites were found in common,
which are 7-methylguanosine, adenosine, adenosine 3′,5′-cyclic monophosphate (cAMP),
cis-4-Hydroxy-d-proline, deoxycytidine, cytidine, deoxyadenosine monophosphate
(dAMP), ethanolamine, glycerophosphocholine (GPC), L-2-aminoadipic acid,
L-methionine, N-acetyl-D-glucosamine (GlcNAc), N-acetyl-L-tyrosine, and riboflavin
(VB2). These results highlight the involvement of abnormal purine, pyrimidine, argi-
nine, and proline metabolism, along with glycerophospholipid metabolism in the early
pathology of AD.

Dejakaisaya et al. [156] identified alterations in cerebral metabolites and metabolic
pathways in cortex, hippocampus, and serum samples from the Tg2576 AD mice model.
Eleven metabolites showed significant differences in the cortex, including hydroxyphenyl-
lactate (linked to oxidative stress) and phosphatidylserine (linked to lipid metabolism). For
the network analysis, the authors used weighted correlation network analysis (WGCNA)
to investigate the metabolite-group corrections. They identified five pathways, including
alanine, aspartate, and glutamate metabolism, and mitochondria electron transport chain,
that were significantly correlated with AD genotype.

Kim et al. [150] used untargeted metabolomics to investigate alterations in metabo-
lite profiles of hippocampal tissues in 6-, 8- and 12-month-old wild-type and 5xfamiliar
AD (5xFAD) mice. They found nicotinamide and adenosine monophosphate levels sig-
nificantly decreased while lysophosphatidylcholine (LysoPC) (16:0), LysoPC (18:0), and
lysophosphatidylethanolamine (LysoPE) (16:0) levels significantly increased in the hip-
pocampi from 5xFAD mice at 8 months or 12 months of age when compared to age-
matched wild type mice. In addition, the authors assumed that the primary neurons from
5xFAD reflect the hippocampal pathophysiological characteristics of 5xFAD. They treated
the primary neurons with nicotinamide and found that treatment with nicotinamide res-
cued synaptic deficits in hippocampal primary neurons derived from 5xFAD mice. This
finding indicated that decreased hippocampal nicotinamide levels could be linked with
AD pathogenesis.

In 2020, Hunsberger et al. [149] collected prefrontal cortex, hippocampus, and spleen
samples in 6-, 12- and 24-month-old APP/PS1 mice and age-matched wild-type mice. They
conducted untargeted metabolomics analysis to investigate metabolomic alterations in
naturally aged and APP/PS1 (AD) mice. Pathway analysis of changed metabolites revealed
that across age, histidine metabolism was affected in all tissue samples, whereas amino
acid metabolism and energy metabolism were altered in the prefrontal cortex, and AD
significantly altered protein synthesis and oxidative stress in the hippocampus. Moreover,
they found age-related metabolic changes occur earlier in the spleen compared to the CNS.

Zheng et al. [141] explored metabolic changes in six different brain regions between
transgenic APP/PS1 mice and wild-type mice at 1, 5, and 10 months of age by using an
NMR-based metabolomics approach to explore the metabolic mechanism that underlies
the progression of amyloid pathology. They found the concentrations of glycerolphospho-
rylcholine, phosphocholine, and myo-inositol increased significantly in the hypothalamus
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of APP/PS1 mice when compared to WT mice, which indicated that the hypothalamus
may be the main hypermetabolic region in the brain.

In conclusion, considering that biochemical pathways are largely conserved between
humans and rodents [165], animal research is considered a valuable addition to human
studies as human samples are costly and—especially in the case of brain samples—not
available for longitudinal study. Different animal models of AD closely mimic the changes
in metabolic networks associated with disease progression in humans.

3. AD Metabolic Pathways Analysis

MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) (accessed on 1 October 2022) is
a website that provides software to analyze metabolomics data. It processes raw MS spectra,
normalizes comprehensive data, and provides statistical analysis, functional analysis, meta-
analysis, and metabolic pathway analysis. Metabolic pathway analysis identifies which
metabolic pathways have compounds (from the user’s input list) that are over-represented
and returns pathway impact. Pathway impact is calculated as the sum of the importance
measures of matched metabolites normalized by the sum of the importance measures of
all metabolites in each pathway [166]. Using this software, we analyzed the metabolic
pathways to identify altered metabolites in the brain, plasma, and CSF in the literature
studies described above.

The metabolic pathways were represented as circles according to their scores from
enrichment (y-axis) and topology analyses (pathway impact, x-axis). Darker circle colors
indicated more significant changes in metabolites in the corresponding pathway. The size
of the circle corresponds to the pathway impact score and was correlated with the centrality
of the involved metabolites.

3.1. Metabolic Pathway Analysis among Human Studies

After inputting all the altered metabolites from 43 human studies among different AD
stages (MCI and AD) in brain, plasma, and CSF samples, 13 main metabolic pathways had a
p-value less than 0.05 and impact value greater than 0.5 (Figure 1), including phenylalanine,
tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, alanine, aspar-
tate and glutamate metabolism, cysteine and methionine metabolism, arginine and proline
metabolism, phenylalanine metabolism, tryptophan metabolism, arginine biosynthesis,
beta-alanine metabolism, histidine metabolism, tyrosine metabolism, glycine, serine and
threonine metabolism, and D-glutamine and D-glutamate metabolism. Details of pathway
information are presented in Supplementary Table S1.
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3.2. Common Regulated Metabolic Pathways among Human Plasma and CSF Sample

Furthermore, we investigated the altered metabolic pathways in common among
different sample types in MCI and AD patients. After inputting all the altered metabolites
from human MCI plasma samples, 12 metabolic pathways had a p-value less than 0.05
and impact values greater than 0. Using all the altered metabolites from the human AD
plasma sample, 16 metabolic pathways had a p-value less than 0.05 and an impact value
greater than 0. As shown in Figure 2A, a total of eight pathways were shared in the
comparison between MCI VS. CN and AD VS. CN in plasma samples, which indicated that
the metabolic mechanisms of AD and MCI share similar pathological alterations.
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healthy controls: (A) Intersection analysis of metabolic pathways among MCI and AD groups in
plasma samples. Yellow circles are all the disturbed pathways in MCI plasma samples, blue circles
are all the disturbed pathways in AD plasma samples, and the middle intersection is pathways in
common among MCI and AD in plasma samples. (B) Intersection analysis of metabolic pathways
among MCI and AD groups in CSF samples. Yellow circles are all the disturbed pathways in MCI
CSF samples, blue circles are all the disturbed pathways in AD CSF samples. All the MCI pathways
overlapped with AD pathways in CSF samples. (C) Intersection analysis of metabolic pathways
among plasma and CSF samples. Yellow circles are all the disturbed pathways in plasma samples,
blue circles are all the disturbed pathways in CSF samples, and the middle intersection is pathways
in common among plasma and CSF samples.



Int. J. Mol. Sci. 2023, 24, 4960 22 of 40

Similarly, all the altered metabolites from CSF samples were analyzed among MCI and
AD groups. As shown in Figure 2B, a total of five pathways were shared in the comparison
between MCI VS. CN and AD VS. CN. It is noted that all the MCI pathways overlapped
with AD pathways in CSF samples.

We next used the combined (MCI + AD) altered metabolites found in plasma and
CSF samples to understand important pathways in common between these two sample
matrices. As shown in Figure 2C, a total of 13 pathways were shared between the plasma
and CSF samples. Details of pathway information are presented in Supplementary Table S2.

3.3. Significantly Altered Metabolic Pathways among AD Mouse Models

For all the altered metabolites from the 35 mouse studies among different ages
(2 months–24 months) in brain and plasma samples, when comparing to the control group,
13 main metabolic pathways were found with a p-value less than 0.05 and an impact value
greater than 0.5 (Figure 3), including phenylalanine, tyrosine and tryptophan biosynthesis,
linoleic acid metabolism, synthesis and degradation of ketone bodies, alanine, aspartate
and glutamate metabolism, glycine, serine and threonine metabolism, arachidonic acid
metabolism, phenylalanine metabolism, beta-alanine metabolism, arginine biosynthesis,
glycerophospholipid metabolism, histidine metabolism, arginine and proline metabolism,
and glyoxylate and dicarboxylate metabolism. Details of pathway information are pre-
sented in Supplementary Table S3.
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The size of the circle corresponds to the pathway impact score and was correlated with the centrality
of the involved metabolites. Darker circle colors indicated more significant changes in metabolites in
the corresponding pathway.

3.4. Common Regulated Metabolic Pathways among Mouse Plasma and Brain Sample

Literature studies were combined to find disturbed pathways at different ages of
AD mouse models, using all the altered metabolites at different ages in plasma and brain
samples to perform pathway analysis. We included the pathways that meet a p-value less
than 0.05 and an impact value greater than 0. The results showed that 31 pathways were
significantly altered in mouse brain and plasma samples, the pathway impact values are
shown as a heatmap (Figure 4A).
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Figure 4. Altered metabolic pathways in mouse plasma and brain samples, comparing AD and
control animals. (A) Heatmap of the changes of significantly altered metabolic pathways at different
ages of AD mouse in brain and plasma samples. The impact value is calculated as the sum of the
importance measures of matched metabolites normalized by the sum of the importance measures
of all metabolites in each pathway. (B) Altered pathways in AD mouse plasma and brain samples
combining all age groups. Yellow circles are all the disturbed pathways in mouse plasma samples,
blue circles are all the disturbed pathways in mouse brain samples, and the middle intersection is
pathways in common among plasma and brain samples in mouse research.

Furthermore, we investigated the altered metabolic pathways in common including all
ages in plasma and brain samples. After including all the altered metabolites from mouse
plasma samples, 18 metabolic pathways were found with a p-value less than 0.05 and an
impact value greater than 0. Using all the altered metabolites from mouse brain samples,
18 metabolic pathways had a p-value less than 0.05 and an impact value greater than 0. As
shown in Figure 4B, a total of 10 pathways were overlapping between the brain and plasma,
indicating that the metabolic mechanisms seen in mouse plasma and brain share similar
pathological alterations. Details of pathway information are presented in Supplementary
Table S4.

4. Main Metabolic Pathways and Main Lipid Species with Respect to AD

The previous Sections 3.1 and 3.3 highlighted that there was a total of 13 significant
(p-value < 0.05 and impact value > 0.5) metabolic pathways altered in all matrices mea-
sured across all studies, including human and mouse research. Of these, eight altered
metabolic pathways were found to be in common between AD mouse models and human
AD subjects over all matrices: (i) alanine, aspartate, and glutamate metabolism, (ii) arginine
and proline metabolism, (iii) arginine biosynthesis, (iv) β-alanine metabolism, (v) glycine,
serine, and threonine metabolism, (vi) phenylalanine metabolism, vii) histidine metabolism,
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and (viii) phenylalanine, tyrosine, and tryptophan biosynthesis. Section 3.2 highlighted
metabolic pathways in human plasma and CSF samples. Section 3.4 highlighted metabolic
pathways in mouse brain and plasma samples. The matrix commonly investigated in
both human and mouse research is plasma. There were 17 significant (p-value < 0.05 and
impact value > 0.5) metabolic pathways in human plasma samples, whereas there were
18 significant (p-value < 0.05 and impact value > 0.5) metabolic pathways in mouse plasma
samples. Of all of these, there were 12 metabolic pathways that were altered in both AD
mouse models and human AD subjects in plasma: (i) alanine, aspartate, and glutamate
metabolism, (ii) arginine and proline metabolism, (iii) arginine biosynthesis, (iv) butanoate
metabolism, (v) citrate cycle (TCA cycle), (vi) glutathione metabolism, (vii) glycerophos-
pholipid metabolism, (viii) glycine, serine, and threonine metabolism, (ix) glyoxylate and
dicarboxylate metabolism, (x) linoleic acid metabolism, (xi) phenylalanine metabolism,
and (xii) phenylalanine, tyrosine, and tryptophan biosynthesis. The following section is a
detailed description of these important metabolic pathways that emerged as significantly
altered after consolidating the analysis results.

4.1. Arginine Metabolism

L-arginine is a semi-essential amino acid that can be metabolized to form a number
of bioactive molecules [167] (Figure 5). It is synthesized from proline or glutamate, with
the ultimate synthetic step catalyzed by argininosuccinate lyase [168]. L-arginine can be
metabolized by arginases, nitric oxide synthases (NOS), and possibly also by arginine
decarboxylase (ADC), resulting ultimately in the production of agmatine, ornithine, nitric
oxide (NO), or urea [168]. The expression of several of these enzymes can be regulated
at transcriptional and translational levels by changes in the concentration of L-arginine
itself [169].
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Figure 5. Arginine metabolic pathways. L-arginine can be metabolized by phosphatidic acid (PA),
nitric oxide synthase (NOS), arginase, and arginine decarboxylase (ADC) to form several bioactive
molecules. (ADC, Arginine decarboxylase; ADMA, NG-dimethyl-L-arginine; DDAH, dimethylargi-
nine dimethylaminohydrolase; GABA, γ-aminobutyric acid; ODC, ornithine decarboxylase;).

L-ornithine is the arginase-mediated metabolite of L-arginine, with urea as the by-
product. L-ornithine can be further metabolized to form putrescine, spermidine, and
spermine polyamine, which are essential for normal cell growth and functioning, or via a
separate pathway to form glutamine and cell-signaling molecule, GABA [167]. Previous
research has reported decreased glutamate and GABA levels in AD brains and increased
glutamine synthase (GS) levels in the lumbar cerebrospinal fluid of AD patients [170,171].
In peripheral organs and also CNS, arginine can also be metabolized by ADC to produce
agmatine, a neurotransmitter that plays an important role in the learning and memory
process [172].
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NO is a gaseous signaling molecule produced by NOS. NO, derived from neu-
ronal NOS (nNOS), plays an important role in synaptic plasticity and learning, and
memory [173–175]. Moreover, L-arginine and NO affect the cardiovascular system as en-
dogenous antiatherogenic molecules that protect the endothelium, modulate vasodilatation,
and interact with the vascular wall and circulating blood cells [176–180].

4.2. Alanine, Aspartate, and Glutamate Metabolism

Glutamate is the principal excitatory neurotransmitter of the brain [181]. Most neurons
and glia are likely to be influenced by glutamate since they have receptors for glutamate.
Glutamate is considered the main neurotransmitter of neocortical and hippocampal pyrami-
dal neurons and is involved in higher mental functions such as cognition and memory [182].
Disturbance of excitatory glutamatergic neurotransmission is believed to be associated with
many neurological disorders, including Alzheimer’s disease (AD) [182], ischemic brain
damage [183], and motor neuron disease [184].

Glutamate receptors can be divided into two classes: ionotropic (N-methyl-D-aspartate,
NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainite sub-
types and metabotropic [185]. The role of glutamate and glutamate receptors in learning
and memory is widely recognized. For instance, NMDA antagonists impair learning and
memory while NMDA agonists and facilitators improve memory [182]; likewise, AM-
PAKines (positive modulators of receptor function) facilitate learning and memory [186].
Circumstantial evidence of the involvement of glutamatergic pathways derives from the
well-known role of structures such as the hippocampus in learning and memory [187].
More specifically, lesions of certain glutamatergic pathways impair learning and mem-
ory [188]. Moreover, glutamate and glutamate receptors are involved in mechanisms of
synaptic plasticity, which are considered to underlie learning and memory [189–191].

4.3. Purine Metabolism

Purines and pyrimidines are components of many key molecules in living organisms.
The primary purines adenine and guanosine and the pyrimidines cytosine, thymidine,
and uracyl are the core of DNA, RNA, nucleosides, and nucleotides involved in energy
transfer (ATP, GTP) [192,193]. Several studies indirectly suggested that purine metabolism
has altered in AD. Energy metabolism, which depends on mitochondrial function and ATP
production, is markedly altered in AD [194,195]. In addition, oxidative damage to DNA
and RNA, as revealed by the increase in 8-hydroxyguanosine, is found in the brain samples
of AD [196–199]. Direct alterations of purine metabolism in AD have been detected by
metabolomics in postmortem ventricular CSF [200] and in the spinal cord CSF of living
individuals [201–203]. Only a limited number of metabolomics studies have been carried
out in AD brains [203].

4.4. Taurine and Hypotaurine Metabolism

Taurine is the second most abundant endogenous amino acid in the central nervous
system (CNS) and has multiple roles in our body: thermoregulation [204], stabilization
in regulating protein folding [205], anti-inflammatory effects [206], antioxidation [207],
osmoregulation [208], and calcium homeostasis [209]. Recently, taurine has shown ther-
apeutic effects as a cognitive enhancer in animal models of non-AD neurological disor-
ders [210–213]. Taurine protected mice from the memory disruption induced by alcohol,
pentobarbital, sodium nitrite, and cycloheximide but had no obvious effect on other be-
haviors including motor coordination, exploratory activity, and locomotor activity [210].
Intravenously injected taurine significantly improves post-injury functional impairments
of traumatic brain injury in rats [211]. The intracerebroventricular (ICV) administration of
taurine protects mice from learning impairment induced by hypoxia. Neither beta-alanine
nor saccharose was able to mimic the effects of taurine [212]. In streptozotocin-induced
sporadic dementia rat models, cognitive impairment and deterioration of neurobehavioral
activities are ameliorated by taurine [213].
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Taurine also has multiple disease-modifying roles to cease or prevent AD neuropathol-
ogy. During the development of AD, amyloid-β (Aβ) progressively misfolded into toxic
aggregates, which are strongly associated with neuronal loss, synaptic damage, and brain
atrophy. An electron microscopy study indicates that taurine slightly decreases β-amyloid
peptide aggregation in the brain at a millimolar concentration [214]. Taurine also has
anti-inflammatory and antioxidant properties; it can provide protection for neuronal cells
and mitochondria from the neurotoxicity of Aβ. By activating GABA and glycine re-
ceptors, taurine inhibits excitotoxicity caused by Aβ-induced glutamatergic transmission
activation [215].

4.5. Cholinergic System

As acetylcholine (ACh) plays a vital role in cognitive processes, the cholinergic system
is considered an important factor in AD [216]. The brain regions most affected by a loss of
elements of the acetylcholine system include the hippocampus, cortex, and entorhinal [217].
Cholinesterase inhibitors are one of the few drug therapies available in the clinic for the
treatment of AD, and it was inspired by the fact that cholinesterase inhibitors increase
the availability of acetylcholine at brain synapses [218]. The validation of the cholinergic
system was seen as an important therapeutic target in the disease.

4.6. Fatty Acids

Fatty acids are the basic building blocks of more complex lipids and can be classified
by the number of double bonds as saturated fatty acids (SFAs) and unsaturated fatty
acids. SFAs do not include any double bonds, whereas unsaturated fatty acids contain
at least one (monounsaturated fatty acids, MUFAs) or two or more (polyunsaturated
fatty acids, PUFAs) double bonds [219,220]. Altered unsaturated fatty acids have been
associated with AD in multiple studies. The brain is especially enriched with two PUFAs:
docosahexaenoic acid (DHA) and arachidonic acid (AA). DHA, as one of omega-3 PUFAs,
is the predominant structural fatty acid in the mammalian brain and plays an essential
role in brain functioning, especially in cognitive function; DHA levels were lower in AD
brains [221,222] or plasma [69], and increased intake of DHA from fish or marine oils
may lower AD risk [223–225]. AA of the ω-6 fatty acid family appears to play critical
mediator roles in amyloid (Aβ)-induced pathogenesis, leading to learning, memory, and
behavioral impairments in AD [226]. The levels of free AA have been found to increase in
AD patient brain samples [82], whereas the levels of AA in phospholipids are reduced in
the hippocampus of AD subjects [227].

4.7. Glycerolipids

Glycerolipids can be categorized into triacylglycerols (TAG, also known as triglyc-
erides, TG), monoacylglycerol (MAG), and diacylglycerol (DAG) based on the number of
acyl groups in the structure. TAG, the most predominant glycerolipids, are esters composed
of a glycerol backbone and three fatty acids. TAG levels are found not to be changed in
the serum of AD patients when compared to control subjects. [228]. However, MAG and
DAG are elevated in both the prefrontal cortex and plasma of AD and MCI subjects in
comparison to controls [229,230]. Moreover, MAG and DAG are elevated in the grey matter
of MCI and AD patients, suggesting that these biochemical changes may play a role in the
development of MCI and in the transition from MCI to AD [231].

4.8. Glycerophospholipids

Glycerophospholipids (GPs), also referred to as phospholipids (PLs), are typically
amphipathic and make up the characteristic lipid bilayer structure of biological membranes.
Moreover, GPs are the major type of lipids that make up cell membranes and account
for 50–60% of the total membrane mass along with cholesterol and glycolipids [232].
GPs include phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylser-
ine (PS), phosphatidylglycerol (PG), phosphatiylcholine (PC), phosphatidylinositol (PI),
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sphingomyelin (SM), and cardiolipin (CL) [233]. Studies on GP composition indicate that
levels of PC, PE, and PI are significantly decreased in neural membranes from different
regions of AD patients compared to age-matched control brains [234–239].

Phosphatidylethanolamine (PE) is converted to lysophosphatidylethanolamine (lyso-
PE) by phospholipase A2 (PLA2), an important inflammatory mediator that is dysregulated
in AD. PLA2 level has been found to be elevated in the human cerebral cortex [240] or
decreased in the human parietal and frontal cortex [241]. Moreover, PLA2 influences the
processing and secretion of amyloid precursor protein, which gives rise to the β-amyloid
peptide, the major component of the amyloid plaque in AD [241]. Moreover, PLA2 has
been found to play an important role in memory retrieval [242].

Phosphatidylserine (PS) is the major acidic phospholipid class that accounts for 13–15%
of the phospholipids in the human cerebral cortex [243]. PS is known as a “brain nutrient”,
as it can not only nourish the brain, but also enhance brain functions such as improving
cognition, memory, and reaction force [244]. In six double-blind trials, PS has been found
effective for AD. At daily doses of 200–300 mg for up to six months, PS consistently
improved clinical global impression and activities of daily living [245]. In milder cases,
PS improved orientation, concentration, learning, and memory for names, locations, and
recent events. In the largest trial, involving 425 elderly patients (aged between 65 and
93 years) with moderate to severe cognitive decline, PS significantly improved memory,
learning motivation, and socialization, suggesting that it has a vital impact on the quality
of life of such elderly patients.

Phosphatidylcholine (PC) is an essential component of cell membranes and makes
up approximately 95% of the total choline compound pool in most tissues [246,247]. Its
function is defined primarily by chain length since chain length differences can affect cell
membrane fluidity [248]. Three PCs (PC 16:0/20:5, PC 16:0/22:6, and PC 18:0/22:6) have
been found significantly diminished in AD patients [249].

Lysophosphatidic acids (LPAs) are phospholipids derivatives that can act as signaling
molecules [250]. Ahmad et al. [95] investigated the association between LPAs and CSF
biomarkers of AD, Aβ-42, p-tau, and total tau levels overall and with MCI to AD pro-
gression. Five LPAs (LPA C16:0, LPA C16:1, LPA C22:4, LPA C22:6, and isomer-LPA C
22:5) correlated significantly and positively with CSF biomarkers of AD, Aβ-42, p-tau, and
total tau. Additionally, LPA C16:0 and LPA C16:1 showed associations with MCI to AD
dementia progression.

4.9. Sphingolipids

Sphingolipids, a class of membrane biomolecules, include sphingosine 1-phosphates
(S1P), Cers, SMs, and glycosphingolipids, which are vital for maintaining cell integrity and
signal transduction processes [251]. Cers, the basic structural units of the sphingolipid
class, have been seen as key contributors to the pathology of AD as they are able to
affect both Aβ generation and tau phosphorylation [252]. Filippov et al. found elevated
levels of ceramides Cer16, Cer18, Cer20, and Cer24 in the brains of AD patients. Two
saturated ceramides, Cer (d18:1/18:0) and Cer (d18:1/20:0) were significantly increased
in the senile plaques [253]. High ceramide levels were also found in AD serum [254]
and CSF samples [255]. The greatest genetic risk factor for late-onset AD is the ε4 allele
of apolipoprotein E (ApoE). ApoE regulates the secretion of the potent neuroprotective
signaling lipid S1P [256]. S1P is derived by phosphorylation of sphingosine, catalyzed by
sphingosine kinases 1 and 2 (SphK1 and 2). SphK1 positively regulates glutamate secretion
and synaptic strength in hippocampal neurons. Reduced levels of S1P have been found in
AD brains compared to controls [256,257]. All these studies mentioned above suggested
that sphingolipid metabolism plays a critical role in AD pathology.

4.10. Cholesterol and Cholesteryl Esters

Despite the brain occupying only 2% of total body weight, it contains 25% of the
body’s cholesterol. Due to the BBB, cholesterol metabolism in the CNS is largely sepa-
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rated from that in the periphery and cholesterol is de novo synthesized in the CNS [258].
Studies have found that brain cholesterol was significantly increased in AD patients than
in controls [259,260]. Moreover, cholesterol showed abnormal accumulation in the senile
plaques of the human brain, a hallmark neuropathological feature of AD [261].

5. Conclusions and Future Directions

Considering the dramatic aging of populations worldwide, it is of great importance to
explore AD pathogenesis. Metabolic changes associated with AD progression occur prior
to the development of clinical symptoms; metabolomics by itself or in conjunction with the
additional currently available biomarkers for AD diagnosis could serve as an additional
tool to increase the accuracy of diagnosis, to predict the disease progression, and to monitor
the efficacy of therapeutic intervention.

Metabolomic studies have demonstrated the dramatic impact of AD pathogene-
sis and progression on metabolites and related metabolic pathways, including energy-
related metabolism, fatty acid metabolism, abnormal lipid metabolism, altered amino acids
metabolism (e.g., arginine, glutamate), and some others. In the present review, we summa-
rized the metabolomics studies that were performed in biological samples of AD subjects
and AD mouse models. The results of rats were too sparse and not suitable for further
analysis. The mouse research shows that 12- and 24-months, middle and old age in AD
mouse models, can be equivalated to the MCI and AD late stage in humans, respectively.
As obtaining human body samples is costly, limited in possible samples sites by ethics
(i.e., brain), and time-consuming for the long life span of humans, the above indicates
that animal research may be considered a valuable addition, as it can be designed in a
longitudinal fashion and with samples from multiple sites of the body to obtain time-course
information and interrelationships, to gain insights that support research on AD in humans.

The disturbed pathways by AD were analyzed based on metabolite data collected
from the literature. Eight disturbed metabolic pathways were found in common between
AD mouse research and AD human research. These pathways are alanine, aspartate, and
glutamate metabolism, arginine and proline metabolism, arginine biosynthesis, β-Alanine
metabolism, glycine, serine and threonine metabolism, phenylalanine metabolism, histidine
metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis.

Our analysis of the literature studies has several limitations. The coverage of metabo-
lites varied among different studies due to the detection sensitivity differences, as analytical
platforms (e.g., NMR, GC-MS, LC-MS) and analytical methods are diverse in different
laboratories. In addition, it is hard to reproduce various metabolomics results because of
different sample sources (brain tissue or plasma) from either deceased or living patients
and diverse distribution about sex, age, and suffering from other diseases. Moreover, the
methods used for obtaining samples, such as CSF and brain, varied among different studies.
For example, delays between removing and freezing animal or human brain tissue can
affect metabolomics analysis.

Altogether, in this review, we summarized and analyzed existing metabolomics data
and the relation between plasma, CSF, and brain for animals and plasma and CSF for
human data. We identified missing longitudinal information, which would be difficult
to be obtained from humans (high costs, long direction) while also in the human brain
cannot be sampled. Longitudinal and multi-body site information, however, is important to
understand the processes in AD. This is where animal research may support AD research in
humans to provide new insights on disease biomarkers patterns and biological pathways,
that will support AD stage diagnosis in humans but also the discovery of AD future
therapeutic targets.
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Abbreviations

AA: arachidonic acid; Ach: acetylcholine; Ac-PUT: N1-acetyl-putrescine; Ac-SPM: N1-acetyl-
spermine; AD: Alzheimer’s disease; ADC: arginine decarboxylase; ADNI: Alzheimer’s Disease
Neuroimaging Initiative; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; ApoE:
apolipoprotein E; APP: amyloid precursor protein; BBB: blood–brain barrier; CE-MS: capillary
electrophoresis-mass spectrometry; Cers: ceramides; CI: chemical ionization; CL: cardiolipin; CN:
cognitively normal; CNS: central nervous system; DAG: diacylglycerol; dAMP: deoxyadenosine
monophosphate; DCA: deoxycholic acid; DHA: docosahexaenoic acid; DI-MS: direct infusion
mass spectrometry; EI: electron ionization; FAD: familial AD; GABA: γ-aminobutyric acid; GC-
MS: gas chromatography-mass spectrometry; GDCA: glycodeoxycholic acid; GLCA: glycolithocholic
acid; GlcNAc: N-Acetyl-D-glucosamine; GPC: glycerophosphocholine; GPs: glycerophospholipids;
GS: glutamine synthase; HILIC: hydrophilic interaction liquid chromatography; HMDB: Human
Metabolome Database; HPLC-MS: high-performance LC-MS; ICV: intracerebroventricular; KEGG:
Kyoto Encyclopedia of Genes and Genomes; LC-MS: liquid chromatography-mass spec-trometry;
LPAs: Lysophosphatidic acids; LysoPC or LPC: lysophosphatidylcholine; LysoPE or LPE: lysophos-
phatidylethanolamine; MAG: monoacylglycerol; MCI: mild cognitive impairment; MG: monoglyc-
eride; MUFAs: monounsaturated fatty acids; NAD: nicotinamide adenine dinucleotide; NMDA:
N-methyl-D-aspartate; NMR: nuclear magnetic resonance; nNOS: neuronal NOS; NO: nitric ox-
ide; NOS2: nitric oxide synthase2; OTC: ornithine transcarbam-ylase; PA: phosphatidic acid; PC:
phosphatiylcholine; PCae: acyl-alkyl phosphatidylcholines; PE: phosphatidylethanolamines; PG:
phosphatidylglycerol; PI: phosphatidylinositol; PLA2: phospholipase A2; PLs: phospholipids; PS:
phosphatidylserine; PS1 and PS2: presenilin 1 and 2; pTau: hyperphosphorylated tau; RP: reversed-
phase; S1P: sphingosine 1-phosphates; SAH: S-adenosyl-homocysteine; SDMA: symmetric dimethy-
larginine; SFAs: saturated fatty acids; SM: sphingomyelin; SMS: spermine synthase; SphK1 and 2:
sphingosine kinases 1 and 2; TAG: triacylglycerols; TCA cycle: citrate cycle; TLCA: taurolithocholic
acid; TQ-MS: triple quadrupole-mass spectrometry; tTau: total tau; UHPLC or UPLC: ultra-HPLC;
UPLC-MS: ultraperformance liquid chromatography-mass spectrometry; VB2: riboflavin; WGCNA:
weighted correlation network analysis.
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