
https://helda.helsinki.fi

Representing and describing nanomaterials in predictive nanoinformatics

Wyrzykowska, Ewelina

2022-09

Wyrzykowska , E , Mikolajczyk , A , Lynch , I , Jeliazkova , N , Kochev , N , Sarimveis , H ,

Doganis , P , Karatzas , P , Afantitis , A , Melagraki , G , Serra , A , Greco , D , Subbotina , J

, Lobaskin , V , Banares , M A , Valsami-Jones , E , Jagiello , K & Puzyn , T 2022 , '

Representing and describing nanomaterials in predictive nanoinformatics ' , Nature

Nanotechnology , vol. 17 , no. 9 , pp. 924-932 . https://doi.org/10.1038/s41565-022-01173-6

http://hdl.handle.net/10138/356290

https://doi.org/10.1038/s41565-022-01173-6

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/362782725

Representing and describing nanomaterials in predictive nanoinformatics

Article  in  Nature Nanotechnology · August 2022

DOI: 10.1038/s41565-022-01173-6

CITATION

1
READS

300

18 authors, including:

Some of the authors of this publication are also working on these related projects:

Toxicity of Silver Nanoparticles (AgNPs) in fish cell lines. View project

OpenTox View project

Ewelina Wyrzykowska

QSAR Lab

9 PUBLICATIONS   75 CITATIONS   

SEE PROFILE

Alicja Mikolajczyk

University of Gdansk

42 PUBLICATIONS   894 CITATIONS   

SEE PROFILE

Iseult Lynch

University of Birmingham

392 PUBLICATIONS   28,142 CITATIONS   

SEE PROFILE

Nina Jeliazkova

Ideaconsult Ltd

119 PUBLICATIONS   4,121 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Vladimir Lobaskin on 01 September 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/362782725_Representing_and_describing_nanomaterials_in_predictive_nanoinformatics?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/362782725_Representing_and_describing_nanomaterials_in_predictive_nanoinformatics?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Toxicity-of-Silver-Nanoparticles-AgNPs-in-fish-cell-lines?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/OpenTox-2?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ewelina-Wyrzykowska?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ewelina-Wyrzykowska?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ewelina-Wyrzykowska?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alicja-Mikolajczyk?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alicja-Mikolajczyk?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Gdansk?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alicja-Mikolajczyk?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iseult-Lynch?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iseult-Lynch?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Birmingham?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Iseult-Lynch?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nina-Jeliazkova?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nina-Jeliazkova?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nina-Jeliazkova?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Vladimir-Lobaskin?enrichId=rgreq-80063d5f7a817242f9639283c888818a-XXX&enrichSource=Y292ZXJQYWdlOzM2Mjc4MjcyNTtBUzoxMTQzMTI4MTA4MjQxMjQ5OUAxNjYyMDI5MjgwNDE0&el=1_x_10&_esc=publicationCoverPdf


Review ARticle
https://doi.org/10.1038/s41565-022-01173-6

1QSAR Lab Ltd, Gdańsk, Poland. 2Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland. 3School 
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom. 4Ideaconsult Ltd, Sofia, Bulgaria. 
5Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, Plovdiv, Bulgaria. 6School of Chemical Engineering, National 
Technical University of Athens, Zografou, Athens, Greece. 7NovaMechanics Ltd, Nicosia, Cyprus. 8Division of Physical Sciences and Applications, Hellenic 
Military Academy, Vari, Greece. 9FHAIVE, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland. 10BioMediTech Institute, 
Tampere University, Tampere, Finland. 11Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 12School of Physics, University College Dublin, 
Belfield, Dublin, Ireland. 13Instituto de Catálisis y Petroleoquimica, ICP CSIC, Madrid, Spain. 14These authors contributed equally: Ewelina Wyrzykowska, 
Alicja Mikolajczyk. ✉e-mail: tomasz.puzyn@ug.edu.pl

The application of computational methods for the prediction of 
nanomaterial properties, including physics-based multiscale 
materials modelling and data-based modelling with artificial 

intelligence/machine learning, has great potential to accelerate the 
introduction of engineering nanomaterials (ENMs) into a range 
of advanced applications and to enhance their safe and more sus-
tainable use at all stages of their life cycles1–4. Among the variety 
of nanoinformatics methods, data-driven quantitative structure–
activity relationship (QSAR) and quantitative structure–property 
relationship (QSPR) models help materials scientists to gain a bet-
ter grasp of the physicochemical characteristics that determine the 
desired functionality or are responsible for the adverse health effects 
of ENMs5,6. These relationships allow a multidimensional optimiza-
tion of the material such that the useful properties are enhanced 
while the properties of concern are designed out at the earliest pos-
sible step (virtual design before synthesis).

In nanoinformatics QSAR modelling (nano-QSAR) that utilizes 
machine learning and artificial intelligence, the predicted response 
(for example, the physicochemical property, biological activity or 
toxicity of interest) is modelled by a set of predictors representing 
various ENM characteristics termed nanomaterials descriptors or 

nanodescriptors. It is also possible, especially in the case of sequen-
tial modelling (for example, by structure–activity prediction net-
works, SAPNet)7, that the same nanodescriptor (for example, the 
zeta potential) can serve as a predictor (for example, a predictor of 
cellular uptake) in one model and the property of interest (the pre-
dicted response) in another (Fig. 1).

Given that even subtle changes in the characteristics of ENMs 
can cause changes in the property of interest, it is crucial to appro-
priately define the nanodescriptors. They should reflect not only 
the ENMs’ chemical composition and the chemical structures of its 
components, but also other important physicochemical character-
istics related to the nanomaterial as a whole (for example, size or 
shape). Moreover, the nanodescriptors should reflect the influence 
of the system (that is, the environmental or experimental condi-
tions) on the properties of the ENMs. One can thus make a distinc-
tion between system-independent (intrinsic) and system-dependent 
(extrinsic) nanodescriptors.

As at present nanodescriptors can come from either the experi-
mental characterization or from theoretical calculations, appropriate 
ENM characterization is a challenge faced both by experimentalists 
and nanoinformaticians. In experimental characterizations, there 
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Engineered nanomaterials (ENMs) enable new and enhanced products and devices in which matter can be controlled at a 
near-atomic scale (in the range of 1 to 100 nm). However, the unique nanoscale properties that make ENMs attractive may result 
in as yet poorly known risks to human health and the environment. Thus, new ENMs should be designed in line with the idea of 
safe-and-sustainable-by-design (SSbD). The biological activity of ENMs is closely related to their physicochemical characteris-
tics, changes in these characteristics may therefore cause changes in the ENMs activity. In this sense, a set of physicochemical 
characteristics (for example, chemical composition, crystal structure, size, shape, surface structure) creates a unique ‘represen-
tation’ of a given ENM. The usability of these characteristics or nanomaterial descriptors (nanodescriptors) in nanoinformatics 
methods such as quantitative structure–activity/property relationship (QSAR/QSPR) models, provides exciting opportunities 
to optimize ENMs at the design stage by improving their functionality and minimizing unforeseen health/environmental haz-
ards. A computational screening of possible versions of novel ENMs would return optimal nanostructures and manage ('design 
out') hazardous features at the earliest possible manufacturing step. Safe adoption of ENMs on a vast scale will depend on the 
successful integration of the entire bulk of nanodescriptors extracted experimentally with data from theoretical and computa-
tional models. This Review discusses directions for developing appropriate nanomaterial representations and related nanode-
scriptors to enhance the reliability of computational modelling utilized in designing safer and more sustainable ENMs.
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are constantly implemented new parameters and measurement 
modes with transparent procedures enabling reproducibility of the 
work, analytical accuracy, and resolution; as well as requirements 
for reporting formats that include metadata, data gathering, and 
storage tools. The availability of metadata is also an important issue 
in assessing the quality and completeness of experimental nanode-
scriptors8,9. Nanodescriptors from experiments conducted with dif-
ferent quality requirements and/or according to different protocols 
can introduce an additional, substantial source of uncertainty. It is 
possible that this variation in a group of nanomaterials could be 
even higher than the variation related to the real differences in the 
characterized properties. This, of course, could make the nanode-
scriptors useless for nano-QSAR modelling. It is also worth noting 
that a range of results could be obtained depending on the applied 
descriptors expressing volume, mass, surface area or the quantity of 
nanoparticles in the sample.

In turn, nanoinformaticians are faced with building simplified 
(supra)molecular structure models (that is, atomic clusters, surface 
fragments) that could be used in physics-based materials modelling 
to obtain knowledge of the electron structure and related proper-
ties of investigated ENMs. The complexity of aspects that must be 
considered—which are mostly related to cluster size (a reflection 
of the actual size of the ENM or part thereof, such as a unit cell), 
the character of multicomponent ENMs (doping, coating, shell 
composition and thickness) and surface properties (the presence 
of defects, charge, porosity, roughness)—is virtually endless. The 
challenge of building appropriate molecular models of ENMs limits 
the possibilities of developing newly calculated (purely theoretical) 
descriptors to be used in nano-QSAR for predicting the properties 
of not-yet-synthesized (‘virtually created’) ENMs.

However, independently of the source (either experimental mea-
surements or theoretical calculations), these nanodescriptors should 
be collectively unique for a particular ENM and act as a ‘fingerprint’ 

enabling ENMs with the same chemical composition but different 
physical characteristics to be differentiated. The achievement of 
such a distinction between compositionally similar ENMs is essen-
tial because, owing to physical differences, these ENMs can exhibit 
notable variation in the properties and toxicological responses they 
induce10. Considering that in the case of ENMs size and other mor-
phological aspects may be even more important than their chemical 
composition, it is relevant to include these physical characteristics 
in nano-QSAR models.

This seemingly inevitable need to transition towards nanode-
scriptors as representing unique fingerprints also highlights the 
distinction between ‘coding’ versus ‘non-coding’ ones. Coding 
nanodescriptors are those for which the ENM composition, com-
ponent structures and other characteristics can be precisely repro-
duced (that is, size, chemical identity). In contrast, non-coding 
descriptors are those that do not offer such a possibility; more than 
one nanoparticle may be characterized by the same value of a given 
property, and it is not possible to deduct the identity from the prop-
erty. Examples of non-coding nanodescriptors include solubility, 
lipophilicity and bandgap energy calculated with quantum mechan-
ical methods11. Non-coding descriptors, however, also provide 
important links to the extrinsic properties of ENMs12. Analysing 
descriptors and categorizing them as coding or non-coding might 
provide insights into whether the predicted response (for example, 
toxicity) driver is dependent or independent of the material. This 
will provide hints regarding how to directly or indirectly design out 
the specific ENM feature linked to toxicity, thereby feeding into 
safer design strategies for ENMs.

One important feature of nanodescriptors, especially in inves-
tigating the toxicity of more complex structures, is interpretability.  
It is defined as the ability to elucidate and rationalize the underlying 
nanodescriptors responsible for biological behaviour13, which needs 
to be translated to ease of use for the rational design of improved 
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Predictors

• Coding

• Non-coding

Design perspective

Nanodescriptors that enable
ENM structure and composition to be 
reproduced, giving information on
which elements should be modified to
achieve the expected ENM property

Nanodescriptors that do not give
information on which ENM structure
elements should be modified to
achieve the expected ENM property,
but are useful in mechanistic
interpretation

•

•
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only for already synthesized ENMs
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computational calculations

Subject matter perspective

• Structure
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Nanodescriptors referring
both to chemical and physical structure,
unique to each ENM

Nanodescriptors referring to intrinsic
and extrinsic properties, could be
common to different ENMs

Fig. 1 | The spectrum of perspectives on nanomaterials descriptors. The figure illustrates viewpoints from the contexts of modelling, design, the 
behaviour of ENMs in a system, the subject matter of encoded ENM features and the sources from which nanodescriptors are obtained.
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ENMs and understanding of the mechanisms of the biological prop-
erties14. Slow progress in developing interpretable descriptors is one 
of the limiting factors in progress towards earlier-identified ENM 
milestones14, and more recent milestones highlighted in the EU-US 
nanoinformatics roadmap 203015. Progress on these fronts is neces-
sary to advance ENM knowledge and applications. Extensive con-
sultations have led to the understanding that nanodescriptors and 
the ontology used to depict them are interpreted differently not only 
by modellers and experimentalists, but even within the modelling 
community itself. As the challenge of appropriate representation of 
ENMs can only be met by close cooperation between experimental-
ists and theoreticians, there should be a common understanding of 
the basic terms and needs to facilitate more reliable nanoinformat-
ics modelling for safe-and-sustainable-by-design (SSbD) ENMs.

An adequate computer representation of the objects (entities) is 
required to handle biological, chemical or ENM information and 
enable information systems to be built. A representation that does 
not reflect a particular material aspect cannot convey that aspect 
to the machine learning model. As an analogy with cheminformat-
ics, if a computer representation does not include stereochemical 
information, any machine learning model built on this data will also 
ignore the stereochemistry. The development of descriptors and 
material representations is a dynamic field, especially in the deep 
learning era, and deserves its own state-of-the-art review.

In this Review, we aim to show the need for developing a compre-
hensive system of nanomaterials descriptors to be used in nanoin-
formatics. The discussion is based on a newly proposed conceptual 
model of ENM representation in line with the terminology used in 
recent regulations. By doing this, we also intend to contribute to the 
ongoing regulatory discussion on defining nanomaterials.

How the regulatory context affects the representation  
of ENMs
Chemical safety assessment in Europe is regulated by a set of legal 
acts16–19, the most important of which is the REACH regulation (EC 
1906/2006) that refers to the term ‘chemical substance’. However, 
the definition of ‘substance’ is ambiguous when considering ENMs. 
According to REACH, a substance is identified by the main (≧80%) 
constituent. Overall, the concept of substance is sophisticated: the 
‘substance data model’ is defined by a combination of many com-
ponents (for example, molecules) playing different roles, namely: 
major chemical constituent(s), impurities (unintentional constitu-
ents originating from the manufacturing process or from the start-
ing materials) and additives (intentionally added to improve the 
properties of the substance). When the component is known, from 
the nanoinformatics point of view it can be represented by a triad 
adopted from the classical chemoinformatics (data-based modelling 
of regular chemicals): (1) molecular structure (the way the atoms 
are connected and/or configured in space); (2) molecular descrip-
tors, which constitute “the result of a logical and mathematical pro-
cedure which transforms chemical information encoded within a 
symbolic representation of a molecule into a useful number or the 
result of some standardized experiment”12 (for example, descriptors 
indicating the number of particular functional groups, topological 
indices, energies of frontier orbitals and so on); and (3) molecu-
lar properties (such as the n-octanol/water partition coefficient20 
or aqueous solubility of the compound). Moreover, the substance 
(ENM in this case) itself can be characterized by its own properties 
(differing from these of its individual components), including its 
density, refractive index and the electric conductivity of the sub-
stance. These have to be complemented by the related metadata 
describing the experimental conditions and protocols21. Another 
very important piece of information concerning ENMs is the  
potential links between individual components of the ENM (for 
example, if a second coating layer is connected with covalent bonds 
to the first coating layer). In this context, the term composition (as 

also used in REACH) describes the ENM components and their rela-
tions, and should not be mistaken with the term chemical composi-
tion, which is typically associated with elemental analysis12. In the 
context of ENMs, the component identifier used by REACH (that 
is, the Chemical Abstract Service (CAS number) does not include a 
size consideration. Thus, all particulate forms with a composition of 
≧80% TiO2, regardless of their particle size or morphological char-
acteristics, would have the same substance ID. Identifying the dis-
tinct crystalline phases of TiO2 (that is, anatase, rutile or brookite) 
does not solve the challenge; these are infinite crystalline patterns 
and ratios. Material is an entity limited in space, and with multi-
ple features, combinations of crystalline domains, exposed phases, 
surface and bulk defects, different surface terminations and so on. 
According to the original REACH definition, different ENMs with a 
single main composition would be classified as the same substance.

To address this definition gap, the recent amendment to the 
REACH regulation (EC No 1907/2006)22, which entered into force 
on 1 January 2020, introduces the ‘nanoform’ of the substance to 
distinguish nanoscale particles of a specific substance that may also 
exist as larger particles or as a molecular chemical, such as an ion. 
Nanoform is defined as: “a form of a natural or manufactured sub-
stance containing particles, in an unbound state or as an aggregate 
or as an agglomerate and where, for 50% or more of the particles 
in the number size distribution, one or more external dimensions is 
in the size range 1 nm–100 nm, including also by derogation fuller-
enes, graphene flakes and single wall carbon nanotubes with one or 
more external dimensions below 1 nm”(ref. 23). The same substance 
may thus have one or more different nanoforms, differing in one 
or several characteristics such as size distribution, number fraction 
of constituents, surface treatment, shape, specific surface area and 
other morphological, structural or chemical characteristics. Owing 
to the differences in the physicochemical properties of nanoforms 
(for example, surface chemistry), various nanoforms of the same 
substance are likely to have different activity (toxicity) profiles24. 
Moreover, these physicochemical properties of nanoforms, which 
are potentially important for their biological activity (for example, 
agglomeration ability), can be influenced by the conditions of the 
external system (for example, the dispersion medium, pH, the pres-
ence of proteins and other biomolecules)25–27. In a nanoinformatics 
context, these ‘system-dependent’ properties must always be accom-
panied by appropriate metadata describing the system and the pro-
tocols followed in the characterization of the ENM. By this legal 
definition, two ENMs are considered either as two nanoforms of the 
same substance (when they differ in the aforementioned characteris-
tics, for example, size, shape, number fraction of constituents) or as 
two separate substances (when they differ by molecular descriptors 
of the main constituent, for example, core composition). Therefore, 
the ENM representation should go beyond the component or con-
stituent’s characteristic and also include the detailed characteristics of 
the nanoform, which are important in the regulatory context (Fig. 2).

From a regulatory perspective, each nanoform must be charac-
terized experimentally, following Annex VI section 2.4 of REACH 
to prepare the registration dossier. However, from the perspective 
of scientists and those in industry who design and manufacture 
ENMs, new approaches are needed to enable built-by-design and/
or safer-by-design strategies for ENMs. Thus, it would be beneficial 
to adapt QSAR/QSPR methodology to enable virtual screening of 
ENMs to identify the most promising nanoforms (those with high 
application potential and low toxicity), expressed in terms of appro-
priate descriptors. Such models would enable the user to manipulate 
the compositional and structural parameters very precisely to gen-
erate the required effect in the properties, activity and toxicity of the 
ENM and establish the boundary conditions for such behaviour28–30.

In turn, the US Environmental Protection Agency’s Toxic 
Substances Control Act (TSCA)31,32 defines a 'chemical substance' as 
“any organic or inorganic substance of a particular molecular identity, 
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including any combination of these substances occurring in whole or 
in part as a result of a chemical reaction or occurring in nature, and 
any element or uncombined radical”. The TSCA approach is analo-
gous to the REACH regulation, addressing multiple components 
within a substance. Similarly to REACH, the TSCA also regards 
ENMs as a particular type of 'chemical substance' requiring addi-
tional information to be reported, such as the specific chemical iden-
tity, methods of manufacture/processing, use scenarios, exposure, 
safety data and so on. In this context, the data model described for 
ENM representation is flexible enough and could benefit both regu-
latory frameworks and others that are now evolving. Consequently, 
the descriptors calculated on top of the data model from Fig. 2 may 
fit the purposes of REACH and TSCA regulations alike.

All regulatory frameworks suffer from a lack of unique 
nano-identifiers as traditional identifiers such as CAS numbers or 
the most popular linear notations are inadequate. Developing ENM 
identifiers is a challenging problem that is not yet solved; however, a 
promising effort in this direction is performed by the International 
Union of Pure and Applied Chemistry nano-InChI working group33,34. 
Nevertheless, nano-InChI will also not solve everything but aims to 
integrate concepts of ENM provenance and intrinsic versus extrinsic 
properties and to support a domain-specific language for nanoinfor-
matics. It is not likely that all of the nanomaterial information can be 
stored within nano-InChI notation; hence the descriptors calculated 
solely from nano-InChI should not be expected to be efficient enough 
for predictive nanoinformatics tasks compared with the descriptors 
obtained by the full data model depicted in Fig. 2. Similarly, a prom-
ising direction could be quasi-SMILES for nanomaterials that carry 
information not only about the chemical composition but also about 
experimental conditions and changes in physicochemical properties 
after exposure35,36, but further development would be required.

Generally, the regulatory frameworks (REACH, TSCA and others)  
are slowly and cautiously progressing into the nano arena—for 
example, the required nano-identity information from TSCA is 
quite generally described, and no strict requirements are specified. 
The latter is due to many factors, including the ongoing discussions 
and lack of full consensus on those properties of ENMs that are 

predictive of toxicity. In this regard, having a more universal, flex-
ible and dynamic data model might increase the potential to handle 
future transitions in the nanoinformatics field. This is the main 
objective of the data model in Fig. 2.

The proposal of the data model for ENM representation is prag-
matic to enable nanoinformatics support for materials beyond 
single chemical structures (ENMs, advanced materials). It is based 
on experience and collaboration with industry and many experts 
who reviewed the relevant regulations in various contexts. Finally, 
it should serve as a map for developing a comprehensive system of 
nanodescriptors.

Five challenges in developing nanodescriptors
Challenge 1: describing the component relationships in mul-
ticomponent ENMs. The first relevant aspect of enhancing the 
description of nanomaterials is related to the complexity of their 
compositions. So far, substantial progress in nano-QSAR model-
ling has been made mainly with one-component nanostructures 
or attributes of nanoforms of the substance expressed through its 
individual constituents (for example, core, shell layers, doping, 
structure modification, impurities, additives and so on). However, 
most ENMs have a diversified functionality resulting from sev-
eral components, including different shells or coatings, attached 
surface modifiers, bimetallic or multi-metallic cores and so on, 
rendering them heterogeneous materials in the sense of the chemi-
cal composition (more about ENM heterogeneity in the sense of 
physicochemical properties is described under Challenge 3 below). 
The individual components in the nanoform of the substance may  
show joint toxicity effects that may be closely related to the ideal 
additive behaviour of response/effect and/or increased (synergis-
tic) or decreased (antagonistic) effects. As a result, a range of out-
comes in relation to the mechanism of action may be observed. 
Specifically, the same mode of action as for individual chemicals 
(concentration addition); a distinct mode of action as for individual 
chemicals (independent action); or multifaceted and considerable 
deviations in the apparent properties of its individual components 
(a synergistic or antagonistic mode of action).

Composition 1

Nanomaterial as a substance

Component relationships

Particle size
distribution

Shape/aspect
ratio

. . .

Ti
O O

Chemical
structure (S )

Molecular
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P = f2(D)

Molecular descriptors
D = f1(S)

Molecule

Morphology Surface
area
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Fig. 2 | The concept of ENM representation. This concept combines the substance identity concept with the definition of a nanoform, adapted from the 
classic substance paradigm21, and includes unique identifiers for the ENMs’ composition. These consist of the core components, impurities and coatings 
and their relationships, as well as their measured or calculated characteristics supported with metadata related to protocols and experimental conditions. 
The symbols 'S', 'D' and 'P' code chemical structure, molecular descriptors and molecular properties, respectively. The symbol 'f' codes the mathematical 
function of relationships between the above mentioned elements of the chemical triad.
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In an early attempt to predict the properties of multicomponent 
ENMs37 the authors introduced ‘additive descriptors’, which are a 
linear combination of descriptors for pure components weighed 
by their concentrations. In this example, the catalytic efficiency 
of TiO2-based surface photocatalysts modified by (poly-) metal-
lic clusters of four metals (Au, Pd, Pt, Ag) was predicted by com-
bining descriptors that characterize the metals weighted by their 
concentration. This concept was based on a strategy originally 
developed for the additive mechanism for mixtures of conventional 
chemicals. The newly developed methodology was then combined 
with periodic table-based descriptors and applied to improve 
the cytotoxicity models of the TiO2-based ENMs modified with  
Ag/Au/Pd/Pt38,39. Nevertheless, there is still a need for a better 
understanding of the influence of individual ENM components and 
surface modifiers on the finally observed ENM features because 
the joint effects are not always additive; they can also be synergistic  
or antagonistic (Table 1).

Here it might be useful to think about the roles and functions of 
the different ENM constituents and whether they are ‘relevant’ to 
the predicted toxic response. For example, let us consider a polymer 
coating on an ENM: it may be there to provide steric stabilization 
against agglomeration and potentially to reduce protein binding 
and subsequent cellular attachment (such as polyethylene glycol, 
although reduced binding may depend on the degree of surface 
coverage of the polymer coating; that is, there may still be a strong 
influence from the underlying core on the protein binding). Thus a 
strategy that includes molecular descriptors for the polymer coating 
and nanodescriptors for the underlying core, and allows their rela-
tive weighting to be adjusted, might enhance the predictive power 
in terms of corona formation, cellular attachment uptake and even-
tual toxicity. For many functional multicomponent nanomaterials, 
their properties are not linear combinations of the properties of the 
components: for example, in catalysis, a combination of oxides may 
generate reactive properties that are not present in the individual 
components, and that new reactivity may, in turn, cause new modes 
of action that cannot be linearly inferred. Further development in 
this area is therefore still required, especially for cases where par-
ticular components act independently (according to different mode 
of actions) or their mode of action is synergistic or antagonistic. 
Moreover, further studies should also consider the influence of 
impurities on the predicted response.

Challenge 2: representing the influence of the surrounding envi-
ronment and different protocols. An appropriate representation 
of the surrounding environment influence is especially important 
when one considers the toxicity of ENMs as the predicted response. 
Toxicity is thought to originate from unique characteristics of the 
pristine, individual components. In reality, however, the com-
position and structural characteristics that determine an ENM’s 
properties may change during its lifetime depending on external 
conditions25,40–42. As a result, the same ENM may be safe or hazard-
ous for the human body and the environment, depending on the 
external conditions (the surrounding environment)40. The nanode-
scriptors used must therefore be system-dependent.

The ENM composition (that is, core, coating, layers composed 
of the protein corona43, lipids and so on) may be considered as its 
fingerprint in a given environment that strongly determines the 
translated unique properties into application potential and, simul-
taneously, toxicological potential. However, at the same time, the 
composition is not stable and may change as the ENM is transported 
through different environments. ENM properties may consequently 
vary widely before, during and after exposure to biological serum or 
environmental media. The REACH approach for treating substance 
data supports multiple compositions (see Fig. 2), which fits well 
with the idea that ENM composition and properties may progres-
sively change (that is, ENM dynamics) and hence could be utilized 
in nanoinformatics software tools for handling ENMs.

The majority of already developed nano-QSAR models use 
nanodescriptors that refer to the composition, component struc-
tures and properties measured or calculated under a well-defined, 
unchanging set of conditions. This approach allows the relation-
ships between a nanoform with a specific composition/structure/
morphology and a given toxic response to be recognized. To address 
this challenge, the scientific community44–46 proposed an extension 
of classic nano-QSAR models to consider both ‘classic’ intrinsic 
nanodescriptors and extrinsic nanodescriptors that character-
ize composition/structure concerning the surrounding conditions 
(that is, extrinsic or system-dependent descriptors).

Examples of ENM behaviour varying according to the surround-
ing environment are agglomeration or aggregation; both refer to 
the process by which primary nanoparticles form a group of sec-
ondary particles, but agglomerates rely on weak interaction forces 
that can disintegrate in bioenvironments, whereas aggregates result 

Table 1 | overview of challenges to be faced and potential directions for resolving them

challenge 
number

Description Starting point Future directions Reference(s)

1 Describing the component relationships 
in multicomponent ENMs

Descriptors reflecting additive 
relationships between ENM cores  
and modifiers

Descriptors reflecting synergistic 
and antagonistic relationships 
between ENM components

37–39

2 Representing the influence of external 
conditions (surrounding environment) 
and different protocols

Descriptors act as the linkage between 
ENM properties in different conditions

Further extension and 
development of nano-InChI  
and quasi-SMILES

35,36,44,76,77

3 Considering the distributions of 
nanodescriptors, rather than the average 
values

Vectors of d10, d50 and d90 values 
reflecting ENM size distributions

Descriptors reflecting the  
entire distribution instead of 
single points that assume a 
normal distribution

Not yet applied 
in nano-QSAR/
QSPR models

4 Developing nanodescriptors for virtual 
screening

Theoretical descriptors based on the 
Pauling atom electronegativity and the 
Delaunay tessellation approach

Theoretical descriptors 
considering the influence of  
the external conditions

60

5 Increasing the interpretability of 
nanodescriptors by coupling nano-QSARs 
with adverse outcome pathways (AOPs)

Classical descriptors used for modelling 
key events

Algorithm for selecting 
descriptors that are better 
interpretable in the context  
of AOPs

65,67,71

d10 is the size for which 10% of the whole set of ENMs have a size less than this value, d50 is the median size of ENMs and d90 is the size for which 90% of the ENMs have a size below this value.
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from strong forces such as covalent or metallic bonds47. Both pro-
cesses obviously alter the average size and the size distribution but 
also reduce the available surface area and result in different overall 
shapes, which is easily visible for spherical ENMs or for bundling/
unbundling of nanotubes, for example26. It should be noted that 
post-synthesis treatments such as centrifugation can affect size dis-
tributions due to particle aggregation28, so any evaluation of ENMs 
should take into consideration the form in which they will actu-
ally be used, and the handling steps (the so-called provenance of 
the ENM)48. Overall, the impact of the agglomeration or aggrega-
tion state is diverse47. Although it is believed to substantially reduce 
human exposure in the environment, once within biosystems (after 
entry or internal formation), agglomerates/aggregates typically 
have high toxic potentials. At the same time, whereas in most cases 
the reduction in a specific surface area leads to reduced nano–cell 
interactions, some studies report increased adverse effects47. New 
specific descriptors for the aggregation state have recently been pro-
posed: the aggregation free energy and two numerical parameters 
used to correct for the observed deviation from the aggregation 
kinetics described by the Smoluchowski theory49. These descriptors 
are generated as a result of a coarsening strategy combining ab initio 
density functional theory and molecular and Brownian dynamics.

Another example of a relevant process that ENMs undergo is 
protein corona formation in the biological environment. Recently 
we have shown that protein adsorption energies can be predicted 
directly from the protein and nanomaterial descriptors by using 
an artificial neural networks model50. The artificial neural network 
model invoked for Au and TiO2 surfaces removed the need for the 
expensive parameterization protocol of the united-atom multiscale 
model, which is used for obtaining in silico adsorption energies for 
the protein as a whole. Moreover, in another recent work51, it was 
shown that the bio–nano interaction descriptors themselves could 
be derived from the nanoparticle structure and composition using 
multiscale computational models without any experimental input. 
The parameterization of the united-atom model would usually 
include a set of biased all-atom molecular dynamics simulations 
of the adsorption of amino acid fragments onto nano surfaces20. 
Indeed, the obtained binding energies for individual proteins can 
be further utilized to predict the properties of the protein corona52. 
This already enables us to construct predictive models of the bio-
logical activity of ENMs starting from the ENM composition 
and connecting it to the biological endpoint via an ENM-specific 
corona. This approach has been tested on a limited set of ENMs, 
and further work and testing are needed to expand the scope of this  
method (in progress).

We also note the importance of ENM provenance and the meta-
data describing the protocols used. These data include the origin 
or source of a batch of nano-objects along with information related 
to handling and any changes that may have taken place since they 
were originated48, and are critical to the quality of nanoinformatics 
models, especially those considering dynamic evolution. Previous 
work to capture ENM provenance, such as the CODATA Universal 
description system proposed by Committee on Data for Science 
and Technology, which has become ASTM standard created within 
American Society for Testing and Materials, is now being integrated 
with nano-InChI and its auxiliary information as a step in this 
direction, although this will not fully adress the need for complete 
metadata reporting.

Challenge 3: considering distributions of nanodescriptors, rather  
than the average values. A key feature of real ENMs is their hetero-
geneity in the context of physicochemical characteristics53. Variations 
in the structural features of ENMs are thought to be responsible for 
the nonlinear effects and toxic responses after exposure to subpopu-
lations of ENMs54. Although the main components of ENMs could 
be identified and declared harmless, parts of ENMs with different 

structural characteristics could induce observed effects; for exam-
ple, nanoparticles much smaller than the average size can more effi-
ciently undergo cellular uptake and cause cell dysfunction55.

We are used to thinking only about size distributions, but in real-
ity all properties are likely to be heterogeneous across the popula-
tion of ENMs, including the distributions of surface charges, defects 
in the crystal structure, coating thickness and coverage of the sur-
face with functional groups or polymeric stabilizers and so on. 
However, when reporting the characteristics, we usually provide the 
mean plus standard deviation or the mean value. Similarly, toxicity 
data are reported as the mean (per cell/organism and so on) aver-
aged over the whole exposed population of cells. Is information on 
the homogeneity of the sample lost in this averaging? And could 
the true distinction between nanoforms and the true predictors for 
toxicity lie in the details that get lost by averaging? An important 
next step will be to consider whether we can move towards ENM 
descriptors as distributions or vectors that allow for variability of 
the specific property within a ‘dose’ of ENMs and interrogate the 
effect of small changes in the descriptors to be used in the estab-
lishment of nano-QSARs. For example, an ENM dispersion with a 
mean size of 50 nm and size distribution of ±15 nm may correspond 
to 50% of the particles having a size of 40 nm and 50% of the par-
ticles having a size of 60 nm, behaving as two completely different 
populations, which would be lost by averaging. Similarly, suppose 
there are on average 10 functional groups per ENM over 100 par-
ticles. In that case, there could be some particles with no functional 
groups, some with 20, and these could all be trafficked into cells 
differently or acquire different biomolecular coronas and be distrib-
uted to entirely different organs—that is, have different toxicokinet-
ics and toxicodynamics.

In the context of ENM size distributions, the European Chemical 
Agency recently introduced the requirement for reporting of size 
distribution through the values of d10, d50 and d90 (ref. 56). In turn, 
a collaboration between experts from European Nanomedicine 
Characterization Laboratory and the US National Cancer Institute 
Nanotechnology Characterization Laboratory resulted in a 
multi-step strategy of incremental complexity for the characteriza-
tion of the size distribution and size stability of nanoparticle-enabled 
medicinal products57. This strategy assumed the use of orthogonal 
techniques where in the first attempt, low-resolution techniques 
of light-scattering and tracking analysis are used for preliminary 
screening of sample stability and integrity, then a combination 
of high-resolution microscopy techniques are used for size mea-
surement in simple buffers and in much more complex biological 
media. This developed approach raises the issues of the reproduc-
ibility of the manufacturing (batch-to-batch variability), long-term 
dispersion stability during storage, nanoparticle size changes after 
administration and interactions with biomolecules in physiologi-
cal media57. The implementation of this approach in experimental 
ENM characterization on a broader scale would be extremely ben-
eficial for nano-QSAR/QSPR modelling.

In a further step, it would be beneficial to introduce descriptors 
that reflect ENM heterogeneity via standard statistical quantities 
(moments of distributions) and geometrical definitions. Possible 
quantitative higher-order descriptors include: ENM sphericity, 
aspect ratios, principal moments of inertia, components of the 
dipole moment, the percentage of hydrophobic surface or ligand/
functionalization coverage, spherical harmonics (or Fourier modes) 
of non-uniform ligand grafting density or charge distribution, node 
amplitudes of the Schulz distribution of the size of the polydisperse 
materials and so forth.

On the other hand, the dynamic nature of ENMs and their 
transformations could make the use of a moving-average approach 
for the nanodescriptors appropriate to allow for changes in (for 
example) the size as a result of dissolution, to be factored in over-
time. One parameter that is well known to evolve with time, and as 
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ENMs move into cells and between cellular compartments, is the 
biomolecular corona58,59, and thus time-resolved corona data (pro-
teins, metabolites, etc.) could be incorporated into moving-average 
ENM fingerprint descriptors to capture this evolution on the basis 
of binding affinities, local abundances and physiological condi-
tions. These represent exciting areas of research where advances in 
nanoinformatics can open up new vistas in our understanding of 
nanosafety and nanomedicine.

Challenge 4: developing nanodescriptors for virtual screen-
ing. The concept of nanoforms moves us beyond the descrip-
tors of ENMs’ constituents and begins to demand more complex 
approaches such as full-particle descriptors or multicomponent 
descriptors (as discussed above), albeit with extensions for poly-
mers, small molecule ligands and mixed or non-integer oxides. 
The influence of the external conditions (the environment) has also 
been highlighted. Thus, there is a need to develop a comprehensive 
system of descriptors following the concept of ENM representation, 
as presented in Fig. 2.

QSAR methods originate from pharma, where they are used at 
the early stage of pre-clinical studies in virtual screening for novel 
active substances that are then studied empirically. The strength of 
virtual screening lies in the possibility of investigating thousands 
of chemical structures created virtually (in a computer) without 
needing to synthesize them. In such a case, the modellers utilize 
only calculated and preferably coding descriptors as predictors of 
the property of interest. Implementation of virtual screening into 
SSbD strategies for ENMs would substantially reduce time, cost and 
use of laboratory animals because a number of considered solu-
tions would be eliminated even without synthesis and experimental 
characterization. However, there is a challenge related to the fact 
that the majority of nanodescriptors in use in nano-QSAR at pres-
ent need to be experimentally measured. On the other hand, the 
use of physics-based multiscale modelling methods (for example, 
quantum chemical methods, density functional theory, molecular 
dynamics) for calculations is very demanding given the necessity 
of using supercomputer power even for small (from a nanotechnol-
ogy point of view) nanoparticles (that is, 1–2 nm). Thus, in practice, 
there is still a limited number of descriptors that can be calculated 
when characterizing the whole nanostructure (that is, without the 
use of simplified molecular models of the nanomaterials).

To this end, universal theoretical (calculated) nanodescrip-
tors were proposed to characterize diverse nanostructures and be 
applied in predictive modelling and virtual screening of ENMs60. 
These descriptors are calculated by considering the Pauling atom 
electronegativity as an empirical variable to define descriptor char-
acteristics and using the Delaunay tessellation approach to represent 
the surface chemistry by defining tetrahedra in the 3D representa-
tion of the ENM structure. This idea was further explored61 and the 
frequency of occurrence of each tetrahedron was used to consider 
large differences between large-size and small-size ENMs, while 17 
additional atomic properties were considered in the calculation of 
these nanodescriptors. However, these descriptors do not consider 
all characteristics that need to be accounted for when following 
the new concept of ENM representation. For example, they do not 
include the influence of external conditions (the surrounding envi-
ronment; system-dependent nanodescriptors).

In this context, the descriptors that might be used to express 
system-dependent agglomeration and aggregation are those based 
on the liquid drop model62,63. Originally, the liquid drop model was 
designed as an assembly of molecules that form the nanoparticle. 
However, it also can be treated as an assembly of pristine nanopar-
ticles that have formed an aggregate or agglomerate. In this case fur-
ther work is needed: how the formation of agglomerate/aggregate 
differs depending on the external (system-dependent) conditions 
needs to be determined.

In the context of virtual screening, the applicability domain of 
the model is one more point that needs to be considered. The appli-
cability domain is constrained to the data used in the process of the 
model calibration (training data). Thus, the nanodescriptors used 
in the model (that is, their type, number and the range of values) 
determine how extensive the applicability domain is for an appro-
priate model. The highest reliability of computational model predic-
tions is obtained through interpolation, where the characteristics of 
new ENMs are similar in terms of nanodescriptors to the ENMs 
used in the training data. Usually, however, the virtual screening 
concerns the extrapolations, where the predictions go far beyond 
the applicability domain borders. The credibility of such predic-
tions is lower, but not none. The challenge is to quantify the degree 
of uncertainty in the predicted values. The application of Bayesian 
machine learning methods has great potential in this respect, but 
so far these methods have not been applied in virtual screening 
of ENMs. Nevertheless, facing this challenge would substantially 
increase the role of nanoinformatics in SSbD.

Challenge 5: increasing interpretability of nanodescriptors by 
coupling nano-QSARs with adverse outcome pathways. An 
approach for predicting the progressive changes of ENMs proper-
ties is needed; it could be related to both the basic physicochemi-
cal properties (for example, dissolution) and to complex human or 
environmental pathways (for example, AOPs). Dissolution processes 
can be an important factor in understanding the bio-distribution 
and the cellular responses to a range of different ENMs64. They have 
the potential to become key information to be used in a screening 
process to group ENMs with a common hazard potential based on 
their potential to release ionic species65. Several approaches to this 
problem can be envisioned: (1) comparisons of bond energies with 
solvation energies for a given ion/atom/molecule, (2) kinetic mod-
els to assess the timescale of any dissolution, (3) biased molecular 
dynamics simulations of free-energy barriers to the dissolution of 
ENMs, including surface reconstruction and changes on contact 
with water and, where appropriate, (4) direct molecular dynam-
ics studies of spontaneous dissolution and the influence of surface 
ligands and coronas.

The ability of an ENM to dissociate, catalyse a chemical reaction 
and produce reactive species, thus affecting the conformation of 
‘vital’ biomolecules or interfering in metabolic or reproductive pro-
cesses, also determines its potential to cause hazardous effects. From 
a biological point of view, this can be explained as inducing molecu-
lar initiating events leading to the initiation of an AOP. ENM proper-
ties profoundly affect molecular processes at the bio–nano interface. 
Known candidate molecular initiating events for ENMs include the 
production of radical oxygen species, cellular uptake and lysosomal 
damage66. At the same time, nanodescriptors for interactions of 
ENMs with lipids, lung or cell membranes, water or oil20 or receptor 
proteins are scarce, and their evaluation requires substantial devel-
opmental work. Recent computational studies have demonstrated 
the possibility of evaluating bio–nano interaction descriptors such 
as protein binding energies from first principles; that is, based only 
on ENM structure and composition51 using a multiscale approach: 
a combination of coupled quantum chemistry, molecular dynam-
ics, and mesoscale simulations. With this technique, the bio–nano 
interaction descriptors can be evaluated even for artificial materials  
and shapes, which makes it promising for screening ENMs at 
the stage of the materials and product design. Furthermore, the 
first-principles multiscale simulation methodology allows one to 
construct advanced integral descriptors such as the abundance of 
proteins of certain types or specific amino acids in the corona of an 
ENM of given structure and composition, and thus to build a model 
of ENM-specific protein corona50 and through this predict the bio-
logical activity of the ENM. Moreover, detailed characterization of 
the ENMs after initial contact with organisms at different stages of 
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systemic transport can provide molecular-level nanodescriptors for 
‘mechanism-aware’ toxicity prediction schemes67.

Materials modelling and experimental ENM characterization 
after exposure to an organism could be used to develop the relevant 
ENM descriptors. At the first level, such descriptors would include 
characterization of the interfacial ENM contact with biomolecules in 
terms of the binding energies of biomolecule elements (amino acids, 
lipid headgroups and so on). Such descriptors should be organized 
into a bio–nano interactions database linked with initiatives such as 
The Human Protein Atlas68 and equivalents for ecotoxicity species 
and plants69,70. The Human Protein Atlas contains detailed quantita-
tive information on the relative abundances of proteins in different 
cellular and tissue environments that can be integrated and used to 
predict ENM corona formation, including characterization of the 
outer corona surface and prediction of the likelihood of a particular 
hazardous effect. To develop mechanism-aware nano-QSARs, one 
should systematically analyse the ENM-induced toxicity pathways 
and map the nanodescriptors to the molecular initiating events 
and the specific adverse outcome for any ENMs. As the majority of 
molecular initiating events responsible for the induction of adverse 
outcome by ENMs are non-specific, key events should be consid-
ered at this stage. However, this is only possible if the sequence of 
key events and the dose–response relationships that lead to eventual 
adverse outcome are well described and understood. A nano-QSAR 
model linking the properties of ENMs with the upstream key events 
that are essential for the initiation and manifestation of an adverse 
outcome could then be developed.

The only approach71 reported so far in this area employs a 
nano-QSAR model to predict the transcriptomic-based pathway- 
level response associated with the lung tissue inflammation induced 
by multiwalled carbon nanotubes. This AOP-anchored model 
allows the prediction of the inflammatory response induced by 
nanotubes on the basis of their aspect ratio values. In this study, 
the pathway-relevant genes were also analysed, and the transcrip-
tomic biomarkers that can be applied to assess the inflammogenic 
properties of nanotubes were identified. The overall assessment 
scheme would thus combine materials modelling, systems biology, 
in vivo and in vitro studies. A systematic mapping of ENMs with 
their induced molecular alterations and interactions in the AOP 
context can provide mechanistic interpretability of ENM molecular  
dynamics1,24,72–74. Furthermore, such models can be exploited when 
designing ENMs that exert specific biological effects75.

Outlook. Nanoinformatics is a vibrant and apidly developing area, 
with enormous potential to provide new mechanistic insights into 
ENM interactions with living systems and to facilitate a transition 
to in silico risk assessment.

This Review provides a snapshot of conceptual directions in 
progress within the field of nanoinformatics that are necessary to 
achieve a complete representation of ENMs and description in 
terms of nanodescriptors. Under the newly proposed scheme of 
ENM representation, nanodescriptors should reflect not only pris-
tine characteristics of the main constituents, but also the infor-
mation on the possible relationships between the constituents. 
Information on the attached biomolecules in response to the ENMs 
surroundings and, consequently, the initiation of key events lead-
ing to adverse outcomes should also be incorporated. In addition,  
representing the distributions of ENMs in terms of their size, struc-
tural (for example, shape irregularities, defects in the crystal struc-
ture) and surface (charges, coating thickness and coverage of the 
surface and so on) features to enable particle-by-particle predictive 
analysis may prove to be the key to understanding and minimizing 
potential risks in the context of SSbD. Special attention should be 
paid to developing calculated coding nanodescriptors that may be 
utilized for virtual screening at the earliest possible stage of nanopar-
ticle design. Finally, comprehensive documentation of the metadata 

for experimental nanodescriptors is essential, including the data pro-
cessing and clean-up steps, for example, to ensure data provenance.

The five challenges defined above should be tackled with the 
highest priority to develop comprehensive models for predictive 
nanoinformatics.
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