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Background: In response to hypoxia, tumor cells undergo transcriptional

reprogramming including upregulation of carbonic anhydrase (CA) IX, a

metalloenzyme that maintains acid-base balance. CAIX overexpression has been

shown to correlate with poor prognosis in various cancers, but the role of this CA

isoform in hepatoblastoma (HB) has not been examined.

Methods: We surveyed the expression of CAIX in HB specimens and assessed

the impact of SLC-0111, a CAIX inhibitor, on cultured HB cells in normoxic and

hypoxic conditions.

Results: CAIX immunoreactivity was detected in 15 out of 21 archival pathology HB

specimens. The CAIX-positive cells clustered in themiddle of viable tumor tissue or

next to necrotic areas. Tissue expression of CAIX mRNA was associated with

metastasis and poor clinical outcome of HB. Hypoxia induced a striking

upregulation of CAIX mRNA and protein in three HB cell models: the

immortalized human HB cell line HUH6 and patient xenograft-derived lines HB-

295 and HB-303. Administration of SLC-0111 abrogated the hypoxia-induced

upregulation of CAIX and decreased HB cell viability, both in monolayer and

spheroid cultures. In addition, SLC-0111 reduced HB cell motility in a wound

healing assay. Transcriptomic changes triggered by SLC-0111 administration

differed under normoxic vs. hypoxic conditions, although SLC-0111 elicited

upregulation of several tumor suppressor genes under both conditions.
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Conclusion: Hypoxia induces CAIX expression in HB cells, and the CAIX inhibitor

SLC-0111 has in vitro activity against these malignant cells.
KEYWORDS

carbonic anhydrase IX, hepatoblastoma, pediatric oncology, tumor hypoxia,
targeted therapy
1 Introduction

Hepatoblastoma (HB) is a rare pediatric liver malignancy with an

incidence of 2.16 per million person-years (1). Approximately 80% of

cases are diagnosed before the age of three years (2). Although the

etiology of HB is not well understood, its morphology and molecular

landscape suggest an embryonal origin (3–5). Most HB cases are

sporadic, but certain congenital disorders such as Beckwith-

Wiedemann syndrome and familial adenomatous polyposis are risk

factors for HB development (3). HB treatment entails surgical

resection or liver transplantation combined with pre- and post-

operative administration of cisplatin, carboplatin, and doxorubicin

(6). This approach has improved the 5-year overall survival (OS) rate

to greater than 80% (7), though patients with metastases or relapsed/

refractory disease have significantly lower survival rates, emphasizing

the need for novel treatment strategies (8).

Solid tumors often contain hypoxic regions due to an imbalance

between microvascularization and rapid growth (9). The hypoxic

microenvironment is associated with cancer progression and

treatment failure (10). Cancer cells adapt to low oxygen tension via

hypoxia inducible factor 1a (HIF1a) mediated responses including

upregulation of carbonic anhydrase (CA) IX (11). CAs are

evolutionary conserved metalloenzymes catalyzing reversible

hydration of CO2 to HCO−
3 and H+ (12). In humans, fifteen CA

isoforms have been identified, three of which lack catalytic activity

(13). Transmembrane CAIX is a tumor associated CA isoform with

restricted expression in healthy tissue (14). In fetal liver, scattered

CAIX-positive hepatocytes have been reported, but postnatal CAIX

immunoreactivity in liver is limited to bile duct cells (15–17).

High CAIX expression has been linked to enhanced cell survival,

high proliferation rate, increased motility/invasion, and chemoresistance

in a wide range of tumors including breast, lung, and oral cancers (18–

20). CAIX plays a pivotal role in maintaining acid-base balance in tumors

(21). While intracellular acidification reduces tumor cell survival and can

be utilized to kill cancer cells, an acidic extracellular milieu supports
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tumor progression (22). CAIX drives both neutralization of the

intracellular compartment and acidification of the tumor

microenvironment, promoting an aggressive cancer phenotype (23).

Consequently, CAIX is an attractive therapeutic target. A small

molecule inhibitor of CAIX, SLC-0111, has completed a phase 1

clinical trial for treatment of advanced solid tumors; no significant

dose-limiting toxicities were encountered (24).

Herein, we characterize CAIX expression in archival HB

specimens and use cell culture models to study the impact of SLC-

0111 on this malignancy. We show that hypoxia induces CAIX

expression in HB cells and that SLC-0111 has considerable in vitro

activity against this cancer.
2 Materials and methods

2.1 Patient samples

Samples were acquired from the Helsinki Biobank at Helsinki

University Hospital. Informed written consent was collected at the

time of sample deposit. The study was approved by an ethics committee

at Helsinki University Hospital (HUS/3319/2018) and was performed

in accordance with Finnish bylaws. Tumor samples (n=21) were

obtained from HB patients treated at Children’s Hospital, Helsinki

University Hospital between January 1, 1990 and December 31, 2017.

Sampling was performed during surgical resection or liver

transplantation (after pre-operative chemotherapy). Normal liver

(NL) control samples were collected from organ donors (n=3).
2.2 Immunohistochemistry

Five µm sections of formalin-fixed paraffin embedded tumor

specimens were deparaffinized and immunostained with a monoclonal

anti-human CAIX antibody (M75) (25). Immunoperoxidase staining was

performed using an automated Lab Vision Autostainer 480 (LabVision

Corporation, Fremont, CA, USA) and Power Vision+ Poly-HRP

Immunohistochemistry kit reagents (ImmunoVision Technologies Co).

The staining protocol included the following steps: (a) rinsing in wash

buffer; (b) treatment in 3% H2O2 in ddH2O for five minutes and rinsing

with wash buffer; (c) blocking with cow colostrum diluted 1:2 in Tris-

buffered saline (TBS) containing 0.05% Tween-20 for 30 minutes and

rinsing in wash buffer; (d) incubation with 1:100 diluted M75 for 30

minutes; (e) rinsing in wash buffer three times for five minutes each; (f)

incubation with poly-HRP-conjugated anti-mouse IgG for 30 minutes

and rinsing in wash buffer three times for five minutes each; (g)
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incubation in DAB (3,3`-diaminobenzidine tetrahydrochloride) solution

(one drop of DAB solution A and one drop of DAB solution B in 1 ml of

ddH2O) for six minutes and rinsing in ddH2O; (h) CuSO4 treatment for

five minutes to enhance the signal and rinsing in ddH2O; (i) treatment

with hematoxylin for one minute; (j) rinsing with ddH2O. All steps were

performed at room temperature (RT). Imaging was performed using

3DHISTECH Panoramic 250 FLASH II digital slide scanner at Genome

Biology Unit (Research Programs Unit, Faculty of Medicine, University

of Helsinki Biocenter, Helsinki, Finland).
2.3 Clinical data

Rawmicroarray data of gene expression and clinical data from 53HB

tissue samples and 14 noncancerous liver tissue samples were acquired

from the Gene Expression Omnibus (GEO) database of the National

Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.

gov/geo/), accession number GSE131329. Microarray data were analyzed

with Chipster software (https://chipster.rahtiapp.fi/) (26) using the

normalization tool for Affymetrix gene arrays (27, 28). Statistical tests

were conducted using the “Two group tests” tool (empirical Bayes as test

and Benjamini-Hochberg as p-value adjustment method) (29).

Differences in the distribution of continuous variables were assessed

using the Mann-Whitney U test. Statistical significance was set to p-value

< 0.05. Analyses were conducted with IBM SPSS Statistics version 28.0

(IBM Corp., Armonk, NY, USA).
2.4 Cell lines and maintenance

The human HB cell line HUH6 was purchased from the Japanese

Collection of Research Bioresources Cell Bank (Osaka, Japan). HB cell

lines established from patient-derived xenografts (PDX; HB-303 andHB-

295) were obtained from XenTech (Evry, France). HUH6 cells were

maintained in Dulbecco’s modified Eagle medium (DMEM)-GlutaMAX

(glucose: 1 g/l) supplemented with 10% fetal bovine serum (FBS), 100 U/

ml penicillin, and 100 µg/ml streptomycin (all from Gibco, Stockholm,

Sweden). HB-303 and HB-295 cells were cultured in Advanced DMEM/

F12 medium (Gibco) supplemented with 8% FBS, 100 U/ml penicillin,

and 100 µg/ml streptomycin, and 20 µM of Y-27632 (SelleckChem,

Houston, TX, USA). Cells were routinely maintained at +37°C in a

humidified incubator with 5% CO2. In this study, these conditions

represent normoxia (21% O2) (30). Hypoxic conditions were generated

utilizing the XVivo incubation system (partial pressures: 94% N2, 1% O2,

5% CO2) (BioSpherix, Parish, NY, USA). All cell lines were authenticated

through short tandem repeat profiling.
2.5 SLC-0111 and cisplatin treatments

Carbonic anhydrase IX/XII inhibitor SLC-0111 (alias: U-104) was

purchased from SelleckChem (catalog no. S2866) and dissolved in

sterile DMSO as a 10 mM stock solution. Further dilutions were

prepared in adequate cell culture medium. Normal cell culture

medium supplemented with DMSO was utilized as a control

treatment. Incubations were performed for 48 h if not otherwise

stated, and the medium was not changed during the incubations.
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2.6 RNA and protein extraction

RNA and protein extraction was performed with Nucleospin

RNA/Protein Mini extraction kit (Macherey-Nagel, Düren,

Germany) following the manufacturer’s instructions.
2.7 RNA sequencing and data processing

HUH6 cells were cultured under normoxic or hypoxic conditions

and treated with 100 µM of SLC-0111 or vehicle. RNA was extracted

after 48 h incubation. Prior to sequencing, RNA concentration,

quality, and integrity were assessed by the Biomedicum Functional

Genomics Unit (Helsinki Institute of Life Science and Biocenter

Finland, University of Helsinki, Finland) using the TapeStation

system (Agilent, Glostrup, Denmark). RNA libraries were prepared

applying polyA selection, and Illumina compatible cDNA libraries

were constructed by GENEWIZ (Leipzig, Germany). Subsequently,

samples were sequenced on Illumina NovaSeq 6000 yielding 2x150bp

paired end reads (GENEWIZ). An RNA sequencing dataset

containing 11 HB patient samples and 11 NL samples was obtained

from the GEO database of NCBI (accession number: GSE151347) (31,

32). FastQC tool was utilized to control quality of the reads (33).

Sequenced reads were mapped to human reference genome hg38

using HISAT2 aligner (34). Reads per gene were counted with HTseq

(35). To analyze differentially expressed genes (DEGs), edgeR2 tool

was employed (36). Cut-off values were set to fold change lg2 +/-0.8

and Benjamini-Hochberg adjusted p-value <0.05. Preprocessing of

data and DEG analysis was carried out with Chipster (26). Gene

Ontology (GO) analysis was performed with Enrichr (37, 38). R

packages tidyverse and ggplot2 were used for data visualization in R

(v. 4.0.3).
2.8 Real-time quantitative PCR (RT-qPCR)

RNA was reverse transcribed using the iScript cDNA Synthesis Kit

(Bio-Rad, Hercules, CA, USA) following the manufacturer’s instructions.

RT-qPCR was carried out with a CFX384 thermocycler instrument (Bio-

Rad), and PowerUP SYBR Green Master Mix (Thermo Fisher Scientific)

was used for gene amplification. Relative gene expression was assessed

using the 2-DDCT method (39). Geometric mean of ACTB and PPIG

expression served as a reference. Primer sequences were: ACTB;

GCGTGACATCAAAGAGAAGC ( f o r w a r d ) , AGGA

T T C C A T A C C C A A G A AGG ( r e v e r s e ) ; C A I X G C

CTTTGCCAGAGTTGACGA (forward), TCTGAGCCTTCC

TCAGCGAT (reverse); PPIG CAATGGCCAACAGAGGGAAG

(forward), CCAAAAACAACATGATGCCCA (reverse).
2.9 Western blotting

Proteins (10 µg) were separated by electrophoresis using Mini-

Protean TGX Stain-Free Gels (Bio-Rad, Hercules, CA, USA) Next,

proteins were transferred onto polyvinyl fluoride membrane.

Blocking was performed with 5% non-fat milk in TBS. Primary

antibody incubations were performed at +4°C for overnight (anti-
frontiersin.org
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human CAIX rabbit IgG at a of dilution 1:1500; NB100-417, Novus

Biologicals, Littleton, CO, USA). Secondary antibody incubation

was carried out at RT for 1 h (1:10,000; #111-035-144, Jackson

ImmunoResearch, West Grove, PA, USA). Protein bands were

illuminated using the Enhanced Chemiluminescence detection kit

(Amersham ECL reagent; GE Healthcare, Barrington, IL, USA).

Quantification was performed with Image Lab Software 6.0 (Bio-

Rad). CAIX band intensities were normalized to the amount of

total protein in the corresponding lane using stain-free

technology (37).
2.10 Wound healing assay

Ibidi-treated cell culture inserts (3-well in µ-dish; Ibidi, Munich,

Germany) were used to generate wounds. Cells were seeded into

inserts in high density 24 h prior to the experiment. Before treatment

initiation with vehicle or 100 µM of SLC-0111, inserts were removed,

and cells were washed with phosphate buffered saline (PBS) to

eliminate debris. Wounds were imaged at treatment outset (0 h)

and after 20 h with an Eclipse TS100 microscope supplemented with

the DS-Fi1 digital imaging system (Nikon, Tokyo, Japan). Wounds

(16 images/insert) were analyzed with ImageJ software to calculate the

percentage of wound closure. The following formula was used:

Wound closure (%) = ((W0 – Wt)/W0) x 100 (W0 = Wound area at

0 h and Wt = Wound area at 20 h).
2.11 Spheroid cultures

Cells were seeded at a density of 2000 cells/well into 96-well ultra-

low attachment plates (PerkinElmer, Waltham, MA, USA) and

cultured without disturbance for 48 h at +37°C in a humified

incubator with 5% CO2. After the establishment period, cells were

incubated with vehicle or increasing concentrations of SLC-0111

for 48 h.
2.12 Viability measurements

Cell viability (ATP concentration) was assessed with the

ATPLite™ 2D or 3D monitoring system (PerkinElmer) following

manufacturer’s instructions. Luminescence was measured with a

GloMax microplate reader (Promega, Madison, WI, USA).
2.13 Immunofluorescence

HUH6 and HB-303 cells (100 000 cells/well) were grown in 4-well

chamber slides coated with collagen I for 24 h. Cells were fixed with

4% paraformaldehyde. Non-specific binding was blocked with

UltraVision Protein Block solution (Thermo Scientific, Fremont,

CA, USA). Next, cells were incubated with primary antibody at

room temperature for 1 h (NB100-417 human anti-rabbit CAIX at

1:1000 dilution, Novus Biologicals, Littleton, CO, USA). Secondary

antibody incubation was performed with goat anti-rabbit IgG (H+L)
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AlexaFluor 647 (1 h, room temperature) at 1:800 dilution (A32733,

Invitrogen, Carlsbad, CA, USA). Images were captured with a Zeiss

Axio Imager M2 (objective: EC Plan Neofluar 40 X/0.75 Ph2 M27)

(Carl-Zeiss, Oberkochen, Germany).

Spheroids were fixed with chilled 100% methanol for 20 minutes

at RT. Following washes with PBS, 0.1% Triton-X was utilized to

permeabilize the cells. Nonspecific binding was blocked with

UltraVision Protein Block Solution (Thermo Fisher). Primary

antibody incubation (anti-human CAIX rabbit IgG, at a dilution of

1:100; NB100-417, Novus Biologicals) was performed at RT for 1.5 h.

Subsequently, spheroids were incubated with secondary antibody

(anti-rabbit IgG (H+L) AlexaFluor 647, at dilution 1:200; A32733,

Thermo Fisher) at RT for 1 h. Hoechst (at dilution 1:2000; #62249,

Thermo Fisher) was used for nuclear staining. Opera Phenix High

Content Screening System was employed to capture images (Perkin

Elmer). Imaging was performed in the High Content Imaging and

Analysis unit (FIMM, University of Helsinki).
2.14 Target prediction analyses

Potential bioactive targets of SLC-0111 were assessed with

SwissTargetPrediction (http://www.swisstargetprediction.ch/) (40)

and SUPERpred (https://prediction.charite.de) (41) online tools.
2.15 Statistical analysis

Cell experiments were conducted in triplicate. Statistical

analyses were carried out with GraphPad Prism (v. 8.4.2; San

Diego, CA, USA). Student’s t-test or one-way ANOVA followed

with Tukey’s test were utilized to assess statistical significance

depending on the experimental setting. p-value < 0.05 was

considered significant.
3 Results

3.1 CAIX protein expression in clinical
HB samples

We analyzed 21 specimens of HB (11 male, 10 female) in the

Helsinki Biobank. The median patient age at surgery was 3.18 years

(0.23-10.83 years). Patient characteristics, treatments, and CAIX

expression status are summarized in Table 1. Three pediatric donor

liver samples (age 2.0-8.2 years) were used as normal controls.

Consistent with previous studies, in healthy liver CAIX

immunostaining was restricted to bile duct cells (Figures 1A, B)

(16, 17). Over 70% of the HB specimens demonstrated CAIX

immunoreactivity; 9/21 had intermediate (Figures 1C, D)

expression, and 6/21 had high CAIX expression (Figures 1E, F).

CAIX staining was predominantly membranous in both the HB and

healthy liver samples (Figures 1A–F). Within HB specimens, CAIX-

positive cells were grouped in small clusters in the middle of viable

tissue (Figures 1C, D) or adjacent to necrotic areas (Figures 1E, F),

regions presumed to be hypoxic due to limited blood supply.
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3.2 CAIX mRNA expression in HB correlates
with poor clinical outcome

In the Helsinki cohort, all 5 cases of metastatic HB demonstrated

CAIX immunoreactivity (Table 1), suggesting that CAIX expression

correlates with advanced disease. We used a larger patient cohort

[GSE131329, a dataset containing 53 HB and 14 normal liver

samples] to compare CAIX mRNA expression with three clinical

variables – occurrence of an unfavorable event, metastasis, and overall

survival. Total CAIX expression was higher in normal liver (median

7.485, [IQR 7.308–7.613]) than in HB samples (median 7.260, [IQR

7.115–7.470]) (Figure 2A), likely a reflection of CAIX expression in

the biliary epithelium of normal tissue. The occurrence of any event

was associated with higher CAIX expression (median 7.360 [IQR
Frontiers in Oncology 05
7.245-7.640]) than an event-free disease course (median 7.145 [IQR

7.075-7.376]) (Figure 2B). Patients with distant metastases had higher

CAIX expression (median 7.470 [IQR 7.223-7.638]) than those

without metastases (median 7.170 [IQR 7.110-7.380]) (Figure 2C).

Poor overall survival was associated with elevated CAIX expression

(HB median 7.230 [IQR 7.162-7.360] vs. normal liver median 7.105

[IQR 6.999-7.170]) (Figure 2D).
3.3 Hypoxia induces CAIX expression in cell
models of HB

We used cell culture models to investigate whether low oxygen tension

induces CAIX expression in HB. The immortalized human HB cell line
TABLE 1 HB patient characteristics and CAIX expression status.

Patient Age at sampling (years, age
group)

Sex
(Male/
Female)

PRETEXT Histology Surgery Chemo CAIX
(-/+/+
+)

HB1 >7 M 3, P Fetal, epithelial TX SIOPEL-4 +

HB2 3-7 M 4, B Fetal TX SIOPEL-4, sorafenib, vincristine,
etoposide

+

HB3 3-7 F 3, M n/a TX SIOPEL-4, sorafenib, vincristine,
fluorouracil

++

HB4 3-7 M 3, A1 Fetal, epithelial TX SIOPEL-4 +

HB5 3-7 F 3, V, E Fetal, embryonal TX SIOPEL-4 –

HB6 1-3 M 2, A1 Fetal, epithelial Resection SIOPEL-4 +

HB7 3-7 M Unknown Epithelial,
macrotrabecular

TX n/a –

HB8 >7 M M Fetal, well-differentiated TX n/a +

HB9 <1 F 3, A1 Fetal, epithelial Resection SIOPEL-4 –

HB10 >7 F 4, E1, H1 Fetal, epithelial TX SIOPEL-4 ++

HB11 <1 M 2, A1 Fetal, epithelial TX Cisplatin +

HB12 1-3 M 2 Mixed epithelial/
mesenchymal

TX SIOPEL-4 –

HB13 3-7 F 4, M Fetal, epithelial TX SIOPEL-4 +

HB14 1-3 M 4, M, V Embryonal, mixed TX SIOPEL-4 ++

HB15 3-7 M 2, H1 Fetal, epithelial Resection SIOPEL-4 ++

HB16 3-7 F 2, P2 Embryonal TX SIOPEL-4 –

HB17 1-3 M 3 Fetal, epithelial TX SIOPEL-4 –

HB18 3-7 F 3, M Fetal, epithelial Resection n/a ++

HB19 1-3 F 4 Fetal, epithelial, well
differentiated

TX n/a +

HB20 1-3 F 3 Epithelial, embryonal and
fetal

Resection n/a +

HB21 1-3 F 2 Mixed epithelial/
mesenchymal, teratoid
features

Resection n/a ++
front
TX=liver transplantation.
++ = high CAIX expression.
+ = intermediate CAIX expression.
- = no CAIX expression.
n/a = data not available.
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HUH6 or the PDX-derived cell lines HB-295 andHB-303 were cultured in

a hypoxic chamber or normoxic incubator for 48 h. All three HB cell lines

demonstrated little or no baseline CAIXmRNA expression when cultured

under normoxia (Figures 3A–C). CAIX mRNA expression was markedly

upregulated in hypoxic cells compared to normoxic controls, with increases

of 740-fold inHUH6 (Figure 3A), 165-fold inHB-295 (Figure 3B), and 6.7-

fold in HB-303 cells (Figure 3C). Similarly, hypoxia induced 6- to 50-fold

increases in CAIX protein levels (Figures 3D–I).

Next, we assessed the impact of 100 µM SLC-0111 on CAIXmRNA

and protein expression under normoxic and hypoxic conditions. In

normoxia, CAIXmRNA expression remained invariant after SLC-0111

treatment in all three cell models (Figures 3A–C). HB cells cultured

under hypoxia and treated with SLC-0111 demonstrated a 40-60%

reduction in CAIX mRNA expression compared to vehicle treated

control cells (Figures 3A–C). Following SLC-0111 treatment, levels of

CAIX protein decreased significantly in hypoxic HUH6 cells but not in

HB-295 or HB-303 cells (Figures 3D–I).
3.4 SLC-0111 treatment attenuates HB cell
viability in monolayer and spheroid cultures

To explore the effects of CAIX inhibition on HB cell survival in

monolayer and spheroid cultures, we measured ATP concentrations,

a surrogate for cell viability, following exposure of cells to increasing
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amounts of SLC-0111. In monolayer cultures, HUH6 cell viability

decreased in a dose-dependent manner both in normoxia and

hypoxia (Figure 4A). As with HUH6 cells, the impact of SLC-0111

on the viability of HB-295 monolayer cultures was more pronounced

in normoxic than hypoxic conditions (Figure 4C). HB-303 had a

dissimilar response to SLC-0111 than the other two models; cell

viability increased with doses of 50-100 µM and with doses of 125-175

µM a modest decrease in viability was observed (Figure 4E).

The spatiotemporal distribution of oxygen in solid cancers cannot

fully be mimicked in monolayer cell cultures. Instead, spheroids more

closely resemble the 3-dimensional architecture of solid tumors, as

oxygen levels differ for cells exposed directly to growth medium vs.

those located in the inner parts of spheroids (42). To further assess the

effects of SLC-0111 on HB cells, we used spheroids cultured in normoxia.

SLC-0111 elicited a decrease in viability in all three HB spheroid models

(Figures 4B, D, F). We also noticed spontaneous expression of CAIX in

HB spheroids under normoxic conditions, whereas the cells grown in 2D

showed negligible CAIX expression (Supplementary Figure 1).
3.5 HB cell motility is impaired by
SLC-0111 treatment

Several studies have reported decreased cell motility after

pharmacological inhibition of CAIX or silencing of the CAIX gene
FIGURE 1

CAIX expression in HB patient samples and normal liver. CAIX expression was restricted to bile duct cells in normal liver tissue (A, B). 9/21 HB tumor
samples demonstrated intermediate (C, D) and 6/21 high CAIX immunoreactivity (E, F). CAIX expression localized to small clusters in the middle of viable
HB tissue (arrow, C, D) or adjacent to necrotic areas (arrowhead, E, F). Scale bars: 50 µm (A) and 20 µm (B).
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(43–45). In our HB cell models, migration rates decreased

significantly after 20 h treatment with 100 µM SLC-0111 compared

to control cells both under normoxic and hypoxic conditions

(Figures 5A–C). SLC-0111 had the most drastic effect on migration

in HUH6 cells, wherein motility decreased approximately 70% in

normoxia and 40% in hypoxia after 20 h of SLC-0111 treatment

(Figure 5A). Hypoxia increased the migratory capacity of HB-295

cells compared to normoxic control cells, and SLC-0111 reduced

motility in both normoxia and hypoxia (Figure 5B). A modest

reduction in migration was observed in HB-303 cells treated with

SLC-0111. In these cells the decrease was approximately 30% in

normoxia and 35% in hypoxia compared to corresponding vehicle

treated controls (Figure 5C).
3.6 Transcriptomic changes induced
by SLC-0111 diverge in normoxic and
hypoxic conditions

As noted above, SLC-0111 decreased viability and motility in HB

cells even under normoxic conditions when CAIX expression was
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undetectable or extremely low, suggesting that the drug may have

CAIX-independent effects. To explore transcriptomic changes

induced by SLC-0111 treatment, we performed RNA sequencing

analysis for HUH6 cells treated with 100 µM SLC-0111 for 48 h

under either normoxia or hypoxia. First, we assessed global gene

expression alterations triggered by hypoxia compared to baseline

expression in normoxia. A total of 2876 DEGs were observed of which

2155 genes were upregulated and 721 were downregulated

(Supplementary Figure 2; Supplementary Table 1). The three most

upregulated protein coding genes were gamma-aminobutyric acid

receptor subunit alpha-2 (GABRA2), CAIX, and aquaporin 10

(AQP10) (Figure 6; Supplementary Table 2). Regulatory factor X6

(RFX6), acyl-CoA thioesterase 12 (ACOT12), and adrenoceptor alpha

2A (ADRA2A) were the most downregulated protein coding genes

under hypoxia in comparison to normoxia (Figure 6;

Supplementary Table 2).

Next, we assessed the effects of SLC-0111 on the HUH6 cell

transcriptome. In normoxia, we observed 304 upregulated genes and

96 downregulated genes after SLC-0111 treatment (Supplementary

Table 1). Under hypoxic conditions, SLC-0111 induced upregulation

of 175 genes and downregulation of 312 genes (Supplementary
A B

DC

FIGURE 2

High CAIX expression associates with events, distant metastases, poor overall survival in HB. Total CAIX expression was higher in normal liver compared
to HB samples (A). Occurrence of events associated with higher CAIX expression (B). Patients with distant metastasis demonstrated higher CAIX
expression compared to those with no metastasis (C). Poor overall survival was linked to elevated CAIX expression (D). Dots represent individual samples,
the box represents the interquartile range, the whiskers represent the 1st and 4th quartile and the line inside the box is the median. *p-value < 0.05, **p-
value < 0.01.
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Table 1). Altogether, 76 genes were differentially expressed in both

normoxic and hypoxic HUH6 cells treated with SLC-0111

(Figure 7D). Of these 76 genes, 15 genes were downregulated both

in normoxia and hypoxia, 60 genes were upregulated in both

conditions, and one gene was differentially regulated in hypoxia

and normoxia (Figure 7A; Supplementary Table 3). Molecular

functions associated with these overlapping genes included

semaphorin binding, protein-arginine deaminase activity, and
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protease binding (Figure 7B). Metal ion related biological processes

were highly overrepresented in SLC-0111 treated cells (Figure 7C).

We also characterized overlaps in genes dysregulated in HB patient

samples and expression alterations caused by SLC-0111 in HUH6

cells. A total of 7411 DEGs (Supplementary Table 1) were noted in

HB vs NL, and 35 of these genes were also differentially expressed in

HUH6 cells following SLC-0111 administration (Supplementary

Table 1). SLC-0111 treatment of HUH6 cells caused upregulation
A B

D

E

F

G IH

C

FIGURE 3

Hypoxia-induced expression of CAIX in HB cell lines is attenuated by SLC-0111. CAIX mRNA expression was negligible under normoxic condition in
HUH6 (A), HB-295 (B), and HB-303 (C) cells. In response to hypoxia, CAIX mRNA expression drastically increased in all cell lines (A–C). SLC-0111
treatment decreased CAIX mRNA expression 40-60% under hypoxia (A–C). CAIX protein levels were significantly higher in cells grown under hypoxic
compared to normoxic conditions in all cell models (E–I), and in hypoxic HUH6 cells CAIX expression significantly decreased following SLC-0111
treatment (D, G). Bar plots reflect the mean of three independent experiments ± RSD. Band intensity was normalized to total protein expression in each
lane. Normalization factor (NF) describing the amount of total protein in lane relative other lanes is given beneath the bands. *p-value < 0.05, **p-value <
0.01. SLC-0111 = 100 µM.
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of 20 genes that were downregulated in HB tumor tissue (Table 2),

including the tumor suppressor genes MT1G, MT1X, MT2A, OTC,

PCK2, PGLYRP2, SERPINC1, and NR1I3. Three genes (FOXJ1,

PRRT1, and TSSK5P) were downregulated in SLC-0111 treated

HUH6 cells and upregulated in HB tumor tissue (Table 2).
3.7 Target prediction analysis for SLC-0111

To identify other potential targets for SLC-0111, we performed in silico

target prediction analysis with two online tools (SwissTargetPrediction and

SUPERpred).We combined the common predicted targets from both tools

(Table 3). In addition to CAIX and CAXII, SLC-0111 had high expected
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probability of binding CAII (Table 3). Other identified targets included

histone deacetylase (HDAC) 3, thymidylate synthase (TYSY), nuclear

factor NF kappa-B inhibitor kinase alpha (CHUK), mammalian target of

rapamycin (mTOR), cyclin dependent kinases (CDKs) 1/2/4/5, and

phosphatidylinositol 3-kinases PK3CA, PK3CB, and PK3CG (Table 3).
4 Discussion

Hypoxia triggers metabolic reprogramming in tumor cells,

resulting in decreased intracellular pH levels (46). To counter this

acidic stress, cancer cells induce the expression of CAIX (11). In

various malignancies, CAIX expression associates with advanced
A B

D

E F

C

FIGURE 4

SLC-0111 decreases cell viability of HB monolayers and spheroids. To assess cell viability, ATP levels were measured after SLC-0111 treatment. HUH6 cell
viability decreased dose-dependently both in normoxia and hypoxia (A). HUH6 spheroids showed significantly decreased cell viability at SLC-0111
concentrations of 125 and 175 µM (B). In HB-295 cells the reduction in cell viability was significant at concentrations between 75-175 µM under
normoxia and between 100-175 µM under hypoxia (C). In HB-295 spheroids the viability was decreased at concentrations of 100-175 µM (D). The
response of HB-303 to SLC-0111 differed from other models. Cell viability increased at concentrations of 50-100 µM and decreased at concentrations of
125-175 µM (E). In HB-303 spheroids the viability was decreased with all concentrations (F). *and §p-value < 0.05, **p-value < 0.01 (compared to
corresponding control).
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disease and treatment failure, underscoring its potential as a

biomarker and treatment target (37–41). We found that CAIX is

expressed in most HB samples and is associated with unfavorable

clinical outcome.

Our findings echo studies of adult liver cancer, wherein high

CAIX expression has been linked to treatment resistance, recurrence,

and unfavorable outcome (47, 48). Huang et al. reported a diffuse

perinecrotic localization of CAIX in hepatocellular carcinoma (HCC)

tissues (48). Similarly, we observed CAIX immunoreactivity in

perinecrotic regions and in small clusters in the middle of viable

tumor tissue in HB specimens. Cancer stem cells (CSCs) facilitating

tumorigenicity and metastasis are thought to reside in specific niches

within tumors, including perinecrotic regions (49). Of note, CAIX

expression has been suggested to support CSC survival in PDX-

models of cervical and breast cancer (50, 51).

Upregulation of CAIX expression has been observed in numerous

cancer cell lines in response to hypoxia (52–56). In keeping with these
Frontiers in Oncology 10
studies, we found that CAIX expression was strongly upregulated at

the mRNA and protein levels in HB cell models exposed to hypoxic

conditions, while its baseline expression in normoxia was extremely

low. Treatment with SLC-0111 abrogated hypoxia-induced CAIX

mRNA expression in all three HB cell lines studied but caused a

notable decrease in CAIX protein level in only one cell line. This may

be explained by the fact that CAIX protein and mRNA expression

were measured at the same timepoint. Owing to protein turnover

rates, it may take longer to see a decrease in protein levels compared

to RNA levels.

SLC-0111 is a ureido-sulfonamide inhibitor of CA that has been

reported to target hypoxia-induced CAIX and CAXII with a high

selectivity (57–59). A multitude of novel SLC-0111 analogues have

recently been developed to inhibit these cancer-associated enzymes

with even better selectivity compared to the classical compound (60).

Since SLC-0111 acts mechanistically as an inhibitor of CAIX

enzymatic activity (61), it was surprising to observe a drastic
A

B

C

FIGURE 5

SLC-0111 treatment decreases cell motility in HB cell models. After 20 h of SLC-0111 treatment, migration rate was significantly reduced in HUH6 (A),
HB-295 (B), and HB-303 (C) cells in both normoxic and hypoxic conditions. Histograms show the percentage of wound closure relative to DMSO treated
control. Bar plots are presented as relative values of mean of three independent experiments ± RSD. *p-value < 0.05. SLC-0111 = 100 µM. N, normoxia;
H, hypoxia.
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impact on CAIX mRNA levels in HB cells with low basal CAIX

expression in the present study. A similar reduction in hypoxia-

induced CAIX mRNA expression after SLC-0111 treatment was

observed in breast cancer cells (45). Based on these findings it is

possible that inhibition of CAIX activity has a negative regulatory

effect on its transcription.

Tumor cell motility is a prerequisite for metastasis. Multiple studies

have demonstrated an association between increased migratory or

invasive capability and high CAIX expression in cancer (19, 62–65).

Consistent with those reports, the motility of HB cells was reduced

when CAIX function was inhibited with SLC-0111. Mechanistically,

CAIX has been shown to interact with cell adhesion proteins, matrix

metalloproteinases, integrins, and ion exchangers to facilitate migration

and invasion (63, 66–68). Interactome studies are required to clarify

which proteins are co-operating with CAIX in HB cells.

Interestingly, we noticed that SLC-0111 attenuated HB cell

viability and motility when there was no observable CAIX

expression, suggesting that there may be alternative targets for this

drug. SLC-0111 is an efficient nanomolar inhibitor of CAIX and

CAXII (69). At micromolar concentrations, SLC-0111 also inhibits
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CAI and CAII, consistent with our target prediction analysis (57). In

metastatic lung, colorectal, and breast cancer models, combination

therapy with SLC-0111 and the HDAC inhibitor SAHA has

demonstrated higher potency than these agents as monotherapy

(70). Moreover, this multi-drug treatment associated with increased

p53 and histone H4 acetylation (70). Our target prediction analyses

suggested that SLC-0111 may interact with HDAC3. SLC-0111 has

potential to act as an epigenetic modifier and may potentiate HDAC

inhibitors partially by targeting the very same proteins. We also

observed enrichment of cell cycle regulation related proteins (CDK1/

2/4/5) in predicted targets of SLC-0111. This may be one of the

mechanisms how SLC-0111 reduces cell viability in normoxia and

should be validated in the future. Further investigations are needed to

understand SLC-0111 mechanisms of action in the absence of CAIX

expression in HB as well as other tumor types.

SLC-0111 treatment triggered distinct patterns of gene expression

in normoxic vs. hypoxic HUH6 cells. This suggests that the

mechanism of action of SLC-0111 may be environment-dependent.

Notably, we found that SLC-0111 enhanced expression of eight genes

(MT1G, MT1X, MT2A, OTC, PCK2, PGLYRP2, SERPINC1, and
FIGURE 6

Hypoxia-induced transcriptomic alterations in HUH6 cells. Heatmap of the 25 most downregulated and the 25 most upregulated differentially expressed
genes in RNA sequencing analysis performed for cells grown under normoxic or hypoxic conditions sorted by logFC. The three most up- and
downregulated protein coding genes are highlighted in red color.
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NR1I3) under both normoxic and hypoxic conditions. Each of these

genes has been shown to be epigenetically silenced or deactivated in

HB or other liver malignancies, and restoring expression was

associated with improved prognosis, reduced cell viability, and/or

decreased metastatic capacity (71–77).

Conversely, SLC-0111 attenuated expression of FOXJ1 in HUH6

cells under normoxia and hypoxia. Overexpression of FOXJ1 has been

linked with poor prognosis and increased proliferation rate in HCC

(78). Based on these transcriptomic changes and earlier studies, we

propose that SLC-0111 may act as an epigenetic modifier activating

tumor suppressor genes and downregulating oncogenes in addition to

functioning as a CAIX inhibitor. This mechanism could explain the
Frontiers in Oncology 12
drastic impact of SLC-0111 on HB cell viability and motility in the

absence of observable CAIX expression. More investigations are

needed to delineate the exact effectors.

To date, one clinical trial of SLC-0111 has been reported. In that

Phase 1 study, no objective responses were observed in adults with

advanced solid tumors, but 2 out of 17 heavily pre-treated patients

had stable disease for up to 24 weeks (24). It must be emphasized that

confirmed CAIX tissue expression was not used as an inclusion

criterion for that study. There is also a Phase Ib clinical trial on the

efficacy of SLC-0111 in combination with gemcitabine in CAIX-

positive pancreatic cancer patients (79). These and future trials will

hopefully identify patients who may benefit from SLC-0111
A

B

D

C

FIGURE 7

Impact of SLC-0111 on gene expression in normoxic and hypoxic HUH6 cells. RNA sequencing analysis identified 243 upregulated and 81 downregulated
genes after SLC-0111 treatment in normoxia (A). In hypoxia the corresponding numbers were 115 upregulated and 296 downregulated (A). 60 genes
were upregulated and 15 downregulated both in normoxia and hypoxia (A). One gene was upregulated in normoxia but downregulated in hypoxia (A).
Enriched molecular functions in overlapping genes (B). Enriched biological processes in overlapping genes (C). Heatmap of overlapping differentially
regulated genes in hypoxia and normoxia (D).
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TABLE 2 Overlaps in genes dysregulated in HB patient samples and expression alterations caused by SLC-0111 in HUH6 cells.

Symbol Gene Up/Downregulated
(HB tissue vs. NL)

Up/Downregulated
(SLC-0111 vs. DMSO)

ENSG00000125730 C3 ↓ ↑

ENSG00000128965 CHAC1 ↓ ↑

ENSG00000140465 CYP1A1 ↓ ↑

ENSG00000129654 FOXJ1 ↑ ↓

ENSG00000123689 G0S2 ↓ ↑

ENSG00000229005 HNF4A-AS1 ↓ ↑

ENSG00000139269 INHBE ↓ ↑

ENSG00000214856 KRT16P1 ↓ ↑

ENSG00000166816 LDHD ↓ ↑

ENSG00000146166 LGSN ↓ ↑

ENSG00000125144 MT1G ↓ ↑

ENSG00000187193 MT1X ↓ ↑

ENSG00000125148 MT2A ↓ ↑

ENSG00000276980 NA ↓ ↑

ENSG00000143257 NR1I3 ↓ ↑

ENSG00000036473 OTC ↓ ↑

ENSG00000100889 PCK2 ↓ ↑

ENSG00000161031 PGLYRP2 ↓ ↑

ENSG00000204314 PRRT1 ↑ ↓

ENSG00000117601 SERPINC1 ↓ ↑

ENSG00000008513 ST3GAL1 ↓ ↑

ENSG00000010327 STAB1 ↓ ↑

ENSG00000227473 TSSK5P ↑ ↓
F
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↓ = gene downregulated, ↑ = gene upregulated.
TABLE 3 Predicted bioactive targets of SLC-0111.

Uniprot ID Target Target Class Swiss Target Prediction (probability) SUPERpred (probability)

O43570 CAXII Lyase 0.99283030414 1.0

Q16790 CAIX Lyase 0.99283030414 1.0

P00918 CAII Lyase 0.99283030414 1.0

P00915 CAI Lyase 0.0978745343258 0.98

P54132 BLM Enzyme 0.0978745343258 0.98

Q00535 CDK5 Kinase 0.0978745343258 0.9

O15379 HDAC3 Eraser 0.0978745343258 0.89

P17948 VGFR1 Kinase 0.0978745343258 0.87

P10721 KIT Kinase 0.0978745343258 0.85

P24864 CCNE1 Kinase 0.0978745343258 0.83

P04818 TYSY Transferase 0.0978745343258 0.83

P36888 FLT3 Kinase 0.0978745343258 0.726

(Continued)
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treatment. We suggest that the role of SLC-0111 as a potential

epigenetic regulator of tumor suppressor genes should be

considered when planning future clinical trials. Pediatric clinical

trials are needed to confirm the safety of SLC-0111 in this population.
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One limitation of our study is that the impact of SLC-0111 on HB

was not examined in vivo. Another shortcoming is that several of the

in vitro experiments were conducted in monolayer cultures which do

not fully recapitulate oxygen gradients in tumor tissue.
TABLE 3 Continued

Uniprot ID Target Target Class Swiss Target Prediction (probability) SUPERpred (probability)

P24941 CDK2 Kinase 0.0978745343258 0.72

P08235 MCR Nuclear receptor 0.0978745343258 0.72

P06493 CDK1 Other cytosolic protein 0.0978745343258 0.7

P23219 PGH1 Oxidoreductase 0.0978745343258 0.67

P04629 NTRK1 Kinase 0.0978745343258 0.67

P42345 MTOR Kinase 0.0978745343258 0.67

P42338 PK3CB Enzyme 0.0978745343258 0.64

P48736 PK3CG Enzyme 0.0978745343258 0.62

O15111 CHUC Kinase 0.0978745343258 0.62

O00444 PLK4 Kinase 0.0978745343258 0.61

P53667 LIMK1 Kinase 0.0978745343258 0.6

P11802 CDK4 Kinase 0.0978745343258 0.6

P42336 PK3CA Enzyme 0.0978745343258 0.6

P40763 STAT3 Transcription factor 0.0978745343258 0.58

P45984 MK09 Kinase 0.0978745343258 0.57

Q9HAZ1 CLK4 Kinase 0.0978745343258 0.54

P49759 CLK1 Kinase 0.0978745343258 0.51

P35218 CAH5A Lyase 0.0978745343258 0.5
FIGURE 8

Schematic illustration of the findings.
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The key findings of this study are summarized in Figure 8. All in

all, CAIX is expressed in the majority of HBs and may have potential

as a prognostic marker. In HB cell culture models, hypoxia induces

CAIX expression, and the CAIX inhibitor SLC-0111 reduces HB cell

survival and motility. Our results also suggest that SLC-0111 may

have CAIX-independent effects. We speculate that SLC-0111

administration may restore expression of tumor suppressor genes in

HB via epigenetic mechanisms.
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