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A B S T R A C T   

Studies that employ probability distributions of radiocarbon dates to study past population size often use 
exponential increase in radiocarbon dates with time as a standard of comparison for detecting population 
fluctuations. We show that in the case of early postglacial interior Scandinavia, however, the summed probability 
distribution of radiocarbon dates has best fit with a S-shaped logistic growth curve. Despite the logistic growth 
model having solid grounding in ecological theory, we further argue that what our data indicate is not logistic 
growth in the population ecological sense but “false logistic” growth that mainly follows from climatic and 
environmental forcing. In the initial postglacial phase, 9500–7500 BCE, human settlement was located almost 
exclusively along the Scandinavian Atlantic coast and the use of the mountainous interior remained low. 
Thereafter the formation of separate inland adaptations resulted in population growth in tandem with increasing 
climatic warming and environmental productivity. Some millennia later, when environmental productivity 
started to decrease after the Holocene Thermal Maximum, hunter-gatherer population size in interior Scandi
navia reached a plateau that lasted at least 2000 years. Lowering productivity prevented any population growth 
that would be detectable in the available archaeological record.   

1. Introduction 

The study of prehistoric demography through radiocarbon dates, i.e., 
the dates-as-data approach to human population dynamics, has seen a 
well-known boom in the last decades. Much of this research tests Sum
med Probability Distributions (SPDs) against a null model that assumes 
exponential increase in the number of radiocarbon dates with time. This 
approach stems from studies on Neolithic agricultural booms in Europe, 
according to which an exponential increase in the number of datable 
samples can be expected forward in time because of long-term popula
tion growth and increasingly better survival of dateable material in the 
archaeological record (Shennan et al., 2013, Timpson et al., 2014). 

However, also other growth models have been increasingly tested to 
find the model with the best fit with radiocarbon dates in variable 
contexts (e.g., Goldberg et al., 2016, Bevan et al., 2017, Broughton and 
Weitzel, 2018, Solheim and Persson, 2018, Brown and Crema, 2019, 
Fernández-López de Pablo et al., 2019, Palmisano et al., 2021). Several 
of these authors have found that SPDs in their areas of study show a 

prehistoric population growth pattern suggesting logistic growth. 
Logistic population growth, i.e., the Verhulst-Pearl logistic equation, 

is one of the most central models in population ecology (e.g., Verhulst, 
1838, Kingsland, 1982, Begon et al., 1996: 246, Rockwood, 2006). The 
logistic population growth model assumes that population size is 
initially well below carrying capacity and therefore can grow unre
strained. As the area becomes more densely populated and population 
size approaches carrying capacity, the growth rate decreases and finally 
levels off, while population size becomes stable or alternates around a 
stable mean. This results in the S-shaped population growth curve 
characteristic for logistic population growth. 

Tallavaara et al. (2018) identify three key environmental parameters 
in the ethnographic hunter-gatherer record, namely productivity, 
biodiversity, and pathogen stress, which globally drive hunter-gatherer 
population density. Looking at a more detailed set of climatic and 
environmental factors, Ordonez and Riede (2022) suggest that among 
the variables included in their analysis, effective temperature (ET), po
tential evapotranspiration, mean temperature of the coldest month, and 
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probably also the mean temperature of the warmest month, were the 
most important limiting factors of hunter-gather population density in 
Early to Mid-Holocene interior Scandinavia. 

According to Tallavaara and Jørgensen (2021; see also Jørgensen 
et al., 2022, Shennan and Sear, 2021, Tallavaara and Seppä, 2012): 
“Long-term patterns in archaeological proxies may resemble, for example, 
logistic growth of saturating population size even though the pattern is 
actually a result of changes in the environmentally driven carrying capacity, 
where carrying capacity first increases and then stabilizes. Actual changes in 
the population size that follow a logistic growth model occur within time in
tervals that are usually beyond the resolution of archaeological proxies.” This 
is in accordance with observations of logistic growth in modern popu
lation ecological studies (Rockwood 2006: 46) and suggests that even if 
SPDs covering millennia-long time spans fit a logistic growth model, it is 
not because of true logistic growth in the population ecological sense, 
but rather because changes in biological productivity, and consequently 
in carrying capacity, happen to produce a growth curve similar in shape 
to the Verhulst-Pearl logistic equation. A mechanism that can be labeled 
“false logistic” growth. 

Freeman et al. (2021), however, building on Malthus’ notion that 
available resources limit population growth and Boserup’s idea that 
gradual population growth causes population pressure leading to new 
forms of technology and/or social organization, advocate what they call 
the (Malthus-Boserup) MaB-ratchet model of long-term population 
growth among hunter-gatherers. In this model, when population density 
increases and approaches population saturation (i.e., carrying capacity), 
hunter-gatherers change their way of life as a response to the worsening 
state of the resource system. This development stimulates innovations 
that increase carrying capacity, and consequently also population 
growth. Population growth can therefore be considered both a catalyst 
and a result of cultural evolution (e.g., Boserup, 1965, Wood, 1998). 

The MaB-ratchet model predicts a step-by-step population growth 
sequence for hunter-gatherers, where each step is signified by a certain 
new socio-technological system. Consequently, the model results in a 
series of population growth episodes that follow the logistic population 
growth equation. Freeman et al. (2021) argue that growth curves 
following the logistic model at multi-millennial scale can reflect real 
logistic growth episodes, as: “Any population growth trajectory is composed 
of sequences of such trajectories at smaller scales.” As an alternative path 
following population growth, Freeman et al. (2021) note the possibility 
of situations in which humans are unable to create a new niche and 
thereby to increase carrying capacity, resulting in population saturation 
and consequently a lowered quality of life. 

To study hunter-gatherer population dynamics in interior Scandi
navia, we use a dataset of 639 radiocarbon dates representing 5500 
years from Late Glacial ice sheet retreat to the introduction of agricul
ture to parts of the surrounding region. The dataset covers an extended 
period of continuous increase in environmental productivity that finally 
levels off causing human population growth to stall. We employ a 
model-fitting approach to test a set of growth models (exponential, lo
gistic, linear, constant) against the distribution of our radiocarbon date 
dataset, consider the effect of increasing land area, and reconstruct 
effective temperature (ET) as a proxy for environmental productivity. 
We conclude that a model of logistic growth fits our early postglacial 
Scandinavian hunter-gatherer radiocarbon date dataset better than any 
of the other models we tested. 

As Tallavaara and Jørgensen (2021) and Freeman et al. (2021) pre
sent differing approaches on how to interpret millennia-long S-shaped 
hunter-gatherer population growth curves, we discuss our results in the 
light of both views, tracking potential cultural and environmental 
drivers, and show that after the earliest use phase of the region, envi
ronmental limiting factors best explain the population dynamics 
observed in the SPD, while during the first phase also a cultural driver 
for the use of interior Scandinavia can be proposed. 

2. Regional setting 

Our study area is ca. 500,000 km2 of interior Scandinavia south of 68 
degreesN (Fig. 1). The first postglacial human dispersal into the Scan
dinavian Peninsula took place at the end of Younger Dryas, i.e., ca. 9500 
BCE (Lohne et al., 2013, Manninen et al., 2021). However, since the 
center of the Scandinavian Ice Sheet covered interior northern Sweden, 
the study area remained uninhabited longer, as the last remnants of the 
ice sheet did not disappear before ca. 7700 BCE (Stroeven et al., 2016). 

Geomorphology in the area was created by glacial and early post
glacial processes, with large river and valley systems, lakes, alpine 
mountains and mountain plateaus, marshlands, and lowland plains. The 
Scandinavian Mountain range, with the highest peaks well over 2000 m 
above sea level, runs in a north–south direction through the Scandina
vian Peninsula. The area east of the mountain range has a more conti
nental climate with large seasonal variations in temperature and low 
precipitation, while areas west of the mountain range have a more 
maritime climate. Ecoclimatic conditions range from sub-arctic boreal 
forest in the lower-lying areas to treeless highland tundra (Bailey, 2014, 
Virtanen et al., 2016). 

By interior, we mean the area that was 15 km or more from the 
seashore during its use in the Mesolithic. However, since the region has 
undergone considerable isostatic uplift since the beginning of deglaci
ation, these sites are currently found much further inland. Consequently, 
our radiocarbon date dataset derives from sites located from 65 to 1438 
m above current sea level. It should be noted that these regional features 
increased the size of the habitable area during the studied period: the 
melting of land ice (last remnants of the Scandinavian Ice Sheet) 
increased the size of habitable area, while isostatic uplift also added to 
the areal growth. 

Sites in the mountain region of SW Norway, dated to ca. 9200–8600 
BCE (Bang-Andersen, 2012), and the Kangos site in northernmost Swe
den from shortly after 8000 BCE (Ekholm, 2015), are the earliest 
archaeological evidence in the southern and northern extremities of the 
study area, respectively. These sites were near the retreating ice sheet 
margin at the time of their use. 

The length of the growing season in interior Scandinavia, as indi
cated by effective temperature (ET = (18 W-10C)/((W-C) + 8), Bailey, 
1960, Binford, 1980), that gives an indication of energy availability, is 
short. At present, ET values range from less than 10.00 in the high 
mountains to roughly 11.50 in the southernmost part of our study area 
(see Fig. 1), corresponding to a growing season between less than 40 to 
120 days, depending on the location. The ET values indicate 
temperature-based boreal (ET is greater than 9.99 and less than 12.50) 
and polar (ET is less than 10.00) climate classes (Binford 2001, Tab. 
4.02). There is near to non-existent agriculture in most of the area up 
until the present day. 

3. Material and methods 

The methodology used in this study rests on the premise of ‘dates-as- 
data’, meaning that more people will generate more (dateable) 
archaeological features (e.g., Rick, 1987, Gamble et al., 2005, Shennan 
and Edinborough, 2007, Riede, 2009, Surovell et al., 2009, Kelly et al., 
2013, Shennan et al., 2013, Contreras and Meadows, 2014, Crombé and 
Robinson, 2014, Timpson et al., 2014, Williams, 2012, Brown, 2015, 
Tallavaara, 2015, Torfing, 2015, Crema et al., 2016, Palmisano et al., 
2017, Roberts et al., 2018, Solheim and Persson, 2018, Fernández-López 
de Pablo et al., 2019, Jørgensen, 2018, Nielsen et al., 2019, Crema and 
Bevan, 2021, Solheim, 2020, Nielsen, 2021). 

This approach, which uses Summed Probability Distributions (SPDs) 
of radiocarbon dates to reconstruct prehistoric population trends, has 
seen significant methodological improvements during the last decades 
that mitigate its much-debated biases, including sample size, investi
gation intensity, taphonomic loss, and problems in the calibration pro
cess (e.g., Tallavaara et al., 2014, Crema and Bevan, 2021, Crema, 
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2022). 

3.1. The radiocarbon date dataset 

A dataset of 639 radiocarbon dates from between 9200 and 4000 
BCE, deriving from 266 sites, is used in the study (Table 1 and Supple
mentary data S1). Datable archaeological material from the sites mainly 

consists of charcoal and calcined (burnt) bone. All radiocarbon dates are 
from archaeological contexts, mainly from development-led excavation 
projects and surveys. Practically all samples dated before 2005 are on 
charcoal. Approximately 1/3 of the dates were made by gas counting, 
while the rest are more recent accelerator (AMS) dates. The standard 
deviation varies accordingly, with samples dated in the 1900′s and early 
2000′s (based on counting radioactive decay) having the highest values. 
Successively smaller standard deviation is present with more recently 
dated samples. Approximately 1/3 of the dates have a standard devia
tion of 55 years or less. 

It is often noted that radiocarbon dates on charcoal samples are 
prone to date human activity in forested environments unreliably. This 
is because charcoal in forest soils can derive from wildfires (see e.g., 
Couillard et al., 2019). The problem has traditionally been mitigated by 
dating relatively large charcoal pieces from selected contexts. Never
theless, dates on calcined bone in the dataset (Table 2) are more securely 
linked to human activity than charcoal dates (e.g., Ekholm, 2015). The 
dates on calcined bone are AMS-dates on apatite (Lanting and Brindley, 
1998, Lanting et al., 2001, see also van Strydonck et al., 2009, Agerskov 
Rose et al., 2019). Although they can be affected by old wood effect 

Fig. 1. The Scandinavian Peninsula and the studied 
sites. Small green dots indicate archaeological sites 
with radiocarbon dates used in this study. Larger red 
dots indicate locations from which data for the 
mean annual and effective temperature curves are 
derived: 1) Lake Trehörningen, 2) Lake Flarken, 3) 
Lillehammer, 4) Dividalen. Contour lines follow 
modern (1961–1990, Supplementary data S2) 
effective temperature (ET) values from warmer 
(darker) to colder (lighter). The black line indicates 
the ET 11.53 contour and the red line the ET 10.00 
contour. Data from Aune (1993) and https://www. 
smhi.se/kunskapsbanken/klimat/normaler.   

Table 1 
The radiocarbon dates in the Mesolithic interior Scandinavia 
dataset according to sample material.  

Sample material N 

Wood 5 
Charcoal 400 
Carbonized nutshell 23 
Other carbonized organic remain 7 
Pitch 2 
Calcined bone 200 
Unburnt bone 1 
Antler 1 
Total 639  
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caused by the firewood used during the burning process (Olsen et al., 
2013), and in some contexts dates on calcined bone have been found to 
be too imprecise for building decadal-to-centennial site chronologies 
(Crombé et al., 2021), in Fennoscandia burnt bone gives consistent and 
reliable results when dating sites (Oinonen et al., 2013, Ekholm, 2015, 
see also Naysmith et al., 2007), more accurate than charcoal samples, 
and are well suited for dates-as-data studies of population dynamics 
(Tallavaara et al., 2014). Dates on calcined bone and on charcoal in our 
dataset both fit well with the logistic growth model (Supplementary 
figure S7B). 

3.2. Treatment of dates 

All dates were calibrated using the r-carbon program (Crema and 
Bevan, 2021) and the IntCal20 calibration curve (Reimer et al., 2020). 
Dates were grouped per site using a 200-year bin size. The mean of all 
dates within the bin thus represents a 200-year period in the radio
carbon date SPD. Binning reduces the risk of wealth bias (i.e., over- 
representation) of certain sites and ensures that each site phase is 
equally weighted when generating the SPD (e.g., Timpson et al., 2014: 
555, Crema and Bevan, 2021: 4-5). After binning, the radiocarbon dates 
in this study equal 440 bins. To avoid over-interpreting small features in 
the SPD, we also apply a running average of 200 years for the SPD curve 
(see e.g., Timpson et al., 2014: 550, Crema and Bevan, 2021: 4). 

3.3. Monte Carlo simulation for the best fitting growth model 

We use Monte Carlo simulation-based methodology (Shennan et al., 
2013, Timpson et al., 2014) to test whether the features in the SPDs are 
statistically significant. However, our approach deviates from Shennan 
et al. (2013) in that, similarly to Fernández-López de Pablo et al. (2019), 
we test different population growth models to identify the overall best fit 
with our radiocarbon date dataset. Hence, the goal is not primarily to 
identify deviations from a fitted model but to test different growth 
models to determine which model has the best fit with the radiocarbon 
dates. 

We use a random sample of dates from the tested model distribution 
and then back-calibrate the generated dates. This procedure produces 
sets of simulated radiocarbon dates that are attributed a random stan
dard deviation from the pool of standard deviations in the actual 
radiocarbon dataset. The simulation allows the same date to be 
randomly generated more than once. Each simulation produces an SPD 
curve with the same number of simulated dates as there are empirical 
dates in the true radiocarbon date dataset but distributed according to a 
known model. The procedure is repeated 1000 times to give the span of 
random variation. The difference between the normalized true radio
carbon date SPD and the likewise normalized modelled SPD is detected 
by computing the area of the empirical distribution of radiocarbon dates 

that falls outside the 95 % probability of the modelled distribution. The 
smaller the computed area, the greater the overall fit between the model 
and the empirical SPD. 

3.4. The tested population growth models 

The exponential population growth model assumes a low starting 
population that starts to increase exponentially. The realistic maximal 
population growth for humans due to positive net reproduction is a few 
percentages per year. Even a low percentage means that the number of 
added people increases in tandem with population growth and will give 
a mirrored L-shaped exponential curve for population size vs. time 
(Malthus, 1798). 

An exponential curve cannot, by definition, have a growth rate of 
zero, but growth rates very close to zero are possible. Such low growth 
rates mean a population growth that is close to linear growth, i.e., an 
addition of the same number of individuals each year regardless of 
population size and density. In such a situation the population growth 
measured as a fraction of total population will decrease with increasing 
population. 

The logistic growth model assumes a limit of population density. 
Hence, the shape of the logistic population growth curve depends on two 
values: unrestricted growth rate (r) and carrying capacity (K). K is the 
environment’s limit of population density in any given habitat. How
ever, K can be expressed as a proportion of the start value, and then used 
in a logistic growth model. This gives the possibility to produce logistic 
curves and test for the best fit with the actual SPD without having an 
absolute value for K. By varying the r- and K-value, the best fit with the 
actual SPD can be sought. 

The constant population model assumes no variables besides time 
and a constant population size. Consequently, only one model needs to 
be tested. Due to the drastic environmental changes at the end of the last 
glacial period, a constant population during the Early Postglacial in our 
study area is unlikely, since in the earliest phases the population size was 
zero or close to zero. However, a rapid initial dispersal would be close to 
instant population growth, which, if combined with population control, 
could in principle match a constant population model. 

3.5. Land area increase 

Since the size of the study area grew with time due to ice sheet retreat 
and isostatic uplift, there is a possibility that it is reflected in population 
size even when population density remains constant. We therefore use 
reconstruction maps of land area, ice sheet size, and sea-covered area, 
that show changes in these variables at 100-year intervals (Påsse and 
Andersson, 2005, Daniels, 2010, Påsse and Daniels, 2011) to calculate 
the areal growth of the Scandinavian Peninsula per timeslot on these 
maps. This is done by calculating the number of pixels classified as land 
per map. We evaluate the effect of increasing land area size on the 
radiocarbon dataset by comparing the increase in the land area against 
the radiocarbon date SPD. If population density is assumed to be con
stant, total population size, and consequently the number of radiocarbon 
dates, should increase with land area. 

3.6. Temperature reconstruction and environmental contextualization 

To contextualize the population growth in relation to changes in 
environmental conditions through time, we use modelled Holocene 
temperature reconstructions (deviation from modern temperature (◦C) 
of the warmest (W) and coldest (C) months) for southern and northern 
Norway (Lilleøren et al., 2012). We calculate effective temperature (ET 
= (18 W-10C)/((W-C) + 8), Bailey, 1960, Binford, 1980) estimates ca. 
8000–4000 BCE for the southern and northern parts of the study area 
using the modelled regional deviations from current temperature in 
southern and northern Norway, compared against the average modern 
(1961–1990) January and June temperature at the Dividalen 

Table 2 
The radiocarbon-dated calcined bone samples in the dataset according to 
species.  

Species N 

Alces alces* Elk/moose 48 
Rangifer tarandus Reindeer/caribou 18 
Sus scrofa Wild boar 2 
Castor fiber Beaver 7 
Lepus timidus Hare 2 
Homo sapiens Human 1 
Cervidae/Capreolinae Deer 3 
Mammalia Mammalian 54 
Esox lucius Pike 1 
Cyprinidae Carps 1 
Pisces Fish 1 
Indet.  63 
Total*  201 
* Including one antler axe    
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meteorological station (228 m asl, northern Norway; Aune 1993) and 
three Lillehammer weather stations (226–271 m asl, Lillehammer- 
Satherengen, Lillehammer II & Lillehammer III; Aune 1993). In addi
tion, we use pollen-based temperature reconstructions from Lake 
Trehörningen (Antonsson and Seppä, 2007) and Lake Flarken (Seppä 
et al., 2005) that also cover the beginning of the Holocene. These lakes 
are the northernmost available covering the studied timespan even if 
located south of our study area (Fig. 1). 

The lack of high-resolution data on precipitation during the Early to 
Middle Holocene in interior Scandinavia prevents reliable calculations 
of net aboveground productivity in the studied timeframe. We therefore 
use ET also as a proxy value for relative productivity. Biological diversity 
and productivity get gradually lower with higher latitudes and lower 
temperatures. A bottleneck in net aboveground productivity is reached 
at ca. 55th parallel north or ET 11.53, after which an accelerating 
reduction in productivity occurs (Binford, 2001: 265p). 

A benefit of using ET as a proxy for environmental conditions is that 
data collected from the global ethnographic record suggest that many 
features in hunter-gatherer subsistence strategies and social organiza
tion are predicted by effective temperature (Binford, 1980, 2001, Kelly, 
2013, Johnson, 2014). This makes it possible to predict hunter-gatherer 
behavioral patterns and other environmental limiting factors based on 
ET values. Effective temperature is also modelled among the most 
important limiting factors for human population density in our study 
area during Early Holocene, while the others include mean temperature 
of the coldest month, potential evapotranspiration, and probably also 
mean temperature of the warmest month (Ordonez and Riede, 2022). Of 
these the mean temperatures of the coldest and warmest months are 
built into and correlate with ET. 

4. Results 

4.1. Radiocarbon date summed probability distribution 

The SPD for all radiocarbon dates in the dataset is shown in Fig. 2, as 
well as the effect of binning those dates that show similar age and derive 
from the same site. As the dataset has only a few sites with a large set of 
dates from the same use phase, the binning of dates causes only minor 
changes in the curve. 

4.2. Models of population growth 

Fig. 3 shows the differences between the radiocarbon date SPD and 
the different population growth models (for more details, see Supple
mentary text 1). The constant population model does not fit the actual 
SPD well (Fig. 3A). For roughly the first half of the studied period the 
population size indicated by the SPD is lower than this model would 
suggest, while for the second half of the period it is higher. The constant 
population scenario is therefore very unlikely, as it fails to detect the ca. 
2500 years long period of initial population increase. 

Fig. 3B shows a modelled 1% annual exponential growth curve 
compared with the radiocarbon date SPD. Even if the world population 
has been growing at a rate higher than 1% for more than a century now, 
such an increase is impossible for long. A 1% growth rate gives a 
doubling time of approximately 70 years. With a modelled start of just 
one couple, already after 1300 years the first million is reached, which is 
then doubled only 70 years later. 

By comparing the radiocarbon date SPD with curves representing 
diverse exponential growth rates, it can be shown that the fit with the 
model is increasingly better with successively lower growth rates 
(Supplementary text 1). In Fig. 3C a 0.3% annual growth is shown as an 
example. The lowest growth (Fig. 3D) gives a virtually straight line from 
the initial population to a maximum at the end of the studied period. 
These very low growth rates give the best fit among all possible expo
nential growth scenarios when compared to the actual SPD. This is close 
to linear population growth, i.e., adding the same number of individuals 
per year for the whole period. Yet, despite being the best among the 
exponential models, the fit is not much better than the constant popu
lation model. The addition of an equal number of people each year, i.e., 
linear population growth, is also unlikely from a theoretical point of 
view, as no known mechanism could explain such a growth pattern. 

Compared to the other models we tested, the logistic model results in 
realistic population growth scenarios and has the best fit when 
compared to the radiocarbon date SPD (Fig. 3E-G). In the logistic growth 
model, maximum growth takes place only when population size is much 
lower that carrying capacity, while the growth rate decreases as popu
lation size starts to approach carrying capacity. The best fit with the 
radiocarbon date SPD is achieved with unconstrained annual growth 
rate (r) of 0.2% combined with a K-value of 100 times the starting 
population. Starting with 40 individuals at 9500 BCE the population 
would increase, according to the model, to 4000 individuals at 6500 

Fig. 2. Summed Probability Distribution of the radiocarbon dates and the effect of binning. The black curve shows the raw data without binning and the blue curve 
the effect of binning dates from the same site in 200-year bins. The area below both these curves is 1 (cf. Figure S1). 
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BCE, after which the population would stay constant for the following 
2500 years covered by our dataset. An alternative start with 1000 in
dividuals would end with a population of 100,000. Although we have no 
means of evaluating accuracy between such alternative scenarios, it can 
be noted that a population exceeding 100,000, in our case more than 10 
persons per 100 km2 for the whole area, is not realistic when compared 

to known hunter-gatherer population densities in tundra and boreal 
forest environments (Binford, 2001: 5.10, Kelly, 2013: tab.7–3, Zhu 
et al., 2021). 

An unconstrained growth rate of 0.2% may sound high when 
compared with, for instance, results presented by Zahid et al. (2016) that 
show average annual growth of 0.04% among hunter-gatherers. The 

Fig. 3. Examples of different models for population growth fitted against the actual distribution of radiocarbon dates in this study: A) constant, B-C) exponential, D) 
linear (exponential), and E-G) logistic. The blue lines indicate a tested model while the orange line is the SPD. The examples represent the different growth models 
described in the text with different combinations of growth rate (r) and carrying capacity (K). The r = 0.002/K = 100 logistic model (F) has the best fit with our 
radiocarbon date dataset. 

Fig. 4. SPD for all radiocarbon dates in 200- 
year-bins (black line) and the best fit logistic 
model (blue line). The grey area is the 
outcome of 1000 simulations with the same 
number of radiocarbon dates and the same 
standard deviation values as in the actual 
dataset but randomly distributed according 
to the model. The red line shows the SPD as a 
200-year running average. The red areas 
show the two periods in which the actual 
dates give a significantly higher signal than a 
random distribution from the model.   
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difference stems from the fact that in logistic growth models annual 
growth rate is given as the maximum value possible when population 
size is well below carrying capacity. As population grows, the annual 
growth rate decreases, and becomes zero when carrying capacity is 
reached. With an unconstrained growth rate of 0.2%, the average annual 
growth rate in the studied timeframe is 0.018% (i.e., an increase of 100 
times starting population in 5500 years). It should also be noted that an 
annual growth of 0.2% for short periods is well in agreement with fig
ures for recent hunter-gather population growth, and periods of rapid 
annual prehistoric hunter-gatherer population growth, in other parts of 
the world (see Kelly et al., 2013, Tallavaara and Jørgensen, 2021). 

The best fit of the logistic growth model with the radiocarbon date 
SPD (Fig. 4), can be further demonstrated by splitting the dates into two 
distinct data sets, e.g., one with the dates on charcoal and a second with 
the dates on calcined bone. Both datasets show an overall correspon
dence with this logistic model (Supplementary text 2, figure S7B), which 
is a good indication that the results are robust. To further test the 
robustness of the logistic model with our dataset, we summed the 
number of sites with radiocarbon dates in each 200-year interval to see if 
a similar pattern would emerge as in the SPD (Supplementary text 2, 
figure S6). This is, in fact, the case: before ca. 6500 BCE each 200-year 
interval shows 1–5 sites, which turns into 25–35 sites per 200-years after 
6500 BCE. 

Between ca. 9300 and 8700 BCE the SPD shows a large positive 
deviation from the logistic model. This deviation seems to indicate a 
much larger inland population during the pioneer human dispersal into 
the area than predicted by the model. However, most of these dates (24 
of 25 dates in 10 bins) derive from sites around two lakes close to the 
Atlantic coast in the mountain region of south-western Norway (Bang- 
Andersen, 1990, Tørhaug and Åstveit, 2000). These sites are commonly 
considered logistic reindeer hunting camps utilized by Early Mesolithic 
coastal groups (e.g., Bang-Andersen, 2012, Breivik and Callanan, 2016). 

Furthermore, these sites were the first Early Mesolithic sites discovered 
in the Norwegian mountain region, and the large number of radiocarbon 
dates is, at least in part, a result of high research interest. Therefore, we 
do not consider this deviation to indicate a period of high population 
density in the interior, but instead suggest that constant low population 
suggested by the model is closer to the real situation. 

Short but significant positive deviations from the model can also be 
detected at approximately 6400 BCE and 5900 BCE. These two de
viations, however, nearly disappear when the running average is used 
instead of the raw SPD curve. The first clear dip in the SPD coincides 
with the 8.2 ka climate event, one of the best-known cold periods in the 
early Holocene (Alley et al., 1997), and documented also in Scandinavia 
(Nesje and Dahl, 2001). This event has been held responsible for cultural 
changes and population decrease in different parts of Fennoscandia (e. 
g., Manninen et al., 2018, Jørgensen et al., 2022, Schulting et al., 2022). 
A second dip in the SPD starting at approximately 5600 BCE and 
continuing up to 5000 BCE can also be observed but does not correlate 
with lowering ET. Both of these fluctuations, however, remain within 
the 95% confidence interval of the logistic population model and are not 
statistically significant. 

4.3. Effective temperature 

Change in ET over time (Fig. 5A) shows a rapid rise in the northern 
part of the study area between ca. 7800–7600 BCE, continued by a 
moderate rising trend reaching its maximum (ET 11.34) at ca. 4850 BCE, 
after which ET starts to decrease. The Early to Middle Holocene warming 
trend is interrupted by two periods of rapid cooling, the first culminating 
ca. 7400 BCE (ET 10.85) and the second ca. 6200 BCE (ET 10.96). In the 
south, a continuous gradually rising trend in ET is interrupted by a 
cooling period beginning at ca. 6600 BCE and culminating ca. 6150 BCE 
(ET 11.45). The rising ET reaches its maximum around 5600 BCE (ET 

Fig. 5. A) Temperature reconstructions 
compared to the best fit logistic model 
(red line). Gray areas with black lines =
changes in modelled effective tempera
ture (ET) over time in Dividalen (north) 
and Lillehammer (south) in our study 
area (scale to the right). Holocene 
annual mean temperatures at Lake 
Trehörningen (green curve; after 
Antonsson and Seppä, 2007), and Lake 
Flarken (blue curve, after Seppä et al., 
2005). B) The annual mean temperature 
reconstruction from Lake Trehörningen 
(thick black line) used as model and 
compared to the SPD (thin black line). 
The grey area indicates the outcome of 
1000 simulations with the same number 
of radiocarbon dates as in the actual 
dataset and the same values for standard 
deviation, but randomly distributed ac
cording to the model. The red line shows 
the SPD as a 200-year running average.   

M.A. Manninen et al.                                                                                                                                                                                                                          



Journal of Anthropological Archaeology 70 (2023) 101497

8

11.6) and starts to slowly decrease after ca. 5400 BCE. These ET values 
correspond to initial polar (ET less than 10.00) and later boreal (ET 
9.99–12.50) climates in the low-lying parts of the study area. The 
highest ET values in each area are indicative of the Holocene Thermal 
Maximum. 

Although our ET values are based on modelled temperatures of the 
coldest and warmest month and therefore should not be considered 
exact, they nevertheless indicate that even the low-lying areas in the 
southern part of the study area during 9500–4000 BCE were at or below 
the “subpolar bottleneck” (11.45 to 11.60 degrees ET, Binford 2001: 
265p), below which net aboveground productivity is reduced sharply, 
while the reduction accelerates as ET further decreases. Relative dif
ferences in ET between higher and lower-lying parts of the study area 
can be assumed to have been analogous to the present situation. The 
pollen-based reconstructions of annual mean temperature (Fig. 5B) are 
in good agreement with the modelled ET-values and show the early 
postglacial temperature rise. The best fit logistic growth model shows a 
general agreement with both the annual mean temperature and ET 
curves. Although we do not have modelled ET values for the earliest ca. 
1700 years of human dispersal into the area, it can be extrapolated from 
the pollen-based proxies that ET was lower in the period 9500 to 7800 
BCE than after. 

4.4. Population vs. Land area increase 

The increase in land area is presented in Fig. 6A and compared with 
modelled population growth, i.e., the logistic growth model with the 
best fit. It shows a long period during which the land area increased 
without corresponding population growth. In Fig. 6B, the increase in 
land area is compared with the radiocarbon date SPD. This shows a long 
period of “underpopulation” when the actual SPD is significantly lower 
than predicted by the increase in land area, and, due to the symmetry in 
the method, is followed by a period of “overpopulation”. Therefore, the 
increase in the interior land area during the studied period does not 
seem to be of any major importance in explaining population size when 
using a low-resolution archaeological population proxy. 

An initial rapid increase in land area due to the retreat of glaciers 
ended rather abruptly ca. 7500 BCE, after which there was only a slow 
increase due to general land upheaval. This increase in land area is not 
followed by an increase in human population. Even if the productivity 
per area unit in the initial phase most likely was low (see Tallavaara 
et al., 2014, Ficetola et al., 2019), all other things being equal, the total 
biological productivity of the Scandinavian inland region should in
crease in tandem with its size. Despite this, the inland population was 
low until 8000 BCE. If the SPD and the fitted logistic growth curve are 
compared to available land area, a drastic decrease in inland population 
density can be observed (Supplementary text 3). 

5. Discussion 

The Early to Middle Holocene warming trend observed in the pollen- 
based proxies just south of the study area, as well as in the modelled ET 
curves for the study area, coupled with the marked initial land area 
growth, suggest continuously increasing bioproductivity from ca. 9500 
BCE until ca. 6000 BCE. Nevertheless, despite the warming trend and the 
Holocene Thermal Maximum occurring in the studied period, ET in the 
area always stayed low, suggesting low floral and faunal diversity 
(Fischer, 1960). ET was almost categorically below the subpolar 
bottleneck (ET 11.53, Binford, 2001), under which productivity and 
biomass rapidly drop off with lowering ET values, thus confirming that 
our radiocarbon dataset, as expected, derives from low productivity 
conditions. 

From the ethnographic hunter-gatherer data it can be argued that 
such low ET values meant that hunter-gatherers in the area had low 
population density due to low trophic efficiency (Johnson, 2014, Zhu 
et al., 2021), were largely dependent on terrestrial hunting of large 
herbivores and, where possible, to a degree also fishing (Binford, 2001: 
368, Kelly 2013: 46), had large territories (e.g., Kelly, 2013: 95), made 
long residential moves that on average grew in distance as ET decreased 
(Kelly, 1983, Binford, 1980, 2001, Johnson, 2014), were largely 
dependent on stored food, and procured a large percentage of their 
annual food supply during short segments of the growing season 

Fig. 6. A) The increase in land area in the 
investigated area compared with the best fit 
logistic growth model. The increase in land 
area is mostly due to the retreat of the ice 
sheet but after ca. 7500 BCE it is only the 
land upheaval that contributes. B) The land 
area used as a model (thick black line) 
against the SPD (thin black line). The grey 
area is the outcome of 1000 simulations with 
the same number of radiocarbon dates as in 
the actual data set and the same values for 
standard deviation, but randomly distributed 
according to the model. The red line shows 
the SPD as a 200-year running average. Land 
area size based on reconstruction maps by 
Påsse and Andersson (2005).   
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(Binford, 2001: 268). 
Our results also show that a logistic population growth model with a 

unrestricted annual population increase of 0.2%, and a stabilization of 
population at 100 times the initial size, has the best fit with our radio
carbon data. We find it unlikely that a growth curve following the lo
gistic equation can be explained by factors related to the survival of 
charcoal in the archaeological record (see Surovell et al., 2009, Shennan 
et al., 2013, Timpson et al., 2014). Instead, we argue that this represents 
an average of interior Scandinavian population development 
9500–4000 BCE. 

Considering the two alternative explanations for millennia-long S- 
shaped hunter-gatherer population growth curves, i.e., the Freeman 
et al. (2021) MaB-ratchet model in which episodes of logistic growth are 
explained by socio-technological changes that take place in face of 
population saturation to bypass resource depletion, and the notion by 
Tallavaara and Jørgensen (2021) that environmentally driven carrying 
capacity, that first increases and then stabilises, can produce a popula
tion growth curve that resembles logistic growth, we will next scrutinze 
the long period of “underpopulation” ca. 9500–7500 BCE when the 
actual SPD is significantly lower than predicted by the increase in land 
area, the period of rapid growth after ca. 7500 BCE, and the period of 
population saturation from ca. 6000 BCE onwards. 

5.1. The beginning of Scandinavian inland settlement 

According to isotope analysis, the Scandinavian west coast was 
populated since 9500 BCE by specialized groups with maritime adap
tation and a close to 100% marine diet (Skar et al., 2016, Boethius and 
Ahlström, 2018). Also hunting of land mammals did take place, while 
bone and antler were used for tools and fishing equipment (Mansrud and 
Persson, 2018). Nevertheless, it was the availability of marine resources 
that seems to have determined population size, as land mammals were 
only a very minor part of the diet. Despite the constant increase in land 
area ca. 9500–7500 BCE (Fig. 6), population size in the interior did not 
grow accordingly at this stage, resulting in decreased population density 
(Supplementary text 3, figure S8). 

The earliest inland settlement is found in the western Scandinavian 
mountains around 9200 BCE (Bang-Andersen, 1990, Tørhaug and Åst
veit, 2000). The western Scandinavian coastal sites have a high pro
portion of artifacts made of cretaceous flint, a raw material available 
locally only in the coastal region, while site assemblages at contempo
rary inland sites in the adjacent interior region are also dominated by 
flint (Bang-Andersen, 2013, Breivik and Callanan, 2016), suggesting 
that coastal and inland sites were parts of the same settlement system. 
The situation changes after ca. 8000 BCE when local lithic raw mate
rials, such as jasper and quartzite, start to dominate site assemblages in 
the interior (Melvold, 2011; Damlien and Solheim, 2018). Considering 
that the use of flint continues in the coastal region, this change in raw 
material economy, alongside associated changes in housing construc
tions and increasing variability in site locations in the interior, signifies a 
break in the earlier coast-inland mobility pattern. Together with the 
continuous specialization in marine resource use along the coast, these 
changes reflect the forming of a separate population with year-round 
inland adaptation from ca. 8000 BCE (Boaz, 1999, Damlien and Sol
heim, 2018). 

If we assume that during ca. 9500–8000 BCE the use of the interior 
was a minor and opportunistically utilized part of the coastal adaptation, 
the increase in inland bioproductivity could not be used to its full po
tential. Especially since the strong maritime orientation in subsistence 
economy required precence at the coast for most of the year. It was only 
when an interior population with its own social, technological, and 
subsitence organization started to develop ca. 8000–7500 BCE, that the 
utilization of interior Scandinavia would have markedly increased, and 
conequantly a ramping up of human carrying capacity, sensu Freeman 
et al. (2021), could be suggested. 

A lag between increased land area and temperature on the one hand, 

and population size on the other, could be a similar phenomenon as the 
lagged equilibration processes and human population response to 
changing climate observed in Bighorn Basin in North American Rocky 
Mountains (Kelly et al., 2013). The lag in interior Scandinavia before 
7500 BCE would in this case be more than 1000 years. The difference 
between raw bioproductivity and human carrying capacity should 
maybe be stressed. If the socio-technological strategy employed by the 
pre-7500 BCE population was not well suited for the utilization of the 
increased bioproductivity, then the increase did not affect the carrying 
capacity for humans. A second environmental driver for low population 
density can in fact be found in the time taken by the environment to 
develop into a habitable state after ice sheet retreat, a delay that in 
Fennoscandia has been suggested to have taken 300–900 years (Talla
vaara et al., 2014). 

5.2. The period of rapid growth after ca. 7500 BCE 

From ca. 7500 BCE the developing new inland adaptation resulted in 
demographic growth in tandem with increasing climatic warming and 
environmental productivity, until shortly after 6000 BCE when ET (and 
productivity) started to slowly decrease. The continuously increasing 
environmentally driven carrying capacity enabled hunter-gatherer 
population to grow accordingly. 

5.3. Population saturation in interior Scandinavia ca. 6000 BCE 

Our results suggest that by ca. 6000 BCE the full resource potential 
for Early Holocene hunter-gatherers was reached in interior Scandinavia 
and population increase stalled for at least 2000 years. It can be assumed 
that at this point the area was permanently habitable for a low-density 
population of terrestrial hunter-gatherers. As indicated by the ET 
below the 15.25 storage threshold detected in the ethnographic hunter- 
gatherer data (Binford, 2001, Johnson, 2014), hunter-gatherers at such 
high latitudes remain highly dependent on the ability to procure a large 
food surplus during the growing season to get through the winter. 

Risks connected to environmental fluctuations grow with population 
saturation, i.e., when the population size is close to carrying capacity. 
Negative climatic impacts on productivity, diversity, food availability 
and pathogen stress become harder to counter, and this is reflected in 
human population density. As foraging adaptations approach popula
tion saturation, land use patterns therefore become more sensitive to 
decade to century scale climatic variation. This favors social organiza
tion and technologies that reduce this sensitivity. Our data is not of such 
quantity and quality that such patterns could be detected, although they 
can be assumed. The 8.2 ka climatic event is observable as a downturn in 
the SPD, but it does not constitute a statistically significant deviation 
from the logistic growth model. 

Freeman et al. (2021: 7–8) suggest that such events with lowered 
environmental productivity could produce population pressure and 
thereby promote innovations. Considering the human reproductive po
tential, and the many episodes of short-lived climatic dowturns probably 
occurring during the 2000-year interval of stable or slowly decreasing 
ET, population pressure coupled with a lowered standard of living was 
probably not a rarity. However, there is no indication in interior Scan
dinavia of this resulting into innovations to increase carrying capacity, 
or a ramping up of population density as a consequence of such in
novations. Instead, what we see could be either simply a case of pred
ator–prey cycling or a case in which the system flips into what Freeman 
et al. (2021) call a “poverty trap”, i.e., an irreversible cycle in which 
economic alternatives that appear advantageous in the short run are 
chosen, leading to a bad situation in the long run because of feedback 
loops of long-term negative consequences. In this type of development 
population size can stay close to carrying capacity for extended periods. 

Refuse fauna at the interior sites suggests that the hunting of large 
cervids (Eurasian elk and wild reindeer) played a major role in hunter- 
gatherer subsistence throughout the Stone Age (Therese Ekholm, 
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unpublished analysis). This is well in line with the predictions derived 
from ethnographic hunter-gatherer data. At present, the yield from 
Eurasian elk (Alces alces), red deer (Cervus elaphus), and wild reindeer 
(Rangifer tarandus) hunt, as well as from herding of domesticated rein
deer, is in the order of some 250,000 animals a year (Supplementary text 
4). This is a sustainable harvest and gives an indication of the amount of 
forage available for cervids in the area. The environment today is 
somewhat inferior for these animals than 7000 years ago, because 
spruce forest, a habitat not favorable for cervids, became dominant in 
the forested parts of the study area during the Late Holocene. 

In terms of calories, the amount of cervid meat harvested in the study 
area today (i.e., ca. 250,000 animals) could theoretically sustain a 
hunter-gatherer population of roughly 40,000 individuals, if we assume 
a diet based solely on meat, a way to store meat throughout the year, and 
consider one animal on average to give 112.5 kg of meat, one kg of raw 
meat to be 1000 kcal on average, and one person to use 2000 kcal/day. 
This is a clearly higher population density than could be expected from 
the low ET values, which suggest large territories and low population 
density. Even if we do not have any data on absolute population size, we 
find it likely that the Mesolithic population size in the study area would 
be in the range of 3750 individuals or 0.75/100 km2, as modelled by 
Ordonez and Riede (2022: Fig. 4). 

Although it does not consider other means of subsistence, our simple 
calculation nevertheless shows a clear difference between the potential 
higher population density from the yield of present day cervid hunting 
and herding, and the low population density modelled using ethno
graphic hunter-gatherer data. It suggests that the area potentially could 
have sustained a far denser population of hunter-gatherers than it did in 
the Early Holocene, if only there were means to harvest and store more, 
or to bypass some other limiting factor restricting population growth. 

One potential limiting factor was competition. A subsistence system 
based on large game hunting is largely a predator prey relationship in 
ecological terms. In such a system the number of prey animals is not 
determined by the amount of available forage but by predation pressure, 
as in the classic Lotka–Volterra equation, which produces a pattern of 
dynamic ups and downs in population size of both predator and prey 
(Lotka, 1920, Volterra, 1926). Fluctuations in the numbers of Eurasian 
elk (moose) and wolves on the Isle Royale, documented since 1953, 
exemplifies this relationship well (Hoy et al., 2022). Over a larger area 
this can produce a low-density equilibrium (Gasaway et al., 1992), also 
called “predator pit”. Besides humans, the main predators of cervids in 
Scandinavia are wolves. When humans enter an area, the two combined 
press down the cervid populations to an even lower density than wolves 
alone. Even in this situation, the prey population can be maintained on a 
low-level, if human hunters can access several alternative hunting 
territories. 

From our modern perspective it is easy to note that already in the 
Mesolithic there were alternatives to increase yields by targeting wolves 
to reduce competition, by regulating the hunting of cervids according to 
prey animal sex and age, and by domesticating reindeer - all measures 
that were applied during later periods and that allowed human popu
lation growth. When such measures were not in use, and if hunting of the 
same cervid stocks was open for all hunters, it became a typical case of 
the tragedy of the commons (Hardin, 1968). Under such circumstances a 
hunter should kill all encountered high-ranking prey animals regardless 
of sex and age, even if just a small proportion of the catch could be 
utilized. This is because the same animal otherwise would be lost to the 
hunter and instead killed by another hunter or other predators. Saving 
an encountered prey animal or protecting the game by reducing the 
number of wolves, would promote deceivers. We therefore argue, that 
within a low productivity region like the Scandinavian interior, scat
tered seasonally rich resources, migrating prey, and low population 
density, i.e., few people and large territories, made it impossible for 
Early Holocene groups to control the prey and predator populations 
enough to allow more efficient sustained harvesting in the long run. 

5.4. Environmental or cultural drivers? 

In Scandinavia, the marked initial land area growth, coupled with 
increasing bioproductivity caused by the Early to Middle Holocene 
warming, resulted in constantly growing bioproductivity until ca. 6000 
BCE coupled with a population growth curve resembling logistic growth 
as it is known in population ecological theory. 

According to the MaB-ratchet model (Freeman et al., 2021) logistic 
population growth among hunter-gatherers is a stepwise sequence of 
population responses driven by changes in population saturation over 
time that reflects true short-term episodes of logistic growth. In this 
model looming population saturation causes technological and/or so
cioeconomic developments that increase carrying capacity and enable 
further population growth until population saturation is reached and a 
new innovation is required to start a new ratchet of logistic growth. The 
argument by Tallavaara and Jørgensen (2021), that change in carrying 
capacity was environmentally driven, i.e. not affected by technological 
and/or socioeconomic changes, does not require cultural drivers to be 
fulfilled. Instead, hunter-gatherer population will follow the ups and 
downs in bioproductivity, which in the interior Scandinavian case would 
result into what we call “false logistic” growth. 

Our data suggests that only at the end of the 9500–7500 BCE period, 
when a permanent interior population started to develop, a ratchet-like 
increasing of human carrying capacity sensu Freeman et al. (2021), 
could be suggested. The delayed full utilization of the interior, however, 
could also be a consequence of a lagged human population response to 
changing climate and/or a delay caused by the time needed for the 
environment to develop after ice sheet retreat. After the first 2000 to 
1500 years, rapid population growth took place in tandem with the 
warming climate, while the growth was stalled only by the end of the 
Holocene Thermal Maximum. After ca. 6000 BCE a 2000-year long 
phase of stable or slowly decreasing population followed. Since during 
the ca. 8000–4000 BCE period we detect no such changes in hunter- 
gatherer subsistence technology that could be seen as markedly 
increasing human carrying capacity, we argue that what we see in Early 
to Mid-Holocene interior Scandinavia is “false logistic” growth driven by 
changes in the environmentally driven carrying capacity in a low pro
ductivity environment. 

6. Conclusions 

To conclude, some wider implications for the dates-as-data method 
should be pointed out. First, the study underlines the fact that when 
employing summed probability distributions of radiocarbon dates to 
study human population dynamics, an exponential increase in the 
number of dates with time should not be assumed. Instead, the null 
model with the best fit with the respective radiocarbon date dataset 
should be sought for and selected, be it exponential, linear, logistic, or 
constant growth. Second, our results suggest that in early postglacial low 
productivity environments hunter-gatherer datasets can be expected to 
fit a logistic growth curve due to changing carrying capacity causing 
“false logistic” growth, i.e., a demographic development in which pop
ulation growth follows from increasing carrying capacity before being 
stalled by environmental constraints inherent in low productivity 
regions. 
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