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Abstract

We extend the standard framework of abstract algebraic logic to the setting of logics which
are not closed under uniform substitution. We introduce the notion of weak logics as conse-
quence relations closed under limited forms of substitutions and we give a modified definition
of algebraizability that preserves the uniqueness of the equivalent algebraic semantics of alge-
braizable logics. We provide several results for this novel framework, in particular a connection
between the algebraizability of a weak logic and the standard algebraizability of its schematic
fragment. We apply this framework to the context of logics defined over team semantics and we
show that the classical version of inquisitive and dependence logic is algebraizable, while their
intuitionistic versions are not.

Introduction

The algebraic approach to logic dates back to the beginning of mathematical logic itself, with the
seminal works of the logical algebraists, e.g. Augustus De Morgan, George Boole, Arthur Cayley,
William Stanley Jevons and Charles Sanders Peirce [19]. Amidst the subsequent developments
of mathematical logic as a foundational science, the original approach of the logical algebraists
was to be at least partially forgotten. It was especially in Poland that algebraic logic flourished
again, with the work of Jan  Lukasiewicz, Adolf Lindenbaum and Alfred Tarski concerning
abstract consequence relations. Between the sixties and seventies, Helena Rasiowa made further
advancements towards an abstract theory of logical systems and their relations with classes of
algebras. In particular, she developed in [31] a general theory of algebraization for implicative
logics. Finally, this approach was put in its contemporary formulation by Blok and Pigozzi, who
introduced in [3] the notion of algebraizable logics and started developing what is nowadays
known as abstract algebraic logic. We refer the reader to [15] for a general introduction to the
subject.

In the setting of abstract algebraic logic, Blok and Pigozzi defined logics as consequence
relations which are additionally closed under uniform substitutions. This is not a merely tech-
nical constraint, but also expresses a key property of logicality, which can be tracked back to
Bolzano and that was clearly formulated by Tarski. In [23], Kennedy and Väänänen present
Tarski’s notion of logic and its relation to Felix Klein’s 1872 Erlanger Programm as follows:

In 1968 in a (posthumously published) lecture called “What are logical notions?” [34]
Tarski proposed a definition of “logical notion” or alternatively of “logical constant”,
modelled on the Erlanger Program due to Felix Klein. The core observation is the
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following: for a given subject area, the number of concepts classified as invariant
are inversely related to the number of transformations – the more transformations
there are, the fewer invariant notions there are. If one thinks of logic as the most
general of all the mathematical sciences, why not then declare “logical” notions to
be the limiting cases? Thus, a notion is to be thought of as logical if it is invariant
under all permutations of the relevant domain. [23]

Although Tarski’s notion of logicality was not immune from criticism, his idea of logical notions
as being invariant under all transformations informed most of the abstract approaches to logic,
and is still very much alive in philosophy of logic, e.g. in the reformulation of his criterion by
Gila Sher [33].

In this article, we shall consider a generalization of Blok and Pigozzi’s idea of algebraizable
logics and introduce a suitable notion of algebraizability for logical systems which are not
closed under uniform substitution, but that are nonetheless invariant under permutations of
the variables in the language. The main motivation for our work is provided by the recognition
of the multitude of systems which do possess a logical nature but still fail to be closed under
uniform substitution in Tarski’s original strong sense. The field of modal logic is particularly
rich of such examples, as many systems which have been studied in recent years manifest such a
failure of the law of uniform substitution: Buss’ pure provability logic [5], public announcement
logic [22, 21] and other epistemic logics are all examples of this behaviour. Furthermore, logics
based on team semantics, such as inquisitive [8, 9] and dependence logic [35, 36], also do not
satisfy the principle of uniform substitution.

The behaviour of these logical systems prevented so far a uniform and general study of these
logics, and did not allow for immediately applying the facts and results from abstract algebraic
logic, which hold only for logical systems in Tarski’s strong sense. For example, algebraic
semantics for several versions of inquisitive and dependence logics were introduced in [1, 2, 27,
30], but it remained an open question whether these semantics are in any sense unique. In
fact, it is a seminal result from abstract algebraic logic that the equivalent1 algebraic semantics
of a logic is unique, e.g. Boolean algebras are the unique equivalent algebraic semantics of
classical propositional logic and Heyting algebras are the unique equivalent algebraic semantics
of intuitionistic propositional logic. However, as inquisitive and dependence logics do not make
for logics in the standard sense, it was still an open question whether their algebraic semantics
is unique.

In this article we introduce the notion of weak logic, generalizing previous definitions of
Ciardelli [8] and Punčochář [28], and we show how to develop a theory of algebraizable logics
for this framework. In Section 1 we define weak logics and introduce expanded algebras as their
algebraic dual notion. In Section 2 we introduce a suitable notion of algebraizability and we
prove a version of Maltsev’s Theorem for our framework, to show that the equivalent algebraic
semantics of a weak logic is unique. In Section 3.1 we investigate the relation between a weak
logic and its schematic variant, and we provide a characterization of the algebraizability of weak
logics in terms of the algebraizability of their schematic variant. In Section 3.2 we develop on
these results and prove a version of Blok and Pigozzi’s (theory-)isomorphism theorem for the
framework of weak logics. Our results are then put to test in Section 4, where we apply them
to inquisitive (dependence) logic – in particular we show that the classical version of inquisitive
(dependence) logic is algebraizable, and has thereby a unique equivalent algebraic semantics,
while the intuitionistic version of such logics is not algebraizable. Finally, in Section 5 we

1Logical systems in abstract algebraic logic are traditionally represented as relations over term algebras.
Thus equivalent in the context refers to the equivalence between these relations and the algebraic semantics via
suitable translation maps, see Definition 18 for a detailed exposition.
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briefly explain how to adapt the usual matrix semantics to our setting and we make explicit
some connection with model theory. We conclude the article with some remarks on possible
directions of further study.

1 Weak Logics and Expanded Algebras

In this section we introduce weak logics as a generalization of propositional logical systems
and we provide several examples of them. Alongside, we define expanded algebras and core
semantics to provide an algebraic interpretation to these logical systems. We start by recalling
some standard notation.

On notation We stick to the following conventions in a bid to improve the reading experience:
the variables A,B, C, . . . stand for algebras or first order structures; classes of algebras are
typeset in boldface – both for arbitrary collections (Q,K, . . . ) and designated ones (HA,BA);
blackboard bold font is used for operators on these classes I, S,P,Q, . . . . Valuation maps are
written as homomorphisms from the term algebra Fm and labelled as f, g, h · · · ∈ Hom(Fm,A).
We write ~x as a shorthand for a sequence of variables (x0, . . . , xn). Equations are written as
ǫ ≈ δ or ǫ(~x) ≈ δ(~x) to emphasize on the free variables ~x. We write Eq for the set of equations
over some background signature L. We also recall that a quasi-equation is a formula of the
form

∧

i≤n ǫi ≈ δi → ǫ ≈ δ. If A is an algebra and h ∈ Hom(Fm,A), we write A �h ǫ ≈ δ if
h(ǫ) = h(δ). We will introduce further notation when needed.

1.1 Standard and Weak Logics

We recall the basic definition of logic as a consequence relation in the tradition of abstract
algebraic logic. Let Var be a denumerable set of variables and L an algebraic (i.e. purely
functional) signature. We denote by FmL both the set of formulae over Var in the signature L
and the L-term algebra over Var. We omit the index L when it is clear from the context what
signature we are working in.

Definition 1. A consequence relation is a relation ⊢ ⊆ ℘(Fm)×Fm such that for all Γ ⊆ Fm:

1. For all φ ∈ Γ, Γ ⊢ φ;

2. If Γ ⊢ φ, for all φ ∈ ∆, and ∆ ⊢ ψ, then Γ ⊢ ψ.

Moreover, we generally also assume that consequence relations are finitary (compact), i.e:

Γ ⊢ φ⇒ there is ∆ ⊆ Γ such that |∆| < ω and ∆ ⊢ φ.

A substitution is an endomorphism σ : Fm → Fm on the term algebra. We denote by
Subst(L) the set of all substitution of the L-term algebra and by At(L) the set of all atomic
substitutions, i.e. substitutions σ such that σ[Var] ⊆ Var. Given an atom p, we let Γ[φ/p] stand
for substituting φ for all occurrences of p in the formulas in Γ. A consequence relation ⊢ is
closed under uniform substitution (US) if for any substitution σ, Γ ⊢ φ entails σ[Γ] ⊢ σ(φ). A
(standard) logic is a consequence relation ⊢ which is closed under US. Classical propositional
logic, CPC, and intuitionistic propositional logic, IPC, are examples of logics in this sense.

In this work, we shall investigate logical systems which are essentially weaker than standard
logics — while standard logics are consequence relations satisfying uniform substitutions, we
define weak logics to be consequence relations closed only under suitable subsets of substitutions.

3
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Definition 2 (Weak Logic). A weak logic is a finitary consequence relation ⊢ such that for all
atomic substitutions σ ∈ At(L), Γ ⊢ φ entails σ[Γ] ⊢ σ(φ).

A weak logic is thus a consequence relation ⊢ which is closed under the principle of atomic
substitution AS. Intuitively, this principle reifies the least prerequisite a consequence relation
must satisfy in order to be characterizable as a logic: the validity of the consequences in a weak
logic can depend on the logical complexity of its formulae, but not on the specific variables that
occur in them.

Clearly, standard logics are weak logics, as they are closed under atomic substitutions. More
poignantly, there are many interesting examples of weak logics which are not standard logics
and that have been extensively studied in literature. We briefly mention here some of them.

Example 3. Public Announcement Logic (PAL) [16, 21] is an example of a modal logic that is
not closed under uniform substitution [22]. However, it can be shown that PAL is closed under
atomic substitution [22, §2.1] and it is therefore a weak logic.

Introducing the proper syntax and semantics of PAL is out of scope for this paper. We
consider the following example from [22] to provide the reader with some intuition why uniform
substitution fails. Given a set of agents A, the language of PAL extends the basic modal language
with operators Ki, for i ∈ A, and 〈φ〉 for any formula φ. The sentence Kiφ should be read
as “agent i knows that φ” and 〈φ〉ψ as “after the truthful announcement of φ to all agents, ψ
holds”. Let the atoms of the language stand for facts – that is, sentences that can be truly
uttered at any time.

We can now turn our attention to the following example, taken from [22, §1.2]. Consider
the principle:

p→ 〈p〉p (if p is true, p remains true after a truthful announcement) (⋆)

The schema (⋆) is valid for facts, but in general does not hold if we substitute p with a sentence
talking about the epistemic state of an agent. Let L be the sentence “Ljubljana became the
capital of an independent Slovenia in 1991, and agent j does not know this.“ with translation
c ∧ ¬Kic. Now substituting L for p in (⋆) gives us a Moorean sentence – after truthfully
announcing L, agent j learns that “Ljubljana became the capital of an independent Slovenia in
1991”, and thus the conclusion 〈L〉L is no longer truthful.

Example 4. Logics based on team semantics [20], such as inquisitive and dependence logics
[10, 11, 36, 37], offer a rich supply of examples. In Section 4 we will focus particularly on InqB

and InqI, namely the classical and the intuitionistic version of inquisitive logic respectively.
However, for now we can provide a conceptual motivation why InqB is not closed under

uniform substitution. One of the main goals of InqB is to serve as a basis for a uniform
treatment of both truth-conditional statements and questions in natural language. To that
end, the intended semantics of InqB must establish when a piece of information supports a
statement or settles a question rather than their truth conditions. We call the evidence an
information state and represent it as a set of possible worlds.

Let p be an arbitrary statement without inquisitive content, e.g.“It is raining in Ams-
terdam.”. Assume that p holds in the possible worlds a and b, i.e. the information state
{a, b} supports p (see Figure 1). We form the polar question ?p – “Is it raining in Amster-
dam?”, and model it as the set of alternatives {a, b} and {c, d}. Let’s check the validity of
Double Negation Elimination (DNE) – ¬¬q → q; we interpret negation as the complement of the
union of alternatives. Thus any information state supporting ¬¬p will support the statement p
as well (Figure 1(c)), but this is not the case for questions – e.g. the state {b, d} supports ¬¬?p,
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but does not settle ?p as the possible worlds b and d do not agree on a same answer. Hence we
can conclude that the schema DNE is valid only for statements without inquisitive content, i.e.
for propositional atoms.

a b

c d

(a) p

a b

c d

(b) ?p

a b

c d

(c) ¬¬p

a b

c d

(d) ¬¬?p

Figure 1: Double-negation elimination for statements and polar questions

InqB is actually a concrete example of a wider class of weak logics – a double negation atoms
logic or DNA-logic. A DNA-logic (or negative variant of an intermediate logic [8, 26]) is a set of
formulae L¬ = {φ[¬p0, . . . ,¬pn/p0, . . . , pn] : φ ∈ L}, where L is an intermediate logic, namely
a logic comprised between IPC and CPC. It can be proved (see e.g. [8, Prop. 3.2.15]) that
DNA-logics are closed under atomic substitutions. However, for any DNA-logic L 6= CPC it is the
case that ¬¬p → p ∈ L¬ , but (¬¬(p ∨ ¬p) → p ∨ ¬p) /∈ L¬, showing that DNA-logics are not
standard logics. DNA-logics can be further generalised to χ-logics, defined in [30], which offer
another non-trivial example of weak logics.

If ⊢ is a weak logic, then we know that ⊢ is closed at least under atomic substitutions
σ ∈ At(L), but in principle there might be more substitutions for which the logic ⊢ is closed.
We call such substitutions admissible.

Definition 5 (Admissible Substitutions). Let ⊢ be a weak logic. The set of admissible substi-
tutions AS(⊢) is the set of all substitutions σ such that, for all sets of formulae Γ∪ {φ} ⊆ Fm,
Γ ⊢ φ =⇒ σ[Γ] ⊢ σ(φ). In particular, At(L) ⊆ AS(⊢).

In contrast with the set of atomic substitutions, determining the set of admissible substitutions
is much harder. One example of such a characterization can be given for the case of inquisitive
logic InqB: σ ∈ AS(InqB) if and only if σ is a classical substitution, namely if for all p ∈ Var,
σ(p) ≡InqB ψ where ψ is a disjunction-free formula.

Although in weak logics we cannot freely substitute formulae in place of variables, we often
want to consider the subset of formulae for which this is possible. We refer to this subset as
the core of a logic.

Definition 6 (Core of a Logic). The core of a weak logic ⊢ is the set core(⊢) ⊆ Fm of all
formulae ψ such that for all sets of formulae Γ ∪ {φ} we have that:

Γ ⊢ φ =⇒ Γ[ψ/p] ⊢ φ[ψ/p].

where p is any atomic variable. In particular, we always have Var ⊆ core(⊢).

One can verify that ψ is a core formula of ⊢ if and only if for all p ∈ Var the substitution σ
such that σ↾Var \ {p} = id and σ(p) = ψ is admissible.

5
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1.2 Expanded Algebras

In order to make sense of weak logics from an algebraic perspective, we need to adapt the usual
algebraic framework to handle the failure in uniform substitution. To this end, we introduce
expanded algebras as the expansion of standard algebras by an extra predicate symbol. We use
calligraphic letters A,B, . . . to denote first-order structures, and we write dom(A) to refer to
the underlying universe of A. However, when it is not confusing, we use the same notation for
a structure and its underlying universe. For all functional symbols f ∈ L and all relational
symbols R ∈ L, we write fA and RA for their interpretation in A. We use the same notations
for symbols and their interpretation when it does not cause confusion. If X ⊆ A, we write 〈X〉
for the substructure of A generated by X . Finally, we also use � as the standard satisfaction
symbol of first-order logic. We refer the reader to [4, 7, 24] for an introduction to universal
algebra and the standard model-theoretic techniques.

Definition 7 (Expanded Algebra). Let A be an L-algebra and P a unary predicate. An
expanded algebra is a structure in the vocabulary L ∪ {P}. We denote the interpretation PA

also by core(A).

A strong homomorphism between expanded algebras h : A → B is an L-algebra homo-
morphism that also preserves the core, i.e. h[core(A)] ⊆ core(B). A strict homomorphism
between expanded algebras h : A → B is an L-algebra homomorphism such that for all a ∈ A
a ∈ core(A) ⇐⇒ h(a) ∈ core(B). A strong embedding between expanded algebras is an injective
strong homomorphism and a strict embedding is an injective strict homomorphism. We write
A � B if A is a substructure of B, i.e. if A is a subalgebra of B and core(A) = core(B)∩dom(A).
In other words, A � B if the identity map id : A → B is a strict embedding.

We recall that a class of algebras K is a quasi-variety if it closed under the operators
I, S,P,PU , i.e. if it is closed under isomorphic copies, subalgebras, products and ultraprod-
ucts. To extend the notion of quasi-variety to the setting of expanded algebras we first ex-
plain how to extend the usual class operators. If K is a class of expanded algebras, then let
I(K), S(K),P(K),PU (K) be defined as follows.

A ∈ I(K) ⇐⇒ A ∼= B for some B ∈ K;

A ∈ S(K) ⇐⇒ A � B for some B ∈ K;

A ∈ P(K) ⇐⇒ A =
∏

α<κ

Bα, core(
∏

α<κ

Bα) =
∏

α<κ

core(Bα) and Bα ∈ K for all α < κ;

A ∈ PU (K) ⇐⇒ A =
∏

α<κ

Bα/U , core(
∏

α<κ

Bα/U) =
∏

α<κ

core(Bα)/U and Bα ∈ K for all α < κ.

Strict homomorphism enable us to extend also the notion of variety to the context of expanded
algebras. We recall that a class of algebras K is a variety if it is closed under H, S,P, i.e. if
it is closed under homomorphic images, subalgebras and products. If K is a class of expanded
algebras, then we let:

A ∈ H(K) ⇐⇒ A = h[B], where h is a strict homomorphism and B ∈ K.

In the light of the previous definitions, we can apply the operators I, S,P,PU ,H to expanded
algebras. We then say that a class of expanded algebras K is a quasi-variety if it is closed
under I, S,P,PU , and that it is a variety if it is closed under H, S,P — notice that closure
under isomorphic copies follows immediately from closure under (strict) homomorphic images.
Finally, if K is a class of expanded algebras, we let Q(K) be the least quasi-variety containing

6
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K and we let V(K) be the least variety containing K. Notice that the class K can be seen as
a Horn class (e.g. see Gorbunov [17]). We will expand on the connection in Section 5.

As we have seen before, any class K of L-algebras induces a semantic consequence relation
�K by letting Θ �K ǫ ≈ δ if and only if for all A ∈ K, and for all h ∈ Hom(Fm,A), if
h(x) = h(y) for all x ≈ y ∈ Θ, then h(ǫ) = h(δ). Expanded algebras allow us to define a
more fine grained consequence relations, by restring the scope of the previous definition only
to valuations of atomic variables onto the core elements of the algebra. We let FmL be the
expanded term algebra FmL = (Fm, Var) and we write Homc(Fm,A) for the set of all core
assignments from the term algebra Fm into A, i.e. the set of all assignments h : Fm → A such
that h(p) ∈ core(A) for all p ∈ Var. It is easy to verify that a core assignment h ∈ Homc(Fm,A)
is a strong homomorphism between the term algebra and A. We define the core consequence
relation over a class of expanded algebras as follows.

Definition 8 (Core Semantics). Let K be a class of expanded algebras and Θ ∪ {ǫ ≈ δ} a set
of equations, then we let:

Θ �cK ǫ ≈ δ ⇐⇒ for all A ∈ K, h ∈ Homc(Fm,A),

if h(x) = h(y) for all x ≈ y ∈ Θ, then h(ǫ) = h(δ).

If
∧

i≤n ǫi ≈ δi → ǫ ≈ δ is a quasi-equation, we write �cK
∧

i≤n ǫi ≈ δi → ǫ ≈ δ or K �c
∧

i≤n ǫi ≈
δi → ǫ ≈ δ if

∧

i≤n ǫi ≈ δi �
c
K ǫ ≈ δ. Also, we often write A �c ǫ ≈ δ in place of �c{A} ǫ ≈ δ.

The related notion for equations are defined analogously. Notice that A �c ǫ(~x) ≈ δ(~x) if and
only if A � ∀x0, . . . , ∀xn(ǫ(~x) ≈ δ(~x)∧

∧

i≤n core(xi)), where ~x := (x0, . . . , xn) are the variables
occurring in ǫ ≈ δ and � is the standard first-order satisfaction relation. We will come back
later in Section 5 to the relationship between core semantics and first-order semantics.

In core semantics, atomic variables are thus assigned to core elements and, as a result of
this feature, arbitrary formulae are always interpreted inside the subalgebra generated by the
core elements. This motivates the interest in core-generated structures and in quasi-varieties
which are generated by these structures.

Definition 9 (Core Generated Structures). An expanded algebra A is core-generated if A =
〈core(A)〉. A quasi-variety Q of expanded algebras is core-generated if Q = Q(K), where K

is a class of core-generated algebras. A variety V of expanded algebras is core-generated if
V = V(K), where K is a class of core-generated algebras.

The focus on core-generated structures motivates the introduction of a further class operator.
We say that B is a core superalgebra of A if A � B and core(A) = core(B). If K is class of
algebras, we write C(K) for the class of core superalgebras of elements of K.

We can now see that unrestricted substitutions interacts nicely with core-generated quasi-
varieties.

Lemma 10. If Q is a core-generated quasi-variety of expanded algebras, then for all σ ∈ Subst,
σ(Θ) �cQ σ(ǫ ≈ δ) ⇐⇒ Θ �Q ǫ ≈ δ.

Proof. ( =⇒ ) Suppose that Θ 2Q ǫ ≈ δ. Since Q is core-generated, there is a core-generated
expanded algebra A ∈ Q and some h ∈ Hom(Fm,A) such that A �h Θ and A 2h ǫ ≈ δ. Since
A is core-generated, we have that for all variables p ∈ V ar(Θ ∪ {ǫ ≈ δ}) there is a polynomial
βp such that h(p) = βp(x0, . . . , xn) with xi ∈ core(A) for i ≤ n. Now we construct a new
assignment s ∈ Homc(Fm,A) by letting s(qi) = xi for 0 ≤ i ≤ n which means that for all formula
ψ(q0, . . . , qn) with qi ∈ V ar(Θ ∪ {ǫ ≈ δ}) we have s(ψ(q0, . . . qn)) = ψ[βp(x0, . . . , xn)/p]. By

7
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construction s is a core assignment. Now, let σ be a substitution such that σ(p) = βp(x0, . . . xn)
for all p ∈ V ar(Θ ∪ {ǫ ≈ δ}). Then A �cs σ[Θ], but A 2cs σ(ǫ ≈ δ).

( ⇐= ) Suppose that σ(Θ) 2cQ σ(ǫ ≈ δ), thus we can find an assignment h ∈ Homc(Fm,A)
where A ∈ Q is a core-generated algebra, such that A �ch σ[Θ], but A 2ch σ(ǫ ≈ δ). Then we
have h ◦ σ ∈ Homc(Fm,A), A �ch◦σ Θ and A 2ch◦σ ǫ ≈ σ.

Expanded algebras are standard algebras augmented with an interpretation for a unary
predicate. It is then natural to consider several ways in which this predicate could be defined.
For the purpose of algebraizability, we are particularly interested in the following notion of
equational definability.

Definition 11 (Equational Definability). An expanded algebra A is equationally definable if
there is some finite set of equations Σ = {ǫi(x) ≈ δi(x) : i ≤ n} such that core(A) = {x ∈ A :
A � ǫi(x) ≈ δi(x) for all i ≤ n}. A class of expanded algebras K is (uniformly) equationally
definable if there is some finite set of equations Σ such that for all A ∈ K, core(A) = {x ∈ A :
A � ǫi(x) ≈ δi(x) for all i ≤ n}.

If A is an algebra and Σ a set of equations, we let Σ(x,A) = {x ∈ A : A � ǫ(x) ≈ δ(x) for all ǫ ≈
δ ∈ Σ}. If K is a core-generated class of expanded algebras such that core(A) = Σ(x,A) for all
A ∈ K, then we also say that Q is Σ-generated. In particular, we say that Q is a Σ-generated
quasi-variety to mean that it is a quasi-variety of expanded algebras such that core(A) = Σ(x,A)
for all A ∈ Q. We say that K is Σ-defined if core(A) = Σ(x,A) for all A ∈ K. Clearly, for any
set of equations Σ, there is a unique way to expand some class of algebras K into a Σ-defined
class of expanded algebras. We will show later in Proposition 16(i) that if K is Σ-defined, then
the quasi-variety of expanded algebra generated by it is also Σ-defined.

Moreover, when we deal with equationally definable core predicates, we shall often be inter-
ested in a restricted notion of core superalgebras, i.e. superalgebras of a given structure whose
core is defined by a given set of equations Σ. For any class of expanded algebras K with core
defined by Σ, we let CΣ(K) be the operator defined as follow:

A ∈ CΣ(K) ⇐⇒ B � A and core(A) = Σ(x,A) = Σ(x,B) for some B ∈ K.

We give some examples of cores over algebraic structures.

Example 12. Let M be a monoid in L = (·, e) and define core(M) = {x ∈ M : M � xn ≈ e},
then M is an expanded algebra with core defined by Σ = {xn ≈ e}. If G ∈ Grp is a group this
is equivalent to let Σ = {xn+1 ≈ x}. In the latter case, we also say that the core is polynomially
definable, for every equation in Σ is of the form x ≈ δ(x) for a unary polynomial – i.e. a term δ.

Example 13. Let HA be the variety of Heyting algebras and for all A ∈ HA let core(A) =
A¬ = {x ∈ A : A � x ≈ ¬¬x}, i.e. the core of A is its subset of regular elements. Clearly A¬ is
polynomially definable. Let ML be the variety of all Medvedev algebras, then ML is generated
by its subclass of core-generated Heyting algebras A with core A¬, see [1, 2] and Theorem 39
later.

Example 14. Let BA∗ be any expansion of the class of Boolean algebras with a core core(B)
for all B ∈ BA. Then, since the Boolean algebra 2 is always core-generated, as 2 = 〈core(2)〉
only contains the interpretations of the constants 0, 1, and since V(2) = BA, it follows that
BA∗ is core generated, i.e. any expansion of the class of Boolean algebras is a core-generated
variety.

8
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The following propositions demonstrate how equational definability leads to classes of alge-
bras with better behaviour. Firstly, the notions of regular algebra homomorphisms and strong
homomorphisms of expanded algebras now coincide.

Proposition 15. Let Q be a Σ-defined class of expanded algebras, then every homomorphism
h : A → B for A,B ∈ Q is a strong homomorphism.

Proof. Suppose h : A → B is a homomorphism and let a ∈ core(A). Then for all equations
ǫ ≈ δ ∈ Σ, we have A � ǫ(a) ≈ δ(a) and thus B � ǫ(h(a)) ≈ δ(h(a)), since h is a homomorphism.
Hence, it follows that h(a) ∈ core(B), which yields that h is strong.

By the following Proposition 16, the class-operators I, S,P,PU ,C
Σ are well-defined over

expanded algebras with an equationally definable core, and moreover the core validity of quasi-
equations is closed under I, S,P,PU ,C

Σ. Notice that in Proposition 16 Item 2 follows from [17,
§1.2.2].

Proposition 16.

1. Let K be a class of expanded algebras such that for all A ∈ K we have core(A) = Σ(x,A),
then for all B ∈ O(K) we have core(B) = Σ(x,B), for O ∈ {I, S,P,PU ,CΣ}.

2. Let K be a class of algebras with a core defined by a finite set of equations Σ, and let
∧

i≤n ǫi ≈ δi → α ≈ β be a quasi-equation. For all O ∈ {I, S,P,PU ,CΣ} we have that
�cK

∧

i≤n ǫi ≈ δi → α ≈ β entails �c
O(K)

∧

i≤n ǫi ≈ δi → α ≈ β.

Proof. We prove (1) and (2) together by considering each operator O ∈ {I, S,P,PU ,CΣ}.

1. Isomorphism: Immediate.

2. Subalgebras : Suppose A � B, then we have:

core(A) = core(B) ∩ dom(A) = Σ(x,B) ∩ dom(A) = Σ(x,A).

Now, if A 2c
∧

i≤n ǫi ≈ δi → η ≈ δ, then there exists an assignment h ∈ Homc(Fm,A),
such that h(ǫi) = h(δi) for all i ≤ n and h(η) 6= h(δ). Now, since A ⊆ B, we have that
h ∈ Homc(Fm,B) and thus B 2c

∧

i≤n ǫi ≈ δi → η ≈ δ.

3. Products : Firstly, notice that, for any term γ, we have: γ
∏

α<κ
Aα = (γAα)α<κ. Let

Aα ∈ K for all α < κ, then:

core(
∏

α<κ

Aα) =
∏

α<κ

core(Aα) =
∏

α<κ

Σ(x,Aα) = Σ(x,
∏

α<κ

Aα).

Now, suppose for some h ∈ Homc(Fm,
∏

α<κAα) we have
∏

α<κAα �h ǫi ≈ δi and also
∏

α<κAα 2h η ≈ δ.

Let hα = πα◦V , where πα is the α-th projection of
∏

α<κAα. Since h is a core assignment,
we have, for all ǫ ≈ δ ∈ Σ and for all p ∈ Var that ǫ(h(p)) = δ(h(p)) and therefore
ǫ(hα(p)) = δ(hα(p)) for all p ∈ Var and α < κ, meaning that every hα is also a core
valuation. Now, since h(ǫ) 6= h(δ), there is some α < κ such that hα(ǫ) 6= hα(δ) and,
since h(ǫi) = h(δi) for all i ≤ n, also hα(ǫi) = hα(δi) for all i ≤ n. Finally, this shows
that Aα 2c

∧

i≤n ǫi ≈ δi → ǫ ≈ δ.

9
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4. Ultraproducts : Firstly, notice that, for any term γ, we have: γ
∏

α<κ
Aα/U = (γAα)α<κ/U .

Let Aα ∈ K for all α < κ, then:

core(
∏

α<κ

Aα/U) =
∏

α<κ

core(Aα)/U =
∏

α<κ

Σ(x,Aα)/U = Σ(x,
∏

α<κ

Aα/U).

Now, suppose for some core assignment h ∈ Homc(Fm,
∏

α<κAα/U) we have h(ǫi) ≈ h(δi)
for all i ≤ n and h(ǫ) 6= h(δ). Let x0, . . . , xm be the free variables in

∧

i≤n ǫi ≈ δi → ǫ ≈ δ

and let h(xi) = {aiα}α<κ/U for all i ≤ m, we then have:

∏

α<κ

Aα/U �
∧

i≤n

ǫi(h(x0), . . . h(xm)) ≈ δi(h(x0), . . . h(xm));

∏

α<κ

Aα/U 2 ǫ(h(x0), . . . h(xm)) ≈ δ(h(x0), . . . h(xm)).

Then, by  Loś Theorem:

{α < κ : Aα �
∧

i≤n

ǫi(a
0
α, . . . a

m
α ) ≈ δi(a

0
α, . . . a

m
α )} ∈ U ;

{α < κ : Aα � ǫ(a0α, . . . a
m
α ) ≈ δ(a0α, . . . a

m
α )} /∈ U .

Moreover, for all aiα with α < κ, i ≤ m, the following holds by  Loś Theorem together
with h being a core assignment:

{α < κ : Aα �
∧

η≈ξ∈Σ

∧

i≤m

η(aiα) ≈ ξ(aiα)} ∈ U .

Thus, we can find some α < κ such that Aα � η(aiα) ≈ ξ(aiα) for all η ≈ ξ ∈ Σ,
Aα �

∧

i≤n ǫi(a
0
α, . . . a

m
α ) ≈ δi(a

0
α, . . . x

m
α ) and Aα 2 α(a0α, . . . a

m
α ) ≈ β(a0α, . . . a

m
α ). Then,

by considering hα : Fm → Aα such that hα(xi) = aiα, it follows that hα is a core
assignment and Aα 2hα

∧

i≤n ǫi ≈ δi → α ≈ β.

5. Core Superalgebras : Firstly, we remark that by definition Σ-core superalgebra we have:
Σ(x,A) = core(A) = core(B) = Σ(x,B). Then, suppose A � B, Σ(x,A) = Σ(x,B)
and that there is a core assignment h : Fm → B such that h(ǫi) = h(δi) for all i ≤ n,
h(ǫ) = h(δ). Since core(A) = core(B), and A � B, we can also consider h as a core
assignment over A, which in turn shows that A 2

∧

i≤n ǫi ≈ δi → α ≈ β.

The previous result provides an important characterization of validity under the core conse-
quence relation. Using that, we show that the core consequence relation is compact, if restricted
it to quasi-varieties of expanded algebras. The following theorem is a straightforward adaptation
of the usual proof of compactness via ultraproducts for first-order logic.

Theorem 17 (Compactness). Let Q be a quasi-variety whose underlying core is defined by Σ,
then the induced consequence relation �cQ is compact.

Proof. It suffices to show that if T is a set of quasi-equations T such that for all finite Γ ⊆ T
there is some expanded algebra A ∈ Q such that A �c Γ, then there is B ∈ Q such that Q �c T .

We reason by induction on the cardinality of T . Let κ = |T |, by induction hypothesis every
Γ ⊆ T with |Γ| < κ is satisfiable. Since the set F = {k \ α : α < κ} has the finite intersection

10
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property, we can extend it to an ultrafilter U . By induction hypothesis, for all α < κ, there is
an expanded algebra Aα ∈ Q such that Aα �c ǫβ ≈ δβ for all β < α.

Consider the ultraproduct
∏

α<κAα/U , then since for every β < γ < κ, Aγ �c ǫβ ≈ δβ and
κ \ β + 1 ∈ U , it follows by Proposition 16(ii) that

∏

α<κAα �c ǫβ ≈ δβ for all β < κ. Finally,
by Proposition 16(i) we also have that

∏

α<κAα/U ∈ Q, proving our claim.

2 Algebraizability of Weak Logics

In this section we employ the notions we have introduced so far to provide a suitable definition
of algebraizability for the setting of weak logics. We then adapt a number of classical results,
e.g. we prove a version of Maltsev’s Theorem and use it to show that the equivalent algebraic
semantics of a weak logic is unique up to some notion of equivalence.

Firstly, we briefly recall algebraizability for the setting of standard logics. Let Fm and Eq be
respectively the set of formulae and equations in some signature L. We shall refer to two maps,
called transformers [15], that allow us to translate formulae into equations and vice versa. We
let τ : Fm → ℘(Eq) and ∆ : Eq → ℘(Fm). For any substitution σ, we let σ(x, y) = (σ(x), σ(y)).
We say that τ and ∆ are structural if for all substitutions σ ∈ Subst(L), τ(σ(φ)) = σ(τ(φ)) and
σ(∆(x, y)) = ∆(σ(x, y)). For any set of formulae Γ we let τ(Γ) =

⋃

φ∈Γ τ(φ) and for all set of
equations Θ we let ∆(Θ) =

⋃

ǫ≈δ∈Θ ∆(ǫ, δ). Algebraizability for standard logics was introduced
by Blok and Pigozzi in their seminal article [3].

Definition 18 (Algebraizability). A (standard) logic ⊢ is algebraizable if there are a quasi-
variety Q and structural transformers τ : Fm → ℘(Eq) and ∆ : Eq → ℘(Fm) such that:

Γ ⊢ φ⇐⇒ τ [Γ] �Q τ(φ) (Alg1)

∆[Θ] ⊢ ∆(η, δ) ⇐⇒ Θ �Q η ≈ δ (Alg2)

φ ⊣⊢ ∆[τ(φ)] (Alg3)

η ≈ δ ≡Q τ [∆(η, δ)]. (Alg4)

We then say that Q is an equivalent algebraic semantics of ⊢.

Notice that the condition that a logic is algebraizable by a quasi-variety of algebras follows
from the fact that in our context we are exclusively considering finitary systems. See [15, §3]
for generalisations of this definition.

We say that the transformers τ,∆ are finitary if for all x ∈ Fm and ǫ ≈ δ ∈ Eq, |τ(x)| < ω
and |∆(ǫ, δ)| < ω. We recall the following two useful facts about algebraizability. We refer the
reader to [15, Prop. 3.12, Thm. 3.37] for a proof of these results.

Lemma 19.

1. Let ⊢ be a standard logic, then to show that ⊢ is algebraized by (Q,Σ, τ,∆) it suffices to
check either Alg1 and Alg4 or Alg2 and Alg3.

2. If ⊢ is an algebraizable standard logic, then it is algebraized by finitary maps τ,∆.

Moreover, it is a key property of algebraizability that the equivalent algebraic semantics of a
standard logic is unique. See [15] for a proof of this result.

Proposition 20. If the tuples (Q0, τ0,∆0) and (Q1, τ1,∆1) both witness the algebraizability of
a standard logic ⊢, then:

11
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1. Q0 = Q1;

2. ∆0(x, y) ⊣⊢ ∆1(x, y);

3. τ0(φ) ≡Qi
τ1(φ) with i ∈ {0, 1}.

By using the core consequence relation �c in place of the standard one �, we can adapt the
notion of algebraizability to the setting of weak logics. In particular, we make use of expanded
algebras with an equationally definable core.

Definition 21 (Algebraizability of Weak Logics). A weak logic ⊢ is algebraizable if there is
a core-generated quasi-variety Q, a finite set of equations Σ defining its core, and structural
transformers τ : Fm → ℘(Eq) and ∆ : Eq → ℘(Fm) such that:

Γ ⊢ φ⇐⇒ τ [Γ] �cQ τ(φ) (Weak-Alg1)

∆[Θ] ⊢ ∆(η, δ) ⇐⇒ Θ �cQ η ≈ δ (Weak-Alg2)

φ ⊣⊢ ∆[τ(φ)] (Weak-Alg3)

η ≈ δ ≡cQ τ [∆(η, δ)]. (Weak-Alg4)

We then say that Q is an equivalent algebraic semantics of ⊢.
Moreover, if Q is a quasi-variety and ⊢ a weak logic, we also say that Q is the equivalent

algebraic semantics of ⊢ if there is a finite set Σ ⊆ Eq such that the expansion of Q obtained
by letting core(A) = Σ[A] for all A ∈ Q, is core-generated and it algebraizes ⊢.

To show that our previous definition provides a workable framework, we prove a version
of Maltsev’s Theorem for our setting. We firstly recall that a local subgraph of an L-algebra
A is a tuple (X, f0↾X, . . . , fn↾X) where X ⊆ dom(A) is finite and fi ∈ L for all i ≤ n.
A local subgraph (X, f0↾X, . . . , fn↾X) of an expanded algebra A is a local subgraph of its
algebraic reduct which in addition interprets the core predicate as core(X) = core(A) ∩ X . If
(X, f0↾X, . . . , fn↾X) and (Y, f0↾Y, . . . , fm↾Y ) are local subgraphs, then their intersection is the
local subgraph (X ∩ Y, fi0↾X ∩ Y, . . . , fik↾X ∩ Y ) where fi0 , ...fik = L↾X ∩ Y . We say that
h : A → B is a strong embedding if it is an injective strong homomorphism. The proof of the
following lemma is the standard one that can be found e.g. in [4, Theorem 5.2.14].

Lemma 22. Let K be a class of expanded algebras, A a core-generated expanded algebra. If
all local subgraphs of A strongly embed into some element of K, then A ∈ ISPU (K).

Proof. Let A be a core-generated expanded algebra and fix some enumeration {Xα}α<κ of its
local subgraphs; for all α, β < κ, let Xα ∪Xβ = Xγ(α,β). By assumption, for every α < κ there
is some expanded algebra Dα ∈ K and a strong embedding hα : Xα → Dα. For every α < κ, we
let Iα = {γ : Xα � Xγ}. Then, the set F = {Iα : α < κ} has the finite intersection property,
as Iα ∩ Iβ = Iγ(α,β), and we can thus extend it to an ultrafilter U .

Now, consider the ultraproduct
∏

α<κDα/U and for every a ∈ A let πa ∈
∏

α<κDα be the
map πa(α) = hα(a) if a ∈ dom(hα), and otherwise assign an arbitrary value to it. Then, it can
be verified that the map a 7→ πa/U is a strong embedding of A into

∏

α<κDα/U , which means
that A ∈ ISPU (K).

For any set T of quasi-equations, we let Modc(T ) be the class of expanded algebras A such
that A �c T and ModcCG(T ) for its subclass of core-generated model. We let ModΣ(T ) be the
class of expanded algebras A such that A �c T and core(A) = Σ(x,A), and ModΣCG(T ) be its
subclass of core-generated algebras. If K is a class of expanded algebras, we denote by Logc(K)

12
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the set of all quasi-equation true in K under core-semantics. The following theorem follows by
adapting the proof of (the algebraic version of) Maltsev’s Theorem to our context. It can also
be seen as an immediate corollary of a more general (relational) version of Maltsev’s Theorem
presented in [17, §2.3.3].

Theorem 23. Let Q be a quasi-variety of expanded algebras and A a core generated expanded
algebra, then A ∈ QCG if and only if A �c Logc(Q).

Proof. (⇒) Clearly, if A ∈ QCG then A �c Logc(Q), by the definition of Logc(Q).
(⇐) Let A be core-generated algebra such that A �c Logc(Q). We firstly show that there exists
an algebra D ∈ Q, such that every local subgraph of A embeds into D.

Let B = {b0, . . . , bn} ⊆ A be a local subgraph of A. Since A is core generated, B ⊆ 〈core(A)〉
and in particular there is a finite set C = {c0, . . . , cp} ⊆ core(A) such that αi(c0, . . . , cp) = bi
for some polynomial αi(x0, . . . , xp). We let ~x = (x0, . . . , xp) and ~c = (c0, . . . , cp), then we define
the two following set of equations:

D+(X) := {f(αk1(~x), . . . , αkl(~x)) ≈ αj(~x) : f(αk1(~c), . . . , αkl(~c)) ≈ αj(~c), f ∈ L↾B}

D−(X) := {αi(~x) ≈ αj(~x) : αi(~c) 6≈ αj(~c)}.

Since D−(X) is finite we have an enumeration D−(X) = {ǫ0 ≈ δ0, . . . , ǫl ≈ δl}, and for every
i ≤ l we let φi be the quasi-equation φi :=

∧

D+(X) → ǫi ≈ δi.
Now, fix a core-assignment h : Fm → A by letting h(xi) = ci for all i ≤ p, then it follows

by our construction that A �ch f(αk1(~x), . . . , αkl(~x)) ≈ αj(~x) for all bi = αi(~c) ∈ B, f ∈ L↾B
and A 2ch ǫi ≈ δi for all i ≤ l. It then follows that A 2c φi for all i ≤ l, and since by assumption
A �c Logc(Q), we obtain that φi /∈ Logc(Q).

It follows that for every i ≤ l there is an expanded algebra Di ∈ Q such that Di 2c φi, hence
there is hi ∈ Homc(Fm,Di) such that Di �ch f(αk1(~x), . . . , αkl(~x)) ≈ αj(~x) for all bi = αi(~c) ∈ B,
f ∈ L↾B and Di 2ch ǫi ≈ δi. Let dij = hi(xj) for every j ≤ p.

Consider now the product
∏

i≤lDi and let h ∈ Homc(Fm,
∏

i≤lDi) be such that h(xj) =

(d0j , . . . , d
l
j) for all j ≤ l – this is a core assignment by definition of the core in product algebras.

Let ~d = (d0j , . . . , d
l
j), then since for all i ≤ p we have

∏

i≤lDi 2
c φi, the map g : B →

∏

i≤lDi

such that g(bj) = (α0
j (
~d), . . . , αlj(

~d)) is an embedding. By Lemma 22 A ∈ ISPU (
∏

i≤lDi) ⊆
ISPU (Q) = Q, thus since A is core-generated, we obtain A ∈ QCG.

The previous result provides us with a criterion to determine whether core-generated ex-
panded algebras belong to a quasi-variety. We now use this characterization to adapt the proof
of the uniqueness of the equivalent algebraic semantic of standard logics [15, Thm. 3.17] to our
setting.

Proposition 24. If both the tuples (Q0,Σ0, τ0,∆0) and (Q1,Σ1, τ1,∆1) witness the algebraiz-
ability of ⊢, then:

1. Q0 = Q1;

2. Σ0 ≡Qi
Σ1 with i ∈ {0, 1};

3. ∆0(x, y) ⊣⊢ ∆1(x, y);

4. τ0(φ) ≡cQi
τ1(φ) with i ∈ {0, 1}.

Proof. Firstly, notice that the two witnesses of algebraizability that we are assuming give rise
to two different consequence relations, which we shall denote by �0

Q0
and �1

Q1
.
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(3) We prove ∆0(x, y) ⊢ ∆1(x, y). Let φ ∈ ∆1(x, y), then we clearly have that:

τ0(φ(x, x)), φ(x, x) ≈ φ(x, y) �0
Q0

τ0(φ(x, y))

By Weak-Alg2 it follows:

∆0(τ0(φ(x, x))),∆0(φ(x, x), φ(x, y)) ⊢ ∆0(τ0(φ(x, y))),

hence, by Weak-Alg3:

φ(x, x),∆0(φ(x, x), φ(x, y)) ⊢ φ(x, y). (1)

Now, we also have that ∅ �1
Q1

x ≈ x, hence by φ ∈ ∆1(x, x) and Weak-Alg2, we obtain:

∅ ⊢ φ(x, x). (2)

Moreover, it also follows that x ≈ y �0
Q0

φ(x, x) ≈ φ(x, y), hence by Weak-Alg2:

∆0(x, y) ⊢ ∆0(φ(x, x), φ(x, y)). (3)

Finally, by (1), (2) and (3), it follows that ∆0(x, y) ⊢ φ(x, y), hence ∆0(x, y) ⊢ ∆1(x, y).
The converse direction is proven analogously.

(1) We first prove that Q0 and Q1 satisfy the same quasi-equations under core-semantics.
We show only that Logc(Q0) ⊆ Logc(Q1), as the other direction follows analogously. Let
∧

i≤n ǫi ≈ δi → ǫ ≈ δ ∈ Logc(Q0), then it follows that
∧

i≤n ǫi ≈ δi �
0
Q0

ǫ ≈ δ and this
yields that

⋃

i≤n ∆0(ǫi, δi) ⊢ ∆0(ǫ, δ) by Weak-Alg2 . By point (3) above, it follows that
⋃

i≤n ∆1(ǫi, δi) ⊢ ∆1(ǫ, δ), hence by Weak-Alg2 we get
∧

i≤n ǫi ≈ δi �
1
Q1

ǫ ≈ δ. The latter
finally entails

∧

i≤n ǫi ≈ δi → ǫ ≈ δ ∈ Logc(Q1) and thus Logc(Q0) ⊆ Logc(Q1). By rea-
soning analogously we obtain that Logc(Q1) ⊆ Logc(Q0), hence Logc(Q0) = Logc(Q1).
It then follows by Theorem 23 above that (Q0)CG = (Q1)CG and since both Q0 and Q1

are core-generated Q0 = Q1.

(2) By (1) we have Q0 = Q1, so let Q = Qi, i ∈ {0, 1}. Let α0 ≈ β0 ∈ Σ0, then �0
Q α0 ≈ β0

hence by Weak-Alg2 we obtain that ∅ ⊢ ∆0(α0 ≈ β0) and thus �1
Q α0 ≈ β0, meaning

that A �1 α0 ≈ β0 for all α0 ≈ β0 ∈ Σ0. It follows that core1(A) ⊆ {x ∈ A : α0(x) ≈
β0(x)} = core0(A). The other direction is proven analogously.

(4) By (1), it suffices to prove τ0(φ) ≡0
Q0

τ1(φ). By Weak-Alg3, we have ∆0(τ0(x)) ⊣⊢
∆1(τ1(x)) and by point (3) this is equivalent to ∆0(τ0(x)) ⊣⊢ ∆0(τ1(x)). It then follows
by Weak-Alg2 that τ1(x) ≡0

Q0
τ2(x).

We have thus established that every algebraizable weak logic has a unique equivalent algebraic
semantics, up to equivalence under the core consequence relation. Finally, we conclude this
section by proving an analogue of Lemma 19 for the setting of weak logics.

Lemma 25.

1. Let ⊢ be a weak logic, then to show that ⊢ is algebraized by (Q,Σ, τ,∆) it suffices to
check either Weak-Alg1 and Weak-Alg4 or Weak-Alg2 and Weak-Alg3.

2. If ⊢ is an algebraizable weak logic, then it is algebraized by finitary maps τ,∆.
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Proof. 1. Suppose ⊢ is a weak logic and let (Q,Σ, τ,∆) satisfy Weak-Alg1 and Weak-Alg4.
We verify that Weak-Alg2 and Weak-Alg3 hold as well.

By Weak-Alg4 Θ �cQ ǫ ≈ δ is equivalent to τ [∆(Θ)] �cQ τ(∆(ǫ, δ)), which by Weak-Alg1
is equivalent to ∆(Θ) ⊢ ∆(ǫ, δ), proving Weak-Alg2.

Also, for any formula φ, we have that τ(φ) ≡cQ τ(φ), hence by Weak-Alg4 τ [∆(τ(φ))] ≡cQ
τ(φ) and by Weak-Alg1 ∆(τ(φ)) ⊣⊢ φ, proving Weak-Alg3.

If (Q,Σ, τ,∆) satisfies Weak-Alg2 and Weak-Alg3, then we proceed analogously.

2. For any φ ∈ Fm, we have by Weak-Alg3 that φ ⊣⊢ ∆[τ(φ)], thus by ⊢ being finitary there
is some τ0(φ) ⊆ τ(φ) such that |τ0(φ)| < ω and φ ⊣⊢ ∆[τ0(φ)].

Moreover, for any equation ǫ ≈ δ ∈ Eq, we have by Weak-Alg4 that ǫ ≈ δ ≡cQ τ0[∆(ǫ, δ)]
we obtain by Theorem 17 a finite subset ∆0(ǫ, δ) ⊆ ∆(ǫ, δ) such that ǫ ≈ δ ≡cQ τ0[∆0(ǫ, δ)].

Finally, it follows by the choice of τ0,∆0 that ∆[τ(φ)] ⊣⊢ ∆(τ0(φ)), hence τ(φ) ≡cQ τ0(φ).
Similarly, from τ0[∆(ǫ, δ)] ≡cQ τ0[∆0(ǫ, δ)] we obtain ∆0(ǫ, δ) ⊣⊢ ∆(ǫ, δ). Thus τ0,∆0

together with Q and Σ witness the algebraizability of ⊢.

3 Characterisations of Algebraizability

In the previous section we have established the basic properties of algebraizability and adapted
some classical results from abstract algebraic logic to the setting of weak logics. In this section
we shall provide two important characterizations of algebraizability. Firstly, we investigate more
closely the relationship between standard algebraizability and algebraizability for weak logics
and we establish a bridge between these two notions. Then, we will use this bridge theorem to
provide a version of the (theory-)isomorphism theorem for algebraizable logics in the context
of weak logics.

3.1 The Schematic Fragment of a Weak Logic

Given a weak logic, a natural question to ask is whether we can associate it to some standard
logical system. The study of negative variants of intermediate logics has lead to the notion of
schematic fragment, which was defined in [8, 26] and further investigated in [2, 29]. Here we
generalize it to arbitrary weak logics.

Definition 26 (Schematic Fragment). Let ⊢ be a weak logic, we define its schematic fragment
Schm(⊢) as follows:

Schm(⊢) := {(Γ, φ) : ∀σ ∈ Subst(L), σ[Γ] ⊢ σ(φ)}.

For a weak logic ⊢, we write Γ ⊢S φ if (Γ, φ) ∈ Schm(⊢). It is clear from the definition that
Schm(⊢) is a standard logic. Moreover, for any standard logic L ⊆ ⊢ we have that L ⊆ Schm(⊢),
i.e. Schm(⊢) is the greatest standard logic contained in ⊢. For any set of formulae Γ, we let
At[Γ] be the closure of Γ under atomic substitutions, i.e. At[Γ] = {σ(φ) : φ ∈ Γ, σ ∈ At}. The
atomic closure of sets of equations is defined analogously. We next define the following notions.

Definition 27. We say that a weak logic ⊢ is representable if there is a set of formulae Λ such
that for all Γ ∪ {φ} ⊆ Fm:

Γ ⊢ φ⇐⇒ Γ ∪ At[Λ] ⊢S φ.

We say that ⊢ is finitely representable if the condition above holds for some finite set Λ.
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We proceed to obtain a characterization of algebraizable weak logics in terms of finite rep-
resentability and algebraizability of the underlying schematic fragment.

Theorem 28. For a weak logic ⊢, the following are equivalent:

1. ⊢ is algebraizable;

2. Schm(⊢) is algebraizable and ⊢ is finitely representable.

Proof. (⇒) Suppose that ⊢ is algebraized by (Q,Σ, τ,∆). We claim that (Q, τ,∆) algebraizes
Schm(⊢). Recall that Γ ⊢S φ stands for (Γ, φ) ∈ Schm(⊢). Firstly, we check that (Q,Σ, τ,∆)
verifies Weak-Alg1:

Γ ⊢S φ⇐⇒ ∀σ ∈ Subst. σ[Γ] ⊢ σ(φ) (by definition)

⇐⇒ ∀σ ∈ Subst. τ(σ[Γ]) �cQ τ(σ(φ)) (by Weak-Alg2)

⇐⇒ ∀σ ∈ Subst. σ(τ [Γ]) �cQ σ(τ(φ)) (by structurality)

⇐⇒ τ [Γ] �Q τ(φ). (by Lemma 10)

Now, it suffices to check that (Q,Σ, τ,∆) verifies Weak-Alg4. Suppose that τ(∆(x, y)) 6≡Q

x ≈ y, then by Lemma 10 and the fact that Q is core-generated, we get that there exists a
substitution σ such that σ(τ(∆(x, y))) 6≡cQ σ(x ≈ y) and by structurality τ(∆(σ(x), σ(y))) 6≡cQ
σ(x) ≈ σ(y), contradicting the algebraizability of ⊢.

Finally, we also check that ⊢ is finitely representable. For a set Σ of equations we let
At[Σ] := {σ(η) ≈ σ(δ) : η ≈ δ ∈ Σ, σ ∈ At}. We proceed as follows:

Γ ⊢ φ⇐⇒ τ [Γ] �cQ τ(φ) (by Weak-Alg1)

⇐⇒ τ [Γ] ∪ At[Σ] �Q τ(φ)

⇐⇒ Γ ∪ ∆[At[Σ]] ⊢S φ (by algebraizability of Schm(⊢))

⇐⇒ Γ ∪ At[∆[Σ]] ⊢S φ. (by structurality)

(⇐) Suppose Schm(⊢) is algebraized by (Q, τ,∆) and that ⊢ is finitely represented by Λ.

Γ ⊢ φ ⇐⇒ Γ ∪ At[Λ] ⊢S φ (by definition)

⇐⇒ τ [Γ] ∪ τ [At[Λ]] �Q τ(φ) (by assumption)

⇐⇒ τ [Γ] �cQ τ(φ).

The last step is justified by letting core(A) := {x ∈ A : A � ǫ(x) ≈ δ(x), ǫ ≈ δ ∈ τ [Λ]},
which is already stable under substitutions, so we can only restrict our attention at τ [Λ].
Consider Q′ := Q(〈core(A)〉A∈Q). Then (Q′, τ [Λ], τ,∆) algebraizes ⊢, as Weak-Alg1 follows
by the reasoning above and Weak-Alg4 follows similarly to the converse direction (since Q′ ⊆
Q).

The following corollary follows immediately from the proof of the previous theorem:

Corollary 29. Let ⊢ be finitely represented by Λ, then (Q, τ,∆) algebraizes Schm(⊢) if and
only if (Q, τ [Λ], τ,∆) algebraizes ⊢.
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3.2 The Isomorphism Theorem

Blok and Pigozzi’s Isomorphism Theorem [15, §3.5] provides an important characterization of
algebraizability, as it shows that the algebraizability of a logic is witnessed by the existence of
a suitable isomorphism between the lattice of deductive filters of the logic and the lattice of
congruences of the corresponding class of algebras. We shall now prove a partial analogue of
this result for the setting of weak logics.

The Standard Isomorphism Theorem In the previous section we have provided a criterion
for algebraizability of weak logics in terms of their underlying schematic variant, i.e. a weak
logic ⊢ is algebraizable if and only if Schm(⊢) is algebraizable and ⊢ is finitely representable in
it. Building on this result, we formulate a version of Blok and Pigozzi’s Isomorphism Theorem
for our setting. Firstly, let us recall some preliminary definitions.

Definition 30. For any algebra A and standard logic ⊢, we say that F ⊆ A is a deductive
filter over A with respect to ⊢ if:

Γ ⊢ φ =⇒ ∀h ∈ Hom(Fm,A), h[Γ] ⊆ F entails h(φ) ∈ F.

We let Fi⊢(A) be the set of all deductive filters of ⊢ over A, then Fi⊢(A) forms a lattice under
the subset ordering. It is possible to verify that if F is a deductive filter and σ an endomorphism
over A, then σ−1(F ) is also a deductive filter. With some abuse of notation, we then let Fi⊢(A)
also refer to this lattice expansion, i.e. Fi⊢(A) = (Fi⊢,⊆, {σ−1 : σ ∈ End(L)}).

Similarly, for any algebra A we let Con(A) be the set of all congruences over A and by
ConQ(A) the subset of all congruences θ over A such that A/θ ∈ Q. Analogously to deductive
filters, it is possible to verify that ConQ(A) forms a lattice under the subset ordering and that
it is closed under inverse endomorphisms of A. We thus let ConQ(A) also refer to this lattice
expansion, i.e. ConQ(A) = (ConQ(A),⊆, {σ−1 : σ ∈ End(A)}).

Finally, if ⊢ is a standard logic, we denote by Th(⊢) the set of all (syntactic) theories
over ⊢, i.e. all sets Γ ⊆ Fm such that if Γ ⊢ φ then φ ∈ Γ. It is possible to verify that
Th(⊢) forms a lattice under the subset relation, and that it is additionally closed under inverse
substitutions. With a slight abuse of notation, we refer by Th(⊢) also to this lattice expansion,
namely we let Th(⊢) = (Th(⊢),⊆, {σ−1 : σ ∈ Subst(L)}). Similarly, if Q is a quasi-variety,
then Th(�Q) denotes the set of (semantical) theories over Q, i.e. sets of equations Θ ⊆ Eq

such that Θ �Q α ≈ β entails α ≈ β ∈ Θ. It is possible to verify that Th(�Q) forms a lattice
under the subset relation, and it is additionally closed under inverse substitutions. We let
Th(�Q) = (Th(�Q),⊆, {σ−1 : σ ∈ Subst(L)}), again with slight abuse of notation. It is easily
verified that syntactic theories over ⊢ are filters over Fm and semantic theories over �Q are
Q-congruences over Fm.

The isomorphism theorem for standard logics provides us with a criterion to determine if a
logic is algebraizable based on these lattices of filters and congruences. We refer the reader to
[15, §3.5] for a proof of this result.

Theorem 31 (Isomorphism Theorem). Let ⊢ be a standard logic and Q a quasi-variety, then
the following are equivalent:

1. ⊢ is algebraizable with equivalent algebraic semantics Q;

2. Fi⊢(A) ∼= ConQ(A), for any algebra A;

3. Th(⊢) ∼= Th(�Q).
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In order to obtain a version of the isomorphism theorem for weak logics, we firstly notice
that from Blok and Pigozzi’s result together with Theorem 28 we obtain the following charac-
terization of algebraizability of a weak logic in terms of filters and congruences of its schematic
variant.

Proposition 32. Let ⊢ be a weak logic and Q a Σ-generated quasi-variety, then the following
are equivalent:

1. ⊢ is algebraizable with equivalent algebraic semantics Q;

2. ⊢ is finitely representable and FiSchm(⊢)(A) ∼= ConQ(A), for any algebra A;

3. ⊢ is finitely representable and Th(Schm(⊢)) ∼= Th(�Q).

Proof. (1 ⇒ 2) If (1) holds, then by Corollary 29 it follows that Schm(⊢) is algebraized by Q

and ⊢ is finitely representable. By Theorem 31 above it follows that FiSchm(⊢)(A) ∼= ConQ(A).

(2 ⇒ 3) Immediate by Theorem 31.

(3 ⇒ 1) If (3) holds, then by Theorem 31 Schm(⊢) is algebraizable with equivalent algebraic
semantics Q. Moreover, since ⊢ is finitely representable, it follows by Corollary 29 that ⊢ is
algebraized by Q as well.

The Isomorphism Theorem for Theories in Weak Logics The former proposition gives
us a first criterion of algebraizability in terms of the lattices of filters and congruences. How-
ever, it is simply a direct translation of the corresponding criterion of algebraizability of the
underlying schematic variant of a weak logic, together with the additional condition of finite
representability. Here we provide a slight improvement of this result by showing a version of
the isomorphism theorem limited to lattices of theories over weak logics.

If ⊢ is a weak logic, we denote by Th(⊢) the set of all (syntactic) theories over ⊢, i.e. all
sets Γ ⊆ Fm such that if Γ ⊢ φ then φ ∈ Γ. Similarly, if Q is a quasi-variety of expanded
algebras, then Th(�cQ) denotes the set of (semantical) theories over Q, i.e. sets of equations
Θ ⊆ Eq such that Θ �cQ α ≈ β entails α ≈ β ∈ Θ. It is straightforward to check that both
Th(⊢) and Th(�cQ) form lattices under the subset ordering and are additionally closed under
inverse atomic substitutions.

To obtain a version of the isomorphism theorem for our context, one way is to relate syntactic
and semantic theories over weak logics and expanded algebras to special instances of standard
theories. For any set of formulae Λ ⊆ Fm, we let ThΛ(⊢) be the set of all (syntactical) theories
Γ over ⊢ such that At[Λ] ⊆ Γ and for any set of equations Σ ⊆ Eq. we let ThΣ(�Q) denote
the (semantical) theories Θ such that At[Σ] ⊆ Θ. It can be checked by a routine argument
that both ThΛ(⊢) and ThΣ(�Q) are lattices under the subset ordering and they are additionally
closed under inverse substitutions of the term algebra.

The following lemma provides us with an important connection between theories in weak log-
ics and expanded algebras on the one side, and standard theories over their schematic fragment
and algebraic reducts on the other side. On the syntactic side, we can now express the finite
representability of a weak logic in terms of the lattice of core syntactical theories. Similarly,
on the semantical side, the lemma allows us to determine when a quasi-variety of expanded
algebras has an equationally definable core by reference to core semantical theories. We recall
that, for any standard or weak logic ⊢, the syntactical consequence operator Cn⊢ is defined by
letting Cn⊢(Γ) = {φ : Γ ⊢ φ} for any set of formulae Γ. The semantical consequence operators
Cn�Q

and Cn�c
Q

are defined analogously.
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Proposition 33. Let Q be a quasi-variety of expanded algebras with an equationally defined
core, Λ a finite set of formulae and Σ a finite set of equations, the following facts hold:

1. Q is Σ-defined if and only if Th(�cQ) = ThΣ(�Q);

2. ⊢ is finitely represented by Λ if and only if ThΛ(Schm(⊢)) = Th(⊢).

Proof.

1. (⇒) Suppose for all A ∈ Q, core(A) = Σ(x,A). (i) Suppose Θ ∈ Th(�cQ), then since for
all A ∈ Q A �c Σ, we have At[Σ] ⊆ Θ. Now suppose Θ �Q α ≈ β, then by monotonicity
Θ ∪ At[Σ] �Q α ≈ β. Now, this is equivalent to Θ �cQ α ≈ β, hence α ≈ β ∈ Θ. (ii)

Suppose Θ ∈ ThΣ(�Q), thus At[Σ] ⊆ Θ. Now, if Θ �cQ α ≈ β, then since for all A ∈ Q,
core(A) = Σ(x,A), we have Θ ∪ At[Σ] �Q α ≈ β and therefore α ≈ β ∈ Θ.

(⇐) Suppose Th(�cQ) = ThΣ(�Q), then for any Θ we have Cn�Q
(Θ ∪ At[Σ]) = Cn�c

Q
(Θ).

Hence:

Θ �cQ α ≈ β ⇐⇒ Cn�c
Q

(α ≈ β) ⊆ Cn�c
Q

(Θ)

⇐⇒ Cn�Q
({α ≈ β} ∪ At[Σ]) ⊆ Cn�Q

(Θ ∪ At[Σ])

⇐⇒ Θ ∪ At[Σ] �Q α ≈ β.

Since Q has an equationally definable core, we have for all A ∈ Q that core(A) = Ω[x,A]
for some finite Ω ⊆ Eq. Then, we have that Θ �cQ α ≈ β if and only if Θ∪At[Ω] �Q α ≈ β.
By the display above, it follows that Ω ≡Q Σ.

2. (⇒) Suppose ⊢ is finitely represented by Λ. (i) If Γ ∈ ThΛ(Schm(⊢)) and Γ ⊢ φ. By
finite representability Γ ∪ At[Λ] ⊢S φ and by Γ ∈ ThΛ(Schm(⊢)) also At[Λ] ⊆ Γ. Since Γ
is a theory over Schm(⊢), it follows that φ ∈ Γ. (ii) Similarly, if Γ ∈ Th(⊢), then since
At[Λ] ⊢ At[Λ], it follows by Theorem 28 that ∅ ⊢S At[Λ] which means At[Λ] ⊆ Γ. Now, if
Γ ⊢S φ, then Γ ∪ At[Λ] ⊢S φ hence by Theorem 28 Γ ⊢ φ and φ ∈ Γ.

(⇐) Assume ThΛ(Schm(⊢)) = Th(⊢). Then for any Γ we have CnSchm(⊢)(Γ ∪ At[Λ]) =
Cn⊢(Γ). Whence:

Γ ⊢ φ⇐⇒ Cn⊢(φ) ⊆ Cn⊢(Γ)

⇐⇒ CnSchm(⊢)(φ ∪ At[Λ]) ⊆ CnSchm(⊢)(Γ ∪ At[Λ])

⇐⇒ Γ ∪ At[Λ] ⊢S φ.

which gives us finite representability via Λ.

Finally, we use the previous proposition to obtain a version of the theory isomorphism theorem
for weak logics.

Theorem 34. Let ⊢ be a weak logic and Q a Σ-generated quasi-variety of expanded algebras.
The following are equivalent:

1. ⊢ is algebraized by (Q,Σ, τ,∆)

2. Th(Schm(⊢)) ∼= Th(�Q) and there are finite Λ ⊆ Fm, Σ ⊆ Eq such that ThΛ(Schm(⊢)) =

Th(⊢) and Th(�cQ) = ThΣ(�Q).
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Proof.

• (1 ⇒ 2) It immediately follows by Proposition 33 that Th(�cQ) = ThΣ(�Q). Moreover,
by Theorem 28 it follows that Schm(⊢) is algebraizable, hence by the standard isomor-
phism theorem Th(Schm(⊢)) ∼= Th(�Q). Finally, again by Theorem 28, ⊢ is finitely

representable, hence by Proposition 33 for some Λ we have that ThΛ(Schm(⊢)) = Th(⊢).

• (2 ⇒ 1) Since Th(Schm(⊢)) ∼= Th(�Q), it follows by the standard Isomorphism Theorem
that Schm(⊢) is algebraized by (Q, τ,∆) for some structural transformers τ,∆. Then,
by Proposition 33, ThΛ(Schm(⊢)) = Th(⊢) entails that ⊢ is finitely represented, hence
by Theorem 28 it is algebraized by Q. Finally, by uniqueness of the equivalent algebraic
semantics, ⊢ is algebraized by (Q,Σ, τ,∆).

The result above shows that the algebraizability of a weak logic ⊢ by a quasi-variety Q of
equationally definable algebras is equivalent to the algebraizability of Schm(⊢) by Q together
with the fact that the lattices of core syntactic and semantical theories coincide with suitable
sublattices of the lattices of syntactic and semantical theories. This provides us with an alter-
native method to determine whether a weak logic is algebraizable or not. We leave it to future
research whether such isomorphism theorem could be improved by extending it to suitable core
filters and core congruences.

4 Applications to Inquisitive and Dependence Logics

Inquisitive logic and dependence logic are two related propositional systems, which are usually
both defined in terms of so-called team semantics, originally introduced by Hodges in [20]. Here
we introduce both of them in syntactic terms, analogously as in [30], and we investigate whether
they are algebraizable or not in the sense provided by this article. We refer the reader to [8, 36]
for the standard presentation of inquisitive and dependence logic by their team semantics.

An algebraic semantics for the classical version of inquisitive logic InqB was introduced in
[1, 2, 29]. Such semantics was generalized in [30] to provide a sound and complete algebraic
semantics to InqI, InqB⊗, InqI⊗ and other intermediate versions of inquisitive and dependence
logic as well. Since these logical systems do not satisfy the rule of uniform substitution, it has
so far been an open question whether such semantics are in any sense unique. The notion
of algebraizability of weak logics that we have introduced in this article provides us with a
framework to make sense of this question.

Interestingly, these logics behave quite differently from one another with respect to our
notion of algebraizability. We shall prove in this section that the classical versions of inquisitive
and dependence logic InqB and InqB⊗ are algebraizable, while the intuitionistic versions InqI
and InqI⊗ are not.

4.1 Inquisitive and Dependence Logic

We provide an axiomatic presentation of inquisitive and dependence logic. The following
Hilbert-style presentation of inquisitive and dependence logics adapts the natural-deduction
characterizations given in [10].

Let LIPC = {∧,∨,→,⊥} be both the usual intuitionistic signature of IPC and the set of
formulae in this signature obtained from a set Var of atomic variables. Negation is treated as
a defined operation and can be introduced by letting ¬φ := φ → ⊥. A formula of LIPC is said
to be standard if it is ∨-free. We write LCL for the set of all standard formulae and also for
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the signature LCL = {∧,→,⊥}. We use Greek letters φ, ψ, . . . to denote arbitrary inquisitive
formulae and α, β, . . . to denote standard inquisitive formulae.

Definition 35 (Intuitionistic Inquisitive Logic). The system InqI of intuitionistic inquisitive
logic is the smallest set of formulae of LIPC such that, for all φ, ψ, χ ∈ LIPC and for all α ∈ LCL,
InqI contains the following formulae:

(A1) φ→ (ψ → φ) (A6) φ→ φ ∨ ψ

(A2) (φ→ (ψ → χ)) → (φ→ ψ) → (φ→ χ) (A7) ψ → φ ∨ ψ

(A3) φ ∧ ψ → φ (A8) (φ→ χ) → ((ψ → χ) → (φ ∨ ψ → χ))

(A4) φ ∧ ψ → ψ (A9) ⊥ → φ

(A5) φ→ (ψ → φ ∧ ψ) (A10) (α → (φ ∨ ψ)) → ((α → φ) ∨ (α→ ψ))

and in addition it is closed under the rule of modus ponens (MP).

The classical version of inquisitive logic is the extension of InqI by the axioms ¬¬α → α, where
α ∈ LCL.

Definition 36. The system InqB of classical inquisitive logic is defined as the closure under
MP of the set InqI ∪ {¬¬α → α}α∈LCL

.

Dependence logics can be seen as an extension of inquisitive logic in a larger signature. Let
L⊗
IPC = {∧,∨,→,⊗,⊥}, where ⊗ is the so-called tensor disjunction, and with slight abuse of

notation let L⊗
IPC also be the set of formulae in this signature. We say that a formula in L⊗

IPC

is standard if it does not contain the ∨ operator and we write L⊗
CL both for the set of standard

dependence formulae and for the restricted signature L⊗
CL = {∧,→,⊗,⊥}. We define negation

again by ¬φ := φ→ ⊥.

Definition 37 (Intuitionistic Dependence Logic). The system InqI⊗ of intuitionistic depen-
dence logic is the smallest set of formulae of L⊗

IPC such that, for all φ, ψ, χ, τ ∈ L⊗
IPC and for all

α, β, γ ∈ L⊗
CL, InqI

⊗ contains the formulae (A1)–(A10) of Definition 35 and the following:

(A11) α → (α⊗ β) (A14) (φ→ χ) → ((ψ → τ) → (φ⊗ ψ → χ⊗ τ))

(A12) (α⊗ β) → (β ⊗ α) (A15) (α → γ) → ((β → γ) → (α⊗ β → γ))

(A13) φ⊗ (ψ ∨ χ) → (φ⊗ ψ) ∨ (φ⊗ χ)

and in addition it is closed under modus ponens.

And, similarly as we did before for classical inquisitive logic, we define the classical version of
dependence logic InqB⊗ as follows.

Definition 38. The system InqB⊗ of classical dependence logic is defined as the closure under
MP of the set InqI⊗ + {¬¬α → α}α∈L⊗

CL
.

To see that the systems that we have defined so far are weak logics, it is convenient to
present them via their induced consequence relations. Fix L ∈ {InqB, InqB⊗, InqI, InqI⊗},
then we let:

Γ ⊢L φ⇐⇒
∧

ψ∈Γ0

ψ → φ ∈ L for some finite Γ0 ⊆ Γ.
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It is then easy to verify that ⊢L is in fact a consequence relation and moreover that it is also
closed under atomic substitutions. As a matter of fact, it is not hard to see that InqI, InqI⊗,
InqB, InqB⊗ are closed under ∨-free substitutions, namely substitutions σ ∈ Subst(L) such that
σ(α) is standard whenever α is standard. It then follows that InqB, InqB⊗, InqI, InqI⊗ are
all weak logics.

Inquisitive and dependence logics also make for proper weak logics, i.e. for systems which
are not closed under uniform substitution. That this is the case follows from Example 4 before.
Another failure of US is the following: for any L ∈ {InqB, InqB⊗, InqI, InqI⊗} we have by the
axiomatisation above:

(p→ (q ∨ r)) → ((p → q) ∨ (p→ r)) ∈ L.

However, the result of the substitution p 7→ q ∨ r is not a validity of these logics:

((q ∨ r) → (q ∨ r)) → (((q ∨ r) → q) ∨ ((q ∨ r) → r)) /∈ L.

We refer the reader to [8] and [10] for a lengthier discussion of the failure of uniform substitution
in propositional inquisitive and dependence logic.

4.2 Algebraizability of InqB and InqB⊗

We prove in this section the algebraizability of the classical versions of inquisitive and depen-
dence logic. We firstly recall some important facts about inquisitive logic and its algebraic
semantics.

We recall that a Heyting algebra H is a bounded distributive lattice augmented by an
operation → such that for all a, b, c ∈ H:

a ∧ b ≤ c ⇐⇒ a ≤ b→ c.

Negation is defined by letting ¬x := x→ ⊥. An element x ∈ H is regular if x = ¬¬x. We write
H¬ for the subset of regular elements of H, and we say that a Heyting algebra H is regularly
generated, or simply regular, if H = 〈H¬〉. Similarly, we say that a class of Heyting algebras is
regularly generated if it is core-generated for Σ = {x ≈ ¬¬x}.

We also recall that an intermediate logic is a (standard) logic L such that IPC ⊆ L ⊆ CPC. The
logic ML, namely Medvedev’s logic of finite problems, is the logic of all Kripke frames of the form
(℘+(s),⊇), where |s| < ω and ℘+(s) = ℘(s)\{∅}. As in Example 4, we define a DNA-logic, or
negative variant of an intermediate logic, as a set of formulae L¬ = {φ[¬p0, . . . ,¬pn/p0, . . . , pn] :
φ ∈ L}, where L is an intermediate logic. Medvedev’s logic was firstly introduced in [25], while
negative variants were originally considered in [26].

The next theorem collects together some previous result by Ciardelli in [8] on the schematic
variant of InqB and the characterization of regularly generated varieties from [2].

Theorem 39.

1. ML¬ = InqB and Schm(InqB) = ML;

2. V ar(ML) is regularly generated;

3. For all Γ ∪ {φ} ⊆ LIPC, Γ ⊢InqB φ⇐⇒ Γ �cV ar(ML) φ.

Proof. (1) both facts were proved by Ciardelli in [8]. (2) follows from (1) together with Propo-
sition 4.17 from [2]. (3) From Theorem 3.32 in [2].2

2Notice that in [2] it was proven Γ ⊢InqB φ ⇐⇒ Γ �c

V ar(ND)
φ. The present statement follows by the fact that

the varieties ND and ML contain the same regularly generated algebras.

22



Algebraizable weak logics G. Nakov & D. E. Quadrellaro

The algebraizability of InqB is then immediate to prove.

Theorem 40. InqB is algebraizable.

Proof. Let Q = V ar(ML), τ(φ) = φ ≈ 1, ∆(x, y) = x ↔ y and Σ = {x ≈ ¬¬x}. We prove
that (Q,Σ, τ,∆) algebraizes InqB. Firstly, by Theorem 39 above we have that V ar(ML) is
core-generated by Σ.

Now, by Lemma 25, it suffices to show that (V ar(ML), φ ≈ 1, x ↔ y, x ≈ ¬¬x) satisfies
Weak-Alg1 and Weak-Alg4. By Theorem 39(3), Weak-Alg1 immediately follows. Moreover, for
all H ∈ V ar(ML) and x, y ∈ H, we have that x = y if and only if x ≤ y and y ≤ x. By the
properties of Heyting implication, this is equivalent to H � x → y ≈ 1 and H � y → x ≈ 1. It
follows that x ≈ y ≡cQ {x→ y ≈ 1, y → x ≈ 1}, showing Weak-Alg4 holds. It follows that InqB
is algebraizable.

To extend this result to dependence logic, we firstly need to introduce a suitable notion of
dependence algebras.

Definition 41. A InqB⊗-algebra A is a structure in the signature L⊗
IPC such that: A↾{∨,∧,→

,⊥} ∈ V ar(ML), A¬↾{⊗,∧,→,⊥} ∈ BA and, additionally:

(Dist) A � x⊗ (y ∨ z) ≈ (x⊗ y) ∨ (x⊗ z);

(Mon) A � (x→ z) → (y → k) ≈ (x⊗ y) → (z ⊗ k).

Our definition is similar to the definition of InqB⊗-algebras from [30, 2.2], with the difference
that here we assume the equations to hold for the full algebra and not only with respect to the
subalgebra generated by the core.

By expanding the previous definition, one can see that it amounts to an equational definition
of a class of algebras. We thus let InqBAlg⊗ be the variety of all InqB⊗-algebras and InqBAlg⊗FRSI
be the subclass of all finite, regular, subdirectly irreducible InqB⊗-algebras. The following fact
follows from [30, 2.15, 3.20].

Theorem 42. For all Γ ∪ {φ} ⊆ L⊗
IPC, Γ ⊢InqB⊗ φ⇐⇒ Γ �c

InqBAlg
⊗

FRSI

φ.

Now, we say that A is a dependence algebra if it belongs to the subvariety generated by all finite,
regular, subdirectly irreducible InqB-algebras. We let DA := V(InqBAlg⊗FRSI) be the variety of
dependence algebras. It immediately follows that DA witnesses the algebraizability of InqB⊗.

Theorem 43. InqB⊗ is algebraizable.

Proof. It follows from Theorem 42 analogously to Theorem 40 by letting Q = DA, τ(φ) :=
φ ≈ 1, ∆(x, y) = x↔ y and Σ = {x ≈ ¬¬x}.

The question whether DA = InqBAlg⊗ is open and should be subject of future investigation.

4.3 Failure of Algebraizability for InqI and InqI⊗

We prove the failure of algebraizability of InqI and InqI⊗. Before showing our main result
about intuitionistic inquisitive and dependence logic, we recall some fact from [10].

Proposition 44 (Disjunctive Normal Form).

• Let φ ∈ LIPC, there are standard inquisitive formulas {αi}i≤n such that φ ≡InqI

∨

i≤n αi.
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• Let φ ∈ L⊗
IPC, there are standard dependence formulas {αi}i≤n such that φ ≡InqI⊗

∨

i≤n αi.

Proposition 45 (Disjunction Property).

• Let φ0, . . . , φn ∈ LIPC, then InqI ⊢
∨

i≤n φi if and only if InqI ⊢ φi for some i ≤ n.

• Let φ0, . . . , φn ∈ L⊗
IPC, then InqI⊗ ⊢

∨

i≤n φi if and only if InqI⊗ ⊢ φi for some i ≤ n.

The next theorem shows that, contrary to InqB and InqB⊗, InqI and InqI⊗ are not algebraiz-
able.

Theorem 46. InqI and InqI⊗ are not algebraizable.

Proof. (i) We first consider the case of InqI. Suppose by reductio that InqI is algebraized by a
suitable tuple (Q,Σ, τ,∆). By Theorem 28 it follows that Logτ∆(Q) = Schm(InqI) ⊇ IPC, which
means that the standard logic of Q is either an intermediate logic or the inconsistent logic LIPC

containing all formulae in the signature of intuitionistic logic. However, since Schm(InqI) 6=
LIPC, we have that Logτ∆(Q) is an intermediate logic. Now, since Logτ∆(Q) is an intermediate
logic, it is algebraized by (Q, φ ≈ 1, x ↔ y) (see e.g. [6]). Thus, by the uniqueness of the
equivalent algebraic semantics of standard logics, it follows that Q is a subvariety of Heyting
algebras and without loss of generality that τ(φ) = φ ≈ 1, ∆(x, y) = x↔ y.

Without loss of generality, we assume |Σ| = 1. Let Σ = {ǫ(x) ≈ δ(x)}, then by algebraiz-
ability it follows that :

ǫ(x) ≈ δ(x) ≡Q τ(∆(ǫ(x), δ(x))) = (ǫ(x) ↔ δ(x)) ≈ 1.

Thus, without loss of generality, Σ = {σ(x) ≈ 1}, where σ ∈ LIPC. By the disjunctive normal
form of InqI (Proposition 44), it follows σ ≡Q

∨

j<l ρj , where each ρj is standard. Thus
Σ = {

∨

j<l ρj(x) ≈ 1}.
Then, for all A ∈ Q with core(A) = Σ[x,A], it follows that A �c

∨

j<l ρj(x) ≈ 1. Therefore,
we obtain that

∨

j<l ρj(x) ↔ 1 ∈ InqI and thus
∨

j<l ρj(x) ∈ InqI. By the disjunction property
of InqI (Proposition 45) it follows that ρj(x) ∈ InqI for some j < l.

Now, since InqI↾{∧,→,⊥} contains the ∨-free fragment of IPC and ρj(x) is univariate, it
must be equivalent to one of the following formulae (See [32]):

⊤, ¬¬x, ¬¬x→ x, x, ¬x, ⊥.

However, it can be checked using the semantics from [10] or [30] that ¬¬x /∈ InqI, ¬¬x → x /∈
InqI, x /∈ InqI, ¬x /∈ InqI, ⊥ /∈ InqI. Otherwise, if ρj(x) = ⊤, it follows that core(A) = A
for all A ∈ Q, contradicting the fact that InqI is not closed under uniform substitution.

(ii) The non-algebraizability of InqI⊗ follows analogously. By the same argument of above,
it follows that ρ(x) ∈ InqI⊗, where ρ ∈ L⊗

IPC is some ∨-free formula. Notice that, for all A ∈ Q

and x ∈ core(A), we must have ρ(x) = x, which means that for every n < ω, x ⊣⊢InqI⊗ ρn(x),
where ρ1(x) := ρ(x) and ρn+1(x) = ρ(ρn(x)).

Since ρ is ∨-free, it follows it is an IPC-formula, for IPC expressed in the language {∧,⊗,→
,⊥}. By the proof of Ruitenburg’s Theorem there are only five such fixpoints in one variable
in IPC:

⊤, ¬¬x, x⊗ ¬x, x, ⊥.

See e.g. [18] for a proof of this fact. In particular there is some n < ω such that ρn(x) ⊣⊢IPC χ
where χ ∈ {⊤,¬¬x, x ⊗ ¬x, x, ⊥}. Thus since IPC ⊆ InqI⊗ and x ⊣⊢InqI⊗ ρn(x), it follows
that x ⊣⊢InqI⊗ χ for χ ∈ {⊤,¬¬x, x⊗ ¬x, x,⊥}.
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However, as it can be verified using the team semantics of dependence logic, the only one of
these formulas χ such that χ(x) ↔ x ∈ InqI⊗ is χ(x) = x. It follows that ρ(x) = χ(x) = x and
thus core(A) = A for all A ∈ Q, contradicting the fact that InqI is not closed under uniform
substitution.

Corollary 47. InqI is not finitely representable.

Proof. Since Schm(InqI) ⊇ IPC it follows immediately that Schm(InqI) is an intermediate
logic, thus it is algebraizable (see e.g. [6]). It then follows from Theorem 28 that InqI is not
finitely representable.

It should be investigated in the future whether the schematic fragment of InqI⊗ can be alge-
braized and thus whether also InqI⊗ is not finitely representable.

Finally, we stress the fact that, by the results of this section, our notion of algebraizability
is non-trivial and offers a proper dividing line among weak logics.

5 Matrix Semantics

In this final section we briefly explore matrices as an alternative, non-algebraic semantics for
weak logics, and we study the relationship between core semantics and the standard first-order
semantics. In the standard setting, it can be shown that every logic is complete with respect to
a class of matrices. Furthermore, Dellunde and Jansana [14] have provided a characterization
of the class of matrices of a (possibly infinitary) logic in terms of some model-theoretic results
for first order logic without equality. Our goal is to show that these results still hold in the
present setting, and to that end we shall adapt the matrix semantics to weak logics.

5.1 Completeness of Matrix Semantics

We first briefly recall matrix semantics for standard logics.

Definition 48 (Logical matrix). A (logical) matrix of type L is a pair (A, truth(A)) where A
is a L-algebra and truth(A) ⊆ dom(A).

Intuitively, truth(A) is the “truth set” of the algebra A. Matrices induce a consequence relation
over formulae – let K be a class of matrices and let Γ ∪ {φ} be a set of propositional formulae
– i.e. first-order terms in L, then:

Γ �K φ⇐⇒ for all A ∈ K, h ∈ Hom(Fm,A),

if h[Γ] ⊆ truth(A), then h(φ) ∈ truth(A).

Given a logic L, we say that (A, truth(A)) is a model of L and write (A, truth(A)) � L, if for
every Γ ∪ {φ} ⊆ L, if Γ ⊢L φ then Γ �K φ. We refer the reader to [15, §4] for a detailed study
of matrix semantics in the context of standard propositional logics.

We can extend matrix semantics to the setting of weak logics by introducing a further
predicate.

Definition 49 (Logical bimatrix). The tuple (A, truth(A), core(A)) is a (logical) bimatrix of
type L if A is a L-algebra and truth(A), core(A) ⊆ dom(A).
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Bimatrices induce a consequence relation analogous to that of expanded algebras by restricting
attention to assignments over core elements. We write Homc(Fm,A) for the set of all assignments
h : Fm → A such that h[Var] ⊆ core(A). Then, for a class K of bimatrices and a set of
propositional formulae Γ ∪ {φ}, let:

Γ �cK φ⇐⇒ for all A ∈ K, h ∈ Homc(Fm,A),

if h[Γ] ⊆ truth(A), then h(φ) ∈ truth(A).

Given a weak logic L, we say that (A, truth(A), core(A)) is a model of L, which we write as
(A, truth(A), core(A)) � L, if for every Γ ∪ {φ} ⊆ Fm, if Γ ⊢L φ then Γ �cK φ. Thus, the main
intuition behind bimatrices is the same of expanded algebras: we add a new predicate specifying
the core of the matrix in order to preserve only the assignments sending atomic formulae to
elements of the core.

Let K be a class of bimatrices in language L, then we let:

Log(K) := {(Γ, φ) ∈ L : Γ �cK φ};

where Γ ∪ {φ} is a set of formulae in the given signature L and �cK is the consequence relation
defined above. It turns out that the set Log(K) is a weak logic — bimatrices are thus a natural
source of several kinds of weak logics.

Proposition 50. For any class of bimatrices K, the set Log(K) is a weak logic.

Proof. For all φ ∈ Γ we have that Γ �cK φ and that if Γ �cK φ, for all φ ∈ ∆ and ∆ �cK ψ, then
Γ �cK ψ. Hence, Log(K) is a consequence relation.

We now show that Log(K) is closed under atomic substitutions. Let M ∈ K and suppose
Γ �cM φ. Let {qi}i≤n enumerate the variables in Γ ∪ {φ}, we need to show that Γ[~pi/~qi] �

c
M

φ[~pi/~qi]. Suppose this is not the case, then for some valuation h : Fm → M such that h[Var] ⊆
core(M), we have h[Γ[~pi/~qi]] ⊆ truth(M) and h[φ[~pi/~qi]] /∈ truth(M). Define k : Fm → M
by letting k(qi) = h(pi) for all i ≤ n and k(x) = h(x) otherwise. We then have that k[Var] =
h[Var] ⊆ core(M) and also k[Γ] = h[Γ[~pi/~qi]] ⊆ truth(M) and k(φ) = h[φ[~pi/~qi]] /∈ truth(M),
contradicting Γ �cM φ.

By the previous proposition, every class of bimatrices determines a weak logic. More inter-
estingly, we can also show the converse and prove that every weak logic is complete with respect
to a class of suitable bimatrices, i.e. every weak logic is the logic of a class of bimatrices.

For every weak logic ⊢, we let M(⊢,Γ) be the bimatrix with domain dom(M(⊢,Γ)) = Fm
and predicates truth(M(⊢,Γ)) = Cl⊢(Γ) and core(M(⊢,Γ)) = core(⊢). Let M(⊢) be the set
of all matrices M(⊢,Γ) for Γ ⊆ Fm. We can then prove the following result for weak logics,
corresponding to the “completeness” theorem of standard matrices [15, Thm. 4.16].

Theorem 51. Every weak logic ⊢ is complete with respect to the class of bimatrices M(⊢).

Proof. (⇒) Suppose Γ ⊢ φ and Γ 2M(⊢) φ. Then there is a bimatrix M(⊢,∆) and a ho-
momorphism h : Fm → M(⊢,∆) such that h[Var] ⊆ core(⊢), h[Γ] ⊆ truth(M(⊢,∆)) and
h(φ) /∈ truth(M(⊢,∆)). Let x0, . . . , xn list all variables in Γ ∪ {φ} and let ψi = h(xi) for all
i ≤ n. Since dom(M(⊢,Γ)) = Fm we then have that h[Γ] = Γ[ψi/xi], h(φ) = φ[ψi/xi] and
consequently, ∆ ⊢ h[Γ] = Γ[ψi/xi]. Since Γ ⊢ φ and ψi is core formula for all i ≤ n, it fol-
lows that Γ[ψi/xi] ⊢ φ[ψi/xi] and thus by transitivity ∆ ⊢ φ[ψi/xi] = h(φ), which contradicts
h(φ) /∈ truth(⊢,Γ).

(⇐) Suppose Γ �M(⊢) φ and let h : Fm → M(⊢,Γ) be the identity map h : x 7→ x. Then
clearly h[Var] ⊆ core(⊢) and h[Γ] ⊆ truth(M(⊢,Γ)). We thus obtain h(φ) ∈ truth(M(⊢,Γ)),
hence φ ∈ Cl⊢(Γ) and Γ ⊢ φ.
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So far, we have established that every class of bimatrices defines a weak logic, and also that
every weak logic is complete with respect to a suitable class of bimatrices. It is then natural to
wonder what is exactly the class of bimatrices defined by a weak logic L, i.e. the bimatrices M
such that M �c Γ entails M �c φ whenever (Γ, φ) ∈ L. We shall consider this problem in the
following section by firstly providing a suitable translation of logics into Horn theories without
equality.

5.2 Connections to Model Theory without Equality

In [14] Dellunde and Jansana provided a study of standard propositional logics by relating them
to Horn Theories in first-order logic without equality. In particular, by developing some model
theory for this fragment of first-order (and infinitary) logics, Dellunde and Jansana provided a
novel proof of previous results by Czelakowski [13], which characterized the class of matrices
complete with respect to a logic. We show in this section that their framework is expressive
enough to capture also weak propositional logics and it allows us to extend Czelakowski’s result
to the context of weak logics.

Firstly, we remark that the consequence relations that we have defined for matrices and
bimatrices can be easily translated in terms of the standard first-order satisfaction relation �.
The following proposition makes it clear the correspondence between these two notions.

Proposition 52.

(i) Let K be a class of matrices, Γ ∪ {φ} ⊆ Fm with |Γ ∪ {φ}| < ω, then:

Γ �K φ⇐⇒ K � ∀x0, . . . , ∀xn
(

∧

γi∈Γ

truth(γi(~x)) → truth(φ(~x))
)

.

(ii) Let K be a class of bimatrices, Γ ∪ {φ} ⊆ Fm with |Γ ∪ {φ}| < ω, then:

Γ �cK φ⇐⇒ K � ∀x0, . . . , ∀xn
(

∧

γi∈Γ

truth(γi(~x)) ∧
∧

j≤n

core(xj) → truth(φ(~x))
)

.

Proof. Immediate from the definition of ⊢K and �cK.

We recall that a basic Horn formula is a formula of the form
∨

i<l ψi, where every ψi is a literal
and at most one of them is atomic. A Horn formula

∨

i<l ψi is strict if exactly one ψi is atomic.
A universal Horn formula is then a formula ∀x0, . . . , ∀xn

∧

j≤k ψj(~x), where every ψj is a basic
Horn formula. A universal Horn formula ∀x0, . . . , ∀xn

∧

j≤k ψj(~x) is strict if every ψj is strict.
A first order theory T is a Horn theory if it is axiomatized by universal Horn formulae. (We
refer the reader also to [17] for a study of Horn theories). It is straightforward to see that
Proposition 52 provides us with a translation of pairs (Γ, φ) into universal Horn formulae. This
observation motivates the translation of finitary logics into (strict) Horn theories as described
in [14]. We note that Dellunde and Jansana’s results are more general and cover both finitary
and infinitary logics, but we will be concerned only with the finitary case.

In the standard case, a (finitary) propositional logic ⊢ can be translated into a (strict) Horn
theory without equality via the following translation ρ:

ρ : (Γ, φ) ∈ ⊢ 7−→ ∀x0, . . . , ∀xn
(

∧

γi∈Γ

truth(γi(~x)) → truth(φ(~x))
)

.
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Similarly, a weak logic ⊢ can be translated into a (strict) Horn theory without equality via the
following translation:

ρ : (Γ, φ) ∈ ⊢ 7−→ ∀x0, . . . , ∀xn
(

∧

γi∈Γ

truth(γi(~x)) ∧
∧

j≤n

core(xj) → truth(φ(~x))
)

.

The only difference being that in the translation of weak logics we also make explicit the fact
that the interpretation of variables ranges only over the core elements of the underlying models.

We associate every weak logic ⊢ to a corresponding strict universal Horn theory without
equality Horn(⊢), defined by letting ρ(Γ, φ) ∈ Horn(⊢) whenever Γ ⊢ φ. It then follows by
Proposition 52 and by the finitarity of ⊢ that a bimatrix M satisfies Horn(⊢) if and only if
M �c Γ entails M �c φ whenever (Γ, φ) ∈ L. We say that Mod(Horn(⊢)) is the class of
bimatrices defined by a weak logic L and we also write Mod(⊢) for it.

Now, whilst Czelakowski’s original approach in [12] was specifically tailored to logical ma-
trices, Dellunde and Jansana considered arbitrary model classes axiomatized by Horn theories
without equality, thus making it possible to apply their results to the setting of bimatrices and
expanded algebras. We denote by L− the language and the set of formulae in some signature
L which do not include equality symbols. We say that a function f : A → B is a strict ho-
momorphism if it is a homomorphism and for all n-ary relation symbols R ∈ L and tuples
a ∈ An, a ∈ RA if and only if f(a) ∈ RB — this generalizes the notion of strict homomorphism
between expanded algebras that we introduced in Section 1. Let H be the closure operator
associating a class of models to the class of its strict homomorphic images and H−1 be the
operator associating a class of models to the class of its strict homomorphic pre-images. The
operators I, S,P,PU are the usual closure operators under isomorphism, submodels, products
and ultraproducts, with predicate symbols treated as we made explicit in Section 1 for the
restricted case of the core predicate. We recall only the finitary version of [14, Thm. 9]:

Theorem 53 (Dellunde, Jansana). Let C be a class of L−-structures, then the following are
equivalent:

1. C is axiomatised by strict universal Horn formulae in L−;

2. C is closed under the operators H−1,H, S,P,PU and contains a trivial structure;

3. C = H−1HSPPU (K) for some class K of L-structures containing a trivial structure.

It follows from the previous theorem that the validity of Horn formulae is closed under the
operators H−1, H, S, P, PU (See [14]). Moreover, under the translation we have given above,
every weak logic ⊢ induces a corresponding universal Horn theory without equality Horn(⊢).
We can then obtain a characterization of the class of models Mod(⊢).

Corollary 54. Let C be a class of bimatrices and let T = Horn(Log(C)), then:

Mod(T ) = H−1HSPPU (C′).

where C′ is C together with some trivial bimatrices.

Recall that by Theorem 51 every weak logic is complete with respect to a suitable class of
bimatrices and so the previous theorem applies to all weak logics ⊢ and provides us with a
characterization of the class of all bimatrices defined by ⊢.

However, one can see that such classes will contain many pathological examples. For exam-
ple, let C be the class of all InqB-algebras, and consider them as bimatrices by letting, for all
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A ∈ C, truth(A) = {x ∈ A : x = 1} and core(A) = {x ∈ A : x = ¬¬x}. Then, we have by the
previous corollary that Mod(InqB) = H−1HSPPU (C), giving us a class of bimatrices which is
strictly larger that the class of expanded algebras which forms the equivalent algebraic seman-
tics of InqB. The reason is that the strict homomorphic preimage of an inquisitive algebra is
not necessarily an inquisitive algebra.

To obtain a characterization of the non-pathological models of a (strict) universal Horn
theory without equality, and thus of propositional logics, Dellunde and Jansana introduce so-
called reduced structures and reduced matrices. Given the generality of their approach, it is
again straightforward to adapt their results to our current setting of bimatrices. Let M be a
first-order structure and D ⊆ M, we let the type without equality of a over D in M be the
following set of equality-free formulae:

tp−
M(a/D) = {φ(x) ∈ L−(X) : (M, d)d∈D � φ(a)}

where (M, d)d∈D denotes the expansion of M with constants for all elements of D. We then
define the so-called Leibniz Equality ∼∗ on A by letting, for a, b ∈ M:

a ∼∗ b⇐⇒ tp−
M(a/M) = tp−

M(b/M).

We can then verify that ∼∗ is the largest non-trivial consequence relation M, meaning that it
is the largest congruence θ over its algebraic reduct such that, for any relation symbol R ∈ L
and a, b ∈ M such that aθb, a ∈ RM if and only if b ∈ RM. This induces a natural projection
π : M → M/ ∼∗ by π : a 7→ a/ ∼∗. We let M∗ := M/ ∼∗ and for any class operator O we let
O∗(C) := {A∗ : A ∈ O(C)}. We say that a model or a bimatrix M is reduced if M = M/ ∼∗.

Theorem 53 then entails the following result [14, Thm. 18]. Notice that our formulation
differs from the original one as Dellunde and Jansana assume that the closure operators are
already closed under isomorphic copies.

Theorem 55 (Dellunde, Jansana). Let C be a class of reduced L−-structures, then the following
are equivalent:

1. C is the class of reduced structures of a class axiomatised by L−-universal Horn formulae;

2. C is closed under the operators I∗, S∗,P∗,P∗
U ;

3. C = I∗S∗P∗P∗
U (K) for some class K of L−-structures.

From the closure of the validity of Horn formulae under I∗, S∗, P∗, P∗
U we obtain a corresponding

corollary for the special case of bimatrices:

Corollary 56. Let C be a class of reduced bimatrices and let T = Horn(Log(C)), then:

Mod∗(T ) = I∗S∗P∗P∗
U (C).

Thus, since every weak logic is complete with respect to some class of bimatrices, we obtain a
characterization of the class of reduced bimatrices defined by any weak logic ⊢.

Finally, consider a weak logic ⊢ which is algebraized by some suitable tuple (Q,Σ, τ,∆),
then every expanded algebra A can be regarded as logical matrix with truth(A) = {x ∈ A :
A �c τ(x)} and core(A) = Σ[x,A]. The next corollary shows that in this case we obtain
Mod∗(⊢) = Q.

Corollary 57. Let ⊢ be an algebraizable weak logic with equivalent algebraic semantics given
by (Q,Σ, τ,∆), then Q = Mod∗(⊢).
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Proof. Firstly, we show that every A ∈ QCG is reduced. Let a, b ∈ A such that a 6= b, since A
is core generated, we have without loss of generality that a = α(~c), b = β(~c) for ci ∈ core(M)
for all i ≤ n. By algebraizability, we have that �cQ α(~c) ≈ α(~c), hence �cQ τ(∆(α(~c), α(~c)))
and so ∆(α(~c), α(~c)) ∈ truth(A). Similarly, since 2cQ α(~c) ≈ β(~c), then 2cQ τ(∆(α(~c), β(~c)))

and so ∆(α(~c), β(~c)) /∈ truth(A), which shows tp−
M(a/M) 6= tp−

M(b/M). We then obtain that
⊢= Log(QCG), whence Mod∗(⊢) = I∗S∗P∗P∗

U (QCG) = Q.

Finally, this shows that, in the case of an algebraizable weak logic ⊢, the class of reduced
matrices defined by ⊢ coincide with the class of expanded algebras of the equivalent algebraic
semantics.

6 Conclusions and Open Problems

In this article, we introduced weak logics as consequence relations closed under atomic sub-
stitutions and we showed how to adapt the standard notion of algebraizability from Blok and
Pigozzi to this setting. In Section 2 we proved that the equivalent algebraic semantics of a
weak logic is unique and in Section 3 we gave two characterization of the algebraizability of
weak logics, one in terms of its schematic variant and one in terms of its lattices of theories. In
Section 5 we also briefly touched upon the issue of matrix semantics for weak logics.

The results of this article provide us with a useful extension of the framework of abstract
algebraic logic to the setting of logics which do not satisfy the rule of uniform substitution,
but which are nonetheless closed under atomic substitutions. The fact that this is a working
extension was explored and elaborated upon in Section 4, where we applied our setting to
the context of inquisitive and dependence logics. In particular, we showed that the algebraic
semantics for classical inquisitive and dependence logic investigated in [1, 2, 30] is unique in the
strong sense of Proposition 24.

On the other hand, we have seen in Theorem 46 that the intuitionistic versions of inquisitive
and dependence logics are not algebraizable. This fact hints at a first potential generalization
and extension of our current work. In fact, even if they are not algebraizable, intuitionistic
inquisitive and dependence logic have a workable algebraic semantics [27, 30]. This calls for
possible generalization of our framework to account for other classes of weak logics, e.g. pseudo-
algebraizable logics. As a matter of fact, it seems that the whole spectrum of refinements of
a logic within abstract algebraic logic should have counterparts in the domain of weak logics.
In particular, one should consider the case of weak logics whose algebraic semantics consists
of expanded algebras whose core is first-order definable, but not definable by a finite set of
polynomials Σ, as it seems to be the case of InqI [30].

Secondly, one possible object of further research would be to lift the restriction to finitary
systems that we considered in this article. On the one hand, as we already remarked, it seems
straightforward to extend the present setting to that of weak logics which are truly infinitary.
To this end, it might suffice to consider generalized quasi-varieties in place of regular ones. On
the other hand, it might be more complex to allow for classes of expanded algebras whose core
is defined by a infinite set of polynomials Σ.

A further direction for future research is that of expanding the theory of algebraizable weak
logics, in particular by providing a suitable version of the bridge theorems which are usually
studied in abstract algebraic logic. For example, can we prove for our setting a version of
Czelakowski’s result relating logics which satisfy the deduction detachment theorem to quasi-
varieties satisfying the relative congruence extension property? In a similar spirit, we can
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ask whether it is possible to improve Theorem 34 and obtain a version of Blok and Pigozzi’s
isomorphism theorem for suitable core filters and core congruences.

Also, we have remarked in the proof of the non-algebraizability of InqI⊗ the connection
between polynomials defining the core of an algebra and the fixed points of the corresponding
logic. This connection seems fruitful and should be pushed further. For example, can we classify
all logics with a given schematic fragments in terms of a corresponding fixed-point formula?

Finally, we believe it is important to the test the applicability of the framework of weak logics
by finding other examples of algebraizable (and not algebraizable) weak logics. Can we show
that epistemic logics, such as PAL, or provability logics, such as Buss’ logic, are algebraizable?
We leave these and further problems to future research.
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