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Abstract: Interleukin 17 (IL-17) is an effector cytokine that plays a key role in the pathogenesis
of both psoriasis and metabolic-associated fatty liver disease (MAFLD), a condition that is more
prevalent and severe in patients with psoriasis. In liver inflammation, IL-17 is mainly produced by
CD4+ T (TH17) and CD8+ T cells (Tc17), although numerous other cells (macrophages, natural killer
cells, neutrophils and Tγδ cells) also contribute to the production of IL-17. In hepatocytes, IL-17
mediates systemic inflammation and the recruitment of inflammatory cells to the liver, and it is also
implicated in the development of fibrosis and insulin resistance. IL-17 levels have been correlated with
progression from MAFLD to steatohepatitis, cirrhosis, and even hepatocellular carcinoma. Clinical
trials have shown that inhibiting IL-17A in patients with psoriasis could potentially contribute to the
improvement of metabolic and liver parameters. A better understanding of the key factors involved
in the pathogenesis of these chronic inflammatory processes could potentially lead to more efficient
treatment for both psoriasis and MAFLD, and help to develop holistic strategies to improve the
management of these patients.

Keywords: psoriasis; metabolic-associated fatty liver disease; MAFLD; IL-17; IL-17A

1. Introduction

Psoriasis is one of the most common chronic inflammatory diseases in Western coun-
tries, with a prevalence rate ranging from 0.51–11.43% in the adult population worldwide,
and 2.69% in Spain [1–3]. Psoriasis is frequently associated with other inflammatory diseases,
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such as psoriatic arthritis, obesity, metabolic syndrome (MetS), cardiovascular comorbidities,
neurological disorders and inflammatory bowel disease, among other conditions [2–4].

Although the precise pathogenic biological mechanisms underlying the association
between psoriasis and these other inflammatory conditions are not fully understood, it has
been postulated that common inflammatory pathways, cellular mediators, genetic suscepti-
bility and certain risk factors could be involved in the development and establishment of
coexisting inflammatory diseases [2]. Metabolic-associated fatty liver disease (MAFLD),
formerly referred to as non-alcoholic fatty liver disease (NAFLD), affects up to 25% of the
world population [2] and is commonly linked with psoriasis. MAFLD is the most common
cause of liver disease [5] and the second leading cause of liver transplantation in the United
States [6]. In Spain, estimates suggest that up to 25.8% of the general population may have
MAFLD. The incidence of this disease continues to rise, following the growing prevalence
of obesity and diabetes, which could eventually lead to a major public health crisis if these
trends continue in the future [7,8]. Despite this global concern, there are currently no
pharmacological treatments for MAFLD.

MAFLD is characterized by fat deposition in more than 5% of the hepatocytes, evi-
denced by imaging scans or histological assessment, in the absence of secondary causes of
steatosis, such as significant alcohol consumption, steatogenic drugs or hereditary disor-
ders [9]. In most cases, MAFLD is associated with metabolic risk factors, such as diabetes,
obesity and dyslipidemia, all of which metabolically stress the liver, leading to insulin
resistance and inflammation. Hepatic steatosis is a quite stable stage of liver disease
characterized by the accumulation of intracellular fat in hepatocytes. The sources of this
accumulated fat include dietary fat, liver production, and release from insulin-resistant
adipose tissue. However, in a significant percentage of cases, MAFLD can evolve into
non-alcoholic steatohepatitis (NASH). Several studies have situated the prevalence of
NASH among MAFLD patients at 29.9%, with an increasing tendency in recent years, up
until a prevalence of 59.1% [10]. The progression from MAFLD to NASH occurs when fat
infiltration causes cell damage, inflammatory changes and, sometimes, fibrosis (a healing
process that occurs when collagen fibers replace dead cells). These fibrotic changes lead to
different degrees of liver fibrosis. The parenchyma structure is then progressively substi-
tuted by fibrous septa and regenerative nodules. If fibrosis persists unopposed, the damage
to the parenchymal structure causes a progressive loss of liver function and ultimately
leads to cirrhosis. Patients with advanced liver disease have a high risk of developing
hepatocellular carcinoma (HCC) and liver failure, which may require liver transplantation,
which remains the leading causes of death in this population [8,11–14]. Estimates suggest
that 10–15% of patients with MAFLD have liver fibrosis. Furthermore, HCC affects approx-
imately 14% of patients with MAFLD and liver fibrosis [15]. However, one of the most
significant disadvantages related to MAFLD is that, once it is established, it contributes to
insulin resistance and cardio-metabolic risk factors, especially in non-obese, non-diabetic
individuals [16].

The prevalence of MAFLD in patients with psoriasis has been reported to be double
the rate observed in the general population, and its prevalence could reach as high as 65%
among this patient population [17,18]. In fact, MAFLD has been shown to occur 1.5 to
3 times more frequently in patients with psoriasis than in the general population [19–21].
Moreover, patients with psoriasis tend to have more severe liver disease, which is directly
correlated with the severity of psoriasis [22]. A recent Spanish study showed that 42.3%
of the psoriatic patients presented MAFLD, and that patients with MAFLD had a higher
absolute psoriasis area severity index (PASI), body surface area (BSA) and physician’s
global assessment (PGA) than those with psoriasis alone [20]. Another recent study in
Spain found that 52.1% of psoriatic patients had concomitant MAFLD, and 14% of these
patients had a high risk of developing liver fibrosis [21]. Patients with psoriasis have a
higher risk of death due to liver failure, which correlates with psoriasis severity [23]. This
high mortality risk is generally associated with these patients’ high prevalence of MAFLD.
In this setting, the use of systemic hepatotoxic treatments, such as methotrexate (MTX), can
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contribute to the development of liver fibrosis [23]. A study conducted in Spain in patients
(n = 497) treated with MTX found that 64.1% had hepatic steatosis. Moreover, based on
the NAFLD fibrosis score and the Fibrosis-4 Index for Liver Fibrosis score, 37.2%, and
26.2%, respectively, were considered to have an intermediate-to-high risk of developing
liver fibrosis, which was also associated with a longer duration of treatment [24].

MAFLD is frequently considered to be the hepatic manifestation of MetS, although it
can also precede MetS, type 2 diabetes mellitus (DM2) and arterial hypertension [25,26].
Additionally, it is known that, after the age of 40 years, patients with psoriasis have a
higher prevalence of MetS and an increased risk for each of its components compared to
controls [27]. Chronic inflammation and insulin resistance appear to be the main pathogenic
links between psoriasis and MAFLD [18]. Many studies have evaluated the role of inter-
leukin 17 (IL-17) as a key mediator in the pathogenesis of these and other inflammatory
conditions [28,29].

In this context, the present study aimed to review the literature on the role of IL-17 in
systemic inflammation in MAFLD and psoriasis to elucidate the pathogenic link between
these two diseases.

2. Materials and Methods

This review was performed by a 12-member multidisciplinary work group comprising
dermatologists, gastroenterologists, internists and hepatologists, specialized in psoriasis
and MAFLD. This expert group drew up a list of points to be reviewed and updated
to summarize recent and relevant findings. For this, the work group conducted several
literature searches using the PubMed database in 2020. The following Mesh terms were
searched: “psoriasis” AND “NAFLD”, “psoriasis” AND “NASH”, “IL-17” AND “NAFLD”,
“IL-17” AND “NASH”, “IL-17” AND “liver inflammation”, «IL-17» AND «liver fibrosis»,
«TH17» AND «NAFLD», and «TH17» AND «NASH». Subsequently, the expert group
discussed and summarized the key points resulting from this literature review based on
the findings of these searches.

3. Results
3.1. Role of IL-17 in Systemic Inflammation

IL-17 is a central player in the physiological immune response against extracellular
bacteria and fungi [29]. However, it also contributes to the pathogenesis of various inflam-
matory pathologies [28–30]. It is synthesized mainly by T helper 17 (TH17) lymphocytes
and by other cell types, such as CD8 lymphocytes and other cells of innate immunity,
such as natural killer (NK), natural killer T (NKT), Tγδ and ILC3 lymphocytes [29]. The
presence of IL-17 is especially important in epithelial cells that are in contact with the
outer environment, such as the skin, respiratory tract, oral cavity, gastrointestinal tract and
the vagina [30].

The liver is also one of the main producers of IL-17, and the IL-17 receptor is widely
expressed in liver cells, such as hepatocytes, sinusoidal cells, biliary cells and stellate
cells [31,32]. The activation of the IL-17 pathway has been shown to be a key mediator in
the hepatic inflammatory response [33]. During this response, NK, NKT and TH17 cells
increase their production of IL-17. Furthermore, these cells are involved in fatty liver injury
progression. Similarly, obesity may also contribute to the pathogenesis of fatty liver disease,
by increasing the levels of TH17 cells and IL-17 production, which are increased in fatty
liver disease [34]. In turn, these high levels of IL-17 induced by NK, NKT and TH17 cells
activate the IL-17 receptor in a subset of liver cells, mainly hepatocytes, Kuppfer cells and
hepatic stellate cells. By doing so, the IL-17-mediated activation of these cells leads to
further pro-inflammatory cytokine and chemokine production, neutrophil recruitment,
reactive oxygen species production and increased collagen deposition, which are processes
known to mediate MAFLD progression [33].

Notably, overexpression of the IL-17 axis has been associated with a variety of diseases
affecting the liver, such as hepatitis B and C, alcohol, primary biliary cholangitis, acute
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rejection in liver transplant, hepatocellular carcinoma, autoimmune hepatitis and primary
sclerosing cholangitis [29]. Furthermore, mouse models have shown that the blockade of
IL-17 protects the liver from injury, while its administration increases liver damage [35,36].
For these reasons, the blockade of the IL-17 axis has been proposed as a future therapeutic
target that could prove beneficial, although its potential effectiveness requires further
investigation [29].

IL-17 stimulates the production of numerous chemokines, such as IL-8, chemokine
(C-X-C motif) ligand (CXCL) 1, CXCL2, CXCL5, chemokine (C-C motif) ligand (CCL) 2,
CCL7, CCL20; cytokines, such as TNF, IL-6, IL-1β, granulocyte colony-stimulating factor
(G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF); and other proteins
involved in the inflammatory response [28,29]. By itself, IL-17 is not a potent inducer of
inflammation. Instead, IL-17’s effects are due to its ability to trigger the recruitment of
immune cells by inducing expression of these chemokines and receptors, as well as from
synergistic action with other cytokines, such as TNF, IL-1β, IFNγ, GM-CSF and IL-22,
thus activating a pro-inflammatory cascade [29]. Although IL-17 is an essential protective
cytokine against certain pathogens, excessive activation of this pathway can contribute to a
chronic inflammatory state [37], thereby playing a fundamental role in the pathogenesis of
many of inflammatory conditions [29].

The IL-23/TH17 axis plays a crucial role in the pathogenesis of psoriasis (Figure 1) [29,38].
Dendritic cells produce high levels of IL-23, which stimulate the differentiation and acti-
vation of TH17 lymphocytes. Consequently, TH17 cells produce large quantities of IL-17
and other cytokines that directly affect epidermal keratinocytes and other skin cells. These
cytokines and TNF act as transcriptional activators of specific genes in keratinocytes. These
effects, along with the autoantigenic stimulation response of T lymphocytes, create in-
flammatory loops that perpetuate lymphocyte activation and the psoriasis phenotype [38].
Additionally, the IL-23-independent IL-17 production by innate immune system cells has
also been described in patients with psoriasis who present with plaques refractory to the
IL-12/23 inhibitor ustekinumab [39].
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3.2. IL-17 as the Key Effector Cytokine Link between Psoriasis and MAFLD

Low-grade chronic systemic inflammation appears to be the main link between psoria-
sis and MAFLD [40,41]. Psoriasis-associated systemic inflammation has also been shown
to promote inflammation in adipose tissue [41]. Obesity and increased fatty body tissue
contribute to this inflammatory process, in which the production and release of adipokines
involved in energy balance (resistin, leptin, visfatin), non-esterified fatty acids and pro-
inflammatory cytokines, such as IL-6 and tumor necrosis factor-alpha (TNF-α), are directly
related to the development of insulin resistance and MAFLD [20,42]. Simultaneously, there
is also a decrease in the concentration of anti-inflammatory adipokines, such as adiponectin,
which increase insulin sensitivity in the skin [43]. Ultimately, this disequilibrium leads
to liver disease. In turn, the presence of liver disease is believed to increase the severity
of psoriasis through a common cascade of cytokines, adipokines and other inflammatory
mediators [17], causing a pro-inflammatory feedback loop between the skin, liver and
adipose tissue, thus maintaining a perpetual state of systemic inflammation [22].

In this setting, IL-17 acts on different cell types in the skin (dendritic cells, keratinocytes,
endothelial cells and fibroblasts) and the liver (stellate cells, hepatocytes, biliary epithelial
cells and Kupffer cells). These cells will, in turn, secrete more pro-inflammatory cytokines,
such as IL-6, chemokines (IL-8, CCL-20) and other proteins (matrix metalloproteinases;
MMP) involved in the recruitment of more inflammatory cells, hence, further perpetuating
inflammation (Figure 2) [32,44].
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It has also recently been suggested that bacterial translocation from the gut and skin
of patients with psoriasis is associated with MAFLD and a higher estimated inflammatory
response, as bacterial translocation is more frequent in patients with, versus without,
MAFLD [45]. Bacterial translocation may be of interest, since one of the factors in the
development and progression of MAFLD is gut permeability, which may be mediated
by the microbiome [20]. Moreover, in vitro experiments involving naïve CD4 T cells
from healthy and MAFLD subjects showed that endotoxins do not directly act on naïve
CD4 T cells, but instead require the presence of antigen-presenting cells to upregulate
IL-17. The toll-like receptor 4 (TLR4) is the receptor for endotoxin. Inhibition of TLR4
in macrophages, but not in naïve CD4 T cells, could impair endotoxin-mediated IL-17
upregulation. However, in samples from patients with NASH, endotoxin at high levels
increased directly, but minimally, IL-17 production. These data demonstrate that endotoxin
promotes TH17 bias in NASH patients [46].
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Although the directionality of the association between MAFLD and psoriasis has not
been clearly determined, the excess production of pro-inflammatory cytokines produced
by lymphocytes and keratinocytes present in psoriatic skin (e.g., IL-6, TNF-α, IL-17) are
believed to mediate insulin resistance [42]. The development of insulin resistance is believed
to be the first step towards the accumulation of lipids in the liver, with the subsequent
activation of downstream cascades leading to lipotoxicity, oxidative damage and apoptosis,
finally leading to steatohepatitis and fibrosis [47].

However, several facts suggest a possible bi-directional relationship between psoriasis
and MAFLD through the activation of pro-inflammatory pathways linking expanded
visceral adipose tissue, steatotic liver and psoriatic skin. These signals pass between these
three organs, configuring an hepato-dermal axis [42]. Moreover, these processes, that
involve chronic mild systemic inflammation and insulin resistance, are also thought to
mediate the association between the severity of psoriasis and MAFLD [48].

In these relationships that configure the hepato-dermal axis, one direction is repre-
sented by circulating pro-inflammatory cytokines derived from psoriatic skin, such as
TNF-α and IL-17, which produce systemic effects and, upon reaching the liver, could im-
pact liver inflammation by inducing insulin resistance and subsequent metabolic changes,
which lead to the development of fatty liver disease. Furthermore, several cytokines,
including TNF-α, IL-1, IL-2, IL-6 and IL-17, are known to influence glucose metabolism
and insulin sensitivity in hepatocytes and adipocytes, leading to uncontrolled lipolysis
and increased hepatic free fatty acid deposition [49]. Conversely, the second direction
of the hepato-dermal axis is represented by pro-inflammatory mediators stemming from
hepatic inflammation, which could contribute to the onset or exacerbation of cutaneous
inflammation in psoriasis. Pro-inflammatory immune modulators released by adipose
tissue and the liver are involved in promoting hepatic fibrogenesis in MAFLD, as well as
psoriasis pathogenesis [50]. For example, TNF-α is involved in psoriasis inflammation
and has been shown to be an independent predictor of hepatic fibrogenesis and disease
progression [51]. IL-17, which plays a central role in psoriasis pathogenesis, can induce the
activation of hepatic stellate cells and subsequent collagen production. This cell activation
is mediated by IL-17, which then facilitates the progression from simple liver steatosis to
steatohepatitis [29,43]. Lastly, MAFLD could affect psoriasis severity through the release of
inflammatory mediators from the hepatocyte, namely, reactive oxygen species, C-reactive
protein and IL-6 [49].

3.3. Role of IL-17 in MAFLD

In the development and maintenance of MAFLD, multiple stimuli occurring in the
intestine and adipose tissue promote the development of liver inflammation [52]. The
low-grade chronic inflammation that is characteristic of steatosis plays a central role in the
development of NASH and its progression to fibrosis [12,52].

The increased production of IL-17, whenever there is liver inflammation, is mainly
due to CD4+ T (TH17) and CD8+ T cells (Tc17), although other innate immune cells, such
as macrophages, NK cells, neutrophils and Tγδ cells are also capable of producing this
cytokine [32,53,54]. The involvement of TH17 lymphocytes, macrophages and neutrophils
has been described in the inflammatory process of MAFLD, which is generally accompanied
by perivenular and periportal infiltration of these cells [53] (Figure 3). Various preclinical
and clinical studies have shown that IL-17 produced by TH17 cells is implicated in multiple
inflammatory processes in the liver [53].

IL-17 affects liver-resident cells in diverse ways. In hepatocytes, IL-17 mediates
systemic inflammation and recruitment of inflammatory cells to the liver, and is also
involved in fibrosis and insulin resistance [32,55,56]. In cholangiocytes, IL-17 promotes
the uptake and differentiation of TH17 cells in the bile ducts, contributing to fibrosis and
damage to the ducts [57]. Hepatic sinusoidal endothelial cells (HESC) participate in the
exchange of mediators between the hepatic sinusoid and hepatocytes (space of Disse).
Depending on the stimulation received, HESCs can inhibit cytokine secretion by TH17 and
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Th1 cells, or they can contribute to recruitment and migration, increasing adhesion of TH17
and Tc17 cells [58,59]. Hepatic stellate cells (HSC) and hepatic macrophages (or Kupffer
cells; KC) are in the space of Disse, which is in contact with the hepatocytes and adjacent to
the HESCs. IL-17 stimulates and is involved in the activation of HSCs, which respond by
increasing expression of IL-17, pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and
profibrogenic (TGF-β and alpha-smooth muscle actin protein [α-SMA]) receptors. HSC
activation is amplified by the cooperation between IL-17 and TGF-β cytokines, leading to
increased collagen production and the development of fibrosis [60–62]. Kupffer cells are
activated by IL-17, due to surface expression of IL-17 receptor A and IL-17 receptor C and,
similar to HSCs, they secrete pro-inflammatory mediators and the profibrogenic cytokine
TGF-β, which increases activation of HSCs, further contributing to the progression of liver
inflammation and fibrosis [54,61].
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For better understanding of the effects of IL-17 in MAFLD, animal models of liver
disease have been used to emulate the cascade of events that occur in the progression
of MAFLD. Numerous studies have used a high-fat diet (HFD) to induce MAFLD and
NASH (without progression to fibrosis) in mice, in order to identify the axis between
TH17/regulatory T cells (Treg) and IL-17, considered to be an important part of the in-
flammatory factors underlying the transition from hepatic steatosis to NASH [34,63–66].
Administration of anti-IL-17 antibodies has been shown to improve liver function tests,
inhibit KC activation and decrease levels of pro-inflammatory cytokines associated with
inhibition of the NF-κβ pathway [67].

Several studies have used a choline-deficient diet in mice to induce NASH and fibrosis,
demonstrating that infiltration of TH17 cells in the liver is a critical step in the initiation
of NASH and in the development of fibrosis [68–70]. Carbon tetrachloride has been used
to induce liver damage leading to liver fibrosis. In this stage of the disease, there is an
imbalance between Treg and TH17 cells, which increases the number of TH17 cells, thereby
stimulating the production of IL-17. In this model of liver injury, IL-17 orchestrates multiple
mechanisms of profibrogenic action, facilitating the activation of HSCs and increasing
production of IL-6, IL-1β, TNF-α, α-SMA and TGF-β [60,61].

Orthotopic tumor models in animals, and studies combining genotoxic agents with
high-fat or choline-deficient diets, have demonstrated the key role of immune cells in
progression from advanced stages of MAFLD (NASH and fibrosis) to HCC [66,71]. IL-17 is
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implicated in the progression of tumor cells in HCC through activation of the AKT signaling
pathway [72]. Combination therapy with an anti-IL-17 monoclonal antibody (secukinumab),
plus sorafenib, has been shown to better inhibit tumor growth and metastasis than sorafenib
monotherapy [71]. Table 1 summarizes the results of various studies that have investigated
the effects of anti-IL-17 antibodies in animal models.

Table 1. Impact of IL-17 inhibition in animal models. HFD: high-fat diet; MAFLD, metabolic-
associated fatty liver disease; HCC: hepatocellular carcinoma; IL: interleukin; NASH: non-alcoholic
steatohepatitis; LPS: lipopolysaccharide.

Model Phase MAFLD Intervention Findings Reference

Murine HFD + LPS NASH Anti-IL-17
• decreased inflammatory cell infiltrates
• reduction of transaminase levels
• improved liver function

[34]

Murine HFD NASH Anti-IL-17
• improved liver function
• inhibition of Kupffer cell activation
• reduction of pro-inflammatory cytokines

[67]

Murine Fibrosis Anti-IL-17 • reduced liver damage [65]

Murine NASH
HCC Anti-IL-17 • inhibition of disease development [66]

Murine HCC Anti-IL-17 + sorafenib • inhibition of tumor growth and metastasis [71]

Studies conducted in humans with chronic liver diseases have shown an increased
intrahepatic infiltration of IL-17-secreting cells. A prospective study of 112 patients with
MAFLD found that progression to NASH was correlated with the intrahepatic increase
in TH17 lymphocytes, and a significant increase in the TH17/Treg ratio in peripheral
blood [73]. Studies in patients with cirrhosis have found a significant increase in the
percentage of TH17 cells present in peripheral blood mononuclear cells, and higher serum
IL-17 levels, compared to healthy controls. IL-17 has also been shown to play an active
role in the progression to HCC [66,74–76]. Liver inflammation is a critical component of
tumor progression and IL-17 mediates neutrophil recruitment in the peritumoral stroma of
HCC tissue [74].

In this clinical setting, several clinical trials have shown that the biologic agent
secukinumab—an IL-17A inhibitor—can stabilize, or even achieve, a sustained improve-
ment in metabolic and liver parameters. In those trials, aspartate aminotransferase (AST)
and alanine transaminase (ALT) levels remained stable over the 52-week treatment period
with secukinumab. By contrast, treatment with etanercept increased liver transaminase
levels, a finding that is consistent with previous studies of anti-TNFα agents [77]. A re-
cently published open-label, controlled clinical trial involving 130 patients with psoriasis
and MetS, who were considered candidates for MTX or secukinumab, demonstrated that
treatment with MTX increased liver enzymes while secukinumab had a neutral effect [78].

Other studies have found that significant increases in the number of TH17 cells in
patients with HCC is correlated with tumor size, leading some authors to suggest that the
percentage of TH17 cells and/or the TH17/Treg ratio could be useful prognostic markers
in HCC [75,76].

4. Discussion

Given the close association between psoriasis and MAFLD, and the inflammatory
factors common to both conditions, the need for close collaboration (both clinical and
research) between dermatologists and hepatologists has become increasingly clear in recent
years for best management of moderate-to-severe psoriasis and its comorbidities.
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IL-17 is a pro-inflammatory molecule that enhances and perpetuates multiple inflam-
matory circuits relevant to both innate and adaptive immunity. As a result, this cytokine
plays an important role in maintaining low-grade inflammation in several different or-
gans and systems. Given that IL-17 plays a key role in both psoriasis and liver disease,
it is important to determine how persistent inflammation in both organs (liver and skin)
can promote, in psoriatic patients, a more rapid progression to steatohepatitis or cirrho-
sis, or even to hepatocellular carcinoma. Similarly, it would be of value to confirm how
systemic inhibition of these inflammatory processes might affect not only the psoriasis
manifestations, but also the evolution of MAFLD.

Currently, there are no approved pharmacotherapies for MAFLD. It has been suggested
that inhibiting IL-17 might be a useful strategy for the management of the inflammation
associated with both psoriasis and MAFLD conditions [22,65,77,78]. In this sense, there is
strong evidence arising from recent animal studies, which suggests that IL-17 is involved in
the progression of hepatic steatosis to MAFLD. Based on these findings, there is optimism
in that the use of anti-IL-17 monoclonal antibodies, such as secukinumab, could prove
beneficial for treating patients with psoriasis and MAFLD [79,80].

There is nevertheless a clear need for diagnosis protocols, and treatment/diagnostic
algorithms that allow for early and global management of these patients. In addition, it
would be desirable to create mechanisms to promote the exchange of information and
facilitate the flow of patients between dermatology and hepatology specialties [22]. Conse-
quently, a multidisciplinary approach to these conditions and related comorbidities (e.g.,
obesity and cardiovascular disease) is essential. In this line, experts from the European
and American academies of dermatology, cognizant of the impact of MAFLD on patients
with psoriasis, have formulated recommendations for the screening and management of
relevant psoriasis comorbidities, including MetS and MAFLD [81,82]. Considering the
most recent evidence to date, these professional academies consider that MAFLD should
be screened for in patients with suggestive risk phenotypes, such as moderate-to-severe
psoriasis and metabolic risk factors. These guidelines suggest that transaminase levels and
an ultrasound should be included as part of an initial workup in this patient group. In
addition, they propose an algorithm to monitor and follow up on these patients, which
includes referring patients to a hepatologist if there are reasons to suspect that a patient may
have liver involvement or disease. Moreover, they recommend that physicians consider
the presence or absence of MAFLD when selecting psoriasis treatment. However, these
recommendations do not seem to be universally implemented in most dermatologists’
clinical practices, nor has a specific guidance, protocol or circuit been established in most
hospitals that facilitate referral of patients with concomitant psoriasis and MAFLD to the
hepatology clinic for an appropriate evaluation.

In short, psoriasis and MAFLD seem to share a common pathogenetic mechanism in
which IL-17 may play an essential role. Furthermore, psoriasis and MAFLD share the same
molecular and immunological mechanisms as patients with MetS. A better understanding
of the main factors and mechanisms involved in the pathogenesis of overlapping chronic
inflammatory processes, such as psoriasis and MAFLD, could facilitate the development of
more efficient therapeutic approaches for each of these conditions and potential treatment
strategies with a shared benefit. Further consideration of anti-IL-17 antibodies through
clinical trials is warranted to assess if this treatment strategy can benefit patients with
concomitant MAFLD and psoriasis.
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