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A B S T R A C T

Preventing the spread of infectious diseases is one of the greatest challenges
of humanity’s past, present, and foreseeable future. Many infectious diseases
are transmitted upon contact, and hence the complex web of human inter-
actions acts as a substrate for their propagation. For this reason, epidemic
models always comprise, either explicitly or implicitly, a description of how
humans interact. Research in mathematical epidemiology has opened many
pathways to include some of the diverse aspects of human behaviour into
epidemic models. However, the quest for a general theory of the interplay
between human behaviour and the spread of pathogens is far from complete.
Moreover, in this quest, a pronounced gap exists between quantitative models
and more qualitative approaches that focus on the phenomenology.

The aim of this thesis is to contribute to the mathematical description of
human behaviour in the context of infectious diseases, working with both
quantitative and qualitative models. The first chapter develops two qualitat-
ive toy models to outline how dynamical risk-based prophylaxis can sustain
epidemic cycles. In the second chapter, we consider specific static aspects of
human behaviour – homophily and heterogeneous contact patterns – and
analyse their implications on epidemic control. In contrast to previous belief,
we show that homophily in the adoption of many prophylactic tools can be
either beneficial, detrimental or non trivially affect their efficacy. Furthermore,
we question the current paradigm of risk-based immunisation strategies and
show that targeting hubs is only optimal for protection with high efficacy.
The last chapter of this thesis focuses on quantitative approaches to model
the spread of SARS-CoV-2, in particular, the first wave and the spread of the
Delta variant. Besides the methodological advances, the results add evidence
of how voluntary behavioural adaption shaped the course of the epidemic
beyond the introduction of non-pharmaceutical interventions.

Overall, this thesis unveils new phenomenology, adds additional empir-
ical evidence, and provides new tools to analyse how human behaviour
and epidemics coevolve. The flexible blend of quantitative and qualitative
approaches may also provide a pathway to analyse and interpret the vast
amount of data currently collected during the SARS-CoV-2 pandemic.
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1
I N T R O D U C T I O N

“A new pandemic is one of the biggest threats for today’s interconnected,
globalised human society” was a sentence with which the author of this thesis
started an unsuccessful grant proposal in late 2019. Probably any researcher
working in the modelling of infectious diseases wrote similar sentences in
their grant proposals or the introduction of their articles. While many prob-
ably truly believed this statement, it was also, to some extent, a platitude
that was used, at least partially, to motivate the research in epidemic model-
ling. Unfortunately, shortly after, in early 2020, the platitude became a reality,
and we saw SARS-CoV-2 spread around the globe. Entire countries were shut
down, and in particular western society came to a halt. SARS-CoV-2 seems
like a singular event to many of us, and it may be unique with respect to
the velocity the virus has spread to almost every part of the world. However,
human history is intrinsically linked with the spread of infectious diseases.
Smallpox ravaged human society for thousands of years before being eradic-
ated by vaccine mandates in the 20th century. The bubonic plague, also called
the Black Death, killed over 20 million people in the middle age. Also, today,
HIV and Tuberculosis are responsible for around a million deaths every year
[1], causing indescribable destruction in mainly African countries.

Considering the immense suffering infectious diseases have caused histor-
ically, it seems only natural that humanity invested considerable efforts to
develop the necessary knowledge and tools to prevent them from spreading.
More generally, one can understand large parts of the technological advances
as a quest of humanity to become independent from the whims of nature.
No painting better illustrates how death was omnipresent in people’s lives in
the past than the Triumph of Death by Bruegel, which is shown in Fig. 1.1.
The associated despair led people to find ways to prevent famines, floods,
or earthquakes from causing total destruction. In many cases, science was
at the core of these technological advances, but some were more immediate

3
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4 introduction

Figure 1.1: The Triumph of Death by Pieter Bruegel, the Elder painted in the 16th-
century [2]. The original painting is in the Museo del Prado in Madrid,
Spain.

than others. Human creativity can move mountains, given that the obstacle
is clear and visible. However, visibility was precisely the problem for infec-
tious diseases since bacteria and viruses are not tangible. More specifically,
it took until the late 19th century, and a fierce Franco-German rivalry fueled
by the war of 1870, for Louis Pasteur and Robert Koch to identify that the
transmission of bacteria caused anthrax and tuberculosis disease, respectively
[3]. Shortly after, in 1892, Dmitri Iossifowitsch Iwanowski identified that the
pathogen for tobacco disease was a virus [4]. These breakthroughs sparked
the rapid development of different vaccines, which allowed the containment
of many infectious diseases during the 20th-century [5].

The understanding that human contact is at the origin of the spread of
many pathogens paved the way to develop mathematical models which de-
scribe the mechanics of human-to-human transmission behind the propaga-
tion of infectious diseases. Already one of the first mathematical models,
developed in the 1920s by William Ogilvy Kermack and Anderson Gray
McKendrick, allowed for an accurate description of an actual plague outbreak.
In analogy to meteorology, the availability of a mathematical description fed
the hopes to not only be able to reproduce but also to predict the evolution
of epidemics. However, contrary to weather forecasts, not the chaotic nature
of the underlying equations made the prediction difficult, but instead the
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Figure 1.2: Schematic human-to-human disease transmission compared to a meteoro-
logical phenomenon for which no human-made obstacles exist.

fact that many diseases are transmitted through human contact. Topologic-
ally speaking, the disease propagates on top of a physical contact network.
Accordingly, if humans adapt their behaviour, for example, they reduce their
social contacts facing the danger of an expanding epidemic, the evolution of
the epidemic will be fundamentally different. In contrast, for meteorological
phenomena such as a Tornado, nothing humanly possible can be done to al-
ter its course since it freely moves through physical space instead on top of a
human-made topology.

The behavioural impact on the epidemic evolution leads to the possibility
of disease forecasting becoming a self-defeating prophecy. If models suggest
a devastating impact of an epidemic in the near future, individuals may act
more cautiously, or authorities may implement measures to limit the epi-
demic’s impact. In both cases, the prediction is self-defeating because human
behaviour is intrinsically linked to the epidemic. This intrinsic link is ap-
parent when one considers the reproduction number R, i.e. the number of
infections made on average by an infected individual. The disease can spread
for R > 1, while for R < 1, the disease slowly dies out. Given a contact rate
k, an infectious period τI , a transmission probability per contact λ, and the
fraction of susceptible individuals in the population S, R reads

R = kτIλS . (1.1)

In the above expression, none of the quantities is merely biological. Human
behaviour can contribute to the reduction of any of them in order to contain
the disease. To name an example for each quantity, individuals can practise
social distancing to decrease k, quickly self-isolate after the presence of symp-
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toms to reduce τI , wear face masks to reduce λ or get vaccinated to decrease
susceptibility, S, to the pathogen in the population. The strong dependence of
R on quantities that are shaped by human behaviour indicates how the latter
can fundamentally alter the evolution of an epidemic.

Beyond the immediate behavioural reaction to a disease, one can also see
the evolution of human society and infectious diseases as one of coevolu-
tion [6]. Disease prophylaxis has been woven into the cultural fabric in many
societies before the discovery of viruses and bacteria. For example, nomad
tribespeople in the region of Manchuria, today in between China, Russia and
Mongolia, incorporated reasonable, sound epidemiological rules into their
religion to prevent bubonic infection from marmots [7]. Suppose a close mar-
mot colony showed signs of sickness; the tribe stroke its tents and moved
away to avoid bad luck. In contrast, as Chinese settlers moved into the territ-
ory in the early 20th century, they discarded the local customs, and a series
of plague outbreaks were recorded. The cultural evolution of the nomad
tribespeople cemented a successful behavioural adaption, which prevented
disease propagation. Similarly, on an even more significant time scale, the
biological evolution of pathogens and the human species are intertwined.
Without viruses and bacteria, there would be no need for the human im-
mune system to exist. Furthermore, viruses and bacteria constantly adapted
themselves to find a loophole in the immune system [8]. The most recent and
prominent example is the Omicron variant of SARS-CoV-2 that evades pre-
existing immunity from previous infection or vaccination through mutation
[9]. However, behavioural adaption may be not only cultural but also partially
biological. For example, different animals, such as bats [10] or mandrills [11],
show social distancing. For these animals, the origin of the prophylactic beha-
viour is unlikely to be cultural and almost surely biological. Eventually, the
interdependence between infectious diseases and humanity results in differ-
ent time scales in their simultaneous evolution.

Apart from the temporal scales, different spatial scales exist along which in-
fectious diseases can spread [12]. Locally, diseases spread through a tight-knit
human contact network. On a larger scale, mobility introduces diseases to dif-
ferent regions, countries or continents. The technological advances of the last
centuries have substantially reduced the time for a pathogen to spread glob-
ally. Previous to the existence of cars, trains and aeroplanes, it took multiple
years for a pathogen to spread across countries, typically along trade routes
[13]. Further, there is not only a dynamic between hosts (human-to-human
transmission) but also within, at an even smaller spatial and temporal scale.
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Figure 1.3: Schematic coevolution of infectious diseases and humanity, inspired by
Ref. [14]. Arrows denote interdependence.

Pathogens replicate inside the host, battling the human immune system [14].
The within-host dynamics is responsible for the existence of an incubation
period and time-dependent infectivity after infection.

The coevolution of pathogens and humanity is one of the most paradig-
matic examples of a complex system due to the different temporal and spa-
tial scales involved. However, it is not evident to give a precise definition of
what a complex system is. It is probably easier to illustrate and define the
term complex systems by its use [15]. In this sense, the term complex sys-
tem is generally used to refer to systems in which many entities interact at a
lower scale, while their interaction leads to an emergent phenomenology at
higher spatiotemporal scales [16]. A typical example is ferromagnetic mater-
ials, where the alignment of the spins of the individual atoms leads to the
emergent property of magnetism below a critical temperature at the macro-
scopic level. Similar emergent systems have been found in economics, soci-
ology and biology [17]. In the context of infectious diseases, individual entit-
ies correspond to the hosts whose interactions enable the pathogen’s spread
and sometimes endemic state. The equivalent to the critical temperature is
the condition R > 1 for the disease to spread.

To describe complex systems, the main challenge, which often constitutes
a walk on a tightrope, is to find a balance between empirical accuracy and
model complexity. For example, to model epidemic spreading, one needs
to decide at which resolution level one wants to describe onward transmis-
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Figure 1.4: Different types of approximations to describe how humans interact.

sion. There are many approaches, from considering interactions taking place
randomly, stratifying the population according to age or geography (meta-
populations), using a real-world contact network, or making "The Sims"-like
agent-based simulations [18]. The specific choice strongly depends on the
model’s purpose. For prediction or quantification, the primary goal is accur-
acy. In contrast, transparency is more critical if the model aims to advance
understanding. Quantitative models, which are usually fitted to, or at least
informed by, empirical data, do not only serve to make predictions. As pre-
viously mentioned, prediction is often very challenging due to the interplay
with human behaviour, which frequently only allows making a scenario ana-
lysis. Accordingly, quantitative approaches are often much more helpful in
inferring characteristics of the pathogen or human behaviour than in making
actual predictions. Qualitative models that aim to advance understanding are
often referred to as toy models and generally have two applications. First, toy
models can consider an empirical finding and analyse its implications for the
dynamics as part of a thought experiment. Second, one can also start with an
empirical finding regarding the dynamics and leverage a toy model to ana-
lyse which ingredients are necessary and thus responsible for the empirically
observed phenomenology. In both cases, transparency is vital to building
causal relations between model ingredients and model outcomes inside the
framework.

This thesis blends qualitative toy models and quantitative approaches to
describe the interplay between the spread of directly transmitted infectious
diseases and human behaviour. Such approaches to incorporate human be-
haviour more explicitly into epidemic models are manifold but also very
scattered. There is no all-encompassing theory [19–22], as for complex sys-
tems in general. This thesis will also not succeed in providing this all-
encompassing theory. However, we present advances on several fronts, hope-
fully contributing to constructing a unified framework in the future. The
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blend of qualitative and quantitative models also aims to bridge the gap
between the toy models primarily used in complex systems and the extensive
parametrisation of more traditional quantitative models in mathematical epi-
demiology. Situating the content of the thesis within Fig. 1.3, we will mainly
focus on the immediate behavioural response of individuals and fixed aspects
of human behaviour which are not related to the presence of a disease. We
will not describe the coevolution of human society and pathogens at the time
scale of cultural or even biological evolution. Instead, regarding the epidemic
dynamics, we will model onward transmission at different resolution levels,
more precisely, all of which are highlighted in Fig. 1.4 except for agent-based
modelling. While the toy models we develop, for which interpretability is
critical, mainly rely on a mean-field description, the quantitative approaches
utilise a data-informed stratification of the population.

The quantitative approaches presented in this thesis all focus on model-
ling the spread of SARS-CoV-2. Additionally, some of the more theoretic-
ally centred contributions were motivated by questions that arose during the
SARS-CoV-2 pandemic. For this reason, SARS-CoV-2 appears in all chapters
of the thesis. Nevertheless, the thesis should not be seen as one about SARS-
CoV-2 since different projects had already been started before the pandemic
outbreak. Furthermore, while the pandemic served as an excellent study case
and raised many questions, the answers to these questions, particularly the
more theoretical ones, often have a much broader scope than SARS-CoV-2.

The thesis is organised into six separate chapters. After this introduction,
Chapter 2 provides the necessary theoretical background to follow this thesis.
In addition to a short historical overview, the chapter also contextualises
the contributions made by different fields to model epidemics. Subsequently,
Chapters 3-5 will outline the contributions of this thesis in three thematic
blocks.

The first part, Chapter 3, introduces a toy model in which risk-based in-
dividual prophylaxis leads to recurrent epidemic waves. It focuses on the
dynamic interplay between human behaviour and the spread of infectious
diseases. From a methodological point of view, we show that incorporating a
behavioural dimension allows for the emergence of epidemic waves without
needing memory in the dynamics. Initially, the purpose of the model was to
explain trends in sexually transmitted infections. However, it turned out that
the model may also provide a mechanistic explanation for reoccurring surges
in SARS-CoV-2 infections, which are driven by a relaxation in social distan-
cing and prophylactic practice in general. Subsequently, we extend the model
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to incorporate the possibility of heterogeneity in the risk of a severe course of
infection. This extension of the model shows how the age-dependent risk of
severe illness after a SARS-CoV-2 infection can explain the temporal variation
of the case distribution across time, observed in many countries.

After focusing on the behavioural adaption in the presence of infectious
diseases, the second part of the thesis, Chapter 4, focuses on two static fea-
tures of human behaviour – homophily and heterogeneous contact rates –
and their effects on epidemic control. In contrast to the first part, the spe-
cific aspects of human behaviour under consideration are not a reaction to
the presence of an infectious disease but also exist in its absence. The first
feature we consider, homophily, refers to the tendency of humans to interact
with others with similar characteristics. Contrary to previous belief, we show
that homophily in adopting prophylactic tools (vaccines, contact tracing apps,
face masks, etc.) is not always detrimental to epidemic control. More precisely,
we identify three dynamical regimes where the population-level efficacy of
the prophylactic tool can either decrease, increase, or vary non-monotonously
with respect to the level of homophily. Afterwards, we revisit a paradigm in
the distribution of prophylactic tools in a population with heterogeneous con-
tact rates. Standard theory tells us that individuals with the highest contact
rates should be given prophylactic tools to maximise their impact on pre-
valence. However, we show that, due to the increased risk of breakthrough
infections, this result only holds if the efficacy of the prophylactic tool is suffi-
ciently high with respect to the prevalence of the pathogen in the population.
Otherwise, there is a specific contact rate that maximises the impact of the
prophylactic tool, and even random distribution can outperform risk-based
distribution in some cases.

Finally, the third part, Chapter 5, focuses on the quantitative approaches
we have developed to model the spread of SARS-CoV-2 in Spain. Firstly, we
outline a model that we used to describe the spatiotemporal spread of SARS-
CoV-2 in Spain during the early phase of the virus in 2020. The model is
relevant from a methodological perspective since it combines the description
of the spatial spread of the virus through mobility with the modelling of con-
tainment measures. However, increasing data availability after the end of the
first wave forced us to revisit previously drawn conclusions and analyse the
happening of events during the first wave retrospectively. Through a blend
of a model-based approach, direct analysis of epidemiological data, and the
evaluation of large-scale mobility data, we highlight a substantial decrease in
the reproduction number before the nationwide lockdown in Spain on March
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15. Furthermore, counterfactual scenarios indicate that the early decrease in
the reproduction number reduced the number of fatalities and infections dur-
ing the first wave by around 30%. Eventually, we will analyse the spread of
the Delta variant and the associated rise of infections in Catalonia, a region
in Spain, during the summer of 2021. In this sense, we also tangentially touch
the biological time scale since the Delta variant is a mutation of the original
virus strain. Summer 2021 was a particularly interesting period as the relaxa-
tion of restrictions, the presence of a new variant and an ongoing vaccination
campaign took place simultaneously. The analysis is made via an epidemi-
ological model that incorporates the daily number of vaccines distributed in
the different age strata and the presence of two variants (Alpha & Delta). It
allows for a different evolution of the contact rates in each age stratum. The
fitting of the model to epidemiological data indicates that the rapid explosion
in cases was mainly fuelled by increasing social interactions of the younger
population, which peaked during the regional holiday of Sant Joan. However,
the results also indicate that contact rates were reduced before the introduc-
tion of restrictions by the local authorities and that the latter had little effect
on the epidemic evolution. The decoupling between containment measures
and the adoption of social distancing by the population is particularly inter-
esting from a behavioural point of view. It suggests the presence of what is
generally referred to as pandemic fatigue.

The conclusions of the thesis will follow these contributions in Chapter
6, which summarises the work but also includes examples for future lines of
research. However, before looking into the future, let us first focus on the past
with the theoretical background. This overview will outline how we arrived
at and what consists of present-day theory in epidemic modelling.
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2
T H E O R E T I C A L B A C K G R O U N D

This chapter provides the necessary theoretical background to follow the rest
of this thesis. Due to the vast amount of contributions in epidemiology, this
overview is non-exhaustive. Nevertheless, we will provide a short historical
review of the critical contributions that lead to the modern-day theory in
epidemiology. After this historical perspective, we will also introduce a series
of state-of-the-art techniques used in epidemic modelling and surveillance
nowadays. Finally, while we dedicate a separate section to modelling human
behaviour in the context of infectious diseases, this chapter, in general, should
highlight how the spread of epidemics and human behaviour are intrinsically
linked.

2.1 first epidemic models

The first mathematical analysis of an epidemiological problem is generally at-
tributed to Daniel Bernoulli [23], one of the many academics in the Bernoulli
family. In the middle of the 18th century, Bernoulli put forward a mathem-
atical analysis for the benefit of life expectancy if smallpox was eliminated
through variolation. Variolation, the predecessor of the smallpox vaccine, was
a technique developed in China/India and imported from the Ottomans to
Europe that gives immunity against smallpox by inserting smallpox scabs
into superficial scratches made to the skin [24]. The approach of Bernoulli
did not include a description of the epidemic contagion dynamics but rather
assumed a constant annual infection risk and case fatality risk across all age
groups. Bernoulli estimated that with the eradication of smallpox, the me-
dian age would increase from 11.5 years to 25.5 years. It is unknown whether
Bernoulli’s estimations influenced the smallpox vaccine mandate introduced
in England in 1853 and public health policy in general. Interestingly, the ana-
lysis of Bernoulli sparked controversy with d’Alembert, which published a

13
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14 theoretical background

critique of Bernoulli’s work six years prior to its publication [25]. The corres-
pondence in which Bernoulli discusses his dislike for d’Alembert with Euler
is very entertaining – if not enlightening – to read, given that one has a weak
spot for the gossip around science [26]. Unfortunately, Bernoulli’s work, pub-
lished a hundred years before Koch’s and Pasteur’s discovery that infectious
diseases were caused by living organisms, received more attention in the ac-
tuarial sciences than in epidemiology.

2.1.1 Towards the law of mass action

Only in the 19th century did the first theories to understand the dynam-
ics behind infectious disease curves emerge. More precisely, there were two
competing explanations: Farr’s hypothesis and Snow’s hypothesis [27]. Farr
claimed that epidemics end since the potency of the responsible organism is
reduced with every individual it passes through [28, 29]. In contrast, John
Snow hypothesised that an epidemic ends as it runs out of "fuel", i.e. of sus-
ceptible individuals [30]. Starting from the discovery of Koch and Pasteur,
the increasing knowledge of how infectious diseases are transmitted caused
Snow’s hypothesis to gain the upper hand.

William Heaton Hamer probably best understood the implication of
Snow’s hypothesis implied for the dynamics of an epidemic [31]. Hamer was
particularly interested in the subsequent infection waves of measles that bien-
nially occurred in England during the 19th century [27]. Accordingly, Hamer
extensively studied the available information on measles cases, and put for-
ward a series of hypotheses in 1906 during his Milroy Lectures at the Royal
College of Physicians, London [32]. The central insight that Hamer presented
was that "explosions" in infections occur when the accumulation of suscept-
ible individuals is sufficient. Beyond this basic concept, Hamer also explained
the existence of inflexion points in the epidemic curves and summarised his
findings in a drawing shown in Fig. 2.1.

Hamer explains the different stages of the epidemic curves with respect
to the pool of susceptible individuals available. First, Hamer notices that at
points B and C, the inflexion points, the number of susceptible individuals re-
moved through infection and added through birth must be equal. Since, after
point B (C), the decrease (increase) in the incidence starts to slow down and
hence the number of susceptible individuals added exceeds (succeeds) the
number of infected individuals. Further, Hamer explains that since the de-
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2.1 first epidemic models 15

Figure 2.1: Schema – measles cases as a function of time – for the London measles
wave by Hamer. The drawing is taken from Ref. [32].

crease (increase) of the incidence is maximal at B (C), the number of suscept-
ible individuals must be minimal (maximal) at B (C). In other words, we see
that Hamer developed an intuition for how the evolution of the infected indi-
viduals, i.e. the first derivative, is proportional to the number of susceptible
individuals. If one wants to describe his findings in a mathematical formula
[25], which he did not, we could write:

cases of next interval ∼ current cases × current susceptibles . (2.1)

The proportionality factor would correspond to the reproduction number,
which we will define later. In line with this, Hamer showed his intuition
for the concept of the reproduction number and correctly assessed that in
points A, K, and Z, infectious individuals infect, at least on average, pre-
cisely one susceptible individual. Overall, Hamer correctly described how
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16 theoretical background

an ebbing and flowing of the susceptible population drives the subsequent
measles waves. However, Hamer did not try to translate his intuition into a
mathematical theory. Fortunately, only a decade later, Ross and McKendrick
came forward with the first mathematical theory that described the temporal
evolution of an epidemic.

Ronald Ross [33] and Anderson McKendrick [34] – both medical doctors
and self-taught mathematicians – can be seen as the true founders of math-
ematical epidemiology. Curiously, they seem not to have been aware of the
works of Hamer and did not cite his work even once. It is difficult to isol-
ate the respective contributions of Ross and McKendrick since they worked
on their theories simultaneously. Furthermore, they knew each other, and
McKendrick even served in 1901 under Ross for an antimalaria campaign in
Sierra Leone. Also later, they maintained regular correspondence, in which,
a few years prior to the publication of their respective theories, Ross wrote to
McKendrick [27]:

We shall end by establishing a new science. But first let you and
me unlock the door and then anybody can go in who likes.

The prediction could not have been more accurate. In the subsequent years,
both Ross [35–37] and McKendrick [38–41] published a series of articles that
laid the foundations for epidemic models as we know them today. Their main
contribution is introducing the concept of mass action into epidemiology. The
law of mass action mathematically describes chemical reaction kinetics and
states that the rate of a chemical reaction is proportional to the product of the
concentrations of the reactants [42]. Ross and McKendrick drew the analogy
between molecules floating around and reacting and individuals moving in
space and transmitting the disease. In other words, the law of mass action
describes mathematically the intuition of Hamer that the number of newly in-
fected individuals is proportional to the product of the number of current sus-
ceptible and infected individuals. McKendrick explicitly translated the law of
mass action from chemistry to epidemiology. Ross, in contrast, saw the law
of mass action as a natural extension of his theory but realised the connection
solely in hindsight [27]. The different understandings may also explain the
choice of their collaborators: While Ross developed the model with the math-
ematician Hilda Phoebe Hudson, McKendrick collaborated with the chemist
William Ogilvy Kermack. Nevertheless, both arrived at the same concept, and
the approaches are very similar. The simplicity of the concept of mass action,
i.e. the random contact process, made it possible to analytically investigate
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2.1 first epidemic models 17

the dynamical behaviour of an epidemic and unveil some of the most funda-
mental aspects of the transmission dynamics. In particular, this mathematical
approach has shown that an epidemic is not necessarily terminated by the ex-
haustion of the susceptible members of the community – as thought by Snow
– but, instead, the interplay between population density, infectivity, recovery
and death rates defines the end of an epidemic. In the following, we will out-
line the initial theory proposed by Kermack and McKendrick [39] since one
of its special cases – the SIR model – can be found in every modern textbook
on epidemic modelling. Very similar conclusions would, however, also hold
for the contributions of Ross and Hudson.

2.1.2 Original formulation of the Kermack–McKendrick model

The seminal work by Kermack and McKendrick was published in 1927 [39].
Even though almost 100 years have passed since its publication, one can only
hardly better outline the problem under consideration than the authors in the
original article. Hence, we directly reproduce here their problem summary:

One (or more) infected person is introduced into a community of
individuals, more or less susceptible to the disease in question.
The disease spreads from the affected to the unaffected by contact
infection. Each infected person runs through the course of his sick-
ness, and finally is removed from the number of those who are
sick, by recovery or by death. The chances of recovery or death
vary from day to day during the course of his illness. The chances
that the affected may convey infection to the unaffected are like-
wise dependent upon the stage of the sickness. As the epidemic
spreads, the number of unaffected members of the community be-
comes reduced. Since the course of an epidemic is short compared
with the life of an individual, the population may be considered
as remaining constant, except in as far as it is modified by deaths
due to the epidemic disease itself. In the course of time the epi-
demic may come to an end. One of the most important problems
in epidemiology is to ascertain whether this termination occurs
only when no susceptible individuals are left, or whether the in-
terplay of the various factors of infectivity, recovery and mortality,
may result in termination, whilst many susceptible individuals
are still present in the unaffected population.
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In the above paragraph, the authors introduce a series of model assumptions
that can be summarised as [43]:

1. Transmission occurs upon physical contact.

2. Infection results in either complete immunity or death.

3. Individuals are equally susceptible.

4. The population is closed, i.e. the influx of susceptible individuals is
negligible at the time scale of the epidemic.

The authors then introduce the following two additional assumptions later in
the article:

5. The population size is large enough such that stochastic effects can be
neglected, and a deterministic description is possible.

6. Contacts are according to the law of mass action.

Starting from these assumptions, Kermack and McKendrick build a discrete-
time model to determine the criteria under which an epidemic ends. They
define vt,θ as the number of infected individuals that have been infected for
θ time steps at time t, i.e. that got infected at time t − θ. Defining ψθ as
the probability to be removed, through death or recovery, θ time steps after
infection, vt,θ follows the recurrence relation

vt,θ = vt−1,θ−1 (1 − ψθ−1)

= vt−2,θ−2 (1 − ψθ−1) (1 − ψθ−2)

= vt−θ,0

θ

∏
k=1

(1 − ψθ−k)︸ ︷︷ ︸
Bθ

. (2.2)

The quantity Bθ corresponds to the survival function of an infected individual.
Having expressed the evolution of the infected individuals, we can now de-
scribe the newly infected individuals at time t. Defining st as the density of
susceptible individuals (unaffected) at time t, the newly infected individuals
vt = vt,0 at time t correspond to St − St+1. It is to say that vt = vt,0 holds for
t ̸= 0. For t = 0, given the initial number of infected individuals I0, we have
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2.1 first epidemic models 19

v0 + I0 = v0,0. With ϕθ being the transmission probability, i.e. infectivity, θ

time steps after infection, the law of mass action allows vt to be expressed as

vt = st

t

∑
θ=1

ϕθvt,θ . (2.3)

Hence, given the recurrence relation in Eq. (2.2), we can use the above equa-
tion to express St+1 − St as

St+1 − St = −St

 t

∑
θ=1

ϕθ Bθ︸︷︷︸
Aθ

vt−θ + ϕtBt︸︷︷︸
At

I0

 . (2.4)

Here, Aθ serves as an auxiliary variable to simplify notation. With the re-
moval probability ψθ and the survival function Bθ , the density of removed
individuals Rt follows, similarly to the susceptible ones, the equation

Rt+1 − Rt =
t

∑
θ=1

ψθ Bθ︸ ︷︷ ︸
Cθ

vt−θ + ψtBt︸︷︷︸
Ct

I0 . (2.5)

The quantity Cθ = ψθ Bθ encapsulates the probability to be removed precisely
after θ time steps. Due to the assumption of a closed population, the following
conservation equation holds

N = St + It + Rt , (2.6)

where It is number of infected individuals at time t and N the population size.
Accordingly, following Eqs. (2.4) & (2.5), the number of infected individuals
evolves as

It+1 − It = St

(
t

∑
θ=1

Aθvt−θ + At I0

)
−
(

t

∑
θ=1

Cθvt−θ + Ct I0

)
. (2.7)

The Eqs. (2.4), (2.5) and (2.7) describe the dynamics of the system in discrete
time. Kermack and McKendrick then consider the continuous-time limit of
this set of equations, which only requires replacing sums with integrals and

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



20 theoretical background

differences with derivatives. Accordingly, the system of differential equations
becomes

dSt

dt
= −St

 t∫
0

Aθvt−θdθ + At I0

 (2.8)

dIt

dt
= St

 t∫
0

Aθvt−θdθ + At I0

−
t∫

0

Cθvt−θdθ + Ct I0 (2.9)

dRt

dt
=

t∫
0

Cθvt−θdθ + Ct I0 , (2.10)

where
vt = −dSt

dt
. (2.11)

The survival probability Bθ becomes

Bθ = exp

−
θ∫

0

ψαdα

 . (2.12)

The discrete-time expression of Bθ in Eq. (2.2) can be recovered by replacing
the integral in Eq. (2.12) by a sum and subsequently making a first-order
Taylor expansion. Further, the relations Aθ = ϕθ Bθ and Cθ = ψθ Bθ still hold.
From there, Kermack and McKendrick make a lengthy and tedious mathem-
atical analysis to determine the conditions under which the epidemic stops.
We will skip this analysis and directly focus on the special case they present
afterwards, the case of a constant removal rate and infectivity.

2.1.3 The successful particular case - The SIR model

Let us denote the constant removal rate with µ and the constant infectivity
with β such that ψθ = µ and ϕθ = β ∀ θ ≥ 0. Accordingly, we have Aθ = βBθ

and Cθ = µBθ with Bθ = exp (−µθ). With these expressions, Aθ and Cθ are
proportional to each other, i.e. Aθ/Cθ = β/µ, implying that in Eqs. (2.8)-(2.10)
the following expression appears four times:

t∫
0

Bθvt−θdθ + Bt I0 .
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2.1 first epidemic models 21

Let us inspect this expression closer. The integrand in the first term expresses,
through the survival function Bθ , the number of individuals infected at t − θ

(vt−θ), which have not been removed until time t. Accordingly, the entire in-
tegral defines the total number of individuals infected during the epidemic,
which have not been removed until time t. Similarly, the second term ex-
presses the number of initially infected individuals at time t = 0 that have
not been removed until time t. Accordingly, the above term is nothing else
than the number of infected individuals at time t, i.e. It, and, eventually,
Eqs. (2.8)-(2.10) become

dSt

dt
= −βSt It (2.13)

dIt

dt
= βSt It − µIt (2.14)

dRt

dt
= µIt . (2.15)

The above equations correspond to the standard susceptible-infected-
recovered (SIR) model. We have shown that the SIR model is a special case of
the general framework put forward by Kermack and McKendrick. It assumes
constant infectivity over the course of an infection and a constant removal
rate µ. These assumptions could not be further off from reality, but they al-
low for a simple description of the epidemic dynamics and tractability of the
model. We will discuss in Sec. 2.3.2 how a non-trivially shaped infectivity
profile affects the dynamics of an epidemic.

Making a dimensional analysis, we note that both µ and β are rates, i.e. they
are in the units of 1/time. For the removal rate, this is quite intuitive since
we describe removal through a constant rate (homogeneous Poisson process),
which results in an exponentially distributed waiting time from infection un-
til removal. In contrast, it is difficult to grasp the concept of an infectivity rate
β. The difficulty stems from the fact that β acts, at least conceptually, as an
effective parameter that combines the transmission probability λ and the con-
tact rate k. It seems much more intuitive to understand the spreading process
as individuals that enter into contact at a given rate k during which the virus
is spread with a probability λ, implying β = λk.

The dimensionless interaction term St It corresponds to the law of mass
action. As for chemical reactions, it is a density-based approach, wherefore
the variables St, It, and Rt theoretically refer to densities per surface area
and not to absolute numbers. However, since the dynamic occurs in a fixed
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surface area, one can rescale the densities by the considered area and work
with the absolute numbers. However, in this framework, the dynamic is not
independent of the population size. Actually, if we consider a population of
size N, the fraction of infected individuals it evolves according to Eqs. (2.13)-
(2.15) as

dit

dt
= λ(Nk)stit − µit , (2.16)

where st refers to the fraction of susceptible individuals. We note that the
contact rate k scales with N. In other words, the larger the population, i.e.
the denser the population, the faster the epidemic spreads. Therefore, this
framework is generally known as the density dependent approach [18, 44]. This
approach makes sense for plant and animal diseases, where the closer anim-
als are, the more often they interact. However, if the virus hosts are humans,
such an assumption may not be reasonable. Someone in London (population
of 8 million) has probably not over 10 times more contacts than an individual
living in Zurich (population of 500’000). Social constraints in these contexts
are more likely to determine disease dynamics. Whether the contact rate is
dependent on density – maybe not linear – is still a topic of research, and
evidence is contradictory [45–48]. For this reason, there also exists an altern-
ative frequency dependent approach that assumes no dependence of the contact
rate on the population size [18, 44]. In this framework, individuals interact
with the contact rate k independently of the population size, which comes
down to removing N in Eq. (2.16). Accordingly, in the frequency-dependent
approach, the differential equations read

ds(t)
dt

= −λks(t)i(t) (2.17)

di(t)
dt

= λks(t)i(t)− µi(t) (2.18)

dr(t)
dt

= µi(t) , (2.19)

where s(t), i(t) and r(t) are the fraction of susceptible, infected and removed
individuals, respectively. Please note that we adapted the time index to a
more modern notation. The frequency-dependent approach is more com-
monly found in textbooks nowadays. In the following, we will present the
basic phenomenology that emerges from this minimal model.
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2.1 first epidemic models 23

2.1.3.1 Phenomenology of the SIR model

According to Kermack and McKendrick, the most immediate question which
needs to be answered is to see what terminates an epidemic. To this aim, we
will consider the numerical solution of the Eqs. (2.17)-(2.19) which is presen-
ted in Fig. 2.2 (A). The temporal evolution shows that the intuition by Hamer
was pretty accurate: the depletion of susceptible individuals modulates the
propagation of epidemics. As previously thought, the epidemic does not stop
when no susceptible individuals are available anymore, but a specific value
of recovered individuals seems to terminate the epidemic.
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Figure 2.2: (A): Exemplary temporal evolution of the SIR model. (B): Final attack rate,
r∞, as a function of the parameters of the SIR model.

This specific value is generally referred to as the final attack rate r∞ = lim
t→∞

r(t)
and corresponds to the total fraction of individuals that had been infected at
the end of the epidemic. Unfortunately, there is no explicit analytical expres-
sion for r∞ but only a transcendental equation. To get to this equation, let us
divide Eq. (2.17) by Eq. (2.19), giving us

ds
dr

= −λk
µ

s . (2.20)

Integrating this equation, we get

s(t) = s(0) exp
(
−λk

µ
(r(t)− r(0))

)
. (2.21)

As laid out by Kermack and McKendrick, we consider the introduction of
only a few infected individuals into a fully susceptible population. We can
therefore assume that s(0) ≈ 1.0 and r(0) ≈ 0. Furthermore, at the end
of the epidemic, no infected individuals remain, and i∞ = 0. Due to the
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conservation equation, we thus have the relation s∞ = 1 − r∞ and Eq. (2.21)
becomes

r∞ = 1 − exp
(
−λk

µ
r∞

)
. (2.22)

As previously mentioned, this equation has no explicit analytical solution
besides the trivial solution r∞ = 0. However, we can analyse under which
condition an additional non-trivial solution exists. The variable r∞ is bounded
between 0 and 1. At the upper boundary, r∞ = 1, the left-hand side (LHS)
of Eq. (2.22) is bigger than the right-hand side (RHS). Since the LHS and
the RHS are both 0 at the lower boundary, r∞ = 0, an additional solution
can thus only exist if the RHS grows faster than the LHS as r∞ increases. In
mathematical terms, this means that the derivative of the RHS with respect
to r∞ evaluated at 0 must exceed the one of the LHS. The comparison of the
two derivatives yields the inequality

λk
µ

≥ 1 . (2.23)

Accordingly, if the above condition is fulfilled, Eq. (2.22) also has a non-trivial
solution. However, the question remains of whether these two solutions are
stable. We thus analyse the stability of the trivial solution by linearising
Eq. (2.18) around the disease-free equilibrium i ≈ ϵ and s ≈ 1 − ϵ leading
to

di(t)
dt

≈ (λk − µ) i(t) . (2.24)

Hence, whenever λk ≥ µ, the coefficient in Eq. (2.24) is positive, and the dis-
ease grows exponentially, making the disease-free equilibrium i = 0 unstable.
In this case, the condition in Eq. (2.23) is fulfilled, and the system evolves
towards the non-trivial equilibrium point with r∞ > 0. Fig. 2.2 (B) shows
how the criteria (λk)/µ ≥ 1 separates a disease free phase (r∞ = 0) from an
endemic phase (r∞ > 0). Physicists, also in the context of epidemic models,
often refer to this as a phase transition [49]. Analogous to the critical tem-
perature in magnetism, one can define the critical transmission probability
λc = µ/k, often referred to as the epidemic threshold, above which the dis-
ease is endemic. In the context of dynamical systems, the phase separation is
generally referred to as a bifurcation, i.e. a change in the stability of certain
equilibrium points [50].

In the above example, we assumed that infected individuals are introduced
in a fully susceptible population. However, assuming that a disease may be
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2.1 first epidemic models 25

reintroduced, as was the case for measles considered by Hamer, not the entire
population may be susceptible. If the population is not fully susceptible, one
cannot assume s ≈ 1 − ϵ since s is far from one. Accordingly, in Eq. (2.24) s
would also multiply the term λk and the condition Eq. (2.23) would thus read

λks
µ

≥ 1 . (2.25)

Therefore, the disease can actually spread as s increases and exceeds the
threshold sc = µ/(λk). This dependence on s thus completes the intuition
of Hamer, how an increasing pool of susceptible individuals can lead to the
emergence of new epidemic waves. However, beyond that, the mathematical
analysis of Kermack and McKendrick unveiled how the interplay between
a series of parameters – contact rate, removal rate, transmission probability
– determines whether a disease can spread or an epidemic terminates. This
threshold, which separates the disease-free state from the endemic state, has
an intuitive interpretation that Kermack and McKendrick completely missed
[51]. The intuitive interpretation comes from a quantity called the basic repro-
duction number, which we will detail in the next section.

2.1.4 The basic reproduction number

Let us first consider the threshold in Eq. (2.23), which assumes a fully sus-
ceptible population. The parameter µ is the rate at which individuals stop
being infectious. The infectious period thus follows an exponential distribu-
tion with mean τI given by τI = 1/µ. Accordingly, given that k is the number
of contacts per unit of time, the term k/µ = kτI corresponds to the total
number of contacts made by an individual while being infectious, i.e. during
the infectious period. Multiplying this, the number of contacts, by the trans-
mission probability λ, thus gives the number of people infected during the
course of an individual’s infectious period. The number of cases caused by
an infected individual – primary case – is generally referred to as the number
of secondary cases. Therefore, the threshold condition in Eq. (2.23) expresses
that the disease can only propagate if the number of secondary cases is above
one.

This condition is intuitive if we make the connection to demography or,
even better, to ecology. The most straightforward example is to focus on
hermaphrodites that do not have opposite sexes and only reproduce through

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



26 theoretical background

self-fertilisation. In this case, it seems evident that, on average, exemplars
of the species need to reproduce at least once to guarantee survival of the
species. Accordingly, defining the number of offspring as the reproduction
number of the species, if it is above 1, the population will grow exponentially.
In contrast, the population will decrease if it is below 1, and the species will
eventually die out.

Now, in the context of a disease, it is not individuals that reproduce but
hosts for the virus. Similarly, suppose an infected individual (primary host)
does not infect at least one other individual (secondary host). In that case, the
virus will not reproduce since the primary host will recover at some point. We
define the basic reproduction number R0 as the number of secondary cases
generated by a primary case in a fully susceptible population. As mentioned
before, for the SIR model, R0 is expressed as

R0 =
λk
µ

= λkτI . (2.26)

The connection to population growth is immediate if we consider Eq. (2.24).
In line with the definition of R0, the linearised equation describes the epi-
demic growth in a fully susceptible population. If we rescale time by 1/µ =

τI , Eq. (2.24) can be written as

di(t)
dt

= (R0 − 1) i(t) . (2.27)

The equation describes the initial growth of an epidemic, where R0 determ-
ines the growth factor. There is the subtraction since the infected individual
will recover after a time τI , which is the time scale of the dynamics after rescal-
ing. In line with the condition in Eq.(2.23), the epidemic grows exponentially
if R0 > 1 and decays exponentially if R0 < 1.

Curiously, it took almost fifty years until the concept of the reproduc-
tion number was imported from demography to mathematical epidemiology.
Alfred J. Lotka, in 1925, was the first to introduce the concept of the re-
production number [52, 53]. He came up with it in the context of demo-
graphy and referred to it as the rate of natural increase per head. At the
time, Lotka worked at Metropolitan Life Insurance in New York City. After
Daniel Bernoulli, this was the second time epidemiology and actuarial sci-
ences crossed paths. Furthermore, Lotka worked in ecology and is mainly
known for the Lotka-Volterra equations [54]. Lotka also contributed early on
to mathematical epidemiology, was well aware of the work by Ross, and pro-
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Disease R0

Syphilis 1-2
EBOV (2014 outbreak) 1.5 - 2.5

IAV H1N1 (1918 pandemic) 2-3
HIV-1 2-5

SARS-CoV-1 (2003) 2-5
SARS-CoV-2 (2020) 2-4

Mumps 4-7
Polio 5-7

Rubella 5-7
Measles 12-17

Table 2.1: Basic reproduction number R0 for a series of viral pathogens [8, 57].

posed the first solution to the malaria model laid out by Ross in the footnotes
of his lecture notes in 1911 [55]. Nevertheless, Lotka, working mainly on mal-
aria, could not translate the concept of the reproduction number from demo-
graphy to epidemiology. Moreover, the concept of a reproduction number is
not straightforward to understand for vector-borne diseases, such as malaria,
since mosquitoes transmit the virus. Despite this difficulty, George MacDon-
ald, which developed the mathematical theory to model malaria transmission
together with Ross [56], was the first to use the term reproduction rate in the
context of epidemics [51]. Nevertheless, it took decades for the term basic re-
production number to become widely used. In particular, Roy Anderson and
Robert May, both having a background in ecology, popularised the concept
of R0 in the 80s and 90s [51].

Eventually, the basic reproduction number became an intuitive and in-
structive concept. It is specific to a particular disease, i.e. its transmissibility λ

and infectious period τI . Accordingly, the basic reproduction number classi-
fied diseases according to their capability to spread in a population. Table 2.1
shows the estimated basic reproduction number for a series of diseases. The
reproduction numbers show some heterogeneity, with measles having the
largest basic reproduction number.

In addition to classifying different pathogens, via the basic reproduction
number, one can estimate the number of individuals that need to be immun-
ised to reach herd immunity and eradicate a disease [58, 59]. Typically, immun-
isation is achieved through vaccination, which effectively reduces the pool of
susceptible individuals. Accordingly, in the presence of vaccinated individu-
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als, the population is not fully susceptible, and we can consider the condition
in Eq. (2.25): R0s ≥ 1. After an intervention, such as the distribution of vac-
cines for example, the LHS in the inequality R0s is generally referred to as
the reproduction number instead of basic reproduction number; but it still rep-
resents the same quantity, i.e. the number of secondary cases. Nevertheless,
since not the entire population is susceptible, not every contact of an infec-
tious individual can yield a secondary case and thus the multiplication by s.
However, we will discuss this in detail in Sec. 2.3. Assuming that a fraction
v of the population is vaccinated and the vaccine is 100% effective, we can
express the susceptible population as s = 1− v. Inserting the relation into the
transmission threshold yields a critical vaccination coverage vc = 1 − 1/R0

necessary to eradicate the disease. Accordingly, to eradicate measles, more
than 90% of the population need to be vaccinated.

2.1.5 From the SIR model to compartmental models in general

The simple SIR model not only provides a rich phenomenology but can
also quite accurately describe the evolution of actual real-world epidemics.
Already Kermack and McKendrick successfully adjusted their model frame-
work to a plague outbreak between 1905 and 1906 in the islands of Bombay,
India. However, while the three health statuses susceptible, infected and re-
moved may describe the plague well, diseases which do not confer life-long
immunity and reinfection is, thus, possible, require a different framework.
Such an example is Syphilis, where mostly asymptomatic reinfections make
it very challenging to control the spread of the disease [60].

The simplest model that incorporates reinfections is the SIS model
(susceptible-infected-susceptible). In this model, recovered individuals are
not removed but become susceptible again. Accordingly, the following set
of differential equations governs the dynamics:

ds(t)
dt

= −λks(t)i(t) + µi(t) (2.28)

di(t)
dt

= λks(t)i(t)− µi(t) . (2.29)

In contrast to the SIR model, the SIS model allows for an explicit analytical
expression for the non-trivial stationary state. The stationary state is found
as i∗ = 1 − µ/(λk) from the equilibrium conditions. Accordingly, for λk < µ,
we have i∗ < 0. In this case, the disease-free state, i.e. the trivial equilibrium,
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is stable. The disease-free state loses stability as λk > µ while the non-trivial
state is stable. We thus have the same critical transmission probability λc for
the SIS model as for the SIR model.

The SIS model is just one example of all the existing epidemiological mod-
els. More generally, the different health statuses in the model – the dynamical
variables of the system – are referred to as compartments, and the models are
known as compartmental models [61]. On a conceptual level, the epidemic com-
partments effectively describe the within-host dynamics resulting from the
immune response to the replicating virus. Epidemiological models can in-
clude many compartments, mainly if the clinical evolution, such as hospital
admission, ICU admission or death, is modelled in detail. For the model-
ling of SARS-CoV-2 in Chapter 5, we will encounter examples that, besides
the clinical evolution, also include different virus variants and the vaccin-
ation status. However, additional compartments generally only complicate
the notation of epidemiological models. Once infected, individuals transit
between compartments according to the defined probabilities and rates. Writ-
ing the model equations in these cases is straightforward. However, solely
the infection term can be non-straightforward to express. Often, the infection
term is expressed as λ(t)s(t), where λ(t) is referred to as the force of infection
[59]. In the above examples, the force of infection corresponds to the product
between the transmission probability λ, the contact rate k, and the fraction of
infected individuals i(t), i.e. λ(t) = λki(t).

A standard compartment that can be found in epidemiological models
is the exposed compartment E, in which individuals are infected but not
yet infectious. For example, for SARS-CoV-2, this latency period until in-
dividuals become infectious is between 2 and 3 days [62]. For a disease
that provides immunity after infection but has a latency period, we refer to
the SEIR model (susceptible-exposed-infected-recovered). However, some dis-
eases provide immunity after infection, but the immunity wanes over time.
The waning immunity may be caused by decreasing antibody levels, such
as for SARS-CoV-2 [63], or by the virus’ mutation in the case of influenza
[64], for example. From a modelling perspective, this means that individu-
als can transfer from the recovered compartment to the susceptible compart-
ment, wherefore, assuming that the disease has a latency period, we refer to
this model as the SEIRS model. In analogy to the SIS model, the possibility
of reinfection violates the second assumption by Kermack and McKendrick
that infection results in either complete immunity or death. Similarly to Ross
[36], Kermack and McKendrick have softened this assumption already in

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



30 theoretical background

their second article [40]. Further, they also soften the fourth assumption –
closed population – and include a birth process in the model. Nevertheless,
their mathematical analysis stays quite similar to the original article. How-
ever, since it was central to their approach, Kermack and McKendrick never
considered dropping assumptions 3 and 6. In combination, the two assump-
tions imply that all individuals interact with the same contact rate and that
contacts are made randomly, i.e. according to the law of mass action. In the
following, we will show how the study of more complex contact structures
was the main focus in mathematical epidemiology during the second half of
the 20th century [65].

2.2 incorporating heterogeneity into epidemic models

To this point, we have considered models that assume a population of in-
distinguishable agents interacting randomly and with the same contact rate.
However, this is a minimal description of the human population’s diversity
and the patterns that underlie our interactions. Most apparently, geography
shapes how we physically interact and along which paths diseases can
propagate. Similarly, not all individuals interact at the same frequency. In
many circumstances, individuals are less successful in establishing and main-
taining social contacts. This section will illustrate how different aspects such
as age, geography, contact heterogeneity and contact networks can be incor-
porated into epidemic models. All the mentioned examples introduce het-
erogeneity into the disease dynamics and are at the core of a diverse set of
empirical phenomena.

2.2.1 Age stratified models

From the 1950s onward, researchers in epidemiology have put much work
into modelling childhood diseases such as measles, or mumps [59]. Studies
have indicated that stochastic fluctuations [66], an accumulation of newly
born susceptibles and parametric resonance with the seasonally varying
transmission probability [67] may be the drivers behind the recurrent measles
outbreaks. Naturally, researchers also devoted their attention to designing ef-
fective immunisation strategies through mass vaccination to eradicate child-
hood diseases and prevent these recurrent outbreaks [68, 69]. Most of these
models assumed a global population of equally susceptible individuals that
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interacted according to the law of mass action [70]. This assumption corres-
ponds to assumptions 3 and 6 in the model of Kermack and McKendrick. It
is generally referred to as the homogeneous mixing assumption under which
contacts occur randomly and with equal probability [18]. The existing models
struggled to conform to various datasets, wherefore researchers questioned
if homogeneous mixing may be too crude of an approximation for the ac-
tual contact structure [70, 71]. The heterogeneous behaviour in different age
groups has shown to be a key determinant for the spread of childhood dis-
eases [59]. Daily contacts at school for children and work for adults cause
human contact patterns not to be random but rather follow a clear structure
[72]. Fig. 2.3 A shows a paradigmatic example of such a contact pattern. For
the above reasons, individuals generally interact more often with others in
the same group, i.e. the contact structure is modular [73]. Further, the con-
tact structure is fork-like due to the interactions between parents and their
children.

To model these structured interactions, researchers put forward frame-
works that stratify the population into different age groups [70, 71]. The con-
tact rates between the different strata are then encoded in a contact matrix C,
where the matrix elements Cij define the frequency at which individuals in
age group i interact with the ones in age group j. The matrix is sometimes
also referred to as the who acquires infection from whom (WAIFW) matrix [18].
If we assume an SIS-like model, the fraction of infected individuals xi in age
group i evolves as

ẋi(t) = −µxi(t) + (1 − xi(t))λ
M

∑
j=1

Cijxj(t) , (2.30)

where M refers to the total number of age strata. As previously mentioned,
the notation of the force of infection λi(t) is often taken [18]. The force of
infection subsumes the infection term as

λi(t) = λ
M

∑
j=1

Cijxj(t) , (2.31)

allowing to rewrite Eq. (2.30) as

ẋi(t) = −µxi(t) + λi(t)(1 − xi(t)) . (2.32)
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Figure 2.3: (A): Relative mixing patterns across age groups in France and Pakistan
[72]. (B): Number of daily contacts of the different age groups in France
and Pakistan [72].

The approach of the force of infection is particularly attractive since, al-
most independently of the model’s complexity, the equations can always be
brought into the above form. The potentially complicated infection term can
be hidden in λi(t) allowing for a clean notation. Eq. (2.30) can be written in
many different but equivalent ways. For example, instead of expressing the
evolution of the fraction of infected individuals, one can work with the abso-
lute number of infected individuals Xj in the respective age groups. In this
case, the term xj does not appear in the force of infection but rather Xj/Nj.
Further, instead of fixing the absolute contact rate between age groups with
the contact matrix C, one can parametrise the relative distribution of contacts
with the matrix C (∑j Cij = 1) and encode the total contact rate of age group
i as ki. In this case, the frequency at which individuals in age group i interact
with the ones belonging to age group j reads kiCij. However, these are only
differences in notation that do not affect the actual dynamics.

The contact matrix C is generally informed by empirical studies that estim-
ate through surveys how individuals from different age groups interact with
each other [72, 74–77]. Substantial differences between countries are found
that can often be attributed to cultural peculiarities. For example, in Fig. 2.3 A,
we can see that the elderly in France interact primarily with each other, while
in Pakistan, the elderly quite frequently interact with children. This differ-
ence may be attributed to an absence of daycare facilities, requiring grand-
parents to watch the children during the day. The data does not only indicate
that individuals do not interact non-random, i.e. not according to the law
of mass action, but also that the number of contacts is very different across
age groups. In general, younger individuals have many more contacts per
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day than the elderly (Fig. 2.3 B). Accordingly, not all individuals are equally
susceptible. Now, for regular contacts, the heterogeneity in the population is
not very pronounced. The difference is only around one order of magnitude.
However, facing the accelerating spread of sexually transmitted diseases in
the 60s and 70s, researchers quickly realised that the more pronounced het-
erogeneity in sexual contacts is one of the key drivers behind their spread [78,
79]. Eventually, advances paved the way to model the spread of an epidemic
in actual contact networks, which we will detail in the following sections.

2.2.2 Heterogeneity in the contact rates

There was a general worry in the 1960s that the introduction of hormonal
contraception, together with the sexual revolution, could lead to an increase
in sexually risky behaviour and eventually accelerate the spread of sexually
transmitted infections. For example, annual Gonorrhea cases in the United
States increased from 200’000 to almost 1’000’000 between the 60s and the 70s
[79]. In hindsight, this was partially due to the increase mentioned above in
risky behaviour, but probably also due to better surveillance [18]. Facing this
rapid increase, researchers built models to unveil the driving factors behind
the spread of Gonorrhea [78]. However, when parametrised with realistic val-
ues, models which assume homogeneous mixing would suggest that Gonor-
rhea should not be able to spread, i.e. it is below threshold. However, it turned
out that solely considering the average partner acquisition rate and neglect-
ing its standard deviation underestimates the virus’ ability to spread [18]. In
other words, this discrepancy required challenging assumption 3 that all indi-
viduals are equally susceptible since more frequent interaction increases the
probability (susceptibility) of (to) infection.

Accordingly, models were built to distinguish different activity classes [78,
80]. In these models, the population is not stratified according to age but
rather according to the different partner acquisition rates (contact rates). We
thus consider M activity classes, where the contact rate of activity class i is
ki. We further express the probability that an interaction of an individual in
activity class i takes place with an individual in activity class j as P(i, j). This
approach corresponds to the normalised mixing matrix mentioned before.
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Since reinfections are possible for Gonorrhea, we will consider an SIS model
for which the model equations then read

ẋi(t) = −µxi(t) + (1 − xi(t))λki

M

∑
j=1

P(i, j)xj(t) . (2.33)

Naturally, the question arises how to describe the relative mixing P(k, l). Evid-
ence suggests that the mixing pattern is assortative, i.e. that individuals tend
to more frequently interact with others in a similar activity class [81–83].
However, including assortativity makes the mathematical analysis of the dy-
namics more challenging. Hence, once more, we will reintroduce assumption
6 and employ the law of mass action to simplify calculations.

The law of mass action assumes that individuals interact randomly, equival-
ent to molecules. Since we consider different activity classes, not all individu-
als interact equally often. Accordingly, in this context, randomly interacting
does not mean interacting with a random individual but rather with a ran-
dom available contact. In other words, the probability of interacting with an
individual in activity class i is proportional to the fraction of the population
pi belonging to the activity class i and their contact rate ki. This approach to
express the interaction term is often referred to as proportionate mixing [18].
Therefore, we can express the probability P(i, j) as

P(i, j) =
pjk j

M
∑

l=1
kl pl

=
pjk j

⟨k⟩ . (2.34)

The term ⟨k⟩ denotes the average contact rate in the population. Therefore,
the dynamics in Eq. (2.33) can be written as

ẋi(t) = −µxi(t) + (1 − xi(t))λ
ki
⟨k⟩ z(t) , (2.35)

with

z(t) =
M

∑
j=1

pjk jxj(t) . (2.36)

The quantity z(t) expresses the average contact rate of an infected individual.
Looking at Eq. (2.35), we see that, at equilibrium, xi > 0 for any i holds
if and only if z > 0. Accordingly, to find the threshold condition, i.e. the
criterium that separates the disease-free phase from the endemic one, we can
focus on the equilibrium value of z. Similarly, as for the standard SIR model
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(sec. 2.1.3.1), in order to find the epidemic threshold, we assume xi ≈ ϵ.
Accordingly, multiplying both sides in Eq. (2.35) by pjk j and summing over j,
we find

ż(t) =
(
−µ + λ

⟨k2⟩
⟨k⟩

)
z(t) . (2.37)

The term ⟨k2⟩ is defined as ∑j pJk2
j . Therefore, the disease-free equilibrium is

only unstable, and the dynamics evolve towards the endemic state if

λ

µ

⟨k2⟩
⟨k⟩ > 1 , (2.38)

with a critical transmission probability

λc = µ
⟨k⟩
⟨k2⟩ . (2.39)

Accordingly, as already pointed out, in the presence of different activity
classes, not only the average contact rate determines whether the disease
can spread, but also the dispersion in the contact rates (second moment). For
a homogeneous population, in which everyone interacts at the same contact
rate k and is thus equally susceptible (assumption 3), the above threshold
immediately reduces to the one in Eq. (2.23) since ⟨k2⟩ = k2.

To highlight the impact of the heterogeneity in the contact rates, let us
consider a population in which a fraction of the population has a contact rate
klow and the rest have a contact rate khigh = αklow with α > 1. The parameter
α controls the heterogeneity in the contact rates. Further, we fix the average
degree in the population as ⟨k⟩ = γklow with α > γ > 1. Accordingly, the
fraction of the population p interacting with contact rate klow is given by

p =
α − γ

α − 1
. (2.40)

Please note that the condition ⟨k⟩ = γklow imposes γ as a lower bound on α.
With the expression of p, the ratio between the second moment ⟨k2⟩ and the
first moment ⟨k⟩ is expressed as

⟨k2⟩
⟨k⟩ =

(
α2

α − 1
(γ − 1)
(α − 1)

+
α − γ

α − 1

)
klow . (2.41)

Calculations to show that the expression in the above equations monoton-
ously increases with α are tedious. Therefore, we consider the limit for α ≫ 1,

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



36 theoretical background

where we see that ⟨k2⟩/⟨k⟩ scales linearly with α. Accordingly, variations in
the contact rates promote the spread of a disease even though the average
contact rate stays constant (constant γ). For this reason, Gonorrhea can still
spread even though homogeneous mixing would suggest that Gonorrhea is
below threshold.

In modelling sexually transmitted infections, considering different activity
classes, often also called risk classes, is a standard approach [78, 84–88]. Nev-
ertheless, it is often not straightforward and somewhat arbitrary to decide
the number of risk classes that stratify the population [89]. In reality, every
individual has a different contact rate and, more specifically, a distinct con-
tact pattern that results in a contact network at the population level. From the
mid-80s onward, in the context of HIV transmission, researchers slowly star-
ted to realise that these contact networks crucially shape disease transmission
[90–97]. In the next section, we will see how the properties of these networks
affect the spreading dynamics and how these phenomena are modelled.

2.2.3 Epidemics on networks

In today’s day and age, most of us associate the term network directly with
online social networks. However, social networks shaped our society and
were studied long before Myspace or Facebook existed. Also, in the ana-
logue days, individuals interacted in a very structured way that can gener-
ally be represented as a network. From the 1930s onward, when Moreno
started the field of sociometry [98], which later evolved into social network
analysis, sociologists extensively studied the structure of social networks [99–
101]. Moreover, they analysed how the topological structure shapes group
dynamics [102], the spread of innovations [103], or power dynamics [104], to
name a few. As sociologists developed these concepts, they became aware
that graph theory, a somewhat forgotten branch of mathematics at that time,
provided the necessary tools to describe social networks mathematically [105,
106].

Starting from the famous Königsberg Bridge Problem by Euler, graph the-
ory studied a wide range of topics but was restricted, in most cases, to more
theoretical questions [107]. Probably one of the most famous problems in
graph theory is the colouring problem since it was the first theorem to be
proven with the assistance of a computer program [108, 109]. Graphs in the
mathematical language were identical to what sociologists referred to as net-
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works. Accordingly, sociologists could leverage the formalism to describe dif-
ferent properties of their empirically built networks such as centrality meas-
ures [110], clustering coefficients [111], or community structure [112]. As we
previously mentioned, epidemiologists started to realise the importance of
networks in the context of the AIDS epidemic. Since the AIDS epidemic
mainly affected vulnerable groups such as sex workers, men who have sex
with men, or drug users, many of these early works were right at the inter-
section between public health and sociology [90, 92, 96]. It turned out that
the centrality measures built by sociologists gave powerful insight into the
drivers behind the spread of HIV [90, 96]. This epiphany led epidemiologists
to use the inferred contact networks to study the spread of diseases on top of
them through computer simulations [113–115]. However, with few exceptions
[116], the analytical description for the spread of epidemics on networks was
not developed by trained epidemiologists but by statistical physicists, who
worked in the then relatively young field of complex networks [117, 118].

Finding a definition for the term complex networks is not trivial. Gener-
ally, the attribute complex can be understood as describing networks that
are not as regular as a lattice [119] but are more structured than random
graphs, for which all connections are built randomly and with equal prob-
ability [120]. Most empirical networks live in this space between lattices and
random graphs [82], which is best illustrated by one of the earliest contribu-
tions in complex networks, the small-world model by Duncan Watts and Steven
Strogatz [121]. The small-world model starts with a lattice and randomly re-
wires the links with a given probability, continuously interpolating between a
lattice and a random graph. The networks created from their model showed
clustering (transitivity) while still exhibiting the "small-world" property [122]
– generally known as the six degrees of separation. In contrast to most empir-
ical networks, previous network models from graph theory could not exhibit
both properties simultaneously.

As illustrated by the work of Watts and Strogatz, research in complex net-
works generally takes a less formal and more empirical approach than graph
theory. This more hand-wavy approach can be partially explained by the vast
amount of physicists that worked early on in the field of complex networks.
There are at least two reasons why so many statistical physicists turned their
attention towards networks in the late 90s and early 2000s. First, the study of
structure is inherent to solid-state physics. It started with periodic crystalline
structures [123] and evolved towards disordered systems, where network-
like structures were considered early on [124]. Second, in the early days of
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the field of complex networks, empirical evidence was found that the degree
distribution of real-world networks followed a power law [125, 126]. This find-
ing suggested that some universal mechanism could explain the ubiquity of
power law degree distributions [127, 128]. Moreover, universality was a par-
ticularly attractive concept to physicists back then. With the discovery of the
rich topological structure of empirical networks, physicists quickly jumped to
analyse how this may affect different dynamical processes [129–131]. Among
those processes was epidemic spreading, and, as previously mentioned, the
field of complex networks was mainly responsible for developing an analyt-
ical framework to describe spreading processes on networks [65, 131, 132]. It
was quite a journey between sociology, epidemiology, and graph theory that
eventually led to physicists modelling the spread of epidemics on networks.
In the following, we will detail some of the frameworks they developed.

2.2.3.1 Mathematical description of a network

Networks can be described by a set of entities or nodes that are connected
through edges [82]. Nodes and edges can be anything from web pages, and
hyperlinks [133], proteins and chemical reactions [134], power stations and
transmission lines [135], or, in the case of an epidemic, individuals and phys-
ical interactions [136]. The empirical measurement of these networks is not
always straightforward, and interactions are often defined with respect to a
threshold, which, in some cases, can fundamentally alter the inferred struc-
ture [128]. However, in mathematical terms, the definition of a network is
straightforward. Interactions are encoded in the adjacency matrix A, whose
elements Aij are defined as

Aij =

 1 if node i is connected to node j

0 otherwise
. (2.42)

The size of A corresponds to the number of nodes in the network. Fig. 2.4
shows an example of a network and its corresponding adjacency matrix.

If interactions are bidirectional, as in Fig. 2.4, the adjacency matrix is sym-
metric (Aij = Aji ∀i, j) and the network is referred to as undirected. With few
exceptions [137, 138], contact networks for epidemic models are undirected
since the virus can spread in both directions. We refer to the number of con-
nections of node i as its degree ki, which can be expressed as ki = ∑j Aij.
Networks are not necessarily binary, i.e. either two nodes interact with each

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



2.2 incorporating heterogeneity into epidemic models 39

other, or they do not. The connections (edges) can also take continuous values
Aij = wij (weights), which makes the network weighted. In this case, the sum
over the weights over a node is its strength si = ∑j wij. Epidemic models can
consider a weighted adjacency matrix since interactions between individuals
are not all equally intense and frequent [139]. However, probably for conveni-
ence, most of the time, researchers work with binary networks. The different
degrees of the nodes lead to a degree distribution pk of the network. Further,
there are a series of centrality measures for the nodes that can be directly
calculated from the network’s adjacency matrix. This thesis will not focus on
these centrality measures, and we refer the reader to Ref. [82]. Equally, there
are a series of extensions such as multilayer networks [140] or higher-order
networks that are not covered in this thesis [141].

In the context of epidemics, a vast amount of empirical contact networks
have been collected in the past. While networks were first inferred from sur-
veys [94, 142], the technological advancements later allowed automatised con-
tact collection through Bluetooth devices [143–146], and cell phones [147–149].
Many of these empirical networks also evolve in time and are thus temporal
networks. In this case, an adjacency matrix exists for every time-step t denoted
A(t). We have previously mentioned that these contact networks can be used
to simulate the spread of an epidemic over the network [132]. However, if
one wants to focus on a concrete topological aspect, researchers often employ
synthetic network models that allow for varying a specific network property.
We will present two network models here, the Erdős-Rényi model [150] and
the Barabási-Albert [127] model.

The Erdős-Rényi model assumes that edges are created randomly. More
specifically, given a network of N nodes, edges exist with probability p among
them. It is the standard recipe for creating a random graph and is intrinsically

1

2

3

4

5
A =


0 1 1 1 1
1 0 0 1 0
1 0 0 0 0
1 1 0 0 1
1 0 0 1 0



Figure 2.4: Exemplary network with the corresponding adjacency matrix A. The
node’s label refers to the ordering for the entries in A.
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linked to a percolation process [120]. The regular mechanism to form edges
leads to a relatively homogeneous degree distribution that follows a binomial
distribution

pk =

(
N − 1

k

)
pk(1 − p)N−1−k , (2.43)

with mean degree ⟨k⟩ = p(N − 1) ≈ pN and second moment ⟨k2⟩ = ⟨k⟩(1 −
p) + ⟨k⟩2. We see that the degree distribution is not very heterogeneous. For
a large average degree, we have ⟨k2⟩/⟨k⟩2 ≈ 1. As the system size increases,
the degree distribution converges to a Poisson distribution as in general for
a binomial distribution.

However, empirical evidence has shown that many real-world networks
are more heterogeneous than the Poisson distribution and even have a de-
gree distribution that follows, or at least can be approximated by, a power
law, i.e. pk ∼ k−γ [151]. The first evidence for such power law was found
for the World-Wide Web [125] in 1999. More precisely, the distribution of
the number of outgoing and incoming hyperlinks of websites was shown to
be scale-free. At the same time, the Internet topology was found to follow
a power law [152]. Power law distributions f (k) are referred to as scale-free
since they are scale-invariant, i.e. f (αk) ∼ f (k). For this reason, Réka Al-
bert and Albert-László Barabási developed the preferential attachment model,
today most known as the Barabási-Albert model, as a universal mechanism
to describe the emergence of degree distributions that follow a power law
[127]. The mechanism assumes that nodes with a fixed number of edges are
sequentially added to the system. As nodes enter the system, they connect
with the nodes already present with a probability proportional to their de-
gree. Interestingly, this is a special case of the Price model, which, published
in 1976, describes cumulative advantage processes [153]. The motivation of
Derek De Solla Price was to explain the heterogeneous distribution of the
frequency of publication by authors in a given field, which follows approxim-
ately a power law. This empirical observation, known as Lotka’s law, was first
made in 1926 by Alfred J. Lotka [154], the scientist that also first defined the
reproduction number (Sec. 2.1.4). Barabási-Albert showed that preferential
attachment resulted in a degree distribution that follows a power law with
exponent 3, i.e. pk ∼ k−3. The resulting degree distribution implies that few
nodes (hubs) participate in most links. In contrast, most nodes (leaves) have
only a few connections. Small changes in the edge formation rule also allow
for fine-tuning of the exponent of the power law [155].
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Simultaneously, as scale-free networks were discovered at the turn of the
millennium, computer viruses became a focus as a substantial threat to the
digital infrastructure and the functioning of our society. In this context, it
was proposed to leverage the tools developed in epidemiology to describe
the spread of computer viruses [156]. So it came that two physicists, Romu-
aldo Pastor-Satorras and Alessandro Vespignani, developed a mathematical
framework to describe the impact of the scale-free degree distribution on the
spread of computer viruses [157].

2.2.3.2 Annealed network formalism

Since the entirety of the World-Wide Web or the Internet was not available
as a dataset (besides being computationally impossible to handle), Pastor-
Satorras and Vespignani decided to work solely with the degree distribu-
tion. Similarly to the stratification with respect to the different contact rates
(Sec. 2.2.2), their model separates the population into different degree classes.
The variables xk(t) denote the probability that a node (individual) with de-
gree k is infected at time t. For the contact structure between the different
degree classes, Pastor-Satorras and Vespignani assumed proportionate mix-
ing. In network science, this approach is often referred to as annealed network
formalism, or heterogeneous mean-field formalism [131]. The annealed network
formalism assumes that the time scale at which the network evolves is much
smaller than the epidemic. Accordingly, it is a reasonable assumption that
nodes interact randomly but with a frequency proportional to their degree
[131]. The formalism is then called annealed in analogy to annealed disorder
in physics [119]. Since the study also assumes an SIS model, the model equa-
tions are equivalent to the ones presented in Eq. (2.35) and read

ẋi(t) = −µxi(t) + (1 − xi(t))λk ∑
l

lpl
⟨k⟩ xl(t) . (2.44)

The overall prevalence I in the population can then be expressed as I =

⟨xk⟩∑l pl xl . One can see that the framework is equivalent to the one in-
troduced in Sec. 2.2.2 to describe how heterogeneous activity levels affect
the transmission of sexually transmitted diseases. However, it appears that
Pastor-Satorras and Vespignani were not aware of the respective literature in
epidemiology when they developed the heterogeneous mean-field formalism
[157, 158]. More precisely, they refer to the contact-process model [159] as
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the starting point from where they developed the model. Nevertheless, they
arrived at the same model equations as epidemiologists some years earlier.

However, in contrast to epidemiologists, Pastor-Satorras and Vespignani
took the empirical finding of a scale-free degree distribution literally and
to the extreme. As we previously mentioned, the dynamics described in
Eq. (2.44) leads to a critical transmission probability λc given by

λc = µ
⟨k⟩
⟨k2⟩ . (2.45)

Now, to calculate the moments of the power law distribution (p(k) ∼ k−γ),
we interchange the sum into an integral with the boundaries kmin and kmax.
The maximal degree in the network is N − 1 ≈ N, where N is the number of
nodes in the network. Accordingly, we fix kmax = N and the moments of the
degree distribution scale as

⟨km⟩ ∼ km−γ+1|Nkmin
. (2.46)

In other words, the second-moment scales with respect to the system size as
⟨k2⟩ ∼ N3−γ. Therefore, if γ < 3 1, the epidemic threshold λc vanishes in the
thermodynamic limit (limN→∞ λc = 0). This divergence implies that, in such
a network, a virus can survive independently of the transmission probability
and the infectious period, here 1/µ. However, it is worth mentioning that the
epidemic threshold only vanishes in the thermodynamic limit. In the context
of computer networks, the thermodynamic limit is a useful concept due to
the huge size of the network and the low cost of making a connection. Nev-
ertheless, since all empirical networks are finite, they will have a non-zero
epidemic threshold. Additionally, many real-world networks include some
physical limits that make it impossible for the maximal degree to scale with
the system size. For example, it was shown that the number of sexual inter-
actions follows a power law [126]. Logically, the number of sexual partners
cannot increase indefinitely since an individual has only a finite amount of
available time to have sexual intercourse. In these cases, the distributions are
not pure power laws, but upper truncated power laws or power laws with a
sharp cutoff [151]. Despite the hype in the early 2000s, it is quite contested
today whether scale-free networks actually are so ubiquitous in nature [160–
164].

1 In the case γ = 3, the second moment also diverges but with ln(N).
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Figure 2.5: (A): Dependence of the infection probability xk on the degree of a node
k. For the green dots, the system is close to the epidemic threshold
(λ = 0.03). In contrast, the blue dots represent a system far from the epi-
demic threshold (λ = 0.1). Overall prevalence is 1% for the green vs 30%
for the blue. The recovery probability was fixed as µ = 0.1. The degree
distribution is a power law with exponent 3. (B): Same difference between
green and blue dots, but this time the relative variation in xk is shown, i.e.
xkmax /x1 with kmax = 100.

Setting aside the question of whether heterogeneous contact networks are
scale-free, it is true that the unequal distribution of contacts impacts the
ability of a disease to propagate substantially. The network’s hubs drive the
spread of the disease due to their high number of contacts and correspond-
ing increased infection risk. The increased infection risk with the number of
contacts can be seen when considering the equilibrium condition of Eq. (2.44),
which gives an expression of xk as

xk =

λ
µ

k
⟨k⟩ z

1 + λ
µ

k
⟨k⟩ z

. (2.47)

The quantity z is defined as in Sec. 2.2.2. Accordingly, from Eq. (2.47), the
infection risk of a node increases with its degree as

dxk
dk

=

λ
µ

z
⟨k⟩(

1 + λ
µ

k
⟨k⟩ z

)2 . (2.48)

These calculations mathematically show how the infection probability in-
creases with the degree of a node. While the increase for low k is almost
linear, as k increases further, the derivative saturates, and the infection risk
only varies minimally. The same can be observed considering the expression
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Figure 2.6: Prevalence as a function of the transmission probability λ (rescaled) for a
homogeneous population, an Erdös-Rényi (random) network and a scale-
free networks. All networks have the same mean degree. Prevalence was
obtained by numerically solving Eqs. (2.44).

of xk in Eq. (2.47) directly. The variation of xk is shown in Fig. 2.5A. However,
as predicted by Eq. (2.48), the variation in xk saturates much slower close
to the epidemic threshold (low z) and the difference in the infection prob-
ability between hubs (high k) and leaves (low k) is much more pronounced
(Fig. 2.5B). This pronounced heterogeneity in the infection probability allows
the disease to stay endemic for much lower values of the transmissibility λ.

To illustrate how the heterogeneous network structure facilitates the spread
of a pathogen, we highlight, in Fig. 2.6, how the increasing heterogeneity from
a homogeneous population (pk = δ⟨k⟩j), to a random graph (pk = 1/λe−λk),
and to a scale-free graph (pk = k−γ) continuously decreases the epidemic
threshold. In contrast, as the system is further away from the epidemic
threshold, prevalence is maximal for homogeneous mixing due to the ab-
sence of leaves with a low infection probability.

Despite the insight it gives, the annealed network approach neglects many
topological features of the network and focuses only on the degree distribu-
tion. The assumption of the much faster-evolving network than the epidemic
and proportionate mixing reintroduces the law of mass action (assumption 3).
The contrast of an annealed disorder in physics is quenched disorder, where
the structure does not evolve, as, for example, a Spin Glass [124]. In the follow-
ing, we will take the same approach and describe how the dynamics evolve
on top of a fixed network (adjacency matrix).
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2.2.3.3 Quenched mean-field dynamics

The quenched mean-field approach assumes that the epidemic evolves much
faster than the contact structure [165, 166]. Accordingly, we can assume a
constant adjacency matrix Aij on top of which the disease propagates. Instead
of stratifying the population with respect to the different degree classes, the
approach describes the infection probabilities xi at the individual level for
every node i. In this case, assuming an SIS model, the dynamics are described
by the following equations

ẋi(t) = −µxi(t) + λ(1 − xi(t))
N

∑
j=1

Aijxj(t) . (2.49)

The second term guarantees that node i only interacts with its neighbours
in the network. The prevalence in the population is given by I = ∑i xi/N.
In order to find the epidemic threshold, we develop around the disease-free
equilibrium xi ≈ ϵ. Accordingly, upon rescaling time, Eq. (2.49) becomes

ẋi(t) =
N

∑
j=1

(
−δij +

λ

µ
Aij

)
︸ ︷︷ ︸

Jij

xj , (2.50)

where Jij is the Jacobian of the dynamics. The disease-free equilibrium loses
stability when the largest eigenvalue of J becomes positive [50]. However,
this is equivalent to the condition Λmaxλ/µ ≥ 1, where Λmax(A) is the lead-
ing eigenvalue of the adjacency matrix A. This condition leads to a critical
transmission probability (epidemic threshold) λc given by

λc =
µ

Λmax(A)
. (2.51)

One can show that for large, uncorrelated random networks, the largest ei-
genvalue of the adjacency matrix is given by ⟨k2⟩/⟨k⟩ [167, 168]. Hence, one
recovers the results of the annealed formalism (Eq. (2.45)). To build such un-
correlated networks, one fixes the degree distribution and samples a degree
sequence, i.e. the degrees of all nodes i. The stubs of the nodes are then ran-
domly connected effectively following proportionate mixing. There are some
subtleties regarding self-loops and multiple edges for small graphs, but it
works overall pretty well. The method is referred to as the configuration model
[82].
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The quenched mean-field equations give a relatively accurate description
when compared with numeric simulations [131], which are generally referred
to as Monte Carlo methods [169, 170]. However, the continuous-time evolu-
tion of the dynamics makes the comparison with the numerical simulations
more complex. To simulate the continuous time process, one generally uses
the Gillespie algorithm that was introduced to simulate chemical reactions
[171, 172]. The algorithm calculates the distribution of what and when future
events occur, samples from this distribution and correspondingly updates
the system. This continuous time approach is closest to the actual nature of
a spreading process. However, since the Gillespie is computationally costly,
researchers often rely on a discrete-time description, which is easier to simu-
late. In the discrete-time simulations, for every time step, infected individu-
als recover with a probability µ and infections are transmitted along links
between infected and susceptible individuals with probability λ. The simpli-
city of the approach, and the corresponding low computational cost, made
the discrete-time description particularly appealing. The widespread use of
computer simulations motivated researchers also to provide a corresponding
analytical description for the discrete-time process [173–175], which will be
presented in the next section.

2.2.3.4 Microscopic Markov Chain Approach

The first discrete-time model of an epidemic was already published in 1889
by the Russian physician Pyotr Dimitrievich En’ko [176]. Since the text was
published in Russian, it did not receive much attention and was only redis-
covered by Klaus Dietz in 1989. However, even though En’ko did not consider
a network, his approach is similar to today’s discrete-time descriptions. The
first analytical framework to describe the discrete-time infection dynamics on
networks was proposed by Wang et al. [173, 174]. Gómez et al. further exten-
ded the theory and solidified it under the name Microscopic Markov Chain
Approach (MMCA) [175, 177]. The description is microscopic since – as in
the quenched network formalism – it provides equations for the evolution of
the individual infection probabilities of node i at time step t, generally de-
noted as pi(t) for discrete-time models. One can understand the dynamical
equations as a Markov Chain for the individual probabilities pi(t). For an
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adjacency matrix A of size N × N, a recovery probability µ and transmission
probability λ, the dynamics of the SIS model read

pi(t + 1) = pi(t)− µpi(t) + (1 − pi(t))(1 − qi(t)) , (2.52)

where qi(t) is the probability that node i is not infected by any of its neigh-
bours during time step i and is expressed as

qi(t) =
N

∏
j=1

(1 − λAij pj(t)) . (2.53)

The overall prevalence can then be written as I(t) = ∑i pi(t)/N. It is a micro-
scopic Markov Chain as it does not consider the possible 2N (each node either
susceptible or infected) macroscopic states of the system. Such a macroscopic
description would be computationally much more costly [178, 179]. In con-
trast, the microscopic approach requires only N(Ω − 1) equations, where Ω
is the number of compartments of the model. The reduction in complexity is
possible since the MMCA approach, as well as the quenched mean-field form-
alism, assumes independence between the infection probability of two nodes
i and j. The states of the nodes are actually Bernoulli variables Xi(t) ∈ {0, 1},
where Xi(t) = 0 (Xi(t) = 1) if node i is susceptible (infected) at time t. Accord-
ingly, from a mathematical perspective [131], the independence assumption
is expressed as

E[XiXj] = E[Xi]E[Xj] = pi(t)pj(t) ∀ i ̸= j , (2.54)

where E[X] refers to the expected value of the random variable X. The state of
node i is not independent of the state of node j, particularly if the two nodes
are neighbours. However, it turns out that the dynamical correlations are
not very persistent and, despite the independence assumption, the MMCA
provides a very good match with Monte Carlo simulations, even on empir-
ical networks [175]. There exist also extensions of the formalism which take
into account correlations along edges [180], or even among cliques of size 3
(triangles) [181, 182] that are particularly relevant in the case of higher-order
dynamics [183].

Close to the epidemic threshold, assuming pi ≈ ϵ, we effectively recover
Eq. (2.50) by linearising Eq. (2.53) and plugging it into Eq. (2.52). The only
difference is that, due to the discrete-time approach, there is not a derivat-
ive but a difference pi(t + 1)− pi(t). However, it leads to the same stability
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criteria of the disease-free equilibrium, and thus also to the same epidemic
threshold λc of Eq. (2.51). Furthermore, the quenched mean-field formalism
can be recovered by considering shorter time intervals. Decreasing the time
intervals effectively leads to a smaller value of the transmission probability
λ as contacts are of shorter duration. Then, in the continuous time limit for
small λ, one recovers Eq. (2.49). The formalism can also be easily adapted
to incorporate a time-varying network. One simply replaces the constant ad-
jacency matrix A with the time-dependent adjacency matrix A(t). Only the
calculation of the epidemic threshold is somewhat challenging since it re-
quires periodicity [184]. The analysis becomes more subtle if one assumes
the adjacency matrix to vary in continuous time [185].

We have provided various descriptions of the epidemic dynamics on net-
works. In particular, we have presented all the formalisms employed in this
thesis. However, for the sake of completeness, the pair approximation [132, 186]
and the percolation approach need to be mentioned. The pair approximation
consists of a link-based description of the dynamics and relies on moment
closure approximations [187]. It is essentially the continuous time pendant
of Ref. [180]. Percolation theory, combined with a message-passing approach
[124], can be used to estimate the final attack rate of an SIR model. Early
research was able to map the SIR model to a percolation process [188, 189],
which has later been slightly rectified [190]. This overview completes the ex-
isting description of epidemics on contact networks. In the following section,
we will present approaches to incorporating mobility networks into the prob-
lem of epidemic spreading.

2.2.4 Modelling the spread of epidemics through human mobility

Until now, we have considered how the actual contact structure, represen-
ted by the adjacency matrix, can be incorporated into an epidemic model.
However, besides very recent advances in data collection [148, 149, 191], em-
pirical networks were generally limited to a small number of participants,
and a specific locality [143–147]. Accordingly, the available networks are of
good use to model the spread of a pathogen inside a small, geographically
fixed population. Sadly, these empirical networks do not suffice to describe
the propagation of diseases between regions, countries or continents. At this
larger scale, diseases are imported through human movement.
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One of the most well-known examples where a disease was imported
through human movement is the introduction of smallpox to the Americas
in the early 16th century [7]. Since the Aztecs completely lacked immunity
to smallpox, a substantial part of the population deceased after entering into
contact with the men of Hernán Cortés, and he was able to conquer the Aztec
land with a relatively small army. Nevertheless, during this period, the geo-
graphic propagation of diseases was relatively slow due to the limitation of
the existing means of transportation. For example, for the bubonic plague,
often referred to as the Black Death, the newest evidence suggests that it
took almost 10 years for the virus to make its way along the silk road to
western Europe from its origin in the Tian Shan region in Centralasia [13]. In
contrast, today, due to the intense connectivity of the world, pathogens can
spread in only a few weeks around the globe, as we experienced during the
SARS-CoV-2 pandemic [192–195]. The connections at different scales (planes,
trains, ships, buses, cars) [196] effectively rearrange the geometry on which
the disease propagates [197].

Due to the altered geometry, a diffusive spatial description of disease
propagation is inadequate. For this reason, researchers employ the so-called
metapopulation models that, first developed in ecology [198, 199], stratify the
population into different geographic locations and describe the interactions
among them [59, 200, 201]. The basic framework is very similar to the one
we introduced in Sec. 2.2.1 for the age stratification. The main difference is
that the index i refers to different locations, called patches or subpopulations,
and the contact matrix is now a mobility matrix R that controls the inter-
actions, i.e. mobility between patches. The subpopulations can be anything
from municipalities to regions or even entire nations. These approaches often
assume a homogeneous mixing inside patches, but more sophisticated solu-
tions exist [202]. The mobility matrix is nowadays generally estimated from
cell phone data [203–206]. Assuming the same number of contacts in every
patch, the entry Rij corresponds to the proportion of time spent in patch j by
individuals residing in patch i. Many algorithms exist to infer which patch an
individual resides in [207]. Further, assuming that the number of contacts of
individuals from patch i in patch j is proportional to the time spent there is a
rather crude approximation since individuals have different types of contacts
and distinct contact frequencies depending on why they spent time in an-
other patch. Many such subtleties can and sometimes should be considered
when inferring the mobility matrix R from raw data [204, 206].
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Beyond cell phone data, one can often also use census surveys to determine
the daily commuting patterns in a given country, or region [204]. The census
surveys generally allow us to estimate recurrent mobility as the number of
individuals that reside in patch i and work in patch j. This estimation can then
be encoded in a normalised mobility matrix R, whose elements Rij define
the fraction of individuals living in patch i and working in patch j. Gomez-
Gardeñes et al. [208] extended the MMCA to describe the impact of recurrent
mobility patterns on the epidemic dynamics. We will use this approach to
describe the initial spread of SARS-CoV-2 in Spain, presented in Chapter 5.
In this MMCA approach, variables ρi(t) do not refer to the probability of
an individual i being infected, but rather to the probability of an individual
residing in patch i being infected. Assuming an SIS compartmental model, the
recurrence equations can be written as

ρi(t + 1) = ρi(t)− µρi(t) + (1 − ρi(t))Πi(t) (2.55)

where Πi(t) represents the probability that a susceptible individual residing
in patch i gets infected during time step t. This quantity Πi(t) is expressed as

Πi(t) = (1 − p)Pi(t) + p ∑
j

RijPj(t) . (2.56)

The mobility parameter p controls the fraction of the population that com-
mutes every day. It was introduced more with a theoretical interest to study
explicitly the role of mobility. Given a real-world empirical mobility network,
one can fix p = 1. The variable Pi(t) describes the probability of a suscept-
ible individual getting infected when staying in its residence patch i. It is
expressed as

Pi(t) = 1 −
(

1 − λ
Ĩi(t)
ñi(t)

)ki

. (2.57)

Here, ki is the average number of contacts in patch i. The number of contacts
ki can depend on different demographic and socio-economical factors. The
quantity ñi ( Ĩi(t)) is the effective (infected) population in patch i (at time t).
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Given the number of inhabitants ni in patch i, these quantities are expressed
as

ñi = ∑
j

nj
[
(1 − p)δij + pRji

]
(2.58)

Ĩi(t) = ∑
j

njρj(t)
[
(1 − p)δij + pRji

]
. (2.59)

The framework is a movement-interaction-return model. Individuals move to
another patch according to the mobility matrix R, interact and return to their
origin. If they move, individuals never interact in the home patch, except for
individuals working in their patch of origin (diagonal entry Rii). Interaction
with the home patch only takes place implicitly since everyday individuals
that move from patch i to patch j are chosen randomly. Extensions of the
model exist, which substantially increase model complexity, where the same
individuals move every day from patch i to patch j, and interactions take
place in the patch of origin as well in the patch of destination [209, 210].

Now, as many times before, we can linearise the equations around the
disease-free equilibrium to find the epidemic threshold (ρi ≈ ϵ). The linear-
ised form of the equations is particularly instructive since the impact of mo-
bility becomes apparent. To linearise the equations, we will assume a density-
dependent formulation, where in every patch, all the individuals interact
with each other (all-to-all), i.e. ki = ñi. With these assumptions, we find at
equilibrium the following equation for the difference ∆i = ρi(t + 1)− ρi(t):

∆i =

−δij +
λ

µ ∑
j

nj

[
(1 − p)2δij + p(1 − p)

(
Rij + Rji

)
+ p2 ∑

l
Ril Rjl

]
︸ ︷︷ ︸

Mij

 ρj .

(2.60)
Please note that we have dropped the time dependence since we consider the
equilibrium condition. The three summation terms of the matrix M encode
the three possible interactions between individuals residing in patch i and
patch j. In the first term, both individuals reside in the same patch (i = j), and
they do not move ((1 − p)2). In the second term, one individual moves to the
patch (Rij + Rji), in which the other resides and stays (p(1 − p)). In the third
term, both individuals move (p2), and they meet in any patch l (Ril Rjl). In
the most often used approaches, which use continuous time and the mobility
matrix R is defined such that p = 1 (time spent in other patches), only the
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third term appears in the model equations allowing for a compact and elegant
formulation [204]. The above equation then leads to the following threshold
condition (λΛmax(M))/µ > 1. Previously, we have shown that, for the simple
SIR model, the stability criterion of the disease-free equilibrium coincides
with the expression of the basic reproduction number. In the following, we
will see that the same holds even when heterogeneities are present in the
model, as shown in this Sec. 2.2.

2.2.5 The next-generation matrix approach

The approach we have been using so far to calculate the epidemic threshold
consisted in calculating the stability of the disease-free equilibrium through
the Jacobian of the dynamics, as it is the standard in dynamical system the-
ory [50]. Mathematically speaking, this corresponds to a dynamical system
following a set of first-order differential equations

ẋi(t) = fi(x(t)) , (2.61)

where the property f (0) = 0 guarantees the existence of the disease-free equi-
librium. According to dynamical system theory, the disease-free equilibrium
loses stability when the largest eigenvalue of the Jacobian matrix J evaluated
at x = 0, J(0), becomes positive. Accordingly, the disease will actually spread
after introducing a primary case in the population. Previously, we have seen
that the condition Λmax(J(0)) > 0 is equivalent to R0 > 1 in the SIR model.
Now, it turns out that the same holds in heterogeneous populations. This
equivalence was proven through the construction of the next generation matrix
(NGM) in 1990 by Diekmann et al. [211–214]. First, let us realise that eval-
uating the Jacobian J at the disease-free equilibrium x = 0 is the same as
linearising Eq. (2.61) around the disease-free equilibrium (x ≈ ϵ). We used
this equivalence many times in the models presented before without explicit
mention. Accordingly, in its linearised form, Eq. (2.61) can be written as

ẋ(t) = J(0)x , (2.62)

where we dropped the index i to simplify the notation. Diekmann et al. pro-
posed to separate J(0) into a transmission part T and a transition part Σ
such that J(0) = T + Σ. The transmission part T refers to the entries in the
Jacobian that account for infections taking place. The transition part Σ refers
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to the transition between compartments without new infections. To illustrate
this better, let us consider the example for the standard SIR model, whose
equations are given in Eqs. (2.17) & (2.18). We can drop the redundant equa-
tion for S due to the conservation equation S + I + R = 1. In this case 2,
the infection terms and transition terms are kSI and ±µI, respectively. With
respect to the Jacobian, this means J(0) can be expressed as

J(0) =

λk − µ 0

0 µ

 =

λk 0

0 0


︸ ︷︷ ︸

T

+

−µ 0

0 µ


︸ ︷︷ ︸

Σ

. (2.63)

Diekmann et al. then propose to rescale "time" by Σ−1. Effectively, this is equi-
valent to the rescaling of time in Sec. 2.1.4 by the infectious period τI = 1/µ,
allowing to pass from the time-dependent description of the SIR model to
a description based on subsequent generations. The NGM approach general-
ises in the case of a more complex distribution of infectious compartments.
Eq. (2.62) then becomes

ẋ(t) = −
(

TΣ−1 + 1
)

x . (2.64)

The minus sign appears here since the matrix Σ is negative signed. Ac-
cording to the above equations, the condition of the epidemic threshold is
Λmax(TΣ−1 + 1) > 0, which is equivalent to Λmax(−TΣ−1) > 1. The matrix
NGM = −TΣ−1 is referred to as the next generation matrix, and its largest
eigenvalue, i.e. its spectral radius, coincides with the basic reproduction num-
ber of the disease. For the SIR model, we have

NGM =

 λk
µ 0

0 0

 , (2.65)

and we see that Λmax(NGM) = (λk)/µ = R0. In this example, the expression
of the NGM in Eq. (2.65) has only one non-trivial dimension. Generally, only
infectious compartments need to be included in the construction of the NGM.
In other words, we could have directly excluded the compartment R. Even
then, sometimes dimensions appear, mostly with a zero row, that do not con-

2 Please note that the variables S, I and R correspond here to the fraction of susceptible, infected
and recovered individuals. Previously, in Sec. 2.1.3, we used the distinction with capital and
small letters only to make explicit the description in absolute numbers and the one working
with proportions.
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tribute to the largest eigenvalue. One can simply exclude the dimensions in
these cases since the leading eigenvalue will not be affected. We do not prove
here that R0 = Λmax(NGM) holds for all compartmental models. We refer
the reader for this to Ref. [214]. However, to better illustrate the inner work-
ing of the NGM approach, let us consider SIR-like dynamics with two distinct
groups. The two groups interact according to a contact matrix K, with distinct
recovery probabilities µ1 and µ2, respectively. We thus consider two separate
infectious compartments I1 and I2, as well as susceptible compartments S1

and S2. Accordingly, the model equations can be written as

Ṡ1 = −λk11 I1S1 − λk21 I2S1 (2.66)

Ṡ2 = −λk22 I2S2 − λk12 I1S2 (2.67)

İ1 = −µ1 I1 + λk11 I1S1 + λk21 I2S1 (2.68)

İ2 = −µ2 I2 + λk22 I2S2 + λk12 I1S2 (2.69)

Ṙ = µ1 I1 + µ2 I1 . (2.70)

The quantities kij are the entries (K)ij of the contact matrix K and define the
contact rate between group i and group j. To construct the NGM matrix, we
focus only on the infectious compartments I1 and I2. Accordingly, we have

T = λ

k11 k21

k12 k22

 , Σ =

−µ1 0

0 −µ2

 . (2.71)

We thus see that the matrix (−Σ−1)ij = τiδij = 1/µiδij is defined by the
infectious periods of the two population groups. More generally, the entry
(−Σ−1)ij corresponds to the expected time an individual currently in state i
will spend in state j [214]. We then find the NGM matrix as

NGM =

 λk11
µ1

λk21
µ2

λk12
µ1

λk22
µ2

 =

R11 R21

R12 R22

 . (2.72)

If we assume proportionate mixing, i.e. that individuals interact in proportion
to their contact rates as detailed in Sec. 2.2.2 & 2.2.3.2, the entries kij are
given by kij = k jki pi/⟨k⟩, where pi refers to the fraction of the population
that belongs to group i. Making these quantities explicit and assuming µ =

µ1 = µ2, it is straightforward to show that one recovers the previously found
epidemic threshold, i.e. R0 = λ⟨k2⟩/(µ⟨k⟩) ≥ 1.
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Further, we see that the entry (NGM)ij, here denoted as Rji, is nothing
else than the number of secondary cases generated in group j by an infected
individual, the primary case, in group i. Hence, the multiplication of the
NGM with a two-dimensional vector y, whose entries define the number of
infected individuals in each of the two groups, describes how generations
reproduce [215]. In other words, the new infections per generation g will
grow as

y(g + 1) = NGM y(g) . (2.73)

Accordingly, any vector y will rapidly align with the normalised eigenvector
ŷ associated with the leading eigenvalue R0, and the case distribution among
the present groups will thus follow ŷ. By definition, we have the relation
R0ŷ = NGM ŷ. Therefore, summing over all the entries of R0ŷ, we have the
relation

R0 = ∑
i

∑
j
(NGM)ijŷj = ∑

j
ŷj ∑

i
Rji︸ ︷︷ ︸

Rj

. (2.74)

Therefore, the basic reproduction number is nothing more than a weighted
average with respect to the case distribution, ŷ, of the individual reproduction
numbers Rj, which corresponds to the number of secondary cases generated
by a primary case in group j. Later, in Chapter 5, we will use this relation to
calculate the reproduction number when the case distribution does not follow
ŷ due to constant changes in the contact rates. But first, we will consider how
one can estimate the reproduction number from case data during an evolving
epidemic.

2.3 the instantaneous reproduction number

The basic reproduction number is defined as the number of secondary cases
produced by primary cases in a fully susceptible population. However, dur-
ing the course of an epidemic, the number of susceptible individuals will
continuously decrease. We have already discussed in Sec. 2.1.4 that for a pop-
ulation which is not fully susceptible, the epidemic threshold, and thus the
reproduction number reads R = λkSτI (τI = 1/µ) for the SIR model. The
reproduction number is thus time-dependent since the fraction of suscept-
ibles S(t) is constantly changing throughout an epidemic. Furthermore, the
fraction of susceptible individuals is not even constant during the infectious
period of an infected individual. In this sense, λkS(t)τI does not reflect the
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number of secondary cases produced by an individual at time t. Accordingly,
an important question arises: how can one define the reproduction number
in an evolving environment? Generally, there are two definitions of the time-
dependent reproduction number that people employ: the instantaneous repro-
duction number [216] and the case reproduction number [217].

The case reproduction number, Rc, is the expected number of secondary
cases produced by an individual infected at time t (primary case). The case re-
production number thus explicitly considers the changing environment dur-
ing the infectious period of an infected individual. In contrast, the instantan-
eous reproduction number, Rt, explicitly discards the changing environment.
It is defined as the expected number of secondary cases produced by an indi-
vidual infected at time t (primary case) should the conditions not change. For
example, the quantity Rt assumes that the fraction of susceptible individuals
stays constant during the infectious period, but all the other parameters are
also assumed constant. From a mathematical perspective, in a simple SIR
framework, the two quantities Rc and Rt are defined as

Rc(t) =
∞∫

t

k(t′)S(t′)λe−
(t′−t)

τI dt′ (2.75)

Rt(t) = λk(t)S(t)τI , (2.76)

where we assume that the contact rate k(t) may also change over time. The
mathematical description of Rt(t) is immediate from its definition. One as-
sumes that the fraction of susceptible individuals S(t) and the contact rate
k(t) stay constant during the entire infectious period τI . For the case reproduc-
tion number Rc, changes in the environment are modulated by the survival
function e−t/τI of the infected individual. The survival function quantifies the
probability that an individual, infected at t = 0, is still infectious at time t.

From a conceptual point of view, the case reproduction number Rc follows
the course of infection of an individual infected at time t. The quantity in-
forms how individuals infected at different times contribute to the spread of
a disease. In contrast, the instantaneous reproduction number Rt is a more ab-
stract concept that is useful to quantify, for example, how the circumstances
of a specific day impacted the spread of the virus. For this reason, the instant-
aneous reproduction number became a heavily used quantity to estimate the
impact of non pharmaceutical interventions (NPIs) during the SARS-CoV-2 pan-
demic. Any NPI that reduces, for example, the number of contacts k(t) leads
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to a sharp decrease in Rt, as reflected in Eq. (2.76). On the contrary, for the
case reproduction number, the impact of an NPI will be spread out over
multiple days due to the integral formulation in Eq. (2.75). For this reason,
estimating Rt from the epidemiological data (case reports) was an essential
tool to determine the actual impact of NPIs. The most popular framework
used to infer Rt is called EpiEstim, which we will present in the next section.

2.3.1 EpiEstim - Estimating Rt

EpiEstim, a framework to infer the instantaneous reproduction number, was
initially proposed and developed by Cori et al. [218–220]. The approach as-
sumes a simple epidemiological model with a homogeneous population in-
teracting randomly. However, the framework is not limited to a constant in-
fectivity rate but allows for any possible distribution. The model equations
are similar to the original formulation of the Kermack-McKendrick model
presented in Sec. 2.1.2. In the approach by Cori et al., given an infectivity
profile ws, the daily incidence It (new infections on day t) evolves according
to a renewal equation as

It = Rt

t

∑
s=0

It−sws . (2.77)

The infectivity profile ws, which is often referred to as generation time dis-
tribution, is the product of the survival function and the relative variation in
infectiousness. So far, we mainly assumed constant infectiousness, but most
real diseases display substantial differences over the course of an infection
[18]. In the following section, we will detail the interpretation of ws. The Epi-
Estim framework then compares the simple model in Eq. (2.77) to the actual
reported incidence data. Assuming the incidence is Poisson distributed with
mean given by It, the time series Rt can then be estimated through Bayesian
inference, which will be discussed in Sec. 2.4. For the actual expression of the
likelihood or other details, such as the priors of the inference or the smooth-
ing factor for the time series Rt, we refer directly to Refs. [218–220]. Please
note that the quantity Rt here refers to the number of secondary cases pro-
duced by the average infected individual. Since the framework assumes a
homogeneous population, the distinct reproduction numbers existing among
different groups are aggregated and averaged, similarly as in Eq. (2.74), giv-
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ing Rt
3. EpiEstim estimates the time series Rt from the reported incidence,

assuming that the infectivity profile ws is known. However, often it is challen-
ging to estimate ws; we will see why in the next section.

2.3.2 Non-Markovian infectivity profiles

As previously highlighted, the typical compartmental models assume simple
within-host dynamics, i.e. a constant transmission probability and a constant
recovery rate. This assumption results in Markovian dynamics since the prob-
ability of infecting someone or recovering does not depend on how many
days someone has been infectious. The Markovian assumption facilitates the
mathematical modelling and simplifies the model complexity substantially.
However, in most cases, neither infectiousness nor the recovery rate is con-
stant [223]. Most diseases have a typical time for the start of infectiousness,
the onset of symptoms (incubation period), or the recovery [62, 224–226]. The
disease characteristics also lead to specific intervals in transmission chains
between primary and secondary cases. The two most relevant intervals are
the generation time, and the serial interval [227, 228]. In analogy to population
dynamics, the generation time is the time that passes between infection of a
primary case and the subsequent onward transmission to a secondary case.
The serial interval, in contrast, is the time that passes between the symptom
onset of the primary case and the symptom onset of its secondary case. To-
gether with the incubation period, the intervals are illustrated in Fig. 2.7.

The generation time is equivalent to the infectivity profile used in EpiEstim.
It describes when, after infection, an individual is most likely to transmit
the disease. The generation time combines the transmission probability ϕθ

and the recovery probability ψθ in the original formulation of the Kermack-
McKendrick model (Sec. 2.1.2). However, instead of explicitly considering
when an individual recovers, the generation time accounts for this by a de-
creasing probability of onward transmission. In this case, even though indi-
viduals may not have recovered, they do not contribute to the dynamics in
Eq. (2.77).

The discrete-time dynamics, as in Eq. (2.77) and originally formulated by
Kermack-McKendrick, had their revival in the modelling and analysis of

3 In reality, the variation of the reproduction number across the population follows a distribution,
whose heterogeneity is generally captured by the overdispersion of a negative binomial [221].
The overdispersion results from a non-trivial interplay between the heterogeneity in the number
of contacts and viral shedding across individuals [222].
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SARS-CoV-2 [229]. Estimating the impact of NPIs, which often should show
an impact on a specific day, requires using the correct inter-generation time.
Using the Markovian approximation 4 could be misleading in these cases, in
particular, if various NPIs have been introduced in a relatively short time.
The continuous time analogy is often computationally very costly [231]. The
only problem is that the generation time can often be hard to estimate. Due
to the incubation period, it is generally challenging to determine when in-
dividuals got infected. Creative detours need to be found in order to infer
the generation time [232]. In contrast, determining the day of symptom onset
is straightforward; therefore, it is also simple to estimate the serial interval.
Often, researchers use the serial interval as a proxy for the generation time
[225, 233]. The two quantities share the same mean, but the variance may
differ [227], which generally affects the estimations of Rt [225]. Essentially,
the almost equivalence comes from the fact that the serial interval, t4 − t2, is
simply t3 − t1, the generation time convoluted by the incubation period. The
convolution does not affect the average but changes the variance.

4 A trick is to divide the compartments into various subcompartments. For example, instead of
one infectious compartment I, take n infectious compartments, I1, I2, I3, etc., while the time
spent in each compartment is τI /n. In this case, the dynamics stay Markovian. However, the
generation time will follow an Erlang distribution which is a better approximation, in general,
than an exponential distribution [230].

infection 

primary case

symptom onset

primary case

infection

secondary case

symptom onset

secondary case

t1 t2 t3 t4

: incubation periodt2 − t1

: generation timet3 − t1

: serial intervalt4 − t2

Figure 2.7: Schema for different intervals in transmission chains. It includes the incub-
ation period, the generation time and the serial interval. Please note that
the serial interval can be negative while the generation time is positive by
definition.
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Figure 2.8: Original incidence (top-left), observed symptom onset (top-right) and two
examples of how the exposure times should not be reconstructed. Both
doing a convolution instead of deconvolution (bottom-left) and a simple
subtraction of the mean (bottom-right). Adapted from Ref. [233]. The time
series of symptom onset was obtained by convoluting the exposures with
a gamma distribution with a mean of 5.2 and a standard deviation of 2.8
(incubation period).

2.3.3 Reconstructing the exposure times

A similar problem arises when using the reported cases as a proxy of incid-
ence to estimate Rt. In general, cases are only diagnosed and reported once
individuals have symptoms. Accordingly, the reported cases reflect a convo-
lution of the actual incidence with the time between infection and reporting.
Hence, when one uses the reported cases to infer the reproduction number,
the estimated Rt is also convoluted by the incubation period. The present
delay then hinders any analysis regarding the impact of NPIs. Therefore, be-
fore estimating Rt, it is necessary to deconvolute the time series and infer the
actual exposure times (day of infection) [225, 233]. Luckily, there are several
algorithms available to perform this deconvolution [234–236].

Fig. 2.8 illustrates why performing the deconvolution, and doing it prop-
erly, is crucial before estimating Rt. On the top-left, we show the number of
newly infected individuals on t = 100. Assuming that the date of symptom
onset is reported, we would observe the top-right, the time series convoluted
by the incubation period. Additionally to the shift, as in image processing,
this corresponds to a blurring of the original data. Accordingly, if one per-
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formed a convolution to recover the exposure times (bottom-left), one would
blur the data further. Similarly, subtracting the incubation average does not
allow for recovering the exposure times (bottom-right). The direct estimation
from the time series of symptom onset, performing a convolution instead of
a deconvolution, and simply subtracting the mean are common mistakes that
health authorities and researchers made during the SARS-CoV-2 pandemic.
We hope that the above figure has illustrated why these errors should be
avoided when estimating Rt.

One can also deconvolute the time series of hospital admission or daily
deaths directly to reconstruct the exposure times [233]. Since Rt is defined as
a fraction in Eq. (2.77), a constant underreporting rate does not influence the
estimation of Rt. However, as we will see in Chapter 5, the reporting rate can
rapidly decrease during a growing epidemic as test facilities get saturated.
Therefore, hospital admissions or daily deaths can often be a more reliable
data stream in these cases. For the same reason, hospital admissions, ICU
admissions and daily deaths are generally preferred to fit epidemiological
models instead of relying on the reported infections. In the next section, we
will present one of the most common practises for doing the actual fitting.

2.4 fitting epidemic models to data

There are many ways to fit an epidemic model to data, and many data types
exist [237]. In this thesis, the data we adjusted the models to mainly consisted
of reported case numbers (hospital admissions, ICU admissions, deaths and
infections). For such standard data streams, it is luckily quite straightforward
to express a likelihood that compares the model with the data5. Traditional
approaches have mainly relied on maximum likelihood estimations, or least-
square minimisation [239], to fit epidemic models to the data, and infer the
corresponding parameters [240]. However, the increasing availability of com-
putational power in recent years has made it possible to evaluate the entire
posterior and hence do actual Bayesian inference [241], beyond the estimation
of the maximum-likelihood.

Bayesian inference leverages Bayes theorem for conditional probabilities to
express the probability, referred to as posterior distribution, that a specific set
of parameters of a given model may explain the observed data [242]. More

5 If the likelihood cannot be expressed, or is computationally too costly, one can also do approx-
imate Bayesian computation (ABC) [238], which often simply uses a least-square approximation
for the likelihood.
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specifically, given a set of parameters θ and the observed data X, the posterior
probability distribution is expressed as

p(θ|X) =
p(X|θ)p(θ)

p(X)
∼ p(X|θ)p(θ) . (2.78)

The conditional probability p(X|θ) is the probability of observing the data X
given the model parameters θ, which corresponds to the likelihood employed
in the maximum likelihood estimation. The quantity p(X) denotes the prob-
ability of making the observation X. Only God will ever be able to express
p(X). However, since it is only a normalising factor and does not depend on
θ, it can be dropped from the expression of the posterior distribution p(θ|X).
The last term p(θ) is the prior distribution. It reflects our prior knowledge
about the parameters of the system. For example, previous estimations of
a parameter can be incorporated into the prior distribution. Similarly, some
parameters may only take positive values, which would be reflected in a
sharp cutoff in p(θ). If there is no prior information on the parameters, the
posterior p(θ|X) is directly proportional to the likelihood p(X|θ).

Given the expression of the posterior distribution in Eq. (2.78), one needs
to explore the phase space and evaluate p(θ|X) to estimate, for example, the
mean ⟨θ⟩. The mean can be directly expressed as ⟨θ⟩ =

∫
p(θ|X)dθ. However,

depending on the number of parameters of the model, the parameter space
can often be very high-dimensional. In these cases, evaluating the posterior
distribution in the entire parameter phase space is computationally not feas-
ible. To contour this problem, researchers designed a set of Markov chain
Monte Carlo (MCMC) methods to explore the parameter phase space more
efficiently [243]. These methods build a Markov Chain with a given update
rule that, after a sufficient number of steps, converges to the target distribu-
tion, the posterior p(θ|X). The most famous of these MCMC methods is the
Metropolis-Hastings algorithm that was originally developed in statistical phys-
ics [169, 244]. Nowadays, more efficient samplers such as the Hamiltonian
Monte Carlo [245] exist. Ref. [246] provides a good overview of the available
different methods.

Assuming that the data, X, consists of case reports, the likelihood p(X|θ),
i.e. the observation process, can be described by a Poisson distribution, where
the mean corresponds to the model prediction. However, reported data of-
ten underlies substantial variation. For example, reporting is generally much
lower on weekends than on weekdays. To allow for such variance, people
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2.5 explicitly modelling human behaviour in the context of epidemics 63

often employ a negative binomial distribution instead of a Poisson to model
the count data [247]. The dispersion parameter of the negative binomial dis-
tribution is part of the inference process. Generally, it is desirable to fit the
model to incidence data instead of cumulative cases. Fitting to cumulative
cases can lead to substantial overconfidence in the estimations [248]. There
are many excellent ready-made implementations to perform Bayesian infer-
ence. We will use Stan in this thesis [249–251], but others such as Turing [252]
in Julia [253], or emcee [254] in Python offer similar advantages. The actual fit
is then made by running multiple chains that take a fixed number of samples.
Initial samples (warm-up) are often discarded to allow the chain to reach
the vicinity of the posterior distribution. Convergence can either be checked
visually, by looking at the temporal evolution of the chains (trace plots) or
through the Gelman-Rubin statistics [255]. Once the fit is performed, credible
intervals – the equivalent of confidence intervals in the frequentist approach –
can be calculated for any quantity by propagating the posterior. An excellent
introduction to the workflow for epidemic modelling with Stan is provided
by Grinsztajn et al. [256].

2.5 explicitly modelling human behaviour in the context of

epidemics

We have presented a series of approaches to describe the spread of infec-
tious diseases. Extensions of the original approach by Kermack-McKenrick
essentially incorporated different features of human behaviour. Stratification
of the population, for example, according to age and geography, or the use
of real-world contact networks allowed us to describe more accurately the
structure that underlies human interactions. We may also see the work by
Kermack-McKenrick as an attempt to model human behaviour relying on the
assumption that individuals homogeneously interact according to the law of
mass action. In this sense, models of infectious diseases, which are transmit-
ted upon human contact, always rely on a description of human behaviour.
For this reason, we added the word "explicitly" to the title of this section. In
general, modelling human behaviour in the context of epidemics is primarily
understood as focusing on the explicit dynamical behavioural reaction in the
presence of a disease [6, 19–22, 257].

The behavioural reaction in the face of a propagating disease almost al-
ways aims to reduce the individual or global infection risk. Such behavioural
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changes and practices to contain the spread of a disease have been observed
throughout human history. Examples are the introduction of a quarantine in
Dubrovnik (Croatia) during the 14th century to prevent the plague from en-
tering the city [258], the use of face masks during the H1N1 influenza A pan-
demic in 1918 [258], the increasing demand for condoms after the emergence
of HIV in the 1980s [259], or the adoption of intensified hygiene practices
in the face of the 2009 H1N1 pandemic [260]. Similarly, we can consider the
rapid development and adoption of vaccines against SARS-CoV-2 as a col-
lective behavioural reaction. We have highlighted in the introduction that the
interaction between diseases and human behaviour can be understood as a
coevolution at the biological and cultural timescale. However, mathematical
models are far from modelling such coevolution. For this reason, mathem-
atical modelling of adaptive behaviour in the face of an epidemic focuses
mainly on the individual adoption of prophylaxis [19, 21, 22]. The prophy-
lactic practice can be anything from vaccines, face masks or social distancing,
to name a few. Generally, the uptake of such prophylactic measures is mod-
elled either through game theory or the spread of individual awareness. We
will detail and overview both approaches in the following.

2.5.1 Vaccine adoption formulated as a dilemma in game theory

The voluntary adoption of vaccines can be understood as a social dilemma.
The dilemma arises since not vaccinated individuals profit from others who
get vaccinated. The presence of vaccinated individuals also decreases the in-
fection risk for not vaccinated individuals. Accordingly, individuals that do
not get the vaccine can be seen as free riders taking advantage of the ones
that get the vaccine. In the extreme case, where the vaccination coverage is
sufficient to reach herd immunity, non-vaccinated individuals have no incent-
ive to get vaccinated (besides solidarity) since the infection risk is 0. If the
number of free riders (not vaccinated) exceeds a threshold, the population
may lose herd immunity, hence the dilemma.

A natural framework to describe such a dilemma is game theory. Initially
proposed by John Von Neumann in 1928 [261], and popularised with the book
"Theory of Games and Economic Behaviour" by Von Neumann and Morgen-
stern [262], game theory rapidly became a widely used tool to analyse collect-
ive decision making. It focuses on situations where the outcome depends not
only on the decision maker but also on the decision of others. Game theory
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was rapidly adapted in economics to model the decision-making of rational
agents [263] but also found application to describe deterrence theory in the
context of nuclear warfare [264]. In the framework of game theory, individu-
als choose between a set of strategies, and each strategy has an associated
payoff. The equilibrium, referred to as Nash Equilibrium, is reached when
none of the individuals can increase their benefit (payoff) by changing the
strategy [263]. If one allows for mixed strategies, i.e. the possibility for an
individual to adopt various strategies according to different probabilities, all
individuals, independent of the adopted strategy, will necessarily have the
same payoff at equilibrium.

The description of voluntary vaccine uptake through game theory was
probably the first approach that took explicitly into account the behavioural
adaption [265, 266]. The vaccination "game" has two associated strategies, in-
dividuals either get vaccinated (V) or not (NV). The corresponding payoffs,
PV and PNV, are determined by the vaccination cost c, and the infection cost T
(we assume c < T) modulated by the infection probability R∞. The infection
probability is generally inferred from an SIR-like outbreak after the vaccina-
tion uptake. The infection cost c is not merely financial but may also include
the fear of secondary effects. The infection cost T reflects the possible complic-
ations when contracting the disease. Accordingly, the payoffs are expressed
as

PV = −c (2.79)

PNV = −TR∞ . (2.80)

Here we assume a perfect vaccine, wherefore vaccinated individuals cannot
get infected, and the vaccination cost completely determines their payoff. The
product TR∞ reflects the expected infection cost. The infection risk R∞ is a
function of the fraction of vaccinated individuals y. From the equilibrium
condition PV = PNV, we find R∞(y∗) = c/T, where y∗ is the vaccination cov-
erage at equilibrium. Assuming that yc is the critical vaccination coverage to
reach herd immunity, the equilibrium indicates that herd immunity will not
be reached, i.e. y∗ < yc. Otherwise, we had R∞(y∗) = 0, and the equilibrium
condition would not be fulfilled. In this sense, game theory perfectly captures
the essence of the vaccination dilemma.

Now, the question that arises is how such an equilibrium is reached. In
the above framework, individuals are completely rational and can calculate
their payoffs, i.e. they can evaluate their future infection risk R∞. More real-
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istically, reaching an equilibrium requires repeated outbreaks which allow
individuals to adapt their strategy. To model the temporal evolution towards
equilibrium, researchers in social sciences borrowed techniques that were de-
veloped in biology [267]. In the 1970s, game theory was suddenly discovered
as the general framework to describe biological evolution. The difference was
that strategies corresponded to different phenotypes and payoffs to their re-
productive ability (fitness). Intuitively, equilibrium can only be reached if all
phenotypes reproduce at the same rate; otherwise, the most successful phen-
otype would invade the others. The reproduction leads to a dynamics where
the frequency of a phenotype xi evolves as

ẋi = xi ( fi(x)− ⟨ f (x)⟩) , (2.81)

which is known as the replicator equation [268]. The entry fi(x) corresponds
to the fitness of phenotype i, given the frequency distribution x. Then, ⟨ f (x)⟩
is the average fitness in the population, making apparent why equilibrium is
reached when all individuals have the same fitness. Eq. (2.81) then governs
whether and how the equilibrium is reached given an initial condition.

In the context of social processes, there is no apparent reproductive process
as heredity in biology. However, economists introduced a temporal evolution
in game theory by proposing imitation as a reproduction mechanism [269].
Suppose the game is played repetitively, and individuals imitate the most
successful strategy with a probability proportional to the payoff difference. In
that case, the dynamics follow the replicator equation in Eq. (2.81) [269]. The
imitation dynamics have been used in the context of vaccine adoption, where
individuals update their strategies after each subsequent outbreak [270–272].
Beyond vaccination, we will employ a similar approach in Chapter 3 to de-
scribe the temporal coevolution of the adoption of prophylactic tools and the
spread of an epidemic. However, first, let us introduce the second approach
based on individual awareness.

2.5.2 Awareness models

The second approach to modelling the behavioural reaction is assuming that
individual awareness leads to a reduction in the infection probability. Many
different mechanisms to model this reduction have been considered [19, 21,
22]. The emergence of the individual awareness is then either prevalence-based
or belief-based [19]. The seminal study by Funk et al. already analysed ex-
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2.5 explicitly modelling human behaviour in the context of epidemics 67

plicitly both approaches [273]. The prevalence-based approach assumes that
the awareness is fuelled by the presence of the disease and can only be sus-
tained if the disease is endemic [273, 274]. The simplest example would be
to assume that the transmission probability decreases as the global preval-
ence increases, I, as λ(I) = λ(1 − I). In these cases, similarly to the game
theoretic approach, the epidemic threshold is not affected by the possibility
of awareness [273, 275–277]. At the epidemic threshold, prevalence is effect-
ively zero. Accordingly, it seems intuitive that a process which can only be
triggered and sustained for a non-zero prevalence is not present close to the
disease-free state and, hence, does not affect the epidemic threshold.

In contrast, in the belief-based approach, the epidemic threshold is affected
[273, 278–280]. The belief-based approach assumes that the awareness can
spread, also in the absence of infected individuals (locally or globally), as a
social contagion [281]. Every "infected individual" with this social contagion
shows awareness and has a reduced probability of infection. Since the so-
cial contagion can spread in the absence of the disease, individual awareness
slows down the spread of the pathogen even close to the disease-free equi-
librium. Accordingly, the belief-based approach leads to an increase in the
epidemic threshold. Now, there is a third specific category of models that we
have yet to mention, those called adaptive networks [282–285]. In the context
of epidemics, the framework of adaptive networks considers that individu-
als reshape their contacts in the presence of a propagating disease. Typically,
ties between susceptible and infected individuals are cut and randomly re-
wired for the susceptible individual. Effectively, the process corresponds to
the isolation of detected infected individuals, which impacts and increases
the epidemic threshold. However, the extent to which the epidemic threshold
is affected is bounded by the presymptomatic transmission rate, i.e. the trans-
mission risk before individuals are detected.

This overview completes the necessary theoretical background to follow
the different contributions of the thesis. Next, in Chapter 3, we will outline
two models, which serve to understand how prophylactic practice can give
rise to subsequent epidemic waves. As previously mentioned, we will use a
game theoretic framework instead of the awareness-based description.
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3
E P I D E M I C C Y C L E S D R I V E N B Y H U M A N

B E H AV I O U R

Infectious diseases that provide short- or long-term immunity often exhibit
recurrent incidence cycles [286–289]. For example, influenza outbreaks occur
annually during the winter months and are fueled by the rapid mutation of
the virus strains [289]. In the case of childhood diseases, these cycles are –
and luckily in many regions, they are not anymore – driven by the accumu-
lation of susceptible individuals through birth and external seasonal factors
[59]. However, researchers also suggested that human behaviour may be at
the core of the epidemic cycles. More precisely, Chris T. Bauch put forward a
framework that explains prevalence cycles of whole-cell pertussis (whooping
cough) in England and Wales during the 1970s through a risk-based vac-
cine adoption [270]. The whole-cell pertussis vaccine was controversial since
it had rare but significant side effects, and the general public even came to
associate neurological issues with the vaccine, even though they were demon-
strated to be unrelated [290]. In his model, Bauch assumed that, due to the
perceived side effects, parents only vaccinate their newborns against whole-
cell pertussis if the infection risk is sufficiently high. Describing the parents’
decision as an evolutionary game, the model effectively reproduced the phe-
nomenology of the recurrent epidemic cycles.

Another example where human behaviour was proposed as the origin for
epidemic cycles is syphilis [291]. The 8-11 year cycles in the syphilis incidence
across the US were first identified and studied by Grassly et al. [292]. They
hypothesised that the cycles were unforced, endogenous oscillations driven
by the natural dynamics of a syphilis infection, namely the partial protective
immunity. However, these findings were heavily contested later on, particu-
larly the parameter choices made by Grassly et al. [293]. Althouse et al. then
proposed that the cycles may result from the adaptive behaviour of individu-
als when facing detected infections among their sexual partners [291]. They
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Figure 3.1: Estimation of the reproduction number from the reported cases [294] for
a series of European countries. Credible intervals are not illustrated to
improve visibility. The reproduction numbers were estimated using the
framework and parameters provided in Ref. [236]. Solid lines represent a
14-day rolling average of the actual estimation (shaded line).

assume individuals disconnect (stop interacting) from infected sexual part-
ners at a given rate. This framework is generally known as epidemics on
adaptive networks [282–285], which exhibits sustained epidemic cycles in a
specific parameter region.

With the emergence of SARS-CoV-2, we have encountered another infec-
tious disease that shows recurrent increases and decreases in the incidence.
We have experienced many surges of SARS-CoV-2 infections and subsequent
decreases since early 2020. The recurrent epidemic waves result in a reproduc-
tion number that constantly "oscillates" around 1, as illustrated in Fig. 3.1. Ac-
cordingly, the disease is not eradicated but is more or less controlled. While
the synchronised peak during the winter months can be attributed to sea-
sonal factors [295, 296], increases in spring and summer are much more
incoherent across countries (Fig. 3.1). In particular during the summer of
2020, when no new, more transmissible variant was introduced to Europe.
These peaks can be associated with a relaxation in social distancing, and a
subsequent strengthening [297–300]. Obviously, in the case of SARS-CoV-2,
practices of social distancing result from a complex interplay between indi-
vidual decisions and governmental restrictions. However, evidence suggests
that, beyond policy-induced social distancing, voluntary adoption played a
crucial role in the evolution of the pandemic [300].
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The presence of epidemic cycles beyond childhood diseases sparked our
interest to see whether a game theoretic approach could reproduce the ob-
served phenomenology. In contrast to the adoption of vaccines, prophylactic
practices such as using face masks or social distancing are reversible de-
cisions. It is hence not possible to directly adapt the framework in Ref. [270].
The approach by Althouse et al., using adaptive networks, is very specific to
sexually transmitted diseases. It does not seem reasonable that, for example,
SARS-CoV-2 infections lead to a long-term restructuring of the contact net-
work. An infected individual may be temporarily isolated, but social contacts
are quickly reestablished afterwards. Isolation translates as a reduced effect-
ive infectious period, which can be incorporated into a standard SIR model; it
does not lead to epidemic cycles. Additionally, adaptive networks generally
have only a small parameter range in which epidemic cycles are sustained
[282]; only the introduction of memory can extend this region [285]. Some-
what similar, an awareness kernel has been proposed that acts on the contact
rates or the transmission probability [275]. The kernel is defined such that
the higher the prevalence in the past, the stronger the prophylactic practice
will be. However, we will introduce here a simple toy model that exhibits
sustained epidemic cycles and does not require memory if the behavioural
dimension is explicitly introduced. The model is presented in the following
Sec. 3.1. The second part of this chapter, Sec. 3.2, will then extend the model to
incorporate heterogeneity in the risk of a severe infection, which will explain
the temporal variation of reported SARS-CoV-2 cases across age groups.

3.1 epidemic cycles in a homogeneous population

We outlined in Sec. 2.5.1 how the underlying dilemma of the voluntary adop-
tion of vaccines can be understood in game theoretical terms [265, 266, 270].
The adoption of prophylactic measures such as the use of face masks or so-
cial distancing can be understood in a similar way [301–303]. However, in
contrast with the assumption made in Sec. 2.5.1 where we assumed 100% ef-
ficacy, most actual prophylactic measures provide only partial protection. In
other words, anyone that adopts prophylaxis can still get infected. This sub-
tlety requires a slight reformulation of the payoffs. Furthermore, transparency
is critical since the model here aims to explain how epidemic cycles emerge
and are sustained through individual prophylaxis. To this aim, we will in-
troduce a series of approximations that allow for the analytical tractability
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of the model, facilitating the exploration of the phase space. After introdu-
cing the model and the phenomenology it exhibits, we will also propose an
intervention policy that could efficiently prevent recurrent outbreaks.

3.1.1 Recurrence equations

To describe the system under consideration, we must model both the spread
of the virus (epidemics) and the adoption of prophylactic tools (human be-
haviour). The coupling of two dynamics can rapidly increase the number of
parameters and, thus, the model’s complexity. However, since our interest
lies in the phenomenology and not in a quantitative description, we intend to
keep things as straightforward as possible while retaining the key ingredients.
Therefore, for the sake of simplicity, we describe the spread of the epidemic
with a standard SIS model, including a recovery probability µ and transmis-
sion probability λ that spreads on a network with an adjacency matrix A.
The main advantage of taking an SIS model over an SIR model on a closed
population is the existence of a non-trivial stationary state or at least a limit
cycle. This way, the system is less dependent on the initial conditions, and
the transient state can be discarded.

As pointed out previously, game theory is a natural choice to describe the
adoption of vaccines and prophylactic tools. We thus formulate the decision
problem as a two-strategy game where individuals either adopt prophylaxis
and are protected (P) or do not and are unprotected (NP). In this sense, the
adoption can be understood as a trade-off between an adoption cost c and an
associated benefit stemming from the reduced infection risk. Please note that
the adoption cost should not be understood as a mere financial cost. It also
encodes the personal and social disadvantages that go along with the prophy-
lactic tool. For example, the use of a face mask can be physically uncomfort-
able which also contributes to the adoption cost. The cost associated with an
infection is the infection cost T. Similarly, the infection cost is not primarily
financial. Depending on the disease under consideration, it includes the risk
of a severe course of infection, physical pain, or mental stress stemming from
the possibility of having transmitted the disease. It is a general challenge in
game theory to quantify non-monetary costs and translate them into payoffs.
However, since we take a qualitative approach and we will explore a wide
range of parameters, such abstraction is not further concerning. Given the
infection cost, the benefit of the prophylactic tool is determined by the asso-
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ciated reduction of the infection risk. The decision to adopt the prophylactic
tool is thus risk-based. Indeed, empirical studies for different prophylactic
tools and diseases indicate that protective behaviour increases with preval-
ence [259, 265, 304–307]. We incorporate this into the model by considering
an expected infection cost, which is the product between the infection risk and
the infection cost. Including the infection risk in the payoffs acts as the coup-
ling between the behavioural adaptation and the epidemic dynamics. The
dynamics can thus be considered a game with environmental feedback, the
epidemic [308].

In the model, we have a total of four compartments —two behavioural
and two epidemiological—: susceptible and not protected Snp, susceptible
and protected Sp, infected and not protected Inp, or infected and protected
Sp. Accordingly, the payoffs of being protected Pp or unprotected Pnp can be
written as

Pp(t) = −c − T
Ip(t)

Ip(t) + Sp(t)
(3.1)

Pnp(t) = −T
Inp(t)

Inp(t) + Snp(t)
. (3.2)

In the above expressions, the two ratios express the global infection risk de-
pending on whether individuals are protected. Note that we assume that the
individuals have knowledge of the macroscopic state of the epidemic. Once
the payoffs are defined, the question arises how individuals adopt either
strategy. As highlighted before, prophylactic tools can be adopted and dis-
carded repetitively in contrast to vaccines. Therefore, the decision process
should be able to evolve in time. For this reason, we adopt an evolutionary
game instead of a static one [269]. However, instead of opting for the imita-
tion dynamics, we assume that individuals adopt the most successful strategy
with a probability that is proportional to the difference in payoffs (Eqs. (3.1) &
(3.2)). This choice simplifies the model with respect to the imitation dynamics
and makes it analytically tractable. On a macroscopic level, these transition
probabilities lead to a dynamics very similar to those of the replication equa-
tion [268]. More specifically, the transition probabilities are defined as

Γp→np(t) = α
∆Pnp−p(t)

T + c
Θ[∆Pnp−p(t)] (3.3)

Γnp→p(t) = α
∆Pp−np(t)

T + c
Θ[∆Pp−np(t)] . (3.4)
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Θ represents the Heaviside function, where Θ(x) = 1 if x >= 0 and Θ(x) = 0
if x < 0. The differences in payoffs are defined as ∆Pnp−p(t) = −∆Pp−np(t) =
Pnp(t)− Pp(t). The parameter α ∈ [0, 1] controls the time scale between the
behavioural and the epidemic dynamics. The smaller α, the slower individu-
als adapt their strategies in the face of evolving epidemics. The denominator
T + c is the maximum possible difference in payoff and normalises the prob-
abilities. Due to the normalisation, the system’s dynamics is invariant under
a simultaneous rescaling of the infection and protection cost. Solely the ratio
between the protection and infection cost (c/T) determines the adoption of
prophylaxis. Therefore, without loss of generality, we will fix c = 1 and only
vary T in the following.

Prophylactic tools very rarely provide complete protection against infec-
tion. Face masks [309], social distancing [310], or condom use [311] all have
effectiveness well below 100%. In analogy to leaky vaccines [312], we con-
sider a leaky prophylactic tool with effectiveness 1 − γ upon each contact.
For γ = 0, protection is perfect, while γ = 1 means there is no protection. We
assume that the effectiveness of the prophylactic tool to prevent transmission
and infection is the same. To be more precise, the probability for transmis-
sion is γλ, independent of whether the infected individual or the susceptible
one is protected. Furthermore, we assume that if two protected individuals
meet, the transmission probability is only linearly reduced. Both of these as-
sumptions are reasonable for condom use but, for example, do not hold for
face masks. However, the assumptions help to simplify the number of para-
meters and are unlikely to affect the overall phenomenology. Eventually, the
transition between epidemic compartments can be described by the following
reactions between agents i and j

Si
np(t) + I j

np(t)
λ−→ Ii

np(t) + I j
np(t) (3.5)

Si
np(t) + I j

p(t)
γλ−→ Ii

np(t) + I j
p(t) (3.6)

Si
p(t) + I j

np(t)
γλ−→ Ii

p(t) + I j
np(t) (3.7)

Si
p(t) + I j

p(t)
γλ−→ Ii

p(t) + I j
p(t) . (3.8)

To write the model equations, we employ the discrete-time Microscopic
Markov Chain Approach [175, 177], which we have detailed in Sec. 2.2.3.4.
In this approach, for every individual i = 1, . . . N, the variables Si

np(t), Si
p(t),

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



3.1 epidemic cycles in a homogeneous population 75

Ii
np(t) and Ii

p(t) describe the individuals’ probability to be in each of the four
states at time t. The model equations read

Si
p(t + 1) =

[
1 − Γp→np(t)

] {
Si

p(t)
[
1 − qi

p(t)
]
+ Ii

p(t)µ
}

+ Γnp→p(t)
{

Si
np(t)

[
1 − qi

p(t)
]
+ Ii

np(t)µ
}

(3.9)

Si
np(t + 1) = Γp→np(t)

{
Si

p(t)
[
1 − qi

np(t)
]
+ Ii

p(t)µ
}

+
[
1 − Γnp→p(t)

] {
Si

np(t)
[
1 − qi

np(t)
]
+ Ii

np(t)µ
}

(3.10)

Ii
p(t + 1) =

[
1 − Γp→np(t)

] {
Si

p(t)q
i
p(t) + Ii

p(t)(1 − µ)
}

+ Γnp→p(t)
{

Si
np(t)q

i
p(t) + Ii

np(t)(1 − µ)
}

(3.11)

Ii
np(t + 1) = Γp→np(t)

{
Si

p(t)q
i
np(t) + Ii

p(t)(1 − µ)
}

+
[
1 − Γnp→p(t)

] {
Si

np(t)q
i
np(t) + Ii

np(t)(1 − µ)
}

. (3.12)

In the above equations, the terms in brackets describe the transitions between
the epidemic compartments, while the others control the behavioural trans-
itions. The two quantities qi

p(t) and qi
np(t) express the probability that agent

i will get infected at time t given the adopted strategy p or np. These probab-
ilities are given by

qi
p(t) = 1 −

N

∏
j=1

{
1 − Aijλγ

[
I j
p(t) + I j

np(t)
] }

(3.13)

qi
np(t) = 1 −

N

∏
j=1

{
1 − Aijλ

[
γI j

p(t) + I j
np(t)

] }
. (3.14)

3.1.2 Sustained epidemic cycles

As a first step, we numerically solve the dynamic equations to analyse the
temporal evolution of the system. We observe in Fig. 3.2A that the system
exhibits a limit cycle for both the prevalence and the fraction of protected in-
dividuals. Looking carefully into the temporal evolution, we see that peaks in
the prevalence and the fraction of protected individuals alternate with each
other. The evolution of the payoffs for both strategies, shown in Fig. 3.2B,
unveils the driving force behind this temporal pattern. Focusing on the grey-
shaded area, we see that high prophylaxis levels result in low prevalence,
reducing infection pressure. Further, in a low prevalence environment, the
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Figure 3.2: Numerical results of the risk-driven epidemic spreading model on a power-
law network of size N = 2000 and exponent 2.5. Default parameters are
c = 1, µ = 0.1, T = 10, λ = 0.05, α = 0.1, and γ = 0.1. (A): Fraction of
protected (P = Sp + Ip) (blue upper line) and infected (I = Ip + Inp) (red
lower line) individuals as a function of time. We observe an oscillatory
behaviour that is sustained in time. (B): Detail of the oscillations. The red
(top plot) and blue (middle plot) lines indicate the fraction of infected and
protected individuals, respectively. In the bottom plot, the black dashed
line plots the payoff of the not protected strategy (Pnp), while the solid black
line is the payoff of the protected strategy (Pp).

benefit of the prophylactic tool does not outweigh its cost (Pnp > Pp). Ac-
cordingly, the protection level decreases over time, causing a surge in pre-
valence. Eventually, the increasing epidemic pressure makes adopting the
prophylactic tool beneficial (Pnp < Pp), adoption increases, and prevalence
decreases. The repetition of this process sustains the limit cycle over time.
In other words, it leads to a reproduction number that oscillates around 1,
similar to the illustration in Fig. 3.1.

Given the presence of limit cycles, the natural question is where these
cycles exist in the parameter phase space. Let us first focus on how the in-
fection cost affects the amplitude of the limit cycle. As one would expect,
on the left in Fig. 3.3A, an increasing infection cost decreases the prevalence
level. However, as shown on the right in Fig. 3.3A, the limit cycle’s relative
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3.1 epidemic cycles in a homogeneous population 77

amplitude increases with the infection cost. This increase in the relative amp-
litude with the infection cost is further corroborated in Fig. 3.3B. Despite the
increase in relative amplitude, the region in the λ − γ phase space in which
the limit cycle is present reduces with an increasing infection cost. In this
phase space, the limit cycle only exists for low infectivity and high efficacy.
Intuitively, we can understand this observation by considering the impact of
the adoption of prophylactic tools on the epidemic evolution. The impact of
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Figure 3.3: (A): Amplitudes of the oscillations in the fraction of infected individuals
as a function of time (darker colours represent higher values of T). The
left plot depicts the absolute value of the amplitude, while the right one
depicts the relative one, all of them for three values of T, the cost of infec-
tion. Higher values of T (higher cost) generate smaller oscillations (see left
plot). On the right, we can see that all amplitudes of the oscillations are
of the same order of magnitude when calculated relative to the fraction
of infected individuals. (B): Average relative amplitudes of the fraction of
infected individuals in the steady state, for all ranges of γ (the probability
of protection failure) and λ (the infectivity rate), for different values of T.
We observe that as the infection cost increases, the area where the oscil-
lations are present is reduced, but the oscillations themselves are larger.
Numerical results of the risk-driven epidemic spreading model obtained
on a power-law network of size N = 2000 and exponent 2.5. Parameters
are c = 1, µ = 0.1, T = 10, λ = 0.05, α = 0.1 and γ = 0.1.

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



78 epidemic cycles driven by human behaviour

the prophylactic tool depends on its efficacy and the virus’s transmissibility.
To be more precise, the per-contact efficacy 1 − γ relative to the transmissib-
ility determines to which extent the adoption of a prophylactic tool reduces
prevalence. Suppose the efficacy is low with respect to the transmissibility. In
that case, the adoption of the prophylactic tool by a part of the population
only has a limited impact on the population-level prevalence. Therefore, any
temporal changes in the prophylaxis level will not trigger substantial vari-
ations in the prevalence. In other words, it essentially reduces the feedback
loop between the behavioural and the epidemic dynamics, impeding a sus-
tained limit cycle. Accordingly, the amplitudes are damped, and the system
eventually converges to a stationary state.

In addition to the epidemiological and behavioural parameters, the time
scale between the two dynamics defines whether the system either exhibits a
limit cycle or reaches a stationary state. Fig. 3.4A & B show how increasing
α leads to the emergence of a limit cycle. While the amplitudes smoothly in-

α
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Figure 3.4: (A): Amplitudes of the oscillations in the fraction of infected and protected
individuals, respectively, as a function of the parameter α. (B): Associated
frequency f of the epidemic cycles. Numerical results of the risk-driven
epidemic spreading model obtained on a power-law network of size N =
2000 and exponent 2.5. Parameters are c = 1, µ = 0.1, T = 10, λ = 0.15,
and γ = 0.15.

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



3.1 epidemic cycles in a homogeneous population 79

crease (A), the frequency of the limit cycle exhibits an abrupt transition (B).
This result highlights that the behavioural dynamic needs to evolve rapidly
to sustain the limit cycle. The phenomenology is similar to the one in the evol-
utionary vaccine game proposed in Ref. [270]. The rapid behavioural adap-
tion leads to a constant overshooting in the uptake or the discontinuation of
prophylactic tools with respect to the actual epidemic pressure. Due to the in-
ertia of the epidemic dynamics, individuals decide according to an epidemic
pressure which does not yet reflect the current uptake of prophylactic tools.
In this sense, the delay until the behavioural adaption impacts the epidemic
evolution sustains the limit cycle. Essentially, this delay acts in a similar way
as the infection kernel in Ref. [275]. For this reason, considering explicitly the
coupling between the behavioural and the epidemic dynamics, limit cycles
are sustained even in a Markovian framework in which individuals have no
memory of past states of the system.

3.1.3 Time average of the macroscopic state

After analysing the temporal evolution of the dynamics, let us now consider
the time average of the macroscopic states, in particular, the prevalence I and
the fraction of individuals adopting the prophylactic tool P. Fig. 3.5 shows
that the system exhibits different dynamical regimes with respect to the de-
pendence on λ. Independent of the efficacy, the prevalence increases with λ

before any individual adopts the prophylactic tool (P = 0). However, after
the initial increase in prevalence, the qualitative dependence on λ is shaped
by γ. In the trivial case of 0 efficacy (γ = 1), prophylactic tools are not ad-
opted, and we recover the standard second-order phase transition of the SIS
model. If the prophylactic measure offers actual protection, the phenomeno-
logy is much richer. We find a non-monotonous dependence on λ for both
I and P. For perfect protection (γ = 0), after the initial increase, I exhibits
a maximum while P continuously increases. The case of an imperfect pro-
phylactic tool is more delicate. As the virus becomes more transmissible, the
actual benefit of adopting an imperfect prophylactic tool decreases. At some
point, individuals get infected regardless of whether they protect themselves.
Hence, we observe a non-monotonous dependence of P with respect to λ,
and individuals eventually abandon the prophylactic behaviour.
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Figure 3.5: Fraction of infected individuals (I = Inp + Ip) and fraction of protected
individuals (P = Sp + Ip) in the steady state as a function of the epidemic
infection probability λ, for different values of the probability of preventive
measures failing (γ). Numerical results of the proposed model obtained
on a power-law network of size N = 2000 and exponent 2.5. Parameters
are c = 1, µ = 0.1, and T = 10.

3.1.4 Calculating the epidemic threshold

We pointed out before that individuals do not protect themselves if the pre-
valence is low. This behaviour suggests that, within our framework, the epi-
demic threshold remains unaffected by the voluntary uptake of the prophy-
lactic tool. Intuitively, at the epidemic threshold, the epidemic pressure is
effectively zero and thus also the benefit of the prophylactic tool. Accord-
ingly, as highlighted in Sec. 2.5.1, the protection cost cannot be compensated,
and individuals do not opt for prophylaxis. To prove rigorously that the
epidemic threshold is the one of the standard SIS models, we consider the
stationary state of the dynamical system. At equilibrium, the probability of
an individual being protected, Pi, does not change between time steps, i.e.
Pi(t + 1) = Pi(t). Imposing this condition, we find

Pi(t)Γp→np(t) =
(

1 − Pi(t)
)

Γnp→p(t) . (3.15)

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



3.1 epidemic cycles in a homogeneous population 81

Due to the Heaviside function in the transition probabilities Γp→np(t) and
Γnp→p(t), if both strategies do not yield the same payoff, only one of them
is non zero. Therefore, assuming a non-trivial case where Pi(t) ̸∈ {0, 1}, the
above condition can only be fulfilled if Pp(t) = Pnp(t). More specifically, this
condition implies that in the stationary state, the behavioural and the epi-
demic dynamics are at equilibrium simultaneously. The condition in Eq. (3.15)
translates as

c
T

=
Inp

Inp + Snp
− Ip

Ip + Sp
. (3.16)

Let us first consider the case of perfect efficacy of the prophylactic measures.
Since Ip = 0 for γ = 0, the condition in Eq. (3.16) can only be fulfilled if
prevalence in the non-protected population equals the ratio c/T, which is
certainly not true at the epidemic threshold. Due to the negative sign before
the second term in the RHS, prevalence would need to be even higher in the
non-protected population than c/T for γ ̸= 0. More generally, at the epidemic
threshold λc, the fraction of infected individuals is negligibly small, i.e. I ≈ ϵ.
The condition is thus only verified for c = 0. Hence, a non-trivial equilibrium
can only be reached at the epidemic threshold in the particular case without
a protection cost. Discarding such artificiality, we conclude that the epidemic
threshold is the one of the standard SIS models, i.e.

λc =
µ

λmax(A)
, (3.17)

where λmax(A) refers to the spectral radius of the adjacency matrix A [173].

3.1.5 Threshold for the behavioural adaption

In analogy to the epidemic threshold, we define the protection threshold λ̃

for which individuals start to adapt their behaviour, and the fraction of pro-
tected individuals becomes non-zero. To calculate λ̃, we approximate the dy-
namics by considering a continuous-time well-mixed population of identical
agents. The assumption of identical agents allows us to drop the index i and
describe the dynamics through the four variables Sp(t), Snp(t), Ip(t), and
Inp(t), where these quantities account for the fraction of agents in each com-
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partment. Further, in continuous-time, the expressions of qnp(t) and qp(t) in
Eqs. (3.13) & (3.14) simplify to

qnp(t) = λ
[
γIp(t) + Inp(t)

]
(3.18)

qp(t) = λγ
[
Ip(t) + Inp(t)

]
. (3.19)

The differential equations governing the dynamics then read

Ṡp = µIp − λγSp
(

Ip + Inp
)
+ Tnp→pSnp − Tp→npSp (3.20)

Ṡnp = µInp − λSnp
(
γIp + Inp

)
− Tnp→pSnp + Tp→npSp (3.21)

İp = −µIp + λγSp
(

Ip + Inp
)
+ Tnp→p Inp − Tp→np Ip (3.22)

İnp = −µInp + λSnp
(
γIp + Inp

)
− Tnp→p Inp + Tp→np Ip . (3.23)

We see that the behavioural and epidemic dynamics are decoupled in the
continuous-time description. Accordingly, as in the discrete-time model, we
can consider the equilibrium condition for both dynamics separately. Further,
since we focus on the protection threshold, we have Sp ≈ ϵ and Ip ≈ ϵ.
Accordingly, the equilibrium condition in Eq. (3.15) becomes

c
T
(

Ip + Sp
)
=

Inp

Inp + Snp

(
Ip + Sp

)
− Ip

= Inp
(

Ip + Sp
)
− Ip +O

[(
Ip + Sp

)2
]

. (3.24)

We will neglect second-order terms of Sp and Ip in the following. Accordingly,
we can rewrite Eq. (3.15) as

Ip =
(

Ip + Sp
) (

Inp −
c
T

)
. (3.25)

Due to the conservation equation Ip + Sp + Inp + Snp = 1, we discard the
redundant variable Snp. According to Eqs. (3.20) & (3.22), the equilibrium
conditions for Sp and Ip become

Sp =
Ip

Inp

µ

γλ
(3.26)

Ip = Inp
1 − Inp − µ

λ

Inp (1 + γ)− γ + µ
γλ

. (3.27)
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Inserting Eqs. (3.26) & (3.27) into Eq. (3.25), we find a quadratic equation for
Inp as

I2
np − Inp

(
1 +

c
T
− µ

γλ

)
− c

T
µ

γλ
= 0 . (3.28)

The quadratic equation has only one non-negative solution, given by

Inp =

−1 − c
T
+

µ

γλ

√√√√√√
(

1 +
c
T
− µ

γλ

)2
+ 4

c
T

µ

γλ︸ ︷︷ ︸
∆

 . (3.29)

The protection threshold λ̃ is reached as Ip becomes positive. The denomin-
ator in Eq. (3.27) is always positive since

Inp (1 + γ)− γ +
µ

γλ
=

1
2

[
1 − γ +

µ

λ

(
1
γ
− 1
)
+ (1 + γ)

( c
T
+
√

∆
)]

> 0 .

(3.30)
Hence, the condition Ip > 0 is fulfilled whenever the numerator is positive,
i.e. Inp < 1− µ

λ , where naturally the term 1− µ/λ is the prevalence of the SIS
model in the absence of prophylactic behaviour. This condition further high-
lights why the epidemic threshold is unaffected by voluntary prophylaxis. In
a well-mixed population, the epidemic threshold is given by λc = µ. There-
fore, at the epidemic threshold, the condition Ip > 0 reads as Inp < 0, which
is never satisfied. Inserting the expression of Inp in Eq. (3.29) into the crit-
ical condition Inp = 1 − µ

λ̃
, we find after some tedious algebra the protection

threshold λ̃ as
λ̃± =

2µ

1 − c
T ∓

√(
1 − c

T
)2 − 4 c

T
γ

1−γ

. (3.31)

Interestingly, the protection threshold has two solutions: λ̃+ and λ̃−. The ex-
istence of two solutions is in line with our discussion of Fig. 3.5. The threshold
λ̃− describes the critical value at which the epidemic pressure is sufficiently
high such that the reduced infection risk outweighs the protection cost. In
contrast, λ̃+ represents the critical transmission probability at which indi-
viduals stop adopting the prophylactic tool since the infection risk is too high
with respect to efficacy. Perfect efficacy is a particular case since prophylaxis
fully protects individuals independently of the infection risk. Accordingly,
the critical value λ̃+ does not exist for γ = 0, i.e. lim

γ→0
λ̃+ = ∞.
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Figure 3.6: Phase-space diagrams of the prevalence on the number of Protected (left)
and the number of Infected individuals (right). The red line in the left plot
denotes the epidemic threshold of our model, as calculated in Eq. (3.17).
The blue line on the left plot is the protection threshold obtained in
Eq. (3.31). The green line indicates the epidemic threshold in the case of
a fully protected population. Numerical results of the proposed model ob-
tained on a power-law network of size N = 2000 and exponent 2.5. Para-
meters are c = 1, µ = 0.1, and T = 10.

3.1.6 Exploring the phase space

In Fig. 3.6, we see that both the epidemic threshold and the protection
threshold are in good agreement with the numerical solution of the recur-
rence equations. Please note that we rescaled λ̃± with respect to the average
degree of the network. Additionally, we observe that a lower efficacy can ac-
tually promote the adoption of prophylaxis. The phenomenology behind this
is detailed in Ref. [313]. Fig. 3.7 shows the time average of all four compart-
ments. We see that as the transmission probability increases, the individuals
transfer first from compartment Snp to Sp. Since the transmission probabil-
ity is still relatively low compared to the efficacy of the prophylactic tool, the
spread of the virus is still under control and prevalence (Ip and Inp) is low. As
the transmission probability increases further, the fraction of protected indi-
viduals that are infected starts to increase substantially. Due to the increasing
infection risk despite the prophylactic practice, individuals eventually aban-
don the prophylactic tool, and most of the population is in compartment Inp.
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Figure 3.7: Phase-space diagrams for the fraction of the population in each of the
four compartments of our model, at the steady state, for all range of λ
and γ. Numerical results of the proposed model obtained on a power-law
network of size N = 2000 and exponent 2.5. Parameters are c = 1, µ = 0.1,
and T = 10.

3.1.7 Intervention policies

We have now extensively analysed the phenomenology of the presented
model. Naturally, the question arises whether we can leverage this model
to gain insight into intervention policies. More specifically, we focus here on
awareness campaigns that aim at promoting voluntary prophylaxis. We expli-
citly discard any policies that impose the use of a prophylactic tool through
mandates. Furthermore, we discard technological advances that may increase
adoption via improved effectiveness. Hence, considering the model’s para-
meters, we realise that mainly the infection and protection costs can be influ-
enced to promote adoption. While the protection cost can be reduced through
increased availability or a price reduction, the infection cost can be increased
through increased awareness about the severity of a disease. In contrast, the
epidemic parameters µ and λ are inherent to the infectious disease and are
not affected by the prophylactic tool.
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As we pointed out before, the ratio c/T between protection and infection
costs uniquely parametrises the behavioural dynamics, allowing us to sub-
sume interventions that affect either the infection or the protection cost into
the same category. Accordingly, even though we will only consider interven-
tions that impact the infection cost, the same results hold with respect to the
protection cost. Regarding the time-averaged quantities, changes in the infec-
tion cost affect the dynamics trivially; any increase in the infection cost will
promote prophylaxis and thus reduce prevalence. However, the analysis is
not straightforward if we consider the temporal evolution. To make an ana-
logy with SARS-CoV-2, we all experienced how many governments focused
on reducing the peak load on the healthcare system. In our framework, this
equals reducing the peak prevalence of the limit cycle.

We will consider two types of intervention policies: (i) continuous cam-
paigns that are sustained in time and (ii) pulsed campaigns that are only
activated if prevalence is increasing. We assume that the campaigns make
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Figure 3.8: Time evolution of the infection prevalence in the presence of a pulsating
awareness campaign (top) and a continuously sustained awareness cam-
paign (bottom), for different values of the perceived risk increment ∆T.
The contact network used here is a power-law network of size N = 2000
and exponent 2.5. Parameters are c = 1, µ = 0.1, λ = 0.05, γ = 0.1, and
T = 10. The pulsating campaign allows more efficient suppression of the
peaks in the infection prevalence than the sustained campaign.
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individuals more aware of the disease severity and the possible dangers of
onward transmission in their social sphere. Specifically, within our model
framework, the awareness campaigns increase the infection cost by T to
T + ∆T. While for the continuous campaigns, the infection cost is constantly
T + ∆T, the pulsed campaigns exhibit an infection cost of T + ∆T if preval-
ence increases and an infection cost of T if prevalence decreases. Further, to
correctly bound the transition probabilities, we adapt the normalisation in
the transition probabilities to c + T + ∆T for the continuous campaign and to
c + T + ∆TΘ(I(t)− I(t − 1)) for the pulsed one.

Surprisingly, we observe in Fig. 3.8 that the pulsed campaign performs bet-
ter in reducing the peak prevalence than the continuous campaign. This res-
ult seems counterintuitive since a continuous awareness campaign requires
more resources than a pulsed one. To elucidate the mechanism that makes
pulsed campaigns more effective than continuous ones, we detail in Fig. 3.9
the evolution of I, P and the normalised payoff difference starting from t = 0.
Initially, the epidemic is expanding. Hence, the pulsed campaign is active,
and the dynamics evolve equally for both campaigns. As individuals increase
prophylaxis, prevalence eventually starts decreasing (label 1). At this point,
the pulsed campaign is deactivated (while the continuous campaign remains
in place), decreasing the infection cost and, thus, the benefit of adopting pro-
phylaxis. Therefore, since the payoff difference is directly proportional to the
transition probabilities, prophylaxis increases faster in the continuous cam-
paign than in the pulsed one. Due to the lower infection cost, abstaining from
prophylactic behaviour becomes more beneficial than adoption (label 3), first,
for the pulsed campaign and, later, for the continuous one. In addition to the
delay, prophylaxis is less widespread at its peak for the pulsed campaign (la-
bel 4). In turn, the increased prophylaxis in the continuous campaign leads to
a lower minimal prevalence than for the pulsed one (label 5). As prevalence
increases again due to decreasing prophylaxis levels, the pulsed campaign is
activated, increasing the payoff associated with strategy P (label 6). Eventu-
ally, due to the expanding epidemic, individuals start adopting prophylaxis
again (label 7). We see that the minimal prophylaxis level in the pulsed cam-
paign is substantially higher than in the continuous one. Hence, the pulsed
campaign can control the expanding epidemic quicker, leading to a lower
peak prevalence (label 8). From here, steps 1 to 8 are repeated periodically.

In a nutshell, both the continuous and pulsed campaigns sensitise the pop-
ulation about the disease severity, which translates into an increased infection
cost. The pulsed campaign showed to damp the amplitude of the limit cycle
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Figure 3.9: Infection prevalence (top), protection level (middle) and normalised payoff
difference (bottom), as a function of time for ∆T = 1.2. For the pulsed
intervention, we define T(t) = T + ∆TΘ[I(t)− I(t − 1)]. In the case of a
continuous intervention, we have T(t) = T + ∆T. The contact network is
a power-law network of size N = 2000 and exponent 2.5. Parameters are
c = 1, µ = 0.1, λ = 0.05, γ = 0.15, and T = 10.

efficiently. Countercyclical on/off switching of the campaign reduces behavi-
oural overshooting in response to the evolving epidemic. In other words, the
pulsed campaign reduces the inertia in the coupling between the two dynam-
ics, which drives and sustains the limit cycle. Accordingly, a pulsed campaign
may be more beneficial to (i) save resources and (ii) reduce peak prevalence.
It must be said, however, that the model assumes an immediate activation
as prevalence starts to increase for the pulsed campaign. The experience in
handling the SARS-CoV-2 epidemic has shown that authorities struggle to
take action against an expanding epidemic if the prevalence is still relatively
low. In many cases, health authorities hesitated during the early expansive
phases and only took action after weeks of epidemic growth [298, 314, 315].
For this reason, it may be questionable how feasible the implementation of a
pulsed campaign actually is.
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3.2 diseases with a heterogeneous risk of severe infection

The model we introduced provides an explanation of how risk-based pro-
phylaxis can lead to recurrent epidemic cycles. Further, we showed that in-
dividuals do not need any memory about past states of the system for limit
cycles to be sustained. The dynamics is fully Markovian. We pointed out
that such coupling between prophylaxis and the epidemic spreading may ex-
plain a part of the epidemic waves we experienced during the SARS-CoV-2
pandemic in many countries. Obviously, this model is a very crude simplific-
ation. It only considers voluntary adoption, while many countries introduced
a series of mandates to control the spread of SARS-CoV-2 [314, 316, 317].

Additionally, the model assumes identical agents. Regarding the infection
cost, assuming they are equal for the entire population is not reasonable for
many diseases. For example, COVID-19 shows a strong age-dependent sever-
ity [326–328]. While the course of infection is mostly mild for younger indi-
viduals, elderly people are subject to an elevated fatality risk. In our frame-
work, the age-dependent severity would translate into an age stratification
of the model, in which age strata have different infection costs. We have pre-
viously shown, and as intuition suggests, that a higher infection cost results
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Figure 3.10: Weekly aggregated distribution of reported cases among the age groups
for a variety of regions and countries [318–325]. The x-axis indicates time
by enumerating the weeks of 2020 and continuing after 2021. The red line
shows the evolution of the average weekly incidence, which serves as a
proxy for prevalence, normalised to the peak incidence.

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



90 epidemic cycles driven by human behaviour

Florida Germany Switzerland

Catalunya Denmark England

Aggregated Aragon Belgium

25 50 75 100 25 50 75 100 25 50 75 100

−1

0

1

2

−1

0

1

2

−1

0

1

2

Age Group

La
g 

w
ith

 A
gg

re
ag

te
d 

In
ci

de
nc

e 
(w

ee
ks

)

Figure 3.11: Temporal difference between the peak in the absolute number of infec-
tions of a particular age group and the entire population across all age
groups. Lines show the range of the age groups, while dots indicate the
mean between the limits. For all countries and regions, we show the
second peak. An exception is Germany, whose second peak coincides
with the Christmas holidays, which made reporting unreliable, where-
fore we show the delay for the first wave. The top left plot reports the
results from all countries and regions.

in more frequent prophylaxis. A series of studies have shown that elderly
individuals actually adopted more intense and more frequent prophylaxis.
The elderly showed intensified social distancing indicated by a stronger re-
duction of mobility [329–331], contacts [297, 306, 307, 332, 333], or credit card
expenses [334] than the rest of the population.

The intensified social distancing, together with the generally lower num-
ber of contacts in the elderly, resulted in a lower seroprevalence than in the
younger age groups [327]. Besides the overall infections, the case data ex-
hibits an interesting temporal pattern with respect to age stratification. To
be more precise, the data exhibits two phenomena: (i) the fraction of total
cases attributed to the elderly increases towards the epidemic peak, and (ii)
the absolute number of infections in the elderly have their maxima delayed
with respect to the rest of the population. Fig. 3.10 illustrates the observa-
tion (i) for a series of countries and regions. We observe that the number of
cases belonging to the older age groups steadily increases as the epidemic
expands. Further, the maximal fraction of cases belonging to the older age
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groups is reached substantially after the absolute number of infections has
reached its peak (red curve). This difference directly connects with observa-
tion (ii) illustrated in Fig. 3.11. The data indicates that across countries and
regions, the older age groups reach their maximal number of infections with
a delay between one and two weeks with respect to the younger age groups.
The same was observed for fatalities instead of case numbers [318, 335].

We have previously shown that a minimal model, which considers the
coupling between the adoption of prophylaxis and the spread of an epidemic,
can explain how recurrent epidemic waves may emerge. Naturally, we, there-
fore, ask ourselves whether we can adapt this previous model to exhibit not
only recurrent waves but also the age-specific phenomenology discussed here.
Our intuition is that introducing a heterogeneous infection cost is sufficient
to explain the observed phenomenology. Therefore, in the following, we will
adapt the model, introduce heterogeneity in the infection cost and analyse
the implications for the dynamics.

3.2.1 Differential equations for the dynamics

In contrast to our previous modelling effort, the approach here attempts to
explain a specific phenomenology that is exclusively observed in the SARS-
CoV-2 epidemic. Since a SARS-CoV-2 infection generally leads to substantial
immunity, we will consider an SIR model instead of an SIS. Additionally, for
the time scale we consider here, one can assume that reinfections were not
the main driver of the epidemic evolution [336], which allows us to simplify
the model and disregard reinfections. We do not consider how contact tra-
cing and isolation may affect the dynamics. Therefore, it is not necessary to
distinguish between pre-symptomatic, asymptomatic and symptomatic infec-
tiousness. The SIR model can capture the key ingredients of the epidemic
dynamics. Additionally, the previous results have shown that the mean-field
description of the model accurately captures the general behaviour. For the
sake of simplicity, we will therefore consider a mean-field approach. Contacts
are only structured according to the age-stratification, which is controlled by
a contact matrix C.

Regarding the behavioural dynamics, we will only consider individual pro-
phylaxis. As before, we disregard the role of central actors, such as health au-
thorities and how their policies affect the population’s behavioural response.
Individual prophylaxis is manifold. It consists of physical distancing [337],
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reduction of contacts [329], adoption of hygiene measures [338], regular vent-
ilation [339], or the use of face masks [309], to name a few. However, from
a mathematical point of view, all these different prophylactic tools simply
reduce the transmission rate — either through a reduction of contacts or the
transmission probability [18]. Hence, we subsume the different prophylactic
practices into one category: the adoption of prophylactic measures. Adopting
the prophylactic measures results in a reduced transmission rate βi with ef-
ficacy ϵi for each age stratum i. We denote the two resulting strategies with P
and NP for individuals who adopt those measures and individuals who do
not, respectively.

We will slightly amend the definition of the payoffs. The dynamics of the
SIR model do not reach an equilibrium as the SIS model. It is thus necessary
to adapt the dynamics from Sec. 3.1. A natural choice for the initial dynam-
ics is to introduce a small fraction of infected individuals in the absence of
protection and analyse how individuals then adopt prophylactic measures
in the face of an expanding epidemic. However, in the previous modelling
effort, we defined the payoffs through the fraction of infected individuals
for the respective strategy. The value of this fraction varies very rapidly if
only a few individuals adopt strategy P. Therefore, we adapt the payoffs and
multiply the infection costs by an effective epidemic pressure. For individu-
als adopting strategy NP, the epidemic pressure is simply the prevalence. In
contrast, for individuals that adopt prophylaxis, we rescale the prevalence by
the efficacy of the prophylactic measures. Precisely, the payoffs read

PNP
i = −Ti

G

∑
j=1

σj

(
INP
j + IP

j

)
(3.32)

PP
i = −ci − Ti(1 − ϵi)

G

∑
j=1

σj

(
INP
j + IP

j

)
. (3.33)

The sum expresses the population’s overall prevalence, where σi refers to
the fraction of the population belonging to age stratum i. To formulate the
model in all generality, we assume not only a different infection cost Ti for
each age strata, but also separate protection costs ci, transmission rates βi,
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and efficacies ϵi. As before, individuals adopt the most successful strategy
according to the following transition probabilities:

ΓP→NP
i = Θ

(
PNP

i − PP
i

) PNP
i − PP

i
ci + Ti

(3.34)

ΓNP→P
i = Θ

(
PP

i − PNP
i

) PP
i − PNP

i
ci + Ti

. (3.35)

The transition probabilities are modulated by a selection rate αi to control
the time scale between the behavioural adaption and the epidemic dynamics.
Coupling the behavioural model with the SIR spreading model leads to the
following set of differential equations

ṠNP
i = −βiSNP

i

G

∑
j=1

Cij

(
INP
j + (1 − ϵj)IP

j

)
+ αiSP

i ΓP→NP
i − αiSNPΓNP→P

i

(3.36)

ṠP
i = −βiSP

i (1 − ϵi)
G

∑
j=1

Cij

(
INP
j + (1 − ϵj)IP

j

)
+ αiSNP

i ΓNP→P
i − αiSPΓP→NP

i

(3.37)

İNP
i = βiSNP

i

G

∑
j=1

Cij

(
INP
j + (1 − ϵj)IP

j

)
− µi INP

i (3.38)

İP
i = βiSP

i (1 − ϵi)
G

∑
j=1

Cij

(
INP
j + Γi IP

j

)
− µi IP

i (3.39)

Ṙi = µi

(
INP
i + IP

i

)
. (3.40)

The parameter µi refers to the recovery rate in age-stratum i. G is the number
of age strata. The variables SP

i (IP
i ) and INP

i (INP
i ) represent the fraction of sus-

ceptible (infected) individuals in age strata i that adopt strategy P and NP,
respectively. As previously mentioned, the matrix entries Cij control the inter-
action frequency between age group i and j. For the recovered department,
we do not distinguish between strategies.

3.2.2 Basic phenomenology of the model

Before analysing the effect of the heterogeneous infection cost, let us first
verify that, with the adapted payoffs, the model equally exhibits recurrent epi-
demic waves. We thus assume a homogeneous, well-mixed population with
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Figure 3.12: Prevalence or fraction of infected individuals, I = INP + IP (A) and frac-
tion of protected individuals P = SP + IP (B) evolving in time for a single
realisation of the process, with initial conditions INP(0) = 10−5 and the
remaining fraction is attributed to the compartment SNP(0), with fixed
α = 50 and T = 2000. Remaining parameters are β = 0.6, µ = 0.2, ϵ = 0.4
and c = 1.

equal epidemiological and behavioural parameters. To study the system’s dy-
namics, we numerically solve the differential equations. Fig. 3.12A & B show
that the dynamics actually exhibits recurrent epidemic waves. Similarly to the
original model, the epidemic evolution is driven by a time-varying prophy-
laxis level. Individuals constantly reduce and increase prophylaxis depend-
ing on the current epidemic pressure, which causes the reproduction number
to be constantly "oscillating" around one.

Besides the temporal variation of the reproduction number, we have pre-
viously highlighted that the epidemic threshold is not affected by the vol-
untary adoption of prophylactic behaviour. The same holds in the current
framework. Assuming that prophylaxis is absent at t = 0, the condition
PP(t) > PNP(t) must be fulfilled at some time t in order for individuals
to adopt prophylaxis. This condition leads to a critical prevalence level I∗

below which prophylaxis will not be adopted:

I∗ =
c

ϵT
. (3.41)
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Accordingly, for prophylaxis to merge, the maximal prevalence Imax during
the outbreak must exceed I∗. In the standard SIR model [18], the maximal
prevalence is given by

Imax = 1 − 1
R0

(1 + ln(R0)) . (3.42)

The variable R0 refers to the basic reproduction number of the disease. Com-
bining the Eqs. (3.41) & (3.42), the ratio between the protection and infection
cost must fulfil the following inequality for the behavioural response to ma-
terialise:

c
T

< ϵ

[
1 − 1

R0
(1 + ln(R0))

]
. (3.43)

At the epidemic threshold, i.e. βc = µ, this condition is never fulfilled since
the RHS is zero (R0 = 1). Therefore, the epidemic threshold remains unaf-
fected, as one would expect, given our previous results. Further, if one had
several groups with different ratios ci/Ti but equal transmission rates and
random mixing across strata, the condition would equally hold. In such a
case, the behavioural response would be triggered by the age strata with the
lowest ratio ci/Ti.

Fig. 3.12B shows that the protection level continuously decreases over
time while the average prevalence stays relatively constant. The prevalence
does vary less since the system evolves around the behavioural equilibrium
PP = PNP. The structure of the payoffs fixes the prevalence at equilibrium by
inducing the required prophylaxis level. As more individuals transfer into the
recovered compartment, lower prophylaxis levels are necessary to maintain
the prevalence at equilibrium, thus eventually lowering the average protec-
tion level.

Despite the relatively constant prevalence, we observe that the first wave
exhibits a much higher peak prevalence than the subsequent ones. However,
similarly to Ref. [340], whether the first wave exhibits the highest peak pre-
valence crucially depends on the parameter choice, particularly on the initial
condition, as illustrated in Fig. 3.13. If the initial fraction of protected indi-
viduals (P0) is low, the maximal prevalence is reached during the first wave.
In contrast, if the initial protection is high, the maximal prevalence is reached
during the second wave. For even higher protection, prevalence can rise over
subsequent waves before it eventually decreases. The dependence on the ini-
tial condition may explain differences in how SARS-CoV-2 played out in dif-
ferent countries. In contrast to Italy, for example, countries like Switzerland
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Figure 3.13: Early evolution of prevalence I for different values of P0 = SNP(t = 0),
the initial fraction of individuals that adopt strategy P. The fraction of
initially infected individuals is INP(0) = 10−5. The remaining fraction is
attributed to the compartment SNP(0). Parameters are β = 0.6, µ = 0.2,
ϵ = 0.4, T = 1000, c = 1 and α = 100.

and Germany reached much higher prevalence in winter 2020/2021 than dur-
ing the first wave in March 2020. Further, possibly due to the experiences in
Italy, strong NPIs had been implemented in these countries relatively early
compared to Italy, which would reflect the high protection level at the initial
condition. In this sense, the dependence on the system’s initial conditions
would allow for an intuitive but partial explanation for the diverse early evol-
ution of SARS-CoV-2 across countries.

3.2.3 Added phenomenology in a heterogeneous population

After verifying the basic phenomenology of the model in a homogeneous
population, let us now consider the case of heterogeneous infection costs. As
previously highlighted, a higher infection fatality rate (IFR) for the elderly,
combined with stronger adherence to prophylactic measures, naturally sug-
gests introducing different infection costs, Ti. To simplify things, we will sep-
arate the population into a high- and low-risk group that we refer to as young
(Y) and old (O). Adding additional strata has not altered the phenomenology.
To further reduce the complexity of the model, we assume the parameters ci,
βi, µi, and ϵi are equal in the two groups. The two groups, Y and O, thus only
differ in their infection cost. We parametrise the interaction between the two
groups through a 2x2 contact matrix C. The parameter ν interpolates between
random mixing, and complete modularity [73]. More precisely, given that the

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



3.2 diseases with a heterogeneous risk of severe infection 97

fraction of the population σY (σO) belongs to the group Y (O), the contact
matrix is as follows

CYO = νσO (3.44)

COY = νσY (3.45)

CYY = 1 − νσO (3.46)

COO = 1 − νσY , (3.47)

where ν = 0 corresponds to complete modularity, i.e. the two groups do not
interact with each other. In contrast, ν = 1 leads to random mixing. In the
following, we assume that 20% of the population belongs to the group at risk,
i.e. σO = 0.2 and σY = 0.8.

In Figs. 3.14A & B, we observe that, as in the homogeneous population,
recurrent epidemic waves emerge, which are driven by varying prophylaxis
levels. The heterogeneous infection cost leads to higher protection levels in
the group O and, thus, a lower prevalence level compared to the group Y. Fur-
thermore, group O starts earlier to increase the prophylaxis level as the epi-
demic expands and group O decreases the prophylaxis level later as preval-
ence decreases. This difference is indicated by the dashed lines in Fig. 3.14D.
The epidemic evolution is mainly driven by the group Y since they exhibit
a much bigger variation of the prophylaxis level and the prevalence. Con-
sequently, towards the epidemic peak, the rapidly increasing prevalence in
group Y eventually spills over into group O. The reproduction number of the
group O is below 1 at all time. Therefore, the prevalence in group O only
increases due to the expanding epidemic in group Y, which leads to a delay
in the prevalence peak of group O with respect to group Y as illustrated in
Fig. 3.14D. In this sense, the model exhibits the same delay as in the data
(Fig. 3.11).

Besides the delay, the model also exhibits the temporal variation in the case
distribution (see Fig. 3.14E) that we observed in the data (Fig. 3.10). Consid-
ering Figs. 3.14C - E, we see how the fraction of cases belonging to the group
O (Fig. 3.14E) is minimal as prevalence is low (Fig. 3.14D). At this point,
the difference in the prophylaxis level between the two groups is very pro-
nounced, wherefore the group Y is over-represented in the population level
prevalence. In contrast, as prevalence increases (Fig. 3.14D), the difference in
the prophylaxis level of the two groups Y and O is reduced (Fig. 3.14C). Ac-
cordingly, the epidemic’s growth rates among both groups also become more
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Figure 3.14: Left: prevalence or fraction of infected individuals, Ii = INP
i + IP

i (A) and
fraction of protected individuals Pi = SP

i + IP
i (B) in the old (red) and

young (blue) groups, evolving in time, with initial conditions fixed as in
Fig. 3.12 for both groups. The adoption rate is fixed at α = 50, and the
infection costs are TO = 2000 and TY = 500, respectively. Right: fraction
of protected individuals (C) and fraction of infected individuals (D) in
both groups displayed in a shorter time window. In (E), we show the
fraction of cases belonging to the old group in time fO. Parameters are
β = 0.6, µ = 0.2, ϵ = 0.4 and c = 1.

similar (Fig. 3.14D). Thus, the fraction of cases belonging to the old group ap-
proaches the population distribution (Fig. 3.14E). The iteration of this process
then leads to the repeating temporal pattern of the case distribution.

In a nutshell, the results presented in Fig. 3.14 demonstrate how the model
exhibits an equivalent phenomenology to the data. In other words, the hetero-
geneous infection cost can explain both the delay in the epidemic peak and
the temporal variation of the case distribution. We also verified that introdu-
cing different βi does not alter the phenomenology. Further, different βi but
equal infection cost Ti does not lead to any of the two phenomena. Therefore,
inside the framework of this model, the heterogeneous infection cost is the
critical factor that qualitatively reproduces the observations in the data.
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3.2.4 Dependence of the dynamics on the different parameters

While the phenomenology is robust regarding the parameters, how pro-
nounced it is depends on the latter’s values. In the following, we will ana-
lyse the impact of the infection cost, the mixing rate and the adoption rate.
Figs. 3.15A & C show the ratio between the maximum and minimum in time
of the fraction of cases belonging to the age group O as a function of the mix-
ing rate and the ratio of the infection costs between the two groups. We can
see that the temporal variation in the case distribution has a non-monotonous
dependence on the infection costs for all values of the mixing rate ν (ν = 1

Figure 3.15: Top: Ratio between maximum, f max
O , and minimum, f max

O , in the variation
of the case distribution, i.e. in the fraction of infected individuals belong-
ing to the old group, fO, in time depending on the mixing rate between
the groups, ν, and the ratio of infection costs TY/TO (A). We also show the
dependence on the infection cost in the young group, when the infection
cost for the old group is fixed, TO = 2000, for four choices of the mixing
rate (C). Bottom: Average between maximum, f max

O , and minimum, f min
O ,

in the variation of the case distribution, fO depending on the mixing rate
between the groups, ν, and the ratio of infection costs TY/TO (B). Fur-
ther, we show that the maximal (solid) and minimal (dashed) fraction of
cases belonging to the old group depends again on the infection cost of
the young group TY , when the infection cost for the old group is fixed,
TO = 2000, for the same choices of the mixing rate (D). The parameters
are α = 0.50, β = 0.6, µ = 0.2, ϵ = 0.4 and c = 1, and initial conditions
INP(0) = 0.0015 in both groups.

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



100 epidemic cycles driven by human behaviour

corresponds to random mixing). If the infection costs are of similar value
(high ratio TY/TO), the dynamics approach the homogeneous case, and there
is only slight variation in the case distribution. On the other hand, if the infec-
tion cost of the group Y is too low (low ratio TY/TO), the increased prevalence
causes the group O to keep prophylaxis for all time t. Thus, due to the limited
behavioural evolution in the group O, there is only little temporal variation
in the case distribution. Eventually, the balance between the two processes
leads to the emergence of a maximum in the relative temporal variation of
the case distribution. Further, the non-monotonous dependence of the ratio
between infection costs becomes more pronounced as the mixing rate de-
creases. In other words, the better the elderly are shielded (lower ν), the more
pronounced the temporal variation in the case distribution. This temporal
variation may cause unexpected, additional stress on the healthcare system
since the fraction of cases belonging to the elderly increases towards the epi-
demic peak. Accordingly, given the higher infection-hospitalisation risk of
the elderly, the number of required hospital admissions at the epidemic peak
may be substantially higher than those one would expect, considering the
case distribution at low prevalence. Despite that the shielding increases the
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⌫ = 0.05

Figure 3.16: (A): Dependence on the mixing rate for four choices of the adoption rate
α. We use the same initial conditions as in Fig. 3.15. Other parameters
are TO = 2000, TY = 500, and in both groups α = 10, β = 0.6, µ = 0.2,
ϵ = 0.4 and c = 1. Right: zoom into the temporal evolution of the fraction
of infected individuals for ν = 0.05 (B) and random mixing, ν = 1.0, (C).
Dashed lines indicate the position of the maximum. The adoption rate
was fixed as α = 10. Time, t, was shifted such that the peak of the age
group young is located at zero.
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3.3 summary and discussion 101

relative variation in the case distribution, a lower ν always reduces the max-
imal and minimal fraction of cases that belong to the group O as shown in
Fig. 3.15B & D.

Finally, Fig. 3.16A shows that the delay between the epidemic peaks mono-
tonously decreases with the mixing as well as the adoption rate. We further
illustrate in Fig. 3.16B & C how a more modular contact matrix (lower ν)
delays the high prevalence in the group Y from propagating into the risk
group O. In other words, better shielding of the risk population may cause
an increased delay until the epidemic peak is reached in the age group O.
Similarly, as in Sec. 3.1, a higher adoption rate α decreases the time interval
at which recurrent epidemic waves emerge. Accordingly, it is not surpris-
ing that an increasing adoption rate reduces the delay between the epidemic
peaks (Fig. 3.16B vs Fig. 3.16C) since less time is available for the prevalence
to penetrate into the risk groups.

3.3 summary and discussion

In this chapter, we have presented two relatively simple toy models that ex-
hibit the basic phenomenology of recurrent epidemic waves, which was ob-
served in a general matter (Sec. 3.1), and a temporal variation of the case
distribution specific to SARS-CoV-2 (Sec. 3.2). The risk-based behavioural ad-
aption in the presence of an epidemic can sustain recurrent epidemic waves
over a wide range of parameters. Our models suggest that behavioural adap-
tion does not suppress the epidemic but instead contains the epidemic via a
reproduction number that varies around 1. These results are coherent with
previous modelling efforts [273, 275–277], and are in line with the nature of
the vaccination dilemma [266]. Overall, this naturally raises the question of
whether a disease can actually be eradicated through the voluntary adoption
of prophylactic tools or whether mandates imposed by a central actor such
as the state are always necessary.

Compared to other approaches, the advantage of the proposed model here
is its generality. It applies to a wide range of prophylactic tools. The frame-
work can describe individual behaviour such as social distancing, reduction
of contacts or the use of face masks. In contrast, many of the previous model-
ling efforts to capture the temporality of the evolution of a disease subject to
a behavioural adaptation focused on specific prophylactic tools such as the
use of vaccines [270] or the role of adaptive networks [282, 291]. It is worth
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102 epidemic cycles driven by human behaviour

mentioning that, in the face of the SARS-CoV-2 epidemic, a series of stud-
ies were published, in which the behavioural adaption can lead to epidemic
cycles [341–346]. These studies largely corroborate our results here.

Adding explicitly the behavioural dimension of the dynamics allowed us
to explain the recurrent epidemic waves in a Markovian framework without
memory. Approaches that bypassed the additional dimensions through an
adaptation kernel require the system to have memory for cycles to emerge
[275, 347]. In other words, the inertia of the interplay between disease and the
behavioural dynamics in our model effectively acts as the system’s memory.
Only the dimensional reduction makes it necessary for the system to have
memory to sustain epidemic cycles.

Our models may exhibit a phenomenology similar to that observed in the
real world. However, we refer to them as toy models since they are not de-
signed to match the data. Instead, their role is to deepen the basic under-
standing of the general mechanisms at play. Nevertheless, our extension of
the basic model to incorporate heterogeneous infection costs has shown that
even simple models can deepen the understanding in greater detail than one
would think. Nevertheless, we are far from reproducing the data quantitat-
ively and even further from making quantitative predictions about the dy-
namic interplay between human behaviour and the spread of an epidemic.
As previously outlined, in the last chapter of this thesis, we will take a more
quantitative approach and get our hands dirty with data. But first, let us focus
on two examples in which human behaviour non-trivially impacts the spread
of an epidemic, even if there is no dynamic interplay between behaviour and
the epidemic.
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4
H U M A N B E H AV I O U R A N D E P I D E M I C

C O N T R O L

In the previous chapter, we studied the interplay between behavioural ad-
aption and the spread of an epidemic. The aspect of human behaviour we
focused on explicitly resulted from the presence of the epidemic. However,
even though the danger of epidemics is of great relevance for humans today
and in their past [7], only a tiny part of human behaviour is a direct result of
the presence of an epidemic [348, 349]. Most of the diverse aspects of human
behaviour are not altered in the face of an epidemic. Nevertheless, many traits
of human behaviour can still affect how an epidemic spreads, even though
there might not be a direct dynamic interplay among them. In these cases,
human behaviour does not co-evolve with the epidemic but crucially shapes
how the epidemic spreads.

Understanding the impact of different behavioural traits on the epidemic
spread is not only of interest to academics but also to health authorities in
order to improve epidemic control, mainly through the use of prophylactic
tools [350–353]. Moreover, deepening the knowledge on the impact of human
behaviour on epidemic spread can facilitate health authorities to design ef-
ficient policies or, at least, more accurately estimate the impact of existing
ones [354–356]. In line with such approaches, we will focus in this chapter
on two fundamental aspects of human behaviour: homophily and heterogen-
eous contact patterns. To this aim, we will use simple mathematical models
to study their impact on epidemic spreading for different prophylactic meas-
ures.

4.1 the impact of homophily on epidemic control

The concept of homophily is often described by the popular expression “birds
of a feather flock together” [357]. It refers to the fact that people mainly form
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104 human behaviour and epidemic control

relationships and physically interact with others that share similar social
characteristics. Decades of studies in sociology showed that categories like
age, gender, or socio-economic class are robust predictors of interaction [357].
Within the framework of networks, it implies that similarity is associated with
connection [358, 359]. In more modern terms, the metadata (categories) of the
nodes (individuals) strongly correlates with the structure of the network [360,
361]. This correlation generally implies that the network is modular, i.e. that
there is a community structure [73].

It is well established how modularity affects the spread of an epidemic
on a network [144, 362, 363]. Less studied, though, is the case in which the
metadata of the nodes also affects the epidemic dynamics. A typical example
is the adoption of vaccines. In this case, the disease spreads on the contact
network but is influenced by the nodes’ metadata, indicating the individuals’
vaccination status. Further, a series of studies have shown that the same pre-
dictors for connection are also predictors for the adoption of vaccines [364–
366] and other prophylactic tools such as digital contact tracing apps [367–
369]. In a broader scope, experimental results indicate that homophily signi-
ficantly affects health behaviour [370, 371]. These findings suggest that pro-
phylactic tools are not uniformly adopted in the population. Instead, adop-
tion strongly correlates with the community structure induced by homophily.

In this section, we will first consider the case of digital proximity tracing
and study how homophily affects its efficiency. Essentially, we will show how
the presence of homophily can drive the system into three different dynam-
ical regimes. In the second part, we then extend this formalism and show
that the unveiled phenomenology also holds for prophylactic tools such as
vaccines, the use of face masks or social distancing.

4.1.1 Digital Proximity Tracing

For many of us, the first time we heard the term contact tracing was in the con-
text of the SARS-CoV-2 pandemic. Accordingly, one could think that contact
tracing — the act of testing and isolating the contacts of infected individuals
— is a recent invention. But, instead, contact tracing was used for a series of
epidemics in the past, such as smallpox [372], tuberculosis [373], HIV [374],
or Ebola [375], to name a few. Accordingly, many studies were done to invest-
igate the efficiency of manual contact tracing [113, 372, 376–383].
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4.1 the impact of homophily on epidemic control 105

What was new in the context of SARS-CoV-2 was the advent of digital
proximity tracing (DPT) apps. Instead of manually collecting the contacts of
infected individuals, an app records past contacts through the Bluetooth sig-
nal [384–387]. Hence, if an individual becomes infected, recent contacts can
quickly be notified, tested and eventually isolated in an almost automatised
way. However, for DPT to work, both the infected individual and the contacts
must be adopters of this technology. Not surprisingly, around the implement-
ation of DPT apps, many studies investigated the possible impact of DPT on
the spread of SARS-CoV-2, and the necessary adoption levels to control the
latter [367, 388–394]. Later, a series of theoretical studies that focused more
on the physics behind DPT were published [395–398].

What has not been addressed is how the homophilic adoption of DPT apps
affects the ability of DPT to control an epidemic. As we highlighted previ-
ously, the population does not adopt prophylactic tools uniformly. Studies
on DPT have shown that adoption strongly correlates with age, income, and
nationality [367–369]. Generally, adoption is particularly low among margin-
alised socio-economic classes [368]. Then, due to the similarity of social con-
tacts (homophily), contacts of adopters are much more likely to be adopters
than contacts of nonadopters. In Switzerland, for example, 70% of contacts
among adopters were also found to be adopters, while the average national
adoption was only around 20% [386]. Our goal is thus to build a minimal
model that allows us to understand how the non-uniform adoption of DPT
apps affects the spread of an epidemic.

4.1.1.1 Model equations

To describe the dynamics of DPT, we extend a model recently introduced
by Bianconi et al. [396]. The model is relatively simple and analytically tract-
able, but it captures the main ingredients of the dynamics. For the epidemic
spreading, the model considers a basic, discrete-time SIR model with trans-
mission probability λ, infectious period τ and contact rate k. For convenience,
we define β = λτ. To incorporate DPT, the model assumes that adopters in-
fected by other adopters do not further transmit the disease. This assumption
is equivalent to considering the case of perfect instantaneous contact tracing
and self-isolation. For completeness, in Appendix A, we show that even when
these assumptions are relaxed, the phenomenology is not altered.

Given the approach by Bianconi et al., it is necessary to incorporate the
non-uniform distribution of DPT apps into the model. One could take the
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106 human behaviour and epidemic control

approach of stratifying the population into all the different categories that
are predictors for app adoption. However, this would yield a high model
complexity and not allow for analytical tractability.

Since we are more interested in the phenomenology of the interplay
between homophilic app adoption and the spread of an epidemic, we sim-
plify the approach and subsume the diverse correlations in app adoption
into a contact matrix K with parameter α. The parameter α interpolates from
complete modularity (α = 0) to random mixing (α = 1) between adopters
and nonadopters. We denote the entries of K as kij with i, j ∈ {A, N}, where
A and N refer to adopters and nonadopters, respectively. The contact rate
between adopters and nonadopters is given by kAN = αk(1 − T), where T
refers to the fraction of adopters in the population. The remaining entries of
the contact matrix follow from the balance equation TkAN = (1 − T)kNA and
the average contacts k = kAA + kAN = kNN + kNA. Therefore, the entries of
the matrix K are given by

kAN = α(1 − T)k (4.1)

kNA = αTk (4.2)

kAA = [1 − α(1 − T)] k (4.3)

kNN = [1 − αT] k . (4.4)

To describe the system’s dynamics, we need to split the infectious compart-
ment into three separate ones. First, we define IN(t) as the number of newly
infected nonadopters at generation t. Further, we define IAA(t) and IAN(t) as
the number of newly infected adopters at generation t, which were infected
by adopters and nonadopters, respectively. This distinction is necessary since
adopters infected by other adopters do not further transmit the disease. For
the susceptible compartment, such distinction is not necessary, and we only
work with the number of adopters SA(t) and nonadopters SN(t) susceptible
at generation t. With these definitions at hand, the equations describing the
dynamics read

IN(t + 1) = β [kNN IN(t) + kAN IAN(t)]
SN(t)

NN
(4.5)

IAN(t + 1) = βkNA IN(t)
SA(t)

NA
(4.6)

IAA(t + 1) = βkAA IAN(t)
SA(t)

NA
(4.7)
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4.1 the impact of homophily on epidemic control 107

SN(t + 1) = SN(t)− IN(t + 1) (4.8)

SA(t + 1) = SA(t)− IAA(t + 1)− IAN(t + 1) , (4.9)

where NA and NN refer to the total number of adopters and nonadopters, re-
spectively, in the population. From there, we can calculate the final attack rate,
i.e. the total number of recovered individuals over the course of the epidemic,
by summing the number of newly infected individuals for all generations t.

4.1.1.2 Expression of the reproduction number

As the classical SIR model, the dynamical system does not allow for an expli-
cit analytical expression for the final attack rate. Nevertheless, we can calcu-
late the reproduction number of the dynamics through the next-generation
matrix approach [211, 214]. The next-generation matrix NGM is then given
by

NGM = β


kNN kAN 0

kNA 0 0

0 kAA 0

 . (4.10)

To find the reproduction number, we insert the explicit expression of the
entries of K and calculate the spectral radius of the matrix. One gets

R =
R0

2

[
1 − αT +

√
(1 − αT)2 + 4α2T(1 − T)

]
, (4.11)

where R0 refers to the basic reproduction number of the classical SIR model.
As one would expect, R has a monotonous dependence on the adoption level
T and the basic reproduction number R0. More surprisingly, R exhibits a non-
monotonous dependence on the mixing rate α. Straightforward calculations
show that the criteria dR

dα |α=0 < 0 is always met. Accordingly, solving for
dR
dα = 0 we find the minimum of R with respect to the mixing rate α∗ as

α∗ = 1 −
2
3 − T
4
3 − T

. (4.12)

In the case that α∗ ≥ 1, the reproduction number has its smallest value for
random mixing between adopters and nonadopters, i.e. α = 1. The condition
α∗ < 1, implies that for all T > T∗ = 2/3 no local minima exists in R with
respect to α. Fig. 4.1A shows the dependence of the reproduction number on
α and T. Besides the local minima, Eq. (4.11) provides a critical parameter
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108 human behaviour and epidemic control

range in which eradication of the disease is possible, i.e. R < 1, by varying
the mixing parameter α. More precisely, for α ∈ (α−c , α+c ) the condition R < 1
holds, where

α±c =
1

2R0(1 − T)

[
1 ±

√
1 − 4

1 − T
T

(R0 − 1)

]
. (4.13)

The non-monotonicity of R with respect to α leads to the presence of two
physical solutions α±c . The existence of two solutions suggests that the dis-
ease can not only be eradicated as the mixing is increased from complete
modularity towards random mixing but can also reemerge as the mixing rate
crosses α+c .

4.1.1.3 Three dynamical regimes

Fig. 4.1B shows the final attack rate obtained numerically as a function of α

and R0. The solid line indicates the threshold α−c . While the attack rate mono-
tonously increases as a function of R0, we can distinguish three different
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Figure 4.1: (A): Reproduction number, R, normalised with respect to the basic repro-
duction number, R0, for different values of adoption, T, below T∗. Dots
indicate the minimum at α∗, while the dashed line shows its variation for
T ∈ [0.1, 0.55]. (B): Numerical solution of the dynamics for the attack rate
as a function of α and R0. The solid line indicates the threshold α−c for
which R = 1. Coloured, dashed lines denote the dynamical regimes: crit-
ical, intermediate and saturated. Adoption was fixed as T = 0.7. For these
parameter values, we have α+c > 1. (C): Top panels show the attack rate
and the reproduction number for the different regimes defined in B. The
specific attack rates for adopters and nonadopters are reported in the bot-
tom panels. Black diamonds indicate α−c , at which R = 1.
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4.1 the impact of homophily on epidemic control 109

regimes for the dependence on α. The parameter R0 then controls the regime
in which the system is found. The coloured dashed lines indicate examples of
these three regimes that we refer to as critical, intermediate and saturated. In
the critical regime, close to the epidemic threshold, the attack rates monoton-
ously decrease with respect to α. In contrast, in the intermediate regime, the
attack rate exhibits a non-monotonous dependence on α. Finally, far from the
epidemic threshold, in the saturated regime, the attack rates monotonously
increase as a function of α.

The three distinct dynamical regimes emerge from the competition
between the following two processes as the mixing (α) increases: a decreasing
protection among adopters and an increasing protection among nonadopters.
To illustrate these two processes, let us consider the case of complete separ-
ation between the cluster of adopters and nonadopters (α = 0). In this situ-
ation, the epidemic spread is only slowed down in the cluster of adopters due
to the presence of DPT apps since nonadopters do not interact with the lat-
ter. In contrast, as adopters and nonadopters start to interact with each other,
the mixing rate increases. Nonadopters can then be considered free riders
that take advantage of the protection provided by the adopters. The received
protection is reflected by a decreasing attack rate among nonadopters as the
mixing rate increases (Fig. 4.1C). At the same time, adopters become more
vulnerable to infection as mixing increases. Individual adoption of DPT does
not provide any protection since transmission can only be prevented if both
the primary and the secondary infection concern an app adopter. Accord-
ingly, as mixing increases, more transmission chains can arrive at adopters,
increasing the attack rate among them as shown in Fig. 4.1C.

Given these two processes, the coverage T and the basic reproduction num-
ber of the disease (R0) decide which one holds the upper hand. Far from the
epidemic threshold, in the saturated regime, the protection that adopters can
provide for nonadopters has little impact since the attack rate increases rel-
atively slowly with the infectious pressure. Accordingly, the increased attack
rate among adopters holds the upper hand and the overall attack rate in-
creases with the mixing rate α. In contrast, close to the epidemic threshold,
in the critical regime, the attack rate strongly varies with any change in the
epidemic pressure. Hence, the protection provided by adopters to nonadop-
ters compensates for the reduced protection among adopters and the overall
attack rate decreases. Further, considering the attack rate among adopters
(Fig. 4.1C), we see that, after the initial increase, the impact on the nonadop-
ters eventually compensates for the lost protection among adopters leading
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Figure 4.2: Attack rate as a function of the reproduction number, R, for different ad-
option values, T. The size of the points interpolates between α = 0 and
α = 1. We fixed the basic reproduction number as R0 = 1.5.

to a decrease in the attack rate as the mixing is increased further. Eventu-
ally, the system can be pushed below threshold, and the attack rate vanishes.
Finally, in the intermediate regime, the system switches between the critical
and saturated regime, causing the non-monotonous dependence on α.

In Figs. 4.1B & C the fraction of adopters T is fixed. To represent the effect
of adoption, we fix the basic reproduction number and vary α for different
values of T. Fig. 4.2 shows the attack rate as a function of the reproduction
number. As highlighted previously, not only the basic reproduction number
but also adoption can cause the system to change the dynamical regime. For
T = 0.9, the system is in the critical regime. Then, for T = 0.7 and T = 0.5,
the system is in the intermediate regime shown by the non-monotonous de-
pendence of the attack rate on the mixing rate. Finally, for T = 0.3, the attack
rate monotonously increases with the mixing rate, and thus, the system is
in the saturated regime. Essentially, the adoption relative to the basic repro-
duction number defines whether the system is close or far from the epidemic
threshold and thus pushes the system into one of the three dynamical re-
gimes. Please note that for T = 0.9 and T = 0.7, the reproduction number
exhibits a local minimum since T > T∗ = 2/3.

4.1.1.4 Monte Carlo simulations

Up to this point, we assumed structured mean-field interactions. In other
words, interactions occur randomly given the mixing rate α between adop-
ters and nonadopters. However, real-world interactions exhibit more struc-
ture beyond the contact matrix K and can generally be represented as a net-
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4.1 the impact of homophily on epidemic control 111

work [82]. Hence, we want to corroborate our theory through Monte-Carlo
simulations on physical contact networks [144, 147, 399, 400]. The aim is to
see whether the phenomenology, i.e. the three dynamical regimes, are also
found when the dynamics evolves on a network. Since our model describes
subsequent generations, we decided to aggregate real-world contact networks
into static, binary ones. To this aim, we threshold the interaction weights, i.e.
the duration of the interactions, while controlling that the network remains
connected.

Given any empirical network, the question arises of how to distribute the
apps on the network to reach a desired mixing rate α. To translate the concept
of the mixing rate in the mean-field case to the contact network, let us first
consider the probability that both individuals are either adopters or nonadop-
ters during an interaction. We will refer to this probability as the homophily
level h, which can be expressed as

h =
1
k
[TkAA + (1 − T) kNN ] = 1 − 2αT (1 − T) . (4.14)

Accordingly, we have established a relation between the homophily level h
and the mixing rate α. Further, it is straightforward to calculate h on a net-
work. Let us consider the adjacency matrix A and a vector v that defines
whether node i is an adopter (vi = 1) or not (vi = 0). With these definitions,
the homophily level can be expressed as

h =

N
∑

i=1

N
∑

j=1
Aij
[
vivj + (1 − vi)(1 − vj)

]
N
∑

i=1

N
∑

j=1
Aij

. (4.15)

By inverting the relationship between h and α in Eq. 4.14, we can infer the
value of α in the network via Eq. (4.15). We then employ an algorithm to
distribute apps in the network until a fixed value of α is reached. More pre-
cisely, we start from a random distribution of apps (α = 1.0) and randomly
swap the roles of a pair of adopter and nonadopter. The swap is accepted
if it lowers the value of α. We iterate this procedure until the desired value
of α is reached within a tolerance of 0.02. Further, we check that the average
degree of adopters and nonadopters is the same. Swaps are only accepted if
it reduces the absolute value of the difference in average degree between the
two groups. Without this constraint, the algorithm would induce pronounced
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Figure 4.3: Results of Monte Carlo simulations for the dependence of the attack rate
on α for the three dynamical regimes and four different real-world net-
works [144, 147, 399, 400]. Each column refers to a different network, while
rows indicate the saturated, intermediate and critical regime, respectively,
from top to bottom. Dots indicate the median value, whereas the ribbon
indicates the first and third quartiles. Each point is obtained by averaging
over 4 × 104 runs. From left to right, the networks have 780, 636, 212 and
226 nodes. For the saturated and critical regimes, we fixed T = 0.30 and
T = 0.90, respectively. In the intermediate regime, T was fixed as 0.75, 0.72,
0.67 and 0.69 for the different networks (left to right). Specific to each net-
work we set β as 0.030, 0.085, 0.110 and 0.090.

degree correlations in app adoption, impeding an isolated analysis of the im-
pact of the mixing rate. Please note that one cannot reach any level of α in
every network. The structure of the network and the adoption level impose a
lower bound for the levels of α that can be reached [360, 361].

Fig. 4.3 reports the results of the Monte Carlo simulations. The curves, each
one corresponding to a different value of T, show that the system switches
between the three dynamical regimes, i.e. saturated, intermediate, and critical,
as correctly identified by our mean-field model. For the smallest networks —
workplace and high school — the intermediate regime exhibits little depend-
ence on α. The small dependence is very likely an effect of stochastic fluctu-
ations. Nevertheless, despite their small size, we can clearly distinguish three
distinct regimes.

In a nutshell, the numerical results on real-world networks confirm the phe-
nomenology observed in the minimal mean-field model. As we highlighted
previously, assumptions regarding perfect contract tracing are relaxed in Ap-
pendix A. Namely, we show that delayed notification and incomplete notific-
ation of contacts do not alter the phenomenology. Overall, we explained the
emergence of the three dynamical regimes by the requirement for clustered
protection for DPT to work. Individual adoption does not reduce the infection
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4.1 the impact of homophily on epidemic control 113

probability. Only notifications along contacts between adopters can prevent
further transmission.

Naturally, the question is whether the phenomenology, i.e. the three dy-
namical regimes, could also arise in the context of other prophylactic tools.
Based on our understanding, the prophylactic tool should also require
clustered adoption to work effectively for the dynamical regimes to emerge.
Accordingly, vaccines with 100% efficacy are an example where we would not
expect the phenomenology. If a vaccine is 100% effective, individual adoption
is sufficient to be protected independently of whether one’s contacts are adop-
ters too. However, for a vaccine that is not 100% effective, individual adoption
may not be sufficient. If unvaccinated individuals surround an adopter, a vac-
cine may only marginally reduce the infection risk if its effectiveness is low.
In such cases, clustered adoption could outperform random adoption of vac-
cines. This intuition leads us to consider the case of imperfect vaccines and
other individual prophylactic tools that are not 100% effective, which will be
presented in the next section.

4.1.2 Vaccination and other prophylactic tools

As we mentioned previously, similar to DPT apps, vaccines are not adopted
uniformly in the population. While on a worldwide scale, lack of access im-
pedes an equitable distribution of vaccines [401, 402], among western coun-
tries, vaccine hesitancy is the primary barrier [364, 403, 404]. Furthermore,
studies have demonstrated that vaccine hesitancy correlates with age, socio-
economic status, education level, or ethnicity [365, 366, 405, 406]. Hence, as
for DPT apps, due to homophily [357], the likelihood of physical interaction
strongly correlates with the probability that both individuals are either adop-
ters or not.

Evidence suggests that clusters of vaccine-hesitant individuals caused re-
peated measles outbreaks among high-income countries [364, 403, 407–410].
These recurrent outbreaks sparked many studies to understand the phenom-
ena [411–415]. The high quality of vaccines against measles led these studies
to assume an efficacy of almost 100%. In line with our intuition, these stud-
ies concluded that homophily, i.e. clustered vaccine adoption, is detrimental
to epidemic control and may have sparked these subsequent outbreaks. In
contrast, vaccines against influenza or the ones against various SARS-CoV-2
variants have little effectiveness: between 20% and 80% [416, 417]. The low
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effectiveness of certain vaccines is the basis of our interest in revisiting pre-
vious studies and analysing the impact of homophily for a broader range of
vaccine effectiveness.

4.1.2.1 Differential equations

We will take an approach very similar to the one we used to model the impact
of homophily on DPT apps. We hope that the reader excuses the slight re-
dundancy necessary for completeness. We consider the standard continuous-
time SIR model with transmission probability β, recovery rate µ, and contact
rate k. In the absence of vaccinated individuals, the basic reproduction num-
ber of the epidemic is thus given by R0 = (βk)/µ. Upon an encounter, an
infected individual transmits the virus with a reduced probability (1− ε)β to
a vaccinated individual, where ε represents the vaccine efficacy. We assume
that vaccines do not reduce the infectivity of infected individuals. Further,
we consider the same contact structure as for DPT. The mixing parameter α

interpolates between random mixing and the absence of interaction between
vaccinated and unvaccinated individuals. Given the vaccine coverage V, the
contact matrix has the following structure

kNV = αVk (4.16)

kNN = [1 − αV] k (4.17)

kVN = α(1 − V)k (4.18)

kVV = [1 − α(1 − V)] k . (4.19)

Further, we define IV(t) and IN(t) as the number of infectious individuals
that are vaccinated and unvaccinated, respectively, at time t. The same holds
for the number of susceptible individuals SV(t) and SN(t) at time t. With
these definitions at hand, the differential equations of the dynamics read

˙IN(t) = β [kNN IN(t) + kNV IV(t)] SN(t)− µIN(t) (4.20)

˙IV(t) = β [kVN IN(t) + kVV IV(t)] (1 − ε)SV(t)− µIV(t) (4.21)

˙SN(t) = −β [kNN IN(t) + kNV IV(t)] SN(t) (4.22)

ṠV(t) = −β [kVN IN(t) + kVV IV(t)] (1 − ε)SV(t) . (4.23)
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4.1 the impact of homophily on epidemic control 115

Through the next-generation matrix approach [211, 214] we calculate the re-
production number of the system and find

R =
R0

2

[
2 − α + αε(1 − V)− ε +

√
[α − αε(1 − V) + ε]2 − 4αεV

]
. (4.24)

It is straightforward to show that R depends monotonously on all figuring
parameters. Hence, the dynamics differ qualitatively with respect to DPT,
and R depends monotonously on the mixing parameter. The expression of
R allows us to define the critical mixing rate αc above which the disease is
eradicated (R < 1) as

αc =

(
1 − 1

R0

)
1 − R0(1 − ε)

1 − R0(1 − ε)− ε(1 − V)
. (4.25)

Since the dependence of R on α is monotonous, there is only one critical
value and not two, as for DPT. Let us now consider the final attack rate to see
whether the dynamics also differ qualitatively from DPT.
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Figure 4.4: Final attack rate ((A)-(C)) and the peak of prevalence ((D)-(F)) as functions
of the basic reproduction number, R0, and the mixing parameter, α, as
resulting from the numerical iteration of the differential equations govern-
ing the system dynamics (Eqs. (4.20)-(4.23)). Here, the vaccine coverage is
V = 0.7 and the vaccine efficacy ε = 0.8. In order to highlight the com-
peting processes at the base of the dynamics, we show, besides the results
for the population overall ((A) & (D)), those for the vaccinated individu-
als ((B) & (E)) and for the non-vaccinated ones ((C) & (F)), separately. The
white solid line indicates the critical curve, αc ≡ αc(R0), at which R = 1, as
computed from Eq. (4.25). The orange and red vertical lines demarcate the
boundaries between, respectively, the critical and the intermediate regime,
and the intermediate and the saturated one, for both the final attack rate
(A) and the peak of prevalence (D).
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4.1.2.2 The three dynamical regimes, again

In contrast to the reproduction number, the final attack rate exhibits the same
three dynamical regimes as for DPT. Fig. 4.4A illustrates how the basic re-
production number lets the system switch between the three dynamical re-
gimes, i.e. the critical, intermediate, and saturated. Furthermore, similarly as
for DPT, the attack rate among nonadopters (Fig. 4.4C) monotonously de-
creases with α, while the dependence for adopters (Fig. 4.4B) is non-trivial.
We observe the three regimes not only for the final attack rate but also for
the peak prevalence (Fig. 4.4B). However, the system is not necessarily in
the same dynamical regime for both the final attack rate and the peak pre-
valence. For example, at R0 = 5, the final attack rate is in the intermediate
regime while the peak prevalence is in the critical one (Fig. 4.4D).

Fig. 4.5 shows that the three regimes can also be accessed through the
vaccine coverage V, or the vaccine efficacy ϵ. More precisely, increasing V or ϵ

causes the system to transfer from the saturated to the critical regime passing
through the intermediate one. Hence, for sufficiently high vaccine efficacy, the
system is always in the critical regime for which mixing between vaccinated
individuals and non-vaccinated ones is beneficial. Considering the case of a
perfect vaccine, i.e. ϵ = 1, the dynamical equations reduce to the standard
SIR model with contact rate kNN = (1 − αV)k within the non-vaccinated
population. R0 = (βkNN)/µ is thus linearly decreasing with respect to the
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Figure 4.5: Attack rate as a function of the mixing parameter, α, for different combin-
ations of vaccine coverage, V, and efficacy, ε, given R0 = 2.5. As a comple-
ment to Fig. 4.4, this plot illustrates how all three dynamical regimes can
be also explored by varying V or ε (or both).
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4.1 the impact of homophily on epidemic control 117

mixing rate α, and the system is always in the critical regime where the attack
rate monotonously decreases with α.

4.1.2.3 Monte Carlo simulations

As for DPT, we perform Monte Carlo simulations on a real-world physical
contact network to corroborate the phenomenology we unveiled in the mean-
field case. Specifically, we consider the Copenhagen Networks study where
contacts were recorded through Bluetooth signal [147]. The data was collected
during an entire month and was binned into 5-minute intervals with about
700 participants. We considered only those interactions where the associated
signal strength indication (RSSI) was not lower than -74 dBm corresponding
to an interaction range of 2 meters [418]. We iterated the temporal network for
the Monte Carlo simulations of the epidemic dynamics until all individuals
were either susceptible or recovered.

To infer the mixing parameter α in the network, we need to slightly adapt
how we calculate the homophily level h since we consider a temporal network
this time. With the temporal adjacency matrix A(t) and the vaccination status
vector v, the homophily level is now given by

h =

∑
t

N
∑

i=1

N
∑

j=1
Aij(t)

[
vivj + (1 − vi)(1 − vj)

]
∑
t

N
∑

i=1

N
∑

j=1
Aij(t)

. (4.26)

In other words, we calculate the time-averaged homophily level. As before,
by inverting the relation in Eq. (4.14), we can infer the mixing parameter α for
a given h. Further, we distribute vaccines with the same algorithm we used to
distribute DPT apps. The only difference is that we now control for the aver-
age strength instead of the average degree. Therefore, swaps are only allowed
if the absolute difference in average strength between vaccinated nodes and
not-vaccinated ones is reduced. The results of the Monte Carlo simulations
for the final attack rate and peak prevalence are reported in Fig. 4.6. The
final attack rate exhibits the three dynamical regimes for three values of ε.
However, the particular constraints of this network, which do not allow for
arbitrary small values of α, at least with the algorithm we employ to distrib-
ute the vaccines, make the saturated regime less evident. Further, the case
ϵ = 0.6 shows an example where the attack rate and the peak prevalence are
not in the same dynamical regime as already found in the mean-field case.
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Figure 4.6: Attack rate (left) and the peak prevalence (right) as functions of the mixing
parameter, α, for decreasing (from top to bottom) efficacy, ε, as resulting
from the numerical simulations performed on top of a real-world temporal
contact network (see the main text for details). Dots indicate the median
value, whereas the ribbon indicates the first and third quartiles. Each point
is obtained by averaging over 2 × 104 runs. We fixed V = 0.5, µ = 4.6 ×
10−4 (corresponding to a mean infection time of 7.5 days) and β = 1.142 ×
10−1, yielding R0 = 6 from the estimation R0 = βκ/µ, where κ = s2/s̄,
being s̄ (s2) the network average of the (squared) number of contacts per
timestamp.

4.1.2.4 Practical implications and applicability to other prophylactic tools

Depending on data availability, this framework can be applied to different
populations and at various levels of resolution. Many epidemic models only
implicitly consider the mixing between vaccinated and non-vaccinated in-
dividuals through age-stratification [419, 420]. Our findings indicate that
further sub-group-specific mixing levels may impact the epidemic dynam-
ics both quantitatively and qualitatively. Detailed empirical studies on the
interaction rates between vaccinated and non-vaccinated individuals would
provide a further tool to inform models and interpret epidemiological data.
Such more realistic models could improve the guidance of policymakers re-
garding the impact of specific non-pharmaceutical interventions.

An example with respect to SARS-CoV-2 is the introduction of the green
pass (proof of vaccination) as a requirement to enter the workplace or res-
taurants. One intention behind the green pass is nudging non-vaccinated in-
dividuals to adopt the vaccine or at least to reduce their number of contacts
[421]. At the same time, the green pass reshapes social contacts [422]. Besides
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4.1 the impact of homophily on epidemic control 119

reducing the number of contacts of non-vaccinated individuals, it effectively
reduces the mixing between vaccinated and non-vaccinated individuals. Our
results indicate that models that do not account for the change in the mixing
rate may overestimate the green passes impact in the case of a low reproduc-
tion number.

The model presented here focuses on the distribution of vaccines. Never-
theless, the differential equations of the dynamics are the same for any pro-
phylactic tool that causes a reduction of the transmission probability [18]. Ac-
cordingly, the three dynamical regimes and the results drawn from them nat-
urally extend to prophylactic practices such as the use of face masks or social
distancing. All these examples, from DPT to social distancing, have in com-
mon that their individual adoption is insufficient to provide protection in all
environments. Collective, clustered adoption is necessary to reduce the infec-
tion risk effectively. The presented phenomenology is robust not only across
a variety of prophylactic tools but also with respect to model assumptions.
Without being aware then, different research groups simultaneously studied
the impact of homophily on epidemic control through prophylaxis [423–427].
For example, Fefferman et al. demonstrated that the presence of homophily
also adds interesting phenomenology regarding the temporal evolution of
the system beyond the final attack rate [425]. With respect to the final attack
rate, these studies unveiled the same phenomenology as was presented here
for both DPT and vaccine adoption, even though different assumptions are
made, as they consider, for example, random networks [423, 427], while we
focused on the mean-field case and real-world networks.

Further, Hiraoka et al. assumed an all-or-nothing vaccine [423] — com-
plete protection to a subset ϵ of the vaccinated individuals — in contrast to
the leaky vaccine [312, 428] — partial protection ϵ upon contact to every in-
dividual — considered here. Despite this difference, they have found a very
similar phenomenology. Hence, imperfect protection is at the root of the phe-
nomenology regardless of the type of vaccine. In the next section, we will
present another example where perfect vaccines and non-perfect ones differ
in their qualitative behaviour. However, this time, whether we consider an
all-or-nothing vaccine or a leaky one will change things drastically.
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4.2 degree-based immunisation strategies revisited

We highlighted before that humans tend to interact with individuals with
similar social characteristics. At the same time, individual success in mak-
ing social connections and maintaining them is heterogeneously distributed
in the population [429]. The heterogeneity is even more pronounced if one
considers sexual contacts. The distribution of the number of sexual contacts
in the population was shown to be fat-tailed and well captured by a power
law [126, 430]. These features imply that while most individuals have only a
few sexual contacts, a small fraction participates in most sexual interactions.
The resulting heterogeneity in the contact distribution drives the spread of an
epidemic beyond the average degree since it enables super-spreading events
to occur. As previously mentioned, for example, Gonorrhea can only spread
due to the heterogeneity in the sexual contact distribution [18]. If every in-
dividual had the average number of sexual contacts in the population, the
disease would die out.

Hence, it is not surprising that the idea to focus on individuals with many
contacts to control an epidemic emerged in the context of sexually transmit-
ted diseases during the early 80s. More specifically, the most effective control
strategies were found to be the ones that aim to promote condom use and
regular screening among the most sexually active individuals [59, 79]. Bey-
ond the scope of sexually transmitted diseases, this basic idea to focus on in-
dividuals with a high contact frequency was extended to other prophylactic
tools such as vaccines. During the 80s, a set of studies focused on the possible
eradication of measles through the employment of vaccines [431, 432]. Due
to different levels of immunity and activity across age groups, understanding
the contact patterns between age groups was crucial in this context.

The problem of optimal vaccine allocation also quickly raised interest in
the field of complex networks. Pastor-Satorras and Vespignani provided the
first complete analytical analysis on how one can leverage the heterogeneity
in the degree distribution to ameliorate the impact of vaccines [433]. Even-
tually, researchers realised that if the main goal is to reduce infections, one
can leverage different techniques developed in statistical physics to tackle the
issue of optimal vaccine allocation on a network [434, 435]. These techniques
could be employed due to the existing mapping of the SIR model to a per-
colation problem [188]. Further, the percolation problem, and by transitivity,
optimal vaccine allocation, is closely related to the design of resilient infra-
structure networks [436–438]. The generality and relevance of this problem
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sparked a series of studies that did not only focus on the degree of a node
but made use of other network metrics such as betweenness or other cent-
rality measures [439–441]. These approaches leverage heuristics to solve the
NP-hard optimisation problem. From an analytical point of view, message-
passing and the cavity method have proven useful to immunise networks
[434, 435] efficiently. Furthermore, several extensions exist, where researchers
considered, for example, temporal networks [442] or immunised links instead
of nodes [180, 443].

From a practical point of view, implementing most of these advanced
strategies to allocate vaccines is simply not feasible. While one may have
access to all the nodes and edges present in infrastructure networks [444],
privacy concerns prevent such data collection in the context of human con-
tact networks [445]. Hence, in practical settings, strategies that focus on the
more frequently interacting individuals are often still the best one can do.

Most studies that focused on degree-based immunisation strategies con-
sidered the vaccine to be perfect, corresponding to an efficacy of 100% [433,
446, 447]. However, as we pointed out earlier, many vaccines and prophylactic
tools have an efficacy nowhere near a 100% [416, 417, 448]. Therefore, we
asked ourselves whether targeting the more frequently interacting individu-
als is still the best option to control an epidemic if efficacy is not 100%. Intuit-
ively, a higher risk of exposure to the pathogen, i.e. more contacts, enhances
the probability of prevention to fail (breakthrough infection) [312, 428]. Ac-
cordingly, there could be a trade-off between the probability of breakthrough
infections and the ability to prevent super-spreading events when focusing on
the individuals with the most contacts. We will blend an analytical approach
with a numerical analysis to investigate whether this trade-off exists.

4.2.1 Model setup

To model the spread of a pathogen in a population with different interac-
tion rates, represented by a degree distribution pk, we consider a standard
SIS compartmental model in the heterogeneous mean-field approach, i.e. the
annealed network formalism (Sec. 2.2.3.2). The annealed network formalism
factors out all dynamical correlations but is analytically tractable [131]. The
absence of dynamical correlation is not an issue since we solely want to fo-
cus on the impact of the degree heterogeneity. Further, we consider a leaky
prevention, with efficacy ϵ in decreasing the transmission probability λ. Let
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us define yk (xk) as the probability that an individual in degree class k who
does (not) receive protection is infected. The variable gk is the probability
that an individual in degree class k receives protection. Finally, given a recov-
ery rate µ, the equations of the heterogeneous mean-field in the presence of
prophylaxis read

ẋk = −µxk +
λ

⟨k⟩ k(1 − xk)ξ (4.27)

ẏk = −µyk +
λ

⟨k⟩ (1 − ϵ)k(1 − yk)ξ (4.28)

ξ = ∑
k

kpk [(1 − gk)xk + gkyk] . (4.29)

ξ is an auxiliary variable that simplifies the calculations later on and rep-
resents the probability of entering in contact with an infected individual. To
simplify further, we rescale time and define the reduced transmission rate
λ̂ = λ/(µ⟨k⟩), where ⟨k⟩ is the average degree.

4.2.2 Optimal Distribution Strategy

The overall prevalence in the population is expressed as

I = ∑
k

pk [(1 − gk)xk + gkyk] . (4.30)

Now, given a fixed amount of prevention, optimising the distribution is equi-
valent to minimising overall prevalence with respect to the functional I[g].
From an analytical point of view, this minimisation problem is not tractable.
Hence, we take another approach and consider the limit case where only
a small amount of prevention is available. More precisely, we measure the
impact of distributing prevention to a few individuals in degree class k on
the overall prevalence. This approach essentially results in a linear response
function f (x) that we define as the change in the number of infected indi-
viduals NI if a small amount of prevention Npkgk is provided in degree class
k. Hence, f (k) can be written as

f (k) ∼ − d(NI)
d(Npkgk)

∣∣∣∣
g=0

. (4.31)
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We put the minus sign just for convenience to work with a positive valued
function. We see that the population size N cancels out, and the response
function reads

f (k) = − 1
pk

dI
dgk

∣∣∣∣
g=0

. (4.32)

If a risk-based strategy is optimal, f (k) would monotonously increase with
k. In contrast, the existence of a trade-off would result in a maximum in f (k)
for a finite value of k. Let us go ahead and insert the expression of I into
Eq. (4.32) leading to

f (k) =

Fdir(k)︷ ︸︸ ︷
(xk − yk)|g=0 +

Findir(k)︷ ︸︸ ︷
1
pk

∑
m

pm
dxm

dgk

∣∣∣∣
g=0

. (4.33)

As denoted above, f (k) has two terms Fdir(k) and Findir(k). Fdir(k) quantifies
the reduction in the infection probability among those that receive prevention.
In contrast, Findir(k) quantifies the indirect effect of the prevention campaign,
i.e. the reduction in the infection risk for those that do not receive prevention.
Now, to make explicit the expression of Fdir(k) and Findir(k) requires us to
calculate xk, yk, and the derivative dxm

dgk
.

4.2.2.1 Individual reduction of the infection risk

First, at the equilibrium (ẋk = ẏk = 0), one can use Eq. (4.28) to write yk as a
function of xk:

yk =
1 − ϵ

1 − ϵxk
xk. (4.34)

Further, given that xk has to be evaluated at g = 0 (no prevention), from
Eq. (4.27) (see also sec. 2.2.2) we can express xk recursively as

xk =
zλ̂k

1 + zλ̂k
, (4.35)

where we defined z as
z = ⟨kx⟩ = ∑

k
pkkxk . (4.36)

The term z represents an individual’s expected number of at-risk contacts.
More generally, angle brackets will refer to averages with respect to the de-
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124 human behaviour and epidemic control

gree distribution. The two relations in Eq. (4.34) & (4.35) allows us already to
express Fdir(k) as

Fdir(k) =
ϵλ̂zk[

1 + λ̂zk
] [

1 + (1 − ϵ)λ̂zk
] . (4.37)

Considering the shape of Fdir(k), we note the possibility of a maximum at
k = k∗dir ∼ 1/

√
1 − ϵ (Fig. 4.7A). In other words, for individuals that receive

protection, their infection risk is maximally reduced if they are in degree class
k∗dir. Hence, we have found the postulated trade-off regarding the direct im-
pact on the individuals given prevention. Further, given the scaling of k∗dir,
the maximum only exists for ϵ < 1. If prevention is perfect, one should al-
ways prioritise immunising highly connected nodes to maximise the direct
reduction in the individual infection risk since breakthrough infections are
impossible.

4.2.2.2 Impact on the population level

To see whether the same trade-off holds at the population level, i.e. including
also individuals that are not given protection, we need to express the derivat-
ive dxm

dgk
first. Let us thus consider the equilibrium condition ẋk = 0 and take

the derivative with respect to gm on both sides, and we find

− dxk
dgm

+ λ̂k
[
− dxk

dgm
z + (1 − xk)

dξ

dgm

]
= 0 . (4.38)

We implicitly assume that all the terms should be evaluated at g = 0. We then
can compute the derivative of ξ given its definition in Eq. (4.29):

dξ

dgm
= mpm(ym − xm) + ∑

k′
k′pk′

dxk′

dgm
. (4.39)

Inserting this into Eq. (4.38), we find

∑
k′

[
λ̂k(1 − xk)k′pk′ − δkk′(1 + zλ̂k)

] dxk′

dgm
= −λ̂k(1 − xk)mpm(ym − xm) .

(4.40)
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This equation constitutes a linear system for the matrix Jkm = dxk
dgm

. By defin-
ing the auxiliary variables uk = λ̂k(1 − xk), vk = kpk, wk = kpk(yk − xk), and
Dkk′ = (1 + zλ̂k)δkk′ , we can rewrite Eq. (4.40) as

(uvT − D)J = −uwT . (4.41)

We explicit J by making use of the Sherman-Morrison formula [449] as

J =
1

1 − vT D−1u
D−1uwT . (4.42)

Inserting the expression for u, v, w and D gives us the explicit expression of
J and hence Findir(k) as

Findir(k) =
ψλ̂

1 − ϕ
kFdir(k) , (4.43)

where we defined

ϕ = λ̂

〈(
k

1 + zλ̂k

)2
〉

and ψ =

〈
k

(1 + zλ̂k)2

〉
. (4.44)

With respect to Fdir(k), Findir(k) has an additional factor k. The additional
factor is intuitive since the individual reduction in the infection risk linearly
reduces the risk of onward transmission, but with a proportionality factor
k, the number of contacts of the protected individual. Due to this scaling
factor, Findir(k) does not have a maximum and monotonously increases with
the degree k (Fig. 4.7A). Accordingly, with respect to the impact on the rest
of the population, targeting hubs is always the best strategy, as it always
provides the highest indirect benefit.

4.2.2.3 Analytical expression of the linear response function

If we observe a trade-off when considering both effects depends on whether
Fdir(k) primes over Findir(k). Actually, making the expression of f (k) in
Eq. (4.33) explicit, we find

f (k) =
ϵλ̂zk

(1 + λ̂zk)
[
1 + (1 − ϵ)λ̂zk

] (1 +
λ̂ψ

1 − ϕ
k

)
. (4.45)
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Figure 4.7: (A): Terms Fdir(k) (Eq. (4.37)) and Findir(k) (Eq. (4.43)) of the response func-
tion. The cross indicates k∗dir, maximum of Fdir. Reduced transmissibility is
λ̂ = 0.25; degree distribution is a negative binomial with mean 2.0, coef-
ficient of variation (standard deviation over mean) 4.7; efficacy is ϵ = 0.5.
(B): Response function f (k), which is the sum of the terms in (A). The
cross indicates k∗, maximum of f . (C): Response function f (k) for different
values of ϵ. The dashed lines and the crosses indicate k∗. Reduced trans-
missibility is λ̂ = 2; degree distribution is a negative binomial with mean
2.0 and coefficient of variation 4.7.

To analyse whether f (k) has a maximum, let us consider the derivative with
respect to k:

f ′(k) ∼ k2λ̂2z [ψ(1 − ϕ)(2 − ϵ) + z(1 − ϵ)]− 2λ̂ψ(1 − ϕ)k + 1 , (4.46)

where we dropped a strictly positive term on the RHS. At k = 0, we have
f ′(k) > 0. Hence, lim

k→∞
f (k) < 0 is a sufficient condition for f (k) to have a

maximum in R+. This condition translates to

z(1 − ϕ)− 2ψ > ϵ [z(1 − ϕ)− ψ] , (4.47)

leading to a critical efficacy ϵc below which the maximum exists:

ϵ < ϵc =
z(1 − ϕ)− 2ψ

z(1 − ϕ)− ψ
. (4.48)

We find the maximum by setting f ′(k) = 0 as

k∗ =
1 +

√(
z(1−ϕ)

ψ − 1
) (

z(1−ϕ)
ψ (1 − ϵ)− 1

)
λ̂z
[

z(1−ϕ)
ψ (1 − ϵ)− (2 − ϵ)

] . (4.49)
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Accordingly, the trade-off exists also when taking into account both Fdir(k)
and Findir(k). Fig. 4.7B illustrates how f (k) reaches its maxima at k∗. However,
the maximum k∗ only exists whenever ϵ < ϵc. Fig. 4.7C illustrates that as
efficacy increases, the maxima disappears and f (k) monotonously increases
with k. In this sense, ϵc distinguishes a high-efficacy (ϵ > ϵc) region from a
low-efficacy region (ϵ < ϵc). While in the high-efficacy region, one should
adopt a risk-based strategy (i.e. immunising the hubs), targeting individuals
in degree class k∗ has the strongest impact on community prevalence in the
low-efficacy region. Analysing the dependence of k∗ and ϵc on the different
parameters requires, at least partially, a numerical approach. The expressions
z, ϕ and ψ, cannot be calculated analytically. Instead, we numerically solve
the differential equations without prevention (g = 0), enabling us to evaluate
the expressions [253, 450, 451].

As a first step, we focus on the impact of prevalence on k∗ and ϵc. To this
aim, we numerically optimise the transmission probability λ until the desired
prevalence is reached. We observe in Fig. 4.8A that higher prevalence leads to
higher ϵc and, in the low-efficacy region, to lower k∗. Further, lower efficacy
leads to a decrease in k∗. These results are intuitive since higher prevalence or
lower efficacy make breakthrough infections more likely. Besides prevalence,
the heterogeneity in the degree distribution will also affect the dynamics.
Fig. 4.8B indicates how ϵc increases with the network heterogeneity. Simil-
arly, increasing heterogeneity in the network elevates connectivity between
hubs and favours breakthrough infections. Accordingly, as the heterogeneity
increases, ϵc increases too.

4.2.2.4 The impact of prevalence and degree heterogeneity

To this point, the findings on how prevalence or heterogeneity affects the dy-
namics are mainly numerical. However, we can also show this analytically if
we assume a degree distribution that follows a power law. Let us first con-
sider how z is affected by the heterogeneity of the degree distribution. As
previously mentioned, z is expressed as z = ∑k pkkxk. Accordingly, since the
degree and the infection probability are positively correlated (Eq. (4.36)), a
lower bound for z is I⟨k⟩, which would correspond to a homogeneous pop-
ulation. Instead, broad degree distributions lead to z > I⟨k⟩. More explicitly,
from Eqs. (4.35) & (4.36) it follows that

λ̂ ∑
k

pk
k2

1 + zλ̂k
= 1. (4.50)
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LOW-EFFICACY REGION

HIGH-EFFICACY REGION

Figure 4.8: (A): k∗ as a function of efficacy ϵ, and baseline disease prevalence (preval-
ence without prevention). Finite values of k∗ mark the low-efficacy region.
The grey area indicates k∗ → ∞: the high-efficacy region. The solid black
lines show critical efficacy ϵc; the dashed black line shows ϵr. The degree
distribution is a power law with the exponent 2.0. The reduced transmiss-
ibility λ̂ is numerically set to match the corresponding baseline prevalence.
(B): Critical efficacy ϵc as a function of the heterogeneity of the contact
network, measured as the exponents of the power-law degree distribution.
Different curves mark different values of baseline prevalence.

To simplify things, we will assume the degree distribution follows a power-
law with exponent γ, i.e. pk ∼ k−γ. If we approximate the sum on k with an
integral, Eq. (4.50) becomes

2F1(1, γ − 2, γ − 1,− 1
zλ̂

) = z
γ − 2
γ − 1

, (4.51)

where 2F1 is the hypergeometric function. At γ = 2, 2F1 has a simple pole,
i.e. 2F1(1, γ − 2, γ − 1,− 1

zλ̂
) ≈ 1

z(γ−2) . Accordingly, close to γ = 2, Eq. (4.51)
becomes

1

[z(γ − 2)]2
≈ 1

γ − 1
. (4.52)

Since the RHS is finite at γ = 2, z needs to scale as z ∼ 1/(γ− 2) to cancel the
divergence at γ = 2, which proves that z increases as the network becomes
more heterogeneous (decreasing γ). Further, z monotonously increases with
the prevalence in the population (higher λ). Having dealt with the depend-
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ence of z on prevalence and the heterogeneity γ, we can now approximate ϕ

and ψ for large z:

ϕ ≈ 1
z2λ̂

(4.53)

ψ ≈ k−1

z2λ̂2
. (4.54)

Hence, in the limit for large z, k∗ and ϵc become

k∗ ≈ 1
λ̂z

1 +
√

1 − ϵ

1 − ϵ
→ 0 (4.55)

ϵc ≈ 1 − k−1

z3λ̂2
→ 1 . (4.56)

We thus observe that ϵc and k∗ increase and decrease, respectively, with z.
Therefore, based on our analysis of z, we conclude that higher prevalence
and network heterogeneity increase ϵc and cause k∗ to decrease in the low-
efficacy region.

4.2.2.5 Immunisation close to the epidemic threshold

Since high prevalence is necessary for the trade-off to occur, at the epidemic
threshold, targeting hubs is always the best strategy. We can see this by lin-
earising Eqs. (4.27) & (4.28) around the disease-free equilibrium:

ẋk = −µxk +
λ

⟨k⟩ kξ (4.57)

ẏk = −µyk +
λ

⟨k⟩ (1 − ϵ)kξ. (4.58)

We can find an equation for the evolution of ξ by multiplying the first line by
kpk(1 − gk), the second line by kpkgk, add both equations together and sum
over the degrees k:

ξ̇ =

[
−µ +

λ

⟨k⟩
(
⟨k2⟩ − ⟨gk2⟩

)]
ξ. (4.59)

Hence, we notice that the disease-free equilibrium is not stable, i.e. ξ̇ > 0, if

− µ +
λ

⟨k⟩
(
⟨k2⟩ − ⟨gk2⟩

)
> 0 , (4.60)
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leading to the epidemic threshold

λc = λ0

(
1 − ϵ⟨gk2⟩

⟨k2⟩

)−1

, (4.61)

where λ0 refers to the standard epidemic threshold in the absence of protec-
tion, i.e. λ0 = µ⟨k⟩/⟨k2⟩. In analogy to our approach for the prevalence, we
define the response function fλ(k) as

fλ(k) =
1
pk

dλc

dgk

∣∣∣∣
g=0

. (4.62)

We did not introduce a minus sign here since prevention increases the epi-
demic threshold. After some algebra, one finds

fλ(k) =
ϵλ0

⟨k⟩ k2 . (4.63)

In contrast to f (k), fλ(k) is monotonously increasing with k, proving that,
independent of the efficacy ϵ, targeting hubs is always the best strategy at
the epidemic threshold.

4.2.2.6 Random distribution can outperform a risk-based strategy

The results on the epidemic threshold further highlight that prevalence cru-
cially separates the high-efficacy from the low-efficacy region. In this sense,
if one wanted to leverage our results in a distribution campaign, accurate
knowledge of the prevalence is necessary. Further, it could be challenging to
precisely determine the number of contacts to distribute prevention to indi-
viduals in degree class k∗. For example, in the context of sexually transmitted
diseases, the stigma involved often hinders information collection [452]. For
this reason, we propose an easier strategy to implement, which is the uniform
distribution of prevention. Uniform distribution randomly gives prevention to
individuals and hence is mathematically described by ⟨ f ⟩, which we evalu-
ate numerically. We then compare the uniform distribution with a risk-based
strategy that is quantified as f (∞) = limk→∞ f (k) and can be calculated as

f (∞) =
ψ

z(1 − ϕ)

ϵ

1 − ϵ
. (4.64)

In analogy to ϵc, we define ϵr as the efficacy value for which ⟨ f ⟩ > f (∞). The
white dashed line in Fig. 4.8A indicates ϵr. We see that ϵr > ϵc. Nevertheless,
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there is a parameter region where uniform distribution outperforms a risk-
based strategy. The existence of this parameter region opens the pathway for
a distribution strategy that is easy to implement and equitable while still
performing well in a high-prevalence setting.

4.2.3 PrEP distribution as a possible application

Naturally, the question that arises is which virus has such a high prevalence
for our theory to apply. Further, a prevention tool should exist with relatively
low efficacy, and we have shown that a heterogeneous degree distribution
promotes the trade-off to occur. Taking into account all these properties, the
distribution of pre-exposure prophylaxis (PrEP) to prevent HIV infections in
communities of men who have sex with men (MSM) is a possible applica-
tion. In particular, in African countries, MSM communities exhibit elevated
HIV prevalence, with estimates ranging between 5% and 40% [453]. Further,
sexual contact networks in MSM communities have shown to be very het-
erogeneous. Different studies concluded that a power law with an exponent
between 1.5 and 2.0 is a good approximation of the actual degree distribu-
tion [430, 454, 455]. Due to the elevated prevalence, huge efforts were made
in the recent past to control the spread of HIV among MSM through PrEP
distribution. If taken regularly, PrEP has almost an efficacy of 100% [456].
However, in many countries, stigma still surrounds MSM and HIV [452]. The
stigma can hinder both regular access to PrEP as well as access to accurate
information on how to use PrEP. In many African countries, both of these
issues have been shown to cause a lack of adherence [457]. For PrEP to be
effective, the medicamentation must be taken daily. Otherwise, the efficacy
of PrEP is substantially lower. Studies have shown that in different African
countries, due to the lack of adherence, the efficacy of PrEP is only between
40% and 80% [456]. In this sense, HIV prevention in African MSM communit-
ies through PrEP distribution fulfils all three criteria for our theory to apply:
high prevalence, a heterogeneous degree distribution and low efficacy. Ran-
dom distribution is particularly interesting in these settings since the stigma
involved often makes it difficult to closely engage with the affected individu-
als [452]. In such circumstances, implementing a risk-based strategy can be
very challenging since one cannot identify the most at-risk individuals. There-
fore, the uniform distribution we showed here could be a good alternative
that is easier to implement while performing equally well or even better.
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However, a detailed analysis should forego any implementation of a uni-
form distribution in a specific region. Firstly, a robust estimation of the pre-
valence is necessary. Second, one must infer or approximate the degree dis-
tribution in the MSM population. Further, besides looking at the degree dis-
tribution, one should also assess whether interactions are recurrent and with
which frequency new partners are acquired [83, 458]. With such information
at hand, agent-based simulations would then probably provide the most ac-
curate estimation of the impact of the different distribution strategies [459].
Additionally, here we focused only on the optimal distribution if only a small
amount of PrEP is available. This approach allowed us to consider the linear
response function and made the problem analytically tractable. However, if
it is possible to distribute PrEP to a substantial part of the population, op-
timisation of the functional as presented in Eq. (4.30) would be necessary. In
this sense, the approach presented here is a first step towards developing op-
timal distribution strategies in high-prevalence settings. Hopefully, our find-
ings can spark new studies that focus on specific environments in order to
implement these distribution strategies in the future.

4.2.4 Emerging Phenomenology due to imperfect vaccines

If we set aside the real-world applications and focus on the theoretical im-
plications of our findings, we found, after the case of homophilic vaccine
adoption, another example where an imperfect vaccine behaves qualitatively
differently from a perfect one. Similarly to the three dynamical regimes, the
trade-off between breakthrough infections and the population level impact
can only take place if efficacy is not 100%. However, as we pointed out, for
the homophilic adoption, the three dynamical regimes arise independently
on whether one considers leaky or all-or-nothing protection. In contrast, the
trade-off we unveiled here can only arise for leaky protection. For an all-or-
nothing protection, the relative individual effectiveness is not affected by the
number of contacts. The all-or-nothing case is equivalent to perfect protection
with lower adoption. Therefore, we discovered a case where leaky and all-or-
nothing protection differ not only quantitatively but also phenomenologically
[312, 419, 428]. Hence, one should also be aware of the biological details of a
prevention mechanism to assess whether it is leaky or all-or-nothing.
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4.3 summary and discussion

In this chapter, we have considered two facets of human behaviour and
analysed their impact on epidemic control. First, we have shown how the
preference of humans to interact with others that share similar characterist-
ics — homophily — non-trivially affects the impact of prophylactic tools.
Contrary to previous findings, our results indicated that if efficacy is not
100%, homophily is not always beneficial but can also be detrimental or non-
monotonously affect epidemic control. The phenomenology holds for a wide
range of prophylactic tools such as vaccines, the use of masks, social dis-
tancing, or DPT. Second, we considered optimal strategies for prophylaxis
distribution for populations whose contacts follow heterogeneous degree dis-
tributions. We have shown that other than what standard theory tells us, a
risk-based strategy (targeting hubs) is not always the best option. Instead, if
efficacy is low with respect to the prevalence, an optimal finite degree ex-
ists to target. Further, if prevalence is even higher or efficacy is even lower,
uniform distribution may outperform a risk-based approach. Both findings
share that the phenomenology only emerges if the prevention tool’s efficacy
is not 100%. Furthermore, the results highlighted that, when considering the
correlation between metadata and network structure, one can still explore
new phenomenology [460–464].

From a more technical point of view, this and the previous chapter share a
similar approach, but differ in one aspect. Here, we considered an empirically
grounded aspect of human behaviour and analysed through minimal math-
ematical modelling what this may imply for epidemic control. In contrast,
in Chapter 3, we started from the phenomenology and tried to understand
through modelling how human behaviour may be at its cause. However, both
approaches share that they focus mainly on the qualitative behaviour, the phe-
nomenology. Next, we will take a more quantitative approach and do actual
real-world modelling in the context of SARS-CoV-2. We will show how mod-
elling can be used to make predictions, but more importantly, how we can
infer aspects of human behaviour or characteristics of the virus.
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5
T H E S P R E A D O F S A R S - C O V- 2

With the worldwide spread of SARS-CoV-2 in early 2020, epidemic models
were suddenly discussed in the public sphere. As health authorities consulted
epidemiologists to provide them with projections of the epidemics’ evolution,
model predictions became part of the daily argy-bargy in politics [354]. Unfor-
tunately, the public discussion mainly focused on the predictions of epidemic
models. While some ridiculed modellers as a kind of modern-day Nostrada-
mus, others almost thirsted for pessimistic predictions. In this heated debate,
it was often forgotten that epidemiological models serve for much more than
to predict the epidemics’ trajectory. One could even argue that epidemiolo-
gical models are much more helpful for everything other than making pre-
dictions. For example, epidemiological models allowed us to infer many of
the characteristics of the virus, such as its generation time [232], infectious
period [62], or reproduction number [57, 465]. Further, with the emergence
of new variants, models were used to infer the increase in transmissibility
and virulence of the mutated strains [466, 467]. Also, epidemiological models
were used to retrospectively assess what actually occurred [468, 469]. Such as-
sessments allowed to estimate the impact of past NPIs [314, 316], eventually
enabling the improvement of the containment strategy in the future. Espe-
cially in early 2020, the reporting of cases, and hence data availability, was so
poor that the evolution of the first wave could only be accurately assessed in
hindsight [470, 471]. The rapid increase in available information required a
constant adaptation of the modelling efforts and the conclusions drawn from
them. Updating previously drawn conclusions, and maybe even contradict-
ing them, appeared to be very challenging to communicate to the general
public [472]. Probably, this was one of the few occasions where the inner
workings of scientific production, in particular, its historicity [473], were at
full display in real-time for the general public.
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All the above also holds for the modelling efforts regarding SARS-CoV-2
we did in our research group. Starting in February 2020, our models and as-
sumptions were adapted multiple times. Hence, it should not be surprising
to the reader if this chapter presents the contributions with a critical eye. Fur-
thermore, temporal constraints made it necessary to find a trade-off between
pragmatism and scientific perfection. In this chapter, we will first present the
model we used to understand the spatial spread of SARS-CoV-2 in Spain
during the spring of 2020. The second study leverages case data that became
available in the summer of 2020, which allowed us to assess the evolution
of the first wave retrospectively. The retrospective analysis will shed light on
our difficulties in modelling the epidemic in real-time. We will conclude the
chapter by building a model for the spread of the Delta variant during the
summer of 2021 in Catalonia. The spread of the Delta variant is of particular
interest since, besides the emergence of the new variant, vaccines were newly
available and restrictions had just been lifted. Eventually, this chapter should
illustrate how epidemic models can be used to predict the epidemic evolu-
tion, infer characteristics of the virus, and highlight how human behaviour
shaped the disease propagation.

5.1 a spatiotemporal model for the propagation of sars-cov-2

On December 31 2019, China officially communicated to the WHO about the
possible emergence of a new Coronavirus. Soon after, on January 23 2020,
China implemented a travel ban that affected millions of people [474]. In
hindsight, we know that, at this point, the virus had already spread to a sub-
stantial part of the globe [195]. However, in early 2020, European countries
detected their first cases between the end of January and the beginning of
February. Furthermore, the constant reports of newly detected cases in Spain
from February onward substantiated the possibility of a large-scale propaga-
tion of SARS-CoV-2. These reports prompted us to start our modelling efforts,
which were, at least initially, mainly aimed at understanding the spatiotem-
poral patterns of the epidemic that one would likely observe. Hence, human
mobility was at the core as we built the epidemiological model that we will
present in this section.
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5.1.1 Basic model equations

To model the spread of SARS-CoV-2 we use the MMCA [175, 460], which
we presented in Sec. 2.2.3.4. The MMCA has the particular advantage that it
is in discrete-time, reducing the computational cost. We extended the stand-
ard approaches and introduced additional compartments that are tailored
for SARS-CoV-2. To incorporate mobility, we use the approach introduced in
Ref. [208], which was developed for recurrent mobility, i.e. commuting. In
this framework (Sec. 2.2.4), a set of variables {ρ

m,g
i (t)} represent the probab-

ility that individuals, with residence in patch i, belonging to age strata g, are
in state m. The different states and the transitions among them are illustrated
in Fig. 5.1. We consider the following compartments: susceptible (S), exposed
(E), pre-symptomatic infectious (A), symptomatic infectious (I), to be admit-
ted in ICU (pre-hospitalised in ICU, PH), fatal prognosis (predeceased, PD),
admitted in ICU that will recover (HR) or decease (HD), recovered (R), and
deceased (D). Compartments PH and PD are introduced to account for the
delays until individuals are admitted to the ICU or until death without ad-
mission to an ICU, respectively. The compartments HR and HD serve to distin-
guish individuals who will recover and decease, respectively, after admission
to an ICU.

Dg

Sg Eg Ag

Susceptible
Healthy, 

can get infected

Exposed
Infected but 

not yet infectious

Asymptomatic
Infectious but displaying 

no or mild symptoms

PH
g

PD
g

Ig

Infected
Infectious and

displaying symptoms

Rg

Hospitalized in ICU
With good prognosis

Hospitalized in ICU
With fatal prognosis

Deceased

Recovered
No longer infectious, 
develops immunity

�A, �I �g

μg (1-�
g )(1-

�g )

μg(1-�g)�g

μ g � g

�g

�g (1-�
g )

� g � g

� g

�g

Cgh{Ah, Ih}
A Susceptible individual becomes 

Exposed upon contact with Asymptomatic 
or Infected agents, according to the 

contact matrix C.

HR
g

HD
g

�g

Pre-
Hospitalized

Pre-
Deceased

Figure 5.1: The acronyms correspond to: susceptible (Sg), exposed (Eg), asymptomatic
infectious (Ag), symptomatic infectious (Ig), pre-hospitalised in ICU (Pg

H),
pre-deceased (Pg

D), in ICU before recovery (Hg
R), in ICU before death (Hg

D),
deceased (Dg), and recovered (Rg), where g denotes the age stratum of all
compartments. The arrows indicate the transition probabilities.
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The rationale for the transition between the compartments is the follow-
ing. Susceptible individuals get infected through contact with asymptomatic
or infected agents with a probability Πg

i (t) (details in Sec. 5.1.2) entering
the exposed compartment. Please note that asymptomatic refers here to pre-
symptomatic infectiousness. Exposed individuals become infectious but are
still asymptomatic at a rate ηg. Individuals then develop symptoms at a rate
αg. After the infectious compartments, three paths emerge for the clinical part
at a rate µg. Individuals either recover, are admitted to an ICU or decease
without admission. Individuals die without ICU admission with a probabil-
ity θg and rate ζg. Otherwise, individuals require ICU admission with prob-
ability γg and rate λg. Once admitted to an ICU, individuals decease with
probability ωg and rate ψg. If individuals do not decease, they exit the ICU
with a rate χg. As already pointed out, the compartment PD, and similarly
PH , serves only as an intermediate to guarantee the desired times between
infection and the clinical events. Appendix B details the choices for these
parameters.

As mentioned above, we separate the population into NG age strata ac-
counting for the age-dependent risk for a severe course of infection [326–328].
More precisely, we use the following three age states (NG = 3): young Y, with
age up to 25; adults M, with age between 26 and 65; and older people O, with
age larger than 65. Accordingly, we split the population of N individuals into
NP patches, with ni individuals residing in patch i. Further, ng

i individuals of
age stratum g live in patch i. Hence,

N =
NG

∑
g=1

NP

∑
i=1

ng
i =

NP

∑
i=1

ni =
NG

∑
g=1

ng , (5.1)

where ng is the total population of age stratum g. As previously men-
tioned, {ρm

i (t)} accounts for the probability that individuals of age
stratum g assigned to patch i are in state m at time t, where m ∈
{S, E, A, I, PH , PD, HR, HD, R, D} and g ∈ {Y, M, O}. With these definitions,
the temporal evolution of the system is given by

ρ
S,g
i (t + 1) = ρ

S,g
i (t) (1 − Πg

i (t)) (5.2)

ρ
E,g
i (t + 1) = ρ

S,g
i (t)Πg

i (t) + (1 − ηg) ρ
E,g
i (t) (5.3)

ρ
A,g
i (t + 1) = ηg ρ

E,g
i (t) + (1 − αg) ρ

A,g
i (t) (5.4)

ρ
I,g
i (t + 1) = αg ρ

A,g
i (t) + (1 − µg) ρ

I,g
i (t) (5.5)
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ρ
PD ,g
i (t + 1) = µg θg ρ

I,g
i (t) + (1 − ζg) ρ

PD ,g
i (t) (5.6)

ρ
PH ,g
i (t + 1) = µg (1 − θg) γg ρ

I,g
i (t) + (1 − λg) ρ

PH ,g
i (t) (5.7)

ρ
R,g
i (t + 1) = µg (1 − θg) (1 − γg) ρ

I,g
i (t) + χg ρ

HR ,g
i (t) + ρ

R,g
i (t) (5.8)

ρ
HD ,g
i (t + 1) = λg ωg ρ

PH ,g
i (t) + (1 − ψg) ρ

HD ,g
i (t) (5.9)

ρ
HR ,g
i (t + 1) = λg (1 − ωg) ρ

PH ,g
i (t) + (1 − χg) ρ

HR ,g
i (t) (5.10)

ρ
D,g
i (t + 1) = ζg ρ

PD ,g
i (t) + ψg ρ

HD ,g
i (t) + ρ

D,g
i (t). (5.11)

Above, Πg
i (t) encodes the probability that a susceptible agent belonging to

age stratum g and patch i contracts the disease during time step t. Time steps
correspond to a day.

5.1.2 Modelling the mobility between patches

Due to the age-stratification, the metapopulation approach here requires a
slight adaptation from Ref. [208]. The patches correspond to the municip-
alities in Spain. The mobility data refers to the daily commuting patterns
between municipalities. The mobility pattern is encoded in a matrix R, whose
elements Rg

ij refer to the fraction of agents in patch i and age stratum g that
commute daily to patch j. Given the mobility matrix, the probability Πg

i (t)
that a susceptible agent belonging to age stratum g and patch i gets infected,
can be written as

Πg
i (t) = (1 − pg) Pg

i (t) + pg
NP

∑
j=1

Rg
ij Pg

j (t) , (5.12)

where pg denotes the mobility level of individuals in age stratum g. If in-
dividuals follow the usual commuting patterns, we set pg = 1. In contrast,
pg = 0 implies that all individuals stay in their patch of origin. Later we
will show how we used the mobility parameter to model the impact of con-
finement measures. Pg

i encodes the probability that an individual contracts
the disease when in patch i. To express this probability, we need to make
some further considerations. We will consider an age-specific contact matrix
C that controls the mixing between age strata. Additionally, we assume that
the number of contacts increases monotonously according to a function f (x)
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with the density of individuals in the patch. With these definitions, Pg
i is

expressed as

Pg
i (t) = 1 −

NG

∏
h=1

NP

∏
j=1

∏
m∈{A,I}

(1 − βm)
zg ⟨kg⟩ f

(
ñi
si

)
Cgh

nm,h
j�i(t)

ñh
i . (5.13)

The parameters βA and β I correspond to the transmission probability upon
contact with a pre-symptomatic and symptomatic individual, respectively.
The exponent expresses the number of contacts made by an agent of age
stratum g in patch i with infectious individuals — compartments A and I —
of age stratum h belonging to patch j. The three products then iterate through
all patches, age strata, and symptomatic and asymptomatic individuals.

The term zg⟨kg⟩ f (ñi/si) represents the total number of contacts that an
agent from age stratum g makes inside patch i. The function f (x) controls
the scaling for the density, as si is the area of patch i and ñi is its effective
population. zg serves as a normalisation factor, such that the average num-
ber of contacts of age stratum g in the entire country is ⟨kg⟩, which is fixed
according to empirical studies. For this reason, zg is given by

zg =
ng

NP

∑
i=1

f
(

ñi
si

)
ñg

i

. (5.14)

The effective population in patch ñi, i.e the number of people present during
the day, is given by

ñi =
NG

∑
g=1

ñg
i , (5.15)

with

ñg
i =

NP

∑
j=1

Mg
ji ng

j . (5.16)

For convenience, we define the effective mobility matrices

Mg
ji = (1 − pg) δij + pgRg

ji . (5.17)

The function f (x), which governs the dependence of the number of contacts
on the density in each patch, is selected according to Ref. [475] as

f (x) = 1 + (1 − e−ξx) . (5.18)

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



5.1 a spatiotemporal model for the propagation of sars-cov-2 141

Finally, the last term in the exponent in Eq. (5.13) encodes the probability that
an interaction involves a contagious individual. This probability is expressed
as the ratio between infectious individuals nm,h

j�i (t) (m ∈ {A, I}) and the total
number of individuals present in ñh

i . Further, we distinguish here according
to age strata h, patch of origin j and whether individuals are pre-symptomatic
or symptomatic. In this sense, nm,h

j�i (t) can be expressed as

nm,h
j�i (t) = nh

j ρm,h
j (t) Mh

ji . (5.19)

Since the dynamics is in discrete time, the models’ computational cost is re-
latively low. Nevertheless, the model reproduces well the key characteristics
with regards to the temporal evolution of the relevant epidemiological quant-
ities. We used this model to anticipate the spread of SARS-CoV-2 in Spain
early on in February 2020. Unfortunately, data availability was really poor at
this point, and the regional distribution of the confirmed cases was not yet
directly accessible. Calibrating our model with the confirmed cases in every
region of Spain required screening a dozen local newspapers. We made these
early efforts public on a personal webpage. However, we will not focus on
the details of this early work here but instead on our efforts to introduce the
impact of confinement on the model. As the virus started to affect an increas-
ing part of the population during February/March of 2020, implementing
confinement measures became an option for many countries to prevent an
overload of the health system. In Spain, discussions around a lockdown star-
ted around the beginning of March 2020. The lockdown was then introduced
on March 15 [476]. These events forced us to reconsider our model. In the
following, we will outline how the model was adapted in order to account
for the presence of confinement measures.

5.1.3 Incorporating confinement into the model

The most immediate effects of the confinement is a reduction in mobility and
contacts [329, 477], which are represented by pg and ⟨kg⟩ in our framework.
So let us assume that confinement is introduced at time t and affects a per-
centage κ

g
0 in age group g. Accordingly, the mobility level pg becomes

pg(t) = (1 − κ
g
0(t)Θ(t − tc)) pg , (5.20)
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where Θ(t) is the Heaviside function. In other words, individuals affected
by the confinement do no longer commute and stay in their patch of ori-
gin. Please note that, as a byproduct, zg and ñg

i also become time-dependent
(Eqs. (5.14) & (5.16)).

Modelling the impact on the number of contacts is slightly more complex
since it varies across age groups and strongly depends on the type of confine-
ment that is introduced. In line with the restrictions in place during the first
wave in Spain, we assume that the lockdown entails the closure of restaur-
ants, bars and non-essential stores. Accordingly, physical contacts only occur
at home and the workplace. The study that informs the mixing between age
strata in our model separates contacts into three categories: home, workplace
and leisure [72]. Hence, we can directly leverage this separation to formu-
late the impact of the lockdown on the average number of contacts in each
age stratum. For the age stratum O, we assume that nobody is commuting
to work, wherefore contacts take only place at home. Thus, after the intro-
duction of confinement, the average number of contacts in the age group O
⟨kO⟩ is given by ⟨kO

h ⟩, where ⟨kO
h ⟩ refers to the contacts taking place inside

the household. In contrast to the elderly, a fraction of the population in age
stratum Y and M continued to commute to work every day. This implies that
a fraction κ

g
0(t) has also contacts at the workplace in addition to the ones

at home. Accordingly, after the introduction of the lockdown, the average
degree ⟨kg(t)⟩ for individuals belonging to age strata g ∈ {Y, M} becomes

⟨kg
c ⟩(t) = κ

g
0(t) kg

h + (1 − κ
g
0(t))(1 − δ) kg

h+w , (5.21)

where kg
h and kg

h+w refer to the contacts made by confined (home) and
non confined (home and work) individuals. The parameter δ accounts for
the social distancing that is adopted in work settings. Eventually, the time-
dependent average number of contacts for agents in age strata g can be ex-
pressed as

⟨kg⟩(t) = (1 − Θ(t − tc)) ⟨kg⟩+ Θ(t − tc) ⟨kg
c ⟩. (5.22)

The time-dependence of ⟨kg⟩ impacts the probability that individuals from
age group g and patch i get infected at time i as

Pg
i (t) = 1 −

NG

∏
h=1

NP

∏
j=1

∏
m∈{A,I}

(1 − βm)
zg(t) ⟨kg⟩(t) f

(
ñi(t)

si

)
Cgh

nm,h
j�i(t)

ñh
i (t) . (5.23)
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This equation completes how we describe the impact of the reduction in
mobility and contacts inside the model framework. What we have not in-
cluded so far is the impact of household isolation. To be more explicit, the
confinement in place reshapes the physical contact network; it fragments it.
For households where nobody leaves for work, it is improbable that someone
gets infected since the virus has no entry point. From a mathematical point of
view, one can see this presence of totally isolated households as a reduction
of the pool of susceptible individuals. As a matter of fact, Maier et al. have
shown that the isolation of individuals — treated as a reduction of the pool
of susceptible individuals — is able to explain the linear growth in confirmed
cases observed in Chinese provinces during early 2020 [478]. They proposed
an elegant effective theory that incorporates a network effect — the isolation
of households — into a mean-field model. The simplicity of their approach
allowed us to take advantage of their theory and incorporate it with small
changes into our model. A relevant quantity in this context is the fraction of
individuals in patch i that live in a household in which none of its members
are infected. We denote this by the quantity CHi and can be expressed as

CHi(t) =

(
1
ni

NG

∑
g=1

(
1 − ρ

E,g
i (t)− ρ

A,g
i (t)− ρ

I,g
i (t)

)
ng

i

)σ

, (5.24)

where σ is the average household size. We made here the crude approxim-
ation that ages are randomly mixed inside households. With the quantity
CHi(t), we can express how the fraction of susceptible individuals is reduced,
while the isolated individuals are withheld in the new compartment ρ

CH,g
i (t).

These equations then read

ρ
S,g
i (t + 1) =

(
ρ

S,g
i (t) + ρ

CH,g
i (t)

)
(1 − Πg

i (t))×
(1 − Θ(t − tc) (1 − ϕ) κ

g
0(t)CHi(t)) (5.25)

ρ
E,g
i (t + 1) =

(
ρ

S,g
i (t) + ρ

CH,g
i (t)

)
Πg

i (t)×
(1 − Θ(t − tc) (1 − ϕ) κ

g
0(t)CHi(t)) +

(1 − ηg) ρ
E,g
i (t) (5.26)

ρ
CH,g
i (t + 1) =

(
ρ

S,g
i (t) + ρ

CH,g
i (t)

)
×

(1 − ϕ) κ
g
0(t)CHi(t)Θ(t − tc) . (5.27)

Put simply, we removed confined individuals that do not live with any infec-
ted individuals from the susceptible population. However, we introduced a
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household permeability parameter ϕ that accounts for the non-perfect isola-
tion that originates from essential activities such as buying groceries, drugs,
etc. We will detail later how the different parameters are estimated when ad-
justing the model to the data. However, first, we focus on how confinement
affects the reproduction number within our modelling framework.

5.1.4 Expression of the reproduction number

The ultimate goal of introducing the lockdown was to contain the epidemic,
i.e. to push the reproduction number R below 1, and hence to reduce the pres-
sure on the hospitals. In this sense, having an idea of the necessary reduction
in mobility κc

0 to achieve R < 1 facilitates the design of the intervention. Ad-
ditionally, the temporal evolution of the reproduction number gives detailed
insight into when and how strongly different NPIs impacted the evolution
of the epidemics. This correspondence prompted us to find an analytical de-
scription of the reproduction number inside our model framework.

The most straightforward and also most established way to express the re-
production number would be through the next-generation matrix [211, 214].
However, as pointed out in Sec. 2.2.5, the NGM assumes that the distribu-
tion of newly infected individuals is the one at equilibrium. More precisely,
the effective reproduction number is the average of the entries of the NGM
weighted by the normalised eigenvector, which describes the relative case dis-
tribution in each patch or age stratum. Nevertheless, in the presence of NPIs,
data indicated that mobility levels changed on a daily basis. Therefore, given
a generation time of about 5 days [232], it does not seem reasonable that
the transmission dynamics reach such an equilibrium. It is thus desirable to
find an alternative expression of the reproduction number which does not
make the assumption of equilibrium. To do so, we can replace the leading
eigenvector with the case distribution at time t inside the model. Further, this
approach will allow us to define a reproduction number specific to each age
stratum and patch.

The next-generation matrix expresses the instantaneous reproduction num-
ber. The instantaneous reproduction number at time t is defined as the num-
ber of secondary infections caused by an average individual infected at time t
assuming that the environment is constant during his infectious period [216]
(Sec. 2.3). To illustrate this, let us assume that the lockdown is introduced at
time tc. Accordingly, for all t < tc the instantaneous reproduction number
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does not take into account the implementation of the lockdown. It assumes
that the environment is constant. Thus, contacts do not vary over infection.
However, given that infectiousness does not start directly after exposure to
the virus, someone that gets infected a day before the introduction of the
lockdown will only start to infect others once the lockdown is in place. In
this sense, the generations infected at t < tc already have a reduced number
of secondary cases and, hence, a lower reproduction number. The quantity
that does take into account the changing environment during the course of
infection is the case reproduction number [74]. Its definition is equivalent to
the one of the instantaneous reproduction number, except that the assump-
tion of a constant environment is not made. In the following, we will focus
on the case reproduction number. Nevertheless, recovering the instantaneous
reproduction number from our approach will be straightforward.

Now, to find the expression of R, let us first simplify things and solely
consider the different components it entails. As mentioned in Chapter 1, the
reproduction number can be expressed as

R = τI β ⟨k⟩ ρS . (5.28)

Where τI is the infectious period, β the transmission probability, ⟨k⟩ the aver-
age contact rate, and ρS the fraction of susceptible individuals in the popula-
tion. The translation of this to our example is not that straightforward, since
we have a time dependence of the contact rate and the fraction of susceptible
individuals. Further, we have two distinct probabilities for pre-symptomatic
and symptomatic transmission. Eventually, we also have different patches
and age strata. As a first step, we will forget about all the former and focus
on how to deal with the presence of age strata and different patches. In line
with the global reproduction number, we define Rg

i , the reproduction num-
ber of patch i and age stratum g, as the number of secondary cases produced
by an infected individual belonging to patch i and age stratum g. Therefore,
Rg

i is given by

Rg
i = τg ⟨βg⟩

NP

∑
j=1

NG

∑
h=1

kgh
ij ρ̃S,h

j . (5.29)

Since we do not consider the distinct infectivity of pre-symptomatics yet, we
used the average infectivity ⟨βg⟩ during the infectious period. The quantity
kgh

ij expresses the average number of daily contacts an individual belonging
to patch i and age stratum g makes with individuals in patch j belonging to
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age stratum h. The expression in Eq. (5.29) is equivalent to the mean-field one
but takes explicitly into account the variation of the contact structure across
patches and age strata. According to the definitions we made, the effective
fraction of susceptible individuals in patch j and belonging to age stratum h,
ρ̃S,h

j (t), can be expressed as

ρ̃S,h
j (t) =

1
ñh

j (t)

NP

∑
k=1

nS,h
k�j(t) , (5.30)

with
nS,h

k�j(t) = nh
k ρS,h

k (t) Mh
kj(t) . (5.31)

Up to now, we have neglected the temporal variation of the daily contacts
and the fraction of susceptible individuals, i.e. the environment. In this sense,
since the environment has stayed constant, the expression we have so far
corresponds to the instantaneous reproduction number. In contrast, to ex-
press the case reproduction number at time t, we need to analyse how many
secondary cases a primary case that gets infected at t produces during the
course of infection. To this aim, we will first mathematically describe how
individuals transition through the compartments E, A and I (course of infec-
tion). Let us define the quantities ζE,g(t + 1), ζA,g(t), ζ I,g(t) as the probability
for an individual to be in the respective compartments t time steps after be-
ing exposed to the virus, i.e. entering the compartment E. Given the model
equations, the equations governing the evolution of these probabilities read

ζE,g(t + 1) = (1 − ηg) ζE,g(t) (5.32)

ζA,g(t + 1) = ηg ζE,g(t) + (1 − αg) ζA,g(t) (5.33)

ζ I,g(t + 1) = αg ζA,g(t) + (1 − µg) ζ I,g(t) . (5.34)

Further, since the individual enters the compartment E at t = 0, the initial
conditions are ζE,g(0) = 1.0, ζA,g(0) = 0.0 and ζ I,g(0) = 0.0. Then, solving
the recursive Eqs. (5.32)-(5.34) explicitly, we find

ζE,g(t) = (1 − ηg)t (5.35)

ζ A,g(t) =
ηg

αg − ηg
[
(1 − ηg)t − (1 − αg)t] (5.36)

ζ I,g(t) =
ηg αg

(αg − ηg) (µg − ηg) (µg − αg)

×
[
(µg − αg) (1 − ηg)t + (ηg − µg) (1 − αg)t
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+ (αg − ηg) (1 − µg)t] . (5.37)

These probabilities allow us to define how infectious an individual is on aver-
age t time steps after having been infected, namely ζA,g(s − t) βA + ζ I,g(s −
t) β I . With this at hand, we can express the case reproduction number for
patch i and age stratum g as

Rg
i (t) =

∞

∑
s=t

(
ζA,g(s − t) βA + ζ I,g(s − t) β I

)
×

NP

∑
j=1

NG

∑
h=1

kgh
ij (s) ρ̃S,h

j (s) , (5.38)

where

kgh
ij (t) = zg(t) ⟨kg⟩(t) f

(
ñj(t)

sj

)
Cgh Mg

ij(t) . (5.39)

To calculate the global reproduction number, the only thing left to do is to
average Rg

i (t) with respect to the incidence distribution at time t. More pre-
cisely, we can express R(t) as

R(t) =

∑
m∈{S,CH}

NP

∑
i=1

NG

∑
g=1

(
ρ

m,g
i (t − 1)− ρ

m,g
i (t)

)
ng

i R
g
i (t)

∑
m∈{S,CH}

NP

∑
i=1

NG

∑
g=1

(
ρ

m,g
i (t − 1)− ρ

m,g
i (t)

)
ng

i

. (5.40)

As previously pointed out, the weighted average here is equivalent to cal-
culating the reproduction number through the NGM. The only difference is
that the weighting is done according to the case distribution in the model
and not according to the equilibrium distribution described by the leading
eigenvector. In a similar way, one can now define a reproduction number for
age stratum g as

Rg(t) =

∑
m∈{S,CH}

NP

∑
i=1

(
ρ

m,g
i (t − 1)− ρ

m,g
i (t)

)
ng

i R
g
i (t)

∑
m∈{S,CH}

NP

∑
i=1

(
ρ

m,g
i (t − 1)− ρ

m,g
i (t)

)
ng

i

, (5.41)
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or for a patch i as

Ri(t) =

∑
m∈{S,CH}

NG

∑
g=1

(
ρ

m,g
i (t − 1)− ρ

m,g
i (t)

)
ng

i R
g
i (t)

∑
m∈{S,CH}

NG

∑
g=1

(
ρ

m,g
i (t − 1)− ρ

m,g
i (t)

)
ng

i

. (5.42)

5.1.5 Critical confinement level

The expression we provided above mainly serves to follow the temporal evol-
ution of the reproduction number in a computationally not very costly way.
However, the relatively complicated structure does not allow for an intuitive
understanding of how the different parameters shape the reproduction num-
ber. As highlighted before, with respect to the lockdown, a crucial quantity is
the critical confinement κc

0 that contains the epidemic, i.e. R < 1. To provide
an analytical expression of κc

0 and gain intuition on how confinement impacts
R, we forget about age strata and different patches and consider a well-mixed
population of equal agents. In this case, the reproduction number can be ex-
pressed as

R = ρS
(

βA

α
+

βI

µ

)
(1 − κ0 (1 − ϕ) ⟨CH⟩)

× (κ0 ⟨kh⟩+ (1 − δ) (1 − κ0) ⟨kh+w⟩) . (5.43)

One can see that R has a quadratic dependence on κc
0. Setting R = 1, we find

the following equation for the critical confinement

(κc
0)

2 (1 − ϕ) ⟨CH⟩ (⟨kh+w⟩ (1 − δ)− ⟨kh⟩)
− κc

0 (⟨kh+w⟩ (1 − δ) (1 + ⟨CH⟩ (1 − ϕ))− ⟨kh⟩)

+ ⟨kh+w⟩ (1 − δ)− 1

ρS
(

βA

α + βI

µ

) = 0 . (5.44)
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Figure 5.2: Critical confinement κc
0 computed from Eq. ((5.49)) needed to ensure that

the system reaches the bending regime, i.e. R = 1, as a function of the
household permeability ϕ and the social distance δ.

Defining the following coefficients

A = (1 − ϕ) ⟨CH⟩ (⟨kh+w⟩ (1 − δ)− ⟨kh⟩) , (5.45)

B = ⟨kh+w⟩ (1 − δ) (1 + ⟨CH⟩ (1 − ϕ))− ⟨kh⟩ , (5.46)

C = ⟨kh+w⟩ (1 − δ)− 1

ρS
(

βA

α + βI

µ

) , (5.47)

we can rewrite Eq. (5.44) as

A (κc
0)

2 − B κc
0 + C = 0 . (5.48)

The solution of the above equation is then given by

κc
0 =

B ±
√

B2 − 4 A C
2 A

. (5.49)

where only the physical solution κc
0 ∈ [0, 1] should be retained. To better il-

lustrate the impact of the household permeability and social distancing, we
show in Fig. 5.2 their effect on κc

0. As one would expect, the dependence on
both parameters is monotonous. While the calculation here is mostly qualitat-
ive, the quantitative results give a good intuition about the necessary confine-
ment for low levels of social distancing (low δ) and intense confinement (low

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



150 the spread of sars-cov-2

ϕ). In the following, we will adjust the model to the epidemiological data and
highlight that the dynamics was precisely in this regime of low θ and ϕ.

5.1.6 Data adjustment

We have presented all the details of the model employed to describe the
spread of SARS-CoV-2’s first wave in Spain during the spring of 2020. Ac-
cordingly, the remaining step is to adjust the model to the epidemiological
data. However, the epidemiological data was one of the main issues. The
reader may have noticed that our model only includes ICU admissions; hos-
pital admissions are not explicitly modelled. Unfortunately, in early 2020,
reliable hospital admission data was unavailable. Further, after working for
a while with ICU data, we realised that some regions reported admissions
while others occupations and some even switched between the two multiple
times. Therefore, the only robust data stream we were left with was the daily
deaths [479]. Nevertheless, we will see in the next section that even the daily
deaths were subjected to substantial underreporting.

Now, to adjust the model to the daily fatalities, we fix a series of paramet-
ers from the literature. Especially, parameters specific to SARS-CoV-2 such
as the transition rates and probabilities between the clinical compartments
are fixed according to the literature. An overview of all these parameters is
given in Appendix B. In contrast, we fitted ϕ and δ that define the impact
of confinement. Further, we fitted the initial reproduction number of the dis-
ease, i.e. the transmission probability and β I as well as the transition rates
ηg, αg and µg. Furthermore, we also estimated the rate at which individuals
exit the pre-deceased, ηg, and the pre-hospitalised in ICU, λg, compartment.
As we previously highlighted, the contact matrix C was fixed according to
Ref. [72]. Mobility data, Rg

ij, comes from an empirical survey regarding the
commuting patterns in Spain [480]. The population structure for each mu-
nicipality, ng

i and si, is given by the statistical agency of Spain [481]. We
estimate the confinement level directly from the reduction in mobility re-
ported by the authorities [480]. Since only work-related mobility was allowed
during the lockdown, the reduction in mobility reflects well the population
under confinement. The mobility is relative to a reference day on Novem-
ber 19, 2019. We assume that the time series are equal for all age groups, i.e.
κY

0 = κM
0 = κO

0 = κ0. Further, confinement measures are introduced in the
model on March 14, tc, as the lockdown was announced.
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Before fitting the parameters to the daily deaths, we must distribute the
initial seeds spatially. To this aim, we consider all the reported cases until
March 3 and use them as initial seeds at the start of our simulation on Febru-
ary 9. However, due to underreporting, the seeds are not sufficient to explain
the observed fatalities in some regions. Accordingly, we add infectious indi-
viduals in the capital of each Comunidad Autónoma (CA) and fit the initial
seed through the Nelder-Mead method [482]. Instead of fitting all the seeds in
every capital simultaneously, we iterated each CA and adjusted the number
of initially infected individuals. The presence of mobility implies that intro-
ducing a seed in one CA also affects the spread in another CA. To account for
this issue, we repeated the iterative fit of the seeds in each CA three times.

Given the distribution of the seeds, we then proceeded to adjust the epi-
demiological parameters — β I , ηg, αg, and µg. We used approximate Bayesian
computation (ABC) [238]. More specifically, we took advantage of the imple-
mentation of ABC in Julia package ApproxBayes [483]. We fitted the model
to the time series of nationwide daily deaths until April 8 [479]. The objective
function for the ABC was the logarithmic least squares error. The posterior of
the inference is shown in Fig. B.1. We then validated the model’s predictive
power with the daily deaths from April 8 forward. Fig. 5.3A shows the adjust-
ment of the fit and the validation. The model seems to describe the evolution
of daily deaths reasonably well. Please note that the horizontal bars indicate
the different intensities of the lockdown that were in place. In LM, all work-
related mobility was allowed, while only essential workers were allowed to
commute in a stricter scenario (EM). In ECS, in addition to commuting for
work, individuals were allowed to go for a walk or sports. Finally, in R1 some
commercial activity was reopened.

Besides the daily fatalities, we also validate the model with the daily cases
[479]. This comparison requires correcting for underreporting. We do so by
rescaling the reported cases with the total underreporting estimates until May
4 [484]. The seroprevalence study concluded that around 5% of the Spanish
population got infected, while the reported cases correspond to only 0.5%.
Accordingly, only about 1 out of 10 infections were diagnosed and reported.
Nevertheless, rescaling the reported cases, we see in Fig. 5.3B that the time
series agrees rather well with the model predictions. However, the predicted
cases peak slightly earlier than the reported ones. Next to the adjustment to
the national time series in Figs. 5.3C & D, we can see that the model predicts
the spatial variations fairly well. For the daily fatalities and the daily cases
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Figure 5.3: Top: Solid lines show model predictions for the daily fatalities (A) and
the daily number of new symptomatic individuals (B) whereas dots cor-
respond to real data. The shadowed areas represent the 95% prediction
interval. Bottom: Correlation between the accumulated number of deaths
(r = 0.98) (C) and the accumulated number of reported cases (r = 0.90)
(D) per 100000 inhabitants observed by May 15 and those predicted by
the model. The plot shows this correlation at the level of Comunidades
Autónomas of Spain. Error bars cover the 95% prediction interval.

in the different CCAA (plural of CA), the model output shows a correlation
coefficient with the death and case data of 0.98 and 0.9, respectively.

Eventually, we can also look at the reproduction number’s evolution. In
Fig. 5.4, we present the evolution of R(t) along with the reported values of
κ0(t). We see that the confinement level between 0.5 and 0.8 was sufficient
to drive the reproduction number below one. The reproduction number is
already below 1 early on since we consider the case reproduction number
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Figure 5.4: Temporal evolution of the effective reproduction number R(t) for each age
stratum and its average computed according to Eq. ((5.40)). Inset: The black
line represents the temporal evolution of the degree of confinement κ0(t)
extracted from data daily updated by INE [480]. The blue line shows the
average over a 7 days time window to smooth out fluctuations observed
in the data. To improve the visibility of the inset, we do not represent the
degrees of confinement from March 14 until March 28.

and not the instantaneous one. Accordingly, changes in the contact structure
induced by the implementation of the lockdown are already reflected in the
reproduction number various days before their manifestation. Further, as mo-
bility increases towards the end of the lockdown, the reproduction number
of adults surpasses 1. However, since RY and RO are still below 1, the overall
reproduction number does not exceed 1. The same could occur with respect
to the different patches. Even though some patches may show Ri > 1, the
overall reproduction number can still be below 1.

5.1.7 Discussion

The low value of the fitted household permeability (ϕ = 0.174 (CrI :
0.079 − 0.269)) indicates that confinement was relatively strong. We find a
value of δ = 0.207 (CrI : 0.053 − 0.359) for the social distancing parameter.
Given a confinement level between 0.5 and 0.8, we see in Fig. 5.2 that the dy-
namics was precisely in this regime of low ϕ and δ. In this sense, the simple
qualitative consideration of one patch accurately predicts that κ0 ∈ [0.5, 0.8]
is sufficient to contain the epidemics and push R below 1. With a mobility
reduction in this range, we observe that the first lockdown was sufficient to
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contain the epidemic. The strengthening of the lockdown on March 29 (EM),
i.e. the closure of all non-essential business, seems only to have resulted in a
slight reduction in R. However, bear in mind that we came to this conclusion
after using data until April 8, which is almost two weeks after the start of the
intensified confinement.

In contrast, at the time that the strengthening of the lockdown was dis-
cussed, fitting the model to the daily fatalities, one could not conclusively say
that R < 1. In contrast, our results indicated that strengthening the lockdown
— higher κ0 — would be necessary to contain the epidemic. Partially, these
findings motivated a series of experts to write an open letter that requested
the strengthening of the lockdown [485]. Two factors may have contributed to
this prudent judgement. First, predicting the peak incidence is subject to sub-
stantial uncertainty. Castro et al. perfectly highlighted in a Bayesian approach
that, through pure data fitting, the prediction on whether an intervention is
sufficient can only be made many days after its introduction [486]. If one util-
ises a mechanistic model for the relation between mobility and the reduction
in contacts, as we do here, these conclusions may only apply to a lesser extent.
Nevertheless, our approach also requires fitting the parameters ϕ and δ. In
this regard, it is to mention that we also could have summarised the contribu-
tions of ϕ and δ in one effective parameter, which reduces the transmission
probability [297, 314]. Even though both parameters make sense from a con-
ceptual/mechanistic point of view, working with an effective theory would
have facilitated the fitting of the model.

Further, another improvement could have been to describe the dynamics
at the same resolution level as the one of the available data. Unfortunately,
case data was only available at the level of a CA. Accordingly, it was im-
possible to validate the results at the level of municipalities. Working at the
level of a CA would have also substantially reduced the computational com-
plexity. However, as pointed out in the beginning, the model was initially
designed to understand the spatial spread of SARS-CoV-2 when almost no
data was available. At this point, and for this aim, our approach was reason-
able. However, later, as the objective shifted towards prediction, the temporal
constraints and the exceptional circumstances made the adequate continuous
adaption of the methodology difficult.

After quite a detour, the second point that made the decision-making pro-
cess challenging was the substantial reporting delay. As a matter of fact, look-
ing at Fig. 5.3B, we see that cases were increasing almost until the end of
March, even though the reproduction was already below 1 around two weeks
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before. The discrepancy between the two stems from the time between infec-
tion and detection and, even more importantly, until the detected case was
reported in the national statistics. In the model adjustment to the reported
cases, we somehow contoured this problem by assuming that individuals are
only detected once they exit the infectious compartment. This approach al-
lowed us to "artificially" introduce the reporting delay in the model and com-
pare it with the reported cases. Nevertheless, as highlighted before, model
predictions peak slightly before the reported data. Although we were aware,
back in March 2020, that a reporting delay existed, we were not aware of
how pronounced it was. Accordingly, despite confinement being in place for
almost two weeks, we still observed increasing daily fatalities and reported
cases. In this reality, it was not straightforward to convince oneself that the
worst of the epidemic was over, i.e. that R was already below 1 for some time.
The substantial reporting delay became apparent once the Spanish national
centre of epidemiology, the CNE, made more detailed data about the first
wave in the summer of 2020 available. Only the availability of this data made
an in-depth analysis of the first wave possible, which is what we will do in
the next section.

5.2 retrospective analysis of the first wave

After the end of the lockdown, on May 2, case numbers stayed low for almost
the entire summer of 2020. The Centro Nacional de Epidemiología (CNE)
took advantage of this relatively calm period to revisit the data that was
collected during the first wave. Thanks to this effort, data for hospital ad-
missions became available, case data at the resolution level of provinces was
made public, and the information regarding the day of symptom onset of de-
tected cases became accessible [487]. Additionally, the collaboration between
the ministry of transport and the Barcelona Supercomputing Centre made
large-scale mobile phone data available [488]. While during our modelling ef-
forts presented in the section before, we had only daily, nationally aggregated
mobility data at our disposal, the newly available data showed the evolution
of mobility for every hour and municipality.

The availability of this more detailed data motivated us to reconsider, with
the required distance, the factors that shaped the spread of the virus. Similar
retrospective analyses were performed in many other countries [468, 489–492].
As previously pointed out, they mainly serve to evaluate the impact and effi-

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



156 the spread of sars-cov-2

ciency of the different NPIs, which may later contribute to the design of more
efficient containment strategies [314, 316]. These studies are paradigmatic ex-
amples where modelling is not used to make predictions about the future but
rather to analyse past events. Here, we contrast the evolution of mobility with
epidemiological data such as case numbers, hospital admissions and fatalit-
ies. From a methodological point of view, we blend a direct analysis of the
epidemiological data with a model-based inference. The results indicate that
the reproduction number had already substantially decreased before the im-
plementation of the lockdown. Eventually, we leverage the modelling efforts
to build counterfactual scenarios and quantify the impact of the epidemic
response that preceded the national lockdown.

5.2.1 The evolution of mobility

Mobility was shown to be a good indicator of the epidemic evolution [477,
489, 493]. In particular, in the absence of efficient contact tracing, social dis-
tancing or the use of face masks, the reduction of contacts is the only option
to contain the spread of SARS-CoV-2 [477]. As leveraged in the model before,
a reduction in the contact rate generally leads to a reduction of the mobility
level [231, 466, 477]. In this sense, during the first wave, when contact tracing
and mask mandates were not yet implemented, mobility was the primary
tool to analyse the impact of NPIs. The mobility data we use here stems from
different major network providers and consists of anonymised individual tra-
jectories of about 13 million individuals. Using sociodemographic indicators,
the ministry of transport inferred an Origin-Destination matrix from this raw
data in collaboration with the Barcelona supercomputing centre [488]. The
mobility reduction is calculated with respect to the corresponding day in a
reference period (February 14-20).

Fig. 5.5A depicts the evolution of mobility on a national level. The data
indicates that mobility substantially decreased from March 10 onward, pre-
vious to the lockdown. The decrease in mobility coincides with the introduc-
tion of the first regional NPIs in Spain. Madrid and the province of Alava
(Basque Country) closed the entire educational system on March 10 [476].
The decrease in mobility further coincides with an increase in awareness
of SARS-CoV-2 as indicated by the increase of COVID-19-related Google
searches (Fig. 5.6) and Tweets [494] from March 9 onward. This finding let
us hypothesise that the interplay between local measures and the display of
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the epidemic in other places, such as Italy, increased individual caution and
led to a reduction in mobility. Eventually, mobility was at about 50% of the
pre-pandemic level after the implementation of the lockdown, which rose to
60% towards the end of the lockdown.
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Figure 5.5: (A): Average, nationwide aggregated mobility before and during the lock-
down. Dots indicate the data points while the solid line shows a rolling
centred 7 day average. Vertical dashed lines indicate the first NPIs intro-
duced in Spain on March 10 (school closures in Madrid and Basque Coun-
try) and the announcement of the state of alarm on March 13. The shaded
area in light grey indicates lockdowns 1 and 3. In dark grey, we indicate
lockdown 2 where, in addition, all non-essential economic activity was
shut down. (B): Nationwide aggregated mobility but separating the dis-
tances of trips. Dots indicate data points, and the solid lines represent a
rolling centred 7 day average. In general, long-distance trips show a much
stronger reduction than shorter trips. (C): Mobility level during lockdown
(March 15 – May 2) for the total number of trips in the provinces (adminis-
trative subdivisions of CCAA) of Spain. Ceuta and Melilla are not shown.
Please note that the Canary Islands (islands at the bottom) were moved to
be visible. (D): Correlation between the accumulated number of cases until
lockdown and the mobility level. Points represent the provinces of Spain.
We excluded the provinces of Madrid and Barcelona since they represent
statistical outliers due to their high number of cases. R and p denote the
Pearson correlation coefficient and the associated p-value. Similarly, the
Spearman correlation coefficient is found as -0.7 with p < 0.0001.
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Figure 5.6: Frequency of different COVID-19 related search queries according to
Google Trends. Note that Google Trends normalises the frequency of quer-
ies between 0 and 100 during the considered period. All keywords see a
sharp increase from March 9 onward. On the same day, the Community
of Madrid and the Basque Country announced the closure of educational
centres. These closures correspond to the first NPIs introduced in Spain
[476].

Beyond the national, aggregated evolution, mobility reduction is very het-
erogeneous. For example, long-distance trips were only about 15-20% of
the pre-pandemic level and exhibited thus a much more significant reduc-
tion than short trips (Fig. 5.5B), which is consistent with findings from
other countries [329, 495]. The mobility level also exhibits spatial hetero-
geneity (Fig. 5.5C). Madrid, the strongest hit province in terms of infec-
tions, also exhibits the strongest mobility reduction. Further, highly affected
provinces such as Álava and Barcelona are among the five provinces with the
strongest reduction in mobility. Quantitatively speaking, we find a correlation
of R = −0.74 between the mobility level and the number of reported cases
previous to the lockdown (Fig. 5.5D). During the lockdown, the correlation
between reported cases and mobility is substantially reduced (Fig. C.2 in Ap-
pendix C). The lower correlation seems reasonable, as, during the lockdown,
mobility reduction was mainly mandated and not voluntary. Interestingly,
we find a higher correlation for the absolute number of reported cases than
relative to population size. The same holds for hospital admissions, ICU ad-
missions and fatalities (Fig. C.3 in Appendix C).

5.2.2 Evolution of the reproduction number

A natural way to test whether the mobility reduction affected the course of
the epidemic is to contrast the evolution of mobility with the reproduction
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number. In this case, it is most convenient to consider the instantaneous re-
production number and not the case reproduction number [216]. Since the
instantaneous reproduction number assumes a constant environment during
the course of infection, any changes in the epidemic dynamics are immedi-
ately and sharply reflected in its evolution. In contrast, as previously men-
tioned, the case reproduction at time t also considers future changes in the
transmission dynamics [74]. Accounting for the future changes essentially
smooths out any abrupt variations in the epidemic dynamics. For this reason,
we will focus on the instantaneous reproduction number.

5.2.2.1 Estimation of the exposure times

As highlighted in sec. 2.3.3, the estimation of the reproduction number first re-
quires inferring the time of infection of the reported cases, here referred to as
exposure times [225, 233]. More precisely, the inference of the exposure times
consists of a deconvolution of the detection date with the time between ex-
posure and detection [233]. Typically, this time interval does not correspond
to a fixed amount of days but instead follows a distribution [18]. However,
the distribution that describes the time between exposure and detection is
generally challenging to determine since the time of infection is only rarely
precisely known. Nevertheless, symptomatic individuals can report the day
that symptoms started (symptom onset). Accordingly, given that the incub-
ation period is known, we can deconvolute the incubation period from the
time series of symptom onset to infer the exposure times. The incubation
period is inferred from transmission chains, where one has detailed know-
ledge about the time of infection. For SARS-CoV-2, the incubation period
was shown to be between 4 and 6 days and is generally well described by a
gamma distribution [62, 496].

For the above reasons, the time series of symptom onset made available
in the summer of 2020 by the CNE [487] is particularly helpful in making a
retrospective analysis. It allows us to estimate the exposure times and, later,
the reproduction number. Multiple methods exist to perform the deconvo-
lution [234–236]. Here, we will use the methods proposed by Becker et al.,
which is based on a maximum likelihood approach [234, 497]. The algorithm,
referred to as backprojNP [498], is already implemented in the surveillance
package in R [499]. Credible intervals are calculated through bootstrap with
1000 samples (B = 1000). Further, the estimation of the exposure times is
smoothed through a centred rolling average of 7 days (k = 6). Finally, we
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fix the incubation period as a gamma distribution with mean 5.2 days and a
standard deviation of 2.8 days according to Ref. [232].

Fig. 5.7A illustrates the exposure times compared to the day of symptom
onset and the reporting date. We see that the exposure times substantially
precede the reporting date. More precisely, the two curves peak with a delay
of 16 days, consistent with the estimation in Ref. [500]. Considering the in-
cubation period of about 5 days, this highlights the substantial delay from
symptom onset until individuals got tested, results were received, and even-
tual positive cases were reported. The delay of 16 days is about 3 days longer
than what was estimated for the United States [501]. We repeated the same
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Figure 5.7: (A): Cases when they were reported (blue), the onset of symptoms (yellow)
and the reconstructed exposure times. Dots indicate data points, and the
solid line is a rolling centred 7 day average. The shaded area for the expos-
ure times represents 95% credible intervals. (B): Estimation of Rt. Vertical
bars indicate 95% credible intervals. The dashed, yellow line represents the
three linear segments we identified. The shaded yellow area shows the 95%
credible interval for the two breakpoints. The two breakpoints are between
March 5 (CI: 4 – 6) and March 15 (CI: 14 – 16), where the latter coincides
with the implementation of the lockdown. (C): Delay between the expos-
ure time and the reporting date. The position is defined with respect to the
peak. To be more precise, we show the time difference when both curves
reached x% of their peak value. The three points –beginning, middle and
peak– correspond to 5, 50 and 100 % of daily infections compared to the
peak incidence. Each point corresponds to a CA. Grey lines indicate how
the delay evolves for each CA. We note that the delay steadily increases
towards the peak in almost all CCAA.
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Figure 5.8: (A): Blue and red dots indicate the day the curve of the reported cases and
exposure times reached their respective peak. Number in between denote
the difference in days between these dates. (B): The day Rt was first below
one in the different CCAA. Horizontal bars indicate 95% credible intervals.

analysis for each CCAA, which is presented in Fig. 5.8A and Fig. C.4 in
Appendix C. Among the CCAA, the delay between exposure and reporting
varies from 8 days in Extremadura to 20 days in Catalonia.

5.2.2.2 Estimation of the reproduction number

We can now estimate the reproduction number with the exposure times at
hand. We use the package EpiEstim to infer the reproduction number from
the median of the exposure times [218–220]. For the infectivity profile, we
fix the generation time according to Ganyani et al. as a gamma distribution
with mean 5.2 (CI: 3.78 – 6.78) days and 1.72 (CI: 0.91 – 3.93) days standard
deviation [232]. The choice of the generation time is consistent with the in-
cubation period we assumed to infer the exposure times [496]. Ganyani et al.
used the same incubation period to estimate the generation time. We assume
a standard deviation for the mean and the standard deviation of the genera-
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tion time of 1.0 days and 1.2 days, respectively. However, we bound the values
for the mean and standard deviation by the estimations of Ganyani et al. We
considered a centred rolling average of 7 days to estimate the reproduction
number. Moreover, we obtained the confidence intervals through bootstrap
taking 100 samples of the generation time distribution and considering 100
posteriors for each of these samples (n1 = 100, n2 = 100).

Fig. 5.7B shows the inferred evolution of the reproduction number. The res-
ults indicate that the epidemic spread initially with a reproduction number
of around 3. More surprisingly, the reproduction number started to decrease
around March 5/6 and was below one shortly after the implementation of
the lockdown between March 15 and 17. The same can be observed in most
CCAA (Fig. C.1 in Appendix C). In Fig. 5.8B, we can see that all CCAA
had a reproduction number below one between March 13 and 17. The tem-
poral evolution of the reproduction number in the different CCAA is shown
in Fig. C.1 in Appendix C. Due to the high case numbers, Madrid strongly
dominates the temporal evolution of the reproduction number at the national
level.

The decrease in the reproduction number at the national level around
March 5/6 is surprising since it precedes the decrease in mobility that starts
on March 9. As we previously pointed out, without the use of face masks or
efficient contact tracing in place, the primary way to slow down the spread
of the epidemic is a reduction of contacts. Further, such reduction in contacts
should be reflected in a reduction of mobility, as individuals go out less to
meet friends or work from home. Another possible explication for a decrease
in the reproduction number preceding the one in mobility could be a satur-
ation in the test capacity. If the detection rate stays constant over time, the
estimation of the reproduction number is not affected by the underreporting
[233]. However, suppose the test capacity is finite, and the epidemic continu-
ously expands. In that case, the detection rate will start to decrease at some
point, which, if the estimation is based on the reported cases (as we do here),
would cause a decrease in the reproduction number.

5.2.2.3 Increasing reporting delay towards the epidemic peak

We can find an indication of the saturation of the test capacity by looking
at the evolution of the delay between infection and reporting. Fig. 5.7C com-
pares the delay between the two time series at different points with respect
to the epidemic peaks. More precisely, we find an initial delay of 12 days that
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increased to 16 days towards the epidemic peak. Further, the delay between
exposure and notification increased in almost all CCAA as shown in Fig. C.4
in Appendix C. The only exceptions are Aragon and Extremadura. Interest-
ingly, the CA with the lowest delay is also the last, with a reproduction num-
ber below 1. This further supports the hypothesis that the testing facilities got
under increased stress, leading to an anticipated decrease in the reproduction
number.
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Figure 5.9: Seven day centered rolling average for the evolution of ICU admission
for different age groups separated with respect to the CCAA [487]. We
excluded CCAA where numbers were too low to exhibit a robust evolution.
Admissions were normalized with respect to their peak value. We observe
that in the strongest hit CCAA, Catalonia and Madrid, the admissions
of individuals in the age group 70–79 peak earlier and decrease much
faster. In contrast, in most other CCAA, the evolution of admission among
different age groups is very similar. It seems reasonable that changing
admission criteria lead to this fast decrease. We could not find any other
explanation for this discrepancy. Among others, this inconsistency caused
us to not include ICU admission as a data stream for our model-based
inference.
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5.2.3 Inference with a minimal epidemic model

A way to corroborate our intuition regarding the origin of the early decrease
is to consider more robust data streams, which are not subjected to under-
reporting to the same extent. Typical examples are hospital admissions, ICU
admissions and deaths. If there is no overload in the hospitals such that ad-
mission criteria change in time, these indicators should not show any under-
reporting. Nevertheless, even those data streams must be taken with a grain
of salt for the first wave in Spain. As we highlighted earlier, the reporting of
ICU admissions was very inconsistent across the CCAA. Some reported oc-
cupation, others admissions and a few even switched between the two from
time to time. Further, let us look at the temporal evolution of ICU admissions
(Fig. 5.9). We observe that the two strongest hit CCAA, Madrid and Cata-
lonia, show an anticipated peak of the age group 70—79 with respect to the
younger age groups and a rapid decrease after that. To our understanding,
the only explanation for such a pronounced variation in the qualitative evol-
ution is a change in admission criteria. For the above reasons, we refrained
from considering ICU admissions.

An analysis of the excess deaths showed that even the number of deaths
was subject to substantial underreporting. Many residents in care homes died
without a diagnosis and thus did not appear in the statistics. Official reports
suggested that around 28’000 individuals died during the first wave [487],

0.00

0.25

0.50

0.75

1.00

Mar Apr MayDa
ily

 F
at

al
iti

es
 N

or
m

al
ize

d 
to

 P
ea

k

confirmed excess

0

500

1000

1500

Mar Apr May

Da
ily

 F
at

al
iti

es
 (

ab
so

lu
te

)

confirmed excess

Figure 5.10: Evolution of the daily fatalities. The left panel shows the evolution nor-
malised with respect to the peak value, while the right panel shows the
fatalities in absolute terms. We applied a 7-day centred rolling average to
the data. We show reported deaths [487], and excess deaths [502]. While
the rise in fatalities is almost equivalent between the two curves, the daily
excess deaths decrease much faster than the reported fatalities.
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while in the same period, there were excess deaths of about 50’000 [502]. As-
suming that all excess deaths can be attributed to COVID-19, which may not
be the case, this would amount to an underreporting of 40%. However, if we
look at the temporal evolution of reported and excess deaths (Fig. 5.10), we
observe that the evolution of the two time series is pretty congruent. The main
difference is a faster decrease in excess deaths after the epidemic peak. This
faster decrease seems intuitive since, after the epidemic peak, health author-
ities were under less pressure, which should improve medical attendance.
Despite this faster decrease, we consider the daily deaths as a sufficiently
robust data stream for the analysis. Finally, we will also consider hospital
admissions whose evolution does not show unusual features.

5.2.3.1 Identifying linear segments of the reproduction number

Given the two data streams (hospital admissions and deaths) we consider in
the analysis, we may now decide how to analyse them. The most straightfor-
ward approach would be to infer the reproduction number from both time
series directly but separately. This can be done by, first, convoluting the in-
cubation period with the distribution for the time between symptom onset
until either hospital admission or deaths, second, deconvolute the time series
with the resulting distributions, and, third, inferring the reproduction num-
ber with EpiEstim [233]. The downside of this approach is that we cannot do
a joint estimation, where we leverage both time series simultaneously. More
specifically, the joint estimation improves robustness and reduces the influ-
ence of possible biases in one data stream on the overall results.

Such a joint estimation is possible if we consider a model that simultan-
eously describes the dynamics of hospital admissions and daily deaths. In
this case, the reproduction number can be inferred by comparing the model
output to the reported data, jointly leveraging both data streams. Therefore,
one needs to design a model that describes the epidemic dynamics and de-
cide how to parametrise the reproduction number. We will focus on the latter
first. Our principal interest is to determine when the reproduction number
started to decrease, i.e., whether there was a decrease that preceded the one
in mobility. In this sense, we can tailor the parametrisation of the reproduc-
tion number to this aim. Intuitively, the reproduction number should follow
three segments: An initial constant value as the virus mainly spread undetec-
ted in Spain, a rapid decrease after the initiation of the epidemic response,
and finally, a relatively constant value during the lockdown or a slight de-
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crease due to the intensification of the confinement. Let us look at the shape
of the reproduction number that we inferred from the reported cases to test
whether this is a reasonable hypothesis.

To analyse whether these three segments can describe the evolution of the
reproduction number, we adjust precisely this hypothesised functional form
with three segments to the reproduction number inferred from the reported
cases. To this aim, we use the segmented package that implements a method
proposed by Muggeo, which relies on a maximum likelihood estimation [503,
504]. We assume the reproduction to be piece-wise linear, with three segments
and two breakpoints, where the first segment is constant. The yellow line
in Fig. 5.7B indicates the results from the maximum likelihood estimation.
Interestingly, the second breakpoint coincides with the implementation of the
lockdown on March 15 (CI: 14 —16). Further, the first breakpoint corresponds
to the start of the decrease in the reproduction number that we had already
identified on March 5 (CI: 4 – 6). We can also see that during the lockdown, in
the third segment, the reproduction number decreases very little. The limited
reduction with our finding in sec. 5.1 that the reinforced confinement had
little impact on the evolution of the epidemic. Overall, we can say that the
three segments reasonably well describe the evolution of the reproduction
number.

5.2.3.2 Model definition

With respect to the three segments we adjusted before to the estimated re-
production number, we will make two additional assumptions for the model
parametrisation, which both reduce the number of parameters to estimate.
First, since there was only a slight variation, we will assume that the third
segment, representing the period during the lockdown, is constant. Second,
we fixed the second breakpoint on March 15, the day the lockdown was in-
troduced. We make this assumption because the second breakpoint coincides
with the introduction of the lockdown in estimated segments. Furthermore,
it also seems reasonable to assume that the reproduction number reached a
relatively constant value as the lockdown was introduced since the mobility
restrictions did not substantially change anymore from there onward. As part
of the sensitivity analysis, we will relax this second assumption showing that
conclusions drawn from the analysis are not altered.

Accordingly, we parametrise the reproduction number for the epidemic
model with an initial constant value R1, a breakpoint BP that initiates the
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epidemic response, and a constant value R2 during the lockdown. In this
framework, the inferred value of BP will indicate whether the early decrease
in the reproduction number preceded the one in mobility.

We will denote the parametrised form of the reproduction number for the
model as RtM. We stay as simple as possible for the epidemic model while
respecting the correct distributions for the waiting times between infection,
symptom onset, hospital admission and death. More precisely, we chose a
discrete-time, Non-Markovian model that assumes a well-mixed population
without age stratification [229]. The model is similar to the approach used
to infer the reproduction number by EpiEstim [225]. Given a population size
N and the generation time distribution w(t), the daily incidence at time t, It,
evolves as

It = RtM

(
1 − 1

N

t−1

∑
τ=1

Iτ

)
t

∑
τ=1

It−τ w(τ) . (5.50)

The first term here corresponds to the increasing immunity in the popula-
tion due to previous infections as the virus spreads. From there, one can
convolute the daily incidence with the corresponding distributions to receive
the time series for symptom onset St, hospital admissions Ht, and fatalities Ft.
Given the incubation period, pt, and time between symptom onset to hospital
admission, ht, and death, dt, the remaining equations of the model read

St =
t−1

∑
τ=0

Iτ pt−τ (5.51)

Ht = IHR ×
t−1

∑
τ=0

Sτht−τ (5.52)

Ft = IFR ×
t−1

∑
τ=0

Sτdt−τ . (5.53)

IHR and IFR refer to the infection-hospitalisation ratio and infection-fatality
ratio, respectively. As previously mentioned, we adjusted the model to the
hospital admissions and fatalities. Besides R1, R2 and BP, there is an ad-
ditional parameter for the initial number of infected individuals, I0, as the
model dynamics start on February 10. The details of the model fitting are
presented in the following section.
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5.2.3.3 Details of the model inference

The comparison between the model and the data is done in a Bayesian ap-
proach, where the likelihood is described by a negative binomial distribution.
Regarding the parameters, we fix the same incubation period as for the infer-
ence of the exposure times [496]. Similarly, we choose the generation time as
for the estimation of the reproduction number [232]. We assume that the time
between symptom onset and hospital admission/death follows a gamma dis-
tribution. Since case line data is not available, we fix the shape factor of these
distributions as 2.5 and 2.2, respectively, according to Hawryluk et al. [505].
The scale parameter is then fixed according to the median time the health
authorities reported from symptom onset to hospital admission (6 days) and
death (11 days) [479], which resulted in scale parameters of 2.68 and 5.85,
respectively. However, the first adjustments showed that the time series of
daily deaths was not accurately adjusted by using the distribution mentioned
above. Accordingly, we decided to add the shape and scale parameter of the
distribution for the time between symptom onset and death to the free para-
meters. The IHR and IFR are calculated from the nationwide seroprevalence
study [484]. We divide the total number of infected individuals, estimated
in this study, by the accumulated number of hospital admissions and deaths,
giving an IHR and IFR of 4.54% and 1.18%, respectively.

Motivated by the estimation of the reproduction number in sec. 5.1, we fix
the prior of R1 as a normal distribution with mean 4.5. We set the standard
deviation as 1.0. The prior of R2 is a uniform distribution between 0.4 and
1.0. Similarly, the prior of BP is flat between 15 and 0 days before lockdown.
The prior for the initial number of infected individuals I0 is uniform between
1 and 5000. We set the prior for the dispersion parameter for both time series
as a normal distribution with mean 10.0 and standard deviation 5.0. For the
time distribution between symptom onset and death, we choose a Gaussian
prior with the mean corresponding to our initial estimation and a standard
deviation of 0.1. The form of the inferred distribution from symptom onset
to death is shown in Fig. C.5 in Appendix C.

We run 6 chains with 4000 iterations, where 2000 iterations are used for
warm-up. Gelman-Rubin convergence statistics, i.e. potential scale reduction
factors were all smaller than 1.001 [255], and trace plots indicated all conver-
gence. The inference is performed in Stan [250, 251]. Posteriors are shown in
Fig. C.6 in Appendix C.
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5.2.3.4 Estimated form of the reproduction number

Figs. 5.11A & B show the model’s fit to the daily hospital admission and
deaths, respectively. Looking at the inferred parameters, we find R1 = 3.27
(CrI: 3.01 – 3.61) and R2 = 0.66 (CrI: 0.64 – 0.67). Both R1 and R2 are con-
sistent with the estimation from the reported cases, Rt. With the assumed
generation time, this results in a doubling time of 2.55 days (CrI: 2.32 – 2.78)
during the free phase before lockdown and a half-life time of 9.11 (CrI: 8.72 –
9.56) during lockdown [506]. The relatively short doubling time indicates how
difficult it was to realistically evaluate the epidemiological situation during
the first wave, given the substantial reporting delay we uncovered previously.
Nevertheless, the low value of R2 and the corresponding half-life time sug-
gest how efficient the lockdown was in reducing the incidence. Further, we
find an initial number of infected individuals of 1140 (CrI: 773 – 1599) at the
start of the model dynamics on February 10. The high number of initially in-
fected individuals further highlights how the virus was able to silently spread
through the population in early 2020 in Spain since the first case of local trans-
mission was only reported on February 28 [476]. The early underdetection is
also consistent with an excess in influenza-attributed deaths in February 2020
in Catalonia [507].

Let us now turn our attention to the initiation of the epidemic response, i.e.
the day the reproduction number started to decrease. The results suggest that
the first breakpoint is March 10 (CrI: 8 — 12). A decrease initiated on March
10 contrasts with the one found from the reported cases on March 5/6. Fur-
ther, a decrease that started on March 10 is consistent with the initial decrease
in mobility presented in Fig. 5.5A. Additionally, in Fig. 5.11D, the mobility re-
duction is calculated as a weighted average over all provinces with respect to
the reported case numbers instead of the population size. The weighted aver-
age is directly inspired by the NGM approach [214] and the model presented
in sec. 5.1. We performed the same weighted average with other epidemi-
ological indicators such as hospital admissions, ICU admissions and deaths,
but the temporal evolution did not substantially change. Finally, we note that
there is an additional, even though less rapid, decrease in mobility after the
introduction of the lockdown. It is difficult to pinpoint how this may have
contributed to an additional decrease in the reproduction number. Neverthe-
less, our results from the sensitivity analysis (Fig. C.7 in Appendix C) indicate
that the reproduction number reached a stable value as the lockdown was in-
troduced, or, at least, shortly after that.

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



170 the spread of sars-cov-2

0

2000

4000

Mar Apr May

 

Da
ily

 H
os

pi
ta

liz
at

io
ns

A

0

250

500

750

Mar Apr May

 

Da
ily

 F
at

a
lit

ie
s

B

1

2

3

Mar-06 Mar-09 Mar-12 Mar-15 Mar-18 Mar-21

 

Rt
M

C

0.5

0.6

0.7

0.8

0.9

1.0

Mar-06 Mar-09 Mar-12 Mar-15 Mar-18 Mar-21

 

W
ei

gh
te

d 
M

ob
ilit

y

Cases

Fatalities

Hosp.

ICU

D

Figure 5.11: (A) & (B): Model adjustment to the daily hospitalisations and fatalities,
respectively. The green and light-green shaded areas represent 50% and
95% credible intervals. The solid line represents the median. (C): Inferred
evolution of RtM. The dashed vertical line indicates the implementation
of the lockdown. (D): Aggregated mobility level of the Spanish provinces
before the lockdown and shortly afterwards. Instead of averaging by pop-
ulation size, we average by different daily epidemiological indicators to
visualize the impact of the mobility reduction on the epidemic evolution.
This is in analogy with the definition of Rt [218]. We observe that mobility
and RtM started to decrease around the same time.

Overall, these results, in particular the estimated value of BP, support the
hypothesis that the early decrease on March 5/6 in the reproduction number,
which was inferred from the reported case data, is a result of saturation in the
test capacity. Further, the possible saturation is reflected in a decrease in the
detection rate towards the introduction of the lockdown, shown in Fig. 5.12A.
We define here the detection rate as the ratio between the reconstructed infec-
tions from the reported cases (exposure times) and the infections estimated
from our model. We estimate that the detection rate was initially only around
5%, increased then to almost 10% before experiencing a sudden drop towards
March 15.

5.2.4 Counterfactual scenarios

A broad spectrum of opinions exists regarding what would have been the
optimal epidemic response. In this context, one of the relevant questions is
what would have occurred had we acted earlier or later. A series of studies
addressed this by evaluating the impact of earlier, or later introduction of the
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Figure 5.12: (A): Evolution of ascertainment in time. Ascertainment is defined as the
ratio between the reported cases and the incidence from the adjusted
model. We compare the date of infection (exposure time) instead of the
reporting date. We note a sudden decrease from March 5/6 towards lock-
down. Later, testing capacity was massively increased, which increased
ascertainment (Fig. S19). (B): Counterfactual scenarios for the attack rate,
the death toll and the total number of hospitalisations. The counterfactual
scenarios consist of shifting BP by x days. No further shift is applied if
the BP exceeds March 15, i.e. lockdown. We note how the response previ-
ous to the implementation of the lockdown substantially contributed to
limiting the impact of the epidemic.

lockdown [468, 501, 508]. In these studies, the counterfactual scenario mainly
consisted of a shift of the entire epidemic response by a given amount of
days. However, suppose the reproduction number is initially constant as in
our approach. In that case, the impact of a shift in the epidemic response
is entirely determined by R1, i.e. the initial doubling time. More precisely,
neglecting the depletion of susceptible individuals, if one shifts the entire
response by the duration of the doubling time, then all the epidemiological
indicators — attack rate, hospital admission, and fatalities — will double.

Since our analysis focuses on the epidemic response that preceded the lock-
down, we will consider a counterfactual scenario that aims to quantify the lat-
ter’s impact on the epidemic. As a matter of fact, given the parametrisation
of RtM, this counterfactual scenario is straightforward to implement. Instead
of shifting the entire epidemic response, we will only shift the initiation of
the epidemic response, i.e. BP. This scenario allows us to estimate the pos-
sible outcome of the first wave if the reduction in the reproduction number
started at a later time. In the case that the shift of BP exceeds the introduction
of the lockdown, BP is kept fixed on March 15. In other words, our scenario
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assumes that the lockdown is introduced with identical intensity on March
15, i.e. identical R2. Similarly, the virus spreads with the same velocity, i.e.
same R1, through the population previous to the epidemic response. The
only difference in the counterfactual scenario is that the epidemic response is
initiated later (shift of BP).

The results, shown in Fig. 5.12B, estimate that, in the absence of an epi-
demic response previous to the lockdown (maximal shift), 8.6% (CrI: 7.1 –
11.0) of the population would have been infected instead of 5% according
to the seroprevalence study [484]. The increased attack rate results in 45’400
(CrI: 37’400 – 58’000) fatalities and 182’600 (CrI: 150’400 – 233’800) hospital
admissions compared to 27’800 and 107’600 reported [487]. Overall, our res-
ults indicate that the pandemic response before the lockdown substantially
contributed to limiting the impact of SARS-CoV-2 during the first wave in
Spain.

5.2.5 Limitations of the analysis

The analysis presented has several limitations. First, we considered the most
simple epidemic model possible. We mainly focused on respecting the correct
timings, i.e. to consider the accurate distributions for the generation time, the
incubation period or the time between symptom onset and hospital admis-
sion/death. For this reason, we chose a Non-Markovian model, where we
can directly introduce the empirical waiting times and are not restricted to
exponential ones. It was crucial to accurately reflect the waiting times in the
modelling approach since, with the epidemic model, we primarily wanted to
determine the start of the epidemic response. One could extend the work by
stratifying the population according to age or geography instead of assuming
a well-mixed population. However, this approach would require inferring the
accurate distribution for the stratified waiting times. They vary substantially
with respect to age and region [505]. In our case, we only have access to the
national median regarding the time between symptom onset and hospital
admission/death.

Another limitation is that our analysis is based on correlation. Therefore,
we cannot make a causal connection between the decrease in mobility and
the decrease in the reproduction number, even though it seems intuitive. Sim-
ilarly, we cannot pinpoint the exact reasons that caused the decrease in mo-
bility before the lockdown. We theorise that this early decrease was a con-
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sequence of individual awareness which was fuelled by news from Italy, as
well as other countries, and the regional NPIs that were introduced from
March 10 onward. The correlation we found between the mobility level pre-
vious to the lockdown and the number of reported cases in the different
provinces further indicates that individual awareness drove the mobility re-
duction at least partially. However, we cannot exclude that other factors may
be responsible for this correlation.

5.2.6 Implications of the findings

Of our findings, the substantial delay between infection and reporting date
has the most direct consequences. As pointed out in sec. 5.1, with such delay,
one can see increasing case numbers for almost two weeks after the repro-
duction number has crossed 1. While the reproduction number was below 1
from March 15 onward, when the lockdown was introduced, case numbers
were growing almost until the end of April. Accordingly, this can partially
explain why the authorities decided on March 28 to halt all non-essential
economic activity from March 30 onward. However, our results here and in
section sec. 5.1 indicate that the reinforcement of the lockdown did not lead
to a substantial further reduction in the reproduction number.

More generally, our results question a mechanistic understanding of NPIs.
We found evidence that the reduction in the reproduction number before
the lockdown substantially contributed to reducing COVID-19-related hos-
pital admissions and deaths. While regional NPIs certainly played a part, our
results indicate that individual awareness contributed to the initial decrease.
Please note that our results do not imply that the lockdown was ineffect-
ive at containing the epidemic. Our estimation of the haft-life time during
lockdown has clearly shown how quickly case numbers were reduced. In-
stead, the results indicate an epidemic response previous to the national lock-
down and beyond the containment policies. In our model in sec. 5.1, we
only considered the mobility reduction starting from the announcement of
the lockdown on March 14. In other words, we attributed the entire mobility
reduction to the national lockdown. However, retrospectively, we have evid-
ence that this was not the case. Mobility and the reproduction number had
already decreased before the lockdown.

Nevertheless, despite this discrepancy, we could accurately fit the model to
the data in sec. 5.1, at least according to a visual inspection. Model selection
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is a general issue for fitting epidemiological data. Often, many model choices
can reasonably well reproduce the data. There are many free parameters to
fit relatively simple time series. Hence, especially without explicit model se-
lection, an accurate adjustment does not necessarily mean that one also con-
siders the true underlying mechanisms. For example, many approaches that
model the impact of NPIs assume abrupt changes in the transmission probab-
ility, i.e. the reproduction number, every time an NPI is introduced [314, 316,
490, 509]. Accordingly, the model implicitly assumes that only the introduc-
tion of NPIs can change the course of the epidemic. Also, these approaches
generally reproduce the data perfectly well. However, we have shown an ex-
ample here where not the entire reduction in mobility and the reproduction
number can be attributed to the mandated reduction during the lockdown.
Even though such an approach could perfectly match the data, as shown in
Ref. [314]. Accordingly, these approaches tend to overestimate the impact of
NPIs without leaving room for the complex interplay of individual awareness,
fear of infection and measures introduced by health authorities. These factors
were not only observed in the context of SARS-CoV-2 [300, 489] but also for
the 2009 H1N1 swine flu pandemic [510] or the 2003 SARS pandemic [511],
to name a few. In the next section, we will address this issue by providing a
modelling and inference framework that allows for a retrospective analysis
without such strong assumptions regarding the impact of NPIs. The proposed
approach will prove helpful in understanding the course of the epidemic in
summer 2021 in Catalonia as a vaccination campaign, a new variant, and the
easing of restrictions all coincided together.

5.3 the delta variant in catalonia during summer 2021

To this point, our modelling efforts focused on the first wave of SARS-CoV-2
during early 2020. In this period, almost the entire globe experienced import-
ant outbreaks. However, also during the rest of 2020, the virus continued
to spread all around the globe. In particular, the colder weather in autumn
sparked a substantial acceleration of the epidemic in the northern hemisphere
[295, 296]. Until December 31 2020, there were over 80 million confirmed cases
worldwide [294]. This massive amount of infections accelerated the evolution
of the virus and hence increased the probability of the emergence of new
variants [8]. The first more transmissible variant emerged was the Alpha vari-
ant (B.1.1.7) [466]. The first cases of the Alpha variant emerged probably in
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September in England. The first detection occurred in November 2020, and
the variant was declared a variant of concern (VOC) a month later [512]. Due
to the increased transmissibility, the Alpha variant rapidly replaced the ori-
ginal strain, first in the United Kingdom and in early 2021 in continental
Europe.

As illustrated in Fig. 5.13, the Alpha variant led to new outbreaks in a series
of countries. The timing of the emergence of the Alpha variant was delicate
since the vaccination campaign was within reach before this more transmiss-
ible and more virulent variant destroyed the probably too optimistic hopes
of a summer 2021 without COVID-19. Additionally, the Alpha variant also
added uncertainty on whether vaccine efficacy would still be as elevated as
against the original strain. Luckily, the first studies quickly showed that the
vaccines still gave substantial protection, particularly against a severe course
of infection [513]. However, the vaccination campaign that, in most countries,
started around February 2021 arrived slightly too late to actually contain the
spread of the Alpha variant. The early doses administered to the elderly may
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Figure 5.13: Evolution of the reported cases for a series of European countries [294].
Colours indicate periods where different virus variants were dominant.
Green indicates the original strain, orange is the Alpha variant, and red
is the Delta variant.
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have helped reduce the number of deaths, but the vaccine coverage was too
low to substantially slow down the spread of the virus. Nevertheless, most
European countries managed to contain the spread of the Alpha variant relat-
ively well through continued mask use, social distancing and capacity limita-
tions in restaurants [294]. Unfortunately, as the case numbers were decreasing
in spring 2021, the Delta variant, a new, more transmissible and more virulent
variant, was already looming to spread around Europe.

The first cases of the Delta variant were detected in India in late 2020 [514].
The increased transmissibility and virulence of the Delta variant sparked a
massive outbreak of SARS-CoV-2 in India during the spring of 2021. The
number of daily reported deaths amounted to over 3000, and the actual one
was probably a multiple of that [294]. In light of the extraordinary disease bur-
den in India and the information gathered by scientists, the WHO declared
the Delta variant as a VOC in May 2021 [515]. Due to the strongly reduced air
traffic and general mobility between Europe and the rest of the world, it took
the Delta variant much longer to arrive in continental Europe than the Alpha
variant [194]. However, as the first cases started to appear in April 2021, data
indicated that the Delta variant would quickly outcompete the Alpha variant
[516]. The Delta variant then led to significant outbreaks across many coun-
tries during the summer of 2021, as we illustrate in Fig. 5.13. The spread of
the Delta variant coincided with the vaccine rollout. The distribution of the
vaccine coverage in the population was very heterogeneous due to the prior-
itisation of the older age groups. Furthermore, the spread of the Delta variant
also coincided with the easing of restrictions. Many countries removed NPIs
after the decrease in infections in the spring of 2021. This mixture what it
particularly difficult to predict the variant’s impact.

What we described above also holds for the Spanish CA Catalonia. Case
numbers and hospital admissions rapidly increased in Catalonia between July
and August 2021 (Figs. 5.14A & B) when the vaccination level was still relat-
ively low (Fig. 5.14C). This rapid increase in reported cases took place after
the end of the national state of alarm on May 9, and the opening of nightclubs
on June 21 [517]. Further, on June 23, the regional festivities of "Sant Joan"
took place. The bonfires of Sant Joan are a tradition in Catalan-speaking
regions like Catalonia, Valencia, or Mallorca [518]. These festivities include
musical performances, fireworks, and large public gatherings. The main fest-
ivities occur during the evening of June 23; the following day, June 24, is a
public holiday. Since June 24 was a Thursday in 2021, many individuals took
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Figure 5.14: (A): Daily incidence from May 1st onward. The solid lines indicate a
centred 7-day rolling average. Additionally, the daily incidence is separ-
ated into cases of the Alpha and Delta variants. The dashed lines indicate
the end of the state of alarm and the implementation of a curfew from
1am to 6am. The grey shaded area indicates the period from June 21 until
July 9 as nightclubs were opened. The dark grey area indicates the long
weekend of Sant Joan. (B): Daily hospitalisation from May 1st onward.
(C): Evolution of the fraction of vaccinated individuals in the various age
groups. As nightclubs opened (grey-shaded area) only the population
older than 50 had substantial protection from vaccination. Administra-
tion of the first vaccine dose in the age group 30-39 was initiated almost
simultaneously as nightclubs were opened. The age group 0-9 was omit-
ted since no vaccines were administered in this age group.

advantage of a long weekend 1. Eventually, the rapid rise in reported infec-
tions and hospital admission caused the Catalan health authorities to close
the night clubs on July 9 and further intensify the measures by introducing a
curfew from 1 am until 6 am on July 15. The curfew was lifted on August 19
by the court since the judges considered that the Catalan government does
not have the legal authority to introduce a curfew. The authorities opened
night clubs on October 8, requiring the vaccination certificate to enter [517].

The events described above motivated us to employ an epidemiological
model to analyse the driving factors that led to the infection wave in Cata-
lonia during the summer of 2021. The model takes into account the popu-
lation’s time-dependent vaccination status, the presence of two variants —
Alpha and Delta variant — and the varying interaction rates of the popula-

1 Historically, Saint John’s Eve, starting at sunset on June 23, is the eve of celebration before the
Feast Day of Saint John the Baptist (Sant Joan in Catalan). It closely coincides with the June
solstice, also referred to as Midsummer in the Northern Hemisphere [519].
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tion. As we highlighted in the conclusion of the previous section, behavioural
change, i.e. a change in the interaction rates, occurs not only in light of NPIs
but also voluntarily. For this reason, we will outline a model framework here
that does not make any strong assumptions on how NPIs impact the spread
of the virus and allows the contact rates to vary even if no NPIs are intro-
duced or lifted. Our results will show that the introduced NPIs had a limited
direct effect, and contact rates had substantially decreased before their intro-
duction.

5.3.1 Model description

We use a continuous-time, age-stratified compartmental model whose evol-
ution can be described through a set of ordinary differential equations. The
model includes the following compartments: susceptible, latent infection, in-
fectious, admitted to the hospital, admitted to the ICU, deceased and re-
covered. The compartments are stratified into different age groups from 0
to 79 years by steps of 10 years. We excluded the age group 80+. Including
this age group would have required a tailored approach for the dynamics
in care homes for which we do not dispose of the necessary data [72, 468].
Further, the age group 80+ acts rather as a sink than a driver of the epi-
demic. Hence, their exclusion should not substantially impact the dynamics.
The relative differences between age groups regarding the risk of hospital ad-
mission, ICU admission or decease in ICU are fixed according to Ref. [468],
which are estimates for the original strain. We further fix the absolute value
for the probability of hospital admission [468]. In contrast, the absolute value,
which acts as a scaling factor while maintaining the relative differences with
respect to age, was left as a free parameter in the inference process for the
ICU admission and probability of death.

Besides stratification according to age, the model separates between vac-
cination status (unvaccinated, 1 dose, 2 doses) and infection by virus variant
(Alpha, Delta). Individuals do not transition only between epidemic compart-
ments but also between vaccine compartments. The data with respect to the
daily number of doses administered directly informs these transitions. The
efficacy of the vaccines against the Alpha and Delta variants regarding infec-
tiousness, susceptibility, and probability of hospital/ICU admission are fixed
according to Refs. [420, 513, 520–522]. We set the increase in severity (risk of
hospital admission) of the Alpha variant with respect to the normal strain as
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1.42 [523]. The further increase in severity of the Delta variant in comparison
to the Alpha variant is fixed as 1.85 [524]. The transmission advantage of the
Delta variant with respect to the Delta variant is left as a free parameter.

5.3.1.1 Modelling time-varying contact rates

We highlighted before that it would be desirable to have a model framework
which does not require strong assumptions on how NPIs impact the spread
of the virus. Accordingly, instead of assuming change points in the contact
rates at the introduction of NPIs [314, 316], we would favour inferring a more
continuous evolution of the contact rates that does not discard the possibil-
ity of voluntary behavioural changes beyond NPIs [300]. In this sense, such
an approach would be closer to the methodology we employed to infer the
reproduction number with EpiEstim [220, 225]. While EpiEstim estimates a
value of the reproduction number for each day, we will infer the contact
rate βi(t) for each day t and every age stratum g. In other words, the daily
contact rates of the different age strata are free parameters in the inference
framework. Effectively, βi(t) corresponds to a transmission rate but assuming
equal infectivity and per-contact susceptibility across age strata, βi(t) is dir-
ectly proportional to the contact/interaction rate. For this reason, we refer to
βi(t) as the contact/interaction rate. Now, while the contact rates vary daily,
to control the complexity of the model, we will assume that the relative mix-
ing between age strata, controlled through the contact matrix C [72], stays
constant. Neglecting that we distinguish between variants and vaccination
status, the number of susceptible individuals in age group Si(t) at time t
evolves as

Ṡi(t) = −βi(t)Si(t)
M

∑
i=1

Cij
Ij(t)
Nj

,

where Ij(t) referes to the number of infected individuals in age strata j at time
t. M represents the number of age strata and Ni the number of individuals
in age strata I. The complete model equations can be found in Appendix D.

From the contact rates, the reproduction number can be calculated in ana-
logy to what we outlined in sec. 5.1. To do so, one needs to consider the
presence of different variants and the vaccination status of individuals. The
detailed expression is presented in Appendix D. Accordingly, the approach
we propose here acts very similar to EpiEstim, but with a more complex
compartmental structure tailored to the epidemiological situation. To prevent
overfitting and guarantee smoothness, EpiEstim employs a rolling average.
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Here, in contrast, we consider a Gaussian smoothing prior. In the next section,
which outlines the inference framework, we will detail how we included this
Gaussian smoothing prior to the model.

5.3.2 Inference framework

We adjust the model to five data streams: the daily incidence, I i
d(t), the daily

number of hospital admissions, Hi
d(t), the daily ICU admissions, ICU i

d(t),
and the daily deaths, Di

d(t), in each age group, and the sequencing data.
The subscript d denotes that the variable refers to the data. We will use the
subscript m to refer to quantities generated from the model. The sequencing
data consists of the daily number of Delta sequences detected, sδ

d(t) and the
total number of sequences analyzed, stot

d (t). We have sequencing data avail-
able from May 1 until October 15. The sequencing data was received from
the Sistema de Notificació Microbiològica de Catalunya (SNMC). On average,
50 sequences were analyzed every day. We discarded the detected variants
that were neither the Alpha nor the Delta variant, as they only represented
6% of the cases. Individuals get detected as they exit the infectious compart-
ment. We fix the detection rate constant over the period considered. We do
not stratify ICU admission and fatalities by age due to the low number of
cases.

We assume that the first four data streams originate from the same negat-
ive binomial process. The dispersion parameter ϕ is left as an auxiliary vari-
able of the inference. The contribution of the sequencing data is modelled
through a binomial observation process. Accordingly, the contribution to the
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log-likelihood L of the comparison between the model and the data Ld;m is
given by:

Ld;m =
tend

∑
t=1

M

∑
i=1

log NB
(
I i

d(t); I i
m(t), ϕ

)
+

tend

∑
t=1

M

∑
i=1

log NB
(
Hi

d(t); Hi
m(t), ϕ

)
+

tend

∑
t=1

log NB

(
M

∑
i=1

ICU i
d(t);

M

∑
i=1

ICU i
m(t), ϕ

)

+
tend

∑
t=1

log NB

(
M

∑
i=1

Di
d(t);

M

∑
i=1

Di
m(t), ϕ

)

+
tend

∑
t=1

log B

(
sδ

d(t); stot
d (t);

∑M
i=1 Iδ,i

m (t)

∑M
i=1 I i

m(t)

)
.

(5.54)

As previously mentioned, the interaction rates βi(t) are also inferred. To
prevent overfitting, we add a Gaussian smoothing prior. The data indicates
that the reproduction number rapidly rose as nightclubs opened, coincid-
ing with the "Sant Joan" festivities. Outside this period, the reproduction
number seems to have evolved very smoothly. We, therefore, consider two
separate standard deviations for the Gaussian smoothing prior as the night
clubs were open, σo, and closed, σc, respectively. Both standard deviations are
fixed as the average change in the reproduction number measured from the
reported cases through EpiEstim in the respective periods. Values are fixed
to σo = 0.12 and σc = 0.037, respectively. Defining as to and tc the days at
which night clubs opened and closed, respectively, the contribution of the
smoothing prior to the log-likelihood Lsmooth is expressed as

Lsmooth =
to−1

∑
t=2

M

∑
i=1

logN
(

βi(t)− βi(t − 1); 0, σc

)
+

tc−1

∑
to

M

∑
i=1

logN
(

βi(t)− βi(t − 1); 0, σo

)
+

tend

∑
tc

M

∑
i=1

logN
(

βi(t)− βi(t − 1); 0, σc

)
.

(5.55)

We fix the priors of the auxiliary variable ϕ as ϕ−1 ∼ Exp(5.0). The prior of
the detection rate for age group i is fixed with a Cauchy distribution, i.e. di

r ∼
C(0.5, 1.0). The rest of the priors are presented in Table D.5 in Appendix D. In
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the subsequent section (sec. 5.3.2.1), we will discuss two additional priors for
the initial number of infected individuals and the interaction rates at t = 1.
Subsuming the contributions of the priors to the log-likelihood into Lpriors,
the overall log-likelihood is then given by

L = Ld;m + Lsmooth + Lpriors . (5.56)

5.3.2.1 Implementation

We implement the dynamics, as well as the inference framework, in Stan
[249, 251]. We solve the differential equations with the Euler method. Each
day consists of five timesteps. To initialize the model, we run the dynamics
from April 1 onward, while the model-to-data comparison starts on May
1. In this initial period, the interaction rates do not vary and are kept at
βi(t = 0). The number of initially infected individuals in each age group,
Ii
0,m, follows the distribution of reported cases. To this aim, we calculate the

average number of reported cases in the seven days after April 1 in each age
group, Ii

0,d. Correcting by the detection rate, Ii
0,m is expressed as

Ii
0,m = Itot

0,m

Ii
0,d

di
r

M

∑
j=1

Ii
0,d

dj
r

. (5.57)

The variable Itot
0,m is a free parameter of the model and represents the total

number of initially infected individuals with the Alpha variant in the model.
We fix the prior of Itot

0,m as:

Itot
0,m ∼ N

(τE + τI)
M

∑
j=1

I j
0,d

dj
r

, f × (τE + τI)
M

∑
j=1

I j
0,d

dj
r

 . (5.58)

Initially, infected individuals are distributed proportionally to the waiting
times in the latent (τE/(τE + τI)) and infectious compartment (τI/(τE + τI))
of the Alpha variant. In this way, at the mean of the prior distribution, the
number of detected cases in the model matches the reported cases. Further-
more, the number of individuals leaving equals the one entering the infec-
tious compartment. We fixed f = 0.2. Since case numbers were decreas-
ing in the month previous to May 1, we fixed the prior of β1(t = 0) as
β1(t = 0) ∼ N (0.3, 0.2). For the Delta variant, we assume the same relative
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Figure 5.15: Adjustment to the data for daily incidence (A), hospitalisations (B), ICU
admissions (D) and fatalities (E). Panel C compares the sequencing data
with the model. It shows the fraction of infections that stem from the
Delta variant. Vertical bars indicate the 95% credible interval assuming a
uniform prior. F. Fraction of infected individuals that were not vaccinated.
The still very low vaccination coverage as the nightlife was opened (grey
shaded area) led to a high proportion of infected individuals that were
not vaccinated in that period.

distribution over age groups and adjust the total number of infected individu-
als through the parameter Iδ,tot

0,m ∼ N (100, 80).
We ran four chains for a total of 2000 steps, of which 1000 were used

for warm-up. Trace plots for time-independent variables were inspected and
showed convergence. The Gelman-Rubin convergence statistics, i.e., potential
scale reduction factors, were all smaller than 1.01 [255].

5.3.3 Adjustment to the data

Fig. 5.15 shows the good agreement of the model with respect to the reported
cases (A), hospitalisations (B), ICU admissions (D) and fatalities (E). Age-
stratified comparisons for the reported cases and hospitalisations are shown
in Appendix D. The Delta variant’s transmission advantage is 1.52 (CrI: 1.50-
1.54). The estimation is in line with other estimations [420, 525, 526]. How
the transmission advantage depends on the choice of the generation time is
shown in Appendix D. As the model dynamics start, on April 1, we find 53
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(CrI: 37-75) cases that were infected with the Delta variant. In contrast, no case
of the Delta variant was detected until April 2022. The discrepancy between
the reported infections from the Delta variant and our estimation highlights
how limited sequencing of, on average, 50 and maximally 200 samples per
day makes the early detection and prevention of introducing a new VOC
unfeasible. The comparison of the model to the sequencing data is shown
in Fig. 5.15C. The data and the model highlight that the Delta variant was
already on the verge of becoming the dominant variant as the nightclubs
were opened in Catalonia (grey-shaded area). Further, the emergence of the
variant coincided with a relatively small protection provided by the vaccines
at that point. As nightclubs were opened, we estimate that around 90% of the
infected individuals were non-vaccinated (Fig. 5.15D).

5.3.4 Inferred contact rates

Having shown that our model fits the data reasonably well, let us now con-
sider the inferred evolution of the contact rates. Overall, we find rapidly in-
creasing interaction rates among the younger age strata 10-19, 20-29 and 30-39
(Fig. 5.16A). More precisely, there is a constant increase in contacts from the
beginning of June onward in each of these three age groups. Interestingly, the
contact rates peak on the long weekend of Sant Joan (dark-grey shaded area).
In particular, the age group 20-29 presents a pronounced increase in social
activity towards this weekend. However, after Sant Joan, the interaction rates
rapidly decrease, even before the closure of nightclubs and the introduction
of the curfew, i.e. before any NPIs. Similarly to the age strata 40-49 and 50-
59, the remaining age strata – 0-9, 60-69 and 70-79 (Appendix D) – do not
exhibit any substantial increase in the number of contacts around Sant Joan.
In contrast, from the middle of July onward, we observe an increase in social
activity across almost all age strata.

The later increase in the contact rate did not lead to a substantial rise in
the age-specific reproduction numbers (Fig. 5.16B). It appears that the admin-
istration of vaccine doses, in particular in the younger age groups, effectively
reduced the impact of increasing contact rates. Accordingly, the population
could normalise social interactions due to the protection provided by the vac-
cines. However, the impact of waning immunity, which the model does not
include [527, 528], introduces some uncertainty. At least for the older age
groups that received their second dose between April and May, the estim-

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



5.3 the delta variant in catalonia during summer 2021 185

10−19 20−29 30−39 40−49 50−59

0.0

0.5

1.0

1.5

 

In
te

ra
ct

io
n 

ra
te

A

M
ay Ju

n
Ju

l
Aug Sep Oct

M
ay Ju

n
Ju

l
Aug Sep Oct

M
ay Ju

n
Ju

l
Aug Sep Oct

M
ay Ju

n
Ju

l
Aug Sep Oct

M
ay Ju

n
Ju

l
Aug Sep Oct

0

2

4

6

 

R
ep

. n
um

be
r

B

Figure 5.16: Inferred interaction rate (A) and reproduction number (B) for the age
groups 10-19, 20-29, 30-39, 40-49 and 50-59. We omitted the remaining age
groups to improve visibility. For completeness, they are shown in Figs. S4-
S5 in the SI. The peak in the interaction rate and the reproduction number
coincide with Sant Joan’s festivities (dark-grey shaded area). The dotted
line indicates a reproduction number of 1.

ated increase in the contact rates in the model could be an artefact waning
vaccine-induced immunity.

As the earlier peak in the contact rates was attained around Sant Joan, we
also observe a pronounced peak in the reproduction numbers. For example,
the age group 20-29 reaches a peak reproduction number of 5.0 (CrI: 4.2-5.9).
The concurrent increase of the contact rates and the reproduction number
during this period is a direct consequence of the small number of vaccine
doses that had been administered in the younger age strata until that point
in time (Fig. 5.14B).

We have highlighted in sec. 5.2 that mobility was generally a good indicator
for the reduction in contacts along which the disease can be transmitted dur-
ing the SARS-CoV-2 pandemic [477, 489, 493]. However, as time progressed,
the correlation between the epidemic evolution became less evident [477].
The use of face masks and the increased understanding of applying physical
distancing made the relationship less evident. Beyond the mere reduction
in contacts, other factors now influenced the evolution of the epidemic. The
same holds for the evolution of mobility in Catalonia, shown in Fig. 5.17.
Even though we can observe an increase in outdoor mobility (parks) towards
Sant Joan, the present decrease in the other mobility categories impedes any

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



186 the spread of sars-cov-2

en
d 

st
at

e 
of

 a
la

rm

cu
rf

ew

−40%

0%

40%

80%

May Jun Jul Aug Sep Oct
 

%
 c

ha
ng

e 
in

 m
ob

ili
ty

groceries

parks

residential

retail & recreation

transit

workplaces

Figure 5.17: Evolution of mobility in Catalonia during the considered period accord-
ing to the Google mobility report [529]. Google directly provides separ-
ated typrd of mobility.

conclusion on whether Sant Joan accelerated the spread of the virus or not.
Similarly, the increase in outdoor mobility during the summer holidays is
concurrent with a decrease in work-related mobility. In this sense, aggreg-
ated mobility data can only give little information on the epidemic evolution
during this period. More detailed information would be necessary on the
types of contact with which the different mobility categories are associated
[148, 149].

5.3.5 Considering two scenarios

Let us look at the evolution of the overall reproduction number (Fig. 5.18A).
We can see how strongly the younger age groups dominated the epidemic
dynamics due to their higher contact rates. In line with the contact rates, the
overall reproduction number peaks during the long weekend of Sant Joan,
reaching a maximal value of 3.4 (CrI: 3.0-3.9). As highlighted for the age-
specific reproduction numbers, we only observe a slight decrease in the over-
all reproduction number as the nightclubs are closed. Similarly, we do not
find any substantial impact of the curfews’ implementation. These findings
further highlight that the NPIs put in place seem not to have substantially
impacted the epidemic’s evolution.

To further corroborate the reproduction number inferred from the model,
we compare it with the direct estimation from EpiEstim, showing good qual-
itative agreement (Fig. 5.18A). The earlier increase and later decrease of the
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Figure 5.18: (A): Overall reproduction number estimated from the model (red) and
directly from the data via EpiEstim (black). Additionally, we show the
overall reproduction number for Scenario 1 (green) and Scenario 2 (or-
ange). The dark- and light-grey shaded area indicate the weekend of Sant
Joan and the interval in which nightclubs were allowed to open, respect-
ively. The dotted line indicates a reproduction number of 1. (B): Evolution
of the overall detection rate in time. The evolution is driven by changing
infection patterns with respect to the age groups. (C): Age-specific attack
rates in the model. Markers show the median value, while horizontal bars
indicate 95% CrI. (D): Same to (C) but using the reported cases. (E): Age-
specific detection rates inferred through the model adjustment.

reproduction number derived from the model could be a consequence of the
Gaussian smoothing prior we assumed for the interaction rates. For the de-
tails on the estimation of the reproduction number via EpiEstim, please see
Appendix D.

Now, let us consider two scenarios to disentangle the impact of the vac-
cines, the varying contact rates and the presence of the Delta variant on the
evolution of the reproduction number. In scenario 1, we rerun the dynamics
assuming that interaction rates stay constant and that only the Alpha variant
is present. In other words, we fix βi(t) = βi(t = 0) ∀t and set the number
of individuals infected with the Delta variant at t = 0 to 0.0. The remaining
parameters are all left as estimated from the inference. In this way, solely
the vaccine rollout determines the evolution of the epidemic. In scenario 2,
we further include the changing interaction rates but still discard the pres-
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ence of the Delta variant. Then, calculating the reproduction number for both
scenarios allows us to quantify the different contributions.

Looking at the evolution of the reproduction number for scenarios 1 and 2
(Fig. 5.18A), we observe that the increasing contact rates were the main factor
for the expansion of the epidemic. Even without the Delta variant (Scenario
2), our results indicate that the reproduction number would have been sub-
stantially above 1. In contrast, if the interaction rates had stayed constant, the
vaccine rollout would have caused a continuous reduction of the reproduc-
tion number (Scenario 1). Therefore, the presence of the Delta variant has
accelerated the epidemic expansion, but the main driver was the variation in
the interaction rates.

5.3.6 Estimation of the detection and attack rate

We find a substantial variation in the detection rate across the age strata
(Fig. 5.18C). The detection rate of the age group 0-9 stands out at almost 100%.
The elevated detection rate is probably a consequence of the age-specific IHR
we use, which stems from the first and second waves in England in 2020. The
increased experience in dealing with SARS-CoV-2 infections among children
possibly reduced the number of precautionary hospital admissions. We find
the lowest detection rate for the age group 20-29 with 21% (CrI: 19-24%). The
variation with age of the detection rate, together with the temporal evolution
of the contact rates, causes the overall detection rate to vary substantially
in time (Fig. 5.18B). On May 1, we find a detection rate of 38% (CrI: 36-41%)
that subsequently decreases to 29% (CrI: 27-31%) at the beginning of July and
then rises to 41% (CrI: 39-44%). In this sense, the rapid rise in reported cases
at the beginning of July coincides with the lowest detection rate.

The evolution of the overall detection rate highlights how the fast-evolving
epidemics among younger individuals made it increasingly difficult for
health authorities to follow the epidemics. Nevertheless, the estimated de-
tection rates are substantially higher – approximately double – than during
the first wave of spring 2020 in Spain [484]. Except for the age groups 0-9 and
10-19, the detection rates decreased in line with the heterogeneous probab-
ility of developing symptoms [328]. Infected individuals in the 70-79 group
were three times more likely to be detected than the ones in the 20-29. The
variation in the detection rate across age groups highlights that monitoring
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an epidemic becomes increasingly tricky as primarily younger individuals
with milder symptoms are affected.

Similarly to the detection rate, the attack rate substantially varies across age
groups. The reported cases correspond to an attack rate that varies between
1.4% for the age group 70-79 to 8.6% for the age group 20-29 (Fig. 5.18D).
These differences are amplified if we consider the heterogeneity in the de-
tection rates (Fig. 5.18E). In the model, we find an attack rate of 1.6% (CrI:
1.5-1.7%) and 37% (CrI: 34-41%) for the age groups 70-79 and 20-29, respect-
ively. These findings suggest that from May 1 until October 15, a substantial
fraction of the population between 10 and 40 years old got infected. The ex-
act percentages strongly depend on the choice of the age-specific IHR. In the
sensitivity analysis (Appendix D), we consider a more substantial increase in
virulence of the Delta variant, which reduces our estimate of the attack rates
in the age group 20-29 to 27.4% (CrI: 24.9-30.3%). Nevertheless, these values
are a multiple of the attack rates during the first wave in 2020 among these
age groups [484].

5.3.7 Limitations of the study

One of the limitations of the study is the uncertain parametrisation. In partic-
ular, the absence of age-specific estimations of the IHR for the Alpha variant
and Delta variant required us to rescale estimations for the wild-type with the
inferred increase in virulence of the Alpha variant and Delta variant. How-
ever, the estimations for the increase in virulence are subject to substantial
uncertainty, wherefore we included it in the sensitivity analysis. In this sense,
while we can safely conclude that a large part of the younger population got
infected, we cannot estimate the precise percentage. Additionally, due to the
absence of age-specific estimations of the IHR for Catalunya, we used estima-
tions from the United Kingdom [468]. The variation of the IHR across regions
[505] could add further uncertainty to our estimations. Considering natural
immunity from infection did not substantially alter our findings, as shown in
Appendix D.

Further limitations of the study are the contact patterns. Due to an ab-
sence of additional data, we are required to parametrise the model with a
pre-pandemic contact matrix [72]. However, the substantial variation in the
contact rates in the period under consideration suggests that the contact pat-
terns had shifted. Furthermore, the variation in the mixing pattern could be
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modelled if we had data available for Catalonia that is, for example, collec-
ted by the CoMix study [530]. The CoMix study leverages surveys to track
the changes in the mixing patterns over time and was shown to be a good
predictor of the epidemic’s evolution.

From a more methodological point of view, one could also consider differ-
ent geographical regions separately [297] or employ a meta-population model
encoding individual mobility [531]. Unfortunately, such data are unavailable,
as the Spanish government’s project to monitor mobility flows through large-
scale mobile phone data was abandoned on May 10. Nevertheless, the epi-
demic evolution was very similar across all regions, indicating that geograph-
ical aggregation is reasonable.

5.3.8 Final thoughts

Overall, our results indicate that, after the state of alarm, an increase in
the contact rate among the younger population towards Sant Joan led to a
very pronounced peak in the number of infections. The infections among the
younger population that were not yet vaccinated eventually spilt over to the
older ones, which caused a substantial number of hospital admissions. In
contrast, as contacts increased again after the younger population had access
to the vaccine, the reproduction number only minimally changed, and no
material increase in infections was observed.

Interestingly, we found that the contact rate decreased before the closure
of nightclubs and the introduction of the curfew. Furthermore, our results
do not indicate any substantial impact of the two NPIs on the evolution of
the contact rate. After more than a year of experience with the pandemic, the
population may not have followed guidelines and NPIs as firmly as in early
2020. Often this phenomenon is referred to as pandemic fatigue [532, 533],
and first studies tried to incorporate it to improve the design of NPIs [534].
These findings further challenge the mechanistic view of NPIs discussed in
sec. 5.2.

Precisely due to the various factors beyond the actual policy that determine
the impact of NPIs, we developed the model and inference framework presen-
ted here. Compared to other approaches that assume sharp change points in
the reproduction number for the introduction of every NPI [314, 316], our
framework relies on only a few assumptions. The primary assumption is the
Gaussian smoothing prior, which prevents overfitting and guarantees smooth-
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ness. Alternatively, there are a series of other approaches that could impose
smoothness [225, 236].

Even though the inference makes relatively few assumptions, the approach
is undoubtedly not model free. The inference framework is coupled to a relat-
ively extensive compartmental model tailored to SARS-CoV-2. The possibility
to flexibly adapt the epidemic model is the generality and appeal of our ap-
proach. More specifically, the compartmental model can be easily adapted to
the characteristics of other viruses or other additional available data streams
and can incorporate, as the recently proposed approach by Green et al. [535],
any heterogeneities in the population. The framework then serves, similarly
to EpiEstim [220, 225], to infer the evolution of the contact rates, i.e. the repro-
duction number, but at the desired resolution level with respect to age and
geography.

The inferred evolution of the reproduction number can then serve to un-
derstand and quantify the impact of epidemiological factors, such as the pres-
ence of a new variant or the influence of behavioural changes on the contact
patterns. As in sec. 5.2, the challenge remains to relate any changes in the
contact patterns to different events. External sources to the analysis, such as
data on mobility or empirical surveys like CoMix, can help in this regard
[530]. In particular, if we had more detailed mobility data available than the
one provided by the Google mobility report [529], we could try to associate
changes in mobility in specific social settings, such as the workplace, res-
taurants, or nightclubs, with the spread of the epidemic. Nevertheless, the
approach is also based on correlation rather than causality. However, instead
of explicitly modelling the behavioural response, for example, with mobility
as a proxy in sec. 5.1, this more data-driven approach allows to incorporate
a broader behavioural spectrum. Although we leverage the available data,
we purposely call this a "more" data-driven approach instead of a purely
data-driven approach since it still largely relies on empirical knowledge of
the characteristics of the virus, which is used to create the compartmental
mathematical.

5.4 summary and discussion

Contrary to the studies presented in chapters 3 & 4, which took a qualit-
ative approach, we employed a series of models in this chapter to describe
the spread of SARS-CoV-2 quantitatively. We have highlighted in sec. 5.1 the

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



192 the spread of sars-cov-2

difficulties that come along with predicting the future evolution of an epi-
demic, particularly if faced with substantial reporting delays and data uncer-
tainty. However, the retrospective assessments of the first wave (5.2) and the
Delta wave (5.3) have shown how models can be leveraged to infer aspects of
human behaviour or characteristics of a virus variant. The findings in both
secs. 5.2 & 5.3 added evidence [300, 510, 511] that the behavioural reaction
beyond the introduction of NPIs crucially shapes the evolution of an epi-
demic. In particular, the results in sec. 5.2 regarding the correlation between
the reduction in mobility and the number of confirmed cases support the
risk-based approach we took to describe behavioural feedback in chapter 3.

However, the advances from our modelling efforts, which we presented in
secs. 5.1 & 5.3, are not purely empirical but as well methodological. To our
knowledge, it is the first time an MMCA approach describes the evolution of
a real-world epidemic. Until this point, the MMCA was mainly employed in
theoretical settings [175, 177, 208]. Our description of the impact of confine-
ment provides a mechanistic and intuitive understanding with respect to the
impact of lockdown on the epidemic dynamics. Furthermore, the approach
is relatively easy to use and understand due to its discrete-time nature. In
contrast, the framework used to model the Delta variant is closer to a black
box. Given the reported epidemiological data, contact rates are inferred with
only a few assumptions. On the downside, results can only be interpreted
through correlation with external indicators such as mobility. In this sense,
comparing the approaches in secs. 5.1 & 5.3 highlights the existing trade-off
between flexibility and interpretability. In the conclusions of the thesis, which
will be the next and last chapter, we will discuss the opportunities of more
data-driven approaches and their possible drawbacks in more detail.
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6
C O N C L U S I O N S

This thesis explored diverse aspects of human behaviour that either in-
teract with or unidirectionally shape the spread of an epidemic. While
Chapters 3 & 4 employed simple toy models, Chapter 5 focused on more
quantitative approaches. Both approaches are equally valid, but they serve
different purposes. Toy models mostly act as a mathematical formalisation of
a thought experiment. They allow us to lay out a hypothesis and elaborate on
its consequences in great detail. In contrast, quantitative approaches, beyond
prediction, serve to add empirical evidence regarding the characteristics of
the virus, the drivers behind the epidemic spread, the impact of previously
introduced NPIs, or the changes in human behaviour. Furthermore, quant-
itative models can also be used to estimate the possible impact of contain-
ment measures, for example, studies that aimed to analyse whether SARS-
CoV-2 could be controlled through digital proximity tracing [367, 388–394].
Nowadays, mathematical epidemiology typically focuses on more quantitat-
ive approaches, while the complex systems community is mainly interested
in understanding the phenomenology provided by toy models. One of the
contributions of this thesis is to reduce this gap, working on both ends of the
spectrum simultaneously.

During this process, in Chapter 3, we outlined how risk-based adoption of
prophylactic tools can lead to sustained epidemic cycles. It was hypothesised
that a risk-driven behavioural adaption might be the cause behind recurrent
epidemic waves for measles [270], syphilis [291], or more recently, SARS-CoV-
2 [341, 342, 345]. The framework is relatively flexible and describes any pro-
phylactic tool that reduces the transmission probability or the contact rate.
Explicitly introducing the behavioural dimension allowed us to explain the
recurrent epidemic waves in a Markovian framework without memory. Simil-
arly to the memory kernel in Ref. [275], the mechanism of rapid behavioural
adaption of our model can be essentially understood as having a system with
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dynamic memory, as individuals adapt their behaviour based on information
which does not reflect the current but past infection risk. From a more the-
oretical point of view, the dynamics we studied is a typical example of an
evolutionary game with environmental feedback [308]. In our context, the
evolutionary game corresponds to whether individuals adopt prophylaxis,
and the environmental feedback comes from the evolving epidemic. In addi-
tion, we have shown that the risk-based voluntary adoption of prophylaxis
can only contain the spread of a virus but cannot eradicate it. In mathem-
atical terms, this means that the epidemic threshold remains unaffected by
voluntary prophylaxis. The unaffected epidemic threshold is a general fea-
ture of models which assume a prevalence-based behavioural adaption. It
calls into question whether infectious diseases can be eradicated through vol-
untary measures or central actors that impose mandates are always necessary.
However, social pressure (complex contagion), beyond the mere prevalence-
based adoption, is a mechanism that could sustain prophylaxis even in times
of low prevalence [281, 536, 537] and lead to the eradication of the virus. An
extension of our framework, including the effects of social pressure in the
payoff structure, could be interesting for future work.

We further developed this framework to include a heterogeneous popula-
tion structure. Our focus was primarily on the impact of the heterogeneous
risk of severe infection exhibited by SARS-CoV-2, which vastly correlates
with age [326–328]. Incorporating these differences across age groups into
the model allowed us to explain two phenomena observed in different coun-
tries and regions in the reported case numbers: the temporal variation of the
case distribution across age groups and the delay in the epidemic peak of the
older age groups with respect to the rest of the population. The rationale be-
hind these findings is that older individuals adhere to prophylaxis measures
more strictly due to their higher infection cost, i.e. a higher risk of a severe
infection. In contrast, younger individuals intensify prophylaxis only when
the infection risk (prevalence) increases substantially. Hence, towards the epi-
demic peak, the behaviour of the younger and older individuals is similar,
and the case distribution of the infections thus approaches the one of the
population structure. Furthermore, since the younger individuals intensify
prophylaxis later than the older ones, they drive the epidemic waves, and the
infection risk eventually "spills over" to the older population, causing the ob-
served delay in epidemic peaks. The relatively simple extension we proposed
is an illustrative example of how toy models can be used to explain complex
phenomenology in the data. Nevertheless, it remains a toy model, where in-
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terpretability is more critical than empirical accuracy. In both approaches in
Chapter 3, we analysed a hypothesis — the risk-based adoption of prophy-
laxis — and verified that the resulting dynamics could explain the observed
phenomenology rather than reproduce the actual data.

However, toy models are not only valuable to do hypothesis testing with
respect to the observed phenomenology, they also serve to analyse what type
of phenomenology an empirical finding may imply in different scenarios. In
Chapter 4, we considered two such empirical findings — homophily [357]
and heterogeneity in the contact pattern [126] — and analysed their impact on
epidemic control through prophylaxis. The phenomenology we encountered
in both cases is inherently linked with the imperfection of the prophylactic
tool. In the first part (Sec. 4.1), we have shown that the correlation between
adoption and the contact structure, as suggested by the presence of homo-
phily, can be either beneficial, detrimental, or affect the final attack rate non-
trivially, depending on the quality of the prophylactic tool and the infectivity
of the disease. The corresponding three dynamical regimes were first found
for digital proximity tracing (DPT). In the case of DPT, the three dynamical
regimes emerge since contact tracing apps do only slow down the spread
of the disease if both the infected individual and the contacts are adopters.
Accordingly, as adopters and non-adopters mix together, two phenomena co-
exist. The first one, which can be deemed beneficial, is that non-adopters
profit from the protection of adopters. On the other hand, the number of con-
tacts among adopters – the contacts along which onward transmission can be
prevented – is reduced. Then, the competition between the two phenomena
leads to the three previous dynamical regimes. Suppose the infectivity (basic
reproduction number) is significant with respect to the coverage of DPT. In
that case, clustered adoption is necessary to have any effect on the course of
the epidemic, and homophily is beneficial to the efficacy of DPT. In contrast,
if the basic reproduction number is small relative to the adoption, mixing
between adopters and non-adopters is always beneficial since the high app
coverage can provide protection for the entire population and not only the
adopters. In between, the efficacy of DPT is non-monotonously affected by
the mixing, and a local maximum exists.

In contrast to DPT, using individual prophylactic tools such as vaccines
does not require the adoption of both the infected individuals and the con-
tacts for it to work. However, if efficacy is low with respect to the infectivity
of the disease, only a clustered adoption can provide actual protection. For
this reason, we recovered the same three dynamical regimes in the case of
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vaccines or any other prophylactic tool that reduces the transmission probab-
ility. If the vaccine’s effectiveness is 100%, though, mixing is always beneficial
since individual adoption already provides complete protection. The distinct
phenomenology for perfect vaccines also explains why, previously, the com-
mon belief was that mixing between vaccine adopters and non-adopters is
always beneficial. Studies which supported this finding mainly focused on
childhood diseases for which vaccines have very high efficacy [411–415]. In
this sense, the three dynamical regimes can only emerge if the vaccine, or the
prophylactic tool, provides insufficient protection.

Similarly, we have shown in Sec. 4.2 that, in contrast to previous belief [433,
446, 447], protecting the individuals with the most contacts is not always the
most efficient strategy if the efficacy is not 100%. Our results indicate a trade-
off between the population-level impact to prevent super-spreading events
and the probability of a breakthrough infection at the individual level. To be
more precise, if the infectivity is high compared to the efficacy, there exists a
contact rate for which protection maximally reduces the individual infection
risk. In contrast, the reduction in the infection risk of the remaining popula-
tion monotonously increases with the contact rate. Nevertheless, combining
both the individual and the population level impact, a specific value of the
contact rate still exists, which maximally reduces the prevalence. Accordingly,
a risk-based strategy focusing on the most frequently interacting individuals
is not always optimal. Our analysis has shown that the combination of high
prevalence, heterogeneity in the contact structure, and low efficacy in the pre-
vention measure promote the trade-off to occur. Since, for perfect protection,
breakthrough infections do not occur, the risk-based strategy is always the
best one in this case. Accordingly, as in the case of homophilic adoption, the
phenomenology unveiled here is directly induced by the imperfection of the
prevention tool.

A possible application of our findings would be to develop strategies for
PrEP distribution in the MSM community. In many African countries, MSM
communities show high HIV prevalence [453], substantial heterogeneity in
the number of sexual interactions [430], and a relatively low PrEP efficacy
due to irregular use [456]. Since much stigma surrounds HIV and the MSM
community [452], it can be challenging to reach the concerned individuals,
effectively hindering any sophisticated distribution strategy. For this reason,
we have also shown that, in some conditions, random distribution can even
outperform a risk-based approach. However, quantitative analyses tailored
to the characteristics of a specific location are necessary before implementing
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such strategies. Such an analysis is feasible if data on the population struc-
ture and partner acquisition patterns in the considered location is available.
In this case, also agent-based models may be an option to incorporate all
the empirical findings. Similarly, for the homophilic adoption of vaccines or
DPT apps, if sufficient data on adoption patterns were available, it would be
straightforward to incorporate homophily into quantitative epidemiological
models. The possibility of building more realistic models separates the ap-
proaches presented in Chapter 4 from the ones outlined in Chapter 3. While
we are still far from incorporating the dynamic behavioural response into
quantitative models, any static aspects of human behaviour that are empiric-
ally measured can be easily utilised in epidemiological models. In this sense,
the toy models employed in Chapter 4 also served to explore new directions
along which quantitative efforts could be undertaken in the future.

Finally, in Chapter 5, we employed a series of quantitative models to de-
scribe the spread of SARS-CoV-2 in Spain. While Sec. 5.1 mainly focused on
predictive modelling, Secs. 5.2 & 5.3 assessed the course of the epidemic ret-
rospectively. The predictive modelling was centred around the first wave in
Spain during early 2020. We first built a metapopulation model that incor-
porated commuting patterns to describe the spatial spread of SARS-CoV-2. It
is probably the first time an MMCA approach describes an actual real-world
epidemic [175, 460]. The MMCA approach is useful as it is in discrete-time
and is thus computationally not very costly. We then adapted the model to in-
corporate the impact of confinement measures. We used the mobility level as
a proxy for the reduction in contacts and the isolation of households inspired
by Ref. [478]. Overall, the description of confinement allowed for a mech-
anistic understanding of how it impacts the epidemic dynamics. The model
framework enabled us to algebraically express the reproduction number of
the whole population, specific age strata, and each geographical patch. The
reproduction number is defined in analogy with the next-generation matrix
(NGM) approach [211, 214], but allows us to consider any case distribution
across age strata and patches. It does not require the dynamics to reach the
equilibrium distribution predicted by the NGM approach. Finally, the repro-
duction number’s expression allows tracking the epidemic’s evolution as the
model is adjusted to the data.

We have also highlighted the difficulties encountered when adjusting the
model in real-time. Many data streams were unreliable due to inconsistent
reporting, and others suffered substantial reporting delays. The reporting
delays increased the difficulty of outlining the future evolution of the epi-
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demic, besides the already inherently challenging task of predicting the epi-
demic peak [486]. Accordingly, we needed data until the beginning of April
– almost a week after the intensification of the lockdown – to predict the epi-
demic’s decline. In hindsight, we know that the reproduction number was
already below one shortly after the introduction of the first lockdown.

We observed the same delay during the retrospective analysis of the first
wave in Sec. 5.1, for which we had additional data available, in particular, the
date of symptom onset for the reported cases [487]. We estimated that the
time lapse between the peak in infection was reached and the moment when
it was reflected in the reported case numbers was around 16 days. The estim-
ation of the reproduction number suggested that the epidemic slowed down
several days before the implementation of the national lockdown on March 15.
Similarly, large-scale mobility data [488] suggests a decrease in social activity
from March 9/10 onward. Furthermore, we found a substantial correlation
between the decrease in mobility and the accumulated cases across the Span-
ish provinces. This correlation is further evidence for the prevalence-based
prophylaxis we considered in Chapter 3.

Since the estimated reproduction number started to decrease before mobil-
ity did, we used a minimal model to make a joint estimation of the reproduc-
tion number from the hospital admissions and deaths. The results from the
inference are in line with the evolution of mobility. The alignment hence sug-
gests that the reporting rate was decreasing towards lockdown. Furthermore,
the minimal model allowed us to build counterfactual scenarios that quantify
the epidemic response previous to the lockdown. The analysis suggests that
the behavioural response previous to the lockdown reduced the attack rate,
hospital admissions and deaths by around 30%. It is not easy to pinpoint
what exactly caused the initial behavioural response. However, we assume
it is an interplay between the news from Italy, the rising case numbers in
Spain, and local containment measures. The different dynamics at play gen-
erally question the mechanistic view of NPIs, which often attribute the entire
reduction in contacts to their implementation [314, 316, 490, 509].

Similarly, in the analysis of the spread of the Delta variant in Catalonia dur-
ing the summer of 2021 (Sec. 5.3), our results indicated changes in the con-
tact rates before implementing any NPIs. More precisely, among the younger
population, contact rates constantly increased and reached their peak dur-
ing the regional festivities of Sant Joan. Afterwards, they decreased before
the Catalan authorities closed nightclubs and introduced a curfew. The de-
coupled evolution of NPIs and contact rates further indicates that at least
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one year after the pandemic’s start, behavioural changes beyond NPIs can
crucially shape the epidemic evolution [300, 532, 533]. While the increase
in contact rates was the main driver behind the epidemic expansion, the
introduction of the more transmissible Delta variant and the relatively low
vaccination coverage among the younger generation further accelerated the
pathogen’s spread. As contact rates increased again across all age groups, the
reproduction number stayed below one since the younger age groups also
had access to the vaccine. The differentiated outcome of increasing contact
rates before and after the vaccination of the younger age groups highlights
how delicate it can be to design opening strategies.

Beyond the empirical findings, the study is also interesting from a meth-
odological point of view. We only used a minimal assumption, a Gaussian
smoothing prior, to infer the evolution of the contact rates and the reproduc-
tion number. In contrast to EpiEstim [220, 225], the approach can deal with
any heterogeneity in the population, as well as with the presence of different
variants and vaccination statuses. A similar extension has recently been pro-
posed to account for heterogeneities in the population when estimating the
reproduction number in Ref. [535]. The only downside of our approach is that
we assume a constant mixing matrix, which is not the case, as contact rates for
each age group change daily. In this sense, future work could try to incorpor-
ate clever parametrisations for the contact matrix [18], allowing the inclusion
of varying mixing patterns in the inference process. A brute force approach
seems not viable since the number of parameters scales quadratically with
the number of age groups. Overall, the framework is flexible and does not
require making concrete assumptions on how and whether NPIs impact the
evolution of the epidemic. It thus offers the possibility to retrospectively as-
sess how changes in human behaviour, voluntary or not, impacted the course
of an epidemic.

If we compare the frameworks used to model the first wave (Sec. 5.1) and
the one used to describe the spread of the Delta variant (Sec. 5.3), we note
that the latter is much closer to a so-called black box. Contact rates are dir-
ectly inferred from the likelihood expression and the data through MCMC
sampling. Accordingly, even though the framework offers excellent accuracy,
the results may not always be easily interpretable. The evolution of the repro-
duction number can only be interpreted by correlating their evolution with
other external events (e.g. the Sant Joan holiday), the introduction of NPIs or
one can try to leverage mobility data. In contrast, the approach proposed to
model the first wave mechanistically relates the reduction in mobility to the
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changes in the contact rate. Such an approach may be less flexible but more
interpretable since contact rates are causally linked to the level of mobility.
Furthermore, only a few parameters need to be estimated instead of thou-
sands. Relatively simple mechanistic models may seem outdated nowadays,
mainly since computationally intensive approaches have often been at the
forefront during the SARS-CoV-2 epidemic [148, 191, 367, 420, 538]. Further-
more, their accuracy might not be outstanding, but their explanatory power
as an effective theory will probably make them powerful assets in the future.

On the other end of the spectrum, computational advances in the past dec-
ade have led to the explosion of the use of artificial intelligence, in particular
deep neural networks. However, deep neural networks are an even bigger
black box than the inference framework presented in Sec. 5.3. To this day,
deep learning is only of anecdotal use in mathematical epidemiology [539].
During the SARS-CoV-2 pandemic, deep learning was mainly utilised to im-
prove diagnosis by developing new diagnostic tools [540, 541]. In contrast,
few examples exist where deep learning was used in actual modelling [539,
542]. Therefore, it is difficult to predict how it will impact the field of math-
ematical epidemiology. In the immediate future, deep learning will probably
mainly serve to improve predictive modelling [539, 542] as accuracy is more
relevant in this context than interpretability. Also, ensemble modelling has
proven beneficial to ameliorate prediction [543]. In contrast, retrospective as-
sessments always require at least some interpretability, as one is interested in
unveiling the driving factors behind the observed dynamics. The SARS-CoV-
2 pandemic generated a vast amount of data on how epidemics evolve and
their associated behavioural reaction. Analysing this data, which was partly
done in this thesis, offers a never seen opportunity to deepen the understand-
ing of the interplay between human behaviour and the spread of infectious
diseases. The fast-evolving field of symbolic regression could open new op-
portunities to detect or approximate the hidden laws in the newly available
data [544].

In a more traditional approach, one can leverage the data to develop new
simple models explaining the observed phenomenology, which we did in
Chapter 3. Naturally, the question is whether one can translate these ap-
proaches into a more quantitative realm. If human behaviour does not evolve
with the epidemic as in Chapter 4, quantitative models, or at least agent-
based simulations, can always be built upon data availability. In these cases,
the problem is not complex but only complicated. In contrast, the dynamic
interplay between human behaviour and the spread of infectious diseases has
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so many aspects and driving factors that, until now, all the approaches are
crude simplifications. The example studied in Chapter 3 neglected the impact
of NPIs or seasonality of SARS-CoV-2 and solely considered the prevalence-
based prophylaxis. However, without this simplification, the model would
hardly be interpretable and analytically tractable. For this reason, behavi-
oural models employed in infectious disease modelling resort primarily to
a qualitative approach.

Decoding the complexity of human behaviour, or at least some of its traits,
would open the pathway to building quantitative models that could ameli-
orate the retrospective assessment but, more importantly, improve the pre-
dictions of epidemics. Put more pointedly; we could advance from building
conditional scenarios to making actual predictions. In the context of SARS-
CoV-2, scenarios typically make different assumptions about how individu-
als will reduce their contacts. Accordingly, the inclusions of the behavioural
reaction – i.e. the decrease in contacts – in the epidemic models would ad-
vance us from scenario analysis to prediction. However, even assuming that
human behaviour could be perfectly modelled, the public communication of
a prediction may still undermine its accuracy. As we mentioned in the in-
troduction, predictive modelling can act as a self-defeating prophecy since
behavioural changes can alter the course of the epidemic. Accordingly, long-
term predictive modelling of epidemics may be intrinsically doomed to fail.

Despite the possibility of prediction being an unsolvable task, a deeper
understanding of what traits and aspects of human behaviour shape the
propagation of an epidemic is still helpful in developing better containment
policies. Although in many cases, it is not a lack of scientific understanding
but instead a mix of economic and political barriers that hinder the eradica-
tion of diseases [545]. The necessary studies to unveil how human behaviour
shapes the spread of infectious diseases are inherently interdisciplinary. This
thesis tried to bridge the gap between simple toy models often used in com-
plex systems science and quantitative approaches more widely used in math-
ematical epidemiology. Working at the boundaries of the two fields yielded
advances in understanding phenomenology, added empirical evidence, and
proposed novel methodology. However, establishing a fundamental theory
of coevolution, at both the cultural and biological time scale, between hu-
man behaviour and the spread of infectious diseases will require the collab-
oration between sociologists, behavioural economists, historians, epidemiolo-
gists and virologists, to name a few. Calls for such endeavour were made in
the past [6]. However, like the author’s project mentioned in the introduction,
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initiatives in this direction have not always been supported. Nevertheless, the
urgency of the SARS-CoV-2 pandemic may contribute to the future success of
grant proposals for these interdisciplinary projects. Hopefully, the advances
of these efforts will support humanity in its quest to become resilient against
infectious diseases and not let death triumph so often.
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A
I M P E R F E C T D P T

The primary analysis is based on the assumption that adopters infected by
adopters do not further transmit the disease. In other words, contact tracing
reaches all individuals and is immediate. However, in any practical applica-
tion, this assumption does not hold. Individuals may not isolate after noti-
fication, or secondary cases may have already transmitted the disease due to
the delay between the detection of the primary case and the notification of its
contacts.

To test the robustness of our results, we thus incorporate both these factors
into the model, which allows us to analyse whether they alter the phenomen-
ology. More specifically, we denote with ϵ ∈ [0, 1] the probability of a notified
adopter to not self-isolate. Furthermore, γ ∈ [0, 1] represents the impact of
contact tracing on the infectious period τ. The larger γ, the larger the delay
between infection and notification, hence longer the period, γτ, during which
the infectious adopter can infect. We recover instantaneous tracing for γ = 0.
In contrast, γ = 1 implies that adopters are not notified before the end of their
infectious period. Accordingly, the parameter ϵ enters the equations only for
γ < 1.

With these assumptions, individuals in the compartment IAA can also trans-
mit the disease. We can interpret γIAA as the individuals who never receive
the notification, whereas a fraction ϵ of those that did receive it instantan-
eously ((1 − γ)IAA), do not self-isolate. Therefore, Eqs. (4.5)-(4.7) become

IN(t + 1) = β[kNN IN(t) + kAN IAN(t)

+ (γ + ϵ(1 − γ)) kAN IAA(t)]
SN(t)

NN
(A.1)

IAN(t + 1) = βkNA IN(t)
SA(t)

NA
(A.2)

IAA(t + 1) = β [kAA IAN(t) + (γ + ϵ(1 − γ)) kAA IAA(t)]
SA(t)

NA
. (A.3)
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The equations of the number of susceptible individuals is not affected. If we
define ξ ≡ γ + ϵ(1 − γ), one clearly sees from Eqs. (A.1)-(A.3) that an indi-
vidual in compartment IAA has a reduced infectivity βξ ≤ β. Accordingly,
any change in ϵ and/or γ leads simply to rescaling the infectiousness of the
individuals in compartment IAA. We find the next-generation matrix associ-
ated to the Eqs. (A.1)-(A.3) as

NGM = β


kNN kAN ξkAN

kNA 0 0

0 kAA ξkAA

 . (A.4)

Consistently, the original next-generation matrix, given in Eq. (11), is re-
covered for ξ = 0, i.e., ϵ = γ = 0. A straightforward calculation of the
eigenvalues of the NGM shows its spectral radius, i.e., the effective reproduc-
tion number R, to be given by

R =
β

2

[
kNN + ξkAA +

√
(kNN + ξkAA)

2 + 4 (kANkNA − ξkNNkAA)

]
=

R0

2

[
1 − αT + ξ(1 − α(1 − T))

+

√
[1 − αT − ξ (1 − α (1 − T))]2 + 4α2T(1 − T)

]
. (A.5)

With this expression at hand, let us proceed and do the same calculations as
in the main text. We first impose dR

dα = 0 to prove the existence of α = α∗,
for which R reaches its minimum. As in the main text, the analysis yields a
second-order equation with a single positive solution α = α∗, reading

α∗ =
T − ξ

[
T + 1 − ξ (2 − T) + ξ2 (1 − T)

]
+
√
(T + ξ − ξT)2 (1 − ξ)3

(1 − ξ)
[
(4 − 3T) T − 2ξT (1 − T) + ξ2 (1 − T)2

] .

(A.6)
We see that Eq. (A.6) correctly reduces to Eq. (4.12) when ξ = 0. Imposing
α∗ ≤ 1, we find the upper bound T∗ for the app coverage T, below which
α∗ < 1. It reads,

T∗ =
1

3 + ξ

(
1 +

1 + ξ√
1 − ξ

)
, (A.7)

reducing to T∗ = 2/3 for ξ = 0. Curiously, T∗ ≤ 1 if and only if
ξ ≤

(√
5 − 1

)
/2 = 1/ϕ ≈ 0.618 where ϕ is the golden ratio. Consequently,

for greater values of ξ, α∗ < 1 for any T ∈ [0, 1], meaning the minimum
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Figure A.1: Analogous illustration to Fig. 4.1 in the main text, but for γ = 0.30 and
ϵ = 0.20, giving ξ = 0.44. (A): Reproduction number, R, normalized with
respect to the basic reproduction number, R0, for different values of ad-
option, T, below T∗. Dots indicate the minimum at α∗, while the dashed
line shows its variation for T ∈ [0.1, 0.55]. (B): Attack rate as a function of
α and R0. The solid line indicates the threshold α±c for which R = 1. Col-
oured, dashed lines denote the dynamical regimes: critical, intermediate
and saturated. Adoption was fixed as T = 0.7. (C): Top panels show the
attack rate and the reproduction number for the different regimes defined
in B. The specific attack rates for adopters and non-adopters are reported
in the bottom panels. Black diamonds indicate α−c , at which R = 1.

for R is always met. We find that the disease is eradicated (i.e., R < 1) if
α ∈ (α−c , α+c ), with

α±c =
T + ξ (1 − T)− ξR0

2R0T (1 − T) (1 − ξ)

±

√
[T + ξ (1 − T)− ξR0]

2 − 4T (1 − T) (1 − ξ)
[

R0 (1 + ξ)− 1 − ξR0
2
]

2R0T (1 − T) (1 − ξ)
,

(A.8)

being the two roots of the equation R = 1. Like Fig. 4.1 in the main text,
Fig. A.1 resumes the findings of the above analysis. The imperfections affect
the efficacy of DPT, but the overall phenomenology is not altered.
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PA R A M E T E R S U S E D I N S E C . 5 . 1

This Appendix describes the model parameters we fixed according to the
literature in sec. 5.1 and reports the estimated values from the inference.

Table B.1: Epidemic parameters of the model and their estimations with 95% credible
intervals for COVID-19 in Spain, with strata separation g ∈ {Y, M, O} when
appropriate.

Symbol Description States Estimates Assignment

β I Infectivity S � E 0.075 Calibrated

symptomatic CrI: 0.068 – 0.082

βA Infectivity S � E 0.5 β I Assumed

asymptomatic

ηg Exposed rate E 2.444 days−1 Calibrated

CrI: 1.823 – 3.064

αg Asymptomatic A (5.671, 2.756, 2.756) days−1 Calibrated

rate CrIY : 5.046 − 6.356

CrIM : 2.135 − 3.377

CrIO : 2.135 − 3.377

µg Infectious rate I (1, 3.915, 3.915) days−1 Y: Assumed

CrI: 3.470 – 4.360 M, O: Calibrated
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Table B.2: Parameters of the model related to geographic and population data, includ-
ing mobility, and their values for Spain.

Symbol Description Estimates for g ∈ {Y, M, O} in Spain

ng
i Region population Data provided by INE [481]

si Region surface Data provided by INE [481]

Rg
ij Mobility matrix Data provided by INE [481]

⟨kg⟩ Average total number of contacts (11.8, 13.3, 6.8) [72]

⟨kg
h⟩ Average number of contacts at home (3.1, 3.2, 3.3) [72]

⟨kg
w⟩ Average number of contacts at work (1.8, 5.2, 0.0) [72]

Cgh Contacts-by-age matrix

 0.5980 0.3849 0.0171

0.2440 0.7210 0.0350

0.1919 0.5705 0.2376

 [72]

ξ Density factor 0.01 km2

pg Mobility factor (1.0, 1.0, 1.0)

σ Average household size 2.5 [481]
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Table B.3: Clinical parameters of the model and their estimations with 95% credible
intervals for COVID-19 in Spain, with strata separation g ∈ {Y, M, O} when
appropriate.

Symbol Description States Estimates References

θg Direct death probability I � PD (0.0, 0.008, 0.047) [479, 484]

γg ICU probability I � PH (0.0003, 0.003, 0.026) [479, 484]

ζg Pre-deceased rate PD 7.084 days−1 [479]

CrI: 6.640 – 7.537

λg Pre-hospitalized in ICU rate PH 4.084 days−1 [479]

CrI: 3.640 – 4.537

ωg Fatality probability in ICU PH � HD 0.3 [479]

ψg Death rate in ICU HD 7 days−1 [546]

χg ICU discharge rate HR 21 days−1 [547]

Table B.4: Parameters describing the confinement and their estimations with 95% cred-
ible intervals for COVID-19 in Spain, with strata separation g ∈ {Y, M, O}
when appropriate.

Symbol Description Estimates Assignment

κ
g
0 Mobility Time-varying Estimated

reduction from INE [480]

ϕ Household 0.174 Calibrated

permeability CrI: 0.079 – 0.269

δ Social distancing 0.207 Calibrated

CrI: 0.053 – 0.359
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Figure B.1: The table’s diagonal contains the posterior distributions for the parameters
obtained after model calibration. The lower triangular part shows the scat-
ter plot for every pairwise combination of parameters in the posterior para-
meter space. In contrast, the upper triangular one represents the entries of
the covariance matrix for the parameters involved in the calibration.
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Region of Murcia Valencian Community

Extremadura Galicia La Rioja Navarre

Castile and León Castile-La Mancha Catalonia Community of Madrid

Balearic Islands Basque Country Canary Islands Cantabria

Spain Andalusia Aragon Asturias
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Figure C.1: Time series for the inferred Rts for Spain and the CCAA. Solid lines indic-
ate a centred, seven-day rolling average. In red, we show the reconstructed
exposure times. The shaded area in light grey indicates lockdowns 1 and 3.
In dark grey, we indicate lockdown 2, where, in addition, all non-essential
economic activity was shut down.
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Figure C.2: Correlation between the mobility level [488] and accumulated number of
reported cases, deaths, hospitalizations and ICU admissions [487]. Each
data point corresponds to a province. The correlation was calculated
through the Pearson R and Spearman ρ correlation coefficient. We ex-
cluded Ceuta and Melilla due to their size. Barcelona and Madrid were
excluded since they are statistical outliers. The left side focuses on the
week before the lockdown from March 9 to 15. The right side aggregates
the lockdown period from March 15 to May 5. We observe that correlation
between cases and mobility is reduced during lockdown compared to pre-
lockdown. This reduction may be explained due to the stay-at-home order
that reduced the effect of individual voluntary behaviour.
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Figure C.3: Correlation between the mobility level [488] and accumulated number of
reported cases, deaths, hospitalizations and ICU admissions [487] during
the week previous to lockdown from March 9–15. Each data point corres-
ponds to a province. The correlation was calculated through the Pearson
R and Spearman ρ correlation coefficient. We excluded Ceuta and Melilla
due to their size. Barcelona and Madrid were excluded since they are stat-
istical outliers. The left side takes absolute values of the epidemiological
indicators, while the right normalizes them with respect to the popula-
tion. Interestingly, we find a stronger correlation regarding all indicators
for absolute rather than relative case numbers.
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Figure C.4: Delay between the exposure time and the reporting date. The position is
defined with respect to the peak. To be more precise, we show the time
difference when both curves reached x% of their peak value. Each point
corresponds to a CCAA. We note that the delay steadily increases towards
the peak in almost all CCAA. Exceptions are Aragon and Extremadura.
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Figure C.5: Posterior for the distribution between the onset of symptoms and death.
The median of the distribution is found as 14.5 days (CrI: 13.7 – 15.4). The
shape and scale factors are given by 2.36 (CrI: 2.18 – 2.42) and 7.1 (CrI: 6.5
– 7.9).
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Figure C.6: Posterior distributions and correlations for the parameters I0, R1, R2 and
BP that define how many days before lockdown the epidemic response
was initiated.
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Figure C.7: Top and middle panels show the adjustment for the daily hospitalizations
and fatalities as RtM if the second breakpoint is left as a free parameter.
The bottom panel shows the inferred form of RtM. We find the inferred
parameters I0, R1 and R2 as 1120 (CrI: 210 – 1590), 3.29 (CrI: 3.01 – 3.67)
and 0.66 (CrI: 0.64 – 0.67), respectively. The decrease was initiated on
March 10 (CrI: 6 – 12). RtM reaches a stable value between 0 and 2 days
after the lockdown was implemented. The median is found half a day
after the implementation of the lockdown. The relatively small credible
interval supports our assumption that RtM reached a stable value on the
day of lockdown. Furthermore, the rest of the inferred parameters are very
similar to the ones presented in the main text.
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epidemiological model

We use a standard age-stratified compartmental model to describe the epi-
demic dynamics. The different compartments are shown in Fig. D.1. Indi-
viduals that are susceptible (S) and get infected transfer first to the latent
state (E1/2). The latent state is modelled with an Erlang distribution with
shape factor k = 2. Subsequently, individuals become infectious (I). Infec-
tious individuals either recover (R) or transfer to the compartment (PH) that
precedes hospitalization. The compartment is separated into individuals that
will be then admitted to an ICU (HICU) and the ones that will recover (R)
without ICU admission (HR). Since we did not include the age group 80+
and thus do not explicitly consider the dynamics in care homes, we rule out
the possibility of decease without ICU admission. The ICU compartment is
separated to describe individuals that will recover (ICUR) and the ones that
will decease (ICUD) and thus transfer to compartment D.

Furthermore, the compartments S, E1/2 and I are separated into individu-
als that received one, two or no vaccine dose. Individuals pass to the vaccin-
ated states according to the official number of daily first (νi

1(t)) and second
doses (νi

2(t)) that are administered in every age group. We assume that sus-
ceptible, as well as individuals that were previously infected, are vaccinated.
Depending on the vaccination status, individuals have a different transmis-
sion probability, susceptibility and risk of hospital admission (Table D.1). The
vaccine is assumed to take effect 15 days after vaccination. Once hospitalized,
the probability of being admitted to an ICU or death is independent of the
individual’s vaccination status.

Besides the stratification by age and vaccination status, we also distinguish
whether the infection occurred through the Alpha or Delta variants. Individu-
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Figure D.1: Compartmental model for the dynamics. Black letters indicate the average
time spent in each compartment, while grey letters represent transition
probabilities.

als that were infected with the Delta variant have an increased transmission
probability fδ and hospitalization risk ζδ with respect to the Alpha variant.

The infection force depends on the contact matrix C and an age- and time-
dependent interaction rate βi(t). We assume that the contact matrix (relative
distribution of contacts) stays constant during the period considered here and
is taken from Ref. [72]. The term βi(t) accounts for the age-dependent interac-
tion rates. We assume that infectiousness and susceptibility are independent
of age and thus lead to a rescaling of βi(t). The age-dependent infection
hospitalization rate IHR is fixed according to the wild-type (Table D.2). We
then correct the increase of IHR in the case of the Alpha/Delta variant with
the factors ζα and ζδ respectively [523, 524]. For the risk of ICU admission
and decease, we fix the relative differences between age groups according to
Ref. [468] (Table D.3). The respective scaling factors, pICU and pD, are left as
free parameters and adjusted in the fit. We average the age-dependent quant-
ities taken from Ref. [468] according to the census data in Catalonia [548]
to match the age stratification considered here. The model’s parameters are
detailed in Tables D.1-D.6. The model’s differential equations are reported in
Eqs. (D.1)-(D.17).
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parameters of the model

Table D.1: Fixed parameters of the model that are non-age-dependent.

Variable Description Value

τE Latent period 2.6 days [232]
τI Infectious period (equals a generation

time of τE + τI = 5.2 days as in Ref. [232])
2.6 days

τHR Time in Hospital before recovery 8.4 days [549]
τICUR Time in ICU before discharge 12.4 days [549]
ζα Increased probability of hospitalizations

of the Alpha variant with respect to the
wild-type.

1.42 [523]

ζδ Increased probability of hospitalizations
of the Delta variant with respect to the
Alpha variant.

1.85 [524]

γ
{α,δ}
V1

Efficacy of one dose to prevent trans-
mission if infected with the Alpha/Delta
variant.

0.45 / 0.4 [420, 520]

γ
{α,δ}
V2

Efficacy of two doses to prevent trans-
mission if infected with the Alpha/Delta
variant.

0.45 / 0.4 [420, 520]

σ
{α,δ}
V1

Efficacy of one dose to prevent infection
against the Alpha/Delta variant.

0.487 / 0.307 [521]

σ
{α,δ}
V2

Efficacy of two doses to prevent infec-
tion against the Alpha/Delta variant.

0.937 / 0.88 [521]

ε
{α,δ}
V1

Efficacy of one dose to prevent hospital-
ization for the Alpha/Delta variant.

0.8 / 0.95 [513, 522]

ε
{α,δ}
V2

Efficacy of two doses to prevent hospit-
alization for the Alpha/Delta variant.

0.8 / 0.95 [513, 522]

M Number of age groups. 8
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Table D.2: Age-dependent IHR (pi
H) [420, 548].

Age Group i pi
H

0-9 0.01500

10-19 0.00064

20-29 0.00180

30-39 0.00520

40-49 0.01500

50-59 0.03100

60-69 0.09800

70-79 0.27

Table D.3: Age-dependent relative risk of ICU admission after hospitalization (ri
ICU)

and decease after ICU admission (ri
D). The absolute probabilities are then

given by pi
ICU = pICUri

ICU and pi
D = pDri

D [420, 548].

Age Group i ri
ICU ri

D

0-9 0.27 0.28

10-19 0.36 0.29

20-29 0.47 0.32

30-39 0.61 0.37

40-49 0.81 0.48

50-59 0.98 0.65

60-69 0.92 0.85

70-79 0.54 0.98

Table D.4: Adjusted parameters of the model which are age-dependent.

Variable Description Prior

ρi Detection rate for the i-th age com-
partment.

Cauchy(0.5,1)

βi(t) Interaction rate for the i-th age
compartment at time t.

Cauchy(0.5,2)
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Table D.5: Adjusted parameters of the model which are age-independent.

Variable Description Prior Value

fδ Transmission ad-
vantage of the
Delta variant.

N (1.5, 0.5) [420,
525, 526, 550]

1.52
(CrI: 1.50-1.54)

pICU Scaling factor for
the age-dependent
probability to ICU
admission after
hospitalization.

N (0.24, 0.06) [468] 0.24
(CrI: 0.22-0.26)

pD Scaling factor for
the age-dependent
probability to de-
cease after ICU ad-
mission.

N (0.67, 0.05) [468] 0.4
(CrI: 0.36-0.45)

τPH Days between the
infectious compart-
ment and hospital
admission.

N (5.0, 5.0) [505] 10.0
(CrI: 8.3-11.1)

τHICU Days between
hospital admission
and transfer to
ICU.

N (2.0, 1.0) [505] 3.4
(CrI: 1.8-5.0)

τICUD Days between ICU
admission and de-
cease.

N (10.0, 4.0) [505] 6.7
(CrI: 3.8-9.1)

Iα
0 Number of initially

infected individu-
als with Alpha vari-
ant.

N ([τE + τI ]× Iδ
0 ,

0.2× [τE + τI ]× Iδ
0)

29059
(CrI: 24001 - 34770)

Iδ
0 Number of initially

infected individu-
als with the Delta
variant.

N (100.0, 80.0) 53
(CrI: 37-75)

ϕ Dispersion para-
meter for the neg-
ative binomial in
the log-likelihood
(See Eq.(5.54)).

ϕ−1 ∼ Exp(5.0) 6.5
(CrI: 6.1-7.0)
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variables of the model

Table D.6: Variables of the model.

Variable Description

Si
{NV,V1,V2}(t) Number of susceptible individuals in age group i at

time t, either non vaccinated (NV) or with one dose
(V1) or fully vaccinated (V2).

E{α,δ},i
{1,2},{NV,V1,V2}(t) Number of individuals in the NV/V1/V2 vaccination

state, belonging to age group i that were infected
with the Alpha/Delta variant and are in the two re-
spective latent states (1 or 2) at time t.

I{α,δ},i
{NV,V1,V2}(t) Number of individuals in the NV/V1/V2 vaccination

state, belonging to age group i, that were infected
with the Alpha/Delta variant and are infectious at
time t.

Pi
H(t) Number of individuals in age group i that will sub-

sequently be admitted to the hospital.
Hi

R(t) Number of individuals in age group i that are in the
hospital at time t but will recover without being ad-
mitted to the ICU.

Hi
ICU(t) Number of individuals in age group i that are in the

hospital at time t and will subsequently be admitted
to the ICU.

ICUi
{R,D}(t) Number of individuals in age group i that are in the

ICU at time t and will recover/decease.
Di(t) Number of individuals in age group i that deceased

until time t.
Ri(t) Number of individuals that recovered from infection

until time t.
Ri

NV(t) Number of recovered not vaccinated individuals that
were infected until time t.

Ri
V1
(t) Number of recovered individuals that were infected

while being vaccinated with one dose until time t.
λ
{α,δ},i
{NV,V1,V2}(t) Infection force at time t of the Alpha/Delta vari-

ant for individuals belonging to age group i, in the
NV/V1/V2 vaccination state.
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model equations

Ṡi NV(t) = −
[
∑
θ

λθ,i
NV

]
Si

NV(t)− νi
1(t)

Si
NV(t)

Si
NV(t) + Ri

NV(t)
(D.1)

ṠiV1(t) = −
[
∑
θ

λθ,i
V1

]
Si

V1
(t) + νi

1(t)
Si

NV(t)
Si

NV(t) + Ri
NV(t)

− νi
2(t)

Si
V1
(t)

Si
V1
(t) + Ri

V1
(t)

(D.2)

ṠiV2(t) = −
[
∑
θ

λθ,i
V2

]
Si

V2
(t) + νi

2(t)
Si

V1
(t)

Si
V1
(t) + Ri

V1
(t)

(D.3)

Ėθ,i
1,ω(t) = λθ,i

ω (t)Si
ω(t)−

2
τE

Eθ,i
1,ω(t) (D.4)

Ėθ,i
2,ω(t) =

2
τE

Eθ,i
1,ω(t)−

2
τE

Eθ,i
2,ω(t) (D.5)

İθ,i
ω (t) =

2
τE

Eθ,i
2,ω(t)−

1
τI

Iθ,i
ω (t) (D.6)

Ṗi
H(t) =

1
τI

pi
Hζα

[
∑
ω

(1 − ϵα
ω)Iα,i

ω (t) + ζδ ∑
ω

(1 − ϵδ
ω)Iδ,i

ω (t)
]

(D.7)

Ḣi
R(t) =

1
τPH

(1 − pi
ICU)Pi

H(t)−
1

τHR

Hi
R(t) (D.8)

Ḣi
ICU(t) =

1
τPH

pi
ICU Pi

H(t)−
1

τHICU

Hi
ICU(t) (D.9)

˙ICUi
R(t) =

1
τHICU

(1 − pi
D)Hi

ICU(t)−
1

τICUR

ICUi
R(t) (D.10)

˙ICUi
D(t) =

1
τHICU

pi
D Hi

ICU(t)−
1

τICUD

ICUi
D(t) (D.11)

Ḋ(t) =
1

τICUD

ICUi
D(t) (D.12)

Ṙ(t) =
1
τI

[
∑
ω

(
1 − pi

hζα(1 − ϵα
ω)
)

Iα,i
ω (t) +

(
1 − pi

hζαζδ(1 − ϵδ
ω)
)

Iδ,i
ω (t)

]
+

1
τHR

Hi
R(t) +

1
τICUR

ICUi
R(t) (D.13)

Ṙi
NV(t) =

1
τI

∑
θ

Iθ,i
NV(t) (D.14)

Ṙi
V1
(t) =

1
τI

∑
θ

Iθ,i
V1
(t) (D.15)

λθ,i
NV(t) = βi(t) fθ ∑

j,ω

Cij

Nj
(1 − γθ

ω)Iθ,j
ω (t) (D.16)

λθ,i
ω ̸=NV(t) = (1 − σθ

ω ̸=NV)λ
θ,i
NV(t), (D.17)
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where θ ∈ {α, δ} indicates the variant, ω ∈ {NV, V1, V2} indicates the vac-
cination state and i ∈ {1, . . . , M} indicates the age group. We introduced the
rescaled efficacy to prevent hospitalization ϵθ

ω = (εθ
ω − σθ

ω)/(1− σθ
ω). We also

set for convenience εθ
NV = γθ

NV = σθ
NV = 0 for each value of θ, and fα = 1.

estimating the reproduction number

From the model

The dynamical states of the model allow us to calculate the instantaneous re-
production number Rni(t) at time t respective to the age group i. We express
Rni(t) in the same way as in sec. 5.1 by considering the secondary infectious
created by an average individual in age group i that becomes infectious at
time t. The expression of Rni(t) is given by:

Rni(t) = βi(t) ∑
θ,ω1,ω2,j

fθ(1 − γθ1
ω )(1 − σθ

ω2
)

Iθ,i
ω1(t)

∑
Ω,Θ

IΘ,i
Ω (t)

Sj
ω2(t)

Cij

Nj
. (D.18)

The term Icθ,i
ω (t) corresponds to the incidence of variant θ in age-stratum i,

with vaccination status ω, and is given by

Iδ,i
m (t) =

ρi

τI
∑
ω

∫ t

t−1
Iθ=δ,i
ω (y)dy . (D.19)

The overall reproduction number Rn(t) is then calculated from the average
of the Rni(t), weighted by the respective I i(t) = ∑θ,ω Iθ,i

ω (t). That is, I(t) =
∑M

i=1 I i(t) being the total number of infectious individuals, it reads

Rn(t) =
1

I(t) ∑
i
I i(t)Rni(t) . (D.20)

From the reported cases

We estimate the reproduction number from the reported cases through Epi-
Estim [220, 225]. EpiEstim estimates the reproduction number based on the
generation time distribution. To accurately compare the results from our
model with the reproduction number inferred from the reported cases, we
use the generation time distribution of the epidemic model. The generation
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time can be computed based on the approach of Ref. [227]. Given the random
latent time, X, and a random infectious time, Y, the probability density func-
tion of the generation time distribution, pG(t), is given by the convolution
g ∗ hs. Here, g is the probability density function of X, while hp is expressed
as

hs(t) =
1 − F(t)

Ȳ
(D.21)

with F(t) being the cumulative distribution function of Y and Ȳ the expected
value. Based on this approach, we find

pG(t) =
4

τ2
EτI

[
1
η2

(
e−

t
τI − e−2 t

τE

)
− t

η
e−2 t

τE

]
, (D.22)

where we defined η = 2
τE

− 1
τI

.
To estimate the reproduction number with EpiEstim, it is necessary first to

infer the infection times (sec. 2.3.3). In our model, individuals are detected
once they exit the infectious compartment. Accordingly, the distribution of
the time between infection and detection, pID, is given by the convolution
between the probability density function of the latent time, X, and the infec-
tious time, Y, respectively. Computing this convolution we find pID = pG(t).
Given pID, we infer the infection times from the reported cases through a
maximum likelihood deconvolution approach [497, 498], as in sec. 5.2. We
fixed the smoothing factor k = 6, corresponding to a centred rolling aver-
age of 7 days. The deconvoluted time series was then used as an input for
EpiEstim to estimate the reproduction number with generation time pG(t).
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additional figures of the main analysis
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Figure D.2: Adjustment of the model to the reported cases (incidence) for all age
groups.
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Figure D.3: Adjustment of the model to the daily hospitalizations for all age groups.
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Figure D.4: Interaction rate inferred from the model for all age groups.
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Figure D.5: Reproduction number inferred from the model for all age groups.

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



230 supplementary information for sec . 5.3

sensitivity analysis

Generation Time

The transmission advantage of the Delta variant strongly depends on the
generation time [551]. For this reason, we explore a set of different values
of the generation time. Motivated by the range of existing estimates of the
generation time [552–554], we repeat the numerical analysis with generation
times of ±1 compared to the value of 5.2 chosen for the main analysis [232].
There is also evidence that the Delta variant exhibits a shorter generation time
than the alpha variant [555] (4.6 vs. 5.5). We also explore this scenario, and
the results are shown in Fig. D.6. The estimated transmissibility advantage
ranges between 1.41 (CrI: 1.39-1.43) and 1.63 (CrI: 1.60-1.66).
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Figure D.6: Estimated transmission of the Delta variant for different choices of the
generation time. The entry 4.6/5.5 corresponds to a generation time of 4.6
and 5.5 for the Delta and Alpha variant [555], respectively .

Increased severity Delta variant

Given the hospital admissions, the IHR fixes the attack rate. However, the
increase in severity of the Delta variant with respect to the Alpha variant is
subject to substantial uncertainty. In the main analysis, we fixed the increase
in severity as 1.85 according to Ref. [524]. However, other estimates exist that
report values up to 2.83 [556, 557]. We report the attack rates with an increase
in severity of 2.83 in Fig. D.7. We observe that the attack rate in the age strata
20-29 reduces to 27.4% (CrI: 24.9-30.3%).
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Figure D.7: Model-inferred attack rates for the different age-strata as we fix the in-
crease of severity of the Delta variant at 2.83, according to Ref. [557].

Previous immunity through infection

We did not include existing immunity from previous infections in the analysis
presented in the main text. We excluded it because there is still considerable
uncertainty on how much such immunity last [558], and even more so if we
consider reinfections across different variants and the wild-type. Additionally,
including all these factors would require a complete reconstruction of the in-
fections since the beginning of the pandemic. To account for this uncertainty,
we consider here a case where all previously infected individuals have com-
plete immunity. We fix the previous immunity according to a study that estim-
ated seroprevalence in Catalonia between June 2020 and November 2020 [559].
The overall seroprevalence was estimated to be around 15%. Taking estima-
tions from the end of 2020 neglects infections that occurred between Novem-
ber 2020 and May 2021. However, assuming complete immunity should com-
pensate substantially for the lower seroprevalence. Figs. D.8-D.10 repeat the
analysis presented in the main text incorporating immunity-induced infec-
tion. We do not observe any substantial difference compared to the analysis
in the main text. Therefore, the conclusions drawn in the main text do also
hold when previous immunity is included.
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Figure D.8: Adjustment to the data for daily incidence (A), hospitalizations (B), ICU
admissions (D) and fatalities (E). Panel C compares the sequencing data
with the model. It shows the fraction of infections that stems from the
Delta variant. Vertical bars indicate the 95% credible interval assuming a
uniform prior. (F): Fraction of infected individuals that were not vaccin-
ated. The still very low vaccination coverage as the nightlife was opened
(grey shaded area) led to a high proportion of infected individuals that
were not vaccinated in that period.

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING THE INTERPLAY BETWEEN HUMAN BEHAVIOUR AND THE SPREAD  
OF INFECTIOUS DISEASES: FROM TOY MODELS TO QUANTITATIVE APPROACHES 
Benjamin Franz Josef Steinegger



supplementary information for sec . 5.3 233

10−19 20−29 30−39 40−49 50−59

0.0

0.5

1.0

1.5

2.0

 

In
te

ra
ct

io
n 

ra
te

A

M
ay Ju

n
Ju

l
Aug Sep Oct

M
ay Ju

n
Ju

l
Aug Sep Oct

M
ay Ju

n
Ju

l
Aug Sep Oct

M
ay Ju

n
Ju

l
Aug Sep Oct

M
ay Ju

n
Ju

l
Aug Sep Oct

0

2

4

 

R
ep

. n
um

be
r

B

Figure D.9: Inferred interaction rate (A) and reproduction number (B) for the age
groups 10-19, 20-29, 30-39, 40-49 and 50-59. We omitted the remaining age
groups to improve visibility. For completeness, they are shown in Figs. S4-
S5 in the SI. The peak in the interaction rate and the reproduction number
coincide with the festivities of Sant Joan (dark-grey shaded area). The dot-
ted line indicates a reproduction number of 1.
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Figure D.10: (A): Overall reproduction number estimated from the model (red) and
directly from the data via EpiEstim (black). Additionally, we show the
overall reproduction number for Scenario 1 (green) and Scenario 2 (or-
ange). The dark- and light-grey shaded area indicate the weekend of
Sant Joan and the interval in which nightclubs were allowed to open,
respectively. The dotted line indicates a reproduction number of 1. (B):
Evolution of the overall detection rate in time. The evolution is driven
by changing infection patterns with respect to the age groups. (C): Age-
specific attack rates in the model. Markers show the median value, while
horizontal bars indicate 95% CrI. (D): Same to C but using the reported
cases. (E): Age-specific detection rates inferred through the model adjust-
ment.
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