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“It’s a cat-and-mouse game. We try to stay ahead. People will try to break in, and it’s

our job to stop them breaking in.”

Steven Paul Jobs, 1955-2011.
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Forensic Imaging and Analysis of Apple iOS Devices

by Luis Gómez Miralles

The concept of digital forensics is nearly as old as the field of information technology. A

variety of reasons often make it necessary to analyze the data contained in digital devices

as part of more complex investigations. A common scenario is technical troubleshooting

– for instance, studying a plate reader that fails to scan the plates of a specific car model.

Another example are criminal investigations, in which the data in digital devices are used

to infer information about one person, usually the device owner; common cases include

obtaining and reading a suspect’s communications with other people, or determining his

location and actions based on the activity logs of her devices.

A set of anti-forensic tools and techniques exist in many disciplines, aimed at reduc-

ing the quantity and quality of forensic evidence. The use of anti-forensics does not

necessarily cover “bad” actions: there are well-known cases of totalitarian regimes and

intelligence agencies abusing forensic tools to conduct surveillance on innocent citizens

such as journalists and system administrators. Forensic investigators will try to detect

and overcome the effect of anti-forensic processes – giving birth to the concept of anti-

anti-forensics. It is obviously an endless fight, and a field worth exploring since it may

significantly impact the forensic process.

As many other technical disciplines, the field of digital forensics has experienced a signif-

icant boost in the last years due to the proliferation of personal computers and, later on,

mobiles devices such as smartphones and tablets – devices that hold significant amounts

of information about our lifes: conversations, notes, list of visited places (both on and

offline), history of phone calls, and a long etcetera.

In this thesis we present our research on digital forensics in the iOS platform, used by

every iPhone and iPad. Our work is structured in three areas, covering different fields

of digital forensics:
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1. Forensic imaging: the process of extracting the data from the device, minimizing

its alteration, in a format as raw as possible.

2. Forensic analysis: examination of the acquired data in order to obtain information

that may be useful from a forensic standpoint.

3. Anti-forensic techniques: study of the processes aimed at reducing the quantity

and/or quality of evidence left in the device.

In the field of forensic imaging, we concluded that the iPad does support complex USB

devices. Using an adapter intended for a different purpose, we were able to connect

external hard drives directly to the iPad. This way, it becomes possible to copy the

data in the iPad to an attached hard drive, resulting in a x30 speed boost, compared to

transferring the data wirelessly, which was the standard at the moment.

In terms of forensic analysis, we found that the use of the AirPrint feature, the iOS

protocol for connecting to printers wirelessly, leaves a number of traces in the device,

including complete copies of the documents being printed. By modifying an open-source

software tool, we were able to recover the contents of those documents that have been

printed. We showed that this is possible even when iOS data protection, a hardware-

based encryption of the whole filesystem, is present.

Finally, in the area of anti-forensic techniques, we created a proof-of-concept software

tool that disables a number of system services used by existing forensic tools to retrieve

data. The tool also applies other hardening measures aimed at preventing the abuse of

the services that remain activated, if any.
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This is a book chapter that we were asked to develop as an extended version of [5].

It expands on the proof-of-concept tool and analyzes the anti-forensic consequences

of its use, as well as the possible anti-anti-forensic strategies available when dealing

with devices protected by such tools.
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Chapter 1

Introduction

In this chapter we outline the motivation for the research presented in this thesis and

discuss our contributions to the field of iOS forensics and security.

First we introduce this thesis’ object of research in section 1.1. Section 1.2 reviews the

state of the art in the field of mobile device forensics and specifically iOS forensics. In

section 1.3 we define the main questions and objectives to be targeted by this thesis’ re-

search. Section 1.4 presents the main aspects of the research methodology used. Finally,

section 1.5 outlines the organization of the rest of this thesis report.

1.1 Statement of the problem

The Oxford dictionary defines forensic as ‘of, relating to, or denoting the application of

scientific methods and techniques to the investigation of a crime’ ; or ‘of or relating to

courts of law’ ; the first definition being also referred to as forensic science.

The first texts on the topic of forensic science correspond to the field of forensic medicine

and date back to the late 18th century [6, 7]. As time passed and science progressed, the

term forensic has been applied to many scientific fields whenever these fields provided

tools and techniques that were useful in the resolution of criminal investigations.

Thus, we have forensic medicine –undoubtly one of the most known fields, probably

due to TV shows–, but also forensic accounting: these are the people that inspect a

company whenever big sums of money disappear; there are forensic chemists who assist in

investigations related to drugs or explosives; experts on forensic dactyloscopy that study

fingerprints... and many other disciplines such as art forensics, forensic anthropology,

forensic linguistics, forensic psychiatry, etc.

1
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Unsurprisingly, the popularization of computer systems and other electronic devices has

resulted in the field of digital forensics (or computer forensics), defined as ‘The use

of scientifically derived and proven methods toward the preservation, collection, valida-

tion, identification, analysis, interpretation, documentation and presentation of digital

evidence derived from digital sources for the purpose of facilitating or furthering the re-

construction of events found to be criminal, or helping to anticipate unauthorized actions

shown to be disruptive to planned operations’ [8].

Digital forensics has become a well-known discipline to law practitioners, judges, and law

enforcement bodies all around the world, and nowadays the use of e-mails, SMS messages

or other digital files as evidence in court happens constantly. In most countries, law

enforcement bodies have created special groups focused on investitaitons in digital and

online environments; examples include the FBI’s Cyber Crime Division, or in Spain the

Policia Nacional’s BIT (Brigada de Investigación Tecnológica) and the Guardia Civil’s

GDT (Grupo de Delitos Telemáticos).

In the last decade our society has established a tighter relationship with communication

technologies thanks to the raise of smartphones. As user requirements grew beyond

what mobile phones could realistically offer, companies developed a new family of com-

munication devices – smartphones: full-fledged computers, always on and always online,

portable enough to accompany the user at all times, holding all kinds of personal in-

formation: phone calls, personal and corporate email, chats, calendars, address books,

to-do lists, history of visited places, photographs, videos... many of which are usually

synced across a number of online services (Facebook, Twitter, Dropbox, etc.).

As a result of the entanglement between our digital devices and our personal data,

in the last years smartphones and other mobile devices such as tablet computers have

become increasingly relevant as sources of evidence from a computer forensic standpoint.

Data extracted from mobile devices is commonly used nowadays as forensic evidence in

criminal investigations - a notorious example being the investigation of Michael Jackson’s

death [9].

The practice of digital forensics has needed to adapt quickly to the emerging mobile

technologies. Where we once had a homogeneous personal computer market, mainly

dominated by a few different Windows versions, with minor representations of Mac OS

or Unix-based systems, now we find that the most personal devices, the ones that always

accompany their users and are more prone to contain sensitive information, run software

environments which simply didn’t exist a few years ago - namely Google’s Android and

Apple’s iOS. Furthermore, because of the competitive nature of the market, with each

new version of these systems new functionalities are added in order to appeal to a greater

set of users and thus become their device of choice: biometric authentication, wireless
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printing (AirPrint)... In fact, some of these new features may manage personal user data

and are worth analysing from a forensic investigation standpoint.

Android is a Linux-based initiative developed by Google and the Open Handset Alliance.

A beta version was released in late 2007 and version 1.0 hit the streets in September 2008,

in what many consider to be Google’s answer to Apple’s introduction in the smartphone

market with the iPhone. From a user perspective, Android and iOS have offered similar

features over the years.

Android is used by many different vendors in their smartphones and tablets –usually

adding a layer of customization– including Acer, Asus, Bq, HTC, Huawei, LG, Motorola,

Samsung, Sony, and others. Applications are distributed through the Google’s Play

Store, where they can be published without being reviewed; this makes it relatively easy

to create and distribute malicious apps for these devices, something that rarely occurs

on iOS. Users can also obtain apps from alternate sources in the Internet.

This work focuses on the iOS platform, which as we will explain presents a solid security

model that makes it complicated to gain full control over the device – be it with malicious

purposes or for research.

The first version of iOS was released together with the first iPhone and iPod Touch

models in 2007, although by that time its name was iPhone Operating System – it was

rebranded as iOS when the iPad was released in 2010. Apart from a web browser

never seen before in a smartphone, the applications it offered where not very different

from those of other devices: phone, messages, contacts, calendar, notes, email, camera...

What marked the difference, however, was the user interface and the multi-touch screen

to be used with no stylus – typical consequences of Apple’s tight integration between

carefully chosen hardware and software written for that precise hardware.

Major iOS versions have been released on a yearly basis adding important features such

as support for third-party applications through the App Store (after being reviewed by

Apple), multitasking, voice control, integration with desktop computer, better integra-

tion in corporate environments with support for mobile device management solutions,

remote deployment of software and configuration profiles, support for Microsoft Ex-

change, etc.

Security controls have also been improved over the years in both the software versions

and the new hardware releases. The current iOS releases enforce a complex security

model [10] supported on a number of security mechanisms including privilege separation,

mandatory code signing, address space layout randomization (ASLR) and application

sandboxing.
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In Q2 2015 the iPhone and the iPad accounted for more than 10% of the global mobile

device market share – a number that grew beyond 60% if we focus on big environments

(both private and public sectors) [11]. This is partly due to the iOS security model

mentioned above, which in turn presents some interesting obstacles to the researcher:

the same security mechanisms built into the hardware and software to keep each process

and its data isolated from the rest of the system, prevent the researcher from having full

control over the device.

Due to its high penetration rate in critical sectors (big companies, public sector) and

the challenges posed by its security architecture, we decided to focus our research on

the iOS platform.

Aiming to cover as many aspects of the forensics field as possible, we decided to verte-

brate our research along these three areas:

1. Forensic imaging or acquisition: data extraction in a format as raw as possible.

2. Forensic analysis: inference of useful information derived from the raw data ob-

tained in the previous step.

3. Anti-forensic techniques: study of processes that reduce the quantity and/or qual-

ity of forensic evidence left in the device.

1.2 Background

The areas of mobile devices and information security have received significant and grow-

ing attention in recent years. Under that general topic, forensics has also been subject

of research and, although the number of publications so far might not be high, grows

year after year.

Figures 1.1 and 1.2 show the number of publications indexed in Scopus and ISI Web of

Science for the search terms Android forensics and (iOS — iPhone) forensics in the last

six years (2010 to 2015). The Android platform seems to have been more widely explored,

possibly due to its openness: Android can run in a wide range of devices, whereas iOS

will only work on Apple devices; and generally speaking, a lot of the Android codebase

(both at the kernel and applications level) is derived from Linux, which many people

are already familiar with and is prone to research given its open source philosophy.

In our case, we have decided to concentrate on the iOS platform given that it poses

a number of interesting challenges due to the vendor’s restriction on the device usage.

iOS enforces a number of security layers –Address Space Layout Randomization (ASLR),
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Figure 1.1: Publications in Scopus from 2010 to 2014.

Figure 1.2: Publications in ISI Web of Science from 2010 to 2014.

Data Execution Prevention (DEP), application sandboxing, privilege separation, manda-

tory code-signing, etc. – that restrict devices to run only applications allowed by Apple

and prevent the owner from having full control over the device. This, apart from being

the base of the interesting iOS security model, is an obstacle for researchers who wish

to inspect the device internals. In order to overcome these restrictions, researchers and

other users have to resort to the jailbreak technique. In fact, a number of forensic tools

and techniques rely on the use of jailbreak to gain access to the device’s internals.

1.2.1 Jailbreak

On July 6th 2007, just one week after the iPhone was launched, the existence of a

method to get a full, interactive shell was announced by George Hotz [12]. This was the

first step towards bypassing Apple’s restrictions on their devices, making it possible to
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execute any program and not only those approved by Apple; a process that has been

named jailbreak. In other mobile platforms, such as those running Google’s Android

operating system, a similar process is known as rooting. Vendors usually dislike this

technique, although in most countries it is legal or at least not definitely illegal.

Once a device has been jailbroken, the user has access to the Cydia package manager,

through which additional software can be installed. This way, the user has access to

UNIX shells and standard tools (the part which is relevant for our research) together

with all kinds of third-party apps and tweaks.

Different jailbreak techniques and tools exist for most iOS versions, and all of them

achieve its purpose by exploiting software bugs in those versions. Due to the restrictions

imposed by the iOS security model, usually more than one exploit is required to achieve

full control over the device (for instance: one exploit to escape the sandbox, and another

one to elevate privileges). Shortly after such tools are released for the most recent iOS

versions, Apple studies these tools to learn about the bugs being exploited and patches

them in a new iOS release.

In 2008 Moenner pinpointed “the latency in coverage of newly available phone models by

forensic tools” as one of the problems for forensic specialists working with mobile devices.

We consider very realistic that jailbreak updates will usually be available before other

software products may be upgraded: vendors may fail to release an update in time to

support newer iOS versions; or they may even not release it at all if the product is

discontinued. Consequently, we find it valuable to have forensic tools and mechanisms

available to use by means of the jailbreak technique.

We have observed that, on average and focusing on modern iOS versions (iOS 7 and

8), it takes three weeks for researchers to release functional jailbreaks, and –again, on

average– afterwards it takes Apple two weeks to analyze the jailbreak tools, find the iOS

bugs they exploit, and release new iOS versions fixing those bugs. This, and the fact

that every iOS release so far has been jailbroken, further supports our statement.

Tethered versus untethered jailbreak

Depending on the nature of the bugs being exploited in a particular iOS version, a

jailbreak can be untethered, meaning that the effects of the process are permanent and

the device will remain at a jailbroken state across system reboots, unless a full system

restoration is performed; or tethered, meaning that the jailbreak process is unable to

survive across reboots, and if the device is rebooted or turned off it will require to be

connected each time to an external computer in order to achieve the jailbroken state

again.
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Although users tend to prefer an untethered jailbreak, considering the simplicity and

convenience, having the option of using a tethered jailbreak is very interesting from the

research point of view, as it allows the researchers to gain temporary root access to the

device and afterwards reboot it into a non-jailbroken state.

Most of the public jailbreak tools released for iOS versions 7 and later have been of the

untethered type.

The redsn0w tool

As an example of the inner workings of a jailbreak tool, we will now present an overview

of the processes followed by redsn0w, a popular tool developed by the iPhone Dev Team

for jailbreaking iOS versions 4 and 5 in devices with hardware up to the Apple A4

processor; that is: up to the iPhone 4 and the first iPad.

For a more thorough description of each step, refer to [13].

redsn0w runs in a computer under OS X or Windows, and the iOS device is connected

to the computer through a USB cable. After instructing the user to put the device in

DFU mode (Device Firmware Upgrade), the tool exploits a well-known heap overflow in

the USB DFU stack of the bootrom using the so called limera1n exploit, and patches

the bootrom to disable the signature verification code.

Having done this, textttredsn0w builds a custom ramdisk with a patched kernal that

will allow execution of unsigned code, and send this ramdisk to the device, which will

boot it and run a jailbreak process contained within. This process, in turn, will perform

the following steps in the device:

1. Remount the system partition as read-write, and make this behavior permanent

across reboots. In non-jailbroken devices this partition is always mounted in read-

only mode.

2. Install the untethering exploit by adding or modifying files in the system partition.

3. Install a Lockdown service called com.apple.afc2. This is done for the conve-

nience of certain jailbreak tools, but it introduces a huge security risk as it exposes

the whole filesystem with read-write permission to any trusted device over a USB

connection. We addressed this risk in our paper [5] and presented a tool to disable

this and other potentially dangerous services.

4. Install basic UNIX tools.
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5. Application stashing: free space in the system partition by moving non-critical

folders to the user data partition and creating appropriate symbolic links.

6. Installation of application bundles. This normally means installing Cydia, a tool

for software package management that will allow the user to add or remove apps.

7. Post-installation process: call sync() to ensure the changes are written to disk;

unmount the disks; and reboot the device.

A similar approach is followed by other tools in more recent devices. However, the lack

of a bootrom exploit in those devices makes it unfeasible to upload and boot a custom

ramdisk, and instead userland attack must be used. This usually involves one exploit

against a particular app to escape the sandbox, and a second kernel exploit to elevate

privileges.

1.2.2 Forensic data acquisition

In the field of forensic science in general, and in digital forensics in particular, it is

globally accepted that the initial acquisition of data –and its proper preservation, estab-

lishing an adequate chain of custody– is a crucial stage [14] on which relies the credibility

of all the evidence that will be derived from the analysis of said data. Under the legal

systems of most western countries, if an adversary can cast a reasonable doubt on the

process through which the initial data was acquired, it would result in the dismissal of

any evidence derived from its analysis.

The term chain of custody exists in the whole forensic science field, and it refers to

the documentation that reflects the seizure, custody, control, transfer and disposition of

evidence (be it physical or digital). The term is also used in other fields, with different

meanings: for instance, in the wood industry it refers to the process for ensuring that

wood products are originated from forests managed in a sustainable way.

In the field of digital forensics, no matter the technological platform or data type(s)

being analyzed, any data –be it a single file, a compressed directory, a dump of a whole

storage device, etc.– translates into a stream of bytes. Thus, the chain of custody is

generally established by means of a well-known cryptographic tool: hashes.

A hash function receives an input (stream of bytes) of any given size and returns an

output of a fixed size. Any small variation in the input produces a completely different

output, and it is not technically feasible to generate collisions (different input strings

that produce the same output) [15]. Examples of hash functions are: MD6 (returns
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an output of 512 bits), RIPEMD-320 (320 bits) or SHA-256 (256 bits). Other well-

known examples such as MD5 or SHA-1 (with outputs of 128 and 160 bits respectively)

are currently considered insecure given the growing ability to find collisions in these

functions [16, 17] due to advances in both cryptanalysis and computing power.

Hashes play an important role in digital forensics. The output of a hash is a manageable

text string –for instance, the 256 bits of a SHA-256 function can be printed in 64

hexadecimal characters–, and thus for a number of sources of information (say, dumps

of storage devices seized during a search operation) it is easy to calculate hashes, even

on-the-fly as devices are copied, and print them in paper, ideally transferring them to

an affidavit or official minutes. If at any point in the future –say, when the suspect

is presented with the results of the investigation– any party questions the integrity of

the source data being analyzed, this can be easily verified by just recalculating the

corresponding hashes and matching them against the ones recorded during the seizure.

Every existing forensic imaging tool, be it hardware or software-based, offers the user

the ability to calculate hashes for the acquired information. Hardware forensic cloners,

such as those sold by Logicube, Tableau, Voom or WiebeTech to name a few, display

the hash on screen and also store it, together with metadata such as date and time,

in a separate file along with the acquired image. And virtually every software tool for

forensic cloning (X-Ways, OSFClone, FTK Imager, Encase Forensic Imager... again,

to name a few) likewise calculates hashes and stores them, either in a separate file, or

together with the image in a container file, as Encase does with its E01 file format. Even

with a diverse set of files, there are trivial ways to either calculate hashes for all of them,

or put them together in any kind of container (a ZIP file could suffice depending on the

case) and calculate the hash of just the container file.

Although our research does not particularly address the topic of the chain of custody,

its importance must be noted. If the investigator resorts to the acquisition technique

that we presented and discussed in [1] and [2], it is easy to calculate hashes on the fly

or as soon as the image has been transferred.

Note that jailbreaking a device is a process that modifies the information stored in it.

Consequently, if this is done during the forensic acquisition stage, the investigator must

carefully document the exact software or technique used to perform the jailbreak. If

needed, in the future this would allow any interested party to study the same process

and verify what are the exact modifications that take place in the device. Nevertheless, it

is hard to imagine any scenario in which a party may argue that incriminating evidence –

such as a particular e-mail message, a chat log, or a GPS bookmark– has been introduced

by jailbreaking the device during acquisition; and in any case it would be trivial to

dismiss such an accusation.
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Moving on to the more technical aspects of acquisitions, a very basic approach to ac-

quiring user data in the iOS platform is the so called logical acquisition: connecting the

device via the standard USB cable to a computer running iTunes, Apple’s multimedia

player which is in charge of synchronizing content to the device. Using its AFC proto-

col (Apple File Connect), iTunes syncs existing information (contacts, calendar, email

accounts, apps, etc.) and can even retrieve a complete backup of the device; however

there are two important caveats in this process:

1. The device needs to be correctly paired with the iTunes software in order to sync. If

the device is protected by a passcode (which is the most probable case in all devices

introduced since 2013 with the TouchID biometric technology), the investigator

cannot unlock the device to authorize trusting (and start syncing data to) this

new iTunes installation. A workaround for this is presented in [18]: impersonating

a device known (and trusted) by the iOS device, such as the owner’s computer, by

retrieving from it a set of files known as escrow keybags.

2. A dump obtained this way will miss logs and system files that could be of interest

in certain scenarios, as well as all the unallocated space, from which deleted files

could be recovered.

This logical acquisition is the process followed by most iOS forensic tools such as Lantern

or Oxygen, since their first versions.

After the first iOS jailbreak was available, Zdziarski [19] proposed a basic method for

obtaining a forensic image of the iPhone with a physical acquisition approach, by jail-

breaking the device and using SSH access and the dd and netcat standard UNIX tools,

which by that time had already been ported as a part of the growing iPhone jailbreak

community (Similar methods are explored by [20] against a Microsoft Xbox device); the

data transfer process was done through the device’s Wi-Fi interface. In this kind of

physical acquisition, the whole storage area is dumped; this includes the unallocated

space, from which deleted files could be recovered.

One particular vendor, iXAM [21], developed a ‘zero-footprint’ solution that relied in

the same bugs and exploits used by jailbreak tools. Instead of completing the jailbreak

and installing the Cydia package manager as usual, their software uploads a tiny, small-

footprint software agent which takes control of the system, dumps the solid state storage,

and then reboot the device back into its normal state. The problem with these methods

is the need for continuous support and upgrades as new iOS versions become available;

in fact, according to iXAM website their product works only in the iPhone 4 (introduced

in 2010) and older devices.
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A similar process was described by [22], although the publication of that paper was

supposed to be accompanied by the release of a tool that never saw the light. And

other authors have explored the use of similar techniques in other platforms such as

Android [23] or Windows Mobile [24]. Another paper in 2013 presented the design and

implementation of an iOS forensic tool [25] aimed at simplifying the forensic acquisition

of devices running iOS 6, which had been released one year before. However, it seems

that the tool itself was not released.

With the release of iOS 4 in 2010, Apple introduced hardware-based encryption, branded

as iOS data protection). Bédrune and Sigwald analyzed [26] the underlying technology

and released [27] a set of open source tools capable of decrypting disk images and even

undeleting certain file types; and in fact we used their tools for our publication AirPrint

Forensics: Recovering the Contents and Metadata of Printed Documents from iOS De-

vices.

Over time Apple has improved iOS’ data protection (encryption) implementation at both

the hardware and the software levels. At the hardware level, it is important to note that

recent devices (introduced 20111 onwards) are shipped with a new bootrom that fixes

the bugs exploited by tools such as [27] in jailbroken iOS devices to decrypt and undelete

files. And unfortunately, a similar bug has not been found in modern iOS devices – or

at least, not publicly announced. As a consequence, so far it is not possible to recover

deleted files from modern iOS devices, nor to perform physical acquisition.

Having lost one of the main benefits of jailbreak –the ability to defeat iOS data protection

mechanisms and decrypt files, even undelete them–, commercial tools have returned to

the logical acquisition method [28] which does not require to jailbreak the device. The

tools themselves can behave –and be seen by the iOS device as– the iTunes software,

and can only acquire whatever information the device is willing to expose – or sync to

iTunes. These tools can also operate on iTunes backups extracted from a computer,

without access to the original device.

1.2.3 Forensic analysis

Once a forensic investigator has obtained, through a proper acquisition process, a set of

data, the next step consists in analysing the data in order to infer relevant information

- generally information related to the device usage and the various activities that users

may have performed using the device.

In the case of the iOS platform, shortly after the first iPhone model was released in

2007, Zdziarski was the first person to research what mechanisms could be used to infer
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user activity from the device [19]. By simply targetting two basic data types on which

iOS relies heavily (SQLite databases and Property List files), he was able to extract

a lot of information about virtually every application existing in the device: address

book, calendar events, phone logs, voicemail messages, transcript of sent and received

text messages, bookmarked map locations, web bookmarks, email messages, etc.

After the App Store was introduced in iPhone OS 2.0 and 3rd-party applications started

to appear, researchers observed that the same techniques (targeting Property List files

and SQLite databases) were highly effective. The Property List format is widely used

by Apple itself across OS X and iOS, and Xcode –Apple’s development environment,

mandatory to write iOS applications– generates and embeds files of this type inside the

applications. As for SQLite, the format has been used since iPhone OS 1.0 and is well

supported by the OS, as well as simple for developers to use.

In 2010, Morrissey [29] carried out an extensive study of the traces left, and how to

recover them, by the use of the following iOS 4 components and applications:

• Data from iOS applications: address book, call history, maps (favorites, recent

destinations), notes, SMS, media gallery, voicemails...

• Internal iOS components: caches, configuration profiles, history of typed words,

logs, preferences, etc.

• Social networking applications: Facebook, AOL AIM, LinkedIn, Twitter, MyS-

pace.

• VoIP applications: Skype, Google Voice.

• Other applications: Craigslist, Google Mobile, Opera, Bing, iDisk.

Over time, commercial tools such as [30, 31] have added the ability to find and present

to the investigator the data pertaining to many popular third-party applications such as

the ones mentioned above. Interestingly, many of these tools have also added a timeline

view which aggregates, sorted chronologically, pieces of information extracted across all

the applications that the software can interpret.

Subsequently some authors have updated and explored in higher detail some applications

from the above branches, how their use affects the device and what files can be found.

The logical acquisition method is normally used, given that it works in any iOS version

and does not need to jailbreak the device. This means, however, that their analysis

focuses solely on files that can be ”seen” by the device –and by the user– at the time of

acquisition, ruling out the recovery of any deleted files.
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For instance Sgaras [32] focused on the analysis of chat and Voice-over-IP (VoIP) appli-

cations. Analyzing iOS devices running Skype and WhatsApp, he was able to extract

several items including: lists of contacts with profile pictures, conversations, media files

sent from and to the device in each conversation; etc. Iqbal [33] achieved comparable

results when focusing on the ChatON Instant Messaging application: he was able to

extract contact lists, conversation history, and sent and received files from both iOS and

Android devices. Other authors [34, 35] have targeted social networking applications

(Facebook, LinkedIn) with similar results.

The Apple iTunes software, available for OS X and Windows, can be used to synchronize

contents between the computer and iOS devices, and to store backups of the devices in

the computer’s hard drive. Carpene [36] explored what information can be inferred

about an iOS device by analyzing the backup stored in the iTunes software of a Mac or

PC computer. This method has the additional benefits of not risking compromising the

original device; however the author enumerates two caveats: that the evidence extracted

is not a raw image of the device, and rather a logical set of data, which isn’t as desirable;

and that iTunes offers users the option to encrypt their backups, which would make this

method fail.

Cheema published a paper [37] presenting an open source toolkit for iOS forensics called

‘iPhone Digital Forensic Analysis Toolkit’, however the tool itself apparently was never

made public. This could be due to the fact that the tool was designed to support iOS

3, which had been released in 2009 and discontinued in 2010, whereas the paper was

published in 2014.

A few works, notably [38] and [39], have focused on the low-level nature of the NAND

chips that conform the storage area in iOS devices. In particular, Qiu observes [39] that

the probability of recovering deleted files in these devices is much higher than in SSD

disks (which also rely on NAND chips) due to the particular garbage collection strategy

employed by iOS.

Finally, in 2013 Ariffin [40] developed a method for recovering deleted images from

devices running iOS 6. It uses mechanisms similar to those used by [27] to defeat

the iOS encryption layer, resulting in a complex method –though highly skilled and

meritory– which made it hard to port it to future iOS versions. As far as we can tell, no

further research was conducted on this line and the method was never adapted to the

newer iOS releases.

We can summarize that researchers have mostly targeted the forensic traces left by

many third-party apps, however certain core features have not received as much atten-

tion; that is the case of the AirPrint wireless printing system, which we address in our
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research. And in the particular field of recovering deleted files, there have been inter-

esting initiatives although the improvements to the iOS data protection system at both

the hardware and software level in each yearly release cycle make it impossible for any

method to stand for long.

1.2.4 Anti-forensic techniques

The concept of anti-forensics has been around at least since the beginning of the century,

applied to the field of digital forensics, and has received significant attention in the last

few years. No unified definition exists for the term, although several authors have

attempted to provide it. For instance, Grugq [41] refers to it as reducing the quantity

and quality of forensic evidence, and Harris [42] as any attempts to compromise the

availability or usefulness of evidence to the forensic process. Liu [43] identified four

primary goals for anti-forensics:

1. Avoiding detection that some kind of event has taken place.

2. Disrupting the collection of information.

3. Increasing the time that an examiner needs to spend on a case.

4. Casting doubt on a forensic report or testimony.

To a certain degree, it is almost always possible to produce some kind of anti-forensic

effect in any modern environment by means of more or less advanced tools and tech-

niques. In 2007 Kessler [44] classified the existing anti-forensic tools and methods in

four groups: data hiding, artifact wiping, trail obfuscation, and attacks on the forensic

tools themselves.

Garfinkel [45] analyzed the existing anti-forensic techniques and came out with a very

similar classification: cryptography and steganography (for data hiding); overwriting

data and metadata (wiping); minimizing the attacker’s footprint; and directly attack

computer forensic tools. His analysis also included basic countermeasures such as: send-

ing logs to an external location out of the attacker’s reach such as a ‘log host’ or CD-R

media; or making the existing forensic tools more resilient by addressing common flaws

in components such as file identification heuristics or decompression algorithms. A wider

approach is provided by Harris [42], which again classifies techniques into four groups:

destroying evidence; hiding evidence; eliminating evidence sources; and counterfeiting

evidence.
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There is some research on anti-forensic methods on mobile platforms. For instance, in

the Android platform, [46] presented an overview of different techniques that can be

used to achieve anti-forensic effects of the four types defined by Harris. The techniques

presented include: destroying evidence by deleting specific database records; hiding

evidence by using Android’s private folders; or tampering system files in order to keep

certain content from being indexed by the system and make it invisible to an unaware

investigator. Albano [47] also suggested a technique for selectively delete evidence on

the Android platform, by copying all data from the device internal storage to an external

SD card, altering the data there, and moving it back to the device.

As far as our point of interest is concerned, in the iOS platform D’Orazio presented

[48] a series of methods for hiding, deleting and counterfeiting evidence on iOS by

jailbreaking the device and altering some of the per-file encryption keys used by the

operating system’s data protection feature. His research was conducted on iOS version

6 and it is not clear whether his tools could be ported to current iOS versions.

As far as the author knows, the fourth group of the Harris classification (eliminating

evidence sources) has not been subject to research in the iOS platform. This is something

that we have addressed in our research.

Recent publications strongly suggest [18] that a number of iOS core system services

that present user data to forensic software tools are apparently being abused by certain

high-profile attackers [49] to infiltrate telcos and other high-profile companies [50]. It

would be interesting to explore the possibility of disabling those system services which

the user does not need – which would cover the fourth group of Harris anti-forensics

classification: eliminating evidence sources.

1.3 Questions and objectives

Within the context of forensic research of iOS devices, this thesis defines the following

objectives, one for each of the three areas: forensic imaging, analysis of the extracted

data and anti-forensic techniques.

- O1. To improve the iOS forensic acquisition process.

– O1.1. To explore the capability of iOS to support the USB mass storage

device class protocol.

– O1.2. To define an iOS forensic acquisition method through an attached USB

device.
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- O2. To analyze new iOS features from a forensic standpoint.

– O2.1. To analyze the traces left by the use of AirPrint.

– O2.2. To create a methodology to extract the traces of AirPrint.

- O3. To integrate anti-forensic tools for iOS.

– O3.1. To explore the possibility of disabling unneeded system services in

order to harden the device security while keeping its features usable.

– O3.2. To define a model for hardening iOS by disabling exploitable services,

and to implement it in a proof-of-concept software tool.

1.4 Research methodology

The work presented in this thesis is based on experimentation with real devices and,

where needed, testing with different tools and methods available to evaluate their through-

put and features.

In terms of forensic imaging our methods follow the lines of the physical acquisition

process described by Zdziarski [19] and Varsalone [51].

In particular, those methods and ours share many characteristics: they all require to

jailbreak the iOS device; all of them make use of the dd command; and in all cases

only the data partition (/dev/rdisk0s2 ) is imaged, omitting the system partition and

the initial disk structures such as the partition table. This makes sense given that iOS

is designed to store user-generated information in the data partition as shown in figure

1.3, and some of the tools that can deal with iOS images expect to receive the image

of this partition and not that of the whole disk; nevertheless, it would be theoretically

possible for a power user to customize a jailbroken device and have user data stored in

the system partition, potentially preventing the information from being acquired if these

methods are used.

However our method differs from the others in two main points.

First, instead of transferring the data over a Wi-Fi network, we will try to attach a

physical hard drive to the iOS device and image the device internal storage to the

attached hard drive. In order to do this we intend to leverage the Camera Connection

Kit, an accessory sold by Apple consisting of two adapters that can be connected to the

iOS device. One of these adapters provides a USB port and, although it is supposed to

be used only to import pictures from attached digital cameras (something that could be
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done with the relatively simple USB PTP protocol [52]), it is possible that Apple has

implemented support for the whole USB mass storage device class protocol.

And secondly, while both Zdziarski and Varsalone transfer data in chunks of 4 KB. In

our case we will experiment with greater block sizes which should provide a significant

improvement in the throughput.

Figure 1.3: Partition scheme of every iOS device.

In terms of forensic analysis we use file carving techniques as described in [19] and

[53]. This data recovery mechanism is based on targeting specific file types by linearly

analyzing the disk stream and identifying specific signatures (predefined file headers and

footers); while it may generate many false positives if imprecise signatures are used, it

has the advantage of being filesystem-agnostic, being a very useful approach when no

other tools exist for the filesystem in question.

We decided to analyze the forensic traces generated by the use of the AirPrint subsystem

given that this was a new feature at the moment and there was no research at all on this

topic. Even at the time of finishing this thesis report, there semes to be no additional

research on this particular field.

During this part of our research we have leveraged the work of Bedrune and Sigwald [26],

who developed an open-source tool [27] capable of defeating iOS’ data protection (the

hardware-backed encryption features introduced by Apple in iOS 4) by using a known

exploit against the BootROM of certain iOS devices (up to the iPhone 4).

Finally, in terms of anti-forensic techniques our work has been based on experi-

mentation on the interaction of the iOS device with real devices (a computer, a stereo

system, a hands-free device) to study how the modification of core iOS files affected that

interaction.

Across the years we have used these devices in our experiments:
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• iPhone models: 3G, 3GS, 4, 4S, 5 and 6.

• iPad models: 1st, 2nd and 4th generation.

We also used a number of software and hardware tools:

• In the iOS devices themselves: iOS versions 3 through 8; standard UNIX com-

mands to obtain information about files (lsof, ptrace, strace), processes (ps),

network (netstat), etc.; as well as custom binaries and shell scripts, and common

iOS applications.

• In external computers: the nmap port scanner, wireshark network sniffer, Katana

Forensics’ Lantern, the open-source data recovery tool photorec, tools from the

iphone-dataprotection toolkit, custom tools, and the Apple Xcode development

framework (which includes the iOS SDK).

• For certain experiments we resorted to the iPad Camera Connection Kit, an ac-

cessory sold by Apple.

In general terms, our experiments have been based on the monitoring of a number of

elements such as:

1. Alteration of log files.

2. Creation of new files and directories.

3. Creation of special filesystem elements (symbolic links, sockets, FIFOs).

4. Creation of network sockets.

5. Creation of new system processes.

6. Information streams being transferred over the network.

Due to the privilege level needed to properly monitor those indicators, we conduct our

research on jailbroken devices.

1.5 Structure of the thesis

The rest of this thesis report is structured as follows. Chapter 2 contains the main

contributions of this thesis’ work. Chapter 3 presents the main conclusions and the

achievements of our research, and provides possible research directions for the future.
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Finally, Appendix A contains the Best Paper Award received for our publication [1]; Ap-

pendixes B through F contain the publications that constitute the contributions of this

thesis; and Appendix G reproduces a related poster that we presented in an international

conference.



Chapter 2

List of publications of the thesis

This chapter lists the publications that conform this doctoral thesis. For each publica-

tion, the bibliographical reference and the abstract are provided, as well as a reference

to the corresponding annex of this thesis containing the full paper.

In sum, this chapter contains:

- two journal papers indexed in ISI-JCR (Q1 and Q3),

- and three conference papers published in IEEE Computer Society proceedings, all

of them indexed in SCOPUS.

20
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2.1 Conference paper: Universal, fast method for iPad

forensics imaging via USB adapter

L. Gómez-Miralles, J. Arnedo-Moreno. Universal, fast method for iPad forensics imag-

ing via USB adapter. Proceedings of the Fifth International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), 2011, pp. 200-207. DOI:

10.1109/IMIS.2011.41. IMIS-2011 Best Paper Award (attached in Appendix A).

The full text of this paper is available in Appendix B.

Abstract

The Apple iPad is a popular tablet device presented by Apple in early 2010. The

idiosyncracies of this new portable device and the kind of data it may store open new

opportunities in the field of computer forensics. Given that its design, both internal

and external, is very similar to the iPhone, the current easiest way to obtain a forensic

image is to install an ssh server and some tools, dump its internal storage and transfer

it to a remote host via wireless networking. This approach may require up to 20 hours.

In this paper, we present a novel approach that takes advantage of an undocumented

feature so it is possible to use a cheap iPad accessory, the Camera Connection Kit, to

image the disk to an external hard drive attached via USB connection, greatly reducing

the required time.

http://dx.doi.org/10.1109/IMIS.2011.41
http://dx.doi.org/10.1109/IMIS.2011.41
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2.2 Journal paper: Versatile iPad forensic acquisition us-

ing the Apple Camera Connection Kit

L. Gómez-Miralles, J. Arnedo-Moreno. Versatile iPad forensic acquisition using the Ap-

ple Camera Connection Kit. Computers And Mathematics With Applications, Volume

63, Issue 2, 2012, pp.544-553. DOI: 10.1016/J.CAMWA.2011.09.053. IF: 2.069, Q1:

23/99. Category: COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS

(JCR-2012 SE).

The full text of this paper is available in Appendix C.

Abstract

The Apple iPad is a popular tablet device presented by Apple in early 2010. The

idiosyncrasies of this new portable device and the kind of data it may store open new

opportunities in the field of computer forensics. Given that its design, both internal

and external, is very similar to the iPhone, the current easiest way to obtain a forensic

image is to install an SSH server and some tools, dump its internal storage and transfer

it to a remote host via wireless networking. This approach may require up to 20 hours.

In this paper, we present a novel approach that takes advantage of an undocumented

feature so it is possible to use a cheap iPad accessory, the Camera Connection Kit, to

image the disk to an external hard drive attached via USB connection, greatly reducing

the required time.

http://dx.doi.org/10.1016/J.CAMWA.2011.09.053
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2.3 Conference paper: Analysis of the forensic traces left

by AirPrint in Apple iOS devices

L. Gómez-Miralles, J. Arnedo-Moreno. Analysis of the forensic traces left by AirPrint

in Apple iOS devices. Proceedings of the 27th International Conference on Advanced

Information Networking and Applications Workshops (WAINA), 2013, pp. 703-708.

DOI: 10.1109/WAINA.2013.40.

The full text of this paper is available in Appendix D.

Abstract

Since its presentation by Apple, both the iPhone and iPad devices have achieved a great

success and gained widespread popularity. This fact, added to the given idiosyncrasies of

these new portable devices and the kind of data they may store open new opportunities

in the field of computer forensics. In 2010, version 4 of their operating system (iOS)

introduced AirPrint, a simple and driverless wireless printing functionality supported by

some network printers. This paper presents an analysis of the traces left by AirPrint and

assesses whether it is feasible to recover them in the context of a forensic investigation.

http://dx.doi.org/10.1109/WAINA.2013.40
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2.4 Journal paper: AirPrint Forensics: Recovering the

contents and metadata of printed documents from iOS

devices

L. Gómez-Miralles, J. Arnedo-Moreno. AirPrint Forensics: Recovering the con-

tents and metadata of printed documents from iOS devices. Mobile Information

Systems, Volume 2015, Article ID 916262, 10 pages, 2015. DOI: 10.1155/2015/916262.

IF: 0.949, Q3: 76/133. Category: COMPUTER SCIENCE, INFORMATION SYS-

TEMS (JCR-2014 SE).

The full text of this paper is available in Appendix E.

Abstract

Since its presentation by Apple, both the iPhone and iPad devices have achieved great

success and gained widespread popularity. This fact, added to the given idiosyncrasies of

these new portable devices and the kind of data they may store, opens new opportunities

in the field of computer forensics. In 2010, version 4 of the iOS operating system

introduced AirPrint, a simple and driverless wireless printing functionality supported

by hundreds of printer models from all major vendors. This paper describes the traces

left in the iOS device when AirPrint is used, and presents a method for recovering

content and metadata of documents that have been printed.

http://dx.doi.org/10.1155/2015/916262
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2.5 Conference paper: Lockup: A software tool to harden

iOS by disabling default Lockdown services

L. Gómez-Miralles, J. Arnedo-Moreno. Lockup: A software tool to harden iOS

by disabling default Lockdown services. Proceedings of the 10th International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2015, pp.

718 - 723. DOI: 10.1109/3PGCIC.2015.57.

The full text of this paper is available in Appendix F.

Abstract

Smartphones and mobile devices nowadays accompany each of us in our pockets, holding

vast amounts of personal data. The iOS platform has gained popularity in the last years,

in particular in enterprise deployments, due to its supposed higher level of security.

Recent research has pinpointed a number of mechanisms that are being abused today

in order to compromise the security of iOS devices. In this paper, we present Lockup, a

proof of concept tool that applies various mitigation measures in order to protect iOS

devices against those attacks.

http://dx.doi.org/10.1109/3PGCIC.2015.57


Chapter 3

Conclusions and future work

Throughout this thesis we have presented an overview of the field of mobile device

forensics in iOS, covering forensic imaging as well as forensic analysis. In addition, we

have addressed the topic of anti-forensic techniques and tools.

In each of the three areas we have presented a significant contribution. In the area of

forensic imaging, we were able to use a standard adapter sold by Apple to demonstrate

that the iPad has full support for attached storage devices and can actually write to

them, greatly improving the thee acquisition process. In terms of forensic analysis, we

showed that the use of the AirPrint technology for wireless printing leaves a number of

traces in the device including a complete copy of the contents being printed. And in the

field of anti-forensics, we proposed a model that allows the user to disable a number of

system services which are normally used by investigators to retrieve information from

the device – a technique that is also being used as an attack in these days.

Throughout this chapter we will now present how the main objectives of this thesis were

achieved through the results presented in the corresponding contributions, and we will

propose future directions of research.

3.1 Thesis achievements

This section details how the results presented in the different contributions match with

the objectives of this thesis.

3.1.1 O1. To improve the iOS forensic acquisition process.

This objective encompasses advances in the field of forensic imaging.

26
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3.1.2 O1.1. To explore the capability of iOS to support the USB mass

storage device class protocol.

The lack of USB ports was one of the arguments used by its competitors to criticize the

iPad when it was introduced in 2010. However, at that time Apple also introduced an

accessory, the iPad Camera Connection Kit, consisting of two adapters that plug into

the iPad connector and provide an SD card reader and a USB port.

According to Apple’s specifications, the only possible use of the USB adapter is to

connect a digital camera using a USB cable in order to import the camera pictures

into the iPad. This would require the iPad to support at least USB PTP (Picture

Transfer Protocol) [52]. We considered, however, that it might make sense if Apple had

implemented support for the whole USB MSC (mass storage device class protocol), of

which PTP is a subset.

In [1] we concluded that iOS, at least in the iPad builds, does implement support for the

USB mass storage device class protocol. Gaining full access to the device through the

jailbreak technique, and without doing any substantial change, it was possible to mount

external hard drives attached via the USB adapter whenever they were formatted as

FAT32 or HFS – the native OS X and iOS filesystem.

From the standpoint of forensic data acquisition, this presents the possibility of directly

transferring files from the iPad to an external storage unit, eliminating the need for

an external computer in the process. It is worth mentioning that, although our first

experiments took place under iOS versions 3 and 4, we have verified that this particular

finding still works in modern iOS versions.

It is worth mentioning that up until iOS 8 the Camera Connection Kit (and its more

recent version Lightning to USB Camera Adapter) was an iPad-only accessory, not sup-

posed to work with the iPhone. In our experiments we did not find a way to use it

with an iPhone and, in fact, although at least one hack exists that allows for this in

jailbroken devices, only basic human-interface devices (keyboards, mice) can be used,

but not other more advanced peripherals such as hard drives.

Starting with iOS 9.2, released in December 2015, the iPhone and the iPod Touch gained

support for these camera adapters; it is not easy to understand why it took Apple years

to make this change, as it should be trivial from a technical point of view and all these

devices share similar hardware and capabilities with the iPad. This means that our

findings are now applicable in these devices as well.
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3.1.3 O1.2. To define an iOS forensic acquisition method through an

attached USB device.

At the moment of conducting our research, the existing forensic options for obtaining

a whole dump of an iOS device consisted in transferring the information over a Wi-Fi

connection to a nearby computer. After testing this with a first-generation iPad, we

observed a sustained throughput of 1 MB/s, meaning that it took around 20 hours to

transfer a complete dump of our test device (a 64 GB model). As we discused in [2],

there were other methods not publicly available which claimed to image 32 GB in 30

minutes, that is 18.6 MB/s.

In [2] we presented a solution that leverages the USB adapter included in the iPad

Camera Connection Kit to speed up this process. Our proposal presents the following

advantages:

1. It yields a throughput above 29 MB/s. That is 30x faster than the existing wireless

solutions such as [19] and nearly twice as fast as other undocumented methods. As

detailed in Figure 3.1, we found that reading the iPad storage in 512 KB blocks

provided the best results. Using our method, it took 40 minutes to generate

complete dumps of our test device, instead of the 20 hours that were needed

through Wi-Fi.

2. It does not rely on an external computer acting as forensic workstation, given that

the storage media is attached directly to the iPad. Shell-level interaction can be

done via SSH using a client installed in the iPad itself or in any other device such

a smartphone. It would also be possible to develop a custom iOS application that,

running on the iPad, would perform the dump with no further user interaction

needed.

3. It will work with any iOS version as long as a jailbreak is available. This require-

ment, however, applies to virtually any serious attempt to gain control over an

iOS device and its internals.

In order to determine the optimal block size we picked a range of possible values and

dumped the iPad internal storage (64 GB) three times. As seen in table 3.1, small

differences appear even when using the same block size; these are probably caused by

background activity, although efforts were made to keep it to a minimum.

In 2012 Apple substituted the traditional 30-pin “dock” connector in iOS devices with

the new Lightning connector which is faster, smaller, and reversible; and released the

Lightning to USB camera adapter to replace the Camera Connection Kit. Later on, a
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bs Pass 1 Pass 2 Pass 3 Avg
32 KB 20,7 20,8 20,8 20,77
64 KB 20,7 25,1 25,1 23,54

128 KB 29,5 27,6 27,6 28,22
256 KB 28,8 28,8 28,8 28,80
512 KB 28,8 29,5 29,6 29,30
1 MB 29,0 28,9 29,0 28,97
2 MB 28,1 28,1 28,1 28,10
4 MB 22,9 22,9 23,0 22,93
8 MB 18,1 18,1 18,2 18,13

16 MB 16,3 16,3 16,3 16,30
32 MB 15,5 15,5 15,5 15,50

Table 3.1: Test results: throughput (MB/s) obtained with different block sizes.

Figure 3.1: How the block size value affects the throughput of our data acquisition
method.

new version of the adapter supporting USB 3 was released. Using these new connectors

would probably yield even higher transfer rates than those observed in our experiments

– something that could also be contributed by the hardware of newer iOS devices.

3.1.4 O2. To analyze new iOS features from a forensic standpoint.

This objective encompasses advances in the field of forensic analysis.
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3.1.5 O2.1. To analyze the traces left by the use of AirPrint.

In [3] we experimentally demonstrated that whenever an iOS device sends documents to

a printer using the AirPrint protocol, temporary PDF files are generated in the storage

area of the iOS device.

We successfully verified that these files are deleted as soon as the printing process finishes,

and contain a copy of the whole document being printed (this is usually true even if the

user chooses to print only a specified page range) as well as metadata indicating the

printing date and time.

In addition, we demonstrated that these files can be recovered in the context of a forensic

investigation and can provide valuable evidence to the investigator in cases such as

information leaks.

Figure 3.2: Metadata of a temporary file generated by AirPrint.

After analyzing the metadata of these files we identified that the PDF Producer field

is common to all of them, which allows us to separate these files from any other PDFs

that may exist in the iOS device being analyzed. Figure 3.2 shows an example of the

metadata for one of these temporary PDF files.

It is worth noting that a document should leave these traces even if printed from within

a secure ‘vault’ application which may offer additional protections to the user such as

data encryption and TouchID authentication: still, whenever the document is sent to

the AirPrint subsystem, its contents are mirrored in these temporary PDF files.
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3.1.6 O2.2. To create a methodology to extract the traces of AirPrint.

As described in [4], we adapted existing open-source tools for iOS data recovery in order

to recover the contents of documents that have been printed through AirPrint.

In particular, after analysing the temporary files generated by AirPrint and determining

its type and header, we modified the iphone-dataprotection toolkit [27] to make it able

to recover deleted PDF documents from iOS devices. In addition we wrote an auxiliary

tool that pinpoints those PDFs generated as traces of AirPrint printing, helping the

investigator separate these from other regular PDF files that may have existed in the

device in the past.

In previous laboratory experiments using devices with no support for hardware-based

encryption we printed several batches of ten documents and we constantly obtained

success rates above 80%, even reaching 100% in some cases, as described in [3].

In more realistic scenarios with data encryption enabled, our approximation adapting

Bédrune and Sigwald’s tools was able to recover contents from two documents from a

batch of 20; but contrarily to what could be reasonably expected, the contents recovered

corresponded to the first two documents in the batch, and not to those at the end of

it. We believe this peculiarity may be due to the particular disk allocation strategy

employed by the iOS version in use. In any case, it would be interesting to repeat these

experiments with other iOS versions to see if the relatively low success rate varies. It is

also possible that iOS is actually reusing disk areas as soon as they are freed (and thus

overwriting previous temporary files) as part of the data protection strategy: this would

make sense as a way of effortlessly wiping previous data for privacy reasons, however the

constant reuse of certain storage areas over others might negatively affect the NAND

chips that conform it.

3.1.7 O3. To integrate anti-forensic tools for iOS.

This objective encompasses advances in the field of anti-forensic techniques.

3.1.8 O3.1. To explore the possibility of disabling unneeded system

services in order to harden the device security while keeping its

features usable.

Our work in this area was inspired by Zdziarski [18], who exposed a number of iOS

network services –exposed through the Lockdown daemon– that constituted an ideal
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entry point for high-profile attackers targeting the iOS devices of specific individuals to

steal information or deploy apps to conduct surveillance on the device owner.

As we published in [5], it is possible to disable any service offered through the iOS

Lockdown facility. This can be achieved removing the relevant service entry from the

Services.plist file in iOS 7.

We additionally verified that it is possible to disable unneeded services, such as the

network sniffer with no legitimate purpose or the capabilities for MDM synchronization,

while keeping the rest of the device features working. Even in the most restrictive modes

in which no Lockdown services are present at all, other features such as bluetooth con-

nectivity will keep working, allowing the device to interact with audio systems, handsets,

etc.

An important implication of the above is that, should a tethered jailbreak be released

for the last iOS 7 versions, it would be possible to use it in order to gain full control

over the device, apply the desired modifications (add or remove Lockdown services), and

reboot the device into its original state. This situation would be possible because the

configuration resides in a separate file and thus is not affected by the mandatory code

signing policy in iOS – we would not be modifying the Lockdown binary itself.

In iOS 8 and later versions the configuration file Services.plist disappears. We have

recently found that this content is instead located at the end of the Lockdown binary

itself, and we have successfully verified that it is still possible to add and remove services

by modifying this part of the binary, without impacting the regular behavior of the

system.

A consequence of this observation is that the theoretical strategy of using a tethered

jailbreak in order to add or disable services and return the device to its stock, non-

jailbroken state, would no longer be possible in the current iOS versions, given that in

this case the configuration lies within the binary and thus we cannot modify it without

breaking the code signature. Nevertheless, it should still be possible to use this strategy

in order to completely disable iOS’ Lockdown and all the services associated with it.

3.1.9 O3.2. To define a model for hardening iOS by disabling ex-

ploitable services, and to implement it in a proof-of-concept soft-

ware tool.

We observed that many of the standard system services offered by iOS through its

Lockdown daemon are unneeded for most users – examples include MDM (mobile device

management), used in corporate environments to remotely deploy configuration profiles,
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and over-the-air app installation through iTunes. These services present an expanded

attack surface that makes the device more vulnerable to malicious actors.

In [5] we proposed a security model that preserves the user privacy by reducing the

device attack surface in the following ways:

1. The most sensitive services (those with absolutely no legitimate use) are disabled.

This includes a network sniffer that could be abused by a malicious, surreptitiously

installed application, to intercept network traffic in networks where the user has

physical access.

2. A number of profiles are defined based on typical use cases; these profiles are

increasingly restrictive, meaning that each profile disables a number of services as

well as all the services disabled by profiles with lower numbers. Users can choose

between those profiles to pick the one that best fits their needs in order to further

restrict the number of available services that a potential attacker could target. For

instance, few domestic users need to allow the remote installation of software –

something that is common in corporate environments with MDM solutions.

3. The services that remain enabled can be restricted to forbid their invocation over-

the-air, additionally reducing the attack surface.

4. Finally, the device pairing records (the keys that allow other trusted devices, such

as computers, to access device data) are purged in a user-defined frequency, hard-

ening the device against the abuse of trusted pairing records (which can be, for

instance, surreptitiously copied from another device of the same user).

We implemented these protections in Lockup, a proof of concept software tool that runs

in jailbroken iOS 7 devices. Our tool not only allows the user to disable exploitable

services: it also applies other mitigating measures that contribute to hardening the

security of the iOS device. Figure 3.3 summarizes the different components used by

Lockup.

3.2 Future work

In this section we propose a number of possible research lines to continue our work. As

in the rest of this thesis, the information is structured in three blocks: forensic imaging

of iOS devices; analysis of the extracted data; and anti-forensic techniques that can

contribute to hardening the security of the iOS environment.
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Figure 3.3: Basic component architecture of LockUp.

In general terms, it would be very positive to get public tethered jailbreaks in modern

iOS versions, as it would open the door to new research possibilities.

In the field of forensic imaging, our method based on the Apple Camera Connection Kit

could be improved by taking steps to prevent any modifications to the user portion of

the iOS storage area, as [19] did in the first versions of iOS by re-mounting the user

partition in read-only mode.

It would also be interesting to repeat our experiments with the modern Lightning to

USB 3 camera adapter which, together with the hardware of newer iOS devices, is likely

to yield even better throughput than that seen in our experiments.

In terms of forensic analysis, we showed that it is possible to recover a number of

temporary artifacts, such as those generated by the use of the AirPrint feature. As part

of some of our cuurentlly unpublished work, we also found some interesting results about

recovering deleted SQLite databases and rollback journals.

Our method works on top of the software tools available at [27], however these tools do

not support modern iOS devices due to the lack (so far) of a BootROM exploit, necessary

to defeat iOS data encryption and recover deleted files. It would be very desirable to see

those tools and exploits upgraded. In early 2016 Apple held a fierce legal battle against
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the FBI over the court requirement to develop a customized, less-secure iOS version that

would allow Law Enforcement agencies to unlock certain devices. This suggests that, as

time goes by, it is very unlikely that we see the same kind of tools appear in the future

– much less as open source code. Nevertheless, it would be very desirable to see some

research published on the matter.

It would also be really interesting to see some works focus on the Apple Pay system and

the Secure Enclave Processor (SEP), which holds vital data for Apple Pay and also for

the TouchID biometric features.

In terms of anti-forensic techniques we presented LockUp, a proof-of-concept software

tools that runs on jailbroken devices. It would be ideal to find those mitigation measures

integrated into stock iOS versions, but only Apple can do that.

We have been invited to work on an extended version of [5] as a chapter of the book

Security and Privacy in Intelligent Systems and Communication Networks from the

book series Intelligent Data-Centric Systems, to be published by Elsevier. At the time

of depositing this thesis our work has been submitted and is being evaluated.

On this same topic, additional research should be undertaken to determine whether

it is possible to use a tethered jailbreak in order to temporarily gain full control over

the iOS device, add or remove some services, and reboot it into a non-jailbroken state.

We believe this should be feasible in iOS 7, and in later versions it should at least be

possible to completely remove all services disabling the Lockdown daemon by deleting

it or rendering its code signature invalid.

To conclude, the discipline of mobile device forensics and even the field of digital forensics

as a whole are relatively young and present many interesting and challenging areas for

research.
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IMIS-2011 Best Paper Award

This appendix contains the Best Paper Award received by the authors at the 5th Interna-

tional Conference on Innovative Mobile and Internet Services in Ubiquitous Computing

(IMIS-2011) for their paper Universal, fast method for iPad forensics imaging via USB

adapter.
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Appendix B

Universal, fast method for iPad

forensics imaging via USB

adapter

L. Gómez-Miralles, J. Arnedo-Moreno. Universal, fast method for iPad forensics imag-

ing via USB adapter. Proceedings of the Fifth International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), 2011, pp. 200-207. DOI:

10.1109/IMIS.2011.41. IMIS-2011 Best Paper Award.
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Abstract

The Apple iPad is a popular tablet device presented
by Apple in early 2010. The idiosyncracies of this new
portable device and the kind of data it may store open
new opportunities in the field of computer forensics. Given
that its design, both internal and external, is very similar
to the iPhone, the current easiest way to obtain a forensic
image is to install an ssh server and some tools, dump its
internal storage and transfer it to a remote host via wireless
networking. This approach may require up to 20 hours. In
this paper, we present a novel approach that takes advantage
of an undocumented feature so it is possible to use a cheap
iPad accessory, the Camera Connection Kit, to image the
disk to an external hard drive attached via USB connection,
greatly reducing the required time.
Keywords: forensics, iPad, cybercrime, digital investigation,
Apple.

1. Introduction

Portable devices have become a very important technol-
ogy in our society, allowing access to computing resources
or services in an ubiquitous manner. On that regard, mobile
phones have become the clear spearhead, undergoing a great
transformation in the last years, slowly becoming small
computers that can be conveniently carried in our pockets
and managed with one hand. However, as user require-
ments start including new functionalities beyond those that
a mobile phone can realistically offer, advanced portable
devices have been developed in order to fulfill them. Such
devices try to reach a compromise between a high degree of
portability, usability and the ability to provide such advanced
functionalities (for example, being able to read or process
documents).

The latest contender in the field of embedded portable
devices is the Apple iPad, a tablet computer which tries
to take advantage of its ancestor’s success, the iPhone. It
was announced by Apple in January 2010 and launched
in the U.S.A. and Europe between April and May 2010.
After 80 days in the market, 3 million units had been
sold [1]. Given its popularity, it becomes evident that as

such devices become widespread, they will also become
more common and relevant as sources of evidence from a
computer forensics standpoint, providing data about their
users. Such data can become very important in cases of
crime investigation, where it can be used as evidence in
Court or can provide valuable clues to investigators. Since
advanced portable devices are usually closed embedded
systems with their own idiosyncracies, not actually being
fully fledged PCs, forensic data acquisition presents some
interesting challenges. That is specially relevant when it
is necessary to use non-invasive methods, maintaining the
device in the same state (or as similar as possible) as the
one it was before the analysis began.

Currently, the easiest method to obtain a forensic image
of an iPad device (which can also be basically applied to an
iPhone) is to install an ssh server and some tools, retrieve its
internal storage contents and transfer the data to a remote
host via wireless networking. This approach can take up
to 20 hours. In this paper, we present a different approach
which relies on a local USB connection with help of a cheap
and easily available peripheral, the Camera Connection Kit.
This approach greatly reduces the time needed to create a
system image. Furthermore, as an additional contribution,
the presented keeps a compromise in the amount data which
is modified during the acquisition process.

The paper is structured as follows. Section 2 provides
an overview of the iPad architecture, focusing on those
characteristics specially relevant from a forensic analysis
standpoint. In Section 3, a literature review of the current
state of iPhone/iPad forensics is presented. The proposed
forensic data acquisition method is described in Section
4. Concluding the paper, Section 5 summarizes the paper
contributions and outlines further work.

2. iPad architecture overview

From the external point of view, the iPad is basically
a big (24x19 cm.) iPhone with a 9.7” screen, providing a
resolution of 1024x768. While its internals are very similar
to those of its antecesor, the iPad’s bigger form factor
makes it suitable for longer periods of use, which has
motivated the apparition of lots of different applications of
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every kind. Therefore, the iPad is able to perform tasks
perviously reserved to common computers or, up to some
point, netbooks.

2.1. Main features

The basic iPad internals are:
• Processor: A custom Apple A4 ARM processor based

on a single-core Cortex-A8, running at a 1 GHz.
• Volatile storage: 256 MB DRAM.
• Non-volatile storage: 16, 32 or 64 GB solid state

storage drive.
• Wireless connectivity: 802.11 a/b/g/n and Bluetooth

2.1, the same as every iPhone.
• In addition, the 3G model features an A-GPS (As-

sisted GPS), and hardware for communicating over
UMTS/HSDPA (820, 1900 and 2100 MHz) and
GSM/EDGE (850, 900, 1800 and 1900 MHz.

In the process described in this paper, we will use the
wireless (802.11) network, and the iPad “Dock” connector,
described in the next section.

2.2. Connectors and buttons

The iPad connectors and buttons are very similar to the
iPhone’s. When placed over the short edge with the round
button in the center, we find:

• Top left: a 3.5” jack capable of functioning simultane-
ously for several audio functionalities.

• Top right: “Lock” button.
• Right edge, near the top: volume and mute controls.

In the previous iOS 3 branch, the mute button was
a rotation lock switch instead; this function has since
been moved to a ‘software switch’ in the device’s
graphical interface.

• Bottom center, frontal face: round “Home” button.
• Bottom center, in the edge (below the “Home” button):

Apple standard 30-pin “Dock” connector, the same used
in every iPhone and most iPods.

.
Figure 1 shows the function of each button. Note that the

“Lock” button performs several functions: when the device
is off, it will turn it on; when the device is on, a short press
will put the device to sleep or wake it form sleep, and a
long press will show a dialogue to turn it off. For clarity,
in this paper we will keep referring to this button as the
“Lock” button. Button configuration is important since, as
will be explained in Section 4.1.1, it may be necessary to put
the device in DFU mode (‘Download Firmware Update’) in
order to setup the device for forensic imaging. When this is
needed, installed software usually instructs the user to press
a particular combination of these buttons to have the device
enter DFU mode.

Figure 1. iPad button configuration (iOS 4 and higher).

2.3. Partition scheme

As noted by Zdziarski [2], all devices belonging to the
iPhone family contain two partitions:

1) A huge user data partition, holding all extra applica-
tions installed as well as all the user’s data.

2) A small system partition containing iOS and the basic
applications.

From a forensics standpoint, as far as the user data
partition is concerned, some iPad applications which may
hold relevant data include enterprise or office software,
such as QuickOffice Connect Mobile Suite [3] or Apple’s
iWork suite [4], [5]. They can all contain text documents
or spreadsheets, which are prone to including sensitive or
financial information. Although similar applications existed
in the iPhone, allowing for direct document editing with
no need for an external computer, the iPad’s form factor
will no doubt boost the existence of documents stored only
within the device (and not, for instance, in the suspect’s main
computer), being edited here and never travelling outside
the iPad (with the possible exception of device backups
performed by iTunes).

Another possible source of information lies within Apple’s
AirPrint framework released in November 2010 as a feature
of iOS 4.2 [6], which provides native printing capabilities to
the iPhone and iPad. But long before AirPrint existed, other
applications such as PrintCentral [7], already allowed the
user to send most document types to a remote printer (con-
nected to a computer with the appropriate server software).
These applications’ disk caches are likely to hold relevant
information such as copies of printed documents.

The system partition contains the base iOS software that
comes bundled inside every iOS software update (which
explains why they weight hundreds of megabytes). This
includes the core operating system and graphical user in-
terface, as well as the standard set of bundled applications
such as: Safari, Mail, Calendar, iPod, etc. Note that only

Appendix B. Universal, fast method for iPad forensics imaging via USB adapter 40



the application binaries themselves lie within this partition,
whereas the relevant data (for instance, user mail) is stored
in the data partition.

3. Current work on IPad forensics

A very basic approach to acquiring user data is connecting
the device via the standard USB cable to a computer running
iTunes, Apple’s multimedia player which is in charge of
synchronizing content to the device. Using its AFC protocol
(Apple File Connect), iTunes syncs existing information
(contacts, calendar, email accounts, apps...) and can even
retrieve a complete backup of the device; however this
presents two problems:

1) The device needs to be correctly paired with the iTunes
software in order to sync.

2) Even if the investigator has access to an iTunes
backup of the device (say, found in the suspect’s main
computer), it will not contain unallocated space, from
which deleted data can be recovered.

Consequently, more sophisticated methods are required.
However, the iPad is distributed as a closed device, meaning
that access to its internals is limited and only a those ap-
plications approved by Apple may be installed or executed.
With these set of restrictions in place, it is extremely difficult
to acquire any kind of meaningful forensic data. Fortunately,
even though the iPad is a very new device, its internal
architecture is very similar to the iPhone’s and forensic
approaches may be easily ported to the iPad.

On July 6th 2007, just one week after the iPhone was
launched, George Hotz announced [8] the existence of a
method to get a full, interactive shell. This was the first
step towards bypassing Apple’s restrictions on their devices,
making it possible to execute any program and not only
those approved by Apple; a process that has been named
jailbreaking. In other mobile platforms, such as those run-
ning Google’s Android operating system, a similar process
exists which is known as rooting. Vendors usually dislike
this technique, although in most countries it is legal or at
least not definitely illegal. If you ever need to defend this
in court, you can do a brief explanation of why jailbreaking
the device: to get full access to the system, and thus to the
information stored in it, which is crucial in criminal cases
which require forensic analysis of these kind of devices.

The jailbreaking process modifies the system partition
without alteration of the data partition, which means that
it does not alter the user’s data, a very important requisite.
Even if we assume that some current or future jailbreak
methods will modify the user data partition, we can still
obtain plenty of useful information, as long as we know
what alterations we are responsible for. Ever since their de-
velopment, the jailbreak tools have been updated to support
every new iPhone model and every new iOS version. This

method may also be applied to an iPad and, in fact, all the
two major forensic approaches in order to recover a complete
image from the device are ultimately based on jailbreaking.

The main approach was proposed by Zdziarski [2], who
noted that the iPhone can communicate across several
different mediums, including the serial port, 802.11 Wi-Fi,
and Bluetooth. Due to the limitations of Bluetooth on the
iPhone, the two preferred methods are via the serial port
and Wi-Fi. He proposed a basic method for obtaining a
forensic image of the iPhone without tampering the user data
partition by jailbreaking the device and using SSH access
and the dd and netcat standard UNIX tools, which by that
time had already been ported as a part of the growing iPhone
jailbreaking community. Similar methods are explored by
Rabaiotti [9] against a Microsoft Xbox. There was not,
however, a known, public way to communicate with the
device via its serial port, so Zdziarski had to send the
forensic image via the device Wi-Fi interface, which is quite
slow.

Alternate approaches are provided by some forensics
software vendors [10], [11], which have developed solutions
that use rather uncommon techniques to get a dump of
the solid state storage drive. This is often accomplished by
using exploits against more or less known bugs on specific
iOS versions in order to execute arbitrary unapproved code,
which is actually the same jailbreakers do in order to free
their devices. However, these vendors do not need to install
a complete set of tools in the device. Instead, they tend to
upload a tiny, small-footprint software agent which ideally
will take control of the system, dump the solid state storage
drive through the serial port (dock connector), and will then
reboot the device without copying any data to the iPad
internal storage.

These methods offers some advantages over the jailbreak
approach, being a more straightforward process, simpler to
the investigator and leaving little or no footprint on the
acquired system. However, it also has some weak points.

First and most important, any propietary method ulti-
mately makes use of an exploit against vulnerabilities of
the iOS version of the device, because this is the only
way of take such control of the device bypassing every
vendor restriction. With every iOS update (usually every
few months, downloaded via iTunes), the forensics software
must be updated, usually because bugs exploited in previous
versions are fixed in the newer version; but even if an
exploit still works, exploitation parameters such as memory
addresses are very likely to change.

Jansen [12] identified “the latency in coverage of newly
available phone models by forensic tools” as one of the
problems for forensic specialists working with mobile de-
vices. Jailbreaking in the iPad has been moving in a time-
frame of barely 1-5 days following iOS updates. We consider
very realistic that at some point in the near future, jailbreak
updates will be available days or even weeks before some
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particular forensics software products get the same needed
updates.

In addition, many of these proprietary methods are closed
and lack any public documentation. Therefore, they are
difficult to audit and it cannot be guaranteed that no footprint
is actually left on the device. Knowing the process the device
is going through, and the precise alterations that this process
causes to the device, is a good practice and very important
to the forensic investigator.

Therefore, even though some of the proprietary methods
may be suitable for the analysis of the device under common
circumstances, vendors of such products may fail to release
in time an update to support newer iOS versions; they may
even not release it at all if, say, the product is discontinued.

Our approach offers what appears to be the best possible
throughput, and this is acomplished with a generic UNIX
approach via jailbreaking, which is likely to live longer than
most iPad forensics software products, thus guaranteeing that
it can be applied in future iOS versions.

4. Forensic data acquisition on iPad devices

In this chapter we will describe our method for fast iPad
imaging via a USB connection. The method is divided in
two general phases: device setup and imaging. Each phase is
also divided in several substeps which must be sequentially
followed. We will not provide detailed instructions about
how to jailbreak an iPad. The description will focus on our
technique to recover an image of user data from an already
jailbroken iPad.

4.1. Device setup

As mentioned in Section 3, before any forensic analysis
may be attempted, a special device setup is required in order
to bypass the access restrictions installed by the manufac-
turer. Once this phase is complete, low level access to the
device is actually possible. In addition, it is necessary to
install the extra packages needed for our proposed imaging
approach.

4.1.1. Jailbreak the device. The actual way to perform
the jailbreak varies depending on the iOS version installed
on the device. An iPad running iOS 3.2.1 (the initial iOS
version preinstalled in most iPads) can be jailbroken by
just browsing to http://www.jailbreakme.com, a
website that exploits a known vulnerability in Safari to take
control of the system. The exploits themselves and related
documentation can be found at [13]. For a complete, up-
to-date chart about jailbreaking tools for each iOS version,
refer to [14].

Many jailbreaking tools (redsn0w, PwnageTool, etc)
will require the user to put the device into DFU mode with a
combination of presses of the “Lock” and “Home” buttons.

When this is needed, the software will give the user the
necessary instructions.

Should we find a device with a recent iOS version for
which no jailbreak procedure exists, it could be acceptable to
downgrade to the latest jailbreakable version, although this
should be done only as a last resort, and always documenting
the steps taken. This would rarely succeed, however, because
Apple does not allow to downgrade a device’s iOS version
after a newer version has been available for some time. There
are some workarounds for this but they are not of use in our
scenario because they require that we have previously saved
some crucial data before installing its present iOS version.
Anyway, it is very unlikely that we hit a non-jailbreakable
iOS. Take, for instance, iOS 4.2.1 (the first iOS 4 release
for the iPad): it was released in November 22 2010, and the
appropriate tool for jailbreaking (in that case redsn0w) was
released the next day [15].

Once a new iOS version has been released, the first
jailbreak methods will probably be tethered: a tethered
jailbreak means that it is only effective as long as the
operating system is running. The moment it is rebooted (not
when the device is locked), the jailbreak is lost, meaning
that two things will happen temporarily until the device
is rebooted again into a tethered jailbreak state with the
appropriate tool: (1) any jailbreak software installed will
not work; and (2) some internal applications (for instance
the Safari web browser) may not work, or in the worst case,
the whole device might not work at all. We state again that
this is only a temporary state, until the device is jailbroken
again. It would be acceptable to use a tethered jailbreak for
imaging purposes, and in fact part of the tests performed in
this paper have taken place over an iPad running iOS 4.2.1,
for which tethered jailbreak is the only jailbreak method
available at this time.

It is important to note that jailbreaking a device does not
mean carrier-unlocking it. Jailbreak is just a precondition
for carrier unlocking. Our proposal needs not perform carrier
unlocking, and in fact this is rarely needed in the iPad given
that it is usually sold carrier-free.

4.1.2. Charge the battery. It may seem obvious, but it is
necessary to have the battery charged to, at least, about 20%.
This is because during the imaging process, the iPad’s dock
connector will be used for USB data transfer, so it will not
be possible to plug the device to a power point.

4.1.3. Run Cydia and upgrade available packages.
After the device has been jailbroken, a new application
labeled Cydia [16] will appear in the home screen. This
is the software manager that allows installing software not
approved by Apple.

When run for the first time, Cydia initializes the device’s
filesystem and exits. In the next execution, it presents a Who
are you? prompt, offering three choices; we must choose
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‘Developer (no filters)’, as it offers the widest range of
software. Afterwards, if there are available updates to install,
it is recommended to perform a ‘Complete upgrade’. The
device will then restart. We re-open Cydia and, if asked for
upgrades, we repeat the process.

4.1.4. Install required software packages. Once Cydia has
finished upgrading itself, we use the ‘Search’ function in
Cydia to find and install the following packages:

• openssh. This package contains the SSH server that we
will use to access the iPad.

• coreutils. This package contains the split command,
which is needed due to reasons that will be exposed
later.

The most important tool for this procedure, dd, need not
be installed, as it is contained inside the essential coreutils-
bin package, which is installed by default as part of the
jailbreaking process.

4.1.5. Network and auto-lock settings. It is necessary to
connect the iPad to a wireless network. Another computer
in that network will be used to access the iPad via SSH.

Communication between the computer and the iPad will
be over SSH, and thus, encrypted. However, we strongly
advise to use encryption in the wireless network protocol,
and ideally, to use an isolated network for the computer and
the iPad only. This is because there is a small window of
time in which the device will be accessible with default pass-
words. There is at least one known worm which penetrates
jailbroken iOS devices using these default credentials [17],
although nowadays it is nearly impossible to find that code
in the wild.

To connect to a wireless network we use the relevant
section inside the ‘Settings’ application. If no wireless
network is available, a laptop can be used to create an ad-
hoc network and have the iPad join it. The blue button next
to the network name reveals the IP address in use (usually
acquired via DHCP) and allows the user to manually specify
an IP address if needed. The IP address must be noted, as it
will be needed later for accessing the iPad from the remote
computer.

Still in the ‘Settings’ application, section ‘General’, the
‘Auto-Lock’ option must be set to ‘Never’. This will prevent
the device from going into sleep mode while the forensic
image is being generated, which could interrupt the process.
When not in use, the device should be locked (using the
Lock button; see section 2) in order to save battery.

We have not tested whether the multitasking capabilities
and persistent Wi-Fi in iOS 4 would allow the imaging
process to take place while the device is locked. Anyway,
given that imaging is a long process that can take more
than hour in the biggest devices, we recommend to keep the
device awake all the time.

Local access approach. We found at least two ways to apply
this method without using a remote computer, although both
of them introduce additional complications to the process.

On one hand, it may be possible to install MobileTerminal
instead of openssh, and use the terminal application in the
iPad itself to mount the hard drive and image to it. However,
at the time of this writing, MobileTerminal does not work
in iOS versions 4.x, and this software has a history of long
delays before being updated to support newer iOS versions.

On the other hand, another approach is to install openssh
and run an SSH client on the iPad itself. There are many
such applications in Apple’s App Store, although the fact of
keeping this application running during the image generation
is likely to alter data and will possibly corrupt the image.
Thus, we prefer to use a remote computer and leave the iPad
as untouched as possible. Remounting the partition read-only
is not a possible solution in this case, as will be explained
in Section 4.2.1.

4.2. Device imaging

Once the device is connected to a wireless network,
another computer in that same network is used to connect
to the iPad via SSH. Using this connection, it is possible
to remotely issue commands to the device to initiate the
imaging process.

At this point the iPad is accessible via the standard pass-
word alpine, which works for both the standard mobile
user as well as for the root user, which has full access to
the device. The correct way to proceed would be to access
the iPad via SSH as the root user, and immediately change
its password and the password of the mobile user account,
using the passwd command.

4.2.1. Mounting a USB hard drive. In this step we will
use Apple’s Camera Connection Kit for the iPad [18] in
order to access an external USB hard drive. According to
Apple, “the iPad Camera Connection Kit gives you two
ways to import photos and videos from a digital camera:
using your camera’s USB cable or directly from an SD
card” [18]. Thus, it consists of two adapters, one of them
being a SD card reader, and the other offering a USB female
connector; both of these adapters can plug (one at a time)
to the iPad’s dock connector, placed in the base, below the
“Home” button.

Initial vendor information suggested that the USB adapter
only uses the PTP protocol [19] to access the images stored
in a camera, and that an actual camera, with its camera-to-
USB cable, should be plugged into this connector for the
adapter to import the pictures. When this is done, the Photo
application launches and allows the user to transfer photos
and videos from the connected media to the iPad’s internal
memory.
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We have found, however, that the iPad implements the
USB mass storage device class protocol. Thus, the iPad may
mount the disk inserted (regardless of whether it is a hard
or solid state storage drive) looking for a /DCIM directory
as per CIPA DCF standard [20]. If this folder exists, the
Photo application will open, allowing the user to import
contents; if the folder is not found, the device is unmounted
and ignored. We have exploited this undocumented feature
to manually mount an external USB hard drive with the
appropriate parameters.

As for the filesystems supported, we have been success-
ful in mounting FAT and HFS+ (the standard Macintosh
filesystem, which is also the one used for the iPad internal
storage). An important issue for Windows users is that their
operating system will refuse to format a drive larger than
32 GB as FAT [21], although it can normally mount much
bigger FAT partitions and work with them flawlessly. These
users will need to use externals tools such as Fat32Format
[22]. Mac and Linux users will have no trouble with their
standard Disk Utility and mkfs.msdos tools, respectively.

When we have connected the USB external drive to the
iPad (see Figure 2), we can check its presence within the
SSH session by running the folowing command:

ls /dev/disk1

Figure 2. iPad connection to external hard drive via
Camera Connection Kit.

The iPad internal storage disk is assigned the node name
/dev/disk0, so the presence of a /dev/disk1 implies
that the newly connected hard drive has been correctly
recognized. If we get an error and there is no /dev/disk1,
the drive has not been recognized. In our tests, this was
usually accompanied by a dialog in the screen complaining
that “this device requires too much power”, when trying
to connect certain big solid state storage drives and some
portable hard drives that take power from USB only. Under

iOS version 4 the problem gets bigger because the USB port
will no longer emit 100 mA (as it did under iOS 3.x) but
only about 20 mA [23]. We found that best results were
achieved using a full-size external hard-drive with its own
power adapter, or connecting the drive to a powered USB
hub.

This command mounts the first partition of the external
drive in the /mnt directory of the device:

mount -t msdos /dev/disk1s1 /mnt

We were equally able to mount HFS+ partitions using
the -t hfs parameter. Due to the Macintosh EFI support,
finding the correct partition name for HFS-formatted disks
can be tricky. To view the full list of available partitions,
we used the command ls /dev/disk1*, and we tried to
mount all of them until we succeeded.

Zdziarski [2] recommended immediately remounting
the data partition in read-only mode (umount -f
/private/var; mount -r /private/var) prior
to beginning the actual imaging. However, in our tests, we
found that in both iOS 3 and iOS 4 the system halted if
the partition was unmounted; and forcing its remount with
mount -fru was not supported either.

It must be noted that imaging a mounted partition may
alter the integrity of the filesystem contained in the resulting
image. In fact we found out that it is possible to end up with
images that are unmountable. In order to reduce this risk, no
other activity should be taking place in the iPad (neither via
the touch screen, nor through the network) while imaging.

Once the disk has been mounted, the command df -h
/mnt can be used to show its free space and confirm that
the drive had been correctly recognized.

4.2.2. Obtaining the forensic image. At this point the
working directory was changed to that where the external
drive was mounted and the imaging process started with
the command:

dd if=/dev/rdisk0s2 bs=32M | split -b
4000m - part-

The full command can be explained as follows:

• dd - The command dd is invoked,
• if=/dev/rdisk0s2 - Taking as Input File (i.e.

reading from) the device rdisk0s2, which corre-
sponds to the second slice of the iPad’s internal stor-
age, containing the data partition. Due to the partition
scheme used in Mac OS and iOS, it is equally accept-
able to image /dev/rdisk0s2s1.

• bs=32M - Using a block size of 32 MB; actually we
found that the process works, with similar throughput,
for values of 1M and multiples of it.
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• | split - Instead of writing all these data to a
huge file in disk, the data is split.

• -b 4000m - Split file size, into smaller files of 4 GB
(4000 MB) each.

• - This dash means the input content to be split is
coming from the previous command, in this case dd.

• part- - And this is prepended to the name of the
output files. The suffix will be two letters, starting
with aa, as this is the default behavior for the split
command.

As a result, several 4 GB chunks named part-aa,
part-ab, etc. were generated. Splitting the image in
smaller 4 GB files would not be necessary when imaging
to a HFS-formatted (Mac) drive.

When finished, the target drive must be unmounted before
disconnecting it from the iPad. This can be done by either
turning the iPad off or unmounting the drive by exiting the
/mnt folder and running umount /mnt.

4.2.3. Reconstructing the image. In order to obtain a full
image that can be processed using standard tools, all the
fragments must be concatenated. This can be done with a
variety of tools in different systems, but a simple command
that will probably work in Mac, Linux, and Windows, would
be:
cat part-* > ipad.dmg

The resulting image can then be treated by the methods
described in [2] to recover data such as: emails, address book
contacts, pictures and videos, Google Maps data, and so on.

As far as image reconstruction is concerned, it must be
noted that, starting with iOS version 4, Apple introduced
a layer of hardware encryption services [24], which, if
activated in the device, will result in partial encryption of
the imaged data. Altogether with this, we found a new
protect option for the mount command, which is by de-
fault applied to the data partition. We have failed to find any
documentation about this parameter, although interestingly
enough, the string protect also appears inside the Mac OS
X mount command. Nevertheless, the inclusion of this iOS
version into the iPad is still very recent at the time of this
writing, so we didn’t have much time to experiment with it.

In this scenario, imaging the partition is possible although
the resulting image may not be mountable. We think that this
is probably due to a layer of encryption, which could be
circumvented if the keys are retrieved from the live system
after gaining SSH access. Still, carving tools such as Scalpel
[25] may be able to recover certain file types.

If the device is just passcode-protected, jailbreaking
and accessing via SSH is equally possible. The sim-
plest jailbreaking methods working in user-land, such as
jailbreakme.com will not work given that we are un-
able to obtain initial access to the device, but other methods
(redsn0w, Pwnage Tool...) could work.

4.3. Performance Results

We performed several experiments measuring the speed
of our imaging process proposal via USB connection using
the Camera Connection Kit. As can be seen in Figure 3,
the process offers a measured throughput of 15.9 MB/s
or 0.95 GB/min. This was the highest transfer rate we
could achieve, always using common serial-ATA hard drives
connected through standard USB-to-SATA adapters. The
Figure represents the output of imaging a 64 GB iPad
running iOS 4.2.1 to a Seagate ST3500418AS drive.

In comparison, we tested the Zdziarski method over an ad-
hoc 802.11n network operating at its maximum theoretical
rate (108 Mbps), and we obtained a throughput of barely
1 MB/s, which means that a 16 GB iPad would be imaged
in 5 hours and a 64 GB one would require about 20 hours.
Our USB approach results in a speed boost of 15x over
traditional Wi-Fi imaging.

Forensics software vendors do not seem to release speci-
fications about the imaging times needed by their methods;
we could only find that information about Jonathan Zdziarski
who states [26] about “the latest version of the Zdziarski
method, which is used in the automated tools available
free to law enforcement agencies worldwide”: “about 15-30
minutes is all it takes, regardless of whether you’re imaging
a 4GB iPhone or a 32GB iPhone 3G[s]”. Assuming he is
able to image 32 GB in ‘about 30 minutes’, we think we
have come to the same limit. This is probably the maximum
transfer rate of the device’s serial port, although it is hard to
tell whether this is a physical limit of the port or a software
matter that could be improved in future iOS versions.

Figure 3. Throughput of system imaging a 64 GB iPad.

5. Conclusions and Future Work

In this paper, we have presented a novel approach that
takes advantage of a hidden feature in the iPad’s USB
adapter so it is possible to use a cheap, universally available
$30 accessory to image the device directly to a USB drive
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attached to it. The main contribution of this approach is
resulting speed boost to the process, which greatly outpaces
existing traditional Wi-Fi approaches, becoming one of the
fastest ways to obtain a complete forensic dump of Apple’s
iPad. In fact, we have apparently reached the speed limit of
the iPad’s dock connector.

Up to this day, similar transfer rates could only be
achieved using commercial tools which are paid and/or re-
stricted to law enforcement agencies, opaque to the scientific
community and undocumented. Therefore, it is difficult to
assess what is really happening during the imaging process
and whether the original data is being somehow altered.

As far as iPad forensics is concerned, a fast imaging
method opens some interesting research lines for the future.
The ones we find most interesting are live memory dump
of the device, study of the iOS 4 encryption system, an
autonomous imaging from the iPad to the connected USB
drive eliminating the need of a network and a remote
computer and analyzing of the forensic artifacts left by the
AirPrint subsystem.
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a b s t r a c t

The Apple iPad is a popular tablet device presented by Apple in early 2010. The
idiosyncracies of this new portable device and the kind of data it may store open new
opportunities in the field of computer forensics. Given that its design, both internal and
external, is very similar to the iPhone, the current easiest way to obtain a forensic image is
to install an SSH server and some tools, dump its internal storage and transfer it to a remote
host via wireless networking. This approach may require up to 20 hours. In this paper, we
present a novel approach that takes advantage of an undocumented feature so that it is
possible to use a cheap iPad accessory, the Camera Connection Kit, to image the disk to an
external hard drive attached via USB connection, greatly reducing the required time.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Portable devices have become a very important technology in society, allowing access to computing resources or services
in an ubiquitousmanner. In this regard, mobile phones have become the clear spearhead, undergoing a great transformation
in recent years, slowly becoming small computers that can be conveniently carried in our pockets and managed with
one hand. However, as user requirements started to include new functionalities beyond those that a mobile phone can
realistically offer, advanced portable devices have been developed in order to fulfill them. Such devices try to reach a
compromise between a high degree of portability, usability and the ability to provide such advanced functionalities (for
example, being able to read or process documents).

One of the top devices in the field of embedded portable devices is the Apple iPad, a tablet computer which tries to take
advantage of the success of its ancestor, the iPhone. It was announced by Apple in January 2010 and launched in the USA and
Europe between April and May 2010. After 80 days in the market, 3 million units had been sold [1]. Given its popularity, it
becomes evident that as such devices become widespread, they will also become more common and relevant as sources of
evidence froma computer forensic standpoint, providing data about their users. This kind of data can become very important
in cases of criminal investigation, where it can be used as evidence in court or provide valuable clues to investigators. Since
advanced portable devices are usually closed embedded systems with their own idiosyncracies, not actually being full-
fledged PCs, forensic data acquisition presents some interesting challenges. This is especially relevant when it is necessary
to use non-invasive methods, maintaining the device in the same state (or as similar as possible) as the one it was in before
the analysis began.

Currently, the easiest method to obtain a forensic image of an iPad device (which can also basically be applied to an
iPhone) is to install an SSH server and some tools, retrieve its internal storage contents and transfer the data to a remote
host via wireless networking. Unfortunately, this is very slow, and can take up to 20 h.More efficientmethods exist, but they
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Fig. 1. iPad button configuration (iOS 4 and higher).

are based on closed software, which relies on obscure or undisclosed techniques and is very dependent on the iOS version.
As soon as an iOS upgrade becomes available, they can no longer be used until a new version is created.

In this paper, we propose a versatile approach which reaches a compromise between forensic data acquistion speed and
an open approach, without the need of vendor specific software or a dependency on a very specific iOS version. Achieved
with the help of a cheap and easily available peripheral, the Camera Connection Kit, it is possible to generate a forensic
image using an USB connection. Furthermore, this approach still minimizes the amount of data which is modified during
the acquisition process.

The paper is structured as follows. Section 2 provides an overview of the iPad architecture, focusing on those
characteristics especially relevant from a forensic analysis standpoint. In Section 3, a literature review of the current state
of iPhone/iPad forensic imaging techniques is presented. The proposed forensic data acquisition method is described in
Section 4. Section 5 provides a brief discussion aboutwhich forensic techniques can be applied on the image generated using
our method, and, in Section 6, an analysis of its performance is presented. Concluding the paper, Section 7 summarizes the
paper’s contributions and outlines further work.

2. iPad architecture overview

From the external point of view, the iPad is basically a big (24×19 cm.) iPhone with a 9.7′′ screen, providing a resolution
of 1024 × 768. While its internals are very similar to those of its ancestor, the iPad’s larger form factor makes it suitable for
longer periods of use, which has motivated the appearance of many different applications of all kinds. Therefore, the iPad is
able to perform tasks previously reserved for common computers or, up to some point, netbooks.

2.1. Main features

The basic iPad internals are:
• Processor: A custom Apple A4 ARM processor based on a single-core Cortex-A8, running at 1 GHz.
• Volatile storage: 256 MB DRAM.
• Non-volatile storage: 16, 32 or 64 GB solid state storage drive.
• Wireless connectivity: 802.11 a/b/g/n and Bluetooth 2.1, the same as every iPhone.
• In addition, the 3G model features an A-GPS (Assisted GPS), and hardware for communicating over UMTS/HSDPA (820,

1900 and 2100 MHz) and GSM/EDGE (850, 900, 1800 and 1900 MHz).

A second generation hit the market in March 2011, featuring a dual-core Apple A5 processor and 512 MB of RAM.

2.2. Connectors and buttons

The iPad connectors and buttons are very similar to the iPhone’s. When placed over the short edgewith the round button
in the center, we find:
• Top left: a 3.5′′ jack capable of functioning simultaneously for several audio functionalities.
• Top right: ‘‘Lock’’ button.
• Right edge, near the top: volume controls, and one configurable switch which can either mute the device, or lock the

screen orientation.
• Bottom center, front face: round ‘‘Home’’ button.
• Bottom center, in the edge (below the ‘‘Home’’ button): Apple standard 30-pin ‘‘Dock’’ connector, the same as used in

every iPhone and most iPods. This is also the port used when referring to the iPhone or iPad’s ‘serial port’.

Fig. 1 shows the function of each button. Note that the ‘‘Lock’’ button performs several functions: when the device is
off, it will turn it on; when the device is on, a short press will put the device to sleep or wake it from sleep and a long
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press will show a dialog to turn it off. For clarity, in this paper we will refer to this button as the ‘‘Lock’’ button. The button
configuration is important since, as will be explained in Section 4.1.1, it may be necessary to put the device in DFU mode
(‘Download Firmware Update’) in order to setup the device for forensic imaging. When this is needed, installed software
usually instructs the user to press a particular combination of these buttons to have the device enter DFU mode.

2.3. Partition scheme

As noted by Zdziarski [2], all devices belonging to the iPhone family contain two partitions:
(1) A huge user data partition, holding all extra installed applications as well as all the user’s data.
(2) A small system partition containing iOS and the basic applications.

From a forensic standpoint, as far as the user data partition is concerned, some iPad applications that may hold relevant
data include enterprise or office software, such as QuickOffice Connect Mobile Suite [3] or Apple’s iWork suite [4]. They
can all contain text documents or spreadsheets, which are prone to including sensitive or financial information. Although
similar applications existed in the iPhone, allowing for direct document editing without the need for an external computer,
the iPad’s form factor will no doubt boost the existence of documents stored solely within the device (and not, for instance,
in the suspect’s main computer), being edited here and nevermoving beyond the iPad (with the possible exception of device
backups performed by iTunes).

Another possible source of information lies within Apple’s AirPrint framework, released in November 2010 as a feature of
iOS 4.2 [5], which provides native printing capabilities to the iPhone and iPad. However, long before AirPrint existed, other
applications, such as PrintCentral [6], already allowed the user to sendmost document types to a remote printer (connected
to a computer with the appropriate server software). These applications’ disk caches are likely to hold relevant information,
such as copies of printed documents.

The systempartition contains the base iOS software that comes bundled inside every iOS software update (which explains
why they require hundreds of megabytes). This includes the core operating system and graphical user interface, as well as
the standard set of bundled applications such as: Safari, Mail, Calendar, iPod, etc. Note that only the application binaries
themselves lie within this partition, whereas the relevant data (for instance, user mail) is stored in the data partition.

3. Current work on iPad forensics

A very basic approach to acquiring user data is to connect the device via the standard USB cable to a computer running
iTunes, Apple’s multimedia player, which is in charge of synchronizing content to the device. Using its AFC protocol (Apple
File Connect), iTunes syncs existing information (contacts, calendar, email accounts, apps. . . ) and can even retrieve a complete
backup of the device; however this presents two problems:
(1) The device needs to be correctly paired with the iTunes software in order to sync.
(2) Even if the investigator has access to an iTunes backup of the device (say, found in the suspect’s main computer), it will

not contain unallocated space, from which deleted data can be recovered.

Consequently, more sophisticated methods are required. However, the iPad is distributed as a closed device, meaning
that access to its internals is limited and only applications approved by Apple may be installed or executed. With this set of
restrictions in place, it is extremely difficult to acquire any kind of meaningful forensic data. Fortunately, even though the
iPad is a very new device, its internal architecture is very similar to the iPhone and forensic approachesmay be easily ported
to the iPad.

On July 6th 2007, just one week after the iPhone was launched, George Hotz announced [7] the existence of a method
to provide a full, interactive shell. This was the first step towards bypassing Apple’s restrictions on their devices, making
it possible to execute any program and not only those approved by Apple; a process that has been named jailbreaking. In
other mobile platforms, such as those running Google’s Android operating system, a similar process exists, known as rooting.
Vendors usually disapprove of this technique, although in most countries it is legal or at least not definitely illegal. If you
ever need to defend this practice in court, you can give a brief explanation of why you are jailbreaking the device: to get
full access to the system, and thus to the information stored in it, which is crucial in criminal cases which require forensic
analysis of these kind of devices.

The jailbreaking process modifies the system partition without altering the data partition, which means that it does not
alter the user’s data, a very important requisite. Even if we assume that some current or future jailbreaking methods will
modify the user data partition, we can still obtain plenty of useful information, as long as we know what alterations we are
responsible for. Ever since their development, the jailbreaking tools have been updated to support every new iPhone model
and every new iOS version. This method may also be applied to an iPad and, in fact, the two major forensic approaches to
recovering a complete image from the device are ultimately based on jailbreaking.

The main approach was proposed by Zdziarski [2], who noted that the iPhone can communicate across several different
media, including the serial port, 802.11 Wi-Fi, and Bluetooth. Due to the limitations of Bluetooth on the iPhone, the two
preferred methods are via the serial port and Wi-Fi. He proposed a basic method for obtaining a forensic image of the iPhone,
without tampering with the user data partition, by jailbreaking the device and using SSH access and the dd and netcat
standard UNIX tools, which by that time had already been ported as a part of the growing iPhone jailbreaking community.
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Similar methods are explored by Rabaiotti [8] against a Microsoft Xbox. There was not, however, a known, public way to
communicate with the device via its serial port, so Zdziarski had to send the forensic image via the device Wi-Fi interface,
which is quite slow.

Alternate approaches are provided by some forensics software vendors [9,10], who have developed solutions that use
rather uncommon techniques to get a dump of the solid state storage drive. This is often accomplished by using exploits
againstmore or less known bugs in specific iOS versions in order to execute arbitrary unapproved code, which is actually the
same as jailbreakers do in order to free their devices. However, these vendors do not need to install a complete set of tools in
the device. Instead, they tend to upload a tiny, small-footprint software agent which will ideally take control of the system,
dump the solid state storage drive through the serial port (dock connector), and then reboot the device without copying
any data to the iPad internal storage. This method offers some advantages over the jailbreaking approach, being a more
straightforward process, simpler for the investigator and leaving little or no footprint on the acquired system. However, it
also has some weak points.

First and foremost, any proprietary method ultimately makes use of an exploit against the vulnerabilities of the iOS
version of the device, because this is the only way to take such control of the device, bypassing every vendor restriction.
With every iOS update (usually every fewmonths, downloaded via iTunes), the forensics software must be updated, usually
because bugs exploited in previous versions are fixed in the newer version; but even if an exploit still works, exploitation
parameters such as memory addresses are very likely to change.

Jansen [11] identified ‘‘the latency in coverage of newly available phone models by forensic tools’’ as one of the problems
for forensic specialists working with mobile devices. Jailbreaking in the iPad has been moving in a timeframe of barely 1–5
days following iOS updates. We consider it very realistic that at some point in the near future, jailbreak updates will be
available days or even weeks before some particular forensics software products get the same needed updates. Therefore,
even though some of the proprietary methods may be suitable for the analysis of the device under common circumstances,
vendors of such products may fail to release an update in time to support newer iOS versions; they may even not release it
at all if, say, the product is discontinued.

In addition,many of these proprietarymethods are closed and lack any public documentation. Therefore, they are difficult
to audit and it cannot be guaranteed that no footprint is actually left on the device. Knowing the process the device is going
through, and the precise alterations that this process causes to the device, is good practice and very important to the forensic
investigator.

4. Versatile forensic data acquisition

In this section we will describe the proposed method for iPad imaging via the Camera Connection Kit through the USB
connection. Themethod is divided into two general phases: device setup and imaging. Each phase is also divided into several
substeps which must be sequentially followed.

4.1. Device setup

This phase encompasses all the necessary steps to leave the device open and ready for forensic image acquisition. As
mentioned in Section 3, before any forensic analysis may be attempted, a special device setup is required in order to bypass
the access restrictions installed by the manufacturer. Once this phase is complete, low-level access to the device is actually
possible. In addition, it is necessary to install the extra packages needed for our proposed imaging approach.

4.1.1. Jailbreak the device
The only requisite in order to apply ourmethod is startingwith a jailbroken iPad.Wewill not provide detailed instructions

about how to jailbreak an iPad, just the basic guidelines. Once this prerequisite is met, our method can be applied on any
iPad, iOS version notwithstanding. This is in contrast with vendor specific tools, as explained in Section 3.

The actual way to perform jailbreaking varies depending on the iOS version installed on the device. An iPad running iOS
3.2.1 can be jailbroken just by browsing the website http://www.jailbreakme.com, which exploits a known vulnerability in
Safari to take control of the system. The exploits themselves and related documentation can be found at [12]. For a complete,
up-to-date chart about jailbreaking tools for each iOS version, refer to [13].

Should we find a device with a recent iOS version for which no jailbreak procedure exists, it could be acceptable to
downgrade to the latest jailbreakable version, although this should be done only as a last resort, and always documenting
the steps taken. This rarely succeeds, however, because Apple does not allow one to downgrade a device’s iOS version after a
newer version has been available for some time. There are some workarounds for this but they are of no use in our scenario
because they require that we have previously saved some crucial data before installing the present iOS version. Anyway, it
is very unlikely that we will hit a non-jailbreakable iOS. Take, for instance, iOS 4.2.1 (the first iOS 4 release for the iPad): it
was released on November 22 2010, and the appropriate tool for jailbreaking (in that case redsn0w) was released the next
day [14]. Similar time windows apply for the different 4.3.x iOS versions released during the first months of 2011.

Once a new iOS version has been released, the first jailbreaking methods will probably be tethered: a tethered jailbreak
means that it is only effective as long as the operating system is running. The moment it is rebooted (not when the device
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is locked), the jailbreak is lost, meaning that two things will happen temporarily until the device is rebooted again into a
tethered jailbreak state with the appropriate tool: (1) any jailbreak software installed will not work; and (2) some internal
applications (for instance the Safari web browser) may not work, or in the worst case, the whole device might not work at
all. We state again that this is only a temporary state, until the device is jailbroken again. It would be acceptable to use a
tethered jailbreak for imaging purposes, and in fact part of the tests performed in this paper have taken place on an iPad
with a tethered jailbreak.

Many jailbreaking tools (redsn0w, PwnageTool, etc.) will require the user to put the device into DFU mode with a
combination of presses of the ‘‘Lock’’ and ‘‘Home’’ buttons.When this is needed, the softwarewill give the user the necessary
instructions.

It also is important to note that jailbreaking a device does not mean carrier unlocking it. Jailbreak is just a precondition for
carrier unlocking. Our proposal need not perform carrier unlocking, and in fact this is rarely needed in the iPad given that it
is usually sold carrier-free.

4.1.2. Install required software packages
After the device has been jailbroken, a new application labeled Cydia [15] appears in the home screen. In the case that

this application already exists, the previous setup is not necessary. This is the software manager that allows the installation
of software not approved by Apple.

When run for the first time, Cydia initializes the device’s filesystem and exits. In the next execution, it presents a Who
are you? prompt, offering three choices; ‘Developer (no filters)’ must be chosen, as it offers the widest range of software.
Afterwards, if there are available updates to install, it is recommended to perform a ‘Complete upgrade’. The devicewill then
restart. It is necessary to re-open Cydia and, if asked for upgrades, repeat the process.

Once Cydia has finished upgrading itself, using the ‘Search’ function, the following packages are installed:

• openssh. This package contains the SSH server that will be used to access the device.
• coreutils. This package contains the split command, which is needed due to reasons that will be explained later.

The most important tool for this procedure, dd, need not be installed, as it is contained inside the essential coreutils-bin
package, which is installed by default as part of the jailbreaking process.

4.1.3. Network and auto-lock settings
It is necessary to connect the device to a wireless network, since during the process it will be remotely accessed from

another computer. This connection is necessary to issue commands, but not for the actual image data transfer. If no wireless
network is available, a laptop can be used to create an ad-hoc network and have the iPad join it.

Communication between the computer and the iPadwill be over SSH, and thus, encrypted. However, it is strongly advised
to use encryption in the wireless network protocol, and ideally, to use an isolated network for the computer and the iPad
only. The main reason for this is the fact that there is a small window of time during which the device will be accessible
with default passwords. There is at least one known worm which penetrates jailbroken iOS devices using these default
credentials [16], although nowadays it is almost impossible to find that code in the wild.

Once the connection has been established, the iPad ‘Settings’ application reveals the IP address in use (usually acquired
via DHCP) and allows the user to manually specify an IP address if needed. The IP address must be noted down, as it will be
needed later for accessing the iPad from the remote computer.

Still in the ‘Settings’ application, the ‘Auto-Lock’ option must be set to ‘Never’. This will prevent the device from going
into sleepmode while the forensic image is being generated, which could interrupt the process. When not in use, the device
should be locked (using the Lock button; see Section 2) in order to save battery.

We have not tested whether the multitasking capabilities and persistent Wi-Fi in iOS 4 would allow the imaging process
to take place while the device is locked. Anyway, given that imaging is a process that can take a long time in devices with
the largest local drives, it is recommended to keep the device awake all the time.

Local access approach
We would like to note that, even though the best way to apply our proposal is by issuing commands via SSH, we

experimented and also found at least two ways to apply the imaging method without actually using a remote computer.
However, both of them introduce additional complications to the process.

On one hand, it may be possible to installMobileTerminal instead of openssh, and use the terminal application in the iPad
itself to mount the hard drive and image to it. However, at the time of writing,MobileTerminal does not work in iOS versions
4.x, and this software has a history of long delays before being updated to support newer iOS versions.

On the other hand, another approach is to install openssh and run an SSH client on the iPad itself. There are many such
applications in Apple’s App Store, although keeping this application running during the image generation is likely to alter
data and will possibly corrupt the image. Thus, it is preferable to use a remote computer and leave the iPad as untouched as
possible. Setting the user data partition read-only is not a possible solution in this case, as will be explained in Section 4.2.1.
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Fig. 2. iPad connection to an external hard drive via Camera Connection Kit.

4.2. Device imaging

Before the process can actually begin, it is necessary to have the battery charged to, at least, about 20%. This is because,
during the imaging process, the iPad’s dock connector will be used for USB data transfer, so it will not be possible to plug
the device to a power point.

With the device connected to a wireless network, another computer is used to establish an SSH session with the iPad. At
this point, the device is accessible via the standard password alpine, which works for both the standard mobile user as
well as for the root user, which has full access to the device. The correct way to proceedwould be to access the iPad via SSH
as the root user, and immediately change its password and the password of the mobile user account, using the passwd
command.

4.2.1. Mounting a USB hard drive
In this step, the Apple peripheral, Camera Connection Kit [17], is used in order to access an external USB hard drive.

According to Apple, ‘‘the iPad Camera Connection Kit gives you two ways to import photos and videos from a digital camera:
using your camera’s USB cable or directly from an SD card’’ [17]. Thus, it consists of two adapters, one of them being an SD card
reader and the other offering a USB female connector; both of these adapters can plug (one at a time) into the iPad’s dock
connector, located in the base, below the ‘‘Home’’ button.

Initial vendor information suggested that the USB adapter only uses the PTP [18] protocol to access the images stored in
a camera, and that an actual camera, with its camera-to-USB cable, should be plugged into this connector for the adapter
to import the pictures. This is the normal use for this adapter, and is what Apple advertises it for. When this is done, the
Photo application launches and allows the user to transfer photos and videos from the connectedmedia to the iPad’s internal
memory.

Our results show that iOS implements the much wider USB mass storage device class protocol, of which PTP is a subset.
PTP allows basic operations on the items of a video device, usually a photo camera, in which FAT-formatted media store the
files under the /DCIM directory [19]). Instead, the iPad can mount and make full use of FAT and HFS filesystems.

The device just emulates the behavior of PTP: it automatically mounts FAT drives looking for the /DCIM. If this folder
exists, the Photo application will open, allowing the user to import contents; if it does not exist, the device is unmounted
and ignored. In our approach, we exploit this undocumented feature to manually mount an external USB hard drive with
the appropriate parameters, and use it to obtain an image of the iPad internal storage.

After connecting theUSB external drive to the iPad (see Fig. 2),we can check its presencewithin the SSH session by looking
for the /dev/disk1 device. The iPad internal storage disk is assigned the device name /dev/disk0, so the presence of
such a device implies that the newly connected hard drive has been correctly recognized.

Should no /dev/disk1 device exist, the drive has not been recognized. In our tests, this was usually accompanied by a
dialog in the screen complaining that ‘‘this device requires toomuch power’’, when trying to connect certain large solid state
storage drives and some portable hard drives that take power from USB only. Under iOS version 4 it is more problematic,
since the USB port will no longer emit 100mA (as it did under iOS 3.x) but only about 20mA [20]. Therefore, in our tests, we
found that the best results were achieved using a full-size external hard drive with its own power adapter, or connecting
the drive to a powered USB hub.

As for the supported filesystems,wehave been successful inmounting FAT andHFS+ (the standardMacintosh filesystem,
which is also the one used for the iPad internal storage). Due to theMacintosh EFI support, finding the correct partition name
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for disks with EFI partitioning can be tricky. It is not always named /dev/disk1. In that scenario, we found it is necessary
to list all the extra available disk devices and mount them, one at a time, until one is successful.

An important issue for Windows users is that their operating system will refuse to format a drive larger than 32 GB as
FAT [21], although it can normally mount much bigger FAT partitions and work with them flawlessly. These users will need
to use externals tools such as Fat32Format [22]. Mac and Linux users will have no trouble with their standard Disk Utility
andmkfs.msdos tools, respectively.

Zdziarski [2] recommended immediately remounting the data partition in read-only mode prior to beginning the actual
imaging. However, in our tests, we found that in both iOS 3 and iOS 4 the system halted if the partition was unmounted.
Forcing its remount was not supported either. It must also be noted that imaging amounted partitionmay alter the integrity
of the filesystem contained in the resulting image. In fact we found out that it is possible to end up with images that are
unmountable. In order to reduce this risk, no other activity should take place in the iPad (either via the touch screen or
through the network) while imaging.

Considering all the above, the best option is to use a drive with traditional MBR partitioning scheme, containing only a
HFS + partition. Once the disk has been mounted, it is possible to assess its free space and confirm that the drive has been
correctly recognized.

4.2.2. Obtaining the forensic image
At this point, the actual imaging process may be started by invoking the Unix low-level copying and raw data conversion

dd command, as listed in the following line. The resulting data is dumped to the newly mounted filesystem via the USB
connection.

# dd if=/dev/rdisk0s2s1 of=/mnt/ipad.dd bs=512k

If the target drive is FAT32-formatted, the maximum file size it can hold will be 4 GB. This means that images will need
to be split into 4 GB blocks. In the recommended scenario (imaging to HFS + drives), this is not necessary.

When finished, the target drive must be unmounted before disconnecting it from the iPad. This can be done by either
turning the iPad off or unmounting the drive by exiting the /mnt folder and running the Unix umount command.

If the device is passcode-protected, jailbreaking and accessing via SSH is equally possible. The simplest jailbreaking
methods from a user standpoint, such as jailbreakme.com, will not work given that we are unable to obtain initial access
to the device, but other methods (redsn0w, Pwnage Tool. . . ) may work.

5. Discussion on image analysis

Using our proposed open method, it is possible to obtain the data stored in the user partition in a manner that can be
readily accessed using forensic tools and techniques. This method can be automatically applied to new iOS versions as soon
as a jailbreak is available for them, even if it is just a tethered jailbreak.

In this section, we provide a brief discussion about how the resulting image can be processed and what kinds of data can
be obtained from our image, highlighting some important issues in more recent iOS revisions in that regard.

5.1. Obtainable data using forensic tools

Raw images obtained by our method can be treated in many ways. For instance:
• SQLite databases,which can be openwith a variety of SQLite clients available for all platforms,will show information such

as address book contacts, call history, SMS and e-mail messages, etc. This includes the consolidated.db file, which in
some iOS 4.x versions keeps a complete log of the user location forever, which can be parsed by iPhoneTracker [23].

• Property list (.plist) files containing XML information can be viewed with tools available for all platforms. These files
contain other relevant data such as: website bookmarks and cookies, maps history, as well as configuration information
for each application installed.

• Images and videos can be viewed. Moreover, each of them is likely to contain embedded GPS coordinates of the place
where it was taken. This can be very relevant to certain investigations.

• And finally, as a wise forensic examiner once said, ‘when all else fails, we carve’. Raw disk recovery (file carving) tools can
be used to recover any file type based on its signature: pictures, voicememos, raw text. . . This is an extreme resource that
implies getting many corrupt files and disclosing valuable data such as names, paths, and timestamps; however it is still
a very valuable technique, helpful in many scenarios. Open source tools such as Scalpel [24], as well as most commercial
data recovery tools, can be used to extract raw data from the image.

We verified that these and other valuable data can be extracted from an image generated by our method. All these
possibilities are widely covered by Zdziarski [2] and Morrissey [25].

5.2. iOS 4 data encryption

Starting with iOS version 4, Apple introduced a layer of hardware encryption services called data protection [26]. This
feature, if activated, will result in partial encryption of the imaged data. Therefore, it is a very important aspect as far as
forensic image processing is concerned.
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We tested the proposed imaging method on devices with this feature activated and experimented with the encryption
layer, observing a new protect option for the mount command. Under a fresh installation (and subsequent jailbreaking)
of iOS 4.2.1 on an iPad, running the mount command will show that this option is used for the data partition. The same
happens on an iPhone 4. However, on an iPhone 3G (which does not support this feature), the protect option does not
show up.

In addition, we have observed that iOS 4.2.1 /sbin/mount binaries in the iPad and iPhone 4 contain the protect string,
but not in the iPhone 3G binary. The string is also present in several of the /sbin/mount_* binaries under Mac OS X 10.6
Snow Leopard, whereas those same binaries in Linux systems do not contain the ‘protect’ string. This leads us to consider
that, probably, the protect parameter for the mount command refers to the new data protection (local encryption) iOS
feature.

There are two factors that weaken this encryption scheme:

(1) All original iPads sold between March and November 2010 (that is 8–10 million devices) shipped with iOS version 3.x.
Even when undergoing a normal upgrade process to iOS 4.x, encryption will not be activated: for this to happen, the
device must go through a full restoration, which requires completely restoring its data from the iTunes backup. This
takes a notably longer time (one to two hours instead of barely 5–10 min) and will only happen if a fatal error rendered
the device unbootable.

(2) Even if data protection is enabled, it could be circumvented as long as the encryption keys are stored within the device
itself.

In order to determine whether the encryption keys are stored in the device (i.e. the device canmount the encrypted data
automatically, without the need of any user input or network connectivity), we performed the following checks:

(1) The following test was conducted over two devices: a first-generation iPad and an iPhone 4, both of them running iOS
version 4.3.1.

(2) The device was jailbroken and an SSH server installed.
(3) Using the iOS ‘Settings’ app, GSM/3G data connectivity was disabled. In addition, ‘flight mode’ was enabled.
(4) Wi-Fi connectivity was then enabled again. This causes the device to remain in ‘flight mode’ (absolutely no GSM/3G

activity) while allowing for 802.11 wireless communication.
(5) The devicewas connected to aWi-Fi networkwith no Internet connectivity. Other nearby networks stored in the device’s

‘preferred networks’ list were erased, to ensure that upon reboot the device would join our test network.
(6) The device was turned off, and then on, booting normally.
(7) Once the boot process finished, the device would show its lock screen, asking for the passcode. At this point, the device

was left untouched.
(8) From a different computer in the sameWi-Fi network, we initiated a SSH connection to the device, running the ‘mount’

command and confirming that the data partition (/dev/disk0s2s1) was already mounted under /private/var.

The encrypted volume is always automatically mounted with no need for passcode entry or Internet connectivity. This
leads us to the conclusion that iOS 4 local encryption relies on a key stored within the device itself, which implies that
forensic images acquired through our method can be decrypted—even when certain data may be additionally encrypted
with the user passcode, which seems to be the case with the Mail application and others.

In fact, in May 2011, ElcomSoft announced [27] the breaking of iOS 4 encryption, with a smart approximation that
can extract most encryption keys from the physical device, which confirms that the keys reside within the device itself.
However, ElcomSoft restricts the availability of the toolkit to select government entities such as law enforcement and
forensic organizations and intelligence agencies.

5.3. Obtaining relevant information from encrypted images

Even though, to our knowledge, no open and easily available mechanism exists to defeat iOS 4 encryption, our
experiments have shown that, nevertheless, it is possible to obtain some data from our image. Even though encrypted
images initially fail to mount under Mac OS X, we were able to find that, surprisingly, when those images are truncated
(i.e. the filesystem loses its final bytes), they mount correctly. These results persisted in all our tests, in which we shortened
the images by trailing the final bytes (from 1 KB to 1 GB). We did not run further tests because larger cuts would, in the end,
generate problems when reading the images. However, this behavior seems to indicate that the ‘encrypted’ flag resides in a
header at the end of the filesystem and, when this header is missing, OS X does its best to mount the filesystem anyway.

Using thismechanism, the full list of files and directories can be obtained, aswell as other details such as lastmodification
time or file length. The file contents themselves are encrypted, but a lot of useful information about the device usage can
still be obtained this way, such as the list of installed applications or their last usage date.

In many cases, just the existence of files with certain names and sizes can be relevant evidence. For instance, consider a
corporate information leak: if an iOS network client was used to extract the leaked files, or even if just some of the leaked
files have been read in an iOS application, the image will show files with:

• Names, sizes, andm-time (last Modification time) matching those of the original, leaked files.
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Fig. 3. Throughput analysis with different block sizes.

Table 1
Test results: throughput obtained with different block sizes.

bs S1 (MB/s) S2 (MB/s) S3 (MB/s) S (MB/s)

32 KB 20.7 20.8 20.8 20.77
64 KB 20.7 25.1 25.1 23.54
128 KB 29.5 27.6 27.6 28.22
256 KB 28.8 28.8 28.8 28.80
512 KB 28.8 29.5 29.6 29.30
1 MB 29.0 28.9 29.0 28.97
2 MB 28.1 28.1 28.1 28.10
4 MB 22.9 22.9 23.0 22.93
8 MB 18.1 18.1 18.2 18.13
16 MB 16.3 16.3 16.3 16.30
32 MB 15.5 15.5 15.5 15.50

• c-time (Creation time, or time of the last status Change), indicating when the files first arrived on this device (or, if they
were moved to a different directory afterwards, indicating when that happened).

• a-time (last Access time), indicating when the files were last read, which can indicate whether the files have been
manually reviewed by the user after downloading them.

• Their allocation under the folder of the corresponding iOS application that generated them.

6. Performance analysis

The most important parameter in the efficiency of our proposed method, as far as imaging speed is concerned, is the bs
(block size). In order to obtain an optimal value,we ran a series of tests for each value. External interferencewasminimized by
turning off Bluetooth, 3G data, push notifications, push e-mail, and localization services. Wireless connectivity was needed
for our tests, however our wireless network did not have a gateway to the Internet, again to keep the device activity to a
minimum. After these settings were applied, the device was rebooted into a clean state.

Under these conditions we ran three complete 63.5 GB dumps for 11 different values for bs, amounting to a total of
1.90 terabytes in 33 dumps. The speed obtained in each test (S1, S2, S3) can be seen in detail in the corresponding Table 1 (see
Fig. 3 for a quick summary).

We were surprised to find that small values (128 KB–2 MB) provide the best throughput, whereas larger or smaller
values result in a notable speed decrease. This is in contrast to what happens with traditional computers (be they desktops
or laptops), in which the best results are obtained with block sizes of 16 or 32MB, usually matching typical hard drive cache
sizes.

In comparison, we tested the Zdziarski method over an ad-hoc 802.11n network operating at its maximum theoretical
rate (108 Mbps), and we obtained a throughput of barely 1 MB/s, which means that a 16 GB iPad would be imaged in 5 h
and a 64 GB one would require about 20 h. Our USB approach results in a speed boost of nearly 30× over traditional Wi-Fi
imaging.

Forensics software vendors do not seem to release specifications about the imaging times needed by their methods; we
could only find that information for Jonathan Zdziarski, who states [28] ‘‘the latest version of the Zdziarski method, which is
used in the automated tools available free to law enforcement agencies worldwide’’: ‘‘about 15–30 min is all it takes, regardless
of whether you’re imaging a 4 GB iPhone or a 32 GB iPhone 3G[s]’’. Assuming he is able to image 32 GB in ‘about 30 min’,
our method is twice as fast. However, Zdziarski does not mention how much time he needs to image an iPad, and our
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method cannot be tested in an iPhone because the iPhone does not support the Camera Connection Kit. Thus, the different
throughputs could also indicate that the iPad’s serial port is faster than that of the iPhone.

7. Conclusions and future work

In this paper, we have presented a novel approach that takes advantage of a hidden feature in the iPad’s USB adapter so
it is possible to use a cheap, universally available $ 30 accessory to image the device directly to a USB drive attached to it.
The main contribution of this approach is in providing a mechanism that is fast, open and easily available to anyone, and
that automatically keeps working regardless of the iOS version.

To date, high transfer rates could only be achieved using commercial tools which are paid for and/or restricted to law
enforcement agencies, opaque to the scientific community and undocumented. Therefore, it is difficult to assess what is
really happening during the imaging process and whether the original data is somehow being altered. Furthermore, they
only work for specific iOS versions, which becomes a hassle when the current iOS is upgraded. In fact, it may be the case
that, for some time, no such tool is available.

On the other hand, open and easily upgradeable approaches are entirely based onWi-Fi image transfer, being very slow.
Our approach offers what appears to be the best of both worlds, becoming one of the fastest ways to obtain a complete
forensic dump of the Apple iPad with these characteristics. In fact, we have apparently reached the speed limit of the iPad’s
dock connector. This is accomplished using a generic UNIX approach via jailbreaking, which is likely to last longer thanmost
iPad forensics software products, thus guaranteeing that it can be applied in future iOS versions.

As far as further work is concerned, currently, the main challenge to the whole process of iPad forensic imaging is the
new encryption layer for iOS 4. Even though the device data protect mode is not widespread yet and, since very recently,
law enforcement agencies have methods at their disposal that break such encryption, we deem it interesting to perform an
in-depth study of the iOS 4 encryption system and make further analysis of a protected image.

Nevertheless, there is still some interesting work that does not need a full disk image, such as being able to perform a
live memory dump of the device, autonomous imaging from the iPad to the connected USB drive, eliminating the need for
a network and a remote computer, and analyzing the forensic artifacts left by the AirPrint subsystem in the device’s local
disk.
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Abstract—Since its presentation by Apple, both the iPhone and
iPad devices have achieved a great success and gained widespread
popularity. This fact, added to the given idiosyncrasies of these
new portable devices and the kind of data they may store open
new opportunities in the field of computer forensics. In 2010,
version 4 of their operating system (iOS) introduced AirPrint,
a simple and driverless wireless printing functionality supported
by some network printers. This paper presents an analysis of
the traces left by AirPrint and assesses whether it is feasible to
recover them in the context of a forensic investigation.
Keywords: Forensics, iPad, iPhone, iOS, Cybercrime, Air-
Print, Apple

I. INTRODUCTION

Information technologies have grown rapidly in the last
decades, changing the way we live, work, and communicate.
Portable devices such as smartphones and tablets have evolved
from simple phones and agendas into literally full-fledged,
always-online computers that fit our pockets, containing huge
amounts of valuable data about us: contacts, calendar, e-mails,
photographs, as well as a pile of logs: phone calls, chat,
geographic positions, etc.

The practice of digital forensics has needed to adapt quickly
to the emerging mobile technologies. We once had a homo-
geneous personal computer market, mainly dominated by a
few different Windows versions, with minor representations
of Mac OS or Unix-based systems. Now we find that the
most personal devices, the ones that always accompany their
users and are more prone to contain sensitive information,
run software environments which simply didn’t exist a few
years ago - namely Android and iOS. Furthermore, because of
the competitive nature of the market, with each new version
of these systems, new functionalities are added in order to
appeal to a greater set of users, and thus become their device
of choice. However, some of these new features may manage
personal user data and are worth analyzing from a forensic
investigation standpoint.

This paper focuses on Apple iOS devices (namely, iPhone,
iPad and iPod Touch) and, specifically, their capabilities to
print wirelessly to compatible printers using the AirPrint
technology, presented by Apple in late 2010 [1]. This paper
analyzes this relatively recent feature and determines whether
using AirPrint to print a document leaves some kind of trace in
the iOS device itself which may be open to subsequent forensic

analysis, leaving personal user data exposed without their
knowledge. Given the popularity and acceptance of iOS based
devices [2], any available process which allows to recover
user data becomes especially relevant from both a computer
forensics and a privacy concern standpoint.

As far as the authors can tell, there has been no research on
how AirPrint works behind the scenes and the forensic traces it
may leave. Several authors have reviewed the existing, mostly
commercial, forensic investigation tools for iOS based devices
[3], [4]. However, analysis of AirPrint activity does not seem to
be covered by any of the software solutions available for iOS
devices. In fact, it may seem odd that something as basic as
document printing has been left out of the forensic analysis of
mobile devices so far. One must consider, however, that mobile
operating systems have lacked common printing frameworks
till quite recently. Apple incorporated AirPrint into iOS in late
2010, whereas Android was not provided printing capabilities
until early 2011, through Google Cloud Print [5].

This paper is structured as follows. First of all, in Section
II, AirPrint and its mode of operation both from a user’s and
technical standpoint are presented. The results of the analysis
of forensic traces left by AirPrint are shown in Section III.
Following, in Section IV, the recoverability of such traces and
which kind of useful information may be obtained is assessed.
Finally, concluding the paper, Section V summarizes the paper
contributions and outlines further work.

II. DESCRIPTION OF AIRPRINT NETWORK PRINTING

Briefly explained, AirPrint is an iOS feature that allows
applications to send content to printers using the iOS device’s
wireless connection. Directly quoting Apple [1]: ‘AirPrint
automatically finds printers on local networks and can print
text, photos and graphics to them wirelessly over Wi-Fi without
the need to install drivers or download software’.

Apple announced AirPrint in September 2010. Two months
later, iOS 4.2 was released for the iPhone, iPad and iPod
Touch, being the first iOS version to offer this feature to users.
Its standard functionality allows printing only to specific,
AirPrint-enabled printers. Nevertheless, as of January 2012,
there are more than one hundred AirPrint-enabled printers in
the market, from five major vendors (Brother, Canon, Epson,
HP and Lexmark) [6]. Apple does not support sharing a
common printer via the computer it is connected to, even when
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it was possible with some Mac OS X 10.6.5 beta versions;
however, it can be done by using software tweaks such as
AirPrintActivator [7].

Long before the introduction of AirPrint, different solutions
[8], [9] tried to fill in this gap. Usually, such solutions involved
iOS applications capable of opening different file formats and
sending them to a desktop computer, running a companion
application, which would in turn send the document to the
printer itself. Some printer vendors developed specific clients,
however, none of these solutions were ever widely spread
among users. Currently, with AirPrint working out-of-the-
box and embedded into all applications, it is hard to believe
that new users will consider using a specific, usually paid,
application to handle printing, except maybe in some very
particular environments, such as cases where the use of these
kind of applications was consolidated before AirPrint was
launched, or some advanced capabilities are required by power
users.

From a user’s standpoint, Figure 1 summarizes the printing
process, showing the screens it is actually possible to interact
with, as seen on an iPhone.

Fig. 1. Step-by-step AirPrint options screen on an iPhone.

In the client side (iOS device), AirPrint-enabled applications
contain a “Print” button that, when pressed, will present an
extremely simple menu (Figure 1, (a)), with only two or three
available options:

1) Printer: This option opens a list of all AirPrint-enabled
printers found in the local network, showing a “name”
and “description” field for each one.

2) Range: (optional) Defaulting to “all pages”, this option
opens a selector which allows the user to choose a range
of pages to be printed, rather than all the document.

3) Copies: Specifies the number of copies to be printed.
4) Depending on the printer features, additional parameters

such as duplex printing can be controlled.
5) Print: This button proceeds to send the job to the printer.

The user cannot specify any other kind of information
usually available in printing menus, such as paper size or
orientation, printing quality, etc. Everything is automatically
handled by AirPrint, using some default options. When the
user chooses to ”Print” the job, the device shows some brief
messages (‘Contacting Printer’; ‘Preparing page (...) of (...)’;
‘Sending to Printer’). However, depending on how long the

print job is, these messages may be barely visible or last for
several seconds.

After the job has been sent to the printer, the printing menu
disappears and the application returns to its previous state.
At this point, invoking the list of recently used applications,
by double-clicking the device “Home” button, reveals a Print
Center application (Figure 1, (b)). Unless the user somehow
knows this application has started running in background, it
may be difficult for him to find it, since no active feedback
is provided during the printing process, thus being invisible at
casual glance.

Opening the Print Center application, the user can see the
list of running and pending printing jobs, check their details
and cancel them (Figure 1, (c)). When the last job finishes,
i.e. the moment the printer ejects the last page, the application
closes, and does not appear anymore in the list of recently
used applications. As far as it is known, there is no way to
open the Print Center as a standalone application. It is only
executed while there are jobs being printed.

From a technical standpoint, the AirPrint service is known
to use the standard IPP protocol at network level for printer
management, and Bonjour/Zeroconf [10] for service discovery.
A comprehensive description of the printing architecture and
its underlaying API in iOS devices can be found in [11].

III. ANALYSIS OF FORENSIC TRACES

This section presents the preliminary information that must
be considered before more in-depth forensic investigation may
proceed. Mainly, assessing which traces are left by the AirPrint
subsystem, how they can be discovered, how they behave and
which useful information can be obtained from them. All this
information was discovered through some basic experiments.

A. Preliminary setup

The following equipment was used for all the analysis and
tests throughout this paper:

1) iOS devices: iPhone 3G (8 GB, iOS 4.2.1, multitasking
enabled) and iPhone 4 (16 GB, iOS 4.3.3 and 5.0.0),
both jailbroken with redsn0w.

2) AirPrint-enabled printer: HP Photosmart 5510.
3) Two laptops with 802.11 wireless connectivity.
The iPhone 3G was used so that it would be possible to

dump and analyze the filesystem without being affected by
the filesystem encryption policy enforced on newer devices.
Nevertheless, Bedrune and Sigwald published details about
iOS data protection, and shortly after they released the tools
and source code capable of breaking this encryption [12]. The
device was jailbroken in order to gain root access, and install
an SSH server and basic UNIX tools.

Given that iOS enforces the device to run only code signed
by Apple (downloaded from the App Store), the process of
jailbreaking was used in the tests to bypass that restriction in
order to have full access to the devices and be able to run
shell commands on them. The jailbreak process is exempted
from prosecution under the anti-circumvention section of the
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U.S. Digital Millenium Copyright Act [13], and it has been
very useful for forensic research in the past [14], [15].

The AirPrint feature depends on the multitasking capabil-
ities of the device. In fact, Apple disabled these feature for
some devices in iOS 4 alleging performance issues. However,
it is possible to enable them during the jailbreak process
using the redsn0w tool [16]. By doing so, the chosen device
became the perfect testbed for the experiments: a small device
(its 8 GB take about 3 hours to transfer via wi-fi), with no
encryption, that supports AirPrint. The iPhone 4 was used to
confirm that some of the findings still applied on newer devices
and under iOS version 5.

For both environmental and budget issues, the best efforts
were made to reduce costs and waste. Paper was reused by
printing once and again over the same pages, and the life
of print cartridges was extended well beyond the limits of
readability. Some printers complain on low ink and refuse to
continue printing even when they are still giving pretty decent
results; luckily, the chosen model kept printing for a long time
after the cartridge was empty, and only then it presented a
message warning about the warranty issues when continuing
printing with empty cartridges. Nevertheless, it is probably
obvious that it was necessary to throw away quite a lot of paper
during the experiments, as well as quite a few ink cartridges.
Anyway, resources were recycled as much as possible.

B. Forensic traces left by AirPrint

Once a root shell is executed, it is possible to invoke
several commands before, during and after printing, comparing
the results in order to look for remarkable differences. The
following commands were executed in the iOS devices:

1) find / -type (b,c,d,f,l,p,s) for listing, re-
spectively, all the block special devices, character special
devices, directories, regular files, symbolic links, FIFOs,
and sockets, in the filesystem.

2) netstat -an -f inet for listing any current net-
work connections. This would show active client-server
activity, as well as inactive servers awaiting for incoming
petitions.

3) ps aux for getting information about running pro-
cesses.

By reviewing the lists of files and directories generated
with the find commands explained above, it was observed
that, when a device prints via AirPrint for the first time, the
following folder is created:

/var/mobile/Library/com.apple.printd/

The moment a document is sent to printing, a new file
named 1.pdf is created under this folder. After running
additional tests, it was confirmed that this PDF file exists in
disk only while the document is being printed. The moment
the printer ejects the last page and considers the job finished,
the PDF file is deleted. This is also the moment at which the
Print Center application disappears from the list of recently
used applications.

Printing some documents and copying the resulting tempo-
rary PDF files to another location before their deletion, and
then examining them, is enough to find that these files are
regular PDF files with the same content that is being sent to
the printer (no matter whether it was originally in PDF format
or not). Hence, an obvious trace is being left in the filesystem,
and it reflects exactly what was printed.

It must be noted that, in some of the preliminary tests,
before the physical printer was available, a virtual PDF printer
was setup in a Mac computer and shared, making it look like
an AirPrint printer. It worked as expected, it was possible to
print to it from an iPhone, as well as an iPad. However, the
printing of the document (in this case, the generation of a
file in the hard drive of the Mac) was much shorter than the
actual printing of a page through a real printer, with real ink
and paper. This greatly reduces the chances of the temporary
files being flushed to physical disk from the buffer cache
in the iOS device before deletion, and hence their chances
of recoverability. Therefore, to obtain accurate results, the
experiments need to be performed with a real printer.

C. Properties of the AirPrint temporary files

From the execution of the different tests, the following rules
were observed:

1) For every print job sent via AirPrint, a file with the name
of 1.pdf is created in the directory
/var/mobile/Library/com.apple.printd/

2) This file is in PDF format, containing the document sent
to the printer. This observed behavior is consistent across
internal iOS applications (Mail, Safari) as well as third
party ones (GoodReader, Papers, Keynote...) The only
exception found is the iOS Photos app, which seems not
to generate any temporary files on disk when printing,
thus not leaving these traces.

3) The file 1.pdf is deleted as soon as the printing job
finishes. The timing observed indicates that this happens
not just after finishing the task of submitting the job to
the physical printer, but after the document has been
completely printed.

4) When one job is being printed, subsequent jobs arriving
to the queue generate files named 2.pdf, 3.pdf, etc.
The behavior observed suggests that in iOS 4 the counter
resets as soon as the queue is empty (if a new job arrives
later it will be named 1.pdf again), whereas in iOS 5
the counter seems to keep increasing (each new job gets
a higher number even if the queue is empty) until the
device reboots.

5) When a job asks for more than one copy of the same
document, the temporary PDF file contains only one
copy of it. There is probably a command, sent from the
device to the printer, indicating the number of copies
wanted.

6) When a page range is specified, the temporary PDF file
contains only this page range. There is an exception
when some applications print files that are themselves
PDFs, which is studied later in Section III-D.
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D. PDF metadata of the temporary files

Using a standard PDF reader, the metadata contents inside
different temporary files generated by AirPrint were extracted
and compared them. Generally, all the temporary PDF files
created by AirPrint can be identified as such by their metadata:
they all show the same ‘PDF producer’ entry (‘iPhone OS
x.y.z Quartz PDFContext’, with x.y.z being the iOS version
number), and the creation and modification dates both indicate
the date and time when the document was sent to the printer
(see Figure 2). Therefore, knowing what has been printed from
a device looks as simple as recovering deleted PDF files from it
and focusing on those with the strings ‘iPhone OS x.y.z Quartz
PDFContext’. Moreover, the creation and modification dates
contained inside those PDF files in the form of PDF metadata
will indicate precisely the printing date and time.

Only one exception was found to this behavior. When
printing PDF files, i.e. when the content to be printed is
itself in PDF format, some applications behave like described
earlier, but others (including iOS built-in applications such
as Safari or Mail) actually copy the original PDF file to
the com.apple.printd directory as 1.pdf, instead of
generating a new PDF file with fresh metadata. In these cases,
PDF metadata cannot be used to tell whether one given file is
a trace from AirPrint printing: the only peculiar thing about
that PDF file is the fact that it resides under such directory.

Considering this, an eventual automated tool aimed at re-
covering the traces left by AirPrint should go further than just
carving for PDF files: it should correctly interpret the internals
of the HFSX filesystem and tell whether each recovered
file existed within the com.apple.printd/ directory, or
somewhere else.

Fig. 2. Metadata of one temporary PDF file generated by AirPrint, as shown
by the OS X ‘Preview’ tool.

IV. RECOVERABILITY OF AIRPRINT TRACES

Given that the temporary PDF files generated by AirPrint
only exist in the filesystem for a limited time and are deleted
when the document has been printed, the possibility that,
depending on disk scheduling and other factors, these files

might never be actually flushed to the physical disk must be
considered. In that case, they are unrecoverable by a subse-
quent forensic analysis. This section studies such possibility
and assesses the probability that a given trace may be actually
recovered at a later time.

The are several factors that increase the chances of the
temporary PDF files being flushed to disk, making them
potentially recoverable in the future. Some of these factors
are:

• Documents that take a long time to be printed because
they have many pages or because they contain graphics.
Note that, when sending a document to the printer, the
user can control very few options: printer, page range,
number of copies - nothing else. There is neither an
option for printing in ‘draft mode’, nor one for using
only the black cartridge, meaning that everything sent
via AirPrint is printed in full color, good quality... and
may require quite a lot of time to finish.

• Documents that are sent while there are other printing
tasks running.

• Periods of printing interruptions due to the need of human
interaction, such as the printer running out of paper or out
of ink.

A. Test scenario

In order to test the recoverability of AirPrint traces in the
form of deleted temporary files, a series of experiments was
run. The goals of these experiments were twofold. First of
all, to determine whether the temporary files generated by
AirPrint are actually written to the physical disk at some point,
and thus may be recoverable after deletion. In addition, to
asses whether, even if the previous case is true, each of those
temporary files would still be recoverable after generating
more of them (i.e. what are the chances that the AirPrint
temporary files overlap each other in disk, always overwriting
the same space and thus making each other unrecoverable).

Some steps in the testing process involved printing docu-
ments, while others were just aimed at simulating some casual
user activity in the device (mail browsing, software update,
reboot). For those tests that involve printing, 10 documents of
a given kind are printed in each test. Five of the tests involve
printing, which means that after completing all the tests, 50
documents had been printed.

After each of the tests, a dump of the iPhone filesystem
was obtained. For those tests that involved printing, the dump
process was not started until the printer had finished printing
all of the submitted jobs sent.

Given that the chosen device was an iPhone, the disk image
was transferred on-the-fly via wi-fi to an external computer,
using the method proposed by Zdziarski , based on the
dd and netcat commands [14]. However, in the case of
iPad devices, the image could be transferred much faster to
USB storage using a method based on the Apple Camera
Connection Kit [17].

Note that the set of tests was carried out in a cumulative
way, meaning that given any dump dumpN , it could contain
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traces of not only the temporary files created during test
testN , but of all of the temporary files created during the
earlier tests as well. Given that there was a total of 50
documents printed, but 10 of them correspond to the Photos
application, which does not generate the AirPrint temporary
files (as explained earlier in section III-C), the latest dumps
should have a maximum of 40 recoverable artifacts.

A detailed description of the whole testing process follows:
1) Use Safari to print 4 web pages and 6 PDF files. Obtain

dump1. From this filesystem dump, it should be possible
to recover up to 10 temporary PDF files generated by
AirPrint.

2) Use GoodReader to print 10 PDF files. Obtain dump2.
This introduces 10 new temporary files, thus there
should be a maximum of 20 recoverable AirPrint ar-
tifacts in this dump (10 from the previous test, and 10
more from this test).

3) Use iOS built-in Photos app to print 10 photos. Obtain
dump3. The number of maximum recoverable AirPrint
artifacts remains at 20, given that, as explained earlier,
printing from the Photos application does not generate
temporary files - an exception not observed in any other
application.

4) Use iOS built-in Mail app to print 5 e-mails and 5 at-
tachments. Obtain dump4. There should be a maximum
of 30 recoverable AirPrint artifacts (20 from earlier tests,
plus 10 more created during test).

5) Turn the device off, wait for 30 seconds, turn it on.
Obtain dump5. This does not generate any new Air-
Print temporary files, thus at this point the number of
maximum recoverable artifacts remains at 30.

6) Use Safari to print 6 DOC and 4 XLS files. Obtain
dump6. These 10 new temporary files increase the
number of maximum recoverable artifacts to 40.

7) Open the Mail app, download messages and large at-
tachments (totaling 15 MB), turn the device off, wait
for one minute, and turn it on. Obtain dump7. This does
not generate any new temporary files, thus the number
of maximum recoverable artifacts remains at 40.

8) Open the App Store. Install available software updates
(iBooks and GoodReader). Obtain dump8. Again, this
does not generate any new artifacts.

B. Recovering the traces

Each filesystem dump was analyzed in order to determine
whether the temporary files generated by AirPrint at each stage
were recoverable, both immediately after their generation, and
at later stages.

In order to recover the traces left by AirPrint, the file carving
[18] technique was chosen. This is a data recovery method
consisting of going through a raw data stream (a filesystem
dump in this case) looking for possible ‘headers’ and ‘footers’
(beginnings and ends) of known, chosen file types, such as
JPEG pictures, MPEG video files, PDF documents, etcetera.
The more strict a file type specification is, the easier it is for the
carving tool to identify and recover that file type. In addition,

some tools perform sanity checks such as establishing a file
size limit or checking each recovered item against its format
specification, to determine whether it may be corrupt.

One of the benefits of the carving technique is that it
can be used, with more or less success, over any kind of
data, be it a known or unknown filesystem, a portion of it,
or something completely different, such as network captures
or RAM memory dumps. Note, however, that many tools
implement specific strategies for common filesystems in order
to improve overall success rate and extract items only from
the unallocated space, skipping the disk space used by normal
existing files. This is something very useful when the user just
wants to focus on recovering deleted files.

This technique was applied by means of the open source,
widely used photorec tool [19], which has a long track of
usefulness in this kind of scenarios [20] [18], even on mobile
devices [21].

Every dump obtained during the tests was carved for PDF
files using the default photorec parameters. Fine-tuning
these parameters would have probably improved the recovery
success rate, however, after the tests were completed, it was
found unnecessary given that the results achieved were indeed
very positive.

The results of trace extraction using the photorec tool were
analyzed from two different standpoints:

1) Recoverability. Tenths of the temporary PDF files gen-
erated by AirPrint were successfully recovered from
each filesystem dump, which confirms that those files
are indeed flushed to disk.

2) Persistence. The artifacts created during our first tests
were still recoverable after the last tests. This suggests
that, probably due to iOS file allocation strategies, the
temporary files generated by AirPrint are not very prone
to occupy the disk space previously assigned to other of
those files.

Figure 3 summarizes the results. The horizontal axis enu-
merates each of the test steps previously explained in section
IV-A, whereas the blue and orange lines indicate, respectively,
how many AirPrint temporary files had been introduced at each
step, and how many of them were successfully recovered by
photorec.

From the results of the experiments, it can be concluded
that, immediately after printing one or more documents, there
is a very high probability that the file will actually be written
to physical disk and, thus, recovering the temporary files
generated by this process. For instance: 100% of the temporary
artifacts created during test1 were successfully recovered from
dump1. All of them were also successfully recovered from
dump2 (altogether with the new artifacts introduced during
test2).

Nevertheless, as expected, the recoverability rate decreases
as time goes by and the device continues working. In the tests,
this can be seen after test4 and test7. Considering that the
artifacts are stored in unallocated space, it is unavoidable that
using the device for long periods of time reduces the chance
of recovering such artifacts, as new data stored in the device
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Fig. 3. Recoverability test results

may overwrite that disk space. However, the tests show that
the probability does not decrease very quickly, and there is at
least a good chance to recover most of the traces.

V. CONCLUSIONS AND FUTURE WORK

This paper analyzes the forensic traces left by usage of the
AirPrint functionality in iOS based devices. As a result, it was
found that the use of this feature to wirelessly print documents
leaves a trace in the device in the form of temporary files,
containing a copy of the printed information and indicating
precisely when it was printed. The recovery of these AirPrint
artifacts can be very valuable from a forensic standpoint in
scenarios such as information leaks or inadequate content
distribution.

The performed tests show that these traces may be recov-
erable even after the device continues undergoing activity.
Even when the experiments were designed to skip the iOS
encryption (optional in iOS 4, enforced in all devices in iOS 5,
released in October 2011), these findings could be successfully
applied to encrypted devices when combined with the recent
undeletion-and-unencryption process implemented by Jerome
and Sigwald [12], and hence could be integrated into iOS
forensic tools.

In fact, further work includes a more detailed analysis of
file recovery in encrypted devices in order to test AirPrint
artifact recovery under such scenario. In addition, it would
be interesting to assess whether additional information related
to the AirPrint capability could be obtained, apart from that
directly extracted from the temporary files, such as the specific
printer the job was submitted to.
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Copyright © 2015 L. Gómez-Miralles and J. Arnedo-Moreno. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Since its presentation byApple, both the iPhone and iPaddevices have achieved great success and gainedwidespread popularity.This
fact, added to the given idiosyncrasies of these new portable devices and the kind of data theymay store, opens new opportunities in
the field of computer forensics. In 2010, version 4 of the iOS operating system introduced AirPrint, a simple and driverless wireless
printing functionality supported by hundreds of printer models from all major vendors.This paper describes the traces left in the
iOS device when AirPrint is used and presents a method for recovering content andmetadata of documents that have been printed.

1. Introduction

Information technologies have grown rapidly in the last
decades, changing the way we live, work, and commu-
nicate. Portable devices such as smartphones and tablets
have evolved from simple phones and agendas into liter-
ally full-fledged, always-online computers. In this scenario,
where mobile devices become ubiquitous, privacy and cyber-
security become a great concern since such devices may
contain huge amounts of sensible valuable data about us:
contacts, calendar, e-mails, and photographs as well as a pile
of logs: phone calls, chat, geographic positions, and so forth.

The practice of digital forensics has needed to adapt
quickly to the emerging mobile technologies. We once had a
homogeneous personal computer market, mainly dominated
by a few different Windows versions, with minor representa-
tions of Mac OS or Unix-based systems. Now we find that the
most personal devices, the ones that always accompany their
users and are more prone to contain sensitive information,
run software environments which simply did not exist a few
years ago, namely, Android and iOS. Furthermore, because of
the competitive nature of the market, with each new version
of these systems, new functionalities are added in order to
appeal to a greater set of users and thus become their device
of choice. However, some of these new features may manage

personal user data and are worth analyzing from a forensic
investigation standpoint.

This paper focuses on the AirPrint feature of iOS devices
(iPhone, iPad, and iPod Touch), which allows them to print
wirelessly to compatible printers [1]. In a previous paper
[2] we observed that printing a document through AirPrint
leaves a trace in the filesystem of the iOS device in the form
of a temporary file containing the printed content and with
a specific metadata that allows for the identification of this
precise kind of files in the filesystem.This paper extends our
previous research to analyze if these temporary files can be
recovered even in modern iOS versions which use hardware-
based data encryption. Considering the rise ofmobile devices
and applications in general [3, 4] and the hundreds ofmillions
iOS devices in particular [5], any available process which
allows to recover user data becomes especially relevant from
both a computer forensics and a privacy concern standpoint.

The main contribution of this paper is the exposition of
a method to recover from an iOS device the contents and
metadata of documents printed through AirPrint, even in
modern devices which feature hardware-based data encryp-
tion. Analyzing the behavior of AirPrint posed an interesting
challenge since iOS is a closed operating system and lacks
public documentation about many internal aspects. In addi-
tion, evenwhen themobile threat landscape has been covered
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by other authors [6], there seems to be no additional research
on how AirPrint works behind the scenes and the forensic
traces it may leave. Several authors [7, 8] have reviewed the
existing (mostly commercial) forensic investigation tools for
iOS devices; however, analysis of AirPrint activity does not
seem to be covered by any of the existing software solutions.

This paper is structured as follows. First of all, in
Section 2, AirPrint and its mode of operation both from a
user’s and technical standpoints are presented.The analysis of
the traces left by AirPrint and the information they contain
is shown in Section 3. In Section 4, basic experiments are
performed to assess the recoverability of the AirPrint traces
in devices where encryption has been purposely disabled.
Following, in Section 5, the recoverability is evaluated for the
modern devices andOS versions that feature data encryption.
Finally, concluding the paper, Section 6 summarizes the
paper contributions and outlines further work.

2. Description of AirPrint Network Printing

Briefly explained, AirPrint is an iOS feature that allows
applications to send content to printers using the iOS device’s
wireless connection. Apple is directly quoted [1]: “AirPrint
automatically finds printers on local networks and can print
text, photos and graphics to them wirelessly overWi-Fi without
the need to install drivers or download software.”

Apple announced AirPrint in September 2010. Two
months later, iOS 4.2 was released for the iPhone, iPad, and
iPod Touch, being the first iOS version to offer this feature
to users. Its standard functionality allows printing only to
specific, AirPrint-enabled printers. Nevertheless, as of July
2013 there were more than seven hundred AirPrint-enabled
printer models in the market from sixteen different vendors
[9]. Apple does not support sharing a common printer via the
computer it is connected to, even when it was possible with
some Mac OS X 10.6.5 beta versions; however, it can be done
by using software tweaks such as AirPrintActivator [10].

Long before the introduction of AirPrint, different solu-
tions [11, 12] tried to fill in this gap. Usually, such solutions
involved iOS applications capable of opening different file
formats and sending them to a desktop computer, running
a companion application, which would in turn send the doc-
ument to the printer itself. Some printer vendors developed
specific clients; however, none of these solutions were ever
widely spread among users. Currently, with AirPrint working
out-of-the-box and embedded into all applications, it is hard
to believe that new users will consider using a specific, usually
paid application to handle printing, except maybe in some
very particular environments, such as cases where the use of
these kind of applications was consolidated before AirPrint
was launched or some advanced capabilities are required by
power users.

From a user’s standpoint, Figure 1 summarizes the print-
ing process, showing the screens it is actually possible to
interact with, as seen on an iPhone.

In the client side (iOS device), AirPrint-enabled applica-
tions contain a “Print” button that, when pressed, will present
an extremely simple menu (Figure 1(a)), with only two or
three available options:

(a) (b) (c)

Figure 1: Step-by-step AirPrint options screen on an iPhone.

(1) Printer: this option opens a list of all AirPrint-enabled
printers found in the local network, showing a “name”
and “description” field for each one.

(2) Range: (optional) defaulting to “all pages”, this option
opens a selector which allows the user to choose
a range of pages to be printed rather than all the
document.

(3) Copies: this option specifies the number of copies to
be printed.

(4) Depending on the printer features, additional param-
eters such as duplex printing can be controlled.

(5) Print: this button proceeds to send the job to the
printer.

The user cannot specify any other kind of information
usually available in printing menus, such as paper size or
orientation and printing quality. Everything is automatically
handled by AirPrint, using some default options. When the
user chooses to “Print” the job, the device shows some brief
messages (“Contacting Printer”; “Preparing page (. . .) of (. . .)”;
“Sending to Printer”). However, depending on how long the
print job is, these messages may be barely visible or last for
several seconds.

After the job has been sent to the printer, the printing
menu disappears and the application returns to its previ-
ous state. At this point, invoking the list of recently used
applications, by double-clicking the device “Home” button,
reveals a Print Center application (Figure 1(b)). Unless the
user somehow knows this application has started running in
background, it may be difficult for him to find it, since no
active feedback is provided during the printing process, thus
being invisible at casual glance.

Opening the Print Center application, the user can see the
list of running and pending printing jobs, check their details,
and cancel them (Figure 1(c)).When the last job finishes, that
is, the moment the printer ejects the last page, the application
closes and does not appear anymore in the list of recently used
applications. As far as it is known, there is no way to open the
Print Center as a standalone application. It is only executed
while there are jobs being printed.

From a technical standpoint, the AirPrint service is
known to use the standard IPP protocol at network level for
printer management, and Bonjour/Zeroconf [13] for service
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discovery. A comprehensive description of the printing archi-
tecture and its underlaying API in iOS devices can be found
in [14].

3. Forensic Traces Left by AirPrint

This section presents the preliminary information that must
be considered before more in-depth forensic investigation
may proceed. Mainly, it is important to assess whether any
traces are left in the device after having printed a document
using AirPrint, and if so, how they can be discovered, how
they behave, and which useful information can be extracted
from them. All this information was discovered through
some basic experiments.

3.1. Preliminary Setup. For the experiments described in this
section, the following equipment was used:

(i) iOS device #1: Apple iPhone 4, 16GB (model A1332)
running iOS 4.3.3 (8J2) and 5.0 (9A334), both jail-
broken using the redsn0w software [15].

(ii) iOS device #2: Apple iPhone 3G, 8GB (model A1241)
running iOS 4.2.1 (8C148), jailbroken using redsn0w
and enabling multitasking and AirPrint.

(iii) Desktop computer information: Apple MacBook Pro
(model MacBookPro5,1) running Mac OS X 10.7.2
(11C74).

(iv) Printer: HP Photosmart 5510 B111a (model CQ176B)
running firmware version EPL2CN1122AR.

(v) Wireless connectivity: all devices were connected to a
wireless 802.11g network to perform the experiments.

(vi) Physical connectivity: all devices were using physical
wires for AC power only.

3.2. The “Jailbreak” Process. Given that iOS enforces the
device to run only code signed by Apple (downloaded
from the App Store), during our experiments we used the
“jailbreak” technique to bypass that restriction in order to
have full access to the devices and be able to run shell
commands on them.The jailbreak process is exempted from
prosecution under the anticircumvention section of the U.S.
Digital Millenium Copyright Act [16], and it has been very
useful for forensic research in the past [17, 18].

Both iOS devices were jailbroken in order to gain full
access and install an SSH server and basic UNIX tools.

3.3. Traces Found. Once we were able to execute code in
the device, we invoked a series of commands before, during,
and after printing, and we compared the results looking for
remarkable differences. The most relevant commands used
were:

(1) find / -type (b,c,d,f,l,p,s) for listing, res-
pectively, all the block special devices, character spe-
cial devices, directories, regular files, symbolic links,
FIFOs, and sockets, in the filesystem.

(2) netstat -an -f inet for listing any current net-
work connections. This would show active client-
server activity as well as inactive servers awaiting for
incoming petitions.

(3) ps aux for getting information about running pro-
cesses.

By reviewing the lists of files and directories generated
with the find commands explained above, it was observed
that when a device prints via AirPrint for the first time the
following folder is created:

/var/mobile/Library/com.apple.printd/

We observed that everytime a document is sent to a
printer, a new file named 1.pdf is created under this folder.
With additional tests, it was observed that this PDF file
exists in disk only while the document is being printed. The
moment the printer ejects the last page and considers the job
finished, the PDF file is deleted. This is also the moment at
which the Print Center application disappears from the list of
recently used applications.

By printing some documents and copying the resulting
temporary PDF files to another location before their deletion
and then examining them we observed that these files are
regular PDF files with the same content that is being sent to
the printer (nomatterwhether it was originally in PDF format
or not). Hence, an obvious trace is being left in the filesystem,
and it reflects exactly what was printed.

It must be noted that, in some of the preliminary tests,
before the physical printer was available, we set up a virtual
PDF printer in a Mac computer and shared, making it look
like an AirPrint printer. It worked as expected and it was
possible to print to it from an iPhone; however, the printing
of the document (in this case, the generation of a file in the
hard drive of the Mac) was much shorter than the actual
printing of a page through a real printer with real ink and
paper. We observed that this greatly reduces the chances of
the temporary files being flushed to physical storage from
the buffer cache in the iOS device before deletion and thus
their chances of recoverability. Therefore, to obtain accurate
results, the experiments need to be performed with a real
printer.

3.4. Properties of the AirPrint Temporary Files. From the
execution of the different tests we extracted the following
conclusions. Unless otherwise specified, every finding applies
to all available iOS versions with AirPrint support (versions
4.2 through 6.1 and possibly later versions as well).

(1) For every print job sent via AirPrint, a file with the
name of 1.pdf is created in the directory
/var/mobile/Library/com.apple.printd/

(2) This file is in PDF format, containing the docu-
ment sent to the printer. This observed behavior
is consistent across internal iOS applications (Mail,
Safari) as well as third party ones (GoodReader,
Papers, Keynote, . . .). The only exception found is
the iOS Photos app, which seems not to generate
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any temporary files on disk when printing, thus not
leaving these traces.

(3) The file 1.pdf is deleted as soon as the printing
job finishes. The timing observed indicates that this
happens not just after finishing the task of submitting
the job to the physical printer, but after the document
has been completely printed.

(4) When one job is being printed, subsequent jobs
arriving to the queue generate files named 2.pdf,
3.pdf, and so forth.The behavior observed suggests
that in iOS 4 the counter resets as soon as the queue
is empty (if a new job arrives later it will be named
1.pdf again), whereas starting from iOS version 5 the
counter seems to keep increasing (each new job gets
a higher number even if the queue is empty) until the
device reboots.

(5) When a job asks for more than one copy of the same
document, the temporary PDF file contains only one
copy of it. The information on the number of copies
to be printed is being sent to the printer in a separate
channel (standard PS commands or similar).

(6) When a page range is specified, the temporary
PDF file contains only this page range. There is an
exception when some applications print files that are
themselves PDFs, which is studied later in Section 3.5.

3.5. PDF Metadata of the Temporary Files. Using a standard
PDF reader, themetadata contents inside different temporary
files generated by AirPrint were extracted and compared.
The use of document metadata in forensic investigations has
proven useful in different scenarios before [19–22]. A good
analysis of the PDF format itself from a forensics point of
view, considering its security and privacy aspects, can be
found in [23].

Generally, all the temporary PDF files created by AirPrint
can be identified as such by their metadata: they all show
the same “PDF producer” entry (“iPhone OS x.y.z Quartz
PDFContext,” with x.y.z being the iOS version number),
and the creation and modification dates both indicate the
date and time when the document was sent to the printer
(see Figure 2). Therefore, knowing what has been printed
from a device looks as simple as recovering deleted PDF
files from it and focusing on those with the strings “iPhone
OS x.y.z Quartz PDFContext.” Moreover, the creation and
modification dates contained inside those PDF files in the
formof PDFmetadatawill indicate precisely the printing date
and time.

Only one exception was found to this behavior. When
printing PDF files, that is, when the content to be printed is
itself in PDF format, some applications behave like described
earlier, but others (including iOS built-in applications such
as Safari or Mail) actually copy the original PDF file to the
com.apple.printd directory as 1.pdf instead of generat-
ing a new PDF file with fresh metadata. In these cases, PDF
metadata cannot be used to tell whether one given file is a
trace from AirPrint printing: the only peculiar thing about
that PDF file is the fact that it resides under such directory.

Figure 2: Metadata of one temporary PDF file generated by
AirPrint, as shown by the OS X “Preview” tool.

Considering this, an eventual automated tool aimed at
recovering the traces left by AirPrint should go further than
just carving for PDF files: it should correctly interpret the
internals of the HFSX filesystem and tell whether each recov-
ered file existed within the com.apple.printd/ directory
or somewhere else.

4. Recoverability of AirPrint Traces without
iOS Data Protection

Given that the temporary PDF files generated by AirPrint
only exist in the filesystem for a limited time and are
deleted when the document has been printed, the possibility
that, depending on disk scheduling and other factors, these
files might never be actually flushed to the physical disk
must be considered. In that case, they are unrecoverable
by a subsequent forensic analysis. This section studies such
possibility and assesses the probability that a given trace may
be actually recovered at a later time.

4.1. Preliminary Setup. For the experiments described in this
section, the following equipment was used:

(i) iOS device: Apple iPhone 3G, 8GB (model A1241)
running iOS 4.2.1 (8C148), jailbroken using redsn0w
and enabling multitasking and AirPrint.

(ii) Desktop computer information: Apple MacBook Pro
(model MacBookPro5,1) running Mac OS X 10.7.2
(11C74).

(iii) Printer: HP Photosmart 5510 B111a (model CQ176B)
running firmware version EPL2CN1122AR.

(iv) Wireless connectivity: all devices were connected to a
wireless 802.11g network to perform the experiments.

(v) Physical connectivity: all devices were using physical
wires for AC power only.

By using older equipment (an iPhone 3G) in this set of
experiments, we had a device without iOS “data protection”
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mechanisms (hardware-based encryption), which allowed us
to analyze the behavior of AirPrint without having to avoid
the added pitfall of encryption.

The AirPrint feature depends on the multitasking capa-
bilities of the device, which are disabled by default in older
models (such as an iPhone 3G). However, it is possible to
enable those features during the jailbreak process using the
redsn0w tool. Having AirPrint capabilities and an unen-
cryptedfilesystemmade this device the perfect testbed for our
experiments.

4.2. Experiments. There are several factors that increase the
chances of the temporary PDF files being flushed to disk,
making them potentially recoverable in the future. Some of
these factors are listed as follows:

(i) Documents that take a long time to be printed
because they havemany pages or because they contain
graphics. Note that, when sending a document to the
printer, the user can control very few options: printer,
page range, number of copies, and nothing else.There
is neither an option for printing in “draft mode” nor
one for using only the black cartridge, meaning that
everything sent via AirPrint is printed in full color,
good quality. . . and may require quite a lot of time to
finish.

(ii) The quality of thewireless link between the iOS device
and the printer. It can also affect the time needed to
transmit and print the document.

(iii) Documents that are sent while there are other print-
ing tasks running.

(iv) Periods of printing interruptions due to the need of
human interaction, such as the printer running out of
paper or out of ink.

In order to test the recoverability of AirPrint traces in the
form of deleted temporary files, a series of experiments was
run. The goals of these experiments were twofold. The first
goal is to determine whether the temporary files generated by
AirPrint are actuallywritten to the physical disk at some point
and thusmay be recoverable after deletion.The second goal is
to asseswhether, even if the previous case is true, each of those
temporary files would still be recoverable after generating
more of them (i.e., what are the chances that the AirPrint
temporary files overlap each other in disk, always overwriting
the same space and thus making each other unrecoverable?).

Some steps in the testing process involved printing
documents, while others were just aimed at simulating some
casual user activity in the device (mail browsing, software
update, and reboot). For those tests that involve printing, 10
documents of a given kind are printed in each test. Five of the
tests involve printing, which means that, after completing all
the tests, 50 documents had been printed.

After each of the tests, a dump of the iPhone filesystem
was obtained. For those tests that involved printing, the dump
process was not started until the printer had finished printing
all of the submitted jobs sent.

The test was performed as follows:

(1) Various sets of 10 items each were printed using dif-
ferent applications (Safari, Photos,Mail, GoodReader,. . .).

(2) A dump of the device storage was obtained after each
set of 10 items.

(3) Additional batches of activity were performed in the
device (download email, install a software update, and
reboot the device) and additional storage dumps were
obtained after performing each of these tests.

We transferred the disk image on-the-fly via Wi-Fi to the
desktop computer using the method proposed by Zdziarski
[18], based on the dd and netcat commands.

Each filesystem dumpwas analyzed in order to determine
whether the temporary files generated by AirPrint at each
stage were recoverable both immediately after their genera-
tion and at later stages.

With no data encryption in place, we were able to use the
file carving [24] method for recovering deleted files. Carving
is a data recovery method consisting of going through a
raw data stream (a filesystem dump in this case) looking
for possible “headers” and “footers” (beginnings and ends)
of known, chosen file types, such as JPEG pictures, MPEG
video files, and PDF documents. The more strict a file
type specification is, the easier it is for the carving tool to
identify and recover that file type. In addition, some tools
perform sanity checks such as establishing a file size limit or
checking each recovered item against its format specification
to determine whether it may be corrupt.

One of the benefits of the carving technique is that
it can be used, with more or less success, over any kind
of data, be it a known or unknown filesystem, a portion
of it, or something completely different, such as network
captures or RAMmemory dumps. Note, however, that many
tools implement specific strategies for common filesystems in
order to improve overall success rate and extract items only
from the unallocated space, skipping the disk space used by
normal existing files.This is something very useful when the
user just wants to focus on recovering deleted files.

This technique was applied by means of the open source,
widely used photorec tool [25], which has a long track of
usefulness in this kind of scenarios [24, 26] even on mobile
devices [27].

Every dump obtained during the tests was carved for
PDF files using the default photorec parameters. Fine-
tuning these parameters would have probably improved the
recovery success rate; however, after the tests were completed,
it was found unnecessary given that the results achieved were
indeed positive.

4.3. Results. The results of trace extraction using the photorec
tool were analyzed from two different standpoints:

(1) Recoverability. Tenths of the temporary PDF files
generated by AirPrint were successfully recovered
from each filesystem dump, which confirms that
those files are indeed flushed to disk.
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(2) Persistence.The artifacts created during our first tests
were still recoverable after the last tests.This suggests
that, probably due to iOS file allocation strategies, the
temporary files generated by AirPrint are not likely to
overwrite each other.

The results of these tests, which can be seen inmore detail
in [2], show that under iOS 4 and with no data encryption
in place the temporary files generated by AirPrint are indeed
written to disk and are potentially recoverable even after
rebooting the device or turning it off.

Considering that the artifacts are stored in unallocated
space, it is unavoidable that using the device for long periods
of time reduces the chance of recovering such artifacts, as
new data stored in the device may overwrite that disk space.
However, the tests show that the probability does not decrease
very quickly, and there is at least a good chance to recover
most of the traces.

5. Impact of iOS Data Protection on
the Recoverability of AirPrint Traces

In this section we describe a new set of experiments aimed at
assessing whether the traces left by AirPrint in the device’s
filesystem can be recovered even when modern iOS data
encryption mechanisms are in place.

5.1. Preliminary Setup. The experiments described in this
section were carried out using the equipment described
below:

(i) iOS device: Apple iPhone 3GS, 32GB (model A1303)
running iOS 6.1 (10B141), jailbroken using the
evasi0n software [28].

(ii) Desktop computer: Apple iMac (model iMac13,2)
running OS X 10.8.4 (12E55).

(iii) Printer: HP Photosmart 5510 B111a (model CQ176B)
running firmware version: EPL2CN1122AR.

(iv) Wireless connectivity: all three devices were con-
nected to a wireless 802.11g network to perform the
experiments.

(v) Physical connectivity: the printer and desktop com-
puter used physical wires for AC power. In addition,
the iOS device was connected most of the time to the
desktop computer using the standard Apple USB to
30-pin cable; this powered the device and served as
the transmission channel when dumping the device
internal storage to the desktop computer.

5.2. Mechanisms to Bypass iOS Data Protection. As we intro-
duced in previous sections, all current iOS devices offer
hardware-based encryption, backed with software support at
the OS and application level. As noted by Casey et al. [29],
“the increasing use of full disk encryption can significantly
hamper digital investigations, potentially preventing access to
all digital evidence in a case.”

The data encryption mechanisms that Apple calls “data
protection” were introduced in iOS version 4 (June 2010)

and stood publicly unbreakable for nearly one year until, in
May 2011, a software firm announced a product capable of
bypassing this encryption [30]. This product is restricted to
“established law enforcement, intelligence and forensic organi-
zations as well as select government agencies.”

At the same time, Bedrune and Sigwald published [31]
details about iOS data protection shortly after they released
the tools and source code capable of breaking this encryption
[32]. Even if the device is locked with a passcode, the
tools include a bruteforce script that runs in the iOS device
itself and obtains the user-defined passcode, unless it is an
alphanumeric code, something rarely seen in these devices,
although supported. As of July 2013, their toolkit has been
updated and works successfully with supported devices even
under iOS version 6.1.

Nowadaysmost forensic tools support a similar function-
ality to one extent or another.

5.3. How iOS Data Protection Affects the Recovery of Deleted
Files. One of the features of iOS encryption is that it relies
on per-file encryption keys, which means that each file in the
filesystem is encrypted using a different key. This, in turn,
means that recovering a deleted file is more difficult than just
retrieving the portion of disk space where the contents of
this file reside: one must also recover the necessary filesystem
metadata containing the encryption key for that given file.

For this reason, commercial tools, even when able to
defeat encryption, do not recover deleted files so far. Instead,
these tools usually opt for (a) examining the device backups
stored in iTunes in a local computer rather than device itself
or (b) just query the device for as much information as
possible using standard APIs; for instance, get every sent
and received SMS from the Messages application, list recent
lookups from the Maps application, or query the Phone
application for the recent calls log. Both these approaches,
however, overlook any deleted data in the device, skipping
a lot of information that could be relevant to the forensic
investigator.

Given that the file contents are encrypted, the carving
technique cannot be used to look for files (allocated or not).
However, a smarter tool looking for deleted file/directory
entries in the HFSX filesystem should succeed at recovering
these files, even when their contents are encrypted.

Bedrune and Sigwald’s ios examiner tool [32] recently
incorporated an undelete function which applies a novel
technique [33] based on using the additional data stored
in the filesystem’s transaction journal in order to improve
the recovery results. This tool is still very recent and under
improvement, but it is expected that commercial forensic
application developersmay include it in later versions of their
products or, at least, use similar techniques to allow forensic
tools to analyze an encrypted filesystem.

5.4. Adapting the Iphone-Dataprotection Toolkit. As we
started new experiments, we observed that it was certainly
possible to recover deletedfiles fromour test devices using the
iphone-dataprotection toolkit. However, only certain
file types were recovered (JPG pictures, SQLite databases,
XML files, . . .), whereas no PDF files were recovered at all.
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magics = ["SQLite", "bplist", "<?xml", "\xFF\xD8\xFF", "\xCE\xFA\xED\xFE",
"\x89PNG", "\x00\x00\x00\x1CftypM4A", "\x00\x00\x00\x14ftypqt", "\x25PDF-"]

Algorithm 1

knownExtensions = (".m4a", ".plist", ".sqlite", ".sqlitedb", ".jpeg", ".jpg",
".png", ".db", ".json", ".xml", ".sql", ".pdf")

Algorithm 2

There are two modifications that must be applied to the
software to have it recover PDF files.

The undelete algorithm used by the tool considers that
a file is correctly recovered only if the initial bytes of the
file match a given set of patterns. The stock list includes a
limited set: SQLite databases, XML files, binary property lists,
JPEG pictures, Mach-O executable binaries, PNG graphics,
andM4A audio files. In order to have the tool recover deleted
PDF files, the file signature of the PDF type must be added
in hg/python scripts/hfs/journal.py (lines 58-59) as
shown in Algorithm 1.

In order to have these files stored in a separate direc-
tory, we declare .pdf as a known extension by modifying
hg/python scripts/nand/carver.py (line 119) as shown
in Algorithm 2.

After performing this modification we observed that the
ios examiner tool successfully recovered (where techni-
cally possible) deleted PDF files. In fact it is even possible to
acquire one or more dumps of the device’s internal storage
using the original (unmodified) tool, apply our described
modifications afterwards, and then run the modified tool
against the acquired images to recover any deleted PDF files
they might contain, some of which can be traces left by the
use of AirPrint, whereas others will be regular PDF files that
have been deleted or reallocated in disk for whatever reason.

Given a set of recovered PDF files, we wrote a Perl
script that outputs a CSV table indicating which of the files
correspond indeed to contents printed through AirPrint, and
if so, when were the documents printed and under which iOS
version as shown in Algorithm 3.

5.5. Experiments. In this series of experiments we wanted to
verify whether AirPrint traces were recoverable in scenarios
where iOS data protection is enabled and analyze how the
amount of free disk space affects the recoverability rate.

A detailed description of the whole testing process fol-
lows:

(1) Fill the device with some applications (GoodReader,
plus Apple’s Podcasts, iBooks, iTunes U, Find My
Friends, and Find My iPhone) and multimedia con-
tent. Setup an iCloud account for activating the Find
My iPhone service and start syncing email, contacts,
calendars, reminders, Safari tabs, notes, photos, doc-
uments, and data.

(2) After a period of 24 hours for any massive syncing
activity to take place, the device storage as reported
in “Settings” is 4.1GB available of a total of 28.3GB
(i.e., 15% free space).

(3) Reboot the device to start from a clean state.
(4) Use the GoodReader application to print a fixed set

of 20 documents amounting to a total of 109 paper
pages; send each document to the printer only when
the previous one has been completely printed.

(5) Turn the device off and acquire forensic image #1.
(6) Boot the device. Remove all optional Apple applica-

tions as well asmultimedia content (audio, video) and
iCloud accounts added in step (1).

(7) After a period of 24 hours for any deletion activity to
take place, the device storage as reported in “Settings”
is 27.2GB available of a total of 28.3GB (i.e., 96% free
space).

(8) Reboot the device to start from a clean state.
(9) Repeat step (4).
(10) Turn the device off and acquire forensic image #2.
(11) Recover AirPrint traces from both images and com-

pare the results.

5.6. Results. Table 1 shows the results for each individual file.
In each case, we were able to recover between 5% and 10%
of the documents printed through AirPrint, extracting the
following conclusions:

(i) It is possible to recover the full content of documents
printed through AirPrint as well as relevant metadata
such as print date and iOS version. In some cases the
recovered PDF files may be corrupt but still contain
details such as iOS version used and print date.

(ii) The low recoverability rate observed (5–10% in real-
istic scenarios) could be due to the disk scheduling
algorithm used in the iOS operating system (in this
particular version at least). This would also explain
the fact that the success rate keeps constant regardless
of the amount of free disk space.

(iii) At any particular iOS version (existing or future),
a change in the disk scheduling subsystem could
boost the success rate significantly. Additional work

Appendix E. AirPrint Forensics: Recovering the contents and metadata of printed... 72



8 Mobile Information Systems

#!/usr/bin/perl
print "Filename,iOS version,Print date\n";
while( $file = shift(@ARGV) ) {

$ios = ”;
$date = ”;
$pdfinfo = ‘pdfinfo $file 2>&1’;
@metadata = split( /\n/, $pdfinfo );
if( @metadata[0] = ∼ m/iPhone OS.* Quartz PDFContext/ ) {
($ios = @metadata[0]) = ∼ s/.*iPhone OS ([0-9.]+) Quartz PDFContext/iOS \1/;
($date = @metadata[1]) = ∼ s/CreationDate: //;
print "$file,$ios,$date\n";} else { print "$file,does not look like an AirPrint temporary file.\n"; }}

Algorithm 3

Table 1: Recoverability of AirPrint temporary artifacts under iOS 6.

# File Size (bytes) Size (pages) Recovered?
1 000001.DOC 40.960 2 In image #1
2 000002.DOC 57.856 2 In image #2 and partially in #1
3 000003.DOC 55.808 2 No
4 000004.DOC 175.616 4 No
5 000005.DOC 180.736 5 No
6 000006.DOC 67.584 5 No
7 000007.DOC 179.200 30 No
8 000008.PPT 302.592 12 No
9 000009.PDF 39.586 4 No
10 000010.PDF 120.441 4 No
11 000011.PDF 31.367 1 No
12 000012.PDF 22.857 6 No
13 000013.PDF 38.638 2 No
14 000015.PDF 55.964 2 No
15 000016.PDF 150.586 4 No
16 000018.PDF 94.424 9 No
17 000019.PDF 124.152 3 No
18 000020.PDF 4.755 2 No
19 000021.PDF 4.521 2 No
20 000022.PDF 21.235 8 No

is needed to assess whether the results observed are
kept consistent across different devicemodels and iOS
versions.

The traces of the printing activity from step (9) should
be more easily recoverable given that in step (7) we tried to
improve the recoverability rate by freeing most disk space (to
reduce the probability that some new file, log entry, etc. could
overwrite the AirPrint traces once they’ve been deleted) and
by reducing most of the device’s background activity (iCloud
syncing, e-mail activity, . . .). Hence, the second image should
contain a higher number of AirPrint traces than the first one.

In contrast to what could be reasonably expected, we
observed that in each case we recovered only one or two
AirPrint temporary files out of the 20 possible. It could be
thought that only the latest jobs are being recovered; however

the traces we found corresponded to the first jobs sent to the
printer rather than the last ones.

We performed additional experiments introducing cir-
cumstances such as print interruptions due to lack of paper
and loss of network link between the device and the printer.
In such circumstances, the temporary files remain much
longer in the iOS device’s filesystem and will persist for
an undetermined amount of time (even some time after
rebooting the device). Under these conditions we saw the
success rate increase to 15%.

6. Conclusions and Future Work

This paper analyzes the forensic traces left by usage of
the AirPrint functionality in iOS based devices. We have
developed a method which leverages publicly available tools
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to recover from an iPhone or iPad the contents of documents
that have been printed using the standard AirPrint feature.
The recovery of these artifacts can be valuable from the point
of view of a forensic investigation in scenarios such as infor-
mation leak or distribution of inadequate content; however it
could also pose a privacy risk to the user community.

The traces described could persist even after the original
file has been deleted, or if the original file resides inside some
“vault-type” application which protects its contents on disk
with an additional layer of encryption.

With modern iOS 6 data encryption mechanisms in
place, the described method still succeeded in recovering
between 5 and 15% of the documents printed through
AirPrint. We believe the success rate can depend on factors
such as the disk scheduling strategy, and thus different iOS
versions could throw different results.

Considering the use case of AirPrint in domestic scenar-
ios, probably home users will not be particularly concerned
about this finding, a possible exception to this being explicit
graphic content. In this aspect it is interesting to note that
Apple’s stock Photos application specifically did not generate,
in our experiments, the temporary files described in this
paper, whereas other 3rd party applications offering added
security to store this kind of information are likely to generate
the standard AirPrint traces when printing documents. As
a general solution, in order to limit the possibility of recov-
ering data from the filesystem, some techniques aimed at
performing a secure deletion could be adopted, such as the
one presented in [34] for the Android OS.

Further work must be carried out to assess whether it
is possible to capture the network traffic generated while
printing using techniques similar to [35] and recover the
contents of the documents being printed. It would also be
interesting to extend the research presented in this paper
across a wider range of devices, iOS versions, and 3rd-party
applications and to examine if similar issues affect other
printing solutions for iOS devices and other mobile devices.
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Abstract—Smartphones and mobile devices nowadays accom-
pany each of us in our pockets, holding vast amounts of personal
data. The iOS platform has gained popularity in the last years, in
particular in enterprise deployments, due to its supposed higher
level of security. Recent research has pinpointed a number of
mechanisms that are being abused today in order to compromise
the security of iOS devices. In this paper, we present Lockup, a
proof of concept tool that applies various mitigation measures in
order to protect iOS devices against those attacks.
Keywords: Security, Hardening, Privacy, Apple, iOS, iPhone,
iPad

I. INTRODUCTION

Smartphones have rapidly become ubiquitous in our life. In
barely one decade, these small devices have managed to enter
our pockets and, nowadays, accompany us at all times, storing
all kinds of personal information - often without the user’s
knowledge: emails and SMS messages, calendars, address
books, to-do lists, history of visited places, photographs, voice
memos, etc. Moreover, vendors have already started to produce
wearable devices which hold an even closer relation with their
users, gathering and quantifying diverse data about their life
habits - a tendency that will only grow in the future years with
devices such as Apple Watch and Google Glass [1].

The rise of mobile technologies has introduced great
changes in the information security landscape. Blackberry,
the platform that dominated every corporate environment for
years thanks to its security features, failed to keep up with
its competitors and by Q2 2014 its market share was below
1% [2]. In contrast, 84.7% of the devices sold in that period
were Android devices, and 11.7% were iOS devices. However,
when it comes to business environments, 67% of new devices
activated in a corporate context during the same period were
iOS ones [3].

As it tends to happen with every software product, the iOS
operating system and the core applications shipped with it
have suffered from a number of vulnerabilities in the past,
with different degrees of criticality. The most serious ones,
for instance, made it possible for remote websites to gain full
control over a device browsing them with MobileSafari, the
integrated web browser [4]. Fortunately, many of the vulner-
abilities uncovered by researchers have been dully patched
by Apple in subsequent iOS versions. However, recently,

Zdziarski [5] exposed a number of attack vectors against
iOS devices through the abuse of certain background services
available in all iOS devices. Under certain conditions, these
services can leak all kinds of personal data stored in the
device, bypassing the optional backup encryption password,
and showing no indication at all to the user.

In this paper, we present an analysis of several mitigation
techniques that can be used to reduce the attack surface
exposed by these services. As a result of this analysis, we
introduce Lockup, an accompanying software tool that we have
created to implement those measures, some of which are novel
and, to our knowledge, have not been implemented before.
This tool also serves as a proof of concept that such measure
can be deployed in an iOS device.

This paper is structured as follows. Section II provides an
overview of the iOS security architecture, and presents the
problem of potentially dangerous services that can be abused
to extract an enormous amount of user data from the device.
Section III discusses a number of possible mitigation strategies
that can be applied to enhance the device security. Section IV
presents Lockup, the software tool that we have developed in
order to implement those mitigations. Concluding the paper,
Section V summarizes the paper contributions and outlines
future work.

II. SECURITY AND TRUST IN THE IOS ENVIRONMENT

In this section, we present an overview of the main compo-
nents of the iOS security architecture and its trust model, and
the existing privacy risks. This will allow us to show that, some
of the risks originating from certain weaknesses in the iOS
trust model have an impact much higher than expected because
of a number of iOS background services, named lockdown,
which have no known legitimate purpose.

A. Remote access via device trust relationship

When it comes to sharing information with an external
device (be it a desktop computer, an alarm clock that can
play music, a car audio system, etc.) the iOS security model
works as follows. Whenever the iOS device is connected via
cable to a previously unknown computer (or another external
device), it presents a dialog on screen prompting the user
whether the computer should be trusted, as seen in Figure
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1. Upon receiving the user’s consent, both devices create and
interchange a series of certificates which from that moment
will be used to authenticate each other and initiate a secure,
encrypted connection. A pairing record consisting of these
certificates is stored in well-known filesystem paths in both
the computer and the iOS device. However, There is no way
for the user of an iOS device to review the list of external
devices he has chosen to trust, or to revoke that trust - other
than to reinstall the device completely.

As exposed by [5], [14], a computer that has successfully
paired with an iOS device can initiate a connection to it and
invoke a number of services exposed via the lockdown daemon
- even wirelessly and without the user receiving any visual
indication. The same can be done from any other computer
or device, as long as the pairing record is extracted from the
trusted computer.

Unfortunately, a number of the lockdown services are de-
signed in such a manner that they may leak significant amounts
of personal information, even bypassing the user’s backup
encryption password. Given that any trusted device (alarm
clock, car stereo, etc.) gets a pairing record which gives access
to all the services, this can be exploited by either placing
malicious devices in common areas (airports, coffee shops...)
[14] or compromising trusted devices to steal the pairing
record stored in it. Then, those pairing records can be used
to establish connections to the iOS device, even over the air
through either Wi-Fi or cellular connection, in order to perform
surreptitious actions such as deploying malicious software or
extracting information from the device.

B. Sensitive iOS device services

A computer that connects to an iOS device (through a USB
cable or Wi-Fi) can invoke a series of services which, from the
iOS side, are offered through the lockdown daemon [5], [14].
These services have diverse roles, such as allowing iTunes
syncing or remote management for MDM purposes, while
others have no known purpose and seem to be the perfect
backdoors to be exploited by intelligence agencies, forensic
products, and malicious actors all alike.

The complete list of services can be explored by checking
the file /System/Library/Lockdown/Services.plist. A fresh in-
stallation of iOS 7.1.2 on an iPhone 5 exposes a total of 32
services via lockdown, of which Zdziarski [5] identified the
following ones as being valuable from a forensic standpoint:

• com.apple.file relay. Can be used to extract huge amounts
of information, bypassing the backup encryption setting.

• com.apple.pcapd. A network sniffer.
• com.apple.mobile.MCInstall. Installs managed configura-

tions, such as the ones used in MDM.
• com.apple.mobile.diagnostics relay. Diagnostics: hard-

ware state, battery level...
• com.apple.syslog relay. Various system logs.
• com.apple.iosdiagnostics.relay. Network usage statistics

per application.
• com.apple.mobile.installation proxy. Used by iTunes to

install applications.

• com.apple.mobile.house arrest. Used by iTunes to trans-
fer documents in and out of applications.

• com.apple.mobilebackup2. Used by iTunes to backup the
device.

• com.apple.mobilesync. Used by iTunes to sync certain
data such as Safari bookmarks, notes...

• com.apple.afc. Exposes the complete Media folder -
audio, photographies and videos.

• com.apple.mobile.heartbeat. Used to maintain the con-
nection to other services being accessed.

As can be seen, the list includes some potentially dangerous
services capable of capturing network traffic, installing appli-
cations to the device, or dumping the data stored in the device
while bypassing the backup encryption password - all of this
without showing any indication to the user.

Fig. 1. An iPhone prompting the user whether it should trust the connected
computer.

III. MITIGATION STRATEGIES

There are different mitigation measures that can be applied
to cope with the weaknesses introduced by the most sensitive
iOS services. We try to summarize the most relevant ones.

A. Delete existing pairing records

One way to mitigate the problem would be to control
the number of trust certificates in the iOS device. This is
the approach adopted by the unTrust tool [15]: it runs in a
computer connected to an iOS device connected via USB and
removes all pairing records existing in the device except the
one for the computer being used to execute the tool.

One drawback of this approach is that the iOS device still
keeps trusting one computer - hence there is still the risk that
the pairing record is stolen from the computer and used to
connect to the device services. In addition, if the user decides
or needs to temporarily trust an external device, away from that
computer (such as an audio system), there is no way to revoke
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that trust or purge the list of trusted devices until the user can
get access to the trusted computer and execute unTrust again.

B. Limit sensitive services to USB (disable over wireless)

Another approach would be to limit the sensitive services
to run only over USB, minimizing the risk for over-the-
air attacks. The lockdown daemon, responsible for all the
sensitive services described in this paper, implements an
option (USBOnlyService) to limit certain services to USB
connections only, disabling the connection to those services
over wireless networks. However, this option is only used by
one service in iOS 7 (com.apple.webinspector, for debugging
mobile websites) and one more in iOS 8 (com.apple.pcapd,
the network sniffer).

C. Disable some services

Finally, it would be ideal to disable the most sensitive
services - something that has not been done so far.

The various security measures applied by iOS to any appli-
cation would prevent us from making these modifications. In
order to overcome this, our tool needs to bypass those security
measures using the process known as jailbreak, as will be
explained later.

D. Lock pairing with new devices

Another option worth mentioning is to block pairing with
new devices, as implemented by Zdziarski in pairlock. This
was useful up to iOS 6, given that in those versions external
devices would be trusted blindly, without the iOS device
presenting any prompt to the user. Since iOS 7 addressed this
concern by asking for user permission before trusting new
devices, pairlock has not been updated to work in iOS 7. Its
approach leaves some doors open, as it does not allow the user
to revoke existing trust relationships, nor does it address the
risk of a pairing record being stolen from a computer or other
trusted device.

IV. Lockup: IOS HARDENING AND ANTI-FORENSICS

In this paper we present Lockup, a software tool that can be
installed in devices running iOS versions 7 and 8. As a proof
of concept, it Lockup hardens the security of the device by
addressing the issue of sensitive services using three different
approaches:

1) Reducing the attack surface by disabling the most sen-
sitive services. In addition, the user is offered several
profiles, allowing him to tailor which services are pub-
lished, and enabling only those needed for the intended
use of the device. The rest are eliminated. For instance,
a user whose device is not enrolled in MDM systems
does not need to allow remote installation of software
and configuration profiles.

2) Limiting exploitation opportunities by restricting the
rest of services to USB only, eliminating over-the-air
threats. This is automatically done in most of the profiles
mentioned above.

3) Limiting trust relationships by automatically purging all
pairing records after a configurable period of time. This

constitutes an additional line of defense against attackers
capable of stealing a trusted certificate from sources such
as the user’s computer.

Lockup allows the user to choose between a series of
profiles, each one increasingly restrictive, depending on what
the user needs to do with the device at every moment. In
order to define the various profiles, we tried a number of
configurations, enabling and disabling each service selectively,
and attempting various common actions to make an iOS device
interact with other external devices. In particular, we tried the
following actions:

• Use iTunes in a Mac computer to install applications in
the iOS device.

• Use iTunes to transfer files in and out of the applications
installed in the iOS device.

• Use iTunes to perform a backup of the data stored in the
device.

• Use a bluetooth hands-free device to access the address
book of the iOS device and place calls through it.

• Use iPhoto in a Mac computer to import the device’s
camera roll.

• Use a stereo system to play the audio coming out from
the iOS device.

This list illustrates the problems of granting excessive
privileges to external devices that access the iOS device’s
lockdown services. If a user does not regularly backup to
iTunes, why should those services be exposed when the device
is connected to, say, an alarm clock? With Lockup, the user
can adjust the behavior of the device as needed.

A. Tool capabilities

The main capabilities of Lockup can be summarized as
follows.

• Controlling the device’s trust relationships, by purging
the stored pairing records; and

• Disabling certain lockdown services and preventing others
from being invoked over Wi-Fi connections, in order to
disable over-the-air attacks.

One common concern about the potential abuse of iOS
services is that iOS lacks a way to see which other devices or
computers have been paired with in the past, or to revoke those
trust relationships. If the user just hits the wrong button by
mistake, the connected device will be trusted forever. This can
pose a significant risk, especially considering the possibility of
an attacker stealing the pairing record from inside the trusted
device and using it to establish remote connections to the iOS
device.

In our solution we opted for including a background task
that will wipe all trust relationships from the iOS device after a
configurable period of time; this applies the mitigation strategy
discussed in subsection . Once that happens, connecting to that
device will require the user to confirm the trust relationship
from the iOS screen. We recommend setting this to low
values such as 5-10 minutes, which should suffice for any task
involving connection to another device - with the exception
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of very long synchronization sessions with iTunes, as usually
happens when an iOS device is synced with a computer for the
first time. During our tests we observed that even values as low
as 30 seconds allow normal functioning of standard features
such as iTunes syncing; once an iTunes syncing session has
started, it will complete successfully even if the pairing record
is deleted in the middle of the process.

In addition, as we have introduced earlier in this paper, there
are sensitive services potentially very dangerous and with no
known purpose (such as com.apple.mobile.file relay, that can
be used to extract all kinds of personal information bypassing
the backup encryption protection, or com.apple.pcapd, which
can be used to turn the device into a sniffer that will capture
the network traffic it can receive), and it seems obvious to us
that these offending services should be removed from every
device.

There are also other services that, despite having a le-
gitimate purpose, can also be exploited to leak significant
amounts of personal information or inject malicious soft-
ware into the device. Examples include com.apple.mobile.
installation proxy (used by iTunes to install applications in
the device), com.apple.house arrest (used by iTunes to copy
application files from or to the device) and com.apple. mo-
bilebackup2 (used by iTunes to backup the data stored in the
device).

We propose to define different service levels and keep the
device in the most restrictive level that is suitable depending
on what the user needs at every moment – a measure that
has not been implemented before, to the authors’ knowledge.
For instance, it is not necessary to keep all the iTunes-related
services enabled unless the user wants to connect the device
to iTunes, and even then, it is not necessary to expose those
services over-the-air if the user uses a cable to sync. Similarly,
a lot of users will prefer to disable the MDM-related services,
which can be exploited to install software into their devices.
This approach applies the mitigation strategies explained in
subsections III-B and III-C.

B. Service profiles

Next, we describe the different profiles that we have im-
plemented in Lockup, with each profile being increasingly
restrictive and consequently more secure. To the knowledge
of the authors, a similar solution has not been implemented
before, neither in iOS nor in other platforms. In order to decide
which services should be disabled in each profile, we have
followed two different criteria.

On one hand, the services that we disable first are those
that pose a higher privacy risk to the user. These are, for
instance: the services that make it possible to bypass the
backup encryption password, to capture network traffic, to
deploy configuration profiles and applications to the device,
etc.

At the same time, the first services that we disable are the
ones likely to be needed by a reduced number of users. We first
disable the totally unneeded services, afterwards we disable
MDM, and then we disable other features that users may need

at particular moments (such app installation via iTunes) while
we still allow iTunes to obtain backups of the device data.

The following list details which services are disabled in each
level. Levels are incremental, meaning that any given level X
also applies all the steps performed in previos levels 1, 2, ...
X-1.

• Level 1, for MDM - disables:
– com.apple.file relay.
– com.apple.pcapd.

• Level 2, for synchronizing applications - disables:
– com.apple.mobile.MCInstall.
– com.apple.mobile.diagnostics relay.
– com.apple.syslog relay.
– com.apple.iosdiagnostics.relay.
– Sets all remaining services to USBOnly.

• Level 3, for backup - disables:
– com.apple.mobile.installation proxy.
– com.apple.mobile.house arrest.

• Level 4, for synchronizing media files - disables:
– com.apple.mobilebackup2.
– com.apple.mobilebackup.

• Level 5, for media sharing - disables:
– com.apple.mobilesync.

• Level 6, no sensitive services. In addition to all the above,
disables:

– com.apple.afc.
• Level 7, no lockdown services at all.

– Completely removes every lockdown service, includ-
ing com.apple.mobile.heartbeat.

Even in the strictest mode, the device is still capable of
interacting with external devices. In particular, in this mode
one can successfully connect the iOS device to: a hands-free
device (via bluetooth) to import the address book and place
phone calls; a Mac computer (through USB cable) to import
pictures through iPhoto; and an audio system (again, through
USB cable) to play the songs stored in the device.

C. The iOS jailbreak

The term jailbreak (also known in other platforms as
rooting) refers to the act of circumventing vendor’s restrictions
in order to run code on the device with full privileges. The
use of jailbroken devices is very popular among developers
and researchers, as it gives them much more control over the
device’s internals [7]. Although it is hard to find global data
about the number of jailbroken devices, a recent report focused
in China found that over 30% of iOS devices being used in
that country were jailbroken in January 2013 – a number that
fell to 13% by December of the same year [16]. Jailbreak
has become increasingly popular among users and there are
thousands of applications, both free and paid, that can be
installed in jailbroken devices - applications that would never
make their way into the official distribution channels, given
that they infringe the App Store’s rules in one way or another.
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Examples include software emulators and all kinds of system-
wide tweaks that change the device’s global aspect [17], alter
global elements such as the Control Center or the Notification
Center [18], or inject code into other existing applications to
change their behavior [19].

In our case, we have leveraged the jailbreak technique to
disable specific lockdown services and test different connec-
tivity scenarios, and to develop and test the Lockup tool.
Other users and researchers can install it and benefit from
its features, provided that they are using an iOS version for
which a jailbreak is available. And, of course, vendors could
implement this kind of tool in future OS versions.

Given that jailbreaking a device deactivates some important
security features (code signing and sandboxing), it opens the
door to a number of threats [20], [21]. Consequently, users
must be careful about the origin of the software packages they
install in jailbroken devices. We recommend installing only the
core software packages needed by the jailbreak process itself,
and always changing the passwords of the root user as well
as the regular mobile user.

Nevertheless we believe our contribution is useful, not only
as a proof of concept implementation, but also as a real tool
that can be used in a number of real-world scenarios, for
instance in old iOS devices which no longer receive software
updates from Apple - and which are usually left with an iOS
version for which a jailbreak exists.

D. Implementation details

Lockup is designed to run in jailbroken versions of iOS
7 and 8. It can easily be ported to new major iOS versions
as soon as a jailbreak is available for them, which typically
happens a few weeks after the official iOS release. In the worst
case so far, iOS 7.0 took 95 days until a public jailbreak was
available for iOS 7; in contrast, iOS 8 was jailbroken 35 days
after its official release. It is also remarkable that many users
of jailbreak applications usually stick to an older iOS version
until a jailbreak for the new one is available.

The different service profiles are defined by creating multi-
ple copies of the /System/Library/Lockdown/Services. plist file.
In each profile, we disable an increasing number of services.
In addition, in most of the profiles, the flag USBOnlyService
is applied to sensitive services, so that these cannot be abused
over the air, either via a Wi-Fi connection, or through the
user’s cellular connection.

In order to set a profile, the user executes the command
lockup-profile. This can be done either using a terminal
application such as MobileTerminal or accessing the device via
SSH, if it has been installed. When the command is invoked,
the user is presented with a menu as shown in Figure 2. After
the user picks a profile, the corresponding service list file is
copied over /System/Library/Lockdown/Ser- vices.plist. For the
changes to take immediate effect, a SIGTERM signal is sent to
the lockdown daemon with the kill command, which makes it
restart and read its new configuration file. Additional options
allow the user to enumerate the services exposed by the present
profile and dump the whole contents of the Services.plist

file, which may be specially useful to detect and investigate
additional services that may have been installed inadvertently.

Fig. 2. Menu presented by lockup-profile.

For the periodic purging of pairing records, Lockup uses
various files. First, a shell script in charge of deleting the
pairing records is installed. Secondly, a launch daemon, which
will run the previous script periodically, is loaded through
/System/Library/LaunchDaemons/es.pope.lockup-purge.plist.
An additional script, lockup-interval, can be used to change
the interval at which pairing records are deleted (one hour by
default). Figure 3 summarizes the main components and the
interactions between them.

Fig. 3. Lockup components and main interactions.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have reviewed the security and privacy
risks presented by certain background services that exist in
the iOS operating system. We have presented a number of
mitigation measures that can be used to reduce those risks.
The main contribution of this paper is Lockup, a software tool
that hardens the security of iOS devices by defining a number
of profiles which reduce the number of exposed services. In
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addition, we have discussed the anti-forensic implications of
our solution, and the anti-anti-forensics countermeasures that
could be used to bypass it. Given the huge amount of personal
information that can be extracted by abusing these sensitive
services, we believe it is worth exploring this kind of solutions.
The expected rise of wearable devices will only increase the
need for solutions that enhance the devices’ security and
privacy levels.

Lockup will be released as free software so that other
researchers or developers can adapt it as they find convenient.
We also have the intention of continuing working in Lockup,
maintaining it and adding new features, such as: monitoring
and logging connection attempts to lockdown services, alerting
the user in real time; adding a graphical interface to the
software; monitoring the set of available services and alerting
the user if new services are added... It would also be possible
to integrate it with other solutions such as activator [24].
However, from a security standpoint, it would be preferable to
keep the software as simple as possible, both in terms of size
and in terms of dependencies.

The purpose of the proof-of-concept tool presented in this
paper is to fight the security risks presented by a number of
iOS unwanted services. It must be kept in mind, however,
that our solution will only work in jailbroken devices, and
the process of jailbreaking itself implies circumventing and
disabling a number of native iOS security mechanisms.

Future research work includes the possibility of creating
custom jailbreak tools that after deploying our software return
the device to its original state to the best possible extent - this
would keep most of the benefits and security features of stock
Apple devices, while avoiding exposure through unwanted
services.
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Appendix G

Poster: Hardening iOS by

selectively disabling Lockdown

services

This appendix contains the poster Hardening iOS by selectively disabling Lock-

down services, which was presented at the 2nd Digital Forensics Research Conference

Europe (DFRWS EU) in March 2015.
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1

Introduction

Facts:

The U.S.A. N.S.A. has extensive surveillance
capabilities over iOS devices [Rosenbach]. 

Targets include innocent citizens such as
sysadmins working for companies where N.S.A.
wants to infiltrate [Gallagher].

Surveillance likely happens through default iOS
system services and abuse of pairing certificates
[Zdziarski].

Proposed solution
Many possible mitigations:

● Disable unwanted services (e.g. sniffer)

● Restrict other sensitive services to USBOnly.

● For the rest of services: define a number of
profiles for typical device uses, such as:
remote management through MDM; allow app
installation through iTunes; media sync... And
choose the desired profile at any moment.

● Periodically delete pairing records (trust certs).

Acknowledgments
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Software implementation Conclusions

This proof of concept has shown that is
technically possible to restrict the number of
exposed services based on the tasks the user
wants to perform in the device at any given
time.

Lockup will be released as free software so that
other researchers and developers can adapt it as
they find convenient.

We intend to continue working in the tool,
maintaining it and adding new features such as:
monitor the list of available services and detect
if new services are installed; log service
connection attempts; and offer the user real-time
notifications.

The use of jailbreak was unavoidable due to the
restrictions inherent to the iOS environment, but
it would be trivial for Apple to implement this
kind of changes in stock iOS versions. This,
however, does not seem likely to happen in any
near future.

Using techniques similar to those of redsn0w 
and other jailbreaks, it should be possible to
perform only the first steps of the process,
modify core system files to disable unwanted
services, and return the device to a non-
jailbroken state without installing the untethered
exploit [Miller]. This would put together the
best of both worlds, and is a very promising line
of research for the future.

...all your iPhone are belong to us

Luis Gómez-Miralles, Joan Arnedo-Moreno
pope@uoc.edu, jarnedo@uoc.edu

Further information
For related research and additional information,
please refer to the authors' website at:
www.pope.es 

… or just look for this guy 

Hardening iOS by selectively disabling lockdown services
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C. Miller, D. Blazakis, D. D. Zovi, S. Esser, V. Iozzo, R.
Weinmann, iOS hacker’s handbook, Wiley (2012).

Fig 2: A screenshot of lockup-profile.

Lockup is an implementation of the proposed mitigations
for jailbroken devices running iOS 7.

With one command (lockup-profile) the user sets the
profile in use at any given time based on the tasks he wants
to perform. This disables unnecessary services.

Another command (lockup-interval) lets the user define the
period at which pairing records are deleted. This sets the
maximum lifetime of trust relationships.

Launch daemon:
es.pope.lockup-purge.plist

lockup-interval

lockup-profile

Service profiles:

Services.0-FactoryDefault.plist
Services.1-MDM.plist
Services.2-InstallApps.plist
...

Services.plist

lockup-purge

writes

reads

updates

invokes 
periodically

User commands

Fig. 1: The different software components of Lockup.

Considerations:

● In order to simplify the implementation
we defined our profiles as incraesingly
restrictive, meaning that if a service is
available in profile n it will also be
available in the lower profiles n-1, n-2...

● Although the overall security posture is
improved, the use of jailbreak disables a
number of security protections opening
the door to new weaknesses.

● Consequently, users should not install
any additional software via Cydia.

Work in progress:

● Port to iOS 8.

● Add a GUI.
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