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Abstract

The main result of the paper is motivated by the following two, apparently unrelated graph opti-
mization problems: (A) as an extension of Edmonds’ disjoint branchings theorem, characterize digraphs
comprising k disjoint branchings Bi each having a specified number µi of arcs, (B) as an extension
of Ryser’s maximum term rank formula, determine the largest possible matching number of simple
bipartite graphs complying with degree-constraints. The solutions to these problems and to their gen-
eralizations will be obtained from a new min-max theorem on covering a supermodular function by a
simple degree-constrained bipartite graph. A specific feature of the result is that its minimum cost ex-
tension is already NP-hard. Therefore classic polyhedral tools themselves definitely cannot be sufficient
for solving the problem, even though they make some good service in our approach.

1 Introduction

Network flow theory provides a basic tool to treat conveniently various graph characterization and
optimization problems such as the degree-constrained subgraph problem in a bipartite graph (or bigraph,
for short) or the k edge-disjoint st-paths problem in a directed graph (or digraph, for short). (Throughout
the paper, we use the terms bipartite graph and bigraph as synonyms, and simlarly the terms directed
graph and digraph.) Another general framework in graph optimization is matroid theory. For example, the
problem of extending k given subtrees of a graph to k disjoint spanning trees can be solved with the help
of matroids, as well as the problem of finding a cheapest rooted k-edge-connected subgraph of a digraph.

A common generalization of these two big branches of combinatorial optimization is the theory of sub-
modular flows, initiated by Edmonds and Giles [11]. This covers not only the basic results on maximum
flows and min-cost circulations from network flow theory and weighted (poly)matroid intersection or ma-
troid partition from matroid theory but also helps solving significantly more complex graph optimization
problems such as the one of finding a minimum dijoin in a digraph (the classic theorem of Lucchesi and
Younger) or finding a k-edge-connected orientation of a mixed graph.

However general is the framework of submodular flows, it leaves open one of the most significant
unsolved questions of matroid optimization concerning the existence of k (or just 2) disjoint common bases
of two matroids. This is settled only in special cases, among them the most important one is a theorem
of Edmonds [10] on the existence of k disjoint spanning arborescences of common root in a digraph.
This version is sometimes called the weak form of Edmonds’ theorem while its strong form characterizes
digraphs admitting k disjoint spanning branchings with prescribed root-sets. Due to the specific position
of Edmonds’ theorem within combinatorial optimization, it is particularly important to investigate its
extensions and variations. For example, the problem of finding k disjoint spanning arborescences with no
requirements on the location of their roots is a nicely tractable version [15], and even more generally, one
may impose upper and lower bounds for each node v to constrain the number of arborescences rooted at v.
By using analogous techniques, one can characterize digraphs comprising k disjoint spanning branchings
each having µ arcs.
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A characteristic feature of submodular flows is that the corresponding linear system is totally dual
integral and therefore the weighted (or minimum cost) versions of the graph theoretic applications are
typically also tractable. For example, not only the minimum cardinality dijoin problem can be solved in
polynomial time but its minimum cost version as well [17]. Or, via submodular flows, there is a polynomial
time algorithm to find a cheapest k-edge-connected orientation of a 2k-edge-connected graph.

More generally, a great majority of min-max theorems and good characterizations in combinatorial
optimization has a polyhedral background that makes possible to manage weighted or min-cost versions
(see, for example non-bipartite matchings). In this view, it is quite interesting that around the same time
when submodular flows were introduced, pretty natural graph optimization problems emerged in which the
minimum cardinality case was shown to be polynomially solvable while the weighted version turned out
to be NP-complete. For example, Eswaran and Tarjan [12] found a min-max formula and an algorithm
to make a digraph strongly connected by adding a minimum number of new arcs but the minimum cost
version of the problem is clearly NP-complete as the directed Hamiltonian circuit problem is a special
case. Therefore no polyhedral approach can exist for this augmentation problem. (Note that the original
cardinality version of Eswaran and Tarjan has nothing to do with the problem of packing common bases
of two matroids.)

Remark 1. The problem of deciding whether a digraph includes a circuit of cost at most a specified
number is NP-complete. The closely related minimization version of this problem consists of determining
the minimum cost of a directed circuit. Strictly speaking, this minimization form is NP-hard and not
NP-complete since it is not known to be in NP. But the two problems are informally so close to each
other that we take the liberty to use throughout the inaccurate term NP-complete for the minimizing
form, as well.

Recently, it turned out that the roots of a somewhat similar phenomenon go back to as early as 1958
when Ryser [38] solved the maximum term rank problem (which is equivalent to finding a simple bipartite
graph G with a specified degree sequence so that G has a matching with cardinality at least a specified
number `, or equivalently, the matching number ν(G) of G is as large as possible). The minimum cost
version of this problem had not been settled for a long time. Ford and Fulkerson, for example, considered
a natural attempt by using network flows but they concluded in their book [14] that the flow approach
did not seem to work in this case. (For the exact citation, see Section 7.) Recently, however, it was shown
( [29], [35], [36]) that this min-cost version of the maximum term rank problem is NP-complete.

Therefore the failure of using network flows to attack the maximum term rank problem was not by
chance at all, and the same NP-completeness result shows that even submodular flows could not be able
to help. The sharp borderline between the problem of finding a degree-specified simple bipartite graph and
the problem of finding a degree-specified simple bipartite graph with matching number at least ` is best
clarified by the fact that –though both problems are in P– the natural extension of the first problem, when
a degree-specified subgraph of an initial bipartite graph is to be found, is still in P, while the analogous
extension of the second problem, when a degree-specified subgraph with matching number at least ` of an
initial bipartite graph is to be found, is already NP-complete.

In a paper by the second author [19], a min-max theorem was developed to solve the general edge-
connectivity augmentation problem of digraphs. It was shown in [20], that edge-connectivity augmentation
problem of digraphs could be embedded in an abstract framework concerning optimal arc-covering of
supermodular functions. That min-max theorem seems to be the very first appearance of a min-max result
on sub- or supermodular functions in which the weighted version included NP-complete problems.

Frank and Jordán [22] generalized this result further and proved a min-max theorem on optimally
covering a so-called supermodular bi-set function by digraphs. We shall refer to the main result of [22]
(and its equivalent reformulation, too) as the supermodular arc-covering theorem (Theorem 12 below).
It should be emphasized that this framework characteristically differs from previous models using sub-
or supermodular functions, such as polymatroids or submodular flows, since it solves such cardinality
optimization problems for which the corresponding weighted versions are NP-complete. One of the most
important applications was a solution to the minimum directed node-connectivity augmentation problem
but several other problems could be treated in this way. For example, with its help, the degree-sequences
of k-edge-connected and k-node-connected digraphs could be characterized (without requiring simplicity
of the realizing digraph). Also, it implied (an extension of) Győri’s [26] beautiful theorem on covering
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a vertically convex polyomino by a minimum number of rectangles. Yet another application described
a min-max formula for Kt,t-free t-matchings of a bipartite graph [18]. In a recent application, Soto and
Telha [40] described an elegant extension of Győri’s theorem.

One may consider analogous problems concerning simple digraphs covering supermodular functions.
Unfortunately, it turned out recently that the problem of supermodular coverings with simple digraph
includes NP-complete special cases. Therefore there is no hope to develop a general version of the min-
max theorem of Frank and Jordán where the covering digraph is requested to be simple.

The present work is the first member of a series of four papers. Our general goal is to describe special
cases where simplicity can successfully be treated. Here a new min-max theorem is developed on covering
an intersecting supermodular function with a simple degree-constrained bipartite graph. One application is
a new theorem on disjoint branchings which provides a necessary and sufficient condition for the existence
of k disjoint spanning branchings B1, . . . , Bk in a digraph such that, for each i = 1, . . . , k, the cardinality
of |Bi| lies between prescribed lower and upper bounds fi and gi, and such that, for each node v ∈ V ,
the (total) in-degree %F (v) of v lies between specified lower and upper bounds fin(v) and gin(v), where
F = B1 ∪ · · · ∪Bk.

As another consequence, we shall show that Ryser’s maximum term rank problem nicely fits this new
framework. Ryser’s original maximum term rank theorem, in equivalent terms of bipatite graphs, provides
a min-max formula for the maximum of the matching number of simple bipartite graphs meeting a degree
prescription. We not only show how this result follows from our general supermodular framework but a
significantly more difficult extension will also be derived in which the goal is to determine the maximum
of the matching number of degree-constrained simple bigraphs.

In Part II [2] of the series, matroidal generalization of the new framework is described which gives
rise to a matroidal extension of Ryser’s maximum term rank theorem. We also develop the more general
augmentation version of Ryser’s max term rank formula, when some edges of the graph (correspondingly,
some 1’s of the matrix) are specified.

In Part III [3], yet another special case of the supermodular arc-covering theorem is analysed where
simplicity of the covering digraph is tractable, and we derive there, among others, a characterization of
degree-sequences of simple k-node-connected digraphs, providing in this way a straight generalization of
a recent result of Hong, Liu, and Lai [28] on the characterization of degree-sequences of simple strongly
connected digraphs. The approach also gives rise to a characterization for the augmentation problem where
an initial digraph is to be augmented to obtain a k-node-connected, simple, degree-specified digraph.

Part IV [4] will be devoted to explore algorithmic aspects of the problems. Based on the ellipsoid
method, there is a polynomial time algorithm [22] to compute the optima in the supermodular arc-covering
theorem (Theorem 12 below). Therefore our approach ensures polynomial algorithms for several applica-
tions we discuss in the three papers (but not for all). In addition, Végh and Benczúr [41] developed a purely
combinatorial algorithm for the directed node-connectivity augmentation problem, and their algorithm can
be extended to the general supermodular arc-covering theorem, as well, provided a submodular function
minimizing oracle is available. This version is polynomial in the size of the ground-set and in the maximum
value of the supermodular function to be covered (in other words, the algorithm is pseudo–polynomial).
The algorithm of Végh and Benczúr, however, is pretty intricate and one goal of Part IV is to develop sim-
pler algorithms. For example, a purely graph theoretical algorithm (not relying on a submodular function
minimizing oracle) will be constructed to compute k disjoint branchings B1, . . . , Bk in a digraph with sizes
µ1, . . . , µk. Another goal of Part IV will be to develop an algorithmic solution to the degree-constrained
augmentation version of the maximum term rank problem, a problem discussed in Part II.

1.1 Notions and notation

We close this introductory section by mentioning notions and notation.
For a number x, let x+ := max{x, 0}. For a function m : V → R, the set-function m̃ is defined

by m̃(X) =
∑

[m(v) : v ∈ X]. A set-function p can analogously be extended to families F of sets by
p̃(F) =

∑
[p(X) : X ∈ F ].

Two subsets X and Y of a ground-set V are comparable if X ⊆ Y or Y ⊆ X, intersecting if
X ∩ Y 6= ∅, properly intersecting if they are non-comparable and intersecting, crossing if none of the
sets X − Y, Y −X,X ∩ Y, V − (X ∪ Y ) is empty.

For two non-empty subsets S and T of V , the subsets X,Y are ST -independent if X ∩ Y ∩ T = ∅ or
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S − (X ∪ Y ) = ∅, ST -crossing if they are non-comparable, X ∩ Y ∩ T 6= ∅, and S − (X ∪ Y ) 6= ∅. X and
Y are T -intersecting if X ∩ Y ∩ T 6= ∅, and properly T -intersecting if they are non-comparable and
X ∩ Y ∩ T 6= ∅. Typically, we do not distinguish between a one-element set {v}, called a singleton, and
its only element v.

For an arc f = uv, node v is the head of f and u is its tail. The arc uv enters or covers a subset
X ⊂ V if u ∈ V −X and v ∈ X. Given a digraph D = (V,A), the in-degree of a subset X ⊆ V is the
number of arcs entering X, denoted by %D(X) or %A(X). The out-degree δD(X) = δA(X) is the number
of arcs leaving X. An arc st is an ST -arc if s ∈ S and t ∈ T . A digraph D = (V,A) covers a set-function
p on V if %D(X) ≥ p(X) holds for every subset X ⊆ V .

An arc with coinciding head and tail is called a loop. Two arcs from s to t are called parallel. A
digraph with no loops and parallel arcs is simple. Note, however, that simple digraphs are allowed to have
two oppositely oriented arcs uv and vu. Simplicity of an undirected graph is defined analogously.

Let G = (S, T ;E) be a bipartite graph. For a subset Y ⊆ T , let

ΓG(Y ) = {s ∈ S : there is an edge st ∈ E with t ∈ Y },

that is, ΓG(Y ) is the set of neighbours of Y . We say that G covers a set-function pT on T if

|ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T . (1)

Even if it is not mentioned explicitly, we assume throughout that each set-function is zero on the empty
set. Also, the empty sum is defined to be zero. A set-function p on T is monotone non-decreasing if
p(X) ≤ p(Y ) whenever ∅ ⊂ X ⊆ Y ⊆ T . For a set-function b on ground-set V ,

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ) (2)

is called the submodular inequality on X,Y ⊆ V .
The function b is fully (respectively, intersecting, crossing) submodular if (2) holds for each

(resp., intersecting, crossing) sets X and Y . Fully submodular functions will often be mentioned simply as
submodular. A set-function p is supermodular if −p is submodular, positively intersecting (crossing,
ST -crossing) supermodular if the supermodular inequality

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y )

holds for intersecting (crossing, ST -crossing) subsets for which p(X) > 0 and p(Y ) > 0. The complemen-
tary function p of a set-function b with finite b(V ) is defined by

p(X) := b(V )− b(V −X).

Clearly, b is submodular if and only if p is supermodular. For a pair (p, b) of set-functions,

b(X)− p(Y ) ≥ b(X − Y )− p(X ∪ Y ) (3)

is called the cross-inequality on X,Y ⊆ V . The pair is called paramodular (intersecting paramod-
ular) if b is (intersecting) submodular, p is (intersecting) supermodular and the cross-inequality holds for
every (properly intersecting) X and Y . For a paramodular pair (p, b), the polyhedron

Q(p, b) = {x ∈ RV : p ≤ x̃ ≤ b}

is called a generalized polymatroid or g-polymatroid. By convention, the empty set is also considered
to be a g-polymatroid. For a submodular function b with b(V ) finite, the polyhedron B(b) := {x ∈ RV :
x̃ ≤ b, x̃(V ) = b(V )} is called a base-polyhedron and we speak of a 0-base-polyhedron if b(V ) = 0.
For a supermodular function p with finite p(V ), the polyhedron B′(p) := {x ∈ RV : x̃ ≥ p, x̃(V ) = p(V )}
is also a base-polyhedron since B′(p) = B(b) holds for the complementary function b of p.

All the notions, notation, and terminology not mentioned explicitly in the paper can be found in the
book of the second author [21].
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2 Background results

2.1 Degree-specified and degree-constrained bipartite graphs

2.1.1 Subgraph problems

Let S and T be two disjoint sets and V := S ∪ T . Our starting point is the classic Hall theorem:

Theorem 2. A bigraph G = (S, T ;E) has a matching covering T if and only if

|ΓG(Y )| ≥ |Y | for every subset Y ⊆ T . (4)

G has a perfect matching if and only if |S| = |T | and (4) holds.

For a given non-negative integer-valued function m : V → Z+, its restrictions to S and to T are denoted
by mS and mT , respectively. We also use the notation m = (mS ,mT ). It is assumed throughout that
m̃S(S) = m̃T (T ) and this common value will be denoted by γ. We say that m or the pair (mS ,mT ) is a
degree-specification and that a bipartite graph G = (S, T ;E) fits or meets this degree-specification if
dG(v) = m(v) holds for every node v ∈ V .

Theorem 3 (Ore [34]). Let G0 = (S, T ;E0) be a bipartite graph and m = (mS ,mT ) a degree-specification
for which m̃S(S) = m̃T (T ) = γ. There is a subgraph G = (S, T ;E) of G0 fitting the degree-specification m
if and only if

m̃S(X) + m̃T (Y )− dG0(X,Y ) ≤ γ whenever X ⊆ S, Y ⊆ T (5)

where dG0(X,Y ) denotes the number of edges connecting X and Y .

Let gS : S → Z+ and gT : T → Z+ be upper bound functions while fS : S → Z+ and fT : T → Z+

lower bound functions. Let fV = (fS , fT ) and gV = (gS , gT ) and assume that fV ≤ gV . Call a bipartite
graph G = (S, T ;E) (fT , gS)-feasible if

dG(s) ≤ gS(s) for every s ∈ S and dG(t) ≥ fT (t) for every t ∈ T. (6)

The bigraph G = (S, T ;E) (and its degree function dG) is said to be (fV , gV )-feasible or degree-
constrained by (fV , gV ) if fV (v) ≤ dG(v) ≤ gV (v) holds for every node v ∈ V .

Theorem 4 (Linking property, Ford and Fulkerson). Let G0 = (S, T ;E0) be a bipartite graph. Let gS :
S → Z+ and gT : T → Z+ be upper bound functions while fS : S → Z+ and fT : T → Z+ lower bound
functions. There is an (fV , gV )-feasible subgraph G of G0 if and only if there is an (fS , gT )-feasible subgraph
G′ of G0 and there is an (fT , gS)-feasible subgraph G′′ of G0.

With standard techniques, such as network flows or total unimodularity, the following theorem can also
be derived.

Theorem 5. Suppose that a bigraph G0 has a subgraph degree-constrained by (fV , gV ). G0 has an (fV , gV )-
feasible subgraph G = (S, T ;E):
(A) for which α ≤ |E| if and only if

g̃S(S −X) + g̃T (T − Y ) + dG0(X,Y ) ≥ α whenever X ⊆ S, Y ⊆ T , (7)

(B) for which |E| ≤ β if and only if

f̃S(X) + f̃T (Y )− dG0(X,Y ) ≤ β whenever X ⊆ S, Y ⊆ T , (8)

(AB) for which α ≤ |E| ≤ β if and only if both (7) and (8) hold.

It should be noted that the ‘only if’ part in the theorems above are straightforward. For example, in
Theorem 3, we can argue that in a subgraph G of G0 fitting m there are m̃S(X) edges leaving X and
m̃T (Y ) edges leaving Y , and since at most dG0(X,Y ) edges may be counted twice, the total number γ of
edges of G is at least m̃S(X) + m̃T (Y )− dG0(X,Y ).
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2.1.2 Synthesis problems

When the initial graph G0 is the complete bipartite graph on S and T , the theorems can be simplified.
Let G(mS ,mT ) denote the set of simple bipartite graphs fitting (mS ,mT ). Gale [25] and Ryser [37] found,
in an equivalent form, the following characterization.

Theorem 6 (Gale and Ryser). There is a simple bipartite graph G fitting the degree-specification m if and
only if

m̃S(X) + m̃T (Y )− |X||Y | ≤ γ whenever X ⊆ S, Y ⊆ T. (9)

Moreover, (9) holds if the inequality is required only when X consists of the i elements of S having the
i largest values of mS and Y consists of the j elements of T having the j largest values of mT (i =
1, . . . , |S|, j = 1, . . . , |T |).

Instead of exact degree-specifications, one may impose upper and/or lower bounds for the degrees.

Theorem 7. Let gS : S → Z+ be an upper bound function on S and let fT : T → Z+ be a lower bound
function on T . There is an (fT , gS)-feasible simple bipartite graph G if and only if

g̃S(X) + f̃T (Y )− |X||Y | ≤ g̃S(S) whenever X ⊆ S, Y ⊆ T. (10)

Moreover, (10) holds if the inequality is required only when X consists of elements with the i largest values
of mS and Y consists of elements with the j largest values of mT (i = 1, . . . , |S|, j = 1, . . . , |T |).

The linking property formulated in Theorem 4 can also be specialized to the case when G0 is the
complete bipartite graph G∗ = (S, T ;E∗).

Theorem 8. If there is a simple (fT , gS)-feasible bipartite graph and there is a simple (fS , gT )-feasible
bipartite graph, then there is a simple (fV , gV )-feasible bipartite graph.

When G0 is the complete bigraph on S ∪ T , Theorem 5 specializes to the following synthesis-type
problem.

Theorem 9. Suppose that there is a simple bigraph degree-constrained by (fV , gV ). There is a simple
bigraph degree-constrained by (fV , gV ):
(A) for which α ≤ |E| if and only if

g̃S(S −X) + g̃T (T − Y ) + |X||Y | ≥ α whenever X ⊆ S, Y ⊆ T, (11)

(B) for which |E| ≤ β if and only if

f̃S(X) + f̃T (Y )− |X||Y | ≤ β whenever X ⊆ S, Y ⊆ T , (12)

(AB) for which α ≤ |E| ≤ β if and only if both (11) and (12) hold.

2.1.3 Synthesis versus subgraph problems

The synthesis problem of degree-constrained and degree-specified simple bigraphs is just a special case
of the corresponding subgraph problems. It turns out, however, that several other synthesis problems
cannot be attacked in this way since the more general subgraph problem is already NP-complete. For
example, it is trivial to decide if there is a bigraph G = (S, T ;E) which is connected and meets the
identically 2 degree-specification since such a graph is just a bipartite Hamiltonian circuit, and therefore
the only requirement is |S| = |T | ≥ 2. On the other hand, it is known to be NP-complete to decide if an
initial bigraph G0 includes a Hamiltonian circuit.

At other occasions the situation is more complicated. For example, one may consider the synthesis
problem of finding a simple, perfectly matchable, and degree-specified bigraph. This problem is solvable
but its subgraph version where a perfectly matchable degree-specified subgraph of an initial bigraph G0

has to be found is already NP-complete ( [29], [35], [36]).
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2.2 Covering supermodular functions with digraphs and bigraphs

2.2.1 Covering by bigraphs

We call a set-function p on a ground-set T element-subadditive if p(Y ) + p(t) ≥ p(Y + t) holds
whenever Y ⊆ T and t ∈ T . The following early result on bipartite graphs and supermodular functions is
due to Lovász [32].

Theorem 10. Let G0 = (S, T ;E0) be a simple bipartite graph and pT a positively intersecting supermodular
function on T which is, in addition, element-subadditive. There is a subgraph G of G0 covering pT for which
dG(t) = pT (t) whenever t ∈ T if and only if

|ΓG0(Y )| ≥ pT (Y ) holds for every subset Y ⊆ T. (13)

This was extended by Frank and Tardos [24] as follows.

Theorem 11. Let G0 = (S, T ;E0) be a simple bipartite graph and pT a positively intersecting supermodular
function on T . Let gT : T → Z+ be an upper bound function. There is a subgraph G of G0 covering pT for
which dG(t) ≤ gT (t) whenever t ∈ T if and only if

|ΓG0(Z)| ≥ pT (Y ∪ Z)− g̃T (Y ) holds for disjoint subsets Y,Z ⊆ T . (14)

It should be noted that the problem in Theorem 10 can be formulated as a matroid intersection problem
while the problem in Theorem 11 can be cast into the submodular flow framework. Therefore the minimum
cost versions of both cases are also tractable. However, both problems become NP-complete if there is an
upper-bound gS , as well, for the degrees of G in S.

2.2.2 Covering by digraphs

Let p be a positively ST -crossing supermodular function. A basic tool in our investigations is the
following general result of Frank and Jordán [22].

Theorem 12 (Supermodular arc-covering, set-function version). A positively ST -crossing supermodular
set-function p can be covered by γ ST -arcs if and only if p̃(I) ≤ γ holds for every ST -independent family
I of subsets of V . There is an algorithm, which is polynomial in |S| + |T | and the maximum value of
p(X), to compute the minimum number of ST -arcs to cover p and an ST -independent family I of subsets
maximizing p̃(I).

The theorem can be used [22] to describe characterizations for the existence of degree-specified (and
even degree-constrained) digraphs covering p. It has great many applications in graph optimization and it
serves as the major tool for the present work. It significantly differs from the framework of Lovász above
(or from submodular flows) in that its min-cost version includes NP-complete special cases such as the
directed Hamiltonian circuit problem.

The existing applications give rise to a natural demand to develop a variation of Theorem 12 in which
no parallel arcs of the covering digraph are allowed. Unfortunately, this is hopeless since the general
problem includes NP-complete special cases, as we point out in the next theorem. This fact underpins
the significance and the difficulties of the present work that explores special cases of Theorem 12 where
simplicity can be involved.

Theorem 13. (A) It is NP-complete to decide for two given degree specifications m′ ≤ m on V = S ∪ T
whether there exists a simple bigraph G fitting m which includes a subgraph fitting m′.

(B) The problem in Part (A) can be formulated as a special case of the problem of finding a minimal
simple digraph covering an ST -crossing supermodular function.

Proof. Proof. (A) By choosing m′′ = m −m′, Part (A) follows immediately from the following elegant
NP-completeness result of Dürr, Guinez, and Matamala [9].

Lemma 14. It is NP-complete to decide whether, given two degree-specifications m′ = (m′S ,m
′
T ) and

m′′ = (m′′S ,m
′′
T ), there is a simple bigraph G = (S, T ;E) which can be partitioned into two subgraphs

G′ = (S, T ;E′) and G′′ = (S, T ;E′′) so that G′ fits m′ and G′′ fits m′′.
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(B) Consider Theorem 3 with m′ in place of m. This can be restated as follows.

Claim 15. A bipartite graph G = (S, T ;E) admits a subgraph G′ fitting m′ if and only if

%D(X ∪ Y ) ≥ m̃′T (Y )− m̃′S(X) whenever X ⊆ S, Y ⊆ T (15)

where D is the digraph arising from G by orienting each arc from S toward T .

Let γ′ := m̃′S(S) = m̃′T (T ) and γ := m̃S(S) = m̃T (T ), and define a set-function p on V as follows.

p(V ′) :=


m̃′T (Y )− m̃′S(X) if Y ⊆ T,X ⊆ S, V ′ = X ∪ Y, 1 < |V ′| < |V | − 1

mT (t) if V ′ = {t} for some t ∈ T
mS(s) if V ′ = V − s for some s ∈ S

(16)

Claim 16. The set-function p is ST -crossing supermodular.

Proof. Proof. Consider the set-function p′ defined by p′(V ′) := m̃′T (Y ) − m̃′S(X) for Y ⊆ T, X ⊆
S, V ′ = X ∪ Y . Clearly, p′ is modular. Furthermore, p′(t) = m′T (t) ≤ mT (t) = p(t) and p′(V − s) =
m̃′T (T )− m̃′S(S − s) = m′(s) ≤ mS(s) = p(V − s). Therefore, p arises from a modular function by lifting
its values on elements t of T and by lifting its values on the complement V − s of elements s of S. This
implies that p is indeed ST -crossing supermodular. •

Obviously, there is a simple digraph D = (V,A) consisting of γ ST -arcs covering p if and only if there
exists a simple bigraph G = (S, T ;E) fitting m so that (15) holds. By Claim 15, (15) in turn is equivalent
to the solvability of the problem in Part (A). • •

3 Simple degree-specified bipartite graphs covering supermodular func-
tions

Let pT be a set-function on T . Recall that a bipartite graph G = (S, T ;E) is said to cover pT if

|ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T . (17)

For example, if pT (Y ) = |Y | (Y ⊆ T ), then (17) is the Hall-condition (4). Therefore Hall’s theorem implies
that G = (S, T ;E) covers pT if and only if G has a matching covering T . Another special case is when
pT (Y ) := |Y |+ 1 (∅ ⊂ Y ⊆ T ). By a theorem of Lovász [32], a bigraph G = (S, T ;E) covers this pT if and
only if G has a forest in which the degree of every node in T is 2. This result is a direct consequence of
Theorem 10.

We are interested in finding simple bipartite graphs covering pT which meet some degree-constraints
(that is, upper and lower bounds) or exact degree-specifications. If no such constraints are imposed at all,
then the existence of a bigraph covering pT is obviously equivalent to the requirement that

pT (Y ) ≤ |S| for every Y ⊆ T . (18)

Indeed, this condition is clearly necessary and it is also sufficient as the complete bipartite graph
G∗ = (S, T ;E∗) covers a set-function pT meeting (18). Therefore we suppose throughout that (18) holds.

Our plan is the following. First we characterize the situation when there is a degree-prescription only
on S. This is then used to settle the case when a degree-specification (mS ,mT ) is given on the whole
node-set V = S ∪ T . In Section 4.1, with the help of a novel construction, we introduce a base-polyhedron
B and prove that (mS ,mT ) is realizable by a simple bigraph covering pT precisely if the associated vector
(mS ,−mT ) is in B. As the intersection of a base-polyhedron with a box and with a plank is a g-polymatroid
whose non-emptiness is characterized in the literature, this result can finally be used to handle upper and
lower bounds on the degrees of G and on its edge-number.
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3.1 Degree-specification on S

Our first goal is to characterize the situation when there is a degree-specification only on S.

Theorem 17. Let mS be a degree-specification on S for which m̃S(S) = γ. Let pT be a positively inter-
secting supermodular function on T with pT (∅) = 0. Suppose that

mS(s) ≤ |T | for every s ∈ S. (19)

The following statements are equivalent.

(A) There is a simple bipartite graph G = (S, T ;E) covering pT and fitting the degree-specification mS.

(B1)
m̃S(X) + p̃T (T )− |T ||X| ≤ γ for every subset X ⊆ S and subpartition T of T . (20)

(B2)
q∑

i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), q} for every subpartition T = {T1, . . . , Tq} of T . (21)

Proof. Proof. (A) ⇒ (B1) Suppose that there is a simple bipartite graph G meeting (17). By the
simplicity of G, there are at most |X||Y | edges between X ⊆ S and Y ⊆ T . We claim that the number
dG(Ti, S −X) of edges between Ti ∈ T and S −X is at least pT (Ti)− |X|. Indeed,

pT (Ti) ≤ |ΓG(Ti)| = |ΓG(Ti) ∩X|+ |ΓG(Ti)−X| ≤ |X|+ dG(Ti, S −X), (22)

that is, dG(Ti, S−X) ≥ pT (Ti)−|X|. Therefore the total number γ of edges is at least m̃S(X)+
∑

i[pT (Ti)−
|X|] from which (20) follows.

(B1) ⇒ (B2) Let T = {T1, . . . , Tq} be a subpartition of T and let X := {s ∈ S : mS(s) > q}. Then (20)
implies ∑

s∈S
min{mS(s), q} =

∑
[mS(s) : s ∈ S −X] + q|X| = m̃S(S −X) + q|X| =

γ − m̃S(X) + q|X| ≥ p̃T (T ) =

q∑
i=1

pT (Ti),

as required in (21).

(B2) ⇒ (B1) Let X be a subset of S and T = {T1, . . . , Tq} a subpartition of T . By (21), we have

q∑
i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), q} =
∑
s∈X

min{mS(s), q}+
∑

s∈S−X
min{mS(s), q} ≤

∑
s∈X

q +
∑

s∈S−X
mS(s) = q|X|+ m̃S(S −X) = q|X|+ γ − m̃S(X),

and (20) follows.

(B1) ⇒ (A) First of all, observe that Condition (20), when applied to X := S and T =: {Y }, specializes
to m̃S(S) + pT (Y ) − |S| ≤ γ, that is, (20) implies Condition (18), and this is why explicit mentioning of
(18) among the necessary conditions was avoidable. The following simple observation indicates that we
need not concentrate on the simplicity of G.

Claim 18. If there is a not-necessarily simple bipartite graph G = (S, T ;E) covering pT for which dG(s) ≤
|T | for each s ∈ S, then there is a simple bipartite graph H covering pT for which dG(s) = dH(s) for each
s ∈ S.

Proof. Proof. Suppose G has two parallel edges e and e′ connecting s and t for some s ∈ S and t ∈ T .
Since dG(s) ≤ |T |, there is a node t′ ∈ T which is not adjacent with s. By replacing e′ with an edge st′,
we obtain another bipartite graph G′ for which ΓG′(Y ) ⊇ ΓG(Y ) for each Y ⊆ T , dG′(s) = dG(s) for each
s ∈ S, and the number of parallel edges in G′ is smaller than in G. By repeating this procedure, finally we
arrive at a requested simple graph. •
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A subset V ′ of V := S ∪ T is ST -trivial if no ST -arc enters it, which is equivalent to requiring that
T ∩ V ′ = ∅ or S ⊆ V ′. We say that a subset V ′ ⊆ V is fat if V ′ = V − s for some s ∈ S (that is, there are
|S| fat sets). The non-fat subsets of V will be called normal. An ST -independent family I of subsets is
strongly ST -independent if any two of its normal members are T -independent, that is, the intersections
of the normal members of I with T form a subpartition of T .

Define a set-function p0 on V by

p0(V
′) = pT (Y )− |X| where V ′ = X ∪ Y whenever X ⊆ S and Y ⊆ T . (23)

Note that p0 is positively T -intersecting supermodular since if p0(V ′) is positive, then so is pT (Y ). Fur-
thermore, as (20) was shown above to imply (18), p0(V ′) = pT (Y )− |X| can be positive only if X 6= S and
Y 6= ∅, that is, when V ′ is not ST -trivial.

Claim 19. mS(s) ≥ p0(V − s) holds for every s ∈ S.

Proof. Proof. By applying (20) to X = S − s and T = {T}, we obtain that mS(s) ≥ pT (T ) − |S − s| =
p0(V − s). •

Define a set-function p1 on V by modifying p0 so as to lift its value on fat subsets V − s from p0(V − s)
to mS(s) (s ∈ S), that is,

p1(V
′) :=

{
mS(s) if V ′ = V − s for some s ∈ S,
p0(V

′) otherwise.
(24)

Note that the supermodular inequality

p1(V1) + p1(V2) ≤ p1(V1 ∩ V2) + p1(V1 ∪ V2) (25)

holds for T -intersecting normal sets with p1(V1) > 0 and p1(V2) > 0.
By Claim 19, p1 ≥ p0. In order to use Theorem 12, observe that, as p0 is positively T -intersecting

supermodular, p1 is positively ST -crossing supermodular. Let ν1 denote the maximum total p1-value of a
family of ST -independent sets. We call a family attaining the maximum a p1-optimizer.

Claim 20. If I is a p1-optimizer of minimum cardinality, then I is strongly ST -independent.

Proof. Proof. Clearly, p1(V ′) ≥ 0 for each V ′ ∈ I for otherwise I would not be a p1-optimizer. Moreover,
p1(V

′) > 0 also holds for if we had p1(V ′) = 0, then I − {V ′} would also be a p1-optimizer contradicting
the minimality of I.

Suppose indirectly that I has two properly T -intersecting normal members V1 and V2. Then (25) holds
and V1 ∩ V2 is obviously normal. Since I is ST -independent, we must have S ⊆ V1 ∪ V2 implying that
V1 ∪ V2 is also normal. The inclusion S ⊆ V1 ∪ V2 also shows that

p1(V1 ∪ V2) = p0(V1 ∪ V2) = pT (T ∩ (V1 ∪ V2))− |S| ≤ 0,

where the last inequality follows from (18) (which was shown above to be a consequence of (20)). Hence

p1(V1) + p1(V2) ≤ p1(V1 ∩ V2) + p1(V1 ∪ V2) ≤ p1(V1 ∩ V2).

Now I ′ = I − {V1, V2} + {V1 ∩ V2} is also ST -independent and p̃1(I ′) ≥ p̃1(I), but we must have here
equality by the optimality of I, that is, I ′ is also a p1-minimizer, contradicting the minimality of |I|. •

Claim 21. Let I be a strongly ST -independent p1-optimizer. There exists a subset X and a subpartition
T = {T1, . . . , Tq} of T such that I = {V − s : s ∈ X} ∪ {X ∪ Ti : i = 1, . . . , q}, and hence

ν1 = p̃1(I) = m̃S(X) + p̃T (T )− |T ||X|. (26)
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Proof. Proof. Let X := {s ∈ S : V − s ∈ I} and let I1 = {V − s : V − s ∈ I}. Let I2 := I − I1 and let
V1, . . . , Vq denote the members of I2. Furthermore, let Ti := T ∩ Vi and Xi = S ∩ Vi (i = 1, . . . , q). By
the strong ST -independence, the family T = {T1, . . . , Tq} is a subpartition of T , and we also have X ⊆ Xi

for each i.
Define V ′i := Ti∪X for i = 1, . . . , q and let I ′2 = {V ′1 , . . . , V ′q}. Then I ′ = I1∪I ′2 is also ST -independent.

Since p1(V ′i ) = p1(Vi) + |Xi−X| and I is a p1-optimizer, we must have Xi = X for each i = 1, . . . , q. The
formula in (26) follows from

ν1 = p̃1(I) = p̃1(I1) + p̃1(I2) =∑
[mS(s) : V − s ∈ I1] + [p̃T (T )− |T ||X|] = m̃S(X) + p̃T (T )− |T ||X|. •

Claim 22. ν1 = γ.

Proof. Proof. Since the family L = {V − s : s ∈ S} is ST -independent, ν1 ≥ p̃1(L) = m̃S(S) = γ from
which ν1 ≥ γ. Let I be a strongly ST -independent p1-optimizer for which |I| is minimum. It follows from
(26) in Claim 21 and from the hypothesis (20) that ν1 ≤ γ and hence ν1 = γ. •

By Theorem 12, there is a digraph D = (V,A) on V with ν1 = γ (possibly parallel) ST -arcs that covers
p1, that is, %D(V ′) ≥ p1(V

′) for every subset V ′ ⊆ V . Let G = (S, T ;E) denote the underlying bipartite
graph of D.

Claim 23. dG(s) = mS(s) for every s ∈ S.

Proof. Proof. Since dG(s) = δD(s) = %D(V − s) ≥ p1(V − s) = mS(s) for every s ∈ S, we have γ = |E| =∑
[dG(s) : s ∈ S] ≥ m̃S(S) = γ, from which dG(s) = mS(s) follows for every s ∈ S. •

Claim 24. |ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T .

Proof. Proof. Let X := ΓG(Y ) and V ′ := X ∪ Y . Then 0 = %D(V ′) ≥ p1(V
′) ≥ p0(V

′) = pT (Y ) − |X| =
pT (Y )− |ΓG(Y )|, as required. •

Therefore the bipartite graphGmeets all the requirements of the theorem apart possibly from simplicity.
By Claim 18, G can be chosen to be simple. • •

3.2 Degree-specification on S ∪ T

In the next problem we have degree-specification not only on S but on T as well. When the degree-
specification was given only on S, we have observed that it sufficed to concentrate on finding a not-
necessarily simple graph covering pT because such a graph could easily be made simple. Based on this, it is
tempting to conjecture that if there is a simple bipartite graph fitting a degree-specificationmV = (mS ,mT )
and there is a (not-necessarily simple) one fitting mV and covering pT , then there is a simple bipartite
graph fitting mV and covering pT . The following example shows, however, that this statement fails to hold.

Let S = {e, f, g, h} and let the mS-values on S, respectively, be 4, 4, 3, 2. Let T = {a, b, c, d} and let
the mT -values on T , respectively, be 4, 4, 3, 2. Let pT (t) = 3 for t ∈ {a, b, c} and let pT (d) := 2. Let
pT ({c, d}) = 4 and pT ({y, z}) = 1 whenever {y, z} 6= {c, d}, {y, z} ⊂ T . Let pT ({a, c, d}) = pT ({b, c, d}) =
3, and pT ({a, b, c}) = pT ({a, b, d}) = 2. Finally, let pT (T ) = 4. Simple case checking shows that function
pT is T -intersecting supermodular. Here there is a unique simple bipartite graph G fitting mV , but G does
not cover pT since |ΓG({c, d})| = |{e, f, g}| = 3 6≥ 4 = pT ({c, d}). On the other hand, the (non-simple)
bipartite graph G′ = (S, T ;E′) with E′ = {ae, ae, af, ag, be, bf, bf, bh, ce, cf, cg, dg, dh} fits mV and
covers pT (see Figure 1).

Theorem 25. Let S and T be disjoint sets and let mV = (mS ,mT ) be a degree-specification for which
m̃S(S) = m̃T (T ) = γ. Let pT be a positively intersecting supermodular function on T for which pT (∅) = 0
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a b c d

4 4 3 2

e f g h

4 4 3 2

(a) The unique simple graph fitting mV

a b c d

4 4 3 2

e f g h

4 4 3 2

(b) A non-simple graph covering pT

Figure 1: The existence of a simple graph fitting mV and a not-necessarily simple graph covering pT does
not imply the existence of a graph satisfying these conditions simultaneously

and pT (Y ) ≤ |S| for Y ⊆ T . There is a simple bigraph G = (S, T ;E) covering pT and fitting the degree-
specification mV if and only if

m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T )− |T ||X| ≤ γ

for every X ⊆ S, Y ⊆ T , and subpartition T of T − Y (27)

holds including the special case T = ∅ (when the condition is exactly (9)). When pT is fully supermodular,
it suffices to require (27) only for |T | ≤ 1. When pT is fully supermodular and monotone non-decreasing,
it suffices to require (27) only for T = ∅ and for T = {T − Y }.

Proof. Proof. Necessity. Suppose that there is a requested bigraph G. Let X ⊆ S, Y ⊆ T be subsets
and let T = {T1, . . . , Tq} be a subpartition of V − Y . On one hand, the simplicity of G implies that the
number of edges with at least one end-node in X ∪ Y is at least m̃S(X) + m̃T (Y )− |X||Y |. On the other
hand, it was shown already in (22) that dG(Ti, S −X) ≥ pT (Ti)− |X|, implying that the number of edges
between S −X and S − Y is at least

∑
i[pT (Ti)− |X|]. Therefore the total number γ of edges of G is at

least m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T )− |T ||X|, which is (27).
Sufficiency. Let t be an element of T . By applying (27) to X = ∅, Y = T − t, q = 1, T1 = {t}, we obtain

that m̃T (T − t) + pT (t) ≤ γ, that is, pT (t) ≤ mT (t).
Define a set-function p+T on T by revising pT so as to lift its value on each singleton {t} to mT (t)

(t ∈ T ). As pT (t) ≤ mT (t) and pT is positively T -intersecting supermodular, so is p+T .
Let s be an element of S. By applying (27) to X = {s}, Y = T , and q = 0, we obtain that mS(s) +

m̃T (T )− |T | ≤ γ, that is, mS(s) ≤ |T |, implying that (19) holds.

Claim 26. Condition (20) holds for p+T in place of pT .

Proof. Proof. Let X ⊆ S and let T ′ = {T1, T2, . . . , Tq′} be a subpartition of T . Let T1, T2, . . . , Tq denote
those members of T ′ for which p+T (Ti) = pT (Ti) and let T = {T1, T2, . . . , Tq}. Then each of the remaining
members Tj in T ′ is a singleton {zj} (j = q + 1, · · · , q′) for which p+T (Tj) = mT (zj). By letting Y =
{zq+1, . . . , zq′}, we have |Y | = q′ − q. By applying (27) to this choice of (X,Y, T ), we obtain that

m̃S(X) +
∑

[p+T (Ti)− |X| : i = 1, . . . , q′] =

m̃S(X) +
∑

[pT (Ti)− |X| : i = 1, . . . , q] +
∑

[mT (zj)− |X| : j = q + 1, . . . , q′] =

m̃S(X) +
∑

[pT (Ti)− |X| : i = 1, . . . , q] + m̃T (Y )− |X||Y | ≤ γ,

that is, condition (20) holds indeed for p+T .
By applying Theorem 17 to p+T , we obtain that there is a simple bipartite graph fitting the degree-

specification mS for which |ΓG(Y )| ≥ p+T (Y ) ≥ pT (Y ) for every subset Y ⊆ T . In particular, this implies
for Y = {t} that dG(t) = |ΓG(t)| ≥ p+T (t) = mT (t). Therefore γ =

∑
[dG(t) : t ∈ T ] ≥

∑
[mT (t) : t ∈ T ] =

m̃T (T ) = γ and hence we must have dG(t) = mT (t) for every t ∈ T , making the proof of the main part of
the theorem complete.
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Suppose now that pT is fully supermodular. For specified X ⊆ S and Y ⊆ T , let T be a maximizer
subpartition in the left-hand side of the inequality in (27). We are done if |T | ≤ 1. Suppose that
T = {T1, . . . , Tq} for q ≥ 2, and consider the subpartition T ′ consisting of the single set T0 := T1∪ · · ·∪Tq.
The full supermodularity of pT implies p̃T (T ) ≤ p̃T (T ′). Since T is a maximizer, we have p̃T (T )− q|X| ≥
p̃T (T ′)− |X| ≥ p̃T (T )− |X| ≥ p̃T (T )− q|X|. Hence equality follows throughout, in particular, X = ∅ and
p̃T (T ) = p̃T (T ′), showing that T ′ is also a maximizer.

Finally, investigate the case when pT is fully supermodular and monotone non-decreasing. If there are
sets X, Y and a subpartition T of T − Y violating (27) so that T = {T1}, then X, Y , and T ′ = {T − Y }
also violates (27) since pT (T − Y ) ≥ pT (T1). • • •

Corollary 27. Let S, T,mS ,mT , γ, and pT be the same as in Theorem 25 and assume that pT is non-
decreasing and fully supermodular. There is a simple bigraph covering pT and fitting (mS ,mT ) if and only
if

m̃S(X) + m̃T (Y )− |X||Y | ≤ γ whenever X ⊆ S, Y ⊆ T (28)

and

m̃S(X) + m̃T (Y )− |X||Y |+ pT (T − Y )− |X| ≤ γ whenever X ⊆ S, Y ⊂ T. (29)

Proof. Proof. Recall that the members of T in (27) are non-empty, in particular, if T = {T − Y }, then
Y ⊂ T . By the last part of Theorem 25, the corollary follows.

Remark 28. In the example above, the subsets X = {e, f}, Y = {a, b} and the subpartition T = {{c, d}}
consisting of a single set (that is, q = 1) do violate the necessary condition (27) since m̃S(X) + m̃T (Y )−
|X||Y |+

∑q
i=1[pT (Ti)− |X|] = 8 + 8− 4 + [4− 2] = 14 6≤ 13 = 4 + 4 + 3 + 2 = γ.

The essence of the next corollary of Theorem 25 is that it suffices to require (27) only for subsets X ⊆ S
with the j largest mS-values. We leave out the straightforward proof which consists of pointing out the
equivalence of (30) and (27).

Corollary 29. Let S, T, pT , and mV = (mS ,mT ) be the same as in Theorem 25. There is a simple bipartite
graph G = (S, T ;E) covering pT and fitting mV if and only if

m̃T (Y ) +

q∑
i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), |Y |+ q} (30)

holds for every subset Y ⊆ T and subpartition {T1, . . . , Tq} of T −Y (including the special case when q = 0
or Y = ∅).

3.3 An NP-complete extension

One may be wondering if the synthesis problem solved in Theorem 25 could possibly be extended to the
corresponding subgraph problem. That is, the problem is to characterize the situation when the requested
bigraph G (covering pT ) is a subgraph of an initial bipartite graph G0 = (S, T ;E0). However such an
extension is unlikely to exist since it includes NP-complete problems.

To see this, let G0 = (S, T ;E0) be a bipartite graph in which |S| = |T | + 1. Define mT to be
identically 2 on T and mS to be identically 2 on S apart from two specified nodes s1, s2 ∈ S where
mS(s1) = mS(s2) = 1. Define pT (Y ) = |Y |+ 1 for each non-empty Y ⊆ T and let pT (∅) = 0. Clearly, pT
is intersecting supermodular.

Lemma 30. A subgraph G = (S, T ;E) of G0 covers pT and fits mV = (mS ,mT ) if and only if G is a
Hamiltonian path connecting s1 and s2.

Proof. Proof. A Hamiltonian path G contains a matching covering T and hence |ΓG(Y )| ≥ |Y | for every
Y ⊆ T . If indirectly G does not cover pT , then there is a non-empty subset Y of T for which |ΓG(Y )| = |Y |.
But then the subgraph of G induced by Y ∪ ΓG(Y ) has exactly 2|Y | = |Y ∪ ΓG(Y )| edges, contradicting
the assumption that G is a path.
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Suppose now that G covers pT and fits mV . Then G has 2|T | = |S ∪ T | − 1 edges. It cannot comprise
a circuit C since then we would have |ΓG(Y )| = |Y | for Y = T ∩ C contradicting the assumption that G
covers pT . Therefore G is a spanning tree, and since G fits mV , it must be a Hamiltonian path connecting
s1 and s2. •

Since the Hamiltonian path problem isNP-complete, so is the equivalent problem of finding a subgraph
of G0 that covers pT and fits mV .

Note that the same example shows that the synthesis problem solved in Theorem 17 cannot be extended
either to the corresponding subgraph problem.

4 The master base-polyhedron associated with realizable degree-specifications

As before, S and T are two disjoint non-empty sets, V := S ∪ T , and m = (mS ,mT ) is a degree-
specification for which m̃S(S) = m̃T (T ) = γ. Let pT be a positively intersecting supermodular set-function
on T for which

pT (Y ) ≤ |S| for every subset Y ⊆ T . (31)

This implies that the complete bipartite graph (S, T ;E∗) is a simple bigraph covering pT . Recall Theorem
25 which stated that there is a simple bigraph covering pT and fitting m if and only if

m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T )− |T ||X| ≤ γ

whenever X ⊆ S, Y ⊆ T , and T a subpartition of T − Y . (32)

We allow throughout the empty subpartition with the convention p̃T (∅) = 0. For brevity we call such
a degree-specification realizable (with respect to pT ). In this section, we investigate the problem when,
rather than an exact degree specification m, lower and upper bounds are prescribed for the degrees of
the requested simple bigraph covering pT . Instead of attacking the problem directly, we exhibit first a
novel construction for a submodular function b0 and show that there is a simple one-to-one correspondence
between the realizable degree-specifications and the integral elements of the base-polyhedron B0 = B(b0).
Because of its central role, we call B0 the master base-polyhedron associated with pT and S.

Recall that for a submodular function b with b(V ) finite, the polyhedron B(b) := {x ∈ RV : x̃ ≤
b, x̃(V ) = b(V )} is called a base-polyhedron, and we speak of a 0-base-polyhedron if b(V ) = 0. Given
this correspondence at hand, we can apply some known characterizations for the non-emptiness of the
intersection of a g-polymatroid with a box and with a plank. This approach enables us to treat situations
when, in addition to degree-constraints, upper and lower bounds for the total number of edges can also be
prescribed.

4.1 A new submodular function

With each vector m = (mS ,mT ), we associate the vector m′ = (mS ,−mT ). Note that the property
m̃S(S) = m̃T (T ) is equivalent to m̃′(V ) = 0. The condition (32) for the realizability of m is equivalent to
the following.

m̃′(X ∪ Z) ≤ |T − Z||X| − p̃T (T ) + |T ||X|

whenever X ⊆ S,Z ⊆ T , and T a subpartition of Z. (33)

Define a set-function b0 on V as follows. For X ⊆ S and Z ⊆ T , let

b0(X ∪ Z) := min{|T − Z||X| − p̃T (T ) + |T ||X| : T a subpartition of Z}. (34)

Clearly, (33) is equivalent to
m̃′(U) ≤ b0(U) whenever U ⊆ V . (35)

Claim 31. b0(∅) = 0 and b0(V ) = 0.
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Proof. Proof. When Z = ∅, a subpartition of Z is also empty, and hence b0(∅) is indeed zero.
For X = S and Z = T , we have b0(V ) = min{−p̃T (T ) + |T ||S| : T a subpartition of T}. By choosing

T to be empty, we see that the minimum is at most 0. On the other hand −p̃T (T ) + |T ||S| ≥ 0 holds for
every subpartition T of T since (31) implies that p̃T (T ) ≤ |T ||S|. Therefore b0(V ) = 0. •

Theorem 32. b0 is fully submodular.

Proof. Proof. Let V1 = X1∪Z1 and V2 = X2∪Z2 be two subsets of V with Xi ⊆ S and Zi ⊆ T (i = 1, 2),
and let Ti denote an optimizer subpartition of Zi in the definition of b0(Vi). That is,

b0(Vi) = |T − Zi||Xi| − p̃T (Ti) + |Ti||Xi|.

Let F0 denote the multi-union of T1 and T2, that is, each member of T1 and T2 occurs in F0, and if W
is in both T1 and T2, then two copies of W occur in F0. Hence |T1|+ |T2| = |F0|.

An uncrossing step consists of taking two properly intersecting members A and B of the current
family for which pT (A) > 0 and pT (B) > 0 and replacing them by A ∪ B and A ∩ B. (Note that a set A
with p(A) ≤ 0 never participates in an uncrossing step.)

The uncrossing procedure starts with F0 and repeatedly performs uncrossing steps. It is known
that the uncrossing procedure is finite (as the number of sets does not change while the total sum of the
squares of cardinalities strictly increases). Let F0,F1,F2, . . . ,Fq denote the subsequent families, that is,
Fj+1 arises by applying the uncrossing step to two members of Fj (which are properly intersecting and
have strictly positive p-values).

Claim 33. Every family Fj (j = 0, . . . , q) covers each element of Z1 ∩ Z2 at most twice, each element of
the symmetric difference Z1 	 Z2 at most once, and no element outside Z1 ∪ Z2.

Proof. Proof. The property clearly holds for j = 0 and it is maintained throughout since an uncrossing
step does not affect the number of sets containing any given element of T . •

Claim 34. If the family Fh for some h = 0, . . . , q contains two copies of a set W , then each family Fj

(j = 0, . . . , q) contains two copies of W . In particular, W ∈ T1 and W ∈ T2.

Proof. Proof. By induction, it suffices to show that both Fh+1 and Fh−1 contain two copies of W .
By Claim 33, no member of Fh can intersect properly W , and therefore both copies of W belong to

Fh+1. Similarly, Claim 33 implies that both copies of W must be in Fh−1 since if the second copy of W in
Fh arises as the intersection or the union of two properly intersecting members A and B of Fh−1, then the
elements of A ∩B would belong to A,B, and W . •

Claim 35. Let W be a member of Fj+1 arising as the intersection of two properly intersecting members
A and B of Fj, and let Y be any member of Fj+1 ∪ · · · ∪ Fq intersecting W . Then W ⊂ Y .

Proof. Proof. We say that a pair of elements of T is non-separated by a family of sets if no member of
the family contains exactly one of the two elements. Clearly, if a pair is non-separated, then it remains so
after an uncrossing step.

By Claim 34, W does not occur in two copies and hence Y 6= W . By Claim 33, any two elements of
A ∩B are non-separated by Fj and hence by each of Fj+1, . . . ,Fq, as well. Therefore, as Y intersects W ,
it must properly include W . •

Claim 36. Let W be a member of Fj+1 arising as the union of two properly intersecting members A and
B of Fj. Then W has a subset belonging to T1 and W has a subset belonging to T2.

Proof. Proof. Suppose the claim fails to hold and let j be the smallest index occurring in a counter-example.
If both A and B would belong to F0, then one of them is in T1 while the other one in T2, as these families
are subpartitions. But in this case the pair (W, j) would not be a counter-example.

Therefore at least one of A and B, say A, is not in F0. By Claim 35, A could not arise as an intersection
at an uncrossing step, that is, A arose as the union of two sets. By the minimality of j, A has a subset
belonging to T1 and A has a subset belonging to T2. AsW is a superset of A,W also has a subset belonging
to T1 and a subset belonging to T2. •
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Define
L := {W ∈ Fq : pT (W ) > 0}.

Clearly, L is laminar. Let P1 consist of the minimal members of L which are subsets of Z1 ∩ Z2, with the
convention that if two copies of a set W ⊆ Z1 ∩ Z2 belong to L, then one of them is placed in P1. Let P2
consist of the members of L which are not in P1.

Claim 37. P1 is a subpartition of Z1 ∩ Z2 and P2 is a subpartition of Z1 ∪ Z2.

Proof. Proof. Since L is laminar, its minimal members are disjoint and hence P1 is indeed a subpartition.
To see that P2 is also a subpartition, assume indirectly that two members A and B of P2 are not

disjoint. Then the laminarity of L implies that one of A and B includes the other, say, A ⊆ B. We must
have A ⊂ B for if we had A = B, then A ⊆ Z1 ∩ Z2 by Claim 34 and one of A and B would belong to P1
by the definition of P1. Because each element of Z1 	 Z2 belongs to at most one member of L, we have
A ⊆ Z1 ∩Z2. But A is not in P1, that is, A is not a minimal member of L, contradicting the property that
each element of T belongs to at most two members of L. •

Claim 38. Let W be a member of P2. If W ⊆ Zi (i = 1, 2), then W has a subset belonging to Ti.

Proof. Proof. Since the indices 1 and 2 play a symmetric role, we prove the claim only for i = 1. That
is, we assume that W ⊆ Z1 and will show that there is a subset of W belonging to T1. If W is in P1, as
well, that is, if two copies of W occur in L, then we are done by Claim 34. Therefore, we can assume that
W 6∈ P1.

By Claim 36, we are done if W has arisen as a union during the uncrossing procedure. Suppose now
that W arises as an intersection of A and B during the uncrossing procedure. Then Claim 33 implies that
W = A ∩B ⊆ Z1 ∩ Z2. Since W is not in P1, there must be a set Y ∈ L for which Y ⊂ W , contradicting
Claim 35.

In the remaining case, W belongs each of the families F0,F1, . . . ,Fq. In particular, W is in F0. Since
we are done if W ∈ T1, we can assume that W ∈ T2. In this case, W − Z2 = ∅, that is, W ⊆ Z1 ∩ Z2.
Since W is not in P1, there must be a set Y ∈ L for which Y ⊂W . Since W belongs to each Fj , Y could
not arise as an intersection or a union during the uncrossing procedure, and therefore Y is also a member
of F0. Since T2 is a subpartition, Y cannot be in T2, that is, Y ∈ T1. •

For simplifying calculations, we introduce the following four parameters.

τ1 := |T − Z1|+ |T1| and τ2 := |T − Z2|+ |T2|,

π1 := |T − (Z1 ∩ Z2)|+ |P1| and π2 := |T − (Z1 ∪ Z2)|+ |P2|.

Claim 39. π2 ≤ τ1 and π2 ≤ τ2.

Proof. Proof. Since the role of τ1 and τ2 is symmetric, we prove only the first inequality. Since P2 is a
subpartition, P2 has at most |Z2 − Z1| members intersecting Z2 − Z1, and, by Claim 38, P2 has at most
T1 members not intersecting Z2 − Z1. Therefore |P2| ≤ |Z2 − Z1| + |T1|. By adding this to the identity
|T − (Z1 ∪ Z2)| = |T − Z1| − |Z2 − Z1|, we obtain the required π2 ≤ τ1. •

Claim 40.
τ1 + τ2 ≥ π1 + π2

and
p̃T (T1) + p̃T (T2) ≤ p̃T (P1) + p̃T (P2).

Proof. Proof. Clearly, |T1|+ |T2| = |F0| = |Fq| ≥ |L| = |P1|+ |P2|. By adding this to |T −Z1|+ |T −Z2| =
|T − (Z1 ∩ Z2)|+ |T − (Z1 ∪ Z2)|, the first inequality follows.

Since pT is positively intersecting supermodular, an uncrossing step cannot decrease the pT -sum of the
current family. Hence p̃T (T1) + p̃T (T2) = p̃T (F0) ≤ p̃T (Fq) ≤ p̃T (L) = p̃T (P1) + p̃T (P2). •
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For i = 1, 2, we have:

b0(Vi) = |T − Zi||Xi| − p̃T (Ti) + |Ti||Xi| = τi|Xi| − p̃T (Ti). (36)

Since P1 is a subpartition of Z1 ∩ Z2, we have

b0(V1 ∩ V2) ≤ |T − (Z1 ∩ Z2)||X1 ∩X2| − p̃T (P1) + |P1||X1 ∩X2| = π1|X1 ∩X2| − p̃T (P1). (37)

Since P2 is a subpartition of Z1 ∪ Z2, we have

b0(V1 ∪ V2) ≤ |T − (Z1 ∪ Z2)||X1 ∪X2| − p̃T (P2) + |P2||X1 ∪X2| = π2|X1 ∪X2| − p̃T (P2). (38)

By combining these inequalities, we obtain:

b0(V1) + b0(V2) = [τ1|X1| − p̃T (T1)] + [τ2|X2| − p̃T (T2)] =

τ1|X1 −X2|+ τ2|X2 −X1|+ (τ1 + τ2)|X1 ∩X2| − p̃T (T1)− p̃T (T2) ≥

π2|X1 −X2|+ π2|X2 −X1|+ (π1 + π2)|X1 ∩X2| − p̃T (P1)− p̃T (P2) =

[π1|X1 ∩X2| − p̃T (P1)] + [π2|X1 ∪X2| − p̃T (P2)] ≥

b0(V1 ∩ V2) + b0(V1 ∪ V2),

that is, the function b0 is indeed fully submodular. • •

Corollary 41. An integral vector m = (mS ,mT ) is the degree-vector of a simple bigraph covering pT if
and only if the associated vector m′ = (mS ,−mT ) belongs to the 0-base-polyhedron B(b0) := {x ∈ RV :
x̃ ≤ b0, x̃(V ) = 0}.

The following claim appeared in [16] (see also Theorem 14.2.2 in book [21]).

Claim 42. Given a non-empty subset S ⊂ V, the projection Q′ of a g-polymatroid Q = Q(p, b) to RS (or,
for short, to S) is the g-polymatroid Q(p|S , b|S) where p|S and b|S are the restriction of p and b, respectively,
on S. Each integral element of Q′ is the projection of an integral element of Q.

Corollary 43. There is an integral g-polymatroid QS in RS so that a vector mS : S → Z+ belongs to QS

if and only if there is a simple bigraph covering pT for which dG(s) = mS(s) for every s ∈ S.

Proof. Proof. Take QS to be the projection of B(b0) to S and apply Claim 42. •

5 Degree and edge-number constraints

5.1 Basic properties of generalized polymatroids

In what follows, we make use of some basic notions and theorems of the theory of generalized poly-
matroids. (For a background, see for example [23] or Chapter 14 in book [21].) Let (p, b) be a fully
paramodular (or, for short, paramodular) pair of set-functions p and b defined on a ground-set V . By
definition, this means that b is submodular, p is supermodular, and

b(X)− p(Y ) ≥ b(X − Y )− p(Y −X)

holds for every pair of subsets X, Y of V . The polyhedron Q(p, b) := {x ∈ RV : p ≤ x̃ ≤ b} is called a
g-polymatroid and (p, b) is its border pair. Here we consider only integer-valued functions p and b. The
empty set is also considered as a g-polymatroid, though it cannot be defined with the help of a paramodular
pair. A special g-polymatroid is a box T (f, g) = {x ∈ RV : f ≤ x ≤ g} where f : V → Z ∪ {−∞}, g :
V → Z ∪ {∞} with f ≤ g. Another special g-polymatroid is a plank K(α, β) = {x ∈ RV : α ≤ x̃(V ) ≤ β}
where α ∈ Z ∪ {−∞}, β ∈ Z ∪ {+∞} with α ≤ β.

With a submodular function b with finite b(V ), we can associate its complementary set-function p
defined for U ⊆ V by p(U) := b(V )− b(V − U). We list some basic properties.
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Claim 44. If p is the complementary function of a submodular function b, then (p, b) is paramodular and
B(b) = Q(p, b).

Claim 45. A g-polymatroid defined by an integral paramodular pair is a non-empty integral polyhedron.

Claim 46. A non-empty g-polymatroid Q uniquely determines its defining paramodular pair (p, b), namely,

p(U) = min{x̃(U) : x ∈ Q} and b(U) = max{x̃(U) : x ∈ Q}.

Claim 47. The intersection of two integral g-polymatroids is an integral polyhedron. Q(p1, b1) ∩Q(p2, b2)
is non-empty if and only if p1 ≤ b2 and p2 ≤ b1.

Claim 48. The intersection of a g-polymatroid, a box, and a plank is a g-polymatroid.

Claim 49. The intersection Q′ of a g-polymatroid Q = Q(p, b) and a box T = T (f, g) is non-empty if and
only if f̃ ≤ b and p ≤ g̃. When Q′ is non-empty, its unique border pair (p′, b′) is given by

p′(U) = max{p(U ′)− g̃(U ′ − U) + f̃(U − U ′) : U ′ ⊆ V }, (39)

b′(U) = min{b(U ′)− f̃(U ′ − U) + g̃(U − U ′) : U ′ ⊆ V }. (40)

Claim 50 (Linking property of g-polymatroids). If a g-polymatroid Q = Q(p, b) has an element x′ with
x′ ≥ f , and Q has an element x′′ with x′′ ≤ g, then Q has an element x with f ≤ x ≤ g. In addition, x
can be chosen to be integral if p, b, f, g are integral.

Claim 51. The intersection Q′ of g-polymatroid Q = Q(p, b) and a plank K(α, β) is non-empty if and only
if α ≤ b(S) and p(S) ≤ β. In particular, if Q has an element x′ with x̃′(V ) ≥ α and Q has an element x′′

with x̃′′(V ) ≤ β, then Q has an element x with α ≤ x̃(V ) ≤ β. Moreover, if p, b, α, β are integral, then Q′

is an integral polyhedron.

5.2 Degree constraints

We are given a lower bound function fV = (fS , fT ) and an upper bound function gV = (gS , gT ) on
V = S ∪ T for which −∞ ≤ fV ≤ gV ≤ +∞.

Theorem 52. Let pT be a positively intersecting supermodular function on T for which pT (Y ) ≤ |S| for
every Y ⊆ T . There is a simple bigraph G = (S, T ;E) covering pT and degree-constrained by (f, g) if and
only if

f̃T (Y )− |X||Y |+ p̃T (T )− |T ||X| ≤ g̃S(S −X)

for every Y ⊆ T , X ⊆ S, T a subpartition of T − Y (41)

and

f̃S(X)− |X||Y |+ p̃T (T )− |T ||X| ≤ g̃T (T − Y )

for every Y ⊆ T , X ⊆ S, T a subpartition of T − Y . (42)

If pT is fully supermodular, then it suffices to require the two conditions only for subpartitions T having at
most one member. If pT is fully supermodular and monotone non-decreasing, then it suffices to require the
two conditions only for T = {∅} and T = {T − Y }.

Proof. Proof. Let
f ′ := (fS ,−gT ) and g′ := (gS ,−fT ). (43)

Recall the submodular function b0 and let p0 denote its complementary function (that is, p0(U) = −b0(V −
U)). ThenB(b0) = Q(p0, b0) and, by Corollary 41, the requested bigraph exists if and only if the intersection
Q′ = Q(p0, b0)∩ T (f ′, g′) is non-empty. By Claim 49, Q′ is non-empty precisely if f̃ ′ ≤ b0 and p0 ≤ g̃′. We
are going to show that f̃ ′ ≤ b0 is equivalent to (42) and that p0 ≤ g̃′ is equivalent to (41).

By (34), f̃ ′ ≤ b0 is equivalent to requiring the following inequality for every pair of subsets X ⊆ S, Z ⊆
T :
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f̃ ′(X ∪ Z) ≤ |T − Z||X| − p̃T (T ) + |T ||X| whenever T is a subpartition of Z.

By taking Y := T − Z and observing that f̃ ′(X ∪ Z) = f̃S(X) − g̃T (Z) = f̃S(X) − g̃T (T − Y ), we
conclude that f̃ ′ ≤ b0 is equivalent to

f̃S(X)− g̃T (T − Y ) ≤ |Y ||X| − p̃T (T ) + |T ||X|

whenever X ⊆ S, Y ⊆ T , and T a subpartition of T − Y ,

which is the same as (42).
Let us prove now the equivalence of p0 ≤ g̃′ and (41). By taking Y := T − Z and X ′ := S − X, we

have g̃′(X ′ ∪ Y ) = g̃S(X ′)− f̃T (Y ) = g̃S(S −X)− f̃T (Y ) and

p0(X
′ ∪ Y ) = −b0(X ∪ Z) = −min{|T − Z||X| − p̃T (T ) + |T ||X| : T a subpartition of Z}.

Condition g̃′ ≥ p0 means that g̃′(X ′ ∪ Y ) ≥ p0(X
′ ∪ Y ) for every pair of sets X ′ ⊆ S, Y ⊆ T , and this

is equivalent to requiring

g̃S(S −X)− f̃T (Y ) ≥ −[|Y ||X| − p̃T (T ) + |T ||X|]

for every subpartition T of T − Y , and this inequality is the same as the one in (41).
The last part of the theorem concerning fully supermodular pT follows exactly the same way how the

analogous statement was derived in the proof of Theorem 25. •

Corollary 53. Let pT be a positively intersecting supermodular function on T for which pT (Y ) ≤ |S|
whenever Y ⊆ T .
(A) There is a simple bigraph G′ covering pT and degree-constrained by (fT , gS) if and only if (41) holds.

(B) There is a simple bigraph G′′ covering pT and degree-constrained by (fS , gT ) if and only if (42) holds.

(AB) There is a simple bigraph G covering pT and degree-constrained by (fV , gV ) if and only if both G′

and G′′ exist (that is, both (41) and (42) hold).

When pT is fully supermodular, it suffices to require the two conditions only for subpartitions T having
at most one member. If pT is fully supermodular and monotone non-decreasing, then it suffices to require
the two conditions only for T = {∅} and T = {T − Y }.

Proof. Proof. (A) Define fS :≡ −∞ and gT :≡ +∞, and observe that (42) automatically holds when
X 6= ∅ or Y ⊂ T . If X = ∅ and Y = T , then T is empty and the requirement in (42) becomes void. Hence
Theorem 52 implies Part (A).

(B) Define fT :≡ −∞ and gS :≡ +∞, and observe that (41) automatically holds when X ⊂ S or Y 6= ∅.
If X = S and Y = ∅, then (42) reduces to p̃T (T ) ≤ |T ||S| for every subpartition T of T , but this follows
from the hypothesis that pT (Y ) ≤ |S| for every Y ⊆ T . Hence Theorem 52 implies Part (B).

(AB) Theorem 52 implies immediately Part (AB). •

Corollary 54. Let S and T be disjoint sets and let mS be a degree-specification on S for which m̃S(S) = γ.
Let gT : T → Z+ be an upper bound function for which gT (t) ≤ |S| for every t ∈ T . Let pT be a positively
intersecting supermodular function on T with pT (∅) = 0. There is a simple bigraph covering pT and fitting
mS for which

dG(t) ≤ gT (t) whenever t ∈ T (44)

if and only if

m̃S(X) + p̃T (T )− |T ||X| ≤ γ whenever X ⊆ S and T a subpartition of T (45)

and

m̃S(X)− |X||Y |+ p̃T (T )− |T ||X| ≤ g̃T (T − Y )

whenever X ⊆ S, Y ⊆ T , and T a subpartition of T − Y , (46)

where each of X, Y , and T may be empty.
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Proof. Proof. (outline) Define fS := mS gS := mS , fT :≡ −∞, and apply Theorem 52. •

Note that in Corollary 54 there is no need to require explicitly the necessary condition given in (31)
since this is implied by applying (45) in the special case X := S and T := {Y }.

Corollary 55. Let pT be a positively intersecting supermodular function on T for which pT (Y ) ≤ |S|
whenever Y ⊆ T . There is a simple bigraph G = (S, T ;E) covering pT and degree-constrained by (fS , gS)
if and only if

fS(s) ≤ |T | whenever s ∈ S (47)

and
p̃T (T )− |T ||X| ≤ g̃S(S −X) whenever X ⊆ S and T a subpartition of T . (48)

Proof. Proof. Define fT (t) :≡ −∞ and gT (t) :≡ +∞ and apply Theorem 52. Observe that condition (41)
automatically holds when Y 6= ∅. When Y = ∅, (41) is just (48). Similarly, condition (42) automatically
holds when Y 6= T . When Y = T , then T = ∅ and (42) requires fS(X) ≤ |X||T | for every X ⊆ S but this
is equivalent to (47). •

Corollary 56. Let pT be a positively intersecting supermodular function on T for which pT (Y ) ≤ |S| for
every Y ⊆ T . Let gT : T → Z+ be a function for which gT (t) ≤ |S| for every t ∈ T . There is a simple
bigraph G = (S, T ;E) covering pT and degree-constrained by gT if and only if

pT (Y ) ≤ g̃T (Y ) for every Y ⊆ T . (49)

Proof. Proof. Define fV :≡ −∞ and gS :≡ +∞. Then (41) holds automatically (as we showed this in the
proof of Part (B) of Corollary 53). Condition (42) holds automatically when X 6= ∅. If X = ∅, then (42)
transforms to

p̃T (T ) ≤ g̃T (T − Y ) whenever Y ⊂ T and T = {V1, . . . , Vq} a subpartition of T − Y .

By Condition (49), pT (Vi) ≤ g̃(Vi) from which p̃T (T ) ≤
∑q

i=1 g̃T (Vi) ≤ g̃T (T−Y ). Therefore the conditions
of Theorem 52 hold and hence the required degree-constrained bigraph exists. •

Remark 57. Corollary 56 is not particularly exciting since it can actually be formulated in a more general
form when G is a subgraph of an initial bipartite graph G0. That was the content of Theorem 11. To
derive Corollary 56, choose G0 to be the complete bipartite graph G∗ = (S, T,E∗) and observe that (14)
holds automatically when Z 6= ∅. For Z = ∅, (14) is just (49).

5.3 Edge-number constraints

Suppose now that there exists a simple bigraph covering pT and constrained by (f, g), that is, conditions
(41) and (42) hold. Our next goal is to characterize the situation when, in addition to the degree constraints
(f, g), there are lower and upper bounds α ≤ β for the number of edges, as well, where α and β are non-
negative integers.

Theorem 58. Suppose that conditions (41) and (42) hold. There is simple bigraph G = (S, T ;E) covering
pT and degree-constrained by (f, g) for which

(A) α ≤ |E| if and only if{
g̃S(S −X) + g̃T (T − Y ) + |X||Y | − [p̃T (T )− |X||T |] ≥ α
whenever X ⊆ S, Y ⊆ T, and T a subpartition of T − Y , (50)

(B) |E| ≤ β if and only if{
f̃S(X) + f̃T (Y )− |X||Y |+ p̃T (T )− |X||T | ≤ β
whenever X ⊆ S, Y ⊆ T , and T a subpartition of T − Y ,

(51)

(AB) α ≤ |E| ≤ β if and only if both (50) and (51) hold.

When pT is fully supermodular, it suffices to require the two conditions only for subpartitions T having
at most one member. If pT is fully supermodular and monotone non-decreasing, then it suffices to require
the two conditions only for T = {∅} and T = {T − Y }.
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Proof. Proof. Consider the functions f ′ and g′ defined in (43). As we proved above, there is a simple
bigraph covering pT and constrained by (f, g) if and only if the g-polymatroid Q′ = Q(p0, b0)∩ T (f ′, g′) is
non-empty. By our hypothesis Q′ is non-empty. Let (p′, b′) denote the unique border pair of Q′ which can
be obtained by applying Claim 49 to p0, b0, f ′, g′.

Let Q′S denote the projection of Q′ to S. By Claim 42 the unique border pair of Q′S is (p′|S , b′|S), and
any integral element of Q′S is the projection of an integral element of Q′. Therefore the requested bigraph
exists if and only if the intersection of Q′S and the plank KS(α, β) in RS is non-empty. By Claim 51 this
intersection is non-empty if and only if p′(S) ≤ β and α ≤ b′(S).

By applying (40) to U = S and U ′ = X ∪ Z (where X ⊆ S, Z ⊆ T ), we obtain that α ≤ b′(S) is
equivalent to requiring

α ≤ [|T − Z||X| − p̃T (T ) + |T ||X|]− f̃ ′(Z) + g̃′(S −X)

whenever X ⊆ S,Z ⊆ T, and T is a subpartition of Z. By letting Y = T − Z and observing that
−f̃ ′(Z) + g̃′(S −X) = g̃T (T − Y ) + g̃S(S −X), we conclude that α ≤ b′(S) is equivalent to (50).

Let U = S, Y = T −Z, X = S−X ′, U ′ = X ′ ∪Y . Then V −U ′ = X ∪Z, U ′−S = Y, S−U ′ = X,
and p0(U ′) = −b0(V − U ′) = −b0(X ∪ Z) = −b0(X ∪ (T − Y )). Furthermore

p′(S) = max{p0(U ′)− g̃′(U ′ − S) + f̃ ′(S − U ′) : U ′ ⊆ V } =

= max{−b0(X ∪ (T − Y )) + f̃T (Y ) + f̃S(X) : X ⊆ S, Y ⊆ T}.

Hence β ≥ p′(S) is equivalent to

β ≥ −[|Y ||X| − p̃T (T ) + |T ||X|] + f̃T (Y ) + f̃S(X)

for every X ⊆ S, Y ⊆ T , T a subpartition of T − Y ,

and this is just (51). •

Corollary 59. Provided that there is a simple bigraph covering pT and degree-constrained by (f, g), the
minimum number of edges of such a bigraph is

max{f̃S(X) + f̃T (Y )− |X||Y |+ p̃T (T )− |X||T | :

X ⊆ S, Y ⊆ T, T a subpartition of T − Y }. (52)

Analogous theorem can be formulated for the maximum number of edges, as well.

6 Packing branchings and arborescences

Let D = (V,A) be a digraph on n nodes. An arborescence is a directed tree in which one node,
its root-node, has no entering arc and the in-degree of all other nodes is 1. A branching (V,B) of D
is a directed forest consisting of arborescences. Its root-set R(B) is the set of nodes of in-degree zero.
By the size of a branching we mean the number of its arcs while the root-size is |R(B)|. Obviously,
|B|+ |R(B)| = n. In what follows the same term B will be used for a branching and for its set of arcs.

D is called rooted k-edge-connected with respect to a root-node r0 if %D(X) ≥ k for every ∅ ⊂ X ⊆
V − r0. By Menger, this is equivalent to requiring that there are k edge-disjoint paths from r0 to v for
every node v ∈ V .

6.1 Background

A major open problem in combinatorial optimization is to find a good characterization for the existence
of k disjoint common bases of two matroids. This is solved only in special cases. For example, µ-element
matchings of a bipartite graph form the common bases of two matroids. Folkman and Fulkerson [13] proved
the following.
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Theorem 60. A bigraph G = (S, T ;E) includes k disjoint matchings of size µ if and only if

k(µ+ |Z| − |S ∪ T |) ≤ iG(Z) whenever Z ⊆ S ∪ T ,

where iG(Z) denotes the number of edges induced by Z.

As the branchings of a digraph form the common independent sets of two matroids, the problems of
finding k disjoint spanning arborescences or k disjoint branchings of size µ can also be viewed as special
cases of the disjoint common bases problem. This matroidal aspect particularly underpins the significance
of the following fundamental result of Edmonds [10].

Theorem 61 (Edmonds). Let D = (V,A) be a digraph.
(Weak form) D includes k disjoint spanning arborescences with a specified root-node r0 if and only if D
is rooted k-edge-connected.
(Strong form) D includes k disjoint branchings with specified root-sets R1, R2, . . . , Rk if and only if
%D(X) ≥ pR(X) for X ⊆ V where pR(X) denotes the number of root-sets disjoint from X when X 6= ∅
and pR(∅) = 0.

Though Lovász [33] found a short proof relying on submodular functions and also a great number of
variations and generalizations have been developed (see the book of Schrijver [39] or a recent survey by
Kamiyama [30]), Edmonds’ theorem and the topic of disjoint branchings remained rather isolated from
general frameworks like the one of submodular flows. Due to its specific position within combinatorial
optimization, it is particularly important to investigate extensions and variations.

An early variation of the weak form was proved in [15].

Theorem 62. A digraph D has k disjoint spanning arborescences with unspecified roots (that is, k disjoint
branchings of size |V | − 1) if and only if∑q

i=1 %D(Vi) ≥ k(q − 1) for every subpartition {V1, . . . , Vq} of V .

The following extension is due to Cai [8] and Frank [15] (see also Theorem 10.1.11 in the book [21]).

Theorem 63. Let f : V → Z+ and g : V → Z+ be lower and upper bounds for which f ≤ g. A digraph
D = (V,A) includes k disjoint spanning arborescences so that each node v is the root of at least f(v) and
at most g(v) of these arborescences if and only if f̃(V ) ≤ k,∑q

i=1 %D(Vi) ≥ k(q − 1) + f̃(V0) for every partition {V0, V1, . . . , Vq} of V (53)

where q ≥ 1 and only V0 can be empty, and

g̃(X) ≥ k − %D(X) for every subset ∅ ⊂ X ⊆ V.

Note that the condition f̃(V ) ≤ k can be interpreted as the inequality in (53) written for q = 0. With
similar techniques, the following generalization of Theorem 62 can also be derived (though, to our best
knowledge, it was not explicitly formulated earlier.)

Theorem 64. A digraph D has k disjoint branchings of size µ if and only if∑q
i=1 %D(Vi) ≥ k[q − (n− µ)] for every subpartition {V1, . . . , Vq} of V.

6.2 Packing branchings with prescribed sizes

The following possible extension emerges naturally for branchings and matchings, as well. What is a
necessary and sufficient condition for the existence of k disjoint branchings in a digraph (respectively, k
disjoint matchings in a bigraph) having prescribed sizes µ1, µ2, . . . , µk? A bit surprisingly, the answer in
the two cases is quite different. For bipartite matchings the problem was shown to be NP-complete even
for k = 2 ( [29], [35], [36]). On the other hand, for branchings we have the following straight generalization
of Theorem 64.

Theorem 65. Given k positive integers µ1, µ2, . . . , µk (µj ≤ n− 1), a digraph D = (V,A) on n nodes has
k disjoint branchings B1, . . . , Bk of sizes |Bj | = µj (j = 1, . . . , k) if and only if∑q

i=1 %D(Vi) ≥
∑k

j=1[q − (n− µj)]+ for every subpartition P = {V1, . . . , Vq} of V . (54)
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Proof. Proof. Throughout we use the notation mj := n− µj .
Necessity. The root-set Rj of a branching Bj of size µj has mj elements. If Bj has no arc entering Vi,

then Rj has an element in Vi, therefore there are at least (q −mj)
+ arcs of Bj entering a member of the

subpartition P = {V1, . . . , Vq}, implying that the total number
∑q

i=1 %D(Vi) of arcs entering some members
of P is at least

∑k
j [q − (n − µj)]+. (Note that the assumption (µj ≤ n − 1) is actually superfluous since

(54), when applied to q = 1 and P = {V }, implies that 0 = %D(V ) ≥
∑k

j=1[1− (n−µj)]+ from which each
summand [1− (n− µj)]+ must be zero, that is, 1 ≤ n− µj .)

Sufficiency. Let S = {s1, s2, . . . , sk} be a set of k elements. We may consider S as the index set of the
k branchings to be found. Define mS : S → Z+ by mS(sj) := mj (j = 1, . . . , k). Let T := V and define a
set-function pT on T as follows.

pT (Y ) :=

{
k − %D(Y ) if ∅ ⊂ Y ⊆ T
0 if Y = ∅.

(55)

Then pT is intersecting supermodular. From (54), we have

q∑
i=1

%D(Vi) ≥
k∑

j=1

(q −mj)
+ =

k∑
j=1

max{q −mj , 0} = kq +
k∑

j=1

max{−mj ,−q} = kq −
k∑

j=1

min{mj , q}

from which
q∑

i=1

pT (Vi) =

q∑
i=1

[k − %D(Vi)] ≤
k∑

j=1

min{mj , q} =
∑
s∈S

min{mS(s), q}.

Therefore (21) holds and Theorem 17 implies that there is a simple bigraph G = (S, T ;E) covering pT for
which dG(s) = mS(s) for every s ∈ S.

For sj ∈ S let Rj denote the set of neighbours of sj in G. Then |Rj | = mj for j = 1, . . . , k. Since
each non-empty subset Y of V has at least pT (Y ) = k− %D(Y ) neighbours, the number of non-neighbours
is at most %D(Y ), that is, the number of sets Rj ’s disjoint from Y is at most %D(Y ). The strong form
of Edmonds’ theorem implies that there are k disjoint branchings B1, . . . , Bk with root sets R1, . . . , Rk,
respectively. By the definition of mj , we have |Bj | = n− |Rj | = n−mj = µj . •

With a similar approach, we can characterize the situation when not only the sizes of the k disjoint
branchings are specified but the indegree of each node in their union, as well.

Theorem 66. Let D = (V,A) be a digraph on n nodes, min : V → Z+ an in-degree prescription with
0 ≤ min(v) ≤ %D(v) and min(v) ≤ k for each v ∈ V . Let µ1, µ2, . . . , µk be k positive integers such that
µ1 + · · · + µk = m̃in(V ). There is a subgraph (V, F ) of D which is the union of k disjoint branchings
B1, . . . , Bk of sizes |Bj | = µj (j = 1, . . . , k) and for which

%F (v) = min(v) for each v ∈ V

if and only if

m̃in(Y ) +

q∑
i=1

%D(Vi) ≥
k∑

j=1

[q + |Y | − (n− µj)]+ (56)

for every subset Y ⊆ V and every subpartition {V1, . . . , Vq} of V − Y .

Proof. Proof. Necessity. Suppose that the requested k branchings B1, . . . , Bk exist and let F = B1∪· · ·∪Bk.
Let Y ⊆ V and P = {V1, . . . , Vq} be a subpartition of V − Y . As before, mj = n− µj is the cardinality of
the root-set Rj of Bj . Therefore the number of non-root nodes in Y (= |Y −Rj |) plus the number of Vi’s
disjoint from Rj is at least |Y |+ q−mj , and hence the number of arcs of Bj entering a node of Y plus the
number of arcs of Bj entering a member of P is at least (|Y |+ q −mj)

+. Hence

m̃in(Y ) +

q∑
i=1

%D(Vi) ≥ m̃in(Y ) +

q∑
i=1

%F (Vi) =
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k∑
j=1

[
∑
v∈Y

%Bj (v) +

q∑
i=1

%Bj (Vi)] ≥
k∑

j=1

(|Y |+ q −mj)
+,

and (56) follows.
Sufficiency. Let S, T , and mS be the same as in the preceding proof. Define a set-function pT on T as

follows.

pT (Y ) :=


k − %D(Y ) if Y ⊆ T, |Y | ≥ 2

k −min(v) if Y = {v}, v ∈ V
0 if Y = ∅.

(57)

The hypothesis min(v) ≤ %D(v) implies that k −min(v) ≥ k − %D(v) and hence pT is intersecting super-
modular. Let T = {V1, . . . , Vq, Vq+1, . . . , Vq′} be a subpartition of V so that the first q members are of
cardinalities at least two while the subsequent members are singletons. Let P = {V1, . . . , Vq} and let Y
denote the union of Vq+1, . . . , Vq′ (that is, |Y | = q′ − q).

By (56), we have

m̃in(Y ) +

q∑
i=1

%D(Vi) ≥
k∑

j=1

[q′ − (n− µj)]+ =

k∑
j=1

max{q′ −mj , 0} =

kq′ +

k∑
j=1

max{−mj ,−q} = kq′ −
k∑

j=1

min{mj , q
′}

from which

q′∑
i=1

pT (Vi) =
∑
v∈Y

[k −min(v)] +

q∑
i=1

[k − %D(Vi)] = k(|Y |+ q)− m̃in(Y )−
q∑

i=1

%D(Vi) =

kq′ − m̃in(Y )−
q∑

i=1

%D(Vi) ≤
k∑

j=1

min{mj , q
′} =

k∑
j=1

min{mS(sj), q
′}.

Therefore (21) holds with q′ in place of q and with Vi in place of Ti, and Theorem 17 implies that there is
a simple bigraph G = (S, T ;E) covering pT for which dG(s) = mS(s) for every s ∈ S. Since G covers pT ,
it follows that dG(v) ≥ pT (v) = k −min(v). Hence

∑
v∈V

[k −min(v)] ≤
∑
v∈V

dG(v) =
∑
s∈S

dG(s) =
∑
s∈S

mS(s) =

k∑
j=1

(n− µj).

But here we must have equality since we assumed that µ1 + · · · + µk = m̃in(V ). This implies that
dG(v) = k −min(v) for each v ∈ V .

For sj ∈ S let Rj denote the set of neighbours of sj in G. Then |Rj | = mj for j = 1, . . . , k. Since
each non-empty subset Y of V has at least pT (Y ) = k− %D(Y ) neighbours, the number of non-neighbours
is at most %D(Y ), that is, the number of sets Rj ’s disjoint form Y is at most %D(Y ). The strong form
of Edmonds’ theorem implies that there are k disjoint branchings B1, . . . , Bk with root sets R1, . . . , Rk,
respectively. By the definition of mj , we have |Bj | = n− |Rj | = n−mj = µj .

Let F := B1 ∪ · · · ∪Bk. As dG(v) is the number of Rj ’s containing v, the indegree %F (v) is k− dG(v) =
min(v), as required. •

Note that the indegree %F (v) in the union F of k disjoint branchings is exactly k minus the number of
root-sets not containing v. Therefore Theorem 66 could be described in an equivalent form when, instead
of the indegree of each node v in the union of k branchings with specified sizes, the number of root-sets
containing v is prescribed.
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6.3 Packing branchings with bounds on sizes, on total indegrees, and on total size

Suppose now that, instead of exact prescription µj for the size of the branchings Bj , we are given a lower
bound ϕj and an upper bound γj with 0 ≤ ϕj ≤ γj ≤ n − 1 (j = 1, . . . , k). Furthermore, instead of the
exact prescription min(v) for the indegree %F (v) (v ∈ V ), where F denotes the union of the k branchings,
we are given a lower bound fin(v) and an upper bound gin(v) for which 0 ≤ fin(v) ≤ gin(v) ≤ k. Moreover,
we impose a lower bound αu and an upper bound βu for the cardinality of the union of the k branchings.

The proof of Theorem 65 relied on a one-to-one correspondence between simple bigraphs G = (S, T ;E)
covering the function pT defined in (55) (where T = V and S = {s1, . . . , sk} is a k-element index set of
the k branchings to be found) and the families R = {R1, . . . , Rk} of k root-sets satisfying the necessary
condition in the strong form of Edmonds’ theorem (which required that %D(Y ) is at least the number of
Ri’s disjoint from Y for each non-empty Y ⊆ V ). Let B1, . . . , Bk denote the k disjoint branchings ensured
by Edmonds’ theorem for which R(Bj) = Rj , and let F = B1 ∪ · · · ∪Bk.

In this correspondence, the degree of a node sj ∈ S is the cardinality of Rj , that is,

dG(sj) = |Rj | = n− |Bj |.

Furthermore, the degree of a node v ∈ V = T is the number of root-sets Rj ’s containing v, that is,

dG(v) = k − %F (v).

Finally, for the total number of edges of G, we have

|E| =
k∑

j=1

dG(sj) =

k∑
j=1

|Rj | =
k∑

j=1

(n− |Bj |) = nk − |F |.

Define
fS(sj) := n− γj and gS(sj) := n− ϕj for sj ∈ S,

fT (v) := k − gin(v) and gT (v) := k − fin(v) for v ∈ T = V ,

α := kn− βu and β := kn− αu.

By this vocabulary, ϕj ≤ |Bj | ≤ γj if and only if fS(sj) ≤ dG(sj) ≤ gS(sj) (sj ∈ S). Furthermore,
fin(v) ≤ %F (v) ≤ gin(v) if and only if fT (v) ≤ dG(v) ≤ gT (v) (v ∈ T ). Finally, αu ≤ |B1 ∪ · · · ∪ Bk| ≤ βu
if and only if α ≤ |E| ≤ β. By aggregating Theorems 52 and 58, we obtain the following.

Theorem 67. In a digraph D = (V,A) on n nodes, there are k disjoint branchings B1, . . . , Bk for which
ϕj ≤ |Bj | ≤ γj (j = 1, . . . , k), for which fin(v) ≤ %F (v) ≤ gin(v) (v ∈ V ), and for which αu ≤ |F | ≤ βu,
where F = B1 ∪ · · · ∪ Bk, if and only if the conditions (41), (42), (50), and (51) hold for the choice of
fT , gT , fS , gS , α, β defined above. •

7 Maximum term rank problems

7.1 Degree-specified max term rank

The members of G(mS ,mT ) (that is, simple bigraphs fitting the degree-specification (mS ,mT )) can
be identified with (0, 1)-matrices of size |S||T | with row sum vector mS and column sum vector mT . Let
M(mS ,mT ) denote the set of these matrices. Ryser [38] defined the term rank of a (0, 1)-matrixM by the
maximum number of independent 1’s which is the matching number of the bipartite graph corresponding
to M . Ryser developed a formula for the maximum term rank of matrices inM(mS ,mT ). The maximum
term rank problem is equivalent to finding a bipartite graph G in G(mS ,mT ) whose matching number ν(G)
is as large as possible. Although we use graph terminology, the original name ‘term rank’ for the problem
will be kept throughout. In graphical terms, Ryser’s theorem is equivalent to the following.

Theorem 68 (Ryser). Let ` ≤ |T | be an integer. Suppose that G(mS ,mT ) is non-empty, that is, Condition
(9) holds. Then G(mS ,mT ) has a member G with matching number ν(G) ≥ ` if and only if

m̃S(X) + m̃T (Y )− |X||Y |+ (`− |X| − |Y |) ≤ γ whenever X ⊆ S, Y ⊆ T. (58)

Moreover, (58) holds if the inequality in it is required only when X consists of the i largest values of mS

and Y consists of the j largest values of mT (i = 0, 1, . . . , |S|, j = 0, 1, . . . , |T |).
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Observe that the conditions (58) and (9) in Theorem 68 can be united as follows.

m̃S(X) + m̃T (Y )− |X||Y |+ (`− |X| − |Y |)+ ≤ γ whenever X ⊆ S, Y ⊆ T, (59)

that is, assuming this inequality, we do not need to impose explicitly the non-emptiness of G(mS ,mT ).
Note that the strengthening formulated in the second part of the theorem is nothing but a straight-

forward observation. Beyond the aesthetic joy, a practical advantage is that such simplified condition can
easily be checked in polynomial time since there are only a few ((|S|+1)(|T |+1)) inequalities to be checked.
This will be crucial in the algorithm described below for the degree-constrained max term rank problem.
Note that the original proof of Ryser gives rise to a polynomial time algorithm to compute the matrix itself.
Subsequently, Brualdi and Ross [7] described a simpler proof and which gives rise to a simple algorithm.

We also remark that there is a characterization given by Haber [27] for the minimum term rank of the
graphs in G(mS ,mT ) but we deal only with the maximum term rank problem.

7.1.1 Relation to network flows

As the bipartite matching problem and the more general degree-prescribed subgraph problem can be
treated with network flow technique, one may be wondering if Ryser’s theorem could also be derived via
network flows. Ford and Fulkerson, for example, remarked in their classic book ( [14], p. 89) that:

‘Neither term rank problem appears amenable to flow approach.’

Such a link could help solving the weighted and the subgraph version of the max term rank problem.
But recently it turned out that the failure of the attempt of Ford and Fulkerson was not just by chance.
It was proved ( [29], [35], [36]) that the problem of deciding whether an initial bigraph G0 has a perfectly
matchable degree-specified subgraph is NP-complete. Therefore both the weighted and the subgraph
versions of the max term rank problem is NP-complete, showing that even the theory of submodular flows
cannot help. The first goal of this section is to show that Ryser’s theorem immediately follows from the
general result on covering a supermodular function by simple bigraphs developed in Section 3.

Unfortunately not only weighted, but quite natural unweighted extensions also turned out to be NP-
complete. For example, finding a member of G(mS ,mT ) in which there is a subgraph with specified degrees
is equivalent to finding two disjoint simple bipartite graphs on the same node-set, and this latter problem
was shown to be NP-complete by Dürr, Guinez, and Matamala [9] (see Proposition 14).

In the light of the NP-complete problems in the close neighbourhood, it is pleasing to realize that
there are nicely tractable extensions of the max term rank problem. In the present section, we shall
extend Ryser’s theorem to the case when the bigraph with high matching number is degree-constrained
and edge-number constrained, not just degree-specified.

In paper [2], we shall develop an augmentation and a matroidal generalization. In the first one, a given
initial bigraph is to be augmented to get a simple degree-specified bigraph with matching number at least
`. In matrix terms, this means that some of the entries of the (0, 1)-matrix are specified to be 1. This is
in sharp contrast with the NP-completeness of that version when some entries of the matrix are specified
to be 0. In the matroidal extension of Ryser’s theorem, there are matroids on S and on T and we want to
find a degree-specified simple bigraph including a matching that covers bases in both matroids.

7.1.2 Proof of Ryser’s theorem

Proof. Proof. Necessity. Let G be a bipartite graph with the requested properties. Since G is simple, it
has at least m̃S(X) + m̃T (Y ) − |X||Y | edges having at least one end-node in X ∪ Y . Moreover, since G
has a matching of ` edges, there are at least `− |X ∪Y | edges connecting S−X and T −Y . Therefore the
total number γ of edges is at least m̃S(X)+ m̃T (Y )−|X||Y |+ `−|X ∪Y |, that is, (58) is indeed necessary.

Sufficiency. We need the following deficiency form of Hall’s theorem.

Lemma 69 (Hall and Ore). Let G = (S, T ;E) be a bipartite graph and ` ≤ |T | an integer. The matching
number ν(G) is at least ` (that is, there is a matching of ` edges) if and only if

|Γ(Y )| ≥ `− |T − Y | holds for every Y ⊆ T. (60)

26



Define a set-function pT on T by

pT (Y ) :=

{
`− (|T − Y |) if ∅ ⊂ Y ⊆ T
0 if Y = ∅.

(61)

Then pT is fully supermodular and monotone non-decreasing. Since G(mS ,mT ) is assumed to be non-
empty, (28) holds. By (58), we have

m̃S(X) + m̃T (Y )− |X||Y |+ pT (T − Y )− |X| = m̃S(X) + m̃T (Y )− |X||Y |+ `− |Y | − |X| ≤ γ,

that is, (29) also holds. By Corollary 27 (in Section 3.2), there is a simple bipartite graph G = (S, T ;E)
covering pT and fitting (mS ,mT ). But such a graph has a matching of size ` by Lemma 69, and we are
done. •

7.2 Degree and edge-number constrained max term rank

Our goal is to extend Ryser’s theorem for the case when upper or lower bounds are given for the
degrees rather than exact prescriptions. Bounds for the total number of edges can also be incorporated.
Let fV = (fS , fT ) and gV = (gS , gT ) be lower and upper bound functions with 0 ≤ fV ≤ gV . As we are
interested in simple bigraphs, we may suppose that gS(s) ≤ |T | for every s ∈ S and gT (t) ≤ |S| for every
t ∈ T .

Ryser’s theorem was derived above by applying Corollary 27 to the set-function pT defined in (61). By
applying Corollary 53 to the same pT , we obtain the following extension.

Theorem 70. Let ` ≤ |T | be an integer, fV = (fS , fT ) and gV = (gS , gT ) bounds with fV ≤ gV .
(A) There is a simple bigraph G′ = (S, T ;E′) with matching number ν(G′) ≥ ` and degree-constraints
(fT , gS) if and only if

f̃T (Y )− |X||Y |+ (`− |X| − |Y |)+ ≤ g̃S(S −X) whenever X ⊆ S, Y ⊆ T. (62)

Moreover, (62) holds if the inequality in it is required only when X consists of the i largest values of gS and
Y consists of the j largest values of fT (i = 0, 1, . . . , |S|, j = 0, 1, . . . , |T |).
(B) There is a simple bigraph G′′ = (S, T ;E′′) with matching number ν(G′′) ≥ ` and degree-constraints
(fS , gT ) if and only if

f̃S(X)− |X||Y |+ (`− |X| − |Y |)+ ≤ g̃T (T − Y ) whenever X ⊆ S, Y ⊆ T. (63)

Moreover, (63) holds if the inequality in it is required only when X consists of the i largest values of fS and
Y consists of the j largest values of gT (i = 0, 1, . . . , |S|, j = 0, 1, . . . , |T |).
(AB) There is a simple bigraph G = (S, T ;E) with matching number ν(G) ≥ ` and degree-constraints
(fV , gV ) if and only if both G′ and G′′ exist (that is, both (62) and (63) hold). •

By applying Theorem 58 to the same pT defined in (61), we obtain the following extension.

Theorem 71. Suppose that there is a simple bigraph with matching number at least ` which is degree-
constrained by (fV , gV ) (that is, conditions (62) and (63) hold). There is simple bigraph G = (S, T ;E)
with matching number at least ` which is degree-constrained by (fV , gV ):

(A) for which α ≤ |E| if and only if

g̃S(S −X) + g̃T (T − Y ) + |X||Y | − (`− |X| − |Y |)+ ≥ α whenever X ⊆ S, Y ⊆ T, (64)

Moreover, (64) holds if the inequality in it is required only when X consists of the i largest values of gS
and Y consists of the j largest values of gT (i = 0, 1, . . . , |S|, j = 0, 1, . . . , |T |).
(B) |E| ≤ β if and only if

f̃S(X) + f̃T (Y )− |X||Y |+ (`− |X| − |Y |)+ ≤ β whenever X ⊆ S, Y ⊆ T, (65)

Moreover, (65) holds if the inequality in it is required only when X consists of the i largest values of fS
and Y consists of the j largest values of fT (i = 0, 1, . . . , |S|, j = 0, 1, . . . , |T |).
(AB) α ≤ |E| ≤ β if and only if both (64) and (65) hold.
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Figure 2: A T2-forest

7.2.1 Algorithmic aspects

As already indicated above, the original proof of Ryser is algorithmic. Using this (or a simpler algorithm
by Brualdi and Ross [7]) as a subroutine, we describe an algorithm to find a degree-constrained bigraph
with matching number at least `. A specific feature of the algorithm is that it makes use of Theorem 70
(and does not re-prove it). Another basic constituent is the observation that conditions (62) and (63) can
easily be checked in polynomial time, as stated in the theorem, since it suffices to check the inequalities in
question only for (|S|+ 1)(|T |+ 1) cases. The algorithm starts by checking (62) and (63), and terminates
if anyone of them fails to hold. Suppose now that both conditions do hold.

Assume that there is a loose node v meaning that fV (v) < gV (v). We can check in polynomial time
whether fV (v) can be increased by 1 without destroying (62) and (63), and if it can, increase fV (v) by 1.
By repeating this operation as long as possible, we arrive at a situation where fV (v) cannot be increased
any more at any loose node.

By Theorem 70, there is a simple bigraph G with ν(G) ≥ ` and degree-constrained by (fV , gV ). Then
dG(v) = fV (v) clearly holds for a node with fV (v) = gV (v), but dG(v) = fV (v) holds for a loose node v, as
well, since if we had fV (v) < dG(v), then fV (v) could be increased without destroying the conditions. We
can conclude that mV := fV and γ := fS(S) satisfy (58) and therefore Ryser’s algorithm (or the simpler
algorithm by Brualdi and Ross) can be applied to construct the requested G.

The same approach works in the case when, in addition to the degree-constraints (fV , gV ), there is a
lower bound α and an upper bound β for the number of edges.

First, we can check in polynomial time if each of conditions (62), (63), (64), and (65) holds. If any
of them is violated, the algorithm terminates. Suppose that these conditions hold. We can also check in
polynomial time if there is a loose node v for which fV (v) can be increased by 1 without violating any
of these conditions, and we make these liftings of fT as long as possible. Therefore the final fV and gV
continue to meet the four conditions. By Theorem 70, there is a bigraph G satisfying the requirements.

By Theorem 71, there is a simple bigraph G = (S, T ;E) with ν(G) ≥ ` and α ≤ |E| ≤ β which is
degree-constrained by (fV , gV ). Then dG(v) = fV (v) clearly holds for a node with fV (v) = gV (v), but
dG(v) = fV (v) holds for a loose node v, as well, since if we had fV (v) < dG(v), then fV (v) could be
increased without destroying the conditions. We can conclude that mV := fV and γ := fS(S) satisfy (58).

With a little care, it can be shown that the complexity of the algorithm above to construct the degree-
specification mV satisfying (58) for which fV ≤ mV ≤ gV and α ≤ m̃S(S) ≤ β is O(n2 log n).

7.3 Further matching-type requirements

A special case of the max term rank problem characterizes degree-specifications which can be realized
by a perfectly matchable bipartite graph. Brualdi [6] characterized degree-specifications which can be
realized by elementary bipartite graphs. (A simple bigraph is elementary if it is connected and each of
its edges belongs to a perfect matching.) His result is extended in [3] to so-called k-elementary bigraphs.

In this section, we describe yet another model for degree-specified bigraphs. By a T2-forest we mean
a bigraph (S, T ;F ) which is a forest with dF (t) = 2 for every t ∈ T (see Figure 2). Lovász originally
developed Theorem 10 to characterize bigraphs G0 = (S, T ;E0) including a T2-forest.

Theorem 72. In a bigraph G = (S, T ;E), there exists a T2-forest if and only if

|ΓG(Y )| ≥ |Y |+ 1 whenever ∅ 6= Y ⊆ T. (66)
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Lovász used this result to prove a conjecture of Erdős on 2-colourability of hypergraphs with the strong
Hall inequality. Here we show another utilization.

Theorem 73. Let S and T be disjoint sets with |S| ≥ |T |+ 1 and let V = S ∪ T . Let mV = (mS ,mT ) be
a degree-specification for which m̃S(S) = m̃T (T ) = γ and mT (t) ≥ 2 for every t ∈ T . There exists a simple
bigraph G = (S, T ;E) fitting mV and including a T2-forest if and only if (9) holds and

m̃S(X) + m̃T (Y )− |X||Y | − |X| − |Y |+ |T |+ 1 ≤ γ whenever ∅ 6= X ⊆ S, Y ⊆ T. (67)

Proof. Proof. Necessity. Theorem 6 stated that (9) was the necessary and sufficient condition for the
realizability of (mS ,mT ).

Suppose that there is a simple bigraph G = (S, T ;E) realizing mV and including a T2-forest F . The
graph has at least m̃S(X) + m̃T (Y )− |X||Y | edges with at least one end in X ∪ Y . Forest F has exactly
2|T −Y | edges ending in T −Y . Among these edges, at most |X|+ |T −Y |−1 are induced by X ∪ (T −Y )
since F is a forest (and X is non-empty). Therefore F has at least

2|T − Y | − (|X|+ |T − Y | − 1) = |T | − |X| − |Y |+ 1

edges connecting T − Y and T −X. By combining these observations, we conclude that the left hand side
of the inequality in (67) is indeed a lower bound for the number γ of edges of G.

Sufficiency. Define a set-function pT on T by

pT (Y ) :=

{
|Y |+ 1 if ∅ ⊂ Y ⊆ T
0 if Y = ∅.

(68)

Then pT is intersecting supermodular and monotone non-decreasing. If there is a simple bigraph G covering
pT and fitting mV , then Theorem 72 implies that G has a T2-forest and we are done. If no such G exists,
then Theorem 25 implies that there are subsets X ⊆ S, Y ⊆ T and a subpartition T = {T1, . . . , Tq} of
T − Y for which

m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T )− |T ||X| > γ,

that is,

m̃S(X) + m̃T (Y )− |X||Y |+
q∑

i=1

(|Ti|+ 1)− q|X| > γ (69)

We cannot have q = 0, that is, T cannot be empty because of (9).
We cannot have X = ∅, for otherwise

m̃T (Y ) + |T − Y |+ |T − Y | ≥ m̃T (Y ) +

q∑
i=1

(|Ti|+ 1) =

m̃S(X) + m̃T (Y )− |X||Y |+
q∑

i=1

(|Ti|+ 1)− q|X| > γ,

from which 2|T − Y | > γ − m̃(T ) = m̃T (T − Y ), contradicting the hypothesis that mT (t) ≥ 2 for each
t ∈ T . Therefore X 6= ∅. Since q ≥ 1 and |X| ≥ 1, we have q(|X| − 1) ≥ |X| − 1 from which

−|X| − |Y |+ |T |+ 1 = |T − Y | − (|X| − 1) ≥ |T − Y | − q(|X| − 1) =

|T − Y |+ q − q|X| ≥
q∑

i=1

(|Ti|+ 1)− q|X|.

This and (69) imply

m̃S(X) + m̃T (Y )− |X||Y | − |X| − |Y |+ |T |+ 1 ≥ m̃S(X) + m̃T (Y )− |X||Y |+
q∑

i=1

(|Ti|+ 1)− q|X| > γ,

contradicting (67). •
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Actually, Theorem 10 implies the following more general form of Theorem 72 in which the forest has a
specified degree (not necessarily identically 2) at each node in T .

Theorem 74. Let mfor : T → Z+ be a degree specification. In a bigraph G = (S, T ;E), there exists a
forest F with dF (t) = mfor(t) (t ∈ T ) if and only if

|ΓG(Y )| ≥ m̃for(Y )− |Y |+ 1 whenever ∅ 6= Y ⊆ T. (70)

Consequently, Theorem 73 can also be generalized in such a way that the simple bigraph should fit a
degree specification mV and should include a forest with specified degrees in the nodes in T .

Theorem 75. Let S and T be disjoint sets and V := S ∪ T . Let mV = (mS ,mT ) be a degree-specification
for which m̃S(S) = m̃T (T ) = γ, and let mfor : T → Z+ be a degree specification on T for which mfor ≤ mT .
There exists a simple bigraph G = (S, T ;E) fitting mV and including a forest F with dF (t) = mfor(t)
(t ∈ T ) if and only if (9) holds and

m̃S(X) + m̃T (Y )− |X||Y |+ m̃for(T − Y )− |T − Y | − |X|+ 1 ≤ γ whenever ∅ 6= X ⊆ S, Y ⊆ T. (71)

We also remark that the results of Section 4 can be used in a similar way to generalize Theorem 73 so
as to have upper and lower bounds for the degrees of the nodes.

7.3.1 Wooded hypergraphs

A hypergraph is called wooded if it can be trimmed to a graph which is a forest, that is, if it is possible
to select two distinct elements from each hyperedge in such a way that the selected pairs, as graph edges,
form a forest. Suppose we have a hypergraph H = (S, T ) on node-set S. It is well known that H can
be represented with a simple bipartite graph GH = (S, T ;E) where the elements of T correspond to the
hyperedges and the set of neighbours of t ∈ T in GH is just the hyperedge corresponding to t. Obviously,
H is wooded precisely if the associate bipartite graph GH has a T2-forest. In this terminology, Theorem
72 asserts that a hypergraph is wooded if and only if the union of any j > 0 hyperedges has at least j + 1
elements.

Theorem 73 can also be reformulated in terms of wooded hypergraphs but here we do this only for the
special case when the hypergraph is `-uniform where ` ≥ 2.

Corollary 76. Let mS be a degree-specification on S with m̃S(S) = γ and let ` ≥ 2 be an integer. There
is an `-uniform wooded hypergraph fitting mS if and only if τ := γ/` is an integer and

mS(s) ≤ τ ≤ |S+| − 1 for s ∈ S+ (72)

where S+ = {s ∈ S : mS(s) > 0}.

Proof. Proof. As the necessity of the conditions is straightforward, we consider only sufficiency. Since
nodes s ∈ S with mS(s) = 0 will not belong to any hyperedge, we can delete them, and thus assume that
S+ = S. Note that (72) implies that m̃S(X) ≤ τ |X| for every X ⊆ S.

Let T be a set of τ new elements. Define mT (t) := ` for each t ∈ T and let pT be a set-function on T
defined in (68). If there is a simple bigraph G = (S, T ;E) covering pT and fitting (mS ,mT ), then G has
a T2-forest and the hypergraph on S associated with G is an `-uniform wooded hypergraph, in which case
we are done.

Suppose that the requested bigraph does not exist. Then one of the conditions in Theorem 73 fails to
hold. Suppose first that there are sets X ⊆ S, Y ⊆ T violating (9), that is, m̃S(X) + m̃T (Y )− |X||Y | > γ,
implying

m̃S(X) + |Y |(`− |X|) = m̃S(X) + `|Y | − |X||Y | > γ = τ`.

If ` ≥ |X|, then

m̃S(X) + τ(`− |X|) = m̃S(X) + |T |(`− |X|) ≥ m̃S(X) + |Y |(`− |X|) > τ`,

from which m̃S(X) > τ |X|, a contradiction.
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If ` < |X|, then
γ = m̃S(S) ≥ m̃S(X) ≥ m̃S(X) + |Y |(`− |X|) > γ,

a contradiction again, showing that (9) holds.
Consider now the case when there are sets ∅ 6= X ⊆ S, Y ⊆ T violating (67), that is,

m̃S(X) + m̃T (Y )− |X||Y | − |X| − |Y |+ τ + 1 > γ

from which

m̃S(X) + |Y |(`− |X| − 1)− |X|+ τ + 1 = m̃S(X) + `|Y | − |X||Y | − |X| − |Y |+ τ + 1 > γ = τ`.

If ` > |X|+ 1, then

m̃S(X) + τ(`− |X| − 1)− |X|+ τ + 1 ≥ m̃S(X) + |Y |(`− |X| − 1)− |X|+ τ + 1 > τ`

from which m̃S(X)− τ |X|− |X|+1 > 0, and hence τ |X| ≥ m̃S(X) > τ |X|+ |X|−1, implying that X = ∅,
a contradiction.

Suppose now that ` ≤ |X| + 1. Since mS(s) is positive for every s ∈ S, we have m̃S(S) − |S| ≥
m̃S(X)− |X|. Hence

m̃S(S)− |S|+ τ + 1 ≥ m̃S(X)− |X|+ τ + 1 ≥ m̃S(X) + |Y |(`− |X| − 1)− |X|+ τ + 1 > τ`

from which
τ`− |S|+ 1 = m̃S(S)− |S|+ 1 > τ`− τ,

that is, τ > |S| − 1, contradicting (72). •

T. Király [31] pointed out that there is a simple direct proof of Corollary 76 not relying on the theory
of supermodular functions.

In [2], we describe two other extensions of Ryser’s theorem.
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