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Norm of Bethe-wave functions in the continuum limit
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Abstract

The 6-vertex model with appropriately chosen alternating inhomogeneities gives
the so-called light-cone lattice regularization of the sine-Gordon (Massive-Thirring)
model. In this integrable lattice model we consider pure hole states above the anti-
ferromagnetic vacuum and express the norm of Bethe-wave functions in terms of the
hole’s positions and the counting-function of the state under consideration. In the
light-cone regularized picture pure hole states correspond to pure soliton (fermion)
states of the sine-Gordon (massive Thirring) model. Hence, we analyze the contin-
uum limit of our new formula for the norm of the Bethe-wave functions. We show,
that the physically most relevant determinant part of our formula can be expanded in
the large volume limit and turns out to be proportional to the Gaudin-determinant of
pure soliton states in the sine-Gordon model defined in finite volume.

http://arxiv.org/abs/1805.02897v1


1 Introduction

Recently, finite volume form-factors in integrable quantum field theories attract interest
because of their relevance in the solution of the planar AdS/CFT correspondence [1, 2].

There are two basic approaches to finite volume form-factors in integrable quantum
field theories. The first approach initiated in [3, 4] describes the finite volume form-factors
in the form of a large volume series built from the infinite volume form-factors [15] of the
theory. The second one uses an integrable lattice regularization of the quantum field theory
under consideration and provides with exact expressions for the finite volume form-factors.

The first approach proved to be particularly successful in purely elastic scattering the-
ories. In this class of theories an all order large volume series was proposed for the diagonal
form-factors [16, 13, 14], and the first order exponentially small in volume corrections of
the non-diagonal form-factors have been determined [5, 6]. However, up to now in non-
diagonally scattering theories the large volume series based method made it possible to
determine finite volume form-factors only up to polynomial corrections in the inverse of
the volume [7, 8, 9].

The second approach based on an integrable lattice regularization of the quantum
field theory under consideration, led to remarkable results in the sine-Gordon (Massive-
Thirring) model. In this framework finite volume 1-point functions [10, 11], ratios of
infinite volume form-factors [12] and the diagonal finite volume solitonic matrix elements
of the U(1) current [17] and the trace of the stress-energy tensor [18] have been determined.
In [17, 18] the exact results served by the lattice were rephrased as a large volume series
admitting a similar mathematical structure to those arising in the purely elastic scattering
theories [13, 14].

In the lattice computations, ratios of determinants of square matrices with size being
comparable to the number of lattice points, should be computed. Fortunately, in some
special cases, mostly when diagonal form-factors are considered, the computation of these
ratios of determinants simplify to mathematically treatable problems. This makes the
determination of diagonal form factors possible [17, 18], because in this case the ratio of
huge determinants reduces to the determinant of a low dimensional matrix with entries
given by the solutions of certain linear integral equations with kernels containing the
counting-function of the model.

However, these helpful simplifications are not present, when non-diagonal form-factors
are considered. In this case one cannot avoid to determine the determinants of square
matrices with size being comparable to the number of lattice points.

In this paper we consider the simplest determinant arising in the light-cone lattice reg-
ulrization [19] based computation of non-diagonal form-factors in the sine-Gordon (massive
Thirring) model. This is the so-called Gaudin-determinant detΦ, which determines the
norm square of a Bethe-eigenstate |~λ〉 (2.6) through the formula [33, 34, 35]:

||~λ||2 = 〈~λ|~λ〉 = v0 detΦ, (1.1)

where the Gaudin-matrix Φ, and the prefactor v0 are given by formulas (2.10) and (2.9),
respectively.
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This determinant representation plays an important role in the determination of non-
diagonal form-factors, since in this case matrix elements of local operators between normal-
ized eigenstates of the Hamiltonian are considered. For a local operator Ô, a non-diagonal
form-factor is given by the formula:

FO(~µ,~λ) =
〈~µ|Ô|~λ〉
||~µ||·||~λ||

, (1.2)

where |~µ〉 and |~λ〉 are Bethe-eigenvectors. Here, the appearance of the norms of the
sandwiching Bethe-eigenstates is the consequence of the fact that in general the Bethe-
eigenstates are not normalized to one.

In this paper we compute ||~λ||2 for pure hole states by expressing both v0 in (2.9) and
detΦ in terms of the positions of holes and of the counting-function of the model. We also
investigate the continuum limit of the Gaudin-determinant detΦ and show that its most
complicated determinant part is proportional to a product of two determinants. The first
one is the finite-dimensional Gaudin-determinant of the soliton states described by the
holes and the second one is a functional determinant, which can be expanded in the large
volume limit in a straightforward manner.

The paper is organized as follows. In section 2. a brief summary of the quantum inverse
scattering method can be found. In section 3. the nonlinear integral equations satisfied
by the counting-function are summarized. In section 4. the dressed Gaudin-matrix of
the sine-Gordon solitons are described. Section 5. contains some summation formulas
being necessary for the computation of the norm of Bethe-eigenstates. Sections 6. and 7.
contain the computation of the Gaudin-determinant on the lattice and in the continuum
limit, respectively. Section 8. contains the computation of the multiplicative factor v0
entering the Gaudin-formula. We close the body of our paper with the summary of our
results. The paper also contains two appendices, in which some formulas being helpful for
the computations of the paper are collected.

2 Quantum inverse scattering description

We consider the 6-vertex model defined by the R-matrix:

R(λ) =











1 0 0 0

0 sinh(λ)
sinh(λ−iγ)

sinh(−iγ)
sinh(λ−iγ) 0

0 sinh(−iγ)
sinh(λ−iγ)

sinh(λ)
sinh(λ−iγ) 0

0 0 0 1











, 0 < γ < π. (2.1)

The monodromy-matrix of the model is given in terms of the R-matrix in the usual way:

T (λ|~ξ) = R01(λ− ξ1)R02(λ− ξ2) ...R0N (λ− ξN ) =

(

A(λ) B(λ)
C(λ) D(λ)

)

[0]

, (2.2)

where ξns are the inhomogeneities of the model. In this paper we choose inhomogeneities
with alternating real parts:

ξn = ρn − iγ2 , ρn = (−1)nρ0, n = 1, .., N, ρ0 ∈ R. (2.3)
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The homogeneous case ρ0 = 0, correspond to the XXZ spin-chain and the inhomogeneous
case with appropriate choice for ρ0 describes a lattice regularization for the Massive-
Thirring (sine-Gordon) model [19, 20]. The monodromy matrix acts as a 2× 2 matrix on
the auxiliary space: V0 ∼ C

2 such that its entries act on the quantum space of the model
H = ⊗N

i=1C
2. The transfer matrix of the model is defined by the trace of the monodromy

matrix over the auxiliary space V0:

T (λ|~ξ) = Tr0 T (λ|~ξ). (2.4)

The transfer matrices form a commutative family of operators, since they commute at
different values of the spectral parameter λ :

[

T (λ|~ξ),T (λ′|~ξ)
]

= 0, ∀λ, λ′ ∈ C. (2.5)

This property ensures the integrability of the model and makes it possible to find the
eigenvalues and eigenstates of the transfer-matrix in a purely algebraic way, with the help
of the Algebraic Bethe-Ansatz method [32]. In this method the eigenstates of the transfer
matrix (2.4) are constructed in the form:

|~λ〉 = |λ1, λ2, .., λm〉 = B(λ1)B(λ2) ...B(λm) |0〉, Sz|~λ〉 = (N2 −m)|~λ〉, (2.6)

where |0〉 denotes the completely ferromagnetic state of the model with all spins up, the
operator B denote the 12-element of the monodromy matrix (2.2), and the the parameters
λj satisfy the Bethe-equations as follows:

N
∏

i=1

sinh(λa − ξi − iγ)

sinh(λa − ξi)

m
∏

b=1

sinh(λa − λb + iγ)

sinh(λa − λb − iγ)
= −1, a = 1, ...,m. (2.7)

Here N denotes the number of lattice points and m stands for the number of Bethe-roots.
In the Algebraic Bethe Ansatz approach the physical quantities of the model can be

expressed in terms of the Bethe-roots. In this paper we are interested in the norm of a
Bethe-eigenstate (2.6). This is given by the famous Gaudin-formula [33, 34, 35]:

||~λ||2 = 〈~λ|~λ〉 = v0 detΦ, with |~λ〉 = B(λ1)...B(λm)|0〉, (2.8)

where the prefactor v0 and the matrix of the Gaudin-determinant are given by the formulas:

v0 =

m
∏

j,k=1

sinh(λj − λk − i γ)

m
∏

j>k

sinh(λj − λk) sinh(λk − λj)
, (2.9)

Φab = −i ∂λa
Z(λb), a, b = 1, ...m. (2.10)

In (2.10) Z(λ) denotes the counting-function corresponding to the state |λ〉. For the set
of inhomogeneities (2.3), it is defined by the formula [25]:

Z(λ) =
N

2
(φ1(λ− ρ0) + φ1(λ+ ρ0))−

m
∑

k=1

φ2(λ− λk), (2.11)
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where φν(λ) is given in its fundamental domain |Imλ| < ν by the formula:

φν(λ) = −i ln sinh(iγ2 ν − λ)

sinh(iγ2 ν + λ)
, 0 < ν, φν(0) = 0, |Imλ| < ν. (2.12)

This function can be continued analytically to the whole complex plane by requiring Φν(λ)
to be an odd function with all discontinuities running parallel to the real axis [25]. With
this definition of Φν(λ), formula (2.11) admits a definition of Z(λ) being valid on the
whole complex plane. This definition allows one to reformulate the Bethe-equations (2.7)
in their logarithmic form:

Z(λa) = 2π Ia, Ia ∈ Z+ 1+δ
2 , δ = m (mod 2), a = 1, ..,m. (2.13)

In this formulation, to each Bethe-root λa an integer or half-integer quantum number Ia
can be assigned. The actual value of the parameter δ ∈ {0, 1} makes difference between
the different types of quantizations. In this paper we consider pure hole states states above
the antiferromagnetic vacuum. These states contain only real Bethe-roots.

The antiferromagnetic-vacuum of the model is a δ = 0 state with half-integer quantum
numbers filling completely the whole allowed range [Z(−∞)/2π,Z(∞)/2π] . The excita-
tions above this sea of real roots are characterized by complex Bethe-roots and holes. The
holes are such special real solutions of (2.13), which are not Bethe-roots1, thus they satisfy
the quantization equations as follows:

Z(hk) = 2π Ik, Ik ∈ Z+ 1+δ
2 , k = 1, ..,mH , (2.14)

where hk denotes the positions of the holes and their number is denoted by mH . In
the continuum limit these hole excitations describe the fermions and the solitons of the
Massive-Thirring and of the sine-Gordon models, respectively.

Using the definition of (2.11) for the counting-function, the entries of the Gaudin-
matrix (2.10) can be given explicitly by the following formula:

Φab = −i
(

Z ′(λb) δab + 2πK(λa − λb)
)

, a, b = 1, ...,m, (2.15)

where

K(λ) =
1

2π

sin(2 γ)

sinh(λ− i γ) sinh(λ+ i γ)
, (2.16)

and δab stands for the Kronecker-delta symbol.
As we already mentioned, the appropriate choice of the inhomogeneity parameter ρ0

in (2.3) makes it possible to describe the sine-Gordon or Massive-Thirring models. These
continuum quantum field theories are defined by the Lagrangians:

LSG =
1

2
∂νΦ∂

νΦ+ α0 (cos (βΦ)− 1) , 0 < β2 < 8π, (2.17)

LMT = Ψ̄(iγν∂
ν −m0)Ψ− g

2
Ψ̄γνΨΨ̄γνΨ , (2.18)

1Namely, they do not enter in the definition of Z(λ) in (2.11).
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wherem0 and g denote the bare mass and the coupling constant of the theory, respectively.
As usual, γµs stand for the γ-matrices satisfying the algebraic relations: {γµ, γν} = 2ηµν

with ηµν = diag(1,−1). These two quantum field theories are identical in their even
topological charge sector [30, 31] if their coupling constants are related by the formula:

1 +
g

4π
=

4π

β2
. (2.19)

In [19] it has been shown, that the even topological charge sector of the Massive-Thirring
model can be described as the continuum limit of the 6-vertex model with alternating
inhomogeneities, provided the inhomogeneity parameter ρ0 in (2.3) is given by the formula:

ρ0 =
γ
π
ln 4

M a
= γ

π
ln 2N

ML
, (2.20)

whereM denotes the physical mass of fermions (solitons) of the MT (SG) model, a denotes
the lattice constant, L stands for the finite volume and N is the number of lattice sites
of the 6-vertex model, which should be even in this case. The relation of the anisotropy
parameter γ to the coupling constants of the quantum field theories (2.18) and (2.17) is
given by:

β2

4π
=

1

1 + g
4π

= 2(1 − γ
π
). (2.21)

For later convenience we also introduce a new parameterization for the anisotropy param-
eter:

γ = π
p+1 , with 0 < p <∞, then:

β2

4π
=

2p

p+ 1
. (2.22)

In the language of the new parameter p, the p = 1 point corresponds to the free-fermion
point of the theory and the 0 < p < 1 and 1 < p regimes correspond to the attractive and
repulsive regimes of the model, respectively.

3 NLIE for the counting-function

It is well-known, that the counting function satisfies a set of nonlinear integral equations
(NLIE) [21]-[28]. The main advantage of this set of equations is that it has a well-defined
continuum limit in the light-cone regularized picture [22]. Thus it is a suitable tool,
through which the continuum limit of the counting-function can be defined. In this paper
we present the equations only for the pure hole sector of the model, which was derived
first in [24]. The equations are of the form:

Z(λ) = Nπ (χF (λ− ρ0) + χF (λ+ ρ0)) + 2π

mH
∑

k=1

χ(λ− hk)+

+

∞
∫

−∞

dλ′

i
G(λ− λ′ − iη)L+(λ

′ + iη)−
∞
∫

−∞

dλ′

i
G(λ− λ′ + iη)L−(λ

′ − iη),

(3.1)
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where 0 < η is a small contour deformation parameter, L±(λ) stand for the nonlinear
combinations:

L±(λ) = ln
(

1 + (−1)δe±i Z(λ)
)

, (3.2)

and the functions χF , χ and G are given by the formulas:

χF (λ) = 1
π
arctan

[

tanh(πλ2γ )
]

, (3.3)

G(λ) =

∞
∫

−∞

dω

2π
e−iωx G̃(ω), G̃(ω) =

1

2

sinh(πω2 (1− 2γ
π
))

cosh(γω2 ) sinh(πω2 (1− γ
π
))
, (3.4)

χ(λ) =

λ
∫

0

dλ′G(λ′). (3.5)

In order for the equation (3.1) to be complete, quantization equations for the holes should
also be imposed:

Z(hk) = 2π Ik, Ik ∈ Z+ 1+δ
2 , k = 1, ..,mH . (3.6)

The counting-function has a well-defined continuum limit [22, 23, 24, 25, 26, 27, 28], which
is a simpleN → ∞ limit of the lattice counting-function (2.11), such that the hole quantum
numbers are kept fixed and ρ0 is also tuned according to (2.20). We will use the notations
Ẑ(λ) and L̂±(λ) for the continuum limits of the functions Z(λ) and L±(λ), respectively:

Ẑ(λ) = lim
N→∞

Z(λ), L̂±(λ) = lim
N→∞

L±(λ). (3.7)

The continuum limit of the counting-function satisfies the nonlinear integral equation as
follows [22][29]:

Ẑ(λ) = ℓ sinh(π
γ
λ) + 2π

mH
∑

k=1

χ(λ− hk)+

+

∞
∫

−∞

dλ′

i
G(λ− λ′ − iη) L̂+(λ

′ + iη)−
∞
∫

−∞

dλ′

i
G(λ− λ′ + iη) L̂−(λ′ − iη),

(3.8)

where ℓ = ML withM being the physical mass of solitons (fermions) and with L being the
finite volume. The holes are subjected to the continuum limit of the lattice quantization
equations (3.6):

Ẑ(hk) = 2π Ik, Ik ∈ Z+ 1+δ
2 , k = 1, ..,mH . (3.9)

The importance of the counting function is that the positions of all Bethe-roots are
encoded into it. In the Algebraic Bethe Ansatz framework all physical quantities can
be expressed in terms of the Bethe-roots. Thus, it is natural to expect that all physical
quantities can be expressed in terms of the counting-function, as well. The description of
physical quantities in the language of the counting-function proves to be very useful, when
the continuum limit should be taken.
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4 Gaudin-matrix for soliton states

The norm square of a Bethe-eigenstate (2.6) is proportional to the determinant of the
lattice Gaudin-matrix defined by (2.10). In this definition the derivatives of the counting-
function with respect to the positions of the Bethe-roots should be taken. To be more
precise Z(λ) defined by (2.11) should be considered as a function depending on the pa-
rameters λa. In more detail the precise definition of (2.10) can be written as follows:

Φab(~λ) = −i ∂
∂xa

Z(xb|~x)
∣

∣

~x=~λ
, (4.1)

where ~λ = (λ1, .., λm) with λjs being the solutions of (2.7) and the function Z(λ|~x) is
defined by a formula, which can be obtained from (2.11) after the λa → xa replacements:

Z(λ|~x) = N

2
(φ1(λ− ρ0) + φ1(λ+ ρ0))−

m
∑

k=1

φ2(λ− xk). (4.2)

From the definitions (2.11) and (4.2) it follows, that:

Z(λ) = Z(λ|~λ). (4.3)

Formula (4.3) implies that Z(λ) is a function of m parameters, which are actually the
Bethe-roots of the eigenstate under consideration. In this context one think of the
counting-function as a function characterized by m + 2 parameters. These parameters
are the number of lattice sites N, the inhomogeneity parameter ρ0 and ~λ; the vector con-
taining the spectral parameters of the elementary excitations above the reference state
|0〉.

The NLIE for the counting function (3.1) suggests another ”parameterization” for
the counting-function. In this description Z(λ) seems to be the function of only mH +
2 parameters; the number of lattice sites N, the inhomogeneity parameter ρ0 and the
positions of the holes, which are the spectral parameters of the elementary excitations
above the true antiferromagnetic vacuum of the model. Thus one can define another
Gaudin-matrix, which is defined by differentiating Z(λ) with respect to the hole’s positions:

Qjk = ∂
∂hj

Z(hk), j, k = 1, ...,mH . (4.4)

In the sequel we will call this matrix the dressed Gaudin-matrix, since its definition arises
from the dressed excitations of the model. Taking the derivative of (3.1) with respect to
hj one obtains the following formula for Qjk :

Qjk = Z ′(hk) δjk + Gj(hk), j, k = 1, ...,mH , (4.5)

where the functions Gj(λ) are defined by the solutions of the linear integral equations as
follows:

Gj(λ)−
∑

α=±

∞
∫

−∞

dλ′G(λ−λ′−i α η)Fα(λ
′+i α η)Gj(λ

′+i α η)=−2π G(λ−hj), j = 1, ..,mH ,

(4.6)
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where hj is the jth hole’s position and the functions F±(λ) are defined by:

F±(λ) =
(−1)δ e±i Z(λ)

1 + (−1)δ e±i Z(λ)
. (4.7)

Formula (4.6) implies, that the functions Gj(λ) originate from a single function of two
arguments:

Gj(λ) = G̃(λ, hj), j = 1, ..,mH , (4.8)

such that G̃(λ, λ′′) is defined by the solution of the linear integral equation as follows:

G̃(λ, λ′′)−
∑

α=±

∞
∫

−∞

dλ′G(λ−λ′ − iαη)Fα(λ
′ + i α η)G̃(λ′ + i α η, λ′′)=−2π G(λ− λ′′).

(4.9)

Thus the dressed Gaudin-matrix takes the form:

Qjk = Z ′(hk) δjk + G̃(hk, hj), j, k = 1, ...,mH . (4.10)

The continuum limit2 of G̃(λ, λ′′) also exists: lim
N→∞

G̃(λ, λ′) = G̃c(λ, λ
′). From (4.9) it

follows, that it satisfies the linear integral equation as follows:

G̃c(λ, λ
′′)−

∑

α=±

∞
∫

−∞

dλ′G(λ−λ′ − iαη) F̂α(λ
′ + i α η)G̃c(λ

′ + i α η, λ′′)=−2πG(λ− λ′′),

(4.11)

where analogously to (3.7), F̂±(λ) stands for the continuum limit of F±(λ) :

lim
N→∞

F±(λ) = F̂±(λ). (4.12)

Then, in the continuum limit the dressed Gaudin-matrix takes the form:

Q̂jk = Ẑ ′(hk) δjk + G̃c(hk, hj), j, k = 1, ...,mH . (4.13)

For later convenience it is worth to represent the linear integral equations (4.9) and
(4.11) in a form, where integrations run along the real axis. This can be done by ”pushing”
the integration contours on the real axis by taking the η → 0+ limit in these formulas.
Exploiting that the functions G(λ) and G̃(λ, λ′) are regular around the real axis, the
equations (4.9) and (4.11) can be written in the alternative forms as follows:

G̃(λ, λ′′)−
∞
∫

−∞

dλ′G(λ−λ′)ΩF (λ
′)G̃(λ′, λ′′)=−2πG(λ− λ′′), (4.14)

2By continuum limit we always mean the N → ∞ limit, such that ρ0 is also tuned according to (2.20).
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G̃c(λ, λ
′′)−

∞
∫

−∞

dλ′G(λ−λ′)ΩF̂ (λ
′) G̃c(λ

′, λ′′)=−2πG(λ− λ′′), (4.15)

where the functions ΩF(λ) and ΩF̂ (λ) are defined by the formulas as follows:

ΩF (λ) = lim
η→0+

(F+(λ+ i η) + F−(λ− i η)) , (4.16)

ΩF̂ (λ) = lim
η→0+

(

F̂+(λ+ i η) + F̂−(λ− i η)
)

. (4.17)

The representations (4.14) and (4.15) will become important in section 6, when the
Gaudin-determinant is computed.

5 Summation formulas

In the computations of the forthcoming sections we will need to compute sums of type as
follows:

Σf =
m
∑

j=1

f(λj), (5.1)

where f(λ) is an arbitrary function being regular in some neighborhood of the real axis
and λjs are the roots of the Bethe-equations (2.7).

In this section we derive integral expressions, which make it possible to eliminate the
positions of the Bethe-roots from Σf . Such formulas are very well-known in the literature
[22]-[29],[17],[18]. The reason why we consider here these summation formulas, is to de-
rive a special form for them, which proves to be very useful in the computations of the
forthcoming sections.

First we introduce a notation. In the sequel we will denote the positions of Bethe-roots
and holes in common with λ̂j :

{λ̂j}j=1,..,m∞ = {λj}j=1,..,m ∪ {hj}j=1,..,mH
, m∞ = m+mH . (5.2)

The starting point of the derivation is the recognition, that F±(λ) defined by (4.7)
have simple poles at the positions {λ̂j}j=1,..,m∞ and otherwise they are regular in a small

neighborhood of the real axis. From (2.13) and (2.14) it can be shown, that for λ ∼ λ̂j
they behave like:

F±(λ) =
±1

i Z ′(λ̂j)

1

λ− λ̂j
+O(1), j = 1, ..,m∞. (5.3)

It follows, that the residues at these points take the values:

Res
λ=λ̂j

F±(λ) =
±1

i Z ′(λ̂j)
, j = 1, ..,m∞. (5.4)
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Then the sum Σf can be transformed into an integral expression in the following way:

Σf =

m
∑

j=1

f(λj) =

m
∑

j=1

f(λj) i Z
′(λj)Resλ=λj

F+(λ) =

∮

Γ0

dλ

2π
f(λ)Z ′(λ)F+(λ) =

=

Λ+
∫

−Λ−

dλ

2π
f(λ− i η)Z ′(λ− i η)F+(λ− i η)−

Λ+
∫

−Λ−

dλ

2π
f(λ+ i η)Z ′(λ+ i η)F+(λ+ i η)

−
mH
∑

j=1

f(hj) +RΛ = −
mH
∑

j=1

f(hj) +RΛ +

Λ+
∫

−Λ−

dλ

2π
f(λ− i η)Z ′(λ− i η)

−
∑

α=±

Λ+
∫

−Λ−

dλ

2π
f(λ+ iα η)Z ′(λ+ i α η)Fα(λ+ i α η),

(5.5)

where the closed curve Γ0 is depicted on figure 1, Λ± are positive parameters satisfying

X X X X X X XX
Reλ λ λ

Λ+

h h1

1

2

2 m

0Γ
Im

−Λ−

i

−iη

η

Figure 1: The figure represents the closed curve Γ0 in (5.5). Crosses and circles represent the Bethe-roots

and holes respectively.

the inequalities as follows:

max
j
{λ̂j} < Λ+ <∞, −∞ < −Λ− < min

j
{λ̂j}, (5.6)

and RΛ denotes the ”vertical” part of the integrations on Γ0 :

RΛ = i
∑

α=±
α

η
∫

−η

dτ

2π
f(αΛα + i τ)Z ′(αΛα + i τ)F+(αΛα + i τ). (5.7)

In (5.5) we used (5.4) and the identity:

F+(λ− i η) = 1−F−(λ− i η), (5.8)
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which is a simple consequence of the definitions (4.7). The maximal value of the positive
contour deformation parameter η is restricted by the singularity structure of the functions
f(λ), Z ′(λ), and F±(λ). Namely, it must be smaller, than the absolute value of the imag-
inary part of that singularity of these three functions, which lies the closest to the real

axis. Shifting the contour to the real axis in the term
Λ+
∫

−Λ−

dλ
2πf(λ− i η)Z ′(λ− i η) of (5.5)

one obtains the final result as follows:

Σf = −
mH
∑

j=1

f(hj) +

Λ+
∫

−Λ−

dλ

2π
f(λ)Z ′(λ)−

∑

α=±

Λ+
∫

−Λ−

dλ

2π
f(λ+ iα η)Z ′(λ+ i α η)Fα(λ+ i α η)+

+RΛ +R′
Λ,

(5.9)

where

R′
Λ = i

0
∫

−η

dτ

2π
f(Λ+ + i τ)Z ′(Λ+ + i τ)− i

0
∫

−η

dτ

2π
f(−Λ− + i τ)Z ′(−Λ− + i τ). (5.10)

For later convenience we will rephrase the integral representation (5.9) in two special
forms. The large λ asymptotics of the function f(λ) will determinate which from these
two special representations should be used during the actual computations.

Case I. This is the case, when the integrands of all integrals in (5.9) tend to zero
at infinity in an integrable way. Let us see, what kind of condition is imposed on the
asymptotics of f(λ) by this requirement. From (2.11) and (4.7) it can be seen that Z ′(λ)
and F±(λ) have the large λ asymptotics as follows:

Z ′(λ) ∼ e−2 |λ|, F± ∼ const. (5.11)

Then the condition, that all integrands in (5.9) should tend to zero at infinity in an
integrable way, imposes the following requirement for the large λ asymptotics of f(λ) :

|f(λ)| / e2|λ|

|λ|1+ǫ
, 0 < ǫ ∈ R. (5.12)

In this case the Λ± → ∞ limit can be taken in (5.9) and the vertical integrals (5.7) and
(5.10) tend to zero: RΛ → 0, R′

Λ → 0. Thus the formula (5.9) simplifies radically for
functions with asymptotic behavior (5.12):

Σf = −
mH
∑

j=1

f(hj) +

∞
∫

−∞

dλ

2π
f(λ)Z ′(λ)−

∑

α=±

∞
∫

−∞

dλ

2π
f(λ+ iα η)Z ′(λ+ i α η)Fα(λ+ i α η).

(5.13)

This formula will be used in the derivation of the formulas of section 8.
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Case II. This is the case, when the large λ asymptotics of f(λ) does not satisfy the
condition (5.12). In this case the Λ± → ∞ limit cannot be taken in the formula (5.9). In
section 6 we will need this case, too. For practical purposes, we rephrase (5.9) in a special
form, in which the ”vertical” terms RΛ, R

′
Λ become zero. This is achieved by taking the

η → 0+ limit in (5.9). The functions f(λ) and Z ′(λ) are analytic around the real axis, this
is why in the η → 0+ limit, the f(λ± i η) → f(λ) and Z ′(λ ± i η) → Z ′(λ) replacements
can be done in (5.9). On the other hand the situation is not so simple for F±(λ ± i η),
because of their poles on the real axis (5.3). From (4.7) and (5.3) the following small η
behavior can be derived:

∑

α=±
Fα(λ+ i α η) = Ω

(η)
F (λ) +O(η), (5.14)

where

Ω
(η)
F (λ) = 1− 2π

m∞
∑

j=1

δη(λ− λ̂j)

Z ′(λ̂j)
, δη(λ) =

η

π

1

λ2 + η2
. (5.15)

The function δη(λ) is a smooth, analytic regularization of the Dirac-delta distribution
δ(λ):

lim
η→0+

δη(λ) = δ(λ). (5.16)

Formulas (5.14)-(5.16) imply, that ΩF (λ) defined in (4.16) can also be represented in the
form as follows:

ΩF (λ) = 1− 2π

m∞
∑

j=1

δ(λ − λ̂j)

Z ′(λ̂j)
. (5.17)

We note that ΩF(λ) can be considered as a kernel of an integral operator acting on the
real axis. Due to its definition (4.16) its action on a function f with good-enough analytic
properties can be written as an integration on appropriately shifted contours. Concretely:

∞
∫

−∞

dλ f(λ)ΩF (λ) =
∑

α=±

∞
∫

−∞

dλ f(λ+ i α η)Fα(λ+ i α η), (5.18)

where on ”good-enough” analytical properties we mean, that f(λ) is regular in a small
neighborhood of the real axis and that the large λ behavior of f(λ) is such that the
integrals converge on the right hand side of (5.18).

Now, we are in the position to bring (5.9) in case II to the form, which will be useful
in the computations of section 6:

Σf = −
mH
∑

j=1

f(hj) +

Λ+
∫

−Λ−

dλ

2π
f(λ)Z ′(λ)−

∑

α=±

Λ+
∫

−Λ−

dλ

2π
f(λ)Z ′(λ)ΩF (λ). (5.19)
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Since we would like to exploit the advantages of the L2-function space, we rewrite (5.19)
into a form, which contains only smooth regular functions under the integrations,

Σf = −
mH
∑

j=1

f(hj) +

Λ+
∫

−Λ−

dλ

2π
f(λ)Z ′(λ)− lim

η→0+

∑

α=±

Λ+
η

∫

−Λ−
η

dλ

2π
f(λ)Z ′(λ)Ω(η)

F (λ). (5.20)

Here we introduced the η dependent cutoffs Λ±
η , which satisfy η dependent modifications

of the inequalities (5.6):

max
j
{λ̂j}+ 1√

η
< Λ+

η <∞, −∞ < −Λ−
η < min

j
{λ̂j} − 1√

η
. (5.21)

These η dependent modifications of Λ± were introduced, so that the width of the regu-
larized delta-functions corresponding to the maximal values of λ̂j in (5.15) fall within the
integration range and give contribution. Formulas (5.19) and (5.20) will play important
role in the forthcoming sections, when the determinant of the Gaudin-matrix (2.15) is
computed.

6 The Gaudin-determinant

In this section we rewrite the determinant of the Gaudin-matrix (2.15) into a form, which
makes it possible to compute it in the continuum limit. As a first step we rewrite Φab of
(2.15) in the form as follows:

Φab = −i Z ′(λb) · (δab + Uab) , a, b = 1, ..m, (6.1)

with

Uab = U(λa, λb) =
2πK(λa − λb)

Z ′(λb)
, a, b = 1, ...,m, (6.2)

where K(λ) is given by (2.16). Then det
m

Φ can be written as a product of two terms:

det
m

Φ = Φ0 · ΦU , (6.3)

where

Φ0 = (−i)m
m
∏

k=1

Z ′(λk), (6.4)

ΦU = det
m

(δab + Uab). (6.5)

The term Φ0 can be easily computed with the help of (5.13). Nevertheless, we refrain
from its explicit computation, since we will see in section 9, that it cancels from the full
expression of the norm ||~λ||.
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The other term ΦU is a Fredholm-determinant. Its computation is the primary purpose
of this section. For the computation of ΦU we will use the Plemelj-formula [36, 37], which
expresses a Fredholm-determinant in terms of traces by the formula as follows:

det(1 +A) = exp

{ ∞
∑

n=1

(−1)n+1

n
Tr(An)

}

, (6.6)

where Tr stands for trace. The formula (6.6) is convergent if

|λ1(A)| < 1, (6.7)

where λ1(A) stands for the largest eigenvalue of the operator A. To check whether a
Plemelj-series (6.6) is convergent, |λ1(A)| should be computed. In our cases the following
formula proves to be useful for its determination:

|λ1(A)| = lim
n→∞

exp
{

1
n
ln |Tr(An)|

}

. (6.8)

In the forthcoming subsections we compute ΦU by the appropriate application of the
Plemelj-formula (6.6).

6.1 The determination of ΦU

To avoid extra difficulties, during the computations we will assume, that Z ′(λj) > 0 for
all j = 1, ...m. In order to apply the Plemelj-formula for ΦU (6.5), one has to know,
whether it converges. Unfortunately, we cannot prove, that the Plemelj-formula for ΦU

would be convergent in the whole allowed range of the anisotropy parameter (0 < γ < π.)
Nevertheless, we will show in the forthcoming lines, that there is a region in the anisotropy
parameter, where the series is convergent for sure. We will compute ΦU in this convergent
regime and the result outside of this regime will be obtained by analytical continuation in
the anisotropy parameter.

To compute ΦU with the help of (6.6) one needs to compute traces of the powers of
Uab. Using (6.2) and (A.4) it is easy to find a majorant for |Tr(Un)| :

|Tr(Un)| ≤
m
∑

a1,..,an=1

|U(λa1 , λa2)....U(λan , λa1)| ≤ (2π |K(0)|Σm)n, (6.9)

where

Σm =
m
∑

j=1

1

Z ′(λj)
, (6.10)

which is a positive number due to the assumption Z ′(λj) > 0. From (6.9) it follows, that
the Plemelj-series for ΦU surely converges if one works in the region of the anisotropy
parameter, where the following inequality holds:

2π|K(0)|Σm < 1. (6.11)
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This condition is obviously satisfied if the value of the anisotropy is close enough to the
free-fermion point. This statement is a simple consequence of the formula (A.5) and the
fact that Σm 6= 0 at the p = 1 free-fermion point. In the sequel we will work in this region
of p, where the Plemelj-formula for ΦU is convergent.

Our aim is to rephrase ΦU in a form which is appropriate for taking the continuum
limit. This is why we should somehow turn from discrete variables to continuous ones.
In (6.9) such sums arise for which we have derived the summation formulas (5.13) and
(5.20). This is why our strategy is to rewrite Tr(Un) as the trace of the nth power of
an appropriate integral operator. To do so, first one has to specify the function space
or Hilbert-space on which the integral operators act. Formula (5.20) suggest the Hilbert-
space H to be L2(−Λ−

η ,Λ
+
η ). Then consider the integral operator Ûη acting on H, with

the kernel:

Uη(λ, λ
′) = K(λ− λ′)− 2π

mH
∑

j=1

K(λ− λ′) δη(λ′ − hj)

Z ′(hj)
−K(λ− λ′)Ω(η)

F (λ′), (6.12)

where the functions K, δη and Ω
(η)
F are defined in (2.16) and (5.15). Using (5.15), the

kernel Uη(λ, λ
′) can be rephrased from (6.12) in an equivalent form being closer in nature

to the original discrete problem:

Uη(λ, λ
′) = 2π

m
∑

j=1

K(λ− λ′) δη(λ′ − λj)

Z ′(λj)
. (6.13)

From (6.13) the following trace relation can be shown:

Tr(Un) = lim
η→0+

Tr(Ûn
η ), 1 ≤ n ∈ Z, (6.14)

where

Tr(Ûn
η ) =

Λ+
η

∫

−Λ−
η

dλ1...dλn Uη(λ1, λ2)Uη(λ2, λ3)...Uη(λn, λ1). (6.15)

From (6.13) and from the representation (6.15), one can also show, that:

|Tr(Ûn
η )| ≤ (2π |K(0)|Σm)n. (6.16)

This formula together with (6.9) implies, that in the region (6.11) in which we work the
Plemelj-formula for det(1 + Ûη) will converge, too. The convergence of the Plemelj-series
and the trace relation (6.14) implies, that:

ΦU = det
m

(δab + Uab) = lim
η→0+

det(1 + Ûη). (6.17)

One can recognize, that in the definition (6.12) of Ûη an η-dependent regularization of the
Dirac-delta distribution arises. Since at the end of the computations the η → 0+ limit must
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be taken, one might ask why we cannot work directly in the η → 0+ limit, where Dirac-
delta functions would enter the definition of this integral operator. The reason is that
the η-deformed operator Ûη has advantageous properties on H. Namely, it is a bounded,
trace-class operator on H and this property is exploited in the subsequent computations3.
The operator defined directly in the η → 0+ limit: Û = lim

η→0+
Ûη, would not be a bounded

trace-class operator.
The next step of our computations is to perform the dressing procedure in ΦU . In the

original formula for Uab the function K(λ) arises, which is the derivative of the scattering-
phase of elementary excitations above the completely ferromagnetic ”bare” vacuum |0〉.
Now, we rewrite ΦU into a form, where the derivative of the scattering-phase of the
elementary excitations above the true antiferromagnetic vacuum will arise. The procedure
is quite similar to what happens in [22, 23] at the derivation of the NLIE (3.1).

For the sake of simplicity, we rewrite Ûη in (6.12) into a form, which emphasize more,
that it is a sum of three different type of terms:

Ûη = K̂ + Ĥη + Ŝη, (6.18)

where the kernels of these integral operators are given by:

K̂ → K(λ− λ′), (6.19)

Ĥη → Hη(λ, λ
′) = −2π

mH
∑

j=1

K(λ− λ′) δη(λ′ − hj)

Z ′(hj)
, (6.20)

Ŝη → Sη(λ, λ
′) = −K(λ− λ′)Ω(η)

F (λ′). (6.21)

In this notation Hη and Sη correspond to the contributions of the holes and the sea of
Bethe-roots respectively.

Now, we make some trivial transformations on det(1+Ûη). The only thing we exploit is
that, for trace-class operators the determinant of the convolution product of two operators
is equal to the product of the individual determinants [39],

det(1 + Ûη) = det(1 +K̂ + Ĥη +Ŝη) = det
(

(1+K̂)⋆
[

1 +(1 + K̂)−1⋆Ĥη +(1+K̂)−1⋆Ŝη

])

=

= det(1 + K̂) det(1− Âη − B̂η) = det(1 + K̂) det(1− B̂η) det
(

1− (1− B̂η)
−1⋆Âη

)

,

(6.22)

where we introduced the operators:

Âη = −(1 + K̂)−1⋆Ĥη, B̂η = −(1 + K̂)−1⋆Ŝη. (6.23)

It is worth to introduce another operator Ĝη by the definition:

Ĝη = (1− B̂η)
−1⋆Âη . (6.24)

3All definitions and theorems concerning Fredholm-determinants and trace-class operators, which we
use in our actual computations can be found in the introduction of [38] and in the books [40, 41]
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With these definitions the result of (6.22) can be written as follows:

det(1 + Ûη) = det(1 + K̂) det(1− B̂η) det(1− Ĝη). (6.25)

After these quite formal computations one should determine the kernels corresponding to
the operators Âη, B̂η and Ĝη. From definitions (6.23) one obtains:

Aη(λ, λ
′) = 2π

mH
∑

j=1

GΛ(λ, λ
′) δη(λ′ − hj)

Z ′(hj)
, (6.26)

Bη(λ, λ
′) = GΛ(λ, λ

′)Ω(η)
F (λ′), (6.27)

where GΛ(λ, λ
′) is the kernel of the operator ĜΛ = (1 + K̂)−1⋆ K̂. As a consequence, it

satisfies the linear integral equation as follows:

GΛ(λ, λ
′)+

Λ+
η

∫

−Λ−
η

dz K(λ− z)GΛ(z, λ
′) = K(λ− λ′), λ, λ′ ∈ (−Λ−

η ,Λ
+
η ). (6.28)

This kernel simplifies in the Λ±
η → ∞ limit4:

lim
Λ±
η →±∞

GΛ(λ, λ
′) = G(λ− λ′), (6.29)

with G(λ) given in (3.4) and it is just the derivative of the soliton-soliton scattering phase.
We note, that (6.25) with formulas (6.26), (6.27) and (6.28) account for the dressing
procedure, since this is a formula in which one can switch from the scattering-phase of
”bare”-particles to that of the real physical particles. From the series representation

GΛ =
∞
∑

n=1
(−1)n+1(⋆K)n obtained by solving (6.28), and from (A.3) and (A.6) it can be

shown, that the kernel GΛ is a bounded function, which becomes zero at the free-fermion
point:

|GΛ(λ, λ
′)| ≤

∞
∫

−∞

dω

2π

|K̃(ω)|
1− |K̃(ω)|

= g(p), g(1) = 0, λ, λ′ ∈ (−Λ−
η ,Λ

+
η ). (6.30)

From (6.24), (6.26) and (6.27) it follows, that the kernel of the operator Ĝη satisfies the
linear integral equation as follows:

Gη(λ, λ
′)−

Λ+
η

∫

−Λ−
η

dz GΛ(λ, z)Ω
(η)
F (z)Gη(z, λ

′)=2π GΛ(λ, λ
′)

mH
∑

j=1

δη(λ
′−hj)

Z ′(hj)
, λ, λ′ ∈ (−Λ−

η ,Λ
+
η ).

(6.31)

4Since in this limit (6.28) can be solved in Fourier-space and the solution becomes G(λ) of (3.4).
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It is worth to search the solution of equation (6.31) in the form as follows:

Gη(λ, λ
′) = Ḡη(λ, λ

′)
mH
∑

j=1

δη(λ
′ − hj)

Z ′(hj)
. (6.32)

Then Ḡη(λ, λ
′) should satisfy the equation:

Ḡη(λ, λ
′)−

Λ+
η

∫

−Λ−
η

dz GΛ(λ, z)Ω
(η)
F (z) Ḡη(z, λ

′) = 2π GΛ(λ, λ
′), λ, λ′ ∈ (−Λ−

η ,Λ
+
η ). (6.33)

It is also important to introduce the η → 0+ limit of Ḡη(λ, λ
′). It satisfies the linear integral

equation as follows:

Ḡ(λ, λ′)−
Λ+
∫

−Λ−

dz GΛ0
(λ, z)ΩF (z) Ḡ(z, λ′) = 2π GΛ0

(λ, λ′), Ḡ(λ, λ′) = lim
η→0+

Ḡη(λ, λ
′),

(6.34)

where GΛ0
(λ, λ′) = lim

η→0+
GΛ(λ, λ

′). The linear equation (6.28) implies, that GΛ(λ, λ
′)

tends to zero exponentially for large values of λ′. As a consequence the integration can be
extended to the whole real axis in (6.34) and using (4.16) and (5.18), equation (6.34) can
be rephrased in the form as follows:

Ḡ(λ, λ′)−
∑

α=±

∞
∫

−∞

dz GΛ0
(λ, z + i α η)Fα(z + i α η) Ḡ(z + i α η, λ′) = 2π GΛ0

(λ, λ′). (6.35)

Now, we are in the position to compute the three determinants in the right hand side of
(6.25) in the η → 0+ limit5.

6.1.1 Computing lim
η→0+

det(1− Ĝη)

For small enough values of p − 1, the determinant lim
η→0+

det(1 − Ĝη) can be represented

by its convergent Plemelj-series. This representation allows one to rewrite this functional

5 We just recall, that as a consequence of (6.17) taking the η → 0+ limit is necessary to obtain the
norm of the Bethe wave-functions.
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determinant as a finite dimensional one after the simple transformations as follows:

lim
η→0+

ln det(1− Ĝη) = lim
η→0+

∞
∑

n=1

−1

n
Tr(Ĝn

η ) =

∞
∑

n=1

−1

n
lim

η→0+
Tr(Ĝn

η ) =

=

∞
∑

n=1

−1

n
lim

η→0+

Λ+
η

∫

−Λ−
η

dλ1...dλn Gη(λ1, λ2)...Gη(λn, λ1) =

=

∞
∑

n=1

−1

n
lim

η→0+

Λ+
η

∫

−Λ−
η

dλ1...dλn Ḡη(λ1, λ2)...Ḡη(λn, λ1)

mH
∑

j1=1

...

mH
∑

jn=1

mH
∏

k=1

δη(λk − hjk)

Z ′(hjk)
=

=

∞
∑

n=1

−1

n

mH
∑

j1=1

...

mH
∑

jn=1

Ḡ(h1, h2)...Ḡ(hn, h1)
Z ′(h1)...Z ′(hn)

= ln det
mH

[

δjk −
Ḡ(hj , hk)
Z ′(hk)

]

.

(6.36)

In (6.36) we used the Plemelj-formula (6.6) and (6.32). Furthermore we exploited, that in
the η → 0+ limit: Ḡη → Ḡ, δη → δ. This made it possible to evaluate all the integrals in
(6.36) and to obtain the Plemelj-series of the determinant of an mH ×mH matrix.

6.1.2 Computing det(1 + K̂)

In the preceding pages we rewrote the Gaudin-determinant into a form, in which it is
expressed in terms of the counting-function and the positions of the holes. Such a de-
scription proves to be useful, if one is interested in the large N or continuum limit of the
lattice model. In this limit, the positions of the minimal and maximal Bethe-roots or holes,
which determine the cutoffs Λ± through (5.6), become of order lnN (i.e. Λ± ∼ ±2 lnN).
This is why, we compute det(1 + K̂) in the limit, when Λ± is large and we neglect cor-
rections, which tend to zero in the Λ± → ∞ limit. This can be done by applying the
Plemelj-formula (6.6) to det(1 + K̂).

ln det(1 + K̂) =
∞
∑

n=1

(−1)n+1

n
Tr(K̂n). (6.37)

The necessary traces can be computed by applying formula (B.5):

Tr(Kn) =

Λ+
∫

−Λ−

dλ (⋆K)n(λ, λ), (6.38)

where

(⋆K)n(λ, λ) =

Λ+
∫

Λ−

dλ2...dλnK(λ− λ2)K(λ2 − λ3)...K(λn − λ). (6.39)
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It is worth to represent the integration range in (6.39) as follows:
Λ+
∫

−Λ−

=
∞
∫

−∞
−

−Λ−
∫

−∞
−

∞
∫

Λ+

.

Then the leading in large Λ± contribution comes from the terms, when all integrations
run from −∞ to ∞. This term can be easily computed using the Fourier-transform (A.3).
The large λ asymptotics: K(λ) ∼ e−2|λ|, implies that the corrections in (6.39) are of order
e−4|Λ±|. Thus the large Λ± result for (⋆K)n(λ, λ) can be summarized by the formula:

(⋆K)n(λ, λ) =

∞
∫

−∞

dω

2π
K̃(ω)n +O(e−4|Λ±|). (6.40)

Then the λ integration can be evaluated in (6.38) admitting the following result for the
trace:

Tr(Kn) =(Λ+ + Λ−)

∞
∫

−∞

dω

2π
K̃(ω)n

[

1 +O(e−4|Λ±|)
]

. (6.41)

Inserting (6.41) into (6.37) the sum can be evaluated, and one ends up with the final result
as follows:

det(1 + K̂) = exp







Λ

∞
∫

−∞

dω

2π
ln(1 + K̃(ω)) +O(Λ e−4|Λ±|)







, (6.42)

where for short we introduced the notation Λ = Λ++Λ−.

7 ΦU in the continuum limit

In this section we discuss the continuum limit of the formula (6.25) in the η → 0+ limit.
The formula under consideration is a product of three terms. The continuum limit of each
term can be discussed separately. The simplest term is the determinant det(1 + K̂). In
the continuum limit the widest Bethe-roots or holes (Bethe-objects) tend to plus or minus
infinity: Λ± → ±∞. Thus, formula (6.42) implies, that det(1 + K̂) is either divergent or
tend to zero in the N → ∞ limit.

det(1 + K̂)
N→∞→ exp







Λc

∞
∫

−∞

dω

2π
ln(1 + K̃(ω))







, (7.1)

where the singular behavior of the continuum limit is governed by Λc, which is given by
the range of Bethe-roots and holes:

Λc = max
j
λ̂j −min

j
λ̂j. (7.2)

From the large N solution of the quantization equations Z(λ̂j) = 2π Îj , it turns out that:

Λc = 4 lnN +O(1). (7.3)
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This implies, that the large N behavior of det(1 + K̂) is under control. It has a power
behavior in N, such that the power is determined by the integral term in the exponent
of (7.1). From the Fourier-transform (A.3) it follows, that this power is negative in the
attractive regime (0 < p < 1) and positive in the repulsive regime (1 < p). Thus in the
attractive regime det(1 + K̂) tend to zero, while in the repulsive regime it diverges.

The determination of the continuum limit of lim
η→0+

det(1 − Ĝη) is a simple task, since

in (6.36) it has been reduced to the determinant of an mH × mH matrix. Thus, the
continuum limit procedure is simply to take the continuum limit of the matrix elements
of this finite matrix. Comparing (4.11) with the continuum limit of (6.35), it can be seen,
that lim

N→∞
Ḡ(λ, λ′) = −G̃c(λ, λ

′), since they satisfy the same linear integral equations6.

Thus, inserting the continuum counterpart of each function entering the final result7 in
(6.36), the continuum limit of lim

η→0+
det(1− Ĝη) takes the form as follows:

lim
N→∞

lim
η→0+

det(1− Ĝη) = det
mH

[

δjk +
G̃c(hj , hk)

Ẑ ′(hk)

]

. (7.4)

Using (4.13) this formula can be expressed by the determinant of the continuum dressed
Gaudin-matrix as follows:

lim
N→∞

lim
η→0+

det(1− Ĝη) =
det
mH
Q̂jk

mH
∏

j=1
Ẑ ′(hj)

. (7.5)

From this formula, one can recognize, that the determinant lim
η→0+

det(1−Ĝη) is proportional

to the determinant of the Gaudin-matrix obtained directly from the quantization equations
of the solitons.

The last determinant one has to compute in the continuum limit is lim
η→0+

det(1 − B̂η).

The definition of the kernel Bη(λ, λ) (6.27) implies, that in the continuum limit this
determinant becomes the functional determinant as follows:

lim
N→∞

lim
η→0+

det(1− B̂η) = lim
η→0+

det(1− B̂η,c), (7.6)

where following from (6.29), (5.14) and (4.12) the kernel of the operator lim
N→∞

B̂η = B̂η,c

is given by:

Bη,c(λ, λ
′) = G(λ− λ′)Ω(η)

F̂ (λ′), λ, λ′ ∈ R, (7.7)

with

Ω
(η)

F̂ (λ) = F̂+(λ+ i η) + F̂−(λ− i η) +O(η). (7.8)

6We just note, that in the continuum limit Λ±
→ ∞, thus GΛ(λ, λ

′) → G(λ− λ′).
7Namely, making the replacements Z(hk) → Ẑ(hk), Ḡ(hk, hj) → −G̃c(hk, hj) in (6.36).
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Unfortunately, the determinant lim
η→0+

det(1− B̂η) remains a functional determinant in the

continuum limit and it does not simplify to a finite dimensional problem as it happened
in the case of the term lim

η→0+
det(1 − Ĝη). Nevertheless, it turns out, that for large values

of the dimensionless volume ℓ, it can be represented by the Plemelj-series formula (6.6),
which turns out to be convergent:

lim
η→0+

det(1+B̂η,c)=exp







∞
∑

n=1

−1

n

∞
∫

−∞

dλ1...dλn
∑

α1,..,αn=±
G(λ

(α1)
1 −λ(α2)

2 )...G(λ(αn)
n −λ(α1)

1 )

n
∏

k=1

F̂αk
(λ

(αk)
k )







,

(7.9)

where for short, we introduced the notation: λ(αj) = λ + i αj η, for all j ∈ Z+, and we
exploited (5.18) at the derivation of this series. From the large volume solution of the
continuum NLIE (3.8), it can be shown, that lim

ℓ→∞
F̂±(λ ± iη) = 0. It implies, that the

infinite volume limit of the functional determinant term becomes one:

lim
ℓ→∞

lim
η→0+

det(1+B̂η,c) = 1. (7.10)

8 Computing the prefactor v0

The norm of a Bethe-wave function is given by the formula (2.8). In the previous section
we computed the determinant part detΦ and in this section we compute the product part
v0. This term is a ratio of two double products. The logarithm of these products become
sums and the sums can be evaluated with the help of the summation formula (5.13). The
numerator and the denominator in (2.9) requires a bit different treatment. This is why
we discuss their computation separately.

8.1 Computing the numerator

According to (2.9) the numerator of v0 takes the form as follows:

vn =

m
∏

j,k=1

sinh(λk − λj − i γ). (8.1)

Its logarithm is a double sum:

ln vn =
m
∑

j,k=1

ln sinh(λk − λj − i γ). (8.2)

The computation of vn consists of two steps. First, for real λ one computes the sum:

S1(λ) =

m
∑

j=1

ln sinh(λ− λj − i γ). (8.3)
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Then the sum:
m
∑

k=1

S1(λk) should be evaluated to get the final result for ln vn.

The function ln sinh(λ− z − i γ) in the summand is analytic in the strip −γ < Imz <
π−γ, if λ ∈ R. This is why the summation formula (5.13) can be directly applied to (8.3):

S1(λ) = −
mH
∑

j=1

ln sinh(λ− hj − i γ) +

∞
∫

−∞

dλ′

2π
ln sinh(λ− λ′ − i γ)Z ′(λ)−

−
∑

α=±

∞
∫

−∞

dλ′

2π
ln sinh(λ− λ′ − i α η − i γ)Z ′(λ′ + i α η)Fα(λ

′ + i α η), λ ∈ R.

(8.4)

The value of the contour deformation parameter is restricted by the analyticity range of the
ln sinh function and the location of poles of the functions Z ′(λ)F±(λ). From the definition
(2.11), it follows that these latter functions are free of poles in the range 0 < |Imλ| < γ

2 .
Thus the allowed values of η in (8.4) are restricted by the inequality:

0 < η < min(γ2 , π − γ). (8.5)

We just note that (8.5) is obtained by assuming that the absolute values of the imaginary
parts of the contour in the upper and lower half planes are equal. Without this symme-
try two contour deformation parameters could be introduced, such that each satisfy an
inequality similar to (8.5).

To get the final formula for the numerator, the sum
m
∑

k=1

S1(λk) should also be computed.

Formula (8.4) implies, that this requires the transformation of the following sums into
integral expressions:

Pγ(λ
′) =

m
∑

k=1

ln sinh(λk − λ′ − i γ), λ′ ∈ R,

P±(λ
′) =

m
∑

k=1

ln sinh(λk − (λ′ ± i η)− i γ), λ′ ∈ R.

(8.6)

With the help of the summation formula (5.13) these sums can be expressed in terms of
the holes and the counting function in a straightforward manner. They take the forms as
follows:

Pγ(λ
′) = −

mH
∑

s=1

ln sinh(hs − λ′ − i γ) +

∞
∫

−∞

dλ

2π
ln sinh(λ− λ′ − i γ)Z ′(λ)−

−
∑

α=±

∞
∫

−∞

dλ

2π
ln sinh(λ− λ′ + i α η′ − i γ)Z ′(λ+ i α η′)Fα(λ+ i α η′),

(8.7)
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P±(λ′) = −
mH
∑

s=1

ln sinh(hs − (λ′ ± i η)− i γ) +

∞
∫

−∞

dλ

2π
ln sinh(λ− (λ′ ± i η)− i γ)Z ′(λ)−

−
∑

α=±

∞
∫

−∞

dλ

2π
ln sinh(λ− (λ′ ± i η) + i α ηα − i γ)Z ′(λ+ i α ηα)Fα(λ+ i α ηα),

(8.8)

where the range for the contour deformation parameters are restricted by the inequalities
as follows:

0 < η′ < min(γ2 , π − γ), 0 < η± < min(γ2 , π − γ ∓ η). (8.9)

Using the expressions (8.7) and (8.8) together with (8.4), ln vn can be written as follows:

ln vn = −
mH
∑

j=1

Pγ(hj)+

∞
∫

−∞

dλ′

2π
Pγ(λ

′)Z ′(λ′)−
∑

α=±

∞
∫

−∞

dλ′

2π
Pα(λ

′)Z ′(λ′ + i α η)Fα(λ
′ + i α η),

(8.10)

with η being restricted by (8.5).
We note that the formula (8.10) could be discussed in the large N limit. Nevertheless,

we refrain from the careful discussion of the largeN limit of this formula, because the result
would be quite complicated and in many cases useless. The reason is that the norm of a
Bethe-eigenstate alone is not a physically interesting quantity. The interesting physical
quantities are the form-factors of the local operators of the theory and in many cases the
multiplicative factors like vn simply cancel from their final formula, making unnecessary
to determine such products in the continuum limit.

8.2 Computing the denominator

The computation of the denominator of v0 (2.9) is less straightforward than that of the
numerator. It is given by the product as follows:

vd =

m
∏

j>k

sinh(λj − λk) sinh(λk − λj). (8.11)

The main difficulty comes from the fact, that the j = k cases must be omitted from
the ranges of the indexes j and k. Thus, to rephrase the logarithm of vd as an integral
expression, first one has to make some simple transformations on (8.11). Since sinh(λj −
λk) = − sinh(λk − λj), (8.11) can be written as follows:

vd = (−1)
m(m−1)

2 N0, N0 =

m
∏

j>k

sinh(λj − λk)
2. (8.12)
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We treat the case, when all Bethe-roots are real, then it follows, that N0 is real and
positive. The quantity, we will compute is the logarithm of N 2

0 . In terms of this quantity
vd can be given as follows:

vd = (−1)
m(m−1)

2 e
1
2 lnN 2

0 , (8.13)

such that N 2
0 is given by:

N 2
0 =

m
∏

j,k=1

j 6=k

sinh(λj − λk)
2. (8.14)

For the actual computations it is worth to introduce the functions:

lnS+(x) = ln(i sinh(x))− ln i, lnS−(x) = ln(1
i
sinh(x))− ln 1

i
. (8.15)

They have the important analytical properties as follows:

• lnS+(x) is analytical in the range: −π < Imx < 0,

• lnS+(x) is analytical in the range: 0 < Imx < π
2 , apart from a vertical logarithmic

cut with a jump given by the formula:

lim
ǫ→0+

{lnS+(i t+ ǫ)− lnS+(i t− ǫ)} = 2π i, 0 < t < π
2 , (8.16)

• lnS−(x) is analytical in the range: 0 < Imx < π,

• lnS−(x) is analytical in the range: −π
2 < Imx < 0, apart from a vertical logarithmic

cut with a jump given by the formula:

lim
ǫ→0+

{lnS−(i t+ ǫ)− lnS−(i t− ǫ)} = −2π i, −π
2 < t < 0. (8.17)

The use of these functions is that they provide a regularization for the function ln sinh2

by the following formula:

lim
ǫ→0+

{lnS+(x− i ǫ) + lnS−(x+ i ǫ)} = ln sinh2(x), ∀x ∈ R. (8.18)

Now, it is worth to define the function:

Fǫ(µ, λ) = lnS+(µ− λ− i ǫ) + lnS−(µ− λ+ i ǫ). (8.19)

From the properties of lnS±(x) it follows, that Fǫ(µ, λ) is regular in an ǫ wide neighborhood
of the real axis. Then the logarithm of N 2

0 in (8.14) can be computed as follows:

lnN 2
0 = lim

ǫ→0+





m
∑

j,k=1

Fǫ(λk, λj)−
m
∑

j=1

Fǫ(0)



 . (8.20)
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Using the small argument series for lnS±(x), (8.20) can be written as follows:

lnN 2
0 = lim

ǫ→0+
(Σǫ −m (ln(i ǫ) + ln(−i ǫ))) , (8.21)

where we introduced the notation:

Σǫ =
m
∑

j,k=1

Fǫ(λk, λj). (8.22)

In the sequel we compute Σǫ upto of order one in the ǫ → 0+ limit. As a first step the
sum:

Σ1(µ) =
m
∑

j=1

Fǫ(µ, λj), µ ∈ R, (8.23)

should be computed for real values of µ. To avoid complications coming from the discon-
tinuities of Fǫ(µ, λ), first we compute the derivative:

Σ′
1(µ) =

m
∑

j=1

F ′
ǫ(µ, λj), F ′

ǫ(µ, λj) = ∂µFǫ(µ, λj). (8.24)

This can be done by a computation similar to that presented in section 5 at the derivation
of the summation formulas. Namely, the sum can be rewritten as a contour integral along
the contour Γµ depicted in figure 2. Then, with the help of the residue theorem and the

X X X X X X X X X XX
Re

+oo

λ1 λ m

−oo

iη

−i

Im

µ

ε +iµ

µ −iε

Γµ

h1

η

Figure 2: The figure represents the closed curve Γµ. Crosses and circles represent the Bethe-roots and

holes respectively. The tiny rectangle denotes the value of µ and black filled circles denote the poles at

µ± i ǫ.
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following residues:

Resλ=µ±i ǫF
′
ǫ(µ, λ) = −1, Resλ=λj ,hj

Z ′(λ)F+(λ) = −i, (8.25)

one ends up with the following result:

Σ′
1(µ) =

∞
∫

−∞

dλ

2π
F ′
ǫ(µ, λ− i η)Z ′(λ− i η) −

∑

α=±

∞
∫

−∞

dλ

2π
F ′
ǫ(µ, λ

(α))Z ′(λ(α))Fα(λ
(α))

−
mH
∑

j=1

F ′
ǫ(µ, hj) +

d

dµ

[

ln
(

1 + (−1)δei Z(µ+i ǫ)
)

+ ln
(

1 + (−1)δei Z(µ−i ǫ)
)]

,

(8.26)

where λ(α) = λ+ i α η, and we exploited, that

Z ′(λ)F+(λ) = −i d
dλ

ln
(

1 + (−1)δei Z(λ)
)

, lim
λ→±∞

F ′
ǫ(µ, λ)Z

′(λ)F+(λ) = 0. (8.27)

The next step is to integrate (8.26) upto O(ǫ) corrections. One can recognize, that the
integral terms of (8.26) are regular in the ǫ → 0+ limit. This is why we take the ǫ → 0+

limit in these terms when integrating (8.26). Consider the function:

Rǫ(µ) =

∞
∫

−∞

dλ

2π
2 lnS−(µ− λ(−))Z ′(λ(−))−

∑

α=±

∞
∫

−∞

dλ

2π
2 lnSα(µ − λ(α))Z ′(λ(α))Fα(λ

(α))

−
mH
∑

j=1

Fǫ(µ, hj) +
∑

α=±
ln

(

1 + (−1)δei Z(µ+i α ǫ)
)

− 2 ln
(

1 + (−1)δei Z(+∞)
)

.

(8.28)

By differentiating (8.28) with respect to µ, and using the identities following from (5.13)
as follows:

m = −mH +

∞
∫

−∞

dλ

2π
Z ′(λ− i η)−

∑

α=±

∞
∫

−∞

dλ

2π
Z ′(λ+ i α η)Fα(λ+ i α η),

m
∑

j=1

λj = −
mH
∑

j=1

λj +

∞
∫

−∞

dλ

2π
(λ− i η)Z ′(λ− i η) −

∑

α=±

∞
∫

−∞

dλ

2π
(λ+ i α η)Z ′(λ+ i α η)Fα(λ+ i α η),

(8.29)

it can be shown, that:

Σ′
1(µ) =

d

dµ
Rǫ(µ) +O(ǫ), lim

µ→∞
(Σ1(µ)−Rǫ(µ)) = 0. (8.30)
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It follows, that:

Σ1(µ) = Rǫ(µ) +O(ǫ). (8.31)

Then, one has to take the second sum in (8.22). From (8.31) it follows, that the
following sum should be computed:

Σǫ =

m
∑

k=1

Rǫ(λk) +O(ǫ). (8.32)

Formula (8.28) for Rǫ(µ) implies, that this requires the computation of the following sums:

O(j)
1 =

m
∑

k=1

Fǫ(λk, hj), (8.33)

Oα(λ) =

m
∑

k=1

2 lnSα(λk − (λ+ i α η)), α = ±, λ ∈ R, (8.34)

O(ǫ)
L =

m
∑

k=1

{

ln
(

1 + (−1)δei Z(λk−i ǫ)
)

+ ln
(

1 + (−1)δei Z(λk+i ǫ)
)}

. (8.35)

A straightforward computation similar to the derivation of the summation formulas in
section 5, leads to the following result for O±(λ) :

Oα(λ) = −2

mH
∑

j=1

lnSα(hj − λ− i α η)+

∞
∫

−∞

dλ′

π
lnSα(λ

′ − λ− i α η)Z ′(λ′)−

−
∑

β=±

∞
∫

−∞

dλ′

π
lnSβ(λ

′ − λ+ i β η′ − i α η)Z ′(λ′ + i β η′)Fβ(λ
′ + i β η′), α = ±,

(8.36)

where the contour deformation parameter η′ is chosen to avoid the branch cuts of lnS±(λ) :

0 < η′ < min(η, π − η), 0 < η < min(γ2 , π − γ). (8.37)

Next we compute the sum O(ǫ)
L defined in (8.35) in the ǫ→ 0+ limit. As a consequence of

the Bethe-equations (2.13) this sum is divergent in this limit, since:

1 + (−1)δ ei Z(λk) = 0, k = 1, ...,m. (8.38)

Close to the Bethe-root λk, the behavior of ln
(

1 + (−1)δ ei Z(λ)
)

is given by the formula:

ln
(

1 + (−1)δ ei Z(λ)
)

λ∼λk= ln
[

ck(λ− λk) +O(λ− λk)
2
]

, (8.39)
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where

ck =
d

dλ
ln

(

1 + (−1)δ ei Z(λ)
)

∣

∣

∣

∣

λ=λk

= (−1)δ ei Z(λk) i Z ′(λk) = −i Z ′(λk). (8.40)

Using (8.39) and (8.40) one obtains the result as follows:

O(ǫ)
L = Oreg

L +m (ln(i ǫ) + ln(−i ǫ)) +O(ǫ), (8.41)

where Oreg
L is the regular part:

Oreg
L = 2

m
∑

k=1

ln[−i Z ′(λk)]. (8.42)

Formula (8.41) accounts for the divergent part of Σǫ. The divergent term arising in (8.41)
cancels from the physically interesting quantity lnN 2

0 due to (8.21). The sum in (8.42)
could be rephrased as an integral expression with the help of the formulas of section 5, but
we do not carry out this transformation, since in (6.3) a similar term arises, which cancel
the contribution of Oreg

L from the final formula for the norm of the Bethe-state. We will
discuss this cancellation in more detail in the summary of the paper.

The last sum one has to compute is O(j)
1 defined in (8.33). To emphasize, that Fǫ(λ, hj)

in (8.33) is considered as the function of a single variable λ, we rewrite (8.33) in the form
as follows:

O(j)
1 =

m
∑

k=1

lnS(j)
ǫ (λk), lnS(j)

ǫ (λ) = lnS+(λ− hj − i ǫ) + lnS−(λ− hj + i ǫ). (8.43)

The function lnS
(j)
ǫ (λ) is analytic in an ǫ wide strip around the real axis, and as a conse-

quence of (8.16) and (8.17) it has vertical discontinuities starting from the points hj ± i ǫ.

Using the residue theorem, O(j)
1 can be written as a contour integral along the curve Γj

depicted in figure 3:

O(j)
1 =

∮

Γj

dλ

2π
lnS(j)

ǫ (λ)Z ′(λ)F+(λ) =

= −
mH
∑

s=1

lnS(j)
ǫ (hs) +Q

(j)
cut −

∑

α=±
α

∫

hj

−dλ
2π

lnS(j)
ǫ (λ(α))Z ′(λ(α))F+(λ

(α)),

(8.44)

where for α = ± : λ(α) = λ+ i α η, 0 < η < γ
2 , and the symbol

∫

hj

− denotes a principal value

integration. This principal value integration is not introduced, because the integrand is
singular at the point hj , but in order to indicate that the integrand is discontinuous at

the point hj . The symbol Q
(j)
cut stands for that part of the contour integral, which belongs
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Figure 3: The figure represents the closed curve Γj in (8.44). Crosses and circles represent the Bethe-roots

and holes respectively. Dashed lines represent the discontinuities of the integrand.

to encircling the vertical discontinuities. From (8.16) and (8.17) it can be computed
explicitly:

Q
(j)
cut =

∑

α=±

(

ln(1 + (−1)δei Z(hj+i α ǫ))− ln(1 + (−1)δei Z(hj+i α η))
)

. (8.45)

As a consequence of (2.14) 1+(−1)δei Z(hj) = 0. Thus after an analog computation to that
of (8.38)-(8.42), one obtains for small ǫ the result as follows:

Q
(j)
cut = ln

[

−i Z ′(hj)
]

+ ln(i ǫ) + ln(−i ǫ)−
∑

α=±
ln(1 + (−1)δei Z(hj+i α η)) +O(ǫ). (8.46)

It implies, that Q
(j)
cut is divergent in the ǫ → 0+ limit. On the other hand, from (8.43),

(8.15) it can be shown, that the sum −
mH
∑

s=1
lnS

(j)
ǫ (hs) in (8.44) is also divergent in the

ǫ→ 0+ limit:

−
mH
∑

s=1

lnS(j)
ǫ (hs) = −

mH
∑

s=1

s6=j

ln sinh2(hs − hj)− ln(i ǫ)− ln(−i ǫ) +O(ǫ). (8.47)

Adding (8.46) and (8.47) together as required by (8.44), it can be seen, that the divergent

term cancels from the relevant sum O(j)
1 . After making the replacement F+(λ − i η) →
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1−F−(λ− i η) in (8.44), O(j)
1 can be written as follows:

O(j)
1 = ln

[

−i Z ′(hj)
]

−
mH
∑

s=1

s6=j

ln sinh2(hs − hj)−
∑

α=±
ln(1 + (−1)δei Z(hj+i α η))−

−
∑

α=±

∫

hj

−dλ
2π

lnS(j)
ǫ (λ(α))Z ′(λ(α))Fα(λ

(α)) +

∫

hj

−dλ
2π

lnS(j)
ǫ (λ− i η)Z ′(λ− i η) +O(ǫ).

(8.48)

The last integral can be shifted to the real axis by appropriate deformation of the inte-
gration contour:

∫

hj

−dλ
2π

lnS(j)
ǫ (λ− i η)Z ′(λ− i η)=

∞
∫

−∞

dλ

2π
ln sinh2(λ− hj)Z

′(λ)−i Z(hj)+i Z(hj − i η) +O(ǫ),

(8.49)

where the non-integral terms come from the contributions of the vertical discontinuity of
the integrand and we took the ǫ → 0+ limit. With the help of (2.14) one can derive the
identity:

−iZ(hj)+iZ(hj − i η)−ln
(

1 + (−1)δei Z(hj−i η)
)

=− ln
(

1 + (−1)δe−i Z(hj−i η)
)

−2πi nj−iπ,
(8.50)

with nj = Ihj
− 1

2 ∈ Z. Inserting (8.49) and (8.50) into (8.48) one ends up with the result:

O(j)
1 = 2 ln

[

−i Z ′(hj)
]

+ Ô(j)
1 − i π +O(ǫ) mod 2π i, (8.51)

where

Ô(j)
1 = −

mH
∑

s=1

s6=j

ln sinh2(hs − hj)−
∑

α=±
ln

(

1 + (−1)δeα iZ(hj+i α η)
)

−

−
∑

α=±

∫

hj

−dλ
2π

ln sinh2(λ(α) − hj)Z
′(λ(α))Fα(λ

(α)) +

∞
∫

−∞

dλ

2π
ln sinh2(λ− hj)Z

′(λ).

(8.52)

We described the result only modulo 2π i terms, since the norm of the Bethe-eigenstates
contain only the exponential of this quantity. Using the definitions (8.33)-(8.35) together
with (8.32) and (8.28) one obtains for Σǫ the following result:

Σǫ = −
mH
∑

j=1

O(j)
1 +O(ǫ)

L +

∞
∫

−∞

dλ

2π
O−(λ− i η)Z ′(λ− i η)−

−
∑

α=±

∞
∫

−∞

dλ

2π
Oα(λ+ i α η)Z ′(λ+ i α η)Fα(λ+ i α η)− 2m ln

(

1 + (−1)δei Z(+∞)
)

,

(8.53)
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whereO(j)
1 ,O±(λ) andO(ǫ)

L are given by the formulas (8.51), (8.36) and (8.41), respectively.
Inserting (8.53) into (8.21), the denominator (8.13) take the final form:

vd = (−1)
m(m+1)

2 im−mh

m
∏

j=1
Z ′(λj)

mH
∏

j=1
Z ′(hj)

e
1
2 Σ̂0 , (8.54)

where

Σ̂0 = −
mH
∑

j=1

Ô(j)
1 +

∞
∫

−∞

dλ

2π
O−(λ− i η)Z ′(λ− i η)−

−
∑

α=±

∞
∫

−∞

dλ

2π
Oα(λ+ i α η)Z ′(λ+ i α η)Fα(λ+ i α η)− 2m ln

(

1 + (−1)δei Z(+∞)
)

,

(8.55)

with Ô(j)
1 , O±(λ) given in (8.52) and (8.36), respectively.

9 Summary

We close the paper by the summary of the results of the preceding sections. The main
purpose of the paper was to rewrite the Gaudin-formula [33, 34, 35] for the norm of
Bethe-wave functions of pure hole states into a form, which enables one to carry out and
investigate the continuum limit. The Gaudin-formula (2.8) is a product of two different
type of terms. The first term denoted by v0 is a double product containing the Bethe-roots
characterizing the state under consideration, while the second term is a nontrivial deter-
minant. Its matrix becomes infinitely large in the continuum limit, thus its computation
is a nontrivial task in this limit.

The strategy of the computations was to express all quantities in terms of the counting-
function (2.11) of the model, since it is well-known, that this function encodes the positions
of all Bethe-roots of the state under consideration and it has a well-defined continuum
limit, as well [22],[23].

The final result for the product type term v0 =
vn
vd

of (2.8) can be found in the formulas
(8.10) and (8.54). The essence of the final result can be summarized by the following formal
formula:

v0 =

mH
∏

j=1
Z ′(hj)

m
∏

j=1
Z ′(λj)

× (”complicated integral expressions ofZ(λ)”) , (9.1)

where λjs are the Bethe-roots and hjs are the holes.
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The result for the determinant part of (2.8) can be read off from the formulas (6.3)-
(6.5), (6.17), (6.25) and (6.36). It becomes proportional to some functional determinants:

det
m

Φ = (−i)m

m
∏

j=1
Z ′(λj)

mH
∏

j=1
Z ′(hj)

det(1 + K̂) det
mH

(Z ′(hj) δjk − Ḡ(hk, hj)) lim
η→0+

det(1− B̂η),

(9.2)

where the kernel of B̂η is given in (6.27), the function Ḡ(λ, λ′) is defined as the solution
of the linear integral equation (6.35) and the kernel of K̂ is given in (2.16), such that
all functional determinants are considered in the space L2(−Λ−,Λ+) with ±Λ± being the
positions of the widest Bethe-roots.

From (9.1) and (9.2) one can recognize, that the product

m∏

j=1

Z′(λj)

mH∏

j=1

Z′(hj)

cancels from the

final result for the norm8. Apart from this product, all determinants in (9.2) can be
evaluated in the continuum limit. Actually, det(1+ K̂) is singular in the continuum limit,
but using N the number of lattice sites as a regulator, it can be computed in the large N
limit by evaluating an integral expression (7.1). The remaining two determinants in (9.2)
have well-defined continuum limits. On the one hand, as (7.4) shows,

det
mH

(Z ′(hj) δjk − Ḡ(hk, hj)) N→∞→ det
mH

Q̂jk = det
mH
∂hj

Z(hk), (9.3)

which is the determinant of the dressed Gaudin-matrix of the solitons.9. On the other
hand in the continuum limit det(1− B̂η)

N→∞→ det(1− B̂η,c), such that the kernel of B̂η,c is
given by (7.7). Though this determinant is a functional one, with the help of the Plemelj-
formula (6.6) it can be expanded at large values of the finite volume of the continuum
quantum field theory (7.9). This expansion implies that the infinite volume limit of this
complicated functional determinant becomes simply 1 (7.10).

To close this summary we would like to emphasize the main message of the paper. The
summary of the results of this paper show that in the continuum limit the norm square
of pure hole states is proportional to two determinants. One of them is a determinant
of an mH × mH matrix such that it corresponds to the Gaudin-matrix of the dressed
solitons (mH is the number of solitons). The other determinant is a nontrivial functional
determinant which can be expanded in the large volume limit, such that its infinite volume
limit is equal to 1.
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A Some properties of K(λ)

This short appendix is devoted to summarize some useful representations, identities and
properties of the function K(λ) defined in (2.16). Here we repeat its definition:

K(λ) =
1

2π

sin(2 γ)

sinh(λ− i γ) sinh(λ+ i γ)
. (A.1)

It can be represented as a Fourier-integral, as well:

K(λ) =

∞
∫

−∞

dω

2π
K̃(ω) e−i ωλ, (A.2)

where the Fourier-transform takes the form:

K̃(ω) =
sinh

(

π ω
2 (1− 2γ

π
)
)

sinh(π ω
2 )

=
sinh

(

π ω
2

p−1
p+1

)

sinh(π ω
2 )

. (A.3)

In the sequel we will mostly use the γ = π
p+1 parameterization for the anisotropy param-

eter.
The function K(λ) is either purely positive or purely negative along the real axis with

the property, that its absolute value is maximal at the origin:

K(λ) = sign(p− 1) |K(λ)|, |K(λ)| ≤ |K(0)|, λ ∈ R, (A.4)

where

K(0) = 1
π
tan(p−1

p+1
π
2 ). (A.5)

From (A.3) one can show, that:

|K̃(ω)| ≤ |K̃(0)| < 1, K̃(ω)
ω→±∞∼ e

− π
p+1 |ω|. (A.6)

It follows that the integral:

g(p) =

∞
∫

−∞

dω

2π

|K̃(ω)|
1− |K̃(ω)| (A.7)

is convergent for any positive values of p. From the definition (A.7) it also follows, that:
g(1) = 0, thus g(p) ∼ (p − 1), when p ∼ 1.
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B Fourier-basis on the L2(−Λ−,Λ+) Hilbert-space

In this short appendix, we review the Fourier-basis on the Hilbert space H = L2(−Λ−,Λ+)
and some related identities. Let ϕ,ψ ∈ H. Their inner product is defined by:

〈ϕ|ψ〉 =
Λ+
∫

−Λ−

dxϕ∗(x)ψ(x), (B.1)

where ∗ denotes complex conjugation. A complete, orthonormal basis in H can be defined
by the Fourier-basis |ψn〉n∈Z:

|ψn〉 → ψn(x) =
ei pn x

√
Λ
, pn =

2π

Λ
n, n ∈ Z, (B.2)

where we introduced the notation: Λ = Λ++Λ−. This basis is orthonormal and complete:

〈ψn|ψm〉 = δnm, 1̂ =
∑

n∈Z
|ψn〉〈ψn|. (B.3)

Here 1̂ stands for the unit operator in H. The completeness relation in coordinate-space
takes the form:

δ(x − y) =
∑

n∈Z
ψ∗
n(x)ψn(y) =

1
Λ

∑

n∈Z
ei pn (x−y), x, y ∈ (−Λ−,Λ+), (B.4)

where δ(x) denotes the Dirac-delta distribution. For the computations detailed in the
body of the paper one needs to know how the trace of an operator Ô : H → H can be
written in coordinate representation. As a consequence of (B.4) the trace in coordinate
space can be computed by the formula as follows:

Tr Ô =
∑

n∈Z
〈ψn|Ô|ψn〉 =

Λ+
∫

−Λ−

dx O(x, x), (B.5)

where O(x, y) is the integral kernel corresponding to the operator Ô.
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[7] G. Fehér, G. Takács, “Sine-Gordon form factors in finite volume,” Nucl.Phys.B852,
441-467,(2011), [ arXiv:1106.1901[hep-th]].
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[27] G. Feverati, F. Ravanini and G. Takács, “Truncated conformal space at c = 1, non-
linear integral equation and quantization rules for multi - soliton states,” Phys. Lett.

B430 (1998) 264-273, hep-th/9803104
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