
ar
X

iv
:1

71
2.

03
29

4v
2 

 [
gr

-q
c]

  2
4 

A
pr

 2
01

8

Toward computing gravitational initial data
without elliptic solvers

István Rácz 1,3 and Jeffrey Winicour 2,3

1Wigner Research Center for Physics

H-1121 Budapest, Hungary

2Department of Physics and Astronomy,

University of Pittsburg, Pittsburgh, PA, 15260, USA

3Max Planck Institute for Gravitational Physics

Albert Einstein Institute, Golm, Germany

April 25, 2018

Abstract

Two new methods have been proposed for solving the gravitational con-

straints without using elliptic solvers by formulating them as either an algebraic-

hyperbolic or parabolic-hyperbolic system. Here, we compare these two methods

and present a unified computational infrastructure for their implementation as

numerical evolution codes. An important potential application of these meth-

ods is the prescription of initial data for the simulation of black holes. This

paper is meant to support progress and activity in that direction.

1 Introduction

Physically realistic initial data are of major importance for the numerical simulation
of gravitational systems such as binary black holes. The prescription of the initial data
is complicated mathematically by the nonlinear constraint equations that they must
satisfy. Traditionally, the constraints have been formulated as elliptic equations, based
upon the conformal treatment of the Hamiltonian constraint by Lichnerowicz [1] and
later extended by York [2, 3] to treat the momentum constraint. For reviews see [4, 5].

Recently, two alternative methods for solving the constraints by means of evolu-
tion systems were introduced in [6] (see also [7, 8, 9]). In one of the proposed methods
the Hamiltonian constraint is solved algebraically and the momentum constraints are
expressed as a first order symmetric hyperbolic system. In the other method, the
Hamiltonian constraint is formulated as a parabolic equation, with the momentum
constraints again expressed as a symmetric hyperbolic system. Both of these two
methods of solving the constraints have been shown to lead to well-posed problems
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for the fully nonlinear systems. Note that a well-posed problem is a necessity for a
stable numerical simulation. In particular, as an important first step in establishing
the viability of the algebraic-hyperbolic method, it was shown that a condition nec-
essary for numerical stability holds globally in the case of nonlinear perturbations of
Schwarzschild black hole data [10].

The details of the waveform supplied by numerical simulation of the inspiral and
merger of a binary black hole is key input for interpreting the scientific content of
the signals which have been observed by the LIGO-Virgo collaboration. Thus it is
important that the initial data does not introduce spurious effects, e.g. the initial
“junk radiation” common to all simulations based upon elliptic formulations of the
constraint problem. Elliptic equations require boundary data at inner boundaries
in the strong field region near the singularities inside the black holes, as well as at
an outer boundary in the far field. Neglect of the tidal interaction beteween the
black holes in a binary is a likely source of the junk radiation [11]. Other sources of
junk radiation have been traced to the use of conformally flat iniial data. However,
alternatives to conformal flatness have reduced the junk radiation content by only a
factor of order 2. [11, 12]. This complicates the important problem of matching a
numerical evolution to post-Netwonian parameters. Currently, this matching must
be done after the junk radiation subsides.

Here we present the calculational details of two methods to solve the constraints
which do not involve elliptic equations and only require data on the outer boundary,
where the choice of boundary data can be guided by asymptotic flatness. In the
algebraic-hyperbolic system, the 3-metric of the initial hypersurface and two com-
ponents of external curvature corresponding to the radiative degrees of freedom are
prescribed freely. The remaining components of external curvature are determined
from the constraints. For binary black hole data, the 3-metric data can prescribed
in superposed Kerr-Schild form for the individual black holes, as in [13, 14]. The
two components of extrinsic curvature data representing the gravitational degrees of
freedom can also be prescribed by superposing the individual black hole data. In a
linear theory, the superposition of such initial data for a non-radiative solution would
lead to a non-radiative solution.This provides encouragement that this method might
suppress junk radiation. A similar strategy is possible for the parabolic-hyperbolic
system [15]. However, due to the nonlinearity of the constraints, there is no guarantee
that, in the strong field region near the black holes, the constrained components of
extrinsic curvature would not introduce spurious radiation. This is an issue for future
work.

The constraints are solved by means of an inward “evolution” from the outer
boundary by either a parabolic-hyperbolic or an algebraic-hyperbolic system of equa-
tions. Numerical stability has been demonstrated in simulations of initial data for
a single perturbed black hole by means of both the algebraic-hyperbolic system [16]
and the parabolic-hyperbolic system [17]. Boundary data are only necessary at the
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outer boundary, where their choice can be guided by asymptotic flatness.
Brief technical notes presenting a pseudo-code for the numerical solution of the

algebraic-hyperbolic system were posted earlier [18]. Since then, there has been ac-
tivity in implementing both the algebraic-hyperbolic constraint system [19, 16, 20]
and the parabolic-hyperbolic system [21, 17]. Because of this interest, and what we
consider to be the importance of the problem, here we extend the scope of these
technical notes in the following two directions. First, we present a unified treatment
of the computational infrastructure necessary to implement the two approaches as
numerical evolution codes. Second, we describe the details of the foliation, lapse and
shift necessary for the formulation of a Cauchy problem for constructing the initial
data. Our purpose is to supply the computational infrastructure for further code
development and exploration.

In Sec. 2, we review the main ideas behind these two methods. In both methods,
the choice of foliation of the initial Cauchy hypersurface plays an important role.

In Sec. 3, we discuss two simple choices of foliation, by spheres or by planes, for
integrating the resulting constraint systems. In Sec. 4, we describe how to decompose
the basic fields and their derivatives in terms of the background unit sphere geometry
in the case of a spherical foliation, or a background Euclidean geometry for a planar
foliation. Finally, in Sec. 5, we present the explicit form of the constraint systems in
terms of spin-weighted fields defined with respect to the background geometries.

Numerical implementation of the hyperbolic equations is flexible since the evolu-
tion can proceed locally and is reversible. Parabolic equations, like elliptic equations,
have strong smoothing properties and the condition for numerical stability can be re-
laxed by applying an implicit scheme. The precision and cost achieved in computing
parabolic-hyperbolic initial data in [17] is comparable to the elliptic approach, as no
iteration is necessary.

2 Preliminaries

In general relativity the vacuum initial data on a three-dimensional manifold Σ consist
of a Riemannian metric hij and a symmetric tensor field Kij (the extrinsic curvature of
Σ). The pair (hij, Kij) is said to satisfy the vacuum constraints (see e.g. Refs. [22, 23])
if the relations

(3)

R +
(
Kj

j

)2
−KijK

ij = 0 , (2.1)

DjK
j
i −DiK

j
j = 0 (2.2)

hold on Σ, where
(3)
R and Di denote the scalar curvature and the covariant derivative

operator associated with hij , respectively.

3



The algebraic-hyperbolic and parabolic-hyperbolic constraint systems both intro-
duce a foliation of Σ by a one-parameter family of two-surfaces Sρ which are the
ρ = const surfaces of a smooth function ρ with non-vanishing gradient. The con-
straint system is solved by an evolution along the streamlines of a smooth vector field
ρi on Σ, scaled such that ρi∂iρ = 1. Here ρi is the analogue of the time evolution
vector in a Cauchy evolution.

The unit normal n̂i to the Sρ level surface has the decomposition

n̂i = N̂
−1

[ ρi − N̂ i ] , (2.3)

where the “lapse” N̂ and “shift” N̂ i of the evolution field ρi are determined by n̂i =
N̂∂iρ and N̂ i = γ̂i

j ρ
j . Here γ̂i

j = δij − n̂in̂j is the projection operator corresponding
to the normal decomposition of the 3-metric hij into the induced metric γ̂ij of the
surfaces Sρ,

hij = γ̂ij + n̂in̂j . (2.4)

The extrinsic curvature has the analogous decomposition

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] +Kij , (2.5)

where κ = n̂kn̂l Kkl, ki = γ̂k
i n̂

l Kkl and Kij = γ̂k
iγ̂

l
j Kkl. Note that boldfaced

symbols, along with the induced metric γ̂ij and the shift vector N̂ i, denote well-
defined fields intrinsic to the 2-surfaces Sρ. The reformulation of the Hamiltonian
and momentum constraints (2.1) and (2.2) also involves the trace and the trace-free
parts of Kij,

K
l
l = γ̂kl

Kkl and
◦

Kij = Kij −
1
2
γ̂ij K

l
l . (2.6)

In addition, we denote the extrinsic curvature of Sρ by

K̂ij = γ̂l
i Dl n̂j =

1
2
Ln̂γ̂ij =

1
2
N̂−1

[
Lργ̂ij − D̂(iN̂j)

]
. (2.7)

The data pair (hij, Kij) can be replaced by the above fields N̂ , N̂ i, γ̂ij,
◦

Kij ,κ,ki

and K
l
l. It is remarkable that regardless of the choice of foliation or evolution vector

field the Hamiltonian and momentum constraints (2.1) and (2.2) can be re-formulated
as either a parabolic-hyperbolic or algebraic-hyperbolic evolution system according
to the following constructions, as formulated in [6].

2.1 The parabolic-hyperbolic constraint system

In the parabolic-hyperbolic approach, the Hamiltonian constraint is re-expressed as a
parabolic equation (2.8) for the lapse N̂ of the foliation and the momentum constraint
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is recast as the first order symmetric hyperbolic system (2.9)–(2.10) for ki and K
l
l,

⋆
K [ (∂ρN̂)− N̂ l(D̂lN̂) ]− N̂2(D̂lD̂lN̂)−A N̂ − B N̂ 3 = 0 , (2.8)

Ln̂ki −
1
2
D̂i(K

l
l)− D̂iκ+ D̂l

◦

Kli + N̂−1 ⋆
K ki + [κ− 1

2
(Kl

l) ] ˙̂ni − ˙̂nl
◦

Kli = 0, (2.9)

Ln̂(K
l
l)− D̂l

kl − N̂−1 ⋆
K [κ− 1

2
(Kl

l) ] + N̂−1
◦

Kkl

⋆
Kkl + 2 ˙̂nl

kl = 0 . (2.10)

Here D̂i stands for the covariant derivative operator associated with γ̂ij and ˙̂nk =

n̂lDln̂k = −D̂k(ln N̂), and we introduce the notation

⋆
Kij =

1
2
Lργ̂ij − D̂(iN̂j) , (2.11)

⋆
K = 1

2
γ̂ij

Lργ̂ij − D̂jN̂
j , (2.12)

A = (∂ρ
⋆
K)− N̂ l(D̂l

⋆
K) + 1

2
[

⋆
K

2
+

⋆
Kkl

⋆
Kkl ], (2.13)

B = −1
2

[
R̂ + 2κ (Kl

l) +
1
2
(Kl

l)
2 − 2kl

kl −
◦

Kkl

◦

K
kl
]
. (2.14)

In the form (2.8), the Hamiltonian constraint is a strongly parabolic spartial dif-

ferential equation in the region of Σ where
⋆
K is either strictly positive or strictly

negative. In this case, ρ plays the role of “time” and ρi plays the role of a “time”
evolution vector field. (For more details see [6]). Note that the sign of

⋆
K determines

the stable evolution direction for the parabolic equation. It is also important that
the subsystem (2.9)–(2.10) comprises a first order symmetric hyperbolic system.

As a result, the coupled parabolic–hyperbolic system (2.8)–(2.10) possesses a well-

posed initial value problem for the dependent variables N̂,ki,K
l
l, which guarantees

the existence of a local solution. In solving (2.8)–(2.10), the variables N̂,ki,K
l
l are

determined by the constraints whereas the remaining four fields N̂ i, γ̂ij,κ,
◦

Kij are
freely specifiable throughout Σ.

2.2 The algebraic-hyperbolic constraint system

An alternative approach is to recast the Hamiltonian constraint as an algebraic equa-
tion for the scalar component κ of Kij. The tangential derivatives of κ appearing in
the momentum constraint for ki are then eliminated in terms of other variables. This
results in the momentum constraint system

Ln̂(K
l
l)− D̂l

kl + 2 ˙̂nl
kl − [κ− 1

2
(Kl

l) ] (K̂
l
l) +

◦

KklK̂
kl = 0 , (2.15)

Ln̂ki + (Kl
l)
−1[κ D̂i(K

l
l)− 2klD̂ikl ] + (2Kl

l)
−1D̂iκ0

+(K̂ l
l)ki + [κ− 1

2
(Kl

l) ] ˙̂ni − ˙̂nl
◦

Kli + D̂l
◦

Kli = 0 , (2.16)

whereas the Hamiltonian constraint determines κ algebraically by

κ = (2Kl
l)
−1[ 2kl

kl −
1
2
(Kl

l)
2 − κ0 ] , (2.17)
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where
κ0 =

(3)

R −
◦

Kkl

◦

K
kl . (2.18)

Again, D̂i and R̂ denote the covariant derivative operator and scalar curvature asso-
ciated with γ̂ij, respectively, and ˙̂nk = n̂lDln̂k = −D̂k(ln N̂). (For more details see
[6]).

By virtue of (2.15)-(2.18) the four basic variables κ,ki,K
l
l are determined by

the constraints while the remaining eight variables, represented by the 3-metric hij ,

consisting of (N̂, N̂ i, γ̂ij), and
◦

Kij, are freely specifiable throughout Σ. As a result, κ0

is determined by the freely specified variables. The constraint system (2.15)–(2.18)
is symmetric hyperbolic subject to the inequality κKl

l < 0.

3 Foliations by spheres or planes

Two simple choices of foliations in solving the parabolic-hyperbolic system (2.8)–
(2.10) or the algebraic-hyperbolic system (2.15)–(2.17) are by spheres or planes, with
tangential derivatives referred to a background unit sphere geometry or a background
Euclidean geometry, respectively.

3.1 Foliations by spheres and use of the ð operator

If we chose a foliation by two-spheres it is natural to solve the constraint equations
by decomposing the basic variables in terms of spin-weighted fields. In doing so, the
angular derivatives are expressed in terms of the Newman-Penrose ð and ð operators
[24, 25]. We use the notation and conventions introduced in [26, 27] throughout this
paper.

The metric qab on the unit sphere S2, given in standard (θ, φ) coordinates by

ds2 = qab dx
adxb = dθ2 + sin2 θ dφ2 , (3.1)

provides a natural background geometry. In terms of the complex stereographic
coordinate

z = e−i φ cot
θ

2
= z1 + i z2 , (3.2)

the line element (3.1) takes the form 1

ds2 = 4 (1 + z z)−2
[
(dz1)

2 + (dz2)
2
]
. (3.3)

On S2, we choose the complex dyad

qa = 2−1P [ (∂z1)
a + i (∂z2)

a] = P (∂ z)
a , (3.4)

1Only expressions for the southern hemisphere will be given explicitly. Those on the northern
hemisphere can be deduced by the substitution zN = 1/zS [26, 27].
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where
P = 1 + z z . (3.5)

We also have

qa = qab q
b = 2P−1 [ (dz1)a + i (dz2)a] = 2P−1 ( dz)a . (3.6)

Note that qa has normalization

qa qa = 2 , qaqa = 0 , (3.7)

and that the unit sphere metric qab satisfies

qab = q(a qb) , qab = q(a q b) , qaeqeb = δab . (3.8)

In these conventions, the area element on S2 is ǫab = i q[a qb].

The Newman-Penrose ð and ð operators are (see e.g. (A4) in [26])

ðL = P 1−s ∂ z (P
s
L) (3.9)

ðL = P 1+s ∂z
(
P−s

L
)
, (3.10)

where L is a spin-weight s field on S2 defined by

L = qa1 . . . qas La1...as (3.11)

for some totally symmetric traceless tensor field La1...as .
As pointed out in [26, 27], this choice of ð and ð corresponds to the standard con-

ventions in [24, 25, 27]. The action of ð and ð on spin-weighted spherical harmonics

sY l,m is given by (see e.g. (2.6)–(2.8) in [25])

ð sY l,m =
√

(l − s)(l + s+ 1) s+1Y l,m , (3.12)

ð sY l,m = −
√

(l + s)(l − s+ 1) s−1Y l,m , (3.13)

ð ð sY l,m = − (l − s)(l + s+ 1) sY l,m , (3.14)

with

−sY l,m = (−1)s−m
sY l,−m . (3.15)

The ð and ð operators are related to the covariant derivative operator Da associ-
ated with qab by

ðL = qbqa1 . . . qas DbL(a1...as) , (3.16)

ðL = qbqa1 . . . qas DbL(a1...as) . (3.17)

For a spin-weight s field f, the commutation relation for covariant derivatives on S2

implies
[
ð, ð

]
f = 2 s f.
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3.2 Foliations by planes and the related ∂ and ∂ operators

In the formulation of a numerical algorithm based upon a foliation by planes it is
expedient to introduce a background flat metric qab, analogous to the previous treat-
ment of spheres. Accordingly, the reference two-metric qab on the Euclidean plane R

2

has decomposition

qab = q(a qb) , qab = q(a q b) , qaeqeb = δab (3.18)

in terms of the complex dyad

qa = (dx)a + i (dy)a , qa = (∂x)
a + i (∂y)

a , (3.19)

with normalization
qa qa = 2 , qaqa = 0 . (3.20)

The field
L = qa1 . . . qas La1...as , (3.21)

where La1...as is a symmetric traceless tensor field on R
2, has spin-weight s with respect

to rotations of the dyad. Using standard complex notation, analogs of the ð and ð

operators can be defined in terms of the flat covariant derivative operator associated
with qab, i.e. the partial derivative ∂a with respect to Cartesian coordinates (x, y).
This leads to the operators

∂ L = qbqa1 . . . qas ∂bL(a1...as) , (3.22)

∂ L = qbqa1 . . . qas ∂bL(a1...as) . (3.23)

3.3 The global property of the spin-weighted formalism

Consider one of the level surfaces Sρ0 of the foliation Sρ. If Sρ0 is diffeomorphic to
the sphere S2 we may introduce standard spherical coordinates (θ, φ) and the unit
sphere metric (3.1) on Sρ0 . Analogously, if Sρ0 is diffeomorphic to R2, Cartesian
coordinates (x, y) and a Euclidean metric can be introduced. In either case, by Lie
dragging these coordinates onto the leaves of the foliation Sρ by the evolution vector
field ρi, their values remain constant along the integral curves of ρi. By this process,
either in terms of the coordinates (θ, φ) or (x, y), the corresponding metric qab and
complex dyad qa is defined on each of the level surfaces Sρ.

4 The spin-weight decomposition of the basic fields

As a consequence of the above construction, not only the coordinates (θ, φ) or (x, y)
but also the complex dyad and reference metric qab are Lie dragged from Sρ0 onto
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the surfaces Sρ, i.e.

Lρ q
a = 0 , Lρ qa = 0 and Lρ qab = 0 . (4.1)

It is a convenient consequence of this construction that there is a single common
treatment of the two cases based on foliations by spheres or planes. Either case can
be derived from the other by the simple replacements (θ, φ)←→ (x, y) and ð←→ ∂.
Accordingly, the calculations below will be presented exclusively for the case of a
spherical foliation.

4.1 The decomposition of the metric γ̂ab

The metric γ̂ab induced on the Sρ level surfaces can be decomposed as

γ̂ab = a qab +
◦γab , (4.2)

where
a = 1

2
γ̂ab q

a qb (4.3)

is a positive, spin-weight zero function on Sρ and
◦

γab is its trace-free part, i.e.

◦γab =
[
δa

eδb
f − 1

2
qab q

ef
]
γ̂ef = γ̂ab − a qab . (4.4)

Since ◦γab is symmetric and trace-free it has the decomposition

◦γab =
1
2

[
b qa qb + b qaqb

]
(4.5)

in terms of the spin-weight 2 function

b = 1
2
γ̂ab q

aqb = 1
2

◦

γab q
aqb . (4.6)

The inverse metric has the decomposition

γ̂ab = d

−1
{
a qab − 1

2

[
b qa qb + b qaqb

]}
, (4.7)

where
d = a

2 − bb (4.8)

is the ratio det(γ̂ab)/ det(qab) of the determinants of γ̂ab and qab.
As an immediate application, using (3.8), (4.2) and (4.4), along with the notation

k = ql kl , k = ql kl , (4.9)

k
l
kl can be expressed as

k
l
kl = γ̂kl

kkkl =
1
2
d

−1
{
a

(
qk ql + ql qk

)
−

[
b qk ql + b qlqk

]}
kkkl

= 1
2
d

−1[ 2akk− bk
2
− bk

2 ] . (4.10)
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4.2 Terms involving the covariant derivative D̂a

The covariant derivative operators D̂a and Da can be related by the tensor field

Ce
ab =

1
2
γ̂ef {Daγ̂fb + Dbγ̂af − Df γ̂ab} . (4.11)

(See e.g. (3.1.28) and (D.3) in [23].) In particular,

D̂akb = Dakb − Ce
abke , (4.12)

and thereby

D̂l
kl = γ̂kl D̂k kl =

1
2
d

−1
{
a

(
qk ql + ql qk

)
−
[
b qk ql + b qlqk

]}
D̂k kl

= 1
4
d

−1
{
2a

(
ðk− Bk

)
− b

(
2 ðk− Ck− Ak

)
+ “CC ”

}
, (4.13)

where

A = qaqbCe
ab qe = d

−1
{
a

[
2 ða− ðb

]
− bðb

}

B = qaqbCe
ab qe = d

−1
{
a ðb− b ðb

}
(4.14)

C = qaqbCe
ab qe = d

−1
{
a ðb− b

[
2 ða− ðb

]}
.

Hereafter “CC ” stands for the complex conjugate of the previous terms within the
same brackets or parentheses.

We also obtain the relation

[ 2klD̂i kl ] q
i =[ 2 γ̂kl

kk D̂i kl ] q
i (4.15)

= [d−1
{
a

(
qk ql + ql qk

)
−

[
b qk ql + b qlqk

]}
kk D̂i kl ] q

i

= 1
2
d

−1
{(
ak− bk

)[
2 ðk− Bk− Bk

]
+
(
ak− bk

) [
2 ðk− Ck− Ak

]}
.

4.3 The scalar curvature
(3)

R

In expressing the scalar curvature
(3)
R in terms of spin-weighted fields we use the

relation
(3)

R = R̂− [ 2Ln̂(K̂
l
l) + (K̂ l

l)
2 + K̂klK̂

kl + 2 N̂−1 D̂lD̂lN̂ ] , (4.16)

where R̂ is the scalar curvature of the metric γ̂ab, given by

R̂ = R̂ = 1
2
a

−1
(
R−

{
ðB− ðA− 1

2

[
CC− BB

] } )
(4.17)

in terms of the scalar curvature R associated with Da. (For the foliation by spheres
R = 2, and for planes R = 0.) The basic field variables used in recasting the constraint
equations are collected in Table 1.
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notation definition spin-weight

a

1
2
qi qj γ̂ij 0

b

1
2
qiqj γ̂ij 2

d a

2 − bb 0

k qiki 1

A qaqbCe
ab qe = d

−1
{
a

[
2 ða− ðb

]
− bðb

}
1

B qaqbCe
ab qe = d

−1
{
a ðb− b ðb

}
1

C qaqbCe
ab qe = d

−1
{
a ðb− b

[
2 ða− ðb

]}
3

R̂
1
2
a

−1
(
R−

{
ðB− ðA− 1

2

[
CC− BB

] } )
0

N̂ N̂ 0

N qiN̂i = qiγ̂ijN̂
j 1

Ñ qiN̂
i = qi γ̂

ijN̂ j = d

−1(aN− bN) 1

K γ̂kl
Kkl 0

◦

Kqq qkql
◦

Kkl 2
◦

Kqq qk ql
◦

Kkl = (2a)−1[b
◦

Kqq + b

◦

Kqq ] 0

K̂ K̂ l
l = γ̂ijK̂ij 0

K̂qq qiqjK̂ij =
1
2
N̂

−1 {
2 ∂ρb− 2 ðN+ CN+ AN

}
2

K̂qq qk ql K̂kl = a

−1{d · K̂+ 1
2
[b K̂qq + b K̂qq ] } 0

⋆
K

⋆
K l

l = γ̂ij
⋆
Kij 0

⋆
Kqq qiqj

⋆
Kij =

1
2

{
2 ∂ρb− 2 ðN+ CN+ AN

}
2

⋆
Kqq qk ql

⋆
Kkl = a

−1{d ·
⋆
K+ 1

2
[b

⋆
Kqq + b

⋆
Kqq ] } 0

Table 1: The new variables used in recasting the constraints. For detailed derivations of

these and other complicated expressions see the Appendix.
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5 The constraints in terms of the new variables

We now present the explicit form of the constraints in terms of the spin-weighted
fields and their derivatives introduced in the previous sections.

5.1 The parabolic-hyperbolic system

Application of the spin-weight decomposition of the basic variables leads to the fol-
lowing form of the parabolic-hyperbolic system (2.8)–(2.10),

⋆
K [ ∂ρN̂−

1
2
Ñ ( ð N̂)− 1

2
Ñ (ð N̂) ] (5.1)

− 1
2
d

−1
N̂

2[a{ (ð ð N̂)− B ( ð N̂) } − b { ( ð
2
N̂)− 1

2
A ( ð N̂)− 1

2
C (ð N̂) }+ “CC ” ]

−A N̂− B N̂ 3 = 0 ,

∂ρk−
1
2
Ñ ( ðk)− 1

2
Ñ (ðk)− 1

2
N̂ ðK+ f

k

= 0 , (5.2)

∂ρK−
1
2
Ñ ( ðK)− 1

2
Ñ (ðK)− 1

2
N̂d

−1
{
a (ðk+ ðk)− b ðk− bðk

}
+ FK = 0 .

(5.3)

In (5.2)–(5.3), the lower order source terms f
k

and F
K̂

have spin-weight 1 and
0, respectively, and the coefficients A and B have spin-weight 0, on each surface Sρ.

They are smooth functions of the constrained variables N̂,K,k and the freely specified
variables a,b,N, κ,

◦

Kqq, along with the ð, ð and ρ-derivatives of the free variables.
Their explicit forms are

f

k

= − 1
2

[
k ð Ñ+ k ð Ñ

]
− [κ− 1

2
K ] ð N̂+ p

+ N̂

[
−ðκ + N̂

−1 ⋆
Kk− qi ˙̂nl

◦

Kli + qiD̂l
◦

Kli

]
, (5.4)

FK = 1
4
N̂d

−1
{
2aBk− b (Ck+Ak )−

{
pρ −

1
2
[Ñp+ Ñp]

}
+ “CC ”

}

− d−1
[
(ak− bk ) ð N̂+ “CC ”

]
+
[

◦

Kij

⋆
Kij − (κ− 1

2
K )

⋆
K

]
, (5.5)

A = ∂ρ
⋆
K− 1

2
Ñ ( ð

⋆
K)− 1

2
Ñ (ð

⋆
K) + 1

2
[
⋆
K

2
+

⋆
Kkl

⋆
K

kl ] , (5.6)

B = −1
2

[
R̂+ 2κK+ 1

2
K

2 − d−1[ 2akk− bk
2
− bk

2 ]−
◦

Kkl

◦

K
kl
]
, (5.7)
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where the explicit forms of the new terms introduced in (5.4)–(5.7) are

qi ˙̂nk
◦

Kki = −
1
2
(N̂d)−1

[
a (ð N̂)

◦

Kqq + a (ðN̂)
◦

Kqq − b (ðN̂)
◦

Kqq − b (ðN̂)
◦

Kqq

]
,

(5.8)

qiD̂k
◦

Kki =
1

2d

(
a ð

◦

Kqq + a ð
◦

Kqq − b ð
◦

Kqq − bð
◦

Kqq

)
+

b

2d

(
A

◦

Kqq +C

◦

Kqq

)

−
a

4d

(
3B

◦

Kqq + 3B
◦

Kqq +A

◦

Kqq +C

◦

Kqq

)

+
b

4d

(
C

◦

Kqq +A

◦

Kqq +B

◦

Kqq +B

◦

Kqq

)
, (5.9)

◦

Kij

⋆
Kij = 1

4
d

−2
{
2

◦

Kqq

[(
a

2 + bb

) ⋆
Kqq − a

(
b

⋆
Kqq + b

⋆
Kqq

) ]

+
[

◦

Kqq

(
a

2 ⋆
Kqq + b

2 ⋆
Kqq − 2ab

⋆
Kqq

)
+ “CC ”

]}
, (5.10)

⋆
Kij

⋆
Kij = 1

4
d

−2
{[

⋆
Kqq

(
a

2 ⋆
Kqq + b

2 ⋆
Kqq − 4ab

⋆
Kqq

)
+ “CC ”

]

+2 (a2 + bb)
⋆
K

2
qq

}
, (5.11)

◦

Kij

◦

K
ij = 1

4
d

−2
{[

◦

Kqq (a
2

◦

Kqq + b

2
◦

Kqq − 4ab
◦

Kqq ) + “CC ”
]

+2 (a2 + bb)
◦

K
2
qq

}
. (5.12)

For detailed derivation of these relations see the Appendix.

5.2 The algebraic-hyperbolic system

Application of the spin-weight decomposition of the basic variables introduced in
Table 1 leads to the following form of the algebraic-hyperbolic constraints,

∂ρK−
1
2
Ñ ( ðK)− 1

2
Ñ (ðK)− 1

2
N̂d

−1
{
a (ðk+ ðk)− b ðk− b ðk

}

+ FK = 0 , (5.13)

∂ρk−
1
2
Ñ ( ðk)− 1

2
Ñ (ðk) + N̂ (K)−1

{
κ (ðK)− d

−1 [ (ak− bk) (ðk)

+(ak− bk) (ðk) ]
}
+ f

k

= 0 , (5.14)

κ = (2K)−1
[
d

−1(2akk− bk
2
− bk

2)− 1
2
K

2 − κ0

]
, (5.15)

where, in virtue of (2.18), κ0 can be evaluated by applying (4.16), (4.17), (A.14),
(A.25), (A.34) and (A.36).

In (5.13)–(5.14), the lower order source terms FK and f

k

have spin-weight 0 and
1, respectively. They are both smooth undifferentiated functions of the constrained
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variables κ,K,k; and they are also smooth functions of the freely specifiable variables
a,b, N̂,N,

◦

Kqq and their derivatives. The explicit forms of the forcing terms are

FK = 1
4
N̂d

−1
{
2aBk− b (Ck+Ak ) + “CC ”

}
(5.16)

− d−1
[
(ak− bk ) ð N̂+ “CC ”

]
+ N̂

[
◦

KijK̂
ij − (κ− 1

2
K ) K̂

]
,

f

k

= − 1
2

[
k ð Ñ+ kð Ñ

]
(5.17)

+ 1
2
N̂ (dK)−1

[
(ak− bk) (Bk+ Bk) + (ak− bk) (Ck+Ak)

]
,

− [κ− 1
2
K ] ð N̂+ N̂

[
1
2
K

−1
ðκ0 + K̂k− qi ˙̂nl

◦

Kli + qiD̂l
◦

Kli

]
,

where, , in virtue of (A.34)

◦

KijK̂
ij = 1

4
d

−2
[
2

◦

Kqq

(
[a2 + bb) ] K̂qq − a [b K̂qq + b K̂qq ]

)

+
{

◦

Kqq [a
2
K̂qq + b

2
K̂qq − 2ab K̂qq ] + “CC ”

}]
(5.18)

whereas, qi ˙̂nl
◦

Kli and qiD̂l
◦

Kli have been explicitly given in (5.8)–(5.9).

6 Future prospects

We have presented the computational infrastructure necessary for a numerical code
to solve the algebraic-hyperbolic or parabolic-hyperbolic versions of the constraint
equations. The derivatives tangential to the foliation can be approximated by a finite
difference or pseudo-spectral representation of the ð or ∂ operators. The “radial” inte-
grations along the ρ-streamlines can then approximated on a finite grid by a coupled
system of ordinary differential equations by applying the method of lines. Although
the analytic theory shows that the constraint systems are well-posed under appropri-
ate conditions, the issue of a global solution to a nonlinear problem is normally best
explored by numerical techniques. (A relevant exception is the possibility to apply
energy methods to prove global existence of solutions to both evolutionary versions
of the constraints for initial data near Schwarzschild [28]).

The numerical investigations carried out so far provide some promise that these
evolutionary methods are viable alternatives to the elliptic approach for the construc-
tion of initial data. In an investigation of whether the algebraic-hyperbolic system
is consistent with asymptotic flatness, a code developed in [19] using a spectral rep-
resentation of the spin-weighted harmonics [29] has simulated stable evolutions in
the outward ρ direction for nonlinear perturbations of Schwarzschild data. Work in
progress in [16, 20] using finite difference codes has shown that the inward evolution
of nonlinear Schwarzschild perturbations can be stably extended to the interior of
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the horizon. The parabolic-hyperbolic method, combined with a foliation by spher-
ical surfaces, has been successfully applied in computing nonlinear perturbations of
Minkowski initial data and using that data to carry out a corresponding constrained
time evolution [21]. For the single black hole case, it has been demonstrated in [17]
that the parabolic-hyperbolic system can be stably and accurately integrated numer-
ically. A detailed investigation of generic single but boosted and spinning black holes
verified that the full parameter space could be effectively explored without the use of
boundary conditions in the strong field regime.

The ultimate utility of this new approach would be its extension to multiple black
holes. A major concern in such a scheme is the effect of caustics, where the ingoing ρ-
streamlines focus, or a cross-over surface SX where those streamlines from opposing
points of the outer boundary meet. For a single black hole, the ρ streamlines can
be chosen so that any caustics and crossovers are inside the apparent horizon, where
the interior can be excised. The excision of some interior singularity seems to be a
necessity for the application to a spherical foliation [31].

Formally, these methods can be applied to the multiple black hole problem using
for the freely specified variables, say, a modification of the superimposed Kerr-Schild
data proposed in [13, 14, 10, 30, 15]. Among other things, the success of a numerical
implementation would depend upon a judicious choice of the foliation Sρ and the
ρ-streamlines along which the evolution proceeds. This is akin to choosing the lapse
and shift for a timelike Cauchy evolution. For binary black hole data, although the
caustics can be arranged to lie inside the black holes, the crossover surface will in
general span the region between them. In that case, unless SX can be chosen to be
a surface of reflection symmetry, as in the case of data for binary black holes with
parallel or anti-parallel spins the inward evolution can produce a discontinuity on
SX . It is anticipated that the methods developed in [30] will be helpful in computing
initial data for binary systems with generic spins and velocities.

Considerable numerical experimentation will be necessary to deal with the tech-
nical issues. The understanding of the analytic properties and numerical implemen-
tation of the elliptic formulation of the constrains has had a long and complicated
history. Unlike the iterative global nature of elliptic solvers, the flexibility of hyper-
bolic systems to proceed locally may be of advantage here. Since hyperbolic evolution
of the constraint system can also proceed in the outward ρ-direction, discontinuities
on the crossover surface SX can possibly be smoothed and the resulting data then
propagated out to the outer boundary.

If such numerical studies were indeed successful they would open a new approach
to the question of utmost physical importance: Does the resulting binary black hole
initial data suppress junk radiation? The sole data needed on a single large surface in
the asymptotic region surrounding the system distinguishes this approach from other
solutions to the constraint problem which rely on elliptic equations. Whether this
feature improves the physical content and control of the initial data is again a matter
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for numerical investigation.
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Appendix

Here we give details of the spin-weight decomposition of some additional terms that
are essential for the implementation of a numerical code.

Terms involving the lapse N̂

Using the notation N̂ = N̂ , we obtain

D̂lD̂lN̂ = γ̂kl[ D̂kDlN̂ ] = γ̂kl[DkDlN̂ − Cf
klDfN̂ ] (A.1)

= d

−1
{
a qkl − 1

2

[
b qk ql + b qkql

]}
[DkDlN̂ −

1
2
Cf

kl

[
qf q

e + qfq
e
]
DeN̂ ]

= 1
2
d

−1[a{ (ð ð N̂)− B ( ð N̂) } − b { ( ð
2
N̂)− 1

2
A ( ð N̂)− 1

2
C (ð N̂) }+ “CC ” ] .

By virtue of the relation ˙̂nk = n̂lDln̂k = −D̂k(ln N̂) we also have

qi ˙̂ni = −N̂
−1
ðN̂ (A.2)

and
k

i ˙̂ni = −(2d N̂)−1{ (ð N̂) [ak− bk ] + “CC ” } . (A.3)

Terms involving the shift N̂ i and K
l
l

By making use of the relations

Ñ = qiN̂
i = qiγ̂

ijN̂j = d

−1(a qj − b qj) N̂ j = d

−1(aN− bN) (A.4)

or alternatively

N = qlN̂ l = qlγ̂lkN̂
k = (a qk + b qk) N̂

k = a Ñ+ b Ñ , (A.5)

the Lie derivative Ln̂ (K
l
l) appearing in (2.15) can be expressed as

Ln̂ (K
l
l) = n̂iDiK

l
l = N̂−1[ (∂ρ)

i − N̂ i ]DiK
l
l = N̂−1[ ∂ρK

l
l − N̂ i

DiK
l
l ]

= Ln̂ K = N̂
−1[ (∂ρK)− 1

2
Ñ ( ðK)− 1

2
Ñ (ðK) ] , (A.6)
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where
K = K

l
l = γ̂kl

Kkl (A.7)

and we have used N̂ iDiK
l
l = N̂ i

DiK
l
l =

1
2
N̂ i

(
qi q

j + qiq
j
)
DjK

l
l .

Terms involving the trace-free part of Kkl

By setting
◦

Kqq = qkql
◦

Kkl (A.8)

and
◦

Kqq = qk ql
◦

Kkl , (A.9)

in virtue of (2.6), we obtain

◦

Kij =
1
2
qij

◦

Kqq +
1
4
[ qiqj

◦

Kqq + qiqj
◦

Kqq ] . (A.10)

Note that, since
◦

Kkl is trace-free,
◦

Kqq and
◦

Kqq are not functionally independent.

Indeed, the trace-free condition γ̂kl
◦

Kkl = 0 implies

◦

Kqq = (2a)−1[b
◦

Kqq + b

◦

Kqq ] . (A.11)

For both a

−1 and
◦

Kqq, to be well-defined a cannot vanish. This is guaranteed
because γ̂ij is a positive definite Riemannian metric so that d = a

2 − bb must be
positive.

We then have

qi ˙̂nk
◦

Kki = −
1
2
(N̂d)−1

[
a (ð N̂)

◦

Kqq + a (ðN̂)
◦

Kqq − b (ðN̂)
◦

Kqq − b (ðN̂)
◦

Kqq

]
,

(A.12)

qiD̂k
◦

Kki =
1
2
d

−1
{
a ð

◦

Kqq + a ð
◦

Kqq − b ð
◦

Kqq − bð
◦

Kqq

}

−
a

4d

{
3B

◦

Kqq + 3B
◦

Kqq +A

◦

Kqq +C

◦

Kqq

}

+
b

4d

{
C

◦

Kqq +A

◦

Kqq +B

◦

Kqq +B

◦

Kqq

}
+

b

2d

{
A

◦

Kqq +C

◦

Kqq

}
, (A.13)

◦

Kij

◦

K
ij = 1

4
d

−2
[{

◦

Kqq (a
2

◦

Kqq + b

2
◦

Kqq − 4ab
◦

Kqq ) + “CC ”
}
+ 2 (a2 + bb)

◦

K
2
qq

]
.

(A.14)
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The determination of Ln̂ kl and Lρki

The Lie derivative Ln̂ kl appearing in (2.16), can be re-expressed as follows. First,
note that

(Ln̂ kl) n̂
l = Ln̂

(
kl n̂

l
)
= 0, (A.15)

which implies
Ln̂ kl = γ̂ l

i
Ln̂ ki . (A.16)

Then, it is straightforward to verify that

Ln̂ kl = γ̂ l
i
Ln̂ ki = N̂−1γ̂ l

i [Lρki −L
N̂
ki ]

= N̂−1[ γ̂ l
i(Lρki)− N̂fD̂fkl − kfD̂lN̂

f ]

= N̂−1[ γ̂ l
i(Lρki)− N̂f

Dfkl − kfDlN̂
f ] , (A.17)

where in the second line we have used the torsion free property of the connection
when evaluating LN̂ki .

In determining qlLn̂ kl we use

qlγ̂ l
i(Lρki) = qlq l

i(Lρki) = (∂ρk) (A.18)

and

ql [ N̂f
Dfkl + kfDlN̂

f ] = 1
2
[ Ñ ðk+ Ñ ðk ] + 1

2
[k ð Ñ+ kðÑ ]. (A.19)

Then
qlLn̂ kl = N̂

−1
(
∂ρk−

1
2
[ Ñ ðk + Ñ ðk+ k ð Ñ+ kð Ñ ]

)
. (A.20)

The decomposition of D̂kN̂ l

We also need to evaluate the auxiliary expressions qkql (D̂kN̂ l) and qkql (D̂kN̂ l). To
do so, first notice that

D̂kN̂ l = DkN̂ l − Cf
klN̂f , (A.21)

from which

qkql (D̂kN̂ l) = qkql (DkN̂ l)− qkql Cf
kl [

1
2
(qf q

e + qfq
e)]N̂ e

= ðN− 1
2
CN− 1

2
AN , (A.22)

qkql (D̂kN̂ l) = qkql (DkN̂ l)− qkql Cf
kl [

1
2
(qf q

e + qf q
e)]N̂ e

= ðN− 1
2
BN− 1

2
BN . (A.23)
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Terms involving K̂ij

Before determining ql [ γ̂ef
keK̂fl ], we need to evaluate the extrinsic curvature K̂ij of

Sρ as given by (2.7),

K̂ij =
1
2
Ln̂γ̂ij =

1
2
N̂−1[Lργ̂ij − (D̂iN̂j + D̂jN̂i)] (A.24)

= 1
2
N̂

−1
[(∂ρa) qij +

1
2
[(∂ρb) qi qj +

(
∂ρ b

)
qiqj ]− (D̂iN̂j + D̂jN̂i)] ,

where in the last step (4.1) was applied. As a result,

K̂ = K̂ l
l = γ̂ijK̂ij = d

−1
{
a qij − 1

2

[
b qi qj + b qiqj

]}
K̂ij =

1
2
( N̂d)−1×

×
[
a{(∂ρa)− qi qj [ D̂iN̂j + D̂jN̂i ]} − b{(∂ρ b)− qi qj(D̂iN̂j)}

]
+ “CC ”

= 1
2
( N̂d)−1

{
a [ (∂ρa)− ( ðN) + BN ]

−b [ (∂ρ b)− ( ðN) + 1
2
CN + 1

2
AN ]

}
+ “CC ” . (A.25)

Now set

K̂qq = qiqjK̂ij =
1
2
N̂

−1 {
2 ∂ρb− 2 ðN+ CN+ AN

}
, (A.26)

K̂qq = qi qjK̂ij =
1
2
N̂

−1 {
2 ∂ρa− ðN− ðN+ BN+ BN

}
. (A.27)

Then, because the symmetric 2-tensor K̂ l
l is determined by three real functions, it

follows that K̂qq, K̂qq and K̂ are functionally dependent. In determining their algebraic
relation we introduce the auxiliary variables

⋆
K̂qq = qi qj [K̂ij −

1
2
γ̂ijK̂

l
l] = K̂qq − a K̂ , (A.28)

⋆
K̂qq = qi qj [K̂ij −

1
2
γ̂ijK̂

l
l] = K̂qq − b K̂ . (A.29)

The analog of the trace relation (A.11) then gives

⋆
K̂qq = (2a)−1[b ⋆K̂qq + b

⋆
K̂qq ] , (A.30)

from which it follows, in virtue of (A.28) and (A.29),

K̂qq = a

−1{d · K̂+ 1
2
[b K̂qq + b K̂qq ] } . (A.31)

Then, by making use of all the prior variables related to K̂ij , we obtain

qiqjK̂
ij = d

−2 [a2
K̂qq + b

2
K̂qq − 2ab K̂qq ] (A.32)

and
qi qjK̂

ij = d

−2[ (a2 + bb) K̂qq − ab K̂qq − ab K̂qq ] . (A.33)
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These relations, along with (A.10), imply

◦

KijK̂
ij = 1

4
d

−2
[
2

◦

Kqq

(
[a2 + bb) ] K̂qq − a [b K̂qq + b K̂qq ]

)

+
{

◦

Kqq [a
2
K̂qq + b

2
K̂qq − 2ab K̂qq ] + “CC ”

}]
(A.34)

and

K̂ijK̂
ij = 1

4
d

−2
{

K̂qq

[
a

2
K̂qq + b

2
K̂qq − 4ab K̂qq

]
+ “CC ”

}
+ 1

2
d

−2(a2 + bb) K̂2
qq.

(A.35)

Finally, the spin-weighted analogue of (A.6) is

Ln̂ (K̂
l
l) = Ln̂ K̂ = N̂

−1
[
(∂ρ K̂)− 1

2
Ñ ( ð K̂)− 1

2
Ñ (ð K̂)

]
. (A.36)

Terms involving starred quantities

By virtue of (2.7) and (2.11),
⋆
Kij = N̂ K̂ij . (A.37)

Accordingly, as a consequence of (A.24)–(A.35),

⋆
K = 1

2
d

−1
{
a [ (∂ρa)− ( ðN) + BN ]

−b [ (∂ρ b)− ( ðN) + 1
2
CN+ 1

2
AN ]

}
+ “CC ” . (A.38)

By now setting

⋆
Kqq = qiqj

⋆
Kij =

1
2

{
2 ∂ρb− 2 ðN+ CN+ AN

}
, (A.39)

⋆
Kqq = qi qj

⋆
Kij =

1
2

{
2 ∂ρa− ðN− ðN+ BN+ BN

}
(A.40)

we obtain
⋆
Kqq = a

−1{d ·
⋆
K+ 1

2
[b

⋆
Kqq + b

⋆
Kqq ] } , (A.41)

while (5.10) and (5.11) follow straightforwardly from (A.34) and (A.35).
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