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The past analyses of datasets of social networks have enabled us to make empirical findings of a
number of aspects of human society, which are commonly featured as stylized facts of social networks,
such as broad distributions of network quantities, existence of communities, assortative mixing, and
intensity-topology correlations. Since the understanding of the structure of these complex social
networks is far from complete, for deeper insight into human society more comprehensive datasets
and modeling of the stylized facts are needed. Although the existing dynamical and static models
can generate some stylized facts, here we take an alternative approach by devising a community-
based static model with heterogeneous community sizes and larger communities having smaller link
density and weight. With these few assumptions we are able to generate realistic social networks
that show most stylized facts for a wide range of parameters, as demonstrated numerically and
analytically. Since our community-based static model is simple to implement and easily scalable, it
can be used as a reference system, benchmark, or testbed for further applications.

I. INTRODUCTION

Characterizing the social networks is of crucial impor-
tance to understand various collective dynamics taking
place in them [1–3], as exemplified by disease spread-
ing and diffusion of innovation and opinions. In recent
years, the characterization of social networks in the un-
precedented detail has become possible because of the
availability of a number of large-scale digital datasets,
e.g., face-to-face interactions [4–6], emails [7, 8], mo-
bile phone communication [9, 10], online forums [11, 12],
Social Networking Services (SNSs) like Facebook [13]
and Twitter [14], and even massive multiplayer online
games [15, 16]. However, these datasets capture only
a part of the entire social network, implying that any
conclusions derived from such datasets cannot be simply
extrapolated to the whole society. Here the entire social
network indicates a comprehensive picture of human so-
cial relationships with complex community structure due
to today’s multiple communication channels, and can be
called a multi-channel weighted social (MWS) network.
This raises a series of questions: How can one translate
conclusions from partial datasets to the MWS network?
More importantly, what does the MWS network look
like? The first question has been investigated in terms
of sampling biases [17–20], while the second question is
largely unexplored mainly due to the lack of comprehen-
sive datasets.

Characteristics of the MWS network are expected
to be partially reflected in the empirical findings from
some aspects of the network. By collecting such find-
ings from diverse sources, we find several commonly ob-
served features or stylized facts of social networks [21–
23]. These include broad distributions of local net-
work quantities [1, 24], community structure [25], ho-

mophily [26, 27], and intensity-topology correlations [9],
etc. More recently, geographical and/or demographic in-
formation of social networks have also been explored [28–
30], which are beyond the scope of this paper. One
can find the previous efforts of modeling social networks:
The global picture for social networks has been described
by the Granovetter’s hypothesis of “strength of weak
ties” [31], indicating that communities of strongly con-
nected nodes are weakly connected to each other. This
picture has been empirically confirmed [9, 32] and subse-
quently produced with computational modeling by con-
sidering cyclic and focal closure mechanisms in tie for-
mation [22, 33, 34]. However, it was recently suggested
that communities could be overlapping [35, 36] in con-
trast to the picture of separate communities. This over-
lapping behavior is mostly due to the multilayer nature
of social networks [37, 38], in which each layer may corre-
spond to a certain type of human relationship or context.
This means that an individual can belong to one com-
munity in one layer but simultaneously to another com-
munity in another layer. Accordingly, dynamical mod-
els for multilayer, overlapping community structure have
been introduced, while reproducing other stylized facts
for local network quantities [39]. There are also several
other dynamical models that partially reproduce stylized
facts [40–42].

As many models mentioned above are dynamic and
evolutionary in nature, they tend to take considerable
amount of computational time. For relatively simpler
and easier implementation, we take an alternative ap-
proach of static modeling to reproduce the stylized facts
in social networks. For our model, we randomly assign a
number of communities to a given set of isolated nodes
using a few reasonable assumptions such that the commu-
nity size is heterogeneous, and larger communities are as-
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signed with smaller link density and smaller link weight.
As we assign communities by hand rather than grow the
network by means of some link formation mechanisms,
our model can be called static. We also remark that the
community size distribution is an input rather than an
output of our model, although it is one of stylized facts.
With the above mentioned few assumptions about com-
munities, apparently realistic social network structures
are generated showing most stylized facts for a wide range
of the parameter space. Furthermore, thanks to the ran-
dom nature of assigning communities to nodes, we can to
some extent analytically calculate various local network
quantities, e.g., for the assortative mixing, local cluster-
ing coefficient, and neighborhood overlap.

This static modeling approach of ours is comparable
to other static modeling studies, which can be classified,
but not exclusively, into four categories: (i) Erdős-Rényi
(ER) random graphs, (ii) configuration models (CMs),
(iii) stochastic blockmodels (SBMs), and (iv) exponen-
tial random graph models (ERGMs). The ER random
graphs [43] are the simplest kind of static models, and
its variants have been studied, such as graphons [44, 45],
weighted random graphs [46], or ER random graphs with
community structure [47]. In the simplest form of CMs
a binary network is constructed only by using the pre-
determined degree sequence of nodes, without any other
correlations [48]. It has been extended for containing the
arbitrary distributions of subgraphs [49], to weighted net-
works [50, 51], or to networks with overlapping commu-
nity structure [52] or with hierarchical community struc-
ture [53]. Next, the SBM was originally suggested for the
community structure, characterized by a matrix consist-
ing of the linking probabilities within communities and
between communities [54–56]. As the traditional SBMs
are not comparable with the empirical degree heterogene-
ity, the degree-corrected SBMs, by which the degree het-
erogeneity can be properly considered, have been stud-
ied [57, 58]. The SBMs have also been extended to incor-
porate the overlapping communities by considering the
mixed membership [59, 60] or to the weighted networks,
for which see Ref. [61] and references therein. Finally,
the family of ERGMs has been extensively studied in
social sciences [44, 62] as well as in terms of statistical
mechanics [63]. Here an ensemble of networks with given
network features is considered according to the probabil-
ity in the form of Boltzmann factor. The ERGMs have
been extended for weighted networks [64] or for networks
with community structure [58].

In our work, we will be exploring a different static mod-
eling approach by explicitly considering the communities
with various sizes, linking probabilities, and link weights.
This way we arrive at a simple and scalable static model,
which may serve as a reference system, benchmark, or
testbed for further applications.

Our paper is organized as follows: In Section II, we
summarize the observed stylized facts for social networks
from diverse sources. Then we introduce the community-
based static model in Section III. In Section IV, by per-

forming large-scale numerical simulations, we find a wide
range of the parameter space in which the stylized facts
are reproduced. In Section V, we present the analytical
results for local network quantities. Finally, we conclude
our work in Section VI.

II. STYLIZED FACTS

In Table I we present a summary of the commonly ob-
served features or stylized facts in many digital datasets
for social networks. These include the statistics of lo-
cal network quantities and results for the global struc-
ture, both of which can be either topological or intensity-
related.

Let us first consider topological quantities. The degree
k of a node is the number of its neighbors. Degree distri-
butions P (k) in most datasets are found to be broad and
overall decreasing [1, 12, 13, 24, 65]. This implies that
the most probable degree or the mode of P (k), denoted
by mk, is of the order of 1, leading to the fact that mk is
much smaller than the average degree 〈k〉. This stylized
fact is however clearly not consistent with our common
sense that it is unlikely to find a majority of individu-
als with only one or few relationships in a society. This
discrepancy can be explained by the channel selection
mechanism [20]: Most datasets for social networks rep-
resent only one communication channel or even a part of
it, while social interactions generally take place on mul-
tiple communication channels, namely, the multiplexity
of social networks [23, 37, 38]. Since individuals with
low degree in one channel can have high degree in an-
other channel, by considering the multi-channel feature
of social networks, P (k) is expected to have a peak at the
degree larger than 1, implying that mk is of the compara-
ble order of 〈k〉 [20, 66]. Such P (k) can be called overall
peaked, see Fig. 1(a) in Ref. [67] for example. This does
not necessarily exclude the broadness of P (k).

Homophily, the tendency that alike people are at-
tracted to each other, is one of the governing princi-
ples of social network formation [26]. One manifestation
of homophily is degree assortativity, i.e., the tendency
that high degree nodes are linked together. This cor-
relation has been quantified in terms of the assortativ-
ity coefficient ρkk, which is a Pearson correlation coeffi-
cient (PCC) between degrees of neighboring nodes [27].
Many social networks are found to be assortative with
ρkk ≈ 0.09–0.4 [68]. This is also shown by the increas-
ing behavior of the average degree of neighbors for nodes
with degree k [13, 24]. This quantity is denoted by knn(k)
and is defined as follows:

knn(k) ≡ 〈ki,nn〉{i|ki=k}, (1)

ki,nn ≡ 1
ki

∑
j∈Λi

kj , (2)

where Λi denotes the set of i’s neighbors and ki = |Λi| is
the node i’s degree.
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TABLE I. Stylized facts derived from various datasets with the expected behaviors for the MWS network [22, 23]. The symbol
↗ (↘) implies that the overall trend of a quantity is monotonically increasing (decreasing) according to its argument. The
initially increasing and then decreasing behavior is denoted by ↗↘. For the Granovetterian community structure, see the
main text for the details.

Category Property or measure Stylized fact (expectation)

Topological Degree distribution, P (k) ↘ (↗↘)

Average degree of neighbors as a function of degree, knn(k) ↗
Local clustering coefficient as a function of degree, c(k) ↘
Community size distribution, P (g) ↘

Intensity-related Strength distribution, P (s) ↘ (↗↘)

Weight distribution, P (w) ↘
Strength as a function of degree, s(k) ↗
Neighborhood overlap as a function of weight, o(w) ↗
Granovetterian community structure, ∆fc > 0

High clustering is evident in social networks, implying
that your neighbor’s neighbor is likely to be also your
neighbor. For a node i, the local clustering coefficient ci
is defined as the number of links between i’s neighbors,
denoted by ei, divided by the possible maximal number

of links between them, i.e., ki(ki−1)
2 , as follows:

ci ≡ 2ei
ki(ki−1) . (3)

Then one can measure the average local clustering coef-
ficient for nodes with degree k as

c(k) ≡ 〈ci〉{i|ki=k}. (4)

The quantity c(k) is found to be a decreasing function of
k [13, 15, 24, 69]. This finding can be explained by consid-
ering the case that the effect of making new neighbors,
corresponding to ∼ k2

i in Eq. (3), is typically stronger
than that of finding new links between neighbors, in re-
lation to ei in Eq. (3). For example, if every new neighbor
of a node i creates a new link to one of node i’s existing
neighbors, then ei ∼ ki, leading to c(k) ∼ k−1. This be-
havior can be measured in terms of the PCC between ci
and ki, which is denoted hereafter as ρck.

At the larger scale, social networks have rich commu-
nity structure: Nodes in communities are densely con-
nected, while nodes between different communities are
sparsely connected [25]. It has been shown that the com-
munity size distribution P (g) has a heavy tail or power-
law form, e.g., as evidenced in Refs. [11, 35, 36, 70, 71].
We remark that in our model P (g) will be used as an
input rather than as an output of our model.

Next, we consider the intensity-related quantities, i.e.,
strength s and weight w. The weight of a link quantifies
the interaction activity between two nodes [72], e.g., the
frequency of contact in communication. The strength
of a node, denoting the activity of the node, has been
defined as the sum of weights of links involving the node:

si ≡
∑
j∈Λi

wij , (5)

where wij is the weight of the link ij. The distributions
of these quantities, P (s) and P (w), are also found to be
broad and overall decreasing, implying that both individ-
ual and interaction activities are heterogeneous [24]. The
overall decreasing behavior of P (w) can be interpreted as
the prevalence of weak links [73] in social networks.

In addition, the average strength of nodes as a function
of the degree, s(k), is found to be overall increasing [24,
72]. Here s(k) is defined as

s(k) ≡ 〈si〉{i|ki=k}. (6)

This behavior can be measured in terms of the PCC be-
tween si and ki, denoted by ρsk. Combining the peaked
P (k) and the increasing s(k), P (s) is expected to be also
peaked. The overall peaked P (s) can be tested in terms
of the mode of P (s), denoted by ms.

These intensities are correlated with topological prop-
erties, which can be called intensity-topology correlation
or weight-topology correlation as used in Ref. [9]. A link-
level consequence of weight-topology correlation can be
measured by the average neighborhood overlap for links
with weight w, denoted by o(w). The neighborhood over-
lap of a link is the fraction of common neighbors of neigh-
boring nodes, say i and j, among all neighbors of those
nodes:

o(w) ≡ 〈oij〉{ij|wij=w}, (7)

oij ≡ eij
ki+kj−2−eij , (8)

where eij denotes the number of common neighbors of
nodes i and j, whose degrees are ki and kj , respectively.
It has been empirically found that the stronger links tend
to show larger neighborhood overlap [9, 15, 69, 74–76],
implying that closer friends tend to have more common
friends. We also note that o(w) begins to decrease for
very large w in some cases [9, 69], and that the over-
all decreasing o(w) is found in some collaboration net-
works [69, 77]. The overall increasing behavior of o(w)
can be measured in terms of the PCC between oij and
wij , and it is denoted by ρow.
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The weight-topology correlation emerges at the global
scale such that communities of strongly connected nodes
are weakly connected to each other [9, 32]. This is a con-
sequence of the Granovetter’s hypothesis of “strength of
weak ties” [31]. As the Granovetterian structure is main-
tained by weak links, the network will be disintegrated
by removing weak links rather than by removing strong
links. Precisely, a link percolation analysis can be ap-
plied such that links are removed one by one either from
the weakest links (ascending link removal) or from the
strongest links (descending link removal) to see when
the network gets disintegrated. In both cases, we may
observe the percolation transition at some value of the
fraction of removed links f . If the percolation threshold
for ascending (descending) link removal is denoted by fa

c

(fd
c ), we expect that

∆fc ≡ fd
c − fa

c (9)

is significantly larger than 0 as shown in Ref. [39]. It is be-
cause the Granovetterian structure will be disintegrated
earlier for ascending link removal than for descending link
removal. Note that ∆fc > 0 does not guarantee the Gra-
novetterian structure [46]. The percolation threshold can
be determined by measuring the fraction of the largest
connected component (LCC) RLCC and the susceptibil-
ity χ as functions of f . Here the susceptibility for the
network size N is defined as χ = 1

N

∑
s nss

2, where ns
is the number of connected components of size s and the
summation is taken over all connected components but
the LCC. At the percolation threshold fc, RLCC vanishes
and χ diverges in the thermodynamic limit [78].

Finally, we remark that these stylized facts have been
deduced mostly from datasets of single communication
channels, while here we are interested in the multi-
channel weighted social (MWS) network representing a
multiplicity of communication channels. Empirical find-
ings in single channel datasets may reflect some proper-
ties of the reality, but they may also introduce biases [20].
Thus, our aim in this paper is to reproduce, in addition to
the stylized facts, the expected peaked behavior of P (k)
and P (s) for the MWS network, as listed in Table I with
expected behavior in parenthesis.

III. MODEL

In order to devise a community-based static model for
stylized facts in social networks, let us consider an undi-
rected weighted network of N nodes and C communities.
For each community, the community size g is drawn from
a distribution P (g). The minimum size of the commu-
nity is set as g0 = 3, i.e., a triangle. The maximum size
of the community gmax is set to be 103 that is sufficiently
large but not too large for being realistic. Then g dif-
ferent nodes are randomly chosen to form a community,
where links between them are created with linking prob-
ability p(g). Here p(g) is a decreasing function of g to
represent the tendency of link density being sparser for

larger communities. Each of these links is assumed to
have a positive weight randomly drawn from a distribu-
tion Pg(w) with a characteristic weight w(g). Here w(g)
is a decreasing function of g to represent the tendency
of weaker ties in larger communities. For these reasons,
we assume the following functional forms in the range of
g0 ≤ g ≤ gmax:

P (g) ≡ Ag−α, (10)

p(g) ≡
(
g0
g

)β
, (11)

Pg(w) ≡ θ[w(g)−w]
w(g) , w(g) ≡ w0

(
g0
g

)γ
(12)

with non-negative exponents α, β, and γ. Here A ≡
(
∑gmax

g=g0
g−α)−1 denotes a normalization constant, and

θ(·) is the Heaviside step function. We take a power-
law form for P (g) based on the empirical findings in
Refs. [11, 35, 36, 70]. The power-law form for p(g) is also
inspired by the observations [11]. Finally, we take the
uniform distribution for Pg(w) in the range of (0, w(g)]
as no evidence is known for its shape. Other candidates
for Pg(w) will be shortly discussed in Appendix A. These
settings immediately imply that the average number of
neighbors due to the community of size g is (g − 1)p(g),
i.e., of the order of g1−β . Since a membership to the
larger community could imply more ties created, it is as-
sumed that β ≤ 1. Further, the sum of weights due to
those neighbors in the community of size g scales with
g1−β−γ . This sum decreases with g for sufficiently large
γ, meaning that people may spend less time in communi-
cation with the members of the larger communities. See
Fig. 1 for the schematic diagram.

Since in social networks each node may belong to mul-
tiple communities, the network has an overlapping com-
munity structure and this is assured here by construc-
tion. Moreover, such network can be interpreted in the
frame of a multiplex network [37, 38]. In our model each
layer indexed by g is defined as a set of links created
in communities of the same size g [79]. Then, a pair
of nodes may be connected by multiple links when they
belong to multiple communities, irrespective of whether
those communities are in the same layer or not. However,
we reduce multiplex weighted networks generated by our
model to single layer weighted networks by assigning a
unique weight to each pair of nodes. Here we use the rule
of weight aggregation such that a weight wij for a link ij
is given by

wij ≡
∑
g∈Gij

wij,g, (13)

where Gij denotes a set of gs for communities in which
the link ij is created, and wij,g is the weight of link ij
created in the layer g. Note that alternative rules for
weight aggregation can be used, e.g., by taking a maxi-
mum weight from a set of wij,g.

We remark that it is very unlikely for a pair of nodes to
belong to multiple communities, which is indeed asymp-
totically the case as shown in Appendix B. Hence, links
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g = 3

g = 4

g = 5

FIG. 1. (Color online) Schematic diagram of the community-
based static model with overlapping communities of various
sizes with g = 3, 4, and 5. The larger dotted circle indicates
the larger community size, and thicker lines indicate larger
link weights.

can be divided into exclusive sets according to the com-
munity size g in which the link is created, implying that
|Gij | = 1 for all links.

IV. NUMERICAL RESULTS

For numerical simulations, we generate networks of size
N = 3·104 with g0 = 3 and gmax = 103. We also set w0 =
1 without loss of generality. We begin with N isolated
nodes, to which communities are added sequentially until
the average degree reaches a predetermined value, e.g.,
〈k〉 = 100. This in turn determines the total number of
communities, C. We first study the effects of α and β
on the topological properties of the generated networks
to find the parameter region for reproducing the stylized
facts. Then, for a fixed value of β within the region
for the topological stylized facts, we study the effects of
α and γ on the intensity-related properties of generated
networks.

A. Topological properties

We obtain the simulation results of topological quanti-
ties, i.e., mk, ρkk, and ρck, for the wide range of α and β.
In Fig. 2(a), mk is found to overall increase with α and
β. As 〈k〉 = 100 in the simulations, we take a threshold
value for mk as 10 to distinguish the region of overall
decreasing P (k) for small α and β from that of overall
peaked P (k) for large α and β. This threshold value is

arbitrary yet reasonable for the qualitative description.
In Fig. 2(b), we find that ρkk ≥ 0 for the entire range of
the parameter space, and that ρkk overall decreases with
α and β. Here we take 0.05 as the threshold value to sep-
arate the assortative region for small α and β from the
uncorrelated region for large α and β. Finally, we observe
the non-monotonic behavior of ρck according to α and β,
as shown in Fig. 2(c). For small β, there exists an inter-
mediate region of α with ρck > 0. As β increases, this
region becomes narrower and finally disappears. Summa-
rizing the results, we find the wide region of α spanning
over (2, 4.5) and of β spanning over (0.1, 0.6), where all
topological stylized facts are reproduced, i.e., relatively
large mk and ρkk as well as negative ρck. This region is
depicted as shaded in Fig. 2(d).

In order to understand these results, we remind that
the larger value of α leads to more frequent triangles as
g0 = 3, and that the larger value of β leads to sparser
communities, especially for relatively large communities.
We first consider the limiting case with large α and β,
and then the other limiting case with small α and β.

In the limiting case when α→∞, all communities are
triangles, irrespective of the value of β. The network is
then a random graph but consisting of triangles, namely
a random 3-uniform hypergraph in graph theory [80]. As
P (k) is peaked [81], mk is much larger than 1 for suf-
ficiently large 〈k〉. We numerically find that mk ≈ 〈k〉
for α ≥ 5 is independent of β, as seen in Fig. 2(a). It is
also expected that there is no degree-degree correlations,
i.e., ρkk ≈ 0. Furthermore, the local clustering coefficient
may be negatively correlated with k, i.e., ρck < 0, as ex-
plained in Section II. We find similar behaviors in the
limiting case when β →∞, as communities of size larger
than g0 practically have no links in them, irrespective
of α. These arguments are consistent with simulation
results already when β = 1, as depicted in Fig. 2(a–c).

On the other hand, when β = 0, we have p(g) = 1 for
the entire range of g, leading to the network of overlap-
ping cliques of various sizes. If the value of α decreases
from infinity, more and more large cliques are created in
the network. Since the total number of links is fixed,
links are then concentrated more in large communities,
leading to a number of isolated nodes. The value of mk

then decreases from 〈k〉 as α decreases. Degrees of nodes
in the same community tend to be similar, which along
with the heterogeneous community size for finite α leads
to the positive ρkk. As for the local clustering coefficient
c, it must be 1 for all connected nodes unless communi-
ties are overlapping. Since communities overlap in gen-
eral, the value of ρck is expected to be negative as nodes
belonging to multiple communities tend to have higher k
but smaller c. However, in the intermediate range of α
the positive ρck is found in Fig. 2(c). It is because nodes
belonging to even larger communities tend to have higher
k and to find more links between their neighbors, hence
the larger value of c. If α becomes too small, most nodes
have c of the order of 1, while some nodes with high k
have smaller values of c due to the overlapping commu-
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FIG. 2. (Color online) Effects of α and β on topological
properties: (a) mk, (b) ρkk, and (c) ρck, with corresponding
threshold values (black lines) for stylized facts. (d) Assum-
ing that the topological stylized facts are reproduced when
mk > 10, ρkk > 0.05, and ρck < 0, we derive the parameter
region (shaded area) surrounded by three curves from (a–c).
Here the results have been averaged over 10–40 networks gen-
erated using N = 3 · 104, 〈k〉 = 100, g0 = 3, and gmax = 103.

nities. Therefore the negative ρck is observed, while the
global clustering, i.e., the average of c for all nodes in the
network, is still high (not shown).

B. Intensity-related properties

Next we numerically obtain the intensity-related quan-
tities, i.e., ms

〈s〉 , ρsk, ρow, and ∆fc, by varying α and γ

while keeping β = 0.5, for which it is expected to show
the topological stylized facts for α < 3.5. Here the mode
of P (s) has been normalized by the average strength
〈s〉 as 〈s〉 also depends on the parameters. We find in
Fig. 3(a) that ms

〈s〉 overall increases with α but decreases

with γ. In order to distinguish the region of overall de-
creasing P (s) for small α and large γ from that of overall
peaked P (s) for large α and small γ, we take a threshold
value for ms

〈s〉 as 0.1 to imitate the threshold value of mk.

In Fig. 3(b), we find that ρsk ≥ 0 for the entire range of
the parameter space, and that ρsk overall increases with
α but decreases with γ. We take 0.1 as the threshold
value for ρsk to separate the correlated region for large
α and small γ from the uncorrelated region for small α
and large γ. As for ρow, it has a negative value for the
almost entire range of the parameter space, except when
both α and γ are small, as shown in Fig. 3(c). Finally,
∆fc shows the non-monotonic behavior according to α
in Fig. 3(d). For small γ, there exists an intermediate re-
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FIG. 3. (Color online) Effects of α and γ on intensity-related
properties for a given β = 0.5: (a) ms

〈s〉 , (b) ρsk, (c) ρow, and

(d) ∆fc, with corresponding threshold values (black lines) for
stylized facts. (e) Assuming that the intensity-related stylized
facts are reproduced when ms

〈s〉 > 0.1, ρsk > 0.1, ρow > 0, and

∆fc > 0.001, we barely find the parameter region surrounded
by four curves from (a–d). If the condition for positive ρow
is relaxed, then we have the wide range of parameter space
(shaded area) for the stylized facts, i.e., for large α and γ.
Here the results have been averaged over 10 networks gener-
ated using N = 3 · 104, 〈k〉 = 100, g0 = 3, gmax = 103, and
w0 = 1. The dashed line, γ = α+β−3, indicates the criterion
for the decreasing behavior of P (w) obtained from Eq. (37).

gion of α showing ∆fc > 0.001, with the threshold value
of 0.001. As γ increases, this region becomes wider.

In summary, we barely find a region in the parameter
space of (α, γ) for a fixed β = 0.5, where all intensity-
related stylized facts are reproduced, i.e., relatively large
ms
〈s〉 , ρsk, and ∆fc, as well as positive ρow. However, if

the condition for positive ρow is relaxed, we have the
wide range of the parameter space for the stylized facts
to be reproduced, i.e., for large α and γ. This region is
depicted as shaded in Fig. 3(e). We note that despite
the negative ρow, o(w) shows the increasing and then
decreasing behavior for some range of parameter values,
which will be discussed in the next Section.

In order to understand these results, we remind that
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the larger value of γ leads to more hierarchical weights as
larger communities contain even weaker links on average.
We first consider the limiting case with small γ and large
α, and then the case with large γ and not too small α.

In the limiting case when γ = 0, all weights are drawn
from the uniform distribution with the range of [0, 1], in-
dependent of the community size. It implies no intensity-
topology correlations, irrespective of topological struc-
ture of the network. Therefore, we have s(k) ≈ k

2 for suf-
ficiently large networks, which leads to ms

〈s〉 ≈
mk
〈k〉 ∼ O(1)

and ρsk ≈ 1 for a wide range of α. Since the neighbor-
hood overlap of a link is statistically independent of its
weight, we have ρow ≈ 0. Finally, for the link percola-
tion the ascending link removal is just the same as the
descending link removal, thus ∆fc ≈ 0 is expected. These
expected behaviors are numerically confirmed as shown
in Fig. 3(a–d). These tendencies are also observed for
very large α, independent of γ, as the network consists
of triangles only and then the weights are fully uncorre-
lated with topological structure.

On the other hand, the large value of γ enhances the
hierarchical structure of weights. If α decreases from in-
finity, the network is dominated by larger communities,
i.e., by the larger number of links with very small weights.
Then as more nodes have smaller strength, both ms and
〈s〉 decrease to 0, while ms

〈s〉 decreases to 0 as P (s) be-

comes more skewed due to the nodes belonging only to
large communities. Since the majority of links are weak,
the higher degree does not necessarily mean the larger
strength, leading to the smaller ρsk for decreasing α. Fur-
ther, since the nodes in the large communities tend to
have more common neighbors and weaker links between
them, we find negative correlations between neighbor-
hood overlap and weight of links, except for small α and
γ, as shown in Fig. 3(c). Finally, the Granovetterian
community structure appears to exist in the networks, as
evidenced by ∆fc > 0 for sufficiently large γ and for the
wide range of α in Fig. 3(d). This is because by construc-
tion weak links in larger communities connect smaller
communities containing strong links. Moreover, as the
larger γ enhances the hierarchical structure of weights,
we find the stronger weight-topology correlation, hence a
larger ∆fc.

We have also studied the effects of β and γ for a fixed
value of α = 2.5 to find the range of the parameter space
(β, γ) for the intensity-related stylized facts. See Ap-
pendix C and Fig. 6 for the details.

To conclude the Section, we note that our simple model
with a few assumptions about communities could repro-
duce almost all stylized facts, except for the increasing
neighborhood overlap as a function of link weight, for the
wide range of the parameter space (α, β, γ).

V. ANALYSIS OF LOCAL NETWORK
QUANTITIES

Thanks to the random nature of assigning communities
to nodes in our model, we can obtain analytical solutions
of the local network quantities to some extent, which is
important for the rigorous understanding of the conse-
quences of the model. Since the network consists of many
random communities whose sizes are randomly drawn
from a given distribution, the network can be understood
in terms of an aggregate of different layers, where each
layer consists of communities with the same size that
are overlapping by construction. Based on this concept
of layers, we first get analytical results for topological
quantities, regardless of the rule of assigning weights to
links: P (k), c(k), and knn(k). We then consider intensity-
related quantities: P (w), P (s), s(k), and o(w). Accord-
ing to the discussion in Appendix B, we assume that
communities do not overlap over more than one node.

A. Topological quantities

The number of communities of size g is simply given
by ng ≡ CP (g) = CAg−α. The average number of links

in the layer g is equal to Lg ≡ ng g(g−1)
2 p(g) and the total

number of links in the network is obtained by L =
∑
g Lg.

Then C is determined from the relation L = N〈k〉
2 . The

degree distribution in the layer g can be naively approx-
imated by

Pg(k) =

(
N − 1

k

)
pkg(1− pg)N−1−k ≈ e−〈K〉g 〈K〉

k
g

k! (14)

with pg ≡ 2Lg
N(N−1) and 〈K〉g ≡ 2Lg

N respectively denoting

the link density and the average degree in the layer g. As
we assume that links in different layers are rarely over-
lapping, the degree distribution for the whole network is
obtained as a Poisson distribution:

P (k) = e−〈k〉 〈k〉
k

k! , (15)

where we have used the relation 〈k〉 =
∑
g〈K〉g. P (k) is

found to have a peak around at 〈k〉, i.e., mk ≈ 〈k〉. The
numerical P (k) in Fig. 4(a) also has the peak around
at 〈k〉 but it is broader than the above Poisson dis-
tribution possibly due to the correlation between links
imposed by the community structure. This effect due
to the correlation can be explained by separating nodes
chosen for communities from those not chosen in each
layer. The number of nodes chosen for communities
of size g is approximated as Ng ≈ gng, leading to

〈k〉g ≡ 2Lg
Ng
≈ (g − 1)p(g) denoting the average degree

only for nodes chosen for communities in the layer g.
Based on this idea, we derive the analytical result for the
standard deviation σ for the degrees in Appendix D. For
example, when α = 2.7 and β = 0.55, we obtain σ ≈ 31.6
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FIG. 4. (Color online) Simulation results of topological quan-
tities for N = 3 · 104, 〈k〉 = 100, g0 = 3, gmax = 103, α = 2.7,
and β = 0.55 (circles) are compared to the analytical results
(solid lines). The simulation results were averaged over 50
generated networks.

using Eq. (D5), which is comparable with the simulation
result of ≈ 34.3. Note that the standard deviation for
the Poisson distribution with 〈k〉 = 100 is 10. Thus, the
correlation between links imposed by the communities is
important in understanding the broader P (k) than the
Poissonian case.

Now we focus on the egocentric network that consists
of a node and its neighbors, namely, the ego and its alters.
The degree of the node is determined by the layers in
which the node was chosen to create links. We denote
by l the largest community size or the outermost layer
involving the node. Since the layers involving the node or

the ego are not necessarily consecutive, we take a mean-
field approach: The indexes of layers involving the ego
are assumed to be consecutive from g0 to l. Since the
probability of an ego being chosen to have links in the

layer g is
Ng
N , one obtains the expected degree of nodes

with outermost layer l as

k(l) ≡
l∑

g=g0

Ng
N 〈k〉g ≈

gβ0CA
N

∫ l

g0

(g2−α−β − g1−α−β)dg

=
gβ0CA
N

[
H3,1

1,0 (g0, l)−H2,1
1,0 (g0, l)

]
. (16)

Here we have defined for convenience

Hu,v
m,n(x0, x1) ≡

∫ x1

x0

xu−vα−mβ−nγ−1dx (17)

=

{
xu−vα−mβ−nγ1 −xu−vα−mβ−nγ0

u−vα−mβ−nγ if u− vα−mβ − nγ 6= 0,

ln x1

x0
otherwise.

(18)

Figure 4(c) shows that this analytical result is compara-
ble with the simulation results. If α+β 6= 2, 3, then k(l)
can be explicitly written as follows:

k(l) ≈ a0 + a1l
3−α−β + a2l

2−α−β , (19)

where

a0 ≡ gβ0CA
N

(
− g

3−α−β
0

3−α−β +
g2−α−β0

2−α−β

)
, (20)

a1 ≡ gβ0CA
N(3−α−β) , a2 ≡ − gβ0CA

N(2−α−β) . (21)

Later we will need to use the expected outermost layer
of nodes with degree k, denoted by l(k). As the calcula-
tion of l(k) is not trivial, we fit the simulation result in
Fig. 4(d) with a simple scaling function as follows:

l(k) ≈ ãkµ (22)

with ã ≈ 0.542 and µ ≈ 1.30. We remark that the inverse
function of k(l) does not necessarily match with l(k),
implying that in general k[l(k)] 6= k.

Next, we calculate the expected local clustering coeffi-
cient in two forms: c(k) and c(l). Since the probability
of linking two alters in the same layer is p(g), we obtain

c(l) ≡ 1
k(l)[k(l)−1]

l∑
g=g0

Ng
N 〈k〉g(〈k〉g − 1)p(g) (23)

≈ g3β0 CA
Nk(l)[k(l)−1]

[
H4,1

3,0 (g0, l)− 2H3,1
3,0 (g0, l) +H2,1

3,0 (g0, l)
]

− g2β0 CA
Nk(l)[k(l)−1]

[
H3,1

2,0 (g0, l)−H2,1
2,0 (g0, l)

]
. (24)

Figure 4(e) shows that this analytical result is compa-
rable with the simulation results. Then, we numerically
get c(k) by plugging l(k) in Eq. (22) into Eq. (24), i.e.,

c(k) ≡ c[l = l(k)], (25)
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which is plotted against k[l(k)] in Fig. 4(f). We find
our approximated solution to be comparable with the
simulation results.

Then, we study the assortative mixing by calculating
knn(k) and knn(l). Let us consider the above egocentric
network, where each alter, say j, has been connected to
the ego in some layer, say z. If z is large, z is most
likely to be the outermost layer of j. Then the degree
of j is k(z) that is obtained using Eq. (16). However,
for small z, the outermost layer of j is most likely to be
larger than z. Hence the degree of j can be estimated
as the average degree of nodes whose outermost layer is
equal to or larger than z. If z is very small, the expected
degree of j would be 〈k〉. In general, the expected degree
of the alter having a link to the ego in the layer z can be
obtained as follows:

k≥(z) ≡
∑∞
k=k(z) kP (k)∑∞
k=k(z) P (k) . (26)

In Fig. 4(b), we plot k≥(z), calculated using the numer-
ical P (k), against k(z). As expected, k≥(z) has a value
of 〈k〉 for small z, while it approaches k(z) for large z.
As the calculation of k≥(z) is not trivial, we make an
approximation in a quadratic form as

k≥(z) ≈ 〈k〉+ b1k(z) + b2k(z)2 (27)

with coefficients b1 ≈ 0.178 and b2 ≈ 0.00185, see the
solid line in Fig. 4(b). More complicated functional form
may give a better result, but it makes further calculations
much more difficult.

Since the ego has on average 〈k〉g neighbors in the layer
g whose expected degree is k≥(g), using Eq. (27) we ob-
tain

knn(l) ≡ 1
k(l)

l∑
g=g0

Ng
N 〈k〉gk≥(g) (28)

≈ gβ0CA
Nk(l)

{
c0[H3,1

1,0 (g0, l)−H2,1
1,0 (g0, l)]− c1H4,2

2,0 (g0, l)

+(c1 − c2)H5,2
2,0 (g0, l) + c2H

6,2
2,0 (g0, l)− c3H6,3

3,0 (g0, l)

+(c3 − c4)H7,3
3,0 (g0, l) + (c4 − c5)H8,3

3,0 (g0, l) + c5H
9,3
3,0 (g0, l)

}
,

(29)

where

c0 ≡ 〈k〉+ a0b1 + a2
0b2, c1 ≡ a2(b1 + 2a0b2),

c2 ≡ a1(b1 + 2a0b2), c3 ≡ a2
2b2, (30)

c4 ≡ 2a1a2b2, c5 ≡ a2
1b2.

Here we have assumed that α + β 6= 2, 3. Figure 4(g)
shows that Eq. (29) is comparable with the simulation
results. If α + β < 3, as b1 � b2, one may expect that
for very large l

knn(l) ∼ l3−α−β , (31)

which hints at the role of exponent values such that the
higher assortativity is obtained with the smaller values of
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FIG. 5. (Color online) Simulation results of intensity-related
quantities for the same parameter values as in Fig. 4 with
γ = 1.5 and w0 = 1 (circles) are compared to the analytical
results (solid lines).

α and β, i.e., the more heterogeneous size of communities
and the more links for larger communities. This is consis-
tent with the results in Fig. 2(b). Then, we numerically
get knn(k) by assuming that

knn(k) ≡ knn[l = l(k)]. (32)

In Fig. 4(h), we plot knn(k) against k[l(k)] to find our
approximated solution to be comparable with the simu-
lation results.

B. Intensity-related quantities

Here we calculate local network quantities related to
the intensity. The link weight distribution can be ob-
tained as follows:

P (w) ≡ 1
L

gmax∑
g=g0

Pg(w)Lg ≈ 1
L

∫ g(w)

g0

ngg(g−1)p(g)
2w(g) dg,

(33)
where g(w) is the inverse of w(g) in Eq. (12), i.e.,

g(w) = g0

(
w
w0

)− 1
γ

. (34)
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Then one obtains

P (w) ≈ gβ−γ0 CA
2Lw0

{
H3,1

1,−1[g0, g(w)]−H2,1
1,−1[g0, g(w)]

}
.

(35)
This analytical result compares favorably with the simu-
lation results in Fig. 5(a). For relatively large w, we can
get a simple scaling form from Eq. (35) as follows:

P (w) ∼ w−
3−α−β+γ

γ . (36)

Thus, in order for P (w) to decrease for large w, the fol-
lowing condition must be satisfied:

γ > α+ β − 3. (37)

This condition narrows down the parameter region for
stylized facts, as depicted in Fig. 3(e).

Next, we obtain the expected strength in two forms:
s(k) and s(l). We obtain s(l) as

s(l) ≡
l∑

g=g0

Ng
N 〈k〉g〈w(g)〉, (38)

where 〈w(g)〉 ≡
∫∞

0
wPg(w)dw = w(g)

2 . One then obtains

s(l) ≈ gβ+γ0 w0CA
2N

[
H3,1

1,1 (g0, l)−H2,1
1,1 (g0, l)

]
. (39)

This analytical result is compared with the simulation
results in Fig. 5(c). In most cases of our simulations, we
use parameter values satisfying that α + β + γ > 3. It
implies that s(l) is approaching a constant from below,
rather than increasing indefinitely. For the calculation of
s(k), we assume that

s(k) ≡ s[l = l(k)]. (40)

In Fig. 5(d), we plot s(k) against k[l(k)] to find our ap-
proximated solution to be comparable with the simula-
tion results, but with systematic discrepancy.

Then, one can get the strength distribution P (s) from
the identity P (s)ds = P (k)dk using the above s(k). The
peaked P (k) combined with the increasing s(k) leads to
the peaked P (s), as evidenced by the simulation results
in Fig. 5(b). The peak turns out to be around at the
average strength 〈s〉 ≈ 〈k〉〈w〉 ≈ 8.4.

Finally, we discuss the behavior of the neighborhood
overlap o(w). Once a link with weight w is given, the link
must have been created in a layer g with g0 ≤ g ≤ g(w).
The probability qw,g that the link of weight w is created
in the layer g reads

qw,g ≡ Lg/w(g)∑g(w)

g′=g0
Lg′/w(g′)

, (41)

where 1
w(g) comes from Pg(w). If the link ij is created

in the layer g, nodes i and j have (g − 2)p(g)2 common

neighbors on average, leading to the expected number of
common neighbors as

〈e〉w ≡
g(w)∑
g=g0

qw,g(g − 2)p(g)2. (42)

≈ g2β0 {H
4,1
3,−1[g0,g(w)]−3H3,1

3,−1[g0,g(w)]+2H2,1
3,−1[g0,g(w)]}

H3,1
1,−1[g0,g(w)]−H2,1

1,−1[g0,g(w)]
.(43)

Next, we take an approximation of both ki and kj in
Eq. (8) as k≥[g(w)] in Eq. (27) to finally obtain

o(w) ≈ 〈e〉w
2k≥[g(w)]−2−〈e〉w . (44)

For our choice of parameter values, this analytical result
of o(w) turns out to be increasing and then decreasing
with w, but with systematic discrepancy with the simula-
tion results as shown in Fig. 5(e). The increasing behav-
ior of o(w) for small w can be understood by considering
a simple scaling form for large g(w). Since α+β > 3 and
3− α− 3β + γ > 0 for our choice of exponent values, we
get

o(w) ∼ 〈e〉w
k≥[g(w)] ∼ w

2β−1
γ . (45)

Thus, the increasing behavior of o(w) for small w is re-
alized for β > 1

2 , and enhanced by the smaller γ. This is
because the relatively large β reduces the possibility of
having common neighbors in large communities, which
leads to smaller neighborhood overlaps for weaker links.
However, this argument does not apply to the very strong
links as the value of p(g) for small g is still high for large
β. This may account for the decreasing behavior of o(w)
for very large w that has been empirically observed in
some datasets [9, 69].

VI. CONCLUSIONS

Despite a number of empirical findings for social net-
works, the multi-channel weighted social (MWS) network
has never been comprehensively identified, prompting us
to ask a series of important questions: What does the
MWS network look like? Then how can it be parsimo-
niously modeled or reproduced? As for the first question,
we expect that the structure of the MWS network is re-
flected in the empirical findings from partial datasets of
the network. For this, we have found several commonly
observed features or stylized facts in various datasets
of social networks, such as broad distributions of local
network quantities, existence of communities, assorta-
tive mixing, and intensity-topology correlations. These
stylized facts are listed in Table I. Among them, the
overall decreasing degree and strength distributions are
not fully consistent with common sense. In particular,
we expect the degree and strength distributions to be
peaked [22, 23].

As for the parsimonious modeling of the MWS net-
work, we have devised the community-based static model
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for reproducing the stylized facts with the expected
peaked behavior of degree and strength distributions. For
our model, we have randomly assigned a number of com-
munities to a given set of isolated nodes using three as-
sumptions, such that (i) the size g of each community
is drawn from a power-law distribution with the expo-
nent α, (ii) the link density for the community of size g
is given as a decreasing function of g, controlled by the
power-law exponent β, and (iii) the characteristic weight
of links created in the community of size g is given as
a decreasing function of g, controlled by the power-law
exponent γ. With these few assumptions about com-
munities, realistic social networks have successfully been
reproduced such that they show almost all stylized facts
for a wide range of parameter space of (α, β, γ). Note
that our assumptions are reasonable, yet they could be
deduced from more fundamental mechanisms for the cre-
ation, aging, and severance of links.

We could obtain some analytical results for local net-
work quantities that compare favorably with the numeri-
cal results. It is because our model can be interpreted as
the aggregate of random uniform hypergraphs with vari-
ous degrees. Such analytic results indeed provide deeper
understanding of the consequences of the model. More
importantly, thanks to the simplicity and explicitness of
our model, we expect it to serve as a general reference
system for further research in the direction of investigat-
ing the structure and dynamics of the MWS network, as
well as the dynamical processes taking place in the MWS
network. In addition, once we better understand how the
sampling relates the MWS network to the partial obser-
vations, we can better translate the conclusions drawn
from partial datasets into those for the MWS network.

We remark that we have ignored the known correla-
tions such as those due to the geographical constraint [28]
and/or demographic information [30]. These correlations
can be incorporated for more realistic modeling of the
MWS network. For example, since the geographical dis-
tance between a pair of nodes is found to be negatively
correlated with the link probability between them [28],
geographically close nodes can be chosen when assigning
communities to nodes, as done in Ref. [39].

Finally, we briefly discuss the rank curve analysis as
one of the stylized facts for social networks. How in-
dividuals distribute their limited resources like time to
their neighbors is also indicative in characterizing the so-
cial networks at the individual level. The rank curve
of a node is defined by the weights of links involving the
node in a descending order. The layered structure in rank
curves has been claimed [66, 82], while the exponential or
power-law functional forms have been successfully used
for fitting empirical rank curves [83, 84]. In fact, there is a
chance to obtain the layered or stepwise rank curves from
our model by assuming that all links in the same layer
have the same weight, e.g., by using Pg(w) = δ[w−w(g)]
in Eq. (A1). However, this functional form for Pg(w) re-
quires too strict conditions for the parameter values, as
discussed in Appendix A. As the functional form of rank

curves is yet inconclusive, we leave this issue for a future
work.
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Appendix A: Alternative forms of Pg(w)

In the main text, we studied the case with the uniform
distribution for Pg(w). Here we discuss two alternative
forms of Pg(w). The first case is the delta function as

Pg(w) = δ[w − w(g)], (A1)

with the same w(g) = w0( g0g )γ as in Eq. (12). We then

find that the parameter range for stylized facts is strongly
limited. For example, we obtain the weight distribu-

tion as P (w) ∼ w−
2−α−β

γ . It implies that for decreas-
ing P (w) one must have α + β < 2, which is hardly
realistic, considering the empirical values of these expo-
nents [11, 35, 36, 70, 71]. As for the second case, we can
study the exponential distribution as follows:

Pg(w) = 1
w(g)e

−w/w(g). (A2)

We find the same scaling behavior for large w as in
Eq. (36). Thus, the advantage of this form is only
marginal compared with our choice of the uniform distri-
bution.

Appendix B: Overlapping communities

In order to consider the case of overlapping communi-
ties, we introduce an overlapping probability qgg′m that
two communities of size g and g′ share m nodes with
1 ≤ m ≤ min{g, g′}. Here we assume that p(g) = 1
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for all g, which provides an upper bound of qgg′m. One
obtains

qgg′m ≡
(
N
m

)(
N−m
g−m

)(
N−g
g′−m

)(
N
g

)(
N
g′

)
= g!g′!

m!(g−m)!(g′−m)!
(N−g)!(N−g′)!
N !(N−g−g′+m)!

≈ m!
Nm

(
g

m

)(
g′

m

)
. (B1)

We get the basic quantities as

qgg1 ≈ g2

N , qgg2 ≈
[g(g−1)]2

2N2 , (B2)

qgg′1 ≈ gg′

N , qgg′2 ≈ g(g−1)g′(g′−1)
2N2 . (B3)

Provided that N � g, qgg′2 is found to be mostly negli-
gible. It implies that it is very unlikely to find a pair of
nodes belonging to multiple communities, whether com-
munities have the same size or not, i.e., whether they are
in the same layer or not. The average number of links in
the layer g can be obtained as

Lg = ng
g(g−1)

2 p(g)− ng(ng−1)
2

g∑
m=2

m(m−1)
2 p(g)qggm

≈ ng g(g−1)
2 p(g)− ng(ng−1)

2 p(g) [g(g−1)]2

2N2 . (B4)

For the second line, we have taken only the dominant
term in the summation.

We can also calculate the exact number of nodes chosen
for communities of size g, denoted by Ng, by considering
the effect by overlapping communities. The maximum of
Ng is gng as ng communities are assigned with g nodes
for each community. Ng can be smaller than gng due to
two factors: (i) Some nodes may be isolated in the layer
g if p(g) < 1. (ii) Some nodes may belong to multiple
communities. For the former, the probability of a node
being isolated is [1 − p(g)]g−1, provided that this node
could belong to only one community. For the latter, the
dominant case is when two communities overlap over one
node, whose probability is qgg1. In sum, one obtains

Ng ≈ gng{1− [1− p(g)]g−1} − ng(ng−1)
2

g2

N . (B5)

We then get the average degree only for nodes chosen for
communities in the layer g as

〈k〉g =
2Lg
Ng
≈ (g−1)p(g)− 1

2N2 (ng−1)p(g)g(g−1)2

1−[1−p(g)]g−1− 1
2N (ng−1)g

. (B6)

If p(g)� 1 and N is sufficiently large, one obtains 〈k〉g ≈
1, implying that links are mostly isolated.

Appendix C: Effects of β and γ for a fixed α = 2.5

We numerically obtain the intensity-related quantities,
i.e., ms

〈s〉 , ρsk, ρow, and ∆fc, by varying β and γ while

keeping α = 2.5, for which it is expected to show the
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FIG. 6. (Color online) Effects of β and γ on intensity-related
properties for a given α = 2.5: (a) ms

〈s〉 , (b) ρsk, (c) ρow, and

(d) ∆fc, with corresponding threshold values (black lines) for
stylized facts. (e) Assuming that the intensity-related stylized
facts are reproduced when ms

〈s〉 > 0.1, ρsk > 0.1, ρow > 0, and

∆fc > 0.001, we barely find the parameter region surrounded
by four curves from (a–d). If the condition for positive ρow
is relaxed, then we have the wide range of parameter space
(shaded area) for the stylized facts, i.e., for large β and in-
termediate γ. Here the results have been averaged over 10
networks generated using N = 3 · 104, 〈k〉 = 100, g0 = 3,
gmax = 103, and w0 = 1. The dashed line, γ = α + β − 3,
indicates the criterion for the decreasing behavior of P (w)
obtained from Eq. (37).

topological stylized facts for 0.1 < β < 0.6. As shown in
Fig. 6, we apparently find a wide region in the param-
eter space of (β, γ), where all intensity-related stylized
facts are reproduced, i.e., relatively large ms

〈s〉 , ρsk, and

∆fc, as well as positive ρow, by using the same thresh-
old values for these quantities as discussed in the main
text. However, as the topological stylized facts are re-
produced for 0.1 < β < 0.6, the parameter region for the
intensity-related stylized facts must be narrow. Thus, if
the condition for positive ρow is relaxed again, we have
the wide range of the parameter space for the stylized
facts to be reproduced, i.e., for large β and intermediate
γ. This region is depicted as shaded in Fig. 6(e).
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Appendix D: Standard deviation for the degrees

In order to take into account the correlation between
links imposed by the communities in the degree distri-
bution, we separate nodes chosen for communities from
those not chosen in each layer g. Then Pg(k) consists of
two parts, one for nodes chosen for communities and the
other for those not chosen:

Pg(k) =
(

1− Ng
N

)
δk,0 +

Ng
N

(
g − 1

k

)
p(g)k[1−p(g)]g−1−k,

(D1)
where k = 0, · · · , g − 1. Note that isolated nodes are
either those not chosen for communities or those chosen
but left with no links when p(g) < 1. The calculation
of P (k) from the above Pg(k) is not trivial. In order
to calculate the standard deviation for the degrees, we
assume that

Pg(k) =
(

1− Ng
N

)
δ(k) +

Ng
N δ(k − 〈k〉g). (D2)

One obtains the variance for the layer g as

σ2
g =

Ng
N

(
1− Ng

N

)
〈k〉2g, (D3)

leading to the variance for the entire network as

σ2 ≡
gmax∑
g=g0

σ2
g ≈

∫ gmax

g0

σ2
gdg (D4)

=
g2β0 CA
N

[
H4,1

2,0 (g0, gmax)− 2H3,1
2,0 (g0, gmax) +H2,1

2,0 (g0, gmax)
]

− g
2β
0 (CA)2

N2

[
H5,2

2,0 (g0, gmax)− 2H4,2
2,0 (g0, gmax) +H3,2

2,0 (g0, gmax)
]
,

(D5)

where Hu,v
m,n is defined in Eq. (18).
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[30] H.-H. Jo, J. Saramäki, R. I. M. Dunbar, and K. Kaski,
Scientific Reports 4, 6988 (2014).

[31] M. S. Granovetter, American Journal of Sociology 78,
1360 (1973).

[32] L. Pappalardo, G. Rossetti, and D. Pedreschi, in 2012
IEEE/ACM International Conference on Advances in

http://dx.doi.org/10.1103/revmodphys.74.47
http://dx.doi.org/10.1103/revmodphys.74.47
http://arxiv.org/abs/cond-mat/0106096
http://dx.doi.org/10.1126/science.1165821
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://arxiv.org/abs/1408.2701
http://dx.doi.org/10.1007/s00779-005-0046-3
http://dx.doi.org/10.1007/s00779-005-0046-3
http://dx.doi.org/10.1103/physreve.83.056109
http://dx.doi.org/10.1103/physreve.83.056109
http://dx.doi.org/10.1371/journal.pone.0107878
http://dx.doi.org/10.1073/pnas.0405728101
http://dx.doi.org/10.1073/pnas.0405728101
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.1073/pnas.0610245104
http://dx.doi.org/10.1073/pnas.0610245104
http://arxiv.org/abs/physics/0610104v1
http://dx.doi.org/10.1140/epjds/s13688-015-0046-0
http://dx.doi.org/10.1140/epjds/s13688-015-0046-0
http://arxiv.org/abs/1502.03406
http://dx.doi.org/10.1103/physreve.90.062805
http://dx.doi.org/10.1103/physreve.90.062805
http://dx.doi.org/10.1038/srep09752
http://dx.doi.org/10.1038/srep09752
http://arxiv.org/abs/1111.4503
http://arxiv.org/abs/1111.4503
http://dx.doi.org/ 10.1145/1772690.1772751
http://dx.doi.org/ 10.1145/1772690.1772751
http://dx.doi.org/10.1016/j.socnet.2010.06.001
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1073/pnas.1004008107
http://dx.doi.org/10.1073/pnas.0501179102
http://dx.doi.org/10.1073/pnas.0501179102
http://dx.doi.org/10.1073/pnas.0501179102
http://dx.doi.org/10.1103/physreve.72.036118
http://dx.doi.org/10.1103/physreve.72.036118
http://dx.doi.org/10.1103/physreve.73.016102
http://dx.doi.org/10.1103/physreve.73.016102
http://arxiv.org/abs/cond-mat/0505232
http://dx.doi.org/10.1103/physreve.94.052319
http://www.worldcat.org/isbn/9781400833993
http://dx.doi.org/ 10.1371/journal.pone.0133005
http://arxiv.org/abs/1609.08381
http://arxiv.org/abs/1609.08381
http://dx.doi.org/10.1088/1367-2630/9/6/179
http://arxiv.org/abs/0906.0612
http://arxiv.org/abs/0906.0612
http://dx.doi.org/10.1103/physrevlett.89.208701
http://dx.doi.org/10.1103/physrevlett.89.208701
http://dx.doi.org/10.1371/journal.pone.0016939
http://dx.doi.org/10.1371/journal.pone.0016939
http://dx.doi.org/10.1038/srep00370
http://dx.doi.org/10.1038/srep06988
http://dx.doi.org/10.2307/2776392
http://dx.doi.org/10.2307/2776392
http://dx.doi.org/10.1109/asonam.2012.180
http://dx.doi.org/10.1109/asonam.2012.180


14

Social Networks Analysis and Mining (IEEE, 2012) pp.
1040–1045.

[33] J. M. Kumpula, J.-P. Onnela, J. Saramäki, K. Kaski, and
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