
An improved quantum-inspired algorithm for linear
regression
András Gilyén1, Zhao Song2, and Ewin Tang3

1Alfréd Rényi Institute of Mathematics
2Adobe Research
3University of Washington

We give a classical algorithm for linear regression analogous to the quantum
matrix inversion algorithm [Harrow, Hassidim, and Lloyd, Physical Review
Letters’09] for low-rank matrices [Wossnig, Zhao, and Prakash, Physical Review
Letters’18], when the input matrix A is stored in a data structure applicable
for QRAM-based state preparation.

Namely, suppose we are given an A ∈ Cm×n with minimum non-zero
singular value σ which supports certain efficient `2-norm importance sam-
pling queries, along with a b ∈ Cm. Then, for some x ∈ Cn satisfying
‖x − A+b‖ ≤ ε‖A+b‖, we can output a measurement of |x〉 in the compu-
tational basis and output an entry of x with classical algorithms that run in
Õ
(‖A‖6

F‖A‖
6

σ12ε4
)
and Õ

(‖A‖6
F‖A‖

2

σ8ε4
)
time, respectively. This improves on previous

“quantum-inspired” algorithms in this line of research by at least a factor of
‖A‖16

σ16ε2 [Chia, Gilyén, Li, Lin, Tang, and Wang, STOC’20]. As a consequence,
we show that quantum computers can achieve at most a factor-of-12 speedup
for linear regression in this QRAM data structure setting and related settings.
Our work applies techniques from sketching algorithms and optimization to the
quantum-inspired literature. Unlike earlier works, this is a promising avenue
that could lead to feasible implementations of classical regression in a quantum-
inspired settings, for comparison against future quantum computers.

András Gilyén: gilyen@renyi.hu, Formerly at the Institute for Quantum Information and Matter, California
Institute of Technology.
Zhao Song: zsong@adobe.com
Ewin Tang: ewint@cs.washington.edu

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

00
9.

07
26

8v
4

 [
cs

.D
S]

 2
7

Ju
n

20
22

https://quantum-journal.org/?s=An%20improved%20quantum-inspired%20algorithm%20for%20linear%20regression&reason=title-click
https://quantum-journal.org/?s=An%20improved%20quantum-inspired%20algorithm%20for%20linear%20regression&reason=title-click
https://orcid.org/0000-0002-7451-9687
mailto:gilyen@renyi.hu
mailto:zsong@adobe.com
mailto:ewint@cs.washington.edu

1 Introduction
An important question for the future of quantum computing is whether we can use quantum
computers to speed up machine learning [1]. Answering this question is a topic of active
research [2, 3, 4]. One potential avenue to an affirmative answer is through quantum linear
algebra algorithms, which can perform linear regression [5] (and compute similar linear
algebra expressions [6]) in time poly-logarithmic in input dimension, with some restric-
tive “quantum” assumptions [2, 3]. For machine learning tasks, a natural setting of these
assumptions is that the input is low-rank, in which case the above quantum algorithms
require that the input is given in a manner allowing efficient quantum state preparation.
This state preparation assumption is typically satisfied via a data structure instantiated
with quantum random access memory (QRAM)1 [7, 8]. A recent paper shows that, by
exploiting these assumptions, classical algorithms can also perform quantum linear algebra
with only a polynomial slowdown [9], meaning that here quantum computers do not give
the exponential speedup in dimension that one might hope for. However, these algorithms
have running times with high exponents, leaving open the possibility that quantum com-
puters admit large polynomial speedups for these problems. For example, given our current
understanding, the quantum recommendation systems algorithm [10], with running time
O∗
(‖A‖F

σ

)
, could still give a large polynomial quantum speedup, since the best-known clas-

sical algorithm has running time Õ∗
(‖A‖6

F‖A‖
16

σ24
)
[9] (improving the original running time of

Õ∗
((‖A‖F

σ

)24) [11]).2 It is an open question whether any quantum linear algebra algorithm
admits a large polynomial speedup, compared to classical numerical linear algebra [1, 12, 13].

We focus on this open question for the problem of low-rank linear regression, where
we are given a matrix A ∈ Cm×n with minimum singular value σ and a vector b ∈ Cm,
and asked to approximate x∗ := arg minx 1

2‖Ax − b‖22. Linear regression has been an
influential primitive for quantum machine learning (QML) [4] since the invention of Harrow,
Hassidim, and Lloyd’s algorithm (HHL) originally introduced for sparse A [5, 14]. The low-
rank variant that we consider commonly appears in the QML literature [15, 16]. These
algorithms, like all the algorithms we consider, are called “low-rank” because their runtimes
depend on ‖A‖

2
F

σ2 ≥ rankA, so in some sense, good performance requires the matrix A to
be strictly low-rank. However, this restriction can be relaxed with regularization, which
replaces σ2 by σ2 + λ, so that for reasonable choices of the regularization parameter λ, A
only needs to be approximately low-rank. The current state-of-the-art quantum algorithm
can produce a state ε-close to |A+b〉 in `2-norm in O∗

(‖A‖F
‖A‖

‖A‖
σ

)
time [17], given A and

b in the aforementioned data structure. We think about this running time as depending
polynomially on the (square root of) stable rank ‖A‖F

‖A‖ and the condition number ‖A‖σ .
Note that being able to produce quantum states |x〉 := 1

‖x‖
∑
i xi|i〉 corresponding to a

desired vector x is akin to a classical sampling problem, and is different from outputting
x itself. Though recent “quantum-inspired” classical algorithms [18] demonstrate that
this quantum algorithm does not admit exponential speedups, the best previous classical
algorithm of Chia, Gilyén, Li, Lin, Tang and Wang [9] runs in Õ∗

((‖A‖F
‖A‖

)6(‖A‖
σ

)28) time,
leaving significant room for polynomial quantum speedups.3

1In this paper, we always use QRAM in combination with a data structure used for efficiently preparing
states |0〉 →

∑
i
xi
‖x‖ |i〉 corresponding to vectors x ∈ Cn.

2We define Õ(T) asO(T ·polylog(T)), and defineO∗ to be bigO notation, hiding polynomial dependence
on ε and poly-logarithmic dependence on dimension.

3The ε dependence for the quantum algorithm is log 1
ε
, compared to the classical algorithm which gets

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 2

Our main result tightens this gap, giving an algorithm running in O∗
((‖A‖F
‖A‖

)6(‖A‖
σ

)12)
time. Roughly, this tightens the separation between quantum and classical from 1-to-28
to 1-to-12. As a bonus, this algorithm is a factor of ‖A‖

4

σ4 faster if we want to compute an
entry of the output, rather than to sample an index. Our algorithm is a carefully-analyzed
instance of stochastic gradient descent that exploits the sampling access provided in our
setting, combined with a technical sketching step to enforce sparsity of the input vector b.
Since it is an iterative algorithm, it is potentially more practical to implement and use as a
benchmark against future scalable quantum computers [19]. Our result suggests that other
tasks that can be solved through iterative methods, like primal-dual algorithms, may have
quantum-classical gaps that are smaller than existing quantum-inspired results suggest.

1.1 Our model
We now introduce the input and output model that we and all prior quantum-inspired
algorithms in this line of research use [20, 9]. The motivation for this model is to be a
classical analogue to the input model of QML algorithms: many such algorithms assume
that input is stored in a particular data structure in QRAM [15, 16, 8, 4, 1, 21], including
current QML algorithms for low-rank linear regression (our focus) [17].4 So, our comparison
classical algorithms must also assume that input is stored in this “quantum-inspired” data
structure, which supports several fully-classical operations. We first define the quantum-
inspired data structure for vectors (Definition 1.1), then for matrices (Definition 1.2).

Definition 1.1 (Vector-based data-structure, SQ(v) and Q(v)). For any vector v ∈ Cn,
let SQ(v) denote a data-structure that supports the following operations:

1. Sample(), which outputs the entry i with probability |vi|2/‖v‖2.

2. Query(i), which takes i ∈ [n] as input and outputs vi.

3. Norm(), which outputs ‖v‖.5

Let T (v) denote the max time it takes for the data structure to respond to any query. If
we only allow the Query operation, the data-structure is called Q(v).

Notice that the Sample function is the classical analogue of quantum state preparation,
since the distribution being sampled is identical to the one attained by measuring |v〉 in
the computational basis. We now define the quantum-inspired data structure for matrices.

Definition 1.2 (Matrix-based data-structure, SQ(A)). For any matrix A ∈ Cm×n, let
SQ(A) denote a data-structure that supports the following operations:

1. Sample1(), which outputs i ∈ [m] with probability ‖Ai,∗‖2/‖A‖2F.

1
ε6 . While this suggests an exponential speedup in ε, it appears to only hold for sampling problems, such as
measuring |A+b〉 in the computational basis. Learning information from the output quantum state |A+b〉
generally requires poly(1

ε
) samples, preventing exponential separation for computational problems.

4Although current QRAM proposals suggest that quantum hardware implementing QRAM may be
realizable with essentially only logarithmic overhead in the running time [7], an actual physical implemen-
tation would require substantial advances in quantum technology in order to maintain coherence for a long
enough time [22].

5When we claim that we can call Norm() on output vectors, we will mean that we can output a constant
approximation: a number in [0.9‖v‖, 1.1‖v‖].

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 3

2. Sample2(i), which takes a row index i ∈ [m] as input and outputs the column index
j ∈ [n] with probability |Ai,j |2/‖Ai,∗‖2.

3. Query(i, j), which takes i ∈ [m] and j ∈ [n] as input and outputs Ai,j.

4. Norm(i), which takes i ∈ [m] as input and outputs ‖Ai,∗‖.

5. Norm(), which outputs ‖A‖F.

Let T (A) denote the max time the data structure takes to respond to any query.

For the sake of simplicity, we will assume all input SQ data structures respond to
queries in O(1) time. There are data structures that can do this in the word RAM model
[9, Remark 2.15]. The dynamic data structures that commonly appear in the QML litera-
ture [10] respond to queries in O(log(mn)) time, so using such versions only increases our
running time by a logarithmic factor.

The specific choice of data structure does not appear to be important to the quantum-
classical separation, though. The QRAM and data structure assumptions of typical QML
algorithms can be replaced with any state preparation assumption, which is an assumption
implying that quantum states corresponding to input data can be prepared in time poly-
logarithmic in dimension. However, to the best of our knowledge, all models admitting
efficient protocols that take v stored in the standard way as input and output the quantum
state |v〉 also admit corresponding efficient classical sample and query operations that can
replace the data structure described above [9, Remark 2.15]. In other words, classical algo-
rithms in the sample and query access model can be run whenever the corresponding QML
algorithm can, assuming that the input data is classical. Consequently, our results on the
quantum speedup for low-rank matrix inversion appear robust to changing quantum input
models.

Notations. For a vector v ∈ Cn, ‖v‖ denotes `2 norm. For a matrix A ∈ Cm×n, A†,
A+, ‖A‖, and ‖A‖F denote the conjugate transpose, pseudoinverse, operator norm, and
Frobenius norm of A, respectively. We use Ai,j to denote the entry of A at the i-th row
and j-th column. We use Ai,∗ and A∗,j to denote the i-th row and j-th column of A.

We use E[·] and V[·] to denote expectation and variance of a random variable. Abusing
notation, for a random vector v, we denote V[v] = E[‖v − E[v]‖2]. For a differentiable
function f : Rn → R, ∇f denotes the gradient of f . We say f is convex if, for all x, y ∈ Rn
and t ∈ [0, 1], f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

We use the shorthand g . h for g = O(h), and respectively g & h and g h h for
g = Ω(h) and g = Θ(h). Õ(T) denotes O(T · polylog(T)) and O∗ denotes big O notation
that hides polynomial dependence on ε and poly-logarithmic dependence on dimension.
Note that the precise exponent on log(mn) depends on the choice of word size in our RAM
models. Quantum and classical algorithms have different conventions for this choice, hence
we use notation that elides this detail for simplicity.

1.2 Our results
In this paper, we focus on solving the following problem. Prior work in this line of research
has studied this problem in the λ = 0 case [9].

Problem (Regression with regularization). Given A ∈ Cm×n, b ∈ Cm, and a regulariza-
tion parameter λ ≥ 0, we define the function f : Cn → R as

f(x) := 1
2(‖Ax− b‖2 + λ‖x‖2).

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 4

Let6 x∗ := arg minx∈Cn f(x) = (A†A+ λI)+A†b.

We will manipulate vectors by manipulating their sparse descriptions, defined as follows:

Definition 1.3 (sparse description). We say we have an s-sparse description of x ∈ Cd if
we have an s-sparse v ∈ Cn such that x = A†v. We use the convention that any s-sparse
description is also a t-sparse description for all t ≥ s.

Our main result is that we can solve regression efficiently, assuming SQ(A). Algorithm 1
and the corresponding Theorem 1.4 directly improves the previous best result [9] due to
Chia, Gilyén, Li, Lin, Tang and Wang by a factor of ‖A‖

20

σ20ε2 .

Algorithm 1 Quantum-inspired regression via stochastic gradient descent
Input: SQ(A), Q(b), ε, and λ = O(‖A‖F ‖A‖).

1: Init: Sparsify b as described in Lemma 2.7 to obtain an s = 800 ‖A‖2
F‖b‖

2

(σ2+λ)2ε2‖x∗‖2 -sparse
b̂.

2: Set v(0) := 0 (and implicitly define x(t) = A†v(t)).
3: Set η := ε2(σ2+λ)

32‖A‖2
F‖A‖2+16λ2 and T := ln(8/ε2)

η(σ2+λ) = 32 ln
(√

8
ε

)2‖A‖2
F‖A‖

2+λ2

ε2(σ2+λ)2 .
4: for t = 0, 1, . . . , T − 1 do
5: Sample a row index r according to the row norms ‖Ar,∗‖

2

‖A‖2
F

.

6: Sample C := ‖A‖2
F

‖A‖2 column indices {ci}i∈[C] i.i.d. according to |Ar,c|2
‖Ar,∗‖2 .

7: Define v(t+1) as follows:

v(t+1) := (1− ηλ)v(t) + ηb̂− η ‖A‖
2
F

‖Ar,∗‖2
(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cj (A∗,cj)†v(t)

)
er. (1)

8: end for
9: Output: v(T) which is 322‖A‖2

F‖A‖
2+λ2

(σ2+λ)2ε2

(
25‖b‖2

2‖A‖2‖x∗‖2 + ln
(√

8
ε

))
-sparse; set x := A†v(T).

Queries to x: xj =
∑
A†j,iv

(T)
i , so query Ai,j for all non-zero v(T)

i and compute the
sum.
Sampling from |xj |2/‖x‖2: Perform rejection sampling according to Lemma 2.5.

Theorem 1.4 (Main result). Suppose we are given SQ(A) ∈ Cm×n, Q(b) ∈ Cn. Denote
σ := ‖A+‖−1 and consider f(x) for λ . ‖A‖F‖A‖. Algorithm 1 runs in

O
(
‖A‖6F‖A‖2

(σ2 + λ)4ε4

(‖b‖2

‖A‖2‖x∗‖2
+ log 1

ε

)
log 1

ε

)

time and outputs an O
(
‖A‖2

F‖A‖
2

(σ2+λ)2ε2 (‖b‖2

‖A‖2‖x∗‖2 + log 1
ε)
)
-sparse description of an x such that

‖x− x∗‖ ≤ ε‖x∗‖ with probability ≥ 0.9. This description admits SQ(x) for

T (x) = O
(
‖A‖6F‖A‖6

(σ2 + λ)6ε4 log2 1
ε

(‖b‖4

‖A‖4‖x∗‖4
+ log2 1

ε

)(‖b‖2

‖A‖2F‖x∗‖2
+ 1

))
.

6Note that for λ = 0 the function f might not be strictly convex and so the minimizer is not necessarily
unique. Nevertheless, on the image of A†, f is strictly convex. Since we will search a solution within the
image of A†, we implicitly restrict f to this subspace, thus we can assume without loss of generality that
f is strictly convex.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 5

Note that the running time stated for T (x) corresponds to the running time of Sample

and Norm; the running time of Query is O
(
‖A‖2

F‖A‖
2

(σ2+λ)2ε2 (‖b‖2

‖A‖2‖x∗‖2 + log 1
ε)
)
, the sparsity

of the description. So, unlike previous quantum-inspired algorithms, it may be the case
that the running time of the SQ query dominates, though it’s conceivable that this running
time bound is an artifact of our analysis.

Factors of ‖b‖2

‖A‖2‖x∗‖2 (which is always at least one) arise because sampling error is addi-
tive with respect to ‖b‖, and need to be rescaled relative to ‖x∗‖; the quantum algorithm
must also pay such a factor. The expression ‖A‖

2‖x∗‖2

‖b‖2 can be thought of as the fraction of
b’s “mass” that is in the well-conditioned rowspace of A. To make this rigorous, we define
the following thresholded projector.

Definition 1.5. For an A ∈ Cm×n with singular value decomposition A =
∑
σiuiv

†
i and

λ ≥ 0, we define ΠA,λ =
∑
pA,λ(σi)uiu†i where

pA,λ(σ) =


0 σ = 0
2σ
√
λ

σ2+λ 0 < σ ≤
√
λ

1
√
λ < σ.

For intuition, ΠA,0 projects onto the rowspace of A, and for nonzero λ smoothly projects
away the ui’s with singular values σi smaller than

√
λ roughly linearly, since σ√

λ
≤

pA,λ(σ) ≤ 2√
λ

for σ ∈ [0,
√
λ]. We use the definition presented here because ‖ΠA,λb‖

gives a natural lower bound for ‖x∗‖: by Fact 2.8, ‖A‖
2‖x∗‖2

‖b‖2 ≥ ‖ΠA,λb‖2

2‖b‖2 when λ ≤ ‖A‖2.
This is the “fraction of mass” type quantity that one would expect.7

As mentioned previously, we use stochastic gradient descent to solve this problem, for

T := O
(
‖A‖2

F‖A‖
2

(σ2+λ)2ε2 log 1
ε

)
iterations. Such optimization algorithms are standard for solving

regression in this setting [23, 24]: the idea is that, instead of explicitly computing the
closed form of the minimizer to f , which requires computing a matrix pseudoinverse, one
can start at x(0) = ~0 and iteratively find x(t+1) from x(t) such that the sequence {x(t)}t∈N
converges to a local minimum of f . Updating x(t) by nudging it in the direction of f ’s
gradient produces such a sequence, even when we only use decent (stochastic) estimators
of the gradient [25]. Because f is convex, it only has one minimizer, so x(t) converges to
the global minimum.6

Challenges. Though the idea of SGD for regression is simple and well-understood, we
note that some standard analyses fail in our setting, so some care is needed in analysing
SGD correctly.

• First, our stochastic gradient (Definition 2.1) has variance that depends on the norm
of the current iterate, and projection onto the ball of vectors of bounded norm is too
costly, so our analyses cannot assume a uniform bound on the second moment of our
stochastic gradient.

• Second, we want a bound for the final iterate x(T), not merely a bound on averaged
iterates as is common for SGD analyses, since using an averaging scheme would
complicate the analysis in Section 2.2.

7Note that this also means ‖A‖
2‖x∗‖2

‖b‖2 ≥ ‖Mb‖2

2‖b‖2 for any matrix M satisfying M � ΠA,λ. In particular,
it holds when M projects onto only those ui’s such that σi ≥

√
λ, i.e., when M is a true projector onto

the well-conditioned subspace of the rowspace of A.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 6

• Third, we want a bound on the output x of our algorithm of the form ‖x − x∗‖ ≤
ε‖x∗‖. We could have chosen to aim for the typical bound in the optimization
literature of f(x) − f(x∗) ≤ ε(f(x(0)) − f(x∗)), but our choice is common in the
QML literature, and it only makes sense to have SQ(x) when x is indeed close to x∗

up to multiplicative error.

• Finally, note that acceleration via methods like the accelerated proximal point algo-
rithm (APPA) [26] framework cannot be used in this setting, since we cannot pay
the linear time in dimension necessary to recenter gradients.

The SGD analysis of Bach and Moulines [27] meets all of our criteria, which inspired the
error analysis of this paper, while we use quantum-inspired ideas for the computation of
the stochastic gradients (Definition 2.1).

The running time of SGD is only good for our choice of gradient when b is sparse, but

through a sketching matrix we can reduce to the case where b has O
(
‖A‖2

F‖A‖
2

σ4ε2
‖b‖2

‖AA+b‖2

)
non-zero entries. Additional analysis is necessary to argue that we have efficient sample
and query access to the output, since we need to rule out the possibility that our output x
is given as a description A†x̃ such that x̃ is much larger than x, in which case computing,
say, ‖x‖ via rejection sampling would be intractable.

Our analysis of the stochastic gradient descent is completely self-contained and the anal-
ysis of the stochastic gradients only relies on a few standard results about quantum-inspired
sampling techniques, so the paper shall be accessible even without having a background
on convex optimization.

1.3 Discussion
Comparisons to prior work. First, we describe the prior work on quantum-inspired
classical low-rank linear regression algorithms in more detail. There are three prior papers
here: [28] achieves a running time of Õ(‖A‖

6
Fk

6‖A‖16

σ22ε6) (where k ≤ ‖A‖2
F

σ2 is the rank of A),

[29] achieves an incomparable running time of O(‖A‖
6
F‖A‖

22

σ28ε6), and [9] achieves the same
running time as [29] for a more general problem (where σ can be chosen to be a threshold,
and isn’t necessarily the minimum singular value of A). For simplicity of exposition, we
only compared our algorithm to the latter running time. However, our algorithm improves
on all previous running times: an improvement of k6 ‖A‖10

σ10ε2 on the former, and ‖A‖
16

σ16ε2 on the
latter.

Comparison to [23] In some sense, this work gives a version of the regression algorithm
of Gupta and Sidford [23] (which, alongside [24], is the current state-of-the-art iterative
algorithm for regression in many numerically sparse settings) that trades running time
for weaker, more quantum-like input assumptions. Their algorithm takes A and b, with
only query access to the input’s nonzero entries, and explicitly outputs a vector x satisfying
‖x−x∗‖ ≤ ε‖x∗‖ in Õ∗

(
nnz(A)+ ‖A‖F

σ nnz(A)
2
3n

1
6
)
time (shown here after naively bounding

numerical sparsity by n). They use a stochastic first-order iterative method, that we adapt
by mildly weakening the stochastic gradient to be efficient assuming the quantum-inspired
data structure (instead of the bespoke data structure they design for their algorithm).

To elaborate, we make a direct comparison. Suppose we wish to apply our algorithm
from Theorem 1.4 to Gupta and Sidford’s setting, meaning that we are given A and b as
lists of non-zero entries, and wish to output the vector x in full satisfying ‖x − x∗‖ ≤
ε‖x∗‖. Because of the difference in setting, we need additional O(nnz(A)) time to set

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 7

up the data structures to get SQ(A), and we also need O∗(‖A‖
2
F‖A‖

2

σ4 n) time to query for
all the entries of x, given the SQ(x) from the output of Algorithm 1. In total, this takes
O(nnz(A))+O∗

(‖A‖6
F‖A‖

2

σ8 + ‖A‖
2
F‖A‖

2

σ4 n
)
time. This is worse than Gupta and Sidford’s time,

even after accounting for the fact that, unlike in the setting we consider, we can apply the
acceleration framework in [26]. Acceleration speeds up our algorithm and reduces our error
dependence to poly-logarithmic in 1

ε , at the cost of nnz(A) time per “phase” throughout
the logarithmically many phases. The quantum algorithm performs comparably, since one
needs to run it O∗(n) times so that state tomography can convert copies of |x〉 to an
explicit list of x’s entries, resulting in a total running time of O(nnz(A)) + Õ∗

(‖A‖F
σ n

)
.

However, our algorithm performs better than Gupta and Sidford’s algorithm in a weaker
setting. QML algorithms often don’t take the form specified above, where the goal is to
output a full vector and we assume nothing about the input. For example, the quantum
recommendation system [10] only outputs a measurement from the output vector, and
works in a setting (providing online recommendations, in essence a dynamic data structure
problem) where the nnz(A) cost for building a data structure can be amortized over many
runs of their algorithm. This is the setting we design our algorithm for, where we are
given SQ(A) directly and only wish to know a measurement from the output vector via
SQ(x), and we achieve a runtime independent of dimension via Algorithm 1. Gupta and
Sidford’s algorithm (even without acceleration) does not behave well in this setting, and
would have a running time polynomial in input size, thus being exponentially slower than
the quantum-inspired (and quantum) algorithm. Our goal with this result is to advance
the complexity theoretic understanding of quantum speedups by limiting the possibility
of quantum speedup in the most general setting possible. To this end, we assume fairly
little about our input, so our classical algorithms can work for many different applications
where one might hope for quantum speedups. This comes at the cost of increased runtime,
including a polynomial dependence on ε−1 which, being exponentially larger than in other
classical algorithms, potentially reduces the applicability of our result as an algorithm. On
the other hand, a similar drawback is also present in the related quantum algorithms, so
the resulting runtimes can be at least more directly compared.

Finally, we note that sketching algorithms could also have been used to improve upon
previous quantum-inspired results. In particular, one can view the `2-type samples that our
input data structure supports as ‖A‖

2
F

kσ2 -oversampled leverage score samples, enabling the
application of typical sketching results [30] associated with approximating matrix products
and approximate subspace embeddings. However, we were not quite able to find an algo-
rithm with running time as good as Theorem 1.4 through the sketching literature, though
something similar might be possible (say, the same running time but with the alternate
guarantee that ‖Ax − b‖ ≤ (1 + ε)‖Ax∗ − b‖). Our guarantee that ‖x − x∗‖ ≤ ε‖x∗‖ is
perhaps more natural in this quantum-inspired setting, since we need x to be bounded
away from zero to enable efficient (rejection) sampling. Sketching may be more beneficial
in the slightly less restrictive setting where one wishes to find any dynamic data structure
that can store A, b and output measurements from |≈ A+b〉. In this setting, one wouldn’t
be required to use the QRAM data structure, and could build alternative data structures
that could exploit, for example, oblivious sketches.8

Comparisons to concurrent and subsequent work. Around the same time as this
work, Chepurko, Clarkson, Horesh, and Woodruff described algorithms for linear regression

8To our knowledge, prior versions of [31] produced algorithms in this setting, but the current version
only uses the standard QRAM data structure.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 8

and “quantum-inspired” recommendation systems, heavily using technical tools from the
sketching literature [31]. Their algorithm gives a roughly ‖A‖2

F
‖A‖2 improvement over our

algorithm, ignoring minor details involving problem-specific parameters.9 This is done
using an algorithm similar to that of [28], but with an improved analysis and an application
of conjugate gradient to solve a system of linear equations (instead of inverting the matrix
directly).

Subsequent work by Shao and Montanaro [32] gives an algorithm improving on this
result by a factor of ‖A‖

4

σ4ε2 when λ = 0 and Ax∗ = b exactly. Their work uses the randomized
Kaczmarz method [33], which is a version of stochastic gradient descent [34]. If one changes
our stochastic gradient ∇g to the randomized Kaczmarz update used in [32], replacing A†b
with the sketch ‖A‖2

F
‖Ar,∗‖2A

†
r,∗br, (i.e., replacing b̂ in Equation (1) by ‖A‖2

F
‖Ar,∗‖2 brer) then our

analysis recovers a similar result for the special case when λ = 0 and Ax∗ = b.10

Outlook. Our result and the aforementioned follow-up work show that simple iterative
algorithms like stochastic gradient descent can be nicely combined with quantum-inspired
linear algebra techniques, resulting in quantum-inspired algorithms that compare favor-
ably to direct approaches based on finding approximate singular value decompositions [9].
However, one needs to be careful, as more involved iterative steps require more involved
quantum-inspired subroutines that can rapidly blow up the overall complexity, as occurs
in the quantum-inspired SDP solver of [9], for example. We leave it to future work to
study which other iterative approaches can be similarly advantageously combined with
quantum-inspired linear algebra techniques.

2 Proofs
For simplicity we assume knowledge of ‖A‖, σ, and later, ‖x∗‖, exactly, despite that our
SQ(A) only gives us access to ‖A‖F. Just an upper bound on ‖A‖ and lower bounds on σ
and ‖x∗‖ respectively suffice, giving a running time bound by replacing these quantities in
our complexity bounds by any respective upper or lower bounds. This holds because these
quantities are only used to choose the internal parameters s, η−1, T, and C, and replacing
these quantities by their respective bounds only increase these internal parameters, only
improving the resulting error bounds of Algorithm 1.

The algorithm we use to solve regression is stochastic gradient descent (SGD). Suppose
we wish to minimize a convex function f : Rn → R. Consider the following recursion,
starting from x(0) ∈ Rn, with a random function ∇g : Rn → R and a deterministic
sequence of positive scalars (ηt)k≥1.

x(t) = x(t−1) − ηt∇g(x(t−1)) (2)

9This comparison is between [31, Theorem 18], which, upon taking λ = 0 and d′ = 1, gives a runtime
of Õ

(
ε−4‖A‖4

F‖A‖4σ−8 log(d)
)
to return their output description, and our Theorem 1.4, which gives a

runtime of Õ
(
ε−4‖A‖6

F‖A‖2σ−8) to return our description of x.
10Specifically, the bottleneck of our algorithm is the large bound on the residual E[‖∇g(x∗)‖2], since

this is the piece of the error that does not decrease exponentially. If λ = 0 and Ax∗ = b, then making the
described change leads to Ax being replaced by Ax− b in the variance bound of Lemma 2.2, which is then
zero for x = x∗. So, unlike in the original analysis, increasing C beyond ‖A‖

2
F

‖A‖2 actually helps to reduce this
residual. For example, increasing C by a factor of 1

ε2 reduces the number of iterations by a factor of 1
ε2 ,

decreasing the runtime (which is linear in C and quadratic in iteration count) by a factor of 1
ε2 . We point

the reader to [34] for further exploration of improving the residual in SGD and randomized Kaczmarz.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 9

The idea behind SGD is that if ∇g is a good stochastic approximation to ∇f , then x(t)

will converge to the minimizer of f .
In our case, as defined in the introduction, f(x) = 1

2(‖Ax− b‖2 + λ‖x‖2), so we need a
stochastic approximation to ∇f(x) = A†Ax−A†b+ λx. Our choice of stochastic gradient
comes from observing that A†Ax =

∑m
r=1

∑n
c=1(Ar,∗)†Ar,cxc, so we can estimate this by

sampling some of the summands.

Definition 2.1. We define ∇g(x) to be the random function resulting from the following
process. Draw r ∈ [m] from the distribution that is r with probability ‖Ar,∗‖

2

‖A‖2
F
, and then

draw c1, . . . , cC i.i.d. from the distribution that is c with probability |Ar,c|
2

‖Ar,∗‖2 . For this choice
of r and c1, . . . , cC , take

∇g(x) = ‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cjxcj

)
(Ar,∗)† −A†b+ λx. (3)

Notice that the first term of this expression is the average of copies of the random vector

‖A‖2F
|Ar,c|2

Ar,cxc(Ar,∗)† with probability
|Ar,c|2

‖A‖2F
.

Algorithm 1 is simply running the iteration Eq. (2) with x(0) = ~0, ∇g as defined in
Definition 2.1, and ηt := ε2(σ2+λ)

32‖A‖2
F‖A‖2+16λ2 (as we will see, this comes from applying Propo-

sition 2.3 with ε′ = ε/2). In Section 2.1, we prove that x(T) satisfies the desired error
bound for T := Θ

(‖A‖2
F‖A‖

2+λ2

(σ2+λ)2ε2 log 1
ε

)
. In Section 2.2, we prove that computing x(T) and

simulating SQ(x(T)) can be done in the desired running time, assuming that b is sparse.
Finally, in Section 2.3, we show how to generalize our result to non-sparse b.

2.1 Error analysis of stochastic gradient descent
We now list the properties of the stochastic gradient from Definition 2.1: the proofs are
straightforward computation and so are deferred to the appendix.

Lemma 2.2. For fixed x, y ∈ Cn and the random function ∇g(·) defined in Definition 2.1,
the following properties hold (∇g(x) and ∇g(y) use the same instance of the random
function):

Part 1. E[∇g(x)] = ∇f(x) = A†Ax−A†b+ λx

Part 2. V[∇g(x)] = 1
C
‖A‖4F‖x‖2 +

(
1− 1

C

)
‖A‖2F‖Ax‖2 − ‖A†Ax‖2

Part 3. E[‖∇g(x)−∇g(y)‖22] = ‖(A†A+ λI)(x− y)‖2 + V[∇g(x− y)]

We take C = ‖A‖2F/‖A‖2, which is the largest value we can set C to before it stops
having an effect on the variance of ∇g. In Section 2.2, we will see that it’s good for SGD’s
running time to take C to be as large as possible. In this setting, and more generally if
C ≤ ‖A‖

2
F‖x‖

2

‖Ax‖2 the variance in Part 2 can be bounded as 2
C ‖A‖

4
F‖x‖2.

Now, we show that performing SGD for T iterations gives an x sufficiently close to the
optimal vector x∗.

Proposition 2.3. Consider a matrix A ∈ Cm×n, a vector b ∈ Cn, a regularization param-
eter λ ≥ 0, and an error parameter ε ∈ (0, 1]. Denote σ := ‖A+‖−1. Let x(T) be defined

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 10

as Eq. (2), with x(0) = ~0, ηt := η := ε2(σ2+λ)
8‖A‖2

F‖A‖2+4λ2 , and ∇g as defined in Definition 2.1

with C := ‖A‖2
F

‖A‖2 . Then for T := ln(2/ε2)
η(σ2+λ) = 8 ln

(√
2
ε

)2‖A‖2
F‖A‖

2+λ2

ε2(σ2+λ)2 ,

E[‖x(T) − x∗‖2] ≤ ε2‖x∗‖2.

In particular, by Chebyshev’s inequality, with probability ≥ 0.96, ‖x(T) − x∗‖ ≤ 5ε‖x∗‖.

Proof. Stochastic gradient descent is known to require a number of iterations linear in
(something like the) second moment of the stochastic gradient. To analyze SGD, we
loosely follow a strategy used by Bach and Moulines [27]. First, note that

E[‖∇g(x)‖2]
≤ E[2‖∇g(x)−∇g(x∗)‖2 + 2‖∇g(x∗)‖2] since ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2

= 2
(
‖(A†A+ λI)(x− x∗)‖2 + V[∇g(x− x∗)] + V[∇g(x∗)]

)
since ∇f(x∗) = ~0

≤ 2
(
‖(A†A+ λI)(x− x∗)‖2 + 2‖A‖2F‖A‖2(‖x− x∗‖2 + ‖x∗‖2)

)
by Lemma 2.2

≤ 2(‖A†A+ λI‖2 + 2‖A‖2F‖A‖2)‖x− x∗‖2 + 4‖A‖2F‖A‖2‖x∗‖2.

Next, we use the well-known fact that f(x) is (σ2 + λ)-strongly convex,11 implying that
〈∇f(x)−∇f(y), x− y〉 ≥ (σ2 + λ)‖x− y‖2 [25, Lemma 3.11], which can also be directly
verified using the formula ∇f(x) = A†Ax−A†b+ λx for the gradient.

E[‖x(t) − x∗‖2 | x(t−1)]
= E[‖x(t−1) − x∗‖2 + 2〈x(t−1) − x∗, x(t) − x(t−1)〉+ ‖x(t) − x(t−1)‖2 | x(t−1)]
= E[‖x(t−1) − x∗‖2 − 2ηt〈x(t−1) − x∗,∇g(x(t−1))〉+ η2

t ‖∇g(x(t−1))‖2 | x(t−1)]
= ‖x(t−1) − x∗‖2 − 2ηt〈x(t−1) − x∗,∇f(x(t−1))〉+ η2

t E[‖∇g(x(t−1))‖2 | x(t−1)]
≤ (1− 2ηt(σ2 + λ) + 2η2

t (‖A†A+ λI‖2 + 2‖A‖2F‖A‖2))‖x(t−1) − x∗‖2 + 4η2
t ‖A‖2F‖A‖2‖x∗‖2.

We conditioned on x(t−1) in the above computation, so the randomness in ∇g came only
from one iteration. Let δt := E[‖x(t) − x∗‖2]. Then by taking expectation over x(t−1) for
both sides of the above computation, we get

δt ≤ (1− 2ηt(σ2 + λ) + 2η2
t (‖A†A+ λI‖2 + 2‖A‖2F‖A‖2))δt−1 + 4η2

t ‖A‖2F‖A‖2‖x∗‖2

≤ (1− 2ηt(σ2 + λ) + 2η2
t (4‖A‖2F‖A‖2 + 2λ2))δt−1 + 4η2

t ‖A‖2F‖A‖2‖x∗‖2,

where the last step follows from the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2. Now, by
substituting η2

t = η2 = η ε2(σ2+λ)
8‖A‖2

F‖A‖2+4λ2 and using that ε ≤ 1 we get

δt ≤ (1− η(σ2 + λ))δt−1 + ε2

2 η(σ2 + λ)‖x∗‖2.

This is a purely deterministic recursion on δt, which we can bound by

δt ≤
(

exp(−tη(σ2 + λ)) + ε2

2

)
‖x∗‖2.

11Since we search for a sparse description of a solution vector we are effectively restricting the function
to the image of A†, and on this subspace the function is indeed (σ2 + λ)-strongly convex.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 11

Since x(0) = ~0 we have δ0 = ‖x∗‖2 so the bound holds for t = 0, and by induction we have

δt ≤ (1− η(σ2 + λ))
(

exp(−(t− 1)η(σ2 + λ)) + ε2

2

)
‖x∗‖2 + ε2

2 η(σ2 + λ)‖x∗‖2

=
(

(1− η(σ2 + λ)) exp(−(t− 1)η(σ2 + λ)) + ε2

2

)
‖x∗‖2

≤
(

exp(−tη(σ2 + λ)) + ε2

2

)
‖x∗‖2, (4)

which is at most ε2‖x∗‖2 for t ≥ T = ln(2/ε2)
η(σ2+λ) .

2.2 Time complexity analysis of SGD for sparse b

Now, we show that, assuming SQ(A), it’s possible to perform the gradient steps when
b is sparse (that is, the number of non-zero entries of b, ‖b‖0, is small). Recall from
Definition 1.3 that we say we have an s-sparse description of x ∈ Cd if we have an s-sparse
v ∈ Cn such that x = A†v.

Lemma 2.4. Given SQ(A), we can output x(t) as a (t+ ‖b‖0)-sparse description in time

O(Ct(t+ ‖b‖0)).

Proof. First, suppose we are given x(t) as an s-sparse description, and wish to output a
sparse description for the next iterate x(t+1), which from Definition 2.1, satisfies

x(t+1) = x(t) − ηt+1∇g(x(t))

= x(t) − ηt+1 ·
(‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cjx

(t)
cj

)
(Ar,∗)† −A†b+ λx(t)

)
.

The r and cj ’s are drawn from distributions, and SQ(A) can produce such samples with
its Sample queries, taking O(C) time.

From inspection of the above equation, if we have x(t) in terms of its description as
A†v(t), then we can write x(t+1) as a description A†v(t+1) where v(t+1) satisfies (as in
Equation (1))

v(t+1) = v(t) − ηt+1 ·
(‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cj (A∗,cj)†v(t)

)
er − b+ λv(t)

)
. (5)

Here, er is the vector that is one in the rth entry and zero otherwise. So, if v(t)

is s-sparse, and has a support that includes the support of b, then v(t+1) is (s + 1)-
sparse. Furthermore, by exploiting the sparsity of v(t), computing v(t+1) takes O(Cs)
time (including the time taken to use SQ(A) to query A for all of the relevant norms and
entries).

So, if we wish to compute x(t), we begin with x(0), which we have trivially as an
‖b‖0-sparse description (v(0) = ~0). It is sparser, but if we consider x(0) as having the
same support as b, by the argument described above, we can then compute x(1) as an
(‖b‖0 + 1)-sparse description in O(C‖b‖0) time.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 12

By iteratively computing v(i+1) from v(i) in O(C(‖b‖0 + i)) time, we can output x(t)

as a (t+ ‖b‖0)-sparse description in

O
(t∑
i=0

C(‖b‖0 + i)
)

= O(Ct(t+ ‖b‖0))

time as desired.

If λ = O(‖A‖F‖A‖) by Proposition 2.3, to get a good enough iterate x(T) we can take

T = O
(
‖A‖2‖A‖2

F
(σ4+λ2)ε2 log 1

ε

)
and C = ‖A‖2

F
‖A‖2 , giving a running time of

O
(
‖b‖0

‖A‖4F
(σ4 + λ2)ε2 log 1

ε
+ ‖A‖

2‖A‖6F
(σ8 + λ4) log2 1

ε

)
.

Notice that it’s good to scale C up to be as large as possible, since it means a corresponding
linear decrease in the number of iterations, which our algorithm’s running time depends
on quadratically.

After performing SGD, we have an x(T) that is close to x∗ as desired, and it is given as
a sparse description A†v(T). We want to say that we have SQ(x(T)) from its description.
For this we invoke a result from [11], describing how to length-square sample from a
vector that is a linear combination of length-square accessible vectors—that is, getting
SQ(c1v1 + · · ·+ cdvd) given SQ(v1), . . . ,SQ(vd).

Lemma 2.5 ([9, Lemmas 2.9 and 2.10]). Suppose we have SQ(M †) for M ∈ Cn×d and
Q(x) ∈ Cd. Denote y := Mx and ∆ :=

∑d
i=1 ‖M∗,i‖2x2

i /‖y‖22. Then we can implement
SQ(y) ∈ Cn with T (y) = O

(
d2∆ log(1/δ) · T (M)

)
, where queries succeed with probability

≥ 1− δ. Namely, we can:

(a) query for entries with complexity O(d · T (M));

(b) sample from y with running time Tsample(y) satisfying

E[Tsample(y)] = O
(
d2∆ · T (M)

)
and Pr[Tsample(y) = O

(
d2∆ · log(1/δ)

)
] ≥ 1− δ.

(c) estimate ‖y‖ to (1± ε) multiplicative error with success probability at least 1− δ in
complexity

O
(
d2∆
ε2 T (M) · log(1/δ)

)
.

So we care about the quantity ∆ = 1
‖A†v(t)‖2

∑m
i=1 ‖Ai,∗‖2|v

(t)
i |2, with t = T , where v(t)

follows the recurrence according to Eq. (5) (recalling from before that r and c1, . . . , cC are
sampled randomly and independently each iteration):

v(t+1) = v(t) − ηt+1 ·
(‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cj (A∗,cj)†v(t)

)
er − b+ λv(t)

︸ ︷︷ ︸
∇g̃(v(t))

)
.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 13

Roughly speaking, ∆ encodes the amount of cancellation that could occur in the product
A†v(t). We will consider it as a norm: ∆ = ‖v(t)‖2

D

‖x(t)‖2 , for D a diagonal matrix with Dii =
‖Ai,∗‖, where ‖v‖D :=

√
v†D†Dv. The rest of this section will be devoted to bounding ∆

where x(t) comes from SGD as in Proposition 2.3.
First, notice that we can show similar moment bounds for ∇g̃(v(t)) in the D norm as

those for ∇g(x(t)) in Lemma 2.2; we defer the proof of this to the appendix.

Lemma 2.6. Let ∇g̃(v) denote

‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cj (A∗,cj)†v

)
er − b+ λv,

where r, c1, . . . , cC are sampled according to the same distribution as ∇g is (Definition 2.1).
For a fixed v ∈ Cm and C = ‖A‖2

F
‖A‖2 , we have:

Part 1. E[∇g̃(v)] = AA†v − b+ λv

Part 2. E[‖∇g̃(v)− E[∇g̃(v)]‖2D] ≤ 2‖A‖2F‖A‖2‖A†v‖2.

To bound ∆, we will show a recurrence via Lemma 2.6. Note that

E[‖v(t+1)‖D | v(t)]
≤ ‖v(t)‖D(1− ηt+1λ) + ηt+1 E[‖∇g̃(v(t))− λv(t)‖D | v(t)] by triangle inequality

≤ ‖v(t)‖D + ηt+1

√
E[‖∇g̃(v(t))− λv(t)‖2D | v(t)] by E[Z]2 ≤ E[Z2]

≤ ‖v(t)‖D + ηt+1

√
‖AA†v(t) − b‖2D + 2‖A‖2F‖A‖2‖A†v(t)‖2 by E[Z2] = E[Z]2 + V[Z]

≤ ‖v(t)‖D + ηt+1(‖AA†v(t) − b‖D +
√

2‖A‖F‖A‖‖A†v(t)‖) by
√
a+ b ≤

√
a+
√
b

≤ ‖v(t)‖D + ηt+1(‖b‖D + (1 +
√

2)‖A‖F‖A‖‖x(t)‖).
by x(t) = A†v(t) and ‖u‖D ≤ ‖A‖‖u‖

Taking expectation over v(t) we get

E[‖v(t+1)‖D] ≤ E[‖v(t)‖D] + ηt+1(‖b‖D + 3‖A‖F‖A‖E[‖x(t)‖]),

and since v(0) = ~0 we can trivially solve this recurrence resulting in

E[‖v(t)‖D] ≤
t∑

t′=1
ηt′(‖b‖D + 3‖A‖F‖A‖E[‖x(t′−1)‖]). (6)

Further, using the parameter choices of Proposition 2.3 due to Eq. (4) we have

E[‖x(t′)‖] ≤ ‖x∗‖+
√
E[‖x(t′) − x∗‖2] = ‖x∗‖+

√
δt′ ≤ 3‖x∗‖,

so

E[‖v(t)‖D] ≤ tη(‖b‖D + 9‖A‖F‖A‖‖x∗‖). (7)

Finally, we can bound our cancellation constant. Using Markov’s inequality for Eq. (7)
and combining it with Proposition 2.3 by a union bound we get that with probability ≥ 0.9,
both ‖x(T) − x∗‖ ≤ 5ε‖x∗‖ and

‖v(T)‖D ≤ 20Tη(‖b‖D + 9‖A‖F‖A‖‖x∗‖) = 20 ln(2/ε2)
(σ2 + λ)(‖b‖D + 9‖A‖F‖A‖‖x∗‖)

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 14

When both those bounds hold and ε ≤ 1/10, we have

∆ = ‖v(T)‖2D
‖x(T)‖2

≤ ‖v(T)‖2D
‖x∗‖2(1− 5ε)2 .

log2(1/ε)
(σ2 + λ)2

(
‖b‖2D
‖x∗‖2

+ ‖A‖2F‖A‖2
)

.
log2(1/ε)
(σ2 + λ)2

(
‖A‖2‖b‖2

‖x∗‖2
+ ‖A‖2F‖A‖2

)
. (8)

The last inequality follows from using that ‖b‖2D = ‖Db‖2 ≤ ‖D‖2‖b‖2 ≤ ‖A‖2‖b‖2.

2.3 Extending to non-sparse b: Proof of Theorem 1.4
In previous sections, we have shown how to solve our regularized regression problem for
sparse b: from Proposition 2.3, performing SGD for T h ‖A‖2

F‖A‖
2+λ2

(σ2+λ)2ε2 log 1
ε iterations out-

puts an x with the desired error bound; from Lemma 2.4, it takes O
(
‖A‖2

F
‖A‖2 T (T + ‖b‖0)

)
time to output x as a sparse description; and from Section 2.2, we have sample and query
access to that output x given its sparse description. Let λ = O(‖A‖F ‖A‖) in the rest of
the section.

Now, all that remains is to extend this work to the case that b is non-sparse. In this case,
we will simply replace b with a sparse b̂ that behaves similarly, and show that running SGD

with this value of b̂ gives all the same results. The sparsity of b̂ will be O
(

‖A‖2
F‖b‖

2

(σ2+λ)2ε2‖x∗‖2

)
,

giving a total running time of

O
(
‖A‖6F‖A‖2

(σ2 + λ)4ε4

(‖b‖2

‖A‖2‖x∗‖2
+ log 1

ε

)
log 1

ε

)
.

We show below that the bound in Eq. (8) also holds in this case. Using Lemma 2.5, the
time it takes to respond to a query to SQ(x(T)) with probability 0.99 is (T + ‖b̂‖0)2∆,
which gives the running time in Theorem 1.4,

O
(
(T + ‖b̂‖0)2∆

)
= O

(
‖A‖6F‖A‖6

(σ2 + λ)6ε4 log2 1
ε

(‖b‖4

‖A‖4‖x∗‖4
+ log2 1

ε

)(‖b‖2

‖A‖2F‖x∗‖2
+ 1

))
.

The crucial observation for sparsifying b is that we can use importance sampling to ap-
proximate the matrix product A†b, which suffices to approximate the solution x∗.

Lemma 2.7 (Matrix multiplication to Frobenius norm error, [35, Lemma 4]). Consider
X ∈ Cm×n, Y ∈ Cm×p, and let S ∈ Rs×m be an importance sampling matrix for X. That
is, let each Si,∗ be independently sampled to be ‖X‖F√

s‖Xi,∗‖
ei with probability ‖Xi,∗‖

2

‖X‖2
F
. Then

E[‖X†S†SY −X†Y ‖2F] ≤ 1
s
‖X‖2F‖Y ‖2F.

We have SQ(A), so we can use Lemma 2.7 with s ← 200 ‖A‖2
F‖b‖

2

(σ2+λ)2ε2‖x∗‖2 , X ← A, and
Y ← b, to find an S in O(s) time that satisfies the guarantee

‖A†S†Sb−A†b‖ ≤
√

200
s
‖A‖F‖b‖ = ε(σ2 + λ)‖x∗‖ (9)

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 15

with probability ≥ 0.995, using Markov’s inequality. Recall that D is defined to be the
diagonal matrix with Di,i = ‖Ai,∗‖, so D† = D, ‖D‖F = ‖A‖F, and importance sampling
matrices for A are also importance sampling matrices for D. Consequently, we can apply
Lemma 2.7 with the same argument to conclude that, with probability ≥ 0.995,

‖DS†Sb−Db‖ ≤
√

200
s
‖D‖F‖b‖ = ε(σ2 + λ)‖x∗‖ (10)

By union bound, both Eq. (9) and Eq. (10) hold for the same S with probability ≥ 0.99.
Assuming Eqs. (9) and (10) hold, we can perform SGD as in Proposition 2.3 on b̂ := S†Sb
(which is s-sparse) to find an x such that ‖x − x̂∗‖ ≤ ε‖x̂∗‖, where x̂∗ is the optimum
(A†A+ λI)−1A†b̂. This implies that ‖x− x∗‖ ≤ 2ε‖x∗‖, since by Eq. (9),12

‖x̂∗ − x∗‖ = ‖(A†A+ λI)+A†(b̂− b)‖ ≤ 1
σ2 + λ

‖A†(b̂− b)‖ ≤ ε‖x∗‖. (11)

To bound the running times of SQ(x), we modify the analysis of ∆ from Section 2.2:
recalling from Eq. (8), we have that, with probability ≥ 0.9,

∆ .
log2(1/ε)
(σ2 + λ)2

(
‖b̂‖2D
‖x̂∗‖2

+ ‖A‖2F‖A‖2
)

.
log2(1/ε)
(σ2 + λ)2

(
‖b‖2D
‖x∗‖2

+ ‖A‖2F‖A‖2
)
. (12)

In other words, the same bound on ∆ from Eq. (8) holds after approximating b by b̂. The

last step follows from the following upper bound on ‖b̂‖2
D

‖x̂∗‖2 :

‖b̂‖2D
‖x̂∗‖2

≤ ‖b̂‖2D
‖x∗‖2(1− ε)2 = ‖DS†Sb‖2

‖x∗‖2(1− ε)2 ≤
(‖Db‖+ ‖Db−DS†Sb‖)2

‖x∗‖2(1− ε)2

.
‖Db‖2 + ε2(σ2 + λ)2‖x∗‖2

‖x∗‖2(1− ε)2 .
‖b‖2D
‖x∗‖2

+ ε2(σ2 + λ)2

where the first inequality follows from Eq. (11), the second inequality is triangle inequality,
the third inequality follows from Eq. (10), and the last inequality holds for ε ≤ 1

2 which
we can assume without loss of generality. The added term of ε2(σ2 + λ)2 is dominated by
the ‖A‖2F‖A‖2 term in Eq. (12).

Finally, we observe the following fact about ‖x∗‖ which can be used to convert the
runtime of Theorem 1.4 to other parameters.

Fact 2.8. ‖x∗‖ ≥ ‖A‖
‖A‖2+λ‖ΠA,λb‖ when ‖A‖ ≥

√
λ, and ‖x∗‖ = 1

2
√
λ
‖ΠA,λb‖ otherwise.

‖x∗‖ = ‖(A†A+ λI)+A†b‖
= ‖(A†A+ λI)+A†Π+

A,λΠA,λb‖ since A† = A†Π+
A,λΠA,λ

≥ ‖ΠA,λb‖ min
v∈span(A†)
‖v‖=1

‖(A†A+ λI)+A†Π+
A,λv‖ (13)

The min term is equal to the minimum non-zero singular value of (A†A + λI)+A†Π+
A,λ.

The non-zero singular values of this expression are g(σi), where σi is a non-zero singular
value of A and

g(σ) = σ

(σ2 + λ)(pA,λ(σ)) =


1

2
√
λ

0 < σ ≤
√
λ

σ
σ2+λ

√
λ < σ.

12We obtain the constants in Algorithm 1 by using the error parameter ε̂ := ε/2 to satisfy ‖x − x∗‖ ≤
2ε̂‖x∗‖ = ε‖x∗‖.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 16

This function is non-increasing, so the minimum singular value of (A†A + λI)+A†Π+
A,λ

is g(‖A‖), proving the above fact by observing that for ‖A‖ ≤
√
λ the operator (A†A +

λI)+A†Π+
A,λ is proportional to a projector, thus Eq. (13) becomes an equality.

Acknowledgments
E.T. thanks Kevin Tian immensely for discussions integral to these results. Z.S. thanks
Runzhou Tao and Ruizhe Zhang for giving helpful comments on the draft.

A.G. acknowledges funding provided by Samsung Electronics Co., Ltd., for the project
“The Computational Power of Sampling on Quantum Computers”, and additional support
by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center
(NSF Grant PHY-1733907), as well as support by ERC Consolidator Grant QPROGRESS,
by QuantERA project QuantAlgo 680-91-034 and also by the EU’s Horizon 2020 Marie
Skłodowska-Curie program 891889-QuantOrder. Z.S. was partially supported by Schmidt
Foundation and Simons Foundation. E.T. is supported by the National Science Foundation
Graduate Research Fellowship Program under Grant No. DGE-1762114.

References
[1] John Preskill. “Quantum Computing in the NISQ era and beyond”. Quantum 2,

79 (2018). arXiv:1801.00862.
[2] Andrew M Childs. “Equation solving by simulation”. Nature Physics 5, 861–

861 (2009).
[3] Scott Aaronson. “Read the fine print”. Nature Physics 11, 291–293 (2015).
[4] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe,

and Seth Lloyd. “Quantum machine learning”. Nature 549, 195–202 (2017).
arXiv:1611.09347.

[5] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. “Quantum algorithm for linear
systems of equations”. Physical Review Letters 103, 150502 (2009). arXiv:0811.3171.

[6] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. “Quantum singular
value transformation and beyond: Exponential improvements for quantum matrix
arithmetics”. In Proceedings of the 51st ACM Symposium on the Theory of Computing
(STOC). Pages 193–204. (2019). arXiv:1806.01838.

[7] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. “Quantum random access
memory”. Physical Review Letters 100, 160501 (2008). arXiv:0708.1879.

[8] Anupam Prakash. “Quantum algorithms for linear algebra and machine
learning”. PhD thesis. University of California at Berkeley. (2014).
url: www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.pdf.

[9] Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao
Wang. “Sampling-based sublinear low-rank matrix arithmetic framework for dequan-
tizing quantum machine learning”. In Proceedings of the 52nd ACM Symposium on
the Theory of Computing (STOC). Page 387–400. (2020). arXiv:1910.06151.

[10] Iordanis Kerenidis and Anupam Prakash. “Quantum recommendation systems”. In
Proceedings of the 8th Innovations in Theoretical Computer Science Conference
(ITCS). Pages 49:1–49:21. (2017). arXiv:1603.08675.

[11] Ewin Tang. “A quantum-inspired classical algorithm for recommendation systems”.
In Proceedings of the 51st ACM Symposium on the Theory of Computing (STOC).
Pages 217–228. (2019). arXiv:1807.04271.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 17

https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/1801.00862
https://dx.doi.org/10.1038/nphys1473
https://dx.doi.org/10.1038/nphys1473
https://dx.doi.org/10.1038/nphys3272
https://dx.doi.org/10.1038/nature23474
http://arxiv.org/abs/1611.09347
https://dx.doi.org/10.1103/PhysRevLett.103.150502
http://arxiv.org/abs/0811.3171
https://dx.doi.org/10.1145/3313276.3316366
http://arxiv.org/abs/1806.01838
https://dx.doi.org/10.1103/PhysRevLett.100.160501
http://arxiv.org/abs/0708.1879
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.pdf
https://dx.doi.org/10.1145/3357713.3384314
http://arxiv.org/abs/1910.06151
https://dx.doi.org/10.4230/LIPIcs.ITCS.2017.49
http://arxiv.org/abs/1603.08675
https://dx.doi.org/10.1145/3313276.3316310
http://arxiv.org/abs/1807.04271

[12] Iordanis Kerenidis, Jonas Landman, Alessandro Luongo, and Anupam Prakash. “q-
means: A quantum algorithm for unsupervised machine learning”. In Advances in
Neural Information Processing Systems. Volume 32. (2019). arXiv:1812.03584.

[13] Iordanis Kerenidis and Anupam Prakash. “Quantum gradient descent for linear sys-
tems and least squares”. Physical Review A 101, 022316 (2020). arXiv:1704.04992.

[14] Danial Dervovic, Mark Herbster, Peter Mountney, Simone Severini, Naïri Usher,
and Leonard Wossnig. “Quantum linear systems algorithms: a primer” (2018).
arXiv:1802.08227.

[15] Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. “Quantum linear sys-
tem algorithm for dense matrices”. Physical Review Letters 120, 050502 (2018).
arXiv:1704.06174.

[16] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. “Quantum support vector
machine for big data classification”. Physical Review Letters 113, 130503 (2014).
arXiv:1307.0471.

[17] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. “The power of block-
encoded matrix powers: Improved regression techniques via faster Hamiltonian simu-
lation”. In Proceedings of the 46th International Colloquium on Automata, Languages,
and Programming (ICALP). Pages 33:1–33:14. (2019). arXiv:1804.01973.

[18] Nai-Hui Chia, András Gilyén, Han-Hsuan Lin, Seth Lloyd, Ewin Tang, and Chunhao
Wang. “Quantum-inspired algorithms for solving low-rank linear equation systems
with logarithmic dependence on the dimension”. In Proceedings of the 31st Inter-
national Symposium on Algorithms and Computation (ISAAC). Pages 47:1–47:17.
(2020). arXiv:1811.04852 and 1811.04909 (merged).

[19] Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd.
“Quantum-inspired algorithms in practice”. Quantum 4, 307 (2020). arXiv:1905.10415.

[20] Ewin Tang. “Quantum principal component analysis only achieves an exponential
speedup because of its state preparation assumptions”. Physical Review Letters 127,
060503 (2021). arXiv:1811.00414.

[21] Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, An-
drea Rocchetto, Simone Severini, and Leonard Wossnig. “Quantum machine learning:
a classical perspective”. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 474, 20170551 (2018). arXiv:1707.08561.

[22] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O’Connor, Michele Mosca,
and Priyaa Varshinee Srinivasan. “On the robustness of bucket brigade quantum
RAM”. New Journal of Physics 17, 123010 (2015). arXiv:1502.03450.

[23] Neha Gupta and Aaron Sidford. “Exploiting numerical sparsity for efficient learning:
Faster eigenvector computation and regression”. In Advances in Neural Information
Processing Systems. Pages 5269–5278. (2018). arXiv:1811.10866.

[24] Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. “Coordinate methods for
matrix games”. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS). Pages 283–293. IEEE (2020). arXiv:2009.08447.

[25] Sébastien Bubeck. “Convex optimization: Algorithms and complexity”. Foundations
and Trends in Machine Learning 8, 231–357 (2015). arXiv:1405.4980.

[26] Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. “Un-regularizing: Approx-
imate proximal point and faster stochastic algorithms for empirical risk minimiza-
tion”. In International Conference on Machine Learning. Pages 2540–2548. (2015).
arXiv:1506.07512.

[27] Francis Bach and Eric Moulines. “Non-asymptotic analysis of stochastic approximation
algorithms for machine learning”. In Advances in Neural Information Processing Sys-

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 18

http://arxiv.org/abs/1812.03584
https://dx.doi.org/10.1103/PhysRevA.101.022316
http://arxiv.org/abs/1704.04992
http://arxiv.org/abs/1802.08227
https://dx.doi.org/10.1103/PhysRevLett.120.050502
http://arxiv.org/abs/1704.06174
https://dx.doi.org/10.1103/PhysRevLett.113.130503
http://arxiv.org/abs/1307.0471
https://dx.doi.org/10.4230/LIPIcs.ICALP.2019.33
http://arxiv.org/abs/1804.01973
https://dx.doi.org/10.4230/LIPIcs.ISAAC.2020.47
http://arxiv.org/abs/1811.04852 and 1811.04909 (merged)
https://dx.doi.org/10.22331/q-2020-08-13-307
http://arxiv.org/abs/1905.10415
https://dx.doi.org/10.1103/PhysRevLett.127.060503
https://dx.doi.org/10.1103/PhysRevLett.127.060503
http://arxiv.org/abs/1811.00414
https://dx.doi.org/10.1098/rspa.2017.0551
https://dx.doi.org/10.1098/rspa.2017.0551
http://arxiv.org/abs/1707.08561
https://dx.doi.org/10.1088/1367-2630/17/12/123010
http://arxiv.org/abs/1502.03450
http://arxiv.org/abs/1811.10866
https://dx.doi.org/10.1109/focs46700.2020.00035
http://arxiv.org/abs/2009.08447
https://dx.doi.org/10.1561/2200000050
https://dx.doi.org/10.1561/2200000050
http://arxiv.org/abs/1405.4980
http://arxiv.org/abs/1506.07512

tems. Pages 451–459. (2011). url: http://papers.nips.cc/paper/4316-non-asymptotic-
analysis-of-stochastic-approximation-algorithms-for-machine-learning.pdf.

[28] András Gilyén, Seth Lloyd, and Ewin Tang. “Quantum-inspired low-rank stochastic
regression with logarithmic dependence on the dimension” (2018). arXiv:1811.04909.

[29] Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang. “Quantum-inspired sublinear
classical algorithms for solving low-rank linear systems” (2018). arXiv:1811.04852.

[30] David P. Woodruff. “Sketching as a tool for numerical linear algebra”. Foundations
and Trends in Theoretical Computer Science 10, 1–157 (2014).

[31] Nadiia Chepurko, Kenneth L. Clarkson, Lior Horesh, Honghao Lin, and David P.
Woodruff. “Quantum-inspired algorithms from randomized numerical linear alge-
bra” (2020). arXiv:2011.04125.

[32] Changpeng Shao and Ashley Montanaro. “Faster quantum-inspired algorithms for
solving linear systems” (2021). arXiv:2103.10309.

[33] Thomas Strohmer and Roman Vershynin. “A randomized Kaczmarz algorithm with
exponential convergence”. Journal of Fourier Analysis and Applications 15, 262–
278 (2008). arXiv:math/0702226.

[34] Deanna Needell, Nathan Srebro, and Rachel Ward. “Stochastic gradient descent,
weighted sampling, and the randomized Kaczmarz algorithm”. Mathematical Pro-
gramming 155, 549–573 (2015). arXiv:1310.5715.

[35] Petros Drineas, Ravi Kannan, and Michael W Mahoney. “Fast Monte Carlo algorithms
for matrices II: Computing a low-rank approximation to a matrix”. SIAM Journal on
Computing 36, 158–183 (2006).

A Stochastic gradient bounds
Definition 2.1. We define ∇g(x) to be the random function resulting from the following
process. Draw r ∈ [m] from the distribution that is r with probability ‖Ar,∗‖

2

‖A‖2
F
, and then

draw c1, . . . , cC i.i.d. from the distribution that is c with probability |Ar,c|
2

‖Ar,∗‖2 . For this choice
of r and c1, . . . , cC , take

∇g(x) = ‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cjxcj

)
(Ar,∗)† −A†b+ λx. (3)

Lemma 2.2. For fixed x, y ∈ Cn and the random function ∇g(·) defined in Definition 2.1,
the following properties hold (∇g(x) and ∇g(y) use the same instance of the random
function):

Part 1. E[∇g(x)] = ∇f(x) = A†Ax−A†b+ λx

Part 2. V[∇g(x)] = 1
C
‖A‖4F‖x‖2 +

(
1− 1

C

)
‖A‖2F‖Ax‖2 − ‖A†Ax‖2

Part 3. E[‖∇g(x)−∇g(y)‖22] = ‖(A†A+ λI)(x− y)‖2 + V[∇g(x− y)]

Proof.

Part 1. First, we show ∇g(x) is unbiased.

E[∇g(x)] = E
[1
C

C∑
j=1

‖A‖2F
‖Ar,∗‖2

‖Ar,∗‖2

|Ar,cj |2
Ar,cjxcj (Ar,∗)†

]
−A†b+ λx by definition of ∇g

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 19

http://papers.nips.cc/paper/4316-non-asymptotic-analysis-of-stochastic-approximation-algorithms-for-machine-learning.pdf
http://papers.nips.cc/paper/4316-non-asymptotic-analysis-of-stochastic-approximation-algorithms-for-machine-learning.pdf
http://arxiv.org/abs/1811.04909
http://arxiv.org/abs/1811.04852
https://dx.doi.org/10.1561/0400000060
https://dx.doi.org/10.1561/0400000060
http://arxiv.org/abs/2011.04125
http://arxiv.org/abs/2103.10309
https://dx.doi.org/10.1007/s00041-008-9030-4
https://dx.doi.org/10.1007/s00041-008-9030-4
http://arxiv.org/abs/math/0702226
https://dx.doi.org/10.1007/s10107-015-0864-7
https://dx.doi.org/10.1007/s10107-015-0864-7
http://arxiv.org/abs/1310.5715
https://dx.doi.org/10.1137/S0097539704442696
https://dx.doi.org/10.1137/S0097539704442696

= E
r,c1

[‖A‖2F
|Ar,c1 |2

Ar,c1xc1(Ar,∗)†
]
−A†b+ λx since the ci’s are i.i.d.

=
(∑

r

∑
c1

‖Ar,c1‖2

‖A‖2F
‖A‖2F
‖Ar,c1‖2

Ar,c1xc1(Ar,∗)†
)
−A†b+ λx

= A†Ax−A†b+ λx = ∇f(x).

Part 2. Now variance. We use that, for a random vector v, V[v] = E[‖v − E[v]‖2] =
E[‖v‖2]− ‖E[v]‖2.

V[∇g(x)] = V[∇g(x) +A†b− λx]
= E[‖∇g(x) +A†b− λx− E[∇g(x) +A†b− λx]‖2] by definition of V[·]

= V
[‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cjxcj

)
(Ar,∗)†

]
by definition of ∇g

= V
[(1
C

C∑
j=1

‖A‖2F
|Ar,cj |2

Ar,cjxcj

)
(Ar,∗)†

]

= E
[∥∥∥(1

C

C∑
j=1

‖A‖2F
|Ar,cj |2

Ar,cjxcj

)
(Ar,∗)†

∥∥∥2]
− ‖A†Ax‖2.

= E
[∣∣∣ 1
C

C∑
j=1

‖A‖2F
|Ar,cj |2

Ar,cjxcj

∣∣∣2‖Ar,∗‖2]︸ ︷︷ ︸
V

−‖A†Ax‖2. (14)

We expand the first term, using that it is an average of i.i.d. random variables:

V =
m∑
i=1

‖Ai,∗‖2

‖A‖2F
E

c1,...,cC

[∣∣∣ 1
C

C∑
j=1

‖A‖2F
|Ai,cj |2

Ai,cjxcj

∣∣∣2]‖Ai,∗‖2
= ‖A‖2F

m∑
i=1

E
c1,...,cC

[∣∣∣ 1
C

C∑
j=1

‖Ai,∗‖2

|Ai,cj |2
Ai,cjxcj

∣∣∣2]

= ‖A‖2F
m∑
i=1

(1
C

V
c1

[‖Ai,∗‖2
|Ai,c1 |2

Ai,c1xc1

]
+ |Ai,∗x|2

)
= ‖A‖2F

m∑
i=1

(1
C

n∑
j=1

(|Ai,j |2
‖Ai,∗‖2

‖Ai,∗‖4

|Ai,j |4
|Ai,jxj |2

)
− 1
C
|Ai,∗x|2 + |Ai,∗x|2

)

= ‖A‖2F
m∑
i=1

(1
C
‖Ai,∗‖2‖x‖2 +

(
1− 1

C

)
(Ai,∗x)2

)
= 1
C
‖A‖4F‖x‖2 +

(
1− 1

C

)
‖A‖2F‖Ax‖2

Part 3. Finally, the expression for E[‖∇g(x)−∇g(y)‖2] follows from the observation that
∇g(x)−∇g(y) is simply the expression for ∇g(x− y), taking b to be the zero vector.

Lemma 2.6. Let ∇g̃(v) denote

‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cj (A∗,cj)†v

)
er − b+ λv,

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 20

where r, c1, . . . , cC are sampled according to the same distribution as ∇g is (Definition 2.1).
For a fixed v ∈ Cm and C = ‖A‖2

F
‖A‖2 , we have:

Part 1. E[∇g̃(v)] = AA†v − b+ λv

Part 2. E[‖∇g̃(v)− E[∇g̃(v)]‖2D] ≤ 2‖A‖2F‖A‖2‖A†v‖2.

Proof.

Part 1. We first show the expectation,

E[∇g̃(v)] = E
[‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cj (A∗,cj)†v

)
er − b+ λv

]

=
m∑
r=1

E
c1,...,cC

[1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cj (A∗,cj)†v

]
er − b+ λv

=
m∑
r=1

n∑
c=1

Ar,c((A∗,c)†v)er − b+ λv

= AA†v − b+ λv.

Part 2. For the variance in the D norm, we reuse a computation from the proof of
Lemma 2.2:

E[‖∇g̃(v)− E[∇g̃(v)]‖2D] = V
[
D
‖A‖2F
‖Ar,∗‖2

(1
C

C∑
j=1

‖Ar,∗‖2

|Ar,cj |2
Ar,cj (A∗,cj)†v

)
er
]

= E
[
‖Ar,∗‖2

∣∣∣ 1
C

C∑
j=1

‖A‖2F
|Ar,cj |2

Ar,cj (A∗,cj)†v
∣∣∣2]

︸ ︷︷ ︸
V from Eq. (14), where x = A†v

−‖AA†v‖2D

= 1
C
‖A‖4F‖A†v‖2 +

(
1− 1

C

)
‖A‖2F‖AA†v‖2 − ‖AA†v‖2D

≤ 2‖A‖2F‖A‖2‖A†v‖2.

Accepted in Quantum 2022-06-20, click title to verify. Published under CC-BY 4.0. 21

	1 Introduction
	1.1 Our model
	1.2 Our results
	1.3 Discussion

	2 Proofs
	2.1 Error analysis of stochastic gradient descent
	2.2 Time complexity analysis of SGD for sparse b
	2.3 Extending to non-sparse b: Proof of Theorem 1.4

	A Stochastic gradient bounds

