
Computable convergence rate bound for ratio consensus algorithms

Balázs Gerencsér

Abstract— The objective of the paper is to establish a
computable upper bound for the almost sure convergence rate
for a class of ratio consensus algorithms defined via column-
stochastic matrices. Our result extends the works of Iutzeler
et al. [1] on similar bounds that have been obtained in a
more restrictive setup with limited conclusions. The present
paper complements the results of Gerencsér and Gerencsér
[2], identifying the exact almost sure convergence rate of a
wide class of ratio consensus algorithms in terms of a spectral
gap, which is, however, not computable in general. The upper
bound provided in the paper will be compared to the actual
rate of almost sure convergence experimentally on a range
of modulated random geographic graphs with random local
interactions.

I. INTRODUCTION

Ratio consensus algorithms were initially proposed in a
special form by Kempe et al. [3] under the name push-
sum, with its scope being extended later in [4] under the
name weighted gossip. The basic setup of these algorithms
is a directed graph or network with values associated to
each node. The objective is the design of a communication
protocol for the computation of the average of the initial
input values given at the nodes, using only local, directed,
possibly asynchronous communication. Ratio consensus al-
gorithms became the building blocks of further methods
requiring distributed computation, such as the analysis of
sensors networks [5], the spectral analysis of a network [6]
or distributed optimization [7], just to highlight a few.

For the sake of historical context note that ratio consensus
is an extension of classic gossip algorithms for average
consensus, see [8], [9], in which the graph is not directed,
and updating the values is restricted to a randomly chosen
communicating pair of nodes, replacing their values by the
average. Gossip algorithms are linear: updates are defined via
(left-)multiplication by a doubly stochastic random matrix.

As soon as real-life communication conditions are in-
cluded in the analysis, additional care is needed as is the
case for packet loss [10] where the large size of the network
allows controlling the error, or in case of delay [11], where
this delay needs to be bounded by spectral properties to
achieve average consensus.

The exponential rate of convergence in mean square sense
for gossip algorithms, with i.i.d. selection of communicating
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pairs, has been determined in [12]. A significant advance,
assuming strictly stationary edge selection was presented
in [13] establishing almost sure (a.s.) exponential rate of
convergence via a spectral gap in the context of Oseledec’s
multiplicative ergodic theorem. There is a vast literature for
in-depth understanding of such algorithms, for a wider per-
spective including, e.g., distributed optimization and further
references we refer to the survey [14].

Ratio consensus algorithms were designed for possibly
asynchronous communication protocols on a directed graph,
leading to updates defined via multiplication by a column
stochastic random matrix, which in itself would fail to reach
average consensus. This shortcoming is compensated by
running an additional process, allocating weights to each
node, with initial weights equal to 1, and considering the
quotients value/weight, which are then expected to converge
to the required average value for all nodes.

Almost sure convergence of ratio consensus algorithms has
been established under a variety of settings see [3] or [4],
even for the case of communication protocols with bounded
communication delays [15]. However the question on the
exact rate of a.s. convergence, raised back in 2010, see [4],
was open for a decade.

A partial answer to the question on the a.s. rate of a
ratio consensus algorithm was given in Iutzeler et al. [1],
providing an upper bound along an unspecified, infinite
subset of the timeline. More recently, the paper of Gerencsér
and Gerencsér [2] identified the exact rate of a.s. convergence
as the spectral gap, in the context of Oseledec’s multiplicative
ergodic theorem, of the associated random matrix process
under very general conditions. However, the spectral gap is
known to be uncomputable in general [16].

The purpose of this paper is to provide a computable
upper bound for the rate of a.s. convergence along the full
timeline, under technical assumptions that are weaker than
those of [1]. This result is obtained by combining arguments
of [1], which we simplify and extend with the results of [2].
Apart from a technical tool borrowed from [2] we provide a
transparent and self-contained proof.

II. TECHNICAL SETUP AND MAIN RESULT

To describe the technical details in terms of algebraic
operations let p be the number of agents, or equivalently, the
number of nodes of the communication graph. Let x0 ∈ Rp

be a column vector composed of the initial values associated
with the nodes in some prefixed order. Our objective is to
compute the average x̄ =

∑p
i=1 x

i
0/p. Let w0 = 1 ∈ Rp an

auxiliary vector, the components of which are called weights.
At any time n ≥ 1 the transmission of an (identical) fraction
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of values and weights results in updated value and weight
vectors as follows:

xn = Anxn−1, wn = Anwn−1, (1)

where (An), n ≥ 1 is an i.i.d. sequence of non-negative
column-stochastic matrices, implicitly representing all con-
straints imposed by the network and specifying the local,
possibly asynchronous transmissions without packet loss.

The average at agent i at time n is then estimated by
the readout xin/w

i
n. A simple interpretation of the algorithm

is obtained by thinking of xin/w
i
n, as a concentration of a

substance in some solvent, properly re-scaled. Note that we
can write x̄ = 1>x0/p = 1>x0/(1

>w0). Observe also that

1>xn = 1>AnAn−1 · · ·A1x0 = 1>x0

since the matrices Ak are column-stochastic. Thus the overall
average of xn is conserved, similarly for wn, thus 1>wn = p
for all n. The rate of a.s. convergence is defined as

lim sup
n→∞

1

n
log

p∑
i=1

∣∣∣∣ xinwin − x̄
∣∣∣∣. (2)

A significant advance over previous works was the determi-
nation of a theoretical and tight upper bound for the rate
of a.s. convergence under a variety of reasonable conditions,
see Theorems 12-19 of [2], thus settling an open problem
raised back in 2010, see [4].

In order to clarify the main result to be stated let us revisit
the linear algebraic arguments of [1] in preparation for the
analysis of xin/w

i
n − x̄. Let Mn = AnAn−1 · · ·A1 denote

the total effect of the updates on x0 or w0 until time n. Let
I denote a p × p identity matrix and let J = 11>/p. Note
that xn = Mnx0 can be decomposed as

xn = MnJx0 +Mn(I − J)x0 = Mn1x̄+Mn(I − J)x0

= wnx̄+Mn(I − J)x0.

Thus, at agent i, the ratio consensus algorithm will yield

xin
win

= x̄+
e>i Mn(I − J)x0

win
, (3)

where ei is the unit vector with a single 1 at position i.
It follows that the error of xin/w

i
n is largely controlled

by behavior of the matrix Nn := Mn(I − J). We can
get a useful alternative expression by noting that Am being
column-stochastic implies

(I − J)Am(I − J) = Am(I − J). (4)

Applying this repeatedly for Nn we get the expression

Nn = (An(I − J)) · (An−1(I − J)) · · · (A1(I − J)). (5)

Theorem 1: Let Assumption 8 given below be satisfied.
Then with η2 = log ρ

(
E(A⊗21 )(I − J)⊗2

)
we have a.s.

lim sup
n→∞

1

n
log

p∑
i=1

∣∣∣∣ xinwin − x̄
∣∣∣∣ ≤ η2

2
< 0.

The technical results of the paper also complement pre-
vious results on the rate of convergence of linear gossip

algorithms, defined via doubly-stochastic matrices, which
were available both in mean-squared and a.s. sense, as in
[12], [13]. For the current statement see Corollary 13.

The enhance readability the necessary technical results of
[2] are restated under the specific conditions of the present
paper collected in Assumption 8.

III. SEQUENTIAL PRIMITIVITY

In what follows we present the basic technical assumptions
needed for the application of the results of [2]. It is intuitively
clear that in order to get convergence to the average at
all nodes, we need to ensure all-to-all influence. Techni-
cally speaking, we should require that the matrix product
An · · ·A1 is positive for large enough, possibly random n.
This leads to the following definition, in a more general and
deterministic context, formulated in [17] as follows:

Definition 2: A set A of p × p non-negative matrices is
primitive if a strictly positive product can be formed by some
elements of it, repetitions allowed.

Recall that a non-negative matrix is called allowable
if all rows and all columns contain at least one strictly
positive element, see [18]. Now, if the matrices An ∈ A are
chosen according to some random process, we get a natural
extension of the notion of primitivity:

Definition 3: A strictly stationary process (An), n ≥ 1
of p × p non-negative allowable matrices is sequentially
primitive if AτAτ−1 · · ·A1 is strictly positive for a finite
stopping time τ .

Sequential primitivity is easily established for an i.i.d.
sequence of matrices by the lemma below:

Lemma 4: Consider a set of p× p non-negative matrices
A, such that all A ∈ A is allowable. Assume that A is
primitive. Let µ be a fully supported distribution on A,
i.e., suppµ = A. Consider the i.i.d. sequence (An), n ≥
1, distributed according to µ. Then (An) is sequentially
primitive.

The proof will be given in the Appendix. For the sake
of historical perspective we note that the following simple
alternative sufficient condition for sequential primitivity was
given in [4]:

Proposition 5: Let (An), n ≥ 1 be an i.i.d. sequence
of p × p matrices. Assume that A1 has a strictly positive
diagonal almost surely, and EA1 is irreducible. Then (An)
is sequentially primitive.

We note in passing that in [1] the conditions of [4] are
assumed to be satisfied for A, and in addition |A| < ∞
is assumed. It is easily seen that the condition that EA1 is
irreducible is in fact necessary for sequential primitivity:

Lemma 6: Let (An), n ≥ 1 be a strictly stationary
sequence of non-negative matrices. Assume that (An) is
sequentially primitive. Then EA1 is irreducible.

The proof will be given in the Appendix. Note, however,
that irreducibility in expectation is not sufficient by itself. For
example consider an i.i.d. sequence distributed uniformly on(
1 0
0 1

)
and

(
0 1
1 0

)
. On the other hand, the condition that A1

has a strictly positive diagonal almost surely is not necessary
for sequentially primitivity. For example consider the i.i.d.



sequence of matrices with distributed uniformly on
(
0 1
1 0

)
and(

1 1
0 1

)
, which is readily seen to be sequentially primitive.

Lemma 7: Let (An), n ≥ 1 be a strictly stationary
sequence of non-negative matrices. Assume that (An) is
sequentially primitive. Then for any k ∈ Z+, (A⊗kn ), n ≥ 1
is also sequentially primitive.

Proof: Observe that for any n

A⊗kn A⊗kn−1 · · ·A
⊗k
1 = (AnAn−1 · · ·A1)

⊗k
,

hence the left hand side is strictly positive exactly if
AnAn−1 · · ·A1 is strictly positive, proving the claim.

The examples above indicate that sequential primitivity
may be a fundamental concept, and this is indeed fully
justified in [2], see in particular Theorem 19, restated as
Proposition 9 below. The conditions of the latter, to be used
throughout the paper, can be reformulated as follows:

Assumption 8: Let A be a set of p × p matrices, and let
(An), n ≥ 1 be a A-valued stochastic process, satisfying the
following conditions:
• A is a Borel set of non-negative, allowable, column-

stochastic matrices.
• A is primitive.
• (An), n ≥ 1 is an i.i.d. sequence of matrices in A.
• The distribution of A1 is fully supported on A.
• Setting αn := mini,j{Ai,jn : Ai,jn 6= 0}, we have

E log− α1 > −∞.
It is readily seen that the above assumptions on (An), n ≥

1 are significantly weaker than those in [1], requiring the
conditions of [4] to be satisfied for a finite A.

IV. TIGHT BOUNDS FOR A.S. CONVERGENCE

In this section we highlight the relevant conditions and
results of [2], specialized to the context of the present paper.
First of all we note that the condition E log+ ‖A1‖ < ∞
required by the Fürstenberg–Kesten theorem and also by
Oseledec’s theorem, restated as Proposition 1 and 2 in [2],
and used throughout that paper, is automatically satisfied
for column-stochastic matrices. Following these fundamental
results, let λ1 and λ2 be the first and second largest Lyapunov
exponents associated with (An).

The condition of Theorem 8 of [2], serving as a benchmark
for subsequent discussion, requiring that An is non-negative
and allowable for all n, and that the process (An) is sequen-
tially primitive, is implied by Assumption 8. Condition 11 of
[2], imposing a kind of lower bound on the strictly positive
elements of An, is required by Assumption 8 in identical
form.

Finally, the condition λ1 − λ2 > 0, required in the first
main result of [2], stated as Theorem 12, is in fact implied
by Assumption 8, see Theorem 36 of [2].

Now we are in a position to restate Theorem 19 of [2]
in a specialized form, the reference result for identifying the
convergence rate of ratio consensus, with w = 1 as follows,
with ei, i = 1, . . . , p denoting the i-th unit vector:

Proposition 9: Let Assumption 8 be satisfied. Then for an
arbitrary vector of initial values x ∈ Rp and initial weights

w = 1, we have for all i = 1, . . . , p

lim sup
n→∞

1

n
log

∣∣∣∣e>i Mnx

e>i Mn1
− x̄
∣∣∣∣ ≤ λ2 < 0 a.s.

In the current development will need a critical auxiliary
technical result on the evolution of the weight vector wn =
AnAn−1 · · ·A11.

Lemma 10: Let Assumption 8 be satisfied. Then
1/mini w

i
n is sub-exponential:

lim sup
n→∞

1

n
log

1

mini win
≤ 0.

The proof will be given in the Appendix.

V. RESTRICTED CONTRACTION OF AnAn−1 · · ·A1

We will estimate higher order moments of Nn by consid-
ering higher order tensor products N⊗kn with some k ∈ Z+.
To set the notations, let Bn = An(I − J) and ‖ · ‖F denote
the Frobenius norm of a square matrix. Note that for any
square matrix S, the sum of squares of the elements of S,
expressing ‖S‖2F , is in fact a sum of selected elements of
S ⊗ S, and thus we can write, with an appropriate linear
functional L,

‖S‖2F = L(S ⊗ S). (6)

Finally, let ρ(·) denote the spectral radius a square matrix.
Lemma 11: Under Assumption 8 we have with η2k =

log ρ
(
E(B⊗2k1 )

)
lim sup
n→∞

1

n
logE

∥∥N⊗kn ∥∥2
F
≤ η2k < 0. (7)

The lemma above was given in [1] for the case k = 1 with
a proof, relying on another paper of the authors. Lemma 11
is thus a generalization for all integers k, together with a
direct, simple proof. This generalization is also relevant in
estimating higher order moments of the error obtained in the
course of linear gossip algorithms.

Proof: Taking the 2k-th tensor power of (5), followed
by taking expectation, recalling that (Am) is i.i.d., we get

E(N⊗2kn ) = E
(
B⊗2kn

)
· · ·E

(
B⊗2k1

)
=
(
E(B⊗2k1 )

)n
.

From here using (6) we get

E
∥∥N⊗kn ∥∥2

F
= E

(
LN⊗2kn

)
= LE

(
N⊗2kn

)
= L

(
E(B⊗2k1 )

)n
.

L is a fixed linear functional, thus

lim sup
n→∞

1

n
logE

∥∥N⊗kn ∥∥2
F
≤

≤ lim sup
n→∞

1

n
log
(
‖L‖·

∥∥E(B⊗2k1 )n
∥∥) = η2k,

using a standard expression of the spectral radius. This
confirms the first inequality in (7).

For the second part of the inequality, note that the ex-
pectation of the column-stochastic A⊗2k1 is itself column-
stochastic and the primitivity assumptions provide irre-
ducibility by Lemmas 4 and 6. Therefore the Perron-
Frobenius theorem ensures a single maximal eigenvalue with
left eigenvector 1⊗2k>. Therefore multiplying E(A⊗2k1 ) by
the projection P1 = (I⊗2k − J⊗2k), which maps R⊗2k into



the orthogonal complement of 1⊗2k> and acts as identity
there will result in the stable matrix B̃ = E(A⊗2k1 )P1. By the
same observation, P1(I−J)⊗2k = (I−J)⊗2k. Consequently
we may express the log spectral radius of interest as

lim sup
n→∞

1

n
log
∥∥∥(E(A⊗2k1 )P1(I − J)⊗2k

)n∥∥∥ (8)

Note that (4) can be extended to the tensor power, also
inserting P1 using the invariance observed above, i.e.,

(I − J)⊗2kB̃(I − J)⊗2k = B̃(I − J)⊗2k.

Repeatedly applying this to the product inside the expression
of (8) we arrive at

lim sup
n→∞

1

n
log
∥∥∥B̃n(I − J)⊗2k

∥∥∥ ≤ log ρ(B̃) < 0.

Corollary 12: Under Assumption 8,

lim sup
n→∞

1

n
log
∥∥N⊗kn ∥∥2

F
≤ η2k a.s.. (9)

Proof: Given the moment bound of Theorem 11, by
a standard combination of the Chernoff-inequality and the
Borel-Cantelli lemma, for any fixed l ∈ Z+ the event
1
n log

∥∥N⊗kn ∥∥2
F
> η2k + 1

l occurs finitely many times a.s.
which then combined for all l ∈ Z+ confirms the claim.

Proof: [Proof of Theorem 1] We perform a slight
rearrangement so that we can introduce the 2k-th power of
a single term. For any positive p-tuple of ui we may write
log
∑p
i=1 ui ≤ log(pmaxi ui) = 1

2k log(pmaxi ui)
2k. For

our target expression this translates to

lim sup
n→∞

1

n
log

p∑
i=1

∣∣∣∣ xinwin − x̄
∣∣∣∣ ≤

lim sup
n→∞

1

2kn
log max

i

∣∣∣∣e>i Nnx0win

∣∣∣∣2k .
(10)

To get a hand on this quantity, recall that the denominator
is sub-exponential by Lemma 10, thus it does not alter the
rate. For the numerator, there holds for some c2k > 0

|e>i Nnx0|2k ≤ c2k‖e>i ‖2k‖Nn‖2kF ‖x0‖2k

= c2k‖e>i ‖2k‖N⊗kn ‖2F ‖x0‖2k,
(11)

using that for any S, both ‖S⊗k‖2F , ‖S‖2kF express the sum
of all k-fold products of the squared elements of S and are
thus equal. Plugging this back to (10) and using the result
of Corollary 12 we get the upper bound of η2k/2k on the
rate. Set k = 1 to confirm the claim.
Combining Lemma 11 with (11) above we get a 2k-moment
convergence rate bound for linear consensus:

Corollary 13: Under Assumption 8 further requiring An
to be doubly stochastic there holds

lim sup
n→∞

1

n
logE‖Mnx0 − x̄1‖2k ≤ η2k.

VI. OPTIMIZING THE TENSOR EXPONENT k

As we have seen in the proof of Theorem 1, the main
term in (11) quantifying the error becomes ‖Nn‖2kF once
k is chosen, which is then further bounded with the tools
obtained before. Directly examining ‖Nn‖2kF we would get
the so-called s = 2k-th mean Lyapunov exponent that could
be defined for any s > 0, see [19], as

λs = lim
n→∞

1

n
E‖Bn · · ·B1‖s. (12)

It is easy to see that the limit on the right hand side does exist,
and the function λs is convex in s, and λs/s is monotone
non-decreasing. We now show that the same holds as a
discrete series for the computable bound η2k/(2k), implying
k = 1 is optimal, in line with the choice in Theorem 1.

Towards showing the (mid-point) convexity of η2k we
present an inequality of general interest, a Cauchy-Schwartz
type comparison for tensor products. Among various versions
available in the literature, the current proof is significantly
shorter than the one found in [20]. The main ideas are built
on [21], referring to [22], but now interpreted in a simple way
that is sufficient for our finite dimensional setting without
needing to delve into the operator space theoretical context.

Lemma 14: Let us consider random matrices X and Y .
Then there is a constant C > 0 depending on the dimensions
such that

‖E(X ⊗ Y )‖ ≤ C
√
‖E(X ⊗X)‖ ·

√
‖E(Y ⊗ Y )‖.

For square matrices we further have

ρ(E(X ⊗ Y )) ≤
√
ρ(E(X ⊗X)) ·

√
ρ(E(Y ⊗ Y )).

Proof: We prove the claim with C = 1 for a special
choice of norms, then the claim follows by the equivalence
of norms. The construction is indirect at first, we handle an
element Z expressed as a mixture of tensor products by some
auxiliary measure µ on some auxiliary set S, with proper
choice of X,Y , i.e., assume Z =

∫
S
X ⊗ Y dµ. Define the

norm of such a mixture as∥∥∥∥∫
S

X ⊗ Y dµ
∥∥∥∥
∗

= sup
‖ax‖=‖bx‖=
‖ay‖=‖by‖=1

{∫
S

a>xXbxb
>
y Y
>aydµ

}
,

where ax, bx, ay, by are vectors of appropriate dimensions.
This is a general scheme for all tensor product spaces
encountered.

First we need to check this is a norm indeed. It is
defined: all big matrices can be expressed as mixtures of
tensor products. It is well defined: observe that for any
ax, bx, ay, by the integral depends only on the value, not the
representation, then taking supremum keeps this property.
Linearity is straightforward from the definition. For the
triangle inequality we use the freedom of representation,
w.l.o.g we may express an addition Z = Z1 + Z2 as
merging disjoint representations, i.e., take S = S1 ∪S2 with
S1 ∩ S2 = ∅ with X,Y, µ merging the action of Xi, Yi, µi.
Then by construction∫

S

X ⊗ Y dµ =

∫
S1

X1 ⊗ Y1dµ1 +

∫
S2

X2 ⊗ Y2dµ2.



Similarly, towards computing the norm we have∫
S

a>xXbxb
>
y Y
>aydµ =

∫
S1

a>xX1bxb
>
y Y
>
1 aydµ1

+

∫
S2

a>xX2bxb
>
y Y
>
2 aydµ2.

Taking supremum in ax, bx, ay, by for the l.h.s. the norm
appears there. These are not necessary the optimal parameter
vectors for the r.h.s. expressions, immediately confirming the
triangle inequality.

Let us turn to our main claim. Notice that the underly-
ing probability space appears naturally for expressing the
mixtures to handle. For fixed ax, bx, ay, by , the claim is a
standard “Cauchy-Schwartz” between the two random scalars
a>xXbx and b>y Y

>ay , i.e.,

E(a>xXbxb
>
y Y
>ay) ≤

√
E(a>xXbxb

>
xX
>ax)

·
√
E(a>y Y byb

>
y Y
>ay).

Optimizing in ax, bx, ay, by for the l.h.s. we get the inequality
needed to conclude the first part on norms. Considering
the spectral radius, take n independent copies of X,Y and
apply the claim for their products, noting E((X1 · · ·Xn) ⊗
(Y1 · · ·Yn)) = E(X ⊗ Y )n arriving at

‖E(X ⊗ Y )n‖∗ ≤
√
‖E(X ⊗X)n‖∗ ·

√
‖E(Y ⊗ Y )n‖∗.

Taking nth root and letting n→∞ the spectral radii appear
as required.

Now we can conveniently apply the above in our context:
Lemma 15: In the setting of Assumption 8, η2k is (mid-

point) convex in k. Also, η2k/(2k) is non-decreasing.
Proof: By applying Lemma 14 with X = B⊗k−1 and

Y = B⊗k+1 for k ≥ 1 we directly get

exp(η2k) ≤ exp(η2k−2/2) exp(η2k+2/2),

showing the convexity of η2k. To complete the sequence,
extend to η0 = 0. Lemma 14 still provides convexity at
k = 1, using the identity matrix when necessary, this easily
implies that η2k/(2k) must be non-decreasing for k ≥ 1.

VII. NUMERICAL RESULTS

The main question is the sharpness of the upper bound on
the exponential convergence rate obtained. We do not launch
the processes from a single initial x0, but rather from (I−J):

1

n
log

(
1
√
p
‖diag(wn)−1Mn(I − J)‖F

)
, (13)

bounding the empirical rate of convergence of the process
for the range of any starting vector spanned by the columns
of I − J : those with 0 average. We take n = 100000,
which is generous in view of the size of the network and
the communication pattern to follow. The Julia computing
platform is used to carry out the simulations [23], [24].

For the underlying network, we consider a model based
on Random Geometric Graphs (RGG) [25] with a simple
perturbation where a dependence on the positions of the

agents can be introduced. We interpolate between a grid
and uniform random placement. To be more precise, let c ∈
[0, 1] be an interpolation parameter together with a reference
number of nodes, p0. For each node i, two preliminary
positions are assigned: zig a unique point on the

√
p0×

√
p0

square grid fitted into [0, 1]2 and zir, a uniform random
position in [0, 1]2. The final position is then declared as
zi = czir + (1− c)zig .

We still need to define the graph on the points obtained
on the unit square. We still want to stay with the concept of
connecting those that are close.

As the structure of positions are changing, the clear con-
nectivity thresholds for RGGs [26] does not apply anymore.
Instead to get a graph with balanced density, we optimize the
threshold for the distance of two nodes getting connected
so that the largest connected component contains ≈ 90%
of the nodes. Then this giant component is kept for further
work also determining the final dimension p. In Figure 1
we see two examples for c = 0.1 and c = 0.8 for p0 = 64
initial points, which will be the default size parameter for our
simulations. This leads to a typical dimension of p ≈ 58.

(a) (b)

Fig. 1: Example random graphs interpolating between square
grid and uniform random node placement, for (a) c = 0.1
and (b) c = 0.8 coefficient for the random component.

The reference dynamics is asynchronous directed gossip:
every step a uniformly chosen node communicates towards
a single uniformly chosen neighbor, sending 1

2 fraction of
its value and weight. Figure 2 presents the empirical rate
according to (13) together with η2/2 for 500 simulations
for various c, we see the two move together despite the wild
randomness of the graph instances. We also see the difference
of the two, showing that it is reliable estimate even point-
wise. The numerical stability is demonstrated by a single
instance out of the 500 when there is a positive difference
of ≈ 2 · 10−6.

We compare the reference gossip with two modified strate-
gies. First, we have two-way randomized gossip: the trans-
mitting node selects two receivers and uniformly randomly
splits the total fraction of 1

2 to be sent between them. Note
that the conditions of Theorem 1, Assumption 8 still holds,
here A is a union of segments in the space of non-negative
matrices. Second, the reference gossip is modified to send
only a fraction of 1

4 to a single recipient, but we allow twice
as many steps to take place, we will name this slowed gossip
for convenience. Figure 3 presents the comparison of rates of



Fig. 2: Empirical (green) rates versus bounding η2/2 (black)
and their moving averages, below the difference of the two.

the modified strategies. For the empirical rates we observe
no consistent ordering of the three strategy, however, the
difference is an order of magnitude smaller than the variance
caused by by the graph variability, see the range in Figure
2. η2/2 provides two-way gossip a stronger bound than for
the reference process, even more for the slowed gossip.

Fig. 3: Empirical rates (above) and η2/2 (below) compared
to that of the reference gossip on structured RGGs, for two-
way randomized gossip (red) and slowed gossip (blue).

Another natural question to ask is the dependence of
the rate on the connection structure. We consider the fol-
lowing Erdős-Rényi process inspired model to study this
phenomenon: starting with a cycle on p = 50 nodes we add
random edges uniformly one by one, up to 500 (an average
extra degree of 20), and at each step, we evaluate both
the empirical rates and η2/2 of the three process variants.
Figure 4 shows the aggregated picture. It is apparent that
initially in the sparse region an extra edge is much more
game-changing than later on. Also, in the late phase there
is a clear ordering of efficiency of slowed gossip being the
best, followed by two-way gossip, then the reference. Note
however, this ordering is not fully present in the earlier

sparse, less interconnected phases.

Fig. 4: Empirical rates and η2/2 for reference gossip (green)
two-way randomized gossip (red) and slowed gossip (blue)
on the cycle with random edges.

Let us zoom in once again for this connection structure to
compare the three process variants. We compare separately
the empirical rates and the computed η2/2 for both process
variants, normalized against the reference gossip in Figure 5.
We observe that in terms of the empirical rate, initially there
is a non-trivial race among the three strategies, then between
the two-way and the slowed gossip, before the final order is
settled for dense graphs. Interestingly, for the bounding η2/2
the ordering is robust.

Fig. 5: Empirical rates (above) and η2/2 (below) compared
to that of the reference gossip on the cycle with random
edges, for two-way randomized gossip (red) and slowed
gossip (blue).

VIII. CONCLUSION

We have proven upper bounds for the almost sure expo-
nential convergence rate of i.i.d. ratio consensus algorithms
inspired by the approach of [1] and by the analysis in [2].
The quantity η2k = log ρ

(
E(A⊗2k1 )(I − J)⊗2k

)
is indeed

accessible, as it is based on the spectral description of a
finite transformation of the matrix distribution describing the
updates. We have shown that η2k/(2k) is non-decreasing,
thus for bounding the convergence rate it is optimal to keep
k = 1. However, our general results can be applied to provide
upper bounds on the convergence rate of higher moments for
linear consensus.



Through numerical examples we have observed that the
bounds tend to capture well the magnitude of the rate, with an
error of lower order. Also, for sparse networks few additional
edges can improve efficiency significantly.

IX. APPENDIX

Proof: [of Lemma 4] Define γ : [0,∞)→ {0, 1} simply
as the indicator of being positive. This naturally extends to
matrices element-wise.

The primitivity of A is characterized by the primitivity
of γ(A) as only positivity is needed through the process,
without focus on the actual value, and we are working with
non-negative matrices.

To investigate the support of the push-forward measure
γ∗µ, choose any A ∈ A and its projection A0 = γ(A). Let
ε = mini,j{Ai,j | Ai,j > 0}. For the small ball B(A, ε/2)
we must have µ(B(A, ε/2)) > 0 as A is in the support
by assumption. Observe there are two type of matrices in
the ball: B1 with some with negative elements, not playing
a role, and B2 with non-negative matrices where positive
elements appear at least where A has them. Therefore
µ(B1) = 0, µ(B2) > 0, and for any matrix of B ∈ B2
we have γ(B) ≥ A0. This means γ(B2) maps to a set with
positive γ∗µ probability, with all matrices bounded below by
A0. Consequently, the support of γ(A) is majorated by the
support of γ∗µ, in the sense that for any matrix A0 ∈ γ(A)
there exists B0 ∈ supp(γ∗µ) such that A0 ≤ B0. Note that
the two supports are not necessary equal.

Consider now any sequence Akl · · ·Ak1 > 0 with Aki ∈
A presenting the primitivity of A. We know it is equivalent
to γ(Akl) · · · γ(Ak1) > 0. By the previous argument, we
have matrices γ(Aki) ≤ B0

i ∈ supp(γ∗µ), thus B0
l · · ·B0

1 >
0. Being in the support on a discrete space means B0

i

has positive probability to appear, similarly for the chosen
product at any l consecutive steps, thus it will eventually
occur (as we have an i.i.d. process), confirming sequential
primitivity. In the meantime we rely on the matrices being
allowable so that it is sufficient to find a positive product at
an arbitrary starting time.

Proof: [of Lemma 6] We prove by contradiction, let us
assume EA1 is reducible. Without the loss of generality we
can assume that EA1 has the block structure

(
B C
0 D

)
with

square blocks in the diagonal. Knowing that A1 is non-
negative, this would force A1 to have the same structure a.s.,
then by stationarity for all An, and then for their products
of any length, contradicting sequential primitivity. Thus EA1

indeed must be irreducible.
Proof: [of Lemma 10] The claim is a direct consequence

of a Lemma 44 in [2], the validity of its conditions has
been verified in Section IV. The cited lemma states that
the product Mn = AnAn−1 · · ·A1 is asymptotically rank-
1, more specifically for any fixed pair of rows i, j and any
column k the ratio M ik

n /M
jk
n is sub-exponential.

As wn = Mn1, each win/w
j
n is easily seen to be a convex

combination of the corresponding quotients M ik
n /M

jk
n , k =

1, . . . , p. Thus win/w
j
n is also sub-exponential. Recall that

Am is column stochastic for all m, and hence Mn is also

column stochastic for all n. Thus we have 1>wn = p for
all n. Summation of win/w

j
n through i, with j fixed, yields

p/wjn. Since each term is sub-exponential, it follows that
p/wjn, and its maximum over j, is sub-exponential as well.
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1999.


	I Introduction
	II Technical setup and main result
	III Sequential primitivity
	IV Tight bounds for a.s. convergence
	V Restricted contraction of AnAn-1@let@token A1
	VI Optimizing the tensor exponent k
	VII Numerical results
	VIII Conclusion
	IX Appendix
	References

