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AN ANALYTIC APPROACH TO CARDINALITIES OF SUMSETS

DÁVID MATOLCSI, IMRE Z. RUZSA, GEORGE SHAKAN, AND DMITRII ZHELEZOV

Abstract. Let d be a positive integer and U ⊂ Zd finite. We study

β(U) := inf
A,B 6=∅
finite

|A+B + U |

|A|1/2|B|1/2
,

and other related quantities. We employ tensorization, which is not available for the
doubling constant, |U + U |/|U |. For instance, we show

β(U) = |U |,

whenever U is a subset of {0, 1}d. Our methods parallel those used for the Prékopa-
Leindler inequality, an integral variant of the Brunn-Minkowski inequality.

1. Introduction

The aim of this study is to understand the nature of structures in Zd, the presence of
which implies that the sumset must be large. The archetype is Freiman’s theorem that
if a set A ⊂ Zd is proper d-dimensional, then

(1.1) |A+ A| ≥ (d+ 1)|A| −

(

d+ 1

2

)

.

The assumption on dimension can be expressed as Sd ⊂ A for a d-dimensional simplex
Sd. In general, the induced doubling of a set U is the quantity

inf
A⊃U

|A+ A|

|A|
;

our main aim is to give lower estimates for it and related quantities. Applications for
the sum-product problem, related to the work of [BC04], will be the subject of another
paper.
While our main interest is in Zd, we shall mostly formulate our results for general,

typically torsion-free commutative groups. Since we work with finite sets and a finitely
generated torsion-free group is isomorphic to some Zd, it is not more general, but we
rarely need the coordinates.
In the first part we work with sets, in the second part we study a weighted version

which will be necessary for the proof of the main results. By introducing a weighted
analog, we will be able to use tensorization: that is we prove a d dimensional inequality
by induction on dimension alongside a two point inequality. This is a method commonly
used in analysis, for instance in the Prékopa-Leindler inequality [Pré71] and Beckner’s
inequality [Bec75]. We discuss this more below, but also invite the reader to the excellent
survey paper of Gardner [Gar02]

Part I: sets
1
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2 DÁVID MATOLCSI, IMRE Z. RUZSA, GEORGE SHAKAN, AND DMITRII ZHELEZOV

2. Main results

Let U be a finite set in a commutative group G. We modify the above definition of
induced doubling to use sums of different sets, which are often better behaved.

Definition 2.1 (Induced doubling). The induced doublings of U are the quantities

α(U) = inf
A⊃U,B⊃U

|A+B|
√

|A||B|
,

the (unrestricted) induced doubling ;

α′(U) = inf
A⊃U,B⊃U, |A|=|B|

|A+B|

|A|
,

the isometric induced doubling ;

α′′(U) = inf
A⊃U

|A+ A|

|A|
,

the isomeric induced doubling.

Conjecture 2.2. In the above definitions, the infimum is a minimum.

We rarely can estimate induced doubling directly, typically it will be through a related
quantity involving the sum of three sets.

Definition 2.3 (Induced tripling β). The triplings of U are the quantities

β(U) = inf
A,B

|A+B + U |
√

|A||B|
,

the (unrestricted) tripling ;

β ′(U) = inf
A,B, |A|=|B|

|A+B + U |
√

|A||B|
,

the isometric tripling ;

β ′′(U) = inf
A

|A+ A + U |

|A|
,

the isomeric tripling.

These infima may and may not be minima. Estimates for β yield an estimate weaker
than the obvious max(|A|, |B|) when the sizes of A and B are rather different. We
consider an asymmetric version as follows.

Definition 2.4 (Asymmetric induced tripling βp). For 1 < p < ∞ we put

βp(U) = inf
A,B

|A+B + U |

|A|1/p|B|1−1/p
.

Thus β(U) = β2(U). We shall estimate these quantities rather preciesly for sets
contained in quasicubes, which we define recursively as follows.

Definition 2.5 (Quasicubes). A 0-dimensional quasicube is any singleton.
Let U be a finite set in a commutative group G. We say that U is a d-dimensional

quasicube, if there is a proper subgroup G′ such that U is contained in two distinct
cosets, say G′+x and G′+ y, both U ∩ (G′+x) and U ∩ (G′+ y) are d− 1 -dimensional
quasicubes and x− y is of infinite order in the factor-group G/G′.
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For instance, in Z2 any four points that lie on two distinct parallel lines (i.e. a
trapezoid) form a quasi-cube. A d-dimensional quasicube has 2d elements, and its
dimension is indeed d in according to the following definition.

Definition 2.6 (Set dimension). Let A be a finite set in a commutative group G. Let
H be the subgroup generated by A−A, that is, the smallest group H with the property
that A lies in a single coset of H . As a finitely generated group, H is isomorphic to
some H ′ × Zd, where H ′ is a torsion group. We call d = dimA the dimension of A.

The central result of the present paper is that subsets of quasicubes induce large
additive doubling and tripling. Indeed much of what we prove was known for cubes
in [GT06], but their geometric methods do no extend to quasi-cubes (or subsets of
quasi-cubes).

Theorem 2.7 (Subsets of quasicubes have maximal β). Let U be a d-dimensional
quasicube in any commutative group. For every V ⊂ U we have

β(V ) = |V |, α(V ) ≥ |V |1/2.

In particular

β(U) = 2d, α(U) ≥ 2d/2.

A short streamlined self-contained proof of Theorem 2.7 can also be found in [GMR+].
The main innovation of the tripling β is that it allows one to efficiently account for

the additive expansion of the lower dimensional subsets (fibers) of U in a recursive
fashion. The core estimate is Theorem 11.1, where we show that a certain functional is
minimized by geometric progressions.
In comparison, the authors of [BC04] implicitly analysed a quantity similar to α

and had to resort to multi-scale dyadic pigeonholing leading to a significantly worse
estimate. In particular, such an analysis would give non-trivial bounds only for well-
balanced quasicubes with all the lower-dimensional fibers being of comparable size.
As a corollary of Theorem 2.7, it follows that iterated sumsets of quasicube sumsets

grow logarithmically, which is essentially sharp.

Corollary 2.8 (Quasi-cubes have large iterated sumset). Let U be a d-dimensional
quasicube in any commutative group. For every V ⊂ U and k ≥ 2 we have

|(2k − 1)V | ≥ |V |k.

Proof. The base case k = 2 follows from the definition of β and Theorem 2.7. For larger
k, one has

|(2k − 1)V | = |(2k−1 − 1)V + (2k−1 − 1)V + V | ≥ |(2k−1 − 1)V |β(V ) ≥ |V |k.

�

The trivial bound

(2.1) β(U) ≤ min(|U |, 2d)

holds for any set U of dimension d, so the induced tripling (i.e. β) of quasicube subsets
is as large as it gets. We conjecture that this holds for a larger class of sets.
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Conjecture 2.9 (Log-span conjecture). Let V be a finite set with the property that
for any k ≤ dimV any k-dimensional subset of V has at most 2k elements. Then

(2.2) β(V ) = |V |

and in particular
α(V ) ≥ |V |1/2.

We conjecture that in fact β is determined by the linear dependence matroid of the
set in question, in the following sense.

Conjecture 2.10 (Linear matroid conjecture). Let U, V be finite sets of equal cardinal-
ity in any group, ϕ : U → V a bijection. If for every U ′ ⊂ U we have dimϕ(U ′) ≤ dimU ′,
then β(V ) ≤ β(U). In particular, if always dimϕ(U ′) = dimU ′, then β(V ) = β(U).

Note that Conjecture 2.9 would follow quickly from Conjecture 2.10 and Theorem 2.7.

Theorem 2.11 (Discrete Prékopa-Leindler for quasi-cubes). Fix 1 < p < ∞ and let q
be the conjugate exponent defined via

1/p+ 1/q = 1.

Let U be a d-dimensional quasicube in any commutative group and V ⊂ U . We have

βp(V ) ≥ cdp|V |, where cp =
p1/pq1/q

2
≤ 1.

The flexibility of choosing p allows us to deduce the following discrete Brunn-Minkowski
inequality.

Corollary 2.12 (Discrete Brunn-Minkowski for quasi-cubes). Let U be a subset of a
d-dimensional quasi-cube in any commutative group. For any finite sets A,B we have

|A+B + U |1/d ≥
|U |

2d
(

|A|1/d + |B|1/d
)

.

Note if U is a quasi-cube, then |U | = 2d, and we obtain

|A+B + U | ≥ |A|1/d + |B|1/d.

This result was obtained for cubes by Green and Tao [GT06, Lemma 2.4]. Their meth-
ods, which rely on the continuous Brunn-Minkowski inequality, seem to not generalize
to quasi-cubes. We remark that our results are somewhat in a similar spirit to that of
[BDF+11, Section 5], where lower bounds for sumsets of subsets of {0, . . . ,M − 1}d are
provided.

Proof. Apply the inequality from Theorem 2.11,

|A+B + U | ≥
|U |cdp
2d

|A|1/p|B|1/q

with the optimal choice of p which is defined by

1/p =
|A|1/d

|A|1/d + |B|1/d
.

�

Theorem 2.11 can be viewed as a discrete Prékopa-Leindler inequality, which we recall
(see also [Gar02, Theorem 4.2]).
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Theorem 2.13 (Prékopa-Leindler [Pré71]). Let 0 < λ < 1 and

g, h, F : Rd → R,

be non-negative measurable functions satisfying for all x, y ∈ Rd

F ((1− λ)x+ λy) ≥ f(x)g(y).

Then
∫

F ≥ ||f ||p||g||q,

with p = 1/λ and 1/p+ 1/q = 1.

Note that Theorem 2.13 can be used to deduce the Brunn-Minkowski inequality, in
a similar manner to Corollary 2.12. Theorem 2.11 can be intepreted to be a discrete
analog of Theorem 2.13.

3. Inequalities between doublings and triplings

We conjecture that the defined six quantities are actually only two, and connected
by simple inequalities.

Conjecture 3.1 (Doubling-tripling conjecture). For every finite set U in any commu-
tative group we have

α(U) = α′(U) = α′′(U) ≤ β(U) = β ′(U) = β ′′(U) ≤ α(U)2.

We list some properties.

Statement 3.2 (Basic Inequalities). Let V be a finite set in a commutative group, G,
|V | = n, dimV = d. We have

α(V ) ≤ α′(V ) ≤ α′′(V )

{

< 2d,

≤ (n + 1)/2,

d+ 1 ≤ β(V ) ≤ β ′(V ) ≤ β ′′(V )

{

≤ 2d,

≤ n.

Proof. The inequalities

α(V ) ≤ α′(V ) ≤ α′′(V ), β(V ) ≤ β ′(V ) ≤ β ′′(V ),

follow immediately from the definitions. Taking A = V in the definition of α′′(V ), we
have

α′′(V ) ≤
|V + V |

|V |
≤

1

|V |

(

|V |+ 1

2

)

=
n+ 1

2
.

Taking A = {0} in the definition of β ′′(V ), we find that

β ′′(V ) ≤ |V | = n.

Since V has dimension d, we may assume

V ⊂ H ′ × Zd.

Thus for large enough N , we have V ⊂ A, where

A := H ′ × {−N, . . . , N}d.
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Since
|A+ A|

|A|
→ 2d as N → ∞,

we find that α′′(V ) ≤ 2d. Also,

A+ A + V ⊂ H ′ × {−2N −max
v∈V

|v|∞, . . . , 2N +max
v∈V

|v|∞}d,

and so

β ′′(V ) ≤
|A+ A+ V |

|A|
→ 2d as N → ∞.

Note that β(V ) ≥ d + 1 follows from the more general Theorem 2.7 which we prove
later.

�

Statement 3.3 (Basic Inequalities II). For every finite set U in any commutative group
we have

(3.1) α(U) ≤ β(U), α′(U) ≤ 4β ′(U), α′′(U) ≤ 3β ′′(U),

(3.2) β(U) ≤ α(U)2, β ′′(U) ≤ α(U)3,

(3.3) α′′(U) ≤ α(U)2, β ′′(U) ≤ β ′′(2U) ≤ β(U)2.

Proof. We may assume U ⊂ G = H ′ × Zd. If d = 0, then all

1 = α(U) = α′(U) = α′′(U) = β(U) = β ′(U) = β ′′(U),

so we may assume d ≥ 1.
We first show the second inequality in (3.1). Let A,B be such that |A| = |B| and let

k be a large integer. Since d ≥ 1, we may choose a x ∈ G be such that the sets

A+ x, . . . , A+ kx,

are disjoint, and
B + x . . . , B + kx,

are also disjoint. Put

A′ = U ∪
k
⋃

i=1

(A+ ix), B′ = U ∪
k
⋃

i=1

(B + ix).

These sets satisfy

U ⊂ A′, B′ and |A′| = |B′| ≥ k|A|.

We have

(3.4) A′ +B′ = (U + U) ∪

k
⋃

i=1

(A + U + ix) ∪

k
⋃

i=1

(B + U + ix) ∪

2k
⋃

i=2

(A +B + ix).

As |A+ U |, |B + U |, |A+B| are all smaller than |A+B + U |, we find

|A′ +B′| ≤ |U + U |+ (4k − 1)|A+B + U |.

Thus
|A′ +B′|

|A′|
≤

|U + U |

k|A|
+

(

4−
1

k

)

|A+B + U |

|A|
.
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As this is true for any A and B with |A| = |B|, we find

α′(U) ≤
|U + U |

k
+ 4β(U),

and the second statement of (3.1) follows from letting k → ∞.
The proof of the third statement of (3.1), that is α′′(U) ≤ 3β ′′(U), proceeds similarly.

The only difference is we take A = B so some parts of (3.4) coincide and the 4 is reduced
to 3.
We could use the same approach to show α(U) ≤ 4β(U). The proof below due to

Thomas Bloom allows one to get rid of the factor. We need the following from [Pet12].

Lemma 3.4 (Petridis). Let X, Y, Z be finite subsets of a commutative group with the
property that for all X ′ ⊂ X, we have

|X ′ + Y |

|X ′|
≥

|X + Y |

|X|
.

Then
|X + Y + Z||X| ≤ |X + Y ||X + Z|.

Let A,B ⊂ G be finite with the property that for any A′ ⊂ A and B′ ⊂ B

(3.5)
|A+B + V |

|A|1/2|B|1/2
≤

|A′ +B + V |

|A′|1/2|B|1/2
,

|A+B + V |

|A|1/2|B|1/2
≤

|A+B′ + V |

|A|1/2|B′|1/2
.

By a standard limiting argument we may assume WLOG that the infimum in the
definition of β(V ) is taken over A,B satisfying (3.5). This implies in particular that for
any A′ ⊂ A

|A+B + V |

|A|
≤

|A′ +B + V |

|A′|
.

Applying Lemma 3.4 with X = A, Y = B + V and Z = V , we conclude

|A+B + V + V ||A| ≤ |A+B + V ||A+ V |,

and rearranging gives

|A+ V +B + V |

|A+ V |1/2|B + V |1/2

(

|B + V |1/2|A|1/2

|B|1/2|A+ V |1/2

)

≤
|A+B + V |

|A|1/2|B|1/2
.

Applying with the roles of A and B swapped, we also find

|A+ V +B + V |

|A+ V |1/2|B + V |1/2

(

|A+ V |1/2|B|1/2

|A|1/2|B + V |1/2

)

≤
|A+B + V |

|A|1/2|B|1/2
,

and so
|A+ V +B + V |

|A+ V |1/2|B + V |1/2
≤

|A+B + V |

|A|1/2|B|1/2
.

Thus we conclude that
α(V ) ≤ β(V ).

For (3.2) and (3.3) we need Plünnecke’s inequality.

Lemma 3.5 (Plünnecke). Let X and Y be subsets of a commutative group. Let k be a
positive integer and |X + Y | = c|X|. Then there is a X ′ ⊂ X such that

|X ′ + kY | ≤ ck|X ′|.

In particular,
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Lemma 3.6 (Plünnecke). Let X, Y be finite sets of an additive group. Then there is
X ′ ⊂ X such that

|Y + Y | ≤ |X ′ + Y + Y | ≤ |X ′|
|X + Y |2

|X|2
≤

|X + Y |2

|X|

We now proceed to (3.2). Let A,B be any sets containing U . After swapping the
roles of A and B, we may suppose |A| ≥ |B|. By Lemma 3.5, there is an A′ ⊂ A such
that

|A′ + 2B| ≤

(

|A+ B|

|A|

)2

|A′|.

As A′ +B + U ⊂ A′ + 2B, we conclude

β(U) ≤
|A′ +B + U |
√

|A′||B|
≤

√

|A′|

|A|

|A+B|2

|A||B|
≤

|A+B|2

|A||B|
.

As A and B are arbitrary, we conclude

β(U) ≤ α(U)2.

We approach the first inequality in (3.3) similarly. Let A and B be arbitrary sets
containing U . Then by Lemma 3.6

|B +B|

|B|
≤

|A+B|2

|A||B|
,

and α′′(U) ≤ α(U)2 follows.
We now proceed to the second statement of (3.2). Let A and B be sets containing U

with |B| ≤ |A|. By Lemma 3.5 we may find an A′ ⊂ A such that

|B +B + U | ≤ |A′ + 3B| ≤

(

|A+B|

|A|

)3

|A|.

Dividing both sides by |B| and using |B| ≤ |A| gives β ′′(U) ≤ α(U)3.
We now proceed to the second statements of (3.3). First, β ′′(U) ≤ β ′′(2U) follows

immediately from the definitions. Let A,B be arbitrary with |B| ≤ |A|. We find, by
Lemma 3.5, a B′ ⊂ B such that

|B′ + 2(A+ U)| ≤

(

|A+B + U |

|B|

)2

|B′|,

and hence

|2A+ 2U |

|A|
≤

|A+B + U |2

|A||B|

and so β ′′(2U) ≤ β(U)2 follows. �

Problem 3.7. How tight are these inequalities? For the discrete cube Kd = {0, 1}d we
have β(Kd) = 2d, 2d/2 ≤ α(Kd) ≤ (3/2)d, so β ≤ α2 is pretty tight, the exponent is
definitely not lower than log 2/ log(3/2).
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4. The independence problem

In the preceding sections we tacitly assumed that the ambient group G is fixed, and
the sets A,B in the definition of the α’s and β’s are taken from this group. Sometimes
we shall consider different groups, and the possibility of dependence arises.
For this section we change the notations to α(U,G), to indicate the ambient group

(and similarly for all other parameters).

Conjecture 4.1 (The independence hypothesis). Let G be a group, G′ its subgroup,
U ⊂ G′ and let ϑ be any of the functionals α, α′, α′′, β, β ′, β ′′. We have

ϑ(U,G) = ϑ(U,G′).

We cannot even answer Conjecture 4.1 even in the following simple special case. Let
G = Zd, and assume that U ⊂ p ·Zd. Do we get the same values of α, α′, α′′, β ′, β ′′ if we
restrict A,B to be subsets of p · Zd?
The only case where we can show this in generality is for β.

Theorem 4.2 (Independence for β). Let G be a group, G′ its subgroup, U ⊂ G′. We
have

β(U,G) = β(U,G′).

Proof. Take A,B ⊂ G and split them according to cosets of G′, say

A =
⋃

Ai, B =
⋃

Bj .

Assume that A1 is the largest of the Ai and similarly for B. The sets A1 +Bj + U are
disjoint (as j varies), and hence

|A+B + U | ≥
∑

j

|A1 +Bj + U | ≥ β(U,G′)
√

|A1|
∑

j

√

|Bj |.

By symmetry of A and B,

|A+B + U | ≥ β(U,G′)
√

|B1|
∑

i

√

|Ai|.

Forming the geometric mean of the above two inequalities and using Hölder of the form
∑

x2
i ≤ (max xi)

∑

xi

separately for the numbers |Ai| and |Bj|, we obtain the desired result �

An important special case is easily seen.

Statement 4.3 (Cartesian products with torsion). Let G be a group, G = G′ ×H with
H torsion-free, U ⊂ G′ and let ϑ be any of the functionals α, α′, α′′, β ′, β ′′. We have

ϑ(U,G) = ϑ(U,G′).

In particular this implies that by embedding Zd into Zk with k > d these values do
not change.

Proof. If G′ is a torsion group, then all these functionals have value 1. Assume this is
not the case, and fix a g ∈ G′ of infinite order.
Take A,B ⊂ G. We are going to construct A′, B′ ⊂ G′ such that

|A′ +B′| = |A+B|, |A′ +B′ + U | = |A+B + U |,
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and the restrictions used to define α, α′, α′′, β ′, β ′′ are preserved.
Let H ′ be the subgroup of H generated by the elements in the H-projection of A∪B.

Since H is torsion-free, we have H ′ ∼= Zd for some d. Let e1, . . . , ed be a system of gener-
ators for H ′. For fixed integers m1, . . . , md (to be chosen later) define a homomorphism
ϕ : G′ ×H ′ → G′ by

ϕ(x, y1e1 + . . .+ yded) = x+ (m1y1 + . . .+mdyd)g.

Put A′ = ϕ(A), B′ = ϕ(B). It is clear that for m1, . . . , md large enough (and dependent
on A,B, U), ϕ is one-to-one on A,B,A+B,A+B + U and the claim follows. �

5. Torsion

The presence of torsion is the source of difficulties. We conjecture it should not matter
much.

Conjecture 5.1. Let G be a group, H its torsion subgroup, G′ = G/H the factor
group, ϕ : G → G′ the natural homomorphism, U ⊂ G, U ′ = ϕ(U) ⊂ G′ and let ϑ be
any of the functionals α, α′, α′′, β ′, β ′′. We have

ϑ(U ′) = ϑ(U).

Remark 5.2. The case of β follows from Statement 5.3 below and supermultiplicativity
(Theorem 7.4) as β is always at least 1.

Statement 5.3 (Projections and torsion). Let G be a group, H its torsion subgroup,
G′ = G/H the factor group, ϕ : G → G′ the natural homomorphism, U ⊂ G, U ′ =
ϕ(U) ⊂ G′ and let ϑ be any of the functionals α, α′, α′′, β, β ′, β ′′. We have

ϑ(U ′) ≥ ϑ(U).

Proof. For concreteness, let us prove Statement 5.3 for the case of β, as for the other
functionals the argument is similar.
For an arbitrary ǫ > 0 there are A′, B′ ⊂ G′ such that

|A′ +B′ + U ′|

|A′|1/2|B′|1/2
≤ β(U ′) + ǫ.

WLOG we may assume H is of finite order. Take A := φ−1(A′) and B := φ−1(B′), so
that |A| = |H||A′| and |B| = |H||B′|. At the same time clearly

|A+B + U | ≤ |A′ +B′ + U ′||H|,

so

β(U) ≤
|A+B + U |

|A|1/2|B|1/2
≤ β(U ′) + ǫ.

The claim follows as ǫ can be taken arbitrarily close to zero. �

Statement 5.4 (The trivial lower bounds). Let G be a group, H its torsion subgroup,
U ⊂ G. If U is contained in a single coset of H, then

α(U) = α′(U) = α′′(U) = β(U) = β ′(U) = β ′(U) = 1,

otherwise

β(U) ≥ 2, α(U) ≥ 3/2.
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Proof. The statement is trivial when U is contained in a coset of H .
Otherwise, we may assume WLOG that U contains the union of {0}⊕U0 and {1}⊕U1

with some U0, U1 ⊂ G/Z. We also write

A =

N
⊔

i=1

ai ⊕ Ai

and

B =

M
⊔

j=1

bj ⊕ Bj

with Ai, Bj ⊂ G/Z and some N,M , so that the integers {ai} and {bj} are monotone
increasing. Then |A+B + U | contains the disjoint union of

(a1 + b1)⊕ (A1 +B1 + U0),

(a1 + b1 + 1)⊕ (A1 +B1 + U1), . . . , (aN + b1 + 1)⊕ (AN +B1 + U1),

(aN + b2 + 1)⊕ (AN +B2 + U1), . . . , (aN + bM + 1)⊕ (AN +BM + U1).

Since in any group
|Ai +Bj + Uk| ≥ max{|Ai|, |Bj|},

we conclude that

|A+B + U | ≥

N
∑

i=1

|Ai|+

M
∑

j=1

|Bj| = |A|+ |B| ≥ 2|A|1/2|B|1/2.

In a similar way, for an arbitrary A ⊃ U holds

|A+B| ≥ |A|+ |B| −min{|A1|, |AN |, |B1|, |BM |} ≥
3

2
|A|1/2|B|1/2,

and hence β(U) ≥ 2 and α(U) ≥ 3/2. �

6. Projection and compression

By projection we mean the application of any homomorphism. We think projections
never increase the value of our α’s and β’s.

Conjecture 6.1 (Projection conjecture). Let G be a group, H its subgroup, G′ = G/H
the factor group, ϕ : G → G′ the natural homomorphism, U ⊂ G, U ′ = ϕ(U) ⊂ G′ and
let ϑ be any of the functionals α, α′, α′′, β ′, β ′′. We have

ϑ(U ′) ≤ ϑ(U).

Remark 6.2. For βp the conjecture follows from Theorem 7.5 as βp ≥ 1 always.

Remark 6.3. Essentially this means the following. Given sets A,B ⊂ G (subject to
certain conditions, depending on which of the functionals we consider) we need to find
A′, B′ ⊂ G′ such that

|A′ +B′|
√

|A′||B′|
≤

|A+B|
√

|A||B|

for the α’s, or
|A′ +B′ + U ′|

|A′|1/p|B′|1−1/p
≤

|A+B + U |

|A|1/p|B|1−1/p
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for the β’s. The natural approach of taking A′ = ϕ(A), B′ = ϕ(B) may not work even
when G = Z2, G′ = Z.

We establish an important special case.

Theorem 6.4 (Projection conjecture with no torsion). Let G be a group, H its subgroup,
G′ = G/H the factor group, ϕ : G → G′ the natural homomorphism, U ⊂ G , U ′ =
ϕ(U) ⊂ G′ and let ϑ be any of the functionals α, α′, α′′, βp, β

′, β ′′. If H is torsion-free,
then

ϑ(U ′) ≤ ϑ(U).

Definition 6.5. Let G be a group, H its subgroup, G′ = G/H the factor group,
ϕ : G → G′ the natural homomorphism. The compression along ϕ is the mapping Cϕ

of finite subsets of G into finite subsets of G′ × Z defined as follows. Let A ⊂ G be a
finite set. We put

Cϕ(A) =
⋃

x∈ϕ(A)

(x× {0, 1, . . . , |A ∩ ϕ−1(x)| − 1}.

That is, each part of A in a coset of H is replaced by an interval of the same size. If
G = Zd and H = Zk with k < d, then we can naturally represent the compression in
Zd, which is the classical usage of this term.
In what follows we will write ϕ−1

A (x) as an alias for ϕ−1(x)∩A. For a given set A and
x ∈ G′, such a set is called the fiber of A above x. One can say that the compression
operator “normalizes” each fiber of A by replacing it with an initial segment in Z.
Clearly |Cϕ(A)| = |A| always.

Statement 6.6 (Compressions shrink sumsets). Let G be a group, H its subgroup,
G′ = G/H the factor group, ϕ : G → G′ the natural homomorphism, A,B ⊂ G. If H
is torsion-free, then

Cϕ(A) + Cϕ(B) ⊂ Cϕ(A+B).

Proof. The claim is standard and can be adopted from e.g. [GG01].
Let z ∈ ϕ(Cϕ(A)+Cϕ(B)). There are za ∈ ϕ(A) and zb ∈ ϕ(B) such that z = za+zb.

By the Cauchy-Davenport inequality and the definition of the compression,

|ϕ−1
Cϕ(A)+Cϕ(B)(z)| = |ϕ−1

A (za)|+ |ϕ−1
B (zb)| − 1 ≤ |ϕ−1

A (za) + ϕ−1
B (zb)| ≤ |ϕ−1

Cϕ(A+B)(z)|,

and the claim follows. �

Theorem 6.7 (Compressions). Let G be a group, H its subgroup, G′ = G/H the
factor group, ϕ : G → G′ the natural homomorphism, U ⊂ G, and let ϑ be any of the
functionals α, α′, α′′, βp, β

′, β ′′. If H is torsion-free, then

ϑ(Cϕ(U)) ≤ ϑ(U).

Proof. Indeed, the previous statement implies that

|Cϕ(A) + Cϕ(B)|
√

|Cϕ(A)||Cϕ(B)|
≤

|A+B|
√

|A||B|

and
|Cϕ(A) + Cϕ(B) + Cϕ(U)|

|Cϕ(A)|1/p|Cϕ(B)|1−1/p
≤

|A+B + U |

|A|1/p|B|1−1/p
.

Also, the restrictions are preserved (if A ⊃ U , then Cϕ(A) ⊃ Cϕ(U); if |A| = |B|, then
|Cϕ(A)| = |Cϕ(B)|). �
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Proof of Theorem 6.4. We can naturally embed G′ into G′ × Z as G′ × {0}. With this
embedding we have U ′ ⊂ Cϕ(U), hence

ϑ(U,G) ≥ ϑ(Cϕ(U), G′ × Z) ≥ ϑ(U ′, G′ × Z) = ϑ(U ′, G′);

in the last step we apply Statement 4.3. �

7. Direct product

The behaviour of our quantities under direct product and a somewhat more general
operation (tensorization, see Theorem 7.5 below) is important for our applications.

Conjecture 7.1 (Multiplicativity hypothesis). Let G = G1 × G2, V1 ⊂ G1, V2 ⊂ G2,
U = V1 × V2, and let ϑ be any of the functionals α, α′, α′′, βp, β

′, β ′′. We have

ϑ(U) = ϑ(V1)ϑ(V2).

Submultiplicativity is easy.

Statement 7.2 (Sub-multiplicativity). Let G = G1 × G2, V1 ⊂ G1, V2 ⊂ G2, U =
V1 × V2, and let ϑ be any of the functionals α, α′, α′′, βp, β

′, β ′′. We have

ϑ(U) ≤ ϑ(V1)ϑ(V2).

Proof. We show only for ϑ = α, the rest being similar. Let A1, B1 be arbitrary sets
containing V1 and A2, B2 be arbitrary sets containing V2. Then A1 × A2 and B1 × B2

contain V1 × V2 and so

α(V1 × V2) ≤
|A1 × A2 +B1 × B2|

(|A1||B1||A2||B2|)1/2
=

|A1 +B1||A2 +B2|

(|A1||B1||A2||B2|)1/2
.

Thus
α(V1 × V2) ≤ α(V1)α(V2).

�

The multiplicativity hypothesis, Conjecture 7.1, would have consequences for the
comparison problems of Section 3.

Statement 7.3. Let U be a subset of a commutative group.
If Conjecture 7.1 holds for α′, then α(U) = α′(U) ≤ β ′(U).
If Conjecture 7.1 holds for α′′, then α′′(U) ≤ β ′′(U).
If Conjecture 7.1 holds for β ′, then β(U) = β ′(U).

Proof. The inequalities

α′(U) ≤ β ′(U), α′′(U) ≤ β ′′(U),

follow from (3.1), that is

α′(U) ≤ 4β ′(U), α′′(U) ≤ 3β ′′(U),

and Conjecture 7.1 with the tensor power trick. We prove only the first of the two
inequalities, the second following similarly. Indeed for any n ≥ 1, first using Conjec-
ture 7.1 for α′ and then Statement 7.2 for β ′, we find

α′(U)n = α′(Un) ≤ 4β ′(Un) ≤ 4β ′(U)n.

Thus
α′(U) ≤ 41/nβ ′(U),
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and the result follows from allowing n → ∞. We now show that Conjecture 7.1 implies

α(U) = α′(U).

By Statement 3.2, it is enough to show α′(U) ≤ α(U). Let A and B be sets containing
U . Then A× B and B × A contain U × U and are of the same size, so

α′(U2) ≤
|A× B +B ×A|

|A||B|
=

|A+B|2

|A||B|
.

The result then follows from Conjecture 7.1 for α′. The inequality β(U) = β ′(U) is
similar. �

We are far from knowing the multipliciativity of α, as we cannot even compute
α({0, 1}d). We do know multiplicativity of β.

Theorem 7.4 (Multiplicativity of β). Let G = G1×G2, V1 ⊂ G1, V2 ⊂ G2, U = V1×V2.
We have

βp(U) = βp(V1)βp(V2).

This will follow from supermultiplicativity, which we shall establish in a more general
setting.

Theorem 7.5 (β along fibers). Let G be a group, H its subgroup, G′ = G/H the factor
group, ϕ : G → G′ the natural homomorphism, U ⊂ G, V = ϕ(U). We have

βp(U) ≥ βp(V )min
x∈V

βp

(

U ∩ ϕ−1(x)
)

.

If H is a direct factor, this can be reformulated as follows.

Corollary 7.6. Let G = G1 × G2, V ⊂ G1, and for each x ∈ V given a set Wx ⊂ G2.
Put

U =
⋃

x∈V

{x} ×Wx.

We have

βp(U) ≥ βp(V )min
x∈V

βp(Wx).

Theorem 7.5 (and thus Theorem 7.4 and Corollary 7.6) will be proved in a yet more
general form in Section 10. It turns out that a functional analog of β that we introduce
shortly, provides greater flexibility for carrying out an induction argument.

Part II: functions

8. Functional tripling

We shall consider nonnegative-valued functions in the space ℓ1(G). A set A naturally
corresponds to the function 1A.

Definition 8.1. The max-convolution of the functions f, g is

(f ∗ g)(x) = max
t

f(t)g(x− t).
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This generalizes the notion of sumset. For the indicator functions 1A, 1B of sets A,B
we have

1A ∗ 1B = 1A+B.

One can replace the notion of cardinality of a set with the ℓ1 norm of a function.
However, we have a more robust notion.

Definition 8.2. The level sets of a function f are the sets

F(t) = {x ∈ G : f(x) ≥ t}.

The distribution function of f is the function F : R+ → Z given by

F (t) = |F(t)|.

Note that this is different from the definition used in probability theory.

Definition 8.3. Let f, g be functions with distribution functions F,G. If F = G, we
call them identically distributed and write f ∼ g.

Definition 8.4. The functional triplings of a function f are the quantities

γ(f) = inf
g,h

‖f ∗ g ∗ h‖1
‖g‖2 ‖h‖2

,

the unrestricted tripling ;

γp(f) = inf
g,h

‖f ∗ g ∗ h‖1
‖g‖p ‖h‖q

,

its asymmetric variant, where 1/p+ 1/q = 1;

γ′(f) = inf
g∼h

‖f ∗ g ∗ h‖1
‖g‖2 ‖h‖2

,

the isometric tripling ;

γ′′(f) = inf
g

‖f ∗ g ∗ g‖1
‖g‖22

,

the isomeric tripling.

Conjecture 8.5.

γ = γ′ = γ′′.

Tripling of sets can be expressed via functional tripling.

Theorem 8.6 (Function and Set analog of β are the same). Let U be any finite set in
a commutative group. We have

βp(U) = γp(1U), β ′(U) = γ′(1U), β ′(U) = γ′′(1U).

Proof. We prove only βp(U) = γp(1U), as the other equalities follow similarly (in fact
the definitions of γ′, γ′′ are designed just for this). We have

|A+B + U |

|A|p|B|q
=

‖1U ∗ 1A ∗ 1B‖1
‖1A‖p ‖1B‖q

,

and the inequality γp(1U) ≤ βp(U) follows from taking an infimum over A and B.
To prove the reverse inequality, we need a lemma, which is a multiplicative analog of

Prékopa-Leindler, Theorem 2.13.



16 DÁVID MATOLCSI, IMRE Z. RUZSA, GEORGE SHAKAN, AND DMITRII ZHELEZOV

Lemma 8.7 (Multiplicative Prékopa-Leindler). Let F,G,H be measurable functions
R+ → [0, 1] and 1 < p, q < ∞ are Hölder conjugates, that is

1

p
+

1

q
= 1.

Assume that for any u, v ∈ R+

H(uv) ≥ F (u)G(v).

Then

‖H‖1 ≥

(
∫ 1

0

F p(t1/p)dt

)1/p(∫ 1

0

Gq(t1/q)dt

)1/q

Proof. Define
h(x) := H(e−x)e−x

and further

f(x) := F p(e−x/p)e−x(8.1)

g(x) := Gq(e−x/q)e−x.(8.2)

We then have that for any x, y > 0

h (x/p+ y/q) ≥ f 1/p(x)g1/q(y),

so by the Prékopa-Leindler inequality, Theorem 2.13,

‖h‖1 ≥ ‖f‖
1/p
1 ‖g‖

1/q
1

The claim follows after the change of variables t = e−x. �

We want to prove that for any non-negative functions g, h

‖1V ∗ g ∗ h‖1 ≥ β(V )‖g‖p‖h‖q.

After rescaling, we may assume max g = maxh = 1. Let

S(t) := {z : 1V ∗ g ∗ h(z) ≥ t}.

Further define the distribution functions

G(t) := {z : g(z) ≥ t}

and
H(t) := {z : h(z) ≥ t}.

For any u, v then have the inclusion

G(u) +H(v) + V ⊂ S(uv),

so
|S(uv)| ≥ βp(V )|G(u)|1/p|H(v)|1/q.

It follows from Lemma 8.7 that

‖1V ∗ g ∗ h‖1 ≥ βp(V )

(
∫ 1

0

G(t1/p)dt

)1/p (∫ 1

0

H(t1/q)dt

)1/q

.

The result now follows from the layer-cake principle of the form
∫

F (t1/p)dt =

∫

f(t)pdt.

�
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9. The independence problem

The independence problem arises as it did for sets.
For this section we change the notations to γ(U,G) etc. to indicate the ambient

group.

Theorem 9.1 (Ambient group does not change γ). Let G be a group, G′ its subgroup,
f ∈ ℓ1(G′). We have

γp(f,G) = γp(f,G
′).

Proof. This follows from Theorem 8.6 and Theorem 4.2. �

Conjecture 9.2 (Functional independence hypothesis). Let G be a group, G′ its sub-
group, f ∈ ℓ1(G′) and let ϑ be any of the functionals γ′, γ′′. We have

ϑ(f,G) = ϑ(f,G′).

10. Direct product

Theorem 10.1 (Multiplicativity). Let G = G1 × G2, f1 ∈ ℓ1(G1), f2 ∈ ℓ1(G2), and
define f ∈ ℓ1(G) by f(x, y) = f1(x)f2(y). We have

γp(f) = γp(f1)γp(f2),

γ′(f) ≤ γ′(f1)γ
′(f2),

γ′′(f) ≤ γ′′(f1)γ
′′(f2).

Proof. The ≤ inequalities all follow from the fact that (with gi, hi defined similarly to
fi)

f ∗ g ∗ h(x, y) ≤ f1 ∗ g1 ∗ h1(x)f2 ∗ g2 ∗ h2(y)

for any x ∈ G1 and y ∈ G2.
The reverse inequality for γp follows from a much more general Theorem 10.2 (and

Theorem 10.3) towards which we immediately proceed.
�

Theorem 10.2 (Tensorization). Let G be a group, H a subgroup, G′ = G/H the factor
group, ϕ : G → G′ the natural homomorphism, f ∈ ℓ1(G). Define fϕ ∈ ℓ1(G′) by

fϕ(x) := γp
(

f |ϕ−1(x)

)

.

We have γp(f) ≥ γp(fϕ).

Proof. Let g, h ∈ ℓ‘(G) be non-negative. We have

||f ∗ g ∗ h||1 =
∑

z∈G

max
x1+x2+x3=z

f(x1)g(x2)h(x3)

=
∑

z1∈G′

∑

z∈z1+H

max
w1,w2,w3∈G′

w1+w2+w3=z1

max
x1+x2+x3=z
xi∈H+wi

f(x1)g(x2)h(x3)

≥
∑

z1∈G′

max
w1,w2,w3∈G′

w1+w2+w3=z1

∑

z∈z1+H

max
x1+x2+x3=z
xi∈H+wi

f(x1)g(x2)h(x3)(10.1)

Define the functions g′, h′ on G′ as follows

g′(w2) := ||g|ϕ−1(w2)||p, h
′(w3) := ||h|ϕ−1(w3)||q.
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One can further estimate (10.1)

≥
∑

z1∈G′

max
w1,w2,w3∈G′

w1+w2+w3=z1

fϕ(w1)g
′(w2)h

′(w3)

≥ γp(fϕ)||g||p||h||q

The last inequality follows from the observation that

||g′||p = ||g||p, ||h
′||q = ||h||q.

�

We can specialize Theorem 10.2 to cartesian products.

Theorem 10.3. Let G = G1 × G2, f a function on G. For x ∈ G1, define fx(y) =
f(x, y), functions on G2. Let g(x) = γ(fx), a function on G1. We have γp(f) ≥ γp(g).

Proof. We let ϕ : G1 ×G2 → G1 by projection. Then

fϕ(x) = γ(fx),

and so the result follows from Theorem 10.2. �

We are now ready to prove Theorem 7.5.

Theorem 7.5. Let U be as in the statement and f = 1U =: U . Then, by Theorem 8.6,
for x ∈ V

fϕ(x) := γp
(

f |ϕ−1(x)

)

= βp(U ∩ ϕ−1(x)).

In particular, we have the point-wise bound

fϕ(x) ≥ 1V (x)min
t∈V

βp(U ∩ ϕ−1(t)),

so again by Theorem 8.6 and linearity

γp(fϕ) ≥ βp(V )min
t∈V

βp(U ∩ ϕ−1(t)).

The result now follows from Theorem 10.2, as

βp(U) = γp(f) ≥ γp(fϕ) ≥ βp(V )min
x∈V

βp(U ∩ ϕ−1(x)).

�

11. Functional tripling for functions supported on quasicubes

The goal of this section is to prove Theorem 2.7. The basic strategy is to use ten-
sorization to reduce to a two-point inequality. We let U be a d dimensional quasi-cube,
defined in Defintion 2.5. Thus U is d dimensional as thus we may assume

U ⊂ H ′ × Zd,

where H ′ is a torsion subgroup. We first show we may assume H ′ = {0}. Let π be the
projection to Zd. Then by induction, it follows that |π(U)| = |U |. Thus for V ⊂ U , to
prove Theorem 2.7,

β(π(V )) ≥ |V |.

By Theorem 4.2, we may assume

V ⊂ U ⊂ Zd.

Central to our study will be the following.
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Theorem 11.1 (γ for two-point functions). For 0 ≤ δ ≤ 1,

fδ := 1{0} + δ1{1}.

Then
γ(fδ) = δ + 1,

and more generally,

γp(fδ) ≥
p1/pq1/q

2
(1 + δ).

We remark that the stronger

γp(fδ) ≥ (δc + 1)1/c, 21/c = p1/pq1/q,

is probably true, though we do not require it (see this mathoverflow post [Sha19]). Such
a result would be useful for quasi-cubes that are asymmetrical in size. We also remark
that Prékopa [Pré71, Equation 2.4] proved Theorem 11.1 in the special case p = q = 2
and δ = 1 and his proof extends to the δ = 0 case.
We now present an important family of examples. First, they are a natural guess for

minimizers of γp(fδ) and indeed show that Theorem 11.1 is best possible. Secondly, in
the proof of Theorem 11.1 below, we show that to bound γp(fδ) from below it is enough
to consider g and h, from Definition 8.4, from the following.

Example 11.2. Fix 0 < δ < 1. Let g = (1, δ, . . . , δr) and h = (1, δ, . . . , δs). Then

||fδ ∗ g ∗ h||1 =

r+s+1
∑

j=0

δj =
1− δr+s+2

1− δ
,

while

||g||pp =
1− δp(r+1)

1− δp
,

and

||h||qq =
1− δq(s+1)

1− δq
.

Note that

(11.1)
1− δr+s+2

(1− δp(r+1))1/p(1− δq(s+1))1/q
≥ 1.

Indeed, this follows from the inequality

(1− xy) ≥ (1− xp)1/p(1− yq)1/q, 0 ≤ x, y ≤ 1,

which is an application of Hölder’s inequality applied to the vectors

(xn)n∈Z≥0
, (yn)n∈Z≥0

.

Thus (11.1) is minimized by allowing r, s → ∞ and so

||fδ ∗ g ∗ h||1
||g||p||h||q

≥
(1− δp)1/p(1− δq)1/q

1− δ
.

In the most important case, that is p = q = 2, we have

||fδ ∗ g ∗ h||1
||g||2||h||2

≥ 1 + δ,

while the more general case is a bit harder.
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Lemma 11.3. [Minimizer for γp] Let 0 < δ < 1 and

g = h = (1, δ, δ2 . . . , ).

Then we have

||fδ ∗ g ∗ h||1
||g||p||h||q

≥
p1/pq1/q

2
(1 + δ).

Proof. Similar to the p = q = 2 case above it suffices to show that

(1− δp)1/p(1− δq)1/q

1− δ
≥

p1/pq1/q

2
(1 + δ)

or

(1− δp)1/p(1− δq)1/q ≥
p1/pq1/q

2
(1− δ2).

This follows upon applying Hölder’s ienquality:

∫ 1

δ

s2
ds

s
≤

(
∫ 1

δ

sp
ds

s

)1/p (∫ 1

δ

sq
ds

s

)1/q

.

�

Proof of Theorem 2.7 and Theorem 2.11. We first show how Theorem 11.1 implies The-
orem 2.7. Thus we assume p = q = 2. By the discussion at the beginning at the current
section we may assume that V ⊂ Zd. By Theorem 4.2 we can further assume that in
fact V ⊂ Qd. Since β is invariant under bijective linear transformations of Qd, after a
suitable translation and choosing a basis {ei} for the ambient group Qd (now viewed as
a linear space) one can WLOG write

V = 0⊕ V0 ∪ e1 ⊕ V1,

where V0 and V1 are d− 1 dimensional quasi-cubes.
Now, we again use the independence of the ambient group (Theorem 4.2) to reduce

the ambient group to the one generated by V , so that now V ⊂ G := Ze1 × Zd−1.
Let A,B ⊂ Zd and write

A =
⋃

i

ie1 ⊕ Ai, B =
⋃

j

je1 ⊕ Bj.

We claim that γ(1V ) = |V | and in particular

(11.2) |A+B + V | ≥ ||f ∗ g ∗ h||1,

where

f = |V0|10 + |V1|11, g(i) = |Ai|
1/2, h(j) = |Bj |

1/2.

We induct on the dimension on V . The base case follows directly from Theorem 11.1
and linearity of γ.
We let π1 be projection onto the first coordinate and

Xk = π−1(k) ∩ (A+B + V ).
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Then, Xk contains all the fiber sumsets as long as the first coordinate equals k, so

|Xk| = max{max
i+j=k

|Ai +Bj + V0|, max
i+j=k−1

|Ai +Bj + V1|}

≥ max{max
i+j=k

β(V0)|Ai|
1/2|Bj|

1/2, max
i+j=k−1

β(V1)|Ai|
1/2|Bj|

1/2}

= max{max
i+j=k

γ(1V0
)|Ai|

1/2|Bj|
1/2, max

i+j=k−1
γ(1V1

)|Ai|
1/2|Bj|

1/2}

= max{max
i+j=k

|V0||Ai|
1/2|Bj |

1/2, max
i+j=k−1

|V1||Ai|
1/2|Bj|

1/2}

= f ∗ g ∗ h(k).

Summing over k gives (11.2). By Theorem 11.1, we have

|A+B + V | ≥ ||f ∗ g ∗ h||1 ≥ (|V1|+ |V2|)||f ||2||g||2 = |V ||A|1/2|B|1/2,

which implies Theorem 2.7.
We now handle the case of general p. Everything proceeds the same as in the p = 2

case, except the induction claim is

γp(1V ) ≥
|V |pd/pqd/q

2d
.

Theorem 2.11 now follows from Theorem 8.6.
�

We now proceed to the proof of Theorem 11.1. We first need the following lemma.

Lemma 11.4 (γ and permutations). Let f, g, h : Z → R be non-negative functions with
finite support. Let σ, τ, ρ be permuations of the support of f, g, h, respectively. Set

fσ(x) := f ◦ σ(x),

and similarly for g and h. Then

||fσ ∗ gτ ∗ hρ||1,

is minimized for a choice of permutations that makes each function non-increasing.

Proof. We may suppose, after translation, that the smallest element of the support is
zero for all three functions. Put F := f ∗ g ∗h and let σ, τ, ρ be some permutations such
that fσ, gτ , hρ are non-increasing. Note that G := fσ ∗gτ ∗hρ is then also non-increasing.
Let s be a sufficiently large number and order the sequence F (0), . . . , F (s) (which will
end with zeroes) via

(11.3) F0 ≥ · · · ≥ Fs.

We claim that for 0 ≤ v ≤ s

fσ ∗ gτ ∗ hρ(v) = G(v) ≤ Fv,

and the result follows from this claim. Let m,n, r be such that m+ n + r = v and

fσ(m)gτ (n)hρ(r) = G(v).
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It follows by the choice of σ, τ, ρ, that for any i ≤ m, j ≤ n, k ≤ r

G(v) = fσ(m)gτ (n)hρ(r)

≤ fσ(i)gτ (j)hρ(k)

= f(σ(i))g(τ(j))h(ρ(k))

≤ F (σ(i) + τ(j) + ρ(k))

It follows that for any

(11.4) t ∈ {σ(0), . . . , σ(m)}+ {τ(0), . . . , τ(n)}+ {ρ(0), . . . , ρ(r)}

holds

G(v) ≤ F (t).

But the sumset on the RHS of (11.4) is of size at least m+ n + r + 1, by the Cauchy-
Davenport inequality. Thus, there are at least v + 1 values in the sequence (11.3) that
are no less than G(v), and hence

G(v) ≤ Fv.

�

Proof of Theorem 11.1. We aim to show that for non-negative valued g and h in ℓ1(Z)

(11.5)
||fδ ∗ g ∗ h||

||g||p||h||q
≥ cδ =

(1− δp)1/p(1− δq)1/q

1− δ
,

We remind the reader that cδ is the infimum of (11.5) over all g, h of the form

(11.6) g = (1, δ, . . . , δr), h = (1, δ, . . . , δs),

as shown in Example 11.2.
We suppose there is a g, h ∈ ℓ1(Z) such that (11.5) is smaller than cδ. By continuity,

we may suppose both g and h have finite support. By Lemma 11.4, we may permute
g, h so they are both non-increasing. After translation of the supports, we suppose

g = (g0, . . . gr), h = (h0, . . . , hs).

We further assume that r + s is minimally chosen. Thus

||fδ ∗ u ∗ v||1
||u||p||v||q

≥ cδ,

for any u and v satisfying

|supp(u)|+ |supp(v)| < r + s+ 2.

By compactness, there exists g, h which minimize (11.5) subject to supp(g) ⊆ {0, ..., r},
supp(h) ⊆ {0, ..., s}, and

(11.7) ||g||p = 1, ||h||q = 1.

Because the value of (11.5) doesn’t change by multiplying g and h by constant, this
is also a minimum over all g and h where supp(g) ⊆ {0, ..., r} and supp(h) ⊆ {0, ..., s}
Set

p(x) = fδ ∗ g ∗ h(x).

Let

Q1 ⊂ {0, . . . , r}, Q2 ⊂ {0, . . . , s}.
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We let R(Q1) be the set of all indices n ∈ {0, . . . , r + s+ 1} such that if

pn = figjhk, (i+ j + k = n),

then j ∈ Q1, and similarly for Q2. We now analyze what happens when we replace g
with gt which we get by multiplying all g(i) by (1−t) where i ∈ Q1. (t is a small enough
positive real number.)
In fδ ∗ gt ∗ h, the values corresponding to R(Q1) will be multiplied by (1 − t), the

other values will be the same as in fδ ∗ g ∗ h.

r(t) :=
||fδ ∗ gt ∗ h||1
||gt||p||h||q

.

r′(0) is the right-hand derivative of r(t) at 0. By minimality, r′(0) ≥ 0.
The right-hand derivative of ||f ∗ g ∗ h||1 at 0 is

−
∑

y∈R(Q1)

p(y)

and the right-hand derivative of ||gt||p is

−
1

p

1

||gt||
p+1
p

p(1− t)p−1(−1)
∑

x∈Q1

g(x)p

which is equal to
∑

x∈Q1
g(x)p

||g||p+1
p ||h||q

at 0.
So

0 ≤ r′(0) =
||p||1

∑

x∈Q1
g(x)p

||g||p+1
p ||h||q

−

∑

y∈R(Q1)
p(y)

||g||p||h||q

By symmetry we get a similar inequality for any Q2 ⊂ {0, . . . , s}, so by reframing the
inequalities

(11.8) ||p||
1/p
1 ≥

||g||p

(

∑

y∈R(Q1)
p(y)

)1/p

(

∑

x∈Q1
g(x)p

)1/p
, ||p||

1/q
1 ≥

||h||q

(

∑

y∈R(Q2)
p(y)

)1/q

(

∑

x∈Q2
h(x)p

)1/p

We now define new functions,

a(i) = δ−ig(i), b(j) = δ−jh(j).

We set
Q1 = {i : a(i) = max a}, Q2 = {j : b(j) = max b}.

and set
u(i) = g(i)1Q1

(i), v(j) = h(j)1Q2
(j).

R(Q1) ⊇ supp(fδ ∗ u ∗ v),

R(Q2) ⊇ supp(fδ ∗ u ∗ v)

So
∑

y∈R(Q) p(y) ≥ ||fδ ∗ u ∗ v||1 is true for both Q1 and Q2.

Combining it with (11.8), we get
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(11.9) ||p||
1/p
1 ≥

||g||p||fδ ∗ u ∗ v||
1/p
1

||u||p
, ||p||

1/q
1 ≥

||h||q||fδ ∗ u ∗ v||
1/q
1

||v||q

Multiplying the two inequalities in (11.9), we get

||fδ ∗ g ∗ h||

||g||p||h||q
≥

||fδ ∗ u ∗ v||

||u||p||v||q
If either a or b is not constant, then u or v has a value of 0 at some point. Then by

Lemma 11.4 we can rearrange it to a non-increasing order, with making

||fδ ∗ u ∗ v||

||u||p||v||q

smaller or equal after the rearrangement.
Now |supp(u)| + |supp(v)| < |supp(g)| + |supp(h)|, so because we started with a

counterexample with minimal supports,

||fδ ∗ u ∗ v||

||u||p||v||q
≥ cδ

This is a contradiction, because we assumed that

||fδ ∗ g ∗ h||

||g||p||h||q
< cδ

So a and b must both be constant, but then (11.5) can’t be smaller than cδ, as proved
in Example 11.2.. Thus the ratio in (11.5) is at least cδ. By Lemma 11.3

cδ ≥ p1/pq1/q
(1 + δ)

2
.

�
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