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THE STRUCTURE OF THIS REPORT 

 

This research report is structured into three parts: 

 

1) An EXTENDED SUMMARY, which describes in brief the most important scientific 

insights that are described in detail in the core of the report. References to relevant 

sections, tables of figures are given when appropriate. The reader can find more 

information on the cited topic at these locations in the core of the report 

2) The CORE REPORT, which contains introduction, materials and methods, model 

development and validation, and references 

3) A large number of ANNEXES, dedicated to ease the future use of the data and models 

presented in the core report. Since the majority of the Annexes are very large tables, 

they are only available in spreadsheet format (Microsoft Excel®). These annexes can 

be obtained from the authors upon request. A few annexes are, however, added in the 

text at the end of this report.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 3

ACKNOWLEDGEMENT 

 

Karel De Schamphelaere, Brita Muyssen and Fien Degryse are post-doctoral research 

fellows for the Flemish Scientific Research Fund (FWO-Vlaanderen).  

 

We also wish to thank our laboratory technical staff and M. Sc. students involved in 

this and previous Ni studies. A big thank you to: Emmy Pequeur, Leen Van Imp, Jill Van 

Reybrouck, Gisèle Bockstael, Barbara Deryckere, Guido Uyttersprot, Marc Vanderborght, 

Nele Van Roey, and Jo Strobbe. 

 

We wish to express our sincere thanks to Dr. W. Stubblefield, Dr. Eric Vangenderen, 

Jeffrey Wirtz (all from Parametrix, Albany, OR, USA) and Dr. Rami Naddy (ENSR 

Consulting and Engineering, Fort Collins, CO, USA) for their willingness to share their raw 

experimental data related to acute and chronic toxicity of Ni to Ceriodaphnia dubia reported 

earlier (Parametrix, 2004, Wirtz et al., 2004). They are also thanked for sending YTC slurry to 

our laboratories for studying the impact of this often-used food source on Ni speciation. 

 

Finally, we also wish to thank our former colleagues Dr. Bart Bossuyt and Dagobert 

Heijerick for their contribution to some of the earlier Ni work. 



 4

EXTENDED SUMMARRY 

 

Introduction and aims 

 

The accurate prediction of Ni ecotoxicity in natural surface water with bioavailability 

models such as the biotic ligand model (BLM) depends on how well these models can predict 

both the speciation of Ni (i.e. Ni2+ concentration), the toxicity of Ni2+ ions to an organism, and 

the effects of water chemistry parameters thereupon, such as dissolved organic carbon (DOC), 

pH, and water hardness. In a previous study we have developed BLMs based on ecotoxicity 

experiments in synthetic test waters (Deleebeeck et al., 2005). These models needed to be 

validated for their performance in natural surface waters. 

 

However, although the accurate prediction of nickel (Ni) speciation in natural surface 

water is the first essential step towards the success of aquatic Ni bioavailability models, 

current speciation models such as WHAM V (Tipping, 1994) and WHAM VI (1998) are not 

well calibrated to Ni speciation in natural surface waters.  

 

Therefore, we have measured free ionic Ni2+ concentrations in six natural surface waters 

with a wide range of water chemistry and at Ni concentrations relevant for toxicity to the 

organism currently known as the most sensitive to Ni, i.e C. dubia (Keithly et al., 2004). To 

ensure a large precision of free ionic Ni measurements at low Ni concentrations, a Donnan-

membrane technique was applied, coupled with radiochemical determination of 63Ni.  

 

The aim of the study was to use the speciation data for testing and/or calibrating 

speciation models for further use in the surface water validation of the earlier developed 

bioavailability models (Deleebeeck et al., 2005). Additionally, by performing toxicity tests in 

the same natural waters with C. dubia, we wanted to test if bioavailability models developed 

for D. magna could accurately predict Ni toxicity to C. dubia or if separate models would be 

needed.  

 

Although the toxicological focus of the study was on bioavailability to invertebrates, the 

study ends with a chapter about the refinement and field validation of Ni bioavailability 

models for fish and algae. Thus, the overall aim of the study was to calibrate existing 
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speciation models to Ni speciation in natural surface waters and to use these data to validate 

and/or refine bioavailability models for aquatic organisms from three trophic levels, i.e. algae, 

invertebrates (daphnids), and fish. IT was anticipated that this could allow to improve the 

accuracy and to reduce the uncertainty of the incorporation of speciation and bioavailability 

concepts into risk assessment of Ni and Ni compounds in the freshwater compartment. 

 

Surface waters investigated in the present study (for C. dubia testing) 

 

Surface waters were sampled from Ankeveen (NL), Bihain (B), Brisy (B), Eppe (F), 

Markermeer (NL) and Regge (NL) with a wide range of chemistries, such as pH 6.2 to 8.3, 

water hardness of 15 to 218 mg CaCO3/L and a DOC content of 3.1 to 23.6 mg/L. A more 

detailed description and composition of these surface waters is given in Annex 1. Those 

surface waters were used throughout for speciation and toxicity testing.   

 

Ni speciation – method 

 

Ni speciation in spiked surface waters was determined by a highly sensitive Donnan-

membrane technique to separate free Ni2+ ions from other dissolved Ni species, coupled to a 

radiochemical determination of 63Ni. As such, Ni2+ concentrations as low as 0.1 µg/L could be 

detected. This method was used for all speciation measurements. A detailed description of the 

method is given in section 2.2. 

 

Ni speciation – complexation kinetics  

 

Measurements of Ni speciation were performed at 10 µg Ni/L in Ankeveen and 

Markermeer waters after 2 hours, 2 days and 7 days after spiking. No differences in free ionic 

Ni2+ concentrations were observed between the three equilibration times, suggesting that Ni 

speciation is at equilibrium after as little as 2 hours of reaction time (see section 3.1.1, Table 

3.1). This was taken into account during the rest of the experiments to ensure equilibrium 

speciation in speciation and ecotoxicity experiments. 

 

Significance for EU  risk assessment. Since reaction times of Ni with 

ecotoxicity test solutions are usually not longer than 2 hours, it is very likely 

that for most literature ecotoxicity data Ni equilibrium conditions apply. It 
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means that equilibrium speciation models can be used as a basis for an 

accurate normalization of toxicity data to other water chemistries. Applying 

equilibrium models to toxicity data with a shorter equilibration time is a worst 

case approach.         

 

Ni speciation – equilibrium speciation in six surface waters at different Ni  

 

Measurements of Ni speciation were performed in the six surface waters at dissolved 

natural background Ni (2.6 to 4.4 µg Ni/L) and at spiked Ni concentration representing the 

range of C. dubia chronic 10d-EC10 and 48h-EC50 levels in these waters (3.3 to 148 µg 

Ni/L). At background Ni, between 4% and 45% of the Ni was present as Ni2+, depending on 

the water chemistry. In each individual water sample, increased dissolved Ni spikes yielded 

lower fractions of Ni2+. Those varied between 14% and 60%. This increase is largely due to 

increased binding of Ni to DOC. A more detailed overview is available in section 3.1.2, Table 

3.2) 

 

Significance for EU risk assessment: The binding of Ni to DOC becomes 

increasingly important at lower Ni concentrations. Hence, DOC will be a very 

crucial factor for normalizing toxicity data, especially for sensitive organisms.      

  

Ni speciation – effects of pH and hardness  

 

 A decreased pH (increased H+) and increased water hardness resulted in an increase of 

the fraction of Ni2+ (see section 3.1.2., Table 3.3). This is mainly due to competition between 

Ni2+, Ca2+, Mg2+, and H+ ions for binding sites on the DOC.     

 

Significance for risk assessment: These effects can be accounted for when a 

calibrated speciation model is used as the basis for all bioavailability models.   

 

Ni speciation – Calibration of WHAM VI  

 

All individual free Ni2+ measurements in the six waters at different dissolved Ni and in two 

waters with amended pH or hardness (n=33) were used to calibrate the WHAM VI speciation 

model. As in other studies (Bryan et al., 2002; Cheng et al., 2005) we assumed the natural 
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DOM to consist of a fraction of active fulvic acid (%AFA) and an inert fraction for ion 

binding. We found that both the binding strength of Ni to fulvic acid, i.e. log KMA(Ni), and the 

%AFA needed to be calibrated, to achieve accurate speciation predictions over the whole 

range of investigated Ni concentrations. The best fit was obtained with log KMA(Ni)=1.75 and 

%AFA = 40%. More details about WHAM VI and the fitting procedure can be found in 

section 3.1.3.). These best-fit assumptions were then used throughout the study whenever 

speciation calculations needed to be performed.  

 

Significance for risk assessment: Speciation calculations in natural waters, 

needed for bioavailability normalizations should use these “best-fit” 

assumptions with regard to natural DOC.  

 

Ni speciation – Importance of other competing ions (trace metals) 

 

Next to Ca2+ and Mg2+, other cations also compete with Ni for binding sites on the 

DOC. The most important ones, based on both binding strength and concentrations in the 

environment are Fe3+, Al3+, Cu2+ and Zn2+. An increase of these concentrations results in less 

Ni binding to DOC, more Ni2+ in solution and hence a higher bioavailability. Fe3+ activity is 

predicted by assuming equilibrium with colloidal Fe(OH)3 and is only a function of pH; Al3+, 

which presents a more complex situation, can be taken into account as described in section 

3.1.3.1. Not taking into account the presence of Al3+ can result in an underestimation of 34% 

of Ni2+ at chronic EC10 levels of C. dubia (see section 3.2.2.). Cu and Zn can be taken into 

account by adding dissolved Cu or Zn to the input for the speciation calculations. Not 

accounting for Cu and Zn resulted in about 20% underestimation of Ni2+ at chronic EC50 

levels of C. dubia (see section 4.3.5.3)   

 

Significance for risk assessment: These competitive interactions should 

preferably be taken into account when carrying out bioavailability 

normalizations to regional or local water chemistry. They will result in lower 

normalized Ni NOECs, since less Ni will be predicted to bind to DOC when 

these ions are taken into account.  
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Ni speciation – effects of background DOC and food additions in ecotoxicity tests  

 

We found that ‘background DOC’ in deionized water does not contribute significantly to Ni 

binding (section 4.3.2.1). The influence of food additions, which potentially results in addition 

of dissolved ligands able to bind Ni, was investigated. Both algal food and the often-used 

YTC slurry (yeast-trout chow-cerophyl) were considered. We did not find any significant Ni-

binding to ligands originating from algal food additions (section 4.3.2.1), but did find a 

significant contribution of YTC-ligands to Ni binding (section 4.3.2.2). Hence, the addition of 

YTC food introduces a greater deal of uncertainty to speciation calculations of Ni than 

addition of algal food.  

  

Significance for risk assessment: All this knowledge is very important with regard 

to assumptions that often need to be made with regard to the DOC content of test 

solutions used in ecotoxicity tests, of which the resulting NOEC data are 

eventually to be normalized. How these results need to be translated into the most 

suitable assumptions is summarized in section 4.3.2.3 and also in Annex 16.  

 

Ni toxicity to C. dubia – as dissolved Ni 

 

Ni toxicity to C. dubia varied substantially among the six water samples investigated, with 

48h-LC50s between 34.6 and 183 µg/L (5-fold), 10d-EC50s between 4.9 and 68.4 µg/L (14-

fold) , 10d-EC10s between 1.3 and 44.2 µg/L (34-fold) (see section 3.2.1.). The difference 

between toxicity values is larger for more sensitive endpoints (lower Ni-concentrations), 

highlighting the importance of carrying out bioavailability normalizations in regulatory 

exercises. Significant linear relations between acute and chronic toxicity and DOC were 

observed, stressing the importance of DOC as a modifier of Ni bioavailability (see Figure 

3.2).   

 

Ni toxicity to C. dubia – as Ni2+ and effects of water chemistry thereupon 

 

In order to further explain differences among waters a second step was to calculate Ni-

speciation and then to determine how the toxicity of the Ni2+ ion to C. dubia varies with 

modifying factors such as pH, Ca and Mg. We found that acute toxicity, expressed as Ni2+,  
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was not very much dependent on pH, Ca, or Mg; and that chronic toxicity of Ni2+ increased 

with increasing pH, Ca, and Mg. (See section 3.2.3, Figure 3.3). However, the interpretation 

of the importance of these data was difficult because of the significant correlation between 

pH, Ca, and Mg in the natural waters tested. The effects of pH, Ca, and Mg needed to be 

separated from one another, and this was done in the modelling section of the study, where it 

was aimed to develop, refine and validate acute and chronic Ni toxicity models to C. dubia 

and D. magna (see section 4). 

 

Development, refinement and validation of Ni bioavailability models for daphnids 

 

Data generated in a previous study (Deleebeeck et al., 2005) and in the current study were 

used to develop and refine toxicity bioavailability models. First, acute and chronic D. magna 

models described in Deleebeeck et al. (2005) were re-evaluated with WHAM VI, because 

WHAM VI yields slightly different speciation calculations than the previously used WHAM 

V (see section 4.1). Then, these models were validated against the C. dubia data obtained in 

the present study and also to a number of other existing Ni toxicity studies on the effect of 

hardness on acute and chronic Ni toxicity to C. dubia (Keithly et al., 2004) and D. magna 

(Chapman et al., 1980), on the effect of pH on acute Ni toxicity to C. dubia (Parametrix, 

2004; Shubauer-Berigan et al., 1993), and on the combined effects of pH, hardness, alkalinity 

and natural DOM on chronic Ni toxicity to C. dubia (Wirtz et al., 2004). Similarities and 

differences between species and between different datasets were accounted for in the model 

development.  

 

The following conclusions are the result from all these modelling analyses, taking into 

account our own studies and the above-mentioned studies published elsewhere. The 

conclusions start with some general observations made, i.e. (i) to (iv), continues with a 

description of how the final bioavailability models are constructed from those observations 

for acute and chronic Ni toxicity to C. dubia and D. magna, i.e. (v) to (ix), and ends with a 

recommendation on implementing this knowledge into risk assessment (x).  Each conclusion 

is followed by a reference to a relevant section, Figure or Table that illustrates this conclusion.  

 

(i) The pH effect on Ni2+ ion toxicity is more important in chronic than in acute 

exposures; toxicity of the free Ni2+ ion is generally increased at higher pH  

(See Figure 3.3 for C. dubia, compare Figure 4.1 with Figure 4.9 for D. magna) 
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(ii) The pH effect on Ni2+ ion toxicity becomes increasingly important at pH levels > 

8.0-8.2 

(See Figure 4.1 for acute D. magna, Figure 4.4 for acute C. dubia, Figure 4.14 for chronic C. 

dubia) 

(iii) The pH-effect on both acute and chronic Ni2+ ion toxicity cannot be modelled with 

a traditional single-site H+ competition effect. Nevertheless, up to a pH of 8.2, an 

acute BLM-type model, which does not account for pH effects at all, is able to 

yield accurate acute toxicity predictions.  

(See section 4.2.1 for acute D. magna, section 4.2.3.2 and 4.2.3.3. for acute C. dubia, 4.3.3.1 

for chronic D. magna, and 4.3.4 and 4.3.5.3 for chronic C. dubia) 

(iv) The protective effect of water hardness (Ca and Mg) can be modelled with 

traditional BLM-competition, because linear competitive effects are observed. The 

effects of Ca and Mg may be similar for both species. 

(See Figure 4.1 for acute D. magna, Figure 4.3 for acute C. dubia, Figure 4.8 for chronic D. 

magna, Table 4.17 for chronic C. dubia) 

(v) Alternative bioavailability models were developed, consisting of a traditional Ca, 

Mg competition effect, superimposed to a log-linear pH relation in the case of 

chronic Ni toxicity, characterized by a slope parameter, SpH 

(See equations 4.1 to 4.5 for acute Ni toxicity, equations 4.6 to 4.12 for chronic Ni toxicity) 

(vi) The slope parameter varied considerably and significantly among species (C. 

dubia vs. D. magna), exposure times (acute vs. chronic, i.e. only pH effect 

considered for chronic), type of water (artificial vs. natural) and the pH range 

considered (<8.0-8.2 vs. > 8.0-8.2, see also conclusion ii). 

(See section 4.3.6 for comparison C. dubia and D. magna and comparison of synthetic and 

natural waters for D. magna, see Figure 4.14 for comparison between different pH ranges for 

C. dubia) 

(vii) Due to the latter, chronic toxicity data with C. dubia obtained at pH > 8.2 should 

only be used with great care when a Ni effects assessment needs to be conducted 

for waters with pH < 8.2. One possibility we recommend is a two-step 

normalization procedure, with the first step being a normalization to pH 8.2 with a 

model specifically developed for waters with pH > 8.2 (high pH-slope model) and 

the second step a further normalization to lower pH with the model developed for 

pH < 8.2 (low slope model). A similar approach could be followed when 

normalizations need to be carried out from pH < 8.2 to pH > 8.2.  

(See Figure 4.14 for the different pH slopes in different pH ranges for C. dubia, i.e. a high 

slope at pH >8.2 and a lower slope at pH < 8.2) 
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(viii) When, below pH 8.2, species-specific pH-slopes based on natural waters data are 

used, very accurate predictions of chronic toxicity are obtained, typically resulting 

in a prediction error of less than factor 2.  

(See Figure 4.13 for C. dubia and Figure 4.22 for D. magna) 

(ix) Also, when a ‘merged’ average slope is used, based on natural waters test data 

only, very good predictive capacity of the models is observed for both D. magna 

and C. dubia. 

(See section 4.3.6 and Figures 4.21 and 4.22) 

(x) Significance for risk assessment: We recommend that, for carrying out 

normalizations for risk assessment purposes, species-specific invertebrate models 

should be used whenever they are available for a given invertebrate species. For 

other invertebrate species, we recommend that the normalizations are carried out 

with both the C. dubia and the D. magna pH slopes. The knowledge of the overall 

impact of using different slopes on the final PNEC will allow taking into account 

uncertainty due to interspecies differences of bioavailability models. If using 

different slopes does not result in major differences in the final PNEC estimate, it 

may be more practical to only use the ‘average’ slope.  

 

Development, refinement and validation of Ni bioavailability models for fish 

 

Based on the data reported in Deleebeeck et al. (2005), we developed a refined bioavailability 

model to predict chronic Ni toxicity to juvenile rainbow trout, O. mykiss. The model 

developed was identical in structure to the chronic models developed for D. magna and C. 

dubia. It also consists of a log-linear pH effects combined with linear protective effects of Ca 

and Mg. Interestingly the protective effects of Ca and Mg could be described by very similar 

values of the constants that describe competition between Ni and these ions and the pH slope 

was in the same range as the pH slopes the same constants pH slope (compare Table 5.2 with 

Table 4.14). The model was able to accurately predict toxicity in four out of five natural 

waters; 17 and 21d-LCx values were generally predicted by a less than 2-fold error (Figure 

5.3). Toxicity was underestimated by about 2.9-fold in a soft acidic surface water (pH 5.6, 

hardness of 14 mg CaCO3/L) (Figure 5.3), which suggest that the model should be used 

carefully under such conditions.   
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Development, refinement and validation of Ni bioavailability models for algae 

 

Based on the data reported in Deleebeeck et al. (2005), we developed a refined bioavailability 

model to predict chronic Ni toxicity to growth rate of the green micro algae P. subcapitata. 

We found that above pH 6.4, a biotic ligand model could describe the protective effects of 

Ca2+, Mg2+ and H+ ions (see Section 5.3.1. and Figure 5.4). Interestingly, the protective effect 

of Mg could be described with a very similar value of the ‘Mg-competition’ constant used for 

fish and daphnids (compare Table 5.4 with Table 5.2 and Table 4.14), while the protective 

effect of Ca on Ni toxicity to this alga was much less important (See Figure 5.4).  

 

 Significance for risk assessment: These observations with algae clearly illustrate the 

important role that Mg plays in modifying Ni toxicity to organisms for three trophic levels.  

The fact that the importance of this Mg ‘competition’ is quantitatively similar for daphnids, 

fish, and algae, may reflect the chemical similarity of ionic Mg2+ and Ni2+ (e.g., similar ionic 

radii) which may result in binding to similar sites on the organism surface as well as shared 

uptake pathways into an organism (e.g., Mg-transport channels). The large difference 

between the effect of Ca and Mg on Ni toxicity to algae also highlights that these ions should 

be considered separately in normalization of toxicity data to local or regional water 

chemistry, instead of being merged into water hardness.  

 

Although there were some uncertainties related to differences in ‘inherent’ sensitivity of P. 

subcapitata across different test series (see section 5.3.3 and Table 5.6), the developed 

bioavailability model can reasonably accurately predict chronic effect concentrations (EC50’s 

and EC10’s) of Ni in natural waters when these inherent sensitivity differences are taken into 

account (generally by an error of less than a factor of 2, see Figure 5.7). In some cases, the 

model exhibited some tendency to underestimate toxicity at pH levels below 6.4, although the 

largest underestimations were only observed below pH 6.0.  

  

Overall conclusion and significance for the risk assessment  

 

The developed chronic Ni toxicity models for daphnids, fish and algae exhibit sufficiently high 

predictive capacities to yield a marked reduction of uncertainty associated with differences in 

chronic Ni bioavailability among different test waters. This is due to the fact that they can 

predict both Ni2+ concentrations as a function of dissolved Ni and water chemistry (mainly 
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DOC, pH, Ca, Mg), as well as the toxicity of the Ni2+ ion as a function of water chemistry 

(mainly pH, Ca, Mg). The use of the models presented in the present study for normalizing Ni 

toxicity data will therefore decrease the overall uncertainty of the risk assessment, provided 

that the variability of bioavailability modifying parameters across different EU regions and 

water bodies is acknowledged.  
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1. Introduction and aims of the study 

 

The accurate prediction of Ni ecotoxicity in natural surface water with bioavailability 

models such as the biotic ligand model (BLM) depends on how well these models can predict 

both the speciation of Ni (i.e. Ni2+ concentration), the toxicity of Ni2+ ions to an organism, and 

the effects of water chemistry parameters thereupon, such as dissolved organic carbon (DOC), 

pH, and water hardness. In a previous study we have developed BLMs based on ecotoxicity 

experiments in synthetic test waters (Deleebeeck et al., 2005). These models needed to be 

validated for their performance in natural surface waters. 

 

However, although the accurate prediction of nickel (Ni) speciation in natural surface water 

is the first essential step towards the success of aquatic Ni bioavailability models, there are 

little useful Ni speciation data available with natural waters. As a result of this, speciation 

models such as WHAM V (Tipping, 1994) and WHAM VI (Tipping, 1998) are not very well 

calibrated to taking into account the effect of dissolved organic matter (DOM) on Ni 

speciation in natural surface waters. 

 

The description of Ni complexation to organic matter (i.e. humic substances) in WHAM V 

is only based on two data points for a soil fulvic acid and two for a soil humic acid (Tipping, 

1993; Tipping and Hurley, 1992). Moreover, nickel concentrations applied were in the order 

of 10 µM (~600 µg Ni/L). Hence, the Ni binding-parameters in WHAM V may not be 

relevant or accurate for aquatic natural organic matter and/or for lower Ni concentrations, 

which are of larger relevance for the EU risk assessment. In other words, WHAM V has not 

been tested for its ability to accurately predict Ni speciation in natural surface waters. For the 

development of WHAM VI, one additional Ni speciation study was taken into account, i.e. a 

study of Ni complexation to groundwater humic substances (Higgo et al., 1993), which may 

also not be relevant for natural surface waters. Recent studies with Cu and Zn have 

demonstrated that both WHAM V and WHAM VI have to be calibrated to measured 

speciation data in spiked natural surface waters in order to obtain accurate speciation 

predictions (Bryan et al., 2002; Cheng et al., 2005). Hence, it was expected that this might 

also be the case for Ni. 

 

Since the development of WHAM VI in 1998, additional Ni speciation studies have become 

available. As far as we are aware, however, only two studies can potentially be used for 
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calibration of speciation models in freshwater samples for Ni. Mandal et al. (2002) and Sekaly 

et al. (2003) measured Ni speciation in a number of Ni contaminated freshwaters from the 

Sudbury area using the Competitive Ligand Exchange Method (CLEM). Unfortunately, this 

method measures ‘labile’ Ni rather than truly free ionic Ni. Other Ni speciation studies are not 

considered directly applicable for use in the risk assessment. This is because they report Ni 

speciation in the presence of soil-derived humic (Guthrie et al., 2003) or fulvic acid (Mandal 

et al., 2000; Celo et al., 2001) or even citrate (Celo et al., 2001), which are unlikely to 

resemble true aquatic DOM. Malcolm and MacCarthy (1986) for example have clearly 

demonstrated that soil derived humic acid may bear little structural resemblance to true 

aquatic humic substances. 

 

Therefore, it was deemed necessary to generate a new dataset of Ni speciation in natural 

surface waters with a wide range of water chemistry and at Ni concentrations relevant for 

toxicity to the organism currently known as the most sensitive to Ni, i.e C. dubia (Keithly et 

al., 2004). The aim of the study was to use the speciation data for testing and/or calibrating 

speciation models for further use in the surface water validation of the earlier developed 

bioavailability models (Deleebeeck et al., 2005). To ensure a large precision of free ionic Ni 

measurements at low Ni concentrations, a Donnan-membrane technique was applied, coupled 

with radiochemical determination of 63Ni. 

 

Additionally, by performing toxicity tests in the same natural waters with C. dubia, we 

wanted to test if bioavailability models developed for D. magna could accurately predict Ni 

toxicity to C. dubia or if separate models would be needed. The idea was that this assessment 

could be performed to a large degree of precision, as it would be based on measured and not 

on modeled speciation.  

 

 

Thus, the overall aim of this study was to calibrate existing speciation models to Ni 

speciation in natural surface waters and to use these data to validate and/or refine 

bioavailability models for aquatic organisms. This would allow to improve the accuracy and 

to reduce the uncertainty of the incorporation of speciation and bioavailability concepts in risk 

assessment. 
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2. Materials and methods 

 

2.1 Sampling and characterization of natural surface waters 

  

Natural water samples were collected at 6 different sites, covering the range of water 

chemistry relevant for the EU. Table 2.1 provides some more detailed info about the locations 

of the sampling sites. A more complete description of the sampling sites is provided in Annex 

1. This Annex 1 also includes the water chemistry that was measured immediately upon 

arrival in the laboratory. 

 

Table 2.1 Sampling site information  

Site ID Name Category Village Country 

Ankeveen Ankeveensche plassen ditch a Nederhorst den Berg NL 

Bihain Ruisseau de St. Martin stream Bihain B 

Brisy Ourthe Orientale river Brisy B 

Eppe L’eau d’Eppe  stream Eppe Sauvage F 

Markermeer Markermeer lake Marken NL 

Regge Beneden Regge river Ommen NL 

a Connected to large lake system in a natural reserve 

 

Thirty liter of all surface waters was membrane filtered in the field (0.45 µm) and 

collected in metal-free poly-ethylene containers. The samples were immediately transported 

to the laboratory where they were stored at 4°C in the dark until analysis. pH, dissolved 

organic carbon (DOC) and inorganic carbon (IC) were measured upon arrival at UGENT on a 

TOC-analyzer (TOC-5000, Shimadzu, Duisburg, Germany). Sub-samples of five liters were 

then transported to KUL where they were initially (before all experimentation) characterized 

towards the following parameters: Ca, Mg, Na, K, Fe, Al, Mn, Ni, Cu, Zn, Pb, and Cd  (ICP-

OES, Perkin Elmer 3300 DV), Cl, NO3, and SO4 (Ion Chromatography, Dionex QIC analyzer, 

IONPAC AS4A).  

 

It is noted that pH and IC were also measured during the speciation and ecotoxicity 

measurements. It is also noted that major cations and trace elements were also measured in 

the donor solutions during the speciation measurements, simultaneously with the 



 17

measurement of radio-active Ni in donor and acceptor solution (see section 2.2 for more 

detail). These in-experiment measurements were used instead of the initial measurements as 

inputs for all model calibrations, developments, and validations.  

 

2.2 Measurement of Ni speciation 

 

2.2.1. Kinetics of Ni complexation 

 

Two surface waters (Ankeveen and Markermeer) were spiked with stable Ni to 10 µg 

Ni/L and the radioactive 63Ni isotope. After 2 hours, 2 days and 7 days of spiking, speciation 

of Ni was determined with Donnan dialysis. The equilibration time of the Donnan dialysis 

system was also determined. A full description of the Donnan dialysis method is given below 

(see section 2.2.3). 

 

2.2.2. Determination of Ni speciation in six surface waters and in two waters with 

adjusted pH and hardness 

 

The free Ni2+ fraction was measured in all water samples at 3 Ni concentrations: the 

background concentration and concentrations in the range of 10d-EC10 and 48h-LC50 values 

of C. dubia, which were determined prior to these measurements according to the methods 

described in section 2.3, and which are different for each test water (see further, Table 3.7) 

Solutions were spiked with 63Ni only for the speciation at background and were equilibrated 

for 16 hours prior to Donnan dialysis. An aliquot of Ni stock solution was subsequently added 

to the same donor solution to increase the concentration of stable Ni to about the 10d-EC10 

level for C. dubia and the solution was equilibrated for 10 minutes prior to Donnan analysis. 

Finally, Ni was again added to the same donor solution up to about the 48h-LC50 for C. dubia 

and the speciation determined by dialysis. In order to determine the effect of pH and hardness, 

Ni speciation was also measured at four adjusted pH (6.2 to 8.1) and hardness (16 to 396 mg 

CaCO3/L) levels for 2 surface waters (Ankeveen and Bihain). For Ankeveen, the pH level was 

decreased by adding HCl (from a 0.5 M stock solution) until the desired value was reached. 

The pH of Bihain was increased by adding NaOH (from a 1M stock solution). Increasing 

water hardness was realized by adding an appropriate aliquot of a Ca/Mg stock solution, i.e. 

0.4M Ca(NO3)2 + 0.2M MgCl2. 
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2.2.3. Donnan dialysis 

 

The principle of Donnan Dialysis as speciation technique is the selective dialysis of 

very small quantities of the free metal ion from a large volume of donor solution to a small 

volume of acceptor solution. Free metal ions freely diffuse through the microporous 

membrane that carries a negative charge while anions and metal complexes with larger 

molecular weight are excluded based on charge or size. A full description of the method and 

its verification with model solutions is given elsewhere (Salam and Helmke, 1998; Helmke et 

al., 1993; Helmke et al., 1999).  

 

Donnan equilibrations were carried out on 100 ml-samples of the surface waters, using 

a custom-machined exchange cell made from Teflon and Kel-f plastics (Figure 2.1). The cell 

holds a strong-acid cation-exchange membrane (Nafion-117, E.I. Dupont de Nemours) which 

separates the sample solution (donor) from an initially pure solution of Sr(NO3)2 (acceptor). 

Nafion-117 is a copolymer of tetrafluoroethylene and sulfonyl fluoride vinyl ethers. During 

equilibration, the sample solution was continuously circulated past the bottom of the 

membrane by a Teflon pump at a rate of 200 mL/minute. The acceptor solution (200 µL) rests 

on the top surface of the membrane and is hold by an annular ring in the top part of the cell. 

We used 2 Donnan cells that were placed in parallel to the pump. The data reported below 

refer to the average of the 2 values obtained from each of the acceptor solutions. 

 

 

DONOR 
(~ 50 ml) 

ACCEPTOR  
(~ 0.2 ml) 

NAFION 
MEMBRANE 

 

Figure 2.1 Scheme of the Donnan dialysis system (see text for detailed explanation) 
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In preparation for Donnan equilibration, the membranes were stored in a mixture of 

10% methanol, 10% HNO3 and 80% Milli-Q water to replace adsorbed cations with H+. Prior 

to the membranes being used, they are rinsed and soaked in Milli-Q water, in 

Ca(NO3)2/MgCl2 solutions (± 2.5 mM) and finally in a sub-sample of the spiked donor 

solution. The membranes were preloaded with Ca/Mg to avoid concentration decreases during 

the equilibration of the system, because of the low ionic strength of the samples. 

 

Initially, the pH of the freshwaters was often found to increase by >0.5 pH units 

during Donnan dialysis due to the CO2 degassing of the solutions. This shift is unwanted since 

metal speciation is largely pH dependent. Therefore solutions were pH buffered in all final 

experiments. The buffer MOPS (3N-Morpholinopropanesulfonic acid, pKa 7.2) was added 

(3.6 mM) to the surface water samples (100 mL). The pH of the buffer was adjusted to the 

same pH as the water sample with NaOH (from a 1 M stock solution) prior to adding it to the 

solution. An experiment was set-up using water Markermeer (spiked with stable Ni to 10 

µg/L) to assess the effect of adding buffer. The fraction of free Ni2+ in the original, non-

buffered solution was 25.5% in which the pH changed from pH=8.15 initially to only 

pH=8.30 finally. The fraction free Ni2+ in the MOPS buffered solution was 24.2% while pH 

was maintained at pH=8.15. This experiment confirmed that MOPS buffer does not complex 

Ni. 

 

The donor solution was spiked with a small volume of radio-isotope 63Ni to determine 

the free fraction of Ni2+. The acceptor solution (200 µL) is a Sr(NO3)2 solution whose ionic 

strength is identical to that of the sample solution as estimated by a complete analysis of the 

sample solution by ICP-OES and calculation. 

 

Due to the low ionic strength of the surface waters, an equilibration time of 4 hours 

was necessary to attain Donnan equilibrium with the acceptor solution. Hereafter aliquots 

(150 µl) of donor and acceptor solution were taken and mixed with 850 µL water and 4 mL 

scintillation cocktail and sample radioactivity (counts per minute, cpm) was determined by a 

beta-counter (Parckard 1600CA). The fraction free Ni2+ in the sample was calculated with the 

following equation: 

 

)(

)(2

donorcpm

acceptorcpm
Nifraction                (Eq. 2.1) 
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From the donor solution, sub-samples of 5 mL were taken before and after the Donnan 

dialysis and analyzed by ICP-OES. The full composition of the solution after dialysis was 

used as input for WHAM and is reported in Annex 2. 

 

2.2.3. Speciation modeling  

The Ni speciation measurements were used to calibrate WHAM VI for taking accurately into 

account the effect of Ni-DOC complexation on the free ionic Ni2+ concentration. High 

molecular weight humic substances and are known to comprise a significant proportion (50 - 

90%) of natural DOM (Thurman, 1985), with the remaining proportion being smaller organic 

molecules. Of these humic substances fulvic acids (FA) typically account for the majority of 

the DOC (~80%) with humic acids (HA) accounting for the remaining 20% (Thurman, 1985). 

The stability constant of Ni binding to fulvic acid (log KMA(Ni)) and the percentage of ‘active 

fulvic acid’ (%AFA) were optimized to get the best fit with the experimental results. Details 

of the optimization method are given below. 

 

 

2.3 Toxicity testing of Ni in natural waters  

 

 

2.3.1. General 

 

Acute (48h) and chronic (10d) toxicity experiments were carried out with 

Ceriodaphnia dubia (Crustacea:Cladocera). The test protocol was designed to comply as 

much as possible with US EPA (2002) and OECD (1984, 1998) guidelines. The most 

important deviation from the original US EPA test method 1002.0 was that no YTC slurry 

was provided as food source and that instead only a green algal mix was given in chronic 

toxicity experiments. This was to avoid the addition of potentially strong Ni-binding ligands 

to the test solutions, along with the YTC and thus to avoid complications in data analysis. 

Binding of Ni to exudates of the algal food and the daphnids was also determined using the 

Donnan-membrane technique. 

 

2.3.2. Spiking of solutions 
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The test concentrations (nominal nickel concentrations) were selected based on the 

results of preliminary static-acute range-finding tests and information obtained from the 

literature.  Test concentrations were spaced by a factor of 1.8 (nominal).  For each acute and 

each chronic test, 5 or 6 nickel concentrations and a non-nickel spiked water control were 

tested. Test solutions were equilibrated for 24 hours before test initiation. Virtually no change 

in Ni speciation was observed between 2 hours and 7 days of equilibration (see 3.1.1), 

indicating that 24 hours is a suitable equilibration period. Test solutions for renewal of 

chronic tests were stored at 4°C in the dark during the whole testing period and were left to 

stand at 25°C one day prior to the renewal.    

 

2.3.3. Test organisms 

 

Ceriodaphnia dubia was obtained from a monoclonal in-house culture, which is 

routinely maintained on carbon-filtered city tap water (Gent, Belgium), conditioned by 

continuous passage over a biological filter. Six weeks (> three generations) before all 

experiments were started, organisms were acclimated to moderately hard reconstituted water 

(US EPA, 1993) with added Se and Vitamin B12 (Clesceri et al., 1998) and Zn (Muyssen and 

Janssen, 2002) to optimize culture health (Table 2.2). Dissolved Ni was below the detection 

limit of the GF-AAS, i.e. < 2 µg/L). Cultures were fed ad libitum with an algal mix of 

Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii in a 3:1 ratio on cell basis 

and were maintained on a light cycle of 12 hours light and 12 hours dark. Weekly, juveniles 

(150-350 µm) were sieved from the culture and were used to start up a new culture aquarium. 

No males were present in the culture for the whole period of conducting toxicity experiments. 

 

Table 2.2 Compositiona of moderately hard water used for culturing Ceriodaphnia dubia.  

Major ions Conc. (mg/L) Supplements Conc. (µg/L) 
NaHCO3 96 NaSeO4 b 3 

CaSO4·2H2O 60 Vitamin B12 b 3 
MgSO4 60 Zn (as ZnCl2) c 1 

KCl 4   
a Based on US EPA’s (1993) moderately hard water; this medium has a pH between 7.4 to 
7.8, dissolved Ni background is <2.0 µg/L (detection limit) 
b Recommended by APHA (1998) 
c Recommended by Muyssen and Janssen (2002) to avoid Zn deficiency 
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All toxicity experiments were terminated within 14 weeks from the start of the 

acclimation to this culture water. Toxicity experiments were conducted simultaneously with 

all six waters, to ensure that all variability observed is due to differences in the test solutions.    

 
 
2.3.4. Acute toxicity tests 

 

Acute toxicity tests were initiated with 2 to 8 hour old juveniles. Tests were conducted 

in a temperature-controlled room at 25º±1ºC under a light cycle of 16 hours light and 8 hours 

dark. No food was provided to the organisms. Test containers were 30 mL polyethylene cups 

containing 20 mL of test solution. Ten Ceriodaphnia dubia individuals were impartially 

assigned to each test vessel and three replicates were tested per treatment. Mortality was 

determined after 24 and 48 hours. At test initiation and test termination pH and IC were 

measured in each test and samples were taken for total (only at test initiation) and dissolved 

Ni concentration (0.45 µm filtered). Ni concentrations were determined using GF-AAS (see 

2.3.5). Dissolved oxygen was always >80% of air saturation. 

 

2.3.5. Chronic toxicity tests 

 

Chronic toxicity tests were initiated with 16 to 24 hour old juveniles. Tests were 

conducted in a temperature-controlled room at 25º±1ºC under a light cycle of 16 hours light 

and 8 hours dark. Test containers were 30 mL polyethylene cups containing 20 mL of test 

solution. One Ceriodaphnia dubia individual was impartially assigned to each test vessel and 

ten replicates were tested per treatment. Mortality and reproduction (number of juveniles) 

were determined every 24 hours. The test solution renewal and feeding scheme is summarized 

in Table 2.3. Feeding was by an algal mix of Pseudokirchneriella subcapitata and 

Chlamydomonas reinhardtii in a 3:1 ratio on cell basis. No extra food was added on the 3rd 

day of exposure, because food remaining from the two previous feedings was still abundant 

and because overloading of food has previously been observed to act adversely on our 

Ceriodaphnia clone. Tests lasted 10 days, which was sufficient to ensure three broods to be 

completed in control organisms.  

 

 Table 2.3 Scheme of test medium renewal and feeding in chronic Ceriodaphnia dubia tests. 

day Day Renewal 106cells/day µg dry wt/day 
0 Thu  4 52 
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1 Fri X 6 70 
2 Sat  6 70 
3 Sun  0 0 
4 Mon X 6 70 
5 Tue  6 70 
6 Wed X 6 70 
7 Thu  6 70 
8 Fri X 6 70 
9 Sat  6 70 

 

pH and IC were measured in fresh test solutions prior to test initiation and test solution 

renewal and also in ‘old’ test solutions with every renewal. Samples for for total (only at test 

initiation) and dissolved Ni concentration (0.45 µm filtered) were taken at the same time. Ni 

concentrations were determined using GF-AAS (see section 2.3.5). Dissolved oxygen was 

always >70% of air saturation. 

 

Along with the natural waters, an assay with control culture water was run (see Table 

2.x, no Ni spikes). The same feeding and renewal regime was applied and at the renewal of 

the 4th day of exposure, when contact time between algal food and test solution had been 

maximal. The old solution was filtered through 0.45 µm and 500 mL was sent to KUL for 

determination of Ni binding behavior of dissolved ligands present in this ‘old’ test solution. 

Ni binding to this solution was determined at background Ni and at about 2 µg/L added Ni to 

assess the potential importance of these exudates on Ni speciation in chronic toxicity tests. 

 

2.3.6. Ni analyses 

 

Ni was measured using Graphite Furnace Atomic Absorption Spectrometry (GF-AAS, 

SpectrAA100, Varian, Mulgrave, Australia) after acidification of the samples (0.14N 

ultrapure HNO3, Normatom grade, VWR, Leuven, Belgium). Calibration standards (Sigma-

aldrich, Steinheim, Germany) and a reagent blank were analyzed with every ten samples. The 

detection limit for Ni was 2 µg/L. Two certified reference samples, TMDA-62 and TM-25.2 

(National Water Research Institute, Burlington, ON, Canada) with certified Ni concentrations 

(mean ± 95% confidence interval) of 10.0 ± 1.7 µg/L and 97.7 ± 8.5 µg/L, respectively, were 

analyzed at the beginning and end of each series of Ni measurements. Measured values during 

the period of the ecotoxicity experiments were between 9.1 and 10.4 µg/L for the lowest 

reference concentration and 90.3 to 99.8 µg/L for the highest reference concentration.      
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2.3.7. Data treatment 

 

Test data were analyzed using Statistica software (Statsoft, Tulsa, OK, USA). The 

Mann-Whitney U test was used to test for significant differences between the reproduction of 

the Ni treatments and the control. The no observable effect concentration (NOEC) and lowest 

observable effect concentration (LOEC) were calculated on the basis of reproduction (number 

of juveniles/initial female, p <0.05).  In addition, effects concentrations at the 10th, 20th nd 50th 

percentiles (EC10, EC20 and EC50) were calculated by the logistic regression (De 

Schamphelaere and Janssen, 2004): 
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where 

 

y = reproduction (No. of juveniles/replicate) 

k = fitted control reproduction at Ni = 0 µg/l 

a = ln (EC50) = loge (EC50) 

b = ln (EC10) = loge (ErC10) 

c = ln (EC20) = loge (EC20) 

x  = measured dissolved nickel concentration 

 

EC50s, EC20s and EC10s and their confidence limits are estimated directly from the 

fitting procedure.  Parameter estimation and calculation of the 95% confidence limits was 

carried out using the Levenberg-Marquardt method (Levenberg, 1944; Marquardt, 1963).  
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48h-LC50s were calculated using the Trimmed Spearman-Karber method (Hamilton et 

al., 1977). All reported effect concentrations are based on dissolved Ni concentrations at test 

initiation. In acute experiments, measured dissolved Ni at test termination was within 10% of 

the value measured at test initiation. In chronic tests, dissolved Ni concentrations at test 

renewals were about 15% lower at test solution renewal.   
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3. Results and discussion 

 

3.1. Ni Speciation 

 

3.1.1. Ni complexation kinetics with DOC 

 

The test of the equilibration time of the Donnan dialysis system itself indicated 

that for waters with low ionic strength 4 hours were necessary to reach equilibrium. The 

standard procedure is 2 hours in Donnan dialysis, but we found increasing fractions free 

Ni2+ ion between 1 hour and 4 hours, beyond which the values stabilised. The 4h 

equilibration time was selected for all the waters and all further measurements. 

 

To assess the complexation kinetics of Ni with natural DOC, speciation 

measurements were carried out with the Donnan dialysis technique on 2 spiked surface 

waters (Ankeveen and Markermeer, spiked with 10 µg Ni/L) after 3 different 

equilibration times (Table 3.1, see Annex 1 for chemistry of the original samples). There 

was a small difference in the free Ni2+ ion fraction in the Ankeveen water between 2 days 

and other equilibration times, but this was mostly due to a pH effect. The experiment 

with the Markermeer water showed the same result It is concluded that complexation is 

nearly complete after 2 hours of equilibration and that an equilibration time of 16 hours 

(Ni speciation, sections 3.1.2) or 1 day (ecotoxicity testing, section 2.3) was more than 

sufficient for all further experiments.  

 

Table 3.1  Kinetics of complexation of Ni in two surface waters after three different 
equilibration times  

      2 hours 2 days 7 days 

Ankeveen Replicate 1 fraction Ni2+ 0.069 0.048 0.069 

  pH 7.18 7.35 7.19 

 Replicate 2 fraction Ni2+ 0.067 0.049 0.068 

  pH 7.18 7.32 7.18 

      

Markermeer Replicate 1 fraction Ni2+ 0.21 0.22 0.20 

    pH 8.17 8.09 8.21 
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3.1.2. Ni speciation in six natural waters and in two waters with amended pH and 

hardness 

 

The aim was to measure the Ni speciation in 6 waters at 3 different Ni 

concentrations and in 2 waters with adjusted pH and hardness values. The % free Ni2+ at 

background ranged 4% to 45% (Table 3.2). Increasing Ni concentration decreased the % 

free Ni2+. This indicates that, if Ni2+ is the dominantly bioavailable Ni species, Ni 

complexation by DOC will become increasingly important at lower Ni concentrations.  

 

 

Table 3 Effect of Ni concentration on free Ni2+ fraction (pH is constant, except for Eau d’Eppe). 

Value between parentheses is the standard deviation of the duplicate analysis. 

  pH DOC Hardnessa Ni concentration fraction of Ni2+ 

    (mg/L) (mg CaCO3/L) (µg/l) (%) 

Ankeveen 7.36 23.60 131.6 4.2 6.9 (±0.0) 

 7.36 23.60 131.6 39 14 (±0.3) 

 7.36 23.60 131.6 148 27 (±1.4) 
      

Bihain 6.17 6.36 15.0 2.8 45 (±2.7) 

 6.17 6.36 15.0 4.7 45 (±0.0) 

 6.17 6.36 15.0 15 55 (±2.2) 
      

Brisy 7.23 3.06 41.1 2.6 31 (±1.0) 

 7.23 3.06 41.1 3.3 39 (±2.9) 

 7.23 3.06 41.1 21 60 (±2.5) 
      

Eau d'Eppe 7.85 5.02 108.4 4.4 31 (±2.0) 

 8.04 5.02 108.4 5.8 27 (±2.6) 

 8.17 5.02 108.4 21 37 (±3.3) 
      

Markermeer 8.26 7.61 218.1 3.8 15 (±0.7) 

 8.26 7.61 218.1 5.8 21 (±1.0) 

  8.26 7.61 218.1 53 40 (±0.1) 

      

Regge 8.58 12.60 204.0 3.7 4 (±0.7) 

 8.58 12.60 204.0 6.8 8 (±0.7) 

 8.58 12.60 204.0 107 23 (±0.3) 
a hardness of original sample, final hardness during Donnan-measurement is in Annex 2 
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The effect of pH and hardness on Ni speciation was tested on two surface waters 

(Ankeveen and Bihain) at background Ni (Tables 3.3 and 3.4). Decreasing pH (increased 

H+) and increasing hardness (Ca2+ and Mg2+) increased the fraction of free Ni2+, 

obviously related to ion competition effects. Indeed, higher concentrations of Ca2+, Mg2+ 

or H+ (lower pH) result in a larger Ni fraction being out-competed by these ions at ion 

binding sites on the DOC, resulting in a larger fraction of Ni2+. 

 

 

Table 3.3 Effect of pH on free Ni fraction. Value between parentheses is the standard deviation of the 
duplicate analysis. 

  pH Ni concentration fraction of Ni2+ 

    (µg/l) (%) 

Ankeveen 8.06 4.4 4 (±0.3) 

 7.71 4.5 4 (±0.1) 

 7.15 4.8 5.9 (±0.1) 

 6.46 5.0 8.2 (±0.5) 

    

Bihain 6.16 2.5 45.2 

 6.90 2.5 24.1 

 7.59 2.7 19.6 

  7.96 2.7 10.3 

 
  

 

Table 3.4 Effect of hardness on  free Ni2+ fraction. Value between parentheses is the standard 
deviation of the duplicate analysis. 

  hardness Ni concentration fraction of Ni2+ 

  mg CaCO3/L (µg/l) (%) 

Ankeveen 112 5.2 6.5 (±0.2) 

 207 5 7.9 (±0.2) 

 308 5 9.6 (±1.2) 

 396 4.9 12.5 (±2.3) 

    

Bihain 16 4.4 43.9 (±2.7) 

 94 6.4 70.7 (±2.2) 

  450 7.8 88.8 (±2.3) 
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3.1.3. Calibration of speciation models 

 

3.1.3.1. Introduction to WHAM VI and the software 

 

WHAM (Windermere Humic Aqueous Model) VI is a speciation code that is 

based on the Humic Ion Binding Model VI. This is a discrete site/electrostatic model for 

equilibrium ion binding by humic substances. The model has 4 metal-specific parameters, 

log KMA, log KMB, ΔLK1 and ΔLK2. The log KMA and log KMB are median log binding 

strengths for a given metal to carboxyl sites and weaker-acid sites, respectively. ΔLK1 

defines the spreading of values around these median constants. ΔLK2 is the empirical 

parameter that increases the binding strengths of selected multi-dentate sites to provide 

for a greater range of binding strengths. Tipping (1998) found a correlation between log 

KMA and log KMB. Moreover, a universal average value of ΔLK1 was obtained. As a 

result, the speciation data are fitted by the adjustments of only 2 parameters, log KMA and 

ΔLK2.  

 

It is now appropriate to describe how water chemistry data need to be inserted into 

WHAM VI for speciation calculations. For all cations and anions, the WHAM VI 

software can deal with inputs as ‘total’ concentration, ‘dissolved’ concentration, ‘free 

ionic’ concentration, or ‘free ion activity’. With respect to ion binding to humic and 

fulvic acid, one can insert these as either ‘particulate’ (total minus dissolved) or as 

‘colloidal’ (dissolved), but WHAM VI assumes identical binding properties for 

‘particulate’ and ‘colloidal’ humic or fulvic acid. Hence, when measurements of cations, 

anions and organic matter are available for the same fraction (e.g., dissolved fraction 

<0.45 µm), it does not affect calculated ion speciation if the measurements are inserted as 

‘total’ or as ‘dissolved’. Since ‘total’ is the default in WHAM VI and since the measured 

difference between total and dissolved concentration is usually minor for major cations 

and anions, we have always inserted those at ‘total’. All trace metals were inserted as 

‘dissolved’ to emphasize that they were measured on ‘dissolved’ samples. To emphasize 
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that we are working on the ‘dissolved’ fraction of organic matter (<0.45 µm), we always 

inserted organic matter as ‘colloidal’ fulvic acid. This was applied throughout all the 

analysis described in this report.    

  

There were three exceptions to this. The first one relates to the case where effect 

concentrations needed to be predicted using the developed bioavailability models. In this 

case, we needed to make use of the option of inserting Ni as ‘free ionic activity’, i.e. 

(Ni2+). This is explained in more detail in section 4. 

 

The two other exceptions were related to the input of Fe(III) and Al in waters 

from a natural origin (such as the ones investigated in the current study). In natural 

waters, both Fe3+ and Al3+ may occur as colloidal Fe(OH)3 and Al(OH)3 (Bryan et al., 

2002; Cheng et al., 2005).  Since these colloids easily pass 0.45 µm filters, this may result 

in measured values of ‘dissolved’ Fe and Al that are higher than the actual ‘dissolved’ Fe 

and Al that can interact with dissolved ligands and DOC. Hence, the actual Fe an Al that 

is to be inserted in WHAM VI cannot directly be derived from the measured 

concentrations. The following solution has been suggested and successfully applied in 

several studies (e.g., Bryan et al., 2002; Cheng et al., 2005).  

 

First, colloidal Fe(OH)3 is predicted to occur in almost every surface water and 

hence, the Fe3+ activity can be directly estimated from the solubility constant of colloidal 

Fe(OH)3: 

 

Ksol,Fe(OH)3 = (Fe3+) / (H+)3              (Eq. 3.2) 

 

In literature log10 Ksol,Fe(OH)3 varies from 2 to 5, but in accordance with Tipping et 

al. (2003) we used a value of 2.5 (at 25°C) throughout the present study, and a reaction 

enthalpy ∆H Fe(OH)3 = - 102,000 J/mol (Tipping et al., 2003). The solubility constant at 

any temperature t (in °C) can be calculated using the Van ‘t Hoff equation: 
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Where R = the universal gas constant = 8.314 J mol-1 K-1. Equation 3.2 clearly 

indicates that, when colloidal Fe(OH)3 is present in solution, it controls the activity of 

Fe3+, and this activity can be calculated from the measured pH only: 

 

(Fe3+) = Ksol,Fe(OH)3 ∙ 10-3 ∙ pH         (Eq. 3.3) 

   

The situation for Al3+ is a little more complex, since it is not always predicted to be in 

equilibrium with Al(OH)3. The optimal way of calculating Ni speciation in presence of 

Al is to allow Al3+ to precipitate as colloidal Al(OH)3 whenever the solubility product 

Ksol,Al(OH)3 is exceeded. This can be tested as follows.  

 

First, the speciation problem is run with the assumption that colloidal Al(OH)3 is 

present in solution, by inserting Al3+ activity into WHAM VI, calculated as follows: 

 

(Al3+) = Ks,Al(OH)3 ∙ (H+)3         (Eq. 3.4) 

 

or  

 

(Al3+) = Ks,Al(OH)3 ∙ 10-3 ∙ pH         (Eq. 3.5) 

 

Where Ksol,Al(OH)3 is the solubility product of colloidal Al(OH)3, with log 

Ksol,Al(OH)3 = 8.5 at 25°C, with a reaction enthalpy ∆H Al(OH)3 = -107,000 J/mol (Tipping et 

al., 2002). WHAM VI will then calculate, under the chemistry conditions of the modelled 

solution, the ‘dissolved’ Al concentration - all Al without colloidal Al(OH)3 - in 

equilibrium with this Al3+ activity. When this predicted Al concentration is lower than the 

measured Al concentration, the difference is assumed to be due to the presence of 

colloidal Al(OH)3, and the original assumption is valid. In this case, the speciation 

calculations performed are retained. In the other case, the original assumption was wrong 

and speciation calculations need to be performed by inserting the measured Al into the 
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software as ‘dissolved’. This approach was consistently followed throughout this report 

and is referred to as the ‘optimal’ scenario with respect to Al. Whenever appropriate, the 

influence of modelling Al in different ways will be discussed.  

 

As mentioned earlier, dissolved organic matter was considered ‘colloidal’ and was 

assumed to consist of a certain fraction of active fulvic acid (%AFA) and a fraction of 

inert for ion binding (in line with the approach in Bryan et al., 2002, Cheng et al., 2005). 

The choice of fitting ‘active fulvic acid’ instead of ‘active humic acid’ has originally 

(e.g., Dwane and Tipping, 1998) been inspired by the fact that fulvic acid is usually much 

more abundant than humic acid in natural surface waters, i.e. typically 80% FA vs. 20% 

HA (Thurman, 1985). DOC was always multiplied by 2 to obtain FA concentrations, 

since on a weight basis, about 50% of DOM consists of carbon (Thurman, 1985). Based 

on Cu modeling data (Bryan et al., 2002) we used 65% AFA as a starting point for the 

modeling, but the aim was to calibrate this parameter to the measured speciation. 

Experiments with Cu and Zn have demonstrated 60-65% AFA is a good first 

approximation for modeling metal speciation in natural surface waters (Bryan et al., 

2002, Cheng et al., 2005).   

 

3.1.3.2. Calibration of WHAM VI 

 

Because the parameters in WHAM model VI for Ni binding to humic substances 

are, for nickel, only based on data for isolated soil fulvic, isolated soil humic acid and 

isolated groundwater fulvic acid, the model needed to be calibrated using experimental 

results with truly aqueous DOM at background concentrations of Ni and at Ni 

concentrations reflecting the Ni sensitivity of a sensitive organism (here: C. dubia). The 

experimental results described in section 3.1.2 and Tables 3.2 to 3.4 were used for this 

calibration. 

 

In order to calibrate WHAM model VI to the speciation data of all natural waters 

(including those with adjusted Ni, hardness and pH), the parameters were optimized 

through minimizing the squared residuals, i.e.  
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22 2log(% ) log(% )observed predictedNi Ni              (Eq. 3.6) 

The values were transformed to log values to optimize predictions of free metal 

ion fraction within similar order of magnitude across the entire range of observations. 

Some parameters were adjusted before, because literature indicated already more relevant 

values. For the inorganic metal complexation, the default stability constants of Ni-

carbonate complexes were adapted to those of NIST (National Institute of Standards and 

Technology). The default stability constant for the organic complex of fulvic acid (FA) 

with Zn and ZnOH was adjusted, based on the results of Cheng et al. (2005). In Table 3.5 

default and adjusted parameters are shown. These parameters were used when optimizing 

the effective fulvic acid concentration and the metal-specific parameters of the Ni 

complex with fulvic acid. 

 

Table 3.5 Default and adjusted stability constants of Ni with inorganic and organic ligands 

  

Parameter 
Default stability 
constant (pK) in 

WHAM VI 

Adjusted 
stability 
constant 

(pK) 

Reference 

Inorganic 
complexation 

K = [NiCO3]/[Ni2+].[CO3
2-] 5.78 4.57 NIST1 

 
K = 

[NiHCO3
+]/[Ni2+].[H+].[CO3

2-] 
13.41 12.42 NIST1 

Organic 
complexation 

KMA(Zn) 1.6 1.8 
Cheng et 
al. (2005) 

1 National Institute of Standards and Technology  
 
 

Adapting the ΔLK2 parameter hardly affected the result, so the default value of 

1.57 was maintained. However, adjusting the effective fulvic acid concentration and the 

stability constant log KMA(Ni) improved the fittings of the model with the experimental 

results (Figure 3.1). In most studies of Ni speciation, a fraction of 60 to 65% is 

considered as the chemically reactive fraction of the natural DOM, behaving as fulvic 

acid (Bryan et al., 2002; Cheng et al., 2005). Using this effective fraction, a value of 1.65 
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for the stability constant log KMa(Ni) of the Ni-fulvic acid complex showed lowest 

residuals. However, the slope of the predicted/observed line was smaller than 1.0, 

suggesting a bias in the predictions. When both parameters were varied, the best fit was 

obtained for a log KMa(Ni) of 1.75 and the % active fulvic acid (%AFA) of 40%, with a 

slope near unity (Fig. 3.1). Tables 3.6 and 3.8 show the main characteristics of the waters 

and the associated observed and predicted free Ni2+ fractions. The main difference 

between the calibration at log KMa(Ni) = 1.65 and at log KMa(Ni) = 1.75 is that the latter 

better predicts the lower Ni2+ fractions (Figure 3.1).  

 

The ‘optimized’ parameters were used in all further speciation calculations, model 

developments and validations regarding the ecotoxicity datasets (see sections 3.2 and 4). 

 

 

Table 3.6 Ni speciation in 6 surface waters at background and adjusted dissolved Ni 
concentrations; comparison between observed and predicted (WHAM model VI) free Ni 
fraction (%). Value between parentheses is the standard deviation of the duplicate analysis. 
Complete chemical composition in Annex 2. See also Figure 3.1 for observed vs. predicted 
free Ni2+ fractions 

    pH DOC Ca Mg Ni % free Ni fraction 

      
mg/L 

conc 
(mM) 

conc 
(mM) 

conc 
(µg/L) 

observed predicted 

Ankeveen background 7.36 23.60 0.87 0.29 4.2 6.9 (±0.0) 7.2 
 'EC 10' 7.36 23.60 0.88 0.30 38.9 13.8 (±0.3) 11.9 
 'LC50' 7.36 23.60 0.87 0.29 147.3 27.2 (±1.4) 21.5 

Bihain background 6.17 6.36 0.11 0.06 2.8 45.3 (±2.7) 46.6 

 'EC 10' 6.17 6.36 0.11 0.06 4.7 45.1 (±0.0) 40.6 

 'LC50' 6.17 6.36 0.11 0.06 14.8 55.3 (±2.2) 45.1 

Brisy background 7.23 3.06 0.23 0.15 2.6 31.0 (±1.0) 24.1 

 'EC 10' 7.23 3.06 0.24 0.15 3.3 39.0 (±2.9) 27.2 
 'LC50' 7.23 3.06 0.24 0.15 20.7 60.2 (±2.5) 41.6 
Eppe background 7.85 5.02 0.77 0.26 4.4 31.4 (±2.0) 22.4 
 'EC 10' 8.04 5.02 0.76 0.26 5.8 26.9 (±2.6) 18.9 

 'LC50' 8.17 5.02 0.77 0.26 21.1 37.4 (±3.3) 26.9 

Markermeer background 8.26 7.61 1.41 0.60 3.8 15.3 (±0.7) 18.0 
 'EC 10' 8.26 7.61 1.35 0.61 5.8 20.6 (±1.0) 15.3 
  'LC50' 8.26 7.61 1.34 0.60 52.9 39.8 (±0.1) 29.0 

Regge background 8.54 12.60 1.50 0.32 3.7 4.0(±0.7) 7.9 
 'EC 10' 8.58 12.60 1.52 0.33 6.8 7.7 (±0.7) 8.0 
 'LC50' 8.58 12.60 1.47 0.32 106.8 23.0 (±0.3) 18.6 
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Table 3.7 Ni speciation in 6 surface waters at background and adjusted pH and Ca 
concentrations; comparison between observed and predicted (WHAM model VI) free Ni 
fraction (%).Value between parentheses is the standard deviation of the duplicate analysis. 
Complete chemical composition in Annex 2. 

    pH DOC Ca Mg Ni % free Ni fraction 

   mg/L 
conc 
(mM) 

conc 
(mM) 

conc 
(µg/L)) 

observed predicted 

Ankeveen pH 1 8.06 23.60 0.85 0.30 4.4 4.0 (±0.3) 2.9 
 pH 2 7.71 23.60 0.85 0.31 4.5 4.0 (±0.1) 3.8 

 pH 3 7.15 23.60 0.86 0.31 4.8 5.9 (±0.1) 6.8 

 pH 4 6.46 23.60 0.88 0.32 5.0 8.2 (±0.5) 16.2 
 hardness 1 7.31 23.60 0.90 0.32 5.2 6.5 (±0.2) 6.9 
 hardness 2 7.31 23.60 2.41 1.10 5.1 7.9 (±0.2) 15.1 
 hardness 3 7.31 23.60 1.66 0.69 5.0 9.6 (±1.2) 11.2 

 hardness 4 7.31 23.60 3.13 1.46 4.9 12.5 (±2.3) 17.9 

Bihain pH 1 6.16 6.36 0.12 0.06 2.5 45.2 36.4 

 pH 2 6.90 6.36 0.13 0.07 2.5 24.1 19.5 
 pH 3 7.59 6.36 0.16 0.08 2.7 19.6 9.5 

 pH 4 7.96 6.36 0.19 0.10 2.7 10.3 5.8 
 hardness 1 6.18 6.36 0.08 0.07 4.4 43.9 (±2.7) 43.8 
 hardness 2 6.18 6.36 0.60 0.37 6.4 70.7 (±2.2) 71.7 

  hardness 4 6.18 6.36 1.85 1.03 7.5 88.8 (±2.3) 83.6 



 36

 
 

 
Step 1 ‘typical’ 65% FA (see text) Step 2 65% FA Step 3 Optimized % FA = 40% 
 Default parameter log KNi-Fa 1.4 

SSE (log fractions) = 10.4 

 Optimized log KNi-FA 1.65 
SSE (log fractions) = 0.95 

 Optimized log KNi-FA = 1.75 
SSE (log fractions) = 0.69 

 
Figure 3.1 Comparison of % free Ni predicted and observed for three steps in the optimization.
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3.2. Ecotoxicity of Ni to Ceriodaphnia dubia. 

 

3.2.1. Ni toxicity as dissolved Ni in natural waters – effect concentrations 

 

Selected chemical characteristics (DOC, hardness and pH) as well as 48h-LC50 and 

10d-EC10, EC20 and EC50 are reported in Table 3.7. Full chemical characterization of the 

water samples during the ecotoxicity tests can be found in Annex 3, 10-day NOECs and 

LOECs, as well as uncertainty intervals about ECx values in Annex 4. 

 

Table 3.7 Chemical compositiona and ‘dissolved’ 48h-LC50 (survival) and 10d-ECx values 
(reproduction) of Ni to C. dubia (as µg Ni/L) 
Site DOC 

(mg/L) 
H b 

 
pH 

(acute) 
pH 

(chronic) 
48h-
LC50 

10d-
EC50 

10d-
EC20 

10d-
EC10 

Ankeveen 23.6 131.6 7.51 7.61 183 68.4 51.9 44.2 
Bihain 6.36 15.0 6.34 6.56 35.2 23.1 12.8 9.0 
Brisy 3.06 41.1 7.45 7.23 50.8 11.0 8.5 7.4 
Eppe 5.02 108.4 7.95 7.86 34.6 4.9 (2.1) c (1.3) c 

Markermeer 7.6 218.1 8.04 8.01 88.7 12.1 (9.0) c (7.6) c 
Regge 12.6 204.0 8.00 8.18 161 20.1 11.0 7.8 
         
Max-min factord     5 14 25 34 
a Full chemical characterization in annex 3 
b H = calculated water hardness, as mg CaCO3/L.  
c EC extrapolated below lowest test concentration 
d factor difference between lowest and highest L(E)Cx 
 

Table 3.7 illustrates that Ni toxicity varied substantially among the different water 

samples, with 48h-LC50s between 34.6 and 183 µg/L (5-fold), 10d-EC50s between 4.9 and 

68.4 µg/L (14-fold) , 10d-EC10s between 1.3 and 44..2 µg/L (34-fold).  The difference 

between toxicity values is larger for more sensitive endpoints (lower Ni-concentrations). This 

illustrates the importance of taking into account site chemistry in regulatory exercises, 

especially since those differences are observed for one of the most sensitive organism for Ni.  

 
A significant linear relation was found between DOC and acute (p=0.015, r2 = 0.81) 

and chronic (p=0.007; r2 = 0.87) Ni-toxicity (see Figure 3.2). DOC thus reduces acute and 

chronic Ni toxicity to C. dubia. Deleebeeck et al. (2005) also observed a significant linear 

effect of DOC on chronic Ni toxicity to Daphnia magna, whereas they found lesser effect of 

DOC on acute toxicity (lower regression slope). This suggests that differences in 

bioavailability may be more important at lower Ni concentrations and that this is largely due 

to the fact that a larger fraction of dissolved Ni is bound to DOC at lower Ni concentrations 
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(see section 3.1.2). This clearly illustrates that DOC is an important factor to consider in 

chronic bioavailability modelling.  
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Figure 3.2 48h-LC50 and 10d-EC50 of Ni for Ceriodaphnia. dubia in 

spiked natural surface waters as a function of DOC. 

 
 

A correlation on a dissolved Ni basis, as above, is only a first step in the understanding 

of Ni bioavailability. Here it only indicates that organic complexation of Ni is important 

enough to reduce Ni toxicity. In order to further explain differences among waters, and to also 

involve the effects of inorganic parameters (complexation and competition), a second step is 

to calculate Ni-speciation and then to determine how the toxicity of the Ni2+ ion varies with 

modifying factors such as pH, Ca and Mg. This is described in the following sections. 
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3.2.2. Ni toxicity as free Ni2+ 

 

Speciation calculations were performed on all six test waters and all ECx values were 

expressed as Ni2+-activity by using the ECx values as input to the WHAM 6 speciation model 

software. The input-file for these speciation calculations is given in Annex 3.  

 

In order to investigate the importance of Al in Ni speciation at Ni concentrations which 

are relevant for toxicity to C. dubia, we modelled four possible Al scenarios (see also section 

3.1.3.1):  

(i) (Al3+) was assumed to be in equilibrium with its colloidal Al(OH)3 precipitate, i.e. 

(Al3+) = Ks,Al(OH)3 ∙ (H+)3 or (Al3+) = Ks,Al(OH)3 ∙ 10-3 ∙ pH, with Ks,Al(OH)3 solubility 

product of colloidal Al(OH)3, with log Ks,Al(OH)3 = 8.5 at 25°C, with a reaction 

enthalpy ∆H Al(OH)3 = -107 kJ/mol (Tipping et al., 2002). Al was inserted into the 

model as free Al3+ activity, since the WHAM 6 model software allows this option. 

(ii) Measured dissolved Al was inserted as measured ‘dissolved’ Al. 

(iii) Al was omitted from the model input (dissolved Al=0) 

(iv) The ‘optimal’ way of modelling Al speciation, as explained in section 3.1.3.1 

 

Under all scenarios, we used the optimal %AFA of 40% and a log KNiFA=1.75 (see section 

3.1.3.2). Annex 5 summarizes the calculated (Ni2+) at all effect levels and under all scenarios 

for all surface waters tested.   

 

In practice the calculated (Ni2+) was very similar under scenario (i) and scenario (ii). An 

average ratio between the two scenarios of 1.02 was observed and a maximal difference of 

10% was observed. The ‘optimal’ Ni2+ calculations (scenario iv) differed by up to 34% form 

the calculations from scenario (iii) (no Al assumed). Lower Ni2+-activities are predicted when 

no Al is assumed, since Al competes with Ni for binding sites on the DOC. This illustrates the 

importance of considering Al competition for binding of Ni to DOC. Given the similarity of 

scenario (i) and (ii) calculations, it is more accurate to perform calculations under scenario (i) 

when no measured dissolved Al levels are available for a given water sample then to perform 

the calculations with Al = 0. The results of the ‘optimal’ speciation calculations are given in 

Table 3.8. 
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Table 3.8  48h-LC50 and 10d-ECx values of Ni to C. dubia, as Ni2+-activity (mol/L). Al(OH)3 was 
allowed to precipitate when its solubility product was exceeded. All other trace metals were also 
used as input. 

Site 48h-LC50 10d-EC50 10d-EC20 10d-EC10 48h-pNi50
 a 10d-pNi50

 a 

Ankeveen 5.08E-07 1.14E-07 7.62E-08 6.06E-08 6.29 6.94 
Bihain 2.54E-07 1.37E-07 6.95E-08 4.70E-08 6.59 6.86 
Brisy 3.95E-07 7.36E-08 5.56E-08 4.71E-08 6.40 7.13 
Eppe 1.55E-07 1.35E-08 (4.90E-09) c (2.81E-09) c 6.81 7.87 

Markermeer 3.72E-07 3.05E-08 (2.10E-08) c (1.69E-08) c 6.43 7.52 
Regge 5.74E-07 3.30E-08 1.47E-08 9.36E-09 6.24 7.48 

       
Max-min b 3.7 10 16 21   

a pNi50 = - log (EC50 or LC50 as Ni2+-activity) 
b factor difference between lowest and highest L(E)Cx 
c EC extrapolated below lowest test concentration 
 

The data in Table 3.8 illustrate that Ni-speciation does only explain little of the 

variability observed in dissolved LC50 and ECx values (Table 3.7), as the factor difference 

between minimum and maximum LC50Ni2+ or ECxNi2+ is only slightly lower. Indeed large 

differences (factor 3.7 to 21) are still observed between the different waters (Table 3.8), 

indicating that Ni2+ is not a much better predictor of Ni toxicity than Nidissolved and that Ni-

speciation alone does not explain all the variability observed on a dissolved basis. The fact 

that the variability is higher at lower effect levels (i.e., 10d-EC10) illustrates the importance 

of the development of a suitable bioavailability model. 

 

3.2.3. Ni toxicity expressed as free Ni2+ as a function of water chemistry  

 

This analysis will mainly focus on the 48h-LC50 and the 10d-EC50 levels. Ten day-

EC50 levels bear less uncertainty than 10d-EC10 or 10d-EC20 levels (lower confidence 

intervals) and none of the EC50 values were ‘extrapolated’.  

 

We plotted 48h-LC50Ni2+ and 10d-EC50Ni2+ values against pH, hardness and DOC of 

the natural test waters (Figure 3.3) to determine how to further develop the bioavailability 

model and to compare the trends with those discussed previously for D. magna (Deleebeeck 

et al., 2005) and for C. dubia (Keithly et al., 2004).   
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Figure 3.3 48h and 10d-pNi50 of Ni to C. dubia, expressed as pNi = - log {Ni2+-activity}, plotted 
against pH, water hardness and DOC of the natural test waters.  
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Figure 3.3 demonstrates that neither acute 48h-LC50Ni2+ nor chronic 10d-EC50Ni2+ 

exhibit a visible relation with DOC of the natural waters. This suggests that in this case DOC 

does not affect Ni toxicity beyond its effect on speciation.  

 

Acute 48h-LC50Ni2+ do also not exhibit a clearly visible trend with pH or hardness. 

The latter seems counter-intuitive since Keithly et al. (2004) demonstrated that 48h-LC50s of 

Ni to C. dubia increased with increasing hardness in reconstituted waters of pH 7.6 to 7.8 and 

since Deleebeeck et al. (2005) demonstrated that both Ca and Mg, which together constitute 

the hardness, protect D. magna against acute Ni toxicity. Acute toxicity of Ni2+ to D. magna 

was only affected by pH at pH>8 (Deleebeeck et al., 2005), and in C. dubia too pH has 

previously been shown to strongly affect acute Ni toxicity above pH 8 (Schubauer-Berigan et 

al., 1993). Thus, the fact that no pH effect was observed on acute Ni toxicity might at least 

party be due to the fact that no waters with pH exceeding pH 8 were investigated for acute Ni 

toxicity in the present study.   

 

Ten day-EC50Ni2+ seem to decrease with increasing pH and also with increasing 

hardness. The latter seems contradictory with the results obtained on the protective effects of 

Ca and Mg on chronic Ni toxicity to both D. magna (Deleebeeck et al., 2005) and with the 

increased chronic EC20s and EC50 of Ni to C. dubia at increased hardness (Keithly et al., 

2004) in univariate experimental designs. The effect of pH, however, corroborates with the 

finding that chronic Ni toxicity was also reduced to D. magna (Deleebeeck et al., 2005). 

 

However, it should be noted that pH and hardness are highly, positively correlated (r = 

0.90) in our natural water samples. Since the effects of increased pH and increased hardness 

on Ni toxicity are typically counteractive, part of the pH and the hardness effect may have 

been masked by this ‘natural’ correlation. In the case of acute toxicity this may potentially 

explain why no effects of either pH or hardness are observed, i.e. both effects cancel out each 

other. In the case of chronic toxicity, it may suggest that the effect of pH is larger than the 

hardness effect.   

 

To explore this further, pH and hardness effects should be separated from each other. 

This will be performed in the model development section, where different existing data-sets, 

including the one generated in the present study will be investigated into more detail.  
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4. Development, refinement and validation of aquatic Ni bioavailability models  

 
4.1. Important initial considerations 
 

In a previous report we have generated toxicity data with Pseudokirchneriella 

subcapitata, Daphnia magna (acute and chronic), and rainbow trout (chronic) tested in 

artificial waters without added DOC (Deleebeeck et al., 2005). Based on these data biotic 

ligand models (BLM) were developed and these models were then validated with spiked 

natural surface waters (Deleebeeck et al., 2005).  

 

Both model development and validation were carried out using the biotic ligand model 

software, which uses the WHAM-Model V description of metal-DOC interactions. In the 

initial validation of the models, we assumed by default that Model V would accurately predict 

Ni speciation and we assumed that DOM consisted of 100% active fulvic acid.   

 

Hence, it must be understood that all these validations made use of a speciation model 

which was not calibrated to measured Ni speciation in natural surface waters. Thus, in 

principle, these validations were meaningless, since one could not determine how good the 

metal toxicity predictions were and what the uncertainty around them was!  

 

Therefore, any comparison concerning predictive capacities of models developed and 

validated with WHAM V (Deleebeeck et al., 2005) vs. WHAM VI (present study) is 

meaningless and will not discussed in this report. Also, all figures, tables, and discussion 

about predictive capacity of the former models in natural waters reported by Deleebeeck et al. 

(2005) must be neglected and replaced by the subsequent section of the present report!   

 

Also, WHAM VI and WHAM V (as programmed into the BLM software) produce 

slightly different Ni2+ activities (<10%) in inorganic solutions not containing DOM, even 

when the same stability constants for inorganic metal complexes are used. This is due to a 

slightly different approach for calculating activity coefficients (Davies vs. Extended Debye-

Hückel) and potentially also due to numerical differences (method to iteratively solve the 

large set of equations of which a speciation problem consist). 

  

Since the calibrations of WHAM VI to Ni speciation in natural water are better and 

more realistic than WHAM V calibrations (data not shown), WHAM VI is the preferred 
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speciation model to integrate into the final bioavailability models. This implies that, in 

practice, although the discussed differences are relatively small, WHAM VI must also be used 

to calculate Ni2+-activities in the artificial test waters of Deleebeeck et al. (2005) and that 

these calculations need to serve as a basis for the model development and validation in the 

present study. In other words, the original raw toxicity data (ECx values as dissolved Ni and 

reported water chemistry, Deleebeeck et al., 2005) must be re-evaluated using WHAM VI as 

must the BLM-parameters. In this report this will only be performed for acute and chronic D. 

magna toxicity data, because this project was specifically aimed at expanding the knowledge 

about Ni bioavailability to invertebrates (i.e. the daphnids C. dubia and D. magna) and since 

those organisms are the most sensitive anyway. Hence, more accurate bioavailability 

modeling is most crucial for these organisms in a risk assessment context.  

 

 

In practice, all types of data-analyses reported by Deleebeeck et al. (2005) were 

repeated and the results of this are reported in the following sections.  While these analyses 

were ongoing, we found important uncertainties around the pH values in the test solutions 

during the chronic D. magna experiments of the Bossuyt et al. (2001) dataset, of which the 

toxicity data were also validated in the Deleebeeck et al. (2005) study.  Indeed, pH values 

during these tests have not been measured at the critical time points during the tests, i.e. in 

‘old’ test solutions immediately before test water renewals, when solution pH may have 

increased substantially due to the presence of the algal food. This was not the case for their 

acute dataset (for which pH is reported in Annex A of the Bossuyt et al., 2001, report). Given 

the importance of pH in Ni bioavailability and toxicity, we do not wish to consider the chronic 

D. magna dataset of Bossuyt et al. (2001) in the validation (or further refinement) of our 

models, described hereunder. We also recommend not including the Bossuyt et al. (2001) data 

for the construction of an aquatic effects database for Ni for the risk assessment, because there 

are more reliable chronic data available with D. magna (e.g., the ones we do deal with 

hereunder).  

 

The models developed and presented below will represent the most recent state-of-the-

art on aquatic Ni-bioavailability, including additional evidence from peer-reviewed literature. 
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4.2. Development of an acute Ni toxicity model for aquatic invertebrates 

 

4.2.1. Acute toxicity model for D. magna 

 

The acute toxicity data from Deleebeeck et al. (2005) were re-analyzed using WHAM 

VI and BLM parameters were described according to the method of De Schamphelaere and 

Janssen (2002). The input table used for speciation calculations and selected output data are 

presented in annex 6 and Table 4.1, respectively. 

 

Similar conclusions could be drawn as in Deleebeeck et al. (2005), see Table 4.1 for 48h-

LC50Ni2+ and Figure 4.1:  

(i) Ca and Mg protected against the toxicity of Ni2+ up to a concentration of 3 mM, 

further concentrations of these cations again increased the toxicity. 

(ii) Na (up to 14 mM) and K (up to 0.3 mM) did not affect toxicity of Ni2+. 

(iii) No pH effect was observed between pH 6.0 and 7.5, but the toxicity of Ni2+ was 

slightly higher at pH 8.1. 

(iv) There was seemingly no effect of adding 0.75 g/L of MOPS as a pH buffer, as 

48h-LC50s between pH 6 and 6.7 were virtually the same in MOPS-buffered and 

non-MOPS-buffered test solutions. 

 

The fact that no pH effect is observed up to pH 7.5 seems to contrast with the proposed 

stability constant log KHBL = 7.5 for binding of Ni to fish gills (Wu et al., 2001). It is noted, 

however, that the stability constants proposed by Wu et al. (2001) were based on a fitting 

exercise of the BLM on a dataset of measured Ni binding to fish gills at a range of  different 

Ni and different Ca concentrations, whereas pH was not modified (Meyer et al., 1997). Wu et 

al. (2001) recognized that the set of model parameters they presented was not unique in terms 

of its predictive capacity. Hence, the apparent contrast between fish gill binding and acute Ni 

toxicity to D. magna is not definitive.  
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Figure 4.1 Observed 48h-LC50Ni2+ (as Ni2+-activity) for D. magna in artificial test waters from Deleebeeck 
et al. (2005). Data from Table 4.1. Data in the Ca and Mg graphs which are marked as open squares are 

not used for model development. 

 
 
Table 4.1 Observed 48h-LC50dissolved and 48h-LC50Ni2+ (Ni-activity) of Ni to D. magna in artificial 
test waters from Deleebeeck et al. (2005). See also Figure 4.1 
Test water a pH Mg2+ b 

(M) 
Ca2+ b 

(M) 
LC50diss 

(mg/L) 
LC50Ni2+ 

c 

(M) 
Mg 0.25 mM 6.62 2.03E-04 1.82E-04 2.26 3.08E-05 
Mg 0.5 mM 6.58 3.88E-04 1.75E-04 2.61 3.46E-05 
Mg 1.0 mM 6.60 7.13E-04 1.66E-04 2.96 3.75E-05 
Mg 1.5 mM 6.48 1.02E-03 1.48E-04 3.24 3.97E-05 
Mg 2.0 mM 6.59 1.23E-03 1.53E-04 3.54 4.22E-05 
Mg 2.5 mM 6.79 1.51E-03 1.47E-04 3.77 4.37E-05 
Mg 3.0 mM 6.82 1.83E-03 1.44E-04 4.06 4.57E-05 
Mg 4.0 mM 6.85 2.27E-03 1.30E-04 3.63 3.93E-05* 
Mg 5.0 mM 6.75 2.85E-03 1.22E-04 3.51 3.65E-05* 
Ca 0.25 mM 6.50 1.97E-04 1.78E-04 1.82 2.48E-05 
Ca 0.5 mM 6.63 1.85E-04 3.70E-04 2.08 2.76E-05 
Ca 1.0 mM 6.71 1.71E-04 6.56E-04 2.53 3.22E-05 
Ca 1.5 mM 6.77 1.59E-04 9.60E-04 3.41 4.19E-05 
Ca 2.0 mM 6.89 1.52E-04 1.25E-03 3.56 4.24E-05 
Ca 2.5 mM 6.89 1.59E-04 1.51E-03 4.49 5.20E-05 
Ca 3.0 mM 6.86 1.50E-04 1.73E-03 5.50 6.23E-05 
Ca 4.0 mM 6.90 1.41E-04 2.32E-03 3.40 3.68E-05* 
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Ca 5.0 mM 6.92 1.36E-04 2.81E-03 2.28 2.37E-05* 
Na 0.078 mM 6.80 1.93E-04 1.76E-04 3.17 4.32E-05 
Na 1.0 mM 6.80 1.86E-04 1.68E-04 3.49 4.58E-05 
Na 2.0 mM 6.80 1.81E-04 1.65E-04 3.19 4.05E-05 
Na 4.0 mM 6.80 1.75E-04 1.55E-04 3.32 4.00E-05 
Na 6.0 mM 6.80 1.59E-04 1.42E-04 3.61 4.17E-05 
Na 8.0 mM 6.80 1.54E-04 1.36E-04 3.61 4.02E-05 
Na 10 mM 6.80 1.36E-04 1.46E-04 3.4 3.67E-05 
Na 12 mM 6.80 1.35E-04 1.33E-04 3.23 3.38E-05 
Na 14 mM 6.80 1.40E-04 1.29E-04 3.55 3.62E-05 
K 0.078 mM 6.80 1.93E-04 1.76E-04 3.17 4.32E-05 
K 0.3 mM 6.80 2.00E-04 1.97E-04 3.55 4.77E-05 
pH 5.8 (1) 5.95 1.88E-04 1.26E-04 2.52 3.08E-05 
pH 6.3 (1) 6.28 1.88E-04 1.26E-04 2.65 3.23E-05 
pH 6.8 (1) 6.74 1.88E-04 1.27E-04 2.81 3.42E-05 
pH 7.3 (1) 7.24 1.86E-04 1.26E-04 2.61 3.08E-05 
pH 7.8 (1) 7.53 1.86E-04 1.24E-04 3.07 3.39E-05 
pH 8.3 (1) 8.13 1.80E-04 1.17E-04 3.27 2.16E-05 
pH 5.8 (2) 5.72 2.01E-04 1.34E-04 2.32 2.99E-05 
pH 6.3 (2) 6.07 1.97E-04 1.24E-04 2.57 3.30E-05 
pH 6.8 (2) 6.63 1.95E-04 1.27E-04 2.72 3.45E-05 
a see Deleebeeck et al. (2005) for sample codes, in the pH test series: (1) refers to solutions without MOPS, (2) 
are solutions with 3.6 mM added MOPS. 
b chemical activities of Ca, Mg 
c *=not used for BLM development 

 

Based on this, only stability constants for Ca and Mg binding to the Daphnia magna biotic 

ligand were calculated. They were calculated slightly higher than in Deleebeeck et al. (2005) 

due to slight differences in calculated Ni2+ activities, i.e. log KCaBL = 3.10 and log KMgBL = 

2.47.  

 

It is now appropriate to introduce the term LC50*
Ni2+,i , which is the LC50 corrected for 

Ca and Mg competition in a given test solution i: 
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50
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Ni i

Ni i
CaBL MgBLi i

LC
LC

K Ca K Mg



  


   
           (Eq. 4.1) 

 

In theory, the denominator could be extended with extra terms for other competing 

ions, but this was omitted here since Na+, K+ or H+ exerted no significant competition effects 

over the investigated Na, K, or pH ranges. Therefore the asterisk * specifically refers to the 

correction for Ca and Mg competition effects and the LC50*
Ni2+ represents the theoretical 

LC50 expressed as Ni2+ activity when Ca or Mg competition is negligible. The LC50*
Ni2+,i 

was calculated for all test solutions i (except at total Ca or Mg > 3 mM, total hardness > 325 
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mg CaCO3/L) and the geometric mean of those values was used as the final model parameter 

for the acute D. magna BLM: 

 

 2 2
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50 50
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LC LC 



               (Eq. 4.2) 

 

The absence of the subscript index ‘i’ in the left-hand term of this equation indicate 

that this is a final bioavailability model parameter, optimized for a given set of toxicity data in 

n different test solutions. All D. magna acute Ni-BLM parameters are given in Table 4.2. 

Naturally, there is some uncertainty around this value, as indicated by the range of individual 

LC50*
Ni2+,i values for the individual test solutions (Table 4.2), but the impact of this 

uncertainty is reflected in the LC50dissolved-based prediction errors (see Table 4.3, Figure 4.2). 

The magnitude of these prediction errors are indicative of how well the model is suited to 

predict toxicity, despite of the uncertainty associated with this model parameter.  

 

Table 4.2 Parameters of the acute D. magna BLM 

Model parameter Value 

log KNiBL 4.00 a 

log KCaBL 3.10 

log KMgBL 2.47 

LC50*
Ni2+ (µM) 25.8 (16.2-36.5) b 

f50
NiBL 0.205 (0.139-0.267) c 

a Assumed equal as in Wu et al. (2001), this assumption does not affect predictions of LC50’s 

b range (minimum and maximum) values for the separate exposure media between parentheses 

c Calculated using equation 4.5 

  

The model parameters in Table 4.1 can be used to predict LC50Ni2+,i for any test 

solution i with any given water chemistry (after rearranging Eq. 4.1): 

 

    2 2

* 2 2

,
50 50 1 CaBL MgBLNi i Ni i i

LC LC K Ca K Mg 

                 (Eq. 4.3) 

 

The prediction of LC50Ni2+,i can also be written in terms of a full BLM equation (De 

Schamphelaere and Janssen, 2002):  



 49

 

 
    2

50
2 2

, 50
50 1

1
NiBL

CaBL MgBLNi i i i
NiBL NiBL

f
LC K Ca K Mg

f K


      
 

                 (Eq. 4.4) 

 

In this equation, f50
NiBL is the fraction of the BL sites occupied by Ni at 50% effect. It is noted 

that, computationally, equations 4.3 and 4.4, yield identical predictions, since the values of 

f50
NiBL and KNiBL are linked through: 
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              (Eq. 4.5) 

 

The predicted LC50Ni2+,i for any test solution i, predicted with equation 4.3 are 

inserted into WHAM VI with the Ni-input set to ‘activity’. The speciation model then 

calculates the dissolved Ni associated with this Ni2+-activity, yielding the LC50 as dissolved 

Ni, i.e. LC50dissolved,i. It is important that, before this step, the activities of Ca2+ and Mg2+ in 

each solution i need to be calculated, so that equation 4.3 can be used to predict the LC50Ni2+,i 

that needs to be inserted in WHAM VI.    

 

The procedure outlined with equations 4.1 to 4.5 is the recommended procedure for 

the normalization of (a set of) existing toxicity data at (a set of) given water chemistries to any 

other given water chemistry. 

 

In the following sections we will investigate the applicability of this acute D. magna BLM 

to several acute toxicity datasets with. 

(i) D. magna in natural waters (Deleebeeck et al., 2005)  

(ii) D. magna in well water with adjusted hardness (Chapman et al., 1980) 

(iii) C. dubia in synthetic water at different hardness (Keithly et al., 2004) 

(iv) C. dubia in synthetic water at different pH (Parametrix, 2004b) 

(v) C. dubia in synthetic water at different pH (Schubauer-Bérigan et al., 1993) 

(vi) C. dubia in natural waters (this study, see section 3.2) 

 

4.2.2. Application of the acute toxicity model for D. magna to other datasets with D. 

magna 
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4.2.2.1. D. magna in natural waters (Deleebeeck et al., 2005)  

 

These datasets report 48h-LC50dissolved for a range of spiked natural surface waters 

with the same laboratory clone of D. magna as the one used for the model development 

(Table 4.1). This dataset is reported in Deleebeeck et al. (2005) and contains a sub-set of test 

data reported previously by Bossuyt et al. (2001). The dataset covers a large range of DOC 

(1.8 to 25.8 mg/L), hardness (13 to 266 mg CaCO3/L), Ca (3.0 to 73 mg/L), Mg (1.1 to 21 

mg/L), pH (6.0 to 8.1), and alkalinity (0.4 to 161 mg CaCO3/L) (Deleebeeck et al. (2005). 

 

The input file for WHAM VI for this dataset is given in Annex 7. First, speciation 

calculations indicated that in the acute experiments of Deleebeeck et al. (2005) Al3+ was in 

equilibrium with colloidal Al(OH)3 at the 48h-LC50s of Ni. Although no reliable Al 

measurements were available for the Bossuyt et al. (2001) subset, we also assumed Al3+ in 

equilibrium with Al(OH)3, as this is a better option than not to include Al at all (see section 

3.2). However, differences in calculated Ni2+ activity between Al3+ assumed in equilibrium 

with Al(OH)3 and Aldissolved assumed ‘zero’ were less than 1% (data not shown). At the 48h-

LC50 levels we only predicted between 5 and 23% of the dissolved Ni to be bound to DOC, 

indicating that the effect of DOC on acute Ni toxicity to D. magna is of limited importance.  

 

Table 4.3 gives an overview of the calculated speciation of the solutions. The activities 

of Ca2+ and Mg2+ were used to predict 48h-LC50Ni2+ using equation 4.3, and these values 

were inserted as input into WHAM VI to predict 48h-LC50dissolved.  

 
Table 4.3 Observed (obs) and predicted (pred) 48h-LC50dissolved and 48h-LC50Ni2+ of Ni to D. 
magna in natural waters rom Deleebeeck et al. (2005) and Bossuyt et al. (2001). 
Surface water a pH Mg2+ 

(M) 
Ca2+ 
(M) 

HCO3
- 

(M) 
LC50obs 

(µg/L) 
LC50pred b 

(µg/L) 
LC50Ni2+,obs 

(M) 
LC50Ni2+,pred 

(M) 
Bihain (1) 6.23 4.78E-05 6.78E-04 1.20E-05 2230    3807 * 2.78E-05 4.82E-05 
Bihain (1) 6.21 4.78E-05 6.78E-04 1.16E-05 2110    3805 * 2.62E-05 4.82E-05 
Ankeveen (1) 7.14 2.48E-04 8.78E-04 2.47E-04 5250 5798 5.01E-05 5.62E-05 
Ankeveen (1) 7.14 2.48E-04 8.78E-04 2.47E-04 5440 5798 5.22E-05 5.62E-05 
Markermeer (1) 7.92 5.50E-04 1.17E-03 1.99E-03 5490 8655 4.21E-05 6.78E-05 
Markermeer (1) 7.96 5.50E-04 1.16E-03 1.99E-03 6130 8764 4.66E-05 6.78E-05 
Mole (1) 7.58 2.46E-04 9.13E-04 1.62E-03 5010 5916 4.83E-05 5.73E-05 
Mole (1) 7.62 2.46E-04 9.13E-04 1.63E-03 5130 5956 4.91E-05 5.73E-05 
Clywydog (1) 5.94 5.06E-05 6.72E-05 8.64E-06 1040    1934 * 1.51E-05 2.84E-05 
Clywydog (1) 5.96 5.06E-05 6.72E-05 8.94E-06 980    1934 * 1.42E-05 2.84E-05 
Ankeveen (2) 6.79 1.76E-04 6.04E-04 2.25E-04 5720 5042 5.36E-05 4.68E-05 
Bihain (2) 6.15 3.74E-05 7.75E-05 1.59E-04 860    2192 * 1.04E-05 2.86E-05 
Brisy (2) 7.09 1.18E-04 1.06E-04 2.44E-04 2010 2279 2.64E-05 3.01E-05 
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Markermeer (2) 8.09 3.42E-04 7.58E-04 2.18E-03 4520 7910 2.94E-05 5.30E-05 
Regge (2) 7.70 2.09E-04 9.35E-04 2.82E-03 6300 7752 4.65E-05 5.78E-05 
Voyon (2) 8.02 2.13E-04 6.62E-04 2.21E-03 3840 5946 3.11E-05 4.89E-05 
a (1) Data from Bossuyt et al. (2001); (2) data from Deleebeeck et al. (2005) 
b 48h-LC50pred which overestimate the 48h-LC50obs by a factor of close to 2 or more than 2 are marked with a *   
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Figure 4.2 Predictive capacity of the acute D. magna model (Table 4.2) as shown by predicted vs. observed 

48h-LC50. Data with synthetic waters from Deleebeeck et al. (2005, see also Table 4.1). Data with natural 

waters from Deleebeeck et al. (2005) and Bossuyt et al. (2001) (see also Table 4.3). 

   

Figure 4.2 illustrates that the model is well-calibrated to the synthetic waters in the 

first place, but of course the true value of a model is that it should work in natural waters too. 

Table 4.3 and Figure 4.2 illustrate that 15 out of 16 of the 48h-LC50dissolved are predicted by an 

error of less than factor 2. Toxicity was underestimated (48h-LC50 overestimated) by a factor 

of more than 2 for Bihain (2) and by factors close to 2 for Bihain (1) and Clywydog (1) (Table 

4.3). Compared with the other test waters, all these waters are characterized by very low Mg 

concentrations, i.e. between 1.1 and 1.5 mg/L, which is quite far below the lowest Mg 

concentration in test solutions used for model development, i.e. 6 mg Mg/L. Since acute Ni 

exposure is known to result in a loss of whole body Mg in D. magna (Pane et al., 2003) and 

because only the condition of such low Mg concentrations may have resulted in a net loss of 

body Mg, the daphnids may have been forced into a situation where they are extra sensitive to 

Ni stress. Additionally, the two test waters with the lowest hardness, Bihain (2) and 

Clywydog (1), were characterized by hardness levels of 14 and 13 mg CaCO3/L respectively, 

which is well below the lowest hardness tested for model development, i.e. 50 mg CaCO3/L 

and far below hardness levels which are considered ‘normal’ by common D. magna test 

protocols (e.g., Environment Canada indicates that below 25 mg CaCO3/L, D. magna may be 
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unduely stressed).  Thus, it is concluded that in ‘normal’ test waters, the acute D. magna 

model exhibits good predictive capacity for use in spiked natural surface waters.  

 
4.2.2.2 D. magna in well waters with adjusted hardness (Chapman et et al., 1980)  

 
An additional analysis was carried out on the experiments carried out with D. magna 

in well water with adjusted hardness levels (Chapman et al., 1980). They observed an 

increasing trend of 48h-LC50s (627 to 4,970 µg/L) with increasing hardness (50 to 200 mg 

CaCO3/L) (Table 4.4). However, the interpretation is not very easy because other parameters 

(such as pH) co-varied with hardness, because not all experiments were conducted 

simultaneously, and because organisms were acclimated (for a non-reported duration) to the 

hardness before being tested.  

 

We wanted to assess, given these uncertainties, to what extent our developed acute 

BLM could correctly reproduce the 48h-LC50s if only the sensitivity of the Chapman et al. 

(1980) D. magna strain was adjusted. As in other BLM applications (e.g., Santore et al., 2001; 

Santore et al., 2002) differences in sensitivity are dealt with by calibrating the f50
NiBL (or the 

48h-LC50*
Ni2+) to the dataset, assuming other BLM-parameters (i.e. log K’s) identical, by 

minimizing prediction errors. This is performed using equations 4.1 and 4.2.  

 

The full composition of the test waters is given in Annex 8. Since the test water was 

derived from a natural source, Al and Fe(III) must have been present and they were taken into 

account as well, by assuming equilibrium with their colloidal hydroxy-precipitates. DOC in 

the well water used was assumed to be 1.3 mg/L (Santore et al., 2002) and to behave similar 

as surface water DOC (i.e., 40% active fulvic acid). The chemistry that was inserted into 

WHAM VI is given in Annex 8.  

 

After speciation calculations we found 48h-LC50*
Ni2+ = 10.5 µM, which is slightly 

lower than the value obtained for our D. magna clone, i.e. 25.6 µM. The former value was 

used for the prediction of LC50dissolved,i using equation 4.3 and WHAM VI (as explained 

above). Prediction errors were between factor 1.1 and 2.0 for all tests conducted (See Table 

4.4). 
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Hence, the developed D. magna acute BLM (Table 4.2) does also reduce the 

uncertainty due to differences in water chemistry in another D. magna clone. Apparently, the 

importance of acclimating the organisms to the test water hardness does not affect Ni toxicity 

to such an extent that it causes prediction errors > factor 2. 

 

Table 4.4 Chemical speciation of natural waters at 48h-LC50s of Ni to D. magna from Chapman 
et al. (1980) 
Test water pH Mg2+ 

(M) 
Ca2+ 
(M) 

HCO3
- 

(M) 
LC50obs 

(µg/L) 
LC50pred 

(µg/L) 
LC50Ni2+,obs 

(M) 
LC50Ni2+,pred 

(M) 
Hardness50(1) 7.7 1.13E-04 2.72E-04 8.22E-04 1800 1264 2.07E-05 1.44E-05 
Hardness50(2) 7.7 1.14E-04 2.72E-04 8.06E-04 627 1265 6.98E-06 1.44E-05 
Hardness100(1) 7.9 1.98E-04 5.01E-04 1.50E-03 2360 1914 2.19E-05 1.77E-05 
Hardness100(2) 8.2 1.98E-04 4.99E-04 1.51E-03 1920 2113 1.60E-05 1.77E-05 
Hardness200(1) 8.3 3.27E-04 8.51E-04 2.84E-03 4970 3878 2.92E-05 2.27E-05 

 

 

4.2.3. Application of the acute toxicity model for D. magna to datasets with C. dubia and 

development of the C. dubia acute Ni-BLM 

 
4.2.3.1. Effect of hardness on acute Ni toxicity to C. dubia (Keithly et al., 2004) 
 

We investigated if the effect of hardness on acute Ni toxicity to Ceriodaphnia dubia 

could be predicted with the acute D. magna BLM, characterized by log KCaBL = 3.10 and log 

KMgBL = 2.47 (Table 4.2). Keithly et al. (2004) found in synthetic waters that 48h-

LC50dissoolved for C. dubia increased from 81 to 400 µg Ni/L between hardness levels of 50 to 

253 mg CaCO3/L. These values are considerably lower than the 48h-LC50 values observed 

for D. magna (Deleebeeck et al., 2005) in synthetic waters, i.e. between 1,820 and 5,500 

µg/L. This is points to a higher acute sensitivity of C. dubia to Ni. This corroborates with the 

trend that smaller organisms tend to be more sensitive to metals than larger ones (Grosell et 

al., 2002; Bossuyt and Janssen, 2005; Muyssen et al., 2005). This also indicates that the D. 

magna BLM should be calibrated to account for this sensitivity difference, i.e. by calibrating 

f50
NiBL or LC50*

Ni2+, the ‘sensitivity parameters’ of the BLM. This was performed using 

equations 4.1 and 4.2. The results of this calibration and the predictions are given in Table 

4.5. The full chemistry of their test solutions is reported in Annex 9.  

 
Table 4.5 Chemical speciation of natural waters at 48h-LC50s of Ni to C. dubia at different 
hardness (Keithly et al., 2004). For observed vs. predicted 48h-LC50s see also Figure 4.3. 

Hardness 
(mg/L) 

pH Mg2+ 
(M) 

Ca2+ 
(M) 

LC50Ni2+,obs 
(M) 

LC50obs 

(µg/L) 
LC50pred a 

(µg/L) 
LC50pred b 

(µg/L) 
50 7.66 7.50E-05 2.98E-04 2.07E-05 81 127 107 

113 7.7 2.47E-04 5.21E-04 6.98E-06 148 172 171 
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161 7.61 3.33E-04 6.43E-04 2.19E-05 261 208 219 
253 7.8 4.85E-04 9.64E-04 1.60E-05 400 275 310 

a log KCaBL = 3.10, log KMgBL = 2.47, LC50*
Ni2+ = 1.09 µM 

b log KCaBL = 3.3, log KMgBL = 3.3, LC50*
Ni2+ = 0.740 µM 

 
 

An LC50*
Ni2+ = 1.09 µM was found. Although all 48h-LC50disolved were predicted by 

an error between factor 1.2 and 1.6 (Table 4.5), there was a trend of underestimating the 

importance of the hardness effect (Figure 4.3), i.e. the predicted slope of the hardness effect 

was slightly lower than the observed slope. By increasing log K’s to for example log KCaBL = 

log KMgBL = 3.3 and calibrating the 48hLC50*
Ni2+ to 0.740 µM, the predicted slope was closer 

to the observed one (Figure 4.3). Other combinations of (even higher) adjusted log KCaBL and 

log KMgBL values were possible that resulted in similar fits, but it was chosen not to adjust the 

constants further, since this would mean modelling experimental noise. Indeed, the adjusted 

log K’s resulted in predicted LC50dissolved which were all within the 95% confidence interval 

of the observed LC50dissolved (Figure 4.3). The separate effects of Ca and Mg could not be 

determined because the Ca:Mg ratio in the experiments was constant. Additional 

experimentation is needed to estimate the individual effects of Ca and Mg on acute Ni toxicity 

to C. dubia.   

 

Summarizing, the effects of Ca and/or Mg on acute Ni toxicity to C. dubia and D. 

magna are fairly similar, although there are indications that the more sensitive C. dubia may 

experience a (slightly) larger protective effect from increased hardness. However, the 

difference is not important enough to result in large prediction errors. Indeed, prediction 

errors between factor 1.2 and 1.6 were in the same range as when the developed acute D. 

magna BLM was applied to another clone of the same species, i.e. 1.1 to 2.0 (see section 

4.2.2). 
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Figure 4.3 Acute 48h-LC50s of Ni to Ceriodaphnia dubia as a function of water hardness. Diamonds are 

observations reported in Keithly et al. (2004). The dashed line represents the BLM-predicted values, using 
log KCaBL and log KMgBL for D. magna (Table 4.2), and adjusted sensitivity. The full line represents the 

BLM-predicted values, using adjusted log KCaBL = log KMgBL = 3.3 and adjusted sensitivity.  

 
 

4.2.3.2. Acute Ni toxicity to C. dubia in natural waters (this study) 
 
 

As mentioned earlier, we wanted to separate the effects of pH from those of hardness, 

since they were positively correlated in the natural waters tested with C. dubia in the present 

study (see section 3.2). Therefore, using the data in Table 3.8, 48h-LC50*
Ni2+,i and 48h-pNi*

50,i 

were calculated using equation 4.1, with  

 

48h-pNi*
50,i = -log{48h-LC50*

Ni2+,i}               (Eq. 4.6) 

 

The uncertainty about the exact log KCaBL and log KMgBL for acute C. dubia Ni 

exposures was taken into account in this analysis by considering scenarios A and B: (A) log 

KCaBL = 3.14, log KMgBL = 2.47 (D. magna BLM-constants), (B) log KCaBL = log KMgBL = 3.3 

(better fit to hardness relation observed by Keithly et al., 2004, see above). 

    

Table 4.6 Chemical speciation of natural waters at 48h-LC50s of Ni to C dubia and LC50s corrected for 
Ca and Mg competition 
    Scenario A Scenario B 
Site Ca2+ 

(M) 
Mg2+ 
(M) 

LC50Ni2+,obs 
(M) 

LC50*
Ni2+,obs,A 

(M) 
LC50*

Ni2+,obs,B 
(M) 

Ankeveen 6.64E-04 1.96E-04 5.08E-07 2.68E-07 1.87E-07 
Bihain 9.13E-05 3.38E-05 2.54E-07 2.26E-07 2.03E-07 
Brisy 2.05E-04 1.28E-04 3.95E-07 3.05E-07 2.37E-07 
Eppe 6.08E-04 1.85E-04 1.55E-07 8.49E-08 5.98E-08 
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Markermeer 9.16E-04 3.92E-04 3.72E-07 1.64E-07 1.03E-07 
Regge 1.08E-03 2.11E-04 5.74E-07 2.36E-07 1.60E-07 
   geo-mean 1.98E-07 1.44E-07 
      
Site pH pHCO3

- 
 

pNi50,obs 48h-pNi*
50,obs,A 48h-pNi*

50,obs,B 

Ankeveen 7.51 3.12 6.29 6.57 6.73 
Bihain 6.34 4.32 6.59 6.65 6.69 
Brisy 7.45 3.41 6.40 6.52 6.62 
Eppe 7.95 2.79 6.81 7.07 7.22 
Markermeer 8.04 2.76 6.43 6.79 6.99 
Regge 8.00 2.57 6.24 6.63 6.80 

 
 

The 48h-LC50*
Ni2+,i for all test solutions under scenario A were used to calculate the 

final model LC50*
Ni2+, calibrated to the sensitivity of our C. dubia strain (the ‘geometric 

mean’ of the LC50*
Ni2+,i in Table 4.6). We found LC50*

Ni2+,A = 0.198 µM and LC50*
Ni2+,B = 

0.144 µM, which is a factor 4 to 5 lower than the values obtained from the Keithly et al. 

(2004) dataset, i.e. 1.09 and 0.740 µM, respectively. Apparently, our C. dubia are clearly 

more sensitive than the strain used by Keithly et al. (2004). This may partly be explained by 

the fact that we have used 2 to 8 hour old juveniles, whereas Keithly et al. (2004) used <24 

hour old juveniles. Hoang et al. (2004) demonstrated that larval fathead minnows were 

acutely more sensitive to Ni than 28d-old fathead minnows, thus corroborating with the idea 

that younger (and thus smaller) organisms may be more sensitive to acute Ni toxicity.  

 

Now, under both scenarios, we again plotted pNi*
50 against pH to see what the residual 

effects of pH, separated from the hardness effect is (Figure 4.4). Although no effect of pH is 

observed between pH 6.3 and 7.5, one may suggest that at pH ~ 8 the toxicity seems slightly 

higher than at pH between 6.3 and 7.5. This becomes more obvious under scenario B, i.e. 

when Ca and Mg competition are modelled with potentially more appropriate constants for C. 

dubia This could be substantiated, under scenario B, by the observation that at pH ~ 8 

LC50*
Ni2+ is on average (of three values) 2-fold lower than at pH between 6.3 and 7.5 

(compare values in Table 4.6), i.e. 0.10 vs. 0.21 µM. Interestingly, this closely resembles the 

observations made for the individual effect of pH on acute Ni toxicity to D. magna, which 

does also become apparent at pH around 8 and higher (Deleebeeck et al., 2005; see Table 4.1 

and Figure 4.1). Also Schubauer-Berigan et al. (1993) observed a very strong pH effect above 

pH > 8, compared to pH ~ 7.5. All these data together suggest a trend of increased toxicity at 

higher pH values, starting at a pH around 8 for both D. magna and C. dubia.      
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Figure 4.4 Acute Ni toxicity to Ceriodaphnia dubia in natural waters, corrected for Ca and Mg competition 

according to scenarios A (left) and B (right), plotted against the pH of the natural waters. 

 

Using both scenarios, we now determined how well the acute Ni-BLM could reproduce the 

acute Ni toxicity to C. dubia in natural waters. Both models are summarized in Table 4.7. It is 

noted that the pH effect is currently not incorporated into this model, because the pH effect is 

quite limited, up to pH ~ 8 (or 8.2 for D. magna) and because the type of effect observed 

cannot be modelled by the usual BLM-like single-site H+-competition. 

 

Table 4.7 Model parameters of the acute C.dubia model 

Model parameter D. magna C. dubia (A) C. dubia (B) 

log KNiBL 4.0 4.0 4.0 

log KCaBL 3.10 3.10 3.3 

log KMgBL 2.47 2.47 3.3 

LC50*
Ni2+ (µM) 25.8a/10.6b 1.09c/0.198 d 0.740c/0.144 d 

f50
NiBL (as %) 20.5/9.58 1.08/0.198  

a For the clone used by Deleebeeck et al. (2005) 
b For the clone used by Chapman et al. (1980) 
c For the strain used by Keithly et al. (2004) 
d For the strain used in the present study 
 

The observed and predicted 48h-LC50s are reported in Table 4.8 and in Figure 4.5. 

Predictions errors were very similar for both scenarios, i.e. on average 1.3 (1.1 to 2.0) and 1.4 

(1.1 to 2.0) for scenarios A and B, respectively. It is concluded that the acute D. magna Ni-

BLM can be used to predict acute Ni toxicity to C. dubia in natural waters, but that, given the 

suspected pH effect at pH>8, it is not recommended to use the current model in solutions well 

over pH 8. 
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Table 4.8 Observed and predicted acute Ni toxicity to C. dubia using two scenarios 
  Scenario A Scenario B    
Site LC50Ni2+,obs 

(M) 
LC50Ni2+,pred,A 

a 

(M) 
LC50*

Ni2+,pred,B 
a 

(M) 
LC50diss,obs 

(µg/L) 
LC50diss,pred,A 

(µg/L) 
LC50diss,pred,B 

(µg/L) 
Ankeveen 5.08E-07 3.75E-07 3.91E-07 183.0 148.2 152.6 
Bihain 2.54E-07 2.23E-07 1.80E-07 35.2 31.5 26.1 
Brisy 3.95E-07 2.57E-07 2.40E-07 50.8 35.3 33.3 
Eppe 1.55E-07 3.61E-07 3.72E-07 34.6 68.7 70.3 
Markermeer 3.72E-07 4.50E-07 5.20E-07 88.7 103.5 116.4 
Regge 5.74E-07 4.81E-07 5.16E-07 161.0 140.3 148.1 
a Inserted in WHAM VI as Ni2+ activity to predict LC50 as dissolved Ni 
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Figure 4.5 Predictive capacity of the acute C. dubia model (Table 4.7, scenario B) in natural waters as 

shown by predicted vs. observed 48h-LC50. Data are from the present study.  

 

 

4.2.3.3. Comparison of pH effect with other datasets (Shubauer-Berigan et al.,1993; 

Parametrix, 2004) 

 
Schubauer-Berigan et al. (1993) observed a marked decrease of the 48h-LC50total for 

C. dubia with increased pH. They report a 48h-LC50total of >200 µg Ni/L at pH 6.0 to 6.5, 140 

µg/L at pH 7.0 to 7.3 and 13 µg/L at pH 8.5 to 8.7. This dataset confirms that Ni toxicity to C. 

dubia is only slightly affected between pH 6 and 7.5, but that acute Ni toxicity is markedly 

higher at pH levels well exceeding pH 8. Unfortunately, the authors reported LC50s based on 

total recoverable Ni instead of dissolved Ni, and the presence of YTC solids (6 mg/L) makes 

estimates of dissolved Ni and Ni speciation problematic. Also, the addition of food to acute 

toxicity tests with daphnids is no common practice anymore and may alter Ni toxicity and 
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also bioavailability relations. Indeed, when Mg influx via the water is affected by Ni (the 

suggested toxicity mechanism of Ni, Pane et al., 2003), this effect may potentially be 

counteracted by extra absorption of Mg via the food. When the toxic mechanism is affected 

by food, bioavailability relations may also be affected. This makes quantitative comparisons 

with other ‘non-fed’ datasets problematic.   

 

In response to this, Parametrix (2004) recently finished a research project to 

investigate the separate pH effect on acute Ni toxicity to C. dubia in the absence of added 

food. They have observed a marked decrease of 48h-LC50dissolved between 266.3 and 23.6 µg 

Ni/L between pH 6 and 9 (Table 1 in Parametrix, 2004). Four test solutions (pH 6 to 9) were 

tested with addition of 3.6 mmol/L MOPS buffer, and two test solutions (pH 8 and 9) were 

also tested without addition of MOPS buffer. We have calculated the speciation of their test 

solutions using WHAM VI. Initial solution compositions were obtained from Parametrix by 

personal communication. Inorganic carbon was estimated from measured ‘final’ alkalinity 

(i.e. test solution after MOPS addition and/or pH adjustment, reported in Table 1 of 

Parametrix, 2004), taking into account that MOPS also contributes to the total alkalinity 

which measured with an acid titration method. Added Na (from NaOH used for pH 

adjustments) was estimated by charge balancing the solution. The full chemistry input data for 

speciation calculations is given in Annex 10. Table 4.10 gives the relevant speciation output. 

 

Table 4.10 Chemical speciation of synthetic test solutions at the 48h-LC50 of Ni to C dubia and LC50s 
corrected for Ca and Mg competition (data from Parametrix, 2004) 
     Scenario A Scenario B 
Test ID Ca2+ 

(M) 
Mg2+ 
(M) 

Na+ 
(M) 

LC50Ni2+,obs 
(M) 

LC50*
Ni2+,obs,A 

(M) 
LC50*

Ni2+,obs,B 
(M) 

pH 6 - MOPS 2.99E-04 4.30E-04 5.70E-04 3.06E-06 2.04E-06 1.25E-06 
pH 7 - MOPS 2.89E-04 4.16E-04 1.91E-03 2.20E-06 1.48E-06 9.16E-07 
pH 8 - MOPS 2.41E-04 3.52E-04 4.41E-03 1.85E-06 1.32E-06 8.49E-07 
pH 9 - MOPS 2.88E-04 3.38E-04 4.83E-03 4.30E-07 2.94E-07 1.91E-07 
pH 8 - no MOPS 2.87E-04 4.16E-04 1.49E-03 9.49E-07 6.39E-07 3.95E-07 
pH 9 - no MOPS 2.73E-04 4.03E-04 1.73E-03 1.22E-07 8.35E-08 5.20E-08 
       
       
Site pH   pNi50,obs 48h-pNi*

50,obs,A 48h-pNi*
50,obs,B 

pH 6 - MOPS 6.3   5.51 5.69 5.90 
pH 7 - MOPS 7.1   5.66 5.83 6.04 
pH 8 - MOPS 8.0   5.73 5.88 6.07 
pH 9 - MOPS 8.9   6.37 6.53 6.72 
pH 8 - no MOPS 8.1   6.02 6.19 6.40 
pH 9 - no MOPS 8.9   6.91 7.08 7.28 
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Figure 4.6 The effect of pH on acute 48h-pNi50 for C. dubia, with and without added MOPS; dataset from 

Parametrix (2004)  

 

On the basis of the data in Table 4.10 and Figure 4.6, following observations can be made: 

(i) In the test solutions with added MOPS, between pH 6 and pH 8.1, 48h-LC50Ni2+ 

were hardly affected (less than 1.5-fold decrease and this corroborates with data 

observed for D. magna (see section 4.2.1.) and C. dubia in natural waters (present 

study, see section 4.3.3.2). 

(ii) Between pH 8 and 9, 48h-LC50Ni2+ were further reduced by 4.4 (MOPS-buffered) 

to 7.6-fold (not MOPS buffered). Again this confirms the marked effect of 

increasing pH well over pH 8 on acute Ni toxicity to daphnids. 

(iii) 48h-LC50Ni2+ were a factor of 2 (at pH 8) to 3.5 (at pH 9) higher in the MOPS 

buffered test media. These test solutions only differed in their MOPS and Na 

content (Na higher in MOPS-buffered test solutions). 

 
Thus, considering the data with C. dubia in Table 4.10, either MOPS or Na 

ameliorates acute Ni toxicity, and this amelioration may be pH dependent. The fact that the 

protective effect of Na (or MOPS) is higher at higher pH and that the pH effect is smaller at 

higher Na (tests with MOPS) may suggest a competitive effect of both Na+ and H+ ions at the 

same Ni-BL site. Those observations were not made for D. magna testing, but it is noted that 

the effects of MOPS or Na were investigated at other pH levels, i.e. 6 to 6.8 and ~6.8, 

respectively. This may suggest that the pH effect, the Na effect, the MOPS effect and/or the 

interactive effects of these parameters may be species dependent.  
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 Overall, however, the observed pH effects in both C. dubia and D. magna are not in 

line with H+ competitive effects at a single BL-site. However, up to a pH of approximately 8 

(or slightly higher), it appears that bioavailability effects can be quite accurately predicted by 

assuming only Ca and Mg competition and considering pH effects negligible. More research 

is clearly needed to fully explain the effect of bioavailability modifying factors at pH > 8, 

including the effects of pH, Ca, Mg, and Na. 

 

4.3. Development of a chronic Ni toxicity model for aquatic invertebrates 

 
4.3.1. Introducing remarks  
 

This section will report on the further refinement and development of chronic Ni 

bioavailability models.  Similar to section 4.2 we will first re-analyze the Deleebeeck et al. 

(2005) study to re-evaluate the individual effects of Ca, Mg and pH, using WHAM VI as the 

speciation model, also refining the chronic Ni-BLM. We will then validate/compare this 

chronic Ni-BLM with datasets of: 

(i) Chronic Ni toxicity to D. magna in natural surface waters (Deleebeeck et al., 

2005) 

(ii) Chronic Ni toxicity to D. magna for different hardness levels (Chapman et al., 

1980) 

(iii) Chronic Ni toxicity to C. dubia at different hardness (Keithly et al., 2004) 

(iv) Chronic Ni toxicity to C. dubia in natural surface waters. 

(v) Chronic Ni toxicity to C. dubia at different pH/alkalinity/hardness (Wirtz et al., 

2004) 

 

One very important difference between acute and chronic toxicity tests with aquatic 

invertebrates is that in chronic toxicity tests food is added to the test vessels. Thus, in chronic 

toxicity tests additional Ni-binding (organic) ligands originating from this food (e.g., algal 

exudates) may be present and this may complicate the calculation of Ni speciation, especially 

in reconstituted waters, with no added organic matter. Therefore, it was considered interesting 

to conduct Ni speciation measurements in the presence of ligands from two different food 

sources:  

(i) algal food (a 3:1 mix of Pseudokirchneriella subcapitata and C. reinhardtii) used 

in D. magna (Deleebeeck et al., 2005) and C. dubia experiments (this study) 
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(ii) YTC slurry (yeast-trout chow-cerophyl leaves) used in C. dubia experiments 

(Keithly et al., 2004; Wirtz et al., 2004).  

The results of these experiments are described in the following section. 

 
4.3.2. The effect of feeding on Ni speciation in test solutions  
 

The same Donnan-membrane method for measuring Ni speciation was used as 

described in the materials and methods section for the natural waters (see section 2.2.3). 

 

4.3.2.1. Algal food 

 

The algal food used in our chronic C. dubia tests did not result in considerable 

modifications of Ni-speciation (e.g., via excretion of exudates or via excretion of digested 

algal material from daphnid guts) (Figure 4.7). At background Ni (0.5-0.7 µg/L) about 23-

27% of the Ni was complexed to background ‘unknown ligands’ in the synthetic moderately 

hard water (USEPA, 1993), reconstituted on the basis of deionized water. No important 

difference in measured Ni2+ was observed when food and daphnids had been present in the 

solution. At 2 µg Ni/L only 11-13% was ‘complexed’ to unknown ligands, again with no 

important effect of added food and daphnids. The conclusions are that:  

(i) ligands originating from (algal) food sources do not contribute significantly 

to Ni complexation during the experiments, and that 

(ii) in synthetic water based on deionized water, ‘unknown ligands’ complex 

less than 10% of Ni at concentrations ≥ 2 µg/L.  
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Figure 4.7 fraction of Ni bound to ‘unknown ligands’ in EPA moderately hard water (control) and EPA 
moderately hard water taken from 2 days old test solution with added food and C. dubia (food) at 

background Ni (<0.5-0.7 µg/L) and at about 2 µg Ni/L. ‘Complexed’ Ni was calculated as (predicted Ni2+ - 
observed Ni2+)/dissolved Ni2+; where predicted Ni2+ refers to WHAM6 simulations without DOC 

assumed; Here Ni2+ represent concentrations, not activities; input chemistry for speciation calculations is 
in Annex 11. 

 
 

Since similar food concentrations were used in D. magna testing (only up to 2-fold 

higher; Deleebeeck et al., 2005), and since chronic effect concentrations for D. magna are 

much higher than 2 µg Ni/L, and given the fact that the fraction of free Ni2+ increases with 

increasing total or dissolved Ni (section 3.1.2), it is reasonable to assume that Ni binding to 

‘background’ ligands in synthetic test waters with D. magna is insignificant too. Hence, for Ni 

speciation modeling in synthetic waters we assumed DOC = 0. It is stressed that this 

information can also be used to judge the potential importance of complexation of Ni to 

background ligands and ligands related to food addition in synthetic test waters used in 

chronic experiments with other species.   

 

According to the US EPA protocol P. subcapitata is added daily to a new test chamber 

at a concentration of 2 × 105 cells/mL. With typical dry weights of P. subcapitata of 10-20 

pg/cell, this corresponds to a food concentration of approximately 2 to 4 mg dry wt/L, 

whereas in our experiments, added algal food density amounted to 7 mg dry wt/L (see section 

2.3.5). Hence, it is reasonable to assume that in ecotoxicity tests with C. dubia according to 

the US EPA protocol Ni binding to ligands associated with the addition of algal food is 

negligible. This will be taken into account in the subsequent speciation calculations.  

 

4.3.2.2. YTC food 

 

The fact that in our experiments Ni-binding to ‘food associated’ ligands was most 

likely unimportant, contrasts with the case of the chronic C. dubia experiments performed by 

Wirtz et al. (2004) and Keithly et al. (2004). They both used, in accordance with the US EPA 

test protocol (US EPA, 2002), a mixture of algal cells (P. subcapitata) and YTC in their 

chronic experiments with C. dubia.  

 

We mimicked one of their test waters (Test No. 8 in Table 1 in Wirtz et al., 2004; pH 

~ 7.9 to 8.1, hardness = 76 mg CaCO3/L, alkalinity = 25 mg CaCO3/L) and spiked dissolved 

Ni concentrations between 1.8 and 5.2 µg/L (close to C. dubia EC10=2.8 and NOEC=3.6 
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levels in this test water, Wirtz et al., 2004). Similarly as described before, we measured the % 

of Ni that was bound to ‘background ligands’ + ‘ligands resulting from YTC addition’. 

Assuming that about 10% was again bound to background ligands in the deionized water (see 

4.3.2.2), about 30-40% of Ni was estimated to be bound to ‘YTC ligands’. This is an 

important contribution to overall Ni complexation in C. dubia test waters and it needs to be 

noted that this contribution may become even more important at higher pH levels, i.e. about > 

pH 8.   

 

Upon addition of YTC, we measured 1.3 mg DOC/L, which is roughly 1 mg/L above 

the DOC level of our background deionized water. Keithly et al. (2004) measured, for similar 

YTC additions, a similar DOC addition of approximately 0.8 mg C/L (= DOC in chronic test 

– DOC in acute test). Assuming that the ‘added’ DOC behaved as natural surface water DOM 

(i.e., optimized %AFA of 40% and log KNi-FA =1.75) we obtained good agreement between 

observed and predicted [Ni2+]-concentrations. Hence, it may seem reasonable to assume that 

the DOC added due to YTC additions behaves as natural DOC.  

 

However; it is uncertain if the Ni-DOC complexing would respond to pH (and 

hardness) changes in the same manner as natural DOM and if only organic ligands are at 

work. Indeed, with respect to the latter, it has been suggested that YTC slurry potentially 

contains sulfide, S2- (Joseph Meyer, University of Wyoming, personal communication), which 

may also bind Ni, but which is likely to behave very differently than DOC in complexing Ni. 

How this uncertainty can be dealt with, must preferably be judged on a case-by-case basis 

(see further). 

 

4.3.2.3. Implications for model development and risk assessment 

 

For the development of chronic Ni toxicity models with aquatic invertebrates (below) and 

for future bioavailability normalizations of toxicity data from literature in the context of risk 

assessment, the following assumptions are recommended, in line with the results described 

above: 

 

(i) ‘Background’ DOC present in reconstituted, artificial or synthetic waters prepared 

on the basis of deionized water does not contribute to Ni binding; hence the DOC-

concentration of such waters should be set to ‘zero’ 
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(ii) Exudates originating from algal food added in toxicity tests do not significantly 

contribute to Ni binding; DOC originating from such food additions should be 

neglected too, as long as added food concentrations are not substantially higher 

than the ones used for our speciation measurements. 

(iii) DOC originating from the addition of YTC to test solutions may potentially 

behave identical as natural surface water DOC; in this case, the amount of DOC 

assumed should be in relation to the concentration of YTC food added; it is also 

important, if DOC is measured in such tests, that the ‘background’ DOC is 

subtracted from the ‘measured’ DOC; it must be acknowledged however that the 

addition of YTC food introduces a greater deal of uncertainty to speciation 

calculations of Ni than addition of algal food.  

 

These recommendations will be taken into account in the most appropriate way in the 

following sections on chronic Ni toxicity to aquatic invertebrates. 

 
4.3.3. Development and validation of a chronic Ni-BLM for D. magna 
 
 
4.3.3.1. Re-evaluation of the Deleebeeck et al. (2005) dataset 
 

 

We re-analyzed the D. magna dataset with WHAM VI. All data were taken from 

Deleebeeck et al. (2005). The composition of all synthetic test waters, 21d-EC50 and EC10 

values are given in Annex 13. We preferred to work with 21d-ECx values on the basis of net 

reproduction (R0), since this was the most sensitive endpoint and also directly comparable to 

the identical reproduction endpoint of C. dubia used in the present study. Model development 

will be mainly based on EC50 values, as less uncertainty is associated with those than with 

EC10 or EC20 values, but validations will also be performed with EC10 and EC20 values 

where appropriate. 

 

Besides working with WHAM VI instead of WHAM V, two other important 

differences need to be addressed with respect to the input data used for speciation 

calculations. First, in comparison with Deleebeeck et al. (2005), we were now able to use 

measured inorganic carbon (IC), which became available recently (measured during the tests 

of the pH test series). IC was measured weekly in new (just before organism introduction) and 

old test solutions (just after organism transfer to a new vessel) and was found to be very 
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similar throughout the experiment at each pH level. IC was slightly higher than expected 

based on nominal NaHCO3 additions (i.e. 0.075 mM) between pH 6.4 and 7.4. It was lower 

then expected at pH 5.9 (Table 4.11). Those differences probably arose from the fact that 

these media were buffered with MOPS and then adjusted to the desired pH with NaOH. The 

added NaOH from concentrated stock solution may have contained traces of IC, which is 

plausible due to the capacity of alkaline solutions to absorb CO2 from the atmosphere. 

Second, the presence of MOPS in some exposure solutions was accounted for in the 

speciation calculations, because it affects charge balance and ionic strength. This was not 

possible with the BLM software (Hydroqual, 2002) but can easily be incorporated into 

WHAM VI. A pKa of 7.2 was used for the dehydrogenation of MOPS: (H+) (MOPS-) (H-

MOPS)-1 = 107.2. 

 
Table 4.11 Measured IC-levels for the pH experiment in synthetic test waters for chronic D. magna tests 
(Deleebeeck et al., 2005). 
pHa MOPS added? 

(Y/N) 
IC measureda 

(M) 
pH series   
5.87 Y 5.26E-05 
6.4 Y 1.23E-04 
6.97 Y 2.72E-04 
7.35 Y 4.81E-04 
7.62 N 7.68E-04 
8.22 N 3.50E-03 
Ca and Mg series   
6.81b Y 2.2E-04c 

a average of all measurements 
b average pH of all tests in the Ca and Mg series 
c estimated based on linear regression between pH and log(IC) for tests with MOPS in the pH test series 

 
The estimated IC-concentration (Deleebeeck et al., 2005) in the Ca and Mg tests is 

about 3 times higher than the expected one. However, this does not affect the calculated Ni2+-

activity at pH ~ 6.8. Indeed, using the estimated IC only results in a 1% lower Ni2+-activity 

than using nominal IC.  

 
Table 4.12 reports pH, Ca, Mg and Ni2+-activities (and pNi) for all test waters at the 

21d-EC50 of Ni. DOC was assumed = 0 because of the earlier discussed low complexing 

ability of DOC stemming from algal exudates under the conditions of chronic toxicity tests 

(see section 4.3.2.1). In Figure 4.8 the 21d-EC50Ni2+ is plotted against Ca and Mg activity. 

 

Table 4.12 21d-EC50s and corresponding chemistry of test waters (Ca, Mg, Ni as activity).  
Test ID a pH Mg2+ 

(M) 
Ca2+ 
(M) 

Ni2+ 
(M) 

pNi 

Mg 0.25 mM 6.79 1.90E-04 1.39E-04 4.08E-07 6.39 
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Mg 0.5 mM 6.81 3.72E-04 1.40E-04 5.08E-07 6.29 
Mg 1.0 mM 6.82 7.18E-04 1.35E-04 7.09E-07 6.15 
Mg 1.5 mM 6.8 1.02E-03 1.33E-04 9.97E-07 6.00 
Mg 2.0 mM 6.8 1.33E-03 1.27E-04 1.15E-06 5.94 
Mg 3.0 mM 6.81 1.94E-03 1.24E-04 (1.19E-06)b (5.93) 
Ca 0.25 mM 6.85 1.81E-04 1.37E-04 3.06E-07 6.51 
Ca 0.5 mM 6.81 1.78E-04 2.63E-04 4.46E-07 6.35 
Ca 1.0 mM 6.81 1.72E-04 5.46E-04 5.23E-07 6.28 
Ca 1.5 mM 6.79 1.68E-04 7.61E-04 5.32E-07 6.27 
Ca 2.0 mM 6.79 1.64E-04 1.01E-03 8.46E-07 6.07 
Ca 3.0 mM 6.8 1.51E-04 1.47E-03 (7.96E-07)b (6.10) 
 pH 5.8 5.87 2.07E-04 1.81E-04 (7.10E-07)c (6.15) 
pH 6.4 6.4 2.07E-04 1.81E-04 8.05E-07 6.09 
pH 7 6.97 2.08E-04 1.81E-04 6.45E-07 6.19 
pH 7.6 7.35 2.10E-04 1.81E-04 5.75E-07 6.24 
pH 7.6* 7.62 2.11E-04 1.77E-04 4.29E-07 6.37 
pH 8.2* 8.22 2.08E-04 1.56E-04 3.50E-07 6.46 
a Test codes identical to the ones used in Deleebeeck et al. (2005) 
b not used for model development because 3 mM of Ca and Mg are less relevant for EU surface waters, i.e. they  
correspond to the higher percentiles of the Ca (85th-95th percentile) and Mg (>95th percentile) distribution in EU 
surface waters (Heijerick et al., 2003) and are also not frequently tested in ecotoxicity testing. This is to make the 
final model as accurate as possible specifically for EU risk assessment purposes, i.e. for an as large proportion of 
the EU surface waters as possible. 
c Not used for model development because discontinuity of pH effect below pH 6.4 (see text) 
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Figure 4.8 21d-EC50 as Ni2+-activity for D. magna as a function of Ca2+ and Mg2+ activity; dataset from 

Deleebeeck et al. (2005); regression lines are used for derivation of stability constants for BLM (see text), 
only data used for model development are shown. 

 
 

Again, as in Deleebeeck et al. (2005), a clear protective effect of Ca and Mg is 

observed (Figure 4.8). A Log KCaBL = 3.53 and a log KCaBL = 3.57 were derived and these were used 

throughout the rest of the analysis. Figure 4.9 gives the effect of pH on chronic Ni toxicity as 

21d-EC50Ni2+ vs. H+ and as 21d-pNi*
50 vs. pH. 
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Figure 4.9  21d-EC50as as Ni2+-activity and 21d-pNi*

50 as a function of H+ activity or pH; data from 
Deleebeeck et al. (2005), only filled squares are used for model development 

 
 

It is clear that the pH effect, over the whole investigated pH range, does not seem to 

comply with the “single-site” BLM concept, which would require a linear relation between a 

the competing cation H+ and the EC50Ni2+. The effect is obviously curvilinear with increasing 

slope at lower H+ activities (higher pH). Here too, a plateau is reached at pH levels < 6.4. 

Although it is possible to draw a straight line through the upper graph and derive a log KHBL, 

in accordance with the BLM concept, it would not accurately reflect the true pH effect. The 

true pH effect here seems to follow more a log-linear relation, i.e. a straight line when pNi50 is 

plotted against pH. The continuity of this function is, however, invalidated at a pH < 6.4. At 

lower pH, D. magna is quite far from its optimal pH region (pH 7) and in nature it is usually 

not found at pH < 7. It is possible that a general stress response may have caused this non-
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continuity of the pH effect. Additionally, pH levels below 6.4 are less relevant for typical EU 

surface waters (<5th percentile; Heijerick et al; 2003).  

 

Several hypotheses may be put forward for this non-linear response, including 

differential chemistry of gill-microenvironment and bulk water, bioavailability of Ni(OH)+ or 

NiCO3 or NiHCO3
+ complexes, the existence of more than one BL-site, and physiological pH 

effects. The data do currently not allow to test either of these hypotheses or to incorporate 

such effects into a mechanistic bioavailability model. Thus, the most straight-forward way of 

incorporating the pH effect at this time, which does not contrast with the observed pH effect,  

is to model it as a log-linear pH-effect, which acts independently from the BLM-type Ca and 

Mg competitive effects, i.e. superimposed on the traditional Ca and Mg competition. Such a 

log-linear pH effect, as an alternative to the BLM-type ‘competition effect’ has already been 

shown to accurately predict chronic Cu and Zn toxicity to green algae (De Schamphelaere et 

al., 2003; De Schamphelaere et al., 2005). The predictive model equation would in such a 

case become of the following form, for a test solution i, e.g. for the EC50 level: 

 

      50 2 2
2 ,50 10 1pH iS pH Q

Ni i CaBL MgBLi i
EC K Ca K Mg

    
               (Eq. 4.6) 

 
 
Within this equation EC50*

Ni2+,i can be defined:  
 
 

 

    
50 2 ,*

2 , 2 2

50
50 10

1

pH iS pH Q Ni i

Ni i

CaBL MgBLi i

EC
EC

K Ca K Mg

   

  
 

   
        (Eq. 4.7) 

 
 

This corresponds to the EC50Ni2+ which is corrected for Ca and Mg competition, but which is 

dependent on the pH of the test solution. In equation 4.7 Q50 is the intercept of the (log-linear) 

pH function with the y-axis (Figure 4.9) after correction for Ca and Mg competition; S is the 

slope of the pH function.  

 

It is interesting to note that this equation 4.7 can be interpreted as follows in terms of a 

typical BLM, by combining equations 4.5 and 4.7: 
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             (Eq. 4.8) 

 
 
In words, if f50

NiBL is independent of pH, it means that the log KNiBL is dependent on pH, i.e. 

‘conditional’ on pH. It would be interesting to investigate this assumption to provide more 

mechanistic background for model equation 4.6. Equations 4.6 and 4.7 can also be written in 

the following form:  

 

    2 2
50, 50 log 1i pH i CaBL MgBLi i

pNi Q S pH K Ca K Mg             (Eq. 4.9) 

 
where 
 

    * 2 2
50, 50 50, log 1i pH i i CaBL MgBLi i

pNi Q S pH pNi K Ca K Mg          (Eq.4.10) 

 

For D. magna the derivation of SpH is performed by linear regression analysis of pNi*
50,i vs. 

pHi based on the results of the pH test series. This SpH is then used to derive the Qx,i in each 

test solution i, according to a rearranged form of equation 4.10 

 

 
*

, ,x i x i pH iQ pNi S pH               (Eq. 4.11) 

 

In this equation x denotes the effect level (e.g., 50%, 20%, 10%). For simplicity it is assumed 

that SpH is independent of the effect level, similar to the non-dependency of BLM-stability 

constants of effect levels, and that differences between different effects levels are only due to 

differences in Q, which thus becomes is the ‘sensitivity’ parameter in this type of model, 

playing a similar role as the BL-Ni concentration (or fraction) in the usual BLM-models. The 

final model Qx is calculated for each effect level as: 
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              (Eq. 4.12) 
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Table 4.13 gives the calculated pNix, the Ca, Mg activity and the pNi*
x,i for x=10, 20, and 50. 

The final chronic model-parameters, obtained using data in Tables 4.12 and 4.13 using 

equations 4.11 and 4.12 are summarized in Table 4.14.  

  

 
 
Table 4.13 21d-ECx as pNi and pNi* and corresponding chemistry of test waters (Ca, Mg, Ni as 
activity); data from Deleebeeck et al. (2005).  
Test ID pH (Mg2+) 

(M) 
(Ca2+) 
(M) 

pNi50 pNi20 pNi10 pNi*
50 pNi*

20 pNi*
10 

Mg 0.25 mM 6.79 1.90E-04 1.39E-04 6.39 6.57 6.68 6.73 6.91 7.02 
Mg 0.5 mM 6.81 3.72E-04 1.40E-04 6.30 6.44 6.52 6.75 6.89 6.97 
Mg 1.0 mM 6.82 7.18E-04 1.35E-04 6.15 6.24 6.29 6.77 6.85 6.90 
Mg 1.5 mM 6.8 1.02E-03 1.33E-04 6.01 6.16 6.26 6.72 6.88 6.98 
Mg 2.0 mM 6.8 1.33E-03 1.27E-04 5.94 6.01 6.06 6.75 6.82 6.86 
Mg 3.0 mM 6.81 1.94E-03 1.24E-04 5.93 6.10 6.19 6.87 7.03 7.13 
Ca 0.25 mM 6.85 1.81E-04 1.37E-04 6.52 6.79 6.95 6.85 7.12 7.28 
Ca 0.5 mM 6.81 1.78E-04 2.63E-04 6.36 6.56 6.68 6.76 6.97 7.09 
Ca 1.0 mM 6.81 1.72E-04 5.46E-04 6.29 6.48 6.60 6.83 7.02 7.14 
Ca 1.5 mM 6.79 1.68E-04 7.61E-04 6.28 6.61 6.81 6.90 7.24 7.43 
Ca 2.0 mM 6.79 1.64E-04 1.01E-03 6.08 6.28 6.40 6.78 6.98 7.10 
Ca 3.0 mM 6.8 1.51E-04 1.47E-03 6.10 6.33 6.46 6.92 7.14 7.27 

 pH 5.8 5.87 2.07E-04 1.81E-04 6.15 6.39 6.53 6.53 6.77 6.91 
pH 6.4 6.4 2.07E-04 1.81E-04 6.09 6.38 6.54 6.47 6.76 6.92 
pH 7 6.97 2.08E-04 1.81E-04 6.19 6.31 6.38 6.57 6.68 6.75 

pH 7.6 7.35 2.10E-04 1.81E-04 6.24 6.36 6.42 6.62 6.73 6.80 
pH 7.6* 7.62 2.11E-04 1.77E-04 6.37 6.48 6.54 6.74 6.85 6.92 
pH 8.2* 8.22 2.08E-04 1.56E-04 6.46 6.77 6.95 6.82 7.13 7.32 

Note: Only underlined values are used for model development 

 
 
Table 4.14 Modela parameters for chronic Ni bioavailability model for D. magna. 
 D. magna - values 
Log KCaBL 3.53 
Log KMgBL 3.57 
SpH (slope of pH function) 0.1987 
Q10 5.646 
Q20 5.537 
Q50 5.352 
Note: predictions of 21d-ECxNi2+ with this model according to equation 4.6. 
 
 

4.3.3.2 Validation with artificial and natural surface waters Deleebeeck et al. (2005) 
 

This model was now validated with the artificial and natural surface waters. The input 

chemistry for WHAM VI of the natural waters is given in Annex 14. First, the activity of Ca2+ 

and Mg2+ were calculated and inserted into equations 4.6 to predict 21d-ECxNi2+ for each test 

solution (except Bihain, as pH<6.4 and thus outside the model calibration). Those were then 

inserted into WHAM VI to obtain the 21d-ECxdissolved. The predictive capacity of the models 

is plotted in Figure 4.10, for natural waters, as well as for the artificial test waters. The model 
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is able to predict most 21d-ECx values in artificial test solutions by an error of less than factor 

2, indicating that the model is well calibrated to this dataset.  This does not appear to be the 

case for the natural surface waters, where there is a trend of underestimating 21d-ECx values 

or overestimating the chronic Ni toxicity. Prediction errors were on average factor 2.0, 2.3 

and 2.4 for the EC50, EC20 and EC10-levels respectively. 
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Figure 4.10 Predictive capacity of the chronic D. magna models (Table 4.14). 

 

 

Possible hypotheses to explain why the chronic D. magna model is less accurate in natural 

waters include: 

(i) At the time of ecotoxicity testing with natural waters, the chronic sensitivity of the 

daphnids to Ni might have been considerably lower (> the typically assumed 

‘normal’ factor of 2) than at the time of testing in artificial waters (tested >1 year 

apart). However, the fitness of the daphnids was in both series of tests rather 

similar, as indicated by control reproduction (R0) of on average 55 and 60 

juveniles/adult in the artificial test waters and the natural test waters, respectively.  

(ii) The model based on univariate testing does not capture potential interactive effects 

of different (co-varying) physico-chemical characteristics in natural waters. 

Interactive effects may include for example a more important competition of Ca 

and Mg at higher pH, a smaller pH effect at higher hardness. These are 

possibilities currently not accounted for in the model. Preferably, additional 

experimental data are needed to investigate these hypotheses. However, further on 

this possibility will be investigated. 
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(iii) The presence of DOC (humic substances) in natural waters (as opposed to artificial 

waters) ameliorates Ni toxicity beyond its effect on speciation. Glover et al. (2005) 

have shown that DOC may affect Na fluxes in D. magna. If the presence of DOC 

would also enhances Mg influx or reduces Mg efflux, an increased DOC level may 

potentially protect against the Mg-antagonist Ni, beyond the speciation effect of 

DOC. 

 
 
4.3.3.3. Validation with well water with adjusted water hardness (Chapman et al., 1980)  
 

These authors report increased 21d-chronic values for D. magna from 14.8 to 357 µg 

Ni/L, between a hardness of 50-200 mg CaCO3/L. The data thus clearly confirm the earlier 

described protective effect of water hardness on chronic Ni toxicity. Since pH value in these 

experiments ranged between approximately 7.5 and 8, as opposed to pH 6.8 in Deleebeeck et 

al. (2005), it may be suggested that the protective effect of hardness is valid over a wide pH 

range, at least conceptually.  

 

However, it is difficult or even impossible to analyze these data quantitatively for the 

following reasons:  

(i) It is unclear whether the reported effect concentrations are on a dissolved or on a 

total recoverable Ni basis. 

(ii) Only NOECs and LOECs are reported, which are, as opposed to ECx values, much 

more dependent on the choice of test concentrations and the within-treatment 

variability.  

(iii) pH was different for the different hardness levels tested 

(iv) Organisms are probably not tested simultaneously at each hardness level (inferred 

from different reported test temperatures)  

(v) The diet was similar to YTC (blend of fish food and yeast) at a concentration of 

about 20 mg solids/L and this complicates speciation calculations. 

(vi) Organisms have been acclimated to the test solutions (and thus to the hardness) 

before being tested, but it is not reported for how long 

 

For these reasons it is not deemed appropriate to validate the chronic D. magna model for 

this dataset. This does, however, not mean that these data should not be considered for 

inclusion into an effects database for risk assessment. It should be acknowledged, however, 
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that the normalization of these toxicity data may be subject to more uncertainty than for 

example toxicity data from the Deleebeeck et al. (2005) dataset. 

 
 
 
4.3.4. Development of a chronic Ni-BLM for C. dubia 
 
 

First, the D. magna chronic model, described by equation 4.6, with parameters log 

KCaBL = 3.53, log KMgBL = 3.57, and SpH = 0.1987 (Table 4.14) was validated for the C. dubia 

dataset generated in the present study with natural waters. Using the earlier calculated 

speciation in the test solutions (Table 3.8), and using these parameter values we optimized 

Q50, Q20, and Q10 values according to equations 4.6 to 4.11. This calibration is needed to 

account for the higher sensitivity of C. dubia. The results of this calibration are reported in 

Table 4.15. This model is referred to as C. dubia model 1. 

 

Table 4.15 Modela parameters for different chronic Ni bioavailability models for C.dubia  and D. magna 
 D. magna C. dubia 

Model 1 a 
C. dubia 
Model 2 b 

Log KCaBL 3.53 3.53 3.53 
Log KMgBL 3.57 3.57 3.57 
SpH (slope of pH function) 0.1987 0.1987 0.8587 
Q10 5.646 6.462 c 1.581 c 

Q20 5.537 6.328 c 1.447 c 

Q50 5.352 6.320 1.321 
a log KCaBL, log KMgBL, SpH  assumed identical as for D. magna (see Table 4.14) 
b Species-specific SpH  
c Data from Eppe and Markermeer not used for calculation, because EC20 and EC10 were extrapolated values 
(see Table 3.8) 

 

The Qx values are indeed higher for C. dubia than for D. magna¸ confirming the higher 

sensitivity of C. dubia. This ‘optimized’ model 1 was now used to predict ECxNi2+ values for 

the same dataset and, after insertion of ECxNi2+,predicted into WHAM VI, also ECxdissolved, in 

order to visualize how well this model was calibrated to the dataset (Figure 4.11). Observed 

and predicted EC50s are also reported in Table 4.16. 

 

Figure 4.7 reveals that the D. magna model does reduce some of the observed 

variability. For example, there is a variability in observed 10d-EC50dissolved of factor 14, and 

the average prediction error about 10d-EC50dissolved is about factor 2.3 (range: 1.6-3.4). Two 

out of six 10d-EC50dissolved were predicted by an error of more than factor 2. Remarkably, the 

three EC50s at the three lowest pH levels were underestimated; the three EC50S at the highest 
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pH were all overestimated (Table 4.16). This suggests that the pH effect on chronic Ni 

toxicity to C. dubia might be more important than for D. magna. This is confirmed by the data 

presented in Figure 4.12, where 10d-pNi*
50 for C. dubia are plotted against pH. 
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Figure 4.11 Observed and predicted chronic ECx of Ni to C. dubia in natural waters (data from present 

study, see Table 3.7); prediction carried out with C. dubia chronic model 1 (Table 4.15), which uses the 

same model parameters as the D. magna model (Table 4.15), but which is calibrated to the higher 

sensitivity of C. dubia 

 

Table 4.16 Observed and predicted chronic 10d-EC50dissolved (as µg Ni/L) using different C. dubia chronic 
models 
Site DOC 

(mg/L) 
H a 

 
pH 

(chronic) 
10d-EC50 

(obs) 
10d-EC50 

(pred, model 1)b 
10d-EC50 

(pred, model 2)b 

Ankeveen 23.6 131.6 7.61 68.4 43.1 41.5 
Bihain 6.36 15.0 6.56 23.1 6.8 26.2 
Brisy 3.06 41.1 7.23 11.0 6.1 9.7 
Eppe 5.02 108.4 7.86 4.9 13.5 9.6 
Markermeer 7.6 218.1 8.01 12.1 22.6 13.5 
Regge 12.6 204.0 8.18 20.1 31.8 16.1 
a H= calculated water hardness, as mg CaCO3/L.  
b parameters of model 1 and 2 are summarized in Table 4.15 
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Figure 4.12 The effect of pH on chronic EC50Ni2+ to C. dubia (this study) after correction for hardness 

effects, represented by 10d-pNi*
50 

 

Ten day-pNi*
50 were calculated using equations 4.7 or 4.10, with log KCaBL = 3.53,                

log KMgBL = 3.57. The slope of the pH function for C. dubia between pH 6.6 and pH 8.2 

appears to be SpH = 0.8587 as opposed to 0.1987 for D. magna for a similar pH range, i.e. 

between pH 6.4 and 8.2. This explains why the D. magna model does not accurately predict 

Ni toxicity to C. dubia in natural waters. Indeed, when the species-specific C. dubia slope 

(model 2) was used for optimization of Qx values for this C. dubia dataset, a much better 

calibration was obtained (Table 4.15, Figure 4.13). 
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Figure 4.13 Observed and predicted chronic ECx of Ni to C. dubia in natural waters (data from present 

study, see Table 3.7); prediction carried out with C. dubia chronic model 2 (Table 4.15) . 
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The Qx values belonging to this model (C. dubia chronic model 2) are reported in 

Table 4.15. The optimal calibration results in prediction errors lower than factor 2 for all test 

waters and effect levels, with an average prediction error for EC50dissolved of factor 1.4 (Table 

4.16, Figure 4.13). This is a considerable amelioration compared to the factor 2.3 prediction 

error with C. dubia model 1.  

 

This validation exercise suggests that different models might be needed for C. dubia 

and D. magna to obtain as accurate as possible predictions of chronic Ni toxicity for both 

organisms. The exact reasons for the different pH effect in both organisms cannot be inferred 

from the existing datasets.   

 

  In the following paragraphs we will validate this model with other datasets and 

investigate the effects of pH and hardness on chronic Ni toxicity to C. dubia into additional 

detail.  

 

4.3.5. Validation of the chronic Ni-BLM for C. dubia with other existing datasets 
 

4.3.5.1. General considerations 

 

The following datasets, described hereunder, are considered in the analyses below: 

(i) Keithly et al. (2004), who reports chronic Ni toxicity to C. dubia for 4 different 

hardness levels 

(ii) Wirtz et al. (2004), who report chronic Ni toxicity to C. dubia in a number of 

synthetic test waters with varying pH, alkalinity and water hardness and in three 

filtered natural water samples. 

 

Both datasets involve chronic toxicity tests in which a mixture of P. subcapitata and YTC 

was used as food source for C. dubia. It must be noted that this introduces considerable 

uncertainty into speciation calculations because ligands originating from YTC additions were 

shown to significantly complex Ni (see section 4.3.2). We will try to take this uncertainty into 

consideration in the most appropriate way  

 

4.3.5.2. Effect of hardness effect on chronic Ni toxicity to C. dubia (Keithly et al., 2004) 
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Keithly et al. (2004) determined chronic 7d-LC20s and reproductive 7d-EC20s of Ni 

to C. dubia at 4 different hardness levels between 50 and 253 mg CaCO3/L. The results of 

their tests are reported in Table 4.17. The chemistry of the test media is summarized in Annex 

15. 

 

Based on this dataset, it appears that increasing the water hardness between 50 and 

253 mg CaCO3/L) slightly reduces chronic toxicity, based on survival LC20s (factor >3.1)  

and reproductive EC20s (>1.8). The effects are most likely even a little larger than this since 

at the lowest water hardness LC20 and EC20 are based on total (nominal) concentrations, 

which are typically higher than dissolved concentrations in chronic ecotoxicity tests with 

added food. Over a similar range of Ca or Mg (0.5 to 2 mmol/L), Deleebeeck et al. (2005) 

reported an increase of chronic reproductive EC50s in D. magna of approximately factor 2. 

Hence, the effect of hardness on chronic Ni toxicity is definitely not substantially more 

important in D. magna than in C. dubia.  

 

Table 4.17 Chronic effect concentrations (and 95% confidence interval) of Ni (as dissolved Ni) to C. dubia 

as a function of water hardness (Keithly et al., 2004) 

Hardness a 

(mg CaCO3/L) 

7d-NOECs
 b 

(µg Ni/L)  

7d-LC20 

(µg Ni/L) 

7d-NOECr c 

(µg Ni/L) 

7d-EC20r 

(µg Ni/L) 

50 d <3.8 e <3.8 e <3.8 e <3.8 e 

113 5.8 4.8 5.3 4.7 

161 15.3 11.9 3.4 4.0 

253 9.6 10.4 5.8 6.9 

a Full chemistry is reported in Annex 15 
b survival 7d-NOEC 
c reproductive 7d-NOEC 
d values are based on total nominal Ni concentration 
e lowest Ni concentration caused >20% mortality and >20% reduction of reproduction 
 

 

 The nature of the data, i.e. only three ‘unbounded’ effect concentrations, do not allow 

the hardness effects on chronic Ni toxicity to C. dubia to be more quantitatively compared 

with D. magna to the same degree of certainty as for the effect on acute Ni toxicity (see 

section 4.2.3.1.). Another confounding factor is that the pH across the different hardness 

levels varied by 0.2 pH units, while it is observed that C. dubia exhibits a fairly large pH 

dependency with respect to chronic Ni toxicity (see section 4.3.4). Also, the presence of YTC 

and its complexing function would make such an assessment more uncertain.  
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We feel that the added uncertainty of all these separate elements does not justify a 

specific quantitative assessment or a specific calibration of log KCaBL or log KMgBL values for 

chronic Ni toxicity to C. dubia. The qualitative comparison with D. magna suggests that these 

values may be sufficiently similar not to cause substantial errors in toxicity predictions for C. 

dubia. In Annex 16, two possible approaches are recommended for taking into account the 

uncertainty about the Keithly et al. (2004) chronic dataset in a risk assessment context. 

 
4.3.5.3. Validation of the chronic C.  dubia model using another dataset (Wirtz et al., 2004) 
  

Wirtz et al. (2004) determined reproductive toxicity of Ni to C. dubia in 14 synthetic 

waters and 3 filtered natural water samples from United States or Canada (Table 4.18). Along 

with those latter tests they also performed tests in unfiltered (raw) samples and in synthetic 

waters with DOC, obtained via reverse osmosis from these waters and added to the same 

concentration of these waters. Since there were generally no differences of Ni toxicity 

between unfiltered, filtered and RO-samples, we decided only to perform our data analysis on 

the data obtained with the filtered water samples.    

 

Table 4.17 Chronic 7-day effect concentrations of Ni to C. dubia reproduction (data from Parametrix, 
2004a); full chemistry is reported in Annex 17; data between parentheses not considered for data analysis 
(see footnotes) 

Test IDa Test 
No. in 
acute 
PMX-
reportb 

Back-
ground 

Ni 

(µg/L) 

pH Hardness 
(mg 

CaCO3/L) 

Alkalinity 
(mg 

CaCO3/L) 

DOC c 
(mg/L) 

EC10d 
(µg/L) 

NOECe 
(µg/L) 

EC50e 
(µg/L) 

1 1 1.0 8.5 96 96 1.3 - 1.76 3.53 
2 2 1.0 8.4 154 95 1.3 - 2.52 4.08 
3 3 1.2 8.4 292 95 1.3 - <2.98 5.18 
4 4 1.2 8.7 194 194 1.3 - <2.62 3.34 
5 5 2.7 8.6 310 196 1.3 - 4.43 9.46 
6* 6 6.3 8.4 586 197 1.3 - (8.64) (13.5) 
7 7 0.9 8 42 26 1.3 4.94 3.60 10.3 
8 8 0.9 8.1 76 25 1.3 2.80 3.60 17.0 
9* 10 10.6 7.8 848 24 1.3 (24.1) (22.1)f (42.2) 
10 11 1.2 8.6 182 183 1.3 2.87 3.66 4.51 
11 12 1.4 8.3 192 96 1.3 - <6.81 9.73 

12 g 13 1.4 7.2 192 96 1.3 (7.58) (6.89) (24.5) 
DJ lab (18) - 1.2 8.4 246 86 1.3 NR 10.0 21.0 
GR lab (22) - 1.9 8.5 228 158 1.3 NR 3.28 7.01 
DJ filt (16) - 8.4 8.3 230 84 6.7 NR 19.6 52.6 
GR filt (20) - 2.9 8.6 236 166 7.5 NR 12.0 23.6 
CP filt (14) - 2.3 8.4 184 102 6.6 NR 27.9 46.4 

a Refers to the test numbers (and/or codes) used in Table 1 and Table 2 of the chronic Wirtz et al. (2004) report; 
DJ = Desjardins Canal (Ottawa, ON, Canada), GR = Grand River (Ottawa, ON, Canada), CP = Cache la Poudre 
River (Fort Collins, CO, USA); ‘filt’ refers to spiked filtered natural water samples from these sources, ‘lab’ 
refers to lab match water samples, i.e. pH, alkalinity and water hardness identical to natural waters but without 
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added DOC; * denotes high background concentration of Ni in control background concentration combined with 
irrelevant hardness for EU waters, these data were not considered for data analysis. 
b This test number refers to the test numbers used in Table 2 of the acute Parametrix report (Parametrix, 2004), 
note that test No. 10 from the acute report was not reported in the chronic report and was not considered for our 
data analysis.  
c DOC in synthetic waters was assumed similar as in Keithly et al. (2004) since the same test procedures were 
used by PMX. DOC was assumed to consist of 0.5 mg/L background DOC, not contributing to Ni-binding, and 
0.8 mg/L originating from YTC additions, which was assumed to behave as 40%AF. 
d Only non-extrapolated EC10s are reported here (taken from Parametrix, 2004), assessment of ‘extrapolated’ 
made on basis of raw data received via personal communication with Dr. Bill Stubblefield (Parametrix, Albany, 
OR, USA), NR=not reported 
e NOECs and EC50s were obtained via personal communication with Dr. Bill Stubblefield (Parametrix, Albany, 
OR, USA). 
f reported NOEC = 55.1, but this is not possible when looking at the dose-response, we estimate it to be 22.1 
instead 
g test conducted at increased pCO2, reduced overall fitness of organisms, data not further considered. 

 
 

Before initiating the data analysis, the toxicity data from Wirtz et al. (2004) were 

subjected to a critical evaluation.  Tests No. 6 and No. 9 were not considered because high Ni 

background concentrations in controls, i.e. 6.3 and 10.6 µg/L, might have affected the 

concentration response relation and thus the 7d-EC50 estimate. The data from test No. 12 

were not used because it is suspected that the addition of CO2 to reduce the pH down to 7.2 

may have reduced the overall fitness of the organisms resulting in an enhanced toxicity. The 

reduced fitness is obvious from the fact that control reproduction in this test water was 

considerably lower (about two-fold) than in all other test solutions (data received via personal 

communication with Dr. Bill Stubblefield, Parametrix, Albany, OR, USA). 

 

After this data evaluation it is noted that the dataset covers a rather narrow pH range of 

8.0 to 8.7, which does almost not overlap with the pH range for which the D. magna model 

and C. dubia model (model 2) were developed. It is also important to note upfront that the 

80th, 90th and 95th percentiles of pH in EU surface waters are around 8.0, 8.1, and 8.2, 

respectively (Heijerick et al., 2003) and that consequently, most of the investigated test 

solutions represent conditions not relevant for the part of the EU surface waters represented in 

the monitoring databases used by Heijerick et al. (2003). In fact, only two test waters, i.e. No. 

7 and 8, have a pH that fall within the 95th percentile of these EU surface waters. Therefore, 

less weight should be given to this dataset, and the conclusions drawn from it, then to the 

datasets with C. dubia generated in the present study and in the Keithly et al. (2004) study.   

 

Nevertheless, from a point of view of better understanding bioavailability 

relationships, we wanted to determine how well the C. dubia chronic bioavailability model 
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(model 2, Table 4.15) could be calibrated to this dataset by only adjusting the sensitivity-

parameter Q50 of the different C. dubia strains and by assuming log KCaBL, log KMgBL and SpH 

the same as for C. dubia (model 2). In other words, can the C. dubia model, developed for a 

pH range between 6.6 and 8.2, be safely extrapolated to higher pH values? 

 
 

First, Ni speciation at the 7d-EC50dissolved needed to be calculated with WHAM VI. 

Again, it is stressed that there is uncertainty with regard to the Ni binding by YTC-ligands. To 

address part of this uncertainty, speciation calculations were run under two scenarios. 

Scenario A with no binding at all assumed and scenario B assuming that the DOC from the 

YTC behaves identical to natural freshwater DOC. In scenario B 0.64 mg FA/L is added to 

the input of the speciation calculations. The conclusions from both scenarios will be 

compared. Since no measured Al concentrations were available, natural waters were modelled 

assuming either Al3+ in equilibrium with colloidal Al(OH)3 or with Al=0, to assess the 

importance of Al on Ni speciation. Those two Al assumptions represent the minimum and 

maximum competitive effect of Al on Ni binding to DOC. The speciation calculations are 

reported in Table 4.19. WHAM VI input files for these calculations can be found in Annex 

17. 

 

Table 4.19 7d-EC50Ni2+ and 7d- pNi*
50 for C. dubia;  data from Wirtz et al. (2004); data between 

parentheses not considered for data analysis and interpretation 
    Scenario Ab Scenario B b 

Test ID a pH (Mg2+) 
(M) 

(Ca2+) 
(M) 

EC50Ni2+ 
(M) 

pNi*
50 EC50Ni2+ 

(M) 
pNi*

50 

1 8.5 2.65E-04 4.66E-04 2.21E-08 8.21 1.51E-08 8.37 
2 8.4 3.63E-04 6.30E-04 2.64E-08 8.23 1.94E-08 8.36 
3 8.4 6.50E-04 1.12E-03 3.13E-08 8.36 2.56E-08 8.45 
4 8.7 4.31E-04 4.54E-04 1.11E-08 8.57 8.32E-09 8.70 
5 8.6 6.71E-04 5.84E-04 3.44E-08 8.20 2.91E-08 8.27 
6* 8.4 1.02E-03 1.28E-03 (5.63E-08) (8.21) (5.08E-08) (8.25) 
7 8.0 1.19E-04 3.36E-04 1.22E-07 7.32 8.50E-08 7.48 
8 8.1 2.20E-04 4.89E-04 1.86E-07 7.27 1.46E-07 7.38 
9* 7.8 1.35E-03 2.35E-03 (2.85E-07) (7.69) (2.70E-07) (7.71) 
10 8.6 4.33E-04 4.48E-04 1.65E-08 8.40 1.27E-08 8.51 
11 8.3 4.03E-04 6.78E-04 6.50E-08 7.87 5.30E-08 7.96 

12 g 7.2 4.09E-04 6.93E-04 (2.21E-07) (7.34) (1.97E-07) (7.39) 
DJ lab (18) 8.4 5.22E-04 8.09E-04 1.35E-07 7.62 1.17E-07 7.68 
GR lab (22) 8.5 4.87E-04 6.60E-04 3.26E-08 8.19 2.66E-08 8.28 
DJ filt (16) 8.3 4.45E-04 9.88E-04 2.21E-07 7.43 2.07E-07 7.46 
GR filt (20) 8.6 5.42E-04 9.17E-04 4.90E-08 8.10 4.54E-08 8.13 
CP filt (14) 8.4 3.55E-04 8.15E-04 1.77E-07 7.46 1.65E-07 7.49 

a See footnote a of Table 4.17 for meaning of codes  
b A = no DOC assumed from YTC addition, B=0.64 mg FA/L assumed from YTC addition; for natural waters 
reported data represent the scenario where Al3+ is assumed in equilibrium with colloidal Al(OH)3 
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 For the natural waters, the difference in calculated values of EC50Ni2+ between 

minimum and maximum Al3+ activity is limited to less than 2%. We decided to work further 

with calculations obtained with Al3+in equilibrium with colloidal Al(OH)3 (see also section 

3.2). However, when the presence of Cu and Zn (as competitors for Ni binding sites on DOC) 

is neglected, EC50Ni2+ turn out to be calculated 17 to 26% lower than the values reported in 

Table 4.19 (data not shown). This indicates the potential importance of considering Cu and Zn 

in risk assessment of Ni, in order to improve the accuracy and protectiveness of this 

assessment. However, while the effect of Cu and Zn on Ni speciation can be taken into 

account using the speciation part (WHAM VI) of the bioavailability models, it is 

acknowledged that mixture toxicity effects of Cu and Zn on Ni toxicity can currently not be 

taken into account. We suggest that speciation and Ni toxicity predictions will be more 

accurate when Cu and Zn are taken into account in speciation modelling, as long as Cu and 

Zn have no important effect on single-metal Ni toxicity at the Cu and Zn concentrations under 

consideration. Taking into account the local or regional presence of Cu and Zn when 

normalizing Ni toxicity data to a given local or regional water chemistry, will result in lower 

normalized species-NOEC values, because less Ni will be predicted to bind at DOC in the 

presence of Cu and Zn, than in the absence. The same reasoning is valid for the competitive 

effects of Fe and Al discussed earlier.  

 

 The data in Table 4.19 also illustrate that under scenario A (no influence of YTC 

assumed), EC50Ni2+ is between 5 and 46% higher than under scenario B (influence of YTC 

assumed) for the synthetic waters, but only 7% higher for the natural waters. This suggests 

that testing in natural waters, which contain natural DOC and which therefore better buffer the 

Ni2+-activity than artificial waters, results in ecotoxicity data which are less uncertain with 

respect to Ni speciation. For both scenarios, we plotted the 7d-pNi*
50 against pH (as in 

previous modelling exercises, Figure 4.10). 

 

 The 7d-pNi*
50 values in the lab match waters are slightly higher than in natural waters, 

i.e. 0.1 to 0.2 pNi units, representing a factor difference between 1.3 and 1.6 on the basis of 

7d-EC50*
Ni2+. This can be considered within the normal range of testing variability (factor 2) 

and it cannot be concluded that C. dubia is more sensitive to free ionic Ni2+ in synthetic water 

than in natural waters, as was suggested for D. magna. However, the same trend as in D. 

magna is noted and further research into the individual effect of increased DOC on ionic Ni2+ 

toxicity is recommended. 
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Figure 4.14 The effect of pH on chronic 7d-EC50Ni2+ (data from Wirtz et al., 2004) to C. dubia after 

correction for hardness effects, represented by 7d-pNi*
50, calculated for scenario A (upper panel) and B 

(lower panel) as explained in Table 4.19 and text. The 10d-pNi*
50 for C. dubia from the present study is 

shown for comparison (see also figure 4.12).  

 

  Apparently, the slope of the pH function for this dataset is much larger, i.e. SpH = 1.82 

to 1.85 for synthetic waters and 2.35 to 2.36 for the natural water samples, than the slope 

obtained for our own C. dubia in natural waters based on the present study, i.e. SpH = 0.8587 

(see comparisons in Figure 4.14). This conclusion is not affected by the assumption with 

regard to the binding of Ni by YTC-ligands present in the test solutions. It is also noteworthy 

that the C. dubia strain used in the present study seems to be more sensitive to Ni2+ than the 

strain used by Wirtz et al. (2004). This is illustrated by the higher pNi*50 (or lower EC50Ni2+) 

observed in the present study at comparable pH values around 8. 
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Thus, it appears that the slope of the pH function is dependent on pH itself, and two 

distinct regions may be recognized: a slope close to 1 below pH 8.2 and a slope close to 2 

above pH 8.2. This indicates that the earlier developed C. dubia model 2 will not work to 

accurately predict effect concentrations observed in the Wirtz et al. (2004) dataset. Different 

slopes of the pH function in different pH regions may suggest the presence of at least two 

biotic ligand sites, which may both be singly or doubly protonated (Borgmann et al., 2005). A 

slope of 1 suggests a singly protonated sites, and a slope of 2 suggests a doubly protonated 

site. Too few data are, however, available to develop a multi-site BLM. Moreover, when such 

type of model is to be developed, simultaneous experiments covering one large pH range (~ 6 

to 9) need to be conducted. 

  

 The increased slope of the pH function with increasing pH confirms the trends 

observed in the acute toxicity datasets with both D. magna and C. dubia (see section 4.2) 

which suggest a marked increase of the toxicity of the Ni2+ ion at pH levels exceeding 8.2. We 

wanted to demonstrate how erroneous the C. dubia model 2 would be for predicting chronic 

toxicity in the Wirtz et al. (2004) dataset. Using the data in Table 4.19 and using equations 

4.10 and 4.11 an optimal Q50 value of 0.812 for the whole dataset was found and this was 

used to predict 7d-EC50dissolved (Figure 4.15).  
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Figure 4.15 Predictive capacity of C. dubia model 2 (Table 4.15) for the C. dubia 7d-EC50 dataset of Wirtz 

et al. (2004), Q50 optimized to 0.812. 
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The data in Figure 4.15 indicate that all EC50dissolved are predicted by an error of less 

than factor 3, whereas the variability was originally a factor of 20. However, using the C. 

dubia model 2, developed for pH levels < 8.2 results in clearly biased predictions for the 

Wirtz et al. (2004) dataset, i.e. low EC50s are generally overestimated and high EC50s are 

generally underestimated.  

 

Because of this important prediction bias, which is mainly due to a very different pH 

effect at pH > 8.2 vs. at pH <8.2, and because of the fact that pH 8.2 is the upper 95th 

percentile of EU surface waters, it is recommended not to use C. dubia ecotoxicity data for 

the EU risk assessment if they were obtained in test solutions with pH > 8.2. 

 

The Wirtz et al. (2004) dataset, however, offers a unique possibility towards assessing 

the risk of surface waters with a pH > 8.2, because C. dubia is currently the species known to 

be most sensitive to Ni. It would be important, however, to also use the associated higher 

slope of the pH function in such a case.  

 

4.3.6. An initial attempt to ‘merge’ the chronic D. magna and C. dubia models for 
predictions in natural waters  
 

In sections 4.3.3 and 4.3.4 we found that the slope of the pH function, SpH was quite 

different for D. magna (0.1987) and C. dubia (0.8587). These slopes were statistically 

significantly different (p<0.001, method used according to box 14.8 in Sokal and Rohlf, 

1981). We also found that the predictive capacity of the chronic D. magna model, developed 

in artificial waters, was not very accurate for natural waters, i.e. overestimating Ni toxicity. 

We suggested that this might be due to interactive effects of Ca, Mg, and pH, not captured by 

the model. Since the pH-slope for D. magna and C. dubia were derived for artificial and 

natural waters, respectively, it is possible that this is the cause for the perceived large 

difference between SpH of the two species.  

 

We performed speciation calculations for the 21d-EC50 of D. magna in natural waters. 

The full chemistry for input into WHAM VI is given in Annex 14. Output of the speciation 

calculations is given in Table 4.20. 
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Table 4.20 21d-pNix and 21d-pNi*
x for D. magna in natural waters; data from Deleebeeck et al. (2005) 

Test water pH (Mg2+) 
(M) 

(Ca2+) 
(M) 

pNi50 pNi20 pNi10 pNi*
50 pNi*

20 pNi*
10 

Ankeveen 6.79 1.72E-04 5.86E-04 5.64 5.76 5.83 6.20 6.32 6.39 
Bihain 6.15 3.64E-05 7.52E-05 6.28 6.46 6.57 (6.42)a (6.61)a (6.71)a 

Brisy 7.09 1.08E-04 9.63E-05 6.19 6.29 6.36 6.43 6.53 6.59 
Markermeer 8.09 3.42E-04 7.56E-04 6.03 6.16 6.23 6.72 6.84 6.92 
Regge 7.71 2.01E-04 8.98E-04 5.83 5.95 6.14 6.52 6.63 6.82 
Voyon 8.02 2.04E-04 6.33E-04 6.04 6.12 6.17 6.64 6.71 6.77 
a Not used for model development (see text) 

 

Similarly as we did for our C. dubia dataset, we plotted the chronic pNi*
50 against the 

pH and found a slope of the pH function, SpH = 0.3335 (Figure 4.16). This is two times closer 

to the C. dubia slope (i.e. 0.8589 than the D. magna slope derived based on artificial test 

waters (0.1987). Using the same statistical method (Sokal and Rohlf, 1981), we found that 

this new slope of 0.3335 is significantly different from the one derived in synthetic waters 

(p=0.015) and still different from the one estimated for our C. dubia in natural waters 

(p<0.001).  The increased slope in natural waters seems to suggest that interactive effects of 

Ca, Mg, and pH in natural waters may indeed not be fully captured by univariate 

bioavailability experiments.  Here too, the data point at pH 6.15 (Bihain) was not considered, 

because it represented a discontinuity in the pH function.  
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Figure 4.16 21d-pNi*
50 of D. magna in natural waters vs. pH; data of Deleebeeck et al. (2005). 

 

Now, since the focus in risk assessment is on protecting natural waters, we will here 

try to calibrate the D. magna and C. dubia models to natural waters only, using a single 

‘merged’ slope to determine the effect on the overall predictive capacity of the models. 

Arbitrarily, a ‘merged’ slope SpH = 0.5961 was adopted (the mean of both species’ slopes). 



 87

The final models, derived in a similar manner as described in all previous sections, are 

reported in Table 4.21. Predictive capacities of these models are given in figures 4.21 and 

4.22. 

 

Table 4.21 Modela parameters for ‘unified’ chronic Ni bioavailability models for C. dubia  and D. magna 
and for the D. magna model solely based on natural waters 
 D. magna 

(Natural) 
D. magna 
(unified) 

C. dubia 
(unified) 

Log KCaBL 3.53 3.53 3.53 
Log KMgBL 3.57 3.57 3.57 
SpH (slope of pH function) 0.3335 0.5961 0.5961 
Q10 4.183 2.203 3.524 
Q20 4.094 2.114 3.389 
Q50 3.986 2.006 3.310 

 

 

1

10

100

1 10 100

observed ECx (µg Ni/L)

p
re

d
ic

te
d

 E
C

x
 (

µ
g

 N
i/L

)

EC10

EC20

EC50

 

Figure 4.21 Predictive capacity of the ‘merged’ C. dubia chronic Ni toxicity model (Table 4.21) for natural 

waters 
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Figure 4.22 Predictive capacity of the D. magna chronic Ni toxicity models (Table 4.21) for natural waters; 

left: developed based on natural waters only; right: ‘merged’ model 

 

The data in Figure 4.11 clearly demonstrate that: 

(i) for D. magna, using the pH-slope, derived for natural waters, very accurate 

predictions are obtained; it must be recognized that this is a calibration rather than 

a validation. 

(ii) For both organisms: using the average ‘merged’ pH-slope does not result in 

substantially important prediction errors; most effect concentrations are predicted 

by an error of less than factor 2.  

 

The latter illustrates that using an ‘average’ model, does not result in substantially worse 

prediction errors compared to the species-specific models. We recommend that, for carrying 

out normalizations for risk assessment purposes, species-specific models should be used when 

they are available for a given species. For other invertebrate species, we recommend that the 

normalizations are carried out with both the C. dubia and the D. magna pH slopes. The 

knowledge of the overall impact of using different slopes on the final PNEC will allow to take 

into account uncertainty due to interspecies differences of bioavailability models. If using 

different slopes does not result in major differences in the final PNEC estimate, it may be 

more practical to only use the ‘average’ slope.   

 

4.4. General conclusions for Ni toxicity modelling to aquatic invertebrates 

 

The following overall conclusions are drawn with respect to the modelling of acute and 

chronic Ni toxicity to D. magna and C. dubia: 

(xi) The pH effect on Ni toxicity is more important in chronic than in acute exposures; 

toxicity of the free Ni2+ ion is generally increased at higher pH  

(See Figure 3.3 for C. dubia, compare Figure 4.1 with Figure 4.9 for D. magna) 

(xii) The pH effect becomes increasingly important at pH levels > 8.0-8.2 

(See Figure 4.1 for acute D. magna, Figure 4.4 for acute C. dubia, Figure 4.14 for chronic C. 

dubia) 

(xiii) The pH-effect on both acute and chronic Ni toxicity cannot be modelled with a 

traditional single-site H+ competition effect. Nevertheless, up to a pH of 8.2, an 



 89

acute BLM-type model, which does not account for pH effects at all, is able to 

yield accurate acute toxicity predictions.  

(See section 4.2.1 for acute D. magna, section 4.2.3.2 and 4.2.3.3. for acute C. dubia, 4.3.3.1 

for chronic D. magna, and 4.3.4 and 4.3.5.3 for chronic C. dubia) 

(xiv) The protective effect of water hardness (Ca and Mg) can be modelled with 

traditional BLM-competition, because linear competitive effects are observed. The 

effects of Ca and Mg may be similar for both species. 

(See Figure 4.1 for acute D. magna, Figure 4.3 for acute C. dubia, Figure 4.8 for chronic D. 

magna, Table 4.17 for chronic C. dubia) 

(xv) Alternative bioavailability models were developed, consisting of a traditional Ca, 

Mg competition effect, superimposed to a log-linear pH relation in the case of 

chronic Ni toxicity, characterized by a slope parameter, SpH 

(See equations 4.1 to 4.5 for acute Ni toxicity, equations 4.6 to 4.12 for chronic Ni toxicity) 

(xvi) The slope parameter varied considerably and significantly among species (C. 

dubia vs. D. magna), exposure times (acute vs. chronic, i.e. only pH effect 

considered for chronic), type of water (artificial vs. natural) and the pH range 

considered (<8.0-8.2 vs. > 8.0-8.2, see also conclusion ii). 

(See section 4.3.6 for comparison C. dubia and D. magna and comparison of synthetic and 

natural waters for D. magna, see Figure 4.14 for comparison between different pH ranges for 

C. dubia) 

(xvii) Due to the latter, chronic toxicity data with C. dubia obtained at pH > 8.2 should 

only be used with great care when a Ni effects assessment needs to be conducted 

for waters with pH < 8.2. One possibility we recommend is a two-step 

normalization procedure, with the first step being a normalization to pH 8.2 with a 

model specifically developed for waters with pH > 8.2 (high pH-slope model) and 

the second step a further normalization to lower pH with the model developed for 

pH < 8.2 (low slope model). A similar approach could be followed when 

normalizations need to be carried out from pH < 8.2 to pH > 8.2.  

(See Figure 4.14 for the different pH slopes in different pH ranges for C. dubia, i.e. a high 

slope at pH >8.2 and a lower slope at pH < 8.2) 

(xviii) When, below pH 8.2, species-specific pH-slopes based on natural waters data are 

used, very accurate predictions of chronic toxicity are obtained, typically resulting 

in a prediction error of less than factor 2.  

(See Figure 4.13 for C. dubia and Figure 4.22 for D. magna) 
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(xix) Also, when a ‘merged’ average slope is used, based on natural waters test data 

only, very good predictive capacity of the models is observed for both D. magna 

and C. dubia. 

(See section 4.3.6 and Figures 4.21 and 4.22) 

(xx) We recommend that, for carrying out normalizations for risk assessment purposes, 

species-specific models should be used when they are available for a given 

invertebrate species. For other invertebrate species, we recommend that the 

normalizations are carried out with both the C. dubia and the D. magna pH slopes. 

The knowledge of the overall impact of using different slopes on the final PNEC 

will allow taking into account uncertainty due to interspecies differences of 

bioavailability models. If using different slopes does not result in major 

differences in the final PNEC estimate, it may be more practical to only use the 

‘average’ slope.  
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5. Revision of toxicity modelling with fish and algae  

 

The aim of this section was to refine and revalidate the Ni bioavailability models that 

were developed for fish and algae (Deleebeeck et al., 2005), using WHAM VI instead of the 

BLM software. The refinements were carried out according to similar fitting and modelling 

procedures as outlined in sections 3 and 4. Similar as in sections 3 and 4, the model 

developments and validations presented below replace all modelling chapters reported in 

Deleebeeck et al. (2005). However, all raw toxicity data reported in the latter study will be 

used for the current re-evaluation. 

 

5.2. Development and validation of Ni bioavailability models for fish 

 

All toxicity data with rainbow trout were extracted from Deleebeeck et al. (2005). Ni 

speciation in artificial waters was calculated at all investigated Ni concentrations in all test 

solutions, but also at the calculated 17d-LC50s and 21d-LC50s. The complete composition of 

all test waters and the input-files for the speciation calculations are given in annex 18.  The 

analysis and the model development will be based on 17-day data, whereas the 21-data will be 

used as validation only. As opposed to Deleebeeck et al. (2005), who only used the full 

concentration response dataset to estimate BLM parameters, we have also performed a 

preliminary screening of the individual effects of Ca, Mg, and pH based on LC50s. The 

speciation of the test solutions at 17d-LC50s and 21d-LC50s is reported in Table 5.1.  

 
When plotting 17d-pNi50 vs. pH a highly significant linear relation between 17d-pNi50 

and pH was found over the whole pH range of 5.5 to 8.5, with the slope of the pH function of 

0.324, which is within the range of the slopes found for chronic Ni toxicity to D. magna 

(slope = in artificial waters and 0.334 in natural waters) and C. dubia (slope = 0.859). This 

suggests that the pH function should preferably not be modelled by a single-site H+ 

competition effect, since this requires a linear relation between the LC50Ni2+ and the H+ 

activity (De Schamphelaere and Janssen, 2002).  
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Table 5.1 Speciation calculationsa at 17d- and 21d-LC50 for O. mykiss in synthetic test solutions; data 

from Deleebeeck et al. (2005); LC50Ni2+ and pNi50 are reported 

    17days 21days 

Test ID b pH (Mg2+) 
(M) 

(Ca2+) 
(M) 

LC50Ni2+ 
(M) 

pNi50 LC50Ni2+ 

(M) 
pNi50 

pH 5.8 5.48 9.24E-05 8.69E-05 3.16E-05 4.500 3.05E-05 4.516 
pH 6.4 6.76 9.19E-05 8.33E-05 1.31E-05 4.884 1.01E-05 4.994 
pH 7.0 7.19 9.18E-05 8.70E-05 9.91E-06 5.004 8.72E-06 5.060 
pH 7.6 7.67 9.23E-05 8.44E-05 7.43E-06 5.129 7.36E-06 5.133 
pH 8.2 8.47 8.94E-05 7.97E-05 3.19E-06 5.497 2.73E-06 5.563 
Mg basis 7.53 1.05E-04 8.09E-05 9.36E-06 5.029 8.57E-06 5.067 
Mg 0.5 7.53 3.77E-04 7.67E-05 >1.03E-05 <4.987 1.24E-05 4.905 
Mg 1 7.58 7.08E-04 8.64E-05 >1.82E-05 <4.740 >1.82E-05 <4.740 
Mg 2  7.55 1.40E-03 6.75E-05 3.33E-05 4.478 4.29E-05 4.368 
Mg 3 7.54 2.00E-03 6.13E-05 >1.77E-05 <4.752 >1.77E-05 <4.752 
Ca basis 7.59 9.87E-05 8.82E-05 6.68E-06 5.175 4.85E-06 5.314 
Ca basis 2 7.52 1.03E-04 9.07E-05 7.01E-06 5.155 ND ND 
Ca 0.5 7.63 9.67E-05 3.40E-04 8.53E-06 5.069 1.19E-05 4.926 
Ca 1 7.62 9.08E-05 7.61E-04 2.38E-05 4.623 1.56E-05 4.806 
Ca 3 7.52 8.25E-05 1.86E-03 2.19E-05 4.660 ND ND 
a See annex 18 for WHAM VI input 
b Test ID’s are the same as those used by Deleebeeck et al. (2005), consult this reference for detailed info 
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Figure 5.1 Toxicity of Ni2+ to O. mykiss, expressed as 17d-pNi50 as a function of pH 

 
 
Therefore we developed a refined bioavailability model which is similarly constructed 

as the chronic models for C.dubia and D. magna (see section 4, equation 4.6), and which 

predicts the LC50, expressed as free Ni2+ activity, for any test solution i. 

 

      50 2 2
2 ,50 10 1pH iS pH Q

Ni i CaBL MgBLi i
LC K Ca K Mg

    
               (Eq. 5.1) 

 



 93

This model assumes that the slope of the pH function is independent of the Ca and Mg 

concentration and that the log KMgBL and log KCaBL are independent of the pH. The second 

term on the right hand of this equation, which describes competition by Ca and Mg, is 

justified by the fact that both Ca and Mg clearly reduce the toxicity of Ni2+. This is 

demonstrated by increased values of the 17d-LC50Ni2+ at concentrations of these cations 

higher than those in the basis medium (Table 5.1).  As mentioned in Deleebeeck et al. (2005), 

the protective effects of Ca and Mg are not easy to compare because only one 17d-LC50 

could be derived for an increased Mg concentration. However, based on the approximately 

3.5-fold increase of the 17d-LC50Ni2+ at 2 mM Mg (33.3 µM) compared to the one in the 

basis medium (9.36 µM) and the similar 3.5-fold increase 17d-LC50Ni2+ at 1 and 3 mM Ca 

(23.8 and 21.9 µM) compared to the one in the basis medium (6.7 to 7.0 µM), it may be 

suggested that their protective effects are reasonably similar. The similarity of the LC50 at 1 

and 3 mM of Ca suggest that there may be a limit (a ‘plateau’) to the protective effect of Ca. 

 

The protective effect of Ca and Mg can be modelled on the basis of BLM-type, single-

site competition, by means of deriving stability constants for these cations (See Eq. 5.1). 

Applying the method of De Schamphelaere and Janssen (2002) to the dataset of the Ca and 

Mg test series, while also accounting for the uncertainty associated with (i) the limited LC50 

dataset for Mg and (ii) the apparent ‘plateau’ of the Ca protective effect, we found that initial 

estimates for both log KCaBL and log KMgBL between 3.1 and 3.8 were appropriate.  

 

In the next step, these values were optimized using the full concentration response 

data, by fitting following ‘normalized concentration’-response curve to survival (y %) 

observations at any investigated Ni concentration j in any test solution i. 

  

 
 

,

50

100

exp
1

exp

i j

y
Q

Q




 
 
 
 

                 (Eq 5.2) 

 

Where  
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 

    

2

,

, 2 2
log

1

i j

i j pH i

CaBL MgBLi i

Ni
Q S pH

K Ca K Mg



 
   

   
         (Eq. 5.3) 

 

is a measure of ‘bioavailable Ni’, being the Ni2+ activity normalized for pH, Ca, and Mg. It is 

the intercept of the linear relation between EC50pNi, corrected for hardness effects, vs. pH. A 

lower Q means a higher level of bioavailable Ni. SpH =0.3240, was taken from Figure 5.1, and 

KCaBL, KMgBL, Q50 and were optimized. Based on the previous discussion, we started the 

optimization with assuming log KCaBL = log KMgBL. The best fit was obtained with log KCaBL = 

log KMgBL = 3.6, Q50 = 2946 (95% CI: 2.881-3.010), = -4.477, with an r2 of 0.74. The result 

of this fit is exemplified in Figure 5.2. A comparison is provided with a plot of survival vs. 

pNi. This comparison clearly illustrates that pNi is a much worse predictor of Ni toxicity then 

Q, which is a measure of the truly bioavailable Ni2+. Assuming different values of log KCaBL 

vs. log KMgBL did not result in significant improvement of the fit, so our initial assumption 

seemed plausible, although additional research would be helpful to verify this in more detail.  

 

Now 17d-LC50Ni2+ can be predicted by equation 5.1, and by linking to WHAM VI, 17d-

LC50dissolved van be predicted. Also, equation 5.2 can be rearranged to predict the 

‘bioavailable’ Ni that would be expected to result in y% survival or x%=(100-y)% mortality.  

  

50

1 100
ln 1yQ Q

y

 
    

 
               (Eq. 5.4) 

 

and 

 

50

1 100
ln 1

100
xQ Q

x

 
    

 
             (Eq. 5.5) 
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Figure 5.2. 17d-survival as a function of pNi and Q, a measure of bioavailable Ni, for all synthetic test 

waters and all investigated Ni concentrations.  

 

 

Qx can replace Q50 in equation 5.1 to predict the Ni2+-activity expected at x% mortality (i.e., 

the LCxNi2+, as well as the dissolved Ni concentration associated with this, by using WHAM6: 

 

      2 2
2 , 10 1pH i xS pH Q

Ni i CaBL MgBLi i
LCx K Ca K Mg

    
                (Eq. 5.6) 

 

These predicted concentrations can then be compared with the measured Ni concentrations 

associated with x% mortality, and this can be done for all Ni concentrations and test solutions.  
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Observed vs. predicted 17d-LC50s and 17d-LCx are plotted in Figure 5.3. The data in Figure 

5.3 illustrate that most 17d-LC50s are predicted by an error of less than factor 2, not only for 

the synthetic test waters, but also for the natural test waters, the data of which have also been 

taken from Deleebeeck et al. (2005).  Meaningful validations could only be performed for 

four test waters (i.e. Ankeveen, Bihain, Brisy, and Markermeer) because the 17d-LC50 in 

‘Eppe’ was extrapolated and had very large confidence interval (filled triangle in Figure 5.3). 

The 17d-LC50s in Ankeveen, Brisy and Markermeer were predicted very accurately, i.e. by 

an error of 1.1-fold on average. The 17d-LC50 in Bihain was overestimated by 2.9-fold. 

Although this represents an important improvement compared to the model reported by 

Deleebeeck et al. (2005), where average prediction errors amounted to a factor of 6.4 for this 

surface water, it is still a much worse prediction than all other waters investigated. The latter 

may perhaps be explained by the fact that this test water had properties at the border of or 

even outside the chemistry ranges for which our model was developed. While in this water the 

pH of 5.6 was at the border, its water hardness of 14 mg CaCO3/L (Ca = 0.09 mM, Mg = 0.05 

mM, Table 2) was clearly lower than in all synthetic test waters, with a minimum hardness of 

25 mg CaCO3/L (Ca = Mg = 0.12 mM). The combination of those two rather ‘extreme’ 

conditions may have resulted in a higher-than-predicted sensitivity of the rainbow trout in this 

test water. In general, most 17d-LCx values could also be predicted by an error of less than a 

factor of 2. Again, three data points of the test in Bihain were inaccurately predicted. The 

same analysis was also repeated for the 21-day data, with similar observations (Figure 5.3), 

except that no 21-day data were available for Bihain water and the test at 3 mM Ca. The 

model constants for predicting 17-day and 21-day Ni toxicity to fish survival are summarized 

in Table 5.2. 
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Figure 5.3 Predictive capacity of the model for LC50’s (equation 5.1, top) and LCx’s for x>10% and 

<100% (equation 5.6, down) after 17 (left) and 21 days of exposure (right). Filled symbols indicate 

‘extrapolated’ LC50s and are less reliable to evaluate the predictive capacity of the models. The model 

constants for 17-day and 21-day Ni toxicity to fish survival are summarized in Table 5.2. 

 

Table 5.2 Parameter values for the Ni 
bioavailability models for chronic 
rainbow trout survival to be used in 
equations 5.1, 5.5 and 5.6.  

Parameter Parameter value 

log KCa 3.6 
log KMg 3.6 
SpH 0.324 
17d-Q50 2.946 

17d- -4.477 
21d-Q50 3.002 

21d- -4.520 



 98

5.3. Development and validation of Ni bioavailability models for algae 

 

 
5.3.1. Refinement of the Ni bioavailability model 
 

We re-evaluated the 72-hour toxicity data with Pseudokirchneriella subcapitata 

reported in Deleebeeck et al. (2005) using WHAM 6 as the speciation model. First, All 72h-

ErC10 and ErC50s obtained in synthetic test waters were taken from this study as well as the 

water chemistry associated with each test. The input-file for speciation calculations, with full 

chemistry of these solutions is given in annex 19. The most important components of the test 

media is given in Table 5.3. As in Deleebeeck et al. (2005), the model development described 

below will be based on 72h-ErC50’s; the model will then be validated for 72h-ErC10s. The 

results of the speciation calculations, i.e. calculated activities of H+, Ca2+, Mg2+, and Ni2+ are 

also given in Table 5.3. 

 

Similar as in Deleebeeck et al. (2005), we observed that increased activities of H+, 

Ca2+, Mg2+ resulted in reduced toxicity of Ni2+. While increased Ca2+ and Mg2+ resulted in 

linear increases of the 72h-ErC50Ni2+’s, an increase of H+ only yielded a linear increase of the 

72h-ErC50Ni2+ up to an H+ activity of 0.6 µM (or down to a pH of 6.5) (Figure 5.4). At a pH 

of 6.1 a similar 72h-ErC50 was observed compared to pH 6.45.  

 

In order to take into account the pH effect by means of a biotic ligand model, we 

therefore decided not to consider data points with a pH lower than 6.45 for model 

development. This also sets the lower boundary of this model’s applicability to pH 6.45. 

Using the method described by De Schamphelaere and Janssen (2002) we derived parameter 

values for KHBL, KCaBL, and KMgBL to be used in BLM-type Ni-toxicity equation which is used 

to predict the ECxNi2+ for any test solution i, based on known activities of H+, Ca2+, and Mg2+: 

 

      * 2 2
2 , 272 72 1r Ni i r Ni CaBL MgBL HBLi i i

h E Cx h E Cx K Ca K Mg K H  
            (Eq. 5.7) 
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Table 5.3 Test solution compositionsa, speciation b and 72h-ErC50’s and ErC10’s of Ni for P. subcapitata in synthetic test 
waters (data from Deleebeeck et al., 2005).  
Test ID c pH Total Ca 

(M) 
Total Mg 

(M) 
Dissolved 

EC50 
(µg/L) 

Dissolved 
EC10 
(µg/L) 

Activity 
(H+) 
(M) 

Activity 
(Mg2+) 

(M) 

Activity 
(Ca2+) 
(M) 

EC50 
Ni2+ 

activity 
(M) 

EC10 
Ni2+ 

activity 
(M) 

Mg 0.12 mM * 7.48 7.73E-05 1.23E-04 124 25.3 3.31E-08 9.13E-05 5.73E-05 1.46E-06 2.99E-07
Mg 0.5 mM 7.51 7.49E-05 4.53E-04 255 75.2 3.09E-08 3.29E-04 5.42E-05 2.94E-06 8.66E-07
Mg 1.0 mM 7.5 7.73E-05 8.64E-04 321 108 3.16E-08 6.11E-04 5.45E-05 3.61E-06 1.21E-06
Mg 1.5 mM 7.52 7.73E-05 1.85E-03 399 124 3.02E-08 1.25E-03 5.21E-05 4.29E-06 1.33E-06
Mg 2.0 mM 7.53 7.73E-05 1.89E-03 596 162 2.95E-08 1.26E-03 5.16E-05 6.36E-06 1.72E-06
Mg 2.5 mM 7.54 7.73E-05 2.35E-03 742 252 2.88E-08 1.54E-03 5.06E-05 7.69E-06 2.62E-06
Mg 3.0 mM 7.53 7.49E-05 2.92E-03 812 213 2.95E-08 1.87E-03 4.79E-05 8.25E-06 2.17E-06
Mg 4.0 mM 7.54 7.49E-05 3.83E-03 821 284 2.88E-08 2.37E-03 4.62E-05 8.07E-06 2.79E-06
Mg 5.0 mM 7.52 7.49E-05 4.73E-03 1119 365 3.02E-08 2.84E-03 4.49E-05 1.07E-05 3.48E-06
Ca 0.12 mM * 7.4 8.48E-05 1.15E-04 93.7 30.3 3.98E-08 8.58E-05 6.31E-05 1.12E-06 3.61E-07
Ca 0.5 mM 7.38 3.49E-04 1.15E-04 108 36.6 4.17E-08 8.41E-05 2.54E-04 1.26E-06 4.28E-07
Ca 1.0 mM 7.4 6.99E-04 1.15E-04 114 37.3 3.98E-08 8.19E-05 4.97E-04 1.30E-06 4.25E-07
Ca 2.0 mM 7.39 1.45E-03 1.15E-04 136 51.9 4.07E-08 7.83E-05 9.85E-04 1.48E-06 5.64E-07
Ca 3.0 mM 7.39 2.17E-03 1.15E-04 122 31.5 4.07E-08 7.54E-05 1.42E-03 1.28E-06 3.30E-07
Ca 4.0 mM 7.41 2.87E-03 1.15E-04 144 42.1 3.89E-08 7.29E-05 1.82E-03 1.45E-06 4.26E-07
Ca 5.0 mM 7.44 3.59E-03 1.15E-04 141 40.5 3.63E-08 7.08E-05 2.21E-03 1.38E-06 3.97E-07
pH 6.0 d 6.01 8.48E-05 1.28E-04 125 47.5 9.77E-07 9.33E-05 6.17E-05 1.51E-06 5.74E-07
pH 6.4 6.45 8.73E-05 1.28E-04 145 51.9 3.55E-07 9.35E-05 6.36E-05 1.74E-06 6.22E-07
pH 7.2 7.29 8.73E-05 1.23E-04 91.8 37 5.13E-08 8.98E-05 6.36E-05 1.07E-06 4.33E-07
pH 7.6 * 7.65 8.98E-05 1.19E-04 83.1 44.3 2.24E-08 8.68E-05 6.53E-05 9.56E-07 5.09E-07
pH 8.0 7.92 8.73E-05 1.28E-04 81.5 35.9 1.20E-08 9.33E-05 6.34E-05 9.09E-07 4.00E-07
pH6-Mg 0.12 mM 6.23 1.15E-04 1.28E-04 172 57.6 5.89E-07 9.41E-05 8.44E-05 2.09E-06 6.99E-07
pH-6 Mg 1.5 mM 6.13 1.15E-04 1.48E-03 880 312 7.41E-07 1.00E-03 7.80E-05 9.88E-06 3.50E-06
pH-6 Mg 3.0 mM 6.08 1.05E-04 3.00E-03 883 145 8.32E-07 1.91E-03 6.67E-05 9.23E-06 1.52E-06
pH7-Mg 0.12 mM 7.2 1.12E-04 1.77E-04 108 26.5 6.31E-08 1.29E-04 8.16E-05 1.27E-06 3.12E-07
pH-7 Mg 1.5 mM 7.16 1.10E-04 1.36E-03 601 180 6.92E-08 9.23E-04 7.45E-05 6.54E-06 1.97E-06
pH-7 Mg 3.0 mM 7.15 1.12E-04 3.05E-03 914 292 7.08E-08 1.93E-03 7.07E-05 9.32E-06 2.98E-06
pH7.8-Mg 0.12 mM 7.95 1.07E-04 1.23E-04 98.3 31.5 1.12E-08 9.02E-05 7.82E-05 1.09E-06 3.52E-07
pH-7.8 Mg 1.5 mM 7.88 1.10E-04 1.48E-03 345 44.3 1.32E-08 1.00E-03 7.43E-05 3.61E-06 4.64E-07
pH-7.8 Mg 3.0 mM 7.85 1.07E-04 3.00E-03 395 91.2 1.41E-08 1.90E-03 6.77E-05 3.89E-06 8.97E-07
a See annex 19 for full WHAM VI input chemistry  
b All speciation calculations were run with WHAM VI 
c Test ID’s are the same as those used by Deleebeeck et al. (2005), tests have been conducted in four separate test runs, i.e., the 
univariate Mg series, Ca series, and pH series, and the bivairate pH-Mg series series; consult this reference for detailed info; 
test media marked by an * have same pH, Ca, and Mg as standard OECD test water (OECD, 1984) 
d data point not used for model development, implying model to be used carefully below pH 6.45 (see text) 
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Figure 5.4 The effect of H+, Mg2+, and Ca2+ on the 72h-ErC50Ni2+. The open square data point in 

the upper panel is not used for modeling (see text). 
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Theoretically, the ECx*
Ni2+ is the ECxNi2+ under the condition where competition by 

competing cations is negligible. It is thus a model constant which is, within the proposed 

BLM concept, assumed to represent the ‘inherent sensitivity’ of the algae, i.e. the sensitivity 

which is independent of water chemistry, and equals: 

 

 
*

2
1

x
NiBL

r Ni x
NiBL NiBL

f
E Cx

f K
 

 
               (Eq. 5.8) 

 

 

Where fx
NiBL = the fraction of biotic ligand sites occupied by Ni at x% inhibition of algal 

growth rate, independent of water chemistry. Whatever value of KNiBL is assumed, there is 

always a value of fx
NiBL which is unambiguously associated with it, through equation 5.8. 

Although values can be assigned to both parameters, it is mathematically not strictly needed 

for toxicity predictions with equation 5.7. Accordingly, this was not carried out in the present 

study.  

 

We derived values of log KHBL = 6.5, log KCaBL = 2.0 and log KMgBL = 3.3. The large 

difference between stability constants for Ca and Mg reflects the much larger influence of Mg 

on Ni toxicity to P. subcapitata (Figure 5.5). For this reason it is important to explicitly 

differentiate between Ca and Mg in Ni effects estimations. The model parameter ECx*
Ni2+ was 

derived for x=10 and x=50, according to a similar approach as followed in Section 3: 

 

      
2 ,*

2 2 2

72
72
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n
r Ni i

r Ni n
i CaBL MgBL HBLi i i

h E Cx
h E Cx

K Ca K Mg K H



   


 

     
          (Eq. 5.9) 

 

Briefly, the right-hand term was calculated for each exposure solution i investigated, 

using calculated activities of H+, Ca2+, Mg2+, and EC50Ni2+ and EC10Ni2+ (annex x) and the 

parameter values for KHBL, KCaBL, and  KMgBL  reported in Table 5.3. This term was then 

averaged (geometric mean) over the n test solutions investigated. Only the data from 

univariate test series of Ca, Mg and pH (except pH 6.0) were used for this estimation. Values 

of 1.12 µM and 0.365 µM of Ni2+ were found for the EC50*
Ni2+ and the EC10*

Ni2+, 

respectively. All model parameters are summarized in Table 5.4.  
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Table 5.4 Parameter values for the Ni BLM 
for P. subcapitata growth inhibition to be used 
in BLM-equations 5.7 and 5.9.a  

Parameter Parameter value 

‘Bioavailability 
parameters’ 

 

log KH 6.5 
log KCa 2.0 
log KMg 3.3 
‘Inherent 
sensitivity’ 

 

EC50*
Ni2+ (µM) 1.12 (3.57)b 

EC10*
Ni2+ (µM) 0.365 (0.549) b 

a Equation 5.7 yields predicted values of EC50s 
and EC10 expressed as Ni2+-activity; these 
activities need to be inserted into WHAM VI to 
predict EC10’s and EC50’s as dissolved Ni 
b The lower value is the model based on  tests 
from the Ca, Mg, and pH test series  reported in 
Table 5.3 and was used to generate Figures 5.5 
and 5.6; The higher value is the value calibrated 
to the lower ‘inherent sensitivity’ of the algae 
during tests with natural waters and  was used to 
generate Figure 5.7 (see also text) 
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Figure 5.5 Predictive capacity of the Ni-BLM (Equation 5.7, parameter values in Table 5.4) for P. 

subcapitata in synthetic test waters from different univariate test series (data from Delebeeck et al., 2005) 

as shown by observed vs. predicted 72h-ErC50’s and 72h-ErC10’s. The calibration was performed on data 

from the Mg, Ca, and pH test series according to equation 5.7. The full line indicates perfect predictions; 

the dashed line indicates a 2-fold prediction error. Filled data points were obtained at pH < 6.4 
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Figure 5.5 demonstrates how well this model is calibrated to this dataset. When the 

data point obtained at pH < 6.4 was not considered (filled triangle), all EC50’s and EC10’s 

were predicted by an error of less than factor 2 with an average 1.3-fold prediction error for 

both EC50’s and EC10’s. The EC50 and EC10 for this data point at pH 6.0 were 

overestimated by 3.2 and 2.7-fold, respectively (filled triangle in Figure 5.5). This is logic 

since the model (equation 5.7) predicts a continuous increase of the ECx with decreasing pH, 

while the data suggest otherwise below pH 6.4 (see open square data point in Figure 5.4, 

upper panel). 

 
5.3.2. Independent model validation with synthetic waters 

 

A validation was also carried out with synthetic waters in which pH and Mg, which 

are the two most important factors affecting Ni toxicity to P. subcapitata, were varied in a 

bivariate manner (Deleebeeck et al., 2005). This validation was carried out to see whether the 

developed model could also cope with potential interactive effects of pH and Mg, which 

cannot be directly inferred from univariate testing. The model used is equation 5.7 with the 

parameter values in Table 5.4. The outcome of this validation is also presented in Figure 5.5. 

When the three data points obtained at pH = 6.0 were not considered (filled diamonds), All 

EC50’s and all but one EC10 were predicted by an error of less than factor 2. The average 

prediction errors were 1.4-fold for the EC50’s and 1.8-fold for the EC10’s. Remarkably, All 

EC50’s and EC10’s obtained at pH 6.0 (i.e., outside the models calibration range, filled 

diamonds in Figure 5.5) and at Mg concentrations between 0.12 and 3.0 mM, were also 

predicted by an error of less than a factor of 2 (average = factor 1.6). Even the data point 

obtained at pH 6.0 and Mg = 0.12 mM was reasonably well predicted, although this is exactly 

the same synthetic test water (same composition) as the test water at pH 6.0 in the pH test 

series (open square data point in Figure 5.4). Hence, it might be possible that the ECx values 

from the latter test might have been an ‘outlier’ and that the model might perhaps roughly be 

valid even at pH < 6.4. This will be addressed below, where data from tests in natural waters 

will be validated. 

 

5.3.3. Independent model validation with natural waters 
 

A validation was also carried out with tests in natural waters reported by Deleebeeck et al. 

(2005). The latter study also included a data set generated earlier by Bossuyt et al. (2001). The 

main water chemistry and 72h-ErC50 and 72h-ErC10 values are reported in Table 5.5. 
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Although Deleebeeck et al. (2005) did not consider the part of the Bossuyt et al. (2001) 

dataset that was obtained in artificial waters (i.e., two tests in standard OECD test water), we 

wanted to include them in the present re-evaluation from a weight-of-evidence perspective. 

The model used is again equation 5.7 with the parameter values in Table 5.4. All calculations 

were performed with WHAM VI, using the DOC assumptions explained in detail in section 

3.1.3.2, i.e. log KMA(Ni) = 1.75 and 40 % active fulvic acid. The outcome of this validation is 

presented in Figure 5.6.  

 

Table 5.5 Test solution compositionsa, speciation b and 72h-ErC50’s and ErC10’s of Ni for P. subcapitata in natural 
waters and synthetic test waters tested along with these (data from Bossuyt et al., 2001; Deleebeeck et al., 2005, and 
from the present study).  
Test waterc Data 

Source 
pH d DOC 

(mg/L) 
Total Ca 

(M) 
Total Mg 

(M) 
Dissolved 

EC50 
(µg/L) 

Dissolved 
EC10 
(µg/L) 

Activity 
(H+) 
(M) 

Activity 
(Mg2+) 

(M) 

Activity 
(Ca2+) 
(M) 

EC50 
Ni2+ 

activity 
(M) 

Bihain 1 6.35 6.62 9.81E-04 1.80E-04 483 90 4.47E-07 1.22E-04 6.49E-04 4.84E-06 
Bihain 1 6.35 6.62 9.81E-04 1.80E-04 508 88.2 4.47E-07 1.22E-04 6.49E-04 5.10E-06 
Ankeveen 1 7.37 25.8 1.32E-03 4.57E-04 1236 314 4.27E-08 2.91E-04 8.16E-04 7.34E-06 
Ankeveen 1 7.47 25.8 1.32E-03 4.57E-04 1043 219 3.39E-08 2.91E-04 8.14E-04 5.75E-06 
Mole 1 7.99 5.14 1.40E-03 4.63E-04 584 154 1.02E-08 2.91E-04 8.56E-04 3.97E-06 
Mole 1 8.01 5.14 1.40E-03 4.63E-04 750 73.7 9.77E-09 2.90E-04 8.56E-04 5.17E-06 
OECD* M 1 7.70 0 e 1.20E-04 1.20E-04 339.0 67.1 2.00E-08 9.47E-05 9.44E-05 4.17E-06 
OECD* M 1 7.70 0 e 1.20E-04 1.20E-04 399.8 44.6 2.00E-08 9.47E-05 9.44E-05 4.91E-06 
Ankeveen 2 6.96 22.6 1.02E-03 2.91E-04 823 - f 1.10E-07 1.95E-04 6.66E-04 5.23E-06 
Bihain 2 5.69 9.76 1.10E-04 4.00E-05 598 154 2.04E-06 3.32E-05 8.99E-05 6.80E-06 
Brisy 2 6.89 2.54 2.53E-04 1.57E-04 376 75.5 1.29E-07 1.28E-04 2.04E-04 4.40E-06 
Eppe 2 7.42 4.88 8.34E-04 2.50E-04 804 245 3.80E-08 1.85E-04 6.09E-04 7.30E-06 
Markermeer 2 7.74 8.37 1.54E-03 6.40E-04 875 154 1.82E-08 3.92E-04 9.18E-04 5.95E-06 
Regge 2 7.65 10.3 1.72E-03 3.25E-04 1072 251 2.24E-08 2.12E-04 1.10E-03 7.17E-06 
OECD* M 3 7.42 0 e 1.20E-04 1.20E-04 362 63 3.80E-08 9.10E-05 9.08E-05 4.42E-06 
OECD+ M 3 7.42 0 e 2.00E-03 5.00E-04 669 99 3.80E-08 3.31E-04 1.32E-03 7.14E-06 
Ankeveen 3 7.29 22.4 1.63E-03 4.10E-04 1627 425 5.13E-08 2.54E-04 9.79E-04 1.10E-05 
Brisy 3 6.53 4.1 2.20E-04 1.57E-04 506 154 2.95E-07 1.24E-04 1.73E-04 5.82E-06 
Regge 3 7.78 10.9 1.49E-03 3.22E-04 1186 301 1.66E-08 1.97E-04 8.92E-04 7.29E-06 
a See annex 20 for full WHAM VI input chemistry; composition was calculated from measured concentrations in 
natural waters, taking into account additions of nutrients according to the OECD (1984) protocol, and pH 
adjustments with NaOH  
b All speciation calculations were run with WHAM VI 
c Test media marked by an * have same pH, Ca, and Mg as standard OECD test water (OECD, 1984); OECD+ is standard 
OECD test water with Ca increased to 2 mM and Mg to 0.5 mM; tests marked with an M were used for model calibration to the 
specific inherent sensitivity of the algae in these test series (see text and also Table 5.4) 
e (1) Bossuyt et al. (2001); (2) Deleebeeck et al. (2005); (3) Present study, newly generated data 
d Average pH recorded during testing; for data from Bossuyt et al. (2001) average measured pH values were obtained via 
personal communication 
e DOC in synthetic test media was assumed not to complex significant amounts of Ni (based on data reported in section 4.3.2.1) 
f data point not considered because unreliable confidence intervals (see Deleebeeck et al. (2005) for more info 
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Figure 5.6 Independent evaluation of the predictive capacity of the Ni-BLM (Equation 5.7, parameter 

values in Table 5.4) for P. subcapitata in natural test waters (data from Bossuyt et al., 2001; Delebeeck et 

al., 2005) and two standard synthetic waters tested along with the natural waters in Bossuyt et al. (2001). 

Figures show observed vs. predicted 72h-ErC50’s and 72h-ErC10’s. The calibration was performed on 

data from the univariate Mg, Ca, and pH test series according to equation 5.7. The full line indicates 

perfect predictions; the dashed line indicates a 2-fold prediction error. Filled data points were obtained at 

pH < 6.4. 

 

When the three data points obtained at pH < 6.45, i.e. pH 5.7 in Bihain water tested by 

Deleebeeck et al. (2001) and pH 6.35 in Bihain water tested by Bossuyt et al. (2001) were not 

considered (filled symbols in Figure 5.6), all EC50’s were underestimated by more than 2-

fold, with an average of 2.6. Although predictions of EC10’s exhibited an average 1.6-fold 

difference with observed EC10’s, most of them were also underestimated (i.e., below the 1:1 

reference line, Figure 5.6).  

 

Initially, this looked as if the model developed based on synthetic waters does not 

capture the effects of bioavailability modifying factors in the field and/or the interactive 

between these factors. However, in section 5.3.2 we showed that the interactive effects of Mg 

and pH were reasonably well predicted. Another potential explanation, as also put forward 

previsouly for chronic D. magna test results (section 4.3.3.2), might have been that the 

presence of humic substances in the natural test waters (as opposed to synthetic waters) might 

have ameliorated Ni toxicity beyond its effect on Ni-speciation. This would indeed lead to 

higher-then-observed predictions of ECx levels in the presence of natural DOC.  

 



 106

However, when the test data obtained in standard synthetic test water are considered 

(“+” in Figure 5.6), which were tested simultaneously with the natural waters by Bossuyt et 

al. (2001), it is observed that EC50’s and EC10’s are also largely underestimated, i.e. by 3.2-

fold and 1.5-fold, respectively. Again, the underestimation was worse for the EC50 then for 

the EC10. This put forward the idea that perhaps the differences of the inherent sensitivity of 

P. subcapitata between different test series, might have been larger than anticipated. To 

investigate this, we calculated EC50*Ni2+ and EC10*Ni2+ separately for each test series using 

equation 5.9, since these are good measures of the ‘inherent’ sensitivity (see above). If 

possible, only the synthetic test waters were used to calculate these values; pH values lower 

than 6.45 were not considered. The results of these calculations are presented in Table 5.6.  

 

Table 5.6 ‘Inherent sensitivity’ a of P. subcapitata in different test runs  

Data source Test series / waters b EC50*Ni2+ (µM) EC10*Ni2+ (µM) 

Deleebeeck et al. (2005) Mg 1.52 0.448 
Deleebeeck et al. (2005) Ca 0.953 0.299 
Deleebeeck et al. (2005) pH (without pH<6.45) 0.794 0.314 
Deleebeeck et al. (2005) pH-Mg (without pH<6.45) 1.18 0.300 
    
Bossuyt et al. (2001) two OECD waters 3.60 0.543 
This study OECD and OECD+ water 3.55 0.567 
Deleebeeck et al. (2005) Natural (without pH < 6.45) 3.46 0.685 
a ‘Inherent sensitivity’ is reported as EC50*Ni2+ and EC10*Ni2+, and was calculated as explained  in text by 
applying equation 5.9 to data from Tables 5.3 and 5.5 
b See Tables 5.3 and 5.5 for more information on these test series 

 

The calculation reveals important inter-test series differences of the inherent 

sensitivity. Indeed, when only artificial test waters are considered, EC50*Ni2+ values varied 

between 0.79 and 3.6 µM (factor 4.5), while EC10*Ni2+ values only varied between 0.30 and 

0.54 (factor 1.5). Interestingly, the inherent sensitivity in the Bossuyt et al. (2001) dataset 

seemed lower than the inherent sensitivity in the synthetic waters dataset of Deleebeeck et al. 

(2005), although the differences are less for the EC10-level than for the EC50-level.  

Therefore, this may very well explain why the natural waters EC50 values of Bossuyt et al. 

(2001) were underestimated (Figure 5.6), while it was less obvious for their EC10 values. A 

similar conclusion is reached when the ‘dissolved’ EC50 and EC10 values in synthetic media 

with the same pH, Ca, and Mg, but performed in different test series, are compared. This can 

be done for the pH, Ca, and Mg test series of Deleebeeck et al. (2005) as well as for the 

Bossuyt et al. (2001) test series, which all contain a test at pH, Ca, and Mg of the OECD 

standard test water (media marked with a * in Tables 5.3 and 5.5). While EC50’s in this 
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OECD medium were between 83.1 and 124 µg Ni/L in the univariate pH, Ca, and Mg test 

series, they were between 339 and 400 µg Ni/L in Bossuyt et al. (2001) (See Tables 5.3 and 

5.5). Again, EC10’s were less different, i.e. between 25.3 and 44.3 µg/L in the univariate pH, 

Ca, and Mg test series, and between 44.6 and 67.1 µg Ni/L in Bossuyt et al. (2001). These 

data confirm the conclusion that is reached on the basis of the ‘inherent’ sensitivity 

parameters EC50*Ni2+ and EC10*Ni2+. 

 

A similar independent evaluation of the natural waters dataset of Deleebeeck et al. 

(2005) was not possible because no parallel (simultaneous) tests in synthetic waters were 

tested along with those. However, when the EC50*Ni2+ and EC10*Ni2+ values were calculated 

for these natural waters, we found values of 3.46 and 0.69, respectively, which are similar as 

in the Bossuyt et al. (2001) dataset, but also much larger than in the synthetic waters tested by 

Deleebeeck et al. (2005) (Table 5.6).  

 

As a preliminary conclusion we therefore hypothesize that the erroneous predictions of 

nickel toxicity in natural waters was more likely due to inherent sensitivity differences 

between test series rather than due to a failure of the proposed model structure, i.e. the BLM 

(Equation 5.7, Table 5.4). However, since the evidence was largely based on the limited 

dataset of Bossuyt et al. (2001), i.e. one type of artificial water, and two natural surface waters 

with pH > 6.4, we decided to perform some additional testing. 

 

We sampled three natural surface waters, which had also been tested at previous 

occasions, i.e. Ankeveen, Brisy, and Regge. Water chemistry was determined according to 

procedures mentioned in section 2.1. Samples were spiked with a range of different Ni 

concentrations and ecotoxicity tests with P. subcapitata were conducted as described in 

Deleebeeck et al. (2005). Simultaneously, the standard OECD medium was also investigated, 

as well as OECD medium with increased levels of Ca (from 0.12 mM to 2 mM) and Mg (from 

0.12 mM to 0.5 mM) (marked as OECD+ in Table 5.5).  

 

The water chemistry of these waters, as well as the EC50 and EC10 levels of Ni are 

reported in Table 5.5.  The EC50 and EC10 levels in OECD medium in this test series were 

362 and 63 µg/L, respectively, which is similar to the values obtained for the Bossuyt et al. 

Data (2001), and again higher than the values obtained for this water by Deleebeeck et al. 

(2005). When the inherent sensitivity of the new test series is calculated on the basis of the 
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two synthetic test waters (OECD and OECD+), we found values for EC50*Ni2+ and EC10*Ni2+ 

of 3.55 and 0.57 µM, respectively, which are both very similar to the values obtained for the 

Bossuyt et al. (2001) dataset and the natural waters dataset of Deleebeeck et al. (2005) (Table 

5.6). 

 

When all datasets are considered, they may be divided into two different subsets, 

depending on the ‘inherent sensitivity’ of the algae during testing. One group consists of all 

test data from Deleebeeck et al. (2005) obtained in synthetic waters; the other group consists 

of the datasets of Bossuyt et al. (2001), the natural waters dataset of Deleebeeck et al. (2005), 

and the dataset generated in the present study. It is currently unclear why such a large 

sensitivity difference exists between these two subsets, especially because all tests were 

carried out according to the same test protocol – all datasets were generated in our laboratory.  

 

At this point it is appropriate to state that bioavailability models are by definition not 

able to predict ‘inherent sensitivity’ differences. Rather, they are designed to predict toxic 

effect levels for waters with different combinations of bioavailability modifying factors when 

the ‘inherent sensitivity’ is known. Therefore, to evaluate the true predictive capacity of the 

algal BLM developed here - which consists of the stability constants describing modifying 

effects of Mg, Ca, and pH – we will now perform predictions of EC50’s and EC10’s, with 

calibrated inherent sensitivities. The values used for EC50*Ni2+ and EC10*Ni2+ were 3.57 µM 

and 0.55 µM, respectively (Table 5.4). Those were obtained by applying equation 5.9 only to 

the toxicity data obtained in synthetic waters from Bossuyt et al. (2001) and the newly 

generated data in OECD and OECD+ test waters (Table 5.5). By calibrating the model to the 

sensitivity in these datasets on the basis of synthetic waters alone, a new independent 

validation of the natural waters data was possible. The results of this validation are presented 

in Figure 5.7.   
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Figure 5.7 Independent evaluation of the predictive capacity of the Ni-BLM (Equation 5.7, parameter 

values in Table 5.4, adjusted ‘inherent sensitivity’, i.e. EC50*Ni2+ = 3.57 µM and EC10*Ni2+ = 0.55 µM) for 

P. subcapitata in natural test waters (data from Bossuyt et al., 2001; Deleebeeck et al., 2005 and also from 

the present study) and two standard synthetic waters tested along with the natural waters in Bossuyt et al. 

(2001) and the present study (see Table 5.5, see also text for more details). Figures show observed vs. 

predicted 72h-ErC50’s and 72h-ErC10’s. The full line indicates perfect predictions; the dashed line 

indicates a 2-fold prediction error. Filled data points were obtained at pH < 6.4. 

 

When the data points obtained at pH < 6.45 are not considered, all EC50’s and most 

EC10’s are predicted by an error of less than 2-fold, with average prediction errors of 1.4-fold 

for EC50’s and 1.5-fold for EC10’s. As opposed to Figure 5.6, it is now noted that the 

predictions are not skewed to the ‘underestimation’ side of the 1:1 reference line, but that they 

are equally spread along both sides of this line.  

 

Interestingly, The EC50 and EC10 in the Bihain test waters investigated by Bossuyt et 

al. (2001) were also predicted reasonably well, despite the fact that pH of these waters was 

below 6.45. However, pH in these test waters was only slightly lower, i.e. 6.35, again 

suggesting that the valid pH range of applying the algal BLM might be extended to lower 

pH’s (see also section 5.3.2). However, the EC50 and EC10 in Bihain water tested at pH 5.7 

by Deleebeeck et al. (2005) were still overestimated by 3.6 and 2.5-fold respectively, 

suggesting that there is clearly a limit to this extrapolation. Based on the reasonable model 

validations with data from Bihain water at pH 6.35 tested by Bossuyt et al. (2001) and from 

the tests carried out at pH 6.0 in the pH-Mg test series (Deleebeeck et al., 2005), we suggest 

that the model may be reasonably safely extended to a pH as low as 6.0, although the 
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uncertainty about model predictions between pH 6.0 and 6.4 is likely to be higher than at pH 

> 6.4     

 

5.3.4. Conclusion on the Ni bioavailability model for algae 
 

Although there are some uncertainties related to differences in ‘inherent’ sensitivity of 

the alga across different test series, the developed bioavailability model can reasonably 

accurately predict chronic effect concentrations of Ni in natural waters when these inherent 

sensitivity differences are taken into account. When data below pH 6.4 are not taken into 

account, average prediction errors based on tests in 12 samples were 1.4-fold for EC50’s and 

1.5-fold for EC10’s. All ECx values were predicted by an error of less than factor 2.1. This 

represents an important reduction of uncertainty due to differences in bioavailability, since 

‘dissolved’ EC50’s and EC10’s varied between 425 and 1630 µg Ni/L (factor 3.8) and 

between 73.3 and 376 µg Ni/L (factor 5.1). 
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7. Annexes 

 

Since the majority of the Annexes are very large tables, they are only available in spreadsheet 

format (Microsoft Excel®). These annexes can be obtained from the authors upon request. 

Following Annexes are also available in the text below: 1A, 1B, 1C, 2, 3, 4, 5, and 16.  
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ANNEX 1A – Description of sampling sites 
 
 

Ankeveen   

This body of water is a ditch, which connects to a large system of interconnected lakes called the 

Ankeveensche Plassen (NL). It is located in a lowland peat area in the Netherlands close to the village 

of Nederhorst-den-Berg.  The surface water is characterized by an intermediate pH (usually around 7), 

a moderate hardness and a high DOC concentration.  

 

Bihain 

A small creek (named Ruisseau de St. Martin) located in the nature reserve named Hoge Venen, which 

is a highland peat rich area in Belgium (Walloon region).  The water of this creek is characterized by 

low pH and low to intermediate DOC concentration.  Usually hardness is low, but higher Ca levels 

may occasionally be observed during drought periods. 

 

Brisy 

This sampling site is part of the eastern branch of the river Ourthe, called the ‘Ourthe Orientale’. It is 

located near the village of Brisy (Belgium, Wallon region) and is situated in a forested area.  This site 

is characterized by low DOC concentration, low hardness and a pH close to 7. 

 

Eppe 

This is a small stream just outside the protected forest area called ‘Le Val Joly’.  The sample was 

taken close to where it joins the river ‘Helpe Majeure’, which is a tributary of the river Samber.  The 

water is charactezired by low DOC, moderate hardness and a pH between 7 and 8.  

 

Markermeer 

This site is a large lake in the north of the Netherlands, cut off by a dam from Lake Ijssel and the 

‘Waddenzee’ sea. It is characterized by high pH, high hardness and an intermediate DOC 

concentration.   

 

Regge   

This river in the north of the Netherlands is situated in the province of Overijssel and joins the river 

Vecht near the village of Ommen, where the sample was taken.  The water is characterized by high pH 

and hardness and a moderate to high DOC concentration. 
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ANNEX 1B
Site chemistry (trace elements and macro-ions in µg or mg/L units)
note: final chemistries used for data analysis are in Annexes 2 and 3

IC (mM) IC (mM) hardness
pH DOC (mg/L) UGENT KUL mg CaCO3/L

Ankeveen 7.1 23.56 0.79 0.75 131.6
Bihain 6.1 6.36 0.13 0.13 15.0
Brisy 7.5 3.06 0.41 0.33 41.1
Eppe 7.7 5.02 1.76 1.50 108.4
Markermeer 8.1 7.61 1.94 1.86 218.1
Regge 7.9 12.57 2.95 2.60 204.0

Background of trace elements (µg/L)
Ni Cd Cu Pb Zn Fe Al Mn  

Ankeveen 2.8 0.4 1.4 0.5 6.1 139.7 28.6 0.7
Bihain 2.0 1.7 2.0 1.1 21.0 65.0 23.0 BDL
Brisy 1.7 0.5 1.6 1.4 6.6 98.7 23.6 2.6
Eppe 1.2 0.4 0.4 0.3 2.1 109.5 20.2 5.0
Markermeer 1.4 0.2 1.0 1.2 3.2 5.3 2.7 BDL
Regge 3.2 0.2 1.0 0.4 5.6 52.0 BDL 0.5

BDL=below detection limit

Macro-cations (mg/L) Macro-anions (mg/L)
Ca Mg Na K Cl SO4 NO3

Ankeveen 41.1 7.1 17.2 7.4 29.1 81.0 3.1
Bihain 4.4 1.0 4.1 0.8 8.8 6.4 3.6
Brisy 10.1 3.8 6.8 2.3 16.2 8.6 13.3
Eppe 33.4 6.1 9.0 4.5 15.5 18.5 6.9
Markermeer 61.8 15.6 78.3 9.4 95.5 110.2 3.1
Regge 68.8 7.9 43.2 12.0 44.9 56.3 7.6

Note: pH and IC are values measured upon arrival in the 
laboratory, measured pH and IC during speciation and toxicity 
experiments are used in all data analyses.
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ANNEX 1C

Site chemistry (trace elements and macro-ions in molarity units, M) 
note: final chemistries used for data analysis are in Annexes 2 and 3

Background of trace elements
Ni Cd Cu Pb Zn Fe Al Mn  

Ankeveen 4.78E-08 3.13E-09 2.19E-08 2.65E-09 9.39E-08 2.50E-06 1.06E-06 1.24E-08
Bihain 3.39E-08 1.51E-08 3.15E-08 5.31E-09 3.21E-07 1.16E-06 8.52E-07 BDL
Brisy 2.89E-08 4.31E-09 2.55E-08 6.69E-09 1.01E-07 1.77E-06 8.76E-07 4.74E-08
Eppe 2.10E-08 3.47E-09 6.58E-09 1.48E-09 3.25E-08 1.96E-06 7.48E-07 9.04E-08
Markermeer 2.36E-08 1.95E-09 1.51E-08 5.69E-09 4.93E-08 9.58E-08 9.97E-08 BDL
Regge 5.54E-08 1.95E-09 1.56E-08 1.72E-09 8.62E-08 9.31E-07 BDL 9.87E-09

Macro-cations Macro-anions
Ca Mg Na K Cl SO4 NO3

Ankeveen 1.02E-03 2.91E-04 7.49E-04 1.89E-04 8.22E-04 8.44E-04 5.00E-05
Bihain 1.10E-04 4.00E-05 1.80E-04 2.00E-05 2.48E-04 6.66E-05 5.76E-05
Brisy 2.53E-04 1.57E-04 2.96E-04 5.86E-05 4.57E-04 8.90E-05 2.15E-04
Eppe 8.34E-04 2.50E-04 3.91E-04 1.16E-04 4.38E-04 1.93E-04 1.11E-04
Markermeer 1.54E-03 6.40E-04 3.41E-03 2.40E-04 2.70E-03 1.15E-03 5.00E-05
Regge 1.72E-03 3.25E-04 1.88E-03 3.07E-04 1.27E-03 5.87E-04 1.23E-04
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ANNEX 2

Input table for WHAM 6 speciation calculations for the speciation experiments (for WHAM 6 calibration) 

Assumption: Al3+ in equilibrium with colloidal Al(OH)3 = scenario (i)

For scenario (ii), i.e. Al input as dissolved, replace with the data in the  Al-dissolved column

Description SPM (mg/L) Temperature (K) pCO2 (atm) pH Colloidal fulvic acid (g/L) Na (M) Mg (M) Al (M) K (M) Ca (M) Mn (M) Fe(III) (M) Ni (M) Cu (M) Zn (M) Cd (M) Pb (M) Cl (M) NO3 (M) SO4 (M) CO3 (M) MOPS (M)

TOTAL TOTAL ACTIVITY TOTAL TOTAL DISSOLVED ACTIVITY DISSOLVED DISSOLVED DISSOLVED DISSOLVED DISSOLVED TOTAL TOTAL TOTAL TOTAL

Ankeveen 0.00E+00 298.15 999 7.36 0.01888 2.31E-03 2.91E-04 1.06E-06 1.69E-04 8.72E-04 1.00E-09 2.63E-20 7.21E-08 7.98E-08 8.32E-08 1.00E-09 1.00E-09 8.21E-04 5.00E-05 8.44E-04 6.43E-04

Ank EC10 0.00E+00 298.15 999 7.36 0.01888 2.49E-03 2.95E-04 1.06E-06 1.91E-04 8.83E-04 1.00E-09 2.63E-20 6.63E-07 3.54E-08 5.82E-08 1.00E-09 1.00E-09 8.21E-04 5.00E-05 8.44E-04 6.43E-04

Ank LC50 0.00E+00 298.15 999 7.36 0.01888 2.46E-03 2.93E-04 1.06E-06 1.93E-04 8.73E-04 1.00E-09 2.63E-20 2.51E-06 2.91E-08 6.24E-08 1.00E-09 1.00E-09 8.21E-04 5.00E-05 8.44E-04 6.43E-04

Bihain 0.00E+00 298.15 999 6.17 5.09E-03 4.45E-04 5.74E-05 7.48E-07 3.06E-05 1.09E-04 1.00E-09 9.77E-17 4.72E-08 1.40E-07 1.96E-07 1.00E-09 1.00E-09 2.47E-04 5.76E-05 6.68E-05 4.70E-05

Bihain EC10 0.00E+00 298.15 999 6.17 5.09E-03 4.85E-04 5.74E-05 7.48E-07 3.64E-05 1.08E-04 1.00E-09 9.77E-17 8.03E-08 6.40E-08 1.47E-07 1.00E-09 1.00E-09 2.47E-04 5.76E-05 6.68E-05 4.70E-05

Bihain LC50 0.00E+00 298.15 999 6.17 5.09E-03 4.84E-04 5.91E-05 7.48E-07 3.75E-05 1.09E-04 1.00E-09 9.77E-17 2.53E-07 5.66E-08 1.35E-07 1.00E-09 1.00E-09 2.47E-04 5.76E-05 6.68E-05 4.70E-05

Brisy 0.00E+00 298.15 999 7.23 2.45E-03 1.95E-03 1.52E-04 1.85E-08 5.31E-05 2.30E-04 1.00E-09 6.46E-20 4.50E-08 2.04E-08 1.21E-08 1.00E-09 3.99E-09 4.56E-04 2.15E-04 8.91E-05 3.09E-04

Brisy EC10 0.00E+00 298.15 999 7.23 2.45E-03 2.07E-03 1.45E-04 1.85E-08 5.85E-05 2.36E-04 1.00E-09 6.46E-20 5.60E-08 2.31E-08 3.26E-08 1.00E-09 1.00E-09 4.56E-04 2.15E-04 8.91E-05 3.09E-04

Brisy LC50 0.00E+00 298.15 999 7.23 2.45E-03 2.13E-03 1.46E-04 1.85E-08 6.11E-05 2.38E-04 1.00E-09 6.46E-20 3.53E-07 1.72E-08 3.62E-08 1.00E-09 1.00E-09 4.56E-04 2.15E-04 8.91E-05 3.09E-04

Eau d'Eppe 0.00E+00 298.15 999 7.85 4.02E-03 3.02E-03 2.58E-04 9.97E-08 1.08E-04 7.69E-04 1.00E-09 8.91E-22 7.58E-08 3.72E-08 3.59E-09 1.00E-09 4.73E-09 4.37E-04 1.11E-04 1.93E-04 1.42E-03

Eppe EC10 0.00E+00 298.15 999 8.04 4.02E-03 3.07E-03 2.57E-04 9.97E-08 1.14E-04 7.62E-04 1.00E-09 2.40E-22 9.91E-08 1.73E-08 4.13E-09 1.00E-09 1.68E-09 4.37E-04 1.11E-04 1.93E-04 1.42E-03

Eppe LC50 0.00E+00 298.15 999 8.17 4.02E-03 3.14E-03 2.63E-04 9.97E-08 1.23E-04 7.70E-04 1.00E-09 9.77E-23 3.59E-07 2.22E-08 4.99E-09 1.00E-09 1.00E-09 4.37E-04 1.11E-04 1.93E-04 1.42E-03

Markermeer 0.00E+00 298.15 999 8.26 6.09E-03 6.12E-03 6.00E-04 8.76E-07 2.22E-04 1.41E-03 1.00E-09 5.25E-23 6.48E-08 6.58E-08 1.95E-08 1.00E-09 2.37E-09 2.69E-03 5.00E-05 1.15E-03 1.81E-03

Mark EC10 0.00E+00 298.15 999 8.26 6.09E-03 7.53E-03 6.05E-04 8.76E-07 2.32E-04 1.35E-03 1.00E-09 5.25E-23 9.92E-08 2.56E-08 7.82E-09 1.00E-09 3.82E-09 2.69E-03 5.00E-05 1.15E-03 1.81E-03

Mark LC50 0.00E+00 298.15 999 8.26 6.09E-03 7.52E-03 6.02E-04 8.76E-07 2.36E-04 1.34E-03 1.00E-09 5.25E-23 9.01E-07 3.25E-08 9.74E-09 1.00E-09 3.14E-09 2.69E-03 5.00E-05 1.15E-03 1.81E-03

Beneden Regge 0.00E+00 298.15 999 8.54 0.01008 6.96E-03 3.21E-04 8.52E-07 2.77E-04 1.50E-03 1.00E-09 7.59E-24 6.22E-08 5.03E-08 5.65E-08 1.00E-09 2.56E-09 1.26E-03 1.23E-04 5.87E-04 2.50E-03

Regge EC10 0.00E+00 298.15 999 8.58 0.01008 7.49E-03 3.28E-04 8.52E-07 2.87E-04 1.52E-03 1.00E-09 5.75E-24 1.16E-07 3.54E-08 5.14E-08 1.00E-09 2.50E-09 1.26E-03 1.23E-04 5.87E-04 2.50E-03

Regge LC50 0.00E+00 298.15 999 8.58 0.01008 7.35E-03 3.21E-04 8.52E-07 2.88E-04 1.47E-03 1.00E-09 5.75E-24 1.82E-06 2.80E-08 5.16E-08 1.00E-09 1.00E-09 1.26E-03 1.23E-04 5.87E-04 2.50E-03

Ankeveen  pH 1 0.00E+00 298.15 999 8.06 0.01888 3.71E-03 3.01E-04 1.06E-06 1.84E-04 8.47E-04 1.00E-09 3.31E-22 7.53E-08 2.80E-08 2.50E-08 8.53E-09 5.12E-09 8.21E-04 5.00E-05 8.44E-04 6.43E-04

Ank pH 2 0.00E+00 298.15 999 7.71 0.01888 3.82E-03 3.05E-04 1.06E-06 1.91E-04 8.53E-04 1.00E-09 3.72E-21 7.67E-08 7.94E-09 1.95E-08 1.00E-09 4.55E-09 1.37E-03 5.00E-05 8.44E-04 6.43E-04

Ank pH 3 0.00E+00 298.15 999 7.15 0.01888 3.87E-03 3.12E-04 1.06E-06 2.00E-04 8.64E-04 1.00E-09 1.78E-19 8.10E-08 2.55E-10 6.24E-08 1.00E-09 2.93E-09 2.57E-03 5.00E-05 8.44E-04 6.43E-04

Ank pH 4 0.00E+00 298.15 999 6.46 0.01888 3.93E-03 3.18E-04 1.06E-06 2.06E-04 8.84E-04 1.00E-09 2.09E-17 8.60E-08 2.28E-09 9.70E-08 1.00E-09 5.03E-09 4.07E-03 5.00E-05 8.44E-04 6.43E-04

Ank Ca 1 0.00E+00 298.15 999 7.31 0.01888 2.41E-03 3.22E-04 1.06E-06 1.71E-04 9.02E-04 1.00E-09 5.89E-20 8.84E-08 2.60E-08 9.36E-08 1.00E-09 1.00E-09 8.21E-04 5.00E-05 8.44E-04 6.43E-04

Ank Ca 2 0.00E+00 298.15 999 7.31 0.01888 2.48E-03 1.10E-03 1.06E-06 1.89E-04 2.41E-03 2.51E-09 5.89E-20 8.64E-08 3.91E-08 1.13E-07 1.00E-09 1.00E-09 5.46E-03 5.00E-05 8.44E-04 6.43E-04

Ank Ca 3 0.00E+00 298.15 999 7.31 0.01888 2.44E-03 6.92E-04 1.06E-06 1.82E-04 1.66E-03 2.16E-09 5.89E-20 8.49E-08 3.31E-08 1.03E-07 1.00E-09 1.00E-09 3.11E-03 5.00E-05 8.44E-04 6.43E-04

Ank Ca 4 0.00E+00 298.15 999 7.31 0.01888 2.49E-03 1.46E-03 1.06E-06 2.02E-04 3.13E-03 3.93E-09 5.89E-20 8.39E-08 3.91E-08 1.14E-07 1.00E-09 1.00E-09 7.63E-03 5.00E-05 8.44E-04 6.43E-04

Bihain pH 1 0.00E+00 298.15 999 6.16 5.09E-03 4.57E-04 6.24E-05 7.48E-07 3.41E-05 1.21E-04 1.00E-09 1.66E-16 4.19E-08 2.12E-08 1.62E-07 1.00E-09 1.00E-09 2.47E-04 5.76E-05 6.68E-05 4.70E-05

Bih pH 2 0.00E+00 298.15 999 6.9 5.09E-03 1.50E-03 7.03E-05 7.48E-07 3.88E-05 1.33E-04 1.00E-09 1.00E-18 4.29E-08 1.26E-08 6.82E-08 1.00E-09 1.00E-09 2.47E-04 5.76E-05 6.68E-05 4.70E-05

Bih pH 3 0.00E+00 298.15 999 7.59 5.09E-03 2.79E-03 8.06E-05 7.48E-07 4.35E-05 1.57E-04 1.00E-09 8.51E-21 4.57E-08 1.79E-08 3.22E-08 1.00E-09 4.22E-09 2.47E-04 5.76E-05 6.68E-05 4.70E-05

Bih pH 4 0.00E+00 298.15 999 7.96 5.09E-03 3.67E-03 9.66E-05 7.48E-07 5.56E-05 1.91E-04 1.00E-09 6.61E-22 4.57E-08 1.04E-08 3.07E-08 1.00E-09 1.59E-09 2.47E-04 5.76E-05 6.68E-05 4.70E-05

Bih Ca 1 0.00E+00 298.15 999 6.18 5.09E-03 4.98E-04 6.53E-05 7.48E-07 3.64E-05 8.27E-05 4.23E-09 1.45E-16 7.56E-08 1.12E-07 2.68E-07 3.16E-09 1.00E-09 2.47E-04 5.76E-05 6.68E-05 4.70E-05

Bih Ca 2 0.00E+00 298.15 999 6.18 5.09E-03 5.24E-04 3.65E-04 7.48E-07 4.37E-05 5.95E-04 1.36E-08 1.45E-16 1.09E-07 7.88E-08 5.75E-07 1.26E-09 1.00E-09 1.90E-03 5.76E-05 6.68E-05 4.70E-05

Bih Ca 4 0.00E+00 298.15 999 6.18 5.09E-03 5.53E-04 1.03E-03 7.48E-07 6.27E-05 1.85E-03 1.89E-08 1.45E-16 1.27E-07 8.38E-08 8.17E-07 1.61E-09 4.02E-09 5.78E-03 5.76E-05 6.68E-05 4.70E-05
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ANNEX 3

Input table for WHAM 6 speciation calculations at ECx levels of Ceriodaphnia dubia tests with Ni in natural waters. 

Assumption: Al3+ in equilibrium with colloidal Al(OH)3 = scenario (i)

For scenario (ii), i.e. Al input as dissolved replace with the data in the  Al-dissolved column

Description SPM (mg/L) Temperature (K) pCO2 (atm) pH Colloidal fulvic acid (g/L) Na (M) Mg (M) Al (M) K (M) Ca (M) Mn (M) Fe(III) (M) Ni (M) Cu (M) Zn (M) Cd (M) Pb (M) Cl (M) NO3 (M) SO4 (M) CO3 (M) Al (M)

TOTAL TOTAL ACTIVITY TOTAL TOTAL DISSOLVED ACTIVITY DISSOLVED DISSOLVED DISSOLVED DISSOLVED DISSOLVED TOTAL TOTAL TOTAL TOTAL DISSOLVED

Ankeveen Acute LC50 0.00E+00 298 999 7.51 0.0189 7.49E-04 2.91E-04 9.33E-15 1.89E-04 1.02E-03 1.24E-08 9.33E-21 3.12E-06 2.19E-08 9.39E-08 3.13E-09 2.65E-09 8.22E-04 5.00E-05 8.44E-04 8.76E-04 1.06E-06

Bihain Acute LC50 0.00E+00 298 999 6.34 5.09E-03 1.80E-04 4.00E-05 3.02E-11 2.00E-05 1.10E-04 0.00E+00 3.02E-17 6.00E-07 3.15E-08 3.21E-07 1.51E-08 5.31E-09 2.48E-04 5.76E-05 6.66E-05 9.96E-05 8.52E-07

Brisy Acute LC50 0.00E+00 298 999 7.45 2.45E-03 2.96E-04 1.57E-04 1.41E-14 5.86E-05 2.53E-04 4.74E-08 1.41E-20 8.66E-07 2.55E-08 1.01E-07 4.31E-09 6.69E-09 4.57E-04 2.15E-04 8.90E-05 4.43E-04 8.76E-07

Eppe Acute LC50 0.00E+00 298 999 7.95 4.02E-03 3.91E-04 2.50E-04 4.47E-16 1.16E-04 8.34E-04 9.04E-08 4.47E-22 5.90E-07 6.58E-09 3.25E-08 3.47E-09 1.48E-09 4.38E-04 1.11E-04 1.93E-04 1.80E-03 7.48E-07

Markermeer Acute LC50 0.00E+00 298 999 8.04 6.09E-03 3.41E-03 6.40E-04 2.40E-16 2.40E-04 1.54E-03 0.00E+00 2.40E-22 1.51E-06 1.51E-08 4.93E-08 1.95E-09 5.69E-09 2.70E-03 5.00E-05 1.15E-03 2.05E-03 9.97E-08

Regge Acute LC50 0.00E+00 298 999 8 0.0101 1.88E-03 3.25E-04 3.16E-16 3.07E-04 1.72E-03 9.87E-09 3.16E-22 2.74E-06 1.56E-08 8.62E-08 1.95E-09 1.72E-09 1.27E-03 1.23E-04 5.87E-04 3.13E-03 0.00E+00

Ankeveen Chronic EC10 0.00E+00 298 999 7.61 0.0189 7.49E-04 2.91E-04 4.68E-15 1.89E-04 1.02E-03 1.24E-08 4.68E-21 7.54E-07 2.19E-08 9.39E-08 3.13E-09 2.65E-09 8.22E-04 5.00E-05 8.44E-04 9.91E-04 1.06E-06

Bihain Chronic EC10 0.00E+00 298 999 6.56 5.09E-03 1.80E-04 4.00E-05 6.61E-12 2.00E-05 1.10E-04 0.00E+00 6.61E-18 1.54E-07 3.15E-08 3.21E-07 1.51E-08 5.31E-09 2.48E-04 5.76E-05 6.66E-05 2.11E-04 8.52E-07

Brisy Chronic EC10 0.00E+00 298 999 7.23 2.45E-03 2.96E-04 1.57E-04 6.46E-14 5.86E-05 2.53E-04 4.74E-08 6.46E-20 1.26E-07 2.55E-08 1.01E-07 4.31E-09 6.69E-09 4.57E-04 2.15E-04 8.90E-05 5.14E-04 8.76E-07

Eppe Chronic EC10 0.00E+00 298 999 7.86 4.02E-03 3.91E-04 2.50E-04 8.32E-16 1.16E-04 8.34E-04 9.04E-08 8.32E-22 2.21E-08 6.58E-09 3.25E-08 3.47E-09 1.48E-09 4.38E-04 1.11E-04 1.93E-04 1.83E-03 7.48E-07

Markermeer Chronic EC10 0.00E+00 298 999 8.01 6.09E-03 3.41E-03 6.40E-04 2.95E-16 2.40E-04 1.54E-03 0.00E+00 2.95E-22 1.29E-07 1.51E-08 4.93E-08 1.95E-09 5.69E-09 2.70E-03 5.00E-05 1.15E-03 2.08E-03 9.97E-08

Regge Chronic EC10 0.00E+00 298 999 8.18 0.0101 1.88E-03 3.25E-04 9.12E-17 3.07E-04 1.72E-03 9.87E-09 9.12E-23 1.32E-07 1.56E-08 8.62E-08 1.95E-09 1.72E-09 1.27E-03 1.23E-04 5.87E-04 3.07E-03 0.00E+00

Ankeveen Chronic EC20 0.00E+00 298 999 7.61 0.0189 7.49E-04 2.91E-04 4.68E-15 1.89E-04 1.02E-03 1.24E-08 4.68E-21 8.85E-07 2.19E-08 9.39E-08 3.13E-09 2.65E-09 8.22E-04 5.00E-05 8.44E-04 9.91E-04 1.06E-06

Bihain Chronic EC20 0.00E+00 298 999 6.56 5.09E-03 1.80E-04 4.00E-05 6.61E-12 2.00E-05 1.10E-04 0.00E+00 6.61E-18 2.18E-07 3.15E-08 3.21E-07 1.51E-08 5.31E-09 2.48E-04 5.76E-05 6.66E-05 2.11E-04 8.52E-07

Brisy Chronic EC20 0.00E+00 298 999 7.23 2.45E-03 2.96E-04 1.57E-04 6.46E-14 5.86E-05 2.53E-04 4.74E-08 6.46E-20 1.46E-07 2.55E-08 1.01E-07 4.31E-09 6.69E-09 4.57E-04 2.15E-04 8.90E-05 5.14E-04 8.76E-07

Eppe Chronic EC20 0.00E+00 298 999 7.86 4.02E-03 3.91E-04 2.50E-04 8.32E-16 1.16E-04 8.34E-04 9.04E-08 8.32E-22 3.59E-08 6.58E-09 3.25E-08 3.47E-09 1.48E-09 4.38E-04 1.11E-04 1.93E-04 1.83E-03 7.48E-07

Markermeer Chronic EC20 0.00E+00 298 999 8.01 6.09E-03 3.41E-03 6.40E-04 2.95E-16 2.40E-04 1.54E-03 0.00E+00 2.95E-22 1.53E-07 1.51E-08 4.93E-08 1.95E-09 5.69E-09 2.70E-03 5.00E-05 1.15E-03 2.08E-03 9.97E-08

Regge Chronic EC20 0.00E+00 298 999 8.18 0.0101 1.88E-03 3.25E-04 9.12E-17 3.07E-04 1.72E-03 9.87E-09 9.12E-23 1.87E-07 1.56E-08 8.62E-08 1.95E-09 1.72E-09 1.27E-03 1.23E-04 5.87E-04 3.07E-03 0.00E+00

Ankeveen Chronic EC50 0.00E+00 298 999 7.61 0.0189 7.49E-04 2.91E-04 4.68E-15 1.89E-04 1.02E-03 1.24E-08 4.68E-21 1.17E-06 2.19E-08 9.39E-08 3.13E-09 2.65E-09 8.22E-04 5.00E-05 8.44E-04 9.91E-04 1.06E-06

Bihain Chronic EC50 0.00E+00 298 999 6.56 5.09E-03 1.80E-04 4.00E-05 6.61E-12 2.00E-05 1.10E-04 0.00E+00 6.61E-18 3.93E-07 3.15E-08 3.21E-07 1.51E-08 5.31E-09 2.48E-04 5.76E-05 6.66E-05 2.11E-04 8.52E-07

Brisy Chronic EC50 0.00E+00 298 999 7.23 2.45E-03 2.96E-04 1.57E-04 6.46E-14 5.86E-05 2.53E-04 4.74E-08 6.46E-20 1.87E-07 2.55E-08 1.01E-07 4.31E-09 6.69E-09 4.57E-04 2.15E-04 8.90E-05 5.14E-04 8.76E-07

Eppe Chronic EC50 0.00E+00 298 999 7.86 4.02E-03 3.91E-04 2.50E-04 8.32E-16 1.16E-04 8.34E-04 9.04E-08 8.32E-22 8.27E-08 6.58E-09 3.25E-08 3.47E-09 1.48E-09 4.38E-04 1.11E-04 1.93E-04 1.83E-03 7.48E-07

Markermeer Chronic EC50 0.00E+00 298 999 8.01 6.09E-03 3.41E-03 6.40E-04 2.95E-16 2.40E-04 1.54E-03 0.00E+00 2.95E-22 2.05E-07 1.51E-08 4.93E-08 1.95E-09 5.69E-09 2.70E-03 5.00E-05 1.15E-03 2.08E-03 9.97E-08

Regge Chronic EC50 0.00E+00 298 999 8.18 0.0101 1.88E-03 3.25E-04 9.12E-17 3.07E-04 1.72E-03 9.87E-09 9.12E-23 3.42E-07 1.56E-08 8.62E-08 1.95E-09 1.72E-09 1.27E-03 1.23E-04 5.87E-04 3.07E-03 0.00E+00
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ANNEX 4 Efffect concentrations of Ni to Ceriodaphnia dubia

10-day NOECs and LOECs of Ni to Ceriodaphnia dubia  reproduction

Site NOEC (µg Ni/L) LOEC (µg Ni/L)
Ankeveen 38.6 62.4
Bihain 20.2 33.4
Brisy 21.5 34.9
Eppe <3.7 -
Markermeer <12.2 -
Regge <8.3 -

48-hLC50s (mortality) and 10d-ECx (reproduction) with 95% confidence limits for C. dubia (µg/L)

Site 48h-LC50 low CL high CL
Ankeveen 183 163 206
Bihain 35.2 24.2 51.3
Brisy 50.8 41.1 62.8
Eau d'Eppe 34.6 30.7 39.1
Markermeer 88.7 58.7 134.1
Regge 161 148 175

Site 10d-EC50 low CL high CL 10d-EC20 low CL high CL 10d-EC10 low CL high CL
Ankeveen 68.4 62.9 74.4 51.9 45.3 59.6 44.2 36.6 53.5
Bihain 23.1 18.3 29.1 12.8 8.5 19.3 9.0 5.2 15.7
Brisy 11.0 9.7 12.5 8.5 7.2 10.2 7.4 5.9 9.2
Eppe 4.9 2.7 8.7 2.1 0.8 5.8 1.3 0.4 4.7
Markermeer 12.1 11.2 13.0 9.0 7.4 10.8 7.6 5.8 9.9
Regge 20.1 15.7 25.8 11.0 7.1 17.0 7.8 4.4 13.7
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ANNEX 5
Calculated Ni2+-activity for different scenarios of Al input Al-assumption
for C dubia tests Al(OH)3 Al total Al = 0 'Best'

Scenario (i) Scenario (i) Scenario (ii) Scenario (iii) Scenario (iv)
Measured Predicted Al(OH)3 Calculated Calculated Calculated Calculated (iv)/(iii) (ii)/(i)

dissolved Al (M) dissolved Al (M) Precipitated? (Y/N) (Ni2+) (M) (Ni2+) (M) (Ni2+) (M) true' Ni2+ (M)
Ankeveen Acute LC50 1.06E-06 8.04E-07 Y 5.08E-07 5.24E-07 4.41E-07 5.08E-07 1.15 1.03
Bihain Acute LC50 8.52E-07 9.55E-07 N 2.59E-07 2.54E-07 2.11E-07 2.54E-07 1.20 0.98
Brisy Acute LC50 8.76E-07 2.88E-07 Y 3.95E-07 4.17E-07 3.63E-07 3.95E-07 1.09 1.05
Eppe Acute LC50 7.48E-07 6.32E-07 Y 1.55E-07 1.55E-07 1.48E-07 1.55E-07 1.04 1.00
Markermeer Acute LC50 9.97E-08 7.85E-07 N 3.76E-07 3.72E-07 3.69E-07 3.72E-07 1.01 0.99
Regge Acute LC50 0.00E+00 7.38E-07 N 5.85E-07 5.74E-07 5.74E-07 5.74E-07
Ankeveen Chronic EC10 1.06E-06 9.13E-07 Y 6.06E-08 6.20E-08 4.86E-08 6.06E-08 1.25 1.02
Bihain Chronic EC10 8.52E-07 7.97E-07 Y 4.70E-08 4.78E-08 3.50E-08 4.70E-08 1.34 1.02
Brisy Chronic EC10 8.76E-07 3.02E-07 Y 4.71E-08 5.17E-08 3.66E-08 4.71E-08 1.29 1.10
Eppe Chronic EC10 7.48E-07 5.58E-07 Y 2.81E-09 2.88E-09 2.39E-09 2.81E-09 1.17 1.02
Markermeer Chronic EC10 9.97E-08 7.61E-07 N 1.75E-08 1.69E-08 1.62E-08 1.69E-08 1.04 0.96
Regge Chronic EC10 0.00E+00 1.08E-06 N 1.01E-08 9.36E-09 9.36E-09 9.36E-09
Ankeveen Chronic EC20 1.06E-06 9.00E-07 Y 7.62E-08 7.80E-08 6.19E-08 7.62E-08 1.23 1.02
Bihain Chronic EC20 8.52E-07 7.93E-07 Y 6.95E-08 7.07E-08 5.26E-08 6.95E-08 1.32 1.02
Brisy Chronic EC20 8.76E-07 3.01E-07 Y 5.56E-08 6.08E-08 4.36E-08 5.56E-08 1.28 1.09
Eppe Chronic EC20 7.48E-07 5.57E-07 Y 4.90E-09 5.01E-09 4.22E-09 4.90E-09 1.16 1.02
Markermeer Chronic EC20 9.97E-08 7.60E-07 N 2.17E-08 2.10E-08 2.01E-08 2.10E-08 1.04 0.97
Regge Chronic EC20 0.00E+00 1.08E-06 N 1.58E-08 1.47E-08 1.47E-08 1.47E-08
Ankeveen Chronic EC50 1.06E-06 8.75E-07 Y 1.14E-07 1.17E-07 9.43E-08 1.14E-07 1.21 1.03
Bihain Chronic EC50 8.52E-07 7.81E-07 Y 1.37E-07 1.39E-07 1.07E-07 1.37E-07 1.28 1.02
Brisy Chronic EC50 8.76E-07 2.98E-07 Y 7.36E-08 8.02E-08 5.85E-08 7.36E-08 1.26 1.09
Eppe Chronic EC50 7.48E-07 5.54E-07 Y 1.35E-08 1.37E-08 1.19E-08 1.35E-08 1.13 1.02
Markermeer Chronic EC50 9.97E-08 7.59E-07 N 3.14E-08 3.05E-08 2.94E-08 3.05E-08 1.04 0.97
Regge Chronic EC50 0.00E+00 1.08E-06 N 3.50E-08 3.30E-08 3.30E-08 3.30E-08

Note: scenario (iv) = Best=Allowing Al(OH)3 to precipitate when Solubility product of Al(OH)3 is exceeded
This is when the dissolved measured Al > predicted dissolved Al under scenario (i)
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ANNEX 16 – Recommendations on how to deal with the uncertainty of the Keithly et al. 

(2004) dataset in a risk assessment context  

 

When the chronic reproductive NOECs of Keithly et al. (2004) are to be used in risk assessment, an 

appropriate assessment of the Ni speciation might at a certain point be desired, despite the uncertainty 

associated with the presence of YTC-ligands in the test solutions. This assessment could be performed 

along two different lines.  

 

First, one could assume that the complexation of Ni is entirely due to DOM coming from the YTC and 

that this DOM behaves similarly as natural DOM, i.e. it can also be modeled by WHAM VI, according 

to the calibration discussed earlier (AFA=40%, pKNiFA=1.75). Hereby it is also implicitly assumed that 

the effects of pH and hardness on Ni binding to YTC-ligands are also well predicted by WHAM VI, 

since the assessment of 40%AFA was made for one single pH and hardness combination in the present 

study. In this case speciation calculations would need to be run with a DOC input of 0.8 mg/L (= 1.3 

mg/L measured after YTC addition - 0.5 mg/L background DOC in dilution water), or with an 

assumed FA concentration of 0.8 mg DOC/L x 40% x 2 (mg FA/mg DOC) = 0.64 mg FA/L. This 

would result in a point estimate of NOECNi2+ for each of the three test waters.  

 

A second possibility is the following. We know that at Ni concentrations between 1.8 and 5.2 µg/L, at 

a pH of 7.9-8.1, and at a hardness of 76 mg CaCO3/L, 30-40% of the Ni was complexed to YTC-

ligands (see section 4.3.2.2), using exactly the same concentration of YTC as present in the standard 

chronic C. dubia tests of Keithly et al. (2004), i.e. about 12 mg solids/L. Now, we also know that 

increasing Ni, reducing pH, and increasing hardness result in a lower fraction of Ni being organically 

complexed (see section 3.1). Now, the ‘dissolved’ chronic NOECs reported by Keithly et al. (2004) 

are between 4.0 and 6.9, i.e. similar to the range for which Ni speciation was determined with YTC. 

However, pH and hardness in Keithly et al. (2004) are lower (7.6 to 7.8) and higher (113-253), 

respectively, and thus a lower fraction of Ni is expected to be bound to YTC ligands than in our 

experiments. Thus, one could suggest that NOECdissolved ≥ NOECinorganic ≥ 0.6 × NOECdissolved and use 

the lower boundary, i.e. 0.6 × NOECdissolved as a worst case Ni-dissolved input for WHAM VI 

speciation calculations, while assuming that DOC = 0. This would result in a reasonable worst case 

assessment of NOECNi2+ for this dataset.  

 


