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Abstract. In this paper, we begin to address the question of which scientists are
online. Prior studies have shown that Web users are only a segmented reflection of
the actual offline population, and thus when studying online behaviors we need to
be explicit about the representativeness of the sample under study to accurately
relate trends to populations. When studying social phenomena on the Web, the
identification of individuals is essential to be able to generalize about specific
segments of a population offline. Specifically, we present a method for assessing
the online activity of a known set of actors. The method is tailored to the domain
of science. We apply the method to a population of Dutch computer scientists
and their co-authors. The results when combined with metadata of the set provide
insights into the representativeness of the sample of interest.
The study results show that scientists of above average tenure and performance
are overrepresented online; suggesting that when studying online behaviors of
scientists we are commenting specifically on behaviors of above average per-
forming scientists. Given this finding, metrics of Web behaviors of science may
provide a key tool for measuring knowledge production and innovation at a faster
rate than traditional delayed bibliometric studies.

1 Introduction

Traditionally, science is assessed using bibliometric techniques – indicators/metrics
used to classify scientific output (e.g. publications) by performance and innovation,
such as citation scores, or journal impact factors. Such methods rely on publication
traditions including citations in a socially regulated environment. Communication and
exchange of knowledge is also happening on the Web. The use of the Web as a vir-
tual environment for interaction and exchange provides a ground for assessing impact
through the study of traceable behaviors. Shifting research behaviors to the the Web in
multiple domains exposes more and more diverse processes of knowledge production
and communication. Behavior online is traceable. Consequently scientists behaviors on
the Web provide an additional, arguably complimentary, set of information traces to
study science.
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With the general rise of Internet use, an increasing portion of researchers’ work
takes place online via e-mail exchange, accessing online bibliographic databases, blog-
ging, collaborating through e-science tools, as well as general Web usage. A number of
studies have begun to explore the online behaviors of science communities (see [16]).
These research projects suggest that at face value similar communication conventions,
such as citation of academic articles occur on both blogs [5] and Twitter [14]. The rise
in these online activities suggests that an increasing portion of knowledge production
and discussion is occurring on the Web, in parallel to traditional practices of knowledge
dissemination through academic publication, conferences and the like. Theses online
platforms have consequently been seen as a new terrain for exploring knowledge pro-
duction as well as science assessment, through assessing the ”total impact” of a scien-
tists work article [17].

The validity of these metrics remains debatable. This lack of established validity is
an issue for the generation and testing of theories of research behavior and scientific
development based on this data. One challenge in the validation of what these metrics
represent is to determine who we are actually talking about. We pose the question: in
science, who is represented online? And in what manner?; working to answer the level
of validity that Web metrics providing in commenting on populations in science. We
describe a method based on a combination of Social Science theory and Computer Sci-
ence methods to evaluate the representativeness of a set of actors on the Web, compared
to an offline population. The method focuses on understanding whether a known sam-
ple is active on a variety of social platforms (e.g. Twitter, Mendeley, LinkedIn). Using a
focused crawling approach, we examine a population of Dutch computer scientists and
their co-authors presence on the Web. We show that:

– a relatively low percentage of these scientists are verifiably active online;
– those who are active on social websites are likely to be active on multiple sites;
– and that the scientists who are online are largely high performing.

The rest of the paper is organized as follows. We begin with a survey of studies of
science online, highlighting the known differences between on- and offline communi-
cation. We then describe the method itself, which is followed by a description of the
results of our study on Dutch computer scientists. Finally, we discuss the results and
conclude.

2 Science Online

The practice of science is a practice of communication; an act of dissemination of
knowledge to a set of peers. Scientific knowledge is disseminated through scientific
publication in journals, conference proceedings and books. Consequently, these out-
puts are used as measures of knowledge production in science, through bibliometrics.
Bibliographic records, through the use of repositories and databases, thus provide a
wealth of knowledge on the system of science. These studies not only shed light on
performance or innovation through classification of outputs, but also the collaborative
(co-authorship) behaviors of scientists (see work related to [3]; and network studies
from [12]) undertaken to produce knowledge.



The Web is a platform that expands on these practices of knowledge dissemination.
As Wellman [22] suggested online behaviors mimic actual social behavior. There are
a number of outlets for scientists that cater to scientists [16]. An increasing amount of
studies have specifically explored scientists online from how online behaviors spark cre-
ativity in science [4], differences between online and offline behaviors of scientists [11],
field differences in using computer mediated communication [21], as well as the func-
tion of virtual communities in science [2]. Consequently we know scientists are online,
and have variety of options for disseminating knowledge and interacting with peers
outside of the traditional/formal publication of knowledge to hard copy text.

These research studies have set a path of inquiry about the effects of knowledge
dissemination via the Web. A short list of tools exist that aid in further conceptualizing
and understanding these online social behaviors in science which include methods to
track online readership [20], and impact metrics [13]. It is the use of tools that has been
explored as way to complement bibliometric assessment.

Where publication trends are applicable for a field or discipline the use of the Web
is not a uniform nor required practice within science. Studies of the Web show that sub-
segments of populations are more likely to be on the Web, specifically younger ones [7];
correspondingly certainly not everyone is on the Web, and particularly not everyone in
science but the composition is unknown. It is these behaviors that are of interest for this
study, as they are the individual actions of the scientists that have emerged outside of
traditional communication system.

The rise of scientists’ use of the Web as a platform for sharing knowledge presents
a number of methodological questions of validity and reliability to accurately reflect on
how Web behaviors, in contrast to publication records, which include all active scien-
tists within fields of practice, these individual behaviors present a case where activities
are voluntary, relate to scientists/knowledge production. By validity we refer to – how
to generalize a sample to a larger population, how to generalize across settings, or both
generalize across and within samples. Two aspects of validity need to be considered in
science – external and internal. Internal validity relates to the suitability of measures
for the population being examined. External validity refers to if results can infer causal
mechanisms for an entire population [10]; giving an indication of the generalizabil-
ity of the research to a specific population. The external validity is dependent on the
population that a study aims to generalize about.

In order to accurately comment on scientists’ practices online one must be explicit
about the validity of the sample. Specifically the representativeness of studies of these
growing online behaviors of scientists on the Web remains a question to not only the
description of the Web but also the implications that we can infer from the sample
on the Web. This validity is critical for generalizing and connecting research findings
to other knowledge products. In this study, we work to define a method and test the
results; developing a marker which defines the reliability of a Web sample in relation to
a specific greater population of scientists under study.
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Fig. 1. Method Overview

3 Methodology

In this study a method is developed to identify individuals on a number of Web plat-
forms. This description is followed by an explanation of the application to a known
population. Statistical analysis is done on the results to reflect on the representativeness
of the specific sample under study. We begin this section with a general description of
the Web crawler method.

3.1 Method description

Identifying scientists online could be achieved in one of two ways: query a web platform
for users or starting from a known sample, that you know you want to generalize about
and identify online. Both choices have a number of draw backs. The general query does
not ensure we can correctly identify names of scientist to place them into a population
(American scientist, historian, and so forth). The second option is privy to that scientists
identify themselves online in a logical/disambiguable way where we can link scientists
through their full names John Smith is JohnSmith on Twitter and not thewhistler. Thus,
both choices of sample select suffer from disambiguation issues. We do not aim to
discuss disambiguation techniques in this paper, as that is a field in itself, but rather
acknowledge that there are a number of techniques, of which techniques we integrate
here.

Since we are interested in identifying scientists on multiple platforms and aim to
compare them in some way we choose for the second sample technique.

A Web crawler is suited to identify individual online. Although the crawler de-
scribed could be used for other communities it is particularly suited for investigating
scientists on the Web. The key steps of the method and the data flow between those
steps are shown in Figure 1. We describe each of these steps in turn.

Population identification The method starts with identifying an already known popu-
lation of scientists. Here, we are looking for a precise disambiguated set of individuals.
An example list consists of names as well as other metadata such as affiliation. There
are a number of mechanisms for gathering such data including using institutional di-
rectories, retrieving author lists from bibliographic databases (e.g. the Web of Science)



or through membership lists from academic societies. Such lists provide a reasonable
picture of offline membership of the population under question.

Collecting standard science metrics Once a population list is obtained, the sample
needs to be characterized in more detail. One could imagine a number of ways to charac-
terize the population of scientists including age, gender, institutional type (e.g. teaching
verses research university), tenure, and so forth. Here, we classify scientists according
to standard metrics used in science studies, namely, the h-index and citation scores due
to the difficultly of automatically collecting traditional variables of individuals from the
Web. Regardless, the measures of performance provide information from which we can
infer about their likely age/tenure through citations as well as performance and or value
of knowledge to a community through citation score and h-index. These two standard
measures of scientists knowledge impact provide a representative manner to reflect on
the population in terms of activity within the particular scientific community. These
statistics also provide a basis for comparison when looking at the population online.
Science metrics can be obtained from a number of databases such as Web of Science,
Google Scholar or Scopus.

Focused crawling In this study, we investigate the online behaviors of scientists’ own
enterprise/ individual actions. This implies that we are not searching in online biblio-
graphic databases for evidence of publications, or their academic institutional pages; but
rather that we are isolating the existence of online activity on the social Web including:
blogs, micro-blogging, and activity on social platforms.

In science, blogs are often used as an alternative dissemination space for knowl-
edge, whether presenting new knowledge, ideas or research, or sharing information.
Micro-blogging tools, such as Twitter,1 are used by academics for sharing academic
links [15]. LinkedIn2 is a known professional social-networking site used by academics
as well as other professionals. Mendely3 is a bibliographic bookmarking service that
aids scientists in organizing academic publications and links, as well as sharing them
through profile libraries. Slideshare4 is a site used to upload presentations, providing an
outlet for scientists to disseminate lectures and presentations. The diverse services of-
fered among these Web platforms provide an outlet to incorporate/consider the multiple
forms of knowledge dissemination on the Web.

To obtain information about the online behavior of individuals on these various sites,
we developed a focused Web crawler. This crawler takes as input the list of persons from
the population identification stage. It automatically performs the following process.

For each scientist, the Web crawler first goes over her/his homepage and searches
for evidence of online presence such as links to her/his blog, “follow me” links for
LinkedIn, or Twitter, as well as entries in Mendeley and Slideshare. If these activities are
not mentioned on the personal homepage, the crawler individually searches LinkedIn,
Twitter, Mendeley and Slideshare to check whether she/he exists on these sites.

1 http://twitter.com/
2 http://www.linkedin.com/
3 http://www.mendeley.com/
4 http://www.slideshare.net/



The crawler takes the scientist’s name as the search string and submits the query to
each of these websites, specifically searching for people. If the search returns zero hits,
then we consider that the scientist does not have an account on the websites. Very often,
the search returns multiple hits. This is due to the way the search strings are handled by
the different websites. For example LinkedIn and Twitter only return accounts whose
full names match exactly the target scientist, while Mendeley and Slideshare return
the accounts whose name contains either the first name or the last name of the target
scientist. For the latter situation, we filter out the accounts whose full names are not the
same as the target scientist.

Apart from the binary information about whether one scientist is present in the
above mentioned social platforms, data can also be collected on the activity of the sci-
entist. In this case, we focus on Twitter as an example. On Twitter we can also gather
information about following and friends (followers) counts in Twitter to say something
additional about Web behaviors of identified scientists.

The result of this step of the method is a list of possible accounts on these online
sites corresponding to a given person in the input population.

Validation The results of the focused crawl provide some evidence that a particular
individual is present online but because multiple hits may occur we need to perform
further validation to determine whether indeed an individual is present.

To validate the data a more detailed comparison is carried out based on the meta-
data of the returned results and the descriptive information of the target scientist. The
query results usually contain some metadata of the returned accounts, such as the ID,
full name, occupation, location, etc. We further check whether the location information
of the query results match the location information of the institution where the target
scientist works given in the population list. This is accomplished through the use of the
Yahoo PlaceFinder web service.5 This service provides the latitude and longitude as
well as the country and city information for both institutions and the returned accounts.
If the account is in the same country as the target scientist, we consider this account
belongs to the target scientist. If multiple accounts still are in question after the location
check (scientists who share the same country) we consider that the target scientist exists
in this Web platform without further distinguishing which accounts belongs to her/him.
This is an approach in favor of recall.

Collation The results of validation are collated together with the information obtained
from the metrics calculation step.For each scientists in the population we have informa-
tion about their membership in a community, their performance, tenure, as well as their
participation online. Based on this information, standard statistical measures can then
be run to analyze how the online activity relates to the any number of factors within
standard science metrics.

5 http://developer.yahoo.com/geo/placefinder/



3.2 Method Application

We apply the above method to a population of presently active computer scientists
working in nine Dutch academic research institutions and their co-authors.

To perform the population identification step, we obtained a list of Dutch computer
scientists from the Dutch NARCIS - National Academic Research and Collaborations
Information System database.6

We expanded this list by querying the Digital Bibliography and Library Project
(DBLP) [9] – an online bibliographic database for the field of Computer Science with
publication streams from a number of top rated journals, conference proceedings and
books within the field. We queried for all source scientists and co-authors from January
2007 (the year after Twitter’s inception) to March 2011. This query returned in total
4984 individual scientists. They represent a list of all active scientists connected to
Dutch computer scientists via co-authorship. This source list is the population we are
interested in this study/that we can generalize about.

After the population identification step, traditional science metrics (h-index and
citation score) for each scientist were collected. This data was acquired through Ar-
netMiner [19] a search and mining services of Computer Science researchers which
includes semantic data on names, contact information, homepage, and additional tra-
ditional scienteometric statistics. Arnetminer identified 4590 scientists (394 less than
the 1st query); providing the metadata to aid in depicting how this sample represents
computer scientists online. The use ArnetMiner rather than the Web of Science or Sco-
pus is important for this specific population because of the better coverage of Computer
Science related publications in broader databases [1].

The population data was input into the focused Web crawler and collated with the
data from ArnetMiner. The specific results for this population in terms of each website
are given in the next section.

4 Results

In this research, we conducted bivariate Pearson’s correlations to explore the exter-
nal validity of a population of computer scientists. Correlations allow us to determine
relationships between two or more variables. Results from such tests identify both sig-
nificant relationships and the direction of relationships (positive or negative); thus pro-
viding the researcher with evidence to suggest, but not confirm, a causal relationship.
Note, that in the results table a ** denotes statistical significance at the 0.01 level, and
* denotes statistical significance at the 0.05 level.

Our findings of the sample of Dutch computer scientists and their co-authors from
January 2007 to March 2011 show a relatively low percentage of scientists online. As
displayed in Table 1, each of the web platforms are analyzed describing the frequency
and percentages represented in the sample under study, with the value 1 representing a
positive identification by the web crawler of individuals, and 0 representing a negative
identification by the crawler. For LinkedIn 81.5% of the sample can be identified, with
18.5% not found on the platform. In Mendeley, we see 89.8% of scientists not identified

6 http://www.narcis.nl/



LinkedIn
Frequency Percent

Valid 0 851 18.5
1 3739 81.5
Total 4590 100.0

Mendeley
Frequency Percent

4121 89.8
469 10.2

4590 100.0

Slideshare
Frequency Percent

4522 98.5
68 1.5

4590 100.0

blog
Frequency Percent

Valid 0 4438 96.7
1 152 3.3
Total 4590 100.0

Twitter
Frequency Percent

4503 98.1
87 1.9

4590 100.0

Table 1. Descriptive statistics of how many author names can be found on the various services
and whether those names can be validated.

on this site, and 10.2% confirmed. On Slideshare we find 98.5% not identified and 1.5%
identified. Twitter identification is 1.9% and 98.1% not identified. Within this sample
only 3.3% of scientists are identified as having a blog, and 96.7% not identified. Thus,
for the sample of Dutch computer scientists and their co-authors only a small share is
identified on all Web platforms, with the largest shares on LinkedIn and Mendeley.

Results show that computer scientists who are active on the Web are likely to be ac-
tive on multiple sites (see Table 2. Correlations of platforms). Within this population the
existence on LinkedIn is related to being identified on Mendeley (r=0.124), Slideshare
(r=0.054), Twitter (r=0.058), and having a blog (r=0.057). The strongest relationship
is existence on both LinkedIn and Mendeley. This strong positive correlation holds the
same for the relationships of Mendeley to the Web platforms of Slideshare (r=0.072),
Twitter (r=0.064) and blogs (r=0.090), with the strongest relationship to Mendeley be-
ing the existence of a blog. Slideshare identification also strongly correlates with the
existence on other platforms: Twitter (r=0.128) and blog (r=0.088); suggesting the
strongest relationship between the use of Slideshare and Twitter. The use of Twitter
and a blog also has a strong positive relationship (r= 0.394). Overall, those active on
Web platforms have tendencies to be active on multiple sites.

To further contextualize the use of online platforms, we present additional data from
Twitter (see Table 3 Correlations to Twitter activity). The correlations results show that
those on Twitter have both high numbers of followers and following (r=0.777). We also
investigate the relationships to the followers and following and the identification on
other Web platforms: there is no significant relationship between LinkedIn (following:
r=0.025; followers: r=0.026), although significant positive relationships exist between
Mendeley (following: r=0.091; followers: r=0.108), Slideshare (following: r=0.143; fol-
lowers: r=0.121) and blog identification (following: r=0.186; followers: r=0.176). The
strongest relationship between following and followers is with Slideshare and blog use.
This suggests a positive relationship between the number of followers and following
and activity on other sites.

In order to further understand what is driving the positive relationships observed,
it is necessary to also investigate the relationships of traditional performance measures
to describe what extend this population online is generalizable (externally valid) to
(Dutch) Computer Science as a field. These results are presented in Table 4. Results



LinkedIn Mendeley Slideshare blog Twitter
LinkedIn Pearson Correlation 1 .124** .054** .057** .058**

Sig. (2-tailed) .000 .000 .000 .000
N 4590 4590 4590 4590 4590

Mendeley Pearson Correlation .124** 1 .072** .090** .064**
Sig. (2-tailed) .000 .000 .000 .000
N 4590 4590 4590 4590 4590

Slideshare Pearson Correlation .054** .072** 1 .088** .128**
Sig. (2-tailed) .000 .000 .000 .000
N 4590 4590 4590 4590 4590

blog Pearson Correlation .057** .090** .088** 1 .394**
Sig. (2-tailed) .000 .000 .000 .000
N 4590 4590 4590 4590 4590

Twitter Pearson Correlation .058** .064** .128** .394** 1
Sig. (2-tailed) .000 .000 .000 .000
N 4590 4590 4590 4590 4590

Table 2. Correlations of platforms

Twitter Twitter following Twitter friends
h-index Pearson Correlation .118** .083** .058**

Sig. (2-tailed) .000 .000 .000
N 4590 4590 4590

total-citation Pearson Correlation .077** .065** .032*
Sig. (2-tailed) .000 .000 .031
N 4590 4590 4590

LinkedIn Pearson Correlation .058** .025 .026
Sig. (2-tailed) .000 .092 .073
N 4590 4590 4590

Mendeley Pearson Correlation .064** .091** .108**
Sig. (2-tailed) .000 .000 .000
N 4590 4590 4590

Slideshare Pearson Correlation .128** .143** .121**
Sig. (2-tailed) .000 .000 .000
N 4590 4590 4590

blog Pearson Correlation .394** .186** .176**
Sig. (2-tailed) .000 .000 .000
N 4590 4590 4590

Twitter Pearson Correlation 1 .375** .399**
Sig. (2-tailed) .000 .000
N 4590 4590 4590

Twitter Lfollowing Pearson Correlation .375** 1 .777**
Sig. (2-tailed) .000 .000
N 4590 4590 4590
Table 3. Correlations to Twitter activity



LinkedIn Mendeley Slideshare blog Twitter
h-index Pearson Correlation .070** .021 .038* .154** .118**

Sig. (2-tailed) .000 .159 .011 .000 .000
N 4590 4590 4590 4590 4590

total-citations Pearson Correlation .034* -.009 .004 .103** .077**
Sig. (2-tailed) .020 .528 .805 .000 .000
N 4590 4590 4590 4590 4590

Table 4. Performance measures

show that those online are largely top ranking scientists; with the higher h-index the
more likely to be found on LinkedIn (r=0.070), Slideshare (r=0.038), Twitter (r=0.118)
and having a blog (r=0.154). There is no signification relationship between identifica-
tion on Mendeley and a high h-index score (r=0.021). A number of these relationships
are also confirmed in regards to citation score (number of citations), which is used as a
measure for performance and a proxy for tenure. A positive and significant relationship
exists between citation score and LinkedIn (r=0.034), Twitter (r=0.077), and identifi-
cation of a blog (r=0.103). Results suggest that among this community of computer
scientists the measuring of Web behaviors of scientists’ own enterprise is representative
of dynamics of scientists who have both a higher tenure and higher performance.

5 Discussion

Before discussing the results, it is important to reflect on the limitations of the Web
crawler. The implementation of the Web crawling tool, which takes the names as input
and automatically searches the presence of these people on the Web, greatly increases
the amount of people who can be analyzed; thus, providing a more reliable extension
to manual tests of validity of specific communities. Limitations of the Web crawler
include: disambiguation issues, and API constraints and limits. The most common dis-
ambiguation issue is the lack of meaningful IDs that match full names. Search APIs also
present some limits to searches for scientists. APIs sometimes use OR instead of AND
to increase the recall, which presents a problem in quickly and reliably locating a name
among the results of crawler, thus, requiring additional knowledge about individuals.
LinkedIn returns entities whose names contain the full string of searched names; while
Mendeley and Slideshare return people whose names contain either first name OR last
name. In the development of the Web crawler, this was overcome through the integra-
tion of geolocation data to identify individuals within the returned set. Additionally,
some APIs have limits to queries per hour, which constrains the speed of the crawler.
The constraints of the Web crawler potentially affect the low identification of the sam-
ple online. Further techniques could be developed in the Web crawler to provide more
certainty about scientists presence on these sites. In particular, we are looking at build-
ing profiles of scientists based on publications and matching these to profiles produced
from websites. Such an approach may help in increasing both the recall and precision
of the method [6].

This test showed that the largest percentages of scientists can be identified on LinkedIn
and Mendeley, with much lower identification on Slideshare, Twitter and blogs. Al-
though this could be related to the techniques of the Web crawler, we suggest that it is



rather associated to the services provided on these sites. LinkedIn provides a network-
ing tool for professionals to connect on the Web, which we argue reflects traditional
communication patterns of scientists [8] staying in touch whether through email, phone
contact or face-to-face interaction. Mendeley provides an online bibliographic book-
marking tool that again scientists would be in need of whether on or offline to categorize
and organize publications. The other three platforms: Slideshare, Twitter, and blogs are
forms of modern communication and thus new ways of disseminating knowledge. They
are not innate to the knowledge dissemination practices of the past several hundred
years unlike interacting with others (LinkedIn), and reading, reflecting and reacting to
new knowledge in the field (Mendeley).

The significant positive relationships observed in this activity sample on multiple
sites give us reason to hypothesize that scientists are using Web platforms in their work,
thus providing further support to our previous speculation of tendencies in using spe-
cific platforms that facilitate traditional knowledge production. To confirm this, further
research should be completed to explore the online presence of other fields and sam-
ples of scientists, shedding light on the overall prevalence of online activity in science.
Additionally, the results from Twitter bring to light a possible feedback effect of using
multiple Web platforms. This effect should be explored further to address the mech-
anism of using such Web platforms, but also how visibly increasing on one platform
relates to other Web behaviors. Consequently longitudinal research of scientists’ online
activities would provide insight into the effect of the use of multiple Web platforms.

This study has shown that when using Web data we oversample dynamics of top
scientists; bringing to light the importance of considering validity questions of Web data
to study social phenomena. Thus, when talking about implications of altmetrics [18] or
analyzing behavior on these social media sites we need to be explicit about who we can
generalize about and how these reflect to greater patterns in science. If this oversampling
of top scientist holds true for other fields, the use of Web data may provide a reliable,
faster tool in measuring, predicting and understanding trends in science; compared to
delayed bibliometric analysis of top scientists.

6 Conclusion

Our results present a depiction of life on the Web for the field of Computer Science.
From an analytics perspective, we have worked to develop a method that provides a tool
for reflecting on population as to reliably provide a level of external validity (general-
izability) to a greater community of actors. Additionally, it emphasizes the importance
and continued need of interdisciplinary research to assess such questions.

In summary, we propose that when measuring the scientific impact and contribution
of ones work on the Web it is necessary to be clear about the level of external validity
of these Web activities in order to better infer trends in science. The method described
here is a first step to achieving this goal.
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