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Research goals

One of the major challenges in plant systems biology is to understand how plants respond to various

environmental signals at their different levels of organisation i.e. cell type, tissue, organ and organism.

These signals e.g. water levels, temperature, etc. can be either macro- or micro-environmental in

nature. Plants transduce these signals and use (i) transcriptional mechanisms to appropriately control

stress-related gene expression levels, (ii) post-transcriptional mechanisms (based on alternative splicing,

RNA processing as well as RNA silencing) to define the actual transcriptome supporting the stress

response and (iii) post-translational modifications (such as protein phosphorylation, ubiquitination and

sumoylation) to regulate the activation of pre-existing molecules to ensure a prompt response to stress.

These mechanisms ultimately allow plants to modulate their development and physiology to cope with

stress conditions. This thesis focuses only on stress responses at the transcriptional level. The advance

in gene expression profiling technologies enables us to measure change in gene expression at any level

of organisation in a high-throughput manner. However, such multidimensional data can not be interpreted

as is, because of their complex nature. Thus, predictive modeling approaches for interpreting such data

have become common practice. Predictive modeling approaches generally estimate the probability of an

outcome given a particular input. Such approaches (or models) allow for formulating testable hypotheses,

which can be experimentally verified. In many cases, models might provide insight into questions that are

hard to address experimentally. In this PhD thesis, we used predictive modeling approaches based on

gene expression data for the model organism Arabidopsis thaliana to address two major challenges in

current plant systems biology, as summarised below.

1. Prediction of gene functions from expression variation due to

subtle micro-environmental perturbations across individual wild-

type Arabidopsis plants

Standard network-guided gene function prediction approaches use datasets produced using a traditional

expression profiling setup. Plants are usually grown under a tightly controlled experimental setup,

subjected to a single treatment that is usually rather harsh, in order to mask the unwanted residual

effects, and pooled to suppress variability among individuals and increase the experimental reproducibility.

However, even after taking such precautions, the reproducibility of expression profiling experiments is often

poor3. Moreover, harsh single treatments are often unrealistic in a natural context, because individual

plants in the field are generally simultaneously exposed to multiple subtle changes in the environmental
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conditions. Additionally, harsh perturbations force the system to work away from homeostasis to counteract

their effects, and may thus lead to off-target responses that are only indirectly related to the perturbations

applied. Moreover, it is often practically infeasible to define and perform the hundreds of controlled

perturbations needed to unravel particular plant process. To circumvent these problems, we aimed to

assess the information contained in the expression variation among individual wild-type plants arising

due to subtle uncontrolled perturbations in the growth conditions and its use for reverse engineering

purposes. We reanalysed the individual plant gene expression data set generated by Massonnet and

co-workers4 and compared its functional prediction performance with that of same-sized compendia

of Arabidopsis gene expression experiments, profiling the response to controlled harsh treatments on

pooled plant samples (Chapter 2).

2. Prediction of endoploidy distributions in cell type, tissue and or-

gan under developmental and environmental cues

Endoreplication or the endocycle is a variant of the mitotic cell cycle during which cells duplicate their

genome (repeatedly) without mitosis, thus resulting into increased nuclear content i.e. endoploidy.

Endoreplication is often seen in plants as a prominent response to stress conditions such as DNA

damage, Ultra Violet (UV) radiation stress, pathogen attack, etc. Although over the recent years many

genes have been identified that control endoreplication onset and progression, lack of a clear knowledge

on the temporal and spatial occurrence of endoploidy distribution in an endoreplicating species has

hampered the possibility to study the physiological role of the endocycle at the plant level. A major open

question is how cells of multiple cell types or tissues with different DNA endoploidy levels are integrated

into a developing organ, and how this organisation contributes to the growth of the plant under different

environmental conditions. We aimed to use a predictive modeling approach based on gene expression

data to obtain a spatio-temporal (ST) endoploidy map of the developing Arabidopsis thaliana root and

endoploidy map changes in response to various environmental conditions (Chapter 4).
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Chapter 1

Introduction to gene function

prediction

“If we knew what it was we were doing, it would not be called research,

would it?”

Albert Einstein.

For the author contributions, see page 18.
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1.1. Basics of molecular biology

1.1 Basics of molecular biology

1.1.1 Genes : working subunits of DNA

Deoxyribonucleic acid (DNA) is an information storage molecule, which contains all of the instructions

a cell requires to sustain itself. These instructions are found within genes, which are sections of DNA

made up of specific sequences of four different nitrogenous bases (nucleobases): adenine (A), cytosine

(C), guanine (G), and thymine (T). These nucleobases are positioned sequentially on two long anti-

parallel polymer strands in a double helix configuration where hydrogen bonds link complementary bases

on opposite strands: A with T and C with G5. Inside the nucleus, DNA doesn’t appear in the naked

state but forms a complex with nuclear proteins called histones. The DNA-histone protein complex is

called chromatin and is formed when the double helix DNA wraps around histone in a beads-on-a-string

configuration and then wraps around itself multiple times to condense into a smaller volume. Such

condensed chromatin molecules, i.e. chromosomes, often appear as X-shaped structures inside the

cell’s nucleus during the cell division process. A concise overview of DNA inside the nucleus of a cell is

presented in Figure 1.1. Genes code either for a messenger-ribonucleic acid (mRNA) encoding the amino

acid sequence in a polypeptide chain or for a functional RNA molecule. DNA thus holds the information

to build and maintain an organism’s cells and pass genetic traits to offspring.

Figure 1.1: An overview of DNA inside the nucleus of cell. Genes are the segments of DNA and are made up of specific
sequences of four different nucleobases A,T,G and C and contain instructions to make functional products and maintain the
organism’s cell. During cell division process, DNA molecules are systematically packed into a number of chromosomes and
appear as X-shaped structures inside the cell’s nucleus. Picture is taken from wikipedia commons.
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1.1.2 Gene expression : two step process

The instructions stored within protein-coding genes are read and processed by a cell for synthesis of a

functional gene product in two steps : transcription and translation, the process is collectively termed

gene expression. An overview of the flow of information from gene (DNA) to functional gene product

(protein)6,7 in a eukaryote is represented in the Figure 1.2. During transcription, RNA polymerase (RNAP)

uses a portion of the cell’s DNA as a template and synthesises a strand of RNA that is complementary

to the DNA template strand. RNA is chemically similar to DNA, except for three main differences (i) in

RNA, a base called uracil (U) replaces T as the complementary nucleotide to A, (ii) RNA is made in a

single-stranded, non-helical form while DNA is almost always in a double-stranded helical form and (iii)

RNA contains ribose sugar molecules, which are slightly different than the deoxyribose molecules found in

DNA. In some cases, the newly created RNA molecule undergoes cleavage at the both ends to generate

a finished product such as transfer RNA (tRNA) or ribosomal RNA (rRNA), that serves an important

function within the cell. In other cases, the newly synthesised RNA molecule further undergoes extensive

changes resulting in mRNA that carries the DNA’s message to the ribosome in the cytoplasm where

proteins are synthesised. These changes involves splicing, in which noncoding nucleotide sequences,

called introns, are clipped out of the mRNA strand, and coding nucleotide sequences, called exons, are

retained. Then, a sequence of adenine nucleotides called a poly-A tail is added to the 3’ end of the mRNA

molecule. This sequence signals to the cell that the mRNA molecule is ready to leave the nucleus and

enter the cytoplasm, where that molecule can be translated into protein.

Translation is the process by which a protein is synthesised from the instructions contained in an

mRNA molecule. During this process, an mRNA sequence is read using the genetic code, which is a

set of rules that defines how an mRNA sequence is to be translated into the 20-letter code of amino

acids, the building blocks of proteins. The genetic code is a set of three-letter combinations of nucleotides

called codons, each of which corresponds with a specific amino acid or stop signal. This process occurs

in a structure called the ribosome, which has a small and a large subunit and is a complex molecule

composed of several ribosomal RNA molecules and a number of proteins. Translation occurs in three

stages: initiation, elongation, and termination. During initiation, the small ribosomal subunit binds to

the start of the mRNA sequence. Then a tRNA molecule carrying the amino acid methionine binds to

what is called the start codon of the mRNA sequence. The start codon in all mRNA molecules has the

sequence AUG and codes for methionine. Next, the large ribosomal subunit binds to form the complete

initiation complex. During the elongation stage, the ribosome continues to translate each codon in turn.

Each corresponding amino acid is added to the growing chain and linked via a peptide bond. Elongation

continues until all of the codons are read. Lastly, termination occurs when the ribosome reaches a stop

codon (UAA, UAG, and UGA). The new protein is then released, and the translation complex comes

apart.

Functional proteins are responsible for a wide variety of functionalities in the cell, ranging from

enzymatic activity to cellular signalling and structural roles8. The rate of production of functional proteins

in the cell is regulated at many stages of gene expression, primarily at the level of transcription but also at

post-transcriptional, translational and post-translational levels. The diversity of cell phenotypes which are

produced from identical genomes is primarily due to differences in gene expression, whether between
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different cell types in a multicellular organism, or as a result of diverse gene expression responses

between different physiological conditions or developmental stages.

Figure 1.2: An overview of the flow of information from DNA to protein in a eukaryote. First, both coding and noncoding
regions of DNA are transcribed into mRNA. Non coding regions (introns) are removed during initial mRNA processing and the
remaining coding regions (exons) are then spliced together. The spliced mRNA molecule (brown) is then prepared for export
out of the nucleus through addition of an end cap (sphere) and a polyA tail. Once in the cytoplasm, the mRNA can be used to
synthesise a protein. Picture is taken from Scitable (http://www.nature.com/scitable).

1.2 Emergence of systems biology

The discovery of DNA structure in 1953 by Watson and Crick5 laid the foundation for studying vital cellular

processes such as replication, transcription and translation in molecular terms, essentially the field of

molecular biology. Until the past decade, research in molecular biology has been mainly based on a

reductionistic view, the idea that complex system can be understood by the analysis of their simpler

individual components, i.e. that the intricate operating system of living organisms can be understood by

investigating individual genes or proteins at a time. As reductionistic methodologies reduce the number of

experimental variables and facilitate analyses, they have been extensively used in the latter half of the 20th

century. Nevertheless, these methodologies have limitations. For instance, experimental observations

obtained in vitro with isolated components of cells are not directly applicable to the physiology of whole

organisms. In the past decade, the advances of genome sequencing and high-throughput functional

genomics technologies gave rise to the field of systems biology, which contrasts the reductionistic view as

7
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it investigates the behaviour and relationships of all of the components in a particular biological system

while it is functioning.

Systems biology approaches can be of two types: (1) top-down, starting from omics-scale data

and seeking to unravel the underlying explanatory principles or (2) bottom-up, starting with properties of

single molecules and deriving large-scale models that can subsequently be tested and validated. The

first approach involves the systematic perturbation (genetical, chemical or environmental) of a biological

system; measuring the gene, protein or informational pathway responses; integration of these data and

finally formulating mathematical models that describe the structure of the system and its response to

individual perturbations? . The second approach is more mechanistic but it similarly produces models of

a system’s behaviour in response to perturbation that can be tested experimentally. In recent years, the

increased emphasis on pathways, networks, and systems has given rise to powerful new experimental

and bioinformatics methods. Although genomic9, gene expression10, and proteomics11 analyses are

now becoming ordinary in biology, the construction of synthetic regulatory circuits12, the modeling of

complex genetic13 and metabolic networks14, the measurement of transcriptional dynamics15 and gene

regulation in single cells16 are just some of the new techniques gaining scientific interest for analysing

the properties of complex systems.

Below, section 1.3 describes the experimental techniques used to generate transcriptome data and

section 1.4 describes the computational methods that are used to analyse and integrate huge amounts of

transcriptome data, as used in this thesis. Finally, some relevant models for predicting gene functions by

perturbing the biological system are described in section 1.5.

1.3 Generating transcriptome data

1.3.1 High-throughput technologies

Gene expression is a dynamic process, as the same gene may be turned on or off in a particular cell under

different conditions or it may be expressed in different quantities. The abundance of a transcript under a

particular condition reflects a dynamic balance between production (transcription) and degradation of

the mRNA concerned. In the past decades, gene expression was studied by looking at only one or a

very few genes at once using a method called the Northern blot17. For example, Northern blot is often

used to visualise differences in the quantity of mRNA produced by different groups of cells or at different

times. In recent years, many new techniques have been developed to measure gene expression on a

large-scale i.e. several thousands at once. Most of these techniques, including microarrays18,19, RNA

Sequencing (RNA-Seq)20, reverse transcription polymerase chain reaction (RT-PCR)21, serial analysis

of gene expression (SAGE)22, etc. work by measuring mRNA levels. The gene expression can also be

analysed by directly measuring protein levels by Western blot23, Protein Chips, Reverse Phase Protein

Microarrays, Mass-Spectrometry based techniques24, etc.

Among these techniques, DNA microarrays have been the most popular approach for transcript

profiling until recently. However, array technology has limitations. For example, background hybridisation

limits the accuracy of expression measurements, particularly for transcripts present in low abundance. In

addition, arrays are limited to interrogating only those genes for which probes are designed. In recent
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years, RNA-Seq technology, a high-throughput sequencing technology to directly sequence transcripts, is

increasingly becoming a replacement to microarrays for whole-genome transcriptome profiling25. RNA-

Seq has considerable advantages for examining a transcriptome’s fine structure, such as the detection

of unknown transcripts, allele-specific expression and splice junctions. It does not depend on genome

annotation for prior probe selection and thus avoids the related biases present on microarrays. A recent

study comparing between microarrays and RNA-Seq for transcriptome profiling showed a high correlation

between gene expression profiles generated by the two platforms26. However, it also demonstrated that

RNA-Seq is superior in detecting low abundance transcripts, differentiating biologically critical isoforms,

and identifying genetic variants. In addition, RNA-Seq shows a broader dynamic range than microarrays,

which allows for the detection of more differentially expressed genes with higher fold-change26.

As transcriptome data used in this thesis were generated using microarray techniques, in the next

sections only microarray techniques are described in detail.

1.3.2 Microarrays : cDNA and oligonucleotide

Microarrays are used to simultaneously detect relative expression of thousands of genes in the cellular

pool of mRNA. DNA microarrays are microscope slides that are printed with thousands of tiny spots in

defined positions, with each spot containing a known DNA sequence or gene. Often, these slides are

referred to as gene chips or DNA chips. The DNA molecules attached to each slide act as probes to

detect gene expession. There are different types of microarrays present based on the number and type

of the probes, and on the number of channels (labelling colours) profiled on a single chip. The dual color

complementary DNA (cDNA)-microarray was the prototype and its experimental process is represented

in (Figure 1.3).

To perform a dual color DNA microarray analysis, mRNA molecules are typically collected from both

an experimental sample and a reference sample. For example, the reference sample could be collected

from normal cells, and the experimental sample could be collected from cancer cells. The two mRNA

samples are then converted into cDNA, and each sample is labeled with a fluorescent probe of a different

color. For instance, the experimental cDNA sample may be labeled with a Cy5(red) fluorescent dye,

whereas the reference cDNA may be labeled with a Cy3(green) fluorescent dye. The two samples are

then mixed together and allowed to bind to the microarray slide. The process in which the cDNA molecules

bind to the DNA probes on the slide is called hybridisation. Following hybridisation, the microarray is

scanned to measure the expression of each gene printed on the slide. If the expression of a particular

gene is higher in the experimental sample than in the reference sample, then the corresponding spot

on the microarray appears red. In contrast, if the expression in the experimental sample is lower than

in the reference sample, then the spot appears green. Finally, if there is equal expression in the two

samples, then the spot appears yellow. The data gathered through microarrays can be used to create

gene expression profiles, which show simultaneous changes in the expression of many genes in response

to a particular condition or treatment.

The most commonly used microarrays today are oligonucleotide arrays such as Affymetrix GeneChips19.

These GeneChips are one-channel microarrays, meaning that the control and stress condition oligonu-

cleotides are labeled with the same dye and each hybridised to a separate array (Figure 1.3). The probes

9
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Figure 1.3: Schematised experimental process using a cDNA and oligonucleotide microarray. In dual-channel i.e.
cDNA microarrays, RNA extracted from control and experimental sample are reverse transcribed into cDNA labelled with a
fluorescent dye of a different color (here, green and red respectively). The two samples are then mixed together in equal
amount and then hybridised on microarray slide. Finally, the microarray is scanned to measure the expression of each gene
printed on the slide. In single-channel i.e. oligonucleotide microarrays, the control and stress condition oligonucleotides are
labeled with the same dye and each hybridised to a separate array. Picture is taken from wikipedia commons.

on Affymetrix microarrays are short sequences of around 25 base pairs, and each gene is represented

by a number of different probes attached to the microarray. The intensity of fluorescence is measured

by a fluorescence scanner. In this PhD thesis, transcriptome data generated from ATH127 microarrays

and AGRONOMICS128 tiling arrays (both single-channel) was used. The Affymetrix ATH1 microarray is

frequently used for Arabidopsis transcriptomic analyses. The array consists of 22759 gene-specific probe

sets, each containing eleven perfect match (PM) and eleven mis-matched (MM) probes (twenty-five base

oligonucleotides hybridised to a glass slide). PM probes are complementary to the mRNA sequence;

MM probes differ from the PM probes only at nucleotide thirteen, where the base is swapped to its

complementary partner (e.g. C to G, A to T etc.). The array represents 22543 individual Arabidopsis loci

(The Arabidopsis Information Resource release 8 (TAIR 8)), with some loci represented by more than one

probe set.

As ATH1 (as well as other microarrays for transcript profiling) probe only about two-thirds of

the annotated genes in the Arabidopsis reference genome, as an alternative a new tiling array, the

AGRONOMICS1 Affymetrix tiling array28 was developed to increase the genomic coverage. The probes

on the AGRONOMICS1 array cover the entire nuclear Arabidopsis genome (TAIR 8), with the exception

of repetitive sequences likely to cause cross-hybridisation. The AGRONOMICS1 array design doesn’t
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include the MM probes as it has been shown that the oligonucleotide microarray data can be robustly

analysed based on PM probes only29. Additionally, the AGRONOMICS1 tiling array (in contrast to

other available tiling arrays such as Affymetrix, Nimblegen, etc.) contains the complete paths of both

genome strands, with on average one 25mer probe per 35-bp genome sequence window. Thus, this

tiling array makes it possible to obtain strand-specific information on transcription units with a single

array per sample and allows to investigate the correlation between chromatin states and expression.

Overall, the AGRONOMICS1 tiling array yields very similar results to the ATH1 array in expression profiling

experiments while providing advantages such as (i) information for many more genes (annotated as well

as unknown genes), (ii) detection of alternative splicing and (iii) being compatible with ChIP-chip analysis.

1.4 Analysing and integrating transcriptome data

1.4.1 Preprocessing measurements

Gene expression studies are usually carried out for one or multiple samples (i.e. organs, tissues, cell

types etc.) under different conditions and thus involve multiple microarrays. Before the measurements

from these microarrays can be integrated into one analysis, the reported intensities (raw data) need

to be preprocessed. The preprocessing generally involves (i) background correction to exclude false

positive results arising due to local artefacts or unspecific probe binding, (ii) normalisation to allow

comparison of different microarrays with each other and (iii) summarisation to integrate the intensities

of different probes for a single gene. Although in recent years, many free and commercial packages

have been developed to preprocess microarray data, the most commonly used algorithm is Robust

Multi-array Average (RMA) algorithm29–31. In the background correction step, RMA assumes that the

probe intensities are exponentially distributed and the background is normally distributed and greater

than or equal to zero, to avoid negative values. The convolution background correction ensures that there

are no negative values in the resulting corrected data. Further these values are transformed into log2

values to make them more human readable and make the normalisation additive. RMA offers a quantile

normalisation algorithm in which, at first, the value of the highest intensity on each chip is replaced by the

average of the highest intensities on each chip and next, the same is done for the second highest intensity

and so forth. Eventually, the overall expression value distribution of each chip is comparable. Following

quantile normalisation, an additive linear model is fit to the normalized data to obtain an expression

measure for each probe on each microarray. The linear model for a particular probe can be written as

Yij = mi + aj + εij (1.1)

where Yij represents the normalized probe value corresponding to the i th GeneChip and the j th probe

within the probe set, mi denotes the log-scale expression for the probe set in the sample hybridised to the

i th GeneChip, aj denotes the probe affinity effect for the j th probe within the probe set, and ε denotes a

random error term. Tukey’s median polish is applied to obtain estimates of the mi values. For each row

(microarray) the median is determined and subtracted from each value in that row. Afterwards the same

is done for each column (probe set). This procedure is repeated until all row and column medians are
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zero. The resulting values are subtracted from the original values. As such, column and row effects of

the microarray are taken into account and because of the use of medians, outliers don’t influence the

resulting data. Finally the estimated mi values serve as the log-scale expression measures associated

with the particular probe set.

Once the data is preprocessed, the log-ratios of gene expression values in control and stress

conditions can be calculated. These log-ratios are often used to identify the genes that significantly differ

in expression between control and stress conditions, the genes with similar expression patterns, the

enrichment of genes in a particular biological process, etc.

1.4.2 Differential gene expression analysis

One of the important tasks of analysing gene expression data is the need to identify genes whose

expression patterns differ according to the experimental condition (stress vs control). A simple approach

is to select genes based on fold-change criterion. This is usually only done when no replicates are

available. However, this analysis doesn’t allow the assessment of significance of expression differences

in the presence of biological or experimental variation. Thus, when replicate measurements are available,

statistical tests are used to test differential expression. Usually parametric tests such as t-test are

used with the assumption that the underlying distribution is normal (or at least approximately normal).

Since a large number of hypothesis tests are carried out (one for each gene), statistical analysis at a

particular confidence level (e.g. 0.01 or 0.05) per gene may lead to a large number of false positive

results. Two multiple testing corrections are commonly used to control the number of false positives:

the Bonferroni correction32 which controls the Family Wise Error Rate (FWER) and the Benjamini and

Hochberg correction33 which controls the false discovery rate (FDR). The FWER is the probability of

making at least one Type I error (i.e. one false positive, rejecting the null hypothesis though it is true). The

FDR correction controls the rate of falsely rejected null hypotheses when being true (false positive rate).

In this thesis, limma34 (linear models for microarray data, a bioconductor35 package) was used to

identify differentially expressed genes. Limma first fits a linear model to analyse complex experiments

with multiple treatment factors and uses quantitative weights to account for the variation in precision

between different observations. Later, limma uses moderated t-test statistics to determine whether gene

expression values in the stress and control conditions significantly differ from each other, under the

assumption that the log-ratios are normally distributed. The resulting t-test statistic is used to compute a

P value for the observed expression ratio, under the null hypothesis that the mean expression levels of the

gene under stress and control conditions are the same. The null hypothesis is rejected for P values below

a given significance level (for e.g. 0.01 or 0.05). Limma further corrects P values for multiple testing,

for instance using the Benjamini-Hochberg method33 at a specified FDR threshold (e.g. 0.01, 0.05,

etc.). The typical outputs from limma analysis are a log-ratio matrix and an associated FDR corrected P

value matrix. Besides, the P value matrix is often converted into a differential expression matrix, which

is generally used as an input for (bi)clustering algorithms. The matrix usually contains values 1 or 0

representing respectively differentially and non-differentially regulated gene expression in the stress

condition compared to control. In this context, for a non-significant P value i.e. no differential expression
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between stress and control, the value 0 is given in a differential expression matrix. Otherwise, the value 1

is given in a differential expression matrix.

1.4.3 Gene ontology (GO) enrichment analysis

The differentially expressed genes are usually studied for their enrichment in a particular biological

process. These kinds of analyses are greatly facilitated by a structural description of known biological

information at different levels of granularity. The GO project was initiated in 199636 with the aim to capture

the increasing knowledge of gene function in a controlled vocabulary applicable to all organisms. GO

consists of three hierarchically structured vocabularies that describe gene products in terms of their

associated biological processes, molecular functions and cellular components. GO has the structure of a

directed acyclic graph; each node representing a GO term, each edge representing a linking phrase: ‘is

a’, ‘part of’ or ‘regulates’. ‘Regulates’ is divided in ‘positively regulates’ and ‘negatively regulates’. Every

term (node) is given a GO identification number that makes it easy to replicate the search.

In the past years, many tools have been developed that analyse GO term enrichment in a given

gene set. A comprehensive list can be found at (http://www.geneontology.org/GO.tools.shtml). The

gene-to-annotation format of GO allows these tools to systematically map genes in a given list to the

associated GO terms and then statistically examine the enrichment of gene members for each of the GO

terms by comparing the outcome to reference background. A recent survey by Huang and co-workers37

classified some of these tools into three classes: (i) singular enrichment analysis (SEA), (ii) gene set

enrichment analysis (GSEA) and (iii) modular enrichment analysis (MEA), based on the algorithms used.

SEA based tools (GoStat38, GoMiner39, BiNGO40, DAVID41, etc.) use the most traditional strategy for

enrichment analysis that takes the user’s preselected genes and then iteratively test the enrichment of

each GO term one-by-one in a linear mode. Then, enriched terms are listed in a simple linear text format.

The enrichment P value calculation is performed by common and well-known statistical methods, including

Chi-square, Fisher’s exact test, Binomial probability, etc and corrected for multiple testing. This class is

capable of analysing any gene list that could be selected from any high-throughput biological studies.

However, the limitation of this class of algorithms (except for tools such as BiNGO that additionally output

GO Hierarchy coloured based on the significance values) is that the deeper inter-relationships among

the terms may not be fully captured in a linear format report. GSEA based tools (GSEA42, PAGE43,

GO-Mapper44, etc.) consider all genes (without any pre-selection) and use associated experimental

values (fold change) in the enrichment analysis. The unique benefit of this strategy is that no prior arbitrary

cutoff’s are needed for gene selection and additional experimental values are integrated into P value

calculation. The output of this strategy is the maximum enrichment score (MES), which is calculated from

the rank order of all gene members in the GO term. The enrichment P value calculation is performed

by methods that includes randomisation approaches, Kolmogorov–Smirnov-like statistics or parametric

statistical approaches such as z-scores, t-tests, etc. This class is suitable for pair-wise biological studies,

for instance perturbation vs. control. The limitation of this class of algorithms is that it may be difficult

to apply to the diverse data structures derived by complex experimental design and new technologies.

MEA based tools (ADGO45, Ontologizer46, GoToolBox47, etc.) use the basic enrichment algorithms

found in SEA and incorporate extra network discovery algorithms by considering the gene-to-gene (or
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term-to-term) relationships. The enrichment P value is calculated by measuring enrichment on joint

terms or by considering parent-child relationships or by measuring term-term global similarity with Kappa

Statistics, Pearson’s correlation, etc. This class is capable of analysing any gene lists like SEA class but

the interesting orphan genes/terms (with little relationships to other genes/terms) may be left out from the

analysis.

In this thesis, BiNGO40 (Biological Networks Gene Ontology tool) was used to assess the over-

representation of a GO categories in a set of genes. A major advantage of BiNGO over other ontology

enrichment tools is the flexibility of using custom ontologies and annotations. Next to the standard Gene

Ontology, it is possible to use GOslim ontologies or a user-defined ontology file. The BiNGO tool also

offers a choice of statistical tests (namely hypergeometric test, with an exact P value as result or the

binomial test, resulting in an approximate P value) for the analysis. The hypergeometric test calculates

the probability of a random set of genes being enriched in a particular function when sampling without

replacement. For each GO category, a P value is given that represents the probability whether or not

the observed number of genes annotated to that GO term in the gene set under study is generated by

chance. The binomial distribution probes the same probability as the hypergeometric distribution but

through sampling with replacement. The BiNGO tool further corrects the P values for multiple testing

(FDR or FWER), as one analysis requires the testing of all gene ontology terms for significant enrichment

in that gene set.

1.4.4 Gene co-expression network analysis

Differential expression relationship among genes across various conditions are greatly studied to elucidate

the functional relationship among genes. In this context, gene expression profiles of a number of

experimental conditions (combined together in a compendium) are categorised into clusters based on

the similarity in their patterns of expression. The functions of unknown gene products in a cluster are

then inferred using deduction techniques based on the so-called guilt-by-association principle48. The

co-expressed genes in each cluster are inferred to be coding for proteins that participate in a common

biological function. There are two classic techniques used on gene expression data for predicting or

annotating gene functions. The first technique is a form of unsupervised learning called ’clustering’, while

the second is a form of supervised learning called ’classification’49.

Clustering methods assume to have no prior knowledge about any of the genes’ biological functions

and use the expectation that genes that perform a common biological function would have expression

profiles that exhibit a similar pattern across different experimental conditions. The clustering process

organises genes into different functional classes using a similarity (or distance) measure (e.g. Pearson

correlation, Euclidean distance, mutual information, etc.) on the gene expression data. In recent years,

many clustering techniques50 have been developed to find clusters of co-expressed genes. These tech-

niques include hierarchical clustering51, k-means clustering52, simulated annealing-based clustering53,

graph-theoretic clustering54, etc. In the classification method, prior knowledge (e.g. subset of genes

involved in a biological pathway of interest) is exploited in the form of training sets for supervised machine

learning algorithms to identify unknown genes belonging to the similar functional classes. Several classifi-

cation methods have been developed, including pattern discovery methods55, support vector machines56
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and neural networks57. In addition, combined approaches of these two classes of techniques are present

for assigning biological functions to the unknown genes58.

The traditional clustering methods (mentioned above) are well suited for time series expression

data to capture global tendencies of co- or anti-regulation between genes. However, they are not appro-

priate for perturbation experiments, as genes are not necessarily co-expressed under all experimental

circumstances or they may be co-regulated under some perturbations and show uncorrelated or even

inversely correlated expression behaviour under some experiments1. Thus, an alternative clustering

strategy referred to as biclustering has been developed for specifically detecting subsets of genes that

exhibit similar behaviour across a subset of conditions. In recent years, a number of biclustering methods

have been developed59,60, which can be broadly categorised based on the type of biclusters investigated

and the underlying mathematical formulation used to investigate them61. Very recently, Oghabian and

coworkers (2014)61 reviewed and further categorised biclustering techniques into four classes such as (i)

Correlation maximisation biclustering methods (CMB), (ii) Variance minimisation biclustering methods

(VMB), (iii) Two-way clustering methods (TWC) and (iv) Probabilistic and generative methods (PGM).

CMB based tools (such as ACV62, BiMine63, CC64, FLOC65, etc.) seek for subsets of genes and samples

where the expression values of the genes or respectively samples correlate highly among the samples or

respectively genes. For instance, CC (Chen and Church)64 used mean squared residue score threshold

to find biclusters, where this score was used as a measure of the coherence of the genes and conditions

in the bicluster. VMB based tools (such as BiMax66, Spectral67, XMOTIF68, etc.) search for biclusters in

which the expression values have low variance throughout the selected genes, conditions or the whole

submatrix (of gene by conditions). For example, XMOTIF68 extracts biclusters (or conserved expression

motifs) with genes exhibiting constant expression for a subset of samples. TWC based tools (such

as CTWC69, ISA70, ITWC71, etc.) discover homogeneous biclusters by iteratively performing one-way

clustering on the genes and samples. For example, coupled two-way clustering (CTWC)69 approach

iteratively search subsets of the genes that remain constant through the iterations of the algorithm and

are used as the attributes for the clustering of the samples and vice versa. PGM based tools (such as

CMonkey72, FABIA and FABIAS73, Gibbs biclustering74, Plaid75, SAMBA76, etc.) employ probabilistic

techniques to discover genes or samples that are similarly expressed across a subset of samples or

genes respectively in the given data-matrix. For example, SAMBA (Statistical-Algorithm Method for

Bicluster Analysis)76 is a graph theoretic algorithm coupled with statistical modelling of the data, in which

the input expression data is modelled as a bipartite graph whose two parts corresponds to conditions

and genes respectively. The algorithm basically looks for an optimal set of heavy-weighted subgraphs

(biclusters) that covers this bipartite graph. Each of the methods described above have their strengths and

weaknesses. Some of the methods such as CC64 and Gibbs sampling77 are less suited to find overlap

between biclusters as they mask previously found biclusters with random noise or because methods like

e.g. Spectral67, CTWC69, etc. partition the data. Other methods require user input about the desired

number of biclusters in advance or generate highly redundant biclusters, require extensive adjustment

of parameters or do not integrate other types of biological data such as differential expression analysis

information (P values) from perturbational data, etc.

In this thesis, ENIGMA (Expression Network Inference and Global Module Analysis)1, a graph-

based biclustering like method, was used that tackles some of these issues. The ENIGMA algorithm
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Figure 1.4: An overview of ENIGMA algorithm. The input gene expression values are discretised into three categories
i.e. up-regulated, down-regulated and unchanged based on their differential expression P value. If the gene is significantly
up-regulated in a given experiment, the corresponding field is labeled blue. Experiments in which the gene is significantly
down-regulated are similarly labeled yellow, and the remaining fields are labeled black. The exact overlap of yellow and blue
field positions between profiles (A and B) is then tested for significance with the null hypothesis that the response of the genes
A and B to the perturbations are uncorrelated. The resulting significant co-differential expression P values are corrected for
multiple testing and translated to edges in a co-expression network, which is clustered into expression modules (i.e. groups of
significantly co-differentially expressed genes) using a graph-based clustering algorithm. The module (Right panel) is split in
leafs in both dimensions based on average linkage clustering using a cosθ threshold of 0.65. Red lines (rightmost leaf and
bottom leaf) indicate leafs (Beyond the red line) of size < 3 grouped in a single leaf. Transcription factors are highlighted in
yellow in the gene list if there is ChIP data available for them, while other regulators are highlighted in red. To the right of the
expression matrix is a column indicating the module’s seed genes (red). Further to the right is a matrix depicting the presence
of enriched TF binding sites (yellow) and/or significant co- or anti-expression links with potential regulators (green and red,
respectively; the hue is proportional to the P value of the link; in case of overlap with an enriched binding site, the field is
coloured dark green or dark red). The expression profiles of these regulators are depicted on top of the module’s expression
matrix. To the far right are matrices depicting the genes’ membership of enriched GO categories (orange) and membership of
other modules (blue). The black and magenta arcs represent protein and genetic interactions, respectively. This figure is
reproduced from Maere et. al. 1

(Figure 1.4) uses (as input) the expression log-ratios and differential expression P values [i.e. 0(no-

differential regulation), 1(up-regulation), -1(down-regulation)] from any perturbational (chemical, genetic

or environmental) microarray dataset as input, and extracts gene expression modules (as an output)

based on the use of combinatorial statistics and graph-based clustering. The ENIGMA algorithm is able

to detect significant partial co-differential expresssion relationships between genes and overlap between

modules. ENIGMA further characterises the obtained modules by incorporating other data types, e.g.

GO annotation, protein interactions and transcription factor binding information, and suggests regulators

(i.e. genes that are significantly more connected to a module, through positive or negative co-expression

edges, than expected at random tested using hypergeometric test, default FDR = 0.05, selected either

from a user-defined list or a user-defined set of GO classes) that might have an effect on the expression

of (some of) the genes in the module. The combinatorial statistic used by ENIGMA assesses which pairs

of genes are significantly co-expressed (co-differentially expressed) across at least a subset of conditions.

The resulting co-expression P values are then corrected for multiple testing and translated to edges in a
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co-expression network, which is further clustered into expression modules (i.e. groups of significantly

co-differentially expressed genes) using a graph-based clustering algorithm1.

1.5 Modeling approaches for gene function inference

Gene function determination is a critical step towards understanding the biological processes of a system

and the system itself. Although, the traditional laboratory methods used to determine gene functions, such

as forward or reverse genetics, are accurate and reliable, they require enormous effort and time. Thus,

with the increase in sequenced genomes and availability of transcriptome profiles, many computational

approaches have been developed to predict gene functions in a timely and cost-effective manner, with

the aim of further guiding laboratory experiments and facilitating more rapid functional annotation of

genomes.

Among these predictive approaches, the most widely used are homology-based methods that take

into account similarities in DNA or protein sequences for gene function inference. The rationale for the

homology-based method is that two proteins with a similar sequence or structure have evolved from a

common ancestor and thus may have similar functions. However, it is likely that homologous proteins

might also acquire different functions in evolution. Hence, in recent years, researchers have developed

various methods that use microarray expression data78, protein domain configuration79, protein-protein

interaction networks80, and phylogenetic profiles81 to predict functions of genes. Gene function inference

from different types of biological data simultaneously integrated into functional networks and modules,

are attracting more attention as these methods have been shown to yield more accurate predictions82–84.

In this context, functional networks are usually constructed with nodes corresponding to genes and

edges representing the co-functionalities of gene pairs and used as input for learning algorithms. There

are two main approaches that use functional networks to predict gene functions: (i) network-based

(direct annotation), which infer the function of genes based on its connections in the network, and (ii)

module-based, which first identify modules of related genes in the network (or directly from the data) and

then annotate each module based on the known functions of its members85.

The module-based approach is described in the section 1.4.4. Here, two network-based approaches

for the plant model organism Arabidopsis are explained in brief. The first approach allows to predict

functions of genes at a system level, whereas the second allows to predict the gene functions at the level

of a tissue or developmental stage of interest. (i) AraNet is a probabilistic functional gene network, which

was constructed to attribute novel functions to Arabidopsis genes86. This network was constructed by

integrating diverse ‘omics’ data such as mRNA co-expression patterns, protein-protein interaction data,

genomic contexts of orthologous proteins, protein domain co-occurrence profiles and functional linkage

data transferred from other organisms (e.g., C. elegans, Drosophila melanogaster, Homo sapiens and

Saccharomyces cerevisiae) by orthology relationships. Each interaction in the network has an associated

log-likelihood score that measures the probability of an interaction representing a true functional linkage

between two genes. This network was used by the authors86 to predict candidate genes associated with

the set of 23 known embryo pigmentation genes. Out of the suggested 200 genes, 90 genes were tested

using homozygous transfer DNA (T-DNA) insertional mutant lines. A total of 14 genes exhibited color and
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morphology defects in young seedlings, reminiscent of embryo pigmentation mutants. This study overall

represented a tenfold enrichment in the discovery rate of the mutant phenotype over that observed during

a forward-genetics screen of T-DNA insertion lines86. (ii) Many Arabidopsis gene products are known to

be functional in a specific tissue or during a specific developmental period2. Thus, investigating gene

functions experimentally on every plant structure at each of its development stages individually would

be tedious and costly. Therefore, a compendium of probabilistic functional networks was constructed by

integrating over 60 microarray, physical and genetic interaction, and literature curation datasets87. This

compendium includes tissue-, biological process-, and development stage-specific networks, which were

inferred using Bayesian classifiers for heterogenous data, each predicting relationships specific to an

individual biological context. These functional networks for e.g. disease resistance, root hair patterning,

and auxin homeostasis have been shown to yield for reliable gene function predictions. Moreover, they

enable the rapid investigation of uncharacterised genes in specific tissues and developmental stages of

interest.

In this thesis, we used PiNGO88, a network-based method, to find genes associated with processes

or pathways of interest. The PiNGO tool allows the user to load a network, e.g. a gene co-expression,

protein or genetic interaction, or integrated network either through Cytoscape89 or from a text file. The

PiNGO algorithm screens a particular network for genes whose direct neighbours are enriched for given

GO categories (i.e. "start" GO categories) along with its subcategories at a chosen significance level

(i.e. 0.01 or 0.05). Simultaneously, PiNGO can exclude genes with certain functional properties from

the analysis (i.e. "filter" GO categories), or focus on genes with particular functions (i.e. "target" GO

categories). Similar to the BiNGO tool, PiNGO uses hypergeometric or binomial tests to calculate

enrichment statistics, and Bonferroni or Benjamini–Hochberg FDR corrections to adjust the resulting

P values for multiple testing. The gene co-expression networks underlying gene function prediction

approaches are generally constructed from traditional gene profiling experiments that involve relatively

harsh perturbations on pooled samples. In the next Chapter, we discuss an alternative approach, which

involves a network constructed from data sets of multiple subtle perturbations to the systems on individual

plants.

1.6 Author contributions

I wrote this chapter by myself. It resulted from the many fruitful discussions with both my promoters.
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Abstract

Gene expression profiling studies are usually carried out on pooled samples grown under tightly controlled

experimental conditions, to suppress variability among individuals and increase experimental reproducibil-

ity. In addition, to mask unwanted residual effects, the samples are often subjected to relatively harsh

treatments [i.e. treatment that moves cells far from its normal working point; treatments such as chemical

(reagents, mutagens, etc.), genetic (gene deletion, knockdown or over-expression ) or environmental

(desiccation, high or low temperatures, etc.)] that are unrealistic in a natural context. Here, we show that

expression variations among individual wild-type Arabidopsis plants grown under the same macroscopic

growth conditions contain as much information on the underlying gene network structure as expression

profiles of pooled plant samples under controlled experimental perturbations. We advocate the use of

subtle uncontrolled variations in gene expression between individuals to uncover functional links between

genes and unravel regulatory influences. As a case study, we use this approach to identify ILL6 gene as

a new regulatory component of the jasmonate response pathway.

For the author contributions, see page 47.
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2.1. Introduction

2.1 Introduction

A classical dogma in systems biology states that in order to study a biological system, one needs to

systematically perturb the system, measure the response and construct a model that predicts the outcome

of future perturbations90. For instance, molecular biologists often profile the mRNA expression response

to controlled perturbations, such as environmental or chemical treatments or genetic knockouts. Because

reproducibility is a cornerstone of the scientific method, such experiments are invariably performed in a

tightly controlled setup91. Great care is taken to control the boundary conditions and to keep unwanted

external influences in check. Variability among individuals is smoothed out by pooling biological materials

and averaging over biological replicates. Moreover, in order to overpower any residual uncontrolled effects,

the perturbations applied to the system under study are often rather harsh, causing the system to operate

outside its normal range.

Even when taking such precautions, the reproducibility of expression profiling experiments is

often poor, in part because reproducing particular experimental conditions is hard even when detailed

information on the original setup is available3. To assess the within- and between-lab reproducibility of

leaf growth-related (molecular) phenotypes, Massonnet and co-workers4 recorded the gene expression

profiles of 41 individual leaves at the same developmental stage (leaf 5, stage 6.0), taken from Arabidopsis

thaliana plants of three accessions (Col-4, Ler, Ws) grown in six different laboratories. Despite the fact

that the participating labs adhered to a standardised and very detailed protocol, significant intra- and

inter-laboratory variability in gene expression was found. The authors concluded that small variations in

growth conditions within and across labs may lead to substantially different gene expression profiles.

The key question addressed in this study is whether we can use such uncontrolled expression

variations to our advantage in a reverse engineering context, i.e., to unravel the wiring of an organism.

We reanalyse the gene expression data set of Massonnet and co-workers4 and compare its functional

prediction performance to that of same-sized compendia of Arabidopsis gene expression experiments

profiling the response to controlled perturbations on pooled plant samples. We show that, from a guilt-

by-association perspective, subtle uncontrolled variations among individual leaves are as informative

as experiments monitoring more severe controlled perturbations in pooled samples. Since it is often

practically infeasible to define and perform the tens to hundreds of controlled perturbations needed to

unravel (part of) a transcriptional regulatory network, our findings may open up novel avenues to generate

sufficient amounts of data for reverse engineering algorithms.

2.2 Results

2.2.1 Residual gene expression differences yield biologically relevant expres-

sion modules

The gene expression data set of Massonnet and co-workers4 contains expression profiles of leaves of

three accessions grown in six different labs (Table 2.1 ), which causes a substantial proportion of the

expression variance among leaves to result from lab and accession effects (Figure 2.1). Accession, lab

and lab × accession effects explain on average 14.9, 19.7 and 12.8% of the expression variance of a
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single gene, respectively, whereas the residual error contains 52.5% of the variance on average (median

values 9.9, 17.0, 11.4 and 53.8%, respectively). Although the variance induced by lab or accession effects

may well contain biologically relevant information, we were primarily interested in analysing the gene

expression variation among comparable individual plant leaves grown under comparable macroscopic

growth conditions. Substantial lab and accession effects, by virtue of not being independent and highly

redundant across the leaves profiled, are expected to largely overpower the residual variation of interest

when calculating co-expression links (see below). Therefore, we used a two-way unbalanced design

analysis of variance (ANOVA) model to remove lab, accession and lab × accession effects from the data

set (Section 2.4). The residuals of this ANOVA analysis (i.e. the unexplained expression differences

among the 41 individual leaves, further referred to as the residuals data set) are the basis of all following

analyses.

Table 2.1: Number of individual leaves profiled per lab and accession in the Massonnet et al. (2010) study. The codes
P1, P2A, P2B, P3A, P3B and P4 denote the six labs that contributed the leaf samples that were expression profiled. The
identity of the labs corresponding to particular codes was not disclosed in the original study 4. All leaves were expression
profiled in the same lab. The table indicates the number of samples on which unbalanced design ANOVA estimation of lab-
and accession-effects was based in the rightmost column and bottom row, respectively. Estimation of lab x accession effects
was based on the numbers of samples indicated in the core table.

col-4 Ler Ws Total
P1 3 - - 3
P2A 3 3 3 9
P2B 3 3 3 9
P3A 3 - 3 6
P3B 3 - 3 6
P4 3 3 2 8
Total 18 9 14 41

Figure 2.1: Effect size of accession-, lab-, lab x accession- and residual effects in the Massonnet et al. (2010) data
set. Gene expression effect sizes for 19,760 genes were calculated as η = Effect Sum of Squares (SS)/ Total Sum of Squares
(SS), with SS estimated through two-way unbalanced design ANOVA analysis in MATLAB R©(http://www.mathworks.com/,
anovan function with ’sstype’=1) and GenStat R©(http://www.vsni.co.uk/software/genstat), yielding identical results.
Boxes extend from the 25th to the 75th percentile, with the median indicated by the red line. Whiskers extend from each end
of the box to the most extreme values within 1.5 times the interquartile range from the respective end. Data points beyond this
range are displayed with a red + sign.
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Figure 2.2: Distributional characteristics of log-ratio expression values in the residuals and sample data sets. (A.)
Log-ratio expression value distribution for the residuals data set, best fit by a location-scale t distribution with df = 3.696. (B.)
Log-ratio expression value distribution for a representative sample data set, best fit by a location-scale t distribution with
df = 1.6561. (C.) Box-and-whisker plot of the best-fit t distribution degrees of freedom (df) parameter for all 1000 sample
data sets. The residuals distribution has a substantially higher df parameter than the sample data sets, indicating that it is
somewhat closer to a normal distribution (df =∞ ). (D.) Box-and-whisker plot of the negative log likelihood of the t distribution
fits to the observed data distributions. Boxes extend from the 25th to the 75th percentile, with the median indicated by the red
line. Whiskers extend from each end of the box to the most extreme values within 1.5 times the interquartile range from the
respective end. Data points beyond this range are displayed with a red + sign.

We used the ENIGMA algorithm1 to calculate expression modules from the residuals data set

and 1000 randomly assembled compendia of 41 gene expression profiles of controlled perturbational

treatments on pooled Arabidopsis leaf or shoot material (referred to as the sample data sets; see Section

2.4). The log-scaled residuals data set is best fit by a Student’s t location-scale distribution with a

df parameter of 3.70, whereas the sample data sets exhibit a t distribution with df in the range 1.41

to 2.31, indicating that the log ratio distributions of the sample data sets contain somewhat heavier

tails (i.e. more expression values that are substantially up- or down-regulated with respect to the

normal expectation) (Figure 2.2). This may not come as a surprise given that the sample data sets

include experiments profiling gene expression responses to major-effect perturbations, as opposed to

the residuals data set. The ENIGMA algorithm requires discretisation of expression values into the

categories "up-regulated", "down-regulated", and "unchanged" (or "undecided")1. The algorithm was

originally intended for detecting significant "co-differential expression", a hybrid measure between co-

expression and differential expression that essentially indicates whether two genes are significantly up-
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or down-regulated together over at least a subset of the conditions profiled. The underlying rationale is

that simple co-expression measures, such as Pearson’s correlation, may be misleading in cases where

co-regulated genes respond qualitatively the same, but quantitatively different to a series of different

regulatory inputs. Discretisation of the gene expression response into up/down/unchanged removes

some of the quantitative disturbances that may obfuscate co-expression patterns and allows for the use

of combinatorial statistics to assess significant co-differential expression relationships over part of the

condition set instead of the entire set1. Since statistically motivated differential expression P values can

only be computed for perturbational data sets with biological replicates, such as the sample data sets,

but by design not for the residuals data set, we used a uniform log ratio threshold instead to define up-

and down- regulated gene expression values in all data sets. Therefore, "differential" expression in this

context is not motivated in terms of statistically rigorous differential expression P values, but merely serves

as a means to discretize the expression values for ENIGMA analysis and to separate noise (technical

noise and some forms of intrinsic stochastic noise) from potentially valuable signal. All mentioning of

"differential" expression in the remainder of the article should be interpreted accordingly. For thresholds

in the appropriate range (i.e. before the distribution tails start flattening out), the residuals and sample

data sets contain numbers of differential log ratio expression values in the same range. We fixed the log2

ratio threshold at 0.3498 (i.e. the standard deviation of the residuals data set), corresponding to a fold

change threshold of 1.274 (Figure 2.3).

Figure 2.3: Numbers of ’differential’ expression values in the residuals and sample data sets, for the purpose of
ENIGMA analysis. ’Differential’ expression was assessed using a uniform log2 ratio cutoff of 0.3498 for all data sets (equal to
one standard deviation for the residuals data set), corresponding to 1.274-fold up- or down-regulation. Note that ’differential’
expression in the present context is not motivated in terms of statistically rigorous differential expression P values (which
cannot be computed for the residuals data set), but that the log ratio cutoff merely serves as a means to discretise the
expression values for ENIGMA analysis. A cutoff value in the appropriate range ensures that the sample and residuals data
set have comparable numbers of up- and down-regulated expression values. Box-and-whisker plots summarise the count
distributions over the 1000 sample data sets, and the red stars indicate the counts for the residuals data set. Boxes extend
from the 25th to the 75th percentile, with the median indicated by the red line. Whiskers extend from each end of the box to
the most extreme values within 1.5 times the interquartile range from the respective end. Data points beyond this range are
displayed with a black + sign.
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Interestingly, we observed that the residuals data set still provides enough signal to discriminate

biologically relevant expression modules (Figure 2.4; Supplemental Data Sets 1 and 2). Sister plants

(same lab, same ecotype) often exhibit different residual expression responses in a given module (i.e.

the module genes are up-regulated in one sibling plant and down-regulated in another; Figure 2.4),

indicating that the modules are not formed by lingering lab or accession effects that were not removed by

ANOVA analysis (i.e. effects that are nonlinear on log scale; see Section 2.4), in contrast with many of the

modules learned from the original data set (Supplemental Data Sets 3 and 4). The set of modules learned

from the residuals data set contains modules that are significantly enriched in, among other processes,

photosynthesis, ribosome and chromatin assembly, proteolysis, secondary metabolism, response to

wounding, bacteria, chitin and jasmonic acid (JA) stimulus, response to temperature, water, and nutrient

levels, and starch catabolism (see Section 2.4 and Supplemental Data Set 2). The fact that the recovered

modules are enriched for a variety of biological processes indicates that the residuals are not merely

noise, but are to a large extent defined by genuine differences in the expression response of particular

regulons, presumably caused by subtle uncontrolled variations in the growth conditions of individual

plants (see below).

Figure 2.4: Co-differential expression module enriched for ’response to JA stimulus’ genes, obtained with ENIGMA 1

on the residuals data set. Yellow/blue squares indicate up-/down-regulated gene expression with respect to the baseline
leaf expression of the gene concerned. The bottom matrix contains the expression profiles of the module genes, while the
top matrix contains the expression profiles of predicted regulators of the module. Significant co-differential expression links
between the regulators and the module genes are indicated in the green matrix to the right. Genes highlighted in red are
regulators that are part of the module. Genes indicated as core genes belong to the original module seed, other genes were
accreted by the seed in the course of module formation 1. Gene annotations for enriched GO categories are indicated in the
orange matrix to the right. Sister plants (same lab, same ecotype, indicated by red arcs for the first two condition leaves) often
end up in different condition leaves in the module, indicating that expression variations between individual plants, and not
residual lab or accession effects, are responsible for the formation of the module.

2.2.2 Gene function prediction performance

The co-differential expression networks obtained in the first step of the ENIGMA algorithm were used to

assess the gene function prediction performance of the residuals and sample data sets. Topologically,
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the residuals network and the sample networks contain comparable numbers of genes and co-differential

expression links (edges) and a similar network density and clustering coefficient (Table 2.2). Forty-

eight genes in the residuals network are not observed in any sample network, but there is no obvious

functional theme among them. For most Gene Ontology (GO)92 categories, the residuals network

contains similar numbers of annotated nodes as the average sample network (Supplemental Data Set

5), but the residuals network contains a significantly higher fraction of genes which are not annotated

in the GO database (Table 2.2). Well-represented categories in the residuals network (relative to the

sample networks) include categories related to secondary and lipid metabolism, cell wall biogenesis, and

pollination. Several photosynthesis- and amino acid metabolism-related categories are relatively poorly

represented (Supplemental Data Set 5).

Table 2.2: Topological parameters for the residuals and sample co-differential expression networks. For the sample
networks, mean values ± 1 standard deviation are indicated. Approximate P values are based on the rank of the residuals
network relative to the 1000 sample networks.

Topological Parameters Residuals Network Sample Networks P Value
Number of nodes 11474 10695 ± 2606 0.409
Number of edges 165455 152017 ± 156476 0.314
Network density 0.0025 0.0021 ± 0.0012 0.240
Clustering coefficient 0.2388 0.2111 ± 0.0371 0.211
Unannotated gene fraction 0.2210 0.1841 ± 0.0139 0.005

The presence of a particular gene or biological process in a network does not automatically indicate

that the network provides biologically relevant connections for that gene/process. To evaluate the function

prediction performance of the residuals and sample networks, we predicted the function of all genes

based on the function of their network neighbours and used the available GO annotations as a gold

standard to score precision (proportion of predictions that are true positives) and recall (proportion of

known annotations recovered by the predictions) for each network over the prediction False Discovery

Rate (FDR) threshold range 10e-2 to 10e-11 (see Section 2.4). The F-measure (harmonic mean of

precision and recall) was used as a single integrated measure of prediction performance. An unavoidable

pitfall in this approach is the occurrence of false positive and false negative functional annotations in

the GO reference set, undermining its use as a gold standard. Although the calculated precision and

recall values may therefore deviate from the real values, our approach is still useful for comparative

purposes, since similar biases presumably exist for all networks. If any differential bias would exist, one

may be inclined to think it might be a bias favouring the sample networks, since comparatively more

of the existing GO annotations and supporting experimental evidence can be assumed to derive from

major effect perturbations on pooled plant samples, as in the sample data sets, than from minor effect

perturbations on individual plants, as in the residuals data set. The fact that significantly more functionally

non-annotated genes are recovered in the residuals network than in the average sample network (Table

2.2) may point in this direction, but this can hardly be taken as solid evidence for a differential bias.

Overall, the residuals network produces slightly more predictions for slightly more genes than

the average sample network at each FDR threshold (Figure 2.5). For more stringent FDR thresholds,

the resulting number of predictions per predicted gene is substantially larger for the residuals network

than for the average sample network, reaching the 90th sample networks percentile at FDR = 10e-11.

The prediction performance of all networks was assessed for a wide range of GO categories (Figure
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2.6), which were classified in five performance categories depending on their F-measure scores for the

residuals network relative to the sample networks over the entire prediction FDR range (see Section

2.4). Performance plots for some representative GO categories are depicted in Figure 2.7 (Supplemental

Data Set 6 and Figure 2.6 for other categories). The residuals network outperforms the majority of the

sample networks for functional categories such as response to wounding, defense response, response

to fungus, drought and salt stress responses, response to jasmonic acid (JA), abscisic acid (ABA) and

ethylene stimulus, cell communication, lipid and carbohydrate metabolism, and leaf development. On

the other hand, the residuals network scores comparatively worse for categories such as responses to

light intensity, desiccation, insect, virus, UV and DNA damage, photosynthesis, responses to auxin and

Figure 2.5: Functional prediction statistics for the residuals and sample data sets. (A.) Total number of functional
predictions per data set at FDR thresholds in the range [10e-02 10e-11]. Only max-depth functional predictions are taken into
account, i.e., all predictions for functional categories that are parents or higher-level ancestors of other predicted categories
in the GO hierarchy were pruned. (B.) Numbers of genes for which functional predictions were made at particular FDR
thresholds, for each data set. (C.) Average number of pruned predictions per gene for different data sets. For each FDR
threshold, only the number of genes for which there are functional predictions at that threshold is taken into account. In all
panels, the box-and-whisker plot summarises the 1000 sample data sets, and the solid black line depicts the residuals data
set. Boxes extend from the 25th to the 75th percentile, with the median indicated by the central black line. Whiskers extend
from each end of the box to the most extreme values within 1.5 times the interquartile range from the respective end. Data
points beyond this range are displayed as filled black circles.
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brassinosteroids, cell cycle, cell differentiation, tropic responses and root and flower development. Other

categories such as oxidative stress, temperature and starvation responses, response to bacteria, salicylic

acid-mediated signaling, translation and secondary metabolism score average. A noticeable trend for

many GO categories is that for more stringent FDR thresholds, the function prediction performance of the

residuals network increasingly improves relative to that of the sample networks (see, e.g., "response to

mechanical stimulus" in Figure 2.7).

Figure 2.6: Category-specific function prediction performance in the context of the GO hierarchy. Solid arrows repre-
sent direct GO relationships, and dash-dot arrows represent indirect relationships. To avoid overcrowding the figure, indirect
relationships of GO terms to general functional classes such as ’biological process’ (grey nodes) have been omitted if terms
have more direct relationships to other terms on the figure. White nodes indicate GO categories for which there is insufficient
information to score the performance of the residuals network versus the sample networks. In practice, categories were not
scored if less than 500 out of 1000 sample networks gave rise to any predictions at FDR = 10e-2.
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Next to the process-centric performance assessment described above, we used a gene-centric

method to score the overall gene function prediction performance of all networks (see Section 2.4 and

Figure 2.8). Recall values for the residuals network are situated around the 50th percentile of the sample

networks over the entire FDR range, but precision scores generally stay below the 25th percentile. The

lower precision values of the residuals network with respect to the sample networks may be taken to

indicate a genuinely larger amount of false positive gene function predictions. Alternatively, given the

incompleteness of the Arabidopsis GO annotation94, it could conceivably be caused by the positive

Figure 2.7: Process-specific function prediction performance. Biological processes were subdivided into five performance
categories based on the average deviation of the residuals network F-measure from the 25th, 50th and 75th percentiles of the
sample network F-measures over the entire FDR range (very good = above the 75th percentile on average; good = on average
between the 50th and 75th percentile but closer to the 75th percentile; average = closest to the 50th percentile on average;
poor = on average between the 25th and 50th percentile but closer to the 25th percentile; very poor = below the 25th percentile
on average, see Section 2.4). An F-measure versus -log(P) (FDR threshold) plot is shown for one representative process
per category. Box-and-whisker plots indicate the F-measure distribution over all 1000 sample networks at any given FDR
threshold, and the solid line depicts the F-measure trend for the residuals network. Boxes extend from the 25th to the 75th
percentile, with the median indicated by the central black line. Whiskers extend from each end of the box to the most extreme
values within 1.5 times the interquartile range from the respective end. Data points beyond this range are displayed as little
black circles. The categorisation of other processes is shown on the right (Supplemental Data Set 6 for performance plots and
Figure 2.6 for a depiction of the tested categories in their GO context). Categories related to environmental stress factors
that cannot easily be homogenised across plants generally score above average, as well as the corresponding hormonal
responses, while categories related to stresses that are largely absent under lab growth conditions score below average.
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identification of a larger amount of false negative functional annotations in the GO reference set, in

particular if, as hypothesised above, there were a bias of known GO annotations towards predictions

made by the sample data sets, which remains to be proven. As a result of the lower precision values,

the global gene function prediction performance of the residuals network at FDR = 10e-2 scores below

the 27th percentile of the sample networks (Figure 2.8), but as was the case for many individual GO

categories, the residuals network performance increases relative to that of the sample networks for more

stringent FDR thresholds, culminating in an F-measure equal to the 55th sample network percentile for

FDR = 10e-11. A relative increase of the residuals performance with respect to the sample networks

for more stringent FDR thresholds may be expected if there were a bias of the existing GO annotations

towards the sample data set predictions. In that case, one would expect a more fair performance balance

between the residuals and sample networks for the most confident predictions (which are arguably the

most likely to be recovered from any data set), and an increasing bias for predictions at the higher end of

Figure 2.8: Global function prediction performance. Plots A to D depict the performance of the residuals network (open
circles and solid line) and the sample networks (box-and-whisker plots) based on the use of a gene-centric method 93 to score
the recall and precision of function predictions across all genes in a given network. Boxes extend from the 25th to the 75th
percentile, with the median indicated by the central black line. Whiskers extend from each end of the box to the most extreme
values within 1.5 times the interquartile range from the respective end. Data points beyond this range are displayed as little
black circles. (A.) Recall as a function of the prediction FDR threshold; (B.) Precision versus prediction FDR threshold; (C.)
Precision-recall curve; (D.) F-measure as a function of the FDR threshold. Whereas the recall values for the residuals network
are situated around the 50th percentile of the sample networks, precision values are generally below the 25th percentile. The
combined F-measure score of the residuals network ranges from the 27th sample network percentile for FDR=10e-2 to the
55th percentile for FDR=10e-11.
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the FDR range, as observed in Figure 2.8. But again, despite being suggestive, this can hardly be taken

as solid evidence for the existence of any bias.

2.2.3 JA signalling case study

Response to JA stimulus (GO:0009753) is one of the best scoring functional categories in the functional

prediction performance assessment described above. To assess whether the residuals data set can be

used to successfully predict the involvement of novel genes in this process, we screened all networks

for novel candidate genes that are a priori annotated as biological regulators (GO:0065007) but are not

known to be involved in the JA signaling response (see Section 2.4). ILL6 came out as the top predicted

novel candidate regulator in the residuals network (P = 3.33e-09), with a substantial lead over other

candidate genes (Table 2.3). The ILL6 prediction was supported by 598 out of 1000 sample networks

and ranked as the top prediction in 285 of those networks. At least one other computational study also

predicted ILL6 to be involved in the response to JA stimulus98, but hard experimental evidence has been

lacking until now.

Table 2.3: Regulatory genes (GO:0065007) predicted to be involved in the response to jasmonic acid stimulus
(GO:0009753) based on the residuals co-differential expression network, at FDR = 0.01. The last column gives the
number of sample networks that support the residuals prediction at FDR = 0.01. The involvement of the top-scoring gene ILL6
in the JA signaling response was validated in this study. We screened literature for direct or indirect evidence supporting the
top-10 predictions. Predictions supported by direct evidence in literature are highlighted in green, while predictions supported
indirectly (evidence for involvement in related processes or direct evidence for homologs in other species) are highlighted in
yellow. Relevant references are indicated by superscripts in the second column.

ORF Name Description Corrected
P Value

# Sample Network
Predictions

AT1G44350 ILL6 IAA-LEUCINE RESISTANT (ILR)-LIKE GENE 6 3.33E-09 598
AT2G14750 APK 95 APS KINASE 1.52E-04 88
AT1G52890 ANAC019 96 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 19 1.52E-04 152
AT1G28370 ERF11 ERF DOMAIN PROTEIN 11 1.52E-04 257
AT2G47190 MYB2 MYB DOMAIN PROTEIN 2 3.98E-04 38
AT3G61190 BAP1 97 BON ASSOCIATION PROTEIN 1 0.001484 168
AT2G36080 AT2G36080 B3 DOMAIN-CONTAINING PROTEIN 0.001505 13
AT4G17500 ATERF-1 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 1 0.001505 342
AT5G57150 AT5G57150 TRANSCRIPTION FACTOR BHLH35 0.001601 13
AT1G19270 DA1 DA 1 0.002700 13
AT4G28560 RIC7 ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN 7 0.003085 0
AT2G40140 SZF2 (SALT-INDUCIBLE ZINC FINGER 2 0.003085 318
AT1G42990 BZIP60 BASIC REGION/LEUCINE ZIPPER MOTIF 60 0.003383 48
AT3G08720 S6K2 ARABIDOPSIS THALIANA SERINE/THREONINE PROTEIN KINASE 2 0.004279 221
AT4G23700 CHX17 CATION/H+ EXCHANGER 17 0.004304 34
AT3G26830 PAD3 PHYTOALEXIN DEFICIENT 3 0.005540 90
AT3G02875 ILR1 IAA-LEUCINE RESISTANT 1 0.005540 48
AT5G67450 AZF1 ARABIDOPSIS ZINC-FINGER PROTEIN 1 0.005679 10
AT3G50750 BEH1 BES1/BZR1 HOMOLOG 1 0.005679 4
AT5G06870 PGIP2 POLYGALACTURONASE INHIBITING PROTEIN 2 0.005907 173
AT3G02380 COL2 CONSTANS-LIKE 2 0.006495 149
AT2G18950 HPT1 HOMOGENTISATE PHYTYLTRANSFERASE 1 0.006730 6
AT3G23010 ATRLP36 RECEPTOR LIKE PROTEIN 36 0.007067 0
AT4G37180 AT4G37180 MYB FAMILY TRANSCRIPTION FACTOR 0.007547 7
AT2G38170 RCI4 RARE COLD INDUCIBLE 4 0.009002 5
AT2G44840 ERF13 ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 13 0.009002 193
AT5G54310 AGD5 ARF-GAP DOMAIN 5 0.009002 6
AT5G26920 CBP60G CAM-BINDING PROTEIN 60-LIKE G 0.009002 150
AT2G41900 AT2G41900 ZINC FINGER CCCH DOMAIN-CONTAINING PROTEIN 30 0.009002 3
AT1G61800 GPT2 GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 2 0.009002 21
AT5G27520 PNC2 PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2 0.009002 87
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We took a reverse-genetics approach to investigate the possible role of ILL6 in jasmonate signaling.

Two homozygous T-DNA insertional mutant lines, ill6-1 and ill6-2, were identified in which no full-length

transcript of ILL6 was detectable by RT-PCR (Figure 2.10). To examine the mutant’s sensitivity to the

hormone, these plant lines and the wild-type, Columbia-0 (Col-0), were grown on various concentrations

of methyl jasmonate (MeJA), and the root lengths and shoot weights were determined (Figure 2.9-A

and 2.9-B). Analysis of these data indicate that the roots of ill6-1 and ill6-2 are significantly shorter and

the rosettes weigh significantly less than those of the wild type across all levels of MeJA treatment (P =

0.0011 and P < 0.0001, respectively; see Section 2.4 for details on statistical analyses). There is also a

slight but significant (P = 0.0298) genotype × MeJA treatment effect in terms of shoot weight response

to MeJA. Thus, the mutants are slightly but significantly more sensitive to exogenous jasmonate than

the wild type. Furthermore, liquid chromatography-tandem mass spectrometry analysis revealed that

the two mutants both accumulate substantially more wound-induced jasmonoyl-Ile (JA-Ile) than the wild

type (Figure 2.9-C; P = 0.0001 for the genotype effect and P = 0.0003 for the genotype × time interaction

effect). Together, these data are consistent with ILL6 acting as a negative regulator of the jasmonate

response. It is an attractive hypothesis that ILL6 could be a JA-Ile hydrolase, cleaving the JA-Ile amide

bond in vivo and releasing Ile and molecularly inactive JA. ILL6 is a member of a family of proteins whose

founding member, ILR1, has been characterised as an auxin-Leu hydrolase99, while a second member,

Figure 2.9: ILL6 Negatively Regulates JA Response and Wound-Induced JA-Ile Accumulation, Likely through Hy-
drolysis of JA-Ile. (A.) Response of mutant and wild-type Arabidopsis seedling’s root length to exogenous MeJA. Seedlings
were exposed to media containing 0, 1, 10, or 100 µM MeJA for 8 d (n ≥ 16 seedlings). (B.) The rosettes of the plants in (A)
were excised from the roots and weighed (n ≥ 16 seedlings). (C.) Time course of wound-induced JA-Ile accumulation. Plants
were wounded and damaged leaves were harvested at the indicated time points after wounding and JA-Ile accumulation
was analysed by liquid chromatography-tandem mass spectroscopy (n=6 plants across two independent experiments). (D.)
Representative in vivo JA-[14C]-Ile hydrolysis assay. JA-[14C]-Ile was applied to individual plant leaves of the indicated
genotype and extracts were separated by thin-layer chromatography and visualised by autoradiography. (E.) In vivo hydrolysis
of JA-[14C]-Ile in ill6 mutants and the wild type. Autoradiograms were quantified by densitometry (n ≥ 9 plants across five
independent experiments). (F.) ill6-1 and ill6-2 are allelic mutations. The two F1 hybrids indicated were subjected to an in
vivo hydrolysis assay as in D and E (n = 3 plants). For all plots, data represent mean ± SE, asterisks indicate significance of
genotype effects: ∗, p≤0.05, ∗∗, p≤0.01, ∗∗∗ p≤0.001. + indicates p≤0.05 for the genotype × MeJA interaction effect in
panel B, +++ indicates p ≤ 0.001 for the genotype × time interaction effect in panel C (see Section 2.4 for details on statistical
analyses).
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Figure 2.10: Identification of ill6 mutants. (a) Diagram of the ILL6 locus, showing intron (lines) and exon (black boxes)
structure, T-DNA insertion sites of the ill6-1 and ill6-2 alleles, and sites of oligonucleotide primers used for PCR analysis. (b)
Identification of homozygous mutants by PCR analysis of genomic DNA. (c) RT-PCR analysis of ILL6 transcript accumulation
in Col-0 and the ill6-1 and ill6-2 mutants (40 cycles). Amplification of the ACTIN2 transcript served as a control (30 cycles).
(n.t., no template). PCR experiments were performed three times with similar results.

IAR3, is known to be an auxin-Ala hydrolase in Arabidopsis100. Furthermore, the IAR3 homolog from

Nicotiana attenuata, Na IAR3, was recently shown to be a JA-Ile hydrolysing enzyme101. We expressed a

recombinant ILL6 protein in Escherichia coli, but to date we have not detected any JA-Ile hydrolase activity

from this protein, nor have we seen in vitro activity on several other tested JA-amino acid conjugates.

To address the in vivo activity of this protein, we examined the metabolic fate of exogenously

applied radiolabeled JA-Ile (see Section 2.4). JA-[14C]Ile was applied to individual leaves of wild- type and

ill6 mutant plants, and after 24 h, ethanolic extracts of these treated leaves were separated by thin layer

chromatography (Figure 2.9-D). Autoradiographic detection revealed that whereas boiled leaf controls

produced no detectable radiolabeled metabolic products of JA-[14C]Ile, ;20% of the radioactivity applied to

the wild-type Col-0 was released as free [14C]Ile. This result was in marked contrast to either ill6 mutant, in

which only 4% of applied radioactivity was released as [14C]Ile (Figure 2.9-E; log10-transformed one-way

ANOVA F -test P < 0.0001). Next, for a complementation test, we crossed ill6-2 as the pollen donor to

both Col-0 and ill6-1. In the F1 hybrids between the mutant and wild type, we observed a release of 12%

of applied radioactivity as [14C]Ile, whereas in the F1 hybrids between the two mutants, we observed little

release of [14C]Ile, similar to both mutant parents (Figure 2.9-F; t test on log10-transformed data, P =
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0.0067). This complementation test thus indicates that the biochemical defect in JA-[14C]Ile hydrolysis is

due to the ill6 mutant lesions. Collectively from these data, we conclude that ILL6 is a negative regulator

of jasmonate accumulation and response, likely through its role as an amidohydrolase of JA-Ile, though

formally we cannot exclude the possibility that ILL6 acts on an in planta-produced derivative of JA-Ile.

2.2.4 Literature screen for direct and indirect evidence supporting the top 10

residuals predictions for various GO categories in the "Very Good" perfor-

mance class

Above, we provide evidence validating the functional prediction of a gene (ILL6) that is also predicted to

be involved in the JA signaling response by the majority of sample networks and that as such cannot be

regarded as a prediction that is unique to the residuals network. In fact, for most of the categories we

screened, there are barely any residuals predictions that are not supported by at least one sample data

set (e.g., there are only two such predictions out of 31, for "response to JA stimulus"; see Section 2.3),

showing that the residuals data set does generally not make predictions that are beyond the reach of

any other data set. Although high-confidence residuals predictions that are made by a higher number

of randomly sampled compendia, such as the ILL6 prediction, may to some extent be viewed as being

more supported and may be prioritised as such for wet-lab testing, residuals predictions that are rarely

recovered by the sample data sets may, if validated, point to specific advantages of profiling uncontrolled

expression variation across individuals.

To investigate the added value of profiling expression responses to micro-environmental variability

among individuals in more detail, we screened literature for direct or indirect evidence supporting the top

10 novel predictions for six GO categories that were classified in the "very good" prediction performance

category, namely, the response to JA, ABA, and ethylene stimulus, response to fungus, response to

salt stress, and response to water deprivation. Although literature screens can arguably never be all-

encompassing, we did find reports describing direct (indirect) experimental evidence for one (two) JA

predictions, three (one) ABA predictions, one (two) ethylene predictions, two (two) response to fungus

predictions, one (0) response to salt stress predictions, and 0 (one) response to water deprivation

predictions out of the top 10 for each category (Tables 2.3 to 2.8). As for the direct evidence, these are

essentially earlier findings that have not yet been incorporated in the GO database, and our associated

predictions can as such not really be regarded as novel, although supported. The indirect evidence

references given in Tables 2.3 to 2.8 link the predicted gene to a process or pathway related to the target

process or describe direct evidence for a homolog of the predicted gene in another species. Although

more than half (10/16) of the top 10 residuals predictions for which we recovered supporting experimental

evidence in literature are also predicted by a sizeable proportion of sample networks (14.6 to 41.7%), we

did find a substantial number (6/16) of supported residuals predictions that are only predicted by <10%

of the sample networks, in particular among the indirectly supported predictions (4/8, as opposed to

2/8 for directly supported predictions). Directly supported residuals predictions that are uncovered by

<10% of the sample networks include the involvement of AZF1 (3.8%) in the response to ABA stimulus102

and TGA5 (0.3%) in ethylene signaling103 (numbers in parentheses indicate sample network prediction

percentages). Indirectly supported residuals predictions include the involvement of APK1 (8.8%) in JA
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signaling, MPK1 (0.7%) and JAZ1 (7.0%) in ethylene signaling, and CRT3 (1.6%) in the response to water

deprivation. APK1 was previously reported to be involved in the synthesis of glucosinolates and sulfated

12-hydroxyjasmonate95. MPK1 activity was shown earlier to be repressed by the ethylene response

regulator CTR1, but the physiological relevance of MPK1 downregulation for ethylene signaling responses

is still unclear104. JAZ1 was reported to interact with and repress the ethylene-stabilised transcription

factors EIN3 and EIL1105. And a putative ortholog of CRT3 in wheat (Triticum aestivum) was previously

shown to be involved in drought stress response106. Although we do not claim that the residuals data set

is superior for all functional prediction purposes, these results suggest that the residuals data set can

produce valid novel predictions that are seldom recovered from randomly sampled perturbational data

sets.
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Table 2.4: Regulatory genes (GO:0065007) predicted to be involved in the response to abscisic acid stimulus
(GO:0009737) based on the residuals co-differential expression network, at FDR = 0.01. The last column gives the
number of sample networks that support the residuals prediction at FDR = 0.01. We screened literature for direct or indirect
evidence supporting the top-10 predictions. Predictions supported by direct evidence in literature are highlighted in green,
while predictions supported indirectly (evidence for involvement in related processes or direct evidence for homologs in other
species) are highlighted in yellow. Relevant references are indicated by superscripts in the second column.

ORF Name Description Corrected
P Value

# Sample Network
Predictions

AT5G26920 CBP60G 107 CAM-BINDING PROTEIN 60-LIKE G 9.76E-07 323
AT5G67450 AZF1 102 ARABIDOPSIS ZINC-FINGER PROTEIN 1 7.86E-05 38
AT1G09530 PIF3 PHYTOCHROME-INTERACTING FACTOR 3 7.86E-05 34
AT3G08720 S6K2 ARABIDOPSIS THALIANA SERINE/THREONINE PROTEIN KINASE 2 2.63E-04 367
AT5G47220 ERF2 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 2 4.73E-04 96
AT2G17040 ANAC036 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 36 4.73E-04 96
AT4G31800 WRKY18 108 WRKY TRANSCRIPTION FACTOR 18 4.73E-04 149
AT5G14960 E2L1 DP-E2F-LIKE 2 5.83E-04 8
AT1G51660 MKK4 109 MITOGEN-ACTIVATED PROTEIN KINASE KINASE 4 6.41E-04 146
AT1G73260 KTI1 KUNITZ TRYPSIN INHIBITOR 1 6.43E-04 22
AT3G52400 SYP122 SYNTAXIN OF PLANTS 122 6.43E-04 453
AT5G13080 WRKY75 PUTATIVE WRKY TRANSCRIPTION FACTOR 75 6.43E-04 99
AT5G39610 ATNAC2 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 2 7.45E-04 83
AT4G17500 ATERF-1 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 1 8.82E-04 237
AT1G29400 AML5 ARABIDOPSIS MEI2-LIKE PROTEIN 5 8.82E-04 58
AT3G07780 OBE1 OBERON1 0.001399 127
AT4G33050 EDA39 EMBRYO SAC DEVELOPMENT ARREST 39 0.001527 482
AT1G72830 HAP2C NUCLEAR TRANSCRIPTION FACTOR Y SUBUNIT A-3 0.001527 1
AT2G47890 AT2G47890 ZINC FINGER PROTEIN CONSTANS-LIKE 13 0.001527 111
AT1G60190 PUB19 U-BOX DOMAIN-CONTAINING PROTEIN 19 0.001527 447
AT2G41010 CAMBP25 CALMODULIN BINDING PROTEIN 25 0.001924 99
AT2G40140 SZF2 (SALT-INDUCIBLE ZINC FINGER 2 0.003681 566
AT5G47910 RBOHD RESPIRATORY BURST OXIDASE HOMOLOGUE D 0.003681 97
AT1G80840 WRKY40 PUTATIVE WRKY TRANSCRIPTION FACTOR 40 0.003681 289
AT5G24120 SIGE SIGMA FACTOR E 0.003681 87
AT1G42990 BZIP60 BASIC REGION/LEUCINE ZIPPER MOTIF 60 0.003896 227
AT3G23010 ATRLP36 RECEPTOR LIKE PROTEIN 36 0.003896 1
AT4G25960 PGP2 P-GLYCOPROTEIN 2 0.003896 39
AT3G52430 PAD4 PHYTOALEXIN DEFICIENT 4 0.003896 165
AT3G55980 SZF1 SALT-INDUCIBLE ZINC FINGER 1 0.003921 413
AT2G30140 AT2G30140 UDP-GLUCORONOSYL/UDP-GLUCOSYL TRANSFERASE-LIKE PROTEIN 0.004650 80
AT1G51140 AT1G51140 TRANSCRIPTION FACTOR BHLH122 0.004652 167
AT1G53170 ERF8 ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 8 0.005976 22
AT1G52890 ANAC019 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 19 0.005976 263
AT1G28370 ERF11 ERF DOMAIN PROTEIN 11 0.006149 294
AT4G12720 GFG1 GROWTH FACTOR GENE 1 0.006192 381
AT4G25480 CBF3 C-REPEAT BINDING FACTOR 3 0.006192 175
AT5G58620 AT5G58620 ZINC FINGER CCCH DOMAIN-CONTAINING PROTEIN 66 0.006661 20
AT5G24470 PRR5 PSEUDO-RESPONSE REGULATOR 5 0.007385 71
AT5G27520 PNC2 PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2 0.007938 105
AT3G61190 BAP1 BON ASSOCIATION PROTEIN 1 0.008043 270
AT4G17230 SCL13 SCARECROW-LIKE 13 0.008043 385
AT3G59700 LECRK1 LECTIN-RECEPTOR KINASE 1 0.008771 181
AT1G22280 PAPP2C PUTATIVE PROTEIN PHOSPHATASE 2C 9 0.008848 342
AT5G13820 TBP1 TELOMERIC DNA BINDING PROTEIN 1 0.009217 47
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Table 2.5: Regulatory genes (GO:0065007) predicted to be involved in the response to ethylene stimulus
(GO:0009723) based on the residuals co-differential expression network, at FDR = 0.01. The last column gives the
number of sample networks that support the residuals prediction at FDR = 0.01. We screened literature for direct or indirect
evidence supporting the top-10 predictions. Predictions supported by direct evidence in literature are highlighted in green,
while predictions supported indirectly (evidence for involvement in related processes or direct evidence for homologs in other
species) are highlighted in yellow. Relevant references are indicated by superscripts in the second column.

ORF Name Description Corrected
P Value

# Sample Network
Predictions

AT2G40140 SZF2 SALT-INDUCIBLE ZINC FINGER 2 3.90E-04 223
AT1G10210 MPK1 104 MITOGEN-ACTIVATED PROTEIN KINASE 1 0.001006 7
AT1G19180 JAZ1 105 JASMONATE-ZIM-DOMAIN PROTEIN 1 0.001006 70
AT2G25900 ATCTH ZINC FINGER CCCH DOMAIN-CONTAINING PROTEIN 23 0.001006 94
AT5G06960 TGA5 103 TGACG MOTIF-BINDING FACTOR 5 0.002658 3
AT3G26520 TIP2 TONOPLAST INTRINSIC PROTEIN 2 0.002812 4
AT5G27520 PNC2 PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2 0.002812 10
AT5G13680 ABO1 ABA-OVERLY SENSITIVE 1 0.003961 0
AT3G61190 BAP1 BON ASSOCIATION PROTEIN 1 0.004675 159
AT3G26830 PAD3 PHYTOALEXIN DEFICIENT 3 0.005208 32
AT2G25440 ATRLP20 RECEPTOR LIKE PROTEIN 20 0.005222 5
AT5G45110 NPR3 NPR1-LIKE PROTEIN 3 0.005257 62
AT3G50750 BEH1 BES1/BZR1 HOMOLOG 1 0.005672 9
AT5G39660 CDF2 CYCLING DOF FACTOR 2 0.005672 71
AT3G17100 AT3G17100 TRANSCRIPTION FACTOR BHLH147 0.005896 28
AT3G02380 COL2 CONSTANS-LIKE 2 0.006656 155
AT4G31800 WRKY18 WRKY TRANSCRIPTION FACTOR 18 0.008372 43
AT3G19360 AT3G19360 ZINC FINGER CCCH DOMAIN-CONTAINING PROTEIN 39 0.008372 0
AT2G39250 SNZ SCHNARCHZAPFEN 0.008372 0
AT3G52400 SYP122 SYNTAXIN OF PLANTS 122 0.008521 104
AT2G20180 PIF1 PHY-INTERACTING FACTOR 1 0.009944 14
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Table 2.6: Regulatory genes (GO:0065007) predicted to be involved in the response to fungus (GO:0009620) based
on the residuals co-differential expression network, at FDR = 0.01. The last column gives the number of sample networks
that support the residuals prediction at FDR = 0.01. We screened literature for direct or indirect evidence supporting the
top-10 predictions. Predictions supported by direct evidence in literature are highlighted in green, while predictions supported
indirectly (evidence for involvement in related processes or direct evidence for homologs in other species) are highlighted in
yellow. Relevant references are indicated by superscripts in the second column.

ORF Name Description Corrected
P Value

# Sample Network
Predictions

AT1G73500 MKK9 110 MAP KINASE KINASE 9 1.55E-06 178
AT1G19180 JAZ1 111 JASMONATE-ZIM-DOMAIN PROTEIN 1 1.55E-06 272
AT4G17500 ATERF-1 112 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 1 2.67E-04 417
AT1G28370 ERF11 ERF DOMAIN PROTEIN 11 4.07E-04 222
AT3G10500 ANAC053 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 53 4.60E-04 106
AT3G57530 CPK32 CALCIUM-DEPENDENT PROTEIN KINASE 32 4.60E-04 199
AT3G26830 PAD3 113 PHYTOALEXIN DEFICIENT 3 6.01E-04 380
AT2G28160 FRU FER-LIKE REGULATOR OF IRON UPTAKE 7.13E-04 4
AT2G17040 ANAC036 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 36 9.91E-04 200
AT1G25560 TEM1 TEMPRANILLO 1 0.001149 67
AT2G40750 WRKY54 WRKY DNA-BINDING PROTEIN 54 0.001235 274
AT3G07780 OBE1 OBERON1 0.00162 91
AT1G53170 ERF8 ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR 8 0.001899 2
AT5G13220 JAS1 JASMONATE-ASSOCIATED 1 0.001899 105
AT2G19450 TAG1 DIACYLGLYCEROL O-ACYLTRANSFERASE 1 0.002134 12
AT3G59700 LECRK1 LECTIN-RECEPTOR KINASE 1 0.002344 311
AT3G52430 PAD4 PHYTOALEXIN DEFICIENT 4 0.002452 309
AT1G28480 GRX480 GLUTAREDOXIN-C9 0.002452 347
AT2G30140 AT2G30140 UDP-GLUCORONOSYL/UDP-GLUCOSYL TRANSFERASE-LIKE PROTEIN 0.002683 85
AT4G29810 MK1 MAP KINASE KINASE 1 0.002683 87
AT1G27730 STZ SALT TOLERANCE ZINC FINGER 0.002984 408
AT3G01080 WRKY58 WRKY DNA-BINDING PROTEIN 58 0.003049 7
AT5G48400 GLR1.2 GLUTAMATE RECEPTOR 1.2 0.003318 57
AT1G02450 NIMIN1 NIM1-INTERACTING 1 0.003318 123
AT5G40170 ATRLP54 RECEPTOR LIKE PROTEIN 54 0.003351 91
AT3G15210 ERF4 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 4 0.003486 136
AT1G78600 LZF1 LIGHT-REGULATED ZINC FINGER PROTEIN 1 0.003496 12
AT4G29040 RPT2A REGULATORY PARTICLE AAA-ATPASE 2A 0.003496 5
AT5G47220 ERF2 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 2 0.004064 203
AT2G46400 WRKY46 PUTATIVE WRKY TRANSCRIPTION FACTOR 46 0.004171 390
AT1G44350 ILL6 IAA-AMINO ACID HYDROLASE ILR1-LIKE 6 0.004477 46
AT5G27520 PNC2 PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2 0.004481 96
AT1G06160 ORA59 OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF 59 0.004481 37
AT1G42990 BZIP60 BASIC REGION/LEUCINE ZIPPER MOTIF 60 0.004567 160
AT1G01560 ATMPK11 MITOGEN-ACTIVATED PROTEIN KINASE 11 0.005033 299
AT5G24470 PRR5 PSEUDO-RESPONSE REGULATOR 5 0.005569 19
AT3G56240 CCH COPPER CHAPERONE 0.005569 6
AT3G45640 MPK3 MITOGEN-ACTIVATED PROTEIN KINASE 3 0.005569 496
AT3G08720 S6K2 ARABIDOPSIS THALIANA SERINE/THREONINE PROTEIN KINASE 2 0.005569 334
AT1G80830 PMIT1 METAL TRANSPORTER NRAMP1 0.00615 16
AT4G17230 SCL13 SCARECROW-LIKE 13 0.006265 312
AT3G55980 SZF1 SALT-INDUCIBLE ZINC FINGER 1 0.007226 480
AT5G59450 AT5G59450 SCARECROW-LIKE PROTEIN 11 0.007226 32
AT3G02875 ILR1 IAA-LEUCINE RESISTANT 1 0.007226 36
AT1G32640 MYC2 TRANSCRIPTION FACTOR MYC2 0.007254 154
AT4G33050 EDA39 EMBRYO SAC DEVELOPMENT ARREST 39 0.007404 611
AT2G42540 COR15 COLD-REGULATED PROTEIN 15A 0.007418 509
AT5G48380 BIR1 BAK1-INTERACTING RECEPTOR-LIKE KINASE 1 0.008346 520
AT2G43350 ATGPX3 GLUTATHIONE PEROXIDASE 3 0.008805 3
AT1G73260 KTI1 KUNITZ TRYPSIN INHIBITOR 1 0.008805 306
AT4G37180 AT4G37180 MYB FAMILY TRANSCRIPTION FACTOR 0.009021 5
AT3G15500 ANAC055 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 55 0.009814 38
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Table 2.7: Regulatory genes (GO:0065007) predicted to be involved in the response to salt stress (GO:0009651)
based on the residuals co-differential expression network, at FDR = 0.01. The last column gives the number of sample
networks that support the residuals prediction at FDR = 0.01. We screened literature for direct or indirect evidence supporting
the top-10 predictions. Predictions supported by direct evidence in literature are highlighted in green. Relevant references are
indicated by superscripts in the second column.

ORF Name Description Corrected
P Value

# Sample Network
Predictions

AT2G46680 ATHB7 114 ARABIDOPSIS THALIANA HOMEOBOX 7 8.42E-05 264
AT5G13080 WRKY75 PUTATIVE WRKY TRANSCRIPTION FACTOR 75 1.06E-04 56
AT1G09530 POC1 PHOTOCURRENT 1 1.60E-04 16
AT5G47220 ERF2 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 2 2.63E-04 64
AT2G25110 SDF2 STROMAL CELL-DERIVED FACTOR 2-LIKE PROTEIN PRECURSOR 6.05E-04 669
AT2G43350 ATGPX3 GLUTATHIONE PEROXIDASE 3 8.55E-04 45
AT5G47120 BI-1 BAX INHIBITOR 1 0.001185 37
AT5G27520 PNC2 PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2 0.001205 89
AT1G28370 ERF11 ERF DOMAIN PROTEIN 11 0.001549 184
AT2G04450 ATNUDT6 ARABIDOPSIS THALIANA NUDIX HYDROLASE HOMOLOG 6 0.001549 0
AT4G34390 XLG2 EXTRA-LARGE GTP-BINDING PROTEIN 2 0.001549 135
AT5G54310 AGD5 ARF-GAP DOMAIN 5 0.002105 15
AT1G10210 MPK1 MITOGEN-ACTIVATED PROTEIN KINASE 1 0.002105 12
AT3G11820 PEN1 PENETRATION1 0.002105 227
AT1G08450 CRT3 CALRETICULIN 3 0.002105 88
AT1G64810 APO1 ACCUMULATION OF PHOTOSYSTEM ONE 1 0.002105 15
AT3G62600 ATERDJ3B DNAJ HEAT SHOCK FAMILY PROTEIN 0.003377 810
AT3G17100 AT3G17100 TRANSCRIPTION FACTOR BHLH147 0.004021 5
AT1G71220 EBS1 EMS-MUTAGENIZED BRI1 SUPPRESSOR 1 0.004807 279
AT3G53230 AT3G53230 CELL DIVISION CONTROL PROTEIN 48-D 0.004977 94
AT1G14360 UTR3 UDP-GALACTOSE TRANSPORTER 3 0.004977 446
AT3G56290 AT3G56290 HYPOTHETICAL PROTEIN 0.004977 4
AT5G24470 PRR5 PSEUDO-RESPONSE REGULATOR 5 0.004977 31
AT4G17500 ATERF-1 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 1 0.004977 107
AT4G29040 RPT2A REGULATORY PARTICLE AAA-ATPASE 2A 0.004977 190
AT1G52890 ANAC019 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 19 0.004977 135
AT3G23010 ATRLP36 RECEPTOR LIKE PROTEIN 36 0.005001 0
AT4G25960 PGP2 P-GLYCOPROTEIN 2 0.005001 55
AT2G02810 UTR1 UDP-GALACTOSE TRANSPORTER 1 0.005001 309
AT5G13820 TBP1 TELOMERIC DNA BINDING PROTEIN 1 0.005026 45
AT3G12250 TGA6 TGACG MOTIF-BINDING FACTOR 6 0.005329 2
AT2G42890 AML2 ARABIDOPSIS-MEI2-LIKE 2 0.005823 21
AT1G19270 DA1 DA 1 0.006114 14
AT1G19180 JAZ1 JASMONATE-ZIM-DOMAIN PROTEIN 1 0.006114 117
AT3G26830 PAD3 PHYTOALEXIN DEFICIENT 3 0.006114 22
AT3G02875 ILR1 IAA-LEUCINE RESISTANT 1 0.006159 54
AT4G27410 RD26 RESPONSIVE TO DESICCATION 26 0.006368 198
AT1G72830 HAP2C NUCLEAR TRANSCRIPTION FACTOR Y SUBUNIT A-3 0.006368 5
AT2G30140 AT2G30140 UDP-GLUCORONOSYL/UDP-GLUCOSYL TRANSFERASE-LIKE PROTEIN 0.006368 119
AT1G61800 GPT2 GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSLOCATOR 2 0.006368 21
AT4G31800 WRKY18 WRKY TRANSCRIPTION FACTOR 18 0.006472 144
AT2G47890 AT2G47890 ZINC FINGER PROTEIN CONSTANS-LIKE 13 0.006472 131
AT3G26520 TIP2 TONOPLAST INTRINSIC PROTEIN 2 0.006759 30
AT2G26980 CIPK3 CBL-INTERACTING PROTEIN KINASE 3 0.006759 19
AT2G29060 AT2G29060 SCARECROW-LIKE PROTEIN 34 0.006759 3
AT3G18100 MYB4R1 MYB DOMAIN PROTEIN 4R1 0.006954 0
AT2G45130 SPX3 SPX DOMAIN GENE 3 0.00766 0
AT4G16265 NRPE9B RNA POLYMERASES M/15 KD SUBUNIT 0.007859 12
AT5G58620 AT5G58620 ZINC FINGER CCCH DOMAIN-CONTAINING PROTEIN 66 0.008259 12
AT2G20180 PIF1 PHY-INTERACTING FACTOR 1 0.008259 3
AT5G61900 BON CALCIUM-DEPENDENT PHOSPHOLIPID-BINDING COPINE-LIKE PROTEIN 0.008809 66
AT3G50700 ATIDD2 ARABIDOPSIS THALIANA INDETERMINATE (ID)-DOMAIN 2 0.009543 7
AT1G06160 ORA59 OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF 59 0.0099 8
AT4G14220 RHF1A RING-H2 GROUP F1A 0.0099 32
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Table 2.8: Regulatory genes (GO:0065007) predicted to be involved in the response to water deprivation
(GO:0009414) based on the residuals co-differential expression network, at FDR = 0.01. The last column gives the
number of sample networks that support the residuals prediction at FDR = 0.01. We screened literature for direct or indirect
evidence supporting the top-10 predictions. Predictions supported indirectly (evidence for involvement in related processes or
direct evidence for homologs in other species) are highlighted in yellow. Relevant references are indicated by superscripts in
the second column.

ORF Name Description Corrected
P Value

# Sample Network
Predictions

AT5G47220 ERF2 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 2 1.72E-10 11
AT5G39610 ATNAC2 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 2 7.57E-09 115
AT1G09530 POC1 PHOTOCURRENT 1 1.95E-07 40
AT4G17500 ATERF-1 ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 1 1.32E-06 84
AT5G27520 PNC2 PEROXISOMAL ADENINE NUCLEOTIDE CARRIER 2 2.41E-05 109
AT5G13220 JAS1 JASMONATE-ASSOCIATED 1 4.57E-05 11
AT2G17040 ANAC036 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 36 8.52E-05 14
AT1G08450 CRT3 106 CALRETICULIN 3 8.77E-05 16
AT5G13820 TBP1 TELOMERIC DNA BINDING PROTEIN 1 1.23E-04 48
AT1G19180 JAZ1 JASMONATE-ZIM-DOMAIN PROTEIN 1 1.78E-04 157
AT2G30140 AT2G30140 UDP-GLUCORONOSYL/UDP-GLUCOSYL TRANSFERASE-LIKE PROTEIN 1.93E-04 118
AT3G29035 ATNAC3 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 3 4.92E-04 7
AT1G60190 PUB19 U-BOX DOMAIN-CONTAINING PROTEIN 19 5.91E-04 566
AT5G26920 CBP60G CAM-BINDING PROTEIN 60-LIKE G 6.02E-04 16
AT3G02875 ILR1 IAA-LEUCINE RESISTANT 1 9.55E-04 31
AT2G47890 AT2G47890 ZINC FINGER PROTEIN CONSTANS-LIKE 13 0.001192 147
AT1G21410 SKP2A F-BOX PROTEIN SKP2A 0.001721 148
AT5G22290 ANAC089 ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 89 0.001721 169
AT5G13080 WRKY75 PUTATIVE WRKY TRANSCRIPTION FACTOR 75 0.002271 63
AT1G51140 AT1G51140 TRANSCRIPTION FACTOR BHLH122 0.002367 189
AT5G24470 PRR5 PSEUDO-RESPONSE REGULATOR 5 0.002896 58
AT4G26080 ABI1 ABA INSENSITIVE 1 0.002951 489
AT3G61190 BAP1 BON ASSOCIATION PROTEIN 1 0.002951 142
AT4G17230 SCL13 SCARECROW-LIKE 13 0.002951 161
AT2G19450 RDS1 DIACYLGLYCEROL O-ACYLTRANSFERASE 1 0.002951 35
AT1G51660 MKK4 MITOGEN-ACTIVATED PROTEIN KINASE KINASE 4 0.002951 16
AT3G59700 LECRK1 LECTIN-RECEPTOR KINASE 1 0.003236 23
AT3G55980 SZF1 SALT-INDUCIBLE ZINC FINGER 1 0.003641 206
AT3G01320 SNL1 SIN3-LIKE 1 0.003860 1
AT1G29400 AML5 ARABIDOPSIS MEI2-LIKE PROTEIN 5 0.004384 59
AT1G59580 MPK2 MITOGEN-ACTIVATED PROTEIN KINASE HOMOLOG 2 0.004426 6
AT2G34720 NF-YA4 NUCLEAR FACTOR Y, SUBUNIT A4 0.004521 48
AT1G19270 DA1 DA 1 0.005050 13
AT1G78600 LZF1 LIGHT-REGULATED ZINC FINGER PROTEIN 1 0.005283 58
AT1G74670 AT1G74670 PUTATIVE GIBBERELLIN-REGULATED PROTEIN 0.005584 5
AT3G50650 AT3G50650 SCARECROW-LIKE PROTEIN 7 0.005584 6
AT4G31800 WRKY18 WRKY TRANSCRIPTION FACTOR 18 0.005633 46
AT4G11260 EDM1 ENHANCED DOWNY MILDEW 1 0.006278 2
AT5G14960 E2L1 DP-E2F-LIKE 2 0.006278 14
AT1G75410 BLH3 BEL1-LIKE HOMEODOMAIN 3 0.006278 18
AT1G28370 ERF11 ERF DOMAIN PROTEIN 11 0.006821 174
AT4G34390 XLG2 EXTRA-LARGE GTP-BINDING PROTEIN 2 0.007503 26
AT1G01560 ATMPK11 MITOGEN-ACTIVATED PROTEIN KINASE 11 0.007658 21
AT3G08720 S6K2 ARABIDOPSIS THALIANA SERINE/THREONINE PROTEIN KINASE 2 0.007658 121
AT5G01540 LECRKA4.1 LECTIN-DOMAIN CONTAINING RECEPTOR KINASE A4.1 0.007948 25
AT1G56650 SIAA1 SUC-INDUCED ANTHOCYANIN ACCUMULATION 1 0.007951 10
AT4G36900 RAP2.10 RELATED TO AP2 10 0.008623 102
AT4G18890 BEH3 BES1/BZR1 HOMOLOG 3 0.008623 1
AT4G32010 VAL2 VP1/ABI3-LIKE 2 0.008958 0
AT5G67450 AZF1 ARABIDOPSIS ZINC-FINGER PROTEIN 1 0.009371 3
AT4G12720 GFG1 GROWTH FACTOR GENE 1 0.009526 28
AT5G58620 AT5G58620 ZINC FINGER CCCH DOMAIN-CONTAINING PROTEIN 66 0.009818 7
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2.3 Discussion

We reanalysed a set of gene expression profiles of single wild-type Arabidopsis leaves of three accessions

grown in tightly controlled growth room conditions across six labs. We focused on the residual expression

differences that remain among the profiled leaves after controlling for lab and/or accession-dependent

gene expression effects. Intriguingly, these residuals, generally considered experimental noise, still

harbour a remarkable amount of biologically relevant expression variation, comparable to the information

content of same-sized expression compendia incorporating traditional large-effect perturbations on pooled

plant samples. Our analyses show that the expression variations among the individual plants are not

random, but most likely reflect subtle differences in their growth environment or, due to slight differences

in the developmental stage of sampled leaves or from population-level mechanisms to cope with stress115,

in spite of the detailed protocol used to control the experimental growth conditions4. In support of this

notion, many of the stress responses to environmental factors that are difficult to rigorously homogenise

in even the best of experimental setups, such as salt, water, and infestations by fungi, score above

average in our gene function prediction performance assessment, while responses to factors that are

more easily controlled or homogenised across plants in lab conditions, such as oxygen levels, light

intensity, UV, and insects, score below average. In between these extremes are responses to factors

that may have been controlled to an intermediate extent in the original setup, such as temperature,

oxidative stress, mechanical stimulus (e.g., through plant handling), and starvation4. Responses to

relatively harsh stresses, such as desiccation, which arguably did not impact the lab-grown plants in the

original experiment4, score comparatively worse than responses to milder or more generally defined

stresses, such as water deprivation. In addition, processes that are thought to have a low impact on gene

expression in fully expanded leaves as profiled in the original study4 (e.g., cell cycle, cell differentiation,

and auxin and brassinosteroid signaling) are generally not well represented in the gene network learned

from the residuals data set, whereas several hormone signaling pathways associated with responses to

various biotic and abiotic stresses (JA, ABA, and ethylene) score well above average.

In addition to assessing its capacity to recapitulate known gene functions, we used the residuals

data set to predict the involvement of novel genes in regulating six of the best performing processes in our

prediction performance screen, and we sought to experimentally validate the top predicted novel regulator

of the JA signaling response, ILL6. We found increased phenotypic sensitivity to exogenous jasmonate,

increased wound-induced JA-Ile accumulation in ill6 mutants versus wild-type plants, and a decreased

capacity to release Ile from exogenously applied JA-Ile, consistent with a negative regulatory role of ILL6

in the jasmonate response. These results highlight the role of jasmonate as a sentinel of environmental

stress and, more generally, show that expression responses to uncontrolled subtle variations in plant

growth conditions can be used effectively to point to novel regulatory relationships.

Noisy gene expression caused by variability in environmental parameters or intracellular stochastic

effects is often considered a nuisance, although some authors have recently used intrinsic expression

noise propagation to decipher regulatory influences in single-celled organisms116–118. It is currently

impossible to assess which proportion of the residuals is due to true stochastic variation emanating

from the stochastic nature of cellular processes, instead of micro-environmental variation, as the two are

impossible to separate in the setup used by4. Even if it were possible to separate inherent stochastic
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effects from micro-environmental effects, it is unclear to what extent inherent stochastic variations on

the cellular level, if they would propagate through the cellular regulation network, would contribute to

coordinated expression variation across genes in the context of a multicellular organism, as they would

likely be averaged out to some degree across all cells in an individual plant or leaf. As outlined above, our

results suggest that the observed residual expression variation derives mostly from subtle variations in

the micro-environmental growth conditions of individual plants and that this expression "noise" contains

valuable information on the wiring of biological networks, on par with the amount of information that

can be extracted from controlled perturbations. In the prevailing perception of the scientific method, the

stochastic features of uncontrolled experimental setups could be considered diametrically opposed to

the experimental design features needed to ensure reproducibility. In the classical view, reproducibility is

understood as the capacity to obtain the same results under the same controlled conditions. But from a

systems biology perspective, reproducibility may be assessed on a different level. Reproducibility of a

reverse-engineered gene network entails that the same interconnections among genes can be recovered

from comparable data sets, which in this context are not necessarily copies that are systematically

generated under exactly the same conditions. In fact, for large-scale gene network inference, the

exact nature of the experimental conditions is secondary in importance to the requirement that similar

conditions occur across the condition set when performing repeat experiments. In this respect, profiling

the expression response of individuals to uncontrolled conditions can be regarded as sampling from a

multivariate probability distribution, with each dimension being a random environmental factor. Given a

large enough sample size, the effect size distributions in uncontrolled expression profiling experiments

should therefore essentially be reproducible and so should the gene networks recovered from them.

The data set reanalysed here contained only a limited sample of 41 individuals, resulting in poor

function prediction F-measures in the range 0 to 0.4. In addition, the data set was suboptimal because

of the multiple ecotypes and labs involved in the original study4, leading to systematic biases that may

not have been pruned out entirely by ANOVA analysis. Nevertheless, it is clear that the uncontrolled

residuals contain a significant amount of information on the underlying gene network structure. The results

presented here suggest that expression profiling of wild-type individuals under uncontrolled conditions

should be considered as an alternative data generation strategy for unraveling the wiring of biological

networks. Algorithms used for this purpose are notoriously data-demanding, to the extent that unraveling a

substantial part of an organism’s transcriptional wiring easily requires hundreds of independent, controlled

perturbations119–123. Given the substantial resource and time expenditure associated with controlling

growth conditions and treatments, generating mutant lines, and profiling biological replicates, profiling

uncontrolled individuals may prove more cost-effective for generating sufficient amounts of data for

large-scale reverse engineering efforts.

In addition, uncontrolled data sets are fundamentally different from traditional data sets with respect

to the perturbation structure across experimental conditions. In traditional data sets, only a single

major perturbation is usually applied in any given experiment, while in an uncontrolled data set, multiple

unidentified (mild) perturbations may impact the expression profile of an individual simultaneously. For

instance, an individual plant may have been subjected to both watering and temperature conditions that

are subtly different from its neighbours. This multifactorial setup is exactly the setup encountered by

plants in the field, where they are irregularly and often simultaneously impacted by several abiotic and
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biotic stresses, the responses to which often operate in synergistic or antagonistic interaction to modulate

plant fitness. In this respect, uncontrolled field data sets screening multifactorial phenotypic responses

under natural variation in the growth environment may prove useful to identify and quantify crosstalk

between pathways, an issue that is not easily tackled in a lab environment but is of paramount importance

for predicting the phenotypic effects of candidate yield or stress tolerance-enhancing mutations in the field.

Although the use of natural variation on the genotype level has become mainstream in recent years, e.g.

in genome-wide association studies and expression quantitative-trait-locus (eQTL) analyses124–128, the

potential use of natural variation in gene expression triggered by variations in environmental conditions

has only recently begun to gather attention129,130. In most species, natural variation other than on the

genotype level is still considered a nuisance rather than a potential asset. However, our results suggest

that sampling natural environmental variation may be of general use for reverse engineering genetic

networks, not only in plants, but also in species such as human, for which uncontrolled environmental

variation is largely unavoidable and controlling experimental conditions and treatments is often impossible

due to ethical constraints.

2.4 Methods

2.4.1 Data Sets and Extraction of Co-differential Expression Networks

Raw microarray data for 41 individual Arabidopsis thaliana leaves4, profiled using the AGRONOMICS1

microarray platform28, were obtained from the AGRON-OMICS repository (http://www.agron-omics.

eu/). The raw data were RMA normalized using the Bioconductor R package, version 2.535. We retained

only the Affymetrix ATH1 probe sets present on the AGRONOMICS1 array for calculating gene expression

levels (using the agronomics1_ath1probes.cdf file), to facilitate comparisons between this data set and the

sampled data sets for pooled plants (see below). The log-transformed expression profiles were subjected

to gene-specific ANOVA models of the form:

Eijk = µ + Lf + Ak + (LA)jk + εink (2.1)

with i (= 1..41) indexing the number of expression values obtained per gene, µ the baseline expression

level of a given gene, Lj the lab effect (j = 1..6), Ak the accession effect (k = 1..3), LAjk the lab × accession

interaction, and εijk the residual error on the log expression level. The residuals εijk were used for all

further analyses. Table 2.1 indicates the numbers of samples on which unbalanced design ANOVA

estimation of lab, accession, and lab × accession effects was based. Although the overall number of data

points is limited, the numbers of leaves are fairly balanced across labs and accessions, and with one

exception, there are always three data points to estimate a particular interaction effect.

To construct same-sized sample data sets on perturbed and pooled plants, 688 Affymetrix ATH1

microarray experiments profiling the response to various perturbations on leaf and shoot tissues were

extracted from the CORNET database131, and the resulting compendium was randomly sampled without

replacement to obtain 1000 data sets containing 41 experiments each. These were preprocessed as

described above, and expression ratios (perturbations versus their respective control conditions) for
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19,937 Arabidopsis genes were obtained using a custom cdf file designed to minimise cross-hybridisation

effects132. In all data sets, only the 19,760 nuclear genes in common between the AGRONOMICS1 and

ATH1 cdf files were retained for further analysis.

Co-differential expression networks and expression modules for the residuals data set and sample

data sets were obtained using ENIGMA 1.11. ENIGMA requires the definition of up- and down- regulation

thresholds, either based on differential expression P values or expression log ratio thresholds. Since

differential expression P values can by design only be computed for the sample data sets, but not

for the residuals data set, we standardised the treatment of all data sets using a log ratio threshold

of 0.3498 to define up- and down-regulation of gene expression (see Section 2.2). Note that the

residuals can also be considered log ratios with respect to the baseline expression level of a gene over

all leaves after correcting for lab and accession effects (Equation 2.1). The FDR level for detecting

significant co-differential expression links was set to 0.01. For functional annotation on the level of

expression modules, GO ontology information and annotations for Arabidopsis were obtained from

the GO database (www.geneontology.org, annotation version 10/23/2012), and annotations with non-

experimental evidence codes IEA, ISS, and RCA were discarded. GO enrichment of gene modules

was assessed using hypergeometric tests, and the resulting P values were corrected for multiple testing

using the Benjamini and Hochberg FDR correction at FDR = 0.05. Potential regulators of a module were

predicted from the set of genes annotated to "biological regulation" in GO (GO:0065007) at FDR = 0.01.

The remaining ENIGMA parameters were set to default values. For use in gene function predictions,

negative correlation edges were removed from the co-differential expression networks. Basic network

topology parameters (network density and clustering coefficient for the major connected component of

each network) were obtained using NetworkX 2.6.4 (http://networkx.github.com/).

2.4.2 Gene Function Prediction

We predicted the function of a given gene from a given network by performing GO enrichment analysis

on its network neighbourhood using a custom-tailored derivative of PiNGO, a software tool to screen

biological networks for genes that may be involved in a process of interest133. Gene functions were

predicted with hypergeometric tests, and the resulting P values were corrected (per network) with the

Benjamini and Hochberg multiple testing correction. The resulting GO predictions were then compared

with the known GO annotations, and precision, recall, and F-measure (harmonic mean of precision

and recall) were scored for every network for a wide array of GO categories (Figure 2.6) at prediction

FDR thresholds ranging from 10e-2 to 10e-11. For every functional category, the relative prediction

performance of the residuals network with respect to the sample networks was classified as very good,

good, average, poor, or very poor (see Figure 2.4 legend) based on the root mean square deviation

of the residuals network F-measures from the 25th, 50th, and 75th percentiles of the sample network

F-measures over the FDR subrange in which the residuals network exhibited defined F-measures, with

deviations normalized to the square root of the residuals F-measure.

The global function prediction performance of a given network was calculated using a gene-centric

method described by93, based on assessing the overlap between predicted and annotated GO functional

paths for a given gene (i.e., the path from an annotated or predicted GO term to the root of the GO
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hierarchy), while taking into account the depth of predictions and annotations in the hierarchical GO

structure. Recall and precision were calculated for every gene as described93. The overall prediction

recall and precision score of an entire gene network are then defined as the arithmetic mean of the

recall and precision values across all genes. Recall, precision, and F-measure were calculated for every

network at prediction FDR thresholds ranging from 10e-2 to 10e-11.

2.4.3 JA Signaling Response Gene Prediction

PiNGO133 was used to screen all networks for known regulators that are potentially involved in the

JA signaling response. To obtain high-confidence functional predictions, computationally derived GO

annotations with evidence codes IEA, ISS, and RCA were discarded. The set of 19,760 genes present in

all data sets was used as the reference set. "Biological regulation" (GO:0065007) was set as the "start"

GO category, while "response to JA stimulus" (GO:0009753) was used as the "target" and "filter" GO

category. P values were calculated with hypergeometric tests and corrected with the Benjamini and

Hochberg multiple testing correction at FDR = 0.01. The same protocol was used for predicting novel

regulators for the other processes listed in Tables 2.4 to 2.8, with the "target" and "filter" GO categories

defined accordingly.

2.4.4 Plant Material, Growth Conditions, and Genetic Analysis

Plants were grown at 22 ◦C in Sunshine Mix LC1 potting soil (wounding experiments) or Jiffy 7 peat

pellets (in vivo hydrolysis assays; Jiffy Products) and 10 h (wounding, in vivo hydrolysis assays) or 16

h (growth inhibition assay) of light at 100 to 120 µmol/photons/m2/s. Arabidopsis accession Col-0 was

obtained from the ABRC (ABRC stock CS70000). The ill6 mutant lines were derived from ABRC stocks

Salk_024894C (ill6-1) and CS852193 (ill6-2), both in the Col-0 background. To identify homozygous

T-DNA insertion mutants, genomic DNA of individual plants of these lines was used as template in a

three-primer PCR reaction. ILL6 transcript accumulation in these lines was examined by RT-PCR. The

sequences of primers used in these analyses are included in Table 2.9.

Table 2.9: Sequences of oligonucleotide primers used for ILL6 PCR analyses.

Primer Sequence (5’-3’)
P1 TTA TGA ATG TTT ATC ATT TAA GTA TCT CTC AGC CAC GGC
P2 CGC ACC TCT TGA ATA CGT TTC
P3 GAC TAT GCT TCT TGG TGC TGC
P4 CACC ATG GAC AAT CTC CGG AAA CTT AAT CTT CTC TCT G
P5 (pROK2 LB) TGG AAC AAC ACT CAA CCC TAT CTC GG
P6 (pDsLox LB) AAC GTC CGC AAT GTG TTA TTA AGT TGT C
ACT2-f CTG GAT TCT GGT GAT GGT GTG TC
ACT2-r TCT TTG CTC ATA CGG TCA GCG

2.4.5 Growth Inhibition Assay

Surface-sterilised and cold-stratified seeds were plated on half-strength Murashige and Skoog media, pH

5.8, containing 0.8% Suc, 0.8% agar, and 0.5 g/L MES. After 3 to 4 d, seedlings of equal root length (∼ 1
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cm) were transferred to plates of the same media containing various concentrations of MeJA or an equal

volume of carrier (DMSO); to reduce inter-assay variability, these plates were always allowed to air-dry

in a laminar flow hood for exactly 1 h. Each plate contained an equal number of seedlings of all three

genotypes. In the data presented in Figures 2.9-A and 2.9-B, the seedlings were transferred to three

replicate plates per concentration of MeJA and each replicate was placed on a separate shelf of a plant

growth chamber. After 8 d on JA-containing media, the length of the primary root of each seedling was

measured, and the shoot tissue was removed and weighed. A minimum of 16 seedlings was analysed for

each genotype at each concentration.

A linear mixed model was fitted to the data and analysed using the residual maximum likelihood

method. The model included fixed effects due to genotype, MeJA concentration, their interaction, and

random effects due to the replicate plate and shelf. The significance of fixed effects was judged by F -test.

Differential sensitivity of the mutant’s root elongation and shoot weight were seen in other independent

experiments.

2.4.6 Wounding Treatments and JA-Ile Analysis

Thirty-day-old plants of Col-0, ill6-1, and ill6-2 were wounded evenly with a hemostat twice across the

width of each of three fully expanded leaves, crushing 40 to 50% of the leaf surface area. At various

time points after wounding, 200 to 300 mg of damaged leaves from two individual plants was harvested

together and immediately frozen in liquid nitrogen and stored at 280 ◦C until jasmonate extraction.

Extraction and quantification of endogenous JA-Ile from plant tissue were according to previously

described methods134,135. A known amount of [13C6]JA-Ile was added to the frozen samples at the

beginning of extraction as an internal standard. Compounds were separated on an Ascentis C18 column

(1.7 µM, 2.1 × 3 × 50 mm) using an Acquity ultraperformance liquid chromatography system (Waters).

A Quattro Premier XE tandem quadrupole mass spectrometer (Waters) was used in an electrospray

negative mode to detect JA-Ile (322→ 130) and [13C6]JA-Ile (328→ 136).

The data from two independent experiments were analysed together. A linear mixed model was

fitted to the data and analysed using residual maximum likelihood, including fixed effects due to genotype,

time, their interaction, and random effects due to the replicated experiments. The significance of fixed

effects was judged by F -test.

2.4.7 JA-[14C]Ile Synthesis and in Vivo Hydrolysis Assay

JA was obtained by base-catalysed hydrolysis136 of MeJA (Bedoukian Research) and purified by reverse-

phase HPLC137. For synthesis of JA-[14C]Ile, JA (14 mg), L-Ile (8 mg), and L-[14C]Ile (5.5 µCi, specific

activity 55 mCi/mmol; American Radiolabeled Chemicals) were coupled and purified by open-column

silica chromatography as detailed138. For plant treatments, 50,000 dpm of JA-[14C] Ile in an aqueous

20% DMSO solution was applied in a single 10-mL drop to individual leaves of individual plants. After

24 h, leaves were excised and extracted individually in 4 mL of 95% ethanol at 70 ◦C for 45 min. These

extracts were dried under a stream of nitrogen, resuspended in 50 mL of 95% ethanol, and separated

by thin layer chromatography (silica gel 60; EMD Millipore) in chloroform:methanol:acetic acid (70:30:2,

v:v:v). Radioactivity was detected with a Typhoon FLA 7000 phosphor imager (GE Healthcare Life
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Sciences). Images were background subtracted and bands quantified using ImageJ139. [14C]Ile was

identified by cochromatography with an authentic standard. The log10- transformed data of Figure 2.9-E

were analysed by one-way ANOVA, and the significance of the genotype effect was judged by F -test. The

log10- transformed data of Figure 2.9-F were analysed by Student’s t test.

2.5 Accession Number

Sequence data from this article can be found in the Arabidopsis Genome Initiative or GenBank/EMBL

data libraries under accession number At1g44350/NM_103546.3 (ILL6).

2.6 Acknowledgements

We thank two anonymous reviewers for insightful comments on the article. This research was supported

in part by Fund for Scientific Research-Flanders Grant G.0029.11 to S.M., National Institutes of Health

Grant R01 GM57795 to G.A.H., U.S. Department of Energy Grant DE-FG02-99ER20323 to J.B., and by

the Integrated Project AGRON-OMICS, in the Sixth Framework Program of the European Commission

(LSHG-CT-2006-037704). S.M. is a fellow of the Fund for Scientific Research-Flanders.

2.7 Author contributions

S.M. conceived the study. R.B., J.H. and S.M. designed the research. R.B. and S.M. performed

computational analyses. J.H., T.M. and S.M. supervised computational analyses. M.V. performed

statistical Micro-Environmental Expression Variation analyses. R.B., P.H., A.G and S.M. interpreted data.

J.B. and G.A.H. designed and supervised the JA signaling experiments. J.B.J. and A.J.K.K. performed

and analysed the JA signaling experiments. R.B. and S.M. wrote the manuscript and remaining authors

contributed to reviewing and improving the article.

47



Chapter 2. Predicting gene function from uncontrolled expression variation among individual wild-type
Arabidopsis plants

48



Chapter 3

Developmental route map of the

endocycle in Arabidopsis thaliana

Rahul Bhosale, Steven Maere and Lieven De Veylder (In preparation).

Summary

Endocycle is a variant of the mitotic cell cycle during which cells repeatedly replicate their genome without

going into mitosis, resulting into cellular polyploidy. In plant model organism Arabidopsis, polyploid cells

are often seen in various developing organs such as leaves, trichomes, root, hypocotyl, etc. throughout

its life cycle. In the past decade, researchers have studied these organs individually and identified many

genes involved in the onset and progression of the endocycle. Yet, we know little about differential

regulation of the endocycle in these organs during their development. However, new accumulating

evidences are providing insights into the molecular control of developmental and environmental cues on

the endocycle regulation and its role in the maintenance of apt growth rate and architecture of the organ.

For the author contributions, see page 64.
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3.1 Cell cycle and endocycle

Organism development involves the continuous and reiterative organogenesis during which complex

developmental programs maintain the production of new cells and subsequent differentiation. For instance

in plants, shoot and root apical meristems are the sites where new cells actively proliferate through the

mitotic cell cycle. Upon leaving the meristem, cells start to differentiate and simultaneously increase their

cell size through post-mitotic expansion (Figure 3.1-a). The switch from proliferation to differentiation at

the meristems is accompanied by the transitions from the mitotic cell cycle to the endocycle, an alternative

cell cycle during which cells duplicate their genome without cell division140,141. Every round of genome

doubling increases the nuclear content (i.e. endoploidy) of the cells (Figure 3.1-b), e.g. in plant model

organism Arabidopsis, many cell types in leaves, roots and hypocotyls reach 16C or 32C (C = haploid

DNA content)142. For instance, the flow-cytometry endoploidy profile of Arabidopsis root is represented in

Figure 3.1-c. The recent progress in understanding of the molecular machinery in mitotic cell cycle and

endocycle suggest that both these cell cycles share many key components.

3.1.1 Mitotic cell cycle machinery

The mitotic cell cycle involves a rapid sequence of DNA synthesis phase (S-phase) and mitosis (M-phase),

which are preceded by two gap phases G1 and G2 respectively. Cell cycle progression is controlled

by cyclin-dependent kinases (CDKs) and their interacting partners, cyclins (CYCs), which regulate the

kinase activity of CDKs141,143. Plant have two main classes of CDKs that directly regulate the cell cycle,

(i) CDKA, which has functional homolog in yeast Cdc2/Cdc28p, and (ii) CDKB, which has been found in

only plants. In Arabidopsis, CDKA is encoded by a single gene named CDKA;1, whereas there are two

homologs for each CDKB, designated as CDKB1;1, CDKB1;2, CDKB2;1, and CDKB2;2. Recent studies

suggest role of CDKA for both the G1-S and the G2-M transition, while CDKB1 and CDKB2 appears to

function for the S-G2-M transition and G2-M transition, respectively140,144. There are at least 32 CYCs

[10 A-type (CYCA), 11 B-type(CYCB) , 10 D-type(CYCD) and 1 H-type(CYCH)] with a putative role in the

cell cycle progression. CYCD are known to regulate the G1-S transition, whereas CYCA regulate S-M

phase control and CYCB both G2-M transitions and intra-M-phase control140,141,143.

The expression of CYCD often depends on the stimulation by plant hormones, growth conditions

and development140. These mitogens trigger the production of CYCD which in turn activates CDKs

during late G1 phase and push cells into the next phase of cell cycle i.e. G1-S transition point, which is

controlled by Adenovirus E2 promoter binding factor (E2F)/retinoblastoma-related (RBR) pathway. These

CDK’s phosphorylate the RB protein at multiple sites resulting in the inactivation of RB and the release

of active E2F-Dimerisation Partner (DP) transcription factors that transcriptionally activates hundreds of

E2F target genes, which are mostly DNA replication genes145,146. The E2F-DP/RBR pathway is highly

conserved among higher eukaryotes. Arabidopsis genome encodes a total of six E2F factors, which

can be subdivided (based on their structure and functional properties) into typical (E2Fa, E2Fb and

E2Fc) and atypical (DP-E2F-LIKE1[DEL1]/E2Fe, DEL2/E2Fd, DEL3/E2Ff)147. Typical E2F factors need

to dimerise with DP to gain a high DNA-binding specificity while atypical ones can bind as a monomers,

as they possess two DNA-binding domains. Among typical E2Fs, both E2Fa and E2Fb are transcriptional
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Figure 3.1: Representation of the cell cycle and endocycle zones in Arabidopsis thaliana root. (a.) During Arabidopsis
root development, proliferating cells (by mitotic division) can be observed in meristematic zone, cells in mitotic to endocycle
transition can be observed in elongation zone and endocycling cells can be observed in elongation and differentiation zone.
(b.) During the classical mitotic cell cycle, DNA that is duplicated during the S phase is equally divided during the M phase,
so that each daughter cell produced after cytokinesis possesses a genomic DNA content that is equal to that of its parents,
being 2C (C equals the haploid DNA content). In this cycle, the S phase and the M phase are separated from each other
by two intervening gap phases, G1 and G2. In contrast to the traditional mitotic cell cycle, during the endoreplication cycle
(endocycle), no cytokinesis occurs between successive rounds of DNA replication. In this manner, the DNA content of the cell
is doubled with every new round of DNA replication, resulting in the formation of cells with a DNA endoploidy level of 2C, 4C,
8C, 16C, 32C, etc. (c.) Flow cytometric endoploidy profile of Arabidopsis root shows population of cells at endoploidy levels
2C, 4C, 8C and 16C.

activators of the S-phase initiation and progression and potentially targets genes involved in DNA repair

and chromatin dynamics, such as CDC6, MCM3, ORC1, CDT1a, PCNA, RBR and RNR 145,146. In

addition, they potentially target CDKB1;1 gene that is required for entry into mitosis148. Contrary, E2Fc is

a repressor with shortened C-terminal transactivation domain and thought to co-ordinate the cell cycle

exit and cell division by working antagonistically to E2Fb. All atypical E2Fs (DEL1, DEL2 and DEL3) are

considered as repressors because they lack a transcriptional activation domain149,150.

The progression through G2-M is controlled by M-phase-specific activator (MSA) cis-acting ele-

ment151. This MSA element is recognised by three Myb repeats (MYB3R) transcription factors to drive the

expression of G2-M-phase specific genes. In Arabidopsis, there are five MYB3R proteins, among them

MYB3R1 and MYB2R2 are known to positively control the expression of genes containing MSA element

in their promoters such as CDC20.1, A-type (CYCA1;1) and B-type (CYCB2;1, CYCB1;4, CYCB1;2) CYC
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genes and especially KNOLLE gene involved in cell plate formation during cytokinesis. The activity of

MYB3R depends on their phosphorylation by CDK-CYC complexes and regulated in a feed forward loop

manner, in which cyclins induced by the MYB3R proteins form a complex with CDKs that super-activate

the MYB3R activity. Other MYB proteins such as CDC5 and MYB11 are also known to play a role in cell

cycle progression but their mode of action is still unclear152,153.

3.1.2 Switch to endocycle

The switch from mitotic cell cycle to the endocycle is assumed to be mediated by a reduction in M-phase-

specific CDK activity. This CDK activity is controlled by the abundance of CYCs and their co-factors by at

least three known mechanisms, (a) transcriptional regulation, where (i) CYCA2 are negatively regulated

by a transcriptional repressor protein Increased Level of Polyploidy1-1D (ILP1) that leads to inactivation

of CDKB1 G2-M specific activity148 and (ii) G2-M expressed genes including CYCB are negatively

regulated through lack of MYB3R phosphorylation due to repressed pre-mitotic CDK activity154,155,

(b) protein degradation, where G2-M specific regulators such as cyclins CYCB1;1 and CYCB1;2156,

as well as CYCA2;3 and CYCA3;1157,158 are selectively marked for destruction through Cell Cycle

Switch Protein 52 A2 (CCS52A)-anaphase-promoting complex/cyclosome (APC/C) ubiquitination that

targets proteins to the 26S proteasome159 and (c) Siamese-Related (SMR) family of plant specific CDK

Inhibitor (CKIs)160,161, possibly by inhibiting CDKA-CYCD3 complexes162,163, CDKB1;1-CYC complexes

or transcriptional repression of G2-M-phase genes by inhibiting MYB3R phosphorylation161,162. The

progression of endocycle is regulated by the oscillating cycles of CDKA activity, which is required for

DNA replication164,165. Recent studies suggest that the CDKA activity is regulated by Kip-Related Protein

(KRP) family, a class of CKIs, which specifically binds CDKA-CYCD complexes in a dosage-dependent

manner166,167. A low levels of KRPs inhibit the mitotic cell cycle, whereas a high levels arrest both the

cell cycle and the endocycle.

3.1.3 Occurrences of the endocycle

In nature, endoreplication has been observed in a wide variety of cell types from lower invertebrates,

arthropods, mammals to higher plants during various biological processes such as differentiation, growth,

cell fate maintenance, metabolic activities, etc. Thus, the endocycle is recurrently proposed to be relevant

in development of organisms. Endocycle occurrences and functions in these organisms are represented

in Figure 3.2.

In lower invertebrates, endoreplication is often associated with increased cell and/or body size.

In nematodes such as Caenorhabditis elegans, endoreplication occurs in syncytial hypodermal nuclei,

and it is believed to be a crucial determinant of adult body size and body size evolution168. In the simple

chordate Oikopleura docoida, striking spatial patterns of endopolyploidy have been documented. After

early development, they undergo differential endocycling, which gives rise to endoploidy levels ranging

from 4C to 1,300C and grows tenfold in mass169. In snails, terrestrial slugs and sea hares, giant neurons,

epidermal gland cells and digestive gland cells undergo massive endoreplication and concordantly

increase in size. These giant neurons can reach endoploidy levels of 260,000C. In arthropods such

as crustaceans and insects, endoreplication is common, but extensively characterised in the fruit-fly
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Drosophila melanogaster. In Drosophila, the endocycle is developmentally programmed, correlates with

growth and increased metabolic activity and endoploidy levels range from 8C to 2,000C in different cell

types such salivary glands, fat body epidermis, gut, trachea and renal tubules of fly larvae, and in neurons,

glia, sensory bristles, gut and ovarian nurse and follicle cells of adult fly170–173. Endoreplication is also

observed in the silk and poison glands of spiders such as Pholcus phalangioides and associated with

their high protein output174.

Endoreplication has been noted in mice175 and humans, and probably occurs in most mammals.

For instance, mammalian cells that endoreplicate include placental trophoblast giant cells (TGCs, upto

512C)176, hepatocytes (upto 16C)177, cardiac myocytes (4C-8C)178, blood megakaryocytes179 (upto

128C), epithelial keratinocytes180, vascular smooth muscle cells181 and primitive podocytes of the kid-

ney182. Some of these cells endoreplicate during injury- or infection-mediated stress, whereas others

endoreplicate as part of a developmental programme.

Figure 3.2: Schematic representation of endocycle occurrence during development of organisms in nature. In nature,
endocycle is observed in a wide variety of cell types from lower invertebrates, arthropods, mammals to higher plants during
various developmental stages of organisms. This figure was produced from the content primarily described in 183
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In plants such as mosses, lycopods, ferns and angiosperms, a wide variety of cell types undergo

endocycle as an essential aspect of normal differentiation. In recent years, the plant model organism

Arabidopsis has been extensively studied to understand the developmental and environmental control of

endoreplication levels and their significance in plant growth and development.

3.2 Developmental control of the endocycle

In Arabidopsis thaliana, like in other higher eukaryotes, most of the structures and organs are formed

post-embryonically through specialised regions called meristems. At the centre of these meristems are

the pluripotent stem cells, which undergo cell division to maintain the proliferation rate with the cells

undergoing differentiation upon leaving the meristem. The transition from cell proliferation to differentiation

is accompanied by the transition from mitotic cell cycle to the endocycle. The balance between cell

cycle and endocycle is co-ordinated tightly by developmental cues, which determines both the growth

rate and architecture of the organ. In Arabidopsis, the endocycle is very common and polyploid cells

are often seen during development of organs throughout its life cycle. For instance, the early growth

of the plant after germination occurs in the soil where the hypocotyl grows primarily by endoreplicating

cells and emerges out of the soil with two cotyledons. Further, the rosette leaves are formed and they

progressively develop along with the special structures undergoing endoreplication to differentiate into

trichomes. In later stages, the developing root quickly establishes three regions, the meristematic zone of

mitotically dividing cells and the elongation and differentiation zone of endoreplicating cells (Figure 3.1).

The developmental control on endoreplication during development of these organs is detailed below.

3.2.1 Hypocotyl development

The hypocotyl, a post-embryonic stem that connects two cotyledons and radicle, is responsible for the early

growth of the seedling in soil. The hypocotyl development is characterised by the spatial and temporal

regulation of the endoreplication. It involves only a few cell divisions after gemination and subsequent

multiple rounds of endoreplication1843.3. On the first two days after germination, large portions of cells

undergo up to 2-3 rounds of endoreplication. Between day 3-5, the hypocotyl undergoes one more round

of endoreplication followed by exponential growth phase. Endoreplication is often associated with cell

growth as DNA content analysis per cell suggests a correlation between cell size and endoreplication

rates185–187. So, the additional round of endoreplication in dark is speculated to aid hypocotyl elongation

in its search for light but still there is no clear evidence coupling these two facts. In addition, no drastic

effects were observed on endoploidy levels of short hypocotyl mutant phenotypes184,188. The DNA content

in cortex and epidermis is observed to be more than the stele and endodermis which indicates that the

endoreplication during hypocotyl development is probably limited to these outer tissue-types. The cells in

the central cylinder remains dividing as they participate in the thickening of the hypocotyl i.e., secondary

growth189. Upon emergence from soil, endoreplication is negatively regulated by the sunlight (Figure

3.3). In recent years, Arabidopsis hypocotyls have been used as a model system to understand how the

endocycle is regulated in dark and light conditions and whether the elongation growth is dependent or

independent of endoploidy.
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Physiological studies in dark/light treatment identified that light controls both hypocotyl elongation

and endoreplication (see Section 3.3). Mutant studies are providing insights into how endocycle is

regulated during development of hypocotyl in dark and light conditions. In light, the endoreplication is

suppressed through the action of phytochromes (phys) and cryptochromes (crys), specifically phyA plays

role in far-red light, phyB in red and white light while crys in blue light184. The phyA, phyB and elongated

hypocotyl 4 (hy4, blue-light photoreceptor) mutants showed increased polyploid cells when grown in

respective source of light184. In addition, COP1184 and IPD1188 has been shown to act downstream of the

phytochromes and cryptochromes. Contrary, in dark COP1 acts by ubiquitylating the positive regulators

of photomorphogenesis, such as the transcription factors HY5, Long Hypocotyl in Far-Red1 (HFR1) and

Long After Far-red Light1 (LAF1) thereby targeting them for degradation by the proteasome. Recently,

COP1 has been shown to interact physically and genetically with the MIDGET (MID) protein, a component

of the Topoisomerase VI (TOPOVI) complex [composed of Root Hairless 2 (RHL2), Arabidopsis thaliana

TOP6 Subunit B (AtTOP6B), MID and RHL1] that is necessary for the endoreplication in Arabidopsis

providing the functional link between endoreplication and photomorphogenesis190. In another way, COP1

is also known to destabilise the E2Fb protein levels in dark which allows E2Fc to be present in abundance

which in turn binds to DEL1 promoter to reduce its transcription and to commence endoreplication147.

Figure 3.3: Endocycle during development of Arabidopsis hypocotyl. Hypocotyl growth in dark after seed germination
(day 0) involves few cell divisions and multiple rounds of endoreplication. Upon emergence from the soil, endoreplication is
negatively regulated by the sunlight. Two days post-germination, hypocotyl cells undergo 2-3 rounds of endoreplication and
between 3-5 days these cells undergo an additional round of endoreplication. This figure is adapted from 191.

3.2.2 Leaf trichome development

Leaves are an important part of the plant as they play a pivotal role in photosynthesis, respiration and

photo-perception. Their growth involves three distinct phases: leaf primordia development, primary

and secondary morphogenesis. During primary morphogenesis, growth is sustained by successive

cell divisions, and subsequently by cell expansion in secondary morphogenesis192. The transition from

cell proliferation to expansion is often marked by the endocycle onset. Earlier, it was thought that the

transition from cell proliferation to expansion proceeds in a gradient down the leaf, with cell proliferation
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first ceasing in the tip and then progressively down the longitudinal axis192. Recently, the detailed

kinematic and transcriptome analysis illustrated that it occurs abruptly and simultaneously with the onset

of photomorphogenesis193. This study identified that SMR1 was the only gene activated over the time

course. SMR1 is highly similar to SIM, which has been shown previously to promote endoreplication. Later

in leaf development, cells differentiate into distinct cell types such as guard cells, vascular tissue cells

and trichomes, allowing them to perform various specialised functions194. Among these specialised cells,

trichomes have been extensively studied for the endoreplication process. They are differentiated epidermal

cells found on the aerial surfaces of nearly all plants. In various species, they adopt various morphologies

and play a wide variety of functions including resisting insect herbivores, reducing transpiration, increasing

freezing tolerance, protecting plants from UV light and aiding in precultivation seed dispersal195.

In Arabidopsis, trichomes are unicellular, branched and non-glandular structures. Trichomes

are first developed near the distal end of the maturing leaf and later proceeds basipetally. Trichomes

are regularly spaced and has been found that their patterning relies on substrate-depletion and lateral

inhibition mechanism196. Once the certain expression threshold of an activator complex [Glabrous1

(GL1), R2R3 MYB, GL3, TTG1, WD-40] in a cell is reached, the trichome fate is established and incipient

trichome cell starts to express downstream genes such as GL2 to regulate further outgrowth of the

formation of typically three to four branches197–199. During this outgrowth trichome cell undergoes 3-4

rounds of endoreplication cycles, yielding a endoploidy level of 16C to 32C. The overview of the endocycle

during trichome development is represented in the Figure 3.4. The DNA endoploidy levels and size of

trichome cell are apparently correlated. Hence, they have been extensively studied to understand the role

of endoreplication in cell growth and cell size. The mutants that have reduced endoreplication levels also

show smaller trichomes with fewer branches while mutants with increased endoreplication levels have

larger trichomes with more branches200,201. However, some experiments have shown contrasting results.

The mutants with increased endoreplication showed no change in trichome cell size, whereas trichomes

with enlarged cell size showed no change in nuclear content202.

Nevertheless, recently it has been found that the endoploidy dependent trichome final cell size

is controlled developmentally by the GTL1, GT-2 family trihelix transcription factor203. GTL1 is not

expressed at an early stages of trichome development when cells are still undergoing branching. Its

transcription starts while cells reach their maximum size and directly binds to promoter CCS52A1 and

repress its expression to terminate the endocycle and hence the cell growth. The gtl1 mutant shows

that the trichomes are larger than those in the wild-type but they do stop growing, hence additional

endoploidy-independent mechanisms are suggested to repress further cell growth203. In addition, the

excess branching and endoreplication in Arabidopsis is controlled through the ubiquitination of one or more

activators by UPL3, a member of HECT domain containing E3s204. Arabidopsis upl3 mutation results in

trichomes containing five or more branches instead of three and an additional round of endoreplication

resulting in enlarged nuclei with endoploidy levels of up to 64C.

Other than the cell growth regulation, a recent study also identified that the endoreplication is

crucial for the trichome cell fate maintenance206. The manipulation of endoreplication levels in trichome

identified that the reduced levels of endoreplication results in reduced trichome numbers and identity loss.

The dedifferentiating trichomes re-entered mitosis and re-integrated into the epidermal pavement-cell

layer. Conversely, the promoted endoreplication using CCS52A1 gene in glabrous patterning mutants
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Figure 3.4: Endocycle during development of Arabidopsis trichome. In trichomes, mitotic-to-endocycle transition is
developmentally regulated by the expression threshold of an activator complex. Once the trichome fate is established,
downstream genes are expressed which in turn regulate the further outgrowth to form 3-4 branches. During this outgrowth,
trichome cell undergo three to four rounds of endoreplication cycles, which correlates with the cell growth and expansion.
Once the trichome cells matures and reach its maximum size, endocycle is terminated and further cell growth is repressed.
This figure is adapted from 205.

has been shown to restore the trichome fate. CCS52A1 is known to co-operates with SIM to establish

the endoreplication in Arabidopsis trichomes156. Besides, the trichome patterning genes such as GL3

and GL1 appears to have control on endoreplication. Loss of GL3 function results in the reduction of

endoreplication levels and conversely try mutants undergo one additional rounds of endoreplication. The

role of GL1 might be debated as one study showed that over-expression in GL1 results in increased

endoreplication while other reports no effect. Recently, it has been found that SIM is a direct early target of

GL3 and GL1. These regulators (GL3 and TRY) of trichome development are also shown to be dependent

on the function of CPR5 for their effects on trichome expansion and endoreplication207.

So far, the trichome endoreplication cycle has been shown to be regulated by two core cell-cycle

regulators. The first one is CDKA;1, the major regulator of mitotic cycles164. It is assumed that each round

of endoreplication requires a cycle of alternating low and moderate CDK activity that ensures the licensing

and activation of the replication origins, respectively208. CDKA activity remains unchanged with the onset

of endoreplication and is essential for DNA replication. Arabidopsis weak loss-function cdka;1 mutants

exhibited smaller nuclei in trichomes along with reduction of trichome size and increase in cells in G1 and

a reduction in endoreplication. The other cell cycle regulators involved in trichome cell-cycle control are

CDK inhibitor SIM and KRP family members. The Arabidopsis sim mutant shows that endoreplication

is partially converted into a mitotic program resulting in multicellular trichomes160,161. SIM likely targets

CDK-CYCD complex, a misexpression of CYCD3;1 in trichomes has resulted in formation of multicellular

trichomes162. KRP is known to bind CDKA-CYCD complexes. A weak expression of KRPs converted

Arabidopsis multicellular mutant trichomes into endoreplicating single celled hairs, while lines that strongly

overexpressed KRPs blocked both division and endoreplication209.

3.2.3 Root development

Roots provide structural support to the aerial portions, acquire nutrients and water essential for plant

growth, synthesise hormones, and are the site of interaction with soil bacteria210. Thus, the overall

plant survival depends on appropriate root development, growth and function. The Arabidopsis root

growth is an uniform and a continuous process. After the seed germination, the root apical meristem

is established that produces new cells for the developing root. It contains a set of initial cells (stem
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cells) that surround the quiescent centre (QC) that contains less mitotically active cells resting in an

extended G1 phase. These stem cells give rise to different cell types confined in cell-files, which progress

through three distinct developmental phases along the longitudinal axis on their way to maturity. In the

meristematic zone, they divide multiple times to generate a pool of cells that consequently expand in

elongation zone and differentiate in differentiation zone to acquire their specialised characteristics and

functions211. The differentiation of cells is generally characterised by the onset of endoreplication as

cells reach the meristematic and elongation zone border, they exit mitotic cell cycle and transits into

the endocycle. In the past decade, physiological and mutant studies have speculated several roles and

identified several molecular components of endoreplication involved in root development (see below).

However, very little is known about how mitotic-endocycle transitions are controlled at specific positions

and cell types in a developmentally and physiologically dependent manner.

Root meristem maintenance

The root meristem maintenance is essential for the overall rate of root growth and meristem size. This is

achieved by an appropriate balance between the production of new cells and subsequent expansion and

differentiation. Endoreplication appears to be very important in the root meristem maintenance as an

early onset of the endoreplication can have severe consequences on the growth and development. For

instance, mutation of the SUMO E3 ligase HPY2 results in stunted root growth because of an increase in

cellular endoploidy at the expense of cell proliferation212.

In Arabidopsis, two CCS52A isoforms CCS52A1 and CCS52A2 have been found that regulate

the meristem size through different mechanisms213. CCS52A1 controls meristem size by stimulating

endoreplication in the elongation zone and spatially determines the root-meristem-elongation zone border.

The mutation in CCS52A1 results in the longer roots containing more dividing cells in the meristem and

delayed endoreplication. In contrast, CCS52A2 regulates the meristem maintenance and structure by

repressing the mitotic activity in the QC and stem cells of the root meristem. The mutation in CCS52A2

results in the emergence of differentiated root hair in close vicinity of the meristem, disturbs the regular

differentiation patterns of root cell types, brings irregularities in the root size and shape and disorganises

the stem cell niche by making QC and stem cells indistinguishable. The ICK3/KRP5 a CDK inhibitor

that promotes cell elongation and endoreplication in the elongation zone, has been shown to have a

rate limiting role for the primary root growth214. The loss of function of KRP5 leads to smaller roots and

reduced final cell sizes. In the embryonic root, it is also expressed in the transition zone between root and

hypocotyl, the loss of function leads to delayed germination214.

In addition, the meristem size is known to be developmentally regulated by the antagonising action

of auxin and cytokinin as this action is associated with the mitotic-to-endocycle transition205,215 (Figure

3.5). Auxin is known to inhibit the endocycle onset, whereas cytokinin promotes it215. In the elongation

zone, cytokinin signalling appears to control endocycle entry via combined actions of B-type Arabidopsis

Response Regulators (ARRs) ARR1, ARR12 and ARR2216–218. In case of ARR2, a recent study identified

that it acts as a transcriptional activator of CCS52A1 in the root meristem that in turn trigger the mitotic

exit and onset of endocycle.
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Figure 3.5: Endocycle during development of Arabidopsis root. The antagonising action of auxin and cytokinin develop-
mentally determine meristem size and onset of cell elongation and differentiation in the root transition zone. Concomitantly
with the onset of cell differentiation, cells transit into the endocycle programme. This figure is adapted from 205.

Collet hair elongation

Collet is the transition zone between the root and hypocotyl junction. The epidermal cells on the collet are

thought to anchor the seedling to the substratum and facilitate geotropic responses and water uptake

well before the actual root hairs have developed219. Though the collet epidermal hair development is

not documented well, the collet initials can be seen as early as the heart stage of embryo development

and become clearly demarcated during seed germination. Until post-germination, collet epidermal cells

change in length by 2 fold and elongate before they forms hairs220. Recently, it has been shown that the

hairs develop simultaneously from all epidermal cells of the collet and the endoploidy levels increases

during their development from 4C before bulge formation to 16C by the time that hairs achieve their

full length221. However, so far no mutant study is available that couple collet hair elongation with the

endocycle.

Root hair development

Root hairs play an important role in water and nutrient uptake. Epidermal cells produced in root apical

meristem become hair cell or non-hair cell in the differentiation zone based on their position relative to the

underlying cortex cells211. An epidermal cell in contact with two cortex cells becomes hair cell while that in

contact with one cell develops into a non-hair cells. Previous studies identified that a group of components

are involved in the specification and differentiation of hair and non-hair cells211,222. Specifically in non-hair

cells TTG1/GL3/EGL3/WER activates the transcription of GL2 and CPC. Activation of GL2 results in

non-hair cell fate while CPC travels into the presumptive hair cells, where it competes with WER for

binding to the TTG1/GL3/EGL3 complex during which WER gets repressed by the SCM allowing CPC to

over-competes with WER, resulting in loss of GL2 activation and consequently hair cell specification211.

Still, it is not clear whether (like trichomes) the root hair fate is linked with entry into an endoreplication

cycle or not. However, root hairs eventually enter an endoreplication cycle and increase the size of their

genome by up to 16C. Recent study indicates that root hair elongate independently of the endocycle,

which is controlled by newly discovered BHLH transcription factor, RSL4 223. The rsl4 mutants display

severe defects in root hair growth, whereas constitutive expression of 35S:RSL4 leads to continuous

growth of hair cells without increase in the nuclear content.
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3.3 Environmental and hormonal control of the endocycle

In plants, different environmental factors exert control on endoreplication levels of cell types, tissues

and organs208. Figure 3.6 gives an overview of the endoreplication extent under such environmental

factors. Light is one of the important environmental factors known to impact the endoreplication levels of

plant organs. In the Arabidopsis hypocotyl, the third endocycle is inhibited by light through the action

of the red/far red light photoreceptor phytochrome184 (see Section 3.2.1). In wild type plants during

photomorphogenesis (growth in light), up to two rounds of endoreduplication are observed in hypocotyl

cells, whereas a third round takes place only during skotomorphogenesis (growth in dark). In contrast

to wild type plants, phytochrome A mutants also have 16C nuclei in hypocotyl cells when grown under

continuous far red light, suggesting the importance of phytochrome in the repression of endoreplication.

In contrast to increased endoploidy in hypocotyl during growth in dark, a partial shading decreases

endoploidy in Arabidopsis leaves224 suggesting that light might have opposite effects depending on the

organs.

Water availability appears to be another environmental factor that influences endocycle. In the

wild-type Arabidopsis leaves, water deficiency treatment was shown to reduce cell size and the extent

of endoreplication224. In contrast to wild-type, the transgenic plants with an increased endoreplication

level were less sensitive to the stress due to a higher leaf expansion rate and maintenance of cell size

under water deficiency224. This suggest that, an increased endoploidy level confer advantage under

water deficit conditions. Similarly, endoreplication has seen to yield an advantage under UV-B stress

conditions. In the wild-type Arabidopsis plants, acute UV-B treatment is known to provoke a decrease in

both cell number and the average cell size. The mutant plants for the endocycle regulator E2Fe/DEL1

showed resistance to the treatment and displayed smaller reduction in leaf size area than that in control

plants. Correspondingly, the mutant showed an elevated percentage of high-ploidy cells (8C and 16C),

which suggests that the mutant plants probably use the growth potential stored in their polyploid cells to

compensate for the decreased cell number208.

Plants respond to genotoxic stress, which causes DNA double strand breaks, by inducing en-

doreplication in root tips225. As polyploid cells rarely divide, the induction of endoreplication after DNA

damage has been speculated as a mechanism to prevent the transmission of DNA lesions into the pool of

meristematic cells by pushing the damaged cell into a non-dividing state, thus safeguarding the progeny

from DNA mutations225. Similarly, the DNA damage caused by oxidative stress stimulates endoreplication

in Arabidopsis plants. Osmotic stress in Arabidopsis leaf has shown to induce endoreplication earlier

than the control plants226. This response was shown to be mediated by gibberellic acid (GA)–DELLA

pathway. Like in osmotic stress, salt stress results in a decrease of active GAs, which in turn stabilises

DELLA proteins to repress cell division and post-mitotic cell growth227. This suggests that salt stress

might induce endoreplication as well.

Extreme cold and heat treatments in plants have shown to reduce the extent of endoreplication.

For instance, the root cortex and hair cells of chill treated (10◦C) soya bean seedlings showed very

low proportions of 8C and 16C nuclei compared to the control (25◦C)228. Moreover, different species

and organs respond differently towards the temperature ranges and durations of the treatments. Short

term high temperature treatment does not affect endoreduplication in maize endosperm, but prolonged
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high temperature treatment results in reduced endoploidy levels229. Nevertheless, a mild increase in

growth temperature had a positive effect on endoreduplication cycles in tomato pericarp cells230. Low

temperature treatment (15◦C versus 25◦C) decreases endoreplication onset and growth rates in orchid

Oncidium varicosum flowers231. In Arabidopsis, a negative correlation was found between temperature

and endoploidy levels. Plants grown at low temperature (18◦C and 14◦C versus 22◦C; 16-h light:8-h dark

in growth chamber) showed significant (but slight) increase in the endopolyploidy levels232.

Figure 3.6: The extent of endoreplication in response to different environmental conditions. The pointed arrow head
indicates the stimulation of endoreplication, whereas blunt indicates the suppression. The snowflake arrow head indicates
that the extent of endoreplication under particular conditions is non-informative. This figure indicates a compilation of reported
effects in different organs of Arabidopsis thaliana plants.

Pathogens attacks e.g. by powdery mildew233, nematodes234,235 and bacteria236 are also known to

trigger endoreplication at the interaction sites. In addition, symbiotic interaction with arbuscular mycorrhizal

fungi237, nitrogen-fixing bacteria159,238 increases endoploidy levels in the infected host cells. Recent

analyses have shown that induction of endoreplication by symbiotic fungi is a widespread phenomenon

and can be found in many angiosperm groups239. The impact of both macronutrients such as phosphate,

sulphur, nitrates, etc. and micronutrients such as iron, boron, etc. deprivation on endoreplication is so far

insufficiently investigated. In one such study, the plants grown under standard potting soil versus sandy
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substrate showed no significant impact on endoreplication levels232. However, those results are to be

taken with caution, as other studies reported that endopolyploid species have higher nutritive demands

than most species without endopolyploidy, and are found preferentially in habitats that require a fast

completion of growth and fast development supported by optimal nutrient supply, which suggest that a

high DNA content plant may require a richer food supply240.

Environmentally modulated endoreplication is likely to be mediated by phytohormones, e.g. ethy-

lene biosynthesis upon UV-B treatment has been hypothesised to mediate an increase in DNA endoploidy

levels of trichome socket cells of cucumber Cucumis sativus cotyledons. Concomitantly, treatment of

Arabidopsis hypocotyls with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid induced an

additional endocycle, whereas ethylene-insensitive mutants showed a slight decrease in endoploidy lev-

els241. Gibberellic acid treatment in wild type Arabidopsis hypocotyls has shown to induce endoreplication,

whereas GA deficient mutants show decreased endoploidy levels in hypocotyls242. Similarly, mutation

in SPY, a negative regulator of gibberellin signalling, showed increase in endoploidy of Arabidopsis

trichome243. In contrast to positive effects of ethylene and gibberellin, auxin has been shown to negatively

regulate endoreplication in Arabidopsis root tips215. Antagonistic to auxin, cytokinin has been shown to

positively regulate endocycle in Arabidopsis root215.

Most of the aforementioned studies have been mainly carried out on leaves and hypocotyls as

preferred organs and identified that different environmental factors exert different controls on endoreplica-

tion levels. In addition, species and organs may have different responses to such environmental factors.

Nevertheless, very little is known about how such environmental factors control endoreplication levels in

intact (as a whole organ) root as well as individual tissue types.

3.4 Modeling approaches for endocycle

During mitotic cell cycle to endocycle transition, the M phase is skipped without blocking S phase. In

plants, similar to animal cells, this transition is achieved by down-regulating the mitotic CDK that is

required for G2-M transition, while simultaneously allowing continued activity of the S phase CDK that

drives G1-S transition. The underlying mechanisms of these processes are very complex and vary

widely between cell types and organisms. In recent years, several predictive models have been used to

understand the operating principles of complex regulatory networks involved in mitotic cell cycle exit244–246,

endocycle onset and endocycle progression247,248. Such models have been beneficial in identifying the

main regulators involved in these processes and designing further experiments. For example, using a

mathematical model of the Arabidopsis endocycle, cyclic accumulation of KRPs that periodically inhibit S

phase CDK activity, combined with specific inhibition at Mitotic CDK activity by SIM, has recently been

proposed to be sufficient to promote endoreplication248. Similarly, a mathematical model demonstrated

that cyclic accumulation of the transcription factor E2f1 (E2f–FlyBase) is essential for endoreplication in

the highly polyploid Drosophila salivary gland247.

Beside models focusing on gene regulatory networks, recently an approach was used to answer a

long standing question in plant development, which is to know what comes first, endoreplication or cell

elongation249,250. This approach used a combination of DNA replication imaging and optical estimation of
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the amount of DNA in each nucleus to determine the boundary region between the meristematic and

elongation zones in a developing Arabidopsis root and identified that endoreplication precedes rapid cell

elongation in root251. Despite these efforts, the cellular arrangement of such dividing and endocycling

cells in a developing organ is still missing. Moreover, it would be interesting to see the extent and order of

endoreplication among different tissue types in an organ under developmental as well as environmental

cues.

3.5 Author contributions

I wrote this chapter by myself. It resulted from the many fruitful discussions with both my promoters.
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Abstract

Endoreplication, a variant cell cycle process that results in endoploidy due to genome duplication in the

absence of mitosis or cytokinesis, is observed in arthropods, molluscs, and vertebrates, but is especially

prominent in higher plants where it is essential for cell growth and fate maintenance. However, a com-

prehensive view on the physiological significance of the endocycle remains elusive. Here, we reverse

engineered and experimentally verified a high-resolution DNA endoploidy map of the developing Ara-

bidopsis thaliana root, revealing a remarkable spatial and temporal control of DNA endoploidy distribution

across tissues. Our virtual root endoreplication model allows accurate prediction of DNA endoploidy

changes in response to perturbations, and reveals a strong dependence of the endoploidy distribution

on stress signals. For instance, root measurements of endoreplication mutants grown under salt stress

demonstrate a role for the endocycle in rapid adaptation to salinity. Combined with the observation that

endopolyploidy occurs most frequently in plant species grown under extreme or variable conditions, our

data might help explain the widespread occurrence of the endocycle across dicots.

For the author contributions, see page 91.
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4.1. Background

4.1 Background

Endoreplication is a specialised mode of cell cycle during which cells undergo extra rounds of DNA

replication without intervening cell divisions, and it is often closely associated with specific cell types,

organs, and developmental stages142,185. In animals, endoreplication has a recognised role in driv-

ing body size168 or in maintaining tissue and organ growth primarily as a part of their developmental

programme183 and to lesser extent in response to exogenous stresses such as regeneration of dam-

aged liver and cardiomyocytes191. In plants, endoploidy is frequently observed as an essential aspect

of cell growth185,186,249 and differentiation206 as well as a prominent response to stress conditions208.

Light147,184, DNA damage225, pathogen attack233–236 and other stress conditions such as drought252,

temperature232, etc. have been shown to activate endoreplication in plants. Due to a plant’s immobile

life style, stress-induced endoreplication has been postulated to be a mechanism facilitating adaptive

growth225,240,253.

Although over recent years many genes have been identified that control endoreplication onset and

progression, the physiological role of the endocycle in sustaining plant growth in response to stress has

been poorly characterised due to lack of a clear knowledge on the temporal and spatial occurrence of

endoreplication. A major open question is how cells with different DNA endoploidy levels are integrated

into a developing organ, and how this organization contributes to the growth of the plant under different

environmental conditions. To understand endoreplication in a spatiotemporal context, we constructed a

DNA endoploidy map of the developing Arabidopsis root, which displays a simple radial symmetry, with

one-cell-layer cylinders of epidermis-, cortex-, endodermis-, and pericycle cells surrounding the vascular

bundle. Within the root, all cells arise linearly from a group of stem cells surrounding the quiescent center

(QC). Close to the QC, cells are dividing. As cells age, they gradually lose their division competence, and

enter the endocycle, resulting in cells having a 4C, 8C, or 16C DNA content.

4.2 Results and discussion

4.2.1 Endoploidy-enriched transcripts show association with ST root organisa-

tion

To assess endoreplication-dependent gene expression levels, Arabidopsis thaliana root cortical nuclei

from pCO2:YFP-H2b line254 (Col-0 ecotype) were flow sorted on their DNA content (2C, 4C, 8C and

16C) and employed for endoploidy-specific transcriptome analysis (Method Section 4.6.3). In total, 3,737

genes were differentially expressed (P value < 0.05, Benjamini-Hochberg FDR correction) across at least

two endoploidy levels (Supplemental Data Set 1). These were grouped into 24 clusters (i.e. the total

number of possible expression level rank patterns over the four endoploidy levels; Supplemental Data Set

2), exhibiting various patterns of endoreplication-dependent expression. The centroid pattern of each of

these clusters is represented in Figure 4.1. These clusters were further classified as endoploidy-specific

based on their peak expression endoploidy level. Analysis of the functional enrichment (Supplemental

Data Set 3, Figure 4.2) and spatiotemporal (ST) peak expression (Supplemental Data Sets 4 and 5,

Figure 4.3) of these clusters revealed that 2C and 4C specific transcripts, enriched for DNA replication
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and cell wall biogenesis related genes, are predominantly expressed in the developing xylem, phloem,

atrichoblast and endodermal cells within the meristematic zone of the root expression map reported by

Brady and co-workers2. In contrast, 8C and 16C specific transcripts, enriched for genes involved in stress

responses and trichoblast differentiation, are primarily expressed in the transition and maturation zones

of cortex, endodermis and hair cells.

Figure 4.1: Centroid patterns and endoploidy-specific classification of 24 clusters. Differentially expressed 3,737 genes
were k-mean clustered using matlab function ‘k-mean’ into 24 possible expression level patterns. These clusters are further
classified into four endoploidy classes i.e. 2C (dark blue), 4C (light blue), 8C (green) and 16C (red line plots) based on the
peak expression of the endoploidy.
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Figure 4.2: Functional enrichment of 24 endoploidy-specific expression data clusters. (a.) Hierarchical clustering of the
enriched GO term profiles across the 24 endoploidy-specific expression data clusters. Functional enrichment was calculated
with the BiNGO tool 40 using hypergeometric tests and Benjamini-Hochberg correction at FDR = 0.05 (b.) Pruned version of a
showing only the top enriched GO terms (P value <1*E-10) derived from one example cluster for each individual endoploidy
(2C, cluster-15; 4C, cluster-24; 8C, cluster-4 and 16C, cluster-22). The 2C and 4C specific transcripts are enriched for DNA
replication and cell wall biogenesis processes, while 8C and 16C specific transcripts are enriched for genes involved in stress
responses and root hair differentiation, respectively. The enrichment analysis suggests that endocycle is linked with the
programmes underlying root development.
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Figure 4.3: Peak expression distribution of cluster genes in the root expression map 2. Displayed is the proportion (%)
of transcripts that are peak-expressed in any of 17 marker lines covering one of 14 root tissues or a combination of tissues
(top) and any of 12 developmental stages (slices, bottom), of the Arabidopsis root. The tissue coverage of the marker lines
(indicated in parentheses) is as described in Brady et al. (2007) 2. The 2C and 4C specific transcripts are mainly enriched in
inner tissues (xylem, phloem, and endodermis) and in early developmental stages (Slice 1-3), while 8C and 16C specific
transcripts are primarily enriched in outer tissues(cortex, epidermis and lateral root cap) and in later developmental stages
(slice 7-12), suggesting spatio-temporal association of endoploidy levels with root organisation.

4.2.2 A predicted endoploidy map reveals spatial and temporal control of DNA

endoploidy distributions across tissues

The observed association of endoreplication-enriched transcripts with specific ST root zones (Figure 4.3)

suggest that endoploidy-dependent gene expression levels could be used to predict the nuclear DNA

content status of distinct root tissues at different developmental stages. To this end, we constructed a

mathematical model that predicts the expression level of genes in 12 different root slices and 14 different

tissues (measured by Brady and co-workers2) as a function of their endoploidy-specific expression levels

in the cortex (see Methods Section 4.4.1, Mathematical Model I, Figure 4.4). The model assumes that the

endoploidy levels in cells along longitudinal axis follow logical increments (2C->4C->8C->16C). Briefly,

the expression level of a gene in a particular slice is assumed to be the sum of the gene’s expression

levels in all cells of different types (and possibly with different endoploidy levels) within that slice and the

expression level of a gene in a particular marker line or tissue is the sum of the gene’s expression levels

in all marked or single tissue cells, respectively, which may have different endoploidy levels (Figure 4.4a).

The parameters in the model are the nuclear DNA content boundaries along the longitudinal axis of the

different root tissues(Figure 4.4b), the position of which is optimised to obtain the best possible fit between
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the predicted gene expression levels and the levels measured by high-resolution root expression profiling

experiments2 (Figure 4.4d; Figure 4.5). Overall, the model determines the fraction (normalised values

between 0 and 1) of 2C, 4C, 8C and 16C cells (using adopted ST cell count matrix reported by Cartwright

and co-workers255; See Section 4.4.1 and Table 4.1) in a slice or tissue to calculate the contribution of

each endoploidy-specific expression towards the total expression of a particular gene in that slice or

tissue.

Figure 4.4: Schematic representation of assumptions used in the model and example of the optimised expression
patterns and endoploidy map learned for one gene using Mathematical Model I. (a.) The model assumes that the
endoploidy levels in cells along longitudinal axis follow logical increments (2C->4C->8C->16C). The endoploidy boundaries
are the parameters in the model and moved one cell in a single cell type either up or down during the optimisation process.
The marker line expression level of a particular gene is a sum of the expression levels of a mixture of cells from a single cell
type (white dots) with different endoploidy levels (2C-16C, see legend). The slice expression level is a sum of the expression
levels of a mixture of cells (area under black dots) from multiple cell types with different endoploidy levels. (b.) The endoploidy
map of the Arabidopsis root learned from a single gene (AT3G50240). (c.) The endoploidy-specific expression pattern of the
gene in b. (d.) The green and red line plots indicate the measured (left, from Brady and co-workers 2) and simulated (right)
expression patterns of the gene in a in slices and marker lines, respectively.
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Figure 4.5: Schematic representation of the mathematical modeling approach. Initially, the model randomly positions
the endoploidy boundaries on the map. At each optimisation step, a random endoploidy boundary shift is performed, after
which the expression levels of the modelled genes are simulated in all slices and cell types based on the changed endoploidy
map. A step is accepted or rejected based on the Simulated Annealing criterion in Equation 4. Then the SA temperature
is lowered and a new step in parameter space is attempted. Over the course of an optimisation run, the location of the
endoploidy boundaries is gradually adjusted to optimise the fit of the modelled gene expression levels to the levels measured
by Brady and co-workers 2. Eventually, the optimised endoploidy map with the lowest chi-squared (R) score is obtained.

Since gene expression may be regulated in a tissue- and developmental stage-specific manner, it

is not expected that every gene’s spatiotemporal expression pattern can be predicted accurately from

its endoploidy-specific expression pattern in the cortex. In other words, not all spatiotemporal gene

expression profiles are adequately (i.e. exclusively or to a large enough extent) reflecting endoploidy-

specific gene expression changes for the purpose of reconstructing a endoploidy map of the developing
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root. Thus, we used a feature selection (See Method Section 4.5.1) approach to obtain a set of 332

marker genes that were able to reliably predict their ST expression patterns from their endoploidy-

specific expression pattern in the cortex. Combining the endoploidy predictions of a balanced set of 332

endoploidy markers (Supplemental Data Set 6), a reproducible and stable DNA endoploidy map (in terms

of model convergence across different runs) was obtained for the complete root (Figure 4.6).

This map reveals clear differences in the endoploidy distribution over the distinct tissues, suggesting

that endoreplication is under strict spatiotemporal control. The endoploidy levels across tissues appear to

correlate primarily with the radial organisation of the root, with the outermost tissue layers displaying a

higher endoreplication level than the inner tissue layers. Remarkably, a clear difference was observed

between the different epidermal cell layers, with hair cells undergoing a third endocycle earlier than non-

hair cells. Among vasculature tissues, xylem appears to undergo endoreplication earlier than other tissues.

Among non-vascular tissues, phloem pole-associated pericycle cells appear to undergo endoreplication

in late developmental stages and xylem pole-associated pericycle cells appear to be mainly dividing.

This observation corresponds with the concept of an ’extended meristem’ i.e. the xylem pole-associated

pericycle cells acts as stem cells to retain the capacity to undergo (asymmetric) cell division higher up in

the root when other cells have differentiated and undergo lateral root initiation. This allows the root to

have high-flexibility to respond to an ever-changing environment in the soil.256.

Figure 4.6: Predicted root endoploidy map. The endoploidy map of Arabidopsis root learned using set of 332 representative
genes in which columns indicate the tissue types and rows indicate the developmental stages (Slices 1-12 in root expression
map 2). The outermost tissue layers (epidermis, cortex and endodermis) are predicted to have higher endoreplication levels
than the innermost tissue layers (Pericycle, Xylem and Phloem), suggesting a correlation with the radial organisation of the
root.
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4.2.3 Experimental validation confirms the reliability of the predicted endoploidy

borders

The simulated endoploidy map was experimentally validated by measuring, via flow cytometry, the DNA

content of cells within specific tissues in root tips, using cell type-specific GFP marker lines (Methods

Section 4.5.1, Figure 4.7). The measured endoploidy distributions were scaled to fit the tissue- and stage-

specific cell counts underlying the virtual endoploidy map (Figure 4.8a). The experimental and predicted

maps present a very similar overall picture of spatiotemporal root nuclear DNA content organization

(Figure 4.8b), except for the location of the 2C-4C boundaries, likely due to the fact that flow cytometry

cannot distinguish G2 non-endoreplicating nuclei from G1 endoreplicating nuclei, both of which have a

4C DNA content. Also, the endoploidy boundary positions observed in the validated map are not always

reliable, as they are highly dependent on the absolute number of nuclei or protoplasts extracted and

measured per root in the flow cytometer analysis. The efficiency of protoplasting and nuclear extraction is

dependent on the duration with which tissues are treated with the respective extraction buffers. Such

dependency often gives quantitative variations in the endoploidy distributions, and it is not straightforward

to compare data obtained from different experiments.

Figure 4.7: Endoploidy content profiles of marker lines (Table 4.2) obtained using flow cytometer analysis. Red
histograms depict the profiles of marker lines subjected to protoplasting, while green histograms are obtained after nuclear
extraction. The cut root tips of five-day-old plants of cytoplasmic and nuclear marker lines were treated with protoplasting
solution and nuclear extraction buffer, respectively. The FACS sorted GFP-expressing protoplasts and extracted nuclei were
stained with DAPI and measured using a CyFlow Flow Cytometer (Partec).
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Figure 4.8: The validated map and its comparison with the predicted map. (a.) The map determined through flow
cytometry analysis. The columns represent the 14 tissues and rows represent the 12 slices. The measured endoploidy
distributions (in Figure 4.7) were scaled to fit the tissue- and stage-specific cell counts underlying the virtual endoploidy
map.(b.)The difference between the endoploidy levels for each cell on the predicted map and the map determined through
flow cytometry. The rows represent the tissue types and the columns represent the 12 developmental stages. The color
indicates the difference between rounds of endocycle predicted vs. validated through flow cytometry at each cellular position
on the map. The experimental and predicted maps show differences mainly in the location of 2C-4C boundaries.

Therefore, to reliably (independently of measured endoploidy profiles through flow cytometry)

assess the location of 2C-4C endoreplication boundaries, we mapped the expression profile of the SMR1

and CCS52A1 endocycle-onset marker genes213,257 (Figure 4.9a). First signals from the SMR1:GFP-GUS

reporter were observed in the 19th (± 1, n=6) atrichoblast cell, coinciding precisely with the 2C-4C border

position on the predicted map. A weaker signal detected at the 29th (± 1, n=6) cortex cell might mark the

corresponding 4C-8C boundary. First signals from the CCS52A1:GFP-GUS reporter were seen in the

17th (± 1, n=4) trichoblast cell, close to the end of the predicted 4C region, and in the 23rd (± 1, n=4)

cortex cell, which coincides precisely with the 2C-4C border position predicted by the map. Here, the

first signal in trichoblast cell corresponds to the end of 4C region instead of the start, which might be

explained by the fact that the trichoblast marker line COBL9 used in the model does not cover the first six

slices thus the predictions for those slices can not be considered reliable. To validate the predicted order

of endoreplication onset across different cell types, we examined sequential cross-sections of SMR1 and

SIM endocycle onset marker lines, and confirmed that endocycle onset in xylem cells precedes that of
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atrichoblast and cortex cells (Figure 4.9b, c), whereas trichoblast cells engage into the endocycle before

cortex and phloem tissues, corresponding to the predictions from the virtual endoploidy map.

Figure 4.9: Validation for endoploidy borders predicted on the map. (a.) Experimentally determined endoreplication
onset boundaries i.e. 4C region positions mapped by measuring the number of cells separating the QC with the first visible
GFP signal of SMR1:GFP (b,left) and CCS51A1:GFP (b,right) marker lines. The white dot indicates the non-GFP cells. (c,d.)
Experimental mapping of endoreplication onset across tissues within SMR1 (c) and SIM (d) marker lines. The position of
the root cross sections are indicated by red lines. Middle: GUS stained cross sections Distance and cell values indicate the
position from the QC and number of atrichoblast cells, respectively. Right: Predicted endoploidy levels of the GUS stained
tissues.

4.2.4 Predictions for endoreplicative state change in response to perturbations

reveal strong dependence of endoploidy levels on stress signals

The extent of endoreplication is controlled by both environmental184,229,252 and endogenous factors, such

as phytohormones215,258–260. Accordingly, gene transcripts peaking at different endoploidy levels showed

distinct functional enrichment for hormonal and stress responses (Figure 4.10). This suggested that

transcripts whose expression is primarily determined by the endoreplicative state of the cell (as opposed
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to transcripts that are stress- or hormone-responsive in a endoreplication-independent way) may be

useful in predicting the impact of stress and hormonal treatments on the endocycle program during

root development. To assess the value of this approach, we employed a non-spatiotemporal version

of our mathematical model to predict the impact of 233 treatments (Supplemental Data Set 7) on the

root endoreplication state (Methods Section 4.4.2, Figure 4.11a). Auxin is predicted to have a negative

effect on endoreplication, in agreement with previous reports215. Treatments with macronutrients (such

as phosphate and sulfate deficiency) and micronutrients (such as iron starvation and elevated levels

of boron) is predicted to increase the endoreplication level. Similarly, changes in environmental factors

( e.g. pH, temperature, and salinity increases) and DNA damage stress (due to UV-B, radiation and

genotoxic treatment) were predicted to stimulate endoreplication. The model predictions were confirmed

experimentally for salt, low pH, and auxin treatments (Figure 4.11b).

As salt stress ranked top in the list and represents one of the major abiotic stresses, we analysed

its effect on the DNA endoploidy level in spatiotemporal detail. To this end, we applied the model on

tissue- and stage-specific salt stress transcriptome datasets261. Our model predictions suggest that

salinity affects the nuclear DNA content distribution across different cell types in a tissue-specific manner.

The cells of the cortex and endodermis are predicted to undergo an additional round of endoreplication,

whereas the vascular cells show an inhibition of endoreplication; predictions confirmed experimentally

(Figure 4.11c; see Methods). Nuclear DNA content predictions in the cells of different root segments

indicate that salt affects endoreplication mainly within the transition zone (Figure 4.12).

Figure 4.10: Functional enrichment of endoploidy-specific transcripts (i.e. transcripts peak expressed in a particular
endoploidy such as 2C, 4C, 8C or 16C) related to (a.) hormone and (b.) stress responses. The differentially expressed
3737 transcripts were grouped based on their peak expression in 2C, 4C, 8C and 16C and studied for their functional
enrichment. Here, selected few stress and hormone related GO terms are represented.
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Figure 4.11: The predicted and validated (for representative stresses) effect of stress conditions on change in
endoploidy distributions from their respective controls in intact roots and cell types. (a.) The predicted effect of stress
conditions on change in endoploidy distributions from their respective controls on intact roots. The x-axis represents 149
publicly available gene expression datasets profiling various stress conditions, and the y-axis provides the endoreplication
difference (scaled to 1). Red and green circles indicate that endoreplication is suppressed or promoted, respectively. The
dotted line indicates an arbitrary sum of squared errors (SSQ) cutoff (0.2), below which value the conditions were not annotated
on the panel. (b.) Predicted and validated endoreplication indices (EI) under three representative stresses (140 mM salt, 4.6
pH, and 1 µM auxin (IAA)). (c.) Predicted and experimentally validated EI under 140 mM salt and control conditions for cell
types (marker) - cortex (COR), endodermis (SCR5) and stele (WOL). The significance of stress effect is judged by two-sample
T -test. ∗, P value ≤ 0.05; ∗∗, P value ≤ 0.01.
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Figure 4.12: Predicted endoploidy distributions for different developmental zones under salt stress (140mM NaCl)
and control conditions. The transcriptome dataset measured by Dinneny and co-workers 261 for the developing root cut into
four segments i.e. zone-1 (∼150µm from root tip), zone-2 (∼200µm above zone-1), zone-3(∼200-300µm above zone-2) and
zone-4 (∼1mm above zone-3) grown under salt vs control condition were used as input to our model II to predict the effect on
their endoreplicative state.

4.2.5 Endocycle confers an adaptive response to salinity

The observed changes in nuclear DNA content distribution upon salt treatment suggested that activation

of endoreplicative changes might be an integral part of the ability of plants to adapt to salinity. In this

context, we studied the salt stress sensitivity of sim and smr1 mutants, in which the endocycle is negatively

regulated (Figure 4.13a). The sim and smr1 mutant was highly sensitive to salt compared to Col-0 (Figure

4.13b, c), which suggests that endocycle stimulation upon salt stress represents part of the adaptive

response. In future, it would be interesting to further probe the relevance of tissue-dependent endoploidy

change, by monitoring the salt stress sensitivity of plants expressing tissue-specifically the CYCA2;3

cyclin, encoding a negative endocycle regulator157.

Figure 4.13: Growth measurements of mutant lines under salt and control conditions. (a.) EI, (b.) absolute and (c.)
relative root length of wild type (Col-0), mutant (sim and smr1) lines under salt and control conditions (see methods). The
significance of mutation on EI i.e. sim/smr1 versus Col-0 (a) and stress effect i.e. sim/smr1 versus Col in control conditions or
sim/smr1 versus Col in salt conditions (b, c) is judged by two-sample T -test. ∗, P value ≤ 0.05; ∗∗, P value ≤ 0.01; ∗∗∗, P
value ≤ 0.001.
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4.3 Conclusion

Overall, our analysis illustrates a remarkable spatial and temporal control of developmental and envi-

ronmental cues on endoreplication processes within the root. Additionally, root measurement data on

endoreplication mutants grown under salt stress exhibited a role for the endocycle in rapid adaptation

to salt stress. Given the correlation between the endoploidy level of a cell and its size185–187, stress

resistance might be linked to physiological differences between small and large cells. Alternatively, growth

through endoreplication is speculated to support continuous growth under conditions that limit mitosis208.

Thus, plant species might use endoreplication to combine the benefit of rapid cell multiplication because

of a small genome with the advantage of large cells within specific tissues to withstand stress condition,

in which endogenous DNA replication is employed to support an optimal karyoplasmic ratio. The ability

of endocycling plants to cope better with stress might explain the evolutionary success of endoploidy,

which is mainly observed in annual and biennial species, and in ecological niches that required fast

development240,262.

4.4 Mathematical Models

4.4.1 I : Predicting ST developmental root endoploidy map

Model I simulates the expression patterns of genes in 12 different root slices and 14 different cell types

(covered by 17 marker lines) as a function of their endoploidy-specific expression levels in the cortex.

The parameters in this model are the endoploidy boundaries along the longitudinal axis of the different

root tissues, i.e. the 2C-4C, 4C-8C and 8C-16C boundaries. The boundaries are optimised to give the

best possible fit of the modelled gene expression patterns to the measured expression patterns across

root tissue marker lines and slices2. Our model assumes that, (i) the endoploidy levels (arising through

developmentally regulated endoreplication) in each cell type exhibit a logical increment in DNA content

over time (2C->4C->8C->16C), (ii) the expression level of a gene in a particular slice is the sum of the

gene’s expression levels in all cells of different types (and possibly with different endoploidy levels) within

that slice and (iii) the measured expression level of a gene in a particular marker line or tissue is the sum

of the gene’s expression levels in all marked or single tissue cells, respectively, which may have different

endoploidy levels. These assumptions are represented in Figure 4.4a. The principal equations of the

model are summarised below.

E(g, s) =

∑14
t=1

[∑
c∈C(s,t)

(∑
p wP(t , c, p) ·E(g, p)

)]
∑14

t=1 |C(s, t)|
(4.1)

E(g, m) =

∑
t=T (m)

{∑
s∈S(m,t)

[∑
c∈C(s,t)

(∑
p wP(t , c, p) ·E(g, p)

)]}
∑

t∈T (m)

(∑
s∈S(m,t) |C(s, t)|

) (4.2)

In these equations, E(g, s) and E(g, m) represent the simulated expression of gene g in slice s and

marker m, respectively. t indexes tissues (cell types). The index p represents the endoploidy level (2, 4, 8

or 16C) and the index c indicates the position of a cell along the longitudinal axis in a particular tissue
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(cell type, Table 4.1) t . C(s, t) is the set of cell numbers in slice s and tissue t , as derived from the cell

count matrix WC (see below). E(g, p) represents the endoploidy-specific expression level of gene g at

endoploidy p in the cortex dataset. WP is the endoploidy matrix, with wP(t , c, p) = 1 if cell c in tissue t

has endoploidy level p, and wP (t , c, p) = 0 otherwise. The cell count matrix WC incorporates average cell

count estimates obtained from visual inspection of 10 confocal images of Arabidopsis wild type (Col-0)

roots for the cell types hair cell, cortex and endodermis in the meristematic and elongation zones (slice

1-8), and for the xylem pole pericycle and phloem pole pericycle in the meristematic zone (slice 1-6). The

cell counts in the non-hair, phloem, phloem companion, xylem and procambium cell files in slices 1-8

were deduced from the measured counts for other cell types (see Table 4.1 legend for the description).

The cell counts in the remaining tissues and slices were based on the cell counts provided in255. In

equation 4.2, T (m) represents the set of tissues covered in at least some developmental stages (slices)

by a particular marker m, S(m, t) being the set of slices in which marker m covers tissue t (Table 4.2).

Table 4.1: The adapted cell counts of 14 distinct cell types in 12 slices (rows 1 to 12). Columns from left to right indicate
the cell types quiescent centre (qc), columella (colu), lateral root cap (lrc), trichoblast (hc), atrichoblast (nhc), cortex (cor),
endodermis (end), xylem pole pericycle (xpp), phloem pole pericycle (ppp), phloem (p), phloem companion cell (pcc), xylem
(x), lateral root primordia (lrp) and procambium (pro).

Slice # qc colu lrc hc nhc cor end xpp ppp p pcc x lrp pro
1 4 12 152 24 48 15 12 13 19 0 0 13 0 31
2 0 0 280 37 74 38 39 14 38 14 14 18 0 57
3 0 0 210 32 64 34 38 14 35 14 14 18 0 56
4 0 0 210 28 56 33 35 15 33 15 15 19 0 61
5 0 0 210 25 50 30 31 14 29 14 14 18 0 56
6 0 0 0 21 42 27 29 14 26 14 14 17 0 55
7 0 0 0 54 108 65 83 36 68 36 36 44 0 142
8 0 0 0 16 32 20 29 11 21 11 11 14 0 44
9 0 0 0 40 80 40 40 20 45 20 20 25 0 80

10 0 0 0 40 80 40 40 20 45 20 20 25 0 80
11 4 0 0 40 80 40 40 20 45 20 20 25 130 80
12 0 0 0 40 80 40 40 20 45 20 20 25 0 80

Table 4.2: The marker lines used in mathematical modelling approach and the cell types and cytoplasmic or nuclear
tagged GFP marker lines used for validating the Arabidopsis root endoploidy map by flow cytometer analysis. For
all markers, the slices they cover for a particular cell type are indicated by the range in parentheses. *, indicates marker lines
used for flow cytometer analysis. #, indicates marker lines used in this study apart from marker lines described in Cartwright
et al. (2009) 255.

Cell-type Marker-lines Nuclei/protoplast
QC AGL42(1), RM1000(1,11), SCR5, *,#WOX5( 1,11) Protoplast
Columella *PET111(1) Protoplast
Lateral root cap *LRC(1-5) Protoplast
Hair Cell *COBL9(7-12) Nuclei
Non-hair cell *GL2(1-12) Protoplast
Cortex J0571(1-12), CORTEX(6-12), *,#CORT(1-12) Nuclei
Endodermis J0571(1-12), SCR5(1-12), *,#ENDO(1-12) Nuclei
Xylem pole pericycle WOL(1-8), J2661(12), *JO121(8-12) Nuclei
Phloem pole pericycle WOL(1-8), J2661(12), *S17(7-12) Protoplast
Phloem WOL(1-8), *S32(1-12) Protoplast
Phloem companion cells WOL(1-8), *SUC2(9-12) Protoplast
Xylem S4(1-6), WOL(1-8), *S18(7-12) Protoplast
Procambium *WOL(1-8) Protoplast

Equations 4.1 and 4.2 essentially sum up the endoploidy-specific expression levels of gene g in all

cells in a slice s, respectively marker m, where the endoploidy of each cell (and hence its contribution to

the gene’s expression level) is determined from the endoploidy matrix WP . Simulated slice and marker line
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expression levels are then compared with the experimentally determined slice and marker line expression

levels in2. The parameters of the model, the endoploidy boundaries (i.e. the cells at which the endoploidy

level changes along the longitudinal axis, as encoded in the endoploidy matrix WP ), are randomly assigned

at the beginning of a simulation and optimised using a Monte Carlo-Simulated Annealing (MCSA) strategy

to obtain the best possible fit between the simulated and measured2 expression patterns across all slices

and markers (see Section 4.4.3). Overall working scheme of this model is represented in Figure 4.5. In

addition, the details of the work flow are represented with an example in Figure 4.14.

Figure 4.14: Representation of the details of model I work-flow with an example. Here, 1 cell type (Endodermis) and its
12 developmental stages (slices i.e. s1-s12) along longitudinal axis of the root are used as an example to explain the work
flow of the model in detail. In the first step, cell count adapted from Cartwright et al.(2009) 255 (Table 4.1) is imported, where
cell count in each slice is the total number of cells present in all cell files in that slice. In the next step, model randomly defines
the endoploidy boundaries (red lines, 2C-4C, 4C-8C and 8C-16C) by assigning endoploidy levels to each cell in a logical
increment (2C->4C->8C->16C). Next, model determines the normalised cell count of each endoploidy region and use it to
obtain the total expression of endodermis as a function of endoploidy-specific expression in the cortical cells (E(2C), E(4C),
E(8C) and E(16C). Further, the simulated expression is compared with the measured expression by Brady and Co-workers 2

and optimisation potential is obtained. Sequentially, model adjusts one endoploidy border by one cell either up or down along
the longitudinal axis of the root to optimise the fit. Finally, model outputs the simulated expression that has maximum fit with
the measured expression and the endoploidy map.
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4.4.2 II : Endoploidy distribution change prediction upon stress treatment

Model II is essentially a simplified version of model I that simulates the expression patterns of genes in a

whole root, a root segment or a particular cell type as a function of the endoploidy-specific expression

levels in the cortex dataset. The expression level of a particular gene in any (part of the) root is taken to

be a weighted sum of the expression levels in cells with different endoploidy levels in that (part of) the

root :

E(g) =
∑

p

w(p).E(g, p) (4.3)

where E(g) represents the simulated expression level of gene g, to be compared with the measured

expression level in some publicly available microarray dataset on whole roots, segments or cell types

subject to a particular treatment, w (p) represents the endoploidy weight i.e., the percentage of cells in the

root (segment, cell type) at endoploidy level p, and E(g, p) represents the endoploidy-specific expression

level of g at endoploidy p in the cortex dataset. The model uses the same optimisation and simulation

strategies as for mathematical model I to optimise the endoploidy weights w(p) (see Section 4.4.3). The

details of the work flow are represented with an example in Figure 4.15.

Figure 4.15: Representation of the details of model II work-flow. This model follows the same work flow as described in
Figure 4.15, except that it uses a matrix of 100 cells, where 1 cell is equivalent to 1% endoploidy distribution, instead of the
actual cell count. This model simulates expression of a particular gene in any profiled cell type, root segment or intact root by
optimising the percentage of distributions of individual endoploidy levels.
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4.4.3 Simulation and optimisation strategy

We used a classic Monte Carlo Simulated Annealing (MCSA) strategy with exponential temperature decay

to optimise the parameters in both Model I and II. The working scheme of the model is represented in

Figure 4.5. At the beginning, the parameters, i.e. the endoploidy boundaries in each cell type along the

longitudinal axis of the root for Model I or the endoploidy weights for Model II, were randomly assigned,

and optimisation progressed by attempting random steps in parameter space, i.e. by moving a particular

endoploidy boundary one cell up or down in a single cell type (Model I) or by simulating the effect of a

one-cell endoploidy shift on the endoploidy percentages of an entire root, segment or cell type (Model II).

A step was accepted if,

rand < EXP(−∆R/SA) (4.4)

with rand a random number drawn uniformly from the interval [0,1], ∆R the change in optimisation

potential upon taking a step in parameter space, and SA the simulated annealing parameter (temperature),

which gradually decreases over five orders of magnitude (from SA = 10 to SA = 0.0001) during the course

of an optimisation run, according to the exponential cooling scheme SAi = 0.9999 SAi−1. The optimisation

potential is defined by the reduced chi-squared statistic between measured and simulated expression

levels, e.g. in the case of Model I:

R =

∑nG
g=1

[(
Mg−simMg

σ(Mg)

)2
+
(

Sg−simSg

σ(Sg)

)2
]

[(nG × 29)− (nP + nG)]
(4.5)

where R is the reduced chi-squared (goodness-of-fit) statistics, nG is the total number of genes g

included in the simulation, Sg and Sg are the measured expression profiles (vectors) of gene g across

12 slices and 17 marker lines, respectively, and simSg and simMg are the corresponding simulated

expression profiles. σ(Sg) and σ(Mg) represent standard deviation vectors approximated by element-

wise square roots of the Sg and Mg vectors respectively (note that the divisions involving σ(Sg) and

σ(Mg) are also element-wise divisions). The calculated R values are divided by a normalisation factor

[nG × 29− (nP + nG)] i.e. the number of error degrees of freedom. nP is the total number of parameters

(42 i.e. 3 endoploidy boundaries for each of 14 tissues) and 29 is the sum of 12 slices and 17 markers

used.

4.5 Gene set selection

4.5.1 For mathematical model I

In total, 19937 genes are present in the ATH1 transcriptome dataset after preprocessing. However, it

is to be expected that not every gene’s spatiotemporal expression pattern can be predicted accurately

from its endoploidy-specific expression pattern in the cortex, due to e.g. tissue- and developmental

stage-specific regulation of gene expression. In other words, not all spatiotemporal gene expression

profiles are adequately (i.e. exclusively or to a large enough extent) reflecting endoploidy-specific gene

expression changes for the purpose of reconstructing a endoploidy map of the developing root (Figure
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4.4b-d). Furthermore, genes that exhibit low endoploidy-specific expression variation (flat profiles in

the cortex dataset) are uninformative with regard to detecting endoploidy differences. We therefore

took into account several selection criteria for pruning the original set of 19937 genes to a smaller set

enriched in genes containing enhanced endoploidy level information. First, genes were selected for

high expression levels (> 50th quantile, i.e. >73.17) and high endoploidy-specific expression variation

(standard deviation/mean expression >50th quantile, i.e. >20%) in the endoploidy-specific cortex dataset,

resulting in a reduced list of 4378 genes. Next, reasoning that reliable endoploidy markers should exhibit

endoploidy-determined gene expression levels across many tissues and developmental stages, genes

were selected based on whether or not their spatiotemporal expression pattern could be reliably predicted

by model I from their endoploidy-specific expression levels, both in terms of quantitative differences

(reduced chi-squared statistic, R) and the Pearson correlation (PCC) between simulated and measured2

expression (Supplemental Data Set 8). For both criteria, we used the 50th quantile (R <179.84 and

PCC>0.39) as the selection cutoff, resulting in a further reduced set of 954 genes. Among these genes,

407 peak in 2C in the endoploidy-specific cortex dataset, 162 in 4C, 302 in 8C and 83 in 16C. Since

employing unequal numbers of highly expressed genes (markers) for the different endoploidy levels leads

to endoploidy-specific biases in the model optimisation runs and the resulting endoploidy map (Figure

4.16), we selected an equal number of genes (83) from each class to obtain a final balanced set of 332

genes to be used in model I (Supplemental Data Set 6).

4.5.2 For mathematical model II

Changes in a gene’s expression level in response to stress may be attributed to either changes in

endoploidy levels in certain tissues due to stress-dependent modulation of the endocycle (which is our

focus here), or to stress responses that are not endocycle-related. To accurately predict changes in the

endoploidy distribution upon stress treatments, genes that exhibit stress-responsive expression changes

that cannot be attributed to endoploidy changes need to be removed from the aforementioned list of 332

genes used in Model I (see Section 4.4.1). To this end, we first identified publicly available gene expression

datasets (stress vs control) (Supplemental Data Set 9) that were generated in a similar experimental

setup (except for the stress treatment, but in terms of growth medium, root length etc., to avoid as much

as possible expression variations arising due to tissue handling and experimental approaches) as used

for the root expression map2. Then, we used mathematical model II (see Section 4.4.2) to predict the

expression under stress conditions of every one of the 332 genes individually, optimizing the maximum fit

to the measured expression profiles under stress given the endoploidy-specific expression levels in the

cortex dataset, and we calculated the sum of squared errors (SSQ) between measured and modelled

expression:

SSQ(g) =
N∑

i=1

(
Epred (g, i)− Eobs (g, i)

)2

N
(4.6)

where, Epred (g, i) and Eobs(g, i) represent the modelled and measured expression of gene g at

stress condition i , respectively. N represents the total number of conditions used. The SSQ were

normalized to the maximum SSQ value over all genes (Figure 4.17). We removed the 9 genes whose

stress-responsive expression levels were worst predicted based on their non-stress endoploidy-specific
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Figure 4.16: Optimized endoploidy maps for selected unbalanced gene sets, i.e. gene sets with unequal numbers
of genes (markers) peaking at the various endoploidy levels. Endoploidy maps are shown (a.) for the reduced set of 954
genes (see Balanced gene set selection for model I), (b.) for a gene set biased towards 2C genes, encompassing 407 genes
for 2C and 83 genes each for remaining endoploidy levels, and similarly for gene sets biased towards (c.) 4C (162 4C genes,
83 for other endoploidies) and (d.) 8C (302 8C genes, 83 for other endoploidies).

cortex expression levels (i.e. the 9 genes with the highest SSQ values) using a visually determined cutoff

(Figure 4.17). These genes (highlighted in green, Supplemental Data Set 6) are mainly annotated in

the GO database (www.geneontology.org, annotation version 27/08/2013) to response to jasmonic acid

stimulus, wounding, and salt stress. The remaining set of 323 genes was further used for predicting

endoploidy distributions in intact roots (Supplemental Data Set 10), cell types (Supplemental Data Set

11) and root segments (Supplemental Data Set 12) under various stress conditions.
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Figure 4.17: Expression prediction performance of 332 genes in selective stress conditions. The Y-axis represents
the sum of squared errors (SSQ, normalized to values between 0 and 1) calculated over a set of selected conditions for
each gene on the X-axis. The dotted line represents the cutoff used to remove 9 genes which show relatively bad prediction
performance under stress in comparison to the remaining 323 genes.

4.6 Materials and methods

4.6.1 Plant lines and growth conditions

Endoreplication-specific gene expression profiles were obtained from sorted nuclei of the cortical cells

of an Arabidopsis thaliana pCO2:YFP-H2b line254 (see Section 4.6.3 ). Tissue-specific endoreplication

measurements were obtained via flow cytometric analysis of the thirteen Arabidopsis thaliana marker

lines listed in Table 4.2) (previously described in2,255). Endoreplication boundary positions were confirmed

using reporter lines CCS52A1, SIM and SMR1213,257. Root growth measurements under salt and control

conditions were performed using sim, smr1 mutant lines.

Seeds were surface-sterilised using a solution of 20 parts by volume of commercial bleach and

80 parts by volume of 100% ethanol, and then washed twice with 100% ethanol. The dried seeds were

germinated vertically on plates containing half-strength Murashige and Skoog (MS) medium263, 1%

sucrose and 0.5g/l MES (pH 5.7) in 1% agar. Plants were grown under long day conditions (16h light, 8h

darkness) at 22◦C. For pH, salt and IAA treatment experiments, plants were grown on a layer of nylon

strip embedded on the agar surface to facilitate transfer onto the treatment media. Low pH (4.6), high

salt (140 mM NaCl), auxin (1 µM IAA) and respective MS standard media were prepared as described

in261,264,265, respectively. For root growth measurements, five-day-old plants were transferred to 140 mM

NaCl and MS standard media and their root lengths were monitored at 24, 48 and 72 hour intervals after

transfer.
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4.6.2 Flow cytometer analysis

Sections from five-day-old roots were excised with a razor blade approximately 0.5 cm below the root

tip. The excised tips of cytoplasmic lines (Table 4.2) were incubated in 8 ml of protoplasting solution

[1.25% Cellulase (Yakult, Japan), 0.3% Macerozyme (Yakult, Japan), 0.4 M mannitol, 20 mM MES, 20

mM KCl, pH 5.7 adjusted with 1 M Tris/HCl pH 7.5, activated at 55◦C for 10 min and then cooled to

room temperature, 0.1% bovine serum albumin and 10 mM CaCl2] in 25ml Erlenmeyer flasks for 2

hours on an orbital shaker (100 rpm) under continuous light. The protoplasts were then filtered through

a 40 µm filter and centrifuged at 1000 rpm at 4◦C for 10 min. The pellets were resuspended in 1 ml

of wash buffer (identical composition to that of the protoplasting solution but lacking the enzymes and

activation pretreatment). The GFP-expressing protoplasts were FACS sorted and collected in 200 µL

CyStain UV Precise nuclei extraction buffer (Partec) and their nuclei were stained by adding 800 µL nuclei

staining buffer (Partec). DNA content of GFP-expressing protoplasts were measured with a CyFlow Flow

Cytometer (Partec) exited by illumination at nm and analysed with the FloMax software (Partec).

The cut root tips of the nuclear lines (Table 4.2) were further chopped with a razor blade in 200 µL of

nuclei extraction buffer containing 45 mM MgCl2, 30 mM sodium citrate, and 20 mM 3-morpholinopropane-

1-sulfonic acid, pH 7.0142 for 2 mins, then filtered through a 50 µm nylon filter. The DNA was stained with

1 mg/ml DAPI (4’,6-diamidino-2-phenylindole266). Nuclei were measured using a CyFlow Flow Cytometer

(Partec) exited by illumination at 395 nm, and equipped with an additional 488 nm laser to excite and

detect GFP-specific fluorescence. The measured DNA contents were analysed using FloMax software

(Partec).

4.6.3 Endoploidy-specific Microarray data acquisition

Five-day old roots of pCO2:YFP-H2B plants (Col-0 ecotype) grown under continuous light conditions at

22-23◦C were excised using a razor blade at approximately 3/4 from the root tip. Samples of combined

root material (10g fresh weight) were collected in a glass petri dish and chopped with slicing action after

adding 10 ml nuclear isolation buffer (45 mM MgCl2, 30 mM Sodium Citrate (trisodium), 20 mM MOPS

(3-LN-morpholino propanesul fonate), adjust pH to 7.0). The root material was then transferred on a

100 µm strainer in a 50 ml tube (the petri dish was rinsed with nuclear isolation buffer to yield 15 ml

volume). The solution was collected into a 15 ml tube and centrifuged at 2500 rpm in a Sorvall swinging

bucket AH-3000 at 4C for 8 min. The pellet was drained to about 0.5 ml and resuspended in nuclear

isolation buffer to 4 ml, then transferred to a 30 µm strainer in a 5 ml tube and DAPI was added (20 µl/ml

0.1 mg/ml stock). Biparametric sorting was then done based on YFP fluorescence versus nuclear DNA

content, as previously described by Zhang and co-workers266. Sorting of isolated nuclei was done using a

Dako-Cytomation MoFlo flow cytometer/cell sorter as described by Zhang and co-workers267. The nuclear

RNA was extracted from each nuclear DNA content population (2C, 4C, 8C, and 16C, approximately 0.2

ml [200,000 nuclei]/0.95 ml RLT) using Qiagen RNEasy kits according to the manufacturer’s instructions.

Prior to Affymetrix ATH1 array hybridisation, two consecutive rounds of RNA amplification were done in

the MAF (VIB Microarray Facility, http://www.nucleomics.be), using standard Affymetrix protocols for small

samples. The amplified nuclear RNA of each DNA content class was used for microarray analysis.
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4.6.4 Normalisation and Data analysis

The raw endoploidy-specific microarray data was preprocessed using the Robust Multichip Average (RMA)

normalisation approach (background correction, quantile normalisation and summarisation) implemented

in the Bioconductor R package, version 2.529,35. The Bioconductor package limma34 was used to identify

differentially expressed genes. Pairwise comparisons between any two endoploidy levels were performed

using moderated t-statistics and the eBayes method as implemented in limma. P values were corrected

for multiple testing using the Benjamini-Hochberg method268 at a false discovery rate (FDR) threshold

of 0.05. The differentially expressed genes were k-mean clustered using the Matlab function ‘kmeans’

with ‘correlation’ as the distance measure, 24 (i.e. the total number of possible expression level rank

patterns over the four endoploidy levels) as the number of clusters to be obtained and 50 repeats. The

centroid pattern of each of these clusters is represented in Figure 4.1. These clusters were further

classified as endoploidy-specific based on their peak expression. Functional enrichment was calculated

with the BiNGO tool40 using hypergeometric tests and Benjamini-Hochberg correction at FDR = 0.05.

The ST peak expression of any cluster was profiled based on root cell type- (marker-) and developmental

stage-specific gene expression datasets2 (Figure 4.2).

The same ST expression datasets were used in addition to the endoploidy-specific cortex dataset

in mathematical model I (see Section 4.4.1). To this end, the raw data from all three datasets (marker-,

slice- and endoploidy-specific) were jointly RMA normalised as described above. The untransformed (i.e.

non-log-scale) expression values were used in the model. We considered 17 markers covering 14 tissue

types and 12 slices as reported in Cartwright et al. (2009)255. For mathematical model II (see Section

4.4.2), raw microarray datasets for stress experiments on whole roots, root segments and particular root

cell types were obtained from CORNET131,269 and the GEO repository270 (Supplemental Data Set 7).

Each of these raw datasets was RMA normalized separately with the endoploidy-specific cortex data as

described above. Again, untransformed expression values were used in the mathematical model.

4.6.5 Endoploidy map validation experiments

Flow cytometer experiments

The endoploidy content of cells of different tissue types in 0.5 cm-long Arabidopsis root tips (Figure

4.7) was measured using flow cytometer analysis (see Section 4.6.2 ) on cell type-specific GFP marker

lines. As the expression profiles of most cell types were covered by two or multiple marker lines255,

we used marker lines that cover the later developmental stages (Table 4.2). We used the measured

endoploidy profiles to locate the endoploidy boundaries in the tissue and developmental stages covered

by a particular marker line, and inferred the endoploidy levels for earlier developmental stages (Figure

4.8). The cell count (represented in Table 4.1) of a particular cell type in a particular developmental stage

is a sum of cells from all cell-files of that cell-type in that slice. In the model as well as for validation

experiments, we assumed that all cell-files of a particular cell-type along longitudinal axis do not undergo

endoreplication at the same time (at the same cell number). To represent the measured endoploidy

distributions in a manner similar to the predicted map (Figure 4.6), the total number of cells (i.e. sum

over 12 developmental stages) in a particular cell type are treated as a pool of cells and distributed
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in the four endoploidy classes using measured endoploidy distributions. These cells are then logically

(2C->4C->8C->16C) arranged in a temporal manner i.e. re-distributed over 12 slices using the cell count

matrix provided in Table 4.1. The endoploidy boundary positions (in both predicted and validated map) in

a particular cell-type are obtained by dividing the total number of cells (over 12 developmental stages) by

the total number of cell-files in that particular cell-type.

Endoploidy border analysis

The endoploidy boundary positions observed in the validated map are not always reliable, as they are

highly dependent on the absolute number of nuclei or protoplasts extracted and measured per root in

the flow cytometer analysis. The efficiency of protoplasting and nuclear extraction are dependent on

the duration with which tissues are treated with the respective extraction buffers. Such dependency

often gives quantitative variations in the endoploidy distributions, and it is not straightforward to compare

data obtained from different experiments. In addition, the cells in the maturation zone are tightly packed

compared to those in the meristematic zone, and might therefore be only partially extracted in a given

timeframe, leading to the further measurement errors. Moreover, the flow cytometer cannot distinguish

the mitotically dividing G2 cells from the 4C cells, leading to uncertainties in the location of the 2C-4C

boundary in any given cell type. To overcome these technical limitations, we used confocal microscopy to

locate the first cell from QC exhibiting a visible GFP signal of two endocycle markers SMR1 and CCS52A1

and several endoploidy-specific markers (either 4C, 8C or 16C) tagged with GFP. We performed this

analysis on 3-5 roots for each marker line and the average first cell number was taken as the endoploidy

boundary cell number estimate (Figure 4.9a).

Endoreplication onset order analysis

To validate the order of endoreplication onset among 14 different cell types, we studied root cross-sections

at various distances from the QC in GUS stained endocycle marker lines (SMR1 and SIM). First, we

generated a cell distance matrix of a cell types atrichoblast by counting the cells along the longitudinal

axis of a root and measuring their distance from the QC. We repeated this analysis for 30 different roots

to generate an average distance map (Supplemental Data Set 13). Next, we used the measured average

distance matrix to identify the cell numbers of atrichoblast cell type visible in particular root cross-sections.

The measured endoreplication onset order was compared with the predicted order mapped on a virtual

2D root (Figure 4.9b,c).
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Summary, future perspectives and

applications

“Imagination is more important than knowledge”

Albert Einstein.

For the author contributions, see page 106.
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5.1 Summary

Predictive modeling approaches allow us to formulate testable hypotheses from multidimensional data

inputs, which in turn can be experimentally verified. In this thesis, we showed two such approaches that

exploit microarray transcriptome data to answer questions that were difficult to address experimentally.

The first approach predicts gene functions from subtle uncontrolled expression variation among

individual wild-type Arabidopsis plants. The standard gene function prediction approaches use gene

expression data generated from traditional profiling experiments, in which plants that are grown under

tightly controlled experimental conditions subjected to harsh treatments and pooled. However, in natural

context such experimental setups are unrealistic as individual plants are simultaneously exposed to

subtle changes in multiple environmental conditions. Thus, as an alternative to traditional experimental

setup we studied the expression variations due to subtle uncontrolled perturbations among individual

wild-type Arabidopsis thaliana plants grown under the same macroscopic growth conditions. We found

that the underlying gene network structure of expression profiles from an alternative setup contains as

much information as the traditional setup. We also found that subtle uncontrolled variations in gene

expression between individuals could be used to predict functional links between genes and unravel

regulatory influences, which could lead to the implementation of candidate gene identification strategies

with lower effort and costs than traditional gene expression profiling setups. We finally showed the use of

this approach to identify and validate ILL6 as a new regulatory component of the jasmonate response

pathway.

The second approach uses gene expression data to predict a ST DNA endoploidy map of the

Arabidopsis root. Plant organ development involves tight co-ordination between cell cycle and endocycle.

During endocycle, cells skip mitosis, resulting into increased endoploidy and cell size. This process is

essential for cell fate maintenance and response to physiological conditions. However, an adequate

knowledge on the arrangement and functional relevance of dividing versus polyploidal cells in a developing

organ was missing in our understanding of the process. In this context, we developed a mathematical

model to predict an ST endoploidy map of the Arabidopsis root at cellular resolution and further validated

it using cell biology experiments. The map reveals that the order of onset and the extent of endoreplication

is distinct among cell types at different developmental stages. For example, the outer cell types undergo

endoreplication earlier and more extensively than the inner ones. Further, we demonstrated that stresses

such as salt stress affect the arrangement of endoploidy regions in the root during the adaptive growth

response. Overall, we established that the endocycle is tightly regulated and contributes to root growth in

response to both developmental and environmental cues.
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5.2 Future perspectives and applications

5.2.1 A data sampling approach to assign functions to candidate genes

There are two main approaches usually used to assign functions to candidate genes based on expression

data. A first approach is to examine a large compendium of expression profiles including all possible con-

ditions and extract gene function predictions from it using network-based or module-based algorithms88.

An important disadvantage is that informative experiments in a particular context (i.e. for a particular

biological process) may be non-informative in another context and use of amalgamated datasets may

dilute the positive effects of informative experiments on the predictive power. In the second approach,

function predictions for unknown genes are done by analysing experiments probing a specific set of

conditions related to the process of interest. Although this approach is more focused on the process of

interest, chances are that some relevant genes are not predicted as candidates because links between

these genes known to be involved in the process of interest appear only in other than the included

conditions. In other words, this technique ignores the fact that relevant information on a particular process

may surface under conditions that at first sight have nothing to do with the process of interest. The

aforementioned conflicting problems in gene function prediction approaches, may be circumvented by the

novel experiment sampling technique used in Chapter 2. This technique randomly samples conditions

from a pool of conditions, thereby resolving the data dilution problem (in at least some samples) without

sacrificing the extent of data analysed over all sampling repeats.

Figure 5.1 shows preliminary results on the global function prediction performance (obtained as

described in Chapter 2) of 1000 networks obtained from randomly assembled compendia of sample size

of 50, 70 and 100 experiments (from a pool of 1044 experiments) compared with (i) networks targeted

for compendia for response to bacteria and temperature stimuli and (ii) networks obtained from large

compendia probing expression responses in biotic environments (BE), abiotic environments (AE) and

various plant growth hormone regimens (PGHR), and a mother network (BIG) that includes all of the

1044 experiments retrieved from the Cornet database131,269. The results indicate that a random samples

of sufficient size can on average outperform a targeted compendium (for all FDR thresholds 10E-2 to

10E-11) in terms of functional prediction confidence (here a sample of 100 experiments seems to be

sufficient). Sampled networks of size 100 seem to have better performance on average than that of the

BE and PGHR compendia for all FDR thresholds. For the BIG and AE compendia this holds true only for

the higher ( or less stringent) FDR thresholds (10E-2 and 10E-3), but even for the more stringent FDR

thresholds, a few of the sampled compendia networks are able to achieve a similar performance score

(F-measure) to that of BIG and AE networks. This result suggest some smaller samples can always

substitute for large compendia without losing much prediction power. Similar results are seen for specific

GO categories such as response to water deprivation (Figure 5.2). In this particular case, the average

samples are outperforming the BIG compendium.

96



5.2. Future perspectives and applications

Figure 5.1: Global function prediction performance comparison between sampled networks and targeted and large
networks. The performance of the sampled networks of size 50, 70 and 100 (box-and-whisker plots, see legends) is
compared with the targeted i.e. bacteria and temperature regimen networks (left column) and the networks retrieved from
large compendia, i.e. BE, AE, PGH and BIG (right column, open circles and solid line, see legends). The global performance
of a network is measured as described in chapter 2. In the legend, the total number of experiments for each compendia are
specified in parentheses. For description of x- and y-axis labels see legend of Figure 2.8.
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Figure 5.2: Function prediction performance for GO category response to water deprivation. The performance of the
GO category "response to water deprivation" of the sampled networks of size 50, 70 and 100 (box-and-whisker plots, see
legends) is compared with the targeted i.e. bacteria and temperature regimen networks (left column) and the networks
retrieved from large compendia, i.e. BE, AE, PGH and BIG (right column, open circles and solid line, see legends). The
performance of an individual GO category is measured as described in Chapter 2. In legend, the total number of experiments
for each compendium is specified in parentheses. For description of x- and y-axis labels see legend of Figure 2.8.
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Potential work

In order to compare the performance of sampling approach vs large and targeted compendia approach,

the information from all 1000 sampled compendia needs to aggregated in one ranking of prioritised

gene function predictions. Therefore, different methods for prioritisation, for e.g. as based on optimal P

values or on number of times a gene is predicted across samples, can be investigated. The ranked lists

of predictions from sampled, large and targeted compendia can be compared for the true positive and

false positive rates and f-measures (obtained by comparing predictions with reference GO) to assess

the prediction performance of sampling approach. Additionally, individual sampled compendia that are

outperforming both targeted and large compendia can be investigated for the kind of experiments which

they contain, and whether these are the usual suspects anticipated to harbour information on the target

process or not. This exercise will aid wet-lab scientists in setting up appropriate experiments for discovery

of genes involved in their process of interest.

Broader significance

As understanding of plant growth regulation is a basis for developing improved crop varieties for stress

tolerance and yield, a better and more systematic understanding of the complex regulatory networks

that govern their development and environmental plasticity is necessary. The reported work in Chapter 2

and successive perspectives described here might be useful to identify new regulatory components as

well as assign functions to known components involved in various biological processes. Additionally, the

sampling approach described above might suggest novel experimental setups (specific to the process

of interest) to uncover functional links between regulatory components and regulatory influences. The

techniques developed here could greatly boost our understanding of the wiring of plant systems involved

in stress responses and yield and may help develop improved plant varieties.

5.2.2 Diagnostic markers to predict endoploidy distribution change in Arabidop-

sis root in response to environmental and endogenous factors

The endocycle is known to be modulated by environmental factors such as sunlight, high temperature,

shade and water deficit etc.184,229,252 and endogenous factors such as the levels of auxin, cytokinin,

gibberellic acid and abscisic acid (ABA)215,258–260 (Figure 3.6). However, the change in ST arrangement

of polyploid vs dividing cells in a developing organ in response to stress conditions and its physiological

relevances are still poorly understood. In Chapter 4, we successfully investigated such ST endoploidy

arrangements in Arabidopsis roots under developmental cues, and the impact of stress and hormonal

treatments thereon, based on gene expression data of 332 predictor genes. In principle, a small

representative set of marker genes can be obtained from these 332 genes by removing one gene at a

time, with the aim of predicting same endoploidy map obtained using the original gene set. The smaller

size of the new gene set provides advantages such as the ability to predict the endoploidy map of the

developing root under various environmental stress conditions, since small sets of transcripts can be

measured using cheap, accurate and convenient techniques such as nano-string instead of RNA-Seq or
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micro-arrays. In addition, generating multiple alternative but equally performing smaller sets may tell us

about the (classes of) genes or markers that are important for the endoreplication process.

Figure 5.3 shows a preliminary approach (Figure 5.3-a & b) used to obtain a small set of 70

predictor genes and the resulting optimised endoploidy map (Figure 5.3-c). The Euclidean distance

between the two optimised maps learned using the original gene set (332 genes) and the smaller set of 70

predictor genes suggests that both maps are very similar (Figure 5.3-d). This analysis suggests that small

diagnostic marker sets can be reliably used to predict endoploidy maps at a ST level. Figure 5.4 shows

the comparison between predicted endoploidy distributions using the original set (323 genes, Figure

5.4-a,b & c left column) and the small diagnostic marker set (70 genes, Figure 5.4-a,b & c right column).

Although there are quantitative differences among the predicted endoploidy profiles, they qualitatively

show the same trend, namely that salt treatment differentially regulates endoreplication in a cell type

and developmental zone specific manner and overall increases the total endoploidy content of the intact

root. Overall, these preliminary results illustrate the potential of small diagnostic marker sets in predicting

endoploidy distributions in intact roots, cell types or segments of the root.

Potential work

Although we identified 332 markers that are important in predicting endoploidy distributions in intact

root, cell types or root segments under developmental and environmental cues, the relevance of most of

these markers (among 332) in endoreplication process is still missing. In principle, this list of markers

can be further narrowed down to a small realistic number of markers for experimental investigation. The

predictor set described above was obtained by removing one gene at a time, while optimising for the

same endoploidy border positions predicted using the set of 332 genes. Due to the nature of this method,

where genes were prioritised for removal based on their optimisation potential (i.e. difference between

endoploidy border positions predicted using 332 genes and a particular set of genes after removing a

particular gene), multiple repeats would result in relatively similar predictor sets. Other methods with

more randomised approaches for pruning marker gene sets can be investigated for obtaining more

diverse small marker sets, which may reveal whether particular markers (presumably endoreplication

process specific) are preferentially retained over multiple marker sets. These markers would be the ideal

candidates for testing experimentally (using mutant lines) their relevance in the endoreplication process.

Small sets can be further used to predict endoploidy maps under control and stress conditions at ST

level using transcript data generated from nano-string technology. In this context, we plan to measure

transcripts in four cell types (trichoblast, atrichoblast, cortex and endodermis) and three developmental

stages (meristematic, elongation and differentiation) under control versus stress conditions such as

pH, temperature, genotoxic, etc. The normalised and processed data will be used as input for the

non-spatiotemporal version of mathematical model described in Chapter 4 for making predictions, and

which will be further validated using flow cytometry experiments. On the modelling front, the spatio-

temporal version of our mathematical model (described in Chapter 4) can be refined by incorporating

information regarding the nuclear-cytoplasmic ratio i.e. endoploidy by cell volume. However, measuring

real cytoplasmic volume (apart from vacuoles) could be a daunting task.
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Broader significance

Roots provide the basis for survival of the whole plant as they structurally support the aerial portions,

acquire nutrients and water essential for plant growth, synthesise hormones, and are the site of interaction

with soil bacteria. Thus, understanding the regulation of root growth and development is an important

task in plant biology. The fundamental work described in Chapter 4 and successive future perspectives

described here will improve our understanding of the effect of stress conditions on root development at

cellular resolution, which will underpin the efforts in identifying important traits of root development and in

developing better crop varieties.

5.2.3 Predicting endoploidy distribution patterns during Arabidopsis leaf devel-

opment

Leaves are an important part of the plant as they play a pivotal role in photosynthesis, respiration and

photo-perception. Their growth involves three distinct phases: leaf primordia development, primary

and secondary morphogenesis. During primary morphogenesis, growth is sustained by successive

cell divisions, and subsequently by cell expansion in secondary morphogenesis. The transition from

cell proliferation to expansion is often marked by endocycle onset. Thus, the balance between cell

proliferation and cell expansion determines the total number of cells and the final leaf size. Earlier it was

believed that the transition from cell proliferation to expansion proceeds in a gradient down the leaf, with

cell proliferation first ceasing at the tip and then progressively down the longitudinal axis192. Contrary,

recent detailed kinematic and transcriptome analysis of six developmental stages illustrated that this

transition occurs abruptly193. Nevertheless, a clear view on the extent of endoreplication during these

developmental stages is still missing.

In this context, the available transcriptome data of leaf developmental stages can be used to reverse

engineer the distributions of proliferating and endoreplicating cells as per the modeling approach used in

Chapter 4. Prof. Lieven De Veylder in collaboration with Dr. Katja Bärenfaller (ETH, Zurich) have recently

obtained endoploidy-specific transcriptome data as well as total expression of the epidermis (2C, 4C and

total) and mesophyll ( 4C, 8C, 16C and total) tissues in the leaf. Similar to the mathematical model (See

Section 4.4.2) described in Chapter 4, a simple model can be developed to predict (1) the expression of a

gene in different developmental stages in the leaf and (2) the total expression in leaf tissues (Epidermis

and mesophyll), as a function of endoploidy specific expression. Figures 5.5 and 5.6 illustrate some

preliminary results obtained using this approach and demonstrate the potential of our predictive model for

obtaining endoploidy distributions during different developmental stages of the Arabidopsis leaf as well.

Further, the endoploidy predictor genes obtained for leaf (using a approach similar to the root model)

can be used to probe the change in endoploidy distributions in leaf under various environmental stress

conditions.
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Figure 5.3: Optimised endoploidy map using a small representative set of predictor genes. (a.) The endoploidy border
positions predicted for 332 genes were used as reference while removing one gene at a time to obtain smaller representative
sets.(b.) The R-score line plot, which is a part of (a) for the set of 332 genes and sets from 100 to 20 genes) and quantile plots
from R-scores obtained from 100 maps learned for individual gene set after introducing white noise (mean =0 and standard
deviation = 5% of marker and slice data expression in 2). The red arrow indicates the set of 70 genes, which yields a relatively
stable map compared to smaller gene sets. (c.) Optimised endoploidy map obtained using a set of 70 genes. (d.) difference
between the endoploidy levels at each cell on the optimised endoploidy map using 332 genes and the endoploidy map using
70 genes. The rows represent the cell types and columns represent the 12 developmental stages. The color indicates the
absolute distance between the rounds of endoreplication of the same cell in both maps.

102



5.2. Future perspectives and applications

Figure 5.4: Comparison between predicted endoploidy distributions obtained using set of 323 and 70 genes. Exam-
ples of predicted endoploidy distributions under control and salt stress (140mm NaCl) for intact root (a.), cell type stele (WOL,
see legend in Figure 4.11-c) (b.) and segment of root (developmental zone 4, see legend in Figure 4.12) (c.) using original
gene set (left plot in each panel, 323 genes) and diagnostic marker gene set (right plot in each panel, 70 genes).
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Figure 5.5: Example of the optimised expression patterns and endoploidy map learned for one gene using Model 3.
(a.) The predicted endoploidy distributions of an Arabidopsis leaf tissues learned from a single gene (AT1G07470). (b.) The
endoploidy-specific expression pattern of the gene in a. The line plot indicating measured (c.) and simulated (d.) expression
patterns of the gene in epidermis and mesophyll tissues, respectively.

104



5.2. Future perspectives and applications

Figure 5.6: Example of the optimised expression patterns and endoploidy map learned for one gene using Model 3.
(a.) The predicted endoploidy distributions of an Arabidopsis leaf tissues learned from a single gene (AT1G07470). (b.) The
endoploidy-specific expression pattern of the gene in a. The line plot indicating measured (c.) and simulated (d.) expression
patterns of the gene in epidermis and mesophyll tissues, respectively.
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Potential work

As described in Chapter 4, a balanced gene set can be obtained to reliably predict endoploidy distributions

in intact leaf or individual tissues under developmental and environmental cues. These obtained markers

can be further investigated for their relevance in endoreplication processes using mutant line analysis.

Additionally, the balanced gene sets obtained using root and leaf models can be compared to identify the

organ specific as well non-specific (or global) markers involved in the endoreplication process. The current

model described above uses only few data points for the predictions and does not reliably converge to

the same optimisation potential over different model runs. Thus, additional data points either obtained

from publicly available data or generated data need to be included for robust endoploidy predictions.

Broader significance

Leaves provide the foundation for growth of the whole plant through their photosynthetic abilities. Thus,

to improve crops for yield and tolerance to environmental conditions, it is necessary to understand

the effect of regulatory and environmental factors on leaf growth and development. As plant leaves

employ endoreplication during their developmental program as well as in response to stress, a better

understanding of this process is crucial. The potential work described here might increase our knowledge

about environmental cues on endoploidy distributions in plant leaves and might identify novel components

involved in this process.

5.3 Author contributions

The content of this chapter was written by myself. It resulted from the many fruitful discussions with both

my promoters.
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A.1 Predicting gene function from uncontrolled expression varia-

tion among individual wild-type Arabidopsis plants

1. Module figures for all modules learned from the residuals dataset.

2. Excel file containing predicted GO annotations for all modules in Supplemental Dataset 1.

3. Module figures for all modules learned from the original dataset, without removing lab and accession

effects.

4. Excel file containing predicted GO annotations for all modules in Supplemental Dataset 3.

5. Excel file with gene counts in the residuals and sample networks for all GO processes with at least

10 nodes in the residuals network.

6. Category-specific function prediction performance figures for all GO categories scored in Figure 2.6.

A.2 A spatio-temporal DNA endoploidy map of the Arabidopsis

root reveals a role of the endocycle in stress adaptation

1. Excel file detailing the genes that are differentially expressed between at least two endoploidy levels.

2. Excel file containing the k-mean cluster ID of differentially expressed genes.

3. Excel file containing functional enrichment results for all endoploidy-specific gene expression

clusters.

4. Expression enrichment figures for all endoploidy-specific clusters in 17 marker lines covering 14

distinct tissue types of the Arabidopsis root2.

5. Expression enrichment figures for all endoploidy-specific clusters in 12 developmental stages of the

Arabidopsis root2.

6. Annotation information for the balanced set of 332 genes.

7. Excel file containing the GEO accession numbers and descriptions of stress and hormone treatments

profiled in intact roots, root cell types and root segments as used for the Model II endoploidy

distribution predictions.

8. Excel file containing reduced chi-squared statistic (R) and the Pearson correlation between simulated

(using Model I) and measured expression profiles of 4378 genes.

9. Excel file containing the GEO accession numbers and descriptions of the selected stress gene

expression responses profiled in intact roots, as used for pruning stress responsive genes from the

set of 332 genes.

10. Endoploidy distribution prediction figures for stress/hormone treatments profiled in intact roots.
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11. Endoploidy distribution prediction figures for stress/hormone treatments profiled in specific root cell

types.

12. Endoploidy distribution prediction figures for stress/hormone treatments profiled in root segments.

13. Excel file containing cell numbers and their average from the QC (over 30 replicates) measured for

cell type atrichoblast along the longitudinal axis of the root.
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