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Objectives and outline 

Feeding in insects is a complex process that is regulated by many factors. One biological 

factor is neuropeptides. Neuropeptides and their corresponding receptors constitute signaling 

systems through the organism, regulating feeding in an either stimulatory or inhibitory 

manner.  

The neuropeptide cholecystokinin (CCK) signaling induces satiety in mammals. The insect 

neuropeptide sulfakinin (SK) is homologous to CCK and it is reported to be active in the 

regulation of feeding in a few insects. However, our knowledge on SK signaling in insects is 

much limited. Several questions should be addressed before we can go further with this 

feeding-regulatory system. How important is the SK signaling for insects and in which way? 

What is the mechanism of SK signaling? How could we take advantage of the SK signaling in 

practice such as pest control? Therefore, it is in our interest to expand the knowledge of SK 

signaling with respect to its role in the regulation of feeding in insects. In addition, study on 

SK signaling will pave the way for the studies of other feeding-regulatory neuropeptides and 

eventually the regulation of feeding in insects. Moreover, understanding the regulatory 

mechanisms underlying insect feeding is a prerequisite for the development of more effective 

and environmentally safe control methods of pest insects.  

This study is conducted with the red flour beetle Tribolium castaneum, one notorious pest 

insect that causes considerable damage for stored grain, but also a model insect with whole 

genome sequence available and robust response to RNA interference (RNAi). So far, not 

much about SK signaling is known in T. castaneum. 

The goal of this study is to understand the role and mechanism of SK signaling in T. 

castaneum, with special respect to the regulation of feeding. SK signaling consists of two 

predominant elements: SKs and SK receptors (SKRs). SKs are neuropeptides and SKRs are 

proteins belonging to the G-protein coupled receptor (GPCR) family, which are 

transmembrane proteins. GPCRs convert the extracellular stimuli into intracellular signaling 

upon activation. With SKRs belonging to GPCR, SK signaling is expected to transduct 

signaling following the same principle. The efficient interaction of ligand and receptor is the 

starting point of the signaling transduction and it is affected by the sequence and structure of 

both ligand and receptor. The role of SK signaling in feeding is studied by measuring food 
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intake after reducing or enhancing the SK signaling in insects. The mechanism of SK 

signaling is explored from two aspects: signaling transduction via SKRs and structure-activity 

relationship (SAR) of SK. 

The outline of this thesis is illustrated below.  

 

(C, chapter; SAR, structure-activity relationship) 

More specifically, the thesis consists of the following: 

Chapter I is a general introduction of related literature. It starts with the regulation of feeding 

and the relevant neuropeptides. Followed is the special focus on the sequence and function of 

the SK signaling in insects and its counterparts in metazoans. Then, GPCR signaling and 

RNAi are briefly introduced for their machinery and efficiency. Lastly, the development and 

growth conditions of the insect T. castaneum are included. 

Chapter II characterizes and functionally studies SK signaling in the regulation of feeding in 

T. castaneum. One SK precursor gene and two SKR genes are present in the T. castaneum 

genome. The SK precursor gene and SKR genes will be cloned and characterized with 

sequence analysis. Their expression patterns will be examined in terms of developmental 

stage, tissue and nutritional status. In addition, the evolution of SKR and its counterparts in 

animals will be discussed through phylogenetic analysis. The functional study of SK signaling 

will be fulfilled in larvae by two means: the dsRNA-mediated RNAi which reduces SK 
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signaling and the direct injection of a synthetic SK peptide which enhances SK signaling. The 

effects of these treatments on feeding will be evaluated by measuring the mass of food 

consumption.  

Chapter III explores the structure-activity relationship of SK on feeding in adult T. 

castaneum. SKs contain a conserved C-terminal YGHM/LRF-NH2 with diverse N-terminal 

extentions. In most cases, SKs are present in two forms: sulfated SK (sSK) and nonsulfated 

SK (nsSK), depending on the presence of a sulfate group (SO3H) on the Y residue. A series of 

synthetic SK-related peptides with amino acid substitution or deletion from native SK peptide 

will be injected into adults and evaluated for their effect on feeding. The active core sequence 

of SK will be examined based on the in vivo data. Specifically, the role of sulfate moiety will 

be discussed.  

In order to study the two TcSKRs (TcSKR1 and TcSKR2) individually, a cell-based bioassay 

is developed in Chapter IV. First, two cell lines, Sf9-TcSKR1 and Sf9-TcSKR2, will be 

constructed to stably express the two TcSKRs. Then, a reporter gene luciferase assay will be 

introduced to respond to the activation of the individual TcSKR. With this cell-based bioassay, 

the pharmacological properties of the two TcSKRs will be determined, such as their affinity to 

SK peptide as well as their response patterns. Moreover, the SK-related peptides will be 

screened with the bioassay to evaluate their activities on individual TcSKR. These in vitro 

data will provide information for the study of the SAR of SK.   

Chapter V describes the modeling of the two TcSKRs and the docking of the SK (-related) 

peptides to TcSKRs. First, the three-dimensional structures of both TcSKRs will be modeled 

with existing information and the structural distinction between the two TcSKR models will 

be discussed. Then, the sSK and nsSK will be docked to the two TcSKRs, where the effect of 

the sulfate moiety on the interaction of SK to SKR will be analyzed. Lastly, the SK-related 

peptides with Alanine-substitution will also be docked to the two TcSKRs in order to obtain 

further information on the SAR of SK. In addition, the in silico docking data will be inspected 

together with previous in vivo (Chapter II and Chapter III) and in vitro (Chapter IV) 

assays, which is expected to provide an integrated insight on the SAR of SK. 

Lastly, the general conclusions and future perspectives are presented in Chapter VI. 
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1. Feeding in insects 

Feeding is the process by which food is obtained to provide energy and essential nutrients. It 

is one of the most basic behaviors for the survival of animals. Animals ingest nutrients 

necessary for energy production, maintenance of biochemical processes, growth and 

development. About 75% of all animal species on the Earth are insects (Strong et al., 1984). 

Insects feed on a great variety of food sources such as animals, plant tissues and dead organic 

matters. But, most insect species restrict themselves to a particular category of food. Insects 

are categorized based on four main classes of feeding habits: plant feeders, predators (e.g., 

feeding on aphids and mites), scavengers (e.g., feeding on dead and decaying organic matters) 

and parasites. Within each of these classes, various types of feeding can be found such as 

biting and chewing on leaves or animal tissues and sucking from plant or animal tissues. The 

physiological need for food by insects varies constantly due to changing factors such as 

nutritional status, food deprivation, developmental stage and internal regulation (Chapman, 

1998).  

Feeding in insects is initiated with the mouthpart and followed with food proceeded into the 

alimentary canal. The alimentary canal is divided into three main regions: foregut, midgut and 

hindgut (Figure I-1). Food is pushed back from the pharynx by the muscles of the pharyngeal 

pump and subsequently passed along the gut by peristaltic movements. The alimentary canal 

and its associated glands triturate, lubricate, store, digest and absorb the food material.  

 

Figure I-1  Alimentary canal of insect (after Chapman, 1998). 
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2. The regulation of feeding in insects 

Pest insects are expected to be controlled either by deterring or stopping feeding on natural 

food or by stimulating feeding on pesticide-treated materials, due to the development of 

resistance to current insecticides and the restrictions in insecticide usage by environmental 

concerns. Therefore, understanding the regulatory mechanisms underlying insect feeding is a 

prerequisite for the development of more effective and environmentally safe control methods 

of pest insects. The insights into the regulation of insect feeding will provide the proper 

background for an in-depth discussion of improving the existing pest control methods and the 

development of new methods (Chapman, 1998). 

The regulation of feeding is highly complex and involves numerous external and internal 

factors (Geiselman, 1996). The regulation of feeding in mammalian vertebrates has been 

intensively studied. A current model describes a central feeding system, which has the overall 

control of feeding (Jensen, 2001). This system involves specific nuclei of the hypothalamus 

and receives input from two major peripheral systems. One short-term system (also called the 

peripheral satiety system), which transmits meal-related signals to the central system, and one 

long-term system giving information to the central feeding system on the amount of adipose 

tissue and the overall energy balance of the body. 

Considerable progress has been made in understanding putative signals for hunger, satiation 

and satiety. These putative physiological controls of feeding include positive and negative 

sensory feedback, gastric and intestinal distension, effects of nutrients, nutrient reserves, and 

the release of peptides and hormones in the gastrointestinal tract or in the brain. In vertebrates, 

especially mammals, a group of small regulatory peptides that are produced by the brain-gut 

axis plays a major role in the endocrine regulation of feeding and the control of energy 

homeostasis (Figure I-2). These peptide hormones are divided into two groups based on their 

final effect on feeding: orexigenic peptides that stimulate appetite and induce food intake, and 

anorexigenic peptides that cause loss of appetite, reduce food consumption and increase 

energy expenditure (Cardoso et al., 2012). Neuropeptide Y (NPY) is one example of the 

orexigenic peptides. NPY administration into the paraventricular nucleus (PVN) or the 

perifornical hypothalamus (PFH) elicits eating, whereas injection in the PVN but not the PFH 

evokes concomitant hypothermia (Currie and Coscina, 1995) and increased energy substrate 

utilization. This suggests that the NPY action of the PVN modulates integrative and 
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regulatory mechanisms of feeding, thermogenesis and energy metabolism. Moreover, 

neuroanatomic evidence suggests an interaction between NPY and the anorexigenic 

melanocyte–stimulating hormone (MSH), suggesting that the control of food intake and 

energy expenditure is extremely complex (Eduardo et al., 2005). The anorexigenic peptide 

Cholecystokinin (CCK) has also received considerable attention in respect to the short term 

regulation of food intake (Raybould, 2007). Administration of CCK induces satiation, leading 

to a reduction in meal size (Lal et al., 2004). More findings suggest that CCK is required for 

the regulation of caloric intake within a meal, but that other factors such as leptin or insulin 

are involved for the regulation over multiple meals (Donovan et al., 2007; Whited et al., 2006). 

The involvement of neuropeptides in metazoan feeding behavior is suggested to be conserved 

via comparative sequence approaches and in functional studies (Mirabeau and Joly, 2013). 

Therefore, the knowledge obtained from mammals is often used as a base for the study of 

neuropeptides in the regulation of feeding in insects. 

 

Figure I-2  Overview of endocrine factors that regulate feeding behavior in the human 

brain-gut axis. In humans and other vertebrates, feeding is regulated by signals from the 

environment (odor and taste), hunger (metabolic signals), and endocrine signals 

produced by the gut and brain. The orange arrow represents the blood connection 



Chapter I 

6 

 

between gut and brain and the black arrow the nervous connection via the vagal 

afferent terminals through which peptides produced by the gut modulate the feeding 

response in the brain. Galanin (GAL), neuropeptide Y (NPY), orexin (OX), ghrelin and 

melanin concentrating hormone (MCH) are orexigenic peptides and promote appetite 

and feeding. Cholecystokinin (CCK), melanocortin peptides (MSH), neuromedin U 

(NMU), bombesin (BB), neuromedin K (NK), substance P (SP) and neuropeptide FF 

(NPFF) are anorexigenic. The role of somatostatin (SST) peptides in feeding is unclear 

(after Cardoso et al., 2012).  

The regulation of feeding in insects is not so different from that in mammals (Simpson and 

Bernays, 1983). Central excitation is influenced positively by food as well as non-food stimuli, 

both from within and outside the animal; negatively by deterrent stimuli and by feedback 

from peripheral systems such as stretch receptors on the gut wall, hormones and blood 

composition (Wei et al., 2000). As food enters the gut during feeding, it stimulates stretch 

receptors located on the anterior wall of the crop. It may also enter the anterior part of the 

midgut and shunt food already there backwards to distend the ileum, wherein lie other stretch 

receptors. Additionally, stretching of the crop elicits the release of hormones from the storage 

lobes of the corpora cardiaca. Such hormones have a range of effects, including stimulating 

diuresis, increasing gut motility, reducing locomotor activity and increasing the electrical 

resistance of the palp tips (Maestro et al., 2001; Wei et al., 2000). Many of the identified 

neuropeptide hormones have an effect on the regulation of feeding given their influence on 

the contractility of the alimentary tract (Audsley and Weaver, 2009).  

3. Neuropeptides associated with the regulation of feeding in insects 

Neuropeptides 1  are ubiquitous in the nervous system at all levels of organization from 

hydrozoans to man and they are by far the most diverse signaling substances, both structurally 

and functionally (Nässel, 2002). Several insect neuropeptides have been reported to act at 

different levels in the regulation of feeding, such as FMRF-NH2-like peptides, neuropeptide F, 

                                                
1 In this thesis, amino acids are presented with their single-letter code except where three-letter code is necessary. 
Amino acids and their letter codes are listed in the “overview of amino acid” on page vi. Position of an amino 
acid in a neuropeptide sequence is counted from the conserved C-terminus. An amino acid residue is often 
written as a single-letter code with a position number superscript. For instance, Y6 represents that Y is at the 
position 6 from the C-terminus of a neuropeptide. A neuropeptide is named following the neuropeptide 
nomenclature proposed in Coast, G.M., Schooley, D.A., 2011. Toward a consensus nomenclature for insect 
neuropeptides and peptide hormones. Peptides 32, 620-631.  
 



General introduction 

7 

 

short neuropeptide F, allatostatins and allatotropin. More neuropeptides can be found in 

relevant reviews (Audsley and Weaver, 2009; Spit et al., 2012).  

3.1. FMRF-NH2-like peptides 

FMRF-NH2-like peptides represent the largest group of neuropeptides known in invertebrates. 

The story of FMRF-NH2-like peptides began when Price and Greenberg (1977) isolated and 

identified the tetrapeptide FMRF-NH2 from the bivalve mollusc, Macrocallista nimbosa. The 

family of FMRF-NH2-like peptides consists extensively of FMRF-NH2, FLRF-NH2 and 

HMRF-NH2 peptides. They have strong inhibitory effect on visceral muscles such as the 

cockroach gut (Aguilar et al., 2004; Predel et al., 2001), and the foregut of the blood sucking 

bug Rhodnius prolixus (Tsang and Orchard, 1991) and locust Schistocerca gregaria (Banner 

and Osborne, 1989), which suggests that they play a role in the regulation of feeding. Among 

these peptides, leucomyosuppressin inhibits gut motility and hence reduces food intake in the 

German cockroach Blattella germanica (Aguilar et al., 2004) and cotton leafworm 

Spodoptera littoralis (Vilaplana et al., 2008); sulfakinin inhibits food intake in locust S. 

gregaria (Wei et al., 2000), cricket Gryllus bimaculatus (Meyering-Vos and Müller, 2007a), 

cockroaches B. germanica and Periplaneta americana (Maestro et al., 2001; Veenstra, 1989) 

and flies Phormia regina and Calliphora vomitoria (Downer et al., 2007; Duve et al., 1995), 

and stimulates the release of digestive enzymes into the gut of Rhynchophorus ferrugineus 

(Nachman et al., 1997). 

3.2. Neuropeptide F 

Neuropeptide F (NPF) was first identified in a tapeworm, Monieza expansa (Maule et al., 

1991). NPFs are neuropeptides with more than 28 residues (commonly 28–45 amino acids) 

and a consensus C-terminal RXRF-NH2 (commonly RPRF-NH2, but also RVRF-NH2). The 

known regulatory roles of NPFs in Drosophila are in foraging, feeding and motivation, 

ethanol sensitivity, stress responses including nociception, aggression, reproduction, clock 

function and learning (Nässel and Wegener, 2011). NPFs stimulate feeding in insects such as 

the desert locust S.gregaria (Van Wielendaele et al., 2013). 
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3.3. Short neuropeptide F 

The insect short neuropeptide F is a group of peptides with the C-terminal sequence 

XPXLRLRF-NH2, which is important for receptor activation (Nässel and Wegener, 2011). 

Short neuropeptide F stimulates food intake and body weight gain in Drosophila (Lee et al., 

2004). However, an opposite effect was observed in the desert locust S. gregaria, where 

injection of short neuropeptide F caused an inhibitory effect on food intake and knocking 

down of the short neuropeptide F receptor gene resulted in an increase of total food intake 

(Dillen et al., 2013). 

3.4. Allatostatin 

Allatostatins (ASs) are recognized in three types: A, B and C. The three types of ASs were 

first identified from the cockroach Diploptera punctata (Pratt et al., 1989; Woodhead et al., 

1989), the cricket G. bimaculatus (Lorenz et al., 1995) and the moth Manduca sexta (Kramer 

et al., 1991), respectively. ASs inhibit hindgut motility and food consumption, and activate 

midgut α-amylase secretion in the cockroach B. germanica (Aguilar et al., 2003). In adult 

Drosophila, activation of neurons (or neuroendocrine cells) expressing the neuropeptide AS-

A inhibits or limits several starvation-induced changes in feeding behavior, including 

increased food intake and enhanced behavioral responsiveness to sugar (Hergarden et al., 

2012). 

3.5. Allatotropin 

The first allatotropin (AT) was characterized in M. sexta (Kataoka et al., 1989). It is a 

neuropeptide originally described as a regulator of juvenile hormone (JH) synthesis. The 

mRNA level of AT is specifically increased in the nerve cord of the last instar M. sexta larvae 

associated with the treatments which result in reduced feeding and increased levels of JH (Lee 

and Horodyski, 2002). It also inhibits ion transport in the midgut of M. sexta larvae (Lee et al., 

1998). In addition, AT controls the release of digestive enzymes in the midgut of S. 

frugiperda (Lwalaba et al., 2010). 

4. Sulfakinin signaling 

Among the FMRF-NH2-like peptides, sulfakinins (SKs) constitute an important group that has 

attracted considerable interest. SKs contain a consensus C-terminal YGHM/LRF-NH2 
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hexapeptide, with a sulfate group (SO3H) on the tyrosin (Y) residue in most cases. SKs exert 

physiological effects via the activation of sulfakinin receptors (SKRs). SKs and SKRs 

together with other molecules compose the SK signaling in insects. 

4.1. Sulfakinin in insects 

SKs were first isolated from the head extract of the cockroach Leucopaea maderae for their 

myoactivity on hindgut (Nachman et al., 1986b, 1986c). Similar peptides have been identified 

in the cockroach P. americana (Veenstra, 1989), the locust Locusta migratoria (Schoofs et al., 

1991), the flesh fly Neobellieria bullata (Fónagy et al., 1992) etc. Genes encoding SK 

prepropeptide have been cloned in the fruit fly Drosophila melanogaster (Nichols et al., 1988) 

and the cricket G. bimaculatus (Meyering-Vos and Müller, 2007b). SK prepropeptide genes 

have also been annotated extensively in metazoans (Christie, 2008b; Hauser et al., 2010; Ons 

et al., 2011), thanks to the developing peptidomics, transcriptomics and genomics. Table I-1 

summarizes the amino acid sequences of SKs that are determined either from isolated 

peptides or from predicted/cloned DNA. 
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Table I-1  Amino acid sequences of SK, CCK, gastrin and related peptides. 

Class Order Species SK (homolog) Sequence # Reference 

Insecta Blattodea Leucophaea maderae Leuma-SK-I EQFEDYGHMRF * Nachman et al., 1986c 

   Leuma-SK-II pQSDDYGHMRF * Nachman et al., 1986b 

  Periplaneta americana Peram-SK-I EQFDDYGHMRF * Veenstra, 1989 

   Peram-SK-II pQSDDYGHMRF *  

  Blattella germanica Blage-SK-I EQFDDYGHMRF * Maestro et al., 2001 

 Coleoptera Zophobas atratus Zopat-SK-I pETSDDYGHLRF Marciniak et al., 2011 

  Tribolium castaneum Trica-SK-I pQTSDDYGHLRF *+ this study; Li et al., 2008 

   Trica-SK-II GEEPFDDYGHMRF *+  

 Diptera Drosophila 
melanogaster 

Drome-SK-I FDDYGHMRF *+ Nichols, 1992; Nichols et al., 
1988 

  Drome-SK-II GGDDQFDDYGHMRF + 

  Calliphora vomitoria Calvo-SK-I FDDYGHMRF Duve et al., 1995 

   Calvo-SK-II GGEEFDDYGHMRF  

  Lucilia cuprina Luccu-SK-I FDDYGHMRF * Rahman et al., 2013 

   Luccu-SK-II GGEEQDDYGHMRF *  

  Neobellieria bullata Neobu-SK-I FDDYGHMRF * Fónagy et al., 1992 

   Neobu-SK-II XXEEQFDDYGHMRF *  
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(Table I-1 continued) 

Class Order Species SK (homolog) Sequence # Reference 

Insecta Diptera Anopheles maculatus Anoma-SK-I FDDYGHMRF + GenBank: AY341429 

   Anoma-SK-II GGEDGQFDDYGHMRF +  

  Anopheles gambiae Anoga-SK-I FDDYGHMRF + GenBank: AY758365 

   Anoga-SK-II GGEDGQFDDYGHMRF +  

  Delia radicum Delra-SK-I FDDYGHMRF * Audsley et al., 2011; Zoephel 
et al., 2012 

   Delra-SK-II GGEEQFDDYGHMRF * 

 Hemiptera Rhodnius prolixus Rhopr-SK-I pQFNEYGHMRF *+ Ons et al., 2009, 2011 

   Rhopr-SK-II NSDEQFDDYGHMRF *+  

 Hymenoptera Apis mellifera Apime-SK-I pQQFDDYGHLRF *+ Hummon et al., 2006 

   Apime-SK-II EQFEDYGHMRF +  

 Orthoptera Gryllus bimaculatus Grybi-SK-I QSDDYGHMRF + Meyering-Vos and Müller, 
2007b 

   Grybi-SK-II EPFDDYGHMRF + 

  Locusta migratoria Leumi-SK-I pQLASDDYGHMRF * Schoofs et al., 1991 

Arachnida Ixodida Ixodes scapularis Ixosc-SK-I QDDDYGHMRF *+ Neupert et al., 2009 

   Ixosc-SK-II SDDYGHMRF *+  
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(Table I-1 continued) 

Class Order Species SK (homolog) Sequence # Reference 

Malacostraca Decapoda Penaeus monodon Penmo-SK-I pQFDEYGHMRF + Johnsen et al., 2000 

   Penmo-SK-II VGGEYDDYGHLRF +  

   Penmo-SK-III AGGSGGVGGEYDDYGHLRF +  

  Homarus americanus Homam-SK-I pEFDEYGHMRF + Dickinson et al., 2007 

   Homam-SK-II GGGEYDDYGHLRF +  

  Litopenaeus vannamei Litva-SK-I pQFDEYDDYGHL/IRF * Torfs et al., 2002 

   Litva-SK-II pQFDEYGHMRF *  

Remipedia Nectipoda Speleonectes cf. 
tulumensis 

Spetu-SK-I pQFDDYGHMRF + Christie, 2014 

  Spetu-SK-II DFDDYGHMRF +  

Chromadorea Rhabditida Caenorhabditis elegans NLP-12a DYRPLQF + McVeigh et al., 2006 

   NLP-12b DGYRPLQF +  

   NLP-120 SYRPLQF +  

Amphibia Anura Xenopus laevis caerulein pQQDYTGWMDF * Bertaccini, 1976 

Ascidiacea Enterogona Ciona intestinalis cionin NYYGWMDF * Johnsen and Rehfeld, 1990 

Mammalia Primates Homo sapiens CCK-8 DYMGWDF * Dockray et al., 1978 

   gastrin-II pQGPWLEEEEEAYGWMDF * Bentley et al., 1966 
#, p represents a pyroglutamyl moiety; *, sequences identified via peptide isolation; +, sequences deduced from cDNA/DNA. The C-

terminal (-NH2) and the sulfate moiety (-SO3H) on the residue Y are emitted.  
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The distribution of SKs has been studied by means of immunochemistry. In addition to head, 

SKs have been detected in the central and sympathetic nervous system of the American 

cockroach P. americana and the field cricket Teleogryllus commodus (East et al., 1997) and 

in the suboesophageal ganglion of the blow fly P. regina (Downer et al., 2007). However, 

data also show that the expression of SKs is restricted to the brain in the field cricket G. 

bimaculatus (Meyering-Vos and Müller, 2007b) and the blow fly C. vomitoria (Duve et al., 

1994, 1995).  

SKs are involved in various physiological processes as a general neurotransmitter. First, they 

influence the frequency and amplitude of foregut and hindgut visceral muscle contractions 

and heart contraction (Maestro et al., 2001; Nachman et al., 1986b, 1986c; Nichols, 2007; 

Nichols et al., 2008b). Second, they significantly inhibit food intake in the locust S. gregaria 

(Wei et al., 2000), the cockroach B. germanica (Maestro et al., 2001) and the cricket G. 

bimaculatus (Meyering-Vos and Müller, 2007a). In the blow fly P. regina, SKs decrease 

carbohydrate ingestion (Downer et al., 2007). In D. melanogaster, SK is released to regulate 

feeding with insulin-like peptides in a coordinated fashion (Söderberg et al., 2012). Moreover, 

SKs stimulate the release of the digestive enzyme α-amylase in the red palm weevil R. 

ferrugineus (Nachman et al., 1997) and the coconut pest Opisina arenosella (Harshini et al., 

2002).  

4.2. Sulfakinin homologs in Metazoa 

Homologs of insect SKs have been identified as cholecystokinin (CCK)/gastrin in vertebrates 

(Johnsen, 1998), cionin in tunicates (Johnsen and Rehfeld, 1990; Sekiguchi et al., 2012) and 

neuropeptide-like protein 12 (NLP-12) in nematodes (Janssen et al., 2008), based on their 

structural and functional similarity.   

4.2.1. Sequence 

CCK and gastrin have been studied widely in mammalian vertebrates, especially in human. 

They share a common amidated C-terminal tetrapeptide sequence, WMDF-NH2 (Figure I-3), 

which constitutes the minimal structure necessary for receptor binding and biological activity, 

although potencies of both peptides depend upon their N-terminal extensions (Dufresne et al., 

2006). CCKs are expressed as peptides of various lengths including 58, 39, 33 and eight 

residues, each containing a sulfated Y residue (Eysselein et al., 1990). Gastrins are processed 
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to mature products with 34 and 17 amino acid residues (Dockray et al., 2001). Structural and 

functional similarities of CCK and gastrin suggest that they have evolved from a common 

ancestor (Dimaline and Dockray, 1994; Dockray, 1977; Larsson and Rehfeld, 1977; Vigna, 

1986). In addition to mammals, CCK and gastrin peptides have been identified in many non-

mammalian species representing the major vertebrate classes, including fish, amphibians, 

reptiles and birds (Johnsen, 1998).  

Cionin in the tunicate Ciona intestinalis (Johnsen and Rehfeld, 1990; Thorndyke and Dockray, 

1986) and caerulein in the frog Xenopus laevis (Hoffmann et al., 1983) were identified as the 

homologs of CCK/gastrin in vertebrates. They both terminate with the same WMDF-NH2 

sequence. However, caerulein is only found in frog skin and displays functions distinct from 

CCK/gastrin. Therefore, it is considered as a side branch in the evolution of CCK family 

(Vigna, 2000; Wechselberger and Kreil, 1995) and is not included in the study here. Cionin 

possesses two (sulfated) Ys at positions 6 and 7 (Johnsen and Rehfeld, 1990), which is unique 

in the series of CCK (-like) peptides (Figure I-3). 

In nematodes, distant relatives of SKs are identified as neuropeptide-like protein 12 (NLP-12) 

with the C-terminal sequence YRPLQF-NH2 (Figure I-3). In Caenorhabditis elegans, NLP-12 

(also called CK) proves to be the endogenous ligand of the “CCK receptor” (Janssen et al., 

2008; McVeigh et al., 2006). So far, NLP-12-like peptides have been identified in different 

species of nematodes (Janssen et al., 2009). 

Figure I-3 depicts the amino acid sequences of six representative SK (-like) prepropeptides 

including CCK, gastrin, cionin, SK and NLP-12. Notably, an insect SK prepropeptide 

contains two SK peptides with YGHM/LRF-NH2 in the C-terminus and a nematode 

prepropeptide three NLP-12 peptides. The predominant Y (sulfated or nonsulfated in vivo) is 

mostly preceded by a D or a DD/DG motif and followed by an R or G (Figure I-3). In the 

vertebrate gastrin, the Y is preceded by an EA or AA motif. The consistent C-terminal motif 

is HM/LRF-NH2 in insect SKs, PLQF-NH2 in nematode NLP-12-like peptides, and WMDF-

NH2 in vertebrate CCK/gastrin and C. intestinalis cionin. M and L are very similar 

hydrophobic amino acids that are conserved between all clades at the C-terminal position 3. 

An M → L substitution in SK or CCK has been used previously to improve the chemical 

stability and did not influence the functional activity of these peptides (Nachman et al., 1988; 
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Ron et al., 1992). The amino acid at position 2 (Q, R or D) is only weakly conserved (Figure 

I-3).  

Phylogenetic analysis by Janssen et al. (2008) demonstrated that arthropod SKs, nematode 

NLP-12s and the vertebrate CCK/gastrin form separate clades, with cionin the most closely 

related to CCK/gastrin. The authors also hypothesized that the CCK/gastrin signaling system 

was already well established prior to the divergence of protostomes and deuterostomes. 

Sekiguchi et al. (2012) proposed that the CCK/gastrin family is essentially conserved in both 

invertebrates and vertebrates and that cionin and vertebrate CCK/gastrin are derived from a 

common ancestor. For more evolutionary information, please refer to the review by Johnsen 

(1998).  

4.2.2. Functions 

CCK is produced in enteroendocrine I cells of the upper small intestine and brain neurons. It 

can exert an endocrine effect via receptors in the brain or a paracrine effect via receptors in 

the gut (Bi and Moran, 2002; Kennedy et al., 1999). In humans, CCK is reported to induce 

satiety, slow down gastrointestinal motility, stimulate secretion of pepsinogen, inhibit gastric 

acid secretion by stimulating the production of fundic somatostatin, stimulate gallbladder 

contraction, and induce endocrine and exocrine pancreatic secretion (Jensen, 2002; Owyang 

and Logsdon, 2004; Singh and Webster, 1978). CCK can also stimulate nociception, memory 

and learning processes, panic and anxiety (Kennedy et al., 1999). Extensive reviews about the 

functions of CCK and its receptors in humans can be found in the relevant medical literature 

(De Tullio et al., 2000; Dufresne et al., 2006; Rehfeld et al., 2007).  

Cionin from C. intestinalis stimulates the contraction of rainbow trout gallbladders and the 

release of histamine and gastric acid in the rat stomach, implying that cionin exerts activities 

similar to CCK/gastrin in vertebrates (Mårvik et al., 1994; Schjoldager et al., 1995). 

Interestingly, the sulfated Y7 of cionin is shown to play a more important role in activation of 

cionin receptors than sulfated Y6 (Sekiguchi et al., 2012). Given the fact that Y is present at 

the position 7 of CCK and the position 6 of gastrin, it is speculated that chordate ancestors 

might have possessed a CCK-like original peptide with a sulfated Y7, and the hybrid feature 

of cionin might have arisen in the Ciona evolutionary lineage (Sekiguchi et al., 2012). 
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Figure I-3  Alignment of six SK (-like) prepropeptides. Sequences are human CCK precursor (Hsa-CCK, CAG47022.1), human gastrin 

precursor (Hsa-gastrin, NP_000796.1), Ciona intestinalis cionin precursor (Cin-cioin, CAA48884.1), Drosophila melanogaster SK 

precursor (Dme-SK, AAF52173.2), Tribolium castaneum SK precursor (Tca-SK, EFA04708.1) and Caenorhabditis elegans NLP-12 

precursor (Cel-NLP-12, CCD67953.1). The alignment was conducted using ClustalW multiple alignment in BioEdit version 7.0.0 (Hall, 

1999). The color of amino acid residue is default color in BioEdit. Dash represents a gap. The putative cleavage site of the signal peptide 

is indicated by a black vertical bar. The amino acids of biologically active peptides are underlined. CCK-8 is underlined and other CCK 

variants are with N-terminal extensions from CCK-8. 
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To investigate the function of NLP-12 (or CK) in nematodes, Janssen et al. (2008) carried out 

several tests using NLP-12 mutant strain and CK receptor (CKR) mutant strain. The CKR-2 

mutants displayed a decrease in intestinal amylase activity, although the development, 

locomotion and reproduction of both NLP-12 mutant and CKR mutant strains were not 

affected. However, neither sulfated nor nonsulfated NLP-12 peptides displayed any myotropic 

activity on increasing the frequency and amplitude of cockroach hindgut contraction, which 

was dissimilar to the function of CCK and SK (Janssen et al., 2008). Nevertheless, NLP-12 

displayed similar biological activities as CCK/gastrin with respect to digestive enzyme 

secretion and fat storage (Janssen et al., 2008). As a result, more research is required to elicit 

its functions in nematodes and other invertebrates. 

4.3. Sulfakinin (-like) receptor in Metazoa 

The action of neuropeptides involves the activation of specific receptors2, which promotes the 

activation of intracellular signaling mechanisms that ultimately leads to a cellular response 

(Cardoso et al., 2012). 

4.3.1. Structures and ligand-specificity 

CCK and gastrin exert their effects through their transmembrane receptors, CCK receptors 

(CCKRs). CCKRs are members of the rhodopsin GPCR superfamily (see section 5 below) 

(Dufresne et al., 2006). The properties of the receptors have been extensively characterized in 

many species, both physiologically and pharmacologically, by agonist and antagonist binding 

studies, as well as by the effects of these agents on isolated tissue preparations (Deweerth et 

al., 1993; Noble and Roques, 1999).  

Two CCKRs are present in humans, namely CCK1R and CCK2R. CCK1R is mainly 

localized in peripheral organs and discrete areas of the brain whereas CCK2R is primarily 

expressed in brain and stomach (Dufresne et al., 2006). Both receptor types are highly 

conserved, showing 70-80% amino acid identity between receptors in different species. The 

CCK1R and CCK2R also show a high degree of mutual similarity with around 50% amino 

acid identity, suggesting that they share a common ancestor. Both CCKRs contain seven 

                                                
2 In this thesis, amino acids are presented with their single-letter code except where three-letter code is necessary. 
The amino acids and their letter code are listed in the “overview of amino acid” on page vi. Position of an amino 
acid in a receptor protein is counted from the N-terminus and the amino acid residue is written as single-letter 
code with a position number behind. For instance, R219 represents that R is at the position 219 from the N-
terminus of a receptor protein. 



Chapter I 

18 

 

transmembrane domains, with extracellular N-terminal and intracellular C-terminal ends, 

which is a typical characteristic of GPCRs. Other sequence signatures essential for receptor 

activation are also present in the CCKRs, such as an E/DRY motif at the bottom of the 

transmembrane domain III, and NPXXY motif (X represents any amino acid) within 

transmembrane domain VII (Figure I-4; Dufresne et al., 2006; Galés, C., 2000). While the 

CCK1R shows high specificity for sulfated CCK, CCK2R is only marginally dependent on 

sulfation of the ligands and shows little discrimination between gastrin and CCK. CCK1R 

binds and responds to sulfated CCK with a 500- to 1000-fold higher affinity than sulfated 

gastrin or nonsulfated CCK. Dufresne et al. (2006) covered CCK and gastrin receptors in 

detail in their review. 

Cionin receptors (CioRs) are cloned and characterized as CioR1 and CioR2 (Figure I-4; 

Nilsson et al., 2003; Sekiguchi et al., 2012) in C. intestinalis. CioR1 shows 35-40% sequence 

similarity with human CCKRs and for CioR2 the similarity is 59-60%. Moreover, an R 

residue in the extracellular loop II, which is responsible for CCK1R binding to sulfated CCK, 

is conserved in CioRs and CCK1R but not in CCK2R (Figure I-4; Sekiguchi et al., 2012). 

This is likely an explanation for the two sulfated Ys in cionin. To activate CioRs, di-sulfated 

cionin is much more potent than mono-sulfated cionin derivatives, and sulfation on Y7 more 

potent than Y6. In contrast, nonsulfated cionin exhibits no activity on either CioR1 or CioR2. 

Thus, it is conclusive that sulfated Y of cionin is required for the activation of CioRs at 

physiological concentrations (Sekiguchi et al., 2012). 

Before the discovery of NLP-12 peptides, two genes encoding CCK-like peptide receptors 

(CKRs) were found in the C. elegans genome with high identity to CCKRs and SKRs 

(McKay et al., 2007). CKR1 is localized in the nerve ring neurons (McKay et al., 2007) and 

CKR2 is cloned as two splice isoforms, CKR2a and CKR2b (Janssen et al., 2008). The two 

isoforms only differ from each other at the C-terminal region. CKR2 was studied for their 

receptor characteristic since CKR1 was not cloned successfully according to Janssen et al. 

(2008). CKR2 shows a slightly higher affinity to the nonsulfated NLP-12 peptides than to the 

sulfated NLP-12. The natural NLP-12 peptides also perfectly co-eluted with the synthetic 

nonsulfated peptides, which suggests that native NLP-12 peptides are likely to be nonsulfated 

and thereby, sulfate moiety is not essential and might even slightly impede the activation of 

CKR2 in C. elegans.  
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The SK (-like) receptors display their ligand-specificity not only to the sulfated/nonsulfated 

peptides, but also to the peptides from different phyla. Human CCK-8 could not activate the 

Drosophila SKR1 (Kubiak et al., 2002), which involves the difference in the basic R2 residue 

in SKs versus the acidic D2 residue in CCK-8, because replacement of the D2 residue with R2 

transformed the inactive CCK into an active analog on the cockroach hindgut (Nachman et al., 

1988). Consistently, C. elegans CKRs could be activated by neither the human CCK-8 nor the 

insect SKs, which may also involve the different properties of the neutral Q2 residue in NLP-

12 (CK), the acidic D2 in CCK-8 and the basic R2 in SK (Janssen et al., 2008).  

Genes encoding sulfakinin receptors (SKRs) have also been predicted in many insects thanks 

to the accumulating number of sequenced genomes (Hauser et al., 2006a, 2006b, 2008; 

Tanaka et al., 2013). However, to our knowledge, SKRs have only been cloned and 

characterized in D. melanogaster (Chen et al., 2012; Kubiak et al., 2002). Therefore, it is of 

interest to functionally and pharmacologically characterize SKRs in other insect species. 
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(Figure I-4) 
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(Figure I-4 continued) 

 

Figure I-4  Alignment of amino acid sequences of eight representatives of SK (-like) 

receptors. Sequences are Homo sapiens CCK1R and CCK2R, Ciona intestinalis CioR1 

and CioR2, Drosophila melanogaster SKR1 and SKR2 and Caenorhabditis elegans CKR1 

and CKR2 (Table II-2). The alignment was conducted using ClustalW multiple 

alignment in BioEdit version 7.0.0 (Hall, 1999). The color of amino acid residue is 

default color in BioEdit. Seven putative transmembrane domains are underlined. The 

conserved R residue in the extracellular loop II is marked with asterisk. The significant 

sequence E/DRY motif at the bottom of the transmembrane domain III and the NPXXY 

motif within the transmembrane domain VII are marked with “+”. 
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5. GPCR signaling 

5.1. Mechanism of GPCR signaling 

SKRs belong to the protein family of G-protein coupled receptors (GPCRs), which are 

transmembrane proteins. GPCRs are named so because of their ability to recruit and regulate 

the activity of intracellular heterotrimeric G-proteins. G-protein composes Gα, Gβ and Gγ 

subunits. Gα-protein mediates the G-protein-dependent signaling pathways of GPCRs. Figure 

I-5 shows the classic GPCR signaling pathways. Once bound with ligand, the receptor is 

activated and induces a conformational change in the Gα protein, followed by the binding of 

GTP to Gα-protein. Four main classes of Gα-proteins are known as Gαi, Gαq, Gαs and Gα12 

(Simon et al., 1991).  

In a classic GPCR signaling complex, both the GTP-bound Gα and the released Gβγ-dimer 

can modulate several cellular signaling pathways. These include, among others, the 

stimulation of adenylate cyclase (AC) via Gαs and the inhibition of AC via Gαi, as well as the 

activation of phospholipase C (PLC) via Gαq (Oldham and Hamm, 2008). The stimulation of 

AC results in an increase in the intracellular cyclic AMP (cAMP); the activation of PLC 

produces inositol triphosphate (IP3), which stimulates the intracellular calcium mobilization 

(Oldham and Hamm, 2008).  

The signaling cascades modulate gene transcription via the interaction of activated 

transcription factor with specific response element (RE), which are located upstream of the 

regulated gene. By fusing these REs with reporter genes, we can couple the activation of a 

GPCR to the regulation of the transcription of the reporter gene (Figure I-6). Thus, this 

affords a feasible way to detect GPCR modulation (Cheng et al., 2010; Fan et al., 2005).  The 

two reporter plasmids in Figure I-6b are commercially available reporter systems containing 

the cAMP response element (CRE) and the nuclear factor of activated T-cells response 

element (NFAT-RE), respectively. In mammalian cells, increased cAMP activates protein 

kinase A (PKA) by dissociating the regulatory subunit of PKA from the catalytic subunit 

(PKAC). This activated PKAC then recruits the Ca2+/CalmK-IV (Calmodulin (Calm)-

dependent Kinases), MEK (MAPK/ERK Kinases)/ ERK1/2 (Extracellular Signal-Regulated 

Kinases) and together they translocate to the nucleus (Ahmed and Frey, 2005; Choe and 

Wang, 2002). In the nucleus they activate the CRE binding protein (CREB) and CREB 

interacts with its nuclear partner CREB binding protein (CBP) and drives the transcription of 
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the downstream gene (Radhakrishnan et al., 1999). In another signaling pathway, increased 

Ca2+ binds to the calcium sensor protein calmodulin, which in turn activates calcineurin. 

Calcineurin dephosphorylates and activates NFAT transcription factors, which then 

translocate to the nucleus, where they can cooperate with multiple transcriptional partners to 

regulate gene expression. Although the two reporter system have been widely used for GPCR 

signaling study in mammalian cells such as HEK293 cells (Beggs and Mercer, 2009) and 

CHO-K1 cells (Schucht et al., 2011), few studies have been reported for their application in 

insect cells.
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Figure I-5  Classic GPCR signaling pathways. Ligands of GPCRs are diverse from molecules as small as ions to as big as proteins. 

Ligands initiate the signaling pathway by binding and activating GPCRs. Inside of cells, several signaling pathways are present 

depending on the type of Gα protein that GPCR binds. Signaling is then transduced to nucleus and regulates gene expression, which 

elicits biological responses (after Thomsen et al., 2005).
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Figure I-6  Schematic diagram showing GPCR signaling pathways (a) and two plasmids 

involved in the GPCR signaling assay (b). As a consequence of the signaling pathways, 

corresponding response element (RE) is activated, which in turn activates the 

transcription of the adjacent reporter gene. Two plamids pGL4.29-CRE and pGL4.30-

NFAT-RE contain the same sequence for reporter gene luc2P and selective Hygr beside 

the cAMP response element (CRE) and nuclear factor of activated T-cells response 

element (NFAT-RE), respectively. luc2P is an enhance luciferase gene. Psv40 is SV40 

late poly(A) signal. 
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5.2. Platform for insect GPCR signaling study 

Most of the insect neuropeptide receptors are GPCRs. They have attracted lots of attention 

because of their important roles in insect physiology. The neuropeptide receptors are 

relatively conserved during evolution and this has facilitated the prediction of neuropeptide 

GPCR genes in the sequenced insect genomes such as D. melanogaster, Tribolium castaneum 

and Apis mellifera (Hauser et al., 2006a, 2006b, 2008). Meanwhile, insect neuropeptide 

GPCRs are functionally and pharmacologically studied (Caers et al., 2012). A neuropeptide 

GPCR is often deorpharized in a cell-based assay, where the GPCR of interest is exogenously 

expressed in host cells. Fluorescence and bioluminescence are common observable 

parameters in these assays, where molecules such as luminescent photoprotein aequorin and 

the promiscuous Gα16-protein are often employed (Douris et al., 2006; Knight et al., 2003). 

The activation of a GPCR is quantitated by measuring fluorescence or luminescence output 

relating to the intracellular calcium mobilization or the intracellular cAMP accumulation.  

Many of the fundamental properties of functional assay systems are determined by the nature 

of the host cells. These properties include 1) the ability to express the target GPCR with 

appropriate posttranslational modifications and in the required cellular location, 2) the 

presence (or absence) of endogenous GPCRs, G-proteins, effector proteins, scaffolding 

proteins and accessory molecules, and  3) the ease and cost of maintaining and storing cell 

lines. To date, the cells most commonly used in functional GPCR assays include mammalian 

(Jayawickreme and Kost, 1997), amphibian (McClintock and Lerner, 1997) and yeast cells 

(Pausch, 1997). All these cell platforms have their own advantages and disadvantages. For 

example, the high number of endogenous GPCRs commonly found in mammalian or 

amphibian cells can lead to false positive results in screening applications; yeast cells can fail 

to express post-translationally modification and/ or traffic receptors properly, which leads to 

false negative results (Knight et al., 2003). The maintenance of mammalian cell cultures 

requires carefully controlled conditions, fairly expensive media and CO2. Last but not the 

least, the generation of mammalian cell clones often takes several months of subculture for 

that stably overexpress recombinant proteins, making mammalian systems rather labor 

intensive (Douris et al., 2006). 

Insect GPCR signaling studies have been very often carried out in mammalian CHO or HEK 

cells, such as the characterization of the R. prolixus CAPA receptor (Paluzzi et al., 2010), the 
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short neuropeptide F receptor in the desert locust S. gregaria (Dillen et al., 2013) and the 

allatotropin receptor in the bumblebee Bombus terrestris (Verlinden et al., 2013). In T. 

castaneum, an allatotropin-like receptor and a 5-HT1-type serotonin receptor are also 

characterized in the mammalian cell-based assay (Vleugels et al., 2013; Vuerinckx et al., 

2011). 

Insect cells provide an alternative to mammalian cells. Insect cell-based expression systems 

are prominent among expression platforms for their ability to express virtually all types of 

heterologous recombinant proteins. Stably transformed insect cell lines are especially suited 

for the production of secreted and membrane-anchored proteins (McCarroll and King, 1997), 

such as the Drosophila Schneider 2 (S2) cell line (Torfs et al., 2000; Vanden Broeck et al., 

1995), the Spodoptera Sf9 cell line (Joyce et al., 1993), the Spodoptera Sf21 cell line and the 

Bombyx Bm5 cell line (Farrell et al., 1998, 1999). The Sf9 cell line, derived from S. 

frugiperda pupal ovarian tissue, is one of the most widely used insect cell lines. First, it is a 

suitable host for the expression of recombinant proteins with high yield, resulting in increased 

signals in binding assays. Second, three types of Gα-protein have been found in Sf9 cells: Gαi, 

Gαq and Gαs proteins (Knight and Grigliatti, 2004), which makes it possible to transduce 

GPCR signaling. Therefore, Sf9 cell line is considered a versatile model system to investigate 

the pharmacological properties of GPCRs, not only for mammalian GPCRs but also for insect 

GPCRs (Douris et al., 2006; Schneider and Seifert, 2010). However, the major pitfall of insect 

cells for insect GPCR signaling study is that the potential endogenous GPCRs may respond to 

tested compounds and bring out false positive results. 

6. RNA interference 

RNA interference (RNAi) refers to the double-stranded RNA (dsRNA)-mediated gene 

silencing in eukaryotic cells (Hannon, 2002). It can be categorized into two pathways: the 

small interference RNA (siRNA) pathway and the microRNA (miRNA) pathway (Jinek and 

Doudna, 2009). The siRNA pathway is triggered by either endogenous or exogenous dsRNAs 

and silences endogenous genes carrying homologous sequences at both transcriptional and 

post-transcriptional levels. The miRNA pathway is triggered by miRNAs derived from 

hairpin-structured non-coding mRNAs. Since we use exogenous dsRNAs to silence target 

gene in our research, we mainly focus on the siRNA pathway in this section. 
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6.1. Mechanism of RNAi 

The hallmark of RNAi is the discovery of dsRNAs as the trigger that initiate gene silencing, 

as dsRNA is substantially more effective at producing interference than is either strand 

individually (Fire et al., 1998). Soon afterwards, it is confirmed that the gene silencing 

phenomena known variously as post-transcriptional gene silencing, co-suppression, quelling 

and RNAi, share a common underlying mechanism in plants, fungi and animals (De Carvalho 

et al., 1992; Napoli et al., 1990; Romano and Macino, 1992).  

Figure I-7 briefly depicts the mechanism of RNAi. In the initiation step, dsRNAs are 

processed by an RNase III ribonuclease, Dicer, into siRNAs with length of ~21 nucleotides. 

Following the production of siRNAs is the formation of a RNA-induced silencing complex 

(RISC), which is a protein-RNA effector nuclease complex that recognizes and destroys 

target mRNAs. In RISC, the most important elements are the siRNAs and the Argonaute 

protein. The double-stranded siRNAs are unwound in the RISC into a guide strand and a 

passenger strand. The passenger strand leaves the RISC and is degraded, while the guide 

strand leads the RISC to and pairs with the target mRNA. Thus, the mRNA is enzymatically 

degraded. The RNAi mechanism is covered in many reviews in detail (Hannon, 2002; Jinek 

and Doudna, 2009; Meister and Tuschl, 2004; Mello and Conte, 2004). 

6.2. Systemic RNAi 

A fascinating feature of RNAi is its ability to spread throughout the organism, the 

phenomenon called “systemic RNAi”. The RNAi effect is not only present in the cells 

directly exposed to dsRNAs but also triggered in the cells far from the initial administration 

site, and even in the progeny. This phenomenon has been found in plants and many animals 

(Aronstein et al., 2006; Dong and Friedrich, 2005; May and Plasterk, 2005; Mlotshwa et al., 

2002; Voinnet, 2005; Xie and Guo, 2006).  



General introduction 

29 

 

 

Figure I-7 Basic mechanism of double-stranded RNA (dsRNA)-mediated RNA 

interference (RNAi). The dsRNA is cleaved into fragments of ∼21 nucleotides (small 

interference RNAs, siRNAs) by the enzyme Dicer. The siRNAs are unwound in the 

RNA-induced silencing complex (RISC), and the guide strand couples to the target 

mRNA. Then RISC blocks and degrades the target mRNA (after Bellés, 2010). 

One important step of systemic RNAi is the uptake of dsRNA (environmental RNAi) (Figure 

I-8). The uptake of dsRNA in C. elegans has been investigated and several relevant genes 

have been identified. Among them, gene sid-1 is regarded as a primary element in the 

transmembrane channel-mediated mechanism, facilitating the import of dsRNAs from 

environment into cells (Tijsterman et al., 2004; Winston et al., 2002). However, sid-1 

homologs in T. castaneum do not seem to be required for the robust systemic RNAi 

(Tomoyasu et al., 2008) and a gene initially identified as sid-1-like is not required for the 

systemic RNAi in L. migratoria (Luo et al., 2012).  

Intriguingly, there is no robust systemic RNAi effect in the best known insect model D. 

melanogaster, because RNAi is only observed in haemocytes but no other tissues in dsRNA-

injected larvae (Miller et al., 2008).  It is speculated that failure in upstream events in the 
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systemic RNAi pathway, such as dsRNA cellular uptake, transport or maintenance, is 

responsible for the ineffective RNAi in most Drosophila larval tissues. However, several 

publications reported successful silencing by direct injection of dsRNAs in adult Drosophila 

(Dzitoyeva et al., 2001; Goto et al., 2003), suggesting the difference in tissue specificity and 

developmental stages. RNAi is exerted in Drosophila S2 cells when the cells are soaked in 

dsRNA-containing medium, which involves the endocytosis-mediated uptake mechanism 

(Saleh et al., 2006; Ulvila et al., 2006). For details about the two dsRNA uptake mechanisms, 

please refer to relevant reviews (Huvenne and Smagghe, 2010; Whangbo and Hunter, 2008).  

 

Figure I-8  Schematical representation of the cell autonomous, systemic and 

environmental RNA interference (RNAi). On the left are cells expressing green 

fluorescent protein (GFP). Theses cells are exposed to double-stranded RNA (dsRNA) 

targeting gfp expression. Cells on the right show an RNAi response to dsRNA targeting 
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gfp expression. (a) Cell autonomous RNAi: GFP expression is silenced only in the cell 

that is directly exposed to dsRNAs. The neighboring cell continues to express GFP. (b) 

Systemic RNAi: GFP expression is silenced in the cell that is directly exposed to dsRNAs. 

In addition, dsRNAs and dsRNA-derived silencing signals can spread by dsRNA-

transporting channels (depicted by blue rectangles) and this leads to the silencing of 

GFP expression in the neighboring cell. (c) Environmental RNAi: dsRNA molecules 

present in the intestinal lumen are taken up at the apical membrane of intestinal cells by 

dsRNA importers (depicted by red rectangles) and lead to the silencing of GFP 

expression in the intestinal cells. The dsRNAs and dsRNA-derived silencing signals are 

exported from the intestinal cells and spread to cells throughout the animal by systemic 

RNAi and lead to the spread of GFP silencing in distant cells (after Whangbo and 

Hunter, 2008). 

The second element for successful systemic RNAi is the amplification of silencing signal. A 

RNA-dependent RNA polymerase (RdRP) catalyzes the synthesis of secondary siRNAs and 

amplifies the silencing response in C. elegans and plants (Meister and Tuschl, 2004). In 

contrast, RdRP homologs have not been found in any insect genome sequenced to date while 

systemic RNAi seems to exist in many insect species (Bucher et al., 2002; He et al., 2006; 

Shukla and Palli, 2012; Tomoyasu et al., 2008). Hence, there might be a different mechanism 

for insects to maintain and amplify silencing signals from even a minute amount of dsRNAs 

within the organism and even through generations. 

The red flour beetle T. castaneum has been used as a model insect for RNAi because of its 

robust systemic RNAi (Tomoyasu et al., 2008). In addition, larval RNAi and parental RNAi 

benefit the analysis of adult development and early embryogenesis (Bucher et al., 2002; 

Tomoyasu and Denell, 2004). Therefore, gene functional studies have been widely carried out 

in different tissues in T. castaneum at different developmental stages (Fraga et al., 2013; 

Knorr et al., 2013; Shukla and Palli, 2013; Xu et al., 2013). In the ongoing large scale RNAi 

screen project “iBeetle”, a quantity of genes are being systematically knocked down and 

functionally studied (iBeetle-Base, http://ibeetle-base.uni-goettingen.de/). 

6.3. Delivery of dsRNA 

DsRNAs can be delivered into the organism by injection (Fire et al., 1998), feeding (Patel et 

al., 2007; Turner et al., 2006) or soaking (Alvarado and Newmark, 1999; Tabara et al., 1998; 
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Timmons et al., 2001). The choice of dsRNA delivery method depends on many factors, such 

as the 6target gene, the species, and the purpose and scale of the application.  

The most widely used routes for administering RNAi in insects are the injection of dsRNAs 

into the hemolymph and feeding. Injection straightforwardly sends a certain amount of 

dsRNAs into a specific site, while it is time-consuming and trauma-causing. In contrast, 

feeding is a less-invasive and potentially a high-throughput method. But it is limited in 

precise estimation of dsRNA utility and can be more prone to degradation of dsRNA before 

uptake. The other methods exploited in a minority of studies include soaking in dsRNA-

containing solution, electroporation, incorporation of nanoparticle, dsRNA-expressed 

transgene plant etc. A recent review (Yu et al., 2013) compared the different dsRNA-delivery 

approaches. So far, most cases of successful RNAi in T. castaneum are carried out via 

injection of dsRNAs because systemic RNAi works efficiently in this model insect. 

6.4. Efficiency of RNAi 

The RNAi effect varies greatly among species. Successful gene silencing via RNAi has been 

reported in the nematode C. elegans (Fire et al., 1998; Montgomery et al., 1998; Timmons et 

al., 2001), the fly D. melanogaster (Dzitoyeva et al., 2001; Goto et al., 2003; Miller et al., 

2008), the beetle T. castaneum (Arakane et al., 2005; Bucher et al., 2002; Tomoyasu and 

Denell, 2004) and the honeybee A. mellifera (Antonio et al., 2008; Maleszka et al., 2007; 

Patel et al., 2007) etc. However, some species seem to be refractory to RNAi. For example, 

RNAi has many times proven to be difficult to achieve in Lepidoptera (moths and butterflies). 

Therefore, several possible factors influencing the efficiency of RNAi in Lepidoptera were 

discussed (Terenius et al., 2011), such as the methods of dsRNA delivery, systemic RNAi, 

environmental RNAi, tissue susceptibility, length and stability of dsRNA etc. In addition to 

lepidopterans, pea aphid Acyrthosiphon pisum is often reported with less effective RNAi 

response (Christiaens et al., 2014), although several successful experiments were published 

(Jaubert-Possamai et al., 2007; Mao and Zeng, 2012; Mutti et al., 2006; Pitino et al., 2011).  

For the efficiency of dsRNA-mediated RNAi in T. castaneum, a recent study determines 

comprehensively that the length and concentration of dsRNAs have profound effects on the 

efficacy of the RNAi response in regard to both the initial efficiency and the duration of the 

silencing effect in T. castaneum (Miller et al., 2012). In that study, long dsRNAs and dsRNAs 

at a higher concentration are proven to be more effective on triggering RNAi effect with a 
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longer duration. DsRNAs are ranged approximately 120-520 bp in most T. castaneum studies, 

which proves to be effective (Arakane et al., 2005, 2008; Tomoyasu and Denell, 2004). 

7. Tribolium castaneum 

7.1. Taxonomy and introduction 

Phylum: Arthropoda 

Class:   Insecta 

Order:   Coleoptera 

Family:  Tenebrionidae 

Genus:  Tribolium            

The red flour beetle T. castaneum (Herbst, 1797) is a representative species from the 

holometabolous order Coleoptera (beetles). Many beetles are pests in agricultural systems and 

T. castaneum is a global pest of stored agricultural products. It has been reported in grain, 

flour, beans, cacao, cottonseed, shelled nuts, dried fruit, dried vegetables, spices, chocolate, 

dried milk and animal hides. Approaches for controlling the beetles have been tried and 

assessed given the severe damage that they cause (Arthur, 2010; Arthur and Puterka, 2002; 

Soderstrom et al., 1992). 

T. castaneum has been used as a model organism in studies on population ecology and pest 

control since the 1930s (Sokoloff, 1974). Additionally, it is a model organism that offers 

considerable advantages for fundamental biological study, including ease of rearing in large 

numbers, a sequenced genome (Richards et al., 2008) and a strong systemic RNAi response 

(Tomoyasu et al., 2008). Tribolium-related projects have been described, such as the 

Tribolium ontology (TrOn) (Dönitz et al., 2013) and iBeetle RNAi screening. Moreover, a 

Tribolium-derived cell line TcA (BCIRL-TcA-CLG1) is developed recently (Goodman et al., 

2012).  

7.2. Life cycle and growth conditions 

As a typical holometabolous insect, T. castaneum has four developmental stages: egg, larva, 

pupa and adult (Figure I-9). Female adults are very fecund and can lay 300-400 eggs during a 

5- to 8-month period. Eggs are microscopic, cylindrical and white, laid in the grain product. 

They begin to hatch into larvae within 5 to 12 days. A larva is brownish-white, up to 12 mm 
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long, with six almost invisible legs. Larvae live inside grains for 22-100 days until they enter 

the pupa stage. There are 5-9 larval instars, depending on the growth conditions. The pupa 

stage lasts for about 8 days before a full-grown beetle emerges. The adult beetle is very active 

and prefers living away from light. The complete life cycle takes 40-90 days, and adults can 

live up to three years.  

 

Figure I-9 Life cycle of Tribolium castaneum. The beetle develops through egg, larva, 

pupa and adult (image sources: APHLIS Africa and PestWeb). 

The development parameters depend very much on the living conditions, particularly the 

temperature and humidity. The standard conditions for keeping the beetle stock is 25 °C, 

relative humidity (R.H.) 60%, although the beetles are tolerant to a wide range of temperature 

(20-40 °C) and R.H. (40-80%). Beetles show fast embryonic development and high RNAi 

effect at 30 °C (Tribolium beetle book).  

The T. castaneum colony (strain GA-1; Haliscak and Beeman, 1983) in our lab is fed with 

whole wheat flour with 5% yeast and maintained in a climate chamber of 30 °C, R.H. 70% 

and constant darkness. Under these conditions, most larvae have six instars. 
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Chapter II. Characterization of sulfakinin and sulfakinin 

receptors and their roles in feeding in the red flour beetle 

Tribolium castaneum
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1. Introduction 

Sulfakinin (SK) peptides were first isolated from the extract of cockroach head based on their 

myotropic activity (Nachman et al., 1986b, 1986c). Since then, they have been identified via 

either peptide isolation (Duve et al., 1995; Maestro et al., 2001) or gene cloning (Meyering-

Vos and Müller, 2007b; Nichols, 1992). With the increasing genome sequencing projects, 

sequence information of SK genes is readily accessible in more species, such as the wasp 

Nasonia vitripennis, the blood-sucking bug Rhodnius prolixus and the red flour beetle 

Tribolium castaneum. (Amare and Sweedler, 2007; Hauser et al., 2010; Ons et al., 2011; 

Tanaka et al., 2013). SKs reduce insect food intake in assays with either direct peptide 

injection (Maestro et al., 2001; Wei et al., 2000) or SK gene silencing (Meyering-Vos and 

Müller, 2007a).  

In T. castaneum, one SK precursor gene (sk) and two SK receptor (SKR) genes (skr1 and skr2) 

are predicted, and the Trica-SK-I and Trica-SK-II peptides are confirmed by mass 

spectrometry (Li et al., 2008). However, their physiological functions remain unclear. 

The present study aims at figuring out the characterization and function of SK signaling in T. 

castaneum. First, the coding sequence of the genes sk, skr1 and skr2 were cloned and their 

transcript profiles were determined in regard to developmental stages and tissues, as well as 

the nutritional status. Second, the three genes and their deduced proteins were characterized 

based on their sequences. Also, the evolution of SK signaling was discussed after the 

phylogenetic analysis. Third, the three genes were individually silenced by dsRNA-mediated 

gene silecing in T. castaneum larvae and the consequential effect on feeding was examined by 

measuring the mass of food consumption. Finally, a synthetic sulfated peptide Trica-SK-II[1-9] 

(FDDY(SO3H)GHMRF-NH2) was injected in larvae to enhance the SK signaling where food 

intake was monitored. An opposite observation on food intake was expected between Trica-

SK-II[1-9] peptide injection and sk-silencing assay. Through these experiments, we wanted to 

investigate the involvement and the role of the SK signaling in the regulation of feeding in T. 

castaneum. 
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2. Materials and methods 

2.1. Insects 

The wild type GA-1 strain of T. castaneum (Haliscak and Beeman, 1983) was reared under 

standard conditions (30 °C, R.H. 70% and constant darkness) in the lab. Larvae of the 

penultimate and last instars (with body mass of 12.3 ± 0.28 mg) were used in RNAi 

experiments and the peptide assay.  

2.2. Sequence information 

Sequence of T. castaneum sulfakinin (sk) (BeetleBase: TC030085), sulfakinin receptor 1 

(skr1) (BeetleBase: TC007536) and sulfakinin receptor 2 (skr2) (BeetleBase: TC008438) was 

retrieved from the annotated T. castaneum BeetleBase (Kim et al., 2010; Wang et al., 2007) 

by tblastn with protein queries: sulfakinin (GenBank: EFA04708.1), similar to perisulfakinin 

receptor (GenBank: XP_975226) and similar to CCK-like receptor at 17D3 (GenBank: 

XP_972750.1). Two reference genes ribosomal protein L32e (rpl32; GenBank: 

XM_964471.2) and alpha-tubulin 1 (α-tubulin; GenBank: XM_961399.1) were included. 

Primers were designed based on sequences from annotation and/or cloning and are displayed 

in Table II-1. 

2.3. Total RNA extraction and cDNA synthesis 

Insects were dissected in phosphate buffered saline (PBS) (NaCl 137 mM, KCl 2.7 mM, 

NaHPO4 10 mM, KH2PO4 1.76 mM; pH 7.2) and different body parts were stored in 

RNAlater® reagent (Sigma-Aldrich) at -70 °C prior to total RNA extraction. Samples 

included 10 entire larvae, 10 entire pupae and 10 entire adults as well as head, gut and the 

decapitated body that were collected from 20 larvae and 20 adults. In the nutrition-SK assay, 

whole larval and adult individuals were collected after 6 days of starvation. In the RNAi 

experiment, three larvae were collected and pooled daily and stored for transcript analysis of 

the target gene.  

Total RNA was extracted with the RNeasy® Mini Kit (Qiagen) following the manufacturer’s 

instruction. A DNase I treatment with the DNA-free™ DNA Removal Kit (Ambion) was 

included to eliminate the potential genomic DNA contamination. One microgram of total 

RNA was used in cDNA synthesis with SuperScriptTM II Reverse Transcriptase (Invitrogen) 
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and oligo(dT)12 (Invitrogen) after quantification and verification by spectrophotometer 

(Nanodrop ND-1000, Thermo Scientific) and gel electrophoresis with 1.5% agarose gel. 

Finally, the cDNA solution was ten times diluted with nuclease-free water and stored at -

20 °C for subsequent experiments.  

2.4. Cloning and phylogenetic analysis 

Genes sk, skr1 and skr2 were amplified with Platinum® Pfx DNA polymerase (Invitrogen) and 

primer pairs sk, skr1 and skr2 (Table II-1), respectively. The following thermocycling profile 

was used: 4 min at 94 °C followed by 35 cycles of 15 s at 94 °C, 30 s at 56 °C and then 40 s 

(sk) or 100 s (skr1 and skr2) at 68 °C. The single band of the target fragment was purified 

from the agarose gel, cloned into pGEM®-T vector (Promega) and then confirmed by 

sequencing.  

The obtained nucleic acid sequences and deduced amino acid sequences were compared with 

the existing sequence of the corresponding gene. Multiple sequence alignments of DNA and 

protein and phylogenetic analysis were performed with MEGA 5 (Tamura et al., 2011). The 

properties of deduced proteins were analyzed using online tools: SignalP 4.0 (Petersen et al., 

2011) for signal peptide prediction, TMHMM Server v.2.0 and Protter v1.0 for 

transmembrane helices prediction (Krogh et al., 2001; Omasits et al., 2013; Sonnhammer et 

al., 1998) and Phyre2 for three-dimensional (3D) structure prediction (Kelley and Sternberg, 

2009).  

Phylogenetic analysis of receptors was conducted with available sequences of SK(-like) 

receptors from invertebrates to vertebrates (Table II-2) based on two distance analysis 

methods: the neighbor-joining (NJ) and the maximum-likelihood (ML). After removing gaps, 

the amino acid sequences encoding the seven transmembrane domains, the intracellular loop I 

and II, and the extracellular loop I and III of the receptors were used to construct phylogenetic 

trees in MEGA 5 with default setup (Tamura et al., 2011). Canis lupus familiaris bradykinin 

receptor (BDKR), Carassius auratus vasoactive intestinal polypeptide receptor (VIPR) and 

Homo sapiens secretin receptor (SCTR) were used as an outgroup. 
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2.5. Transcript profiles  

The temporal transcript was determined by quantitative real-time PCR (qPCR) with cDNA 

from larval, pupal and adult stages and the spatial transcript with cDNA from tissues as head, 

gut and the decapitated body. cDNA from starved beetles was sampled to investigate the gene 

expression in relation to the nutritional status.  

Primers sk_q, skr1_q and skr2_q (Table II-1) were validated with a standard curve based on a 

serial dilution of cDNA to determine efficiency and a melt curve analysis with temperature 

range from 60 °C to 95 °C to ensure specificity. Each reaction was performed in duplicate and 

contained 10 µl SsoFast™ EvaGreen® Supermix (Bio-Rad), 0.4 µl of 10 µM forward primer 

(Invitrogen), 0.4 µl of 10 µM reverse primer (Invitrogen), 8.2 µl water and 1 µl cDNA 

prepared in section 2.3. The qPCR reaction was performed and analyzed using a CFX96™ 

Real-Time System and the CFX Manager (both from Bio-Rad). Two reference genes, rpl32 

and α-tubulin were chosen, based on previous reports (Lord et al., 2010; Morris et al., 2009; 

Parthasarathy et al., 2008) and our optimization with qbase+ software (Biogazelle). “No 

template control” and “minus reverse transcriptase control” reactions were included in qPCR 

to ensure that there is no foreign DNA or genomic DNA. The relative transcript level of a 

target gene was normalized to the amount of the two reference genes.  

2.6. DsRNA synthesis 

A single fragment of sk, skr1 and skr2 was amplified with primer pairs sk, skr1_s and skr2_s 

(Table II-1), respectively. The fragments were cloned into pGEM®-T vector (Promega) and 

then confirmed by sequencing. The linearized plasmids were used to generate dsRNA 

templates with primer pairs dssk, dsskr1 and dsskr2 (Table II-1; Figure II-S1). The 

thermocycling profile started with 5 cycles of denaturation at 94 °C for 30 s, annealing at 

60 °C for 30 s and extension at 72 °C for 30 s, and then continued with 28 cycles of 

denaturation at 94 °C for 30 s, annealing at 68 °C for 30 s and extension at 72 °C for 30 s.  

One microgram of purified dsRNA templates was used in the dsRNA synthesis with the 

MEGAscript® RNAi Kit (Ambion) following the instruction. DsRNAs were eluted from the 

column with nuclease-free water. The yielded dsSK (382 bp), dsSKR1 (459 bp) and dsSKR2 

(409 bp) (Table II-1) were quantified and verified by a spectrophotometer and 1.5% agarose 
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gel. Following the same protocol, dsRNA for green fluorescent protein (dsGFP; 495 bp) was 

synthesized with plasmid containing gfp fragment and the primer pair dsgfp (Table II-1). 

2.7. RNAi experiment 

For the RNAi experiment, the penultimate and last instar larvae were collected from the 

laboratory colony. Approximate 200 ng of dsRNA was injected into the larval haemocoel 

from the dorsal side of their 3rd and 4th abdominal segments (Posnien et al., 2009; Tomoyasu 

and Denell, 2004). Injection of dsGFP or nuclease-free water did not cause difference 

compared to the no-injection insects in previous trials; therefore, 200 ng of dsGFP was 

injected as a negative control to confirm the sequence-specific effect of dsRNA.  

The transcript level of a target gene was determined by qPCR using total RNA extracted from 

the three-pooled injected larvae. These larvae were collected at designated time points after 

dsRNA-injection. Primer pairs sk_q, skr1_q and skr2_q were located in different regions from 

the dsRNA-region (Table II-1; Figure II-S1). The same qPCR profile was used as in section 

2.5.  

a 

                    

b  

 

Figure II-1  Flour disk feeding assay. T. castaneum larvae were kept individually with a 

flour disk per larva (a) and the consumption of flour disk represents the food 

consumption (b). 

Gene silencing effect was evaluated phenotypically with the larval food intake. Thirty larvae 

were divided into six replicates with five larvae per replicate. Each dsRNA-injected larva was 

supplied with a flour disk (Figure II-1a) in a 12-well tissue culture plate (TPP, Switzerland) 

under standard conditions. Before fed to larvae, the flour disks were kept in the insect culture 

incubator for three days to saturate with the standard humidity. A saturated flour disk weighed 

on average 0.29 ± 0.02 mg.  Then, the flour disk was weighed on a daily basis. All larvae 
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were scored for cumulative food intake for eight days, when most turned into pupa. The 

decrease in the mass of a flour disk represented the food intake of one larva (Figure II-1b). 

2.8. Injection of sulfated Trica-SK-II[1-9] peptide in larvae 

Synthetic peptide sulfated Trica-SK-II[1-9] (sSK-II for short; with sequence 

FDDY(SO3H)GHMRF-NH2) was injected in larvae to investigate its effect on feeding. The 

sSK-II was synthesized via FMOC methodology under previously described conditions 

(Nachman et al., 1986c). The sSK-II solution was freshly prepared with a buffered saline (10 

mM Hepes, pH 7.4, 1% BSA, 0.85% NaCl; Bloch Qazi et al., 1998) before the experiment.  

Before injection, larvae were kept individually for 12 h without food in small plastic boxes. 

The sSK-II was injected to a final concentration of 80 μM, which is calculated to be higher 

than the effective concentration in desert locust (Wei et al., 2000). Larvae of the control series 

were injected with the same volume of saline solution. A no-injection control was also 

included in the experiment. Both the treatment and control series contained each six replicates 

with five larvae per replicate. Each larva was kept individually with a flour disk. All larvae 

were then kept under the standard conditions and scored daily for food intake. 

3. Results 

3.1. Cloning and characterization of SK and SKR genes and proteins 

The cDNA of the SK prepropeptide gene was cloned (GenBank: KC161574) as sk. The SK 

gene contained two exons and encoded 113 amino acids. The deduced protein had the same 

sequence as the predicted SK prepropeptide EFA040708.1. The SK prepropeptide (Figure 

II-2a) contained a hydrophobic signal peptide with a cleavage site after the residue A29 

(Dyrløv Bendtsen et al., 2004; Nielsen et al., 1997) and two peptides, designated as Trica-SK-

I and Trica-SK-II. Both peptides were flanked by putative mono- and di-basic endoproteolytic 

cleavage sites: -KR- (K79, R80 and K93, R94) and -R- (R109) (Nakayama et al., 1992; 

Sossin et al., 1989; Von Heijne, 1985). Both peptides had a characteristic Y (Y86 and Y102) 

and G (G92 and G108), which is a potential sulfation and amidation site, respectively (Eipper 

and Mains, 1988; Eipper et al., 1992; Merkler, 1994; Weinshilboum et al., 1997). The residue 

Y (Y86 and Y102) is reported to have both sulfated and nonsulfated forms (Predel et al., 1999) 

and the putative amidation on the C-terminal G (G92 and G108) is considered to protect the 

peptides (Gregory et al., 1964).  
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Table II-1  Oligonucleotide primers used in PCR for cloning and quantitative real-time PCR 

Primer* Forward primer (5’-3’) Reverse primer (5’-3’) Product size (bp) Location** 

Cloning PCR 

sk CACTTGCAGTCAGTAATGGGTATGAAGAGTT ATTTATTGGCTTAATCGCTGCCGCTTC 342 1-342 

dssk T7-CTTGCAGTCAGTAATGGGTATGAAGAG T7-TTAATCGCTGCCGCTTCTTCC 382 1-342 

skr1  GGCGGAAAATGTCAGAAGTGGAAATGAACT CGCTGCTAAACACGATCTTCGGC 1665 1-1665 

skr1_s GCCAGTTACGCCACTTCTTC ATGCCGTTCTTCTGAGCTGT 413 1134-1547 

dsskr1 T7-GCCAGTTACGCCACTTCTTC T7-ATGCCGTTCTTCTGAGCTGT 459 1134-1547 

skr2 GTAACAATGGACTGGGCTGAAAAC CACAAATTATCTACAAAAGTCGGCA 1263 1-1264 

skr2_s CAAGGGAATGAAGACGGAAA CTCGAACAGTACGCCAACAA 399 693-1091 

dsskr2 T7- CAAGGGAATGAAGACGGAAA T7-CTCGAACAGTACGCCAACAA 409 693-1091 

dsgfp T7-TACGGCGTGCAGTGCT T7-TGATCGCGCTTCTCG 495  

T7 TAATACGACTCACTATAGGGAGA    

Quantitative real-time PCR 

rpl32 TGACCGTTATGGCAAACTCA TAGCATGTGCTTCGTTTTGG 136 144-279 

α-tubulin CGCCTGTTGGGAATTGTACT ACGACAGTGGGTTCCAAGTC 171 167-339 

sk_q GGCAGCGATTAAGCCAATAA TGCAAAATTTATTACCAGCCATT 80 331-410 

skr1_q AAACAACTCCGACGTCTCGT TCGGCTTCCAAAACCACTAC 90 1563-1652 

skr2_q AAGTGTGCCACAATGGTACG TTCCGATGACTGCCAACATA 80 90-169 
*, Abbreviation used: sk, sulfakinin; skr, sulfakinin receptor; gfp, green fluorescence protein; rpl32, ribosomal protein L32e; T7, T7 

polymerase promoter sequence. 

**, position of a neucleotide is counted from the first neuclotide in the open reading frame of a gene.
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When the amino acid sequence of the T. castaneum SK prepropeptide was compared to the 

prepropeptides of SK homologs in Hymenoptera, Orthoptera, Diptera and Ixodida, a relatively 

high identity was found in the region corresponding to the two peptides (Figure II-2b), sharing 

at least seven identical C-terminal amino acid residues.  

For the SKRs, two genes were annotated (BeetleBase: TC007536 and TC008438) in T. 

castaneum (Amare and Sweedler, 2007; Hauser et al., 2008; Li et al., 2008). To make things 

easier, we designated them as skr1 and skr2 corresponding to the sequences cloned with 

primer pairs from TC007536 and TC008438, respectively.  

skr1 (GenBank: KC161573) contained eight exons and encoded 554 amino acids with a 

calculated molecular weight of 62.95 kDa. The SKR1 amino acid sequence differed with two 

insertions between residues 261 to 266 and residues 499 to 501 (Figure II-3), as compared to 

the amino acid sequence from TC007536. We suspect that these differences are due to two 

splicing differences in the 4th and 6th introns. The open reading frame of skr1 matched the 

canonical GT/AG splice. In addition, skr1 showed four nucleotides different from the 

genomic sequence in the BeetleBase, which were all present in the 3rd position of codons 

without changing the amino acids. Therefore, KC161573 showed the correct sequence of one 

sulfakinin receptor and could replace the predicted TC007536.  

skr2 was organized into five exons and encoded a protein of 420 amino acids with a 

calculated molecular weight of 47.91 kDa. It had four nucleotides different from TC008438 

but both deduced the same amino acid sequence.  
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Figure II-2  Sequence of deduced T. castaneum SK prepropeptide (a) and alignment of 

insect SK prepropeptides (b). In the T. castaneum SK prepropeptide (a), the possible 

start amino acid Ms are shown in bold letters in the position 1 and 3 from the N-

terminus. The putative cleavage site of the signal peptide is indicated by an arrow. The 
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potential mono- or di-basic endoproteolytic cleavage sites are underlined and the 

preceding G residues required for α-amidation are marked by “+”. The two deduced 

sulfakinin peptides (Trica-SK-I and Trica-SK-II) are bold. The dash indicates the 

position of stop codon. Alignment (b) was performed with SK prepropeptides (deduced) 

from Tribolium castaneum (Trica; Coleoptera; GenBank: KC161574), Psacothea hilaris 

hilaris  (Psahi; Coleoptera; UniProtKB: B7XH66), Gryllus bimaculatus (Grybi; 

Orthoptera; UniProtKB: A4H1X5), Rhodius prolixus (Rhopr; Ixodida; UniProtKB: 

C6K793), Culex quinquefaciatus (Culqu; Diptera; UniProtKB: B0WBY7), Dermacentor 

variabilis (Derva; Ixodida; UniProtKB: B2ZA31), Apis mellifera (Apime; Hymenoptera; 

UniProtKB: H9KFT3), Drosophila melanogaster (Drome; Diptera; UniProtKB: P09040), 

Anopheles gambiae (Anoga; Diptera; UniProtKB: Q49U19) and Bombyx mori (Bommo; 

Lepidoptera; UniProtKB: B3IWA7). *, an amino acid position which is completely 

conserved among all aligned proteins; :, an amino acid position with lower degrees of 

conservation among all aligned proteins. The regions corresponding to two Trica-SKs 

are underlined. 

 

Figure II-3  Comparison of T. castaneum sulfakinin receptor 1 from annotation 

(XP_975226) and cloning (KC161573_P). Alignment was performed by using the online 

Clustal Omega. The consensus is presented under each amino acid by “*” representing 
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complete conservation and “:” lower degree of conservation. The two full boxes indicate 

the differences between the two proteins.  

Both TcSKR proteins showed the characteristics of GPCRs, including the seven 

transmembrane domains (TMs), an extracellular N-terminal region and a intracellular C-

terminus (Figure II-4; Figure II-5). In addition, a large intracellular linker between TM V and 

TM VI was confirmed, which is known as a noticeable feature of SKRs (Staljanssens et al., 

2011). A disulfide bond is predicted between two C residues in the extracellular loop (EL) I 

and II in both SKR1 (C125 and C203) and SKR2 (C112 and C190) (Figure II-4). The two 

vertebrate CCKRs contain such disulfide bonds as well, which helps in stabilizing the 

extracellular ligand binding pocket (Miller and Gao, 2008). Also, the significant sequences for 

the activation of GPCR (ERY and NPXXY) were found in both TcSKRs (Figure II-4; 

Dufresne et al., 2006). In CCKRs, an M in the EL II interacts with the aromatic ring of the Y 

in CCK and a R interacts with the negatively charged sulfate moiety (SO3H) in CCK (Gigoux 

et al., 1998, 1999). An M and R were found in the EL II in the TcSKR1 while only a R was 

found in the TcSKR2 (Figure II-4).  
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Figure II-4  Schematic two-dimensional representation of the seven transmembrane 

regions of protein TcSKR1 (a) and TcSKR2 (b) from Tcskr1 and Tcskr2 built in Protter 

v1.0. The protein starts with the first M in the open reading frame. The potential N-

glycosylation residues are in green; potential disulfide bond residues are in dark blue; 

residues important for efficient binding of the sulfated Y of SK are in red; motifs 

essential for receptor activation (ERY and NPITY) are in yellow. 
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Figure II-5  Three-dimensional structure of proteins TcSKR1 (a) and TcSKR2 (b). The 

structures were constructed with Phyre2. The protein starts with the first M in the open 

reading frame. The seven transmembrane domains of the receptor protein are marked 

as TM I-VII. Images are colored by rainbow N → C terminus. In image (a), 84% of 

residues are modelled at >90% confidence. In image (b), 89% of residues are modelled 

at >90% confidence. 

 

3.2. Evolution of the metazoan SK(-like) signaling system 

 In general, insect SKR, vertebrate CCKR/CioR and nematode CKR share relatively 

conserved sequences in their seven-transmembrane domains (Figure I-4). In order to discuss 

the evolution of the metazoan SK(-like) receptors, two phylogenetic trees (Figure II-6) were 

generated based on the NJ and ML methods. Both the NJ tree (Figure II-6a) and the ML tree 

(Figure II-6b) showed that the SK(-like) receptor family in each phylum consisted of two 

distinct branch clusters: receptor 1 and receptor 2. In chordates, a clear separation of the 

CCK1R and CCK2R groups was obtained and this was also observed within nematodes 

where sequences clustered within the CKR1 and CKR2 groups. However, this contrasted with 

the arthropods scenario and the two Drosophila SKRs grouped separately from the other 

insect representatives. In Arthropoda, SKRs were clustered in two groups where no clear 

distinction between SKR1 and SKR2 could be made; thus, we designated them as SKR-group 

1 (SKR-G1) and SKR-group 2 (SKR-G2). The analysis demonstrated that all SK(-like) 

receptors share a very high degree of sequence similarity, not only within clusters, but also 

between clusters.  
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Figure II-6  Phylogenetic tree of SK (-like) receptors constructed using the neighbor-

joining (NJ) method (a) and maximum-likelihood (ML) method (b). The amino acid 

sequences encoding the seven transmembrane domains, the intracellular loop I and II, 

and the extracellular loop I and III of the receptors were used to conduct the 

phylogenetic anayses. The trees are drawn to scale, with branch lengths in the same 

units as those of the evolutionary distances used to infer the phylogenetic tree. The 

percentage of replicate trees in which the associated taxa clustered together in the 

bootstrap test (1000 replicates) is shown next to the branches. In the NJ tree (a), the 

evolutionary distances were computed using the Poisson correction method and are in 

the units of the number of amino acid substitutions per site. The evolutionary history in 

the ML tree (b) was inferred by using the Maximum Likelihood method based on the 

Jones-Taylor-Thornton (JTT) matrix-based model. Initial tree(s) for the heuristic search 

were obtained automatically as follows. When the number of common sites was < 100 or 

less than one fourth of the total number of sites, the maximum parsimony method was 

used; otherwise BIONJ method with MCL distance matrix was used. The scale bar 

indicates an evolutionary distance of 0.2 (A) or 0.5 (B) amino acid substitutions per 

protein. Canis lupus familiaris bradykinin receptor (BDKR), Carassius auratus 

vasoactive intestinal polypeptide receptor (VIPR) and Homo sapiens secretin receptor 

(SCTR) were used as an outgroup. The sequence accession numbers are shown in Table 

II-2. 

 

The SKR is divergent in quantity among Arthropoda. For instance, two SKRs are identified in 

both D. melanogaster and T. castaneum (Hauser et al., 2006b, 2008), whereas only one copy 

is found in Anopheles gambiae (VectorBase) and Apis mellifera (Hauser et al., 2006a). In the 

silkworm Bombyx mori, only one protein A9 receptor (namely SKR in Figure II-6) is found 

and predicted as a SK-like receptor (Fan et al., 2010). In the arachnids Ixodes scapularis and 

Mesobuthus martensii, and the insect R. prolixus, Culex quinquefasciatus and Aedes aegypti, 

partial SKR sequences were found via sequence similarity searches (VectorBase; Cao et al., 

2013). However, due to the lack of certain conserved transmembrane domains in these protein 

sequences, we did not include them in the phylogenetic analysis. Moreover, the SKR gene in 

Crustacea has only been found in the water flea Daphnia pulex, although some studies 

reported the presence of SK peptides or SK precursor genes in Crustaceans (Dickinson et al., 

2007; Johnsen et al., 2000; Torfs et al., 2002). 
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3.3. Transcript profiles  

The temporal and spatial expression of genes sk, skr1 and skr2 were determined by qPCR in 

the three developmental stages as larva, pupa and adult, and different tissues as head, gut and 

decapitated body. The rpl32 and α-tubulin were used as reference genes. No foreign DNA or 

genomic DNA was found in the “no template control” and “minus reverse transcriptase 

control” reactions.  

As shown in Figure II-7, the sk and two skrs were expressed throughout all tested 

developmental stages (larva, pupa and adult) and the examined tissues. sk and skr2 were 

highly expressed in the head of both larva and adult, and this phenomenon was most 

prominent for the larval stage. skr1 was expressed in head to a similar (adult) or less (larva) 

extent compared to the rest part of body.  

 a     

 

   

b
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Figure II-7  Expression profiles of sk (a), skr1 (b) and skr2 (c). qPCR was performed 

with the total RNA extracted from whole bodies of larvae, pupae and adults, and also of 

separated tissues as head, decapitated bodies and gut. Data are based on three biological 

replicates and expressed as mean ± SEM relative to the reference genes rpL32 and α-

tubulin. 

With respect to the nutritional status, the expression of sk and skr1 were detected to be higher 

in both larvae and adults that were starved for six days, while the expression of skr2 remained 

similar as in the normal larvae (Figure II-8). The beetles were likely to respond to the poor 

nutritional status by enhancing the SK signaling to induce satiety and reduce food intake. 

a      

  

*

*

0

0.5

1

1.5

2

2.5

3

sk skr1 skr2

re
la

ti
ve

 t
ra

n
sc

ri
p

t 
le

ve
l

control

starved



Chapter II 

56 

 

b  

 

        

Figure II-8  Expression of sk, skr1 and skr2 in larva (a) and adult (b) after six days of 

starvation. qPCR was performed with the total RNA extracted from whole bodies of 

three larvae and adults. Data represent the mean expression ± SEM (n=3) relative to the 

reference genes rpL32 and α-tubulin. *, statistically significant difference between 

“control” and “starved” samples with the student’s t-test conducted in GraphPad Prism 

version 5.00. 

 

3.4. Effects of dsRNA-mediated RNAi on gene expression and food intake 

3.4.1. Effect of dsRNA-mediated RNAi on gene expression 

Dssk strongly suppressed the expression level of sk by 80-90% in the first five days after 

injection, compared to dsgfp (Figure II-9a). The expression of skr1 was reduced by about 50% 

in the first three days but only 31% on day five after dsskr-injection (Figure II-9c). Dsskr2 

significantly suppressed the expression level of skr2 by 30-70 % in the first four days, with 

the silencing effect dropped to only 16% on day five (Figure II-9e). 
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Figure II-9  Effects of dsRNA-mediated RNAi on the transcript level of the target genes (sk: a, skr1: c and skr2: e) and larval food intake 

(sk: b, skr1: d and skr2: f). Transcript level was determined by qPCR with total RNA from three injected larvae at indicated time points 

after injection. dsgfp was injected as a negative control. Data are normalized to the reference genes rpl32 and α-tubulin and then shown 

as a percentage of the expression of the control, mean ± SEM (n=3). Data of food intake are expressed as mean ± SEM (n=6). The P-

values of the significance between control and treatment at the indicated time points, as calculated by the student’s t-test, are shown in 

the figure. The t-test was conducted in GraphPad Prism version 5.00. 
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3.4.2. Effect of dsRNA-mediated RNAi on larval food intake 

The phenotypic effect of the silencing of genes sk and skrs was followed by measuring the 

consumption of the flour disk during a period of eight days after injection. The sk-silenced 

larvae consumed significantly more food than the dsgfp-injected control larvae (Figure II-9b). 

Silencing of skr1 also led to an increased larval food intake from day five to day eight; 

however the effect was not as strong as in the sk-silenced larvae (Figure II-9d). In contrast, 

silencing of skr2 resulted in a significant increase in larval food intake from day five to day 

eight (Figure II-9f).  

3.5. Effect of sulfated Trica-SK-II[1-9] peptide on larval food intake 

The effect of sSK-II on food intake was examined by injecting a synthetic sulfated Trica-SK-

II[1-9] (sSK-II; FDDY(SO3H)GHMRF-NH2) in larvae and then measuring the consumption of 

flour disk. Figure II-10 displays that the injection of sSK-II strongly reduced larval food 

intake by about 50% after four days with a strong effect observed on after one day. The 

injection of an equal amount of saline had no impact on feeding as compared to the no-

injection control larvae, ruling out the effect that the injection manipulation could have played.  

        

Figure II-10  Food intake by larvae injected with the sSK-II peptide and saline. Data are 

presented as mean ± SEM (n=6). The P-values of the significance between saline-injected 

and sSK-II-injected larvae at the different time points, as calculated by the student’s t-

test in GraphPad Prism version 5.00, are shown in the figure. The P-values between the 
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saline-injected and non-injection larvae were 0.58, 0.63, 0.63 and 0.64 on day 1, 2, 3 and 

4 after injection, respectively, demonstrating that injection itself had no impact on larval 

food intake.  

 

4. Discussion 

The sequences of sk and two skrs were determined in the coleopteran insect T. castaneum. 

The deduced proteins TcSK and TcSKR2 are the same as the ones from existing genomic 

gene annotation, whereas TcSKR1 is different due to an insertion, which probably results 

from a dysfunctional annotation. Two Tcskrs with similar deduced proteins were also cloned 

by Zels et al. (2014). 

When the TcSK prepropeptide was compared to other known insect SK prepropeptides 

(Figure II-2b), the regions corresponding to the two Trica-SK peptides are highly conserved, 

together with the amidation signal and the C-terminal dibasic cleavage sites, while the 

remainder is quite divergent. This is consistent to the data obtained in previous studies in 

Calliphora vomitoria and Gryllus bimaculatus (Duve et al., 1995; Meyering-Vos and Müller, 

2007b). 

The strong similarity in structure and biological activities between insect SKs and vertebrate 

CCK/gastrin has led to the hypothesis that the neuropeptide signaling systems and 

mechanisms underlying the regulation of ingestive behavior between arthropods and 

vertebrates have been conserved throughout evolution (Janssen et al., 2008, 2010; Nachman et 

al., 1986b, 1986c). SK(-like) peptides in animals are highly homologous in both amino acid 

sequence and function as discussed in Chapter I. Because CCK and gastrin genes are 

identified as separate genes in the dogfish, a duplication of the ancestral gene most likely 

occurred during the evolution of cartilaginous fishes or earlier, giving rise to two distinct 

hormones, CCK and gastrin (Johnsen, 1998). A recent synteny analysis provides strong 

evidence that the CCK/gastrin family in vertebrates has been mainly shaped by whole genome 

duplications (Dupré and Tostivint, 2014). 

Insects are reported to have higher evolutionary rate compared to vertebrates (Wyder et al., 

2007). In the analysis of a genome-wide acceleration of protein evolution, Savard et al. (2006) 

concluded that the Tribolium genes show the lowest rates of divergence compared to Diptera. 
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In both phylogenetic trees (Figure II-6), the two Drosophila SKRs clustered together in SKR-

G2, while the two T. castaneum SKRs were separated in two groups. This indicates that 

species-specific events may influence the receptor evolution.  

Mirabeau and Joly (2013) conducted a comprehensive analysis of the peptidergic signaling 

systems in bilaterians by interrogating genomic sequence databases and using phylogenetic 

reconstruction tools, which paves the way for comparative studies. In their study, the analysis 

of the intronic structure of genes suggests that receptors share orthologous introns and are 

likely to have evolved from a common ancestral bilaterian receptor gene. Generally, there is 

co-evolution of peptides with their receptors and SK(-like) peptides that have been recognized 

in lineages to human, nematodes and arthropods (Mirabeau and Joly, 2013; Taghert and 

Nitabach, 2012). The phylogenetic analysis here (Figure II-6) demonstrates the early origin of 

the CCKRs in metazoans. The identification of representatives in protostomes and 

deuterostomes suggests that a putative SK(-like) receptor gene was already present in the 

ancestral Bilateria genome. 

Christie et al. (Christie, 2008a, b; Christie et al., 2008, 2011a, 2011b) carried out a series of 

identification of neuropeptides using bioinformatics of genome and publicly accessible 

expressed sequence tags (ESTs) among D. pulex and species from Chelicerata, Ecdysozoa, 

Aphidoidea and Ixodoidea. SK genes are only found in I. scapularis and D. pulex, in 

consistent with our searching result. The spider mite Tetranychus urticae is a representative of 

Chelicerata that misses the SK signaling. Of interest is the fact that SK signaling could not be 

found in the hemimetabolous pea aphid Acyrthosiphon pisum (The International Aphid 

Genomics Consortium, 2010), the parasitic wasp Nasonia vitripennis (Hauser et al., 2010; 

NasoniaBase) and the plant parasitic nematode Meloidogyne incognita (Meloidogyne 

incognita resources). These results showed that SK signaling was missing in some species 

during evolution. Pea aphids take up a big volume of food to get enough essential nutrients. Li 

et al. (2013) proposed that the loss of the SK signaling is likely due to increases in food intake. 

Hauser et al. (2010) compared the neuropeptides in two hymenopteran A. mellifera and N. 

vitripennis, with SK being present in A. mellifera but missing in N. vitripennis. The authors 

suggest that differences in neuropeptides might reflect differences in behavior (social vs. 

parasitic), feeding (herbivores vs. carnivores) and/or habitats of these two related insect 

species, which is also discussed by Nygaard et al. (2011).  
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Moreover, in arthropods, rhodopsin GPCR evolution is characterized by species-specific gene 

duplications and deletions and in nematodes by gene expansions in species with a free-living 

stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in 

GPCR gene number and potentially divergent functions within phyla, it is hypothesized that 

the life style and feeding diversity practiced by nematodes and arthropods is one factor that 

contributes to rhodopsin GPCR gene evolution (Cardoso et al., 2012). Accordingly, we 

hypothesize that the SK signaling is likely to evolve in relation to the feeding behavior. An 

example is that the larvae of the endoparasitic wasp N. vitripennis are living inside their host 

allowing feeding continuously. At the moment, a large number of species are being sequenced, 

for instance, the i5k genome project (ArthropodBase) which will benefit the study of SK 

signaling in various species with different feeding behavior and nutrition requirements.  

SK(-like) receptors share a common ancestor among metazoans. The two ckrs that are present 

in nematodes resulted from a lineage-specific duplication and homologs of the two C. elegans 

genes were identified in many nematode genomes (Cardoso et al., 2012). In arthropods, two 

separate SKR genes are found in D. melanogaster and T. castaneum. However, the two D. 

melanogaster skrs seem to be a result of a species-specific evolutionary event, which is 

distinct from the scenario from T. castaneum (Figure II-6). Moreover, in the vertebrate 

lineage, the two receptor genes share a high similarity, leading to the assumption that both 

CCK1R and CCK2R evolved from the same duplicated ancestral genes (Huppi et al., 1995). 

A sophisticated tree (gene tree: ENSGT00730000110635) is available in the Ensembl website 

(http://www.ensembl.org/Multi/GeneTree/Image?gt=ENSGT00730000110635), in which, 

remarkably, the cck2r is duplicated in many teleost fishes, whereas cck1r is present in one 

copy in these teleost fishes. It suggests that the duplication took place in the basal teleost 

tetraploidization (3R). It is also speculated that the vertebrate cck1r and cck2r arised through 

the vertebrate basal tetraploidizations (1R and 2R) which has been studied for cck/gastrin 

(Dupré and Tostivint, 2014). Investigations on the neighboring genes and rearrangements of 

chromosomal regions in vertebrates will extend our knowledge on the evolution of SKR-like 

proteins.   

In terms of the transcript profile, sk and skrs are expressed in all the examined developmental 

stages and tissues, although the tissue sampling is fairly poor. Recently, a very detailed 

transcript analysis of the two Tcskrs (Zels et al., 2014) revealed that both receptors are 

expressed highest in the central brain, followed by the optic lobes, but appears less abundant 
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or detectable in the other examined tissues, such as salivary glands, gut, fat body, testes and 

ovaria. Specifically, the expression of Tcskrs appears to be most prominent in the fat body 

apart from the nervous system, which indicates the possible role of SK signaling in the energy 

storing and processing in the fat body. The transcript levels of Tcsk and Tcskr1 appears to be 

dependent on the nutritional state of the beetles. Deprivation of food resulted in higher 

expression of Tcsk and Tcskr1 (Figure II-8). It seems the beetle responds to the insufficient 

nutrition via actively modulating the mechanism in regulation of feeding.  

In respect to the structure, the two TcSKRs are both highly similar in the seven 

transmembrane domains to other insect SKRs. The TcSKR1 shows significant homology to 

the two Drosophila (55% identity to AAF48875; 52% identity to AAF48879), one 

Periplaneta (58% identity to AY865608) and one Anopheles (61% identity to AAR28375) 

SKR proteins. The TcSKR2 shares 53% similarity with TcSKR1. The differences mainly 

exist in the N-terminal and C-terminal regions.  

The regulation of feeding is a complex behavioral system (Geiselman, 1996). In insects, 

several neuropeptides are considered to be pivotal in regulating feeding (Audsley and Weaver, 

2009; Downer et al., 2007; Schoofs et al., 1997; Spit et al., 2012). Among these neuropeptides, 

SKs and their receptors are expected to form one part of the signaling network in the 

regulation of feeding and digestion, because its counterpart in vertebrate, gastrin/CCK 

signaling is a well-known satiety factor.  

In this chapter, a drastic increase in larval food intake was observed in sk-silenced T. 

castaneum larvae, which supports the fact that SK signaling inhibits feeding. Similarly, 

silencing of sk leads to a stimulation of food intake in cricket G. bimaculatus (Meyering-Vos 

and Müller, 2007a). Moreover, the injection of sSK-II peptide dramatically reduced larval 

food intake. The reduction in food intake was also observed in other (pest) insects such as the 

desert locust (Wei et al., 2000) after the injection of SK homologs. Taken together, the SK 

signaling acts in an inhibitory way to regulate feeding in insects. Given the importance of the 

regulation of feeding in insect development, SK signaling is a promising route to exploit in 

the development of novel pest control strategies.  

The sSK peptide reduced larval food intake after injected to the beetles (Figure II-10). A 

notable drop of food intake by the sSK-injected beetles was observed on day one and the 

effect lasted for the rest three days. The effect of sSK peptide accumulated to a significant 
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reduction of food intake from day three on. Wei et al. (2000) reported an almost immediate 

effect of injected sSK on reducing feeding in the desert locust. The feeding assay here and 

Wei et al. may hint towards factors such as the species-specificity and the viability of sSK in 

the haemolymph after administration. Moreover, the present experiment was only followed 

for four days, when the inhibitory effect of sSK was still present. Therefore, the information 

of the stability of sSK in haemolymph and duration of the inhibitory effect remains unknown. 

The efficiency and duration of dsRNA-mediated gene silencing effects are influenced by 

many factors such as the concentration, length and sequence specificity of dsRNAs as well as 

the tissue-dependency of the RNAi effect (Miller et al., 2012). DsRNA-mediated RNAi has 

been performed successfully for a variety of target genes at different developmental stages 

and tissues in T. castaneum, which makes this beetle species a useful model for functional 

genomics (Miller et al., 2012; Tomoyasu and Denell, 2004). In the present study, similar 

doses of dsRNAs (about 200 ng) were used in the RNAi experiments targeting three different 

genes. They all resulted in a significant down-regulation of the specific target mRNA. 

However, the extent to which the target was silenced differed. This was not unexpected, 

because the expression levels of these target genes differ in the larval stage (Figure II-7). In 

addition, the dsRNA fragments used in this experiment were carefully chosen in the least 

similar region (Figure II-S1), which are regions of less than five consecutive identical 

nucleotides between the two Tcskrs in the two dsRNA fragments, in order to avoid the off-

target RNAi effect (Jackson et al., 2003; Kulkarni et al., 2006). Higher efficiency and longer 

duration of gene silencing could be achieved by optimizing the dose of dsRNAs, the target 

region within the gene as well as the administration of multiple injections. 

The silencing of Tcskr2 increased food intake significantly while silencing of Tcskr1 was not 

so fast and strong. We postulate here the following two hypotheses. First, there might be 

enough TcSKR1 left in the larva after Tcskr1 was down-regulated by 50%. Second, TcSKR2 

also responded to TcSKs for its activity when TcSKR1 was missing. In the Tcskr2-silencing 

experiment, a dramatic increase of food intake was observed from day five onwards after 

Tcskr2 gene was silenced up to 70% on day three. The stronger phenotypic effect of silencing 

of Tcskr2 over Tcskr1 suggests that TcSKR2 responds more actively than TcSKR1 in the SK 

signaling in the regulation of feeding. However, in the case of poor food supply, the 

expression of Tcskr1 was upregulated while Tcskr2 was not influenced in the tested period. 

Therefore, these two hypotheses require further investigation. 
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SKs and SKRs constitute a multifunctional signaling system in insects. In addition to 

inhibiting food intake, SKs have been reported to influence gut muscle contraction (Maestro 

et al., 2001; Nachman et al., 1986b, 1986c; Predel et al., 2001) and to stimulate the release of 

digestive enzymes (Harshini et al., 2002; Nachman et al., 1997). In our study with T. 

castaneum, the Tcsk and Tcskrs were found to be expressed throughout the three 

developmental stages, including the pupa stage where insects do not feed. We therefore 

believe that the considerable expression of Tcsk and Tcskrs in pupa supports that the SK 

signaling is also involved in multiple activities in addition to food intake.  

In summary, SK signaling is involved in inhibiting feeding in T. castaneum. Therefore, study 

on the mechanism of SK signaling is promising to understand the regulation of feeding in 

insects and to find a novel approach of pest control. 
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Table II-2  SKR homologs used in alignment and phylogenetic analysis 

Species Protein Accession Number 

Ailuropoda melanoleuca CCK1R XP_002924347.1 

 CCK2R XP_002925026.1 

Anopheles gambiae SKR AAR28375.1 

Apis mellifera SKR XP_006562432.1 

Bombyx mori SKR NP_001127744.1 

Bos taurus CCK1R NP_001095335.1 

 CCK2R NP_776687.2 

Caenorhabditis brenneri CKR1 CBN10364 

Caenorhabditis briggsae CKR1 XP_002640196.1 

 CKR2 XP_002642853.1 

Caenorhabditis elegans CKR1 NP_491918.3 

 CKR2 ACA81683.1 

Caenorhabditis remanei CKR1 XP_003114892.1 

 CKR2 XP_003103966.1 

Callithrix jacchus CCK1R XP_002745977.1 

Canis lupus familiaris CCK1R AAX12114.1 

 CCK2R NP_001013868.1 

 BDKR NP_001014306.1 

Carassius auratus VIPR AAB05459.1 

Cavia porcellus CCK1R Q63931.1 

Ciona intestinalis CioR1 NP_001027945.1 

 CioR2 BAL70271.1 

Culex quinquefasciatus SKR2 EDS26978.1 

Danio rerio CCK1R XP_697493.2 

 CCK2R CAQ14219.1 

Daphnia pulex SKR EFX77608.1 

Drosophila erecta SKR XP_001977700.1 

Drosophila melanogaster SKR1 NP_001097021.1 

 SKR2 NP_001097023.1 
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(Table II-2 continued) 

Species Protein Accession Number 

Drosophila persimilis SKR XP_002026777.1 

Drosophila pseudoobscura SKR1 XP_002134520.1 

 SKR2 XP_002134525.1 

Equus caballus CCK1R XP_001499250.2 

 CCK2R XP_001504633.2 

Gallus gallus CCK1R NP_001074970.1 

 CCK2R NP_001001742.1 

Harpegnathos saltator SKR EFN85362.1 

Homo sapiens CCK1R NP_000721.1 

 CCK2R NP_795344.1 

Homo sapiens SCTR AAA64949.1 

Macaca mulatta CCK1R XP_001084186.1 

 CCK2R XP_001102094.1 

Mastomys natalensis CCK2R AAB41677.1 

Monodelphis domestica CCK2R XP_001380242.1 

Mus musculus CCK1R NP_033957.1 

 CCK2R NP_031653.1 

Oryctolagus cuniculus CCK1R NP_001075852.1 

 CCK2R NP_001164594.1 

Pan troglodytes CCK1R XP_526545.1 

 CCK2R XP_521813.1 

Pediculus humanus corporis SKR1 EEB20399.1 

 SKR2 EEB18252.1 

Periplaneta americana SKR AAX56942.1 

Pongo abelii CCK1R XP_002814697.1 

 CCK2R NP_001127690.1 

Rattus norvegicus CCK1R NP_036820.1 

 CCK2R NP_037297.1 
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(Table I-2 continued) 

Species Protein Accession Number 

Strongylocentrotus purpuratus CCKR XP_782630.3 

Taeniopygia guttata CCK1R XP_002191034.1 

Tribolium castaneum SKR1 XP_975226.2 

 SKR2 XP_972750.1 

Xenopus laevis CCKR AAB09052.1 
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Figure II-S1 Position of two dsskr fragments in the two Tcskrs. Alignment of two Tcskrs 

was conducted with the default setting using online server Clustal Omega. The asterisk 

represents indentical nucleotides between two genes. Nucleotides corresponding to the 

two dsskr fragments are underlined. 
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Chapter III. Effect of sulfakinin(-related) peptides on 

feeding in Tribolium castaneum
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Yu, N., Benzi, V., Zotti, M. J., Staljanssens, D., Kaczmarek, K., Zabrocki, J., Nachman, R. J., 

Smagghe, G. (2013) Analogs of sulfakinin-related peptides demonstrate reduction in food 

intake in the red flour beetle, Tribolium castaneum, while putative antagonists increase 

consumption. Peptides, 41: 107-112. 
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1. Introduction 

Insect SKs share a conserved C-terminus (DYGHM/LRF-NH2) among various species (Table 

I-1). The structure-activity relationship (SAR) of SKs has been investigated in a series of 

studies with an emphasis on the myotropic activity (Table III-1). In Leuma-SK-I, substitutions 

such as G5 → A5 or M3 → A3 retained partial activity, while A substitution in position H4, R2 

or F1 lead to inactive compounds (Nachman et al., 1989). However, partial retention of 

activity was observed when the R2 residue was replaced with a basic K2. Leuma-SK-I lost 

activity completely when the C-terminal amide was replaced with an acid moiety. 

Replacement of Y6(SO3H) by S6(SO3H) resulted in the loss of activity. In contrast, aliphatic 

amino diacid α-aminosuberic acid (Asu) functioned as an effective mimic of Y6(SO3H) in 

Leumi-SK for both myotropic and food intake-inhibition activity, whereas neither α-

aminoadipic acid (Adi) nor E substitution was active (Nachman et al., 2005). It was proposed 

that the degree of the activity of SK analogs is correlated with the carboxyl/α-carbon distance 

in the cockroach hindgut contractile assay. The oxidant-susceptible M3 could be replaced by 

Norleucine (Nle3) without losing activity. However, replacement of M3 → L3 and G5 → V5 

led to compounds with decreased myostimulatory activity (Nachman et al., 1993). The 

Leuma-SK-I demonstrated the tolerance to modification in N-terminus, e.g., introduction of 

pE8 to E8 had negligible impact on activity (Nachman et al., 1993).  

The sulfate moiety on Y6 (Y6(SO3H)) of SKs has been demonstrated to be necessary to not 

only the contraction of hindgut and heart but also the inhibition of food intake (Maestro et al., 

2001; Nachman et al., 1986b, 1986c, 1989; Predel et al., 1999; Wei et al., 2000). Nevertheless, 

nonsulfated SKs (nsSKs) are demonstrated functional in certain biological processes. Nichols 

(2007) reported that nonsulfated Drosophila SKs (nsDSK-I and nsDSK-II) decreased the 

frequency of the spontaneous contraction of the larval anterior midgut, to which the sulfated 

Drosphila SKs (sDSKs) were not statistically effective; nsDSKs were more effective than 

sDSKs to decrease the frequency of spontaneous contractions of the adult crop. NsDSKs 

proved to increase the frequency of heart contraction in larva and/or adult, but not in pupa 

(Nichols et al., 2008b). Later, the same group demonstrated that both forms of DSK-I 

influence larval locomotion and both forms of DSK-II influence larval odor preference in D. 

melanogaster (Nichols et al., 2008a). Recently, nsSK-I from Zophobas atratus (Zopat-SK-I) 

showed a myostimulatory action on the isolated hindgut of the adult beetles, but a 
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myoinhibitory action on the adult and pupal heart contraction. Besides, Zopat-SK-I increased 

free sugar levels in the larval haemolymph (Marciniak et al., 2011). 

Table III-1 Structure-activity relationship study of Leuma-SK-I on its 
myostimulatory activity 

Change a b Effect on myostimulatory activity c Reference 

E8 → pE8 no impact Nachman et al., 1993 

D7 3-fold increase Nachman et al., 1989 

Y6 → S6 trace activity Nachman et al., 1989 

Y6 → Asu6 effective as parent peptide (also on feeding) Nachman et al., 2005 

Y6 → Adi6 40% activity of parent peptide Nachman et al., 2005 

Y6 →E6 loss of activity Nachman et al., 2005 

G5 → A5 retention of activity Nachman et al., 1989 

G5 → V5 loss of activity Nachman et al., 1993 

G5 loss of activity Nachman et al., 1993 

H4 → A4 loss of activity Nachman et al., 1989 

M3 → A3 retention of activity Nachman et al., 1989 

M3 → Nle3 effective as parent Leuma-SK-I Nachman et al., 1993 

M3 → L3 2-order of magnitude decreased activity Nachman et al., 1993 

R2 → A2 loss of activity Nachman et al., 1989 

R2 → K2 partial retention of activity Nachman et al., 1989 

F1
 → A1 loss of activity Nachman et al., 1989 

−NH2 → −COOH loss of activity Nachman et al., 1989 
a Leuma-SK-I: EQFEDYGHMRF-NH2 
b Y, sulfated Y residue; →, substituted to; X, removed residue. 
c activity relative to parent peptide Leuma-SK-I 

 

So far, most functional studies on SKs have been conducted for their contractile activity, 

although SKs are also reported to inhibit feeding in many insects (Downer et al., 2007; 

Maestro et al., 2001; Meyering-Vos and Müller, 2007a; Wei et al., 2000). Thus, we are 

especially interested in the SAR of SK peptides on feeding in T. castaneum.   

In this chapter, the SAR of SK on feeding in T. castaneum was examined by assays with a 

series of SK(-related) peptides. These peptides were evaluated for their activity on feeding of 

T. castaneum. Truncation and substitution (by A, Asu, S and Nle) were introduced in these 

peptides to investigate the importance of the sulfate moiety and the conserved hexapeptide 

YGHMRF-NH2. The peptides were injected in T. castaneum adults, where the food intake 
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was scored for a period of three days. In addition, the effect of nematode NLP-12 and NLP-13 

peptides wasalso studied.  

2. Materials and Method 

2.1. Insects 

T. castaneum wild-type strain GA-1 was reared in whole wheat flour with 5% yeast under 

standard conditions in the lab. Adults were used in the subsequent experiments. 

2.2. Peptide synthesis  

Peptide sequences were chosen from known insect and nematode SK-related neuropeptides. 

These peptides (Table III-2) were synthesized via FMOC methodology under previously 

described conditions (Nachman et al., 1986c). The identity of the peptides was confirmed via 

matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry 

(MS) and quantified via amino acid analysis. The synthesis and verification were carried out 

in the lab of Dr. Nachman in USDA.  

2.3. Solution preparation and injection 

Peptides were prepared in a stock solution of 80% acetonitrile (in water). Dilutions with 

buffered saline (10 mM Hepes, pH 7.4, 1% BSA, 0.85% NaCl) were freshly prepared before 

each experiment. The saline solution was used as a negative control. 

Adult beetles weighing 2.0 ± 0.2 mg were kept separately to standardize their hunger state by 

depriving them of food for 12 h before the assay. Beetles were anaesthetized with ether, 

placed with their abdomens down on double-sided tape and injected with peptide solution or 

saline into their dorsal abdomens under the elytra (Posnien et al., 2009) to a final 

concentration of 16 μM beetle, approximate to the effective concentration of SK in the desert 

locust (Wei et al., 2000). Ten randomly picked adults were injected for each peptide or saline. 

Each beetle was kept individually with a flour disk (Figure II-1). Prior to the assay, the flour 

disks were saturated in a culture incubator with R. H. 70% for 72 h and weighed before fed to 

beetles. All injected beetles were kept under the standard conditions (temperature 30 °C, R. H. 

70%) for food intake observation. The peptide assay was repeated three times. 
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2.4. Measurement of food intake and data analysis 

The flour disks were weighed before and 72 h after fed to the T. castaneum adults. The 

decrease of a disk weight represented the food intake by a beetle over the three-day period. 

The relative activity of a peptide on inhibiting food intake was calculated following the 

formula: activity of peptide (% nsSK-II) = (food intakecontrol – food intakepeptide) / (food 

intakecontrol – food intakensSK-II) ×100. The food intake by beetles of different treatment was 

compared to saline control and nsSK-II, separately, via Student’s t-test in GraphPad Prism 

version 5.00. 

3. Results 

Six groups of peptides were tested in T. castaneum adults. Table III-2 displays their activities 

to inhibit feeding in T. castaneum relative to nsSK-II, with a final concentration of 16 μM.  

Table III-2 Relative acitivity of SK(-related) peptides (16 μM) to inhibit food 

intake in T. castaneum adults. 

Group Peptide Sequence a b 

Relative 
activity  
(% nsSK-II) c 

Statistical significance e 

to negative 
control d to nsSK-II d 

SK 1010 (nsSK-II) FDDYGHMRF-NH2 100 ± 5 s ns 

1521 (sSK-II) FDDYGHMRF-NH2 93 ± 6 s ns 

SK-Ala  
substitution 

2003 FDDYGHMRA-NH2 94 ± 24 s ns 

2004 FDDYGHMAF-NH2 76 ± 21 s ns 

 2005 FDDYGHARF-NH2 93 ± 25 s ns 

 2006 FDDYGAMRF-NH2 56 ± 19 s ns 

 2007 FDDYAHMRF-NH2 12 ± 19 ns s 

 2008 FDDAGHMRF-NH2 59 ± 10 s ns 

SK-  
truncation 

2009 DDYGHMRF-NH2 74 ± 30 s ns 

2010 DYGHMRF-NH2 47 ± 33 ns ns 

 2011 YGHMRF-NH2 95 ± 32 s ns 
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(Table III-2 continued) 
 

Group Peptide Sequence a b 

Relative 
activity  
(% nsSK-II) c 

Statistical significance e 

to negative 
control d to nsSK-II d 

SK-  
truncation 

2053 GHMRF-NH2 124 ± 28 s ns 

2052 HMRF-NH2 108 ± 15 s ns 
 

2051 MRF-NH2 84 ± 16 s ns 
 

2076 FDDYGHMR-NH2 144 ± 19 s ns 

SK-related 
1835 SDDYGHMRF-NH2 85 ± 10 s ns 

1070 FDD(Asu)GHMRF-NH2 96 ± 12 s ns 

 1107 DD(Asu)GHMRF-NH2 113 ± 5 s ns 

 1658 DDYGH(Nle)RF-NH2 50 ± 12 ns ns 

 1591-1 EAYGH(Nle)KF-NH2 50 ± 13 ns ns 

 
1598-2 EYGH(Nle)RF-NH2 -15 ± 9 ns s 

 1586 cyclo(EAYGH(Nle)K)F-NH2 74 ± 16 s ns 

 1592 cyclo(EYGH(Nle)K)F-NH2 52 ± 17 s ns 

C. elegans 
NLP-13 

1679 
(NLP-13a) pQPSYDRDIMSF-NH2 93 ± 7 s ns 
1432-2 
(NLP-13b) SPVDYDRPIMAF-NH2 102 ± 10 s ns 

 
1569 PVDYDRPIMAF-NH2 87 ± 9 s ns 

1567 SPVDYDRPIMF-NH2 83 ± 9 s ns 

 2018 cyclo(YDRPIMAF) -34 ± 12 ns s 

 2020 cyclo(RPIMAF) 38 ± 39 ns s 
C. elegans  
NLP-12 

1678a  
(NLP-12a) DYRPLQF-NH2 -61 ± 30 ns s 
1678b  
(NLP-12b) DGYRPLQF-NH2 -65 ± 11 s s 

Combinati
on 

nsSK-II + 
NLP-12b 

FDDYGHMRF-NH2 + 
DGYRPLQF-NH2 -48 ± 20 ns s 

a Y, Y(SO3H). 
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b Bold letters highlight the positions with modification of the parent peptide.  Asu: α-

aminosuberic acid; Nle: Norleucine; cyclo: cyclic structure. 
c Activity of a peptide is presented as percentage of the activity of nsSK-II (% nsSK-II) 

at a final concentration of 16 μM. Data are presented as mean ± SEM from three 

biological replicates. 
d Saline was used as a negative control. The final concentration of a peptide was 16 μM. 

The food intake of T. castaneum (mean ± SD, n=30) for three days after treatment was: 

saline-treated adult, 0.70 ± 0.13 mg; sSK-II-treated adult, 0.27 ± 0.06 mg; nsSK-II-

treated adult, 0.14 ± 0.05 mg. The food intake of adults treated with sSK-II and nsSK-II 

showed no significant difference. 
e s, statistically significant difference of food intake; ns, no statistically significant 

difference of food intake. 

 

3.1. Effect of SK-II (FDDYGHMRF-NH2) on feeding 

Both sSK-II and nsSK-II inhibited food intake dramatically by 60% and 80%, with food 

intake 0.27 ± 0.06 mg and 0.14 ± 0.05 mg, respectively, compared to 0.70 ± 0.13 mg of the 

saline-injected control beetle. Thus, nsSK-II and sSK-II exhibited similar activity on 

inhibiting feeding, regardless of the sulfate moiety. 

3.2. Effect of nsSK-II analogs (Ala-substitution and truncation of FDDYGHMRF-NH2) 

on feeding 

3.2.1. G5 of nsSK-II was critical for inhibiting feeding 

Peptides 2003-2008 are a series of nsSK-II analogs with Ala-substitution (A-nsSK) from the 

position 1 to 6. Most of these A-nsSKs inhibited feeding to diverse extents. However, the 

peptide 2007 (G5 → A5) was inactive with only 12% of the nsSK-II activity, indicating that 

the G5 is essential for nsSK-II. Moreover, the peptides 2006 (H4 → A4) and 2008 (Y6 → A6) 

also exerted less inhibitory effect compared to the other A-nsSKs, suggesting that H4 and Y6 

were relatively important to nsSK-II. 

3.2.2. Removal of N-terminus did not affect the activity of nsSK-II on inhibiting feeding 

Truncated nsSK-II analogs 2009, 2010, 2011, 2051, 2052, 2053 and 2076 are peptides with 

amino acids removed from the N-terminus of nsSK-II. Six of these peptides (2009, 2011, 
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2051, 2052, 2053 and 2076) were tolerated to the residual deletion, retaining similar activity 

as their parent peptide nsSK-II. Peptide 2010 retained only 47% activity with F9 and D8 

removed, for which the reason is not clear yet.  

3.3. Effect of SK-II analogs (substitution, deletion or cyclic structure) on feeding 

Peptide 1835 (F9 → S9) exerted a similar effect as nsSK-II, suggesting that the aromatic 

structure of F9 is not an important characteristic for the activity at this N-terminal position. 

Peptides 1070 and 1107 are with the substitution Y6 → Asu6 of nsSK-II. Both peptides were 

strongly active on inhibiting food intake (with relative activity as 96% and 113%, 

respectively). Therefore, the substitution of Y6 with Asu6 did not affect the activity of nsSK-II, 

further emphasizing that aromaticity is not a critical feature at this position.  

Peptides 1658, 1591-1, 1598-2 are peptides with the replacement M3 → Nle3. Peptide 1658 

and 1591-1 showed no statistical significance from saline although they retained 50% activity 

of nsSK-II. 1598-2 was completely inactive, which suggested that either the residue A7 or the 

length of peptide is critical for the activity of SK. Peptides 1586 and 1592 are cyclic peptides 

on the basis of peptide 1658 and 1598-2, respectively. The cyclic structure in 1586 and 1592 

did not affect or even elevated their activity as they both exhibited higher activity than its 

parent peptides 1658 and 1598-2. The two cyclic structures may therefore prove useful in the 

determination of the active conformation of the SKs in food intake inhibition in T. castaneum 

beetles. In addition, peptides 1591-1, 1586 and 1592 contain the substitution R2 → K2 of SK 

and they retained most activity.  

3.4. Effect of NLP-13 (YDRPIMAF-NH2) analogs on feeding 

The C.elegans NLP-13 (neuropeptide-like protein-13; YDRPIMAF-NH2) peptides, which 

exhibit some sequence similarity with insect SKs, elicited similar inhibitory effects on food 

intake as SK. Peptide 1679 is sulfated and blocked in N-terminus, with the same sequence as 

NLP-13a. Peptide 1432-2 has the amino acid sequence of the NLP-13b. Therefore, both NLP-

13 peptides displayed similar activity to nsSK-II. The other two peptides 1569 and 1567 were 

also active on inhibiting feeding.  

Peptide 2018 and 2020 are both cyclic peptides of the conserved motif of NLP-13 and showed 

different activities from NLP-13. They were both inactive to inhibit food intake although they 
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displayed quite different activities from each other. Peptide 2020 had 38% activity in 

inhibiting feeding relative to nsSK-II, whereas 2018 had the opposite activity to nsSK-II by 

increasing feeding. 

3.5. Effect of NLP-12 (YRPLQF-NH2) on feeding 

NLP-12 peptides are recognized as SK homologs in C. elegans (Janssen et al., 2008). Here, 

both NLP-12a and NLP-12b increased food intake in T. castaneum and especially NLP-12b 

exerted a dramatic increase in food intake, indicating a negative activity to Trica-SK-II on 

inhibiting feeding.  

3.6. Effect of the combination of nsSK-II and NLP-12b on food intake 

The nsSK-II and NLP-12b were mixed at a molar ratio of 1:1 and then injected in beetles at a 

final concentration of 16 μM for each peptide. The peptide-treated beetles ate similar amount 

of food as the saline-treated control, suggesting NLP-12b may be an antagonist of nsSK-II.  

4. Discussion 

In the present experiment, both sSK-II and nsSK-II led to significantly low levels of food 

intake in T. castaneum adults, suggesting that the acidic sulfate group (SO3H) on Y6 may be 

not necessary for this activity. The sulfate moiety was shown to be critical to feeding in 

previous studies. In the desert locust Schistocerca gregaria, nsLeumi-SK had no effect on 

food intake (Wei et al., 2000). In Blattella germanica, the sLeuma-SK-II and sPeram-SK-I 

inhibited food intake at low concentrations, but the nonsulfated peptides were inactive even at 

higher concentrations (Maestro et al., 2001). In addition, the sDSK is much more potent than 

the nsDSK to activate DSK receptors in D. melanogaster (Chen et al., 2012; Kubiak et al., 

2002). Nevertheless, nsSKs have also been present and physiologically active. In the 

American cockroach Periplaneta americana, both sSK and nsSK are detected in the corpora 

cardiaca/corpora allata complexes, providing an evidence that the two forms of SK naturally 

co-exist in insects (Predel et al., 1999). In D. melanogaster and Z. atratus, nsSKs function on 

myoactivity, odor preference and locomotion (Marciniak et al., 2011; Nichols, 2007; Nichols 

et al., 2008a). Moreover, NLP-12 peptides, the SK homologs in C. elegans, were also 

suggested to be likely unsulfated in vivo (Janssen et al., 2008).  
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In vertebrates, both sulfated and nonsulfated CCKs are active and they play their biological 

roles via two receptors with CCK1R preferring sulfated CCK and CCK2R no preference 

(Staljanssens et al., 2011). Two SKRs have also been identified in Drosophila and Tribolium, 

which suggests that potentially distinct mechanisms underlay the SK signaling (Nichols et al., 

2008a).  

Peptides with Ala-substitution produced similar effect as the parent peptide except the peptide 

2007 with G5 → A5. G5 is known as one of the most conserved residues in not only insect SKs 

but also human gastrin II and CCK (Nachman et al., 1986b; Figure I-3). In addition, G5 is one 

of the sequence differences between SKs and leucomyosuppressin (LMS).  SKs and LMS 

have contrasting biological activity, despite the fact that they share sequence similarity at 

several positions (Nachman et al., 1993). Therefore, we conclude that G5 is conserved and 

important to the activity of SKs on inhibiting feeding. 

Analogs with deletion of one to eight residues from N-terminus (peptides 2009-2076 in Table 

III-2) retained most of the activity on inhibiting food intake. Thereby, the N-terminus shows 

more tolerance to residue change than the C-terminus. It is consistent to a previous report that 

truncated leucopyrokinin analogs retained the myotropic activity (Nachman et al., 1986a).  

Two analogs (1070 and 1107) of nsSK-II contained an unnatural residue α-aminosuberic acid 

(Asu) that mimics the Y(SO3H). Asu features an acidic carboxyl group that projects the same 

distance from the peptide backbone as does the acidic SO3H group on Y6 by virtue of 

attachment to a chain of methylene groups (Nachman et al., 2005). The strong inhibitory 

activity of these analogs observed in T. castaneum feeding assay indicates that the aromatic 

phenyl ring of Y is not a critical characteristic for this position. The M3 is in the active core 

for the feeding-inhibitory activity of SK in T. castaneum because the replacement M3 → Nle3 

resulted in no statistically significant difference (Table III-1). Similarly, [Nle3]Leuma-SK-I 

retains only 26% activity of the synthetic Leuma-SK-I when the oxidation-sensitive M3 is 

replaced with isosteric Nle3 (Nachman et al., 1989). The sequence of peptide 1835 is present 

in several insect SKs such as Leuma-SK-II, Trica-SK-I and Ixosc-SK-I (Table I-1). Peptide 

1835 has similar feeding-inhibitory activity as sSK-II (Table III-2), indicating that aromaticity 

is not a critical characteristic in position 9. Peptides 1569 and 1432-2 feature a replacement of 

R2 → A2 and 1679 features a R2 → S2. R is positively-charged and strongly basic, but A and 

S have no charged character. The strong inhibitory activity observed for all these three 
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peptides indicates that basicity is not a critical characteristic in the position 2, in contrast with 

the activity of the SKs in the cockroach hindgut myotropic assay (Nachman et al., 1989). 

The C. elegans NLP-12 was reported to stimulate nematode CKR2 in vitro (Janssen et al., 

2008) and to elicitate the contraction of nematode body wall muscle preparations (McVeigh et 

al., 2006). In the feeding assay, NLP-12 peptides demonstrated an opposite effect on food 

intake to SK-II in T. castaneum, although they share sequence similarity to some extent. This 

observation suggests NLP-12 as a putative antagonist to nsSK-II. The presence of -QF-NH2 

rather than -RF-NH2, -AF-NH2 or -SF-NH2 in the C-terminus of the nematode sNLP-12 

peptides might account for the putative antagonist response in the T. castaneum feeding assay. 

However, the mechanism by which NLP-12 exerts the opposite effect to canonical SKs is not 

clear yet. 

The C. elegans NLP-13 peptide gene is reported to be expressed in pharyngeal neurons that 

modulate pharyngeal pumping of food (Nathoo et al., 2001), although exact effect of NLP-13 

peptides on feeding has not been investigated. NLP-13 peptides exerted the similar effect on 

feeding as the T. castaneum sSK in beetles regardless of the low homology of their amino 

acid sequences. It is not likely that NLP-13 peptides act on the T. castaneum SKRs, but other 

neuropeptide receptor associated in the regulation of feeding.  

SKs inhibit feeding in insects, which provides a possibility to apply SK peptide analogs as a 

pesticide in pest control. NsSK-II exhibits similar activity as sSK-II in the present study, 

although the exact role and mechanism of the two forms of SK in SK signaling is not clear yet. 

NsSK could be a practical candidate of potential pesticide, because nsSK is a short peptide 

and that it does not have the sulfate group, making the synthesis and modification of the 

peptide easier and more cost effective than sSK. In addition, the SK signaling is relatively 

conserved in insects and SKs possess a conserved C-terminus and a diverse N-terminus, 

which can be implemented to define the spectrum of the nsSK pesticide, for instance, to be 

generally targeted or to be species-specific. Nevertheless, more details on the mechanism of 

SK signaling need to be revealed before the application. 

In conclusion, the C-terminal hexapeptide (YGHMRF-NH2) is predominant in the feeding-

inhibitory activity of SK while the N-terminus is relatively tolerant to manipulation. Certain 

properties are important to specific positions such as the aromaticity and basicity. In addition, 
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nsSK is a potential pesticide given its simple structure and strong activity on inhibiting 

feeding. However, the diversity of tested peptides is not sufficient to come to a reliable 

conclusion on the SAR of SK on feeding, although it provides some clues which can direct 

further investigations.  
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sulfakinin receptor bioassay



Chapter IV 

86 

 

 

 

Part of this chapter is published in:  

Yu, N., Swevers, L., Nachman, R.J., Smagghe, G. (2014) Development of cell-based bioassay 

with Sf9 cells expressing TcSKR1 and TcSKR2 and differential activation by sSK and nsSK 

peptides. Peptides 53, 238-242. 
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1. Introduction 

The silencing of Tcskr2 dramatically altered food intake while the silencing of Tcskr1 did not 

exert as strong the effect on food intake as the silencing of Tcskr2 (Chapter II). However, 

food intake is a final outcome of a complex network of events triggered in an organism with 

many different layers of regulation. It is not known whether this complex event occurs as an 

intrinsic property of a single class of receptors or as the result of ligand binding to multiple 

populations of receptors present in the cells (Yule et al., 1993). It is of our interest to ascertain 

if the TcSKRs are capable of stimulating similar effects to that are seen in the whole insect 

and specifically to determine if a particular receptor is capable of differentially activating 

signal transduction systems on stimulation by different SK analogs. 

SKRs are G-protein coupled receptors (GPCRs). GPCRs activate diverse signaling pathways 

via different types of Gα-protein. The two homologs of SKRs in mammals, namely CCK1R 

and CCK2R, are both reported to activate the PLC pathway by coupling to Gαq-protein, and 

CCK1R is also coupled to Gαs-protein in some cases (Dufresne et al., 2006; Yule et al., 1993). 

In contrast to mammals, there are few studies on signaling pathways related to SKs and SKRs 

in invertebrates. Given the high similarity in both structure and function, we expect that SKRs 

transduct signaling in a manner similar to the CCKRs.  

SKs contain a consensus C-terminal hexapeptide YGHM/LRF-NH2 (Table I-1). They exist in 

sulfated and nonsulfated forms depending on the sulfated group (SO3H) on Y6. Regarding the 

activation of SKR, sulfated Drosophila SK-I (sDSK-I) is about 3000-fold more potent than its 

nonsulfated counterpart to activate exogenously expressed CCKLR-17D3 (Kubiak et al., 2002) 

and only the sulfated form of DSK-I and DSK-II are functional ligands of CCKLR-17D1 

(Chen et al., 2012). In Ciona intestinalis, sulfate moiety is present on the Y residues in the 

position 6 and 7 of cionin, [Y6(SO3H)]cionin and [Y7(SO3H)]cionin. To activate either CioR1 

or CioR2, the potency of di-sulfated cionin is higher than mono-sulfated cionin; of the two 

mono-sulfated cionin, [Y7(SO3H)]cionin is more potent than [Y6(SO3H)]cionin; nonsulfated 

cionin is inactive (Sekiguchi et al., 2012). In mammals, sulfated CCK-8 activates CCK1R 

with a potency of 1000-fold more than nonsulfated CCK-8, while both forms of CCK-8 

activate CCK2R with similar efficacy (Dufresne et al., 2006; Smeets et al., 1998). 

In T. castaneum, a series of synthetic SK(-related) peptides was tested in adults for their 

effects on feeding, providing information on the structure-activity relationship (SAR) of SK in 
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vivo (Chapter III). Noticeably, the sulfated moiety of SK seemed to be not critical to the 

feeding-regulatory activity of SK in T. castaneum, whereas it is required in species such as 

Schistocerca gregaria (Wei et al., 2000). Therefore, it is interesting to evaluate the SK(-

related) peptides for their activity with individual TcSKR, which will gain us more 

information on the SAR of SK.  

In this chapter, a cell-based TcSKR bioassay was established with the two T. castaneum 

SKRs (TcSKR1 and TcSKR2, Chapter II) stably expressed in insect Sf9 cells. With this 

bioassay, 1) both sSK-II and nsSK-II were evaluated by their ability to activate the two 

individual TcSKRs, specifically aiming at the role of the sulfate moiety; 2) the type of Gα-

protein involved in the SK signaling was determined. Here we focused on two potential 

signaling pathways, AC pathway and PLC pathway, in which Gαs- and Gαq-protein is 

involved, respectively. The transcription of reporter genes triggered by cAMP and/or calcium 

was monitored as indicators of the extent that the signaling pathway was activated; 3) a dose-

response curve for sSK-II was calculated in terms of activating TcSKRs; 4) the structure-

activity relationship of SK was investigated by evaluating the activity of SK-related peptides 

on TcSKRs. 

2. Materials and methods 

2.1. Peptide synthesis and preparation 

Peptides listed in Table IV-1 were synthesized via FMOC methodology under previously 

described conditions (Nachman et al., 1986c). The identity of the peptides was confirmed via 

matrix-assisted laser desorption ionization (MALDI) time-of flight (TOF) mass spectrometry 

(MS) and quantified via amino acid analysis.  

The peptides were prepared in stock solution of 80% acetonitrile (in water). Working 

solutions were freshly prepared with cell culture medium SF-900™ II SFM (Life 

Technologies) prior to each experiment. 

2.2. Construction of TcSKR expression vectors 

The open reading frames (ORFs) of the two skrs were cloned from T. castaneum cDNA with 

primers 5’-TTAGGATCCCACCATGGGTATGAAGAGTTTTTTTACTG-3’ (forward) and 

5’-TTAGGATCCATCGCTGCCGCTTCT -3’ (reverse) for Tcskr1 and                                  
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5’-TATGGATCCCACCATGGACTGGGCTGAAAAC-3’ (forward) and                              

5’-CCGGGATCCTCTACAAAAGTCGGCATT-3’ (reverse) for Tcskr2. The BamHI cloning 

site sequence (italicized) was introduced in the 5’ end of both forward and reverse primers. In 

the forward primer, before the initiation codon ATG (bold), a Kozac initial sequence 

(underlined) was included. In the reverse primer, the BamHI cloning site immediately 

preceded the reverse complement sequence of the last codon of the ORFs and allowed in-

frame cloning with the C-terminal Myc-His tag in the pEA-MycHis expression vector (Douris 

et al., 2006). PCRs were performed with the proofreading Platinum® Pfx DNA polymerase 

(Invitrogen) and products were verified by sequencing. PCR products were digested with 

FastDigest BamHI (Thermo Scientific) and then cloned to the pEA-MycHis vector to generate 

the pEA-TcSKR1-MycHis and pEA-TcSKR2-MycHis expression vectors.  

Vector pEA-PAC was included in the experiment, providing the resistance to puromycin by 

the gene pac to select stably transfected cells. The reporter vectors pGL4.29-CRE and 

pGL4.30-NFAT-RE (containing cAMP- and calcium-activated response elements, 

respectively; Figure I-6b; Promega) were chosen for the signaling pathway detection.  

2.3. Establishment of stable Sf9-TcSKR cell lines 

Sf9 cells were routinely cultured in SF-900™ II SFM medium at 27 °C in darkness. For 

transfection, Sf9 cells were grown to 50-70% confluence in T75 flasks and then transferred to 

a 6-well tissue culture plate at a density of 1 × 105 cells/ml culture. The cells in 2 ml culture 

were then transfected with 2 µg of TcSKR expression construction and 200 ng of vector pEA-

PAC using ESCORT™ IV transfection reagent (Sigma-Aldrich) for 6 h in serum-free 

medium. At 48 h post-transfection, cells were placed in medium containing 50 µg/ml of 

gentamycin and 20 µg/ml of puromycin. The puromycin-containing medium was replaced 

every 5 days until a stable colony was formed and proliferated.  

To verify the expression of TcSKRs in transfected Sf9 cells, Western blotting was carried out 

with crude protein samples. The protein samples were collected as follows: cells were 

harvested 48 h post-transfection by centrifugation and supernatant was collected for detection 

of the secreted proteins; cell pellets were suspended with 100 µl phosphate buffered saline 

(PBS) and lysed by freezing at -70 °C for 15 min. Subsequently, the cell suspension was 

centrifuged at 12000 g for 15 min and both supernatant (soluble protein fraction) and pellet 

(insoluble protein fraction) were collected. The pellet was suspended in 100 µl PBS and 
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treated with sonication to avoid protein aggregation. Protein samples were separated by 4-12% 

NuPAGE® gel (Life Technologies) and bands were transferred to nitrocellulose membranes 

using an electrophoretic transfer system (Life Technologies). The antibodies were mouse anti-

Myc and horseradish peroxidase (HRP)-conjugated anti-mouse used at 1:1000. DAB (3,3'-

diaminobenzidine tetrahydrochloride) solution was used for detection. 

2.4. TcSKR signaling pathway assay  

Sf9, Sf9-TcSKR1 and Sf9-TcSKR2 cells were transiently transfected with 2 ug of reporter 

vectors pGL4.29-CRE or pGL4.30-NFAT-RE following the transfection procedure described 

in section 2.3. Hygromycin were added to the concentration of 200 µg/ml in order to select 

transfected cells. Cells were then harvested for further assay at 24 h post-transfection.  

The transient cells (Sf9-CRE, Sf9-NFAT, Sf9-TcSKR1-CRE, Sf9-TcSKR1-NFAT, Sf9-

TcSKR2-CRE and Sf9-TcSKR2-NFAT) were seeded at 2 × 104 cells per well in a white 96-

well plate (Greiner Bio-One). After cells had attached to the well bottom overnight, the 

medium was replaced by assay medium containing sSK-II or nsSK-II. sSK-II was tested at 

concentrations from 0.01 nM to 10 µM and nsSK from 1 nM to 10 µM. Each concentration 

was tested in three replicates. Solvent acetonitrile at the same final concentration in the cell 

culture medium did not affect cell response. Two kinds of negative control were included. 

First, cell medium was used as a negative control reagent to give the background 

luminescence. Second, Sf9-CRE and Sf9-NFAT cells were used as a negative control to 

eliminate potential internal factors that were activated by SKs. Cells were incubated with 

SKs-containing medium or pure medium for 5 h at 27 °C and the Bright-Glo™ luciferase 

assay (Promega) was carried out according to the manufacturer’s instruction. Per well, the 

light emission resulting from the luciferase activity was measured for 10 s using an Infinite® 

200 PRO microplate reader (Tecan). 

2.5. Screening of SK-related peptides on TcSKRs 

Based on the work in section 2.4, activation of the TcSKRs required 10 µM of nsSK-II. 

Therefore, SK-related peptides were tested at a final concentration of 10 µM. All assays were 

run with three biological replicates, each contains three technical replicates. Forskolin (40 µM, 

Sigma-Aldrich) was included as a positive control. The assay was performed as mentioned in 

section 2.4 with the same two negative controls.  
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2.6. Data analysis 

The mean luminescence value was calculated from three biological replicates. Data from Sf9-

TcSKR cells were first compared to those from Sf9 cells by Student’s t-test, resulting in the 

confirmation that response of Sf9-TcSKR cells were mainly from the expressed TcSKRs.  

In the TcSKR signaling assay, the activation of TcSKRs was represented by the degree of 

luminescence increase, calculated with the following formula: % increase in luminescence = 

(luminescenceSK - luminescencecontrol) / luminescencecontrol × 100. Data from different 

concentrations of SKs were compared to that from control via Student’s t-test in GraphPad 

Prism version 5.00. 

Dose-response curves of sSK-II on TcSKRs were generated by the following procedures. The 

maximal activation of TcSKRs obtained from the highest concentration of sSK was assigned 

as 100%. The activation of TcSKRs from negative control was 0%. The percent of activation 

of receptor was plotted on the Y-axis and logarithm (concentration) on the X-axis in 

GraphPad Prism version 5.00. The median effect concentration (EC50) together with the 95% 

confidence interval was calculated; the R2 was used to evaluate the goodness of the sigmoid 

curve fitting.  

In the screening of SK-related peptides, the activity of a peptide was represented as 

percentage of the nsSK-II activity calculated with the following formula: relative activity of 

peptide (% nsSK-II) = activitypeptide / activitynsSK-II × 100.  The peptide activity was evaluated 

by one-way analysis of variance with Dunnett’s posttest in GraphPad Prism version 5.00. 

3. Results 

3.1. Establishment of stable Sf9-TcSKR cell lines 

Western blotting was performed to verify the expression of TcSKRs in Sf9 cells. As shown in 

Figure IV-1(a and b), bands corresponding to the molecular weight of about 63 and 48 KDa 

were detected predominantly in the membrane (insoluble) sample from Sf9-TcSKR1 and Sf9-

TcSKR2 cells, respectively, in accordance with the transmembrane property of the two 

TcSKRs. Sf9-TcSKR1 and Sf9-TcSKR2 cells were cultured stably every week in SF-900™ II 

SFM medium supplemented with 20 µg/ml of puromycin. After three passages, the two bands 

corresponding to the molecular weight of TcSKRs were still clearly detectable, indicating a 
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stable presence of the expressed proteins in the two respective transformed Sf9 cell lines. 

Finally, Figure IV-1c confirmed that the transformed Sf9 cells exhibited morphology similar 

to the native Sf9 cells.  

 

Figure IV-1  Western blotting analysis of the expression of TcSKR1 (a) and TcSKR2 (b) 

in stably transfected Sf9 cells, and the morphology of Sf9, Sf9-TcSKR1 and Sf9-TcSKR2 

cells (c). Crude protein samples were collected from native Sf9 cells and transfected Sf9 

cells at 48 h post-transfection (P0) and after three passages of culture (P3). Samples were 

separated as a secretion, a soluble protein fraction and an insoluble protein fraction. A 

pre-stained standard was used as a mass marker. Cell images were obtained three days 

after seeding with magnification of 200. 

3.2. TcSKR1 and TcSKR2 were coupled to Gαs-protein upon activation by SKs in Sf9 

cells 

In the TcSKR signaling assay, Sf9-TcSKR1 and Sf9-TcSKR2 cells were transfected with the 

reporter vectors containing CRE and NFAT-RE and then challenged with both sSK-II and 

nsSK-II. Only cells with CRE showed considerably high luciferase activity (Table IV-1) when 

challenged with sSK-II and nsSK-II. In these cells, luciferase transcription was triggered by 

response of CRE to the intracellular cAMP accumulation. On the other hand, cells with 
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NFAT-RE reporter did not react to either sSK-II or nsSK-II at tested concentrations of up to 

10 µM, suggesting that the intracellular calcium was not the second messenger of the 

activated TcSKRs in Sf9 cells (data not shown). Taken together, the data suggested that, upon 

activation by SK-II, the two TcSKRs were coupled to Gαs-protein and in turn this increased 

the intracellular cAMP level, which transmitted the signaling down inside the Sf9 cells. 

3.3. sSK was more potent than nsSK to activate TcSKRs  

sSK-II and nsSK-II were examined for their activity on activating the two TcSKRs at 

different concentrations ranging from the lowest (1 nM) to the highest concentration (10 µM) 

in the cell culture medium. As shown in Table IV-1, sSK-II significantly activated the two 

TcSKRs at a concentration of 1-10 nM, while the activation of TcSKRs required 1 µM or up 

to 10 µM of nsSK-II. The efficacy (% increase in luminescence) was also much lower for 

nsSK-II than for sSK-II (Table IV-1). While sSK-II treatment resulted in the detection of 400-

2500 of luminescence units in the transformed cells, much lower values were observed for 

nsSK-II. Therefore, sSK-II was approximately 1000 to 10000 times more potent than nsSK-II 

to activate the two TcSKRs.  

3.4. sSK activated TcSKRs in a dose-dependent manner 

Dose-response curves were generated for sSK-II to activate TcSKR1 and TcSKR2 in the two 

transfected Sf9 cell lines (Figure IV-2). The EC50 was 1.6 nM (1.0-2.7 nM) for TcSKR1 and 

5.4 nM (1.8-16.5 nM) for TcSKR2, with 95% confidence interval. The R2 was 0.9691 and 

0.8529 for curves in Figure IV-2a and Figure IV-2b, respectively. 

Table IV-1  Activity of sulfated sulfakinin (sSK-II, a) and nonsulfated 

sulfakinin (nsSK-II, b) on the two expressed TcSKRs in Sf9 cells.  

a 

  % increase in luminescence*+ 

 concentration, nM TcSKR1 P-value TcSKR2 P-value 

sSK-II 1,000 2333 ± 89 < 0.0001 403 ± 35 0.0003 

 100 2404 ± 63 < 0.0001 358 ± 12 < 0.0001 

 10 1754 ± 108 < 0.0001 126 ± 14 0.0013 

 1 822 ± 47 < 0.0001 5 ± 8 0.6218 

control  0 ± 6  0 ± 6  
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b 

  % increase in luminescence*+ 

 concentration, nM TcSKR1 P-value TcSKR2 P-value 

nsSK-II 10,000 28 ± 4 0.0343 19 ± 2 0.0049 

 1,000 6 ± 2 1.0000 15 ± 5 0.0541 

 100 5 ± 1 0.5462 1 ± 4 0.8698 

control  0 ± 7  0 ± 3  

*, % increase in luminescence = (luminescenceSK - luminescencecontrol) / luminescencecontrol × 100 

+, The effect of SKs on activating SKRs is reported as mean ± SEM (n=3) calculated as 

percent increase in luminescence with P values relative to control from the Student’s t-

test in GraphPad Prism version 5.00. 

 

Figure IV-2  Dose-response curve of the activation of TcSKR1 (a) and TcSKR2 (b) when 

challenged with sSK-II in transformed Sf9 cells. The maximal activation of respective 

TcSKR was set as 100%. Cells in untreated cell culture medium were used to define the 

basal level of 0%. Data are presented as mean ± SEM (n=3). 

  

3.5. Activity of SK-related peptides on TcSKRs 

Sf9-TcSKR-CRE cells responded to cell medium to the same level as Sf9-CRE cells did, 

indicating that TcSKRs were not activated by the medium. Sf9-CRE cells responded to all 

tested peptides to the same level as the medium did, indicating that no significant internal 

element was activated by these peptides. Forskolin of 40 μM led to similar levels of cAMP 

production in Sf9-TcSKR1-CRE and Sf9-TcSKR2-CRE cells.  
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The relative activities of SK-related peptides at the concentration of 10 μM are shown in 

Table IV-2. The SAR of SK on TcSKRs was analyzed based on the data. A peptide is 

evaluated in two aspects: the amino acid content and the length. 

3.5.1. TcSKR1 required stringent amino acid content 

Single substitution of nsSK-II led to inactive peptides to SKR1 such as peptide 2003 (F1→ 

A1), 2004 (R2 → A2), 2005 (M3 → A3), 2006 (H4 → A4) and 1070 (Y6 → Asu6). The four A-

substituted nsSK-IIs lost their activity could be due to the simple structure of A, as amino 

acids F, R M and H all have a bigger side chain. The inactive peptide 1070 was likely to be a 

result of the loss of the aromatic ring of Y. Other substitutions resulted in peptides with 

retention of activity. These were peptides 2007 (G5 → A5), 2008 (Y6 → A6), 1835 (F9 → S9), 

1658 (M3 → Nle3) and 1591-1 (R2 → K2). These substitutions were mostly with amino acids 

of similar properties to certain extent.  Therefore, the right property of amino acid content was 

important to TcSKR1. 

The removal of amino acids from the N-teminus of nsSK-II led to a drastic loss of activity 

when more than two residues were missed from nsSK-II (Table IV-2). This suggested that the 

minimal length of nsSK-II for activating TcSKR1 was DYGHMRF-NH2.  

3.5.2. TcSKR2 required certain length of a peptide 

nsSK-II lost its activity for TcSKR2 when certain substitution was introduced in peptides 

2004 (R2 → A2), 2006 (H4 → A4), 2008 (Y6 → A6), 1070 (Y6 → Asu6) and 1591-1 (R2 → K2). 

In contrast, nsSK-II kept its activity in peptides such as 2003 (F1→ A1), 2005 (M3 → A3), 

2007 (G5 → A5), 1835 (F9 → S9) and 1658 (M3 → Nle3). However, removing any amino acid 

from nsSK-II was fatal for the peptide, resulting in the drastic loss of activity.  Therefore, for 

TcSKR2, the length of nsSK-II seemed to be more important than the exact amino acid 

content.
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Table IV-2  Relative activity of SK(-related) peptide (10 μM) on activating TcSKR1 and TcSKR2 in Sf9 cells. 

Group Peptide Sequence a b TcSKR1    TcSKR2    

relative 
activity c 

difference 
from 
negative 
control d 

difference 
from 
nsSK-II d 

relative 
activity c 

difference 
from 
negative 
control d 

difference 
from 
nsSK-II d 

SK 1010 (nsSK-II) FDDYGHMRF-NH2 100 ± 3 s  100 ± 26 s  

SK-Ala 
substitution 

2003 FDDYGHMRA-NH2 6 ± 1 ns s 69 ± 18 s ns 

2004 FDDYGHMAF-NH2 4 ± 1 ns s 48 ± 13 ns ns 

2005 FDDYGHARF-NH2 4 ± 0 ns s 71 ± 6 s ns 

2006 FDDYGAMRF-NH2 2 ± 2 ns s 30 ± 25 ns s 

2007 FDDYAHMRF-NH2 80 ± 11 s s 57 ± 14 s ns 

 
2008 FDDAGHMRF-NH2 42 ± 11 s s 30 ± 9 ns s 

SK- 
truncation 

2009 DDYGHMRF-NH2 71 ± 1 s s -7 ± 12 ns s 

2010 DYGHMRF-NH2 21 ± 2 s s 5 ± 2 ns s 

2011 YGHMRF-NH2 2 ± 0 ns s 11 ± 15 ns s 

2053 GHMRF-NH2 2 ± 1 ns s 17 ± 4 ns s 

2052 HMRF-NH2 2 ± 1 ns s 25 ± 16 ns s 

 
2051 MRF-NH2 2 ± 2 ns s 16 ± 14 ns s 

2076 FDDYGHMR-NH2 1 ± 2 ns s -4 ± 12 ns s 
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(Table IV-2 continued) 

Group Peptide Sequence a b TcSKR1    TcSKR2    

relative 
activity c 

difference 
from 
negative 
control d 

difference 
from 
nsSK-II d 

relative 
activity c 

difference 
from 
negative 
control d 

difference 
from 
nsSK-II d 

SK-related 1835 SDDYGHMRF-NH2 61 ± 7 s s 143 ± 17 s s 

1070 FDD(Asu)GHMRF-NH2 -2 ± 1 ns s -9 ± 2 ns s 

1658 DDYGH(Nle)RF-NH2 53 ± 1 s s 109 ± 3  s ns 

1591-1 EAYGH(Nle)KF-NH2 57 ± 7 s s 1 ± 7 ns s 

 
1586 cyclo(EAYGH(Nle)K)F-NH2 -4 ± 1 ns s -12 ± 1  ns s 

 
1592 cyclo(EYGH(Nle)K)F-NH2 -7 ± 1 ns s -16 ± 1 ns s 

C. elegans 
NLP-13 

1679 (NLP-13a) pQPSYDRDIMSF-NH2 31 ± 5 s s 5 ± 5 ns s 

1432-2 (NLP-13b) SPVDYDRPIMAF-NH2 2 ± 2 ns s 11 ± 9 ns s 
 

1569 PVDYDRPIMAF-NH2 -11 ± 5 ns s -17 ± 5 ns s 

1567 SPVDYDRPIMF-NH2 3 ± 6 ns s -4 ± 1 ns s 
 

2018 cyclo(YDRPIMAF) -6 ± 1 ns s -3 ± 1 ns s 

2020 cyclo(RPIMAF) -6 ± 2 ns s -6 ± 3 ns s 

C. elegans 
NLP-12 

1678a (NLP-12a) DYRPLQF-NH2 40 ± 10 s s 36 ± 8 ns s 

1678b (NLP-12b) DGYRPLQF-NH2 18 ± 6 ns s -9 ± 6 ns s 
a Y , Y(SO3H). 
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b Bold letters highlight the position of modification of the parent peptide.  Asu: α-

aminosuberic acid; Nle: Norleucine; cyclo: cyclic structure. 

c Activity of a peptide is presented as percentage of the activity of nsSK-II (% nsSK-II) 

at the final concentration of 10 μM. Data are presented as mean ± SEM from three 

independent experiments. 
d s, statistically significant difference; ns, no statistically significant difference. Statistical 

analysis was performed by using one-way analysis of variance with Dunnett’s posttest in 

GraphPad Prism version 5.00. 

 

3.5.3. TcSKR1 and TcSKR2 responded differently to certain amino acid substitution 

Several peptides had different activities on TcSKR1 and TcSKR2 at the concentration of 10 

μM. Peptide 2004 (R2 → A2) was inactive on TcSKR1 but had 48% activity over TcSKR2. 

Peptide 1835 (F9 → S9) was able to activate both TcSKRs, but with more activity on TcSKR2 

(143%) than on TcSKR1 (61%). A similar case is peptide 1658 (M3 → Nle3) showing more 

activity on TcSKR2 (109%) than TcSKR1 (53%). We speculated that a certain peptide could 

interact with the two TcSKRs in different ways, most likely due to the structural difference 

between the two TcSKRs. 

3.5.4. The two TcSKRs responded to C. elegans NLP-13 and NLP-12 differently 

The C. elegans NLP-13a and NLP-12a of 10 μM were able to activate TcSKR1 with 30-40% 

activity of nsSK-II, while they were inactive to TcSKR2. The other peptides derived from 

NLP-13 and NLP-12 could not elicit any response from both TcSKRs. 

4. Discussion 

Insect SKs are multifunctional neurohormones modulating various physiological processes 

such as the regulation of feeding. However, most studies were conducted at the organism 

level, resulting in an overall observation of the result of likely more than one process. There 

are only a few systematic studies on SK signaling in insects to our knowledge. Therefore, we 

established the stable cell lines expressing TcSKR with an eventual aim to investigate the T. 

castaneum SK signaling in vitro. Two aspects of the SK signaling were included here as the 

relevant Gα-protein and the SAR of SK to activate TcSKRs. 

The study focused on Gαs- and Gαq-protein because they are the most likely Gα-proteins that 
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an activated SKR would be coupled to. The principle of this receptor assay is that the type of 

involved Gα-protein could be determined by measuring the luciferase activity which is a 

consequence of either intracellular cAMP accumulation or intracellular calcium mobilization. 

The luciferase activity is designed to be proportional to the change of cAMP and/or calcium, 

providing a way to quantify the relative affinity of different TcSKR modulators.  

In the present experiment, the data suggest that both TcSKRs are coupled to Gαs-protein upon 

activation because luciferase activity was only measured in the CRE-driven reporter system, 

where the intracellular cAMP was linked, regardless of the type and concentration of SK 

peptide. This is different from what is known about mammalian CCK receptors as the CCK1R 

couples both Gαs-protein and Gαq-protein, while CCK2R couples only with Gαq-protein 

(Dufresne et al., 2006; Staljanssens et al., 2011). However, we are aware of the false-negative 

possibility due to the absence of a positive control in inducing intracellular calcium flux in 

Sf9 cells. The NFAT-RE reporter vector, as optimized for mammalian cells, might be not 

correctly functional in Sf9 cells. Because of this, the calcium flux induced by the activation of 

TcSKR could not be detected. In addition, there are two Trica-SK peptides from the T. 

castaneum SK prepropeptide (Chapter II) and only the Trica-SK-II was tested in this 

experiment. There is also the possibility that different mechanisms underlie the interaction of 

two Trica-SKs with TcSKRs. 

The CRE-driven reporter gene system recruits the CRE binding protein (CREB) signaling to 

initiate the transcription of the reporter gene. Activated GPCR binds to the Gαs-protein, 

which activate the adenylate cyclase (AC) and increases the intracellular cAMP level. cAMP 

activates the protein kinase A (PKA), which then activates CREB by phosphorylating serine-

133. Through interaction with its nuclear partner CREB binding protein (CBP), CREB drives 

the transcription of reporter gene. However, in some studies, forskolin, an activator of AC is 

not able to induce CRE-driven reporter gene, which leads to the hypothesis that a Ca2+-

induced elevation of the expression of the CRE-driven reporter gene in Drosophila S2 cells 

(Poels et al., 2004) or cAMP-dependent PKA signaling pathway is not sufficient to activate 

CREB in Bm12 cells (Yang et al., 2013). However, forskolin did cause the transcription of 

luciferase reporter gene in our present CRE-driven reporter system in Sf9 cells (Figure IV-S1). 

There is no information on the CREB in Sf9 cells by the thesis is being written. There are 

several possibilities for the cAMP-CREB pathway in Sf9 cells. First, inactive CREB exists in 

Sf9 cells. Forskolin or activated GPCR cause increased cAMP, which leads to PKA activating 
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CREB via phosphorylation. The active CREB binds to CRE and initiates the transcription of 

luciferase gene. Second, inactive CREB is present in Sf9 cells in a state in which certain 

amino acid residues are phosphorylated by protein kinase C. Forskolin or activated GPCR 

elevates the intracellular cAMP. The inactive CREB has no phosphorylation site for PKA, 

which means the inactive CREB does not react to the elevation of cAMP via PKA. cAMP 

induced a Ca2+ mobilization, resulting in the activation of Ca2+-dependent calcineurin. 

Calcineurin activates CREB via dephosphorylation, leading to the binding of CREB to CRE 

and eventually athe transcription of luciferase gene (Yang et al., 2013). No matter which 

possibility, cAMP is the trigger of the CREB signaling pathway and the transcription of 

luciferase gene is proportional to the change of intracellular cAMP level. 

SKs are processed by proteolysis of precursor protein and undergo post-translational 

modifications (Predel et al., 1999). Sulfation is a modification that introduces a sulfate group 

on Y6. Similar to the CCKs in mammals, SKs occur naturally in both sulfated and nonsulfated 

forms in insects (Nichols, 2007; Nichols et al., 2008b). Many reports indicate that the sulfate 

group is necessary for activity. In mammals, CCK is 500- to 1000-fold more active than 

nonsulfated CCK (Dufresne et al., 2006). In Drosophila, a 3000-fold higher concentration of 

nsDSK than sDSK is required to stimulate the receptor (DSK-R1) expressed in mammalian 

cells (Kubiak et al., 2002). However, sDSK and nsDSK are reported to have different 

activities in odor preference and locomotion (Nichols, 2007; Nichols et al., 2008a; Nichols et 

al., 2008b), suggesting that distinct mechanisms may be involved.  

In this study, the cell-based TcSKR bioassays showed that sSK-II was 1000 to 10000 times 

more potent than nsSK-II to activate the two TcSKRs. sSK-II activates both TcSKRs at a 

concentration of 1-10 nM, but at least 1 μM of nsSK-II is required to activate TcSKRs. In a 

Chinese Hamster Ovary (CHO) WAT11 cell-based TcSKR system, 1 nM of sSK was enough 

to reach the maximal activation of TcSKRs and 1 nM of nsSK showed activity, although at a 

lower level (Zels et al., 2014). The required active concentration of SK peptides on 

exogenously expressed TcSKRs differs most likely due to the sensitivity of the cell system. 

The CHO cell line expressing apoaequorin and Gα16-protein is a mature system for the 

pharmacological characterization of GPCRs.  

In contrast to the different activity on TcSKRs, sSK and nsSK elicited a similar food intake 

inhibitory activity when they were applied to T. castaneum adult in vivo (chapter III). The 
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discrepancy was also observed in two previous studies where the peptide SDNAMRF-NH2 

did not bind the expressed FMRF-NH2 receptor protein, yet exhibited biological activity in in 

vivo semi-isolated heart rate assay (Maynard et al., 2013; Meeusen et al., 2002). For this 

disparity, the authors discussed the ligand concentration applied in bioassay and the 

expression condition of receptor proteins. To explain the discrepancy between the data 

obtained in vitro and in vivo in our research, we propose here that 1) the concentration of SK 

peptides injected in T. castaneum adults was about 16 μM, which is efficient for both sSK and 

nsSK to activate SKRs. Therefore, both sSK and nsSK could exert a similar and lower feeding 

response. A series of amounts of sSK and nsSK peptides could be tried in the future, which 

will reveal the threshold amount of peptide as well as the kinetic pattern; 2) two Trica-SK 

peptides are present in the T. castaneum SK prepropeptide (Chapter II) and only the Trica-

SK-II was tested in this experiment; 3) moreover, different mechanisms might be recruited by 

the two Trica-SKs to interact with the TcSKRs.  

Only with the one-receptor cell-based system, were we able to investigate the ligand-receptor 

interactions. The current cell-based TcSKR bioassay can be further used to screen SK-related 

peptides and mimetics to identify the SAR of SK. Therefore, a series of SK-related peptides 

with amino acid substitution or deletion was tested for their activities on TcSKRs, where 

some ideas on the SAR of SK can be obtained. 

The minimal active length of nsSK-II is seven residues (DYGHMRF-NH2) for TcSKR1 but 

nine residues (FDDYGHMRF-NH2) for TcSKR2. Within the full length of nsSK-II, 

substitution of certain amino acid exerted different responses of TcSKR1 and TcSKR2. For 

example, peptides 2003 (F1 → A1) and 2005 (M3 → A3) were only active for TcSKR2, 

whereas 2008 (Y6 → A6) and 1591-1 (R2 → K2) were only active for TcSKR1. In contrast, 

peptides 2007 (G5 → A5), 1835 (F9 → S9) and 1658 (M3 → Nle3) were active for both 

TcSKR1 and TcSKR2; 1070 (Y6 → Asu6), 2006 (H4 → A4) and 2004 (R2 → A2) were 

inactive for either TcSKR1 or TcSKR2. These may reflect the different structural 

requirements of the two TcSKRs for the binding of ligand. Introduction of a cyclic structure 

led to inactive compounds (peptides 1586 and 1592), which adds values to the study on the 

structural requirements. However, peptide 1070 showed activity on both TcSKR1 and 

TcSKR2 at the concentration of 1 μM in Zels et al. (2014). Asu has been proposed a biostable 

mimic of Y(SO3H) because the replacement retained activity (Nachman et al, 2005). sSK can 

exert the maximal activation of SKRs at the concentration of 100 nM. A possibility is that the 
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receptors were desensitized when they were exposed to 10 μM of 1070. The desensitization of 

receptor could happen to the peptides containing Y(SO3H), such as 1569, 1567 and NLP-12s. 

Therefore, the activity of peptides should be evaluated with lower concentrations. Peptide 

1591-1 was also only active on TcSKR1 but not TcSKR2 in Zels’s work. In addition, peptide 

1598-2 (EY(SO3H)GH(Nle)KF-NH2) was active on both TcSKR1 and TcSKR2. Together 

with peptide 1658, Nle proves to be a good mimic for M, which improves the peptide stability. 

C. elegans NLP-12 peptides were recognized as SK homologs in nematodes due to their 

similarity in function (Janssen et al., 2008). Here, NLP-12a was only able to activate TcSKR1 

with 40% activity of nsSK-II but not TcSKR2. NLP-12b had no activity on TcSKR1 and 

TcSKR2. NLP-12 differs from nsSK-II in amino acid sequence, though the –QF-NH2 peptide 

NLP-12b may bind with the TcSKR receptor(s) but fail to activate it. In other words, it may 

act as an antagonist, an actiivty which has been observed in the feeding experiments in 

Chapter III. In those experiments a combination of NLP-12b with nsSK blocked the food 

intake inhibition activity of the latter. In future experiments, it would interesting to test NLP-

12b against sSK on the two receptors to see if it might demonstrate an antagonist response. In 

addition, NLP-13-related peptides were inactive to TcSKRs because NLP-13 peptides contain 

quite different amino acid sequences from SK. 

To compare with their parent peptide nsSK-II, peptides with Ala-substitution and truncation 

show similar activity as nsSK-II on inhibiting feeding in vivo (Chapter III), while some are 

inactive on neither TcSKR in vitro. This result is not to our surprise as we are aware that 

insect food intake is a complex physiological process employing more than one mechanism. 

In vivo, these nsSK-II analogs could be recognized by other receptors, processed into other 

active peptides or affect other feeding-regulation mechanism so that similar food intake 

regulation could be triggered.  

One fact should be pointed out here is that the bioavailability of the peptide either in the insect 

haemolymph (Chapter III) or in the cell culture (this chapter) remains to be determined 

carefully. One cannot exclude the possibility that part of the peptides were degraded or 

modified in haemolymph or cell culture, although activities to various extents were observed 

in both experiments. Therefore, evaluation of the stability of peptides should be included in 

the follow-up experiments. 
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In a previous study (Chapter II), the silencing of Tcskr2 significantly stimulated T. castaneum 

larval food intake, while silencing of Tcskr1 resulted in less increase in food intake. Thus, we 

expect that TcSKR2 is more relevant in the SK signaling in food intake regulation, while 

TcSKR1 is likely to respond to other functions of SKs. Regarding to the response to sSK-II, 

TcSKR1 was more active than TcSKR2 (Table IV-1) although the EC50 values were similar 

(Figure IV-2). Factors such as the amount of the expressed TcSKR in the cells can influence 

the overall measured response of TcSKR to SK peptide. The comparison of the expression of 

the two TcSKRs in T. castaneum adult is not yet available at the protein level. Therefore, it is 

not conclusive to absolutely value the role of TcSKR1 and TcSKR2 in the regulation of 

feeding at this time.  

To conclude this chapter, a cell-based TcSKR bioassay was established and used for the study 

on the SAR of SK. Assays on individual TcSKR reveals different structural requirements for 

the interaction of SK and TcSKR. To continue the study, more SK-related peptides and more 

concentrations can be introduced and a combination of assays in vivo and in vitro is necessary 

to complete. 
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Supplementary data 

 

Figure IV-S1 Effect of forskolin (10 μM) on CRE-driven luciferase expression in Sf9 

cells. Data are expressed as mean ± SME from three independent assays, each assay with 

three technical replicates. *, P=0.0234 from t-test between control sample and forskolin-

treated sample in GraphPad Prism version 5.00.
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Chapter V. Molecular modeling of sulfakinin receptors 

and docking of SK analogs to sulfakinin receptors
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structure-activity relationship of sulfakinin with bioactivity on activating sulfakinin receptors.
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1. Introduction 

The principle of structure-activity relationship (SAR) study is to understand how protein 

receptors recognize, interact and associate with molecular substrates and inhibitors. One 

approach to this goal is the in silico protein-ligand docking, which aims to predict and rank 

the structures arising from the association between a given ligand and a target receptor of a 

known three-dimensional (3D) structure (Sousa et al., 2006). Before a docking can be realized, 

the 3D structures of the potentially interactive molecules (receptor and ligand) should be 

known or predicted from existing information.  

The most accurate structural characterization of proteins is provided by X-ray crystallography 

and NMR spectroscopy. However, the number of protein structures solved by experimental 

methods is so limited, because the technical difficulties and labor intensiveness of these 

methods (Wu and Zhang, 2009). Therefore, protein structure prediction (PSP, also called 

protein modeling) is widely employed to achieve the maximal approximation of the 3D 

structure of a target protein. Two main PSP methods are template-based prediction and free 

modeling (Figure V-1).  

Historically, template-based methods can be categorized into two types, comparative 

modeling (CM) and threading. CM builds models based on the evolutionary information 

between target and template sequences, while threading is designed to match target sequences 

directly onto 3D structures of templates with the goal to detect target-template pairs even 

without evolutionary relationships. In recent years, as a general trend in the field, the borders 

between CM and threading are becoming increasingly blurred since both CM and threading 

methods rely on evolutionary relationships. For a given target sequence, template-based 

prediction methods build 3D structures based on a set of solved 3D protein structures, termed 

the template library. When structural analogs do not exist in the protein data bank (PDB) 

library or could not be detected by threading, the structure prediction has to be generated from 

scratch, where free modeling is applied. 

Threading, also referred to fold recognition, predicts the 3D structure for a target protein by 

aligning its primary sequence to proteins in PDB in an attempt to find a similar folding (Xu et 

al., 2008) without regard to their degree of homology. The canonical procedure of template-

based modeling consists of four steps (Figure V-1): 1) finding known  structures  (templates)  

related  to  the  sequence  to  be  modeled  (target);  2) aligning the target sequence on the 
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template structures; 3) building the structural framework by copying the aligned regions, or 

by satisfying spatial restraints from templates; 4) constructing the unaligned loop regions and 

adding side-chain atoms. The first two steps are usually performed as a single procedure 

because the correct selection of templates relies on their accurate alignment with the target. 

Similarly, the last two steps are also performed simultaneously since the atoms of the core and 

loop regions interact closely. 

a   

 

b  

 

Figure V-1 Schematic overview of the methodologies employed in template-based 

modeling (a) and free modeling (b). (After Wu and Zhang, 2010) 
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In this chapter, the SAR of SK signaling was investigated through modeling. First, the 3D 

structures of the two Tribolium castaneum sulfakinin receptors (TcSKRs, TcSKR1 and 

TcSKR2) were predicted via protein modeling, where the structural similarity and deference 

between the two SKRs were on focus. Then, the interactive sites of TcSKRs and SK analogs 

were interpreted via protein-ligand modeling, with emphasis on the sulfate moiety. Lastly, the 

results from modeling and bioassay in previous chapters were combined and compared to 

further discuss the SAR of SK signaling. 

2. Methods 

2.1. Protein modeling 

A strategy on protein threading philosophy (Figure V-2) was performed for the modeling of 

the two TcSKRs. Human CCKRs can not be the template, although they showed high 

homology to TcSKRs, because the crystal structures of human CCKRs are not available now. 

Therefore, the simple knowledge-based homology modeling was not applicable. In addition, 

the degree of identity and homology between TcSKRs and potential templates from protein 

data bank (PDB) were poor, which did not allow direct use of information from known 

structures to predict the structure of TcSKRs (Sander and Schneider, 1991).  

Modeling of TcSKRs was performed using an approach combined both homology-based 

modeling and threading modeling. The structurally conserved regions (SCRs), loops, gaps and 

sidechains in TcSKRs were modeled sequentially and interactively on different templates. 1) 

Squid rhodopsin (PDB id=2z73) was picked up because it has the crystal structure available 

and hexhibits 35% and 38% similarity in the transmembrane regions to TcSKR1 and TcSKR2, 

respectively. However, the similarity between squid rhodopsin and TcSKRs is not ideal to 

modeling. Hence, T. castaneum rhodopsin was first modeled with squid rhodopsin as a 

template, because the identity and similarity between T. castaneum rhodopsin and squid 

rhodopsin is 33% and 59%, respectively, which is ideal to modeling. In addition, the two 

rhodopsins are both GPCRs and show functional relationships. 2) The templates for TcSKR 

modeling was searched using LOMETS (Local Meta Threading Server) 

(http://zhanglab.ccmb.med.umich.edu/; Wu and Zhang, 2007) with an eye to HOMSTRAD 

(Homologous Structure alignment database) (Mizuguchi et al., 1998). The T. castaneum 

rhodopsin was also included in the bulk of templates (Figure V-2). 3) The structurally 

conserved regions (SCRs) were built using ORCHESTRAR interface of SYBYL based on the 
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templates generated from LOMETS and the ranked structures by Z-score. The best folding for 

each query sequence was detected with the meta-server technology, instead of simply 

applying the models as generated by MODELLER in LOMETS. During this procedure 

several new searches were performed in LOMETS and then the detected structures were 

retrieved from PDB and implemented into the growing model. 4) Gaps and loops were 

selected from both FREAD and ab initio PETRA loop prediction, both available in 

ORCHESTRAR. FREAD is a loop database to select loop candidates from a protein structure 

fragments with environmentally constrained substitution tables. If the candidates are not good, 

the ab initio PETRA was used. 5) The model was optimized by a staged minimization and the 

stereochemical quality was evaluated utilizing the PROCHECK program (Laskowski et al., 

1993). More than 90% and 89% of the residues of the modeled TcSKR1 and TcSKR2, 

respectively, were correctly assigned on the best allowed regions of the Ramachandran plot, 

and the remaining residues were located in the marginal regions of the plot (data not shown). 

2.2. Protein-ligand docking  

Rigid molecular docking of the SK analogs into TcSKRs was performed with OEDocking 

suite for OSX (version 3.0.1; OpenEye, Santa Fe, NM) and flexible docking using FlexiDock 

from SYBYL. For the SK analogs (Table V-1), several conformations were generated for 

each peptide with local minimum energies using OMEGA (version 2.5.1.4; OpenEye, Santa 

Fe, NM; Hawkins, P.C.D. et al., 2010) force field mmff94 and root-mean-square-deviation 

(RMSD) set as 1.0. These conformers were docked separately in the TcSKR1 and TcSKR2 

extramembrane regions using FRED interface of OEDocking.  In this first run of docking, the 

protein was kept rigid while an exhaustive search was applied for peptides. The exhaustive 

search systematically searched rotations and translations of each peptide conformer within the 

selected region.  

The generated docking poses were ranked by each of the four individual scores (shape, 

hydrogen bound, protein desolvation and ligand desolvation). The sum of the normalized 

scoring functions generated the FRED Chemgauss4 score. The best-ranked pose of each 

peptide was inspected for steric hindrance. Those protein residues in close contact with the 

ligand or considered in potential for clashes were assigned as flexible for a new run of 

docking using FlexiDock.  This last procedure was performed individually and continually for 

each peptide until the absence of clashes (Figure V-2). 
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Figure V-2  Threading strategy used in the modeling of TcSKRs and the docking of 

peptides. For easy view, only the steps applied for TcSKR1 are depicted. The strategy 

applied for TcSKR2 is similar. The smile face indicates a successful docking while a sad 

face indicates an unsuccessful docking. The W207 marked in pink caused a clash by a 

deep intrusion of its indole group into peptide volume. To solve this problem, the residue 

was made flexible (depicted in green) during the docking. This procedure was 

performed for all peptides as well as for all residues causing clashes until no visible clash 
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was found. The α-helices represent the transmembrane I from TcSKR1 superimposed 

with counterpart region of templates. 

3. Results 

3.1. TcSKR1 and TcSKR2 contained cavities with different outer opening 

The TcSKR1 and TcSKR2 both consisted of the canonical seven α-helices crossing the cell 

membrane as commonly found in GPCRs (Figure V-3).  Both TcSKRs exhibited three 

extracellular loops (ELs) with similar number of residues except EL 2 with 14 residues in 

TcSKR1 and 37 residues in TcSKR2. The structures showed a long C-terminal region 

composed of 84 and 46 residues in TcSKR1 and TcSKR2, respectively. TcSKR1 shows eight 

intracellular small α-helices and two β-sheets with no counterpart structure in SKR2.  

a
      

c 
     

e
   

b 
    

 d
       

f 
  

Figure V-3  Cartoon diagram of Triboilum casteneum sulfakinin receptors, TcSKR1 and 

TcSKR2. The seven transmembrane α-helices building the three-dimensional fold of the 

proteins are differently colored from blue (N-terminus) to red (C-terminus) (a and b) by 

secondary structure (c and d) and with extracellular loops (EL) colored differently (e 
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and f). The EL 1 is in orange, EL 2 in yellow and EL 3 in green. The N-terminus is in 

blue while C-terminus red. 

Figure V-4 depicts the largest channel found in each modeled receptor that was calculated by 

MOLCAD. The cavities of both TcSKRs were similar in deepness. However, TcSKR2 had a 

narrow outer opening that prevented a deep intrusion of ligands into protein volume. In 

contrast, TcSKR1 exhibited a similar cavity in depth but with a much larger outer opening 

than TcSKR2. This larger opening allowed peptides to be docked deeper into the cavity, 

differently from what occurred in TcSKR2 where peptide could not be docked into protein 

volume. Therefore, all peptides were laid on the top of receptor in TcSKR2-ligand complexes, 

while in TcSKR1-ligand complexes, peptides were posed in the receptor cavity. The 

consequence of these ‘lay-docked’ poses in TcSKR2-peptide complex was a close contact 

with the extracellular loops and N-terminus region.  

  
a

    

 
c
   

 

 b

     

 d

   

Figure V-4  Surface diagram top view of the 3D structure of TcSKR1 (a) and TcSKR2 (b) 

with nsSK peptide docked. Cavity colored by depth in TcSKR1 (c) and TcSKR2 (d). The 

picture demonstrates a deep cavity in both structures. The cavity depth is colored from 

blue (shallow) to orange (deep).
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Table V-1 and *, amino acid is represented with the single-letter code. The following 

numerical indicates the position from the N-terminus of peptide or protein. 

+, relative bioactivity was collected from Table IV-2, relative to the activity of nsSK-II. 
&, TM, transmembrane region; EL, extracellular loop. 

Table V-2 summarize the amino acid residues involved in the binding of TcSKRs and SK 

analogs. More information is available in Table V-s1. The interactive residues in receptors 

were found in both the extracellular region and transmembrane (TM) region in TcSKR1 while 

they were only located in the extracellular region in TcSKR2 (Table V-1; Table V-2; Figure 

V-5). For these peptides, TM regions were not involved in the ligand-TcSKR interaction. 

Table V-1 Residues in TcSKR1 and TcSKR2 involved in the binding of SKs 

through polar interactions. 

Peptide Sequence 
Amino 
acid* TcSKR1   TcSKR2   

   Region & 
Amino 
acid* 

Relative 
bioactivity+ Region & 

Amino 
acid* 

Relative 
bioactivity+ 

sSK FDDY(SO3H)
GHMRF-NH2 

F1 N-terminus R41 >4000 EL 2 S178 >800 

 H4 EL 2 E205     

  Y6 TM V D221  N-terminus D2  

   TM VI H432  N-terminus L9  

  D7 TM V N217  N-terminus T8  

  D8 TM V N217     

nsSK FDDYGHMR
F-NH2 

F1 TM III Q132 100 EL 2 L177 100 

  EL 2 R199     

  H4 TM V Q214  EL 1 E109  

   EL 3 Y438  EL 2 K181  

  Y6    N-terminus L9  

  D7    EL 2 S196  

*, amino acid is represented with the single-letter code. The following numerical 

indicates the position from the N-terminus of peptide or protein. 

+, relative bioactivity was collected from Table IV-2, relative to the activity of nsSK-II. 
&, TM, transmembrane region; EL, extracellular loop. 

Table V-2 Residues in TcSKR1 and TcSKR2 involved in binding of Ala-nsSK peptides 

through polar interactions. 

Peptide Sequence 
Amino 
acid* TcSKR1   TcSKR2   

   Region & 
Amino 
acid* 

Relative 
bioactivity+ Region & 

Amino 
acid* 

Relative 
bioactivity+ 

2003 FDDYGHMR A1 N-terminus K39 6 EL2 L177 69 
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 A-NH2  N-terminus T40     

   TM VII S451     

  R2 N-terminus K39     

   EL 1 N117     

   EL 2 R204     

  H4    EL 1 E109  

     EL 2 K181  

(*, amino acid is represented with the single-letter code. The following numerical indicates 
the position from the N-terminus of peptide or protein. 

+, relative bioactivity was collected from Table IV-2, relative to the activity of nsSK-II. 
&, TM, transmembrane region; EL, extracellular loop. 

Table V-2 continued) 

Peptide Sequence 
Amino 
acid* TcSKR1   TcSKR2   

   Region & 
Amino 
acid* 

Relative 
bioactivity+ Region & 

Amino 
acid* 

Relative 
bioactivity+ 

2003 FDDYGHMR
A-NH2 

G5 TM VII Q458     

 Y6    N-terminus L9  

  D7 TM V N217  N-terminus T8  

      EL 2 S196  

  F9    N-terminus D2  

2004 FDDYGHMA
F-NH2 

H4   4 EL 1 E109 48 

 G5    N-terminus W10  

      EL 2 D198  

  D7 TM VII S455  EL 2 S196  

   TM VII S458     

  D8 EL 2 E205  N-terminus T8  

   TM VII S451     

  F9 EL 1 N117  N-terminus T8  

   TM IV S184  N-terminus T22  

   EL 2 R204     

2005 FDDYGHAR
F-NH2 

F1 EL 2 E205 4   71 

 R2 EL 2 E205  N-terminus W10  

      N-terminus T22  

  H4 EL 2 E206  N-terminus T8  

  Y6 TM V N217  EL 3 S342  

  D7    EL 2 S196  

      EL 2 L197  

2006 FDDYGAMR
F-NH2 

R2 TM V E213 2 EL 2 E109 30 

     EL 2 L180  

  Y6    N-terminus L9  

  D7 TM V N217  N-terminus T8  

  D8 TM III P129     

  F9 TM V N217  EL 2 L177  

2007 FDDYAHMR
F-NH2 

R2 TM VII A461 80   57 

 H4 TM VII Q458  EL 2 K181  
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      EL 2 D198  

  D7    N-terminus N11  

  F9    N-terminus N18  

2008 FDDAGHMR
F-NH2 

F1 EL 2 S211 42   30 

 H4 EL 1 R116     

  G5 TM II T109     

*, amino acid is represented with the single-letter code. The following numerical 

indicates the position from the N-terminus of peptide or protein. 

+, relative bioactivity was collected from Table IV-2, relative to the activity of nsSK-II. 
&, TM, transmembrane region; EL, extracellular loop. 

a

 

(Figure V-5)
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b

 

Figure V-5  Residues involved in binding of SK analogs in TcSKR1 (a) and TcSKR2 (b). 

The residues were collected for the binding of TcSKRs with sSK, nsSK and Ala-

substituted SK in Table V-1 and Table V-2. The residues are represented with white 

single-letter codes in black filled circles. Figures were generated with Protter v.1.0. 
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3.2. Sulfate moiety affected the binding of SK to SKR 

Sulfated SK (sSK) and nonsulfated SK (nsSK) were docked in both TcSKR1 and TcSKR2. 

The interactive residues from both peptide and receptor are summarized in Table V-1. First, in 

the TcSKR1-SK complexes, 5 sSK residues interacted with 5 TcSKR1 residues but only 2 

nsSK residues interacted with 4 TcSKR1 residues. In the TcSKR2-SK complexes, 3 and 4 

residues in sSK and nsSK, respectively, interacted with 4 and 5 TcSKR2 residues. Second, in 

the TcSKR1-SK complexes, the sulfated Y6 in sSK was involved but not the nonsulfated Y6 

in nsSK. In contrast, in the TcSKR2-SK complexes, the Y6 was interactive in the binding to 

TcSKR2 regardless the presence of sulfate group. Lastly, as a general observation, the 

interactive residues were found in only the extracellular regions in TcSKR2 but both the 

extracellular regions and the TM regions in TcSKR1.  

3.3. Peptides with Ala-substitution were posed differently to SKR1 and SKR2 

The peptides with Ala-substitution of nsSK were docked to both TcSKRs. The interactive 

residues are presented in Table V-2. A general finding was that these peptides made contact 

with TcSKR1 differently from how nsSK did, whereas they interacted with TcSKR2 in a 

similar manner as nsSK did. nsSK bound to TcSKR1 via the EL 2 and the TM III, V and VII. 

Peptides 2003-2008 bound to TcSKR1 via different regions spanning from the N-terminus to 

the TM VII. nsSK bound to TcSKR2 via the N-terminus, the EL1 and the EL 2. Peptides 

2003-2008 bound to TcSKR2 via the same regions and the EL 3 was also recruited by 

peptides 2005 and 2006.  

In terms of bioactivity, for the activation of TcSKR1, peptides 2003-2006 were inactive and 

peptides 2007-2008 were active. But it is not conclusive to explain the bioactivity simply 

from docking result, because all these peptides interacted with a wide range of regions in 

TcSKR1. However, for the case of TcSKR2, all peptides retained the bioactivity and they 

contacted with the N-terminus, EL 1 and EL 2 of TcSKR2 in the docking. 

4. Discussion 

The modeling of the two TcSKRs revealed their structural characteristics for the first time and 

confirmed their property of being GPCRs. Very interesting is the difference of the outer 

opening between TcSKR1 and TcSKR2. By far, different results were obtained from the two 
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TcSKRs assays such as RNAi (Chapter II) and cell-based receptor activation (Chapter IV). 

The detailed information on their 3D structures will provide clues to interpret their potential 

different roles.  

In the previous experiment, 1 nM of sSK was sufficient to activate TcSKR1 while the 

activation of TcSKR2 required 10 nM of sSK (Table IV-1), although the EC50 value was 

similar for both TcSKRs (Figure IV-2). The structural property of the TcSKR-sSK complex 

provides some clues to decipher this observation. The predicted TcSKR1 model exhibits a 

deeper cavity compared to TcSKR2 model, which allows intrusion and binding of peptides.  

As discussed in previous chapters, sulfate moiety on Y6 has been reported to be important for 

the activity of SK, which was also observed in the cell-based receptor activation assay 

(Chapter IV), but not in the feeding assay (Chapter III). We expected to gain more 

information at the molecular level through modeling and docking. Based on docking data, the 

(SO3H) on Y6 enhanced the binding of sSK and TcSKR1 via two TM residues (D221 in TM 

V and H432 in TM VII), which contributes to the 1000 to 10000 times more activity of sSK 

than nsSK (Table IV-1). Conversely, Y6 in both sSK and nsSK made similar contact with 

TcSKR2, with the common interactive residue L9 in the N-terminus. In the TcSKR activation 

bioassay, SKR1 was more sensitive to the sulfate group (Table IV-1). Therefore, sulfate 

moiety may work as a switch for the activation of TcSKR1 but is less effective to activate 

TcSKR2. 

The docking results showed some insights to explain the observed bioactivity of peptides, for 

example, the lack of activity in the Ala-substitution series. The amidated F1 of nsSK 

interacted with R199 in the EL 2 of TcSKR1. In peptide 2003, this F1 is replaced by A1. This 

modification generated more polar contact with peptide 2003, however, the hydrogen bond 

formed with R199 was lost.  Archer-Lahoul et al. (2005) conducted several site-directed 

mutation experiments in CCKR1 coupled with docking of CCK. The replacement of R197 

(equivalent to R199 in TcSKR1) by M197 caused a 3154-fold reduction in the affinity of 

CCK to CCK1R. Therefore, we suggest that the lack of interaction with this particular amino 

acid could abolish the binding affinity of peptide 2003 to TcSKR1. In the remaining Ala-

substituted peptides (2004, 2005, 2006, 2007 and 2008) a higher number of hydrogen bounds 

were found but no one interacting with the Ala seemed crucial for receptor activation (Table 

V-2). 
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The Ala-substitution caused a drastic reduction in the peptide activity on TcSKR1 but to a 

much less extent on TcSRK2 (Table V-2; Chapter VI). The same peptide was docked in 

TcSKR1 and TcSKR2 in a different manner (Figure V-4), which makes it difficult to correlate 

the biological activity and the interactive points, as the same peptides probably activate 

different receptors by making different interactions. Despite of this difficulty, overall, 

peptides with Ala-substitution made more interactions with the EL regions in TcSKR2 than 

they did in TcSKR1. The increased interaction of peptides with the EL regions of TcSKR2 

seems to be involved in diminishing the impact of Ala-substitution, resulting in less loss of 

activity of SK peptide on TcSKR2 than on TcSKR1. nsSK bound TcSKR2 via the N-terminus, 

the EL 1 and the EL 2. We speculate that these three regions are important to the activation of 

TcSKR2. In addition, the peptide 2009 only interacted with TcSKR2 via the N-terminus and it 

showed no bioactivity (Table V-s1), which is supportive of the speculation. 

Molecular modeling and docking are used to provide substantial structural knowledge about 

receptor-ligand complexes, from which functional information could be inferred (Smith and 

Sternberg, 2002). However, modeling and docking are still approximation and optimism. It is 

difficult to reach the near-native complex because many factors are excluded or optimized in 

the approach. In addition, the scoring and ranking for the best candidate is not completely 

objective, which relies very much on the existing information, such as available template and 

functional motifs. The development of modeling and docking is directed towards the 

introduction of more parameters. Together with the increasing experimental information, 

modeling and docking will expand our knowledge of the interaction of SK and SKRs. 

In conclusion, the modeling of TcSKRs and the docking of peptides to TcSKRs are indicative 

to the SAR of SK signaling, although we are aware of the limitations of the approach. 

TcSKR1 and TcSKR2 display similar characteristics of GPCR but have different outer 

opening of the cavity, which affects the binding of TcSKRs with ligand peptide. The sulfate 

moiety contributes to the higher activity of sSK than nsSK by enhancing the binding of sSK 

to TcSKR1. Also, the diverse bioactivity of peptides with Ala-substitution could be due to the 

structural differences between the two TcSKRs.  
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Supplementary data 

 

Table V-s1. Summary of residues in TcSKR1 and TcSKR2 involved in binding of peptides through polar interactions. 

 

 

 

Peptides AA seq* TcSKR1 
region 

TcSKR1 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

TcSKR2 
region 

TcSKR2 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

sSK FDDY(SO3H)GHMRF-
NH2 

N-term ARG41 F/O  >4000 N-term ASP2/OD2 Y/O1H >800 

EL 2  GLU205/OE1  H/ND1 N-term THR8/H01 DD/OD1 

TM V  ASN217/ND2  DD/O N-term LEU9/O Y/N 

TM V  ASN217/ND2  DD/OD1 EL 2 SER178/O F/NH2 

TM V  ASP221/OD2 Y /O3 
 

TM VI  HIS432/HD1 Y /O1H  

nsSK FDDYGHMRF-NH2 TM III GLN132/0 F/N 100 N-term LEU9/O Y/N 100 

EL2 ARG199/O F/NH2 EL 1 GLU109/OE2 H/ND1 

TM V GLN214/OE1 H/ND1 EL 2 LEU177/O RF/NH2 

TM VI TYR438/OH H/N EL 2 LYS181/H01 H/O 

   EL 2 SER196/H01 DD/OD1 
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(Table V-s1 continued) 

 
 
 

Peptides AA seq* TcSKR1 
region 

TcSKR1 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

TcSKR2 
region 

TcSKR2 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

2003 FDDYGHMRA-NH2 N-term LYS39/0 R/NE 6 
 
 
 
 

N-term ASP2/OD2 F/NH2 69 

N-term LYS39/H A/0 N-term THR8/H01 DD/OD1 

N-term LYS40/H A/0 N-term LEU9/O Y/N 

EL 1 ASN117/OD1 R/NH2 EL 1 GLU109/OE2 H/ND1 

EL 2 ARG204/O R/O EL 2 LEU177/O A/NH2 

TM V ASN217/HD21 DD/OD1 EL 2 LYS181/H01 H/O 

TM VII SER451/H A/N EL 2 SER196/H01 DD/OD2 

TM VII SER451/OG A/O    

TM VII GLN458/HE21 G/0    

2004 FDDYGHMAF-NH2 EL 1 ASN117/OD1 F/HT1 4 N-term THR8/OG1 DD/NH 48 

TM IV SER184/O F/NH2 N-term THR8/O F/NH 

TM IV SER184/OG F/NH2 N-term TRP10/H07 G/O 

EL 2 ARG204/O F/HT2 N-term THR22/OG1 FNH2/O 

EL 2 GLU205/OE2 DD/N EL 1 GLU109/OE2 H/ND1 

TM VII SER451/HG DD/OD1 EL 2 SER196/H01 DD/O 

TM VII SER455/OG DD/OD2 EL 2 ASP198/OD1 G/N 

TM VII GLN458/HE22 DD/OD2    
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(Table V-s1 continued) 

Peptides AA seq* TcSKR1 
region 

TcSKR1 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

TcSKR2 
region 

TcSKR2 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

2005 FDDYGHARF-NH2 EL 2 GLU205/OE2 F/N 4 N-term THR8/O H/N 71 

EL 2 GLU205/OE1 F/NH2 N-term TRP10/H07 R/O 

EL 2 GLU205/OE2 R/NH1 N-term THR22/H01 R/NH1 

EL 2 GLU206/O H/ND1 EL 2 SER196/H01 DD/OD1 

TM V ASN217 Y/O EL 2 LEU197/H02 DD/OD2 

   
EL 3 SER342/CA Y/O 

EL 3 SER342/OG Y/NH 

2006 FDDYGAMRF-NH2 TM III PRO129/O DD/OD2 2 N-term THR8/H01 DD/OD1 30 

TM V GLU213/OE2 R/NH2 N-term LEU9/O Y/N 

TM V ASN217/OD1 F/NH2 EL 1 GLU109/O R/H2N 

TM V ASN217/HD21 DD/O EL 2 LEU177/O F/NH2 

   EL 2 LEU180/O R/NE 

2007 FDDYAHMRF-NH2 TM VII GLN458/HE22 H/O 80 N-term ASN11/H02 DD/OD1 57 

TM VII ALA461/O R/NH2 N-term ASN18/H01 FD/O 

   EL 2 LYS181/H08 H/NE2 

EL 2 ASP198/OD2 H/ND1 

2008 FDDAGHMRF-NH2 TM II THR109/OG1 G/N 42 

   

30 

EL1 ARG116/O H/ND1 

TM V SER211/OG F-NH2 
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(Table V-s1 continued) 

 
 

Peptides AA seq* TcSKR1 
region 

TcSKR1 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

TcSKR2 
region 

TcSKR2 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

2009 DDYGHMRF-NH2 TM III GLN132/HE22 H/O 71 N-term GLU5/OE2 F/NH2 -7 

EL 2 GLU205/OE1 DD/OD2 N-term THR8/H01 H/O 

EL 2 GLU206/O G/N N-term LEU9/O G/N 

TM VII HIS432/HD1 F/O 
N-term 

ASN18/H05 
 

Y/OH 

   N-term THR22/OG1 DD/N 

2010 DYGHMRF-NH2 EL 2 GLU205/OE2 F/N 21 

   

5 

EL 2 GLU205/OE1 F-NH2 

EL 2 GLU205/OE2 R/NH1 

EL 2 GLU206/O H/ND1 

TM V ASN217/HD21 Y/O 

2011 YGHMRF-NH2 EL 2 ARG204/O F/NH2 2 

   

11 

EL 2 GLU205/OE2 F/NH2 

EL 2 GLU205/OE2 F/N 

EL 2 GLU205/OE1 R/NH1 

TM V ASN217/HD21 Y/O 

TM V ASN217/O Y/N 

TM VI ASN435/OD1 Y/N 
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(Table V-s1 continued) 

 

Peptides AA seq* TcSKR1 
region 

TcSKR1 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

TcSKR2 
region 

TcSKR2 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

2053 GHMRF-NH2 EL 2 GLU205/OE2 F/HN2 2 EL 3 SER341/H01 F/O 17 

EL 2 GLU205/OE2 F/N EL 3 SER341/O R/H2N 

TM VI TYR438 R/NH2 EL 3 SER341/O R/NE 

EL 3 SER342/H0 F/O 

2052 HMRF-NH2 EL 2 GLU206/O R/NH2 2 

   

25 

TM V ASN217/HD21 H/O 

TM V ASN217/O H/N 

TM VI ASN435/OD1 H/N 

TM VII GLN458/OE1 R/NH 

TM VII GLN458/O F/NH2 

TM VII GLN458/OE1 R/NE 

2051 MRF-NH2 TM VII GLN458/OE1 R/NH2 2 EL 1 GLU109/OE1 F/NN2 16 

TM VII GLN458/OE1 R/NH EL 1 GLU109/O F/NH2 

TM VII GLN458/O F/NH2 EL 2 LEU177/O R/NH2 

2076 FDDYGHMR-NH2 EL 2 GLU206/O Y/N 1 
   

-4 

TM VII GLN458/HE21 Y/O 

1070 FDDAGHMRF-NH2 EL 2 GLU206/OE2 F/HT3 -2 
   

-9 

TM V ASN217/HD21 G/O 



 

126 

 

 
(Table V-s1 continued) 

 

 

Peptides AA seq* TcSKR1 
region 

TcSKR1 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

TcSKR2 
region 

TcSKR2 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

1658   
DDY(SO3H)GH(NIe)R
F-NH2 

EL 2 ARG204/HE Y/O2 53 

   

109 

EL 2 GLU205/OE1 Y/O1H 

 EL 2 GLU206/O G/HN 

 TM III GLN132/HE22 H/O 

 TM VII SER451/HB3 DD/HN 

 TM VII GLN458/HE22 DD/OD1 

 TM VII ALA461/O R/NH2 

 TM VII SER465/OG R/NH2 

1591-1   
EAY(SO3H)GH(NIe)K
F-NH2 

EL 1 ARG116/O Y/O1H  
 
 
 
57    

 
 
 
 
1 

TM III GLN132/HE22 H/O 

EL 2 GLU206/O G/NH 

TM VII SER451/OG E/HT3 

TM VII ALA461/O K/HZ1 

TM VII TYR462/O K/HZ1 

TM VII SER465/OG K/HZ2 
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(Table V-s1 continued) 

 

 

 

Peptides AA seq* TcSKR1 
region 

TcSKR1 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

TcSKR2 
region 

TcSKR2 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

1432-2 SPVDYDRPIMAF-
NH2 

EL 1 ARG116/O R/NH1 2 

   

11 

TM V SER211/O F/NH2 

TM V SER211/OG Y/OH 

TM V SER212/O V/N 

TM V GLN214/H Y/OH 

TM V ASN217/OD1 F/NH2 

TM VI TYR438/HH D/OD1 

TM VII GLN458/HE21 I/0 

1567 SPVDY(SO3H)DRPIM
F-NH2 

N-Tterm THR40/OG1 R/NH1 3 

   

-4 

TM III ARG126/HH21 Y/O3 

EL 2 GLY200/H Y/O1 

EL 2 TRP207/HE1 D/O 

TM V ASN217/HD21 P/O 

TM VI ASN435/HD21 R/O 
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(Table V-s1 continued) 

 

*Underlined residues refer to those interacting with peptides. 
** In the case where the same amino acid occurs twice (e.g. DD), the interaction amino acid is bold and underlined. 

Peptides AA seq* TcSKR1 
region 

TcSKR1 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

TcSKR2 
region 

TcSKR2 AA Peptide AA 
interaction** 

Relative 
activity (% 
nsSK) in 
bioassay 

sNLP-
12b 

DGY(SO3H)RPLQF-
NH2 

N-term ANS38/HD21 Y/OH 

     

EL 1 ARG116/O R/NE 

EL 1 ARG116/O F/NH 

EL 2 GLU205/OE2 R/NH2 

TM V GLN214/OE1 D/NH2 

TM V ASN217/HD22 Q/OD1 

EL 3 GLU443/OE2 Y/O3 

sNLP-
12a 

DY(SO3H)RPLQF-NH2 TM V SER211/O Y/O3 

     
TM V ASN217/OD1 D/N 

TM VII SER451/O Q/NH2 

TM VII GLN458/HE21 L/O 

NLP-12b DGYRPLQF-NH2 N-Term LYS39/HZ3 Y/O 

     

N-Term SER46/O D/NH2 

TM II GLN113/O D/N 

TM III GLN132/HE22 Q/OD1 

EL 2 ARG204/O R/NE 

EL 2 GLU205/OE2 R/NH2 

TM V ASN217/OD1 F/NH2 
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1. General conclusions 

1.1. Sulfakinin signaling inhibits feeding in Tribolium castaneum 

Insect sulfakinins are structurally and functionally homologous to the vertebrate 

cholecystokinin (CCK), one of the neuropeptides that can reduce appetite. SKs have been 

reported to be involved in multiple physiological processes including inhibiting feeding in a 

few species. However, not much is known about SK signaling, which consists of SK peptide 

and SK receptors in insects, in terms of function and mechanism in the regulation of feeding 

in the red flour beetle Tribolium castaneum. 

First, genes encoding one SK prepropeptide and two SKRs (SKR1 and SKR2) were cloned 

and characterized from T. castaneum. The Tcsk and Tcskr1 were upregulated when the supply 

of food was poor, suggesting that SK signaling is related to the regulation of feeding. 

Next, the function of SK signaling in the regulation of feeding was revealed by the dsRNA-

mediated gene silencing. Individual silencing of Tcsk and Tcskr2 resulted in a dramatic 

increase in the larval food intake of T. castaneum. This observation indicates that SK 

signaling inhibits feeding in T. castaneum. In addition, direct injection of a synthetic sulfated 

SK peptide exerted a drastic reduction on the larval food intake by enhancing the SK 

signaling, supporting that SK signaling inhibits feeding in T. castaneum. 

Remarkably, the silencing of Tcskr1 did not exert an effect as strong as that of silencing of 

Tcsk or Tcskr2, suggesting that TcSKR2 functions predominantly in the feeding-inhibiting 

function. However, other possibilities cannot be excluded, such as the turnover of TcSKR1, 

the functional threshold concentration of TcSKR1 and the compensating mechanisms to the 

loss of TcSKR1.  

1.2. Mechanism of SK in feeding remains to be determined due to the complexity of the 

regulation of feeding 

To study the mechanism of SK signaling, structure-activity relationship (SAR) study was 

carried out in combination of in vivo and in vitro experiments. SK-related peptides were 

synthesized with either substitution or deletion of amino acids compared to the native SK 

peptide. The effect of these peptides on feeding was examined by injecting peptides in vivo; 

the affinity of these peptides to the individual SKRs was examined in a cell-based receptor 
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system in vitro. Some results are consistent in both experiments while the others require 

further investigation. 

Particularly, nsSK-II exerted a similar inhibitory effect as sSK-II on feeding in vivo, 

suggesting that the sulfate moiety is not essential for the regulation of feeding in T. castaneum. 

This is in contrast to the previous studies in desert locust (Wei et al., 2000) and cockroach 

(Maestro et al., 2001), where nsSK showed no activity on inhibiting feeding. In vitro, sSK-II 

activated TcSKR1 and TcSKR2 at concentrations of 1 nM and 10 nM, respectively, while 

nsSK-II was only active at a concentration of 10 μM. Data reported by Zels et al. (2014) on 

the two TcSKRs did however show differences with our results as some activity for nsSK at 1 

uM was observed. Nevertheless, sulfate moiety is proven to be important for SK-II to activate 

TcSKRs. This is consistent with previous studies on Drosophila SKRs (Chen et al., 2012; 

Kubiak et al., 2002). Only one, relatively large dose was applied to compare the SK analogs 

in the in vivo (16 μM) and in vitro (10 μM) experiments, which does not distinguish between 

peptides that have widely divergent potencies. Therefore, the nsSK injected in vivo might be 

at a concentration high enough to activate the SKRs and cause an effect similar to sSK. 

Most of SK-related peptides retained the activity on inhibiting feeding compared to SK-II, but 

most of these peptides lost the activity on TcSKRs. The activation of TcSKR1 required 

DYGHMRF-NH2 with strict match for amino acid content, especially the tetrapeptide HMRF-

NH2. The activation of TcSKR2 required the entire length of FDDYGHMRF-NH2 but was 

tolerant to C-terminal substitution and the length of nsSK-II seemed to be more important 

than the exact amino acid content. Cyclic peptides were inactive in our assay at 10 uM. 

However, Zels et al. (2014) reported significant activity of cyclic peptides on both receptors at 

1 uM, a possible indication that the higher concentrations led to desensitization of the 

receptors. Regardless, the conformational interaction between SK-II analogs and TcSKRs is 

important. 

The C. elegans NLP-13 peptides showed similar activity as nsSK-II on feeding, although they 

only share the Y, M3 and F1. However, NLP-13 peptides showed low affinity to TcSKRs, 

probably because the rest of the C-terminal core differed too much from the insect SKs to 

reach a response level comparable to YGHMRF-NH2 (Zels et al., 2014). C. elegans NLP-12 

peptides, especially the NLP-12b, exhibited an opposite activity to nsSK-II by increasing 

feeding, although NLP-12 did not affect the food intake in nematodes (Janssen et al., 2008). 
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NLP-12 peptides were not as active as SKs, suggesting that they may act on other receptors. 

This requires further studies. 

The mechanism of SK signaling on feeding is not conclusive because the complex situation 

inside the insect body and the non-optimized receptor system. Many factors can lead to the 

discrepancies between experiments in vivo and in vitro. For instance, it is not clear whether 

these SK analogs were further processed in vivo, and what influence these modifications will 

make on the activity of peptides. In addition, the potency of a peptide can not be determined 

based on one dose. 

1.3. Two TcSKRs are predicted to interact with ligand differently due to their distinct 

structures 

In order to investigate the interaction of SK and TcSKRs at the molecular level, in silico 

modeling of TcSKRs and docking of SK analogs were carried out. Both TcSKRs were 

predicted to exhibit structural characteristics of GPCRs with seven transmembrane domains. 

However, the cavities built with the seven transmembrane α-helices in the predicted models of 

the two TcSKRs are with different outer opening. TcSKR1 model possesses a wider outer 

opening allowing peptides to be docked deeper into the cavity, which is not the case in 

TcSKR2 model. As a consequence, the extracellular region and the transmembrane region in 

TcSKR1 can be involved in the binding of ligand while only the extracellular region in 

TcSKR2 is involved in the contact with ligand. Therefore, the two TcSKRs likely display a 

different affinity to various SK and SK analogs.  

The model of SK-SKR complex predicted that the sulfate moiety in sSK contributes to the 

high activity of sSK to SKR. The peptides with the Ala-substitution of SK were modeled 

differently to interact with the two TcSKRs. In general, peptides with Ala-substitution make 

more interactions with the extracellular regions in TcSKR2 than they do in TcSKR1. The 

increased interaction of peptides with the extracellular regions of TcSKR2 seems to be 

involved in diminishing the impact of Ala-substitution, resulting in less loss of the activity of 

SK peptide on TcSKR2 than on TcSKR1 in vitro, although it is not conclusive to simply 

correlate the docking data with the bioactivity. 

The combination of data from feeding (in vivo), cell-based receptor activation (in vitro), and 

modeling and docking (in silico) provides some ideas on the mechanism of SK signaling. 
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First, the sulfate moiety on Y6 in SK is important for the activation of TcSKRs given that sSK 

is at least 1000-fold more potent than nsSK. But, it is not sure yet what occurs to nsSK in the 

organism, because similar activity of nsSK and sSK was observed on inhibiting feeding in T. 

castaneum, although at a relatively high concentration. Second, the C-terminal tetrapeptide 

HMRF-NH2 is important for SK, although YGHMRF-NH2 is more potent. Third, the distinct 

outer opening of the cavity in the model of TcSKR1 and TcSKR2 offers a different binding 

affinity to peptides. 

2. Future perspectives 

2.1. Evolution of sulfakinin(-like) signaling in Metazoa 

Sulfakinin (SK) and its homologs and their receptors are widely spread in metazoans, but the 

knowledge we have of their evolutionary relationships remains unclear. To advance future 

study on the SK(-like) signaling, several topics can be discussed. 

First, the consensus nomenclature and classification of peptides and receptors could be further 

clarified. Coast and Schooley (2011) brought forward a consensus nomenclature for insect 

neuropeptides. The receptors should also be classified especially when there is more than one 

receptor. By then, the identification and study of SK signaling will be less confusing. 

Second, the information on the presence or absence of SK signaling can be complemented. 

The SKR or SK signaling system is missing in many insect species (Chapter I). Absence of 

SK signaling or the components in some insects could be due to the incomplete search or 

annotation in their genomes. For instance, SK peptides or SK precursor genes have been 

identified in several Crustaceans, but the SKR gene has only been found in the water flea 

Daphnia pulex (Johnsen et al., 2000; Torfs et al., 2002). Determining the presence of the SK 

signaling is a precondition to understand the function and evolution of SK signaling among 

animals. 

Third, the evolutionary relationship of SK(-like) signaling within Metazoa can be further 

studied. Generally, SK signaling is a conserved neuropeptidergic signaling system among 

Metazoa. SK(-like) peptides with their receptors have been recognized as coevolving in 

lineages to human, nematodes and arthropods (Mirabeau and Joly, 2013; Taghert and 

Nitabach, 2012). The accumulating genome information among Metazoa offers a good 
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opportunity to conduct the evolutionary study in a comprehensively comparative way. For 

example, phylogenetic analyses will promote the recognition of the origin of SK(-like) 

signaling and the gene duplication/deletion event during evolution; research on the 

neighboring genes and rearrangements of chromosomal regions will also obtain some clues 

for the evolution of SK(-like) signaling. 

2.2. Mechanism of SK signaling 

The mechanism of SK signaling can be further investigated as a continuation of this research. 

First, the cell-based TcSKR system can be optimized for a sensitive performance. The 

properness of the CRE- and NFAT-driven reporter system should be examined carefully. For 

example, the upperstream factors in the CRE binding protein signaling pathway in Sf9 cells 

should be present in order to directly link the change of the intracellular cAMP level to the 

transcription of reporter gene. Change of the intracellular calcium mobilization was not 

detectable in the present study, which could be due to either no intracellular calcium flux 

induced by the activation of TcSKR or the dysfunction of the reporter vector in insect cells. 

Therefore, it is important to find out the reason. For example, a positive control, where the 

calcium mobilization is increased, can be included to determine if the reporter vector 

functions properly in insect cells. In addition, the TcA cell line derived from T. castaneum 

provides another option for host cell line. But the naturally occurring TcSKR in TcA cells 

should be taken into consideration before the cells are employed.  

Second, more molecules involved in the SK signaling could be determined with the improved 

precision of the assay system. Among these molecules, Gα-proteins are the most important. 

This study only focused on Gαs-and Gαq-proteins, while other types of Gα-protein can be 

studied in the follow-up research. 

Third, the interaction between SK and TcSKRs is also interesting to explore. On one hand, the 

active core of SK to activate TcSKRs can be determined by screening more peptides with 

single or multiple amino acid substitution or deletion. On the other hand, the specific residues 

in TcSKRs that interact with SK can be studied by mutating the exogenously expressed 

TcSKRs. The studies are most likely to be performed in cell-based systems. Therefore, 

researchers should be aware of the limitations of in vitro study and to combine the data 

obtained in vitro and in vivo if possible. 
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2.3. Application of SK signaling in pest control 

The regulation of feeding is essential for an organism. Understanding of regulation of feeding 

by the SK signaling in pests such as T. castaneum provides a potential pest control strategy. 

For instance, the active core of SK can be formulated to become a reagent that inhibits 

feeding in pests, which will eventually disturb the development of target pest. nsSK-II 

exhibits similar activity as sSK-II in the present study when they are applied at a relatively 

high concentration, although the exact role and mechanism of the two forms of SK in SK 

signaling is not clear yet. nsSK seems to be a practical candidate of potential pesticide, 

because it is a short peptide and that it does not have the sulfate group, making the synthesis 

and modification of peptide easier and more cost effective than sSK. In addition, because SK 

signaling is conserved in insects, it may be useful for controlling a group of pests; while 

specificity can be obtained after more efforts such as figuring out the diverse N-terminal 

extensions of SK peptides and the species-specific interaction between SK and SKR. 

Many neuropeptides are involved in the regulation of feeding via stimulatory or inhibitory 

activity. Knowledge is hardly complete on these neuropeptides, for example, how these 

neuropeptide signaling pathways function and interact with each other. To obtain more 

information, researchers can apply similar methodologies as to the study of SK signaling.  

Also, new techniques will be developed at the same time, which can be utilized to improve 

the preciseness and sensitivity. 

In conclusion, the current study on SK signaling in T. castaneum provides new primary 

information on its function in the regulation of feeding. The whole picture of SK signaling or 

even neuropeptide networks in the regulation of feeding could be completed with continuous 

effort.  
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Feeding is one of the most basic behaviors for animals, by which food is obtained to provide 

energy and essential nutrients. The regulation of feeding in insects is a complex system in 

which different mechanisms are involved. One of these mechanisms is the neuropeptidergic 

signaling, which has been found to be active in the process. The neuropeptidergic signaling 

systems are conserved during evolution, which facilitates the study of a neuropeptide 

signaling in different species. For example, the cholecystokinin (CCK) is one of the 

neuropeptides that can reduce appetite in veterbrates. A homolog of CCK has been identified 

in insects as sulfakinin (SK) based on the similarity on sequence and function. Insect SK 

proves to be a neuropeptide involved in multiple physiological processes including inhibiting 

feeding in species such as the desert locust and cricket. However, not much is known about 

SK and SK signaling in insects such as the model insect Tribolium castaneum when this 

project started. Besides, understanding the regulation of feeding in T. castaneum may shed 

light on the development of new pest control strategies, because T. castaneum is a notorious 

pest causing damage to stored grain. Therefore, this project focused on the function and 

mechanism of the SK signaling in the regulation of feeding in T. castaneum. 

The study consists of four parts. First, the characterization and function of SK signaling on 

feeding in T. castaneum were studied. The neuropeptide SK and its receptor (SKR) are the 

most important constituents of the SK signaling. One SK precursor gene and two SKR genes 

were characterized via cloning, sequence analysis and transcript profile analysis. Two SK 

peptides were present in the SK precursor gene: Trica-SK-I (QTSDDYGHLRF) and Trica-

SK-II (GEEPFDDYGHMRF). Two TcSKRs (TcSKR1 and TcSKR2) were characterized as 

G-protein coupled receptors (GPCRs) with the typical seven transmembrane domains. They 

were all found in the three developmental stages (larva, pupa and adult) with the most 

abundance in head. Tcsk and Tcskr1 were upregulated when the food supply was poor. The 

function of SK signaling was investigated with dsRNA-mediated gene silencing. SK and SKR 

genes were silenced by specific dsRNAs and a drastic increase in feeding was observed, 

suggesting that SK signaling inhibits feeding in T. castaneum. Remarkably, the silencing of 

Tcskr2 affected the feeding dramatically while the silencing of Tcskr1 was less effective in 

altering feeding. Therefore, TcSKR2 was believed to be more involved in the regulation of 

feeding. In parallel, a direct injection of a sulfated SK peptide reduced feeding, confirming the 

regulatory function of SK on feeding.  
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Second, the activity-structure relationship (SAR) of SK in feeding was primarily investigated 

with a series of synthetic SK-related peptides with amino acid substitution in the C-terminus 

or deletion from the N-terminus. SKs have a conserved C-terminal YGHM/LRF-NH2 

sequence with diverse N-terminal extensions. SKs are present in two forms: sulfated SK (sSK) 

and nonsulfated SK (nsSK), depending on whether there is a sulfate group (SO3H) on Y6 or 

not. T. castaneum SK-II[1-9] (SK-II for short) contains the sequence FDDYGHMRF-NH2. 

Surprisingly, nsSK-II was as active as sSK-II in inhibiting feeding in T. castaneum. This 

suggests either that the sulfate moiety is not critical for the activity with the dose of sSK and 

nsSK used in the in vivo study, which were high enough to activate TcSKRs at least to some 

extent, or that further processing occurs to nsSK-II in vivo. Substitutions such as G5 → A5 and 

M3 → Nle3 in SK led to inactive compounds. The C-terminal tetrapeptides HMRF-NH2 seems 

to be important for SK-II although YGHMRF-NH2 is more potent. C. elegans NLP-13 

peptides exerted similar effect as SK-II while NLP-12 peptides caused an opposit effect to 

SK-II by increasing food intake. However, the active core of SK-II in inhibiting feeding is not 

clear yet, which calls for further efforts. 

Although there was a clear effect in vivo with whole insects, it is hard to interpret the 

observation with the SK(-related) peptides in feeding, because the data obtained are a result of 

a complex of processes more than SK signaling in the organism. It is of interest to ascertain if 

the TcSKRs are capable of stimulating similar effects to that were seen in the whole insect 

and specifically to determine if a particular receptor is capable of differentially activating 

signal transduction on the stimulation by different SK analogs. Therefore, a cell-based 

receptor bioassay was established to investigate the two TcSKRs individually in vitro. TcSKR 

is a G-protein coupled protein and its proper function involves the activation of certain Gα-

proteins. In the established bioassay, Gαs- and Gαq-proteins were the candidates to determine 

the involved Gα-protein. Intracellular cAMP level and calcium motility were used as the 

indicator of the activated Gαs- and Gαq-protein, respectively. It turned out that Gαs-protein 

was active in the SK signaling, leading to the accumulation of intracellular cAMP upon the 

activation of SKRs by SK. No intracellular calcium flux was detected in the bioassay. The 

sulfate moiety on Y6 was of importance for SK to activate TcSKR, as sSK-II was about 1000-

fold more potent than nsSK-II to both TcSKRs in the bioassay. The two TcSKRs responded to 

sSK-II in a dose-response manner, with an EC50 at nanomolar concentration. Moreover, the 

SAR of SK in activating TcSKRs was studied in the bioassay with the synthetic SK-related 
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peptides. The activation of TcSKR1 required DYGHMRF-NH2 with strict match for amino 

acid content, especially the tetrapeptide HMRF-NH2. The activation of TcSKR2 required the 

entire length of FDDYGHMRF-NH2 but was tolerant to the C-terminal substitution and the 

length of nsSK-II seemed to be more important than the exact amino acid content. 

Lastly, the SAR of SK was studied in silico, with the modeling of TcSKRs and docking of 

peptides to the modeled TcSKRs. The three-dimensional structures of both TcSKRs were 

modeled via a modified protein threading strategy. They were similar in the typical seven 

transmembrane structure of GPCR but different in the width of the outer opening of the cavity 

built with the seven α-helices. The predicted structure of TcSKR1 possesses a wider outer 

opening than TcSKR2, which allows peptides to be docked deeper into the cavity. Therefore, 

the extracellular region and the transmembrane region in TcSKR1 are predicted to be 

involved in the binding of ligand while only the extracellular region in TcSKR2 is involved in 

the contact with ligand, which provides an explanation to the different potentials of the two 

TcSKRs to SK analogs. The docking of peptides to TcSKRs shows some insights to explain 

the observed bioactivity of peptide. For example, the Ala-substituted peptides were modeled 

to make more interactions with the extracellular regions in TcSKR2 than they do in TcSKR1. 

The increased interaction of peptides with the extracellular regions of TcSKR2 seems to be 

involved in diminishing the impact of Ala-substitution, resulting in less loss of activity of SK 

peptide on TcSKR2 than on TcSKR1, although it is not conclusive to simply correlate the 

modeling data with the bioactivity. 

The aim of this project was to increase our understanding of the function and mechanism of 

SK signaling in the regulation of feeding in T. castaneum. Further research could continue to 

dig more details on the mechanism of SK signaling, the evolution of SK signaling as well as 

the crosstalk between different neuropeptide signaling pathways. The insights into the 

regulation of insect feeding provide the proper background for an in-depth discussion of 

improving existing and developing new pest control methods such as the potential of nsSK as 

a pesticide. 
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De opname van voedsel, met als doel het voorzien in de energiebehoefte, is één van de meest 

basale processen bij dieren. De regulatie van die proces bij insecten is een complex systeem 

waarbij verschillende mechanismen betrokken zijn. Eén van deze mechanismen is de 

neuropeptiden-signalisatie, dat geactiveerd wordt tijdens het voedingsproces. Deze 

signalisatie-routes zijn evolutionair geconserveerd, wat de studie van neuropeptide-

signalisatie over verschillende soorten mogelijk maakt. Bij vertebraten is cholecystokinine 

(CCK) één van de gekende neuropeptides die het hongergevoel kunnen onderdrukken. Een 

homoloog van CCK dat bij insecten is teruggevonden, is sulfakinine (SK), dat zowel qua 

eiwitsequentie als qua functie sterke gelijkenissen vertoont met de vertebrate CCK. Het is een 

neuropeptide dat betrokken is bij meerdere fysiologische processen waaronder de inhibitie 

van voedselopname in insecten zoals de woestijnsprinkhaan en de krekel. Bij de start van dit 

project was echter nog niet veel bekend over SK bij andere insecten, inclusief in het 

modelorganisme Tribolium castaneum, de kastanjebruine rijstmeelkever. Meer inzicht in de 

regulatie van de voedselopname in deze voorraadbeschadiger kan ons meer inzicht 

verschaffen met het oog op mogelijke plaagbestrijdingsstrategieën. Dit project focust zich 

daarom op de functie en mechanismen van SK signalisatie in de regulatie van voedselopname 

in T. castaneum. 

Deze thesis omvat vier delen. In een eerste deel werd een SK gekarakteriseerd en werd de rol 

van dit neuropeptide bij de signalisatie bij deze voedselopname bestudeerd. Het neuropeptide 

SK en zijn receptor (SKR) zijn de belangrijkste elementen van deze signalisatieroute. Eén gen 

coderend voor de SK precursor en 2 genen coderend voor de receptor SKR werden via 

klonering, sequentieanalyse en transcript profile analyse gekarakteriseerd. Twee SK peptides 

werden teruggevonden in het SK precursor gen: Trica-SK-I (QTSDDYGHLRF) en Trica-SK-

II (GEEPFDDYGHMRF). Twee SKRs (TcSKR1 and TcSKR2) werden gekarakteriseerd als 

G-proteïne gekoppelde receptoren met het typische 7-transmembraan domein. De genen 

kwamen tot expressie in de drie levensstadia (larve, pop en adult) en de hoogste 

expressieniveaus werden geregistreerd in de kop van het insect. Expressie van Tcsk en Tcskr 1 

waren beiden opgereguleerd wanneer de voedselvoorraad schaars was. De functie van SK 

signalisatie werd verder onderzocht met behulp van dsRNA-gemedieerde gensilencing. De 

genen coderend voor SK en SKR werden gesilenced door specifieke dsRNAs en een 

drastische toename aan voedselopname werd opgemerkt, wat suggereert dat SK signalisatie 

de voedselopname in T. castaneum inhibeert. Opmerkelijk was dat ook het uitschakelen van 
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skr2 expressie de voedselopname beïnvloedde , terwijl het uitschakelen van Tcskr1 een 

kleiner effect had. Een directe injectie van het SK peptide reduceerde ook de voedselopname 

en bevestigde dus de inhibitorische functie van SK op de voedselopname. 

In het tweede luik van dit onderzoek werd de activiteit-structuur relatie (SAR) van SK in de 

voedselopname onderzocht met behulp van een reeks synthetische SK (-gerelateerde) 

peptiden waarbij aminozuren werden vervangen in de C-terminus of verwijderd werden ter 

hoogte van de N-terminus. SKs hebben een geconserveerde C-terminus YGHMR/LF-NH2 

sequentie en een variabele N-terminale extensie. SKs kunnen gesulfateerd (sSK) of niet-

gesulfateerd (nsSK) zijn, afhankelijk of er een sulfaatgroep op de Y6 zit. T. castaneum SK-II[1-

9] (kortweg SK-II) bevat de sequentie FDDYGHMRF-NH2.  

Opvallend was dat snSK-II net zo actief bleek te zijn in de inhibitie van voedselopname als 

sSK-II. Dit suggereert ofwel dat de sulfaatgroep niet kritiek is voor de normale activiteit van 

het peptide bij de sSK- en nsSK-dosissen die gebruikt zijn in het experiment en die hoog 

genoeg waren om TcSKRs tot op zekere hoogte te activeren, of dat verdere modificaties zoals 

de sulfatatie verder in vivo nog plaatsvinden. Substituties zoals G5 → A5 en M3 → Nle3 

leidden tot inactieve molecule. De C-terminale tetrapeptides HMRF-NH2 lijken belangrijk te 

zijn voor de werking SK, hoewel YGHMRF- NH2 meer effect heeft. C. elegans NLP-13 

peptiden oefenen een gelijkaardig effect uit als SK terwijl NLP-12 peptiden een 

tegenovergesteld effect hebben als SK, aangezien de voedselopname net verhoogd wordt. De 

actieve kern van SK in het inhiberen van de voedselopname is echter nog niet gekend, wat 

voor verder onderzoek vraagt. 

Het is niet eenvoudig om de observatie in het in vivo experiment met SK (-gerelateerde) 

peptiden te interpreteren, aangezien de bekomen data uiteindelijk het gevolg zijn van 

complexe processen in het organisme die veel meer inhouden dan enkel de SK signalisatie. 

Daarom is het ook interessant om te onderzoeken of de effecten die op het niveau van het hele 

insect te zien zijn, ook te zien zijn op het niveau van de receptor SKR, en meer specifiek om 

te onderzoeken of één bepaalde receptor in staat is om de signaaltransductie, geactiveerd door 

binding van het peptide met de receptor, verder te zetten. Om dit te doen werd een biologische 

toets ontworpen om deze twee SKRs in vitro verder te kunnen onderzoeken. In deze biotoets 

werd een Sf9-cellijn gebruikt als alternatief voor zoogdier-cellijnen. SKR is een G-proteïne 

gekoppeld eiwit. Bij de werking van deze klasse receptoren is de activatie van bepaalde Gα-
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eiwitten cruciaal. Met deze biotoets werd eerst het functionele Gα-eiwit geïdentificeerd, uit 

twee kandidaat-eiwitten Gαs en Gαq. Intracellulaire cAMP-niveaus en calcium-fluxen werden 

gebruikt als indicator voor respectievelijk het geactiveerde Gαs- of geactiveerde Gαq-eiwit. 

Op basis van de accumulatie van intracellulair cAMP na activatie van SKR door SK bleek het 

Gαs-eiwit uiteindelijk de actieve component te zijn in de SK-signalisatie. Geen intracellulaire 

calcium-flux werd gedetecteerd tijdens het experiment. Verder bleek ook de sulfaatgroep op  

Y6 belangrijk te zijn bij activatie van de receptor door SK, aangezien sSK 1000 maal 

effectiever was dan nsSK, voor beide SKRs. De respons van beide SKRs volgde een dosis-

respons verhouding, met een nanomolaire concentratie als EC50. Daarnaast werd met deze 

biotoets, en gebruik makend van de synthetische SK-peptiden, ook de structuur-

activiteitsrelatie van SK bij de activatie van SKR bestudeerd. De activatie van beide SKRs 

bleek een zekere aminozuurlengte binnenin de geconserveerde regio DYGHMRF-NH2 van 

SK te vereisen. 

Uiteindelijk werd de SAR van SK in silico bestudeerd, met de modellering van TcSKRs en 

het dokken van peptiden op de modelstructuur van de receptor. De 3D-structuren van beide 

TcSKRs werden gemodeleerd via de eiwit threading strategie. Beiden vertoonden de typische 

seven-transmembraan-structuur van GPCRs maar verschilden in de diameter van de 

buitenopening van de holte gecreëerd door de 7 alfa-helices. De voorspelde structuur van 

TcSKR1 vertoont een bredere opening dan TcSKR2, wat peptiden toestaat om dieper in de  

holte te binden. Hieruit blijkt dat bij SKR1 zowel de extracellulaire regio, als het 

transmembranaire domein voorspeld worden betrokken te zijn bij de binding van het ligand, 

terwijl dat bij SKR2 enkel de extracellulaire regio blijkt te zijn. We kunnen dus besluiten dat 

beide TcSKRs een verschillend potentieel vertonen voor binding met SK en SK-gerelateerde 

peptiden. Het dokken van peptiden op TcSKR modellen leverde ook inzichten die de 

bioactiviteit van het peptide hielpen verklaren. De sulfaatgroep in sSK bijvoorbeeld, draagt bij 

tot de hoge activiteit van sSK door de binding van het peptide met TcSKR1 te bevorderen. 

Bovendien toonde het dokken van de peptiden van de Ala-substitutie reeks aan dat deze meer 

interacties vertonen met EL regio’s in SKR2 dan in SKR1. De verhoogde interactie van 

peptiden met EL regio’s bij SKR2 blijkt gelinkt te zijn aan het minimaliseren van de impact 

van Ala-substituties, wat resulteert in een verminderd verlies van activiteit van het SK peptide 

op SKR2 in vergelijking met SKR1. Deze docking experimenten kunnen echter niet zomaar 

gelinkt worden aan bioactiviteit, die nog steeds experimenteel bevestigd dienen te worden. 
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Het doel van dit onderzoek was om onze kennis omtrent de functie en mechanismen van SK-

signalisatie en hun betrokkenheid bij regulatie van voedingsopname in T. castaneum, uit te 

breiden. Verder onderzoek kan ons nog meer informatie opleveren omtrent de mechanismen 

en evolutie van SK-signalisatie, alsook de crosstalk tussen verschillende neuropeptide 

signalisatiepathways. Inzichten in de regulatie van het voedingsgedrag van insecten leveren 

een goeie basis voor de ontwikkeling van nieuwe gewasbeschermingsstrategieën, zoals het 

potentieel van nsSK als pesticide, en verbeteringen van de reeds bestaande methoden.  
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