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“We demand rigidly defined areas of doubt and uncertainty!”

Douglas Adams





Dankwoord in C majeur

Maestoso, een lang uitgesponnen V-I beweging do sol do sol do rust sol do.
Tremolo forte in de violen ‘Boem Paukenslag!’ Fermate, het orgelpunt. Stilte
. . . de solist laat zijn instrument zakken.1

Met deze thesis plaats ik een orgelpunt op vier jaar onderzoek. Een weg van
labeur forte en concentratie penseroso afgewisseld met ontspanning obligato,
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libitum) is iets dat ik enorm waardeer.

Maar een doctoraat is geen solowerk. Vier jaar lang, eigenlijk iets langer, ben
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elke stap naar deze finale grandioso. En hiervoor verdienen zij niet minder dan
een eigen lofzang.

Primo, Hendrik en Daniël, mijn promotoren, ik wil jullie bedanken om, in
eerste instantie, mij de mogelijkheid te geven dit doctoraat aan te vatten, maar
belangrijker, voor de steun en het vertrouwen. Ik ben jullie dankbaar voor
de inzichten die jullie mij gaven, voor de geïnvesteerde tijd in het begeleiden,
nalezen, fijnstemmen, hinten en duizend en een andere dingen. Merci! Misschien
wel bijna even belangrijk, maar op een geheel andere manier, was Isabelle,
dirigente van de administratie. Zij zorgde ervoor dat dat er geen valse noten in
allerhande, aanvragen, bestelbonnen, weekstaten of andere partituren stonden,
alles alla misura. Dank je wel! Ik wil ook de nog niet vernoemde leden van
de jury bedanken voor het beoordelen van mijn concours en het aanreiken van
kwalitatieve en waardevolle suggesties.

Secundo, den buro op -T, deze ruimte was mijn thuis in het Technicum de
voorbije vier jaar. Ik heb het zien veranderen: van vier naar zes bewoners,
nieuwe gordijnen, van een naar twee computerschermen/pp, etc. Ik deelde deze
ruimte met fantastische mensen. De enige constante, de tik van de metronoom,
was Arnaut. Samen zijn we aan ons doctoraat begonnen en (bijna) samen
zwaaien we af. ’t Waren plezante jaren. Bijna even constant, maar niet echt,
was Sam. Toen ik toekwam was er Sam en nu ik wegga zijn er twee Sams
(Sam de vader, zonder zoon en purple heart Sam, Sam de oudere en Sam de
jongere, de synoniemen zijn legio). En niet te vergeten, Wouter, met wie ik niet
enkel een onderzoeksonderwerp, maar blijkbaar ook een niet zo heel erg verre
voorouder deel. En last (toegekomen), but not least, Arne en Niels, die de sfeer

1Deze muzikale leidraad laat me toe om Italiaanse woorden in deze tekst te smokkelen
als dank voor de lekkere koffie van de Italiaanse enclave op -T
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in den buro een eigen twist gegeven hebben. Het was een fijn een bureau met
jullie te delen.

Tertio, ‘den buro’ was niet de enige die voor de goede sfeer zorgde. Bart, Freek
en Mykola waren de oorzaak van menig weddenschap, de componisten van
‘International Thursday’ (aka ‘Saint-Mykolai Day’), ‘Pita Woensdag’ en ‘Social
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zal iemand anders moeten zoeken om naar ‘Jazz in het park’ te gaan. Giorgos,
bedankt voor de diepgaande discussies allerhande. De ‘nieuwe lichting’, het is
aan jullie om de tradities in ere te houden en door te geven aan de toekomstige
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Samenvatting

Vele fysische fenomenen kunnen gevat worden in enkele elegante vergelijkingen.
Meestal wordt het pas ingewikkeld wanneer men probeert om die vergelijkingen
op te lossen. Elektromagnetisme is zo een onderzoeksdomein waarin een eenvou-
dig stelsel van gekoppelde vectoriële differentiaalvergelijkingen in het algemeen
analytisch onoplosbaar is. De wiskunde biedt gelukkig een andere aanpak om
deze vergelijkingen op te lossen. Met behulp van numerieke technieken kunnen
Maxwells vergelijkingen nauwkeurig genoeg opgelost worden om de fysieke
werkelijkheid accuraat genoeg te beschrijven. In de laatste honderd jaar werden
een aantal populaire numerieke methodes ontwikkeld, elk met hun eigen sterktes
en zwaktes. Het doel van deze en vele andere onderzoeksinspanningen is om de
algoritmische sterkte van (een van) deze methodes te verbeteren en de zwaktes
ervan weg te werken.

Tegenwoordig worden alledaagse voorwerpen slimmer en slimmer. Het bekendste
voorbeeld is de alomtegenwoordige smartphone. Ook slimme thermostaten,
koelkasten en wasmachines krijgen meer en meer aandacht. Veel minder bekend
zijn de intelligente antennesystemen, een belangrijk onderzoeksdomein voor
INTEC’s2 elektromagnetisme groep. Deze intelligente antennesystemen worden
gemaakt op nieuwe materialen zoals (geleidend) textiel, bevatten geïntegreerde
elektronische circuits en kunnen hun stralingspatroon vervormen. Om deze
eigenschappen te kunnen realiseren, worden kleine niet-lineaire elektronische
componenten geïntegreerd naast grotere antennes. Zoals verderop zal worden
uitgelegd, kan dit soort antennes zeer goed gesimuleerd worden met de Eindige-
Differenties-in-het-Tijdsdomein methode (the Finite Difference Time Domain
method (FDTD)). Tenminste als eerst een specifiek probleem wordt opgelost.

De FDTD methode, een numerieke methode geïntroduceerd door Kane Yee in
1966, heeft enkele voordelen bij het simuleren van geïntegreerde, ingewikkelde
systemen. Ten eerste, FDTD is een expliciete methode. Dit betekent dat
ze geen dure matrix inversie vereist. Dit maakt ze uitermate geschikt voor
het simuleren van een groot aantal onbekenden. Daarenboven is FDTD zeer
parallelliseerbaar. Dit resulteert in grote snelheidswinsten tijdens het simuleren.
Ten tweede, FDTD opereert in het tijdsdomein. Dit betekent dat om niet
lineaire karakteristieken te gebruiken in het lineaire frequentie domein, ze niet
polynomiaal benaderd hoeven te worden. Ze kunnen dus direct in de methode
geïncorporeerd worden. Langs de andere kant heeft standaard FDTD een groot
nadeel. Het algoritme vereist dat er uniforme cellen gebruikt worden in het
volledige rekendomein. Dit betekent dat de keuze van de celgrootte uiterst

2vakgroep Informatie Technologie, universiteit Gent



viii Samenvatting

belangrijk is. Men probeert om kleine componenten accuraat te modelleren
zonder het aantal cellen onnodig op te blazen. Als men, aan de ene kant, te kleine
cellen kiest, zal de nauwkeurigheid van de simulatie groot zijn, maar wordt het
aantal cellen onhandelbaar. Langs de andere kant, als men de celgrootte te groot
kiest, zal men snel resultaten verkrijgen, die dan wel onnauwkeurig zijn. In deze
thesis wordt een strategie voorgesteld om deze evenwichtsoefening te omzeilen.
Als men de voorwaarde versoepelt om uniforme cellen te gebruiken, kunnen de
celdimensies aangepast worden en kan men de specifieke geometrische vereisten
van het systeem beter modelleren. De variabele celgrootte heeft als aanvullend
voordeel dat het ook de grootte van benaderingsfouten kan verkleinen. Het
voorgestelde ‘arbitrair onderverdelen van roosters’, bouwt op concepten uit de
differentiaalmeetkunde en de eindige elementen methode (the Finite Element
method (FE)). Uiteindelijk resulteert dit in een nieuw, verbeterd algoritme dat
expliciet, stabiel en reciproque is. Het laat nauwkeuriger modelleren toe zonder
last te hebben van een exploderend aantal roostercellen.

De techniek die ontwikkeld werd voor het verfijnen van cellen in FDTD werd
uitgebreid zodat deze ook toepasbaar is op de Perfect Aangepaste Laag (Perfectly
Matched Layer (PML)) begrenzing van het rooster. Sinds de ontwikkeling van
de PML door Jean-Pierre Bérenger in 1996, werd het de de facto standaard om
FDTD roosters te beëindigen. De reflecties veroorzaakt door PML’s zijn vele
ordes kleiner dan die veroorzaakt door concurrerende algoritmes. De kost voor
het gebruiken van PML’s ligt in het feit dat het rekendomein erdoor vergroot
wordt en dat de update vergelijking ervan kostelijk is. Maar dit is slechts een
lage prijs voor de betere performantie. Het verfijnen van PML-cellen maakt
het enerzijds mogelijk om het rooster op elke plaats te begrenzen met een
PML met exact dezelfde discretisatie als het rooster. Op die manier worden de
geïntroduceerde fouten op de rooster/PML-interface tot een minimum beperkt.
Anderzijds biedt het vergroven van PML-cellen de mogelijkheid om het aantal
PML-cellen en dus het aantal dure update vergelijkingen te verminderen. Het
algoritme kan dus gebruikt worden voor het verhogen van de nauwkeurigheid
van de simulatie en voor het verminderen van de rekentijd.

Verschillende voorbeelden van celverfijning bij zowel gewone roosters als bij
PML-roosters werden onderzocht. Daarbij werd gefocust op valse reflecties
veroorzaakt door de roosterverfijning of door de PML’s. Er werd opgemerkt dat
celverfijning parallel aan de verfijningsinterface duidelijk meer reflecties veroor-
zaakt dan verfijning loodrecht op de interface. Dit resultaat kan doorgetrokken
worden naar het verfijnen van PML-roosters. Het loodrecht vergroven van
PML-cellen veroorzaakt slechts een fractie meer reflecties dan het gebruik van
uniforme PML-cellen. Parallelle vergroving, introduceert veel meer reflecties.
Deze resultaten werden gevalideerd door uitgebreide simulaties. Naast deze
theoretische voorbeelden werd ook de karakteristieke impedantie van een diffe-
rentieel striplijnpaar en een microstrip gesimuleerd. Dit om de nauwkeurigheid
van de methode op een praktisch probleem te testen en om te bevestigen dat
de nieuwe methode een wezenlijke versnelling van uitvoering en vermindering
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van het benodigde geheugen kan bereiken.

In het tweede deel van deze thesis werd onderzoek gevoerd naar draadloze
vermogenstransmissie (Wireless Power Transmission (WPT)) via ultra breed-
band (Ultra Wide Band (UWB)) antennes. Recentelijk heeft WPT weer aan
interesse gewonnen met onder andere het draadloos opladen van smartphones.
Het onderzoeksveld, bestaande uit verre veld en nabije veld WPT is eigenlijk
veel ouder. Onderzoek naar nabije veld WPT wordt al uitgevoerd sinds men
transformators is beginnen gebruiken. Verre veld WPT beleefde zijn glorie-
jaren in de jaren 60 en 70. Ruimtevaartorganisaties deden onderzoek naar
het oogsten van zonne-energie in de ruimte en het neerstralen ervan naar de
aarde en William Brown voorzag een op afstand bestuurbare modelhelikopter
van vermogen door middel van microgolven. Vandaag worden meer praktische
toepassingen beoogd. Verre veld WPT toepassingen omvatten het draadloos
voeden van moeilijk te bereiken, gedistribueerde sensornetwerken, kabelvrije
bureaus en (passieve) Radio Frequency IDentification (RFID) labels.

Vroeger werd verre veld WPT beschreven met behulp van de Friis transmis-
sieformule. De relatie tussen verzonden en ontvangen vermogen verandert
echter wanneer men gebruik maakt van UWB antennes of wanneer men in een
multipad omgeving werkt. De nieuwe techniek die in deze thesis voorgesteld
wordt, vertrekt van een raamwerk waarin alle bouwblokken (zender, kanaal
en ontvanger), wiskundig van elkaar gescheiden worden zodat ze ad libitum
uitgewisseld of vervangen kunnen worden. De gekozen aanpak vertrekt van
een frequentieafhankelijke, amplitudegebaseerde beschrijving van de zender, de
ontvanger en het vrije ruimte kanaal. In de volgende stap wordt het vrije ruimte
kanaal vervangen door een kanaal in een multipad omgeving. De voorgestelde
methode houdt rekening met de frequentieafhankelijkheid van alle betrokken
grootheden en de frequentieafhankelijkheid van de transmissie- en reflectiecoëf-
ficiënten van het kanaal. Nadat de transferfunctie van elke bouwsteen bepaald
is, kan het complete probleem gesimuleerd worden door het correct combineren
van de bouwblokken.

Om de methode te valideren werd de link tussen een UWB antenne op het men-
selijk lichaam en eenzelfde UWB antenne in een multipad omgeving onderzocht.
Merk op dat het onmogelijk was om de volledige set-up te simuleren. Daarvoor
was een te grote rekenkracht nodig. Het was ook niet mogelijk om de volledige
configuratie na te bootsen in de anechoïsche kamer. Om een oplossing voor het
probleem te bekomen, moest een slimme combinatie van metingen en simulaties
gebruikt worden. In eerste instantie werd er een vrije ruimte referentieoplossing
gesimuleerd op een korte, nog net simuleerbare afstand van 0.75m. Daarna
werd het kanaal vervangen door een kanaal van 5m. Daarnaast werd ook
een referentiemeting gedaan over een afstand van 5m. Vervolgens werd deze
antennelink gereconstrueerd door kanaalsimulaties en stralingspatroonmetingen
en -simulaties te combineren. De gereconstrueerde oplossing werd veel sneller
verkregen dan de referentieoplossing en sloot er ook goed bij aan. Daarna werd
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een multipad, off-body antennelinkconfiguratie geconstrueerd door op gepaste
wijze metingen en simulaties van een multipadkanaal en stralingspatronen van
de antenne in de vrije ruimte en in de nabijheid van het menselijke lichaam te
combineren. Uiteindelijk werd met behulp van de hierboven verkregen oplossing
de ideale locatie bepaald waar men de meest optimale vermogensoverdracht
heeft, rekening houdend met een groot aantal reflecties en het schaduweffect
van het menselijk lichaam.



Summary

Lots of physical phenomena can be caught in a few elegant equations. Things
become tougher, when one tries to solve those equations. Electromagnetism is
such a research domain governed by a simple set of coupled vectorial differential
equations that is analytically unsolvable in the general case. Fortunately,
mathematics offers a different tool set to tackle these problems. Using numerical
techniques, Maxwell’s equations can be accurately approximated to obtain
simulation results that describe physical observations at a more than acceptable
level. A few popular numerical schemes have been developed in the last century,
each with its strengths and weaknesses. The goal of this and many research
efforts is to extend the algorithmic strengths and reduce the weaknesses of (one
of) those methods.

Nowadays, everyday objects become smart, such as the ubiquitous smart phone,
smart thermostats, one talks about smart refrigerators and washing machines,
but less known are smart antenna systems, a major research field in the INTEC3

electromagnetism group. These smart antenna systems come with integrated
circuits, are built on novel materials such as (conductive) textiles and can
perform radiation pattern shaping. To realize such features, very small, non-
linear electronic components have to be integrated beside larger antennas. As
will be explained shortly, these types of antennas are well-suited to be simulated
using the Finite Difference Time Domain method (FDTD), if it wasn’t for a
minor issue that first should be mitigated.

FDTD, a numerical method introduced by Kane Yee in 1966, has some advan-
tages to simulate these integrated, intricate systems. First, FDTD is very well
suited to simulate a very large numbers of unknowns, because it is an explicit
method. This means it does not need a costly matrix inversion. Moreover,
FDTD is highly parallelizable, allowing for large speed-ups of the simulations.
Second, FDTD operates in the time domain, meaning that non-linear charac-
teristics do not have to be approximate polynomially to be used with the linear
frequency domain. Therefore they can be included in a straightforward manner
into the method. Conventional FDTD, however, has one major drawback. The
algorithm requires uniform cells in the complete calculation domain. Therefore,
the selection of the cell size is of paramount importance. One wants to model
the small components accurately without unnecessary inflating the number of
cells. On the one hand, selecting a too small cell size results in high accuracy
but, an untractable amount of cells. On the other hand, selecting a too large
cell size yields fast, but inaccurate results.

3Department of Information Technology, Ghent University



xii Summary

In this thesis, a mitigation strategy for this trade-off will be presented. By
relaxing the uniform cell requirement, cell sizes can be varied to suit particular
geometrical demands of the system to be modelled. An additional benefit of
this adaptive cell size is the reduction of approximation errors (also known as
staircasing errors). The presented ‘arbitrary subgridding’, builds on a framework
with concepts from differential geometry and the Finite Element method (FE).
Finally, this results in a novel, improved algorithm, that is explicit, stable and
reciprocal. This allows for more accurate modelling using locally refined meshes
without the unwanted explosion in the number of cells.

The strategy developed for the subgridding of FDTD meshes was also extended
to the Perfectly Matched Layer (PML) termination of the grid. A PML is the
de facto standard for FDTD mesh termination since its introduction in 1996 by
Jean-Pierre Bérenger. PMLs exhibit reflections that are orders of magnitudes
smaller than those caused by competing algorithms. The cost of PMLs lies in the
enlargement of the calculation domain and the expensive update equation. But
this is just a small price to pay for the improved performance. The subgridding
of PMLs allows, on the one hand, for a PML with the exact same discretization
as the grid it terminates. This reduces the errors at the mesh/PML interface.
On the other hand, a subgridding strategy for PMLs opens up the possibility to
reduce the number of expensive PML cells by unrefining the PML with respect
to the mesh. The algorithm can thus be used for improving accuracy or for
reducing calculation times.

Several subgridding examples of both standard meshes and PML meshes have
been investigated, with a focus on spurious reflections caused by the subgridding
and/or the PMLs. It has been observed that cell refinement parallel to the
subgridding interface causes substantially more reflections than cell refinement
normal to this interface. This result can be extended to PMLs. Tangentially
unrefining the PML introduces little additional errors compared to a uniform
PML, this contrary to normal unrefinement. This result has been verified by
extensive simulations. Next to these rather theoretical examples, the character-
istic impedance of the modes of a differential stripline pair and a microstrip
have been simulated, to verify the accuracy of the method in a real life problem.
They were also used to quantify the substantial speed-up factors and memory
reductions that can be obtained using the novel algorithm.

In the second part of this thesis, Wireless Power Transmission (WPT) using
Ultra Wide Band (UWB) antennas was researched. WPT attracted renewed
attention with wireless charging of smart phones. However, the research field,
consisting of near field and far field WPT, is much older. Near field WPT
has been researched since the use of transformers. Far field WPT research
peaked in the ’60 s and ’70 s. Space agencies conducted research into solar
power harvesting, whose energy is beamed down to earth, and William Brown
powered a remote model helicopter using microwaves. Nowadays more practical
applications are aimed at. Far field WPT applications include the wireless
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powering of hard to reach, distributed sensor networks, cable-free desks and
(passive) Radio Frequency IDentification (RFID) tags.

Historically, far field WPT was described using the Friis transmission formula.
However, this relation between transmitted and received power does not hold any
longer when it concerns UWB antennas and multipath propagation. The novel
technique presented in this thesis starts from a framework in which all building
blocks (transmitter, channel and receiver), are mathematically separated, so
building blocks can be taken out, swapped and/or replaced ad libitum. The
taken approach starts from a frequency-dependent, amplitude-based description
of the transmitter, the receiver and the free space channel. In a next step, the
free space channel is replaced by a multi-reflection environment. The presented
method takes into account the frequency dependency of all involved entities, as
well as the frequency dependency of all reflection and transmission coefficients
of the channel. After the transfer function of each building block is determined,
the complete set-up can be simulated using the correct combination of blocks.

To validate the method, the transmitted power from a UWB antenna placed
near the human body to an identical antenna in a multipath environment was
studied. Note that it was impossible to entirely simulate the configuration
under study due to the too large computational domain needed. Neither was
it possible to exactly recreate the set-up in the anechoic chamber. In order to
obtain a solution for the configuration, a smart combination of measurements
and simulation data was used. First a reference solution in free space was
created, by simulating an antenna link over a distance of 0.75m, which could
still be simulated. Next the channel was replaced by a free space channel of 5m.
Additionally, a reference measurement was done by measuring the free space
antenna link over a distance of 5m. Next this antenna link was reconstructed
by combining channel simulations and radiation pattern measurements and
simulations. It was found that the reconstructed solution was obtained much
faster than the reference solution. Moreover, it was in good agreement with
the reference solution. Then, a multipath, off-body antenna link configuration
was constructed by carefully combining measurement and simulation results of
the multipath channel, the on-body and free space radiation pattern. Finally,
using the solution above, the location for optimal power transmission in the
multipath environment was quickly determined, taking into account a multitude
of reflections and shadowing by the human body.
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Introduction

Electromagnetic radiation is ubiquitous. With wavelengths ranging from pi-
cometres (gamma-rays) to 100 000 kilometres (Extremely Low Frequency), it is
a research field that spans many radiation types with very diverse properties.
In practice, this results in applications ranging from the Fermi Gamma-ray
Space Telescope to Very Low Frequency submarine communications, but also
the omnipresent smart phone, X-ray imaging, light bulbs and leds, lasers and
microwave ovens. Nevertheless, their operation can be described by a simple
set of equations, known as Maxwell’s equations.

1 Maxwell’s equations
The single largest milestone in the scientific field of electromagnetism is the work
of James Maxwell (1831–1879), a Scottish mathematical physicist. He published
a set of ground breaking publications on the unification of electricity, magnetism
and optics (also referred to as the ‘second great unification in physics’, the first
being the work of Sir Isaac Newton).
In a first important tetralogy of papers, ‘On Physical Lines of force’ [1] (1861),
Maxwell built on the theoretical work of Michael Faraday and the experiments
of Wilhelm Weber and Rudolf Kohlrausch to derive his famous set of equations
(although as part of larger set of twenty equations). In his publication ‘A
Dynamical Theory of the Electromagnetic Field’ [2] (1865) he also derived the
wave equation from his previously presented equations, thereby showing that
electromagnetic waves travel at the speed of light. Maxwell’s equations as we
know them and as given by (1) below, were written down by Oliver Heaviside
in 1884.

∇×E(r, t) = −∂tB(r, t) (1a)
∇×H(r, t) = ∂tD(r, t) (1b)
∇ ◦B(r, t) = 0 (1c)
∇ ◦D(r, t) = ρ(r, t) (1d)

B, D, H and E are vector quantities representing the magnetic and electric
flux density and the magnetic end electric field strength, respectively, ρ is the
electric charge density, t is the time variable and r is the location vector. The
time and location dependence of all involved quantities will most often be
suppressed.
These equations are often complemented by what is known as the constitutive
equations (2), which formulate a relation between B and H-fields and between
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ε1, µ1

ε2, µ2 js

ρs

un

Figure 1: Interface between two media characterized by ε1, µ1 and ε2, µ2,
respectively. On the interface surface currents js and surface charges ρs may
exist. The electric and magnetic fields have to obey the boundary conditions as
stated in (3).

D and E-fields.

B(r) = µH(r) (2a)
D(r) = εE(r) (2b)

with µ = µrµ0, the permeability of the material as the product of the relative
permeability (µr) and the permeability of free space (µ0 = 4π × 10−7 H/m)
and ε = εrε0, the permittivity of the material as the product of the relative
permittivity (µr) and the permittivity of free space (ε0 ≈ 8.8542× 10−7 F/m).
The differential formulation, presented in (1), tacitly assumes that on the
interface between two media, illustrated by Fig. 1 some boundary conditions
are met. More specifically

un × (E1 −E2) = 0 (3a)
un × (H1 −H2) = js (3b)
un ◦ (D1 −D2) = ρs (3c)
un ◦ (B1 −B2) = 0 (3d)

where js and ρs are the surface current density and the surface charge density,
respectively.
Throughout the years, a lot of new formulations have been presented. Notable is
the formulation using the differential geometry framework, as briefly introduced
in chapter 2. Throughout this dissertation two different formulations will be
used. In part I, a normalized version of Maxwell’s equations will be used,
as opposed to part II, where the above presented formulation is used. The
normalization will be clearly expressed at the appropriate time. The physical
quantities together with their units, found in the ‘List of Symbols’, refer to
unnormalized physical quantities. Their normalized versions are not included
in that list. On the more practical side, Maxwell’s equations are too complex to
solve analytically in a straightforward way. Therefore, some numerical approach
is used to approximate the exact solution as close as possible. Three major
approaches exist, the Finite Difference Time Domain method (FDTD), the Finite
Element method (FE) and the Method of Moments (MoM). Neither of them is
generally better than the others. The method of choice is largely dependent on
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the type of problem one wants to solve (and secondary on the available software).
These all-purpose solutions perform well, but are usually expensive in terms of
time, resources, and more literally in the purchase of hardware and software. It
needs no saying that plenty of specialist applications have been developed that
are only useful for specific problems. These applications reduce costs by making
thoughtful assumptions and simplifications to the interpretation of Maxwell’s
equations. This second type of applications, although less generally applicable,
will provide (almost) equally accurate results at a fraction of the cost (regarding
time and resources). Trying to get the best of both worlds, hybrid methods,
combining both approaches, are developed as well. A very specific example is
the use of the Friis transmission formula [3] to calculate the power received at
one end of an antenna link given the antenna characteristics, the free space
channel and the power transmitted at the other end. This quantity can be
perfectly calculated using Maxwell’s coupled vectorial differential equations, but
a much faster accurate solution is obtained by the above mentioned formula.

2 Outline
This thesis consists of two major parts. The first part is dedicated to enhance-
ments of the FDTD method. The first chapter provides an introduction to
the mathematical concepts of finite differences and applies them to Maxwell’s
equations, in order to derive the conventional FDTD scheme. Some insights
into to the stability of the method and the dispersion errors introduced by it,
are given. The second chapter provides a concise introduction to differential
geometry, because the subgridding of FDTD can be very elegantly expressed
in this formalism. In the third chapter, an extended subgridding technique
is presented. This technique allows for the use of non-uniform cells. A sepa-
rate section is dedicated to the influence of these mesh irregularities on the
excitation of spurious reflections. Additionally, the subgridding is extended
towards Perfectly Matched Layers (PMLs) and again the excitation of spurious
reflections is investigated. Although theoretically possible, subgridded PML
corner regions are not extensively researched. Subgridding corner regions must
be carried out with great care, in order not to suffer from too large spurious
reflections. Finally this chapter concludes with the simulation of a microstrip
and a differential stripline pair to verify the accuracy of the method as well as
to quantify the time and memory gains that can be achieved.
The second part starts with an introductory chapter on antenna characteristics,
Ultra Wide Band terminology and the Friis transmission formula, the most
important formula in far field Wireless Power Transmission (WPT). The second
chapter in this part, extends the previously introduced concepts towards WPT
over Ultra Wide Band (UWB) antenna links, taking into account shadowing
by the human body and multipath propagation. In this chapter, far field
WPT is numerically evaluated for these environments, while introducing a
framework that performs these calculations on a modular basis. The framework
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allows the use of datasets obtained from various sources, such as measurements,
simulations and/or models. This chapter concludes with the calculation of the
most interesting position for receiving wireless power in a free space and a
multipath environment.

A final chapter in this thesis highlights possible extensions to the presented
work and plausible future research paths.
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Part I
Arbitrary subgridding in the

Finite Difference Time Domain
method

The Finite Difference Time Domain method is one of the major
mathematical techniques to simulate full wave electromagnetic prob-
lems. Since it has been introduced in 1966 by Kane Yee, the number
of contributions related to this topic has been increasing year by
year. It’s straightforwardness, explicitness and the fact that it’s
easily parallelizable, made it a popular choice in many research fields
including electromagnetism. Unfortunately, the mandatory use of
uniform cells has been an impediment on its expanding use. The
presented contribution to the vast literature on the Finite Difference
Time Domain method removes the stringent requirement on cell
dimensions by allowing very general, almost arbitrary subgridding
of mesh cells, thereby opening up the use of the Finite Difference
Time Domain method to whole new problem sets.





1
Introduction to the Finite

Difference Time Domain method

Æ Æ Æ

The Finite Difference Time Domain method is an algorithm used to
accurately discretize differential equations. Within the field of elec-
tromagnetism it is an often used algorithm for full wave simulation.
Unsurprisingly, it is part of renown software suites as Computer Sim-
ulation Technology’s Microwave Studio® and Keysight Technology’s
EMPro 3D EM Simulation Software®. Its straightforward mathe-
matical principles are most easily explained using a vector calculus
notation. In this chapter an introduction to all necessary concepts
will be provided as well as to the interpretation of Maxwell’s equa-
tion within this framework. Furthermore a summary listing of the
important properties of the Finite Difference Time Domain method
will be discussed.

1.1 Introduction
Maxwell’s equations, as presented in section 1 of the introductory chapter,
are a set of coupled differential equations. In general they cannot be solved
analytically, not by a simple computer nor by a computing cluster, let alone
by pen and paper. The remaining approach is to numerically approximate
this set of very intricate equations. If the approximation is fine enough, and
consequently the introduced errors are small and/or negligible, the supplied
solution will be a good enough representation of the reality.
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Three major techniques exist to approximate Maxwell’s equations: the Finite
Element method (FE), the Method of Moments (MoM) and the Finite Difference
Time Domain method (FDTD). All these techniques exist in many a colour and
flavour, and they all have specific problem types they solve best. Nevertheless,
these techniques are all suited to solve full wave 3D electromagnetic problems
and are part of many commercial software packages.

FDTD, the method of choice in this thesis, is a numerical method first described
by Kane Yee in 1966 [1]. Contrary to its competitors, FDTD is exceptionally
well suited to simulate very large structures because the method does not involve
taking the inverse of a (large) matrix (which scales badly with increasing matrix
size). This lack of a matrix inversion, together with the relative independence
of the mesh cells, allows for massively parallelization of the FDTD calculations.
This is another reason to use this method for the simulation of large problems.
A third major advantage of FDTD is that it runs in the time domain (TD).
This means that it does not rely on the linear Fourier transform and, therefore,
can simulate non-linear devices without making linear approximations.

On the downside, FDTD uses a uniform mesh of cuboidal cells. This does not
allow for the accurate modelling of structures that are not aligned with the
mesh, such as cylinders and other curved objects. Attempting to simulate such
ill-suited structures results in so called staircasing errors. To reduce this type of
error, the cell size has to be reduced at the cost of an exploding number of cells
(the number of cells scales with O

(
N3) with respect to the 1D cell size). Another

consequence of the obligatory use of uniform cells is the conflict introduced
when simulating electrically small devices in large domains. In order to achieve
a certain accuracy, the mesh cells have to be adequately small to accurately
model the small devices. On the other hand, to limit the computation time
and the computational resources, the number of cells needed to fill the large
domain has to be kept to a minimum. Hence, the trade-off between larger and
smaller cells. Additionally, if a mesh cell’s dimension is scaled down by a factor
two, so is the time step. Therefore, the computation time scales with O

(
N4)

relative to the 1D cell dimension.

Most of the scaling problems can be handled by introducing arbitrary subgrid-
ding into the method. Not only does this reduce the number of cells significantly
when simulating small devices in large domains, it also allows for using opti-
mized cells that best approximate the elements to be modelled. This arbitrary
subgridding will be subject of the research in this thesis and will be tackled in
chapter 3.

FDTD as presented by Yee builds upon some mathematical techniques, which
will be introduced shortly. These techniques will then be applied to Maxwell’s
equations.
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1.2 Normalized Maxwell’s curl equations
In this part of this dissertation, a normalized version of Maxwell’s equation is
used. To do so, we introduce

Ê = √ε0E D̂ = (√ε0)−1
D (1.1a)

Ĥ = √µ0H B̂ = (√µ0)−1
B (1.1b)

resulting in altered constitutive relations, given below

D̂ = εrÊ (1.2a)
B̂ = µrĤ (1.2b)

Consequently, Maxwell’s curl equations can be rewritten as

−∂tB̂ = 1
c
∇× Ê (1.3a)

∂tD̂ = 1
c
∇× Ĥ (1.3b)

with c =
(√
ε0µ0

)−1 the speed of light in free space. Now, replace the partial
time derivative with a partial derivative with respect to τ = ct, to obtain

−∂τ B̂ = ∇× Ê (1.4a)

∂τ Ê = 1
εrµr

∇× B̂ , (1.4b)

the normalized version of Maxwell’s curl equations as used throughout part I.
From here on the hat will be dropped from the notation.

1.3 Finite differences
In order to numerically simulate the continuous Maxwell equations, they have
to be discretized. FDTD outlines a procedure to do exactly this. First, the
computational domain is divided into cuboids. The (discrete) samples of the E
and B-fields are positioned on the edges and the faces of the cuboids, respectively.
Next, one has to define a discrete variant of the curl that can operate on the
discrete field samples. Finally, E and B-fields are updated on (distinct) time
instances alternately, until an external stop condition is met.

1.3.1 Central differencing
The continuous curl (∇×·) is constructed from a set of partial spatial derivatives.
Each derivative (dy(x)/ dx) is approximated by taking the relative difference
between two points, ∆y/2∆x, as illustrated by Fig. 1.1. The discrete derivative
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∆y

2∆x

x−∆x x+∆x

y(x+∆x)

y(x−∆x)

x

dxy(x)

Figure 1.1: central differencing approximation of the derivative dxy(x), by
taking the ratio ∆y/2∆x (see (1.7)

is located at the midpoint of the two points. A more rigorous definition and
derivation is given below.

Starting from a second order Taylor series expansion of the continuous function
y at location x+∆x and x−∆x with corresponding errors term ε+ and ε− as
given by

y(x+∆x) = y(x) + dxy(x) ·∆x+ 0.5 dxxy(x) · (∆x)2 + ε+ (1.5a)
y(x−∆x) = y(x)− dxy(x) ·∆x+ 0.5 dxxy(x) · (∆x)2 + ε− (1.5b)

and after subtracting the second equation from the first, this results in

y(x+∆x)− y(x−∆x) = 2 dxy(x) ·∆x+ ε+ − ε− (1.6)

Rearranging the terms and discarding the error terms yields the discrete central
differencing approximation of the continuous derivative.

dxy(x) = y(x+∆x)− y(x−∆x)
2∆x = ∆y

2∆x (1.7)

Typically, this last equation is applied with ∆x/2 instead of ∆x. This means
that the derivative calculated from sample points at locations i∆x and (i+ 1)∆x
is located in between at location (i+ 0.5)∆x. Following the popular choice of
collocating the E-fields with the edges of the cuboidal mesh, implies, because
of the use of central differencing, that the B-fields are located at the centre
of the faces of the cuboidal mesh. This means that E and B-fields are always
separated by half a cell as is illustrated by Fig. 1.2. Note also that in (1.6) the
second order derivative has disappeared. Therefore this technique is second
order accurate. Now, this knowledge will be applied to Maxwell’s curl equations,
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Figure 1.2: a standard Yee cell, with indicated positions of the nodes, E-
fields (red) on the edges and B-fields (green) on the faces. Abstraction
is made of the cell dimensions and superscript + indicates an increase of
the corresponding index with 0.5. Thus [i+, j, k++] is the concise form of
[(i+ 0.5)∆x, j∆y, (k + 1)∆z].

repeated below for convenience,

−∂τB(r, t) = ∇×E(r, t) (1.8a)

∂τE(r, t) = 1
εrµr

∇×B(r, t) (1.8b)

with τ = ct, the product of the speed of light and the time variable t, and εr
and µr the relative permittivity and the relative permeability of the background
medium, respectively. Remember, although τ represents a distance rather than
a time variable, it will often be referred to as a time variable since it replaces ‘t’
and people are used to a time derivative in Maxwell’s equation.
Next, central differencing is applied to the x-component of both the E and
B-fields

−∂τB[ij+k+]
x =

(
E

[ij++k+]
z − E[ijk+]

z

∆y
− E

[ij+k++]
y − E[ij+k]

y

∆z

)
(1.9a)

∂τE
[i+jk]
x = 1

εrµr

(
B

[i+j+k]
z −B[i+j−k]

z

∆y
− B

[i+jk+]
y −B[i+jk−]

y

∆z

)
(1.9b)
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The location indices of the E and B-fields are counted as multiples of ∆x,
∆y and ∆z. The superscript + is used to indicate a shift with 0.5, thus i+ is
short hand for (i+ 0.5)∆x and j++ is short hand for (j + 1)∆y. Analogously, a
superscript − is used for a shift with −0.5. One can clearly see that the update
of an E-field requires the value of its four neighbouring B-fields and vice versa.

The equations in (1.9) are called semi-discrete, because only the spatial com-
ponent is discretized, while the temporal component remains continuous. The
expressions for the ith-component of the curl (between large brackets in (1.9))
above will often be written as (∇×E)i and (∇×B)i, allowing for a much
compacter notation. At the same time the spatial indices for the τ -derivative
are also suppressed.

1.3.2 Leapfrogging
To discretize the partial time derivative, an approach similar to the one in (1.7)
is used, as illustrated below.

∂τf(τ) ≈ f(n++)− f(n)
∆τ

(1.10)

The use of central differencing, implies that the derivative is located at time
instance n+. (1.10) can be used to calculate the field value at time instance
n++, when it is rearranged as follows

f(n++) = f(n) +∆τ
(
∂n

+
τ f(τ)

)
(1.11)

Although the update equation was derived using central differencing, leapfrog-
ging itself is a numerical integration method, where a future value is calculated
from past values. The major advantages of leapfrogging are ‘time-reversibility’
(this allowed for the derivation of the method using central differencing) and its
‘symplectic’ nature (implying the energy 1 conservation of the system [2], [3]).
Note that the continuous τ -derivative is on the right-hand side of the equation.
It is needed to calculate future values of f(n). This value will be obtained from
the semi-discrete Maxwell’s equations, which feature the exact same continuous
τ -derivative.

1.4 Fully discrete Maxwell’s equations
Applying leapfrogging to the semi-discrete Maxwell’s equations is done, as
mentioned before, by plugging the τ -derivative from (1.9) into the right hand
side of (1.11). This results in

1FDTD preserves a modified definition of the energy 1/2
(
E(n+) ◦D

(
n−
)

+H(n) ◦B(n)
)

rather than 1/2
(
E(n) ◦D(n) +H(n) ◦B(n)

)
, all taken at time instance n, which oscillates

around a stationary value.
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E(n++) = E(n) + (µrεr)−1
∆τ(∇×B(n+))︸ ︷︷ ︸

upE

(1.12a)

B(n+) = B
(
n−
)
−∆τ(∇×E(n))︸ ︷︷ ︸

upB

(1.12b)

where the expansion of the curl in its components has been shortened to its
symbolic notation. The terms upE and upB refer to the amount added to the
previous field value. upE and upB will recur later on and are given a name for
future convenience.

As can be seen from the equations above, not only are the E and B-fields not
collocated in space they are also not sampled at the same time instance. This
observation leads to an update scheme that operates as follows:

int main = 0 {
double* fieldsE = new double[nrEfields];
double* fieldsB = new double[nrBfields];
double n = 0.0;
bool stopCondition = false;

initFields(fieldsE,distributionE);
initFields(fieldsB,distributionB);

while(!stopCondition) {
// update E-fields
for (int i = 0; i < nrEfields; i++) {
fieldsE[i] += updateE(i,n,fieldsB);

}
n += 0.5;

// update B-fields
for (int i = 0; i < nrBfields; i++) {
fieldsB[i] += updateB(i,n,fieldsE);

}
n += 0.5;

stopCondition = evalStopCond(n,fieldsE,fieldsB);
}
exit 0;

}
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Stability

The stability of the whole algorithm depends on the choice of ∆τ . Following
the stability analysis of [4], ∆τ has to be chosen as follows

∆τ ≤
(√

(∆x)−2 + (∆y)−2 + (∆z)−2
)−1

This is also known as the ‘Courant-Friedrichs-Lewy’-limit or shorter the Courant-
limit or even the CFL-limit. For cubical cells of size ∆ this simplifies to
∆τ ≤ ∆/

√
3.

Grid dispersion

Consider a point source in a two dimensional grid at a certain location E[x,y]
z

generating a Dirac pulse at time instance n = 0. One time step later, the field
points at E[x−−,y]

z , E[x++,y]
z , E[x,y−−]

z and E[x,y++]
z are reached by the travelling

wave and their field values are thus different from 0. Advancing one more time
step, not only the field points E[x−2,y]

z , E[x+2,y]
z , E[x,y−2]

z and E[x,y+2]
z will be

excited, but also the field points at E[x−−,y−−]
z , E[x++,y−−]

z , E[x−−,y++]
z and

E
[x++,y++]
z . Physically, a circular wave front is expected, but numerically the

wave front is diamond shaped. This means that in FDTD, the numerical wave
does not propagate at the same pace in every direction. Mathematically, this is
described as follows [4].

Construct a composite quantity F = B + E. Maxwell’s curl equations can be
condensed to

∇× F = ∂τF (1.13)

Substitute for F the travelling wave expression

F [x,y,z](n) = F0e−(xkx∆x+yky∆y+zkz∆z)ekn∆τ (1.14)

and apply the space and time discretization of (1.13), as discussed before. Solve
the obtained equation system as outlined in [4]. This results in the dispersion
relation (

1
∆τ

sin π∆τ
λ

)2
=

∑

i∈{x,y,z}

(
1
∆i

sin ki∆i2

)2
, (1.15)

which simplifies to
(

1
α

sin πα
N

)2
=

∑

i∈{x,y,z}

(
sin ki∆i2

)2
(1.16)

for a cubical mesh with ∆ = ∆x = ∆y = ∆z, ∆τ = α∆/
√

3, with α a
fraction of the CFL and N the mesh density in number of cells per wavelength.
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(1.16) shows that the dispersion relation is dependent on both the propagation
direction of the wave and the sampling density of the mesh, through ki(θ, φ)
and sin πα

N . Ideally, physically, the dispersion relation looks like
(

2πf
c

)2
=
∑

i

(ki)2
i ∈ {x, y, z} (1.17)

One can prove that (1.16) equals (1.17) for a wave propagating along the
diagonal of a cubical mesh, if α = 1, or equivalently ∆τ = ∆/

√
3.

Important to note is that dispersion related errors are cumulative. Meaning
that, the further a wave travels the larger the error becomes. For very large
computation domains, one has to verify that the dispersion induced errors do
not exceed an acceptable threshold.

To reduce dispersion errors [4], one can use higher order spatial derivatives,
calculate the spatial derivatives using the Discrete Fourier Transform (DFT),
use hexagonal grids, use more cells per wavelength or decrease α to a smaller
fraction of the CFL. The use of subgridding, as will be explored in chapter 3,
will locally reduce dispersion errors by locally increasing the mesh density, as
was shown in [5].

1.5 Perfectly Matched Layer
As is clear now, FDTD works by alternately updating all E and B-fields in the
computational domain. However, at the borders some anomalies occur. An
E-field at the edge of the mesh misses (at least) one B-field neighbour to be
properly updated. Assuming the missing B-field is zero, actually imposes a
Dirichlet Boundary Condition on the computational domain. If one, however,
wants to simulate a structure in free space, a Dirichlet Boundary Condition will
not suffice. Because the result will be distorted by unwanted reflections from
the Dirichlet Boundary Condition. As a solution, one can place the structure
under test ‘far away’ from all boundaries, but this will result in a very large
computational domain that either takes ages to simulate or is practically not
simulatable at all. Moreover, the configuration still suffers from late spurious
reflections.

Solutions to this unworkable situation were provided by Gerrit Mur [6] and
Zhen-Feng Liao [7]. Mur’s boundary condition provided a computational cheap
way to absorb impinging fields at the mesh boundary by using samples of the 3D
scalar wave equation. Later, Liao proposed a new technique that outperformed
Mur’s. It uses extrapolation in space and time to counter impinging fields on
the mesh boundary. In 1994, Jean-Pierre Bérenger introduced the Perfectly
Matched Layer (PML) [8]–[10], a novel boundary condition that outperformed
Mur’s and Liao’s boundary condition by orders of magnitude. It became the
de facto standard ever since its introduction. A PML is deployed by adding
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a few layers of PML cells at the outside of the computational domain. In
order to create PML cells, Bérenger’s split the field components of the mesh in
two contributions, updating them separately with an altered update equation.
Later on, different versions of the PML were developed. Specifically, a Uniaxial
Perfectly Matched Layer (UPML) [11], being a material based PML, a Complex
Frequency Shifted Perfectly Matched Layer (CFS-PML) [12], which has proven
to be better at absorbing evanescent waves and a Convolution Perfectly Matched
Layer (CPML) [13], being a variation on CFS-PML as used i.a. by Computer
Simulation Technology’s Microwave Studio® (CST-MWS®). It has been shown
that a PML, in theory, is completely reflection-free. However, in practice, the
discretization of the PML material and the finite number of PML layers introduce
new, small, reflections. A PML is typically terminated by a Perfect Electric
Conductor (PEC), although combinations with Mur’s boundary condition have
been made [14]. A note has to be made regarding PML corner regions (especially
in 3D). Corner regions are notorious sources of reflections, even with uniform
meshes. Jumping the gun a little, using non-uniform PML meshes does not
solve this problem. On the contrary, using corner regions that are not perfectly
matched (in terms of discretization) with their neighbouring PMLs is technically
possible, but should be executed with great care, in order not to introduce too
large reflection errors.

1.5.1 Complex coordinate transformation

In its simplest form, a PML is a variation on the standard FDTD cell that
absorbs almost all electromagnetic waves. The transition from the standard
mesh to the PML mesh is governed by the reflection coefficient

Γ = ηstd − ηpml
ηstd + ηpml

(1.18)

with η =
√
µ/ε the impedance of a medium. The transition is reflection-free if

ηstd = ηpml. However, to absorb the electromagnetic waves εpml and µpml are
made complex valued. From here on, a more general approach will be used.

The different PML formalisms as listed above have been unified in [15], [16].
From there, it follows that a PML can be written as a complex coordinate
transformation of the form

ui → ũi =
∫ ui

0
si(η) dη i ∈ {0, 1, 2} (1.19)

PML theory relies partially on index rotation, which can be more easily written
using i mod 3 with i ∈ {0, 1, 2} rather than using i ∈ {x, y, z} as index. si is
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the PML stretching function defined by

si(d) =




κi(d) + σi(d)

αi(d) + ωε0
PML absorbs in the ui-direction

1 PML does not absorb in the ui-direction
(1.20)

The stretching function itself is built based on three functions κ (≥ 1), σ
(≥ 0) and α (≥ 0) and d the distance to the grid/PML interface. There is
no well-defined definition for these, only heuristic propositions. In [4], both a
geometric and a polynomial profile for κ and σ are proposed (α = 0).

κgeom(d) = gd σgeom(d) = gdσ0 (1.21)
κpoly(d) = 1 + (κmax − 1)dm σpoly(d) = dmσmax (1.22)

where d is the distance to the mesh/PML interface expressed in number of cells
and g, σ0, m, σmax and κmax are parameters that can be tweaked to obtain
optimal performance. Heuristics for a good choice for a wide range of problems
exist. m is mostly chosen as 3 ≤ m ≤ 4 and g as 2 ≤ m ≤ 3. From a reflection
analysis then follows that

σmax = − (m+ 1) lnR0
2ηδ (1.23a)

σ0 = − ln g lnR0

2η∆
(
gδ/∆ − 1

) (1.23b)

with R0 the amount of reflection allowed, η the impedance of the medium and
δ the thickness of the PML and ∆ the cell size. Usually R0 = e−8 for a five
cell thick PML and R0 = e−16 for a ten layer thick PML. The profile of α(d) is
usually chosen a constant (often 0) or a linear function with a small slope. In
more recent literature, other profiles for κ and σ, such as hyperbolic profiles
[17], [18], have been proposed.
Based on the analysis in [16] and mentioned in more detail in section 2.3,
two types of PML, the Maxwellian and the non-Maxwellian PML, can be
distinguished.

Maxwellian PML

The Maxwellian PML redefines the constitutive relations slightly, but leaves
Maxwell’s equations intact (hence the name). The new relations are given by

D =εrΛE (1.24a)
H =µ−1

r ΛB (1.24b)

with
Λ = diag

(
s1s2
s0

,
s2s0
s1

,
s0s1
s2

)
(1.25)
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with si given in both the frequency domain (FD) and the TD by

si(d) FD= κi(d) + σi(d)
ωε0

TD= κi(d) + σi(d)η
∂τ

(1.26)

with η the impedance of free space. Maxwell’s curl equations now look as follows

−∂τΛB = ∇×E (1.27a)
∂τεrΛE = ∇× µ−1

r B (1.27b)

Discretization of these equations needs an additional step compared to sec-
tion 1.3.2. First split the diagonal elements in (1.25) in Λ

′

i = si+1/si and
Λ
′′

i = si+2 (i + 1 and i + 2 are taken modulo 3 to obtain the correct index).
Next split the curl equations as shown below for (1.27a)

Qi = Λ
′

iBi

−∂τΛ
′′

i Qi =
(
∇×E

)
i

(1.28)

Use the TD definition of (1.26) in the expansion of the equations above, substi-
tute (σiη)/(2κi) for ψi and rearrange the terms to get

κi
(
∂τQ

B
i + ψiQ

B
i

)
= κi+1(∂τBi + ψi+1Bi) (1.29a)

κi+2
(
∂τQ

B
i + ψi+2Q

B
i

)
=
(
∇×E

)
i

(1.29b)

Using the central differencing theorem on the τ -derivative and solving for QB,n+i

and Bn+i , results in

QB,n
+

i =1−∆τψi+2
1 +∆τψi+2

QB,
−

i − 1
κi+2

1
1 +∆τψi+2

∆τ
(
∇×E

)n
i

(1.30a)

Bn
+

i =1−∆τψi+1
1 +∆τψi+1

Bn
−

i + κi
κi+1

(
1 +∆τψi

1 +∆τψi+1
QB,

+
i − 1−∆τψi

1 +∆τψi+1
QB,n

−

i

)

=1−∆τψi+1
1 +∆τψi+1

Bn
−

i + κi
κi+1

∆QBi +∆τψi
〈
QBi
〉

1 +∆τψi+1
(1.30b)

with ∆QBi =
(
QB,n

+
i −QB,n

−

i

)
and

〈
QBi
〉

=
(
QB,n

+
i +QB,n

−

i

)
. Note the

occurrence of upB as defined in (1.12b). This means that the PML update
equation is just an alteration of the original update equation. This allows for
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some efficient code refactoring during implementation. Analogously, one gets

QE,n
++

i =1−∆τψi+2
1 +∆τψi+2

QE,ni + 1
κi+2

1
1 + τψi+2

∆τ(εrµr)−1
(
∇×B

)n+
i

(1.31a)

En
++

i =1−∆τψi+1
1 +∆τψi+1

Eni + κi
κi+1

∆QEi +∆τψi
〈
QEi
〉

1 +∆τψi+1
(1.31b)

with ∆QEi =
(
QE,n

++
i −QE,ni

)
and

〈
QEi
〉

=
(
QE,n

++
i +QE,ni

)
. Again, upE

can be recognized.

non-Maxwellian PML

To construct a non-Maxwellian PML, Maxwell’s equations are slightly altered.
In the example below (following [12]), the definition of the curl is adapted to
include the stretching function s(d) as defined below

si(d) FD= κi(d) + σi(d)
αi(d) + ωε0

TD= κi(d) + σi(d)
αi(d) + ∂τ

η

(1.32)

Redefine ∇ as

∇s =
2∑

i=0
ui

1
si
∂i (1.33)

And use this in Maxwell’s curl equations to get

−∂τB =∇s ×E (1.34a)
∂τεrE =∇s × µ−1

r B (1.34b)

Now, start by rewriting si as
1
si

= 1
κi
− 1
κiBi

(1.35)

with
Bi = 1 + 1

ψi
(βi + ∂τ ) (1.36)

where ψi = σiη/κi and βi = ηαi

The stretched curl consists of two spatial derivatives. Each of them can be
written as

1
si
∂iEj = 1

κi
∂iEj +

QEij
∆τ

= ∂̃iEj +
QEij
∆τ

(1.37a)

QEij = − ∆τ

κiBi
∂iEj = −∆τ

Bi
∂̃iEj (1.37b)
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where ∂̃i indicates a scaling of ∂i by κi. Grouping the different ∂̃i results in
a scaled rotor, indicated by ∇̃. This basically means, that within the PML,
all cells have a length κi∆i. Note that, due to the length difference between
standard cells and PML cells, a good subgridding algorithm is needed to describe
this interface.

Equation (1.37b) has to be transformed to the time-domain and can be rewritten
as

∂τQ
E
ij + (ψi + βi)QEij = −∆τψi∂̃iEj (1.38)

After discretizing the time derivative, equations (2.30b) and (1.38) look as
follows

Bn+ = Bn− −∆τ
(
∇̃ ×E

)n +∆QE,n+ (1.39a)

QE,n
+

ij = 1
1 +∆τ(ψi + βi)

(
QE,n

−

ij −∆τψi∆τ∂̃iEnj
)

(1.39b)

with

∆Qξ,ν =
2∑

k=0

(
Qξ,νij −Qξ,νji

)
with

{
i = (k + 1) mod 3
j = (k + 2) mod 3

(1.40)

defined at time instance ν for ξ ∈ {E,B}. Note that for stability reasons
the transition from (1.38) to (1.39b) QEij = QE,n

+
ij is applied instead of QEij =

(QE,n+ij +QE,n
−

ij )/2, as is usual in FDTD. Also remark that both equations above
use ∆τ∂̃iEnj and ∆τ∂̃jEni , so this quantity only needs to be calculated once.
Again, upB is recovered, but applied to cells of size κx∆x×κy∆y×κz∆z. This
again allows some code refactoring. For the E-fields the following analogous
equations hold

En++ = En +∆τ(εrµr)−1
(
∇̃ ×Bn+

)
+∆QB,n++ (1.41a)

QB,
++

ij = 1
1 +∆τ(ψi + βi)

(
QB,nij −∆τψi

∆τ

εrµr
∂̃iB

n+
j

)
(1.41b)
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2
Introduction to differential

geometry

Æ Æ Æ

The mathematical base of differential geometry provides an excellent
framework for the description of the subgridding of mesh cells in
the Finite Difference Time Domain method. In this chapter an
introduction to some continuous and discrete concepts will be given.
This introduction is neither extensive nor complete, but just touches
those topics on which will be built later to describe subgridding.
Special care is given to the description of electromagnetic concepts
in general and Maxwell’s equations in particular. Most concepts
are introduced for an arbitrary dimension n, in practice, for the
description of Maxwell’s equations, n = 3. More information can be
found in the relevant literature, e.g. [1]–[3]

Differential geometry is a branch of mathematics in which a combination of
differential calculus, integral calculus, linear algebra and multilinear algebra
is used to solve geometrical problems. This specific branch is well suited to
solve the subgridding problem in the Finite Difference Time Domain method
(FDTD). Therefore, Maxwell’s equations need to be expressed in this format.

In this section, first, a concise introduction to the notation format and basics
of (discrete) differential geometry will be presented. Next, Maxwell’s equations
will be expressed so they can be used further on in the derivation of FDTD
subgridding.



28 Chapter 2. Introduction to differential geometry

2.1 Continuous differential geometry
Differential geometry uses differential forms, a representation of multivariable
calculus that is independent of coordinates. Differential forms have a dimension
k (and are therefore called k-forms) and are denoted as ωk. Forms operate in
an open region M ⊂ Rn (also called an n-manifold). Denote by TxM the vector
space containing all vectors in the point x ∈M that are tangential to M. ωk is
thus a multilinear map from (TxM)k to R.

ωk :
k︷ ︸︸ ︷

TxM× . . .× TxM→ R (2.1)

ωk is a rank-k, anti-symmetric tensor field over M. Informally, a form can be
seen as an integrand. A 1-form, then, can be seen as the dx in

∫
dx, a 2-form

can be seen as dxdy in
∫

dx dy, and so on.

For differential forms, seven operators are defined, from which three will be
introduced below. The first one is the wedge product or exterior product (∧). It
is used to create higher order forms from lower order forms. The wedge product
is the bilinear form

(
αk ∧ β`

)
x
(u, v) = αkx(u)β`x(v)− αkx(v)β`x(u) (2.2)

for u, v ∈ TxM. The wedge product of a k-form and a `-form is a (k + `)-form.
The wedge product is also asymmetric

(
αk ∧ β`

)
= (−1)k`

(
β` ∧ αk

)
(2.3)

The second operator is the exterior derivative (d). The exterior derivative of a
k-form ωk is a (k + 1)-form dωk. More correctly, it is the unique mapping from
k-forms to k + 1-forms satisfying

• if f is a smooth function (0-form), then df is the differential of f
• d(dω) = 0
• d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq

Integrating an exterior derivative, satisfies Stoke’s theorem
∫

M
dωk =

∫

∂M
ωk (2.4)

Note that the exterior derivative represents the gradient, the curl as well as the
divergence in vector calculus. Therefore the second property above translates
to both ∇× (∇φ) = 0 and ∇ ◦ (∇×A) = 0.

Before the third operator can be introduced, a metric needs to be defined. This
is done by an order-n tensor g (an Euclidean three dimensional space would
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have g = 13×3). With a metric defined, a volume n-form νn can be constructed
as

νn =
√

det g dx1 ∧ . . . ∧ dxn (2.5)

Given a metric, an inner product (〈·, ·〉) can be introduced as a way to measure
the projection of one form onto another. With the metric in place, the third
operator, the Hodge star (?), can be introduced. The Hodge-star operator maps
a k-form to a (n− k)-form, with n the order of the manifold. It is defined as

αk ∧ ?βk = 〈αk, βk〉νn (2.6)

An important property of this operator is ? ? ωk = (−1)(n−k)k
ωk

2.1.1 Maxwell’s equations
In the physical three dimensional world the maximum order of forms will be
restricted to n = 3. The different electromagnetic quantities are represented
by different order of forms. H and E-fields are represented by 1-forms, D and
B-fields are represented by 2-forms. The electric current density j and charge
density ρ are represented by 2-forms and 3-forms, respectively. As can be seen
from the proposed mapping between physical quantities and k-forms, 1 and
2-forms are vector functions, whereas 0 and 3-forms are scalar functions.

The curl and divergence in Maxwell’s equations are, as mentioned before, both
represented by the exterior derivative. Note that Maxwell’s equations (excluding
the constitutive equations) do not need any metric defined on the system to
be expressed using differential forms. The constitutive equations on the other
hand, do need a metric since they are expressed by means of a scaled (indicated
by ε and µ) Hodge star operator.

dE = −∂τB dH = ∂τD + j

dD = ρ dB = 0
D = ?εrE H = ?µ−1

r
B (2.7)

2.2 Discrete Whitney forms [4]
To obtain a discrete differential representation of Maxwell’s equations, the
concepts above need to be discretized on a conformal mesh (= discrete manifold
C). For any two cells in a conformal mesh the following holds: the intersection
of the two cells contains either an entire face, edge, node or nothing. The
cells, faces, edges and nodes of the mesh are all simplices of different order.
A k-simplex, σk, is defined as the convex hull of k + 1 geometrically distinct
points {v0, v1, . . . , vk} ∈ Rn
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The mapping from the continuous k-form ωk to the discrete form (also called
k-co-chain) ωk[i] is done as follows

ωk[i] =
∫

∂σi

ωk (2.8)

∂σ is the boundary operator working on simplex σ. The boundary operator is
defined as

∂{v0 . . . vk} =
k∑

j=0
(−1)j{v0, . . . , vj−1, vj+1, . . . , vk} (2.9)

The definition of a discrete exterior derivative can be done by means of Stoke’s
theorem ∫

σk
dωk =

∫

∂σk
ωk (2.10)

Finally a discrete Hodge star operator needs to be defined. In order to do so,
the notion of a (circumcentric) dual mesh needs to be introduced. With the
circumcentre of a k-simplex being the centre of the unique k-sphere going trough
all k+1 points of σk. The dual mesh is constructed by correctly connecting those
circumcentres. The dual of a k-simplex is a (n− k)-simplex. More specifically,
the dual of a n-simplex is the circumcentre itself. The Hodge star transforms
from the primal to the dual mesh with an appropriate scaling defined by

1
|σk|

∫

σk
ωk = 1

|∗σk|

∫

∗σk
∗ωk (2.11)

where ∗ indicates the duality.

In practice, n equals 3. This means that a 0-simplex is a point, a 1-simplex an
edge, a 2-simplex a face and a 3-simplex is a tetrahedron. In an electromagnetic
context, E and B-fields are 1-simplices and 2-simplices, respectively, on the
primal mesh (i.e. primal edges and primal faces, respectively). H and D-fields
are 1-simplices and 2-simplices, respectively, on the dual mesh. This is explicitly
expressed by the constitutive equations. The appropriate scaling between primal
and dual mesh is expressed by µr and εr. This concept of primal and dual
meshes gives rise to the staggered grid typical to FDTD.

For FDTD, a point wise evaluation of the discrete k-forms is necessary. Some
interpolation is needed between the k-forms. Simple linear interpolation can be
used for 0-forms. Define a basis function φi for each point vi, which equals 1 at
exactly vi and 0 elsewhere. These functions form a basis of discrete 0-forms.
They are called Whitney forms of order 0 (W0), because in [4] Whitney derived
the expressions for bases of higher order forms.

φσi0,...,ik = k!
k∑

j=0
(−1)jφij dφi0 ∧ . . . ∧ dφij−1 ∧ dφij+1 ∧ . . . ∧ dφik (2.12)
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All theory above can be extended towards rectangular cuboidal 3-simplices
(cuboids from here on) instead of tetrahedral 3-simplices, which is necessary
for the typical cuboidal FDTD mesh. Below explicit equations for the cuboidal
Whitney forms will be derived. In that regard, two base functions need to be
defined

f i(u) =





1− i+ u
∆u if i− 1 ¶ u

∆u ≤ i
1 + i− u

∆u if i ¶ u
∆u ≤ i+ 1

0 otherwise
(2.13)

gi+
1
2 (u) =

{
1 if i ¶ u

∆u ≤ i+ 1
0 otherwise

(2.14)

Note that
∂

∂u

[
f0(u)
f1(u)

]
= 1
∆u

[
−1
+1

]
g

1
2 (u) (2.15)

With the equations (2.12) and (2.13) the definition of the Whitney forms is as
follows (with r = [x, y, z])

W i,j,k
0 (r) = f i(x) · f j(y) · fk(z)

W
1
2 ,j,k
1 (r) = x0 · g 1

2 (x) · f j(y) · fk(z)

W
i, 1

2 ,
1
2

2 (r) = x0 · f i(x) · g 1
2 (y) · g 1

2 (z)

W
1
2 ,

1
2 ,

1
2

3 (r) = g
1
2 (x) · g 1

2 (y) · g 1
2 (z) (2.16)

with i, j, k ∈ {0, 1}. The coefficients ±1 from (2.15) can be cast in a matrix
Ck, which will function as the discrete representation of the discrete exterior
derivative operator of order k. In practice, Ck will be the incidence matrix of
k + 1-forms with k-forms. As mentioned before the exterior derivative is the
representation of the gradient, the curl as well as the divergence in vectorial
calculus. d1 is the curl and therefore C1 is its discrete representation. The C1
of the Yee-cell in Fig. 1.2 looks as follows (where the order of fields is taken
from x to z, from left to right, from bottom to top and from front to back)

E1
x E2

x E3
x E4

x E1
y E2

y E3
y E4

y E1
z E2

z E3
z E4

z

C1 =




0 0 0 0 −1 0 1 0 −1 0 1 0
0 0 0 0 0 −1 0 1 0 −1 0 1

−1 1 0 0 0 0 0 0 −1 1 0 0
0 0 −1 1 0 0 0 0 0 0 −1 1

−1 0 1 0 −1 1 0 0 0 0 0 0
0 −1 0 1 0 0 −1 1 0 0 0 0




B1
x

B2
x

B1
y

B2
y

B1
z

B2
z

(2.17)
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2.3 Perfectly Matched Layer
As mentioned in section 1.5, to simulate free space, an absorbing boundary
condition is needed. The best formulation available is the Perfectly Matched
Layer (PML). A PML can be constructed by using a complex coordinate
transformation. This calls again for the use of a metric. Assuming a coordinate
system with three orthogonal axes (meaning the metric tensor is diagonal) the
metric tensor can be written, using Einstein’s notation, as

(ds)2 = g =
2∑

i=0

(
hi dxi

)(
hi dxi

)
=

2∑

i=0
h2
i dxi dxi =

2∑

i=0
gii dxi dxi (2.18)

with hi some scaling coefficients and g as used in (2.5). The transformation is
governed by

dxi → dx̃i = h̃i
hi

dxi (2.19)

and therefore

(ds)2 → (ds̃)2 =
2∑

i=0
gii dx̃i dx̃i =

2∑

i=0
gii
h̃2
i

h2
i

dxi dxi =
2∑

i=0
g̃ii dxi dxi (2.20)

The coordinate mapping from Cartesian to ‘PML-coordinates’ is governed by

xi → x̃i =
∫ xi

0
si(ξ) dξ (2.21)

This means that hi = 1 and h̃i = si if the PML absorbs in the xi-direction and
hi = h̃i = 1 if it does not.

Because there are two equivalent expressions for (ds̃)2, two PML formalisms
can be expressed, one based on (ds̃)2(dx0,dx1,dx2) and the other based on
(ds̃)2(dx̃0,dx̃1,dx̃2).

g̃ =s2
0x

0x0 + s2
1x

1x1 + s2
2x

2x2 (2.22)
=1x̃0x̃0 + 1x̃1x̃1 + 1x̃2x̃2 (2.23)

They are called the Maxwellian and the non-Maxwellian PML, respectively.

2.3.1 Maxwellian Perfectly Matched Layer
The Maxwellian PML uses the formalism in (2.22), meaning that E and D-fields
(and H and B-fields accordingly) are given in differential form and mapped to
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vectors by

Ẽ =
2∑

i=0
Ẽih̃i dxi g−→ E =

2∑

i=0

h̃i
hi
Ẽix

i

D̃ =
2∑

i,j=0
εijẼj h̃i+1h̃i+2 dxi+1 dxi+2 g−→ D =

2∑

i,j=0
εijẼj

h̃i+1h̃i+2
hi+1hi+2

xi (2.24)

The mapping above retains the form of the Maxwell’s equations, but changes
the form of the constitutive equations. In this formula substitute h̃i = si and
write down the constitutive equation for the PML

D̃ =ε̃rẼ with ε̃ij = h̃i+1h̃i+2

h̃j
εij = si+1si+2

sj
εij

D =ε̃rE with ε̃ij = h̃i+1h̃i+2hj

hi+1hi+2h̃j
εij (2.25)

For an orthogonal base, this results in using Λ

D̃ =ΛεrẼ (2.26a)
B̃ =ΛµrH̃ (2.26b)

with
Λ = s1s2

s0
x0x0 + s2s0

s1
x1x1 + s0s1

s2
x2x2 (2.27)

This can be discretized as in section 1.5.1

2.3.2 non-Maxwellian Perfectly Matched Layer
To construct the non-Maxwellian PML the metric g̃ (2.23) is used to map forms
to vectors

Ẽ =
2∑

i=0
Ẽih̃i dxi g̃−→ E =

2∑

i=0
Ẽix

i

D̃ =
2∑

i,j=0
εijẼj h̃i+1h̃i+2 dxi+1 dxi+2 g̃−→ D =

2∑

i,j=0
εijẼjx

i (2.28)

With this formalism the constitutive equation remain unaltered, but Maxwell’s
equations are changed slightly. The alteration can be caught into the curl
operator

∇s × · =
2∑

i=0
xi

1
si
∂xi · (2.29)
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And thus

−∂τB =∇s ×E (2.30a)
∂τεrE =∇s × µ−1

r B (2.30b)

This can be discretized using section 1.5.1
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3
Numerical assessment of the

combination of subgridding and
the Perfectly Matched Layer grid

termination in the Finite
Difference Time Domain method

based on the article published in the International Journal of Numerical
Modelling: Electronic Networks, Devices and Fields, 2014 [1] and presented

during EMF 2013 [2]

Æ Æ Æ

We present a unified framework that includes the subgridding of
Perfectly Matched Layers (PMLs). Next, the interaction between
the problem space and the (subgridded) PMLs is studied. There-
fore, different (geometrical) subgridding strategies for the PML are
considered. We numerically investigate the effect of these strate-
gies by determining the reflection of a point source caused by the
PML. It becomes possible to not only determine the general reflection
level, but also to pinpoint the precise source of the reflections. The
conclusion of this study is that, as expected, important reflections
are found originating from the corner points of the PML, but that
these reflections worsen when grid non-uniformities are present due
to subgridding. Hence, the combination of subgridding and PMLs
should be handled with great care.
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3.1 Introduction
Together with the Finite Element method (FE) and integral equation techniques
solved by the Method of Moments (MoM), the Finite Difference Time Domain
method (FDTD) [3]), is a well-established numerical method for the full-wave
simulation of electromagnetic problems. Amongst others, its advantages over
its competitors are: the vastly larger number of unknowns it can solve for,
the possibilities to include non-linearities and its suitability to be massively
parallelised. On the downside, however, in its basic form, the mesh has to be
kept strictly uniform in order to maintain an explicit formulation. Therefore,
the inclusion of electrically small design components in a large computational
domain leads to either huge memory requirements and unacceptable simulation
times, or inaccurate results.

To overcome this problem, many different schemes for (spatial) subgridding of
the FDTD mesh were proposed. From those, only a few were passive, stable
and reciprocal. And from those, none offered the freedom to choose different
refinement factors along different mesh directions. Yet, flexible subgridding
would not only provide a far better possibility to design certain structures in
FDTD, it also reduces calculation time by not forcing the designer to use the
finest cell size everywhere within the simulation domain. This leads to more
precise simulation results obtained in a more efficient way.

For open structures, such as, for example, antennas, FDTD implementations
require a form of mesh termination that mimics free space. The Perfectly
Matched Layer (PML) introduced by Jean-Pierre Bérenger in 1994 [4] has
become the de facto standard for absorbing boundary conditions in FDTD.
Although the PML is reflection-free in theory, in practice, after discretization,
reflections are introduced in the calculation domain. To minimize these errors,
a PML discretization that matches the mesh topology everywhere would be
preferable. Up to now, the most optimal combination in terms of memory
requirements and computation time of suitable subgridding schemes combined
with adequate PML termination strategies is still an important open research
issue.

When embedding a finer mesh within a coarser one, special care has to be taken
to adapt the update equations for the fields at the interface of the two meshes.
To address this problem, various techniques were developed, such as equivalent
circuits of grid discontinuities [5], digital filtering [6], recessed interfaces [7],
and Huygens subgridding [8]–[10]. These techniques have drawbacks such
as, allowing only odd refinement factors, the need of overlapping meshes or
transition regions, requiring the inversion of matrices, as well as late time
instability issues or non-symmetrical update equations. Next to those problems,
most schemes do not provide a lot of flexibility in terms of refinements nor
mesh forms. This often results in mesh specific algorithms and complex update
equations.
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The work of Peter Monk [11] introduced a scheme with several interesting
features: meshes of different resolution only share their boundaries, discrete
reciprocity and proven stability. A main restriction is that it only allows a 1:2
refinement. In [12], a finite element approach is used to achieve subgridding,
laying out an interesting mathematical framework for subgridding, applicable
to a whole range of configurations. Ryan Chilton combined both concepts to
one subgridding algorithm [13] with refinement factors 1:N and later M :N
(M,N ∈ N0). This approach was extended to Body of Revolution FDTD
(BOR-FDTD) in [14].

PMLs have been expressed in all kinds of ways. Originally, they were formulated
in terms of split-field equations [4]. Later, unsplit formulations were put forward,
such as the Maxwellian or Uniaxial Perfectly Matched Layer (UPML) [15] and
the non-Maxwellian or Complex Frequency Shifted Perfectly Matched Layer
(CFS-PML) [16]. The PML equations have also been expressed in different
coordinate systems [17] and even in a coordinate independent way [18]. This
last formulation made use of differential forms [19], exactly the foundation of
the subgridding algorithm used here.

Other methods, such as the ‘Multiresolution Finite Difference’ [20] and ‘Pseudo
Spectral Time Domain’ [21] yield longer simulation times and have boundary
implementation problems, respectively, and are therefore less suited in the
pursuit of a general fast and efficient simulation tool.

In this paper, we present a generalized FDTD subgridding technique for an
open simulation domain with the following new features:

• The limited refinement freedom of [13] is extended to allow (almost)
arbitrary mesh refinements that are mesh direction independent and this
without losing any of the desirable properties such as reciprocity, passivity
and stability.

• As (almost) arbitrary mesh refinements are possible, the influences of
normal and tangential (both will be defined later on) subgridding can be
studied independently of one another.

• To reduce reflections, avoid undesirable side effects such as standing waves
and maximize design freedom, mesh refinements are extended towards
PMLs. The subgridding possibility will also lead to some new insights
into PML implementations.

In a first part, Maxwell’s equations in differential geometry form and the
corresponding vector representation are briefly repeated. Next, the introduced
concepts are expanded to allow subgridding. In a last part, these concepts will
be broadened again to include subgridding of a PML.
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3.2 Generalized subgridded the Finite Difference
Time Domain method for open regions

3.2.1 Discrete differential representation of Maxwell’s
equations

In absence of sources, the homogeneous Maxwell equations together with the
constitutive laws (with τ = ct and ∆τ = c∆t) are formulated in differential
form as

−∂τB = dE ∂τD = dH (3.1a)
dB = 0 dD = 0 (3.1b)
H = ?µ−1

r
B D = ?εrE (3.1c)

where d is the exterior derivative operating on a k-form. ?εr and ?µ−1
r

denote
the by the permittivity εr and permeability µ−1

r scaled version of the hodge-star
operator, respectively. E and H are 1-forms whereas B and D are 2-forms.
The discretization of the exterior derivative d operating on 1-forms in (3.1a)
(corresponding to the curl operator in classical vector notation) results in the
curl stencil matrix C, which represents the signed, scaled incidence matrix of
the faces in the calculation domain Ω. Scaled, in this context, means that every
entry, which correspond to a specific edge and face in C, is divided by that
dimension of the cell that does not correspond with the edge or face orientation.
This means that if C is arranged such that the rows correspond first with the
Bx, then the By and finally with the Bz and that the columns are arranged
analogously with the Ex, Ey and Ez. Then nine areas can be distinguished,
which are depicted with their scaling factor below

Ex Ey Ez

Bx

By

Bz




1 1
∆z

1
∆y

1
∆z 1 1

∆x

1
∆y

1
∆x 1




(3.2)

Therefore, (3.1a) can be rewritten in semi-discrete form as

−∂τb = Ce (3.3a)

∂τe = [?εr ]
−1
C
T
[
?µ−1

r

]
b (3.3b)
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with the strictly diagonal mass matrices
[
?µ−1

r

]
and [?εr ] a mass lumped [13]

version of

˜[
?µ−1

r

]
=
∫

Ω

W 2µ
−1
r W

T
2 dΩ (3.4a)

[̃?εr ] =
∫

Ω

W 1εrW
T
1 dΩ (3.4b)

with W k Whitney-forms [22] of order k used to discretely expand E and B
into e and b using

E = W T
1 e

B = W T
2 b

The explicit fully discrete update equations are obtained by replacing the time
derivative in by its discrete counterpart using leap frogging.

3.2.2 Arbitrary mesh refinements
Consider a (coarse) uniform background FDTD mesh consisting of fixed cells
with constant dimensions [∆x,∆y,∆z] in the [x, y, z] directions. In order
to outline our arbitrary mesh refinement strategy we focus on two locally
refined meshes Mp and Mq, characterized by absolute refinement vectors
Np =

[
Np
x , N

p
y , N

p
z

]
and N q =

[
Nq
x , N

q
y , N

q
z

]
, respectively. Hence, the absolute

cells sizes in meshes Mp and Mq were reduced to
(
∆x/Np

x , ∆y/N
p
y , ∆z/N

p
z

)

and
(
∆x/Nq

x , ∆y/N
q
y , ∆z/N

q
z

)
, respectively. To connect the two meshes at

their interface, we introduce a local coordinate system (n, t1, t2), with n the
normal direction along which the meshes are stitched together, and t1 and
t2 two tangential orthogonal unit vectors spanning the plane of the interface.
The relative mesh refinement when joining Mp and Mq at their interface is
characterized by the relative mesh refinement vector ν, defined by

ν = [νn, νt1 , νt2 ] =
[
max

(
Np
n

Nq
n
,
Nq
n

Np
n

)
,max

(
Np
t1

Nq
t1

,
Nq
t1

Np
t1

)
max

(
Np
t2

Nq
t2

,
Nq
t2

Np
t2

)]

where max (x, y) represents the maximum of the two arguments x and y. In
addition, we introduce ϑ = [{arg max (xi, yi)}], as the index of the largest of
the two elements, for i ∈ {n, t1, t2}. Now, we outline the general procedure to
stitch together Mp and Mq, provided the following two restrictions apply:

1. νt1 , νt2 ∈ N0

2. ϑt1 = ϑt2
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z(= t2)

Bp1

Bp2

Bq1

Bq2

Bq3

Bq4

x(= n)

y(= t1)

Mp Mq

(a) Valid subgridding with factors Np = [1, 1, 2] and Nq = [1, 2, 2]

x(= n)

z(= t2)

Bp1

Bp2

Bq1

Bq2

y(= t1)

Mp Mq

(b) Invalid subgridding with factors Np = [1, 1, 2] and Nq = [1, 2, 1]

Figure 3.1

The first condition can be relaxed to Q0, as shown in [13]. To better understand
the second restriction, consider Fig. 3.1, illustrating a valid (a) and an invalid
(b) subgridding scheme. On the one hand, for case (a), meshes Mp, with
absolute refinement vector Np = [1, 1, 2], and Mq, with absolute refinement
vector N q = [1, 2, 2], can be joined, as their relative refinement vector is given
by ν = [1, 2, 1] whereas the index vector is found to be ϑ = [ϑn, ϑt1 , ϑt2 ] =
[1 or 2, 2, 1 or 2], such that ϑt1 = ϑt2 = 2. The last condition in general implies
that each normal B-field of Mp that lies in the subgridding interface has to be
a sum of normal B-fields of Mq in the subgridding interface or vice versa. The
configuration in Fig. 3.1(a) is valid, because Bp1 = Bq1 +Bq3 and Bp2 = Bq2 +Bq4 .
On the other hand, for case (b), meshes Mp, with absolute refinement vector
Np = [1, 1, 2], and Mq, with absolute refinement vector N q = [1, 2, 1], may not
be joined, as their relative refinement vector is given by ν = [1, 2, 2] whereas
the index vector is found to be ϑ = [ϑn, ϑt1 , ϑt2 ] = [1 or 2, 2, 1], such that
ϑt1 = 2 6= ϑt2 = 1. Hence, the set-up of Fig. 3.1(b) is not allowed since
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Bp1 6= Bq1 +Bq2 and Bq1 6= Bp1 +Bp2 .

Consider a coarse meshMp and a fine meshMq. To join both meshes, tangential
edges and normal faces that occur twice at the subgridding interface must
be eliminated. In particular, the field/induction components occurring at
the interface of the fine mesh will be removed. Associate with the edges
corresponding to the normal n-, tangential t1- and tangential t2-components of
the electric field in the meshes Mp and Mq the expansion coefficient vectors epn,
ept1 , e

p
t2 and eqn, e

q
t1 , e

q
t2 , respectively, and with the faces corresponding to the

normal n-, tangential t1- and tangential t2-components of the magnetic induction
in the meshes Mp and Mq the expansion coefficient vectors bpn, b

p
t1 , b

p
t2 and bqn,

bqt1 , b
q
t2 , respectively. The elimination of the fine forms is performed by means

of restriction matrices Ae and Ab (associated with electric fields or magnetic
induction components, respectively). Each restriction matrix is a diagonal block
matrix, composed by restriction matrices acting on one particular component,
hence Ae = diag

(
Ae,n,Ae,t1 ,Ae,t2

)
and Ab = diag

(
Ab,n,Ab,t1 ,Ab,t2

)
. Each

restriction matrix composing Ae or Ab is constructed in an identical fashion.
Let Ax,y denote one such matrix for component y ∈ {n, t1, t2} of field x ∈ {e, b}.
Its construction is implemented by means of the following steps:

(i) Let xpy,i denote the ith expansion coefficient in field/induction compo-
nent vector xpy and xqy,j the jth expansion coefficient in field/induction
component vector xqy.

(ii) Create a block matrix A′x = diag
(

1α×α,1β×β
)

with 1α×α and 1β×β
unit matrices of order α = imax, equal to the total number of y-oriented
edges/faces in Mp, and β = jmax corresponding to the total number of
y-oriented edges/faces in Mq, respectively.

(iii) A′x[i, imax + jm] = 1, ∃
{
xqy,jm

}
: xpy,i =

∑
m
xqy,jm

(iv) A′x[i1, imax + j] = γ, A′x[i2, imax + j] = 1−γ, ∃ xpy,i1 , x
p
y,i2
∈
{
nbc
(
xqy,j

)}

(v) delete all rows (imax + j) that satisfied either (iii) or (iv).
(vi) now Ax = A′x

where γ is inversely proportional to the distance between xpy,i1 and xqy,j and{
nbc
(
xpy,j

)}
is the set containing the coarse form neighbours of fine form xqy,j .

Steps (iii) and (iv) are illustrated by Fig. 3.2 and Fig. 3.3, which focus on the
discretization of the tangential electric fields at the interface. The labelling is
done from top to bottom and left to right (thus 0 ≤ i ≤ 1 and 0 ≤ j ≤ 5).

The block structure of Ax,y is explicitly indicated by the dashed subdivisions
applied to the matrices below. The construction of Ae,t1 , given the expansion
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Figure 3.2: Illustration of step (iii): ept1,1 = eqt1,0 + eqt1,1 + eqt1,2 (see Ae,t1)
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Figure 3.3: Illustration of step (iv): ept2,2, e
p
t2,3 ∈

{
nbc
(
eqt2,1

)}
(see Ae,t2)

coefficient vectors ept1 and eqt1 in Fig. 3.2, proceeds as follows:

A
′
e,t1

(ii)=


 12×2 02×6

06×2 16×6


 (iii)→




12×2
0 0 0 02×31 1 1

06×2

13×3 03×3

03×3 13×3




← delete
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(v)→




12×2
0 0 0 02×31 1 1

03×2 03×3 13×3




(vi)= Ae,t1

The resulting matrix removes three fine edges, resulting in a mesh with five
edges (two coarse (ept1,0 and ept1,1) and three fine (eqt1,3 to eqt1,5)), hence Ae,t1 is
a five by eight matrix.
Next, Ae,t2 is constructed by considering the expansion vectors containing the
t2-oriented electric fields ept2 and eqt2 in Fig. 3.3. The labelling is done again in
a top-down/left-right fashion (thus 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7. Therefore

A
′
e,t2

(ii)=


 14×4 04×8

08×4 18×8


 (iv)→




14×4

0 0 0 0

04×4
0 0 0 0
1 2/3

1/3 0
0 1/3

2/3 1

08×4

14×4 04×4

04×4 14×4



← delete

(v)→




14×4

0 0 0 0

04×4
0 0 0 0
1 2/3

1/3 0
0 1/3

2/3 1

04×4 04×4 14×4




(vi)= Ae,t2

The resulting eight by twelve matrix illustrates that the restriction operator
reduced the number of redundant edges from twelve to eight (four coarse (ept2,0
to ept2,3) and four fine edges (eqt2,4 to eqt2,7)).
At this point both meshesMp andMq have their own tailored discrete version of
the discrete derivative, Cp and Cq. To connect both meshes a single matrix C
has to be constructed that operates as the discrete derivative for the combined
mesh.
First construct a block matrix Cpq as below

Cpq =


Cp 0

0 Cq




(3.3) may still be used, provided that C is redefined as

C = A
+
2 CpqA

T

1
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which can be proven, using the fact that A1C
T

pq = C
T
A2 and where A+ is the

Moore-Penrose (or pseudo) inverse of A. Moreover, as a result of introducing
A1 and A2, (3.4) changes to

˜[
?µ−1

r

]
= A2



∫

Ω

W 2µ
−1
r W

T
2 dΩ


AT

2 (3.5a)

[̃?εr ] = A1



∫

Ω

W 1εrW
T
1 dΩ


AT

1 (3.5b)

3.3 A subgridded Uniaxial Perfectly Matched
Layer

In case of a UPML, the semi-discrete Maxwell equations (3.3) are modified
corresponding to [23]:

−∂τΛ2b = Ce (3.6a)

∂τΛ1e = [?εr ]
−1
C
T
[
?µ−1

r

]
b (3.6b)

where matrices Λ1 and Λ2 were introduced as the result of a complex coordinate
transformation of the field variables explained in section 1.5.1, section 2.3.1 and
[24].

ui → ũi =
∫ ui

0
si(η) dη i ∈ {0, 1, 2}, (3.7)

with ui the ithcomponent of the base spanning the space. Following [16] si is
defined by

si =
{
κi + σi

ωε0
PML absorbs in i-direction

1 PML does not absorbs in i-direction (3.8)

The stretching matrices are then constructed as follows:

Λ̃1[m, r] =
∑

`

ŷ[m] · φ(`) · ŷ[r]
∫

Ω`

W 1[m]W T
1 [r] dΩ (3.9)

Λ̃2[m, r] =
∑

`

ŷ[m] · φ(`) · ŷ[r]
∫

Ω`

W 2[m]W T
2 [r] dΩ (3.10)
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where the sum extends over all cells ` of the simulation domain, with {Ω`} the
volume of cell ` and ŷ[m] the unit vector pointing in the direction of the edge
associated to the Whitney form of first orderW 1[m] or of second orderW 2[m].
The diagonal matrix φ is defined by

φ(`) =




s1(`) s2(`)
s0(`) 0 0

0 s2(`) s0(`)
s1(`) 0

0 0 s0(`) s1(`)
s2(`)


 (3.11)

which is the typical constitutive law of a uniaxial anisotropic medium repre-
senting the UPML.

We can now apply the general subgridding scheme of section 3.2.2 in a straightfor-
ward manner. By applying the same approach that lead to (3.5b) starting from
[?εr ], the stretching matrices Λ1 and Λ2 in case of subgridding are transformed
into

Λ1[j, k] =
∑

r

∑

m

A1[j,m]Λ̃1[m, r]AT1 [r, k] (3.12)

Λ2[j, k] =
∑

r

∑

m

A2[j,m]Λ̃2[m, r]AT2 [r, k] (3.13)

If necessary mass lumping can be used to make the resulting matrices diagonal.
In the PML regions, normal subgridding can now be embedded in the standard
PML equations. From this point on, the classical discretization of the time
derivative as in section 2.3.1, [25], [26].

3.4 Numerical results
We now carefully test the theory previously outlined in section 3.2. First,
we evaluate the generalized subgridding scheme of section 3.2.2 for a closed
simulation domain, terminated by Perfect Electric Conductor (PEC) walls.
Ideally, the subgridding should not cause any reflections at interfaces between
meshes with different densities. A wave should travel from one submesh to
another as if the refinement of the meshes did not matter. In practice, different
refinement factors results in different grid densities and, hence, a different
dispersion relation. Therefore, non-physical reflections may occur at the mesh
interface. Second, we move to the open regions terminated by PMLs. We again
study the reflection caused by the combination of the PML discretization and
the subgridding of the PML region. Finally, the technique is put to the test
in two realistic configurations: a differential stripline pair and a differential
microstrip interconnect.
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3.4.1 Spurious reflections caused by subgridding
Although the theory is formulated in 3D, we will study reflection at a subgridding
interface in a 2D configuration (the z-dimension will be invariable), in order to
reduce calculation times and memory requirements. Two meshes M1 and M2

consisting of 330× 420 and 90× 420 coarse cells, respectively (Fig. 3.4(a)), are
stitched together, with the x-direction being the normal direction and the y-
direction being the tangential direction. The coarse discretization length equals
∆x = ∆y = ∆ = 0.001mm whereas ∆τ(= c∆t) is chosen to be 288.675 µm,
90% of the Courant-Friedrichs-Lewy-limit for a with ν = [2, 2, 2] subgridded
mesh. The configuration is excited by a soft Gaussian pulse (GP) line source in
the z-direction. The source is located in M1, in the middle of the simulation
domain, at coarse position E[210,210]

z . Its time dependent definition is

GP (t) = A0νxνye
− 2(t−t02)

σ2

with A0 = 0.25, t0 = 200∆t and σ = 66∆t. νx and νy are needed to scale the
pulse’s amplitude correctly in the fine mesh, as otherwise the amplitude of the
soft source depends on the mesh discretization. The parameters are chosen in
such a way that most of the frequency content of the GP lies below 10GHz.
At this upper frequency, the chosen discretization still provides 30 samples per
wavelength. An observer is placed one coarse cell next to the source, co-located
with the field E[211,210]

z

Two sets of four different set-ups are considered (Fig. 3.4). For each set, a
uniform reference configuration is defined. On the one hand, grid refinement
(Fig. 3.4(a-d)) is studied, starting from a fully coarse mesh ‘cRef’ (Fig. 3.4(a)).
On the other hand, grid unrefinement (Fig. 3.4(e-h)) is evaluated, using a
fully fine mesh with ν = [2, 2, 1], ‘fRef’ (Fig. 3.4(e)), as a starting point. We
investigate the reflections induced by refining or unrefining the mesh in the
normal ((b) and (f)), tangential ((c) and (g)) or both ((d) and (h)) directions.

Time domain results

First, a simulation over a very large number of time steps 100 000∆t is performed,
while the energy as a function of time is stored, to test for instabilities. All
tests resulted in constant energy, proving the stability of the proposed scheme.
A formal proof can be derived, based on the theory outlined in [13].
Next, the results of subgridding are investigated in more detail. To do so, the
solution of the corresponding coarse (Fig. 3.4(a)) or fine (Fig. 3.4(e)) reference
configuration is subtracted from the simulation results of the refined or unrefined
configuration in the normal (cases (b) and (f)), tangential (cases (c) and (g))
or both (cases (d) and (h)) directions. Afterwards the logarithm is taken to
emphasize the differences. By subtracting the reference solution, any reflection
on the PEC-walls is removed. Around 800∆t a first spurious signal, caused by
the reflection at the subgridding interface between M1 and M2, is observed.
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Figure 3.4: Different subgridding schemes for meshes M1 and M2 consisting of
330× 420 and 90× 420 coarse cells, respectively. M1 has a fixed coarse (cases
(a) to (d)) or fine (cases (e) to (h)) discretization. M2 is (un)refined in either
the normal (cases (b) and (f)), tangential (cases (c) and (g)) or both (cases (d)
and (h)) directions.

One can clearly see in Fig. 3.5 that the tangential subgridding introduces a
significantly smaller error than normal subgridding. The spurious signals around
1455∆t (second reflection) are caused by the errors from the first subgridding
interface crossing, followed by a reflection at the PEC-wall and then a second
subgridding interface crossing. This explains why the second reflection is larger
than the first. Note first that, overall, the errors are extremely small and second,
the peak of the second reflection of the tangential subgridding is reached only
≈ 300∆t after the peak of normal subgridding.

Frequency domain results

First, to convert the time domain (TD) signal to the frequency domain (FD), a
4096 point Discrete Fourier Transform (DFT) is calculated, but only the first
1400 data points are used, to ensure the effect of only one subgridding interface
crossing is taken into account. Next, a cut-off frequency fc is set at 15GHz.
Frequencies above fc are not of interest given the increasing grid dispersion error
and, hence, will not be shown in the graphs. Finally, the error is normalized to
A0, (the amplitude of the GP), to remove the influence of the input amplitude.

A quick look at the errors in the frequency domain confirms the TD result of
section 3.4.1. It is clear from Fig. 3.6 that tangential subgridding introduces
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(a) wave travelling from coarse mesh M1 (N1 = [1, 1, 1]) to a refined mesh M2
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(b) wave travelling from a fine mesh M1 (N1 = [2, 2, 1]) to an unrefined mesh M2

Figure 3.5: Errors normalized to A0 (the amplitude of the GP) in the time
domain due to reflections of a wave at the interface of a uniform mesh (M1)
and a subgridded mesh (M2), (un)refined in the normal (label ‘n’), tangential
(label ‘t’) or (label ‘nt’) both directions.

significantly less errors than normal subgridding.

One can almost observe no difference between the absolute error induced by
refining a coarse mesh (Fig. 3.6(a)) and the error induced by unrefining a fine
mesh (Fig. 3.6(b)). This indicates that the used method is reciproque. Only
around 10GHz, the error induced by unrefining a fine mesh (Fig. 3.6(b)) in the
tangential direction is significantly larger than the error seen when refining a
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(a) Coarse reference mesh
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(b) Fine reference mesh

Figure 3.6: Error normalized to A0 (the amplitude of the GP) as a function
of frequency when a wave travels from a uniform mesh (M1) to a subgridded
mesh (M2), in case of (un)refining M2 in the normal (‘n’), tangential (‘t’) or
both (‘nt’) directions.

coarse mesh (Fig. 3.6(a)). This occurs because at higher frequencies the fine
mesh suffers from less grid dispersion than the coarse mesh. In the coarse mesh,
these higher frequencies experience a dispersion relation that differs from the
free space one and, therefore, additional errors occur. Note also that adding
tangential subgridding to normal subgridding has almost no influence on the
value of the error.

In general, we conclude that the subgridding algorithm is found to be stable
and only introduces very small errors into the calculation domain. If the
configuration under study allows for it, only using tangential subgridding results
in smaller errors.

3.4.2 Spurious reflections introduced by PMLs combined
with subgridding

Although not as perfect as predicted by the theory [27], in practice, PMLs give
nowadays the best numerical approximation of free space for FDTD algorithms.
Known advantages as low reflections, close application to scatterers, . . . come
with two major disadvantages, the calculation and storage cost. The PML
update equation is computationally much more expensive than a standard
update equation and a PML-field needs more storage than a standard field, next
to the fact that extra layers of cells have to be added to the simulation domain.
This means, on the one hand, that for small problems, relatively, a rather large
part of the calculation time is spent within the PML. On the other hand, for
large problems, the relative calculation effort decreases, but calculation time
nevertheless increases noticeably as does the needed memory.
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Figure 3.7: Schematic representation of different ways to terminate a non-
uniform mesh (consisting of a fine and coarse submesh) at the top by applying
a combination of refined and coarse PEC-backed PMLs (grey).

So far, PMLs have only been applied to uniform meshes. Therefore, the origin of
reflections is the numerically imperfectly matched PML and, as a consequence,
a part of the incident wave that is not totally absorbed. Applying a PML to
a non-uniform mesh opens up some opportunities to reduce simulation time
and memory consumption. First, one could add a uniform PML directly to
the non-uniform mesh (Fig. 3.7(a) and Fig. 3.7(b)). This means that at points,
the PML will be well matched to the mesh, but at other points additional
mismatch will be introduced by the difference between the mesh and the PML
discretization. Next, one could add a (few) uniform layer(s) of cells to the
non-uniform mesh and then apply a PML. This means that reflections caused by
subgridding and reflections caused by the PML are spatially separated, but this
also means that additional storage and calculation efforts are needed. Finally
one could apply a non-uniform PML (Fig. 3.7(c)), tailored to be less resource
consuming.

We consider two configurations to investigate the termination by a PML when
using a non-uniform mesh. Consider a 2D simulation geometry, discretized by
a coarse mesh consisting of 420× 240 cells in the middle and two fine meshes,
both consisting of 420× 90 coarse cells refined by a factor ν = [2, 2, 1], on
top and below this centre region, as depicted in Fig. 3.8. The same GP as
in section 3.4.1 is used to excite the configuration at its centre and again the
observer is placed one coarse cell away from the source. We now create two
kinds of open simulation domains by extending the configuration of Fig. 3.8
by means of PMLs. The first simulation domain is closed at the bottom and
top by PEC plates and open at the side walls, by extending the mesh of these
walls with a one-dimensional PML that only absorbs in the x-direction. For the
second configuration, PMLs are added at all four walls, providing absorption in
both the x and y-direction. To terminate the open regions, we apply a 5-layer
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Figure 3.8: Subgridded mesh with overall size 420× 420, consisting of a coarse
inner mesh of size 420× 240 and two outer meshes of size 420× 90. All dimen-
sions are expressed in coarse cells.

PML, implemented as a UPML [15], with σ-profile as in (1.22) and with

σopt = − (m+ 1) lnR(0)
2η · 5∆

where R(0) = e−8 is the round-trip reflection for normal incidence and η is
the impedance of free space. Each PML layer spans a single coarse mesh cell.
In order to clearly isolate the effect of the subgridding, the same profile with
R(0) = e−8 is preserved also in case of a refined PML. The following types of
subgridded PML are tested: a coarse-cell PML (ν = [1, 1, 1], labelled [111]),
a fine-cell PML (ν = [2, 2, 1], labelled [221]) and a mixed-cell PML (labelled
[dyn], having refinement factors ν = [2, 1, 1] when absorbing in the x-direction,
ν = [1, 2, 1] when absorbing in the y-direction and ν = [2, 2, 1] when absorbing
in both directions in corner regions). Note that the PML is unrefined in the
tangential direction with respect to the fine mesh it interfaces with and that
the discretization of the corner regions is refined in the normal direction with
respect to the PMLs only absorbing in one single direction.
A reference solution is computed by enlarging the mesh in such a way that no
reflections will enter the initial mesh for at least 3000∆t.

PML in one direction

Consider Fig. 3.8(a), where the mesh is terminated by a coarse-cell ([111],
Fig. 3.7(a)), fine-cell ([221], Fig. 3.7(b)) and mixed-cell ([dyn], Fig. 3.7(c))
PML. The error signals with respect to the reference solution are plotted in
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Figure 3.9: Errors normalized to A0 (the amplitude of the Gaussian pulse) as
a function of time in a slab-like mesh (Fig. 3.8(a)), terminated by differently
discretized PMLs absorbing in one direction. The first reflection starts at
±1450∆t, the second at ±2100∆t.

Fig. 3.9. One can distinguish two main reflections. The first reflection occurs
between 1450∆t–2000∆t, the time required for the wave to travel one round
trip distance of d ≈ 420∆ between the source/observer and the PML. One
notices that the fine-cell ([221]) and mixed-cell ([dyn]) PMLs exhibit the same
level of error, clearly outperforming the coarse-cell ([111]) PML. The second
reflection, taking place between 2100∆t–2700∆t (d ≈ 595∆ ≈ 420 ·

√
2∆) is

caused by reflections at the corner points of the mesh, where the wave penetrated
the PMLs under a much more oblique angle. For this reflection, the fine-cell
([221]) PML performs best, followed by the mixed-cell ([dyn]) and coarse-cell
([111]) PMLs. After the second reflection, all subgridded PMLs settle for the
same error level.

PML in two directions

In this section the mesh is terminated by the same PMLs, but now in both x
and y-direction (Fig. 3.8(b)). The errors generated by the different subgridded
PML terminations with respect to the reference solution are shown in Fig. 3.10.
The first reflection from both the x- and y-directed PML reach the observer at
the same time instant and will add up. The second reflection from the corners
should, ideally, be absent, since it should be absorbed by the corner PML. Given
the results obtained for a 1D PML, this is clearly expected for a fine-cell PML
([221]) and since all configurations in this section have fine-cell corner regions,
we obtain very small second reflections for the PML configurations considered
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Figure 3.10: Errors normalized to A0 (the amplitude of the GP) as a function
of time in a slab-like mesh (Fig. 3.8(b)), terminated by differently discretized
PMLs absorbing in two directions. The first reflection starts at ±1450∆t, the
second at ±2100∆t.

here. Fine-cell PMLs ([221]) outperform coarse-cell ones ([111]), as the latter
additionally suffer from subgridding errors, but no relevant second reflection is
observed. The mixed-cell PMLs ([dyn]) exhibit a similar performance as the
fine-cell PMLs ([221]), yet they suffer from higher reflections from the corner
regions. This is due to the fact that for the mixed-cell PMLs, the corner region
is differently subgridded with respect to the x- and y-directed PML.
We conclude that coarse-cell PMLs ([111]) use the least resources, but suffers
from additional subgridding errors at the interface between the fine mesh and
the PML. The fine-cell PMLs ([221]) perform best at the cost of a significant
increase in computation time and memory resources. The mixed-cell PML
([dyn]) provides a good balance between accuracy and computational cost and
is, therefore, the PML of our choice.

3.4.3 Application example: differential stripline pair and
microstrip interconnects

Finally, we simulate an asymmetric differential stripline pair (Fig. 3.11(a)) and
a differential microstrip (Fig. 3.11(b)) as realistic application examples that
make use of both subgridding of the mesh and a PML as absorbing boundary
condition. The interconnects were designed on a lossless Nelco® N4000-13 SI
High-Speed Multifunctional Epoxy Laminate with relative permittivity εr = 3.2.
All conductors are assumed to be perfect electrically conducting.
First, we test the convergence of the solution in terms of the applied uniform
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Figure 3.11: Asymmetric differential stripline pair and differential microstrip
with dimensions H1 = 150 µm, H2 = 180µm, T = 18µm, W = 151µm, S =
175µm, w = 2477 µm, in/on a Nelco® N4000-13 SI substrate with permittivity
εr = 3.2.

discretization, by simulating the configurations once with discretization vector
∆1 = [15.1µm, 507.8µm, 9.0µm] and once with∆2 = [12.6µm, 507.8µm, 6.0 µm].
These vectors were chosen such that the inner conductors of the stripline pair
and the microstrip consist of an adequate number of cells, as further discussed,
and because these discretizations yield an exact representation of the conductors
with a minimal error on the spacing between the conductors. For the remainder
of this paper, results will be given with respect to ∆1, since the convergence
experiments yielded consistent results for both discretizations. In the experi-
ments, the differential pair is excited by a sinusoidal current with a frequency of
10GHz. To reduce artefacts in the frequency domain, the sinusoidal excitation
is ramped over five periods (or about 21 000∆t, with respect to ∆1). During
the simulations, both the current along and the voltage difference between
the two conductors is measured over the full length of the stripline pair. The
resulting time-domain vectors were then Fourier-transformed and subsequently
matched to standing waves by means of the matrix pencil method [28]. By
dividing the voltage by the current, the characteristic impedance of the stripline
pair and the microstrip is determined. The obtained value will be compared
to the impedance (later referred to as Zref ) as obtained by a dedicated MoM
technique [29], [30], developed to derive the modal parameters of high-frequency
interconnects with arbitrary cross-sections.
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Asymmetric differential stripline pair

The configuration of the stripline pair with uniform discretization ∆1 yields
conductors of size 10 × y × 2 cells, spaced twelve cells apart. Now, a first
reference solution is simulated without the use of a PML absorbing boundary
conditions. Instead 1mm (or 66 cells) of substrate material was added to the
left and the right of the inner conductor. The calculation domain was then
terminated with PEC-walls at both sides. It was verified that terminating
with PEC-walls 1mm away from the conductors has minimal influence on the
simulation results. This results in a calculation domain of 164× y × 39 cells.
We now investigate the accuracy, by which the matrix pencil method is able
to extract the modal parameters, as a function of the number of cells in the
longitudinal direction y. We try to establish a good trade-off between the
accuracy and the speed of the method. The initial setting for the reference
simulation of the stripline pair corresponds to a length of three wavelengths
(or 99 cells) and a duration of 100 000∆t. The robustness of the matrix pencil
method then allows for a reduction in the stripline pair length to only λ/4.
Further reducing the length below eight cells, results in rank-deficient matrices
in the matrix pencil method. A second set of experiments reduces the number
of time steps. Table 3.1 shows that the best results (with respect to ∆1)
are obtained for a simulation time of 50 000∆t, while the worst results were
obtained when simulating up to only 12 500∆t. As expected, results deteriorate
for shorter stripline pairs simulated for shorter amounts of time. Remarkable
is, though, that the results for a quarter wavelength stripline pair are distinctly
better than, for example, a stripline pair of a third of a wavelength. Almost all
simulations yield characteristic impedances that lie within 2Ω of the reference
value.

Next we step-wise introduce subgridding and the subgridded PML boundary
condition. First, we unrefine the standard (fine) reference solution (referred to
as Zfine), by limiting the fine mesh to a selected core region (within the dashed
box in Fig. 3.11(a) and corresponding to ‘region 1’ in Fig. 3.12. The dimensions
are indicated in Table 3.2). ‘Region 1’ extends two and three coarse cells to the
sides and to the top and bottom of the conductors, respectively. The remainder
of the calculation domain is unrefined with factors ν = [4, 1, 3] (Zsub), resulting
in the mesh dimension listed in Table 3.2. In a second step, all cells left and
right of the core region containing the conductors, being left and right of the
dotted line in Fig. 3.11(a), are replaced by a five cell PML. The stripline pair
was simulated using both a coarse- (Z[111]) and mixed-cell (Z[dyn]) PML. The
dimensions are again tabulated in Table 3.2.

Table 3.3 contains the number of cells, the number of field components, the
calculation time as well as the calculated impedances. It can be seen that a
distinct reduction in cells (and therefore field components) with a factor 5.8 has
resulted in a time reduction with factor 4.8. Table 3.3 shows that all obtained
impedances do not deviate much from Zref and even less from Zfine.
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Figure 3.12: Subgridding regions to discretize the differential stripline pair

Differential microstrip

The configuration of the microstrip is identical to the one of the stripline pair
with two obvious differences: the conductors are located on top of a Nelco®

N4000-13 SI substrate with thickness H2 = 180µm and above the conductors
there is an open free space region (or a PML in the simulation). This means
that PMLs are now applied at the left, the right and above the dotted box
(see Fig. 3.11(b)). The distances kept from the conductors is three coarse cells
at both the left and right side and five cells at the top. The coarse mesh,
when applied, starts two coarse cells below the conductors. Table 3.4 presents a
comparison between the impedance obtained by our in-house MoM technique, by
the new subgridded FDTD techniques using a uniform fine mesh with matching
fine-cell PML (Zpml) and a non-uniform mesh with both coarse-cell and mixed-
cell PML (Z[111] and Z[dyn], respectively). All simulations are obtained from a
λ/3-long microstrip simulated for 100 000∆t.

The results presented above clearly demonstrate the stability of the proposed
schemes. The obtained results hardly differ from a FDTD reference solution
and are in good agreement with the results obtained from the in-house MoM
tool. Important here is that equally accurate results are obtained using 5.8
times less field components. This resulted in a significant speed-up (by a factor
of 4.6) of the simulations.

3.5 Conclusion
In this paper, a framework for a stable, reciprocal and passive arbitrary sub-
gridding procedure was presented. The consequences in terms of non physical
reflections were studied and found to be of minor impact. In addition, a sub-
gridding scheme for PMLs was proposed. It was found that an adequately
subgridded PML provides a good balance between accuracy and calculation
time. By means of two realistic examples, it was shown that the proposed
strategies yield accurate results using significantly less resources both in terms
of memory requirements and simulation time.
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Zref = 49.21Ω length [λ] (length [cells])
3.0 (99) 1.0 (33) 0.5 (17) 0.3 (10) 0.25 (8)

tim
e
[#
∆
t] 100k 48.634 48.572 48.604 48.747 48.394

50k 49.217 49.266 49.209 49.266 48.817
25k 47.947 47.035 47.216 45.693 50.130

12.5k 48.428 44.612 43.183 53.036 49.760
6.25k 48.430 49.162 44.408 66.089 47.577

Table 3.1: Influence of the stripline pair length and the number of time steps
on the calculation of the characteristic impedance Z.

fine unrefined PML [111] PML [dyn]

region 1 56×15 56×15 56×15 56×15
region 2 56×12 14×4 14×4 14×4
region 3 56×15 14×5 14×5 14×5
region 4 56×12 13×4 5×4 20×4
region 5 56×15 13×5 5×5 20×5
region 6 56×15 13×5 5×5 20×5

Table 3.2: actual mesh dimension (y-dimension suppressed), of the different
simulated configurations

Zref Zfine Zsub Zpml Z[111] Z[dyn]

# cells/y 6396 1330 2772 1106 1526
calc. time [s] 120 341 28 626 56 092 25 934 37 734

gaincells 1.0 4.8 2.3 5.8 4.2
gaintime 1.0 4.2 2.1 4.8 3.2

Z[Ω] 49.21 48.634 47.534 48.645 49.500 49.506
rel.errZref [%] 0 1.17 3.41 1.15 0.59 0.6
rel.errZfine [%] 1.18 0 2.26 0.02 1.78 1.79

Table 3.3: Aggregated results for the asymmetric differential stripline pair

Zref Zpml Z[111] Z[dyn]

Z[Ω] 67.85 68.399 67.644 67.328
rel.errZref [%] 0 0.81 0.3 0.77
rel.errZfine [%] 0.8 0 1.1 1.57

Table 3.4: Aggregated results for the differential microstrip
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Part II
Wireless Power Transmission over

Ultra Wide Band links

Ultra Wide Band links, antennas, systems, . . . are characterized
by large bandwidth requirements. They differ from narrow band
systems by the fact that the system characteristics cannot be assumed
to be frequency independent, i.e. constant within the considered
frequency interval. The frequency dependence of involved quantities
complicates the description of such systems. Therefore tools to
develop or simulate such systems have to take into account these
more involved models.
Wireless Power Transmission studies the amount of power available
at a receiver given an amount of power sent by a transmitter. In
this part, Ultra Wide Band and Wireless Power Transmission are
introduced, and a tool to simulate Wireless Power Transmission over
Ultra Wide Band links in a multipath environment is presented.





4
Introduction to Ultra Wide Band
and Wireless Power Transmission

Æ Æ Æ

Even though antenna operation is governed by Maxwell’s equations,
usually there is no need to describe them at such a low level. The
behaviour of antenna links can be described based on antenna figures
of merit and channel characteristics. This chapter aims to provide
an introduction to the necessary terminology, characteristics and
equations concerning (Ultra Wide Band) antennas and transmis-
sions. Almost naturally these concepts will lead to Wireless Power
Transmission over (wide band) antenna links.

Wireless communications can be characterized by a very simple scheme, con-
sisting of a transmitter, a wireless channel and a receiver (see Fig. 4.1). In the
field of electromagnetism, this translates to an antenna system transforming
‘electrical data’ into electromagnetic waves, which, in turn, are interpreted by a
receiving antenna. In order to model and simulate the complete system, it is
key to understand and model each component as accurately and as detailed as
possible. It is important to note that, from this point, on electromagnetic quan-
tities are used in their conventional (not normalized) form, as first introduced
in (1) in the introduction (p. 3) of this dissertation.

4.1 Antenna characteristics
A transmitting antenna can be described based on its electrical equivalent circuit
as depicted in Fig. 4.1(a). The antenna is driven by a source voltage Vs and a
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(a) Equivalent electric scheme of an antenna in
transmit mode.
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Figure 4.1: Antenna link consisting of a transmitting antenna (a) and a receiving
antenna (b) separated by a distance d. The transmitting antenna, characterized
by its internal impedance ZT , is driven by a source Vs with internal impedance
Zs, resulting in a current I injected into the terminals of the antenna or a
current density j(r) in the antenna itself. The receiving antenna, characterized
by its internal impedance ZR, is excited by an electromagnetic wave, resulting
in an open circuit voltage Vo, which can be (partially) dissipated in the load ZL

current I through the antenna terminals. This produces a voltage V over those
terminals and induces an electrical current density j in the antenna structure,
which then radiates an electrical field into space. If one observes the electric
field far enough away from the antenna, being in the far field, at a distance
of at least 2d2/λ (with d the largest dimension of the antenna), assymptotic
behaviour of the electric field in a point r = rur can be expressed as

lim
kr→∞

E(r) ∼ 2πfur ×
(
ur ×N(θ, φ)

)e−kr
r

∼ IF (θ, φ)e
−kr

r
(4.1)

with F (θ, φ) the far field vector for a unit current associated with a specific
antenna, I the terminal current and

N(θ, φ) = µ

4π

∫

V

j(r′)ek◦r
′
dV
′

(4.2)

with r′ as in Fig. 4.2



4.1. Antenna characteristics 69

O

r′

ur

r

V

j

|r − r′|

Figure 4.2: Relevant quantities for the calculation of the far field, under the
assumption that |r| ≈ |r − r′|

The antenna itself is characterized by its internal impedance ZT = RT + XT

with

RT = 1
η

∫

Ω

∣∣F (θ, φ)
∣∣2 dΩ (4.3)

XT = −2πf
|I|2

∫

V

(
ε|E|2 − µ|H|2

)
dV (4.4)

Based on this far field vector, some antenna characteristics can be defined. Most
importantly, the directivity, D(θ, φ), and the gain, G(θ, φ) are given by

D(θ, φ) = 4π|I|2|F (θ, φ)|2
Pr

= 4π|I|2|F (θ, φ)|2∫
Ω

|IF (θ, φ)|2 dΩ
= 4π|F (θ, φ)|2

ηRT

G(θ, φ) = 4π|I|2|F (θ, φ)|2
Pt

They are related through the radiation efficiency ε by G(θ, φ) = εD(θ, φ)
(Pr = εPt) with Pr the radiated power and Pt the total power.
Analogously, an equivalent circuit can be derived for an antenna in receive mode
(see Fig. 4.1(b)). For an antenna in receive mode, the same characteristics with
the same definitions as an antenna in transmit mode can be defined. Another
important parameter for the receive antenna is the open circuit voltage Vo

Vo = −2λ
η
FR(−ui) ◦Einc (4.5)
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with η the impedance of free space, −ui the direction of the incident plane
wave and Einc the plane wave itself.

4.2 Power transmission between two antennas
In this section, the real part of an impedance <ZA will be denoted as RA, where
A will be R, T , L and S for the impedance of the receive antenna, transmit
antenna, the load and the source, respectively. Combining both the transmitting
and receiving circuit results in

VL = ZL
ZL + ZR

−2λ
η

(
FR(−ui) ◦ FT (ui)

) Vs
Zs + ZT

(4.6)

The power dissipated in the load can be derived, based on the equivalent
receiving circuit, as

PL = 1
2

RL

|ZL + ZR|2
∣∣Vo
∣∣2 (4.7)

It can be proven that for ZL = Z
∗

R the power dissipated in ZL is maximised,
where β∗ denotes the complex conjugate of β. The maximum power is then
given by

Pmax = 1
8
|V0|2
RR

(4.8)

This means that
PL = MRPmax = 4RLRR

|ZL + ZR|2
∣∣Vo
∣∣2 (4.9)

withMR the mismatch factor of the receive antenna. Analogously, the maximum
power delivered by the source to ZT equals

PT,max = 1
8
|Vs|2
Rs

(4.10)

and
PT = MTPT,max = 4RTRs

|Zs + ZT |2
∣∣Vs
∣∣2 (4.11)

PL can be rewritten using (4.1), (4.3), (4.5), (4.10) and (4.11), resulting in

PL = MT ·GT
(

c

4πdf

)2
QRT ·GR ·MR · Ps (4.12)

with d the distance between the two antennas and QRT the polarisation mis-
match factor defined as

QRT =
∣∣FT (u) ◦ FR(−u)

∣∣2
∣∣FR(−u)

∣∣2∣∣FT (u)
∣∣2 (4.13)
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(4.12) is called the Friis transmission formula [1]. It is by this formula that far
field Wireless Power Transmission (WPT) is largely governed, since it describes
the maximum power available at the receiver, given two antennas, a channel
set-up and a certain transmit power. Important to notice is the inverse of the
free space path loss in Friis’ formula. The free space path loss (PL) is defined
by

PL =
(

4πdf
c

)2
(4.14)

This clearly indicates the spherical spreading of the power with increasing
distance as well as the influence of the frequency on the available power.

4.3 Ultra Wide Band systems
As just mentioned before, the Friis transmission formula is already frequency
dependent. But when using Ultra Wide Band (UWB) antennas, not only
the path loss is frequency dependent, every other quantity involved becomes
frequency dependent as well and Friis transmission formula changes to

PL = MT (f) ·GT (f)
(

c

4πdf

)2
QRT (f) ·GR(f) ·MR(f) · Ps (4.15)

This more general version of Friis’ transmission formula, also applies to narrow
band antennas. Although with narrow band antennas one assumes the quantities
involved do not change (much) over the considered frequency interval, and are
thus assumed constant.

The additional frequency dependence in (4.15) is caused by the large bandwidth
of UWB antennas, in so far that the narrow band approximation used in (4.12)
becomes invalid. To ‘officially’ qualify as a UWB antenna, according to the
Federal Communications Commission (FCC) [2], an antenna has to meet at
least one of the following criteria:

• Its absolute bandwidth1 has to exceed 500MHz

• Its relative bandwidth2 has to exceed 20%

A lot of designs exist for UWB antennas. The following is an incomplete list of
well-known, often encountered (classes of) antennas. A special class of UWB
antennas consists of the frequency independent antennas such as the log-spiral

1the absolute bandwidth is defined as fH −fL, with fH , fL the upper and lower boundary
of the antenna’s operating range, respectively

2the relative bandwidth is defined as 2
fH − fL

fH + fL
, with fH , fL the upper and lower boundary

of the antenna’s operating range, respectively



72 Chapter 4. Introduction to Ultra Wide Band and Wireless Power Transmission

0 1 2 3 4 5 6 7 8 9 10 11 12
−100

−80

−60

−40

f [GHz]

Sp
ec

tr
al

de
ns

ity
[d

Bm
/M

H
z]

UWB spectral mask according to FCC regulations

d5GP
dt5

mask outdoor
mask indoor

Figure 4.3: UWB spectral mask according to FCC regulations for both in-
door (red dashed) and outdoor (blue solid) environments. Within the unli-
censed frequency band 3.1GHz–10.6GHz, the spectral density is limited to
41.3 dBm/MHz. As an example, the fifth derivative of a Gaussian pulse (GP),
which fits the indoor mask very well, is depicted as well

antenna [3], biconical antennas [4] and the almost frequency independent log-
periodic antennas [5]. Another class consists of the wide band horns or rigged
horns [6]. During our wide band measurements, this type of horn was used as
a reference antenna. Finally, some UWB antennas can be described as linear
time invariant systems, characterized by their impulse response. Good impulse
antennas, have a sharp peak in their response and exhibit no or very limited
ringing (i.e. a very short impulse response). Good examples are the Vivaldi
antenna [5], [7] and the PulseOn® 200 [8] as used for the measurements and the
simulations in this thesis. The use of very short impulses, heavily reduces the
chance of pulse overlap in multipath environments, thereby almost eliminating
multipath fading. The pulse used in section 5.4 lasts 6.1 ns, with the bulk of
the pulse only lasting about 4 ns. Meaning there is no, or almost no interference
if the path length difference between the direct and a reflected path is larger
than 1.8m and 1.2m, respectively.

Regulators have provided an unlicensed frequency band for UWB applications.
In 2002, the American FCC [2] approved unlicensed use between 3.1GHz and
10.3GHz, with a spectral mask of −41.3 dBm/MHz, as depicted in Fig. 4.3. In
2007, the European Commission [9] followed in the FCC’s footsteps by opening
the frequency band between 6GHz and 8.5GHz for unlicensed use. Because
the FCC’s band is wider, it allows for more applications, and since it is in
place longer, most research is concentrated around it. The enforced low power
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requirements result in very limited interference with other systems. It also
makes UWB an ideal technology for Body Area Networks (BANs), because of
the confined range of the radiation and the limited Specific Absorption Rate
(SAR). The spectral mask, mentioned above, also regulates the type of impulse
antenna that can be used. For example, the fifth derivative of a Gaussian pulse
(GP), defined by

d5GP (t)
dt5 = A0√

2πσ6

(
−
(
t

σ

)5
+ 10

(
t

σ

)3
− 15

(
t

σ

))
e−t

2/2σ2
(4.16)

with σ = 51 ps and A0 a normalisation constant to fit the mask, approximates
the mask very well (Fig. 4.3). Therefore any antenna with this impulse response
is well suited for UWB applications under the FCC guidelines.
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In this contribution a modular framework for Ultra Wide Band
Wireless Power Transmission applications is presented. The goal of
this work is to simplify the study of wireless links, including antenna
characteristics, and the power transferred over them in body-centric,
multipath propagation environments. To achieve this goal, antenna
links are partitioned in black box models for all elementary building
blocks, such as antenna transfer functions, propagation channels,
active components and more. They can afterwards be recombined as
one sees fit. The recombination allows for accurate simulation of in-
tricate systems. For small examples, considerable speed and memory
gains were observed, when comparing the antenna link simulation to
a free standing antenna simulation. The simulation of the recombi-
nation using the proposed framework runs semi-instantaneous. For
larger examples, the simulated solution is obtained within seconds.
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5.1 Introduction
Within the broad field of Wireless Power Transmission (WPT) research, different
(overlapping) subdivisions can be identified. Based on the transmitter-receiver
distance, a separation can be made into near field and far field WPT. Being
independent of transmitter-receiver distance, efficiency is a key specification
and therefore a lot of research efforts focus on very efficient rectifier circuits [1]
and rectennas [2]. In this manuscript we will focus on far field WPT, especially
on the effect of the antennas and the propagation environment.

Historically, research into far field WPT boomed in the ’60s and ’70s. Important
mile stones were the powering of a remote model helicopter by William Brown
using radio waves and space agencies investigating the feasibility of solar power
harvesting in space and beaming it back to earth. After a cool down period,
research in WPT is booming again with more practical research topics such
as the remote powering of hard to reach sensor networks [3], cable-free desks,
near field wireless charging standards [4], [5] and (passive) Radio Frequency
IDentification (RFID) tags [1].

To power remote sensor networks, a low power source (per MHz) is preferable
in order not to disturb other transmission systems or to create high power
density hot spots. Ultra Wide Band (UWB)1 systems provide such low power
transmission spectral densities. In this respect, the American Federal Commu-
nications Commission (FCC) has approved the unlicensed use of the spectrum
in the range 3.1GHz–10.3GHz. However, since such a large band nullifies the
frequency independence assumption, common in small band antenna design,
any description of UWB systems will have to inherently include frequency
dependence and dispersion effects.

Research into far field WPT is hampered by the fact that full wave electromag-
netic solvers are unable to simulate large and complex propagation environments,
due to the discretization requirements of such problems. On the one hand,
even though some antenna link simulation tools have been developed [6], none
of those were able to take into account the inherent frequency dependence of
UWB applications. On the other hand, existing UWB link descriptions [7], [8],
do not handle intricate propagation environments. Statistical approaches to
UWB channels have been used [9], [10], but they do not enable the designer
to quantify the exact amount of power harvested for a given WPT system
operating in well-known deterministic conditions. Therefore, we present a
modular framework in which frequency dependence (as required for UWB) and
complex multipath behaviour (e.g. indoor environment) are unified in order
to simulate and accurately predict WPT at a low computational cost. The
proposed framework constructs frequency-dependent antenna links based on
stand-alone blocks. Each of the blocks can be a mathematical description, a

1an UWB system has a bandwidth exceeding the lesser of 500MHz and 20% of its centre
frequency
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convertor
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Figure 5.1: A WPT link from generator to harvester (and storage), including
a generator, a transmit antenna (Tx), a propagation channel (CH), a receive
antenna (Rx), a matching network, a rectifier, a boost converter and a harvester
with energy storage.

simulation, a measurement or a third party black box description of an antenna,
propagation channel (e.g. the statistical approaches to UWB propagation as
mentioned before) or any building blocks forming part of the intricate an-
tenna link. This general approach allows developers to pick the best or most
appropriate technique for each part and insert it into the model, but it also
allows manufacturers to provide a component description without compromising
intellectual property by disclosing a particular design.

5.2 Theory
In Fig. 5.1, a typical WPT link from generator to harvester (and storage) is
depicted. It includes a generator, a transmitter (Tx), a propagation channel
(CH), a receiver (Rx), a matching network, a rectifier, a boost converter and a
harvester with energy storage. Of interest here is the amount of power that can
be harvested and stored given a certain amount of generated power. In this
chapter, we will analyse and optimize only part of this link, being the antenna
link with a complex propagation channel as enclosed by the dashed box in
Fig. 5.1. The antenna link, presented in more detail in Fig. 5.2, is assumed to
be terminated by a load impedance ZL (<ZL = RL). We will particularly focus
on the ratio between the power harvested at the load (PL)

PL = RL
2

|Vo|2

|ZL|2
(5.1)
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where Vo is the open circuit voltage of the receive antenna, further defined by
(5.6) and the maximum available power (Ps)

Ps = 1
8
|Vs|2
Rs

, (5.2)

that may be delivered by the source Vs (with impedance Zs and <Zs = Rs)
to a transmit antenna in ideal matching conditions. In reality, the transmit
antenna has an internal impedance ZT . Therefore one might want to consider
the actual power generated by Vs or the power radiated by Tx.
When the transmitter and the receiver are both free standing antennas located
in free space with only a direct path between them, the received power as a
function of the maximum power delivered by the source’s generator is described
by the Friis transmission formula [11]. In case of an UWB context, all quantities
involved become frequency dependent, resulting in

PR(f) = MR(f) ·GR(f) ·QRT (f) ·
(

c

4πfd

)2
·GT (f) ·MT (f) · PT (f) (5.3)

with MR, MT , GR and GT the mismatch factor (M) and the power gain (G)
of the receive (R) and the transmit (T ) antennas, respectively, (4πdf/c)2 the
free space path loss and QRT , the polarisation mismatch, defined by

QRT = |FR(−u) ◦ FT (u)|2

|FR(−u)|2|FT (u)|2
(5.4)

with FR(−u) and FT (u) the far field vector of the receive and transmit an-
tenna, respectively, for a unit current and ‘◦’ the scalar product. The far field
vector F (u) =

[
FV (u), FH(u)

]
consists of a vertical (V ) and horizontal (H)

polarisation component. The path loss depends on the distance d between
transmitter and receiver, c the speed of light and the frequency.
The Friis transmission formula expresses power transmission in an ideal situation
and is insufficient to express power transmission in a multipath environment
or with antennas placed on the human body, located on or in walls or, in
general, in ‘complex’ environments. In order to describe such a more intricate
configuration, one has to derive the power transmission based on the voltages
and currents on both antennas.
From Fig. 5.2 one can derive the voltage dissipated in the load (ZL) as

V2 = ZL
ZL + ZR

Vo (5.5)

with ZR the internal impedance of the receiving antenna. The open circuit
voltage Vo is given by

Vo = −2c
ηf

(
FR(−u) ◦Einc

)
(5.6)
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Figure 5.2: Schematics of a two-port network representation of the antenna link.
The antenna link consists of a transmit antenna Tx (with internal impedance
ZT and far field vector FT (u)) powered by a generator (Vs with impedance
Zs) and a receive antenna Rx (with internal impedance ZR and far field vector
FR(−u)) terminated by a load ZL.

with  the complex unit, η the free space impedance and Einc the electric field
of an impinging plane wave. From this point on, all far field vectors will include
the effect of all objects in the reactive near field of the antenna, but the notation
for the far field vector remains unaltered. Under the far field assumption and in
a multipath environment, Einc can be replaced by the electric field generated
by the transmit antenna. This means

(
FR(−u) ◦Einc

)
= I1

∑

i

e−kdi
di

(
FR(−ui) ◦ Γ i ◦ FT (ui)

)
(5.7)

with k = 2πf/c the free space wave number, ui and −ui the transmit and
receive direction of the ith path, respectively, di the length of the ith path and
Γ i a full tensor containing the product of the γ reflections and transmissions
(numbered 0 to γ − 1) along the ith path.

Γ i =
γ−1∏

j=0

{
Ri,γ−1−j if the jth interaction is a reflection
T i,γ−1−j if the jth interaction is a transmission

(5.8)

The index j ‘follows’ the ith path from transmitter to receiver as it goes through
a series of transmissions and reflections. This means, that if the ith path is first
reflected on a surface and then twice transmitted through others, we have that
Γ i = T i,0T i,1Ri,2.

Ri,j and T i,j are expressed in the same ‘vertical-horizontal’ base as the antenna
polarisation. They are obtained by rotating the diagonal tensors RD

i,j =
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diag
(
RTE
i,j , R

TM
i,j

)
and TDi,j = diag

(
TTE
i,j , T

TM
i,j

)
over the correct angle. The

components of RD
i,j and TDi,j are the reflection and transmission coefficients

of a wave with a polarisation parallel and perpendicular to the normal of the
reflection plane. The reflection coefficients are given by

RTM
i,j =

εr sinψi,j −
√
εr − cos2 ψi,j

εr sinψi,j −
√
εr − cos2 ψi,j

(5.9)

RTE
i,j =

sinψi,j −
√
εr − cos2 ψi,j

sinψi,j −
√
εr − cos2 ψi,j

(5.10)

with ψi,j the angle of incidence of ith path at the jth transmission or reflection
(see Fig. 5.5) and TDi,j = 1 + RD

i,j , with 1 the unity tensor. Note that the
expression for Γ i will be frequency dependent.

Expressing I1 in (5.7) as a function of the generator voltage Vs, the generator
impedance Zs and the internal impedance of the transmit antenna ZT results in

V2 = ZL
ZL + ZR

−2c
ηf

[∑

i

e−kdi
di

(
FR(−ui) ◦ Γ i ◦ FT (ui)

)] 1
ZT + Zs

Vs .

(5.11)

The polarisation mismatch can be written as q, the cosine of the angle between
the far field vectors of the transmitting and the receiving antenna, as given
below

q = FT (u0) ◦ FR(−u0)
|FT (u0)||FR(−u0)| , (5.12)

with FR(−u0) and FT (u0) associated to the direct path and Q = |q|2.

In order to bring the far field vectors outside of the sum, one can replace Γ i by

Γ ′i = FR(−ui) ◦ Γ i ◦ FT (ui)
FR(−u0) ◦ FT (u0) , (5.13)

and thus

FR(−ui) ◦ Γ i ◦ FT (ui) =
∣∣FT (u0)

∣∣ · q · Γ ′i ·
∣∣FR(−u0)

∣∣ (5.14)

Then define HR and HT as below

V2
Vs

=
(
|FR(−u0)|
ZL + ZR

)

︸ ︷︷ ︸

(
−2c
ηf

ZLq
∑

i

Γ ′i
e−kdi
di

)

︸ ︷︷ ︸

(
|FT (u0)|
ZT + Zs

)

︸ ︷︷ ︸
.

= HR HCH HT

(5.15)
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(5.15) is written down as a product of transfer functions, which mimics well the
block model that was presented in Fig. 5.1. This property will be exploited
later on.

Based on (5.15), (5.1) and (5.2), the ratio PL to Ps is given by

PL
Ps

= 4RL

∣∣∣∣∣
FR(−u0)
ZL + ZR

∣∣∣∣∣

2∣∣∣∣∣
−2c
ηf

ZLq
∑

i

Γ ′i
e−kdi
di

∣∣∣∣∣

2∣∣∣∣∣
FT (u0)
Zs + ZT

∣∣∣∣∣

2

Rs . (5.16)

To use the theory above, one has to obtain data for the transfer function of
an antenna. This means that for an antenna placed on the human body, the
transfer function of the antenna on the body (instead of ‘just the transfer
function of the stand-alone antenna’) should be measured or simulated. When
relying on simulations, one uses the expression

Hx = Fx(u)
Zx + ZL

, (5.17)

for antenna x with internal impedance Zx and terminated by ZL. To measure
the transfer function of an antenna, a full 3D far field vector of the antenna
is needed. This quantity is obtained through a three-antenna measurement.
Note that the three-antenna measurement has to be performed for the vertical
and the horizontal polarisation. The three-antenna measurement consists of
measuring the S21 between any pair of the three antennas. From two-port
theory, one can easily derive an expression for S21 as a function of port voltages.
Given the two-port in Fig. 5.2, the standard expressions for the S-parameters
are given by (5.18)

S11 = b1
a1

∣∣∣∣
a2=0

S12 = b1
a2

∣∣∣∣
a1=0

S21 = b2
a1

∣∣∣∣
a2=0

S22 = b2
a2

∣∣∣∣
a1=0

. (5.18)

and the necessary expressions for the forward and backwards normalized voltage
waves given by (5.19) (with ‘∗’ the complex conjugate, Vs = V1 + ZsI1, V2 =
−Z∗LI2 and under the assumption that the two-port is terminated by two
impedances satisfying |<ZL| = |<Zs|).

a1 = 1
2
V1 + ZsI1√

|<Zs|
b1 = 1

2
V1 − Z

∗

s I1√
|<Zs|

a2 = 1
2
V2 + ZLI2√

|<ZL|
b2 = 1

2
V2 − Z

∗

LI2√
|<ZL|

(5.19)

S21 then yields

S21 = b2
a1

=
√
|<Zs|

(
V2 − Z

∗

LI2
)

√
|<ZL|(V1 + ZsI1)

= 2V2
Vs

. (5.20)
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Leveraging the block model, one can express S21 for the vertical polarisation
(the expression for the horizontal polarisation is similar) as

SV21 = 2V2
Vs

= 2HV
R ·HV

CH ·HV
T . (5.21)

Given three antennas, labelled x, y and z, one can write down the relation above
for every pair of antennas, resulting in a set of three equations (the polarisation
indication is suppressed)





Sxy21 = 2 ·Hx ·Hxy
CH ·Hy

Syz21 = 2 ·Hy ·Hyz
CH ·Hz

Szx21 = 2 ·Hz ·Hzx
CH ·Hx .

(5.22)

This can be solved for the different transfer functions. Hx is given by

Hx =

√
1
2
Sxy21
Hxy
CH

Hyz
CH

Syz21

Szx21
Hzx
CH

. (5.23)

The expressions for Hy and Hz are the same, a permutation of antenna indices
aside. Calculating the above for both the vertical and the horizontal polarisation
results in

Hx =
[
HV
x , H

H
x

]
. (5.24)

5.3 Theory validation
As mentioned before, an antenna link can be described with a block model. In
terms of power, the model is given by

PL
Ps

= |S21|2 = 4|HR|2|HCH |2|HT |2 , (5.25)

in which the propagation channel can be complex e.g. due to various paths
along which the signal can travel.

A commercial, off the shelf, UWB test bed [12] was used to validate the theory.
The test bed includes a UWB monopole antenna (see Fig. 5.3, [13]) designed to
operate in the frequency range 3.1GHz–5.3GHz. However, no accurate physical
description of the monopole’s geometry and materials was available. To use
this antenna in simulations, one has to build a model by measuring the physical
dimensions of the antenna and by estimating the dielectric properties of the
antenna substrate. In the end, this may result in a decent approximation. On
the other hand, this is not really necessary. The proposed framework allows
to incorporate a measured far field vector, gain or other antenna figure of
merit into the block model instead of approximate simulations. In the light of
validating our theory, we apply both approaches.
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Figure 5.3: UWB monopole as recreated in CST-MWS®

To obtain the antenna transfer function, the suggested three-antenna measure-
ment was performed with the UWB monopole [13], an UWB horn [14] and two
standard gain horns2 (Scientific Atlanta’s 12-2.6 and 12-3.9 standard gain horns
[15]). The antenna transfer function is then calculated following the procedure
in (5.23). The channel transfer function in the anechoic chamber equals

HCH = HFS = −2fZL
ηc

e−kd
d

. (5.26)

To validate our theory, we would like to simulate the antenna links we measured
in the anechoic chamber with the time domain solver of Computer Simulation
Technology’s Microwave Studio® (CST-MWS®). Unfortunately, this is impos-
sible due to the large antenna spacing (5m or approximately 51λ at 3.1GHz)
and the size of the horn antennas. It was, however, possible to simulate a full
monopole to monopole link over a distance of 0.5m (≈5λ) with CST-MWS®.
A distance of 0.5m does not really correspond to the far field at the considered
frequencies. To verify the accuracy of the link simulation at that distance,
another CST-MWS® simulation was performed at 0.75m, applying a less dense
mesh. Then, the radiation vector resulting from the electric field observed
at 0.75m was compared to the one calculated at 0.5m. A reasonably good
agreement was found between both results, verifying the far field approximation
for a distance of 0.5m, within a reasonable accuracy.

To reproduce this result with measurement data, the monopole transfer function
was extracted from the measurements and the propagation transfer function
was replaced by (5.26) for an antenna spacing of d = 5m. In addition, the
antenna transfer function of the monopole was also calculated from a stand-
alone simulation of the antenna using (5.17). As an extra way of validating
the theory, the Friis transmission formula was also used to calculate the power
transmitted from the one monopole to the other.

2together they completely cover the required frequency range
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Figure 5.4: The power ratio PL
Ps

, calculated in different ways: using the
monopole’s measured transfer function (TFM , blue, solid), using the Friis
transmission formula based on measurements (FriisM , blue, dots), using the
monopole’s simulated (stand-alone) transfer function (TFC , green, dashed),
using the Friis transmission formula based on a stand-alone simulation (FriisC ,
green, crosses) and using |S21|2 as directly simulated (

∣∣∣SL21

∣∣∣
2
, red, pluses)

Next, all the expressions for the ratio between received and transmitted power
are calculated and plotted in Fig. 5.4. First, the power ratio was calculated
using the measured monopole’s transfer function (TFM , blue, solid)

PL
Ps

= 4
∣∣∣HM

∣∣∣
2∣∣∣HCH

∣∣∣
2∣∣∣HM

∣∣∣
2

(5.27)

and using Friis’s formula with measured gain and reflection coefficient (FriisM ,
blue, dots)

PL
Ps

= GM ·MM · PL−1 ·MM ·GM . (5.28)

Second, the power ratio was evaluated using stand-alone simulations of the
monopole antenna based on transfer functions, (TFC , green, dashed)

PL
Ps

= 4
∣∣∣HC

∣∣∣
2∣∣∣HCH

∣∣∣
2∣∣∣HC

∣∣∣
2

(5.29)
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and based on Friis’s formula (FriisC , green, crosses)

PL
Ps

= GC ·MC · PL−1 ·MC ·GC . (5.30)

Finally, the power ratio was calculated using the S21 as simulated, without the
transfer function extraction (

∣∣∣SL21

∣∣∣
2
, red, pluses)

PL
Ps

=
∣∣∣SL21

∣∣∣
2
. (5.31)

All antenna figures of merit used above relate to the UWB monopole and
PL represents the path loss. The full link simulation in CST-MWS® lasted
4 h4m14 s on a quad core system and used over 6.5GB of RAM memory. A
stand-alone simulation of the antenna only lasted 39m25 s on the same system
and used 3.7GB RAM memory. The combination of the correct transfer
functions took only seconds.

One can see that all data are in good agreement. Differences between simulated
data are due to the different meshes CST-MWS® applied to different set-ups
and to the fact that the antenna separation does not really satisfy the far-field
conditions.

Allowing for reflections on different surfaces complicates the basic configuration
above. Adding a concrete floor 1.7m below both transmitter and receiver
results in one additional propagation path next to the direct path. This second
path is indicated as such in Fig. 5.5. This set-up will be called the ‘two-
path’ configuration. Adding a concrete ceiling 4m above the floor gives raise
to a, theoretically, infinite number of additional propagation paths between
transmitter and receiver. The first three paths are depicted and labelled in
Fig. 5.5. This set-up will be named ‘three-path’ configuration. The other paths,
of which a few are also depicted, reflect twice, thrice and so on, on floor and
ceiling. With every additional reflection, the propagation path becomes longer
and its contribution to the power at the receiver diminishes. Our extensive
simulations have shown that the ratio between received and transmitted power
converges when fifteen propagation paths are considered.

The ratio between received and transmitted power as a function of frequency, for
the three configurations mentioned above, is shown in Fig. 5.6. The two-path
configuration results in predictable fluctuations around the direct path. Peaks
and valleys are spaced approximately 141MHz apart, corresponding with a
wavelength of 1.06m, which is almost equal to ∆d between the direct path
and the reflected path of 1.05m. The three-path configuration complicates the
result. The fluctuations around the power received via the direct path is less
predictable and the relative height and depth of the peaks and valleys increases.
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Figure 5.5: Simulation set-up consisting of a receiver and a transmitter 5m apart
both placed at a height of 1.7m above ground. The direct path is represented
by a dotted line, the first additional path by dash-dotted line and the third
propagation path by a dashed line. The third propagation path is reflected
from a 4m high ceiling. The ceiling causes more paths to exist. Four additional
paths are drawn in fine dashes and fine dots

5.4 Application
In the previous section, it was shown above that the proposed framework yields
accurate results. We now apply it to determine the ideal distance between
transmitter and receiver to optimize the power transmission. Let us consider the
multipath configurations introduced above, where we place the receive antenna
on the chest of a test person (1.75m, 70 kg). The antenna was taped on the
shirt of the test person and spacer fabrics were used to increase the spacing
between body and antenna. Remark that when no spacer fabric was used, the
antenna was deployed 2 to 3mm (estimate) away from the body, because the
antenna was positioned on a loose shirt. The linear UWB monopole was placed
on the body in such a way that its polarisation was vertical and aligned with
the vertical polarisation of the UWB horn used as transmit antenna in this
measurement. Therefore, the horizontal polarised component in the measured
S21 is very small and is neglected from here on. On-body data will be indicated
by a subscript b.

First of all, the system was excited with an UWB pulse, depicted in Fig. 5.7,
with a duration of 6.1 ns. The pulse is normalized to have a power of 1W.
99.95% of the power of the pulse is concentrated in a time frame between
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Figure 5.6: Power transfer over three different channels with a length of 5m: free
space propagation (Blue, solid), two-path model, sender and receiver are placed
1.7m above ground (green, dashed) and a model consisting of the two-path
model extended with a ceiling 4m above ground (red, dotted).

0.47 ns and 4.34 ns, as indicated by red dashes in Fig. 5.7.

Second, the transfer function of the monopole antenna on the human body was
measured (HM

b , see Fig. 5.8) for distances varying between 3mm and 20mm.
Third, the transfer function was also simulated with CST-MWS® (HC

b , see
Fig. 5.9). In the simulations, the human body was represented by a three
layer ((dry) skin (1mm), fat (3mm) and muscle (18mm)) tissue model of size
150mm× 150mm. The frequency dependent dielectric properties of the body
tissues were obtained from [16].

Comparing simulations and measurements one can see that (except for the CST-
MWS® simulation at a 3mm spacing) the body acts as a reflector compared
to the free-standing scenario and therefore, the amount of power received
over the WPT link increases. In general, measurements show larger transfer
functions than the simulations do. It also needs to be noted that, for an antenna-
body spacing of 20mm, the monopole’s transfer function shows a clear dip at
f = 5.25GHz (down to −30 dB). In Fig. 5.9, one can see that, for the same
spacing, the transfer function does decrease, but does not show the same steep
dip. The (shallow) dip in the simulation results occurs for f > 5.5GHz. This
might be caused by the three-layer model of the body used for the simulations,
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Figure 5.7: UWB pulse (blue). The part containing 99.95% of pulse’s power is
marked with red dashes (between 0.47 ns and 4.34 ns).

which might be overly simple.
Let it be clear that it is extremely difficult to accurately model the interaction
of electromagnetic radiation with the human body. Besides, the simulations
of the antenna on the human body were also time and memory consuming.
Fortunately, the tedious and to a greater or lesser extent inaccurate process of
running the on-body simulations, can be entirely circumvented by using the
proposed framework and by plugging in measurements of the antenna deployed
on the body into the simulation. Using the on-body measurements, the power
delivered to the on-body antenna (PL) by the free-standing antenna (Ps) is
expressed by (with HC the stand-alone simulated monopole transfer function
in free space)

PL = 4 ·
∣∣∣HM

b

∣∣∣
2
·
∣∣∣HCH

∣∣∣
2
·
∣∣∣HC

∣∣∣
2
· Ps . (5.32)

Finally, to put emphasis on the difference between a single direct propagation
path and two-path propagation, the results are normalized with respect to the
(direct) distance (d) between transmitter and receiver. This means that the
result is divided by the energy transmitted along the direct path. Therefore, if
the result is larger (smaller) than one, more (less) energy is transported by the
two-path system compared to the direct propagation scenario. The differences
between multipath and direct path propagation are caused by the ∆d (rather
than by the direct propagation distance d). Therefore results will be presented
as a function of ∆d (rather than d).
In Fig. 5.10, the received power is plotted as a function of ∆d for a two-
path link. First note that the effect of the second path is independent of the
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Figure 5.8: the transfer function of the UWB monopole placed on the human
body as measured for distances varying between 3mm and 20mm. As a reference
the transfer function of the free-standing monopole (blue, dots) is added.

spacing between the antenna and the human body. One can observe that, for
∆d > 1.3m, the curve is flat and slightly larger than one. This means that the
second path delivers additional power to the receive antenna (compared to only
a direct path). A ∆d of 1.3m corresponds to a time delay between the two
pulses of 4.34 ns. Since almost all the energy of the pulse is concentrated in
a smaller time frame, no interference occurs. A ∆d of 1.3m corresponds to a
direct path length of 3.79m (given that transmitter and receiver are placed at
a height of 1.7m)

When ∆d drops below 1.3m, the pulses received over both propagation paths
overlap more and more and a pattern of constructive and destructive interference
appears. The pattern is fairly regular, the constructive interference peaks
increase with decreasing ∆d, while the destructive interference dips deepen.
The distance between peaks is fixed at about 0.085m. The highest additional
relative power transmission caused by the second path occurs for a ∆d of
0.042m.

Similar to the adopted approach at the end of section 5.3, a concrete ceiling
is added 4m above the floor. As mentioned in section 5.3, fifteen propagation
paths are considered, because this was found to be the minimum number of
paths to ensure convergence in the received versus transmitted power ratio. The
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Figure 5.9: the transfer function of the UWB monopole placed on the human
body as simulated with CST-MWS® for distances varying between 3mm and
20mm. As a reference the transfer function of the free-standing monopole (blue,
dots) is added.

results for the received power are displayed in Fig. 5.11. Note that ∆d is not
uniquely defined, because there is a difference between the direct path and all
the indirect paths. We chose ∆d to be the difference between the direct path
and the first reflected path (as above). Adding thirteen propagation paths on
top of the two in the two-path configuration, destroys the regularity observed
in the two-path case. Now it is impossible to easily predict the next peak in
the received power with a simple formula. But the proposed framework solves
this problem. From Fig. 5.11 one can see that the highest additional relative
power transmission via the multiple paths occurs for a ∆d of 0.15m.

5.5 Conclusion and future research
In this paper, a framework for the simulation of frequency dependent, multi-
path configurations was presented. It was shown that the framework provides
accurate results in the simulation of antenna links and power transmitted over
them. As an example, the ideal distance between transmitter and receiver for
maximal power transfer was determined for two more complex propagation
channels. In future research even more intricate propagation channels should
be studied, modelled and included in the framework, to make it more versatile.
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Figure 5.11: Received power versus ∆d for the three-path configuration (P3,
Tx→Rx, free-standing (fs) to on-body), corrected for the power received via
the direct path (P0)

Extra attention should also be paid to polarisation cross-over in reflected paths,
especially for rough surfaces.
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Conclusions

Presented research
In this thesis, two major problems were tackled. In the first part, local arbitrary
subgridding of the Finite Difference Time Domain method (FDTD) meshes was
introduced, whereas in the second part Wireless Power Transmission (WPT) over
Ultra Wide Band (UWB) links was studied. In both topics, special attention
was devoted to (spurious) reflections.

In part I, a novel technique was presented to relax the stringent requirement of
uniform mesh cells in FDTD. This technique not only allows for more accurate
modelling of objects that are either non-cuboidal, or not aligned according
to the grid axes (thereby strongly reducing staircasing), but also results in a
tremendous increase in calculation speed and a substantial reduction in memory
use. In a first step, the theory was outlined for a classic FDTD grid. In a
next step, the provided theory was extended towards Perfectly Matched Layers
(PMLs). This extension provided additional benefits. Either reflections at the
mesh/PML interface can be reduced, resulting in a more accurate solution,
or the number of PML cells can be reduced at a minimal cost, again yielding
a memory use reduction and a calculation speed increase. To validate the
claims made, first, the influence of the type of subgridding (being parallel with
respect to the coarse mesh/fine mesh interface, perpendicular with respect to
the interface or both) on the magnitude of spurious reflections was investigated.
From the results it was clear that parallel subgridding accounted for far larger
spurious reflections than perpendicular subgridding did. This result was used in
a second step to devise a strategy for terminating a mesh with a PML. One can
either match the PML refinement to mimic the standard mesh refinement, or
one can reduce the number of PML cells. Extensive simulations have shown that
by parallelized unrefinement of the PML, the best trade-off between accuracy
and calculation time was achieved. Finally, to quantify speed gains and memory
reductions, the characteristic impedance of two representative configurations,
being a stripline pair and a microstrip, were calculated and compared to the
result obtained by an in-house tool, usging the Method of Moments. The
simulations report speed-ups of up to a factor 5 and a memory reduction of up
to a factor 6, without any concession to the accuracy.

In part II, the time consuming, tedious and costly simulation of Maxwell’s
equations was bypassed altogether in favour of the development of a specialist
tool to calculate WPT for intricate UWB links. The transmitter, the receiver and
the channel, being the building blocks of the antenna link, were represented using
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a transfer function. Because of the frequency dependency of all building blocks,
the antenna link had to be described in terms of amplitude and phase (rather
than power), taking into account the aforementioned frequency dependency
and a sequence of, again frequency dependent, transmissions and reflections the
electromagnetic fields undergo while travelling from transmitter to receiver. The
presented framework allows to incorporate measurement data, simulation data,
models or a combination thereof as representations of the transfer functions.
This provides tremendous freedom in the selection of the best data source.
If one wants to determine the power delivered to systems near the human
body, one has to take into account the influence of the human body on the
antenna characteristics. This influence is difficult to simulate using tools
such as Computer Simulation Technology’s Microwave Studio® or Keysight
Technology’s EMPro 3D EM Simulation Software®. An accurate measurement
of this interaction is much easier obtainable. The gathered data can then
be used in the framework. On the other hand, the manufacturer of some
system, can provide a black box model to use with the framework instead of
disclosing his intellectual property, therefore allowing a client to run accurate
simulations without giving up any industrial secret. The framework was tested
by determining the points with best power reception in a UWB to UWB antenna
link near the human body in a multipath environment, considering both a single
reflection and a configuration with many reflections on a floor and a ceiling.

Future research
First, the existing FDTD code operates more as a proof of concept than as a fully-
fledged software suite. A series of concepts such as finite conductivity, complex
permittivity, non-linear materials, the total field - scattered field formalism,
near field- far field transformation, discrete components (impedances, inductors,
capacitors, . . . ), non-linear components (diodes, junctions, transistors, . . . ) and
others were not implemented nor researched. The use of subgridding might
make the implementation of these features not straightforward and might need
some extra attention. For a complete product, however, one cannot get around
these features.
Second, subgridding was only considered in the spatial domain. This resulted in
a stable time step related to the smallest cell size in the mesh. If one could also
subgrid in time, coarser cells would need less frequent updates, and, therefore,
the total number of updates and consequently the total simulation time, can
be reduced significantly. Some research effort has been dedicated to time
subgridding by i.a. Ryan Chilton [1], but the problem was not yet solved. Some
preliminary simulations have shown that the naive approach of just making
the number of updates related to the relative cell size (thereby neglecting any
subgridding theory) does work to some extent, but stable operation of the
FDTD algorithm could not be guaranteed. It is clear that time subgridding is
not a straightforward extension of the presented method and will need extensive
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research to produce a stable, reciprocal temporal and spatial subgridded FDTD
algorithm.

The second part of this thesis resulted in a framework for a quick simulation
of UWB multipath environments. Additional validation could be done by
completely measuring simple set-ups with a limited number of reflections, as
a way to amend the work done using a crafty combination of simulations and
measurements. This will require a careful measurement set-up in the anechoic
chamber. A second topic worthy of further research, is the study of even more
complex propagation channels, with an emphasis on polarisation cross-over in
reflected paths, the effect of rough surfaces and other realistic properties of the
channels and materials involved that were not considered so far.
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