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OVERVIEW OF THE THESIS 

 

Fish and fishery products are some of the most perishable food products as they are 

susceptible to rapid quality losses. Quality losses of fishery products are mainly the result of 

microbiological activity. The microbiota of fishery products varies and depends on the 

geographical location, the season, the temperature of water, the fish species, the slaughtering, 

treatment after slaughter, etc. Most of the quality loss is a result of the production of off-odors 

and -flavours by microbial contaminants. However, not all micro-organisms present on the 

product play an important role in the degradation of the product. Only a fraction of the 

microbial contaminants, termed specific spoilage organisms (Gram and Huss, 1996),  

participate in the degradation and loss of quality.  

In addition to quality losses, producers also face microbial food safety-related challenges. As 

microbiological pathogens can contaminate products at all stages of the food chain (pre-

harvest, handling, processing, distribution), the main goal of producers is to control pathogens 

in order to provide safe, wholesome, and acceptable food for consumers. However, this can be 

very challenging due to the variable performance of food safety management systems in 

practice. Specifically, insufficient sanitation, hygiene deficiencies and improper production 

practices can be the main reasons related to variability of food safety outputs. Therefore, there 

is a need for more knowledge on the (evolution of) microbiota of freshwater during 

processing and the influences of processing steps on the quality and safety of fishery products 

processed in countries such as Vietnam. 

Pangasius hypophthalmus (Sauvage, 1878), a freshwater fish found  in the Mekong Delta of 

Vietnam, plays an important role in aquaculture in Vietnam (Phan et al., 2009). In addition, 

the production of Pangasius products is still growing with annual production in excess of one 

million tons and export to over one hundred countries, indicating that Pangasius is highly and 

widely accepted for consumption (FAO, 2012; Phan et al., 2009; VASEP, 2013). Despite the 

booming export of Pangasius products from Vietnam, at the moment very little scientific 

information is available about microbiological quality of these products. Especially, the 

influence of processing on the microbial quality and safety of Pangasius is lacking. Most of 

the studies in literature on Pangasius have focused on farming practices and the 

environmental contamination of polluted water and soil (Andrieu et al., 2015; Anh et al., 2010; 



 

iv 

 

Da et al., 2012). A few studies have reported the nutritional quality of Vietnamese Pangasius 

products such as the protein, lipid, ash, minerals, (non) essential amino acids content and so on (Karl 

et al., 2010; Orban et al., 2008; Ruiz-de-Cenzano et al., 2013; Szlinder-Richert et al., 2011). In 

contrast, the information of microbial quality as well as safety of Pangasius products marketed in 

local and international trade is very limited. Therefore, this thesis attempts to address these gaps, 

especially the study on microbial quality of Pangasius hypophthalmus as influenced by industrial 

processing. The overview of the thesis is as follows:  

Chapter 1 reviews the scientific literature on the microbial quality and safety of fish during 

processing. The review begins with an analysis of the economic importance of Pangasius fish in 

Vietnam. Thereafter, the nutritional value is then described. Furthermore, the results of studies that 

have evaluated the microbiota of freshwater fish and Pangasius fish are discussed. Thereafter, the 

microbial spoilage and pathogens associated with Pangasius in particular are discussed. Lastly, the 

literature regarding the disinfection of wash water by chlorine and peracetic acid is summarized. 

In chapter 2, the microbiota of Pangasius fish during processing in a large vs. small scale company 

in Vietnam and on processing lines using non-chlorinated and non-chlorinated water for washing 

was evaluated. The microbiota on samples collected throughout each processing line was identified 

by 16S rRNA gene sequencing. The microbial quality and ecology of frozen Pangasius products 

sold in Belgium is investigated in chapter 3. 

The microbial quality and safety of Pangasius processed in Vietnam in the same companies 

evaluated in chapter 2 was evaluated by means of a microbiological assessment scheme (MAS) 

combined with questionnaires to determine the performance of the food safety management systems 

in place at those companies. The results of these studies are described in chapter 4. 

In chapter 5 a preliminary evaluation of the decontamination efficiency of washing Pangasius 

products in chlorinated water was performed as is currently done in a processing company in 

Vietnam. Thereafter, the decontamination of Pangasius fish and disinfection of the wash water by 

chlorine was studied on a laboratory scale. Next, in chapter 6, the continuous dosing of chlorine in 

the wash water was evaluated with focus on the decontamination of the fish and wash water in 

addition to the chemical safety. 

The aim of chapter 7 was to critically discuss the overall importance (implications) and potential 

applications of the results of this study and to offer perspectives for future studies to advance our 

understanding of the microbial safety and quality of fishery products. 
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1.1 Overview of fish consumption 

For many societies, fish and fishery products are a valuable source of high quality proteins, 

(polyunsaturated) fatty acids (i.e. omega-3 fatty acids), essential micronutrients and minerals. 

Fish can be consumed in various ways i.e. raw, cooked, grilled etc. or in various product 

forms such as salted, smoked, cured, canned and as component of ready-to-eat products. 40% 

of all fish intended for human consumption is marketed fresh (40%), whilst 32, 16 and 12% 

are processed into frozen, canned and cured products, respectively (Ababouch, 2006; 

Amagliani et al., 2012). The average per capita consumption of seafood and freshwater fish in 

various countries is listed in Table 1.1. 

Table 1.1 Seafood and freshwater fish consumption by consumer worldwide in 2010 

estimated by the Food and Agriculture Organization 

 

Country Seafood  

(kg/person/year) 

Freshwater fish 

(kg/person/year) 

World 18.7 6.7 

European Union 22.9 3.8 

USA 21.9 4.6 

China 32.3 15.0 

Japan 53.7 5.2 

Belgium 25.2 6.0 

 

Currently, Japan, the EU and the U.S. are the major importers of fish and fishery products 

(Ababouch, 2006). 46% of the total world demand of the fish and fishery products is satisfied 

by aquaculture products from Asia. China is the leading exporter of fish in Asia, followed by 

Thailand and Vietnam (FAO, 2010). Nowadays, fishery exports from Vietnam have increased 

by ca. 24-fold over the past two decades. Vietnam is now one of the top ten aquaculture 

exporters in the world. Of the various fish products produced in Vietnam, Pangasius species 

are rapidly becoming an increasingly important freshwater fish. The following discussion is 

therefore primarily focused on the production of Pangasius products. 



Literature review 

3 

 

1.2 The production of Pangasius products in Vietnam 

1.2.1 Overview of farmed Pangasius and its economic value 

Over the past two decades, the Mekong Delta has become a very important center for 

agricultural development in Vietnam. Important agricultural activities centered in the Mekong 

Delta include the production of rice, fruit and aquaculture. The Mekong Delta is located in the 

southern part of Vietnam and covers 12% of the total area of the country (331698 km²) (see 

Figure 1.1) and accounts for 72% of the country aquaculture production (Cuyvers and Van 

Binh, 2008). In recent years, the intensive development and the rapid expansion of Pangasius 

hypoththalmus production in the Mekong River Delta has resulted in a rapid increase in 

aquaculture in Vietnam (Phan et al., 2009). The total value of fish exports from the Mekong 

Delta regions accounts for 55% of Vietnam‘s total export income. Income from exports play 

an essential role in improving the income of local people and the rural economy (Cuyvers and 

Van Binh, 2008). 

 

                                    

Figure 1.1 The map of Vietnam (A) and Mekong Delta (B) 

Pangasius hypophthalmus is also referred to as Pangasianodon hypophthalmus. Common 

English names include sutchi catfish and striped catfish. It is known as Tra fish in the Mekong 

Delta regions. In the following discussion the term Pangasius will refer to Tra fish. Pangasius 

is naturally distributed in Mekong river and Chao Phraya river of Thailand. Pangasius was 

cultured in many countries (i.e. Vietnam, Thailand, Bangladesh, Myanmar, Cambodia, Lao, 

etc.), but currently production is predominant in the Mekong Delta, Vietnam (Nguyen, 2009). 

The Pangasius aquaculture in Vietnam was used to stock in ponds, mainly as supply for local 

A B 
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trade. Currently, Pangasius aquaculture is using much more intensified farming systems for 

international trade (Nguyen, 2009).  

 

Figure 1.2 Pangasius hypophthalmus (VASEP, 2013) 

The Pangasius (see Figure 1.2) are intensively farmed by stocking of hatchery-produced seed 

in ponds, floating cages or net-pen enclosures. Floating cages are made from steel or wood 

and consist of two parts: an under-water structure and a floating cage. In contrast, the net 

enclosure is a farming area in a river which is separated from the rest of the river by fences. 

The fences enable water to flow freely into the net enclosure thereby allowing for the water to 

be refreshed on a regular basis. The stock density varies according to the farming technique 

employed: ponds (30-40 fish/m
2
), floating cages (100-150 fish/m

3
) and net-pen enclosures 

(40-60 fish/m
2
). A mature and commercial Pangasius fish, which weighs ca. 1.0 to 1.2 kg (the 

optimal weight for processing), can be harvested after 8 months of farming (Karl et al., 2010; 

VASEP, 2013). The average yield of Pangasius can reach 250-300 tons/ha in ponds, 0.1-0.12 

tons/m
3
 in floating cages, and 300-350 tons/ha in net-pen enclosures (VASEP, 2013). In 2011, 

the total farming area utilized for Pangasius in Vietnam was estimated to be ca. 5,509 ha in 

ten provinces located in the Mekong Delta (Dong Thap, An Giang, Can Tho, Ben Tre, Vinh 

Long, Tien Giang, Hau Giang, Soc Trang, Tra Vinh, and Kien Giang (see Figure 1.3) and 

two other provinces (Tay Ninh and Quang Nam) which are not located in the Mekong Delta.  

Pangasius production reached ca. 1.43 million tons in 2011 according to Vietnam Association 

of Seafood Exporters and Producers (FAO, 2012; VASEP, 2013). In recent years, Vietnamese 

aquaculture production has increased steadily, reaching 1.6 million tons of Pangasius in 2012 

(MARD, 2013; VASEP, 2013). According to Ministry of Agriculture and Rural Development, 

Pangasius farming will be expanded to 7,260 ha by 2020 (VASEP, 2014). As a result, 

Pangasius production should increase to ca. 2 million tons/year by 2020. Besides quantity, 
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Figure 1.3 Farming Pangasius regions (highlighted in blue) in Vietnam (VASEP, 2013) 

the quality of Pangasius raised has been controlled by the implementation of quality 

management systems for farming ponds such as SQF 1000 CM (Safety Quality Food for 

primary producers) as well as international standards i.e. Global Good Agricultural Practice 

(GlobalGAP) and  Best Aquaculture Practices (BAP) (VASEP, 2013).  

Recent statistics show that there has been an increase in the export of Pangasius products 

from 2005 to 2011. In the U.S trade, Pangasius products were ranked as the sixth most 

favorite fish in 2011 (Globefish, 2011). In the EU, the trade value from Pangasius products 

increased from $139 million in 2005 to $ 526 million in 2011. Global trade in Pangasius 

products has also increased gradually, from $328 million in 2005 to $1.856 million in 2011 

(Figure 1.4). In similarity to the trend of the trade value, Pangasius production volumes 

exported from Vietnam to EU accounted for at least 20% of total Pangasius products 

exported throughout global trade (Figure 1.5). According to the Vietnam Association of 

Seafood Exporters and Producers (VASEP, 2014), the biggest markets during the first half of 

2014 for Vietnamese Pangasius products were the European Union (21.0%) and the U.S. 

(18.4%) (Figure 1.6). 
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Figure 1.4 Economic value of Pangasius products exported from Vietnam between 2005 to 

2011 (million USD) (Globefish, 2011)

 

 

Figure 1.5 Pangasius production exported from Vietnam between 2005 and 2011 (thousand 

tons) (Globefish, 2011) 
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Figure 1.6 Export markets of Vietnamese Pangasius products (Jan-Jun, 2014) (VASEP, 2014) 

1.2.2 Pangasius products 

1.2.2.1 Processing flow chart 

 

Fillets 

(www.vietfish.org) 

 

Steaks 

(www.pangasius-vietnam.com) 

 

Portions  

(www.sohafood.com) 

 

Added value products 

(www.vinhhoan.com.vn) 

Figure 1.7 Variety of Pangasius products for export 
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Pangasius is now largely accepted as an affordable substitute for cod and other white fish in 

Western countries (Phan et al., 2009). The a variety of Pangasius products marketed globally 

such as portions, steaks, fillets and its added value products (i.e. breaded, strips, ring 

Pangasius) (Figure 1.7) (VASEP, 2013). Furthermore, Orban et al. (2008) also pointed out 

that frozen and thawed fillets are the most popular forms sold in supermarkets and at fresh 

seafood markets in European countries. The European market commonly offers skinned and 

boneless frozen fillets (Karl et al., 2010).  

In Vietnam, the processing of frozen Pangasius fillets including cutting of the gills, filleting, 

skinning, trimming, sorting, tumbling, cooling, packaging and freezing is shown in Figure 1.8. 

Frozen Pangasius is further processed as (re)fresh fillets i.e. thawed fillets and stored under 

modified atmospheres package. Therefore, not only frozen forms but also (re)fresh (thawed) 

fillets have become popular in Western markets. In this study, frozen Pangasius products 

processed in Vietnam and/or marketed in Belgium are investigated. The processing of frozen 

Pangasius fillet is described as follows: 

 From farms to factories 

Live Pangasius fish are normally transported from suppliers to the factory by boat. As the 

quality of final products depends on the stress level of the raw fish, the boats are usually 

equipped with an underwater hatch which enables the water in the cages to be refreshed with 

river water. Each boat can transport 10 to 12 tons of Pangasius. During transportation from 

farms to factories, factors such as fish density, water circulation and transport time will be 

taken into account to avoid exhausted (or dead) fish. 

 Processing lines 

Upon arrival at the company, bleeding is performed manually by cutting the main blood 

vessel (aorta) leading from the heart to the gills of Pangasius. The blood is pressed out via 

contractions of the heart of the fish. During bleeding (ca. 30 min.), the fish are dipped in a 

water bath. Thereafter, the Pangasius are filleted manually followed by washing in a 

continuous stream of water. The fillets are then skinned mechanically by passing them 

through rotating knives. Trimming is then performed, whereby the subcutaneous fat and red 

muscle on the surface of the fillets is scraped-off with a knife. A knife is also used to trim the 

edges of the fillets. The fillets are then sorted manually based on color into white, pink to red, 

and yellow groups. Every fillet is checked for (putative) parasites by placing them on a  
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Figure 1.8 Flow chart for Pangasius products  

translucent table illuminated from below. Depending on the processing line, water or 

chlorinated water is used for washing the fillets after skinning, trimming and parasite 
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checking steps. In some cases, the fillets are then treated with additives in tumblers. Examples 

of additives which are often used to treat Pangasius fillets include sodium tri-poly phosphate 

or cryoprotectant (Sorensen, 2005). 

The fillets are then graded manually according to weight into four groups: 60-120 g, 120-170 

g, 170-220 g and  220 g per fillet. Before freezing, the fillets are placed into plastic bags and 

cooled with flake ice. During the freezing process, the individual fillets are manually placed 

into an Individual Quick Freezer (IQF) and frozen until a core temperature of -18°C. The 

frozen products are then packed into cardboard boxes, labeled and stored at -18°C. The entire 

production process from raw Pangasius fish to frozen fillets takes around 4.5 hours. With 

regard to yields, it has been estimated that 2.6 kg of fresh Pangasius fish are required to 

produce 1 kg of individually quick-frozen Pangasius fillets (Anh et al., 2010).  

1.2.2.2 Quality properties of Pangasius 

Vietnamese Pangasius products are currently exported to 145 countries in the world (VASEP, 

2013). This has largely been a result of their reasonable cost and their ‗white flesh‘, but also 

due to their good nutritional quality (Karl et al., 2010; Orban et al., 2008). The good 

nutritional quality of Pangasius is reflected in its proximate composition, a good source of 

amino acids, low residue levels of heavy metals and polychlorinated biphenyls, etc. The 

proximate compositions of Vietnamese farmed Pangasius product sold in Italy, Germany and 

Poland were similar with 12.9-15.7% protein, 1.3-3.2% fat, 0.8-1.3% ash and 82.1-84.7% 

water (Karl et al., 2010; Orban et al., 2008; Szlinder-Richert et al., 2011; Van Leeuwen et al., 

2009). Furthermore, the composition of the lipids has been studied intensively, the results of 

which indicate that they consist of high amounts of saturated fatty acids (41.1-47.8% of total 

fatty acids), low amounts of polyunsaturated fatty acids (12.5-24% of total fatty acids) with 

mainly linoleic acid (15-17% of total polyunsaturated fatty acids) and low cholesterol levels 

(21-39 mg/100 g) (Karl et al., 2010; Orban et al., 2008; Usydus et al., 2011). Regarding 

polyunsaturated fatty acids, eicosapentaenoic acid (EPA, C20:5, n-3) and docosahexaenoic 

acid (DHA, C22:6, n-3), which have been reported to have beneficial health effects, 

particularly in the prevention of cardiovascular diseases (Kris-Etherton et al., 2002), were 

found in Pangasius at levels of 3.7 and 21.1 mg/100 g of muscle, respectively (Usydus et al., 

2011). However, the quantity of EPA+DHA in Vietnamese Pangasius (24.8 ± 5.7 mg/100 g) 

is much lower than that found in Baltic salmon (3807 ± 666 mg/100 g), farmed Polish trout 
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(1804 ± 279 mg/100 g) and Baltic herring (941 ± 307 mg/100 g) marketed in Poland (Usydus 

et al., 2011). Fat-soluble vitamins such as vitamin A, D3 and E have been reported at levels of 

1.61 ± 0.54 µg/100 g, 0.31 ± 0.01 µg/100 g and 0.2 ± 0.05 mg/100 g, respectively (Szlinder-

Richert et al., 2011).  

Sodium occurs at high levels between 222-594 mg/100 g (Karl et al., 2010; Orban et al., 

2008). These high levels were demonstrated (by means of differential scanning calorimetry) 

to be mostly likely a result of the use of sodium polyphosphate during processing for water 

retention purpose. The maximum amount of polyphosphates allowed in the EU to be added to 

deep frozen fish fillets is 5 g/kg (calculated as P2O5); therefore, it has been recommended that 

Pangasius fish destined for export to the EU in which polyphosphates are used should be 

labeled accordingly (Karl et al., 2010). Calcium (Ca), potassium (K), sodium (Na) and 

magnesium (Mg) has been found to range between 80-90, 1700-3400, 4000-6000 and 120-

170 µg/g, respectively (Orban et al., 2008; Ruiz-de-Cenzano et al., 2013). Regarding toxic 

metals, the level of mercury (Hg) in Pangasius was determined to vary largely between 

various studies i.e. 0.4 (Ferrantelli et al., 2012), 0.3 (Orban et al., 2008), 0.005 (Usydus et al., 

2011) and 0.002 µg/g (Ruiz-de-Cenzano et al., 2013). These levels are however below the 

tolerable level of 0.5 µg/g stipulated by European Commission (EU, 2006). Furthermore, the 

levels of cadmium (Cd) and lead (Pb) in Pangasius samples has been determined to be lower 

than the maximum limits (Cd = 0.05 µg/g and Pb = 0.3 µg/g) stipulated by the European 

Commission (Ruiz-de-Cenzano et al., 2013; Szlinder-Richert et al., 2011).  

In addition to the quantity of protein in Pangasius, the quality of the protein has also been 

evaluated. The digestible proteins of Pangasius from Vietnam have been determined to be 

rich in essential amino acids (Szlinder-Richert et al., 2011). Total essential amino acid and 

non-essential amino acid levels were determined to be ca. 5.91 and 6.53 g/100 g fish, 

respectively. The essential amino acid content in 100 g fish was comparable with the levels of 

these amino acids recommended for an adult human weighting 70 kg (5.91 compared to 5.59 

g/100 g) (Table 1.2). Moreover, as can be seen in Table 1.3 the essential amino acid content 

of Pangasius muscle proteins (total = 45.6 g/100 g protein) is greater than that of the 

reference protein suggested by the FAO/WHO (total = 32 g/100 g protein) (FAO/WHO, 

1991). These values are similar to those of other appreciated fish i.e. Baltic cod (44.2 g/100 g 

protein) and trout (46.1 g/100 g protein) (Szlinder-Richert et al., 2011). The protein of 

Pangasius is therefore considered as a good source of essential amino acids. 
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Table 1.2 (Non) essential amino acid compositions in Pangasius fish (Szlinder-Richert et al., 

2011) 

Essential 

Amino acids 

(AA) 

Recommended daily intake 

g/100 g  

product 

Non-

essential 

amino acids 

 

g/100 g 

product 
Body weight 

(mg/ kg) 

Body weight 

(g/ 70 kg) 

Phenylalanine 

+ Tyrosine 
12.1 0.85 1.00 Alanine 0.72 

Isoleucine 15.7 1.10 0.65 Arginine 0.84 

Leucine 9.5 0.67 1.07 Glycine 0.65 

Lysine 9.4 0.66 1.37 Histidine 0.30 

Methionine + 

Cysteine 
12.1 0.85 0.54 

Aspartic 

acid 
1.33 

Threonine 6.5 0.46 0.56 
Glutamic 

acid. 
1.87 

Tryptophan 2.9 0.20 0.12 Proline 0.36 

Valine 11.4 0.80 0.60 Serine 0.46 

Total 

essential AA 
79.6 5.59 5.91 

Total non-

essential 

AA 

6.53 

 

Table 1.3 Comparison of essential amino acid levels in Pangasius muscle protein to the 

reference protein composition recommended by the FAO/WHO (Szlinder-Richert et al., 2011) 

Essential 

Amino acids 

 

Standard 

FAO/WHO 

(1991) 

g/100 g 

protein 

Phenylalanine 

+ Tyrosine. 
6.3 7.7 

Isoleucine 2.8 5.0 

Leucine 6.6 8.3 

Lysine 5.8 10.6 

Methionine + 

Cysteine 
2.5 4.2 

Threonine 3.4 4.3 

Tryptophan 1.1 0.9 

Valine 3.5 4.6 

Total 

Essential AA 
32.0 45.6 

It has to be taken into consideration that Pangasius fish can contain undesirable substances 

including antibiotics such as nitrofuran and/or its metabolites and chloramphenicol. These 

drugs were banned to protect consumers from antimicrobial resistance and other adverse 
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effects. Therefore, residues of these drugs are not permitted to be present in Pangasius 

products imported by the European Union and the U.S (FDA, 2009; Sarter et al., 2007). 

Testing for the presence of residues of these compounds is recommended 3-4 weeks before 

harvesting of the fish and during processing under the instructions of the National Fisheries 

Quality Assurance and the Veterinary Directorate in Vietnam (Cuyvers and Van Binh, 2008). 

Pangasius fillets marketed in Poland were monitored by Szlinder-Richert et al. (2011). The 

presence of nitrofuran and its metabolites [AOZ (3-amino-2-oxazolidin), AMOZ (3-amino-5-

morpholinomethyl-2-oxazoline, AHD (1-aminohydantoin), SEM (semicarbazide)] and 

chloramphenicol antibiotics occurred in the Pangasius fillets only at trace value (<1 and <0.3 

µg/kg, respectively) and are therefore lower the Minimum Required Performance Limits 

(MRPL) for import products based on the recommendation of the European Commission in 

2004 (EU, 2004a). The European Commission operates a Rapid Alert System for Food and 

Feed program which (amongst other activities) pro-actively informs member states about 

problems or risk concerning food and fish which do not meet the sanitary requirements. Based 

on the database of Rapid Alert System for Food and Feed (RASFF., 2013), there were 7 cases 

of border rejection by European countries from 2002 to 2012 due to the detection of 

nitrofuran (and its metabolites) in imported Pangasius at levels which ranged from <0.4 to 2.3 

µg/kg. In addition, 7 cases were also reported during the same period of chloramphenicol in 

Pangasius products exported from Vietnam. The levels of chloramphenicol were reported 

from 0.1 to 1.0 µg/kg.  

In contrast, toxic halogenated environmental contaminants (i.e. polychlorinated biphenyls, 

polychlorinated dibenzo-p-dioxins and dibenzo-p-furans, organochlorinepesticides, 

polybrominated diphenyl ethers, hexabromocyclododecane diastereomers, and perfluorinated 

compounds), which can cause cancer in animals including humans, have been determined to 

occur in Vietnamese Pangasius products at levels (<1ng/g), which are far below European 

and Dutch legislative limits (Van Leeuwen et al., 2009).  

1.3 Microbiota of Pangasius and freshwater fish 

Due to the increasing popularity of fish and fishery products, attention has been focused on 

the quality and safety. Regarding the shelf life of fishery products, rapid deterioration of fish 

is caused mainly by spoilage microorganisms leading to reduced shelf life and economic loss. 

On the other hand, outbreaks of foodborne illness can occur due to consuming products 

contaminated with pathogenic bacteria. Therefore, the types of spoilage microorganisms and 
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pathogenic microorganisms contaminating freshwater fish in general and Pangasius in 

particular and their origin will be discussed here. 

1.3.1 Microbial ecology of freshwater fish 

The microbiota of freshwater fish species (i.e. Pangasius, tilapia, rainbow trout, silver perch, 

striped bass, etc.) varies depending on the condition of the water (polluted vs. unpolluted 

water), temperature, antibiotics used and feeding methods (wild vs. active feeding) (Le 

Nguyen et al., 2008; ICMSF, 2005). The initial counts of the microbiota on freshly harvested, 

properly handled pond reared fish products are similar to those on wild fish. It is reported that 

Gram-negative bacteria are dominant on farmed and tropical fish. The nature of the 

microbiota on skin, gut and living freshwater fish is summarized in Table 1.4.  

Table 1.4 The microbial ecology of different parts of freshwater fish 

Freshwater 

fish organs 

Bacterial counts 

Log CFU/cm
2
 

or CFU/g 

Bacterial Genera References 

Skin 2-4 

Gram-negative bacteria: 

Acinetobacter, Aeromonas, Alcaligenes, 

Enterobacter, Flavobacterium, Flexibacter, 

Pseudomonas, Psychrobacter, Citrobacter, 

and Moraxella spp. 

 

Gram-positive bacteria: 

Micrococcus, Staphylococcus, and 

Streptococcus spp. 

(Apun et al., 1999; 

Austin, 2002; 

Ghaly et al., 2010; 

ICMSF, 2005). 

 

Gut 2-9 

Gram-negative bacteria: 

Acinetobacter, Aeromonas, Citrobacter, 

Enterobacter, Escherichia, Klebsiella, 

Vibrio, Pseudomonas spp., 

Serratia, Flavobacterium, Moraxella spp. 

 

Gram-positive bacteria: 

Bacillus, Listeria, Staphylococcus, 

Streptococcus,Micrococcus, 

Corynebacterium,Carnobacteria, 

Lactobacillus, Enterococcus, and 

Vagococcus spp. 

(Apun et al., 1999, 

Austin, 2002; 

ICMSF, 2005). 

Living fish 2-6 

Gram-negative bacteria: 

Acinetobacter, Aeromonas,  Pseudomonas, 

Shewanella, Flavobacterium, Psychrobacter, 

and Moraxella spp. 

 

Gram-positive bacteria: 

Bacillus, Micrococcus, Clostridium, 

Lactobacillus and Corynebacterium spp. 

(ICMSF, 2005). 
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Sarter et al. (2007) identified isolates collected from the intestines and gills of 92 Vietnamese 

Pangasius fish (from 3 different farms) by means of API System strips. The identified isolates 

included Enterobacteriaceae (49.1%), pseudomonads (35.2%) and Vibrionaceae (15.7%). 

Particularly, the incidence of Enterobacteriaceae has been reported to be higher on pond-

reared and tropical fish than on marine fish (ICMSF, 2005). 

1.3.2 Fish spoilage and microbiota related to spoilage 

Generally, the quality and hygiene of any aquatic product depends on the characteristics of the 

production chain including (i) the quality of water in which the fish are reared, (ii) the 

composition and safety of the feed they are given, (iii) handling of the fish during processing, 

(iv) transportation and storage conditions, and (v) conditions during retail and storage up to 

the point the fish is on the consumer‘s table (Orban et al., 2008). Regarding the quality of 

fishery products, fresh fish spoilage can be very rapid after the fish death due to enzymatic, 

chemical and bacteriological activities. The mechanisms of fish spoilage and preservation 

techniques of freshwater fish and/or Pangasius will be discussed here. 

1.3.2.1 Fish spoilage mechanisms 

The enzymatic and chemical reactions are usually responsible for the initial loss of quality 

while microbial activity is responsible for subsequent spoilage (Ghaly et al., 2010; Mohan et 

al., 2008). Chemical spoilage is related to oxidation phenomena like rancidity caused by (non) 

enzymatic oxidation. On the other hand, the intensive enzyme activity in the intestinal tract 

(gut) of fish digests the wall of the gut soon after death. The enzymatic autolysis and 

proteolysis (i.e. cathepsins, peptidase, trypsin, calpain, etc.) can cause bursted belly and 

softens the tissue as a result of degradation of proteins. Bursting of the belly permits 

microorganisms to enter the flesh surrounding the belly (ICMSF, 2005). The reason of 

bacteriologically spoilage is that at death and during evisceration and filleting, endogenous 

micro-organisms from the raw material may contaminate the sterile fish flesh. In addition to 

the microbial contaminants originating from the fish itself, the microorganisms from the 

processing environment (working tables, equipment etc.) as well as manual manipulation are 

a source of contamination (Chen et al., 2010; Norton et al., 2001). More specifically, as 

presented in Figure 1.9, the spoilage of fish includes four phases: phase 1 and 2 due to 

autolytic deterioration caused by enzymatic activity, phase 3 and 4 due to bacteriological 

activities. The quality changes of fish stored on ice are induced by enzymatic activity from 
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phase 1 with slight loss of natural odor and flavors (about 1 to 2 days) to phase 2 with 

significant loss of natural flavor and odor of fish but texture is still pleasant (till 6 days). 

Subsequently, bacterial activity is responsible for spoilage processes until the end of the shelf 

life (= the moment of phase 3) where the textural changes are significant, and strong off 

flavors and unpleasant smell occurs) and further spoilage (where the fish becomes completely 

spoiled and become inedible = phase 4) (Shawyer and Pizzali, 2003). The growth and 

metabolism of contaminating bacteria result in the formation of amines, sulfides, alcohols, 

aldehydes, ketones and organic acids with unpleasant and unacceptable off-favors (Dalgaard 

et al., 2006; Ghaly et al., 2010; Gram et al., 2002).  

 

Figure 1.9 Four phases of fish spoilage (Shawyer and Pizzali, 2003) 

1.3.2.2 Some preservation techniques 

Preservation methods for extending the shelf life of fresh fish range from mild chemical 

treatments (i.e. the application of sodium acetate, tannic acid etc.), vacuum and modified 

atmosphere packaging (MAP), bio-preservation (the use of a natural or controlled microflora 

and/or its antimicrobial metabolites i.e. lactic acid bacteria producing in-situ antimicrobial 

compounds such as diacetyl, bacteriocins etc.), low temperature (i.e. at 0, 2, 4 and 7°C) to 

freezing (Ghaly et al., 2010; Gram and Dalgaard, 2002; Gram and Huss, 1996; Maqsood and 

Benjakul, 2010; Yesudhason et al., 2010). The frozen storage can prolong the shelf life of 

fishery products more than one year due to retarding the activity of spoilage bacteria under 

non-fluctuating storage temperature lower than – 30°C (Jessen et al., 2013). Due to a few 
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studies on Pangasius fish up to date, only one study of thawed Pangasius fillets stored under 

MAP conditions. On the other hand, MAP is a well-known, commonly applied storage 

method to extend the shelf life of perishable fishery products. MAP is defined as the 

enclosure of food products in packaging materials in which the gas composition 

(%O2, %CO2, %N2) inside the package has been altered (Sivertsvik et al., 2002). In most 

cases, MAP employs elevated CO2 and/or reduced O2 concentrations to selectively inhibit 

chemical, enzymatic and microbial spoilage. Whilst low O2 levels suppress the growth of 

aerobic spoilage bacteria, they can enhance the growth of anaerobic and microaerophilic 

bacteria such as lactic acid bacteria. Therefore, the composition of the atmosphere used in a 

modified atmosphere depends on several factors including the characteristics of products, 

types of spoilage microorganisms, the desired shelf life, etc. MAP gives positive effects to 

extend the quality; maintain the hygienic and sensory properties; and transport to far distance 

places (Torrieri et al., 2011; Yesudhason et al., 2009). The use of MAP to extend the shelf life 

of marine fish has been studied widely whilst its application to the preservation of freshwater 

fish is less documented. In addition to MAP Pangasius products, recent studies investigating 

the application of MAP to freshwater fish were summerised in Table 1.5. In general, the shelf 

life of stored fish is normally determined by means of sensory evaluation (appearance, color, 

odor, slime, etc.) and the microbiological quality. In particular for MAP fish, the point of 

sensorial rejection may already have been reached at a total aerobic count of 7 to 8 log CFU/g 

(Dalgaard et al., 2002). 
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Table 1.5 Overview of the shelf life of freshwater fish products stored under different modified atmosphere package (MAP) conditions and different temperatures 

Products
1 

 

Country Storage 

temp. 

Atmosphere 

% CO2/O2/N2 

Microorganisms 

enumerated 

Shelf 

life 

(days)
2 

Dominant spoilage 

bacteria identified 

Methods of 

identification 

for spoilage bacteria
3 

References 

Farmed 

Pangasius 

fillets 

Vietnam 4°C Air Total counts 

H2S producing bacteria 

pseudomonads, 

Lactic acid bacteria 

B. thermosphacta 

7 Pseudomonas synxantha 

Pseudomonas trivialis 

Serratia proteamaculans 

Serratia grimesii 

16S rRNA sequence (Noseda et al., 2012) 

 

 Farmed 

Pangasius 

Vietnam 4°C 50/50/0 Total counts 

H2S producing bacteria 

pseudomonads, 

Lactic acid bacteria 

B. thermosphacta 

14 B. thermosphacta 

Carnobacterium 

maltaromaticum 

C. divergens 

16S rRNA sequence (Noseda et al., 2012) 

Farmed  

Pangasius 

Vietnam 4°C Vacuum Total counts 

H2S producing bacteria 

pseudomonads, 

Lactic acid bacteria 

B. thermosphacta 

10 Serratia quinivorans 

Serratia fonticola 

S. proteamaculans 

C. maltaromaticum 

Pseudomonas mephitica 

16S rRNA sequence (Noseda et al., 2012) 

Farmed 

Pangasius 

Vietnam 4°C 50/0/50 Total counts 

pseudomonads, 

Lactic acid bacteria 

B. thermosphacta 

12 C. maltaromaticum 

B. thermosphacta 

Serratia glossinae 

16S rRNA sequence (Noseda et al., 2012) 

Farmed eel 

 

Greece 

 

0°C 40/30/30 Total counts 

pseudomonads, 

Enterobacteriaceae  

Lactic acid bacteria 

H2S producing bacteria 

Yeasts 

34   (Arkoudelos et al., 2007) 

Farmed eel 

 

Greece 

 

0°C Air Total counts 

pseudomonads, 

Enterobacteriaceae  

Lactic acid bacteria 

H2S producing bacteria 

Yeasts 

18   (Arkoudelos et al., 2007) 
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Table 1.5(continued)

Products
1
 

 

Country Storage 

temp. 

Atmosphere 

% CO2/O2/N2 

Microorganisms  

enumerated 

Shelf life 

(days)
2 

Dominant spoilage 

bacteri identified 

Methods of 

identification 

for spoilage 

bacteria
3
 

References 

Farmed eel 

 

Greece 

 

0°C Vacuum Total counts 

pseudomonads, 

Enterobacteriaceae  

Lactic acid bacteria 

H2S producing bacteria 

Yeasts 

28   (Arkoudelos et al., 

2007) 

Farmed  

Tilapia 

China 4°C Air Total counts 6 pseudomonads 

Aeromonas 

Staphylococcus 

Biochemical tests 

combined with 

taxonomic scheme 

(Cao et al., 2012) 

Farmed 

Tilapia 

Thailand 4°C Air Total counts 6   (Masniyom et al., 

2013) 

Farmed 

Tilapia 

Thailand 4°C 35/5/60 Total counts 15   (Masniyom et al., 

2013) 

Farmed 

Tilapia 

Thailand 4°C Vacuum Total counts 12   (Masniyom et al., 

2013) 

Pearl spot  India 0-2°C Air Total counts 8   (Manju et al., 2007) 

Pearl spot  India 0-2°C Vacuum Total counts 10   (Manju et al., 2007) 

Pearl spot  India 0°C Air Total counts 

B. thermosphacta 

Lactic acid bacteria 

H2S producing bacteria 

Yeasts and 

moulds 

12-14 Pseudomonas spp. 

Aeromonas spp. 

Shewanella spp. 

 

Biochemical tests 

combined with 

taxonomic scheme 

(Lalitha et al., 2005) 
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Table 1.5 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1
 All products were in fillet form with the exception of the whole eel and pearlspot, 

2
 Total microbial counts of 7 log CFU/g are used to 

determine shelf life, 
3
 Method for identification of dominant spoilage bacteria. 

Products
1
 

 

Country Storage 

temp. 

Atmosphere 

% CO2/O2/N2 

Microorganisms  

enumerated
 

Shelf life 

(days)
2 

Dominant 

spoilage bacteria 

identified 

Methods of 

identification 

for spoilage 

bacteria
3
 

References 

Pearl spot  India 0°C 60/40/0 Total counts 

B. thermosphacta 

Lactic acid bacteria 

H2S producing bacteria 

Yeasts and 

moulds 

21 B. thermosphacta 

Shewanella spp 

Biochemical 

tests 

combined with 

taxonomic 

scheme 

(Lalitha et al., 2005) 

Gutted 

Pabda 

catfish  

India 4 ± 2°C Vacuum Total Viable Count, 

Enterobacteriaceae, 

Escherichia coli, 

Salmonella Spp,  

Total vibrios,  

L. monocytogenes, 

S. aureus,  

Faecal Streptococcus  

anaerobic sulphite 

reducers 

18-20   (Binsi et al., 2013) 

Gutted 

Pabda 

catfish 

India 4 ± 2°C Air Total Viable Count, 

Enterobacteriaceae , 

Escherichia coli, 

Salmonella Spp,  

Total vibrios,  

L. monocytogenes, 

S. aureus,  

Faecal Streptococcus  

anaerobic sulphite 

reducers 

14-16   (Binsi et al., 2013) 
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1.3.2.3 Microbiota related to spoilage of fresh water fish 

 The growth of dominant bacteria depends on the fish species, storage temperature and 

modified atmosphere conditions. It is reported that Gram–negative bacteria are considered to 

be dominating spoilage bacteria of tropical fish (such as Pseudomonas and Acinetobacter 

spp.) (ICMSF, 2005) and of aerobic-chilled fish (such as Pseudomonas and Shewanella spp.) 

(Gram and Dalgaard, 2002). To date, only one study has been performed on the 

microbiological spoilage of vacuum and MAP packed Vietnamese Pangasius. The dominant 

microbiota on thawed Pangasius fillets stored under different conditions were determined to 

be Pseudomonas and Serratia spp. (in air), Brochothrix thermosphacta and Carnobacterium  

spp. (in 50% CO2 + 50% O2), B. thermosphacta, Serratia and Carnobacterium spp. (in 50% 

CO2, 50% N2) and Serratia and  Carnobacterium spp. (in vacuum) (Noseda et al., 2012). 

These bacteria were determined to produce various volatile metabolites such as ethanol, 2,3-

butanediol, diacetyl, acetoin, ethyl acetate, acetic acid and sulfur compounds like hydrogen 

sulfide, methyl mercaptan, carbon disulfide and dimethyl disulfide. These volatiles were 

considered as potential indicators of spoiled Pangasius. Some characteristics of dominant 

spoilage microorganisms isolated from freshwater Vietnamese Pangasius are briefly 

discussed below. 

Pseudomonads are well known as a widespread environmental group of bacteria (Bagge-

Ravn et al., 2003). They are dominant specific spoilage bacteria of chilled tropical fresh-

water fish stored under aerobic conditions (Ghaly et al., 2010; Gram et al., 2002). 

Pseudomonas spp. produce a number of volatile aldehydes, ketones, esters and sulphides 

(Church, 1998). Therefore, fruity, rotten, sulphydryl odors and flavours are typical of the 

spoilage of iced fish by Pseudomonas spp. (Gram and Melchiorsen, 1996; Gram et al., 2002). 

Unlike Pseudomonas spp., which are inhibited under anaerobic conditions (Devlieghere and 

Debevere, 2000), Gram-positive lactic acid bacteria (LAB) (e.g. Carnobacterium) are tolerant 

to CO2.  Although Carnobacterium are not common in freshwater fish products (Gonzalez et 

al., 2000; Ringø and Gatesoupe, 1998), they can be present as a result of (cross) 

contamination during processing (Noseda et al., 2012; Ringø and Gatesoupe, 1998; 

Vijayabaskar and Somasundaram, 2008). They are often found as the dominating spoilage 

organisms on vacuum and MAP freshwater fish (Arkoudelos et al., 2007; Noseda et al., 2012). 
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Serratia spp. are considered as moderate spoilers which can grow well under both anaerobic 

and aerobic conditions. Serratia spp. have been isolated from thawed Pangasius (Noseda et 

al., 2012), smoked rainbow trout (Lyhs et al., 1998), salmon at onset of spoilage (Macé et al., 

2013), cooked and peeled tropical shrimps (Jaffrès et al., 2011) stored under MAP. Serratia 

spp. have been determined to produce a mixture of spoilage odors including sour and cheesy 

compounds and to produce amines (Macé et al., 2012). 

B. thermosphacta, a Gram-positive bacterium more common in meat products, also plays an 

important role in the spoilage of MAP shrimp (Jaffrès et al., 2009; Laursen et al., 2006; 

Mejlholm et al., 2005), and fish (Joffraud et al., 2001; Macé et al., 2012; Macé et al., 2013). B. 

thermosphacta has been reported to contribute to a lesser extent than Pseudomonas spp. to 

the spoilage of sea bass stored in ice (Papadopoulos et al., 2003). In general, although the 

initial counts of B. thermosphacta are low, they become dominant towards the end of storage 

of MAP fish. In addition, it has been reported that B. thermosphacta can cause spoilage at 

low counts (<7 log CFU/g). Therefore, their presence (even at low numbers) has to be taken 

into account (Drosinos et al., 1996; Noseda et al., 2012). 

1.3.3 Microbial pathogens associated with fish and fishery products 

The microbial hazards associated with aquatic products include bacteria, viruses and parasites. 

Among viruses, it is well known that norovirus is the most common cause of acute 

gastroenteritis as well as a great threat to the safety of edible (shell)-fish worldwide. It is 

normally transmitted by person-to-person contact and contaminated sewage. In addition, their 

presence in fishery products is a consequence of poor hygiene because they are transmitted 

either by contaminated water or by food handlers (Li et al., 2009; Weinstein et al., 2008). The 

detection of viruses in fish is relatively difficult due to their occurrence at low numbers; 

therefore, there is a genuine need for the development of improved techniques to detect 

viruses which would enable a better understanding of the role of viruses in foodborne 

illnesses associated with the consumption of fish and fishery products  (McCoy et al., 2011; 

Tuan et al., 2010). Parasites can be transmitted through contaminated water and fish and 

cause a disease when raw or undercooked fish is consumed (Chai et al., 2005; Slifko et al., 

2000). Although a large number of parasites infect fish, a few cause illnesses in humans 

(Lima dos Santos and Howgate, 2011; McCoy et al., 2011). Parasites such as trematode 

(Opisthorchis felineus, O. viverrini, and Clonorchis sinensis), larvae (Anisakis simplex), 
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tapeworms (Diphyllobothriumi) and round worms (Anisakis and Pseudoterranova) are 

typically found on fishery products from warm water areas (ICMSF, 2005). Bacterial 

pathogens are naturally present in aquatic environments, animals, humans etc. Bacterial 

pathogens originating from the environment include Listeria monocytogenes, Clostridium 

botulinum, Clostridium perfringens, Vibrio parahamolyticus (positive for thermostable direct 

hemolysin (TDH) and  TDH-related hemolysin (TRH) genes), Vibrio vulnificus (e.g. biotype 

1), Vibrio cholerae (e.g. pathogenic serotypes O1, O139) and Bacillus cereus (only toxigenic 

strains, e.g.  hemolysin – HBL positive strains), whilst those originating from people and 

animals include Salmonella, Shigella spp., pathogenic Escherichia coli (i.e. shiga toxin 

producing E. coli (STEC) O157:H7) and Staphylococcus aureus (Onjong et al., 2014; 

Sivertsvik et al., 2002). In addition to these primary bacterial pathogens, some opportunistic 

pathogens (mainly causing infections particularly in children, elderly and 

immunocompromised persons) include Plesiomonas shigelloides, Aeromonas hydrophila, 

Acinetobacter baumannii, Pseudomonas aeruginos, Stenotrophomonas maltophilia, Vibrio 

vulnificus (biotype 2) etc. Contamination by these pathogenic bacteria can occur at any point 

during the entire production chain of preharvest, capture, processing, distribution and storage 

(Venugopal, 2002). The prevalence of pathogens on freshwater fish has been well 

documented. Papadopoulou et al. (2007) determined the incidence of pathogens on 100 

freshwater fish products in Greece. A. hydrophila (incidence = 38%), E. coli (14%), S. aureus 

(6%), Plesiomonas shigelloides (2%), C. perfringens (1%), and others were isolated from the 

fish products. Yucel and Balci (2010) reported a high incidence of L. monocytogenes (44.5%) 

on 30 samples of freshwater fish marketed in Turkey. A high prevalence of V. cholerae was 

found in catfish samples (33 positive out of 120 samples, incidence = 27.5%) during summer 

and autumn while none of these fillets sampled during winter and spring was positive for V. 

cholerae (Fernandes et al., 1997). The highest incidences of pathogens were found on the 

skin samples. Whole and filleted catfish has been associated with pathogens such as A. 

hydrophila, E. coli, Listeria spp., P. shigelloides, S. aureus and V. parahaemolyticus, etc. 

(Ramos and Lyon, 2000).  

In Table 1.6 summarizes all documented cases of pathogenic bacteria on frozen Pangasius 

products originating from Vietnam and imported in the EU during the period between 

January 2005 and December 2013. The highest number of contaminated samples occurred in 

2009, where 22 notifications of L. monocytogenes and Salmonella spp. were reported. The 

presence of V. cholerae on Pangasius products was also reported in 2008. A high 
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contamination level of E. coli (110
2 

- 4.910
2
 CFU/g) was also reported on imported 

Pangasius products in 2007 and 2012 (RASFF., 2013). 

Table 1.6 Notifications of frozen Pangasius hypoththalmus imported into EU originating 

from Vietnam contaminated with pathogenic bacteria from 1-2005 to 12-2013 (RASFF., 

2013) 

Year Notifying 

country 

Pathogens Number of 

notifications 

Action taken 

 

2005 

Italy L. monocytogenes 19 Destruction/ 

Border rejection 

 France L. monocytogenes 1 Destruction 

2007 Spain E. coli
*
(310

2
 CFU/g) 1 No distribution 

2008 

Bulgaria V. cholerae  

NON-O1/NON-O139 

2 No distribution 

Norway V. cholerae 

NON-O1/NON-O139 

1 No distribution 

2009 

Greece L. monocytogenes 10 Border rejection 

Italy Salmonella Nottingham 1 Border rejection 

Italy L. monocytogenes 1 Border rejection 

Sweden Salmonella spp. 1 Border rejection 

Bulgaria L. monocytogenes 8 Border rejection 

Spain Salmonella spp. 1 Border rejection 

2010 

Italy L. monocytogenes 1 Border rejection 

Italy Salmonella enteritidis 1 Border rejection 

Romania L. monocytogenes 1 Border rejection 

Poland L. monocytogenes 10 Border rejection 

Spain L. monocytogenes 2 Border rejection 

Germany Salmonella spp.  1 Withdrawn from markets 

2011 Latvia L. monocytogenes 1 No distribution 

2012 Germany E. coli
**

  

(110
2
-4.910

2
 CFU/g) 

1 Border rejection 

2013 Sweden Salmonella spp. 1 Informing recipients 
**

Samples were altered organoleptic characteristics combined with high counts of E. coli  

*, ** 
no specific pathogenic strains of E. coli was noticed. 

In general, L. monocytogenes, V. cholerae, and Salmonella spp. have been the most 

frequently isolated pathogens on Vietnamese Pangasius products imported during this 8-year 

period. Therefore, the following discussions will focus on these pathogens. 

The genus Vibrio is comprised of Gram-negative, oxidase-positive, facultative anaerobic rods. 

The main species of importance with respect to foods are V. cholerae, V. parahaemolyticus 



Literature review 

25 

 

and V. vulnificus. In tropical and temperate regions, these species occur naturally in marine 

and coastal environments. In particular, V. cholerae can be recovered from freshwater 

environments (Dalsgaard, 1998). The contamination of food production environments such as 

ponds by faeces can indirectly introduce V. cholerae into food. No evidence has been 

observed which confirms that Vibrio spp. are present in the intestinal tracts of farmed channel 

catfish (Macmillan and Santucci, 1990). V. cholerae serogroup O1 and O139 producing 

cholera toxin or non-O1 strains (causing weak gastroenteritis) have an estimated minimal 

infectious dose from 3 log to 8-9 log CFU/g (Feldhusen, 2000). The Vibrio species mentioned 

above constitute a considerable risk for persons consuming raw molluscs and shellfish 

(Ahmed, 1992; Su and Liu, 2007). 

L. monocytogenes is a Gram-positive rod shaped facultative anaerobic bacterium. L. 

monocytogenes is widely distributed in the environment (soil, water) and the occurrence of L. 

monocytogenes in raw and processed foods has been intensively studied. In a relatively recent 

study, L. monocytogenes is reported with high prevalence on catfish fillets i.e. to be 37.4% of 

240 samples collected from three processing plants at U.S. (Chou et al., 2006) and 23.5% of 

272 samples collected at local (central Virginia, U.S.) and through Internet (U.S.) retail 

markets (Pao et al., 2008). The L. monocytogenes on the processed catfish fillets has however 

reported to originate from the processing environment as no L. monocytogenes has been 

isolated from the skins and intestines of the catfish (Chen et al., 2010). Moreover, as L. 

monocytogenes is able to grow at refrigeration temperatures, its presence, even in low 

numbers (minimal infectious dose of 2 log CFU/g), may pose a risk to human health when 

fish products have been stored at refrigeration temperatures for long periods of time. 

Salmonella spp. is a group of Gram-negative, rod shaped, facultative anaerobic bacteria, 

which are motile by means of flagella. Salmonella spp. are not indigenous to aquatic 

environments, being normally found in the intestinal tracts of animals and humans 

(Macmillan and Santucci, 1990). As an example, although Salmonella spp. were not isolated 

from catfish ponds, they were found in the guts and internal organs of freshwater fish 

(Gaertner et al., 2008; Macmillan and Santucci, 1990; Nesse et al., 2005). Fishery products 

can be contaminated by Salmonella when they are captured in polluted water, undergo 

inadequate (unhygienic) handling, and are distributed and retailed under poor conditions 

(Amagliani et al., 2012; McCoy et al., 2011; Panisello et al., 2000). It is reported that the 

incidence of Salmonella in 60 samples of channel catfish and Vietnamese basa (Pangasius 
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bocourti) fillets was 33% and 50%, respectively (Pal and Marshall, 2009). Salmonella spp. 

can cause gastrointestinal disease with a minimum infectiuos dose of 2 log CFU/g; however, 

human salmonellosis associated with the consumption of farmed freshfish is rare and there is 

a minimal risk to public health of fishery products that are cooked prior to consumption 

(Feldhusen, 2000). 

1.4 Microbial quality management systems during processing 

The typical characteristics of fish products such as high risks with regards to microbial safety, 

short shelf life, seasonal heterogeneity of raw materials and complex supply chains (domestic 

or international trade) result in high demands on systems used to control and/or assure the 

safety and quality of these products (Ababouch, 2006; Da Cruz et al., 2006; Luning and 

Marcelis, 2006). A good performance of a food safety management system (FSMS) can 

improve the microbiological quality and safety of food products (Kokkinakis and 

Fragkiadakis, 2007). Therefore, each fishery harvester and processor is required to use FSMS 

based on the Hazard Analysis Critical Control Point (HACCP) principles as HACCP is 

internationally accepted as a preventive food safety assurance system (CAC, 2003). 

At the start of the 80s, many countries moved away from systems relying on the sampling of 

end products towards the application of HACCP-based food safety and quality systems. 

HACCP is the most effective system to control hazards during manufacturing because it 

relies on continuous monitoring and control of critical control points (CCPs) along the 

production chain (King, 2013). The use of hygienically designed equipment and pre-requisite 

programs (PRPs) such as Good Manufacturing Practices (GMP), Good Hygienic Practices 

(GHP) as well as the legislation are major components supporting any HACCP plan 

(Arvanitoyannis and Varzakas, 2009; Jacxsens et al., 2009a). A company specific FSMS is 

based on the translation of GHP, HACCP principles and available-relevant quality assurance 

guidelines and/or standards including legislation, guidelines on good practices of British 

Retail Consortium (BRC) and International Food Standard (IFS), etc. (CAC, 2003).  

In Vietnam, up to date, there are 115 Pangasius processing companies (out of 621 seafood 

and freshwater fish companies in total). All companies processing Pangasius have 

implemented good manufacturing and hygiene practices (GMP and GHP), HACCP and/or 

additional standards such as BRC, IFS, and International Organization for Standardization 

(ISO) (i.e. ISO 9001, 22000, etc.) (NAFIQAD, 2015; VASEP, 2013). 
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The microbiological performance of a FSMS can be measured by means of a microbiological 

assessment scheme (MAS). A MAS is a vertical sampling plan applied throughout the 

production process (Jacxsens et al., 2009b). The principle behind MAS is that an effective 

FSMS results in lower contamination levels (compared to the acceptable level) and less 

variation in the contamination loads (Jacxsens et al., 2009b). As a microbiological safety 

assessment tool, the MAS is based on the collection and analysis for selected microbial 

indicator organisms in a restricted number of samples collected at critical sampling locations 

(Jacxsens et al., 2009b). In this way a MAS can be used to obtain the safety output of a FSMS. 

With this approach, analysis of various microbiological parameters on samples collected 

throughout the process from raw material to final products on different days can be used to 

establish the microbiological profile of a company-specific FSMS. Specifically, the critical 

sampling locations are locations where loss of control will result in unacceptable food safety 

problems due to contamination, growth and/or survival of microorganisms. The 

microbiological parameters are selected on the basis of the applicable national action limits, 

European legal criteria and knowledge of microbiological ecology of the products in question. 

Insight into the variability and distribution of microbial loads of each sampling point is 

obtained by collecting samples over three periods on each sampling day. FSMS self-

assessment schemes developed by Jacxsens et al. (2011), Luning et al. (2008), Luning et al. 

(2009b) are comprised of context factors and a combined assessment of core control and 

assurance activities by means of a questionnaire (see Table 1.7). This assessment provides an 

independent evaluation of the performance of a FSMS in relation to the contextual situation 

wherein the FSMS operates. By two self-assessment tools, the current FSMS and the actual 

microbiological situation can be used to evaluate the food safety output. In addition, an 

overview of the results of MAS (= microbiological quality, hygiene, and safety level) can 

help quality managers to identify the strengths and weakness in the core control activities of 

an implemented FSMS (Luning et al., 2011b). MASs have been used to assess the 

microbiological performance of FSMS in a company producing ready-to-eat meals (Daelman 

et al., 2013), in the pork meat industry (Jacxsens et al., 2009b), in the lamb processing chain 

(Osés et al., 2012),  in catering services (Lahou et al., 2012); and poultry slaughterhouses 

(Sampers et al., 2010).  
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Table 1.7 Context factors, core control and core assurance activities in a FSMS self-assessment scheme (Jacxsens et al., 2011; Luning et al., 

2009a; Luning et al., 2008) 

Context factors Core safety control activities Core assurance activities 

Product characteristics 

Risk of raw materials  

Risk of final product  

Extent of safety contribution of packaging 

concept  

Process characteristics 

Extent of intervention steps  

Degree of production process changes  

Rate of product/process design changes 

Organization characteristics 

Presence of technological staff  

Variability in workforce composition  

Sufficiency of operator competences  

Extent of management commitment  

Degree of employee involvement  

Level of formalization  

Sufficiency supporting information systems  

Chain environment characteristics 

Safety contribution in chain position  

Extent of power in supplier relationships  

Degree of authority in customer relationships  

Severity of stakeholder requirements 

Design preventive measures 

Sophistication of hygienic design of equipment and facilities  

Adequacy of cooling facilities  

Specificity of sanitation program  

Extent of personal hygiene requirements  

Adequacy of raw material control  

Specificity of product specific preventive measures  

Design intervention processes 

Adequacy of physical intervention equipment  

Adequacy of packaging intervention equipment   

Specificity of maintenance and calibration for (intervention) equipment  

Specificity of intervention methods (chemical and biological)  

Design monitoring system 

Appropriateness of CCP analysis  

Appropriateness of standards and tolerances design  

Adequacy of analytical methods to assess pathogens  

Adequacy of measuring equipment to monitor critical process and product 

conditions 

Specificity of calibration program for measuring and analytical equipment  

Specificity of sampling design (microbial assessment) and measuring plan  

Extent of corrective actions  

Operation control strategies 

Actual availability of procedures  

Actual compliance to procedures  

Actual hygienic performance of equipment and facilities  

Actual cooling capacity  

Actual process capability of physical intervention equipment  

Actual process capability of packaging intervention equipment  

Actual performance of measuring equipment  

Actual performance of analytical equipment 

Defining system requirements 

Sophistication of translation of external 

requirements into FSMS  

Extent of systematic use of feedback 

information to improve FSMS  

Validation 

Sophistication of validation of 

preventive measure  

Sophistication of validation of 

intervention systems  

Sophistication of validation of 

monitoring system  

Verification 

Extent of verification of people related 

performance  

Extent of verification of equipment and 

methods related to performance  

Documentation and record-keeping 

Appropriateness of documentation 

system  

Appropriateness of record-keeping 

system 
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1.5 Intervention steps to control microbial quality during processing  

During processing, an intervention step of washing is used to reduce or eliminate the 

microbial loads on the food products as much as possible. In some cases, wash water has 

been reused due to high cost of water (Luo, 2007). This practice results in the high risk of 

cross contamination from water to products. Therefore, water disinfection methods for 

washing practices are available such as chlorine, ozone, peracetic acid, hydrogen peroxide, 

etc. The evaluation of these water disinfection technologies to support processors the ‗fit for 

purpose‘ especially for disinfection of vegetables is summarized by Van Haute et al. (2013c). 

As chlorine (a most common disinfectant) and peracetic acid (an alternative disinfectant) 

have been studied intensively on vegetables, poultries and fishery processing chains, the 

following discussions will therefore focus on chlorine and peracetic acid.  

1.5.1  Chlorine 

Chlorine-based products are the most widely used sanitization agents. They are used for both 

the treatment (decontamination) of food products and reducing the microbial load and/or to 

prevent the build-up of microorganisms on food contact surfaces, equipment and process 

water. Several types of chlorine compounds are used such as chlorine gas (Cl2), hypochlorites 

(CaO2Cl2 or NaOCl) etc. The hypochlorite‘s are the most commonly used form of chlorine 

sanitizers in food manufacturing and food service. When chlorine is present in water, the 

chemistry of chlorine in solution can be basically described as follows: 

  NaOCl + H2O   HOCl + NaOH                              Eq. 1 

         Ca(OCl)2 + 2H2O   Ca(OH)2 + 2 HOCl                       Eq. 2 

                 Cl2 + H2O      HOCl +H
+
 +Cl

-            
                    Eq. 3 
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Figure 1.10 Distribution of chlorine species in aqueous solutions at 25°C with varying pH 

(Bruce et al., 2005) 

 

The chlorine (or chlorinated) water consists of a mixture of three forms of chlorine: elemental 

chlorine (Cl2), hypochlorous acid (HOCl) and hypochlorite ion (ClO
-
) in amounts that vary 

with the pH of water. For example, a decrease in the pH (as from pH 4), results in an increase 

in the amount of Cl2. Between pH 4 and 5, HOCl is the dominant species. Increase in pH (as 

from pH 5), results in an increase in the proportion of ClO
-  

(Cords et al., 2005) (Figure 1.10). 

Although all species (Cl2, HOCl and ClO
-
) show antimicrobial activity, hypochlorous acid is 

the most bactericidal in process water (Cords et al., 2005; Fonseca, 2006; Suslow, 2008). 

Several modes of action of antimicrobial activity by HOCl have been proposed including its 

effects on the cell membranes, the inhibition of sulfhydryl enzymes, the inhibition of 

enzymes involved in glucose metabolism, reaction with the DNA of living cells resulting in 

mutation by oxidation of purine and pyrimidine bases (Bruce et al., 2005; Dychdala, 2001). 

The antimicrobial effects of chlorine depend on the amount of free available chlorine present 

as HOCl. The dissociation of HOCl has been determined to be influenced by the pH, 

temperature and organic matter (Cords et al., 2005; Fonseca, 2006; Suslow, 2008).  

Besides the terms free chlorine, total chlorine refers to the sum of the free available and 

combined chlorine (i.e. chlorine combined with ammonia or any oxidizable substrates) that 

are present in water and also ready for disinfection and oxidation of organic matter (Suslow, 
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2008). Although combined chlorine is more stable than free available chlorine, the former is a 

slower disinfection action than the latter. Generally, the disinfection process is controlled by 

monitoring the concentration of both free available and total chlorine. The difference between 

both values depends on the amount of organic and inorganic compounds in the water that can 

react with free chlorine to form combined chlorine. Higher concentration of organic and 

inorganic components result in a higher difference between the levels of free available and 

total chlorine (Virto et al., 2005).  

The concentration of free chlorine used for decontamination of minimal processed vegetables 

ranges from 50 to 200 ppm (Beuchat, 1998) whilst that used for decontamination of 

Pangasius fish processing in Vietnam ranges from 2 to 10 ppm (Anh et al., 2010). The total 

residual chlorine concentrations recommended by Kanduri and Eckhardt (2008) for the 

sanitation of products and food contact surfaces in fish processing companies are shown in 

Table 1.8. 

Table 1.8 Range of recommended concentrations of chlorine in water used for different 

purposes (Kanduri and Eckhardt, 2008) 

Use Recommended concentration (ppm) 

Disinfection of products 2-10 

Rinsing hands 50-100 

Disinfection glazed surfaces 50-300 

Disinfection smooth wood, metal or synthetic surfaces 300-500 

Disinfection rough surfaces 1000-5000 

Thawing/defrosting 5-10 

The efficacy of chlorine has been studied for the decontamination of several products not 

only from the point of view of the microbiological quality but also with regards to its specific 

impact on the microbial safety. The decontamination efficacy of chlorine as NaOCl has been 

studied sporadically, particularly on vegetables. As can be seen in Table 1.9 and Table 1.10, 

the decontamination efficacy on vegetables varied with regards to applied concentration and 

contact time, showing total counts and inoculated E. coli, respectively. However, very few 

studies have investigated the decontamination efficacy of chlorine on fish products. Bremer 

and Osborne (1998) reported that washing regimes with water containing chlorine at 200 

mg/l at a turnover rate for the total wash solution of 2.25 cycles/h for 120 min could eliminate 



Chapter 1 

32 

 

over 2 log CFU/g of L. monocytogenes inoculated on the surface of gilled and gutted king 

salmon (Oncorhynchus tshawytscha) in industrial scale. Another study of Chaiyakosa et al. 

(2007) determined that chlorine at the concentration of 50 ppm and 30 min of contact time 

can reduce more than 1 log CFU/g of V. parahaemolyticus inoculated onto shrimp. As far as 

the author is aware, to date no chlorine decontamination studies have yet been performed to 

reduce the natural microbiota of fish.     
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Table 1.9 Reduction of total counts on vegetables by sodium hypochlorite 

Microflora NaOCl 

Concentration 

(ppm) 

Contact 

time 

(min) 

Log reduction 

Log (CFU/g) 

Product References 

TPC* 200 2 1.7 Shredded carrot (Klaiber et al., 2004) 

TPC 200 1 1.6 Iceberg lettuce (Sinigaglia et al., 1999)  

TPC 100 1 1 Rocket leaves (Martínez-Sánchez et al., 2006) 

TPC 200 1 1 Shredded carrot (Alegria et al., 2009) 

TPC 50 / 1.1 Sugar snap (Van Haute et al., 2013d)  

TPC 200 / 1.4 Sugar snap (Van Haute et al., 2013d)  

TPC 200 5 2.63 Head lettuce (Ha et al., 2013) 

TPC 100 1  1.7 Iceberg lettuce (López-Gálvez et al., 2010b) 

TMC** 50 1  0.8 Iceberg lettuce heads (Lopez-Galvez et al., 2013) 

TMC 100 1  1.3 Iceberg lettuce (López-Gálvez et al., 2010a) 

TMC 200 1 1 Cut cilantro (Allende et al., 2009) 

/: mean value of 30 s, 60 s and 180 s; *TPC: total aerobic psychrotrophic counts; **TMC: total aerobic mesophilic counts.  
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Table 1.10 Reduction of E. coli inoculated on vegetables by sodium hypochlorite 

Inoculated 

microflora 

NaOCl 

concentration 

(ppm) 

Contact 

time 

(min) 

Log 

reduction 

Log 

(CFU/g) 

Product References 

E. coli 

CECT 471, 516 and 

533 

40 1  2 Cut lettuce (López-Gálvez et al., 2009) 

E. coli O157:H7 200 1  1.3 Cut cilantro (Allende et al., 2009) 

E. coli O157:H7 200 2 2.5 Shredded carrots (Ruiz-Cruz et al., 2007) 

E. coli ATCC 10536 200 5 2.18 Cut lettuce (Ha et al., 2013) 

E. coli O157:H7 60 2 0.96 Cut-wash lettuce (Palma-Salgado et al., 2014) 

E. coli O157:H7 60 2 1.75 Wash-cut lettuce (Palma-Salgado et al., 2014) 

E. coli O157:H7 70 3 2.0 Mung bean sprouts (Neo et al., 2013) 
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Though the chlorination process is reasonable with regards to cost and efficiency, the use of 

chlorine has some potential negative effects. Chlorine gas (Cl2) itself may be harmful as it 

can irritate the skin and respiratory tracts of workers. In addition, the formation of hazardous 

disinfection by-products can be generated due to the use of excessive doses of chlorine and 

the reaction of chlorine with organic matter (Alegria et al., 2009). Under industrial conditions, 

the wash water is usually re-used to minimize water consumption (Luo, 2007). Consequently, 

the level of organic matter accumulates resulting in the deterioration of the water quality and 

microbial growth. A slight amount residual chlorine (i.e. 1 ppm) has therefore to be 

maintained in the washing system to avoid spread of contamination during product washing 

(Van Haute et al., 2013b). In this way, the quality of water as well as washed product can be 

improved. However, there is a high risk that disinfection by-products would be formed. In 

terms of disinfection by-products, two major classes are halogenated trihalomethanes (i.e. 

chloroform, bromodichloromethane, bromoform and dibromochloromethane) and haloacetic 

acids (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic 

acid and dibromoacetic acid) which are commonly detected in water disinfected by chlorine 

(Gopal et al., 2007). In recent years, the potential formation of trihalomethanes in the process 

water and washed products has been studied by means of simulating industry-like operating 

conditions (Table 1.11). The concentration of trihalomethanes is limited to 80 µg/L in 

drinking water in U.S. (USEPA, 2009) and 100 µg/L in the EU (EU, 1998a). The maximum 

contamination levels of haloacetic acids, chlorite and bromate permitted in drinking water in 

U.S is 60, 1000 and 10 µg/kg, respectively (USEPA, 2009). European legislation emphasizes 

that water used in the food industry should have the same quality as water intended for 

human consumption. Therefore, the levels of trihalomethanes (THMs) in the process water 

should comply with those stipulated in the legislation for drinking water to avoid diminishing 

the wholesomeness of the finished products (EU, 1998a).  
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 Table 1.11 Disinfection by-products evaluated on process water and washed products 

Washing solution  

 

Scale 
Samples 

Compounds 

References 
THMs* 

µg/g or L 

Trichloromethane 

µg/g or L 

Chloroform  

µg/L 

Bromodichlo 

-romethane 

NaOCl (100 ppm)+COD** 

(700ppm) for 30 min 

Laboratory Process 

water 

217 ± 38 - - - 

(López-Gálvez et al., 

2010a) 

NaOCl (100 ppm)+COD (700ppm) 

for 30 min 

 Washed 

lettuce 

<5 - - - 

NaOCl (700 ppm)+COD 

(1800ppm) for 60 min 

 Process 

water 

3618 ± 633 - - - 

NaOCl (700 ppm)+COD 

(1800ppm) for 60 min 

 Washed 

lettuce 

540 ± 141 - - - 

NaOCl (100 ppm)+COD (800ppm) 

for 30 min 

Laboratory Process 

water 

- - 7.8 ± 1.4 - 

(Van Haute et al., 

2013b) 

 

NaOCl (150 ppm)+COD (800ppm) 

for 30 min 

 Process 

water 

- - 13.6 ± 2.9 - 

NaOCl (100 ppm)+COD 

(1500ppm) for 30 min 

 Process 

water 

- - 9.3 ± 3.4 - 

NaOCl (150 ppm)+COD 

(1500ppm) for 30 min 

 Process 

water 

- - 13.5 ± 7.8 - 
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Table 1.11 (continued) 

Washing solution  

 

 

Scale 
Samples 

Compounds 

References 
THMs* 

µg/g or L 

Trichloromethane 

µg/g or L 

Chloroform  

µg/L 

Bromodichlo 

-romethane 

NaOCl (200 ppm) for 2 min, 50°C Pilot plant Process water - 0.2 - - 

(Klaiber et al., 2005) 

NaOCl (200 ppm) for 2 min, 4°C  Process water - - - - 

NaOCl (200 ppm) for 2 min, 50°C  Washed carrot - 2.5 10
-3

 - - 

NaOCl (200 ppm) for 2 min, 4°C  Washed carrot - - - - 

NaOCl maintained 1 ppm+COD 

(500ppm) for 1h 

Laboratory Washed 

lettuce 

<6.3 - - - 

(Van Haute et al., 2013b) 

NaOCl maintained 1 ppm+COD 

(500ppm) for 1h 

 Process water 27.8 ± 5.4 - - <6.3 

NaOCl maintained 1 ppm+COD 

(1000ppm) for 1h 

 Washed 

lettuce 

<6.3 - - - 

NaOCl maintained 1 ppm+COD 

(1000ppm) for 1h 

 Process water 124.5 ± 13.4 - - 13.4 ± 2.9 

NaOCl maintained 5 ppm+ COD  

(500 ppm) for 60 min 

Pilot plant Process water 1315 ± 8 1299 ± 1 - - (Gómez-López et al., 2014) 

*THMs: trihalomethanes; **COD: chemical oxygen demand; (-): not determined  
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1.5.2 Peracetic acid 

Peracetic acid (PAA) is a strong oxidant and disinfectant which is one of the most promising 

and widespread substitutes for chlorine-based disinfectants. Commercial PAA based products 

are usually quaternary equilibrium mixtures of PAA, hydrogen peroxide (H2O2), acetic acid 

and water as shown in Eq. 4 

CH3CO2H + H2O2   CH3CO3H + H2O    Eq. 4 

PAA is a stronger oxidant than chlorine, as illustrated by its higher oxidation-reduction 

potential of 1.81 eV compared to 1.36 eV for chlorine. The disinfectant activity of PAA is 

based on the production of active oxygen which can denaturate the proteins and enzymes of 

microorganisms. The permeability of microorganisms‘ cell wall will increase by oxidizing 

sulfhydryl and sulphur bonds in the cell wall proteins and enzymes (Demirci and Ngadi, 2012; 

Kitis, 2004). The disinfectant efficiency of PAA is high towards bacteria and then decreases 

in order of magnitude towards viruses, bacterial spores and cysts of protozoa. In addition to its 

antimicrobial action, the disinfection efficacy of PAA is not affected by fluctuations in pH as 

is the case for chlorine (Beuchat, 1998; Kitis, 2004). Optimal activity of PAA occurs between 

pH 3 and 7. Another advantage of PAA over chlorine is that the activity of PAA is less 

affected by organic matter (Kitis, 2004). Additionally, unlike chlorine, PAA does not react 

with protein to produce toxic or carcinogenic by products (Silveira et al., 2008) as excessive 

PAA is broken down to acetic acid and oxygen (Monarca et al., 2002), both of which are safe 

and environmentally friendly residues (Demirci and Ngadi, 2012). Some studies have also 

shown that PAA produces harmless by-products of aldehydes and carboxylic acids after 

oxidation of natural organic matter in water (Kitis, 2004; Monarca et al., 2002). No 

halogenated disinfection by-products are observed after the treatment of environmental water 

with PAA (Monarca et al., 2002). In contrast, a major disadvantage of PAA is the higher cost 

compared to chlorine-based sanitizers. In addition, PAA increases the organic load in 

processing water to a greater extent than chlorine (Kitis, 2004; López-Gálvez et al., 2009). 

According to the U.S. Food Drug Administration, a maximum concentration of 80 ppm PAA 

in the washing water is used for disinfection of fruits and vegetables, and 220 ppm for red 

meat carcasses and organs (FDA, 2010). To date the use of PAA has been investigated to 

decontaminate vegetables (Vandekinderen et al., 2009a; Vandekinderen et al., 2009b; Velde 

et al., 2013) and poultry (Bauermeister et al., 2008). A summary of the studies which have 

been performed on the decontamination of vegetable products by PAA are shown in Table 
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1.12. Although PAA has been commonly used to treat waste water (Falsanisi et al., 2006; 

Koivunen and Heinonen-Tanski, 2005) and farmed fish against fish pathogens/disease (Jussila 

et al., 2011), to date no studies have been reported on the decontamination of fish products in 

industrial plants.  

Table 1.12 Evaluation of PAA on reduction of E. coli inoculated on various vegetables 

Inoculated 

Microflora 

Peracetic 

acid 

(ppm) 

Contact 

time 

(min.) 

Log reduction 

Log (CFU/g) 

Product References 

E. coli 

CECT 471, 

516 and 533 

500 1 2 Cut 

lettuce 

(López-Gálvez et al., 

2009) 

E. coli 

O157:H7 

40 2 1.24 Shredded 

carrots 

(Ruiz-Cruz et al., 

2007) 

E. coli 

O157:H7 

60 2  1.07 Cut-wash 

lettuce 

(Palma-Salgado et al., 

2014) 

E. coli 

O157:H7 

60 2 1.87 Wash-cut 

lettuce 

(Palma-Salgado et al., 

2014) 

E. coli 

O157:H7 

70 3 2.3 Mung bean 

sprout 

(Neo et al., 2013) 

1.6 Concluding remarks and aims of the thesis 

Vietnamese Pangasius has become appreciated by consumers from different markets all over 

the world. Besides frozen Pangasius, thawed Pangasius fillets are commonly marketed in 

Western countries. Once thawed, the biochemical and microbiological changes of thawed 

fillets are in principle as fast and similar to those that take place on non-frozen fillets. So far, 

only one study determined the shelf life under different MAP conditions and identified the 

dominant microbiota on thawed fillets at the end of shelf life (Noseda et al., 2012). It is 

reported that Pseudomonas and Serratia spp. are dominant in Vietnamese Pangasius fillets in 

air condition, Brochothrix thermosphacta and Carnobacterium spp. in 50% CO2 + 50% O2, B. 

thermosphacta, Serratia and Carnobacterium spp. in 50% CO2 + 50% N2 and Serratia and 

Carnobacterium spp. in vacuum (Table 1.5). Some questions remain concerning the origin of 

these microorganisms as well as the influence of processing on the microbial evolution and 

quality. In addition, a review of the RASFF database showed that Pangasius originating from 

Vietnam are sometimes contaminated with pathogenic bacteria such as Salmonella, L. 

monocytogenes, etc. However, knowledge concerning the dynamics of the microbial quality 

and safety of Pangasius processed in Vietnam and intended for export is still very limited. 
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Lastly, it was evident in literature that whilst the decontamination of fish with chlorine is 

practiced in some processing companies only a few studies have reported the efficacy of these 

processes. Most of the decontamination studies done to date have been performed on fresh-cut 

vegetable products (Allende et al., 2009; Gómez-López et al., 2014; Van Haute et al., 2013a; 

Van Haute et al., 2013b).  

This thesis had the major objective of addressing (partly/as far as possible) these gaps 

mentioned above.  Therefore various studies were performed in this thesis to address: 

 i) the evolution of microbial quality and safety of Pangasius fillets processed industrially in 

Vietnam and marketed in Belgium.  

ii) the dynamics of microbial contaminations was evaluated in Pangasius processing lines 

substantially oriented to export by means of a microbial assessment scheme combined with a 

self-assessment questionnaire.  

and iii) the decontamination of Pangasius fillets and disinfection of the wash water were 

studied elaborately at the industrial and laboratory scale. 

The research outline is presented in Figure 1.11 

 

Figure 1.11 Thesis outline  
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ABSTRACT 

There are numerous factors that can have an impact on the microbial ecology and quality of 

frozen Pangasius hypophthalmus fillets during processing in Vietnam. The presence of 

spoilage bacteria along the processing line can shorten the shelf-life of thawed frozen fish 

products. Therefore, the spoilage microbiota throughout the processing chain of two 

companies (BC: large scale factory, chlorine-based process, BW: large scale factory, water-

based process and SC: small scale factory, chlorine-based process) was identified by culture-

dependent techniques and 16S rRNA gene sequencing. The microbiological counts were 

observed to be insignificantly different (p > 0.05) between BC and BW. Surprisingly, chlorine 

water treated fillets from the SC line were revealed to have significantly higher microbial 

counts than potable water treated fillets at BW line. This was determined to be a result of 

temperature abuse during processing at SC, with temperatures even greater than 10°C being 

recorded from skinning onwards. On the contrary, the microbiota related to spoilage for BC 

and BW lines was determined by 16S rRNA gene sequencing to be more diverse than that on 

the SC line. A total of 174 isolates, 20 genera and 38 species were identified along the 

processing chains. The genera Aeromonas, Acinetobacter, Lactococcus and Enterococcus 

were prevalent at various processing steps on all the processing lines evaluated. A diverse 

range of isolates belonging to the Enterobacteriaceae such as Providencia, Shigella, 

Klebsiella, Enterobacter and Wautersiella were isolated from fillets sampled on the SC line 

whereas Serratia was only observed on fillets sampled on the BC and BW lines. The results 

can be used to improve Good Manufacturing Practices for processed Pangasius fillets and to 

select effective measures to prolong the shelf-life of thawed Vietnamese Pangasius fillets 

products. 
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2.1 INTRODUCTION 

Tra fish (Pangasius hypophthalmus) is a tropical and farmed freshwater fish in Vietnam 

which is mainly processed into skinless and boneless fillets intended for export to many 

countries in the world (Karl et al., 2010; Phuong and Oanh, 2010). Although a diverse mixture 

of bacteria are found in the intestine and the surface of tropical water fish (see § 1.3.1 ), the 

specific microbiota of fresh Pangasius is not yet known. During the processing of Pangasius 

fillets, the microorganisms present in the gut and on the skin can spread to the processing 

equipment, the workers, and sterile flesh fillets. However, the growth of pathogenic and 

spoilage organisms is retarded by the subsequent freezing applied to frozen Pangasius fillet 

products. Additionally, as these products are cooked before consumption, they appear to be of 

less risky with regards to microbial foodborne hazards. In addition to frozen products, thawed 

fillets are widely marketed in Western markets as a (re)fresh product kept at refrigeration 

temperature. Once thawed, the fish fillets deteriorate primarily through microbiological 

spoilage (ICMSF, 2005).  

Besides bacteria originating from the fish itself, frozen Pangasius can be (cross) contaminated 

with bacteria from working surfaces, equipment, food operators, etc. (Chen et al., 2010; 

Norton et al., 2001; Rørvik et al., 1995). In practice, chlorinated water is used for disinfection 

of surfaces, equipment, hands, etc. and for decontamination of fillets during washing in some 

Vietnamese companies. However, the efficiency of chlorine in reducing microbial levels on 

Pangasius fillets in the washing steps has not yet been confirmed. Moreover, knowledge of 

the microbial ecology of fish during processing would also provide valuable information for 

controlling the safety and quality of fish products.  

In one of the few existing reports, Noseda et al. (2012) indicated that the dominant spoilage 

microorganisms of chill-stored, modified atmosphere packaged thawed Vietnamese 

Pangasius fillets were Serratia, Pseudomonas, Carnobacterium and Brochothrix 

thermosphacta. However, to the best of our knowledge, no studies have been done to date 

describing the evolution of the spoilage microbiota on Pangasius fillets during processing. 

The major objective of this chapter was to obtain detailed insight into the spoilage microbiota 

profile of Pangasius fillets processed at large and small scale factories in the Mekong Delta 

region of Vietnam. The microbial ecology of Pangasius fillets processed in large and small 
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factories using chlorinated and/or non-chlorinated water during washing was evaluated. These 

results give an insight into the dynamic changes of the ecology of the microbiota of 

Vietnamese Pangasius fillets during processing. 

2.2 MATERIALS AND METHODS 

2.2.1 Processing plants 

Two Pangasius fillet processing companies located in the Mekong Delta region of Vietnam 

were evaluated. These two consisted of a large and small scale plant which produce mainly 

frozen fillet products and have daily production capacities of ca. 150 and ca. 35 tons, 

respectively. There are ca. 1000 and 300 people working in the large and small scale plant, 

respectively. Both production plants, were HACCP, BRC and IFS certified. Unlike the small 

scale company, food safety and/or quality management systems such as ISO 22000:2005 and 

ISO 9001:2000 were also applied at the large scale company. The Pangasius products in the 

large scale company are largely exported to West European countries (i.e. Belgium, 

Netherlands, Germany, etc.), the United States, Canada, etc. Those from the small scale 

company are mainly exported to the European countries (i.e. United Kingdom and Greece), 

the United Arab Emirates, Egypt, etc. 

The small scale plant utilized chlorinated water (SC) as a disinfectant (50 ppm) to 

decontaminate the fillets during the washing steps. The large scale plant usually did not use 

chlorinated water (BW), and only utilized chlorine during washing steps as required for 

certain fish products or at the request of their customers. For purposes of this research, 

chlorinated water (50 to 80 ppm) was used in washing steps at the large scale plant (BC). 

2.2.2 Product manufacturing 

The flow charts for the processing of Pangasius fillets at the large (BW and BC lines) and 

small scale (SC line) factories are shown in Figure 2.1 A and B, respectively. The Pangasius 

fish used at both factories was farmed in different regions of the Mekong Delta (i.e. Dong 

Thap for the large scale and Can Tho city for the small scale company, respectively). 
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Figure 2.1 Process flow diagram for production of frozen Pangasius fillets in A) the large  scale plant (chlorine-based process (BC) and water-

based process (BW)) and B) the small scale plant chlorine-based process (SC). * Sampling locations 
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The fish used at the large scale plant were transported alive from farms to the factory in boats 

(ca. 4 hours) whilst the fish for the small scale factory were transported from agencies to 

factory by van within 30 min. Upon arrival at the companies, bleeding, filleting and washing 

were done manually followed by mechanical removal of skin by a skinning machine. The 

fillets were trimmed, sorted and checked putative parasites as was described in § 1.2.2.1 of 

Chapter 1. Next, the fillets were treated with unspecified additives in tumblers for 15 min. in 

the large scale (BW and BC lines) and for 1 hour in small scale (SC line) factories. The fillets 

were graded manually by weight and then were cooled with flake ice before freezing. During 

cooling, five kilograms of the fillets were placed in plastic bags to avoid direct contact with 

the flake ice. The time of cooling was variable and depended on the availability of freezers. 

The fillets were then frozen until a core temperature of -18°C. Before packaging and labeling, 

the frozen fillets were glazed by dipping in cold water mixed with flake ice and frozen a 

second time. This resulted in fillets with a good appearance (shiny), reduced the rate of 

fat/lipid oxidation and avoided freezer-burn during storage (Vanhaecke et al., 2010). The 

packed frozen products were then stored at -18°C in cardboard boxes.  

During processing, a surface decontamination process was implemented by washing the 

fillets intermediately after the main processing steps. There are five washing steps in the large 

scale company (BC/BW) and three washing steps in the small scale company (SC). In the 

BW processing line, washing of the fillets was done in a water bath containing a mixture of 

potable water and flake ice combined with compressed air inflow. In the BC processing line 

the fillets were washed with a chlorine solution of 80 ppm at washing step 2 and a chlorine 

solution of 50 ppm at washing step 3 (Figure 2.1A). In BC and BW lines, the wash water 

was renewed for each washing batch whereas that in the SC processing line was reused for 

several batches of washing. In the SC processing line, washing was performed with 

chlorinated water (fixed concentration up to 50 ppm) combined with manual stirring (Figure 

2.1 B). 

2.2.3 Sampling 

For each plant, the locations where the samples were collected are indicated in Figure 2.1A 

(BC and BW processing lines) and Figure 2.1B (SC processing line) with asterisks. Samples 

were collected in February 2012 at the large scale plant and in March 2012 at the small scale 

production plant. At each processing line, samples were collected at three different times in 
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three consecutive weeks. One fillet (ca. 200g) was randomly selected at the end of each 

processing step designated for sampling. The randomly selected fillets were aseptically taken 

with sterile tweezers and placed in separate sterile stomacher bags, before sealing was done. 

Only for the samples of raw fish and samples taken at the washing step 1 (after bleeding), the 

whole fish was collected. Subsequently, the samples were analyzed in the microbiological 

laboratory of the large scale company while the packaged samples of the small scale 

company were then stored in ice and transported in insulated boxes to the Laboratory of 

Microbiology and Biotechnology of Food Technology Department, Can Tho University, 

Vietnam for microbiological analyses within 6 to 24 h of sampling. 

2.2.4 Microbiological analyses 

A 25 g composite sample from different parts of each fillet sample was transferred aseptically 

to a stomacher bag by means of sterile scalpels and tweezers. 225 ml of sterile Maximum 

Recovery Diluent (MRD, Merck, Darmstadt, Germany) was added and the mixture was 

homogenized for 1 min. Further decimal dilutions were prepared in MRD. The total 

psychrotrophic and mesophilic counts were determined on Plate Count Agar (PCA, Merck, 

Darmstadt, Germany) by pour plating the decimal dilutions. The pour plates were incubated 

for 72 h at 22°C and 30°C to determine the total psychrotrophic and mesophilic counts, 

respectively with the goal of visually selecting as many different colonies as possible for 

further identification. The number of presumptive Enterobacteriaceae spp. were determined 

by pour plating the decimal dilutions on Violet Red Bile Glucose agar (VRBGA, Merck, 

Darmstadt, Germany) with an over layer. The VRBGA plates were incubated for 24 h at 

37°C after which all colonies were counted. Mesophilic lactic acid bacteria (LAB) were 

determined by pour plating the decimal dilutions on de Man Rogosa Sharpe agar (MRS, 

Merck, Darmstadt, Germany) with an over layer followed by incubation for 72 h at 35°C.  

2.2.5 Temperature/time measurements 

In order to evaluate the processing temperature and time, six measurements were performed 

on two separate days and at three different moments a day (at 8 a.m., 11 a.m. and 14 p.m.). 

The temperature inside the processing plants was measured in the filleting (from filleting to 

skinning step); trimming (from trimming to cooling step) and freezing halls (from freezing to 

packaging step). The temperature of the fish was also measured after bleeding, filleting, 
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skinning, before trimming, during trimming, sorting, parasite control, before tumbling, after 

tumbling, before sizing, sizing, and before freezing. The temperature of all cases was 

determined by a portable digital thermometer (± 0.1°C) (Multi-thermometer, China). In 

addition, the transit time of the fillets at these processing steps was measured.  

2.2.6 Isolation and identification of dominant microbiota 

2.2.6.1 Sample preparation 

From each processing line, 25-32 isolates were selected per sampling-day originating from 

the fillets samples at the beginning (filleting), middle (trimming) and final (freezing) 

processing steps taking into account as many different colony morphologies (e.g. color, size, 

and shape) as possible on the media used. A total of 252 isolates were purified and stored on 

Tryptone Soy Agar (TSA Merck, Darmstadt, Germany) slants at 4°C. 

2.2.6.2 DNA-extraction 

DNA-extraction was based on a modified protocol Flamm et al. (1984) using lysostaphine 

(0.5 mg/ml; Sigma) and mutanolysine-lysozyme solution (1 U/ml mutanolysine, Sigma; 2.5 

mg/ml lysozyme, Roche) dissolved in HPLC water and TE-buffer [0.05 M Tris, (Invitrogen); 

0.02 M EDTA (Merck), pH 8], respectively. These solutions were added to the pellet of the 

pure culture in the first steps of the DNA-extraction. After extraction, the quality and quantity 

of DNA were tested by a spectrophotometer (Nanodrop, Isogen) before using as a template 

DNA. 

2.2.6.3 rep-PCR 

All isolates were grouped into clusters on the basis of the similarity of their fingerprints 

obtained with (GTG)5-PCR, which is a rep-PCR technique. The microbial DNA was used as 

a template in the PCR-reaction. Reactions were carried out in 25 µl volume containing 

microbial DNA (50 ng/µl), 1x RedGoldstar buffer (75 mM Tris-HCl; Eurogentec) and a final 

concentration of 3.4 mM of (GTG)5 primer (Eurogentec), 1.5 mM Mg2Cl (Applied 

Biosystems), 1 U RedGoldStar DNA polymerase (Eurogentec) and 0.2 mM of each 

deoxynucleotide triphosphate (GE Healthcare Europe GmbH). Amplification was done in a 

Geneamp PCR 9700 Thermocycler (Applied Biosystems) using the amplification conditions 

as follows: initial denaturation at 95°C for 7 min, 30 cycles of 1 min at 94°C, 1 min at 40°C, 
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8 min at 65°C and a final 16 min extension at 65°C (Versalovic et al., 1994). PCR products 

were size separated in a 1.5% Seakem LE agarose gel (Lonza) in 1xTBE buffer (0.1 M Tris, 

0.1 M Boric acid, 2 mM EDTA) at 120V for 4 h. The (GTG)5 profiles were visualized under 

UV light after staining with ethidium bromide for 30 min. and a digital image was captured 

using the G:BOX camera (Syngene). The resulting fingerprints were compared using the 

Bionumerics version 6.5 software package (Applied Maths, Sint-Martens-Latem, Belgium) 

using the EZ load 100 bp PCR Molecular Ruler (Biorad) as normalization reference. The 

similarity between the fingerprints was calculated using the Pearson correlation (1% 

optimization and 1% position tolerance). The fingerprints were grouped according to their 

similarity by use of the UPGMA (unweighted pair group method with arithmetic averages 

algorithm). 

2.2.6.4 Identification of the microbial isolates by sequence analysis  

A 1500 bp fragment of the 16S rRNA gene was amplified by PCR using forward 16F27 and 

reserve 16R1522 primers (Brosius et al., 1978). Amplification was performed as follows: 

initial denaturation at 94°C for 1 min, 25 cycles at 94°C for 15 s, 60°C for 15 s and 72°C for 

30 s followed by an elongation step at 72°C for 8 min. All PCR products were purified for 

sequencing with a High Pure PCR product purification kit (Roche) according to 

manufacturer‘s protocol and stored at -20°C. The quality and quantity of the purified PCR 

products were verified on a 1.5% agarose gel. The sequence reactions were then performed at 

Macrogen (Seoul, Korea), using a template of 30-50 ng PCR product DNA and 0.2 µM of 

primer 16F27 (16S forward primer). The partial 16S rDNA sequences (around 900 bp) was 

compared with validly published prokaryotic names in the EzTaxon server 

(http://www.eztaxon.org/; (Chun et al., 2007) to determine the closest phylogenetic relatives 

of the strains and calculate levels of 16S rDNA gene sequence similarity. A minimum of 

98.5% of similarity (unless otherwise indicated) with an EZTaxon entry was used to identify 

the isolates to the genus level and to the tentative species level. All isolates were additionally 

characterized by Gram staining, oxidase and catalase test.  

2.2.7 Statistical analysis 

All experiments were performed in triplicate i.e. on three different fillet samples collected on 

different days. Results of the microbiological analysis are reported as mean value (log 
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CFU/g) ± standard deviation of these triplicate analyses. Differences in mean log CFU/g 

between the processing steps evaluated and between the processing plants were statistically 

assessed using one way Analysis of Variance (ANOVA) in SPSS version 20 (IBM Inc., 

Chicago, Ill., USA) when a Shapiro-Wilk test indicated that the means were normally 

distributed, the validity of which was tested using various normality plots. If a Levene test 

confirmed heteroscedasticity, a Tamhane‘s T2 test was chosen instead of Tukey's test. A non-

parametric Kruskal-Wallis H type test was performed in case the data showed non-normality 

and each comparison with pair means using a Mann-Whitney U test (α = 0.05).   

2.3 RESULTS 

2.3.1 Microbiological profile of Pangasius fillets during processing  

Evolution of the microbiological counts of Vietnamese Pangasius fillets during processing at 

the different factories is shown in Table 2.1. Total psychrotrophic counts of 3.8 ± 0.2, 5.0 ± 

0.4 and 4.6 ± 0.6 log CFU/g were found on raw Pangasius fish sampled from the BC, BW 

and SC lines, respectively. These did not differ significantly (p > 0.05) from each other. The 

total mesophilic counts on raw Pangasius fish sampled from the BC, BW and SC lines were 

4.4 ± 0.6, 5.1 ± 0.5 and 4.7 ± 0.6 log CFU/g, respectively. These did not differ significantly 

(p > 0.05) from each other and from the initial psychrotrophic counts observed on each line. 

As can be seen in Table 2.1, the psychrotrophic and mesophilic counts on the fillets sampled 

from both the BW and BC lines did not differ significantly (p > 0.05) between the processing 

steps evaluated. In contrast, it can be seen that both the psychrotrophic and mesophilic counts 

on the fillets sampled on the SC line increased significantly (p < 0.05) to ca. 5.9 log CFU/g at 

the trimming, sorting and cooling steps. Thereafter, the psychrotrophic and mesophilic counts 

on the SC line decreased non-significantly (p > 0.05) to 5.1 ± 0.2 log CFU/g.  

In addition to the comparison made above of the psychrotrophic and mesophilic counts at 

each processing step, a comparison was also made between the three processing lines 

evaluated. It can be seen in Table 2.1 that no significant differences (p > 0.05) occurred in 

the psychrotrophic and mesophilic counts of the fillets sampled on BC, BW and SC lines 

from the raw fish up to the filleting steps. Thereafter, from the skinning step onwards, it was 

observed that psychrotrophic and mesophilic counts on the SC line were significantly higher 

(p < 0.05) than those of the BC and BW lines, with the exception of the freezing step. It was 

also found that greater variation occurred in both the psychrotrophic and mesophilic counts of 
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the triplicate samples at the filleting step on the BC and BW lines; with the standard 

deviations ranging from ± 0.9 to ± 1.1 log CFU/g. This was not observed on the SC line.  

In Table 2.1, the presumptive Enterobacteriaceae counts on raw Pangasius fish sampled 

from the BC, BW and SC lines were 2.5 ± 0.1, 3.9 ± 0.6, and 3.1 ± 1.1 log CFU/g, 

respectively. These did not differ significantly (p > 0.05) from each other. As observed for 

the psychrotrophic and mesophilic counts, the counts of presumptive Enterobacteriaceae on 

the fillets sampled from both the BW and BC lines was not significantly different (p > 0.05) 

between the processing steps evaluated. In similarity to the trend observed for the 

psychrotrophic and mesophilic counts on the fillets sampled from the SC line, it was 

determined that in comparison to the levels on the raw fish, the counts of presumptive 

Enterobacteriaceae on the SC line increased significantly (p < 0.05) from the filleting step to 

a maximum of 5.3 log CFU/g during skinning, trimming, sorting and cooling. Thereafter, the 

presumptive Enterobacteriaceae counts on the fillets sampled from the SC line decreased 

significantly (p < 0.05) by 1 log CFU/g on freezing. It can be further seen in Table 2.1 that 

no significant differences (p > 0.05) occurred between the presumptive Enterobacteriaceae 

counts of the fillets sampled on BC, BW and SC lines from the raw fish up to the filleting 

steps. Thereafter, from the skinning step onwards, it was observed that presumptive 

Enterobacteriaceae counts on the SC line were significantly higher (p < 0.05) than those of 

the BC and BW lines. 

Generally, the trends observed for the LAB counts were similar to those described above for 

the total counts and presumptive Enterobacteriaceae counts. Namely, no significant 

differences (p > 0.05) occurred between the LAB counts on the fillets sampled at each 

processing step on both the BC and BW lines. The LAB counts on the fillets sampled from 

SC line were significantly higher (p < 0.05) than those sampled on the BC and BW lines from 

the filleting step onwards. As observed for the presumptive Enterobacteriaceae, freezing 

reduced LAB counts by ca. 1 log CFU/g. In comparison to the total counts and presumptive 

Enterobacteriaceae counts, the LAB counts generally were lower. 
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Table 2.1. Evolution of the microbiota during processing in the BC: large scale factory-

chlorine based process, BW: large scale factory -water based process and SC: small scale 

factories-chlorine based process. 

Medium Steps 
Processing  lines 

BC BW SC 

PCA psychrotrophic
1 

Raw fish 3.8 ± 0.2
a1* 

5.0 ± 0.4
a1 

 4.6 ± 0.6
a1 

 Washing 1 3.7 ± 0.8
a1 

4.6 ± 0.7
a1 

 5.1 ± 0.6
ab1 

 Filleting 4.2 ± 0.9
a1 

3.8 ± 1.1
a1 

 5.1 ± 0.1
ab1 

 Skinning 3.4 ± 0.3
a1 

3.9 ± 0.5
a1 

 5.6 ± 0.5
ab2 

 Trimming 3.8 ± 0.6
a1 

3.5 ± 0.3
a1 

5.9 ± 0.1
b2 

 Sorting 3.2 ± 0.5
a1 

3.4 ± 0.1
a1 

5.9 ± 0.1
b2 

 Tumbling 3.6 ± 0.2
a1 

3.8 ± 0.5
a1 

 5.3 ± 0.5
ab2 

 Cooling 3.8 ± 0.6
a1 

3.8 ± 0.3
a1 

5.8 ± 0.3
b2 

 Freezing 3.8 ± 0.7
a1 

4.1 ± 0.1
a1 

 5.0 ± 0.4
ab1 

 Packaging 3.8 ± 0.2
a1 

 4.3 ± 0.5
a12 

 5.1 ± 0.2
ab2 

     

PCA mesophilic
2 

Raw fish 4.4 ± 0.6
a1 

5.1 ± 0.5
a1 

4.7 ± 0.6
a1 

 Washing 1 3.7 ± 0.8
a1 

4.7 ± 0.7
a1 

 5.0 ± 0.3
ab1 

 Filleting 4.2 ± 1.0
a1 

4.4 ± 1.1
a1 

 5.2 ± 0.1
ab1 

 Skinning 3.4 ± 0.4
a1 

4.3 ± 0.5
a1 

 5.7 ± 0.5
ab2 

 Trimming 3.8 ± 0.7
a1 

3.9 ± 0.3
a1 

5.9 ± 0.2
b2 

 Sorting 3.1 ± 0.4
a1 

3.5 ± 0.0
a1 

5.9 ± 0.1
b2 

 Tumbling 3.8 ± 0.2
a1 

3.9 ± 0.7
a1 

 5.2 ± 0.5
ab2 

 Cooling 3.5 ± 0.2
a1 

3.6 ± 0.2
a1 

5.8 ± 0.2
b2 

 Freezing 3.9 ± 0.8
a1 

4.3 ± 0.3
a1 

 5.0 ± 0.4
ab1 

 Packaging 3.7 ± 0.5
a1 

 4.4 ± 0.5
a12 

 5.1 ± 0.2
ab2 

     

VRBGA
3
 Raw fish 2.5 ± 0.1

a1 
3.9 ± 0.6

a1 
3.1 ± 1.1

a1 

 Washing 1 2.4 ± 0.6
a1 

2.9 ± 0.8
a1 

  4.4 ± 0.4
abc1 

 Filleting 3.5 ± 1.5
a1 

2.4 ± 1.5
a1 

4.6 ± 0.3
b1 

 Skinning 2.4 ± 0.8
a1 

3.3 ± 0.6
a1 

5.3 ± 0.5
c2 

 Trimming 2.1 ± 0.7
a1 

2.6 ± 0.3
a1 

5.3 ± 0.0
c2 

 Sorting 1.6 ± 0.8
a1 

2.6 ± 0.2
a1 

5.3 ± 0.3
c2 

 Tumbling 2.7 ± 0.2
a1 

3.0 ± 0.4
a1 

   4.8 ± 0.7
abc2 

 Cooling 2.8 ± 0.3
a1 

2.8 ± 0.4
a1 

5.3 ± 0.2
c2 

 Freezing 2.4 ± 0.3
a1 

2.8 ± 0.0
a1 

 4.3 ± 0.6
ab2 

 Packaging 2.3 ± 0.3
a1 

2.7 ± 0.1
a1 

 4.3 ± 0.1
ab2 

  
   

MRS Raw fish 1.1 ± 0.1
a1 

<1.0 
ab1 

1,9 ± 0.8
a1 

 Washing 1 <1.0 
a1 

1.1 ± 0.1
a1 

2.3 ± 0.3
a1 

 Filleting 1.2 ± 0.2
a1 

 1.2 ± 0.2
ab1 

 3.1 ± 0.5
ab2 

 Skinning <1.0 
a1 

1.1 ± 0.5
a1 

2.5 ± 0.3
a2 

 Trimming 1.2 ± 0.6
a1 

<1.0 
a1 

3.0 ± 0.3
ab2 

 Sorting 1.2 ± 0.4
a1 

1.8 ± 0.3
b1 

3.4 ± 0.5
ab2 

 Tumbling 1.5 ± 0.4
a1 

 1.6 ± 0.6
ab1 

3.1 ± 0.7
ab2 

 Cooling 1.2 ± 0.2
a1 

 2.0 ± 0.2
ab1 

4.2 ± 0.2
b2 

 Freezing 1.5 ± 0.1
a1 

1.7 ± 0.3
b12 

 3.0 ± 0.9
ab2 

 Packaging 1.5 ± 0.3
a1 

1.9 ± 0.0
b1 

 3.4 ± 0.4
ab2 

*
Data are expressed as mean value ± standard deviation (log CFU/g) of three replicates. 

Value with a different superscript letter between processing steps in the same column show 

statistical significance. Value with a different superscript number between companies in the 

same row show statistical significance (p < 0.05) 
1 

incubated at 22°C; 
2
 incubated at 30°C; 

3
all colonies on the plates were counted 
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2.3.2 Temperature/time evolution 

2.3.2.1 Processing halls 

Inside the large scale factory (BC and BW lines), the air conditioning maintained 

temperatures of 18.5 ± 0.7°C, 19.0 ± 0.9°C and 20.9 ± 1.1°C in the freezing, trimming and 

filleting halls, respectively. In contrast, the temperatures in processing halls of the small scale 

factory (SC line) was higher, being 22.0 ± 0.8°C, 25.4 ± 0.2°C and 25.7 ± 0.7°C in the 

freezing, trimming and filleting halls, respectively.  

2.3.2.2 Pangasius fillets 

Evolution of the temperature of the fillets can be seen in Figure 2.2. The temperature of the 

fish at the start of processing (after bleeding) on the BC and BW lines was 29 ± 0.2°C, this 

temperature decreased steadily to 10.6 ± 0.6°C at the parasite control step. Thereafter the 

temperature remained unchanged up to the sizing step, after which it decreased to 7.2 ± 1.1°C 

during preparation for freezing. The fillets sampled on the SC line generally had higher 

temperatures than those sampled on the BC and BW lines. Three distinct stages can be 

observed i) from bleeding to the trimming step where the fillets had a temperature from 28.5 

± 1.3°C to 30.6 ± 0.4°C ii) from sorting to tumbling where the fillets had a temperature from 

24.6 ± 2.4°C to 25.1 ± 1.5°C and iii) from tumbling onwards where the fillets had a 

temperature from 18.5 ± 1.5°C to 19.4 ± 1.5°C. 

Besides temperature, the transit time of the fish through the production process was also 

recorded and is shown in Figure 2.2. The transit time at each step evaluated was generally 

longer at the large scale factory (BC and BW lines) than at the small scale factory (SC lines). 

For example, the transit time during sorting took 6.3 ± 0.6 min and 1.0 ± 0.5 min at the large 

and small scale plants, respectively. However, some exceptions occurred i.e. the transit time 

at the skinning step took 1.7 ± 0.6 min and 3.7 ± 0.6 min at the large and the small scale 

factory, respectively.  
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Figure 2.2. Temperature and time evolution of fillets during processing in the large scale 

plant (BC/ BW) and small scale plant (SC). Error bars denote standard deviation of 

temperature (X-axis) and time (Y-axis). (1) After bleeding bath; (2) Filleting; (3) Skinning; (4) 

Before trimming; (5) During trimming;  (6) Sorting; (7) Parasite control; (8) Before tumbling; 

(9) After tumbling; (10) Before sizing; (11) Sizing; (12) Before freezing. 

2.3.3 Identification of the isolates recovered at the different processing steps  

A total of 252 isolates were selected from the PCA, VRBGA and MRS plates originating 

from Pangasius fillets sampled during the filleting, trimming and freezing steps on the three 

processing lines. These processing steps represented the beginning, intermediate and final 

steps of the production line. These isolates were then grouped into clusters based on the 

visual similarity of their (GTG)5–PCR fingerprints. Dendrograms with the grouping of 

isolates for each line separately are shown in Figure 2.3 A, B, C for large scale factory-

chlorine based process-BC, large scale factory-water based process-BW, and small scale 

factory-chlorine based process-SC, respectively. Two representatives at both edges from each 

cluster containing at least four isolates and showing a similarity level of at least 65% were 

selected. Some identified isolates appear as single isolates in a separate clustering per 

production line, but were grouped on the basis of visually similar fingerprints with other 

isolates in a global clustering of all three production lines. For clusters with less than four 

isolates, a single isolate was selected for further analysis by 16S rRNA gene sequencing. The 

tentative species identification of the selected isolates (on the basis of the EzTaxon database) 

was extrapolated for the entire group of isolates in each cluster. 
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A total of 174 isolates were identified. Seventy-eight isolates, which remained single in the 

global (GTG)5-PCR clustering of the three production lines and probably partly represented 

minor species of the Pangasius microbiota or other genetically different strains of the 

identified species, were not further identified. The identified isolates consisted of 20 different 

genera and 38 different species of which 131 isolates were Gram-negative and 43 isolates 

were Gram-positive (Table 2.2). On the basis of the isolates identified, Aeromonas spp. 

(32/174 isolates or 18.4% of the isolates), Acinetobacter spp. (19.5%), Lactococcus spp. 

(13.8%) and Enterococcus spp. (8%) occurred the most frequently at both plants. 

Isolates from the genera Vagococcus, Providencia, Shigella, Klebsiella were only found on 

fillets sampled from the SC line. Pseudomonas spp. and Serratia spp. were only found in 

Pangasius fillets sampled from the BC and BW lines. Whilst the Pangasius fillets sampled 

from the large scale plant had a similar diversity of bacteria on both lines (BC and BW), 

exceptions were Myroides spp. and Rothia spp. which were only isolated from fillets from the 

BW line.  
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Figure 2.3 Dendrograms generated after cluster analysis of the (GTG)5-PCR 

fingerprints from 252 isolates (A) large scale factory-chlorine based process-BC, (B) 

large scale factory-water based process-BW, and (C) small scale factory -chlorine based 

process-SC 
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Table 2.2 Genera and species isolated from the fillets throughout process at the filleting, 

trimming and freezing steps in three processing lines  

Identification
1
 

Filleting Trimming Freezing Total 

isolates 

Prevalence 

(%) BC BW SC BC BW SC BC BW SC 

Aeromonas  5
2 

3 10  4 5 1  4 32 18.4 

Aeromonas salmonicida   2                 

Aeromonas veronii   1 1 6  1 3   4   

Aeromonas jandaei 3  3    1     

Aeromonas punctata      3 2      

Aeromonas taiwanensis 1  1         

Acinetobacter    5 2 2 7 2 3 13 34 19.5 

Acinetobacter baumannii   5 2 1 7   4   

Acinetobacter pittii        1    

Acinetobacter junii        2 1   

Acinetobacter beijerinckii       2     

Acinetobacter haemolyticus         8   

Acinetobacter parvus     1       

Pseudomonas  1 1  3 5     10 5.7 

Pseudomonas otitidis    2 1       

Pseudomonas hibiscicola    1        

Pseudomonas geniculata 1           

Pseudomonas beteli  1   3       

Pseudomonas aeruginosa     1       

Stenotrophomonas      1      1 0.6 

S. maltophilia     1        

Serratia       3 8  11 6.3 

Serratia nematodiphila       2 6    

Serratia proteamaculans
* 

      1 2    

Enterobacter        6   3 9 5.2 

Enterobacter cloacae       5   1   

Enterobacter cancerogenus      1   2   

Providencia   1       1 0.6 

Providencia alcalifaciens    1         

Shigella       9   3 12 6.9 

Shigella flexneri       9   3   

Klebsiella       1   1 2 1.1 

Klebsiella pneumoniae      1   1   

Morganella 2  1       3 1.7 

Morganella morganii  2  1         

Wautersiella        1   1 2 1.1 

Wautersiella falsenii       1   1   

Chryseobacterium   4  2  1 1 2 1  11 6.3 

C. joostei
* 

     1 1     

C.ureilyticum
* 

4  2  1  1 1    

Myroides         2  2 1.1 

Myroides marinus        2    

Elizabethkingia        1   1 0.6 

Elizabethkingia miricola        1     

Total Gram-negative 12 4 19 6 12 30 9 14 25 131 75.3 
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Table 2.2 (continued) 

BC: large scale factory-chlorine based process, BW: large scale factory -water based process 

and SC: small scale factory -chlorine based process 

1
Identification result on genus and species level; species identifications are only tentative 

2
The frequency of identified isolates based on partial 16S rRNA gene sequence analysis with 

cut-off value of 98.5% similarity with type strains of validly published prokaryotic names in 

EZTaxon database. The percentage of total number of isolates (or the prevalence in %) of 

each genus is listed in the last column. 

*
Some strains identified to the tentative species level had a lower cut-off value than 98.5% 

similarity (but higher than 97% similarity) with a valid species, this was the case for 

Chryseobacterium ureilyticum (97.5%), Chryseobacterium joostei (97.6%), Serratia 

proteamaculans (98%) and Rothia nasimurium (98%).
   

2.4 DISCUSSION 

2.4.1 Evolution of microbiological ecology during the processing of Pangasius fish  

The total mesophilic and psychrotrophic counts on Pangasius fillets did not differ 

significantly (p > 0.05) on all three processing lines evaluated. Previous studies have 

indicated that mesophilic microorganisms are dominant on tropical fish (Gram and Huss, 

1996). Ercolini et al. (2009) have reported that whilst mesophilic bacteria (isolated from 

refrigerated meat) grew fast at both 30°C and 20°C, their psychrotrophic counterparts grew 

slowly or did not grow at all at 30°C. Therefore, despite the non-significant difference 

Identification 
Filleting Trimming Freezing Total 

isolates 

Prevalence 

(%) BC BW SC BC BW SC BC BW SC 

Lactococcus   5  5 1 1 4 1 1 6 24 13.8 

Lactococcus garvieae 5  5 1 1 4 1 1 6   

Enterococcus    1  2   4 3 4 14 8 

Enterococcus faecalis  1  2   3 3 2   

Enterococcus viikkiensis       1     

Enterococcus 

casseliflavus  
        2  

 

Vagococcus    1       1 0.6 

Vagococcus fluvialis   1         

Macrococcus  1         1 0.6 

Macrococcus caseolyticus  1           

Staphylococcus 1       1  2 1.1 

Staphylococcus arlettae 1       1    

Rothia       1     1 0.6 

Rothia nasimurium
* 

        1           

Total Gram-positive 7 1 6 3 2 4 5 5 10 43 24.7 

Total identified isolates 19 5 25 9 14 34 14 19 35 174  

Number of species 9 4 9 6 10 10 10 9 12   
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between the total mesophilic and psychrotrophic counts, it can be deduced that the mesophilic 

bacteria was dominant on the Pangasius fillets sampled.  

The total psychrotrophic counts on the frozen fillets after final packaging were 3.8 ± 0.2 log 

CFU/g (BC), 4.3 ± 0.5 log CFU/g (BW) and 5.1 ± 0.2 log CFU/g (SC). These counts were in 

good agreement with those reported by Noseda et al. (2012) for thawed Vietnamese 

Pangasius fillets. These counts are within the acceptable limits of the official standard 

established by Vietnamese Science & Technology Ministry (TCVN, 2010) and the guidelines 

for fresh fish after production established by the Laboratory of Food Microbiology and Food 

Preservation (LFMFP) (Ghent, Belgium) (Uyttendaele et al., 2010).  

Enterobacteriaceae and LAB have been used to assess hygienic practices in industrial 

production plants, particularly in meat and fish processing units (Audenaert et al., 2010; 

Bagge-Ravn et al., 2003; Lebert et al., 2007). Enterobacteriaceae on the SC line increased 

significantly (p < 0.05) during the filleting step. The LAB counts on the fillets sampled from 

SC line increased during processing and increased significantly (p < 0.05) in cooling step. 

The endogenous microorganisms from the gills or intestinal tracts of the fish can contaminate 

the bacteria present on the flesh during filleting (Ringø et al., 2006; Vijayabaskar and 

Somasundaram, 2008; Yang et al., 2007). Some strains of Enterobacteriaceae such as 

Klebsiella pneumoniae, Enterobacter aerogenes and Escherichia coli have been isolated 

from the intestines of tropical freshwater fish (Apun et al., 1999). Moreover, gut samples 

from the fillets collected on the BC and BW lines revealed high total psychrotrophic counts 

of 6.0 ± 0.8 log CFU/g and presumptive Enterobacteriaceae counts of 4.2 ± 0.1 log CFU/g 

(data not shown). In addition, the gut perforation can occur during manual filleting by knives. 

As a result of this, greater variation was observed between the total mesophilic and 

psychrotrophic counts (standard deviation = ± 1 log CFU/g) and the presumptive 

Enterobacteriaceae (standard deviation = ± 1.5 log CFU/g) of the three fillets sampled at the 

filleting step on the BC and BW lines.  

Furthermore, as trimming and sorting were done manually, cross contamination can occur at 

these steps from the food contact surfaces such as gloves, plates, knives, tables, baskets etc. 

Microorganisms are able to attach to food contact surfaces (Aarnisalo et al., 2006; 

Fonnesbech Vogel et al., 2001) and some can survive on them even after cleaning and 

disinfection (Bagge-Ravn et al., 2003). These can detach at a later stage and transfer to the 
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food product during processing (Kumar and Anand, 1998). The companies evaluated in this 

chapter have implemented the HACCP principles and Good Manufacturing Practices (GMP). 

However, some previous studies have indicated that the performance of food safety 

management systems can vary (Cormier et al., 2007; Higuera-Ciapara and Noriega-Orozco, 

2000). In this study cleaning and disinfection of the contact surfaces at the trimming step was 

done approximately every five hours on the SC line while this was performed every two 

hours on the BC and BW lines during visits. 

The fillets sampled on the small scale (SC) line generally had much higher temperatures than 

those sampled in the large scale plant (BC and BW lines) (Figure 2.2). It is recommended to 

hold raw fish at <10°C throughout processing to inhibit the growth and toxin production of 

pathogenic bacteria (FDA, 2011). However, based on the recorded temperatures, the 

temperature of the fillets sampled on the BC and BW lines decreased steadily with each 

processing step while those from the SC line experienced mild temperature abuse. 

Differences were observed in the production processes of the two companies evaluated which 

could explain these differences. For instance, during visit, no ice was used on the SC line to 

cool the fillets with the exception of the cooling step. In contrast an over layer of ice (ca. 1:5, 

ice:fish) was placed on the fillets from the skinning step onwards on the BC and BW lines of 

the large scale plant. The differences in the temperature of fillets sampled at the two 

companies could have also contributed to the higher bacterial counts observed on the 

Pangasius fillets sampled from the SC line. 

Generally, the transit time of the fillets at each processing step evaluated was longer on the 

BC and BW lines than it was on the SC line. The total transit time from raw fish to before 

freezing step was ca. 100 min on the SC line and ca. 120 min on the BC and BW lines. This 

excludes the time taken during the washing steps, tumbling and cooling. The processing time 

can vary greatly depending on numerous factors such as the product requirements, demand 

and production capacity, competence of the workers etc.  

Chlorine, a disinfection agent, is essentially used to ensure water safety, hygiene of food 

contact surfaces and prevention of cross contamination (FAO/WHO, 2008). In addition, in 

fishery processing, chlorine-based decontamination is widely implemented to reduce 

microbial loads and to develop a lighter fish or squid color during storage (Benjakul et al., 

2012; Kim et al., 1999b). One of the aims of this chapter was to assess the effectiveness of 

chlorine-based decontamination (BC and SC lines) compared to washing with potable water 
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(BW line) on reducing the microbial load in industrial practices. However, as mentioned 

earlier in the large company, no significant difference (p > 0.05) occurred in the number of 

microorganisms investigated during processing with chlorinated and non-chlorinated washing 

water on the BC and BW, respectively. On the other hand, chlorination was implemented on 

the SC line, where significantly higher microbial counts (p < 0.05) were generally observed 

compared to those on the fillets from both the BW and BC lines.  

On the SC and BC lines, the producers added commercial sodium hypochlorite to potable 

water at a certain concentration (Figure 2.1A & B). This solution consists of the unionized 

form of hypochlorous acid (HOCl) due to hydrolysis. Next, hypochlorous acid will dissociate 

to the hypochlorite ion (ClO
−
) and proton (H

+
) depending on the pH of the water (Fukuzaki, 

2006). The effective bactericidal effect of chlorine depends on the stability and activity of 

free chlorine (as HOCl), which can be overlooked by producers. The pH of the chlorine 

solutions should ideally be maintained between 6.5 and 7.5 during washing (Suslow, 2008). 

However, the pH value of the chlorine solutions was not adjusted at both the BC or SC lines. 

Chlorine may be more a hygienic aid for the fillet surfaces rather than a decontamination tool 

since some earlier studies emphasized that bactericidal action of chlorine was affected by 

available chlorine in the wash-water, pH, temperature, exposed time and organic matter 

present (Suslow, 2008). The microbiological quality throughout the processing chain 

appeared to be independent of the use of chlorine in the wash water. Therefore, processors 

should pay more attention to ensure the proper use of chlorine in the conditions it is used 

during the processing of Pangasius. In addition, the should take this into consideration and 

consider other factors namely quality of materials, equipment, facilities, sanitation program, 

personal hygiene, temperature control etc. (Jacxsens et al., 2009b) to improve the microbial 

quality of their products instead of using chlorine. Additionally, the use of chlorinated water 

for decontamination is currently not allowed in the EU for export purposes (EU, 2004b).  

2.4.2 Identification of the spoilage related microbiota 

A majority of Gram-negative bacteria (131/174 isolates) were identified using partial 16S 

rDNA sequence. This fact confirms previous findings that Gram-negative bacteria are 

typically dominant in flesh fish  Gonz lez- odr  guez et al., 2002; Leroi et al., 1998; Paludan-

Müller et al., 1998). Fillet samples from the large company (BC and BW lines) generally had 

a higher diversity of species than those from the small company (SC line). This could have 
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been a result of differences i.e. in the location (environment) of the companies (the small 

company was located in Can Tho whilst the large company was located in Dong Thap city), 

source of water, suppliers (fish farms) and production capacity. In addition, the differences in 

environmental temperature between two companies sampled could have greatly affected the 

species. 

Aeromonas spp., Acinetobacter spp., Lactococcus spp., and Enterococcus spp., are all known 

spoilage bacteria on freshwater fish (González et al., 2001; Gram and Huss, 1996; ICMSF, 

2005). Some Acinetobacter spp. such as A. baumannii are also known as opportunistic human 

pathogens (Giamarellou et al., 2008). These genera were abundant on the Pangasius fillets 

collected at the filleting, trimming and freezing steps. Aeromonas spp. and Acinetobacter spp. 

are known to be present in gastrointestinal tract, gills and on surface of the flesh of farm 

raised freshwater fish (Austin, 2002; Hatha, 2002; Radu et al., 2003; Vivekanandhan et al., 

2005). Some strains of Aeromonas spp. such as A. salmonicida are also known as fish 

pathogens (Cabello, 2006). Additionally, the LAB (Lactococcus spp. and Enterococcus spp.) 

found on the fillets in this chapter have been associated with aquatic environments or infected 

humans (Kusuda and Salati, 1999; Michel et al., 2007). In particular, one Lactococcus strain 

was determined to be Lactococcus garvieae, which is a known fish pathogen (Vendrell et al., 

2006). These contaminating bacteria can therefore originate from materials, food operators or 

the environment throughout the processing chain. However, these species may have been 

over represented in this chapter due to their capability to grow not only on non-selective 

media used i.e. PCA, but also on selective or specific media including VRBGA and MRS. 

Enterobacteriaceae, namely Providencia, Shigella, Klebsiella, Enterobacter, Morganella, 

and Serratia, which can affect safety and shelf-life of Pangasius products, were isolated from 

the Pangasius fillets sampled in this chapter. This finding partly explains the origin of 

Serratia spp., which were determined by Noseda et al. (2012) to be the dominant spoilage 

flora of Vietnamese Pangasius fillets stored in air or in MAP condition. It implies that 

Serratia spp. (11/174 isolates) isolated from the BC/BW lines are present on frozen 

Vietnamese Pangasius products before exporting. In difference to the fillets sampled on the 

BC and BW lines, Serratia spp. appeared to be less common on the fillets sampled from the 

small scaled company (SC line) while various other genera of Enterobacteriaceae were only 

identified at this company such as Providencia spp., Shigella spp., Klebsiella spp. and 

Enterobacter spp. These genera have been isolated from the digestive tracts of freshwater fish 
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(Austin, 2002; Yagoub, 2009).  Previously, Lampel et al. (1999) and Lopez-Sabater et al. 

(1994) have also reported that these genera can occur as a result of unhygienic handling and 

poor personal hygiene. Although the focus was on spoilage bacteria, the human pathogen 

Shigella flexneri (12/174 isolates) was detected on some fillets sampled at final processing 

step. The source of S. flexneri contamination in the final products could be the fish harvested 

from feacally contaminated water, the use of unsanitary water in processing or from food 

handlers. The presence of S. flexneri may be a potential hazard due to its low infectious dose, 

which ranges from 10 to 100 CFU (Tham and Danielsson-Tham, 2013). 

Pseudomonas spp. e.g. P. otitidis, P. hibiscicola, P. geniculata, P. beteli and P. aeruginosa 

were identified on fillets at the filleting and trimming steps on both the BC and BW lines. 

Several studies have shown that Pseudomonas spp., which are environmentally opportunistic 

bacteria, can resist sanitizers and disinfectants used in processing plants (Bagge-Ravn et al., 

2003). As a result, their adherence on contact surfaces can lead to the contamination of 

Pangasius fillets during processing. Pseudomonas spp. are commonly found in tropical 

freshwater and are known to be specific spoilage microorganisms of iced fresh water fish in 

general (Ghaly et al., 2010; Gram, 1993; Gram and Dalgaard, 2002; Gram and Melchiorsen, 

1996; ICMSF, 2005). In addition, Pseudomonas spp. have been known to be amongst the 

dominant organisms present on thawed Vietnamese Pangasius products at the end of their 

shelf-life (Noseda et al., 2012). However, in difference to Noseda et al. (2012) who isolated 

Pseudomonas spp. from frozen Pangasius products from Vietnam, no Pseudomonas spp. 

were found on frozen fillets after the freezing step in this study. It is possible that 

Pseudomonas isolates belonged to the minor microbiota (represented as single isolates in the 

global (GTG)5-PCR dendrogram) on frozen fillets. 

Not surprisingly, the diversity of identified species did not differ greatly between fillets 

sampled from the BC and BW lines. Few exceptions were for Myroides marinus and a Rothia 

nasimurium isolate, which were only present on the BW line. Rothia nasimurium is a  

member of the family Micrococcaceae. Myroides spp. are widely distributed in the aquatic 

environments and have also been isolated from biofilm structures in food processing plants 

(Jacobs and Chenia, 2009; Vishnivetskaya et al., 2009).  

Chyseobacterium including C. jooste and C. ureilyticum (11/174) were found throughout the 

processing steps on fillets sampled from all three processing lines. Chryseobacterium spp. 
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and Elizabethkingia spp., belonging to the family Flavobacteriaceae, have been isolated from 

unhealthy fish, water (even in chlorine-treated water), soil and aquatic environments (De 

Beer et al., 2006; Ilardi et al., 2009; Olofsson et al., 2007; Zamora et al., 2012). However, to 

our knowledge, only Ramos and Lyon (2000) have emphasized the role of Chryseobacterium 

spp. as spoilage bacteria in catfish products.  

2.5 CONCLUSION 

The ecology of the spoilage microbiota of Vietnamese Pangasius fillets during its processing 

from raw materials to final products was determined by conventional and molecular 

techniques. In general, the microbiological counts during processing were determined to be 

dependent on the factories but independent of the use of chlorinated water during the washing 

of fillets. Besides the total microbiological counts, the high presumptive counts and the 

diversity of species of Enterobacteriaceae spp. is likely to reflect a potential hazard of 

microbiological food safety at the small scale factory. Therefore, future work should evaluate 

the performance of the quality management systems that have been implemented in these 

companies.
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ABSTRACT 

This chapter presents an overview of the microbiota of frozen Vietnamese Pangasius 

products marketed in Belgium. Samples of Pangasius steaks, portions and fillets from six 

brands were collected from supermarkets located in Ghent, Belgium. The total 

psychrotrophic and mesophilic aerobic counts of the samples evaluated from each brand did 

not differ significantly (p > 0.05) and ranged from 3.8-5.2 log CFU/g and 3.8-4.8 log CFU/g, 

respectively. Lactic acid bacteria counts varied from 2.2 to 4.1 log CFU/g while the counts of 

presumptive Enterobacteriaceae ranged from 1.6 to 3.8 log CFU/g. A total of 132 isolates 

were collected from the plates used to enumerate the microbial parameters mentioned above. 

Fourteen different genera and 18 different species were identified by means of 16S rRNA 

gene sequencing. The most prevalent genera were Lactococcus (31.2%), Staphylococcus 

(11.7%), Serratia (10.4%), Acinetobacter (9.1%), Enterococcus (7.8%) and Pseudomonas 

spp. (6.5%). The results obtained provide an overview of the microbiota of frozen Pangasius 

which is useful for the development of appropriate preservation techniques for thawed 

Pangasius products. 
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3.1 INTRODUCTION 

In Chapter 2 a high prevalence of Aeromonas, Acinetobacter, Lactococcus and Enterococcus 

spp. was found on Pangasius fillets during processing at two companies in Vietnam. It was 

also determined that the microbial diversity on the products depended on the location, source 

of water, suppliers (fish farms) and production capacity (Chapter 2). The dominant 

microbiota of different forms of Pangasius was recently reported i.e. on thawed Pangasius 

fillets stored in air and MAP conditions (Noseda et al., 2012) and on imported frozen 

Vietnamese Pangasius products retailed in Denmark (Noor Uddin et al., 2013). The 

microbiota on frozen products could influence the shelf life of thawed products, moreover, 

the trading of thawed products as (re)fresh fish is common in Western countries. Therefore, 

identification of the prevalent microbiota on frozen Pangasius products will provide an 

overview of the microbiota of frozen products which would allow processors to select 

appropriate preservation methods for thawed products.  

The major objective of this chapter was to determine the microbiota of frozen Vietnamese 

Pangasius products sold in Belgium by means of a combination of culture-dependent 

techniques and 16S rRNA gene sequencing. 

3.2 MATERIALS AND METHODS 

Six different brands of frozen Vietnamese Pangasius products sold in various retail outlets in 

Ghent (Belgium) were evaluated. Four brands of the Pangasius products were in the form of 

fillets (ca. 200-220 g/fillet), one brand in the form of steaks (ca. 70-100 g/steak) and one 

other brand in the form of portions (portions & pieces are cut from frozen blocks ca. 70-80 

g/piece). Three packages of each brand were purchased at the same time and kept at -20°C 

until the microbiological and chemical analyses were performed. Glazing of the fillet samples 

consituted 10% (brand 2 & 3 fillets), 6% (brand 4 fillets), 20% (brand 5 steaks) of the weight, 

whilst this was not known for brand 1 fillets and brand 6 portions. Addtional information 

regarding the composition (<1% citric acid and <1% salt) was provided on the labels of brand 

3 fillets. Before the analyses were performed, the samples were initially thawed over a 24 h 

period in a refrigerator at 4.0 ± 0.7°C.  
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3.2.1 Drip loss, water content, water activity, pH and salt content  

The drip (thawing) loss, water content, water activity (aw), pH and salt content of all the 

Pangasius products were determined as follows. The drip loss was determined as the 

difference (%) between the weight of the packaged Pangasius products after thawing with 

and without the exudates. The weight of the packages was determined after thawing before 

the exudates were removed by decanting after which the weight of the package was measured 

again. Thereafter a 150-200 g composite sample from each package was homogenised for 1 

min in a commercial blender (Braun 600W, Spain). The aw and pH of the homogenates were 

measured in duplicate by means of aw-kryometer (NAGY, Gaeufelden, Germany) and a 

SevenEasy pH meter (Mettler Toledo GmbH, Schwerzenbach, Swizerland), respectively. The 

water content of each sample was determined in duplicate gravimetrically by drying a 5 g 

aliquot of homogenate in aluminium dishes containing sea sand to avoid spattering for 12 h at 

105°C. The salt was extracted by boiling a 5 g homogenate in distilled water for 10 min. The 

chloride content in the extract was determined by titration with silver nitrate (Merck, 

Darmstadt, Germany) using a 5% (w/v) chromate indicator (Merck, Darmstadt, Germany) 

according to the Mohr method (ISO 9297:1989). 

3.2.2 Microbiological analyses 

The fish samples for microbiological analyses were prepared separately with the fish samples 

of physico-chemical analyses above. A 150-200 g composite sample from each package was 

prepared for microbial analysis. The procedures of microbiological analyses were performed 

in this chapter as described in § 2.2.4 of Chapter 2. The total psychrotrophic and mesophilic 

aerobic counts were determined by pour plating the decimal dilutions on Plate Count Agar 

(PCA, Oxoid, Basingstoke, U.K.) followed by incubation for 72 h at 22°C and 30°C, 

respectively. The counts of presumptive Enterobacteriaceae were determined by pour plating 

(with an additional over layer) the decimal dilutions on Violet Red Bile Glucose agar 

(VRBGA, Oxoid, Basingstoke, U.K.). The VRBGA plates were incubated for 24 h at 37°C 

after which all colonies were counted. Psychrotrophic lactic acid bacteria (LAB) were 

determined by pour plating (with an additional over layer) the decimal dilutions on de Man 

Rogosa Sharpe agar (MRS, Oxoid, Basingstoke, U.K) followed by incubation for 72 h at 

22°C. 
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3.2.3 Isolation and identification of dominant microbiota 

From the three samples evaluated of each brand, 20-30 isolates were selected for 

identification taking into account as many different morphologies (e.g. color, size, and shape) 

as possible. These originated from the PCA, VRBGA, and MRS plates used for enumeration. 

A total of 132 isolates were purified by successive 4  4 streak plating (and microscopic 

analysis). The DNA extraction, rep-PCR and identification of the microbial isolates by 

sequence analysis was described previously in §  2.2.6.2 - 2.2.6.4 of Chapter 2. 

3.2.4 Statistical analysis 

Results of the physico-chemical characteristics and the microbiological analysis (log CFU/g) 

were reported as mean value ± standard deviation of triplicates for product (brand). 

Differences in the mean counts (log CFU/g) of the sampled products were statistically 

assessed using one way Analysis of Variance (ANOVA) in SPSS version 20 (IBM Inc., 

Chicago, Ill., USA) when a Shapiro-Wilk test indicated that the means were normally 

distributed. If a Levene test confirmed heteroscedasticity, a Tamhane‘s T2 test was used. A 

non-parametric Kruskal-Wallis H-type test was performed in case the data showed non-

normality. Thereafter, comparison of the paired means was done using the Mann-Whitney U 

test  α = 0.05).   

3.3 RESULTS 

3.3.1 Physico-chemical characteristics of frozen Pangasius marketed in Belgium 

The results of physico-chemical characteristics performed on the samples are shown in Table 

3.1. The mean water content of the thawed Pangasius fillets ranged from 79.3 to 87.7%. 

Fillets from brand 3 had significantly higher water content than the fillets from the other 

brands. The Pangasius steaks evaluated had significantly lower water content (74.0%) than 

the fillets and portions (p < 0.05). The mean drip (thaw) losses of the fillets ranged from 7.5 

to 16.8%. The drip losses of fillets from brand 4 (mean = 7.5%) were significantly the lowest 

(p < 0.05) of the four brands of filleted Pangasius products evaluated. The portions had the 

smallest drip losses (p < 0.05) of any of the products evaluated; these being on average ca. 3 

and 6 times lower than those fillets of brand 4 and 1, respectively. No correlation occurred 

between the water content and drip losses. The mean aw values of the fillets ranged from 

0.990 to 0.995, with fillets from brand 3 (aw 0.990) having significantly lower aw (p < 0.05) 
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than those of fillets from brand 1 and 2. The steaks and portions had aw values (both a mean 

of 0.994) which were in the same range as fillets. 

Table 3.1 Physico-chemical characteristics of Vietnamese Pangasius products marketed in 

Belgium 

Product type 

Water  content 

(g/100 g wet 

fish) 

Drip loss 

(%) 
aw pH 

Salt content 

(%) 

Fillets (brand 1)     79.3 ± 1.2
b
* 16.8 ± 0.2

e 
0.9950 ± 0.0001

c 
6.5 ± 0.0

b 
0.12 ± 0.0

a 

Fillets (brand 2) 80.5 ± 1.5
b 

10.5 ± 1.7
d 

0.9947 ± 0.0002
c 

6.7 ± 0.3
b 

   0.28 ± 0.2
abcd 

Fillets (brand 3) 87.7 ± 0.9
c 

11.9 ± 3.9
d 

0.9896 ± 0.0007
a 

8.2 ± 0.2
c 

0.93 ± 0.2
d 

Fillets (brand 4) 80.0 ± 0.3
b 

 7.5 ± 0.1
c 

  0.9947 ± 0.0003
abc 

6.5 ± 0.1
b 

0.23 ± 0.1
b 

Steaks (brand 5) 74.0 ± 2.1
a 

 12.6 ± 1.8
bd 

0.9939 ± 0.0008
b 

6.2 ± 0.1
a 

0.49 ± 0.1
c 

Portions (brand 6) 80.0 ± 1.4
b 

  2.6 ± 1.4
a 

 0.9944 ± 0.0002
bc 

6.5 ± 0.1
b 

 0.22 ± 0.1
ab 

*Data are expressed as mean value ± standard deviation of three replicates. Means with a 

different superscript letter in the same column indicate where statistically (p ≤ 0.05) 

differences occurred between products.  

The mean pH values of the fillets ranged from 6.5 to 8.2. The pH of the Pangasius fillets 

from brand 3 (mean = 8.2) were significantly higher (p < 0.05) than those of the fillets from 

the other three brands evaluated. The mean pH values of the portions did not differ 

significantly (p > 0.05) from that of fillets from brands 1, 2 and 4, whilst the Pangasius 

steaks (mean pH value = 6.2) had significantly lower pH values (p < 0.05) than those of the 

fillets and portions. The salt content (based on the chloride content) of the fillets ranged from 

0.12 to 0.93%. As for the pH, the NaCl content of the Pangasius fillets from brand 3 (mean = 

0.93%) were significantly higher (p < 0.05) than those of the fillets from the other three 

brands evaluated. The portions had a similar NaCl content to fillets of brands 1, 2 and 4 

whilst the steaks had a mean NaCl content (0.49%) which was significantly higher (p < 0.05) 

than those of the portions and fillets of brands 1 and 4, but significantly smaller (p < 0.05) 

than that of fillets from brand 3.  
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3.3.2 Microbiota of frozen Pangasius fish 

The microbial quality of frozen Pangasius products marketed in Belgium is shown in Error! 

Not a valid bookmark self-reference.. The total psychrotrophic aerobic counts (TPC) ranged 

from 3.8 to 5.2 log CFU/g, whilst the total mesophilic aerobic counts (TMC) ranged from 3.8 

to 4.8 CFU/g. The TPC and TMC for each brand of fish did not differ significantly from each 

other (p > 0.05). With regards to the fillets, it can be seen that the TPC and TMC on fillets 

from brand 2 were both significantly lower (p < 0.05) than those on fillets from the other 

three brands. The TPC and TMC of the steaks and portions were significantly higher (p < 

0.05) than those observed on fillets from brand 2. The counts of lactic acid bacteria (LAB) 

varied greatly between products, with significantly lower (p < 0.05) LAB occurring on the 

fillets from brand 2 than those found on the fillets from the other three brands. However, 

LAB counts from brand 2 did not differ significantly (p > 0.05) from these counts on the 

steaks and portions sampled. The counts of presumptive Enterobacteriaceae  were highest on 

the fillets from brand 1 (3.8 ± 0.2 log CFU/g)
 
while the lowest counts were found on the 

portions from brand 6 (1.6 ± 0.6 log CFU/g). 

 

Table 3.2 Microbiota of Vietnamese Pangasius products marketed in Belgium 

Product type 

Total 

psychrotrophic 

aerobic counts 

(TPC) 

Total 

mesophilic 

aerobic counts 

(TMC) 

Lactic acid 

bacteria 

 

(LAB) 

Presumptive 

Enterobacteriaceae  

Fillets (brand 1)   4.7 ± 0.3
cd* 

4.8 ± 0.4
c 

4.0 ± 0.7
c 

3.8 ± 0.2
d 

Fillets (brand 2) 3.8 ± 0.1
a 

3.8 ± 0.0
a 

 2.2 ± 0.5
ab 

2.9 ± 0.0
c 

Fillets (brand 3) 5.2 ± 0.2
c 

 4.5 ± 0.3
cb 

4.1 ± 0.1
c 

 3.0 ± 0.4
cb 

Fillets (brand 4)  5.1 ± 0.4
cd 

4.6 ± 0.2
c 

4.0 ± 0.1
c 

2.9 ± 0.2
c 

Steaks (brand 5) 4.6 ± 0.2
bd 

4.8 ± 0.1
c 

2.7 ± 0.1
b 

2.5 ± 0.2
b 

Portions (brand 6) 4.4 ± 0.1
b 

4.3 ± 0.1
b 

2.3 ± 0.1
a 

1.6 ± 0.6
a 

*Data are expressed as mean value ± standard deviation (log CFU/g) of three replicates. 

Means with a different superscript letter in the same column indicate where statistically (p ≤ 

0.05) differences occurred between products.  
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3.3.3 Identification of the isolates collected from different products 

A total of 132 isolates were collected from the plates used to enumerate the aerobic counts, 

presumptive Enterobacteriaceae and lactic acid bacteria on the frozen Pangasius products 

evaluated in this chapter. These isolates were clustered based on their rep-PCR fingerprints. 

Each cluster consisted of at least four isolates with a similarity level of at least 65%. From 

this cluster analysis, two representative isolates of each cluster were selected for further 

analysis by 16S rRNA gene sequencing and thereafter the tentative identification was 

extrapolated for the entire group of isolates in each cluster. 

The 77 identified isolates (of which 36 isolates were Gram-negative and 41 were Gram-

positive) included 14 different genera and 18 different species (Table 3.3). On the basis of 

the total number of isolates identified, Acinetobacter, Serratia, Staphylococcus and 

Lactococcus spp. showed highly frequent, showing 9.1, 10.4, 11.7, and 31.2% of the isolates, 

respectively. Lactococcus spp. were isolated from five of the six brands evaluated, the only 

exception was fillets from brand 3. Enterococcus, Stenotrophomonas, Chryseobacterium and 

Empedobacter spp. were found only on fillets from brand 3. In addition, Serratia spp. were 

identified on the portions and steaks while Enterobacter and Morganella spp. were identified 

only on fillets from brand 1 and 4, respectively. Staphylococcus spp. was identified on the 

portions and fillets (from brands 1 and 2). The others microbiota were identified on 

Pangasius sampled including Klebsiella (brand 1 and 5), Pseudomonas (brand 1 and 4), 

Arthrobacter (brand 2), Macrococcus spp. (brand 1). 
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Table 3.3 Genera and species isolated from different Pangasius products sold in Belgium 

Identification
1
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Total  

isolates 

Prevalence 

(%) 

 

Acinetobacter 1
2 

 3  3  7 9.1 

Acinetobacter johnsonii     2    

Acinetobacter beijerinckii 1  3      

Acinetobacter haemolyticus     1    

Pseudomonas  2   3   5 6.5 

Pseudomonas mosselii    3     

Pseudomonas beteli 2        

Stenotrophomonas    1    1 1.3 

Stenotrophomonas maltophilia   1      

Serratia      4 4 8 10.4 

Serratia nematodiphila     4 4   

Enterobacter  4      4 5.2 

Enterobacter hormaechei 4        

Klebsiella  1    2  3 3.9 

Klebsiella pneumoniae 1    2    

Morganella     2   2 2.6 

Morganella morganii    2     

Chryseobacterium    2    2 2.6 

Chryseobacterium indologenes   2      

Arthrobacter   2     2 2.6 

Arthrobacter protophormiae  2       

Lactococcus  1 3  8 7 5 24 31.2 

Lactococcus garvieae  3  8 7 5   

Lactococcus lactis 1        

Enterococcus    6    6 7.8 

Enterococcus casseliflavus   6      

Macrococcus  2      2 2.6 

Macrococcus caseolyticus 2        

Staphylococcus  2 1    6 9 11.7 

Staphylococcus sciuri 2 1    6   

Empedobacter    2    2 2.6 

Empedobacter brevis   2      

Total identified isolates 13 6 14 13 16 15 77 100 

Species 7 3 5 3 5 3   
1
Identification results on genus and species level; species identifications are only tentative 

2
The frequency of identified isolates based on rep-clustering and partial 16S rRNA gene 

sequence analysis with cut-off value of 98.5% similarity with type strains of validly 

published prokaryotic names in EZTaxon database. The percentage of total number of 

isolates of each genus is listed in the last column. 
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3.4 DISCUSSION 

3.4.1 Physico-chemical characteristics 

The results of the physico-chemical characteristics analyses of the frozen Vietnamese 

Pangasius products marketed in Belgium generally confirmed the findings of previous 

studies on Pangasius products. In agreement with our findings, Usydus et al. (2011) 

determined that the water content of frozen Vietnamese Pangasius products marketed in 

Poland was 84.7 ± 0.3%. Karl et al. (2010) reported that frozen Vietnamese Pangasius 

products marketed in Germany had water contents which ranged from 78.1 to 83.3%, drip 

losses between 12.5- 24.6% and pH values between 6.3-7.6. Orban et al. (2008) reported that 

frozen Vietnamese Pangasius products marketed in Italy had water contents which ranged 

from 80.1 to 85.0%, and pH values between 7.56-7.96. In the same study, a high sodium 

content (0.222-0.594%) was determined in the Pangasius products. This was assumed to be a 

result of the fish being possibly treated with water-binding additives of polyphosphates 

before freezing (Orban et al., 2008). The same conclusion was also derived by Karl et al. 

(2010) for Pangasius products marked in Germany by means of differential scanning 

calorimetry which showed a decreased thermal stability in the protein domains of the fish. 

The use of phosphates in both fish and meat can increase water retention and reduce thaw 

loss as a result of an increase in the pH and ionic strength and binding of phosphate to the 

protein (Gonçalves et al., 2008; Kaufmann et al., 2005; Thorarinsdottir et al., 2001). Brand 3 

fillets were most likely treated with water-binding additives as they had the highest water 

content (87.7 ± 0.9%), lowest water activity (0.9896 ± 0.0007), highest pH (8.2 ± 0.2) and a 

very high salt content (0.93 ± 0.2%).   

3.4.2 Microbiota of frozen Pangasius products marketed in Belgium 

The TPC (3.8 to 5.2 log CFU/g) on the Pangasius products were not significantly different 

(p > 0.05) from the TMC (3.8 to 4.8 log CFU/g). This is consistent with previous results 

observed on frozen Pangasius originating from Vietnam that were processed for export to 

Belgium and other European countries (Noseda et al., 2012) & Chapter 2. The lactic acid 

bacteria (LAB) counts varied greatly between the products. The highest LAB counts, 4.1 ± 

0.1 log CFU/g, were observed on the fillets from brand 3. These counts were in agreement 

with those obtained by Noseda et al. (2012), who found 3.9 ± 0.1 log CFU/g of LAB on 

thawed frozen Vietnamese Pangasius intended for a study regarding the effect of modified 
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atmosphere packaging. Of the LAB identified in the samples, Lactococcus spp. were the most 

prevalent (31.2%). These results were in agreement with the findings on Pangasius fish 

during processing (§ 2.3.3 in Chapter 2). Lactococcus and Enterococcus spp. have 

previously been isolated from lightly preserved salmon products such as cold smoked, salted 

and dried (Leroi, 2010). Lactococcus lactis was found on traditional salted or dried 

Himalayan fish (Thapa et al., 2006) and Lactococcus garvieae was determined to be involved 

in the infectious diseases of fish (Vendrell et al., 2006). Both L. lactis and L. garvieae are 

also associated with fresh and marine water in tropical areas (Michel et al., 2007). In addition 

to their association with fish farm environments, they are also sometimes isolated from 

human and other mammalian clinical cases (Michel et al., 2007).  

With regards to the presumptive Enterobacteriaceae, Enterobacter, Klebsiella, Morganella 

and Serratia spp. were identified. The incidence of these isolates appeared to be dependent on 

how the frozen Pangasius was processed as Serratia was isolated from steaks and portioned 

Pangasius products, whilst Enterobacter and Klebsiella were isolated from fillets (brand 1) 

and Morganella from fillets (brand 4). Differences between the types of Enterobacteriaceae 

contaminating frozen Pangasius products in Vietnam have also been found on the basis of the 

size of the processing plant. Frozen Pangasius fillets processed in a large plant were 

determined to be contaminated by Serratia spp. whereas those processed in a small scale 

plant were contaminated by Enterobacter, Klebsiella, and Morganella spp. (§ 2.3.3 in 

Chapter 2). Kim et al. (2003) also pointed to the importance of sanitation in the fish 

processing plant to prevent cross-contamination from Enterobacter, Klebsiella, and 

Morganella. Moreover, species belonging to the Enterobacteriaceae family are in general 

frequently isolated from tropical and farmed fish (ICMSF, 2005) and Vietnamese Pangasius 

(Sarter et al., 2007). It has been suggested that Enterobacter, Klebsiella, Morganella and 

Serratia spp. may be good representative species of the microbial ecology of Pangasius fish. 

Furthermore, the counts of presumptive Enterobacteriaceae were highly variable among 

products, ranging from 1.6 ± 0.6 to 3.8 ± 0.2 log CFU/g. It has to be mentioned that the 

enumeration approach used in this chapter can present an idea of the presumptive 

Enterobacteriaceae as Acinetobacter and Pseudomonas spp. were also identified from 

isolates growing not only on non-selective PCA but also on selective VRBGA plates.  

The ability of Acinetobacter spp. to grow on both non-selective (PCA) and selective media 

(VRBGA), may have contributed to the high prevalence of Acinetobacter spp. (9.1%) on the 
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frozen Pangasius fish evaluated. In addition, Acinetobacter and Pseudomonas spp. have been 

isolated from the intestines of fish (Hovda et al., 2007; Merrifield et al., 2009; Ringø et al., 

2006) and therefore may potentially contaminate the fish during processing. This is supported 

by the previous findings where Acinetobacter and Pseudomonas spp. were detected on 

Pangasius samples collected at the filleting and trimming steps during processing in 

Vietnamese companies (§ 2.3.3 in Chapter 2). Moreover, Pseudomonas spp. have also been 

determined to be the dominant spoilage bacteria on thawed Pangasius stored in air at 4°C 

(Noseda et al., 2012). The spoilage capacity of the isolates identified here should be further 

evaluated to provide better insights into their spoilage mechanisms.  

The prevalence of Staphylococcus sciuri (11.7%) on frozen Pangasius was relatively high. 

Staphylococcus spp. are very common in humans and therefore they could have been 

transferred to the products via human contact during handling and processing.  S. sciuri is the 

most frequently reported histamine-forming bacterium in cod, escolar steaks, swordfish fillets, 

cold smoked rainbow trout and whole and filleted catfish (Chang et al., 2008; Hwang et al., 

2012; Ramos and Lyon, 2000).  

Empedobacter, Macrococcus, Arthrobacter, Chryseobacterium and Stenotrophomonas spp. were less 

prevalent in the frozen Pangasius products evaluated. Stenotrophomonas maltophilia, an important 

opportunistic pathogen, has been also isolated from channel catfish in China (Geng et al., 2010). 

Chryseobacterium spp. has also been found on Pangasius fish sampled during processing in Vietnam (§ 

2.3.3 in Chapter 2) and frozen Pangasius exported to Denmark (Noor Uddin et al., 2013). 

Chryseobacterium indologenes has been isolated from diseased yellow perch (Pridgeon et al., 2013) whilst 

Chryseobacterium spp. are known to be widely distributed in the environment and soil (Benmalek et al., 

2010), and fresh water (Kim et al., 2008; Park et al., 2008).  

3.5 CONCLUSION 

A high prevalence of Pseudomonas (6.5%), Enterococcus (7.8%), Acinetobacter (9.1%), Serratia 

(10.4%), Staphylococcus (11.7%) and Lactococcus spp. (31.2%) was determined on thawed 

Vietnamese Pangasius products marketed in Belgium. These results are crucial as currently very 

little is known about the microbiota of thawed Pangasius products marketed in the West as ‗fresh‘ 

Pangasius products. This knowledge is important with regards to the development of suitable 

preservation techniques such as vacuum and modified atmosphere packaging to inhibit the 

microorganisms contaminating thawed Pangasius fish. 



 

79 

 

  

 

 

Chapter 4 DYNAMICS OF MICROBIOLOGICAL SAFETY AND 

QUALITY OF PANGASIUS FILLETS IN A LARGE AND SMALL 
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ABSTRACT 

Vietnamese Tra fish (Pangasius hypophthalmus) have become highly appreciated by 

consumers in the European Union, USA, Canada, etc. and are therefore of worldwide 

economic importance. However, the availability of data on the microbiological quality and 

safety of this fish species is limited. The dynamics of microbiological performance between 

large and small scale Vietnamese Pangasius processing plants (where non-chlorinated water 

and chlorinated water was used during the washing steps, respectively) were evaluated from 

the raw materials until final product by means of a microbial assessment scheme (MAS). A 

total of 279 samples (135 samples from the large scale plant) were taken to assess the overall 

microbial quality (psychrotrophic aerobic count), hygiene indicators (Escherichia coli and 

Staphylococcus aureus), and relevant pathogens (Listeria monocytogenes and Vibrio 

cholerae). Low levels of total psychrotrophic bacteria (ca. 3 log CFU/g) and E. coli (below 

quantification limit) were found on the final products sampled from the large scale plant. In 

addition, Listeria monocytogenes and Vibrio cholerae were absent in all the samples analysed. 

On the contrary, high numbers of psychrotrophic bacteria (ca. 6 log CFU/g on fish and ca. 6 

log CFU/100 cm
2
 on food contact surfaces) were found in the small scale plant during 

processing. Additionally, foodborne pathogens were present in the water, hands and fish; 

especially L. monocytogenes as a result of inadequate hygiene practices in the processing 

environment. Also discussed in this chapter are the results of a self-assessment questionnaire, 

which provide insight into the performance of the food safety management system currently 

implemented at these companies. 
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4.1 INTRODUCTION 

Vietnam has over the last few years been the largest exporter of Pangasius products to the U.S. 

Vietnamese Pangasius were ranked the sixth favorite fish species in the U.S. in 2011 (FAO, 2012). 

Although Vietnamese Pangasius products are accepted as being of good nutritional quality and 

safety (Karl et al., 2010), the control of (cross) contamination by pathogens is still challenging. 

Pathogenic bacteria can be transmitted into aquaculture products during rearing, handling and 

processing as a result of improper hygienic conditions. For example, Salmonella spp., Vibrio 

cholerae and Listeria monocytogenes originate from rearing ponds or the processing environment 

(Reilly and Kaeferstein, 1998). Moreover, between 2005 and 2013, the RASFF reported cases of 

rejection of Vietnamese Pangasius products destined for European countries due to the presence of 

pathogens such as Salmonella spp. and Listeria monocytogenes (Table 1.6 of Chapter 1). In 

Chapter 2, it is emphasized that in addition to very high counts of presumptive Enterobacteriaceae, 

several pathogenic species of Enterobacteriaceae (i.e. Shigella flexneri) also occurred on Pangasius 

products from small scale processing plants in Vietnam. However, there is still very little data on the 

transmission routes of human pathogenic bacteria during the handling of Pangasius products and 

the microbiological quality and safety of final products. 

Despite the large economic value of Pangasius products to Vietnam, little research has been 

conducted on the performance of the food safety management systems (FSMS) implemented at 

Pangasius processing companies and their influence on the microbiological quality and safety 

during processing. Previously, some studies emphasized that different food processing plants can 

deal with different microbial loads and food safety issues due to variability in implementing and 

understanding of the performance of FSMS (Cormier et al., 2007). To know if the FSMS is 

performing adequately, the number of microorganisms and variation of microbial counts could be 

assessed throughout the processing chains by means of a microbial assessment scheme (MAS) 

(Jacxsens et al., 2009b). The assessment scheme is a vertically microbiological sampling plan 

throughout the production process, from raw materials to final products. Such a microbiological 

sampling plan has previously been applied to gain insight in the production processes of various 

types of foods (§ 1.4 in Chapter 1). To our knowledge, no study has yet been performed on 

Pangasius fish. 

In this study, the microbiological quality and safety of Pangasius was determined during processing 

in two Vietnamese companies. These were a large scale plant where the washing steps were done 

with non-chlorinated water and a small scale plant where chlorinated water was used during the 
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washing steps. Both plants are substantially oriented to export of frozen Pangasius fillets. The 

FSMS currently implemented in processing Vietnamese Tra fish was evaluated by means of a MAS 

throughout the entire production process. In addition, assessment of the context, control and 

assurance activities, and food safety output of the FSMS applied was performed by a self-

assessment questionnaire (Jacxsens et al., 2011; Luning et al., 2008; Luning et al., 2009b) 

4.2 MATERIALS AND METHODS 

4.2.1 Microbial Assessment Scheme (MAS) 

4.2.1.1 Characterization of the sampled company 

A large scale factory with a potable water–based process and a small scale factory with a 

chlorinated water–based process previously visited to analyse the microbial ecology of 

Pangasius (Chapter 2) were evaluated in the present study to gather knowledge on the 

microbial safety and quality. The processing plant and the product manufacturing have been 

described in § 2.2.1 in Chapter 2. 

4.2.1.2 Critical sampling locations (SL) 

Critical sampling locations are locations in the production process at which contamination, growth 

and/or survival of microorganisms may occur due to loss of control at these locations. The samples 

collected in this chapter consisted of both fish fillets and environmental samples i.e. water and food 

contact surfaces, hand or glove swabs. The SLs included the raw material at the beginning of the 

process, production processes like trimming, filleting, water baths used for washing and packaging, 

the food contact surfaces like knives and work tables, hands and/or gloves of the operators and the 

final packaged product. The positions of the SLs in the flow of the production process for this study 

are indicated in Figure 4.1 A (big) and B (small company).    

4.2.1.3 Sampling frequency 

These companies were visited three times over a 4-week period and three different times (ca. 

8 a.m., 12 a.m. and 2 p.m.) during each visit. The samples were collected at 15 SLs (total of 

135 samples: 54 Pangasius samples, 27 swabs of hands/gloves, 27 swabs of food contact 

surfaces and 27 water samples) in the large scale plants (Table 4.1). For the small scale plants, 

the samples were collected at 16 SLs (total of 144 samples: 54 Pangasius samples, 36 swabs 

of hands/gloves, 27 swabs of food contact surfaces and 27 water samples) (Table 4.2). 

However, the experiment was performed in February–March 2011 in the large scale plant and 

in March 2013 in the small scale plant. 



Microbiological safety and quality of Pangasius during processing 

83 

 

 

A 

Bleeding in water bath  

Filleting 

Receipt and incoming 

Raw fish 

Cutting the gills 

Washing 1 

Skinning 

Washing 3.2 

Trimming 1 

Sorting 

Parasite control 

Washing 4 

Sizing 

Glazing 

Freezing 

Cooling 

Hardening 

Packaging 

Storage -18°C 

Tumbling 

Washing 2 

B 

Trimming 2 

Washing 3.1 

SL1, 2 

SL 3,4,5 

SL 8 
SL 6, 7 

SL 10, 11 
SL 9 

SL 12, 13 

SL 14, 15, 16 

Receipt and incoming 

Raw fish 

Cutting the gills 

Bleeding in water bath  

Washing 1 SL2 

SL1 

Filleting 
SL 3,4,5 

Washing 2 

Skinning 

Trimming 
SL 8, 9, 10 

Sorting 

Parasite control 

Washing 3 
SL 11, 12 

SL 6, 7 

Tumbling 

Sizing 

Cooling 

Freezing 

Glazing 

Hardening 

Packaging 

Storage -18°C 
SL 13, 14, 15 

Figure 4.1: Flowchart of production process of Pangasius processing in the large company (A) and small company (B) 

indicating critical sampling locations (SL)  
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4.2.1.4 Sampling and analysis method 

4.2.1.4.1 Sampling in large scale plant 

Samples of the Pangasius fillets, hands/gloves, food contact surfaces and water were 

collected in duplicate. One sample was analysed immediately in the microbiological 

laboratory of the company in Dong Thap city, Vietnam  Table 4.1) and the other half of the 

samples were supplemented with 2% glycerol and stored frozen at -18°C. The samples were 

transported frozen to the LFMFP  Ghent, Belgium) where they were further stored at -21°C 

until analysis was performed. Analysis of the frozen samples occurred within one month of 

the sampling. 

The overall microbial quality  i.e. total aerobic psychrotrophic counts and total aerobic 

mesophilic counts); hygiene indicators  E. coli, Enterobacteriaceae, Staphylococcus aureus, 

lactic acid bacteria), and pathogens  Listeria monocytogenes, Vibrio cholerae) were 

determined depending on the type of samples  Table 4.1). 

Table 4.1 Overview of the microbiological parameters investigated at each sampling location 

(large scale plants), 
*
samples analysed in Vietnam 

Samples Number Sampling locations Investigated parameters 

Water  
1 

6 

11 

 

Bleeding 

Washing 2 

Washing 3 

Total aerobic mesophilic count  TMC)*  

Total aerobic psychrotrophic count  TPC) 

E. coli *  

L. monocytogenes  

Fish 

 

 

2 

5 

7 

10 

12 

15 

 

 

Bleeding 

Filleting 

Washing 2 

Trimming 

Washing 3 

Packaging 

TMC*  

TPC  

Lactic acid bacteria  LAB) 

Enterobacteriaceae 

E. coli *  

Staphylococcus aureus 

L. monocytogenes  

Vibrio spp; V. cholerae  

Hands or gloves 
3 

8 

13 

Filleting 

Trimming 

Packaging 

TPC 

E. coli * 

L. monocytogenes  

Food contact 

surfaces 

4 

9 

14 

Filleting 

Trimming  

Packaging 

TPC 

E. coli * 

L. monocytogenes  
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4.2.1.4.2 Sampling in small scale plant 

The small scale plant was located in Can Tho city. The same types of samples were collected 

in the small scale plant as those collected at the large scale plant. All samples were taken 

aseptically, stored in ice and transported in insulated boxes to the Laboratory of 

Microbiology and Biotechnology (Department of Food Technology, Can Tho University, 

Vietnam) for microbiological analyses within 24 h of sampling. 

The overall microbial quality i.e. total aerobic psychrotrophic counts, hygiene indicators (E. 

coli and coliforms), personal hygiene indicators (Staphylococcus aureus) and pathogens 

(Listeria monocytogenes, Salmonella spp. and Vibrio cholerae) were determined depending 

on the type of sample (Table 4.2).  

Table 4.2 Overview of the microbiological parameters investigated at each sampling location 

(small scale plants) 

Samples Number Sampling locations Investigated parameters 

Water 

1 

8 

10 

Bleeding 

Washing 3.1 

Washing 3.2 

Total aerobic psychrotrophic count (TPC) 

E. coli 

Coliforms 

Listeria monocytogenes 

Salmonella 

Vibrio cholerae 

Fish 

2 

5 

9 

11 

13 

16 

Bleeding 

Filleting 

Trimming 

Washing 3.2 

Cooling 

Packaging 

TPC 

E. coli 

Coliforms 

S. aureus 

Listeria monocytogenes 

Salmonella 

Vibrio cholerae 

Hands or 

gloves 

3 

6 

12 

14 

Filleting 

Trimming 

Cooling 

Packaging 

TPC 

E. coli 

Coliforms 

S. aureus 

Listeria monocytogenes 

Salmonella 

Vibrio cholerae 

Food contact 

surfaces 

4 

7 

15 

Filleting 

Trimming 

Packaging 

TPC 

E. coli 

Coliforms 

Listeria monocytogenes 

Salmonella 
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4.2.1.4.3 Microbiological analysis 

For the fish samples, a Pangasius fillet (ca. 200 g) was aseptically taken with sterile tweezers 

and placed in stomacher bag.  For food contact surfaces and the hands or gloves, swabs were 

taken vertically, horizontally and diagonally on a 100 cm
2
 surface. In total, four swabs were 

taken. Before swabbing, sterile swabs (Copan, Italy) were pre-moistened in 5 ml Maximum 

Recovery Diluent (MRD, Merck, Darmstadt, Germany) for enumeration of total aerobic 

counts, LAB, Enterobacteriaceae, E. coli, coliforms and Staphylococcus aureus depending 

on sampled company (Table 4.1 & Table 4.2); in 5 ml Demi-Fraser broth (Merck, 

Darmstadt, Germany) for detection of L. monocytogenes, in 5 ml buffered peptone water 

(Oxoid, Basingstoke, UK) for detection of Salmonella spp., and in 5 ml Alkaline Saline 

Peptone (pH = 8.6) (Merck, Darmstadt, Germany) for detection of V. cholerae. Every 

moistened swab was applied to each food contact surface, and then inserted back into its tube 

containing 5 ml of solution. With regards to the water samples, ca. 500 ml of water from 

three different locations in the water baths was collected in sterile stomacher bags. 

Thereafter, 1 ml of water was aseptically taken for microbiological analyses.  

Quantitative microbiological analysis 

For fish samples, 25 g of sample was aseptically taken from different parts of the fillet by 

means of sterile scalpels and tweezers and placed in a sterile stomacher bag. 225 ml of sterile 

MRD was then added after which the mixture was homogenized for 1 min in a stomacher. 

For water samples, 1 ml of water was aseptically transferred to 9 ml of MRD. The water 

samples (and also the swab samples in MRD) were vortexed for 10 s. Thereafter; a tenfold 

serial dilution series was performed. The total psychrotrophic and total mesophilic counts 

were determined on Aerobic Count Plate petrifilms
TM

 (3M
TM 

 Microbiology Products, St. 

Paul, MN, USA) following incubation at 22°C for 72 h and 30°C for 72 h, respectively. 

Coliforms and E. coli were enumerated on Coliform/E. coli petrifilms
TM

 (3M
TM 

Microbiology 

Products, St. Paul, MN, USA) after incubation at 37°C for 24 h and 48 h, respectively (for 

samples in the small plant) whereas enumeration of E. coli was done on E. coli petrifilms
TM
 

 3M
TM
 Microbiology Products, St. Paul, MN, USA) by incubating at 42°C for 24 h (for 

samples in the large plant). S. aureus was enumerated on Staph Express Count petrifilm
TM

 

(3M
TM

 Microbiology Products, St. Paul, MN, USA) following by incubating at 35°C for 24 h 

(for samples in the small plant). S. aureus was enumerated by spread plating  1 ml/4 plates) 
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on Baird Parker  Oxoid, Hampshire, United Kingdom) agar plates with 25 ml/500 ml Egg 

Yolk Tellurite Emulsion  Oxoid, Hampshire, United Kingdom) after an incubation period of 

48 h at 37°C and confirmation of S. aureus occurred with a coagulase test Staphytect Plus 

 Oxoid, Hampshire, United Kingdom) (for samples in the large plant). Psychrotrophic lactic 

acid bacteria were enumerated on Man  ogosa Sharpe agar  Oxoid, Hampshire, United 

Kingdom) by pour plating and anaerobic incubation of 72 h at 22°C. The number of 

Enterobacteriaceae was determined on Violet  ed Bile Glucose agar  Oxoid, Hampshire, 

United Kingdom) pour plates, which were incubated 24 h at 37°C with a cover layer.  

Qualitative analysis 

Presence of L. monocytogenes  

For the fish samples, 25 g of sample was added to 225 ml of Demi-Fraser broth. For the 

water samples, 1 ml of water sample was transferred to 4 ml of Demi-Fraser broth. The fish, 

water and swab samples (in Demi-Fraser broth) were then pre-enriched by incubation for 24 

h at 30°C. Subsequently, 0.1 ml was inoculated in 10 ml of Fraser broth solution (Merck, 

Darmstadt, Germany) and incubated for 48 h at 37°C. This culture was then streaked on 

ALOA (Agar Listeria Ottaviani Agosti, Biolife, Milan, Italy) and incubated at 37°C for 48 h. 

Typical colonies of L. monocytogenes are a green-blue color surrounded by an opaque halo. 

Presence of V. cholerae  

 Pre-enrichment of the fish (25 g of fish in 225 ml alkaline saline peptone water), water (1 ml 

of water samples in 4 ml of alkaline saline peptone water) and swab samples (in alkaline 

saline peptone water) was done by incubating for 6 h at 41.5°C, with the exception of the 

frozen samples which were incubated at 37°C. Subsequently, 1 ml of the pre-enriched sample 

cultures were inoculated into 10 ml of alkaline saline peptone water and incubated for 18 h at 

41.5°C. A loopful of the second culture was then streaked onto the surface of thiosulfate 

citrate bile salts sucrose (TCBS) agar plates (Merck, Darmstadt, Germany) and incubated at 

37°C for 24 h. Thereafter, typical colonies (yellow and smooth colonies) were inoculated on 

Tryptone Soya Agar (TSA, Oxoid, Hampshire, United Kingdom) supplemented with 1.5% of 

NaCl (Merck, Darmstadt, Germany) for 24 h at 37°C for confirmation. Confirmation was on 

the basis that V. cholerae is Gram- negative and oxidase positive.  
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Presence of Salmonella spp. 

Pre-enrichment of the fish (25 g of fish in 225 ml of buffered peptone water), water (1 ml of 

water samples in 4 ml of buffered peptone water) and swab samples (in buffered peptone 

water) was performed by incubation at 37°C for 18 h. Following pre-enrichment, 0.1 ml of 

the first pre-enrichment culture was transferred to 10 ml of Rappaport Vassilliadis Soya 

peptone broth (RVS, Oxoid, Basingstoke, UK). The inoculated RVS tubes were then 

incubated for 24 h at 41.5°C. A loopful of culture from the RVS tubes was streaked onto 

Xylose Lysine Deoxychlate agar (XLD, Oxoid, Basingstoke, UK) and incubated at 37°C for 

24 h. Thereafter, typical Salmonella colonies were picked from the XLD plates and 

transferred to XLD slants. They were transported in this form to the Laboratory of Food 

Microbiology and Food Preservation (Ghent University, Belgium) for further phenotypical 

and serological confirmation tests. 

4.2.1.5 Data processing and interpretation of results 

Interpretation of the results of the fish and food contact surfaces was based on the legal 

criteria established by the Vietnamese Ministry of Science and Technology (TCVN, 2010) 

and the microbial criteria (guidelines) recommended by the Laboratory of Food Microbiology 

and Food Preservation (LFMFP, Ghent University, Belgium) (Uyttendaele et al., 2010)  (see 

Table 4.3). The initial quality of water used for washing fish must meet potable water 

standards according to EU Council Directive 98/83/EC (EU, 1998b) and Vietnamese 

regulation (TCVN, 2009). However, no guidelines or criteria were available for the microbial 

quality of the water when it is reused to wash several batches of fish. However, the self-

checking guide mentions that the washing process may not lead to further contamination of 

the products, and the frequency of refilling/refreshing water in the baths should be 

determined by company. 

After the evaluation of each parameter for each SL, a microbiological safety level profile 

was defined according to the method of Jacxsens et al. (2009b). The microbiological safety 

level is scored 1 to 3. Level 3 reflects a good Food Safety (FS) performance, meaning that 

legal criteria and microbiological guidelines are respected and thus that the current FSMS is 

covering the hazards in an adequate way. Level 2 indicates a moderate FS performance. 

Level 1 reveals a poor FS performance. Legal criteria and microbiological guidelines are 
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exceeded and improvements of the current FSMS are needed on multiple activities of the 

FSMS.  

Table 4.3 Legal requirements or guideline values for microbiological parameters for 

microbial assessment 

Microbial 

parameters 

Fresh fish
 

in Belgian food industry
a
  

(log CFU/g) 

Frozen tra fish 

fillets
b 

(log CFU/g) 

Food contact 

surfaces
a 

(log CFU/100 

cm
2
) Goal Tolerance Tolerance 

Total aerobic counts 5
 

6 6 Good, ≤ 3; 

moderate 3-4.5; 

poor ≥ 4.5 

Enterobacteriaceae 

//Coliforms
* 

2
 

3 x Good, ≤ 3; 

moderate 3-4.5; 

poor ≥ 4.5 

Psychrotrophic lactic 

acid bacteria (LAB) 

2
 

3 x x 

E. coli 2
 

3 2 Absence in area 

tested 

Staphylococcus aureus 2
 

3 2 Absence in area 

tested 

V. cholerae x x Absence in 25g Absence in area 

tested 

L. monocytogenes Absence in 

25g 

Absence in 

25g 

x Absence in area 

tested 

Salmonella Absence in 

25g 

Absence in 

25g 

Absence in 25g Absence in area 

tested 
a
According to guideline value for fresh fish developed by the Laboratory of Food 

Microbiology and Food Preservation (Ghent University) (Uyttendaele et al., 2010) 

b
According to microbiological criteria for production frozen Tra fish (Pangasius 

hypophthalmus) fillet established by Vietnamese Science & Technology Ministry (TCVN, 

2010) 

*
No guidance value or criteria for coliforms; thus the guidance value of Enterobacteriaceae 

can be used for coliforms though coliforms belong to Enterobacteriaceae family  

 not mentioned in the guideline for fresh fish or the criteria for frozen Pangasius fish  
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The sum of the microbiological safety levels for each parameter might reach a maximum of 

27 of 9 (microbiological parameters) x 3 (levels) for the large (or 7 x 3 = 21 for the small 

scale plant). When the microbiological profile is lower than 27 for the large (or 21 for the 

small scale plant), there is room for improvement of the current FSMS to mitigate 

microbiological hazards or improve the quality.  

Based on the microbiological safety profile, a score was assigned to express the overall FS 

performance of the current FSMS (Jacxsens et al., 2009b; Sampers et al., 2010). 

The assigned score is 1 if sum of microbiological safety levels ranges 9-11 (or 7-8)  

The assigned score is 1_2 if sum of microbiological safety levels ranges 12-16 (or 9-12),  

The assigned score is 2 if sum of microbiological safety levels ranges 17-21 (or 13-15),  

The assigned score is 2_3 if sum of microbiological safety levels ranges 22-25 (or 16-19),  

The assigned score is 3 if sum of microbiological safety levels ranges 26-27 (or 20-21). 

4.2.1.6 Statistical analysis 

The results of the microbiological analysis of the water, fish and swab samples were 

expressed as log CFU/ml, log CFU/g and log CFU/100 cm
2
, respectively. The results are 

reported in this chapter as the mean value ± standard deviation. Differences in the mean 

microbial counts between processing steps or during the three different visits and three 

independent sampling times were statistically assessed using a non-parametric Kruskal-

Wallis H type test in SPSS version 20 version (IBM Inc., Chicago, Ill., USA) due to the data 

showing non-normally and comparison between paired means was performed using the 

Mann-Whitney U test. A non-parametric Spearman rank order correlation coefficient (r) was 

calculated for cross-correlations between the microbiological counts investigated with a two 

tailed test (α = 0.05). 

4.2.2 Self-assessment questionnaire on food safety management system (FSMS-DI) 

A questionnaire of FSMS-DI (a diagnostic self-assessment) with 58 indicators was designed 

based on the work Luning et al. (2008), Luning et al. (2009b) and Jacxsens et al. (2011). The 

questions were categorized under the following topics: (a) context factors (i.e. product 

characteristics, production process, organization, and chain environment), (b) control 

activities (i.e. preventive measures, intervention processes, monitoring system design and 

their operation), (c) assurance activities (i.e. setting system requirements, validation, 
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verification activities, documentation and record-keeping) and (d) the food safety 

performance. The questionnaire was answered by the people responsible for quality 

assurance (QA) at the company via in-depth interviews took ca. 3 h to conduct. 

Of the 58 questions, 17 assessed the context factors, 25 assessed the control activities, nine 

assessed the assurance (these indicators described in Table 1.7) and seven assessed the food 

safety performance. The seventeen questions on the context were graded as situation 1, 2, or 

3 which corresponded to low, potential, or high vulnerability (to safety problems), ambiguity 

(lack of insight in underlying mechanisms), and uncertainty (lack of information), 

respectively (Luning et al., 2009b). For the twenty five questions on the control activities, 

four levels were defined 0, 1, 2 or 3, which corresponded to not relevant, incomplete, 

guidelines-based or science-based/fit-for-purpose, respectively. The nine assurance activities 

questions also comprised four levels: 0, 1, 2 and 3 referring to unknown, historical 

knowledge (but no analysis), restricted and comprehensive levels, respectively (Luning et al., 

2008). All seven questions about the food safety performance were defined into four levels: 

0, 1, 2 and 3, referring to absent/not measured, minimum follow-up, standard follow-up and 

comprehensive system evaluation, respectively (Jacxsens et al., 2011).  

For each question, the interviewees had to select which situation or activity level was the 

most representative for their company. Each question was well defined and designed by ―if 

then‖ combined with supportive information to guide the interviewees in advance during 

interview. 

The food safety management system diagnosis resulted in a list of scores for the separate 

questions for contextual factors, for control and assurance activities which were summarized 

into spiderweb diagrams. Then, a mean value was calculated based on the sum of the scores 

for the separate questions divided by the total number of questions. Mean scores were 

transformed to an assigned level/situation score as follows: 

 If mean situation score of major contextual factor is between 1-1.2 then assigned 

situation 1, 

 If between 1.3-1.7, assigned score 1-2, 

 If between 1.8-2.2, assigned score 2, 

 If between 2.3-2.7, assigned score 2-3 and 

 If between 2.8-3.0, assigned score 3. 



Chapter 4 

92 

 

Similarly,  

 If mean score for core control/assurance activity is between 0-0.2, then assigned 

score 0. 

 If between 0.3-1.2, assigned score 1,  

 If between 1.3-1.7, assigned score 1-2, 

 If between 1.8-2.2, assigned score 2, 

 If between 2.3-2.7, assigned score 2-3 and 

 If between 2.8-3.0, assigned score 3.   

The assigned scores can be used to obtain an overall indication (impression). However, to 

search for possible points for improvement, one needs to look to the individual scores as well 

(Luning et al., 2011a; Luning et al., 2011b). 

4.3 RESULTS 

4.3.1 Microbial quality and safety of Pangasius fillets processed in the companies  

A total of 279 samples (135 samples in large scale plant) were analysed to establish the 

microbiological quality of Pangasius fillets, water and food contact surfaces during 

processing. Distribution of the total aerobic psychrotrophic counts (TPC) of samples of fish, 

environment and water samples during the three visits or the three sampling times are shown 

in Figure 4.2 A&B where it can be seen that higher TPC counts occurred on the samples 

collected at the small scale plant. There was no significant difference in the TPC counts of 

fish, water, hands and food contact surfaces during the three visits to the large scale plant (p > 

0.05) whilst the food contact surfaces and water samples were significantly different (p < 

0.05) in this plant. The fish and hands samples were not significantly different (p > 0.05) 

during the visits to the small scale plant. A comparison was also made between the three 

different times of sampling; the only significant difference was observed for the fish samples 

whose counts increased significantly in the samples collected during the second sampling (p 

< 0.05). No significant differences (p > 0.05) were observed in the TPCs of the hands, food 

contact surfaces and water samples collected during the three sampling times in the large 

scale plant. Unlike the large scale plant, no significant differences (p > 0.05) occurred in TPC 

counts of fish samples collected during the three sampling times at the small scale plant, 

whilst in similairy to the large scale plant no significant differences (p > 0.05) occurred in 
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TPC counts water, hands and food contact surfaces during the three sampling times in the 

small scale plant (Figure 4.2). 

 

 

 

Figure 4.2 The distribution of total psychrotrophic counts (TPC) between visits (A) and 

between sampling times (B). X-axis by visit: 1  (ca. 8a.m), 2 (ca. 12a.m) and 3 (ca. 14 p.m). 

X-axis by time: day 1, day 2 and day 3. Y-axis: log CFU/g (fish ), log CFU/100 cm
2
 (hands 

and surfaces) and log CFU/ml (water). A value with a diferent letter on samples between 

visits or times in the same company sampled shows statistical significance (p < 0.05). 

Large scale plant (n =135)    Small scale plant (n =144) 

    Large scale plant (n =135)    Small scale plant (n =144) A 

B 

a 

b 
a 

ab 
a 

b 

a 

b 

c 
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Figure 4.3 The microbiological profiles of fish samples between the large and small scale plants 

L. monocytogenes and V. chlolerae were not detected in the large company (Figure 4.3 and 

Figure 4.4). The results of the microbiological quality of the Pangasius fish at different 

processing locations can be seen in Figure 4.3. TPC counts reduced during processing from 

3.6 ± 0.3 (raw materials) to 2.9 ± 0.4 log CFU/g (frozen products) (Figure 4.3). TPC on the 

food contact surfaces were 2.9 ± 1.8, 2.7 ± 0.5 and 1.4 ± 1.7 log CFU/100 cm
2
 at the filleting, 

trimming and packaging steps, respectively. TPC on hands were significantly reduced during 

processing steps, to be 4.0 ± 0.7, 3.0 ± 0.7 and 2.3 ± 1.3 log CFU/100 cm
2
 at the filleting, 

trimming and packaging steps, respectively (Figure 4.4). E. coli was only found sporadically 

Large company 

Small company 
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and in low numbers, ranging from 1.0 to 1.2 log CFU/g on fillets (Figure 4.3) and at counts 

lower than the quantification limit (<1 log CFU/100 cm
2
) on the hands/gloves and surfaces 

samples (Figure 4.4). Lactic acid bacteria (LAB) were present in relatively high numbers (i.e. 3.0 

log CFU/g of fish at the filleting step), six (out of 54) samples exceeded the goal levels (2 log 

CFU/g). For Enterobacteriaceae, only one fillet sample had counts which exceeded the goal level 

(2 log CFU/g). For TMC, there were two samples exceeding the goal value (5 log CFU/g).  

  

     

Figure 4.4 The microbiological counts on hands and surfaces of the large and small scale 

plants. Value with a different letter between processing steps in the same company sampled 

shows statistical significance (p < 0.05). 

The results of the microbiological quality of the Pangasius fish at different processing locations 

in the small company can be seen in Figure 4.3. In general, the microbial counts (except for 

Surfaces 

 Hands 
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Salmonella which was absent) during processing exceeded the goal level. It is seen in the Figure 

4.3 that TPC increased from 4.9 ± 0.8 log CFU/g on the raw materials to 6.0 ± 0.4 log CFU/g on 

the fillets sampled at the trimming step. Then, TPC decreased slightly until they were 5.3 ± 0.4 

log CFU/g on the fillet samples collected after packaging, the final processing step. Evolution of 

E. coli counts during processing followed the trend observed for TPC. S. aureus occurred at low 

levels on samples of the raw material (1.4 ± 0.5 log CFU/g), followed by increased gradually up 

to 2.3 ± 0.6 log CFU/g on the final products. L. monocytogenes was isolated from only one 

sample of the final product (a frozen Pangasius fillet), whilst V. cholerae was sporadically 

isolated from Pangasius samples at different processing steps: bleeding (1/9 samples), filleting 

(1/9), trimming (2/9) and packaging (4/9) (Figure 4.3). The pathogenic bacteria of Salmonella 

spp. were absent in all fish samples investigated. 

The TPCs on the food contact surfaces ranged from 5.4-6 log CFU/100 cm
2
 while those on the 

hands/gloves ranged from 5.1-5.7 log CFU/100 cm
2
 at the filleting, trimming and packaging 

steps. On the hands/gloves, E. coli was found at the highest levels at the filleting step, ranging 

from 1.7-4.2 log CFU/100 cm
2
 while the highest contamination of E. coli on the food contact 

surfaces (tables, knives etc.) was found at the trimming step (1.3-3.4 log CFU/100 cm
2
). S. 

aureus counts on the hands/gloves ranged <1-1.9 log CFU/100 cm
2
 at the filleting, trimming and 

packaging steps, respectively. V. cholerae was also detected on the hands/gloves of personnel at 

the filleting (2/6 samples), cooling (2/6) and packaging (2/6) steps. L. monocytogenes was not 

detected on the hands/gloves and food contact surfaces (Figure 4.4). 

The aerobic psychrotrophic counts in the water samples ranged from 4.4-5.9, 4.0-6.4 and 4.5-6.5 

log CFU/ ml at the bleeding step, and at washing steps 3.1 and 3.2, respectively. E. coli was 

detected at low numbers in the water samples. As an example the E. coli counts ranged from below 

the limit of quantification (<1 log CFU/ml) to 1.7 log CFU/ml in water from the bleeding bath. L.  

monocytogenes and Salmonella spp. were absent in all the water samples collected, whilst only one 

sample of water collected from washing step 3.1 was contaminated with V. cholerae. 

In addition, a strong correlation was observed between the counts of E. coli and coliforms (r² 

= 0.747, p = 0.000, n = 144). The correlation among the other microbiological parameters 

was not strong as E. coli and coliforms. More specifically, correlation coefficients of 0.434, 

0.522 and 0.211 were obtained between TPC and E. coli counts (p = 0.000, n = 144), 

coliforms (p = 0.000, n = 144), and S. aureus (p = 0.045, n = 90), respectively.  
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Based on the MAS results, the food safety level was calculated to be 20 (/27) in the large 

scale and 9 (/21) in the small scale plant. The overall MAS score was assigned at 2 and 1_2 

in the large and small scale plant, respectively (Table 4.4). 

4.3.2 Results of self-assessment questionnaire 

Table 4.4 Assigned score for the contextual factors, food safety control & assurance (FSMS), 

food safety performance indicators (FSPI) and microbiological safety level (FS) for large and 

small scale plant. 

Assigned score Contextual factor FSMS FSPI FS 

Large company 2 2_3 2_3 2 

Small company 2_3 1_2 1_2 1_2 

The basic assumption behind the FSMS-DI (a diagnostic self-assessment) is that companies 

working with riskier products and processes (context 3) need a more advanced FSMS (level 3) to 

be able to comply with safety requirements than companies operating in a less risky contextual 

situation (context level 2 or 1). The context factors (Table 4.4) show that both companies evaluated 

in this study were assigned a score of 2 or 3. The detailed scores of the contextual factor showed in 

Figure 4.5. The FSMS is separated into two major parts: food safety control activities and food 

safety assurance activities. Indicators for the food safety core control activities comprise 

technology-dependent and managerial activities in design and operation of preventive measures, 

intervention processes, monitoring systems and operation control measures (Figure 4.6). The food 

safety core assurance activities are dealing with validation, verification, documentation and record 

keeping and defining a system set-up. Both the food safety control activities and the food safety 

assurance activities at the large scale company had an overall assigned score of 2_3 (Table 4.4). A 

clear difference was seen in the assigned scores of 1_2 for the control and assurance activities at the 

small scale company (Table 4.4). Analysis of individual scores of core control activities are shown 

in Figure 4.6 and Figure 4.7 for the large and small scale company, respectively. In general, the 

assurance activities of the small scale company were on level 1 (historical knowledge) with 44% (4 

out of 9) of the responses and level 2 (restricted level) with 56 % (5 out of 9) of the responses. In 

contrast to the results in the large scale company, these activities were elaborated at higher levels 

(i.e. 33.3% of the responses at level 3 and 55.6% at level 2). The scores of the food safety 

performance indicators (FSPI) were 1_2 and 2_3 for the small and large scale company, 

respectively (Table 4.4). 
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  Figure 4.5 Spider webs of the scores awarded for the contextual factors of large and small company 
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Figure 4.6 Spider webs of the scores awarded for the core control activities of the large scale plant 

 

Figure 4.7 Spider webs of the scores awarded for the core control activities of the small scale plant 
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Figure 4.8 Spider webs of the scores awarded for the core assurance activities of the large 

and small scale plant 
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4.4 DISCUSSION 

4.4.1 Microbial quality and safety of Pangasius fillets during processing evaluated by 

means of microbiological assessment scheme 

The MAS results provided insight into the actual microbiological safety and quality of 

Pangasius fish processed in both different scale plants in Vietnam. The assumption made in 

this study was that the FSMS of the companies are performing at advanced levels, meaning 

that the microbiological counts on Pangasius fish during processing should be lower than the 

tolerance limits according to the guidelines for fish products after production (TCVN, 2010; 

Uyttendaele et al., 2010) (Table 4.3). In the small scale plant, the total aerobic 

psychrotrophic counts (TPC) of the final products (4.6-5.9 log CFU/g) exceeded the goal 

limit of 5 log CFU/g. In addition, these counts were greater than those on the products 

sampled from a large scale company (2.5-3.6 log CFU/g). These counts were in a good 

agreement with those observed in Chapter 2, where the microbial ecology during processing 

was evaluated in the same companies. 

The hygiene indicators, consisting of E. coli and coliform counts, varied widely. As an 

example, counts of E. coli observed in the fish sampled from the small scale plant varied 

between <1-3.5 log CFU/g whilst sporadic and low counts of E. coli were observed in the 

fish (<1-1.3 log CFU/g) sampled in the large scale plant. In this study, the coliforms counts 

were ca. 1 log CFU/g higher than those of E. coli and a significant positive correlation (r = 

0.747) occurred between these two microbial parameters. The correlation between these two 

microbial parameters supports the idea that coliform counts could be used to predict the 

counts of E. coli (Hood et al., 1983). However, Leclercq et al. (2002) recommended the 

replacement of coliforms analyses by E. coli enumeration as a means of estimating the 

sanitary quality of food. In addition, E. coli enumeration would likely give useful information 

as a quality indicator of fishery products, particularly the quality of Pangasius products 

(TCVN, 2010; Uyttendaele et al., 2010). 

Most coliforms are present in large numbers in diverse natural environments, the intestinal 

microbiota of humans and other warm-blooded animals, and are therefore harbored in fecal 

waste or freshwater bottom sediments or sands (Pachepsky and Shelton, 2011). E. coli is the 

most common coliform in the intestinal microbiota of warm-blooded animals and is thought 

to be principally associated with fecal contamination (Rompré et al., 2002). A previous study 
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has reported that Enterobacteriaceae (including E. coli) originate from the intestines of 

tropical freshwater fish (Apun et al., 1999) although their incidence was sporadic and low 

counts were found in the large scale plant. It should be taken into consideration that the 

enumeration of Enterobacteriaceae occurred after frozen transport to Belgium, so the 

original contamination during production might have been higher as freezing can reduce their 

numbers (Reinartz et al., 2011). The origin of E. coli and Enterobacteriaceae is also likely to 

be related to the Pangasius gut. Low numbers of Enterobacteriaceae (2.5 log CFU/g) and of 

E. coli (1.5 log CFU/g) were recovered from the gut of a frozen Pangasius sample (data not 

shown). Additionally, higher counts of Enterobacteriaceae (4.2 ± 0.1 log CFU/g) were found 

in the gut of a Pangasius sample (§ 2.4.1 in Chapter 2). Repetitive observations of the 

filleting step revealed that perforations of the gut by the knives used during this manipulation 

occur between 28% and 55% of the times depending on the operator. This is a possible 

transmission route and explains the sporadic presence of E. coli and Enterobacteriaceae on 

the fillets. On the other hand, cross contamination can occur when bacteria are transferred 

from food contact surfaces (i.e. hands, cutting boards and knives) to the food. High counts of 

both coliforms and E. coli were found on the hands and surface samples collected during 

processing of the small scale plant, indicating insufficient hygiene practices in the small scale 

company investigated in this study. 

In the small scale company, high levels of contamination were found in the water used to 

wash the fish. The fillets were washed manually by shaking a basket filled with 10 kg of 

fillets in tap water (ca. 100 litres) in washing step 3.1 to remove dirt, fat and red muscle from 

the surface of the fillets. High TPC (4.0-6.4), E. coli (<1-2.6) and coliform (2.3-3.6 log 

CFU/ml) counts and the presence of V. cholerae (on 1 of 9 samples) were found in the water 

used at washing step 3.1. Therefore, there is a risk of cross contamination with pathogens 

from the washing water to the fish fillets. Moreover, to improve the microbial quality of fish 

after the trimming step, the fish fillets were washed in washing step 3.2 in water with 50 ppm 

chlorine. Unexpectedly, TPC on Pangasius fillets before (6.1 ± 0.6 log CFU/g) (data not 

shown) and after washing (6.0 ± 0.4 log CFU/g) were equal. Therefore, the fillets might not 

be decontaminated during washing. In addition, chlorinated water still showed high levels of 

bacteria e.g. 4.5-6.5, <1-2.6 and 2.3-3.5 log CFU/ml TPC, E. coli and coliforms, respectively. 

During the visit, 50 ppm NaOCl was prepared for use at washing step 3.2 just before the shift 

started without adjustment of the pH and the chlorine concentration during processing. This 

result suggests that the concentration of chlorine and the bacterial load in the washing water 
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as a function of time should be further evaluated to increase the efficacy of the process at the 

small company. In the large scale company, washing was done in a water bath containing 

only potable water and flake ice combined with an inflow of compressed air. The water was 

used for a single batch of washing (§ 2.2.2 in Chapter 2). As a result, low microbial counts 

and no pathogens were detected in the samples of the washing water. Also no relevant 

reductions of the total mesophilic counts on the fillets were observed in this system. The 

major function of these water baths are likely cleaning the fillets (removal of blood, fat, etc.) 

and cooling the fillets before freezing.  

 V. cholerae was found in the water at washing step 3.1 of the small company. V. cholerae 

was also found at other sampling locations including the water at the bleeding step (1/9), on 

the hands of the workers at the filleting step (2/6) and on the Pangasius fish sampled at the 

filleting step (1/9). V. cholerae, is a natural inhabitant of aquatic environments and has been 

isolated from the digestive tracts of fish (Senderovich et al., 2010). This may explain why V. 

cholerae was detected on the fillets and the hands of the workers at the filleting step. In 

addition, Vibrio spp. were also found in tropical water environments and fish are actually 

considered as reservoirs of V. cholerae (Codex Alimentarius Commission, 2003). V. cholerae 

was also found on 4 out of 9 final packaged products from the small company. It might be a 

result of inadequate personnel hygiene at the small company. However, in contrast to the 

small company, V. cholerae was not found in Pangasius fillets samples from the large scale 

company.  

In addition, S. aureus, as an indicator of hand hygiene, was found on the hands of food 

operators (up to 1.9 log CFU/100 cm
2
) at the packaging step in the small company. The S. 

aureus counts on five of the nine samples evaluated were greater than the limit of 

quantification (1 log CFU/100 cm
2
), indicating that the hygiene practices were inadequate 

(Uyttendaele et al., 2010). Moreover, L. monocytogenes was found on one of the nine 

samples of the final product. L. monocytogenes is commonly found in water where fish are 

captured or cultivated, and in contaminated freshwater fish (Yucel and Balci, 2010). The 

transmission of L. monocytogenes into the final product has been reported to occur from the 

fish raw materials and the processing environment (Chen et al., 2010; Miettinen and 

Wirtanen, 2006). Hansen et al. (2006) have reported that the incidence of L. monocytogenes 

is low in fish farms and the environment inside fish processing plants. The processing 
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environment has been reported as a route of transmission for L. monocytogenes into 

processed fish rather than directly from raw fish (Chen et al., 2010; Hoffman et al., 2003).  

As a result of the presence of L. monocytogenes and V. cholerae in the final Pangasius 

products of the small scale company, it can be concluded that the high microbial quality does 

not conform to the microbiological guidelines nor to the criteria for frozen Pangasius fillets 

(TCVN, 2010; Uyttendaele et al., 2010). The hygiene levels and sanitation procedures in the 

production area should be revised as cleaning and sanitation programs can have a great 

impact on reducing the presence of L. monocytogenes in the factory environment (Hoffman et 

al., 2003; Huss et al., 2000). Taking into consideration the microbiological parameters 

discussed above, a microbial safety level profile of 1_2 (= poor food safety performance) was 

assigned to the small company compared to 2 (= moderate level) for the large company 

(Table 4.4). 

4.4.2 Current performance of the food safety management system by means of self-

assessment questionnaire 

The assessment of contextual factors (Figure 4.5) indicated that these companies were 

operating in a moderate to high vulnerability context. The context situation, the product and 

process characteristics of the small scale company were similar to those observed in the large 

scale plant. Previous studies have also noted that the characteristics of the production process 

of Pangasius fillets in various companies in Vietnam are very similar (Karl et al., 2010). In 

contrast, the organizational characteristics such as formalization and technological staff were 

highly vulnerable (situation 3) in the small company whilst those of the large scale company 

were of low vulnerability (situation 1). The small company employs five people who are 

working in the quality assurance (QA) department and all microbial analyses or safety 

controls are performed by external laboratories whereas the large company has a significant 

quality assurance department with quite a large staff (> 15 persons) including experts in 

various aspects of food safety and has its own well equipped research lab. Another weak 

point of the small company was not only the absence of activities in formal procedures but 

also the lack of formalized meetings e.g. meetings of the quality department. At both 

companies evaluated, variability occurred in the workforce with a turnover of between 1 to 5 

years. When experienced persons leave the company, knowledge is lost which may have an 

impact on food safety and food quality output. Since the small company does not have any 
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requirements regarding a basic education level or experience of the recruited operators and 

does not provide an intensive training program, the ‗operator competences‘ are at level 2 in 

the small company, which poses a relative high risk for food safety and quality (Seaman, 

2010). In addition, the information systems wherein information about safety processing, 

product, hazards is systematically recorded were less (not readily) accessible to the staff in 

the small company. The characteristic of the information systems seems dependent on the 

size of the company as the large company has a specific well accessible quality information 

system (Figure 4.5B). In the chain environment characteristics (Figure 4.5C), both 

companies have a very high influence on their suppliers of raw materials. The companies 

own half of their Pangasius supplying farms, meaning that the company can have a large 

bearing on the desired safety and quality of the raw materials. The ‗customer relationships‘ 

are not able to put specific requirements on the quality system of the customers, which are 

mainly export destinations. The large company has to meet additional quality assurance 

requirements from their customers, which are different for the major stakeholders, e.g. the 

legal requirements that resulted in ‗requirements of the stakeholders‘ (score of 3). Yet, 

conflicting requirements from stakeholders are also putting pressure on the production 

process and the FSMS, e.g. the application of chlorine as disinfection agent applied in the 

washing water, which is not allowed for European production (EU, 2004b) but is desired to 

reduce the bacterial load on products destined for export to the US. The mean score for all 

contextual factors was therefore assigned 2 and 2_3 in the large and small scale plant, 

respectively (Figure 4.5 and Table 4.4). 

The FSMS had an assigned score of 2_3 in the large company (Table 4.4), which is at a 

higher level than required by the contextual factors (score 2). The fact that the control and 

assurance activities were almost equal to each other means that the FSMS is well balanced in 

the large company. The control activities usually have a high score in most of the food 

processing companies that are in compliance with the food safety legislation and 

requirements (Luning et al., 2011b; Sampers et al., 2010). The assurance activities are 

important as the control activities guarantee a high food safety level. A high score for the 

assurance activities means that a company is really involved in providing a high food safety 

level of their products and is adequately documenting and validating their control activities 

(Luning et al., 2011b; Sampers et al., 2010).   
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The control activities in the large company are adequate (Figure 4.6). In practice, the large 

company, for instance, has a systematic control of incoming raw materials based on the 

statistical analysis of actual historical data of the suppliers. The ‗analysis of the CCP/CPs‘ 

(Critical Control Points/ Control Points) is executed in a systematic way and tested for the 

actual production circumstances (Figure 4.6C). The company's laboratory is equipped for 

their own challenges test to monitor evolutions of inoculated pathogens on the product during 

simulated storage. For ‗standards and tolerances design‘, the standards for critical product 

(e.g. water content) and process (e.g. pH tumblers) parameters are specified, but no tolerances 

are yet clearly specified. It would be advisable to improve this indicator by e.g. taking 

tolerance values from general hygiene codes (e.g. Code of Practice for fish and fishery 

products, CAC/RCP 52-2003, http://www.codexalimentarius.net), legal or stakeholder 

requirements and clearly specifying them. As the laboratory of the company can perform all 

conventional culture-based methods (mainly plate counts and absence-presence tests) and is 

accredited for these methods according to ISO 17025 (requirements for testing and 

calibration laboratories), the ‗analytical methods to assess pathogen levels‘ is of an advanced 

level. Moreover, the lab is examining on regular basis Salmonella, L. monocytogenes, E. coli. 

Furthermore, samples are also double checked by sending them to external accredited labs. 

The ‗corrective actions‘ were based on systematic causal analysis of the company‘s own 

product/process deviations. However, the ‗measuring equipment to monitor the 

process/product status‘, the ‗calibration program for measuring and analytical equipment‘ and 

the ‗sampling design and measuring plan‘ are not specifically designed for the company‘s 

production process and therefore could be improved by validating them specifically to the 

company‘s production process in order to raise a desired level.  

The core assurance activities are activities providing confidence that the desired safety 

requirements will be met. They deal with setting requirements on the system, evaluating its 

performance and organizing necessary changes (Luning et al., 2008). The core assurance 

activities in the large company were achieved at advanced (55.6% at level 2) to the most 

advanced level (33.3% at level 3). It indicates that the FSMS of the large company has a 

well-documented system where personnel procedures, equipment and methods are frequently 

verified by independent experts based on analyzing records (e.g. control charts, temperature 

data loggers, etc.), calibration activities and actual microbiological testing. The ‗validation of 

intervention systems‘ was not taken into account in the final evaluation of this company 

because packaging is considered a mechanical barrier. The control activities of the small 
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company sampled was less advanced which means that they are designed or conducted based 

on guidelines. The sanitation program and personal hygiene requirements were implemented 

as the guidance given by suppliers and no further improvements were made. Moreover, the 

monitoring system design was neither tested for accuracy nor measured automatically e.g. 

using a portable thermometer. Calibration of the analytical equipment was on an ad-hoc 

basis, moreover, the task and frequency of calibration programs was unclear and not 

documented. Regarding the plan and design for sampling (e.g. microorganisms) was limited 

in microbiological expertise, lack of analysis facilities and strategies for improvement of the 

food safety and quality of processed products. Pangasius products were sampled based on 

experience and in-house knowledge and analysed by external laboratories without any 

checking by a third-party. The actual performance of the analytical equipment used (level 0) 

was not calibrated by the company itself nor by an external company. The low level of 

control activities in this company are correlated to the high levels of contamination found on 

the food contact surfaces, water and Pangasius samples. Therefore, the size of a company can 

indeed play a role in the further tailoring of the FSMS for certain activities such as sampling, 

microbiological analyses, maintenance and calibration (Sampers et al., 2012). 

The core assurance activities were mostly assessed at level 1 (44% of the responses) up to 

level 2 (56% of the responses). Specifically, validation of the preventive measures and 

intervention systems were based on historical knowledge by the own company. The 

verification activities, documentation and record-keeping to support food assurance were 

performed on a regular basis and kept-up-to date in the documentation system (albeit not 

available online). As a result of less advanced control and assurance activities of the small 

company, the assigned score of 1_2 of FSMS was a lower level than required by the 

contextual factors (assigned score of 2_3).  

 In terms of external and internal food safety performance indicators (FSPI) in the large 

company, they sometimes dealt with ‗microbiological food safety complaints‘, ‗hygiene 

related complaints‘ and ‗hygiene and pathogen non-conformities‘. From the interview it is 

mainly due to the sporadic occurrence of L. monocytogenes and E. coli on the final frozen 

product. It could be resolved when improvements in the company‘s FSMS are made, e.g. 

optimizing the ‗hygienic design of equipment and facilities‘, improving the ‗standard and 

tolerances design‘, performing ‗experimental trials for company specific conditions‘, etc. In 

the small company, the FSPI (assigned score 1_2) was in agreement with its FSMS. The 
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observation that the assurance activities are often lacking behind to control activities in 

FSMS, can for example be seen by the fact that auditing of the FSMS is performed yearly by 

one accredited third party and mostly based on historical knowledge. Therefore, this 

company often dealt with problems occurring in non-conformities, exceeding of 

microbiological guidelines and complaints by customers.   

4.5 CONCLUSION 

Although the overall MAS level of the large company was found to be slightly lower than the 

food safety self-assessment level, the actual performance of FSMS in this company regarding 

these microbiological enumerations is quite effective. However, it is taken into consideration 

for the standardization of the production processes in order to control the variability of 

microbiological quality well. In the small company, although the general microbiological 

quality of the final Pangasius products was acceptable from the point of view of the total 

aerobic psychrotrophic, E. coli and S. aureus counts, it was unacceptable with regards to 

some food safety parameters. The presence of hygiene indicators such as E. coli and S. 

aureus and the presence of V. cholerae on the hands of the food operators during processing, 

particularly in the packaging area, is a reflection of the poor personnel hygiene practices at 

the small scale processing plant evaluated in this study. From the results of the MAS 

combined with the self-assessment questionnaire of the quality operators, it can be suggested 

that the core control activities (i.e. hand hygiene, cleaning and disinfection) should be greatly 

improved in order to develop adequate cleaning and sanitation procedures for equipment, 

personnel and the processing environment.  

  



 

109 

 

 

 

 

 

Chapter 5 DECONTAMINATION OF PANGASIUS FISH WITH 

CHLORINE OR PERACETIC ACID IN THE LABORATORY AND IN 

A VIETNAMESE PROCESSING COMPANY 

 

 

 

 

 

 

 

 

Redrafted from: 

Tong Thi, A.N, Sampers I., Van Haute S., Samapundo, S., Nguyen, B.L, Heyndrickx, M., and 

Devlieghere, F., 2015. Decontamination of Pangasius fish (Pangasius hypophthalmus) with 

chlorine and peracetic acid in the laboratory and in a Vietnamese processing company. 

International Journal of Food Microbiology. Revision 

 

 

 



Chapter 5 

 

110 

 

ABSTRACT 

This study evaluated the decontamination of Pangasius fillets in chlorine or peracetic acid 

treated wash water. The first part of the study evaluated the decontamination efficacy of the 

washing step with chlorinated water applied by a Vietnamese processing company during 

trimming of Pangasius fillets. Chlorine was only added at the beginning of the processing of a 

batch and was used continuously without renewal for 239 min. As a consequence, the total 

psychrotrophic counts, Escherichia coli and coliforms on the Pangasius fillets did not reduce 

significantly (p > 0.05) after washing at the Vietnamese company. This could be explained by 

the rapid accumulation of organic matter (ca. 400 mg O2/L of COD after only 24 min) which 

resulted in a decrease in the level of free chlorine from 34.4 ± 2.9 ppm to 7.8 ± 3.6 ppm. In 

addition, the microbiological counts in the wash water increased to 5.7 (total psychrotrophic 

counts), 3.9 (coliforms) and 3.0 (E. coli) log CFU/100 ml after 24 min of washing. The 

second part of the study evaluated the disinfection efficacy of chlorine and peracetic acid 

(PAA) on both the wash water and Pangasius fillets on a laboratory scale. A single batch 

approach (one batch of wash water for treating a fillet) was used. Chlorine and PAA were 

evaluated at 10, 20, 50 and 150 ppm at contact times of 10, 20 and 240 s. Washing with 

chlorine and PAA wash water resulted in a reduction of E. coli on Pangasius fish which 

ranged from 0-1.0 and 0.4-1.4 log CFU/g, respectively while smaller reductions of total 

psychrotrophic counts, lactic acid bacteria and coliforms on Pangasius fish were observed. 

However, in comparison to PAA, chlorine was lost rapidly. As an example, 53-83% of 

chlorine and 15-17% of PAA were lost after washing for 40 s (COD = 238.2 ± 66.3 mg O2/L). 

Peracetic acid can therefore be an alternative sanitizer. However, its higher cost will have to 

be taken into consideration. Where (cheaper) chlorine is used, the processors have to pay 

close attention to the residual chlorine level, pH and COD level during treatment for optimal 

efficacy.  
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5.1 INTRODUCTION 

A crucial intervention step during the processing of frozen Pangasius fillets is washing to 

reduce the microbial loads on the food products as much as possible. Chlorine is the most 

commonly used disinfectant in fishery processing in general (Benjakul et al., 2012) and the 

processing of Vietnamese Pangasius fillets in particular (Chapter 2). Chlorine has been 

extensively studied for its effectiveness to inactivate vegetative bacteria on vegetables 

(López-Gálvez et al., 2010a; Lopez-Galvez et al., 2013), poultry (Bauermeister et al., 2008) 

and aquatic products (Benjakul et al., 2012; Kamireddy et al., 2008; Kim et al., 1999b). The 

antimicrobial effect of NaOCl mainly depends on the amount of free chlorine (in 

hypochlorous acid form, HOCl) present in the water, contact time and pH (optimal activity 

range and minimum corrosion of equipment = 6.5-7.5) (Fukuzaki, 2006; Suslow, 2008). A 

disadvantage is the rapid decomposition of chlorine through oxidation, addition, and 

electrophilic substitution reactions with organic substances in water (Van Haute et al., 2013a). 

In addition, the use of high chlorine concentrations may lead to the formation of excessive 

amounts of hazardous by-products such as trihalomethanes and chloramines (Alegria et al., 

2009; López-Gálvez et al., 2010a). These concerns have led to the consideration of 

peroxyacetic acid or peracetic acid (PAA, CH3CO3H) as an alternative to halogenated 

disinfectants. 

PAA is a peroxide of acetic acid, which is a stronger oxidant and disinfectant than either 

sodium hypochlorite. PAA has been used for disinfection of food contact surfaces, process 

water and aseptic packaging (González-Aguilar et al., 2012). The activity of PAA is less 

affected by organic matter or food material than chlorine (Kitis, 2004). No halogenated 

disinfection by-products have been observed after the treatment of environmental water with 

PAA (Monarca et al., 2002). However, a major disadvantage of PAA is its higher cost 

compared to NaOCl. In addition, in difference to the use of chlorine, the organic load of 

processing water is affected by the addition of PAA (López-Gálvez et al., 2009). Several 

studies have investigated the application of PAA to decontaminate vegetables (Vandekinderen 

et al., 2009a; Velde et al., 2013) and poultry (Bauermeister et al., 2008). To the knowledge of 

the authors, no studies have yet investigated the decontamination of fish with PAA. 

In a previous study, it was noted that the use of a sanitizer in the wash water, specifically 

chlorine, did not significantly lower the microbiological counts on Pangasius fillets during 

processing in a Vietnamese company (Chapter 2). The low residual concentrations of 
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chlorine in the wash water used by Vietnamese companies and the high bacterial loads in the 

washing water as a function of time may explain this (Chapter 4). Therefore, the main 

objective of this study was to determine the disinfection efficacy of chlorine and (the 

alternative) PAA on both the wash water and the Pangasius fillets. First the microbiological 

build-up and the physicochemical properties of the wash water treated with chlorine during 

washing of Pangasius fillets at a Vietnamese processing plant were determined. In addition to 

this, the microbiological quality of the Pangasius fillets washed with this water were also 

determined. Subsequently chlorine and PAA were assessed with the aim of maintaining the 

microbial wash water quality on a lab-scale experiment. These results provide useful 

information that could be used to improve the microbial quality of Pangasius and related 

products in Vietnam. 

5.2 MATERIALS AND METHODS 

The small scale company that was evaluated in this study was located in Can Tho City. The 

characteristics of the sampled company have been described in Chapter 2.   

5.2.1 Description of the washing process at the fillet trimming step 

The full process flow diagram for the Pangasius fillets evaluated in this study is described in 

Figure 4.1B of Chapter 4. Washing was done at several points set in between the main 

processing steps such as filleting, skinning, trimming, and parasite control. During visits, fish 

after filleting and skinning were washed with tap-water while fish after trimming and 

checking parasite control were washed with chlorine for decontamination. Trimming itself 

was conducted in two steps (Figure 5.1). First, the subcutaneous fat and the red muscle was 

scraped-off (= trimming 1), followed by washing in tap-water (with a common ratio of 

product/water = 1/10) for 10 s to remove all muscle residues. During washing, tap-water (flow 

rate = ca. 3L/min) was run continuously to refill the washing tub. In the second part of 

trimming (= trimming 2), the belly fat, fins, bones, skins and tail of fish fillets were cut-off 

manually to achieve uniform and smooth fillets. The trimmed Pangasius fillets were then 

washed with chlorinated water combined with manual stirring. The chlorinated water was 

prepared by adding crushed-ice to tap water before dosing with chlorine. The initial 

concentration of chlorine in the chlorinated water was fixed at 50 ppm of NaOCl. This 

washing step was considered as the disinfection step. In practice, each batch of 10 kg of 
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Pangasius fillets were immersed in a water bath with 100 L of chlorinated water at 8 ± 4°C 

and stirred manually for ca. 10 s. Time between two batches was variable from 30 s to 5 min 

during visits, depending on production capacity, the products requirements, etc. (Chapter 2). 

The chlorinated water was prepared for use just before the shift started without adjustment of 

the pH. The chlorinated water was used for ca. 4 h without adjustment of the concentration, 

after which the washing tub was emptied and refilled with a new batch of chlorinated water.  

 

 

 

 

 

Figure 5.1 Procedure of trimming and washing step 

5.2.2 Sampling and analysis of the Pangasius fillets and wash water samples at a 

Vietnamese processing plant 

Pangasius fillets (ca. 200 g each) were sampled at the trimming (trimming 1 and trimming 2) 

and washing (in tap water and in chlorinated water) steps. The sampled fillets were aseptically 

taken with sterile tweezers and placed separately in sterile stomacher bags, which were then 

sealed and stored on ice until the microbiological analyses were done (within 5 h of sampling). 

Water samples (ca. 500 ml) were collected aseptically during the washing step and stored in 

sealed sterile stomacher bags. The water samples were collected after 0, 10, 15, 24, 38, 60, 95, 

151, and 239 min of use. Each sample was divided into three sub-samples. One of the sub-

samples was aseptically transferred into a sterile Falcon tube containing 0.1M Na2S2O3 (VWR, 

ProLao, China) as a neutralizing agent after which it was used for microbiological analyses. 

The water samples were stored on ice and transported in insulated boxes to the Laboratory of 

Microbiology and Biotechnology of Food Technology Department, Can Tho University, 

Vietnam for microbial analyses within 5 h of sampling. The second sub-sample was used to 

determine immediately the free and total chlorine by means of the HI93711 meter (Hanna 

Instruments, Temse, Belgium) based on N,N-diethyl-p-phenylenediamine (DPD) method 

(APHA, 1998). The third sub-sample was prepared for determination of the chemical oxygen 
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demand (COD). 10 ml aliquots of the water samples were transferred into a sterile Falcon 

tube which were frozen at -80°C and transported to the Laboratory of Food Microbiology and 

Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience 

Engineering, Ghent University Campus Kortrijk, Belgium for analyses within 15 days. 

The pH and temperature of the water samples were measured during sampling by means of a 

pH meter (Hanna Instruments, China) and a portable thermometer (± 0.1°C) (Multi-

thermometer, China).   

Upon arrival at the laboratory, a 25 g sample of fish sample was aseptically taken from 

different parts of each fillet by means of sterile scalpels and tweezers and placed in a sterile 

stomacher bag. 225 ml of sterile Maximum Recovery Diluent (MRD, Merck, Darmstadt, 

Germany) was then added, after which the mixture was homogenized for 1 min in a 

stomacher before serial (decimal) dilutions were prepared in test-tubes with 9 ml MRD. For 

the water samples, 1 ml of water was aseptically transferred to 9 ml MRD and was then 

vortexed for 10 s. Thereafter, a tenfold serial dilution series was performed. The total aerobic 

psychrotrophic counts (TPC) were determined on Aerobic Count Plate petrifilms
TM

 (3M
TM 

 

Microbiology Products, St. Paul, MN, USA) following incubation at 22°C for 72 h. Coliforms 

and E. coli were enumerated on coliform/E. coli petrifilms
TM

 (3M
TM 

Microbiology Products, 

St. Paul, MN, USA) after incubation at 37°C for 24 h and 48 h, respectively. 

5.2.3 Evaluation of the efficacy of chlorine and peracetic acid as decontamination agents 

for Pangasius fillets on a laboratory scale  

The efficacy of chlorine (50 g/L NaOCl, Javel, Horeca, Wommelgem, Belgium) and peracetic 

acid (PAA, Chriox 5, Christeyns NV, Ghent, Belgium), as decontamination agents was 

evaluated on a laboratory scale. Chriox 5, a stabilised mixture, consists of PAA (4.6-5%), 

hydrogen peroxide (23-25%), acetic acid (8-9%), water (60-65%) and stabilizer (<1%). Tap 

water was used as the control. Frozen Pangasius fillets (Pangasius hypophthalmus) were 

bought in a Belgian supermarket. The fillets varied in weight from 170 to 220 g including 10% 

glazing. The fillets were thawed by placing them at 2°C for 48 ± 2 h. Thawed fillets were then 

immersed individually in combination with manual stirring in water with or without 

disinfectant. A fish/water ratio of 1/10 was used, which is the same ratio used by the company 

evaluated in this study. For the treatment with chlorine, the pH of the wash water was 



Decontamination of Pangasius fish with chlorine or peracetic acid 

115 

 

adjusted to 6.5 using 1 M hypochlorous acid. During washing, the temperature of the water 

was maintained at ca. 8 ± 2
o
C.  

The concentration of the decontamination agents was set at 10, 20, 50 and 150 ppm and three 

levels of the contact times of 10, 40 and 240 s were evaluated for each concentration. For each 

combination of concentration and contact time, three replicates were performed independently. 

In each independent repetition, all analyses were performed in duplicate. 

5.2.3.1 Evaluation of the efficacy of microbial decontamination 

After washing, both the fillet and wash water were sampled. 0.1 M Na2S2O3 was used to 

neutralize chlorine whilst phosphate buffer (Na2HPO4 1.2g/L, NaH2PO4 0.22g/L, NaCl 8.5g/L, 

VWR, Prolabo, France) supplemented with sodium thiosulphate (1g/L) was used to neutralize 

PAA and catalase (500 mg/L, Sigma-Aldrich, Diegem, Belgium) was used to neutralize 

hydrogen peroxide residues present in PAA.  

For fish samples, a 25 g composite sample was aseptically collected from different parts of 

the fillet and transferred into sterile stomacher bag. A ten-fold dilution was made in peptone 

water (Oxoid, Hampshire, U.K.) supplemented with the sterile neutralizing agents mentioned 

above. For the water samples, 10 ml of water was aseptically taken and transferred into sterile 

Falcon tubes containing the neutralizing agents. The fish and water samples were 

homogenized for 1 min and 10 s, respectively. Subsequently, a decimal dilution was made and 

enumeration was performed by pour-plating of 1 ml appropriate sample dilutions on specific 

media: Plate Count Agar (PCA, Oxoid, Hampshire, U.K.) incubated at 22°C for 72 h for total 

aerobic psychrotrophic counts, Rapid E. coli 2 Agar (Bio-Rad, Marnes-La-Coquette, France) 

incubated at 37°C for 24 h for E. coli and coliforms and de Man Rogosa Sharpe agar (MRS, 

Oxoid, Hampshire, U.K) incubated anaerobically at 22°C for 72 h for lactic acid bacteria. To 

determine the presence of E. coli/coliform in used water, 10 ml of water was pre-enriched for 

24 h at 37°C in 90 ml of solution buffered peptone water (Oxoid, Hampshire, U.K.) 

supplemented with the sterile neutralizing agents mentioned above. Subsequently, this culture 

was streaked on Rapid E. coli 2 Agar (Bio-Rad, Marnes-La-Coquette, France) and incubated 

at 37°C for 24 h.  
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5.2.3.2 Physicochemical analysis 

To avoid the interference of PAA or chlorine as a part of the organic matter in wash water, the 

chemical oxygen demand (COD) was only measured on the tap water samples according to 

the small-scale sealed-tube method (LCI 400; Hach Lange, Belgium). Turbidity was 

determined with a turbidimeter (HI98703; Hanna Instruments, Belgium); whilst chlorine (both 

free and total chlorine) and PAA were measured according to the N,N-diethyl-p-

phenylenediamine (DPD) colorimetric method (Eaton et al., 2005) and an adjusted DPD 

method (Cavallini et al., 2013), respectively. The pH of the water was measured by a pH-

electrode (Consort C380, Belgium). 

5.2.3.3 Sensory evaluation 

During the experiment, the sensory quality of the fish samples, general appearance, color, 

odor, and texture, was initially evaluated by two researchers. Thereafter, triangle tests were 

only conducted on the samples which were considered to be acceptable for human 

consumption. 19-22 panelists participated in the triangle tests. After washing in the sanitizers, 

the fillets were rinsed in tap water for 40 s before they were used in the sensorial tests. The 

sensory evaluation was performed on both fresh and cooked fish. Each panelist had to 

evaluate the color and texture of the fresh fish samples and the odor and color of the cooked 

fish samples. For the cooked samples, ca. 100 g of fish were placed in a closed glass jar for 4 

min at 850W in a microwave. The heated samples were then cooled down for ca. 5 min before 

they were presented to the panelists. In all cases a set of three pieces of fish (each piece ca. 50 

g), randomly coded with 3-digit numbers, were presented to panelists. The panelists were told 

about two of the pieces were similar and were asked to identify the odd sample. The panelists 

were also asked to specify the samples they preferred and if any of the samples were 

unacceptable for consumption. The number of correct answers were compared to the number 

expected by using a statistical table to achieve a significant answer (5% level) according to 

the BS ISO4120:2004 (ISO, 2004). 

5.2.3.4 Color measurement 

The color is defined by three orthogonal co-ordinates of L
*
, a

*
, b

*
. L

*
 is the lightness 

component, which ranges from 0 (black) to 100 (white). The a
*
 (-green to + red) and b

*
 (-blue 

to +yellow) parameters both range from -120 to 120. A portable spectrophotometer (CM-
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2500d, Konica Minolta Sensing Inc., Osaka, Japan) running on Spectra Magix
TM

 NX (Color 

Data software CM-S100w, Konica Minolta Sensing) software expressed in CIE L
*
, a

*
, b

*
 

color space was used to measure these three color parameters. Each treatment described above 

was performed on 5 different pieces of fish fillets and the color of 3 randomly chosen points 

was measured on each fillet. 

5.2.4 Statistical analysis 

Results of the physicochemical characteristics and the microbiological analysis (log CFU/g or 

log CFU/100 ml) were reported as mean value ± standard deviation. Differences in the mean 

value of each treatment (time and concentration) were statistically assessed using a non-

parametric Kruskal-Wallis H-type test due to showed non-normality. Thereafter, comparison 

of the paired means was done using the Mann-Whitney U test  α = 0.05).   

5.3 RESULTS 

5.3.1 Evaluation of the washing steps at the Vietnamese Pangasius processing company 

The total psychrotrophic counts (TPC) on the fillets sampled at trimming 1, tap-water wash, 

trimming 2 and chlorine-water wash did not differ significantly (p > 0.05) from each other. 

The same trend was observed for the E. coli and coliform counts on these samples (Table 5.1).  

Table 5.1 Microbial counts on Pangasius fish during the trimming and washing steps 

*
Data expressed as mean value ± standard deviation (log CFU/g) of at least 9 replicates. 

Means between the products sampled in this study indicated with the same superscript letter 

were not significantly different (p > 0.05) 

The initial TPC counts, coliforms and E. coli of tap water used for washing after trimming 1 

were 5.6 ± 0.6, 3.3 ± 1.0, 3.1 ± 0.5 log CFU/100 ml, respectively. This indicates that the wash 

bath was not disinfected properly before use. These counts of TPC, coliforms and E. coli 

increased over the first 24 min of use after which the levels remained relatively stable (Figure 

5.2). 

Process  Total psychrotrophic counts  Coliforms E. coli 

Trimming 1 6.1 ± 0.6
a* 

3.9 ± 0.7
a 

2.6 ± 0.5
a 

Water -wash 6.0 ± 0.5
a 

4.1 ± 0.3
a 

2.5 ± 0.3
a 

Trimming 2 6.0 ± 0.4
a 

4.0 ± 0.6
a 

2.5 ± 0.4
a 

Chlorine- wash 5.9 ± 0.3
a 

3.9 ± 0.5
a 

2.5 ± 0.5
a 
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Figure 5.2 Microbial contamination of water in the washing tank during the washing of 

Pangasius fillet after trimming 1,  Total psychrotrophic counts, Coliforms,  E. coli  

Error bars denote standard deviation (n = 3). Quantification limit of 3 log CFU/100 ml 

          

Figure 5.3 Microbial contamination of the chlorinated water in the washing tank during the 

washing of Pangasius fillet after trimming 2,  Total psychrotrophic counts,  Coliforms,  

E. coli. Error bars denote standard deviation (n = 3). Quantification limit of 3 log CFU/100 ml 

Unlike the wash water used after trimming 1, lower initial levels of total psychrotrophic 

aerobic counts (< quantification limit of 3 log CFU/100 ml) were found in the chlorinated 

wash water used after trimming 2 (Figure 5.3). As observed for the wash water after 
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trimming 1, a rapid increase in the microbial load of the chlorinated water occurred over the 

first 24 min of use after which the contamination levels remained stable.  

The COD level increased gradually from 6.4 to ca. 1500 mg O2/L after 239 min of washing. 

The opposite trend was observed for the levels of both total and free chlorine. The initial 

concentration of total and free chlorine was 40.8 ± 3.3 and 34.4 ± 2.9 ppm, respectively, and 

thereafter, a rapid decline was observed during the washing process. As an example, after 24 

min of washing, the free chlorine level was only 7.8 ± 3.6 ppm and subsequently reduced to 

0.7 ± 0 ppm after 239 min (Figure 5.4).  

 

Figure 5.4 Total chlorine (), free chlorine () and COD () of chlorinated water during the 

washing of Pangasius fillet after trimming 2. Error bars denote standard deviation (n = 3)  

The pH values of the wash water without chlorine and with chlorine were similar at 7.8 ± 0.3 

and 7.4 ± 0.2, respectively. The temperature of the wash water without chlorine and with 

chlorine was 29.8 ± 0.6°C and 6.3 ± 2.2°C, respectively. 
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5.3.2 Evaluation of physicochemical parameters of wash water on a laboratory scale 

 

Figure 5.5 Percentage of the loss of sanitizers during washing in function of COD (related to 

time that the fillet was immersed) performed in a laboratory scale. Error bars denote standard 

deviation of at least three replicates. Value with different superscript letter between time of 

treatment shows statistical significance. 

The degradation of both disinfectants (chlorine and PAA) and COD accumulation was 

independent of the initial concentration (p > 0.05) but dependent on duration of the treatment 

(p < 0.05). The concentrations of free chlorine in the wash water targeted at 10, 20, 50 and 

150 ppm were actually 9.5 ± 0.4, 18.0 ± 1.0, 44.7 ± 3.4 and 141.3 ± 9.4 ppm, respectively. 

During washing, the quantity of free chlorine lost after exposure times of 10 s (65.1 ± 31.7% 

of loss) and 40 s (73.3 ± 20.7%) were not significantly different (p > 0.05), whilst the losses 

after 10 and 40 s were determined to be significantly different (p < 0.05) to those after 240 s 

of exposure (91.6 ± 13.5%). The actual concentrations of PAA in wash water targeted at 10, 

20, 50 and 150 ppm were 9.7 ± 0.3, 19.6 ± 0.8, 46.1 ± 1.9 and 142.7 ± 3.7 ppm, respectively. 

The degradation of PAA increased with treatment time of 10 s (9.0 ± 7.1% of degradation), 40 

s (15.9 ± 9.3%) and 240 s (35.2 ± 18.3%) (Figure 5.5). 

Turbidity was determined to increase in function of increasing COD. No significant difference 

in turbidity was seen after 10 s and 40 s of washing, in tap water, chlorinated water and PAA 
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water (Figure 5.6). However, after 240 s of washing, the turbidity of the chlorinated wash 

water (21.7 ± 6.9 NTU, Nephelometric Turbidity Unit) was significantly higher (p < 0.05) 

than that of tap water (11.6 ± 5.1NTU) and PAA water (17.4 ± 23.4 NTU). No significant 

differences (p > 0.05) were found between the turbidities of tap water and PAA water. A large 

variation, ± 23.4 NTU, was observed in wash water with PAA sampled after 240 s.  

 

 

Figure 5.6 Turbidity of wash water during treatment time. Data are expressed as mean value 

± standard deviation  NTU) of at least three replicates. Value with different superscript letter 

between sanitizers in the same groups  time of treatment) shows statistical significance. 

The temperature of the wash waters was 8.6 ± 1.8°C. The initial pH of the tap water ranged 

from 7.8 to 8.1. After washing for different times, the pH of PAA wash water, chlorinated 

wash water and tap water ranged from 5.7-7.8, 6.7-7.9 and 7.2-8.3, respectively. 

5.3.3 Evaluation of effect of water sanitizers on the microbiological quality of wash water 

on a laboratory scale 

The counts for all the bacteriological parameters evaluated of the fresh tap water used in this 

study were below the quantification limit (<3 log CFU/100 ml). Table 5.2 shows the 

microbial loads in the wash water as a function of the treatment time. Increasing in the 

concentration of chlorine in the wash water resulted in a significant reduction (p < 0.05) of the 

TPC in the water samples. The reduction of TPC in chlorinated water was determined to be 
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less influenced by time of exposure. Between 10 s and 40 s of treatment, the levels of TPC in 

the chlorinated wash water at a particular concentration of chlorine did not differ significantly 

(p > 0.05). However, at 10 and 50 ppm of chlorine, the TPC of the chlorinated water after 240 

s of washing were significantly higher (p < 0.05) than those found after 10 s and 40 s of 

washing. For example, in wash water with 50 ppm chlorine, the TPC were 4.9 ± 0.2, 3.9 ± 0.8 

and 3.6 ± 0.8 log CFU/100 ml after 240 s, 40 s, and 10 s, respectively.  

Similar results were observed in PAA wash water. Significantly lower (p < 0.05) TPC were 

found in wash water with higher concentrations of PAA. No significant differences (p > 0.05) 

were found between the TPC of the wash water with 10, 20 and 150 ppm PAA after exposure 

for 10, 40 and 240 s. An exception was found at 50 ppm, where the TPC in the PAA wash 

water was determined to be significantly different (p < 0.05) after 40 s (4.3 ± 0.1 log CFU/100 

ml) and 240 s (3.8 ± 0.1 log CFU/100 ml) of exposure. The counts after an exposure of 10 s 

(4.1 ± 0.4 log CFU/100 ml) in the wash water with 50 ppm of PAA did not differ significantly 

(p > 0.05) with the counts after exposure for 40 s and 240 s (Table 5.2).  

The lactic acid bacteria (LAB) counts in the tap water after washing for 10, 40 and 240 s did 

not differ significantly (p > 0.05) from each other. The profiles (trends) of the LAB counts in 

chlorinated and PAA wash water were similar to those of TPC. A significant reduction (p < 

0.05) of the LAB counts occurred with an increase in concentration of both chlorine and PAA, 

while no significant reduction (p > 0.05) of that occurred with an increase in exposure times 

(Table 5.2). The only exceptions were the significant increase (p < 0.05) of the LAB counts 

in the wash water with 10 and 50 ppm chlorine occurred with an increased exposure times. 
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Table 5.2 Microbial wash water contamination (log CFU/100 ml) during the decontamination of Pangasius fillets  
 

*
Data are expressed as mean value ± standard deviation  log CFU/100 ml) of at least three replicates. Quantification limit = 3 log CFU/100 ml.  

**
 Presence (+) or Absence (-) (of 10 ml water samples) by an enrichment procedure. 

Different superscript letters between various concentrations in the same column show statistical significance  p < 0.05).  

Different superscript numbers between time treatments in the same row show statistical significance  p < 0.05).  

 

 

Log 

CFU/ 

100 ml 

 

Concentration 

(ppm) 

Total psychrotrophic counts Latic acid bacteria Coliforms E. coli 

Time (s) 

10 40 240 10 40 240 10 40 240 10 40 240 

Tap 

water 
 5.3 ± 0.1

1* 
    5.4 ± 0.1

2 
5.1 ± 0.8

12 
3.6 ± 0.2

1 
3.8 ± 0.2

1 
4.1 ± 0.4

1 
<3.0 3.2 ± 0.2 3.3 ± 0.2 <3.0 <3.0 <3.0 

Chlorine 

10 4.9 ± 0.5
b1 

5.3 ± 0.2
ab1 

5.7 ± 0.0
c2 

3.1 ± 0.1
a1 

3.7 ± 0.5
b12 

3.9 ± 0.3
c2 

<3.0 <3.0 3.4 ± 0.5 <3.0 <3.0 <3.0 

20  4.6 ± 0.6
ab1 

4.8 ± 0.6
bc1 

4.5 ± 1.3
ab1 

3.0 ± 0.1
a1 

3.0 ± 0.1
a1 

3.4 ± 0.4
abc1 

<3.0 <3.0 <3.0 <3.0 <3.0 <3.0 

50  3.6 ± 0.8
ab1 

3.9 ± 0.8
ac1 

4.9 ± 0.2
b2 

<3.0
a2 

<3.0
a2 

3.3 ± 0.2
b1 

<3.0 <3.0 <3.0 <3.0 <3.0 <3.0 

150 3.4 ± 0.6
a1 

3.1 ± 0.2
a1 

3.2 ± 0.4
a1 

<3.0
a1 

<3.0
a1 

<3.0
a1 

<3.0 <3.0 <3.0 <3.0 <3.0 <3.0 

PAA 

10 5.1 ± 0.2
b1 

4.9 ± 0.2
b1 

5.0 ± 0.2
ab1 

3.5 ± 0.2
b1 

3.3 ± 0.3
a1 

3.1 ± 0.2
a1 

< 3 

(+
**

) 

< 3 (+) < 3 (+) < 3 (-) < 3 (-) < 3 (-) 

20 4.7 ± 0.1
a1 

 4.8 ± 0.4
ab1 

4.6 ± 0.1
b1 

3.1 ± 0.2
ab1 

3.4 ± 0.4
a1 

3.1 ± 0.2
a1 

< 3 (+) < 3 (+) < 3 (+) < 3 (-) < 3 (-) < 3 (-) 

50    4.1 ± 0.4
ab12 

4.3 ± 0.1
a2 

3.8 ± 0.2
a1 

<3.0
a1 

<3.0
a1 

<3.0
a1 

< 3 (+) < 3 (+) < 3 (+) < 3 (-) < 3 (-) < 3 (-) 

150  3.0 ± 0.0
ab1 

3.7 ± 0.7
a1 

3.0 ± 0.0
ab1 

<3.0
a1 

<3.0
a1 

<3.0
a1 

< 3 (+) < 3 (+) < 3 (+) < 3 (-) < 3 (-) < 3 (-) 
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The counts of coliforms and E. coli in the chlorinated and PAA wash water were in most 

cases lower than the quantification limit (<3 log CFU/100 ml). No E. coli occurred in 10 ml 

of PAA wash water while sample enrichment showed that coliforms survived at all time and 

concentration combinations. Enrichment was not performed on the wash water samples 

originating from fillets washed with chlorinated water (Table 5.2). 

5.3.3.1 Evaluation of the effect of water sanitizers on the microbial quality of Pangasius fillets 

on a laboratory scale  

            

            

Figure 5.7 E. coli counts of Pangasius treated with chlorine (A) and peracetic acid (B), * 

indicates values below or equal to detection limit (≤ 1 log CFU/g) 

The antimicrobial effect of chlorine and PAA sanitizers was evaluated on Pangasius fillets. 

The initial TPC, E. coli, coliforms and LAB counts of unwashed Pangasius fillets were 5.6 ± 

0

1

2

3

4

10 40 240

lo
g

 (
C

F
U

/g
)

t (s)

unwashed

water

10 ppm

20 ppm

50 ppm

150 ppm

* * ** * ** ** * *

0

1

2

3

4

10 40 240

lo
g

 (
C

F
U

/g
)

t (s)

unwashed

water

10 ppm

20 ppm

50 ppm

150 ppm

A 

B 



Decontamination of Pangasius fish with chlorine or peracetic acid 

125 

 

0.3, 2.4 ± 0.7, 3.5 ± 0.3 and 4.1 ± 0.3 log CFU/g, respectively. The reduction of TPC on the 

Pangasius fillets washed in chlorinated and PAA water ranged 0-0.3 log CFU/g and 0-0.1 log 

CFU/g, respectively. The LAB counts on the Pangasius fillets were reduced by 0-0.4 and 0- 

0.5 log CFU/g when they were washed in chlorinated and PAA water, respectively. The 

coliforms on Pangasius fillets were reduced by 0 to 0.3 log CFU/g when the fillets were 

washed with chlorine water compared to 0 to 0.4 log CFU/g when the fillets were treated with 

PAA wash water. The lower reduction was observed for E. coli by 0-1.0 log CFU/g on the 

Pangasius fillets washed in chlorinated wash water compared to a reduction of 0.4-1.4 log 

CFU/g on the Pangasius fillets washed in PAA wash water (Figure 5.7). 

5.3.3.2 Sensory analysis 

A 

 

B 

 
Figure 5.8 Sensorial test of raw (A) and cooked Pangasius (B) after washing in both 

chlorinated and peracetic acid water at 50 ppm.  number of panelists choosing the wrong 

samples as the odd sample,  number of panelists choosing the correct samples as the odd 

sample. The line shows a minimum number of correct answers to have a significant difference 

in sensory quality between series ( = 0.05).  
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The sensorial quality of the fillets treated in water with 10 or 20 ppm of both chlorine and PAA at 

different treatment times, did not differ to that of fillets washed in tap water. This is in contrast 

with washing in 50 and 150 ppm chlorine or PAA which resulted in some changes to the sensorial 

properties of the fillets when they were compared with the fillets washed in tap water. Washing in 

150 ppm of chlorine and PAA resulted in fillets that were discolored, with chlorine odors and soft 

texture after treatment. The sensorial changes after washing in 50 ppm chlorine and 50 ppm PAA 

were evaluated by means of triangle tests employing 19-22 assessors. It was determined that the 

overall quality of the fillets (color, texture and odor) washed in 50 ppm chlorine and PAA did not 

differ significantly (p > 0.05) from those washed in tap water  (Figure 5.8). 

5.3.3.3 Effect of washing in chlorine and PAA on the color of Pangasius fillets 

In addition to the sensory evaluation, changes in the L
*
, a

*
 and b

*
 color parameters on 

Pangasius fillets as a result of washing in 50 ppm chlorine or PAA at 50 ppm after contact 

times of 10, 40 and 240 s were determined (Table 5.3). Washing in either 50 ppm chlorine or 

50 ppm PAA had no significant effect (p > 0.05) on the L
*
, a

*
 and b

*
 values in comparison to 

L
*
value of fillets washed in tap water. The only exceptions were significantly lower (p < 0.05) 

a
*
 and b

*
 values observed on Pangasius fillets washed for 240 s in chlorinated and PAA water, 

respectively compared to that washed in tap water for the same duration. 

Table 5.3 Effect of chlorine (50 ppm) and peracetic acid (50 ppm) treatment on the color of 

Pangasius fillets 

Samples Time (s)          L
* 

        a
* 

      b
* 

Chlorine 

water 
10 

53.6 ± 3.7
a1* 

56.8 ± 6.3
a 

-1.3 ± 0.5
a 

-1.1 ± 0.9
a 

4.6 ± 1.1
a 

4.8 ± 2.7
a 

PAA 

water 
10 

56.2 ± 4.5
a 

58.5 ± 5.0
a 

-2.9 ± 0.4
a 

-2.8 ± 0.5
a 

4.8 ± 1.0
a 

4.2 ± 1.1
a 

Chlorine 

water 
40 

54.7 ± 2.1
a 

54.0 ± 3.7
a 

-2.3 ± 0.6
a 

-2.1 ± 0.7
a 

6.4 ± 1.5
a 

6.4 ± 1.4
a 

PAA 

water 
40 

56.3 ± 3.9
a 

54.0 ± 3.7
a 

-1.9 ± 0.8
a 

-2.1 ± 0.7
a 

5.4 ± 1.8
a 

6.4 ± 1.4
a 

Chlorine 

water 
240 

54.9 ± 5.5
a 

52.8 ± 3.2
a 

-2.8 ± 0.4
a 

-2.1 ± 0.6
b 

5.0 ± 2.2
a 

5.9 ± 1.3
a 

PAA 

water 
240 

57.3 ± 3.7
a 

55.5 ± 5.6
a 

-1.7 ± 0.6
a 

-1.6 ± 0.6
a 

3.7 ± 1.2
a 

4.9 ± 1.8
b 

1
Data are expressed as mean value ± standard deviation of five replicates

 

*
Different superscript letters between two samples in the same column show statistical 

significance (p ≤ 0.05) 
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5.4 DISCUSSION 

5.4.1 Efficacy of the disinfection protocol used at the Vietnamese processing company  

Chlorinated water was used during processing at the Vietnamese company investigated in this 

study to decontaminate Pangasius products. This has been discussed in our previous studies 

(Chapter 2 & Chapter 4). Those studies determined that the use of chlorine had no effect on 

microbial quality of Pangasius products processed at this company. Potential reasons were 

suggested due to the inappropriate application of the chlorine such as the chlorine 

concentration, pH, and organic matter of the chlorinated water. These factors were overlooked 

by the processor. The results of this study confirmed that the suggested reasons were 

responsible for the observed lack of efficacy. The concentration of free chlorine decreased 

rapidly, from 34.4 ± 2.9 ppm to 7.8 ± 3.6 ppm after 24 min of use. The organic matter in the 

wash water rose rapidly, ca. 390 mg O2/L of COD was detected after only 24 min of washing. 

In addition, the pH of the chlorinated water (7.8 ± 0.3), was outside the range for the optimal 

activity of chlorine (pH 6.5-7.5). Some previous studies have determined that chlorine is 

much more effective for inactivation of bacteria in wash water than it is for decontamination 

of products surfaces (Gil et al., 2009; Sapers, 2001). The quality of wash water is important 

for the effectiveness of the washing process and its quality deteriorates rapidly as a result of 

the accumulation of product residues and other foreign materials (Ragaert et al., 2007). In 

addition, a high risk of contamination of the Pangasius fillets by Vibrio cholerae was 

determined to occur during washing in tap water at the same company (Chapter 4). Therefore, 

the use of sanitizers to reduce or eliminate the microbial loads in the water is necessary.  

However, it is essential that enough active sanitizer is maintained in the wash water to avoid 

cross-contamination between products from different batches or between products in the same 

batch as has been emphasized in the studies performed on vegetables (Allende et al., 2008; 

López-Gálvez et al., 2009; Van Haute et al., 2013d). In this study, the high TPC counts seen 

during the initial stages of washing (ca. 5.5 log CFU/100 ml) may have been caused by the 

inadequate hygiene and sanitation levels at the sampled company (Chapter 4). The bacterial 

contamination levels in the wash water increased gradually as a function of time during 

washing due to accumulation of microorganisms and large amounts of nutrients from 

suspended matter and protein (Mameri et al., 1996; Ragaert et al., 2007). A large quantity of 

fish was washed in a water bath (ca. 620 kg fillets/151 min) and in a bath with chlorinated 
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water (ca. 750 kg/239 min, data not shown) before the water was renewed. In this way, there 

is a high probability of transmission of microorganisms from contaminated products into the 

wash water (Allende et al., 2008). Chlorine played an effective role in maintaining low 

microbial loads in the chlorinated water during the first 10-15 min of washing (TPC counts 

ranged 3.2-4 log CFU/100 ml after 10-15 min of washing). However, the chlorinated water 

was used for up to 4 h at the company. Increase in the the microbial counts in the chlorinated 

water started after 15 min of washing (e.g. TPC increased up to 5.7 log CFU/100 ml after 24 

min of washing). It has been determined that the buildup of the microbial load in wash water 

directly influences the quality and safety of the washed products (Allende et al., 2008). 

Therefore, it is essential that enough residual chlorine remains in the chlorinated water by 

continuously adding to prevent further contamination (Casani et al., 2005; Van Haute et al., 

2013a). The optimum residual level of chlorine in wash water used for Pangasius products 

should be established to improve the efficacy of decontamination. 

5.4.2 Disinfection efficacy in lab scale experiment 

Pangasius fillets were washed in chlorine or PAA water in the lab, with washing in tap water 

as the reference treatment. Higher reduction of the TPC in the wash water was observed when 

high concentrations of chlorine were used. Although in general the reduction of the TPC in 

chlorinated water was less influenced by time of exposure, a longer treatment time resulted in 

an increase in the bacterial counts in the wash water i.e. the TPC increased from 3.9 ± 0.8 to 

4.9 ± 0.2 log CFU/100 ml in 50 ppm chlorine water after it had been used for 40 and 240 s, 

respectively. In this study, active free chlorine was lost rapidly (53-83% of loss after 40 s and 

82-98% after 240 s) after a single batch was washed. Meanwhile, a significant increase of the 

COD and turbidity was seen during time of treatment. Increase in the COD was related to the 

loss of active free chlorine since chlorine reacts with organic matter. This accounts for the 

limited efficacy of chlorine in maintaining the microbial quality of water when it is used in a 

batch washing system. The levels of decontamination of the Pangasius fillets were also 

investigated. The initial counts on the Pangasius fillets sampled in this study were in 

agreement with previous studies regarding the microbiological quality of Vietnamese 

Pangasius products (Chapter 2 & Chapter 4). Chlorine was limited in its ability to reduce 

the microbiological counts on Pangasius fillets as the maximum reductions observed were 0.3 

(TPC), 0.4 (LAB), 0.3 (coliforms) and 1.0 log CFU/g (E. coli) in this study. Some previous 
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studies on poultry and vegetable indicated that the efficacy of the antimicrobials used is 

influenced by the level of bacterial attachment, initial counts of microorganisms on the 

products, and susceptibility of microorganisms to the antimicrobials (Bauermeister et al., 

2008; Jahid and Ha, 2012; Takeuchi and Frank, 2001; Van Haute et al., 2013d). Moreover, 

because treatment with disinfectants can affect the sensory properties of fish, it is important to 

determine potential changes in the overall sensory quality of Pangasius treated with chlorine. 

In this study, the organoleptic properties of the chlorine-treated Pangasius were largely 

satisfactory. The only exception was fish washed with 150 ppm chlorine water which was 

discolored and had a chlorine odor (especially notable after  40 s). As this study was limited 

to evaluation of chlorine at 0, 10, 20, 50 and 150 ppm, the acceptability of the organoleptic 

properties of chlorine-treated Pangasius should be further evaluated at concentrations 

between 50 and 150 ppm. On the other hand, some studies on vegetables indicated that low 

concentrations of chlorine could be used to wash products without loss of antimicrobial 

efficacy whilst reducing the risk of formation of toxicity of chlorination by-products (López-

Gálvez et al., 2009; Luo et al., 2011; Van Haute et al., 2013a).  

The use of PAA as an alternative sanitizer has been sporadically studied for washing 

vegetables, fruits and poultry (Bauermeister et al., 2008; Vandekinderen et al., 2009b; Velde 

et al., 2013). In this study PAA was less influenced by the presence of organic matter as the 

concentration of PAA residues decreased to a less extent during treatment (15.9 ± 9.3% of 

loss after 40 s). The high PAA residue concentration in the water reduced the microbial loads 

in water sampled in this study. PAA was also very effective against E. coli because no E. coli 

was recovered from 10 ml samples of PAA water irrespective of the combination of 

concentration and contact time. However, coliforms were still recovered when the water 

samples were enriched. This indicates that E. coli is more sensitive to PAA than others 

species of coliforms. In contrast, reduction of LAB on Pangasius fillets was maximally 0.5 

log CFU/g compared to 1.4 log CFU/g for E. coli reduction. Gram-positive bacteria are less 

sensitive than Gram-negative bacteria. Ruiz-Cruz et al. (2007) showed that the reduction of 

bacteria inoculated onto shredded carrots by PAA (40 ppm) was ranked as follows in 

decreasing order of efficacy: Salmonella, E. coli O157:H7 (both Gram negative) and L. 

monocytogenes (Gram-positive). It should be kept in mind that PAA was applied in this study 

on a single batch without reuse. Therefore, further studies should evaluate washing with PAA 

in a continuous system as applied at the Vietnamese company investigated in the study.  
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In similarity to the results observed for chlorine, the sensorial properties of fish washed in 150 

ppm PAA were changed after treatment. This was characterized by a typical PAA odor, a soft 

texture and surface discoloration; however, the acceptability of Pangasius treated in PAA 

water of 150 ppm should further tested. Application of PAA at lower concentrations ( 50 

ppm) did not significantly affect the sensorial quality of the fish. Although no significant 

differences were determined by means of the Triangle test between either fresh and cooked 

Pangasius washed with water of 50 ppm PAA for 240 s, the b 
*
value of fish treated with PAA 

was significantly lower (p < 0.05) than that of fish washed in tap water. This indicated a 

yellowness decrease. Although the L
*
 parameter was higher in the PAA treated fish, 

indicating a lighter color, these values were not significantly different (p > 0.05) from those of 

the fillets washed in tap water. 

5.5 CONCLUSION 

To our knowledge, this is the first study performed specifically on the washing step applied to 

Vietnamese Pangasius products destined for export. Chlorine was not used properly by the 

company that was investigated. It was only added at the beginning of the batch and due to the 

very long application time of the chlorine washing water without renewal (239 min), a high 

possibility actually existed of cross contamination taking place from the contaminated water 

to the fish. The use of a single batch of chlorinated water for a batch of fish or continuous 

adding of chlorine to maintaining wash water disinfection capacity can be used to improve the 

level of decontamination attained on the fish as well as to avoid the possibility of cross 

contamination taking place from the wash water to products. In general, the microbial quality 

of the wash water and fish after treatment with chlorine was similar to that treated with PAA. 

However, PAA water can be used for a longer time (or over more batches) as its efficacy is 

less influenced by the certain accumulation of organic matter during treatment. Therefore, 

preserving the chlorine concentration is essential in case of implementing chlorine in 

continuous washing processes.  
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ABSTRACT 

Disinfection of Pangasius by washing in chlorinated water is commonly implemented during 

processing. Chlorine is often added at the beginning of the batch and continuously used for 

washing several batches. However, the disinfection efficacy of chlorine decreases in the 

presence of organic matter and it also degrades very rapidly. To improve the microbial quality 

of the wash water and in turn to avoid the cross contamination from the wash water to the 

products, this study investigated the continuous dosing of chlorine to the wash water by 

means of a pump to maintain antimicrobial levels of free chlorine in the washing bath during 

the washing of 12 batches of Pangasius fillets. In comparison to the control (no chlorination), 

a reduction in the microbial counts of the chlorinated wash water was observed. As an 

example, the counts of psychrotrophic bacteria reduced by between 2-4 log CFU/100 ml of 

wash water, but no reducing effect on the fish fillets was found. After the final batch was 

washed, total chlorine and organic matter in the water sampled had accumulated to 482.9 ± 

17.0 ppm and 4447.5 ± 187.4 mg O2/L, respectively. However, only 8.9 ± 1.3 µg/L of 

trihalomethanes were formed in the chlorinated wash water whereas no trihalomethanes were 

detected in the washed Pangasius fillets after rinsing. It was concluded that the Pangasius 

fillets washed in chlorinated water continuously dosed with chlorine were safe for human 

consumption even after 12 batches had been washed. However, the organoleptic properties of 

Pangasius fillets washed in the final batch were unacceptable due to discoloration (bleaching) 

and chlorine odor. The organic matter and residues of free chlorine in the wash water can be 

estimated more rapidly and conveniently by measuring UV absorbance at 249 nm and the 

oxidant redox potential (ORP), respectively.  
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6.1 INTRODUCTION 

In the fishery industry, chlorinated water is used for different purposes including disinfecting 

the facilities, equipment, utensils  knives, cutting boards, baskets), workers‘ protective 

clothing (gloves and boots), hands and the fish surface. The dose of chlorine used varies 

depending on the intended use i.e. 50-200 ppm is used for washing floors and cleaning boxes 

and tables (Arbor, 2008), 50-100 ppm for disinfecting hands (Kanduri and Eckhardt, 2008), 

50 ppm for disinfecting headless-shell shrimps (Arbor, 2008). Over the last decade, only a 

few studies have reported about the inactivation by chlorinated water of artificially inoculated 

pathogens onto fish surface (Chapter 1). Up to date, no studies have been reported regarding 

the decontamination of the natural microbiota of fish by chlorine.     

Pangasius fish is washed in chlorine water (2-10 ppm) during processing in Vietnam (Anh et 

al., 2010) but no specific study has been performed on its effectiveness. Previously, it is 

reported that no significant differences occurred between the microbial evolution on 

Pangasius fish treated with non-chlorinated water and that treated with 50-80 ppm chlorine 

(Chapter 2). A further study evaluating the microbial safety and quality of Pangasius fish 

during processing reported no effective decontamination of fish manually washed in 

chlorinated water (50 ppm chlorine) (Chapter 4). Loss of the bactericidal activity chlorine 

used for washing the fish occurred as the chlorine was added once only at the start of the shift 

and this wash water was reused for 239 min. The accumulation of high microbial loads in 

reused wash water directly impacts the microbial quality of the washed products as a result of 

the transmission of microorganisms to the products (Allende et al., 2008) & (Chapter 4). On 

the other hand, chlorine decomposes very rapidly as a result of its reaction with organic 

matter (Suslow, 2008; Van Haute et al., 2013d). Therefore, in the industrial processes, it is 

more realistic to maintain a low level of chlorine in a washing bath sufficient to avoid cross 

contamination onto washed products i.e. for disinfection of the fish by a washing process. 

Cross contamination has been reported to be controlled by maintaining a residual chlorine 

level of at least 1 ppm after an hour during the washing of fresh cut lettuce (Van Haute et al., 

2013a) whilst maintaining chlorine at 7 ppm has been reported to keep the wash water free 

from pathogens for 1 hour during the washing of fresh–cut spinach (Gómez-López et al., 

2014). However, the use of chlorine may lead to the formation of disinfection by-products 

when organic matter is present in the water (FAO/WHO, 2008; Luo et al., 2011). These by-

products include trihalomethanes (THMs), haloacetic acids, haloketones, haloacetinitriles, 
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chloral hydrate and chloropicrin (COT, 2006). THMs (including chloroform, 

bromodichloromethane, chlorodibromoethane and bromoform), haloacetic acids (including 

trichloroacetic, dibromoacetic and dichloroacetic acid) and trichloroacetaldehyde are possibly 

carcinogenic to humans (Gopal et al., 2007).  

Some recent studies (mostly on fresh-cut vegetables) have also evaluated the chemical safety 

of both washed products and the washing water when disinfectants are used (Gómez-López et 

al., 2014; López-Gálvez et al., 2010a; Van Haute et al., 2013a). To date no study has been 

performed on the decontamination efficacy of both fish and wash water in a dynamic system. 

In this study, a surface decontamination process for Pangasius products in Vietnam was 

evaluated whereby successive batches of fish were washed in a bath where the chlorine 

concentration was maintained by continuously adding chlorine to the wash water by means of 

a pump. The residual chlorine levels and the accumulation of organic matter in the wash water 

were evaluated. The microbial inactivation in both the wash water and on the fish was 

investigated. In addition, the sensorial quality and chemical safety (THM levels) of the treated 

fish were taken into consideration. 

6.2 MATERIALS AND METHODS 

6.2.1 Process wash water 

Frozen Pangasius fish was purchased from a Belgian supermarket and was further thawed as 

described in § 5.2.3 . The thawed fillets were washed in the laboratory in a dynamic system 

which consisted of a water bath, a sodium hypochlorite pump, and a sensor for the pH, 

temperature and redox potential of the wash water. The fillets were washed in chlorinated 

water and in tap water as the control. 

The ratio of fish to water was ca. 1 to 10 (one fillet to 2 L of water). The fish was manually 

washed for 40 s in each batch. The waiting time between batches was 30 s. This waiting time 

was based on that observed in an earlier investigated Pangasius processing company in 

Vietnam (Chapter 5). Each experiment, 12 batches of fillets were washed in the same wash 

water. The pH of the washing water was set at pH of 6.5 (by means of 1M HCl) for every 

batch that was washed. The sodium hypochlorite (24.5 g/L NaOCl, Loda, Belgium) was 

continuously pumped to maintain the level of free chlorine in the water at 10 ppm. The 

concentration of free chlorine was monitored every 1 min and the flow rate of the pump was 
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manually adjusted where necessary. Tap water was added after every batch (i.e. one fillet) to 

compensate for the water lost during washing. The temperature of the washing water was 

maintained between 8-10°C by placing ice underneath the washing tank. Two independent 

repetitions (repetition 1 and 2) with chlorinated water were performed. As control experiment 

(non-chlorinated water), tap water was used as wash water. Before experiment performed, the 

tap water was contained in the clean tanks for a week storage at 2-4°C.  

In this study, the effect of chlorine on decontamination of the fish surface was evaluated by 

means of the microbiological analysis of the fish after washing in chlorinated water. In 

contrast, the effect of chlorine on sensory and chemical safety of fish intended for human 

consumption was evaluated on the fish washed in chlorinated water after rinsing for 40 s in 

ordinary tap water. 

6.2.2 Physico-chemical analysis 

The pH, temperature and oxidation reduction potential (ORP) of the wash water were 

measured every 10 s using a portable HACH HQ40D digital meter connected to a data logger 

(Hach Lange, Germany). To avoid interference of chlorine, only the wash water of the control 

experiment was sampled to measure the chemical oxygen demand (COD) level by means of 

the small-scale sealed-tube method (LCI 400; Hach Lange, Belgium). Absorbance was 

measured at 249 nm with a UV visible (UV-vis) spectrophotometer (UV 1601, Shimadzu, 

Belgium) in quartz cuvettes with a 1-cm path length (Hellma, Belgium) after filtration 

through a 0.45 μm polytetrafluorethylene filter  Macherey-Nagel, Belgium). In addition, free 

chlorine was measured every minute and total chlorine was measured every four minutes 

according to the N,N-diethyl-p-phenylenediamine (DPD) colorimetric method (Eaton et al., 

2005).  

6.2.3 Microbiological analysis 

The water samples were taken after washing batches 1, 3, 6, 9, and 12 while the fish samples 

were taken after washing batches 1, 5 and 11 as representing the beginning, intermediate and 

final moment of the washing process, respectively. For the fish samples, representative 25 g 

samples were aseptically transferred into sterile stomacher bags after which 225 ml of 

buffered peptone water (Oxoid, Hampshire, U.K.) supplemented with the sterile neutralizing 

agent (0.1 M Na2S2O3) was added. The analysis of the total aerobic psychrotrophic counts, 
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lactic acid bacteria, E. coli and coliforms was performed as described in § 5.2.3.1 The media 

and incubation conditions for these microbial parameters are described in § 5.2.3.1 in 

Chapter 5. 

For the chlorine experiment, 50 ml of water samples was aseptically taken and transferred into 

sterile Falcon tubes containing the sterile neutralizing agent. Due to the presence of fish 

matrix in the wash water, a filter membrane approach could not be executed. To lower the 

quantification limit for the chlorinated water samples, ten ml of non-diluted sample were 

distributed over 4 plates of Plate Count Agar (PCA, Oxoid, Hampshire, U.K.) and de Man 

Rogosa Sharpe agar (MRS, Oxoid, Hampshire, U.K); and 1 ml of non-diluted sample were 

spread over 4 plates of Rapid E. coli 2 Agar (Bio-Rad, Marnes-La-Coquette, France). For the 

control experiment with non-chlorinated water, serial decimal dilutions of the water samples 

were then prepared in physiological saline solution (1g neutralized peptone and 8.5 g NaCl 

per L). One ml of the tenfold diluted water samples was plated on PCA, MRS and Rapid E. 

coli 2 Agar. The incubation conditions for these plates are described in § 5.2.3.1 in Chapter 5. 

6.2.4 Sensory evaluation 

Triangle tests were used to determine if washing in chlorinated water has an influence on 

sensory quality of fish. After washing in chlorinated water, fillets from batch 2, 3, 4, 6, and 12 

were rinsed for 40 s in ordinary tap water. The fillets washed in tap water were used as the 

reference. Thereafter, the fillets were cut into ca. 50 g pieces and randomly coded with three 

digit numbers for sensory evaluation of fresh fish. 12-19 panelists participated in the tests. 

The procedures followed were based on the ISO 4120:2004 Sensory analysis-Methodology-

Triangle test (ISO, 2004) as described in § 5.2.3.3 in Chapter 5. 

6.2.5 Disinfection by-products 

 The formation of halogenated by-products such as chloroform, bromoform, 

dichlorobromomethane, and dibromochloromethane, was determined by means of head space-

gas chromatography/mass spectrophotometry as described by López-Gálvez et al. (2010a). 

THMs were analyzed in the water and in the treated fish sampled in the final batch (batch 12, 

= after 15 min. of treatment). The fish samples were rinsed in ordinary tap water for 40 s 

before analyzing.  
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6.2.6 Statistical analysis 

For each experiment two independent repetitions were performed. Each repetition was 

analyzed in duplicate. The results of the microbiological analysis of the water and fish were 

expressed as log CFU/100 ml and log CFU/g, respectively. The results are reported as the 

mean value ± standard deviation. Cross-correlations were tested by means of the non-

parametric Spearman rank order correlation coefficient  r) two tailed test  α = 0.05) in SPSS 

version 20 version (IBM Inc., Chicago, Ill., USA). 

6.3 RESULTS 

6.3.1 Evolution of the physico-chemical properties of the wash water during processing 

 

Figure 6.1 Changes in ORP (oxidation-reduction potential) of wash water during treatment 

with chlorinated water () and non-chlorinated water (●) (mean value ± standard deviation of 

2 repetitions) 

As can be seen in Figure 6.1, the initial oxidation-reduction potential (ORP) of chlorinated 

water was 838.6 ± 23.1 mV and remained between 860 and 880 mV through the first seven 

batches (up to batch 7 or 9 min of washing). Thereafter, the ORP decreased to i.e. 719.3 ± 

68.5 mV (batch 9) and gradual decreased down to 681.0 ± 29.5 to batch 12 (up to 15 min of 

washing). It can also be seen in Figure 6.1 that the ORP of the ordinary tap water (the control) 

was initially 383.6 ± 74.2 mV and gradually decreased to 300.9 ± 0.1 mV at the end of the 

washing process (12 batches). The chlorine concentration of ordinary tap water before 
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washing was lower than detection limit (<0.5 ppm). As can be seen in Figure 6.2A, the initial 

concentration of free chlorine in the wash water of the first repetition was 36.4 ppm and 

increased to 58.6 ppm after the first batch was washed. Thereafter, it remained 58.6 ppm up to 

batch 4 of washing (ca. 5 min of washing). Then, the free chlorine concentration declined 

rapidly to ca. 7 ppm after batch 7 was used. The initial free concentration of chlorine in the 

wash water used in the second repetition was much lower than that of the first repetition. As 

observed in the first repetition, the free chlorine concentration increased to ca. 30 ppm at 2.5 

min; followed by a rapid decline to ca. 10 ppm after 6 min of washing. Subsequently, the free 

chlorine concentration rose up to ca. 20 ppm at ca. 8 min before decreasing to ca. 8 ppm as 

from 11 min of washing (Figure 6.2A). The initial total chlorine was 47.4 and 21.3 ppm in 

the wash water used in the first and second repetitions, respectively. In difference to the trend 

observed for the free chlorine, the concentration of total chlorine increased steadily 

throughout the washing to ca. 170, 340 and 480 ppm after ca. 5, 10 and 15 min, respectively 

(Figure 6.2B). 

 

Figure 6.2 Concentration of free chlorine (A) and total chlorine (B) during treatment, 1
st
 () 

and 2
nd 

repetition () are reported. 
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The pH of ordinary tap water before washing was 8.0 ± 0.2. During washing, the pH of tap 

water ranged from 7.3 to 7.7. The initial pH of chlorinated water was 6.5 ±  0.8 and ranged 

from 6.5 to 6.9 during the washing. The temperature of the different wash waters ranged from 

7.2 to 8.2°C during the washing process.  

 

Figure 6.3 The profile of chemical oxygen demand (COD, ) and Absorbance (UV at 249 

nm, ●) of wash water during control treatment with tap water. 

The COD level increased gradually from 16.8 ± 3.9 (at t = 0 min) to 4735 ± 219.2 mg O2/L (at 

t = 15 min, after washing of batch 12). The absorbance (at 249 nm) of tap water was initially 

0.04 ± 0.03 and increased gradually during washing to a maximum value of ca. 3 as from ca. 

9 min of washing onwards (Figure 6.3). A strong correlation was observed between the COD 

level and absorbance (r = 0.949 for entire washing process). Negative correlation coefficients 

of -0.773 and -0.764 were also determined between ORP and COD and between the ORP and 

absorbance, respectively. A relatively strong correlation of r = 0.859 was observed between 

the ORP and free chlorine.  

6.3.2 Evolution of bacterial counts   

The initial lactic acid bacteria (LAB), total aerobic psychrotrophic counts (TPC), E. coli and 

coliforms counts of the tap water used in this study were all below the limit of quantification 

for TPC and LAB (<3 log CFU/100 ml); and below limit of detection for coliforms and E. 

coli (< 2 log CFU/100 ml). The counts of LAB, TPC and coliforms in the tap water increased 
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from the moment fish entered the washing bath during the washing process and stayed high 

during the washing process. Specifically, the TPC rose sharply up to 5.6 ± 0.8 log CFU/100 

ml after the first batch was washed (ca. 2 min). Thereafter, the TPC increased slightly to a 

maximum level of 6.5 ± 0.2 log CFU/100 ml after batch 9 (or 11 min). The same trend was 

observed for the counts of LAB and coliforms in the non-chlorinated water during the 

washing process. In difference, the E. coli counts remained below the detection limit (< 2 log 

CFU/100 ml) during washing in non-chlorinated tap water (Figure 6.4) 

 

Figure 6.4 Profile of microbial counts of washing with tap water (control experiment), total 

aerobic psychrotrophic counts (TPC), ● lactic acid bacteria (LAB), and  coliforms. E. coli: 

no colonies were detected in 1 ml of non-diluted wash water samples (<2 log CFU/100 ml) 

 

In the experiment performed with chlorinated water, the initial LAB, TPC, coliforms and E. 

coli counts were all below the limit of detection (<1 log CFU/100 ml for TPC and LAB; and 

<2 log CFU/100 ml for coliforms and E. coli). A TPC of 3 log CFU/100 ml after three batches 

of fillets washed was seen in the chlorinated water in the first repetition. Thereafter, the TPC 

reduced to below the detection limit (<1 log CFU/100 ml) during the rest of the washing 

process. The LAB counts were 2.4 log CFU/100 ml and then decreased to below the limit of 

detection (<1 log CFU/100 ml) during the washing process (batch 6 onwards). Both coliforms 

and E. coli were less than the detection limit (<2 log CFU/100 ml) (Table 6.1). During the 

second repetition, the TPC of the chlorinated wash water was ca. 4 log CFU/100 ml after the 

first batch was washed and thereafter gradually decreased to 3 log CFU/100 ml after batch 9 

was washed (Table 6.1). Thereafter, the TPC decreased to counts below the detection limit 
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(<1 log CFU/100 ml). The LAB, coliforms and E. coli counts of the chlorinated water used in 

the second repetition followed the same trend as that seen in the first repetition (Table 6.1). 

Table 6.1 Microbial counts of chlorinated wash water used in the 1
st
 and 2

nd
 repetition 

Water tested 

after 

washing 

batch N 

Experiment 1 

 

Experiment 2 

 

TPC* 

 

LAB* E. coli** Coliforms** TPC 

 

LAB E. coli Coliforms 

1 3.1 2.4 <2.0
b 

<2.0
 b
 3.9 2.7 <2.0

b 
<2.0

 b
 

3 3.0 2,1 <2.0
 b
 <2.0

 b
 3.7 2.7 <2.0

 b
 <2.0

 b
 

6 <1.0
a 

<1.0
 a
 <2.0

 b
 <2.0

 b
 3.7 <1.0

 a
 <2.0

 b
 <2.0

 b
 

9 <1.0
a
 <1.0

 a
 <2.0

 b
 <2.0

 b
 3.1 <1.0

 a
 <2.0

 b
 <2.0

 b
 

12 <1.0
 a
 <1.0

 a
 <2.0

 b
 <2.0

 b
 <1.0

a 
<1.0

 a
 <2.0

 b
 <2.0

 b
 

*TPC and LAB: Limit of quantification (LOQ) = 2 log CFU/100 ml, limit of detection (LOD) 

= 1 log CFU/100 ml 

**E. coli and coliforms: Limit of quantification (LOQ) = 3 log CFU/100 ml, limit of detection 

(LOD) = 2 log CFU/100 ml 

a
:  no colonies were detected in 10 ml of non-diluted wash water samples 

b
:  no colonies were detected in 1 ml of non-diluted wash water samples 

 

Samples of Pangasius fillets were taken for microbiological analysis at the beginning, middle 

and end of the washing process. The initial counts of TPC, LAB, coliforms and E. coli were 

6.0 ± 0.1, 4.8 ± 0.8, 4.1 ± 0.1 and <1 log CFU/g (detection limit = 1 log CFU/g), respectively. 

No significant differences were found between the microbiological qualities of the fillets 

treated in non-chlorinated and chlorinated water. No significant differences were also found 

between the Pangasius fillets sampled at the beginning, middle and end of the washing 

process. The counts of TPC, LAB, coliforms and E. coli on the Pangasius fillets washed in 

chlorinated water were between 5.9-6.0, 4.8-4.9, 3.9-4.0 and 1.2-1.5 log CFU/g, respectively, 

whereas the same microbial parameters on Pangasius fillets washed in non-chlorinated tap 

water were between 5.7-6.2, 4.2-5.0, 3.9-4.4 and 1.2-1.5 log CFU/g, respectively.  
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6.3.3 Sensorial quality and chemical safety of Pangasius fillets washed in chlorinated and 

non-chlorinated water 

The effect of washing the fillets with chlorinated water on the sensorial quality (color and 

odor) was evaluated by means of Triangle tests in which fillets washed with non-chlorinated 

water were designated as the reference samples. No significant differences (p > 0.05) were 

found between the sensorial qualities of the fillets washed in chlorinated and non-chlorinated 

water up the fourth batch (Table 6.2). However, a significant difference (p < 0.05) was found 

between the sensory qualities of the fillets treated in non-chlorinated and chlorinated water as 

from batch 6 onwards. More whitened fish and chlorine odor were noticed to differentiate 

between the fillets treated in chlorinated water and non-chlorinated water as from batch 6 

onwards. 

Table 6.2 Sensory evaluation of Pangasius in a consecutive washing with chlorine 

Fish tested 

after washing 

in batch 

Number 

of 

assessors 

Number 

of correct 

responses 

Required 

number of 

correct 

responses 

Significant difference  

(p < 0.05) 

 2
a
 (1*) 12

 
5

 
8

 
  No

**
 

3 (2) 13 7 8 No 

4 (2) 17 9 10 No 

6 (1) 12 10 9 Yes 

6 (2) 19 12 11 Yes 

12 (1) 12 11 8 Yes 

12 (2) 13 8 8 Yes 
*
Number in bracket indicated the repetition (1 or 2), 

**
indicated whether a significant 

difference in sensory quality between fish washed with chlorine and without chlorine. 

a
sequence number of washing batch evaluated sensorially (12 batches in total in this study)

 
 

The chemical safety of the washing processes was evaluated by determining THMs 

production on fish and chlorinated water samples collected after the final batch (batch 12) was 

washed. The fillets treated in chlorinated water were rinsed in tap water for 40 s before testing 

the THMs amounts. The levels of THMs on the fillets washed in chlorinated water were lower 

than the detection limit of 4.2 µg/kg. In the chlorinated wash water itself, 8.9 ± 1.3 µg/L 

THMs were measured. To maintain the desired pH of 6.5, a dose of 7.3 ± 1.8 ml/L 1 M HCl 

was neccesary for the 12 batches. Due to the accumulation of organic matter during washing,  

a cumulative amount of 807.05 ± 97.4 mg/L of the sodium hypochlorite had to be used to 

maintain residues of free chlorine in the water (Table 6.3). 
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Table 6.3 Chlorine and HCl consumption and disinfection by-products production (detection 

limit of THMs is 4.2 µg/L or µg/kg) in the washing process with chlorinated water after 

washing 12 batches (n = 2) 

1
Chlorinated water sampled for trihalomethanes (THMs) at the end of washing process 

corresponded with COD of 4447.5 ± 187.4 mg O2/L and total chlorine of 482.9 ± 17.0 ppm in 

the water; (-): not determined. 

6.4 DISCUSSION 

Chlorine is an easy to use, reasonably priced and relatively strong disinfectant. However, 

chlorine rapidly decomposes in the presence of organic matter. Grace Ho et al. (2011) 

reported that up to 90% of residual free chlorine was lost after one batch (272.3 kg) of 

chopped romaine lettuce (product/chlorinated water = 1/6.5 by weight) was washed in an 

enclosed wash system with no replenishment of chlorine. A laboratory study on the 

decontamination of Pangasius fish by chlorinated water (product/chlorinated water = 1/10 by 

weight) determined that 53 to 83% of chlorine was lost after a single batch treatment 

(Chapter 5). Previously, a study carried out in a Vietnamese Pangasius processing company 

showed that high microbial counts in chlorinated wash water may result in a high risk of cross 

contamination for the washed products because no adjustment of pH and the chlorine 

concentration during washing of multiple batches was performed (Chapter 4 and Chapter 5). 

Therefore, washing processes utilizing chlorinated water can be improved by means of 

maintaining a residual level of free chlorine in the wash water with a significant level of 

antimicrobial activity.  

In this study, the residual amount of free chlorine in the wash water could not be controlled 

sufficiently to have at all times a desired concentration of 10 ppm. The short contact time 

during washing (40 s) and a short time between batches (30 s) combined with the sampling 

and measuring of the chlorine concentration resulted in this difficulty. Whilst the ORP of 

chlorinated water was positively correlated with the level of free chlorine (correlation 

coefficient = 0.859), it was negatively correlated with the COD levels (r = – 0.773). A recent 

Dose Tap water Chlorinated water
1 

Cumulative NaOCl dose; mg/L - 807.05 ± 97.4  

Cumulative HCl 1M dose; ml/L - 7.3 ± 1.8 

THMs (water); µg/L <4.2 8.9 ± 1.3 

THMs (fish); µg/kg <4.2 <4.2 
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study on fresh cut lettuce also reported that the ORP reduces with an increase in the COD 

(Gómez-López et al., 2014). This study also determined that the ORP increased during 

treatment with chlorine while the COD levels are constant. Therefore, ORP can potentially be 

used as an indicator of free chlorine levels in chlorinated wash water. In this way rapid ORP 

measurements can be used to replace the commonly used but time consuming colorimetric 

methods. However, according to Gómez-López et al. (2014), ORP values cannot be used 

accurately to indicate the disinfection efficiency. This was a result of the observation that the 

inactivation of E. coli O157:H7 after treatments with free chlorine levels of 1 and 3 ppm was 

significantly different whilst the ORP values were not significantly different. 

Moreover, in this study, the easier and simpler measurement of UV at 249 nm enables to 

estimate COD levels in the wash water due to their good correlation (r = 0.949). It is likely 

that the quantity of organic matter and residues of free chlorine in the wash water can be 

estimated more rapidly and conveniently by UV spectrophotometer and oxidant redox 

potential (ORP), respectively. It is suggested that the relationships among these values should 

be further investigated and modeled to better monitor and adapt the process. In addition, a 

common concern among the workers at the washing processes is that exposure to chlorine 

vapor may irritate the skin, eyes and respiratory tracts of humans (Abadias et al., 2008; White, 

2010).  

The evolution of the counts of TPC and LAB in the chlorinated water followed a similar trend 

in both of the independent repetitions performed. However, the microbial counts in the second 

repetition were higher than those in the first repetition due to the lower free chlorine 

concentrations in the wash water used in the second repetition. In general, the microbial 

counts in the chlorinated water bath decreased during the entire washing process (<1 log 

CFU/100 ml after washing 12 batches) due to chlorine being provided continuously. In 

contrast, the TPC in chlorinated water used for washing Pangasius products in Vietnam 

ranged 6.5-8.5 log CFU/100 ml (Chapter 4) and 5.5-6.9 log CFU/100 ml (Chapter 5). 

Although the free chlorine levels in the wash water during the last half of the washing process 

were only 10 to 20 ppm, ca. 300 to 500 ppm of total chlorine had been accumulating which 

could have contributed to the reduction of the bacterial counts. The large difference in the 

concentrations of free and total chlorine shows that a high turnover of chlorine into combined 

chlorine (i.e. monochloramine, NH4Cl) can occur in the wash water (White, 2010). Combined 

chlorine needs a longer time or a higher concentration to inactivate bacteria than free chlorine 
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due to its slower disinfection action (Suslow, 2008). The antimicrobial effect of the chlorine 

was evident as the microbial counts in non-chlorinated wash water gradually increased during 

the washing process. This can be explained by a microbial proliferation in the wash water due 

to the large nutrients released from suspended matter (Ragaert et al., 2007). However, the 

counts of coliforms and E. coli in the non-chlorinated wash water used in this study were 

lower than those observed in the non-chlorinated wash water at a Vietnamese Pangasius 

processing company (Chapter 5). In the current study, the E. coli counts were below 

detection limit (<2 log CFU/100 ml) throughout the washing process whereas they reached a 

maximum of 4.6 log CFU/100 ml during washing in the non-chlorinated wash water of the 

Vietnamese company (Chapter 5). The differences observed could be a result of potentially 

higher E. coli counts on the fillets evaluated in the Vietnamese processing company which 

were washed after the trimming step in comparison to the E. coli counts that would be found 

on thawed frozen fillets used in this study.  

E. coli counts on the Pangasius fillets have been found to vary greatly. For example, E. coli 

on 16 thawed frozen Pangasius fillets sampled in 2013 (from the same brand as those 

evaluated in this study) were determined to be 2.3 ± 0.7 log CFU/g (data not shown) whilst 

the three fillets evaluated in this study were purchased in 2014 and all had <1 log CFU/g E. 

coli. The variation observed in counts of E. coli on Pangasius products can be explained by 

the fact that the microbiota depends largely on the processing chain, sources of material, 

hygiene conditions and the performance of food safety management systems. As a result of 

the low E. coli counts on the Pangasius samples, it was not possible to observe a reduction in 

this study. This partly explained why these results were in contrast with the earlier findings 

observed in Chapter 5. 

In addition, no reduction of TPC, LAB and coliform counts of the fish was seen when the 

fillets were washed in chlorinated water. No significant differences were also observed 

between the microbial quality of Pangasius fish processed on processing lines utilizing 

chlorinated and non-chlorinated water (Chapter 2). This highlights the fact that the purpose 

of using a disinfectant in the wash water should not aim only at decontamination of the fish 

but also disinfection of the wash water to avoid cross contamination during washing.  

Discoloration (bleaching) of the surfaces of the fillets as well as a chlorine odor was a major 

defect in fillets washed in the final batch (batch 12). The color and odor of the fillets treated in 

chlorinated water till batch 4 changed to a smaller extent and did not differ significantly (p > 
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0.05) from the controls. Up to date, very few studies have reported the impacts of chlorine-

based disinfection on the sensory attributes of fresh fish. A slight discoloration (melanosis) 

and chlorine odor were observed on shrimps whereas discoloration of skin (lighter color), 

chocolate color in the gills and changes in the color of the eyes occurred on whole salmon 

treated in a brine with 100 and 200 ppm chlorine dioxide (product/brine volume ratio = 1/4) 

for 5 min with continuous stirring (Kim et al., 1999a). Another study also pointed out that free 

chlorine levels above 200 ppm induced sensory changes in fish fillets, however, no specific 

sensory attributes were reported (FAO/WHO, 2008).  

Besides the adverse sensory impact of chlorine, excessive chlorination can lead to greater 

levels of residues in the washed fillets and hence to possible health risk. THMs in the thawed 

frozen Pangasius fillets used in this study were negligible. The THMs in the fillets sampled in 

the last batches were lower than the detection limit (<4.2 µg/kg). The THMs generated into 

the wash water were far below the regulation adopted for drinking water in the European 

Union (EU, 1998a) and in the U.S. (USEPA, 2009). Although the formation of THMs in the 

water and products during the washing of vegetables has been extensively studied (Gómez-

López et al., 2014; Klaiber et al., 2005; López-Gálvez et al., 2010a; Van Haute et al., 2013a); 

to our knowledge, no studies have yet been performed concerning the chemical safety of fish 

treated with chlorine. 

6.5 CONCLUSION 

Antimicrobial levels of free chlorine can be maintained in wash water by means of continuous 

dosing. This is useful to prevent cross contamination from water to the washed products. On 

the other hand, the automatic dosing of chlorine can be used to ensure the safety of the 

personnel (i.e. by avoiding or limiting the chances of inhalation and contact with the skin). 

Although the fillets were safe from the point of view of the levels of the THMs, the color and 

odor of these fillets were unacceptable after a number of batches washed in the same water. 

To ensure that both sensory quality and chemical safety are achieved, the wash water can only 

be limitedly reused.  
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7.1 Introduction 

It has been reported that Vietnamese Pangasius products are a source of various nutrients (i.e. 

quality proteins, fatty acids, minerals, etc.) required for human health (Karl et al., 2010; 

Szlinder-Richert et al., 2011; Usydus et al., 2011). This has in part been responsible for its 

increasing appreciation and demand in the U.S. and European markets.  

However, surprisingly only a few studies have so far been performed to assess the microbial 

quality of Pangasius products. These include Noor Uddin et al. (2013) who studied frozen 

Pangasius products marketed in Denmark and Noseda et al. (2012) who evaluated the shelf-

life of thawed frozen Pangasius stored under different modified atmosphere conditions. 

Pathogenic bacteria including Listeria monocytogenes and Salmonella, have been reported on 

frozen Pangasius products exported to European countries (RASFF., 2013). For example, 22 

cases of rejections were reported in 2009. On the other hand, the commercial aquaculture of 

Pangasius is still a young industry, which partly explains the current paucity on data 

concerning the origin as well as composition of the microbiota of Pangasius products 

throughout the processing chain. Moreover, although chlorine is used in the washing water in 

some processing plants in Vietnam and elsewhere, very little is known about the efficacy of 

this method for fish products. Most of the decontamination studies done to date have been 

performed on fresh-cut vegetable products (Allende et al., 2009; Gómez-López et al., 2014; 

Van Haute et al., 2013a; Van Haute et al., 2013b). This thesis attempted to address these gaps, 

with focus being directed towards i) determining the evolution of the microbial quality and 

safety of Pangasius products along Vietnamese processing lines (Chapter 2 & Chapter 4), ii) 

the decontamination of Pangasius fillets by means of washing in chlorinated water or 

peracetic acid (Chapter 5) and iii) optimization of disinfection of the washing water by 

means of continuous dosing of chlorine to water used to wash several batches (Chapter 6). 

The most important findings of this thesis are discussed below and future perspectives are 

briefly outlined. 

7.2 Dynamics of microbial quality and safety of Pangasius products  

Generally, the microbiological quality (contamination levels and identification of the 

contaminating microbiota) of Pangasius fillets during processing were determined to be 

dependent on the processing plant sampled. The microbiological quality of the Pangasius 
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fillets sampled from the small scale company evaluated in this thesis was lower than those 

sampled from the large scale company. The use of chlorine in the wash water did not have a 

positive effect on the microbial quality of the products during processing (Chapter 2). On the 

other hand, the performance of the food safety management systems (FSMS) of the food 

companies had an effect on the microbial safety of the produced products (Chapter 4). 

Variations were observed in the microbial quality of the Pangasius products on the market 

including the counts of E. coli from year to year (Chapter 5 & Chapter 6). This implies that 

the quality of Pangasius products is influenced by many factors related to the entire 

production chain. Specific factors influencing the microbial quality of Pangasius fish are 

discussed below: 

7.2.1 The quality of raw materials 

Raw materials have a direct impact on the quality of the final products (Zugarramurdi et al., 

2004). As an example, the initial microbiota of Pangasius sampled in two companies (small 

and large scale) evaluated in this study was variable due to differences in the sources of the 

fish raw materials. Although the microbial quality of the fish was not evaluated at the farms in 

this thesis, previous studies reported that the bacterial communities of farmed Pangasius 

differed between seasons (rainy and sunny seasons) and locations (fish farms) as they had 

different PCR-DGGE banding patterns (Le Nguyen et al., 2008). A high risk of bacterial (fish) 

diseases including Edwardsiella ictaluri (white spot), Aeromonas hydrophila (swollen head), 

Pseudomonas dermoalba (white tail) and parasitic diseases including gill fluke 

(Dactylogyrus), round worms (Nematoda), etc. was observed during the rainy season of June 

to July (Vu and Campet, 2009). The composition of the water, temperature, weather 

conditions and antibiotics used have also been reported to contribute to differences in the 

bacterial ecology of living Pangasius fish as well as in the end products (Orban et al., 2008; 

Sarter et al., 2007). During the sampling performed in this thesis, it was determined that the 

raw Pangasius material processed at the small company was sourced from a number of 

suppliers. As a result of frequent (recurring) financial difficulties encountered by the suppliers 

(or farmers) due to fluctuations in the prices of raw Pangasius, processors have dealt in recent 

years with an unsustainable supply of raw materials (Bush and Duijf, 2011). Therefore, the 

companies face difficulties in acquiring sufficient quantities of raw Pangasius with good 

chemical and microbiological quality from trusted suppliers for their processing. This leads to 

limitations in their choice of supplier(s) and consequently compromises are made with regards 
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to the quality of the raw Pangasius they use. In addition, according to VASEP (2011), about 

45% of the Pangasius farming area (2.850 ha) in Vietnam has been certificated according to 

international standards of good agriculture practices such as the SQF 1000
CM

 (Safe Quality 

Food), GlobalGAP (Global Good Agricultural Practice) and Best Aquaculture Practices 

(BAP). These mainly control the residues of chemical contaminants used in intensive fish 

farming. These do not focus on the microbiological aspects, which may result in a potentially 

negative effect on the microbial quality of raw Pangasius materials in Vietnam. It is 

suggested the farmers pay attention not only on the basis of absence of chemical contaminants 

but also of the pathogenic microbial contaminants associated with intensive fish farming. In 

addition to the quality of Pangasius raw material, post-harvest handling of the fish from farm 

to factory also influences on the microbial quality and safety of the final products (Orban et 

al., 2008). Taking into account the factors discussed above and the fact that the studies 

performed in this thesis focused on two companies in Vietnam Mekong Delta, more studies 

have to be performed to have a broader overview of the microbiota (and variations therein) of 

fish farmed in different regions of the Mekong Delta. This could indicate regions or locations 

with a high risk of microbiological or parasitic contaminants on which corrective actions can 

be focused. Knowledge of the predominant microbiota present on raw Pangasius is also 

important with regards to the development of suitable microbial inspection protocols for raw 

materials and determination of appropriate processing for final products i.e. filleted products 

have a higher requirement with regards to the microbial quality of the raw materials than 

added value products (e.g. breaded and rolls Pangasius). 

7.2.2 Processing 

The evolution of the microbiota throughout the processing of Pangasius was reported in 

Chapter 2. In addition, the microbiological counts on the fish and in environmental samples 

were presented in Chapter 4. During the processing of Pangasius fillets intended to be 

marketed in frozen form, there are no real intervention steps in order to eliminate bacteria 

such as cooking. Therefore, the contaminating bacteria on fish products during processing can 

potentially occur at counts greater than the acceptable limits. As mentioned above, 

performance of the FSMS had an effect on the microbial quality and safety of the processed 

products. The FSMS implemented at the large scale company performed at a good level and 

this was evident in the acceptable microbial quality and safety of the fish products from this 

company. In general, the companies processing Pangasius products should focus their 
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attention on the core control and assurance activities in order to control microbiological risks 

(Chapter 4). 

The main processing steps influencing the quality and safety of Pangasius products are 

discussed hereafter. 

7.2.2.1 Filleting 

The microbial counts on Pangasius products analysed at the filleting step were very variable 

(standard deviation = 1.0 log CFU/g for total aerobic counts and 1.5 log CFU/g for 

presumptive Enterobacteriaceae ) (Chapter 2). The most prevalent species on the samples 

collected at the filleting step were Aeromonas, Acinetobacter, Providencia and Morganella 

spp. which are related to the endogenous microorganisms of the gills or intestinal tracts of 

farm raised freshwater fish (Austin, 2002; Hatha, 2002; Vivekanandhan et al., 2005; Yagoub, 

2009). Contamination from the guts could have occurred when they were broken as a result of 

fast filleting. Indeed, observation of certain operators showed that gut perforations ranged 

between 28%-55% (Chapter 4). Therefore, the filleting step is a critical step with regards to 

(cross) contamination of microorganisms arising from the processing equipment (knives, 

tables, gloves, and cutting boards), the workers and the fillets. This was highlighted by the 

fact that species belonging to the Enterobacteriaceae were not only prevalent on the fish 

collected at the filleting step but also at those sampled at the trimming and freezing steps 

(Chapter 2). Secondly, the counts of presumptive Enterobacteriaceae varied greatly on final 

Pangasius products processed in Vietnam (2.3-4.3 log CFU/g) (Chapter 2) and on frozen 

Pangasius products marketed in Belgium (1.6-3.8 log CFU/g) (Chapter 3). Numerous 

notifications of too high Enterobacteriaceae counts contaminating Vietnamese Pangasius 

fillets exported to the EU market were reported, e.g. 9 cases in 2005 (RASFF, 2015). 

Moreover, the counts of E. coli ranged from <1.0 to 2.2 log CFU/g and from <1.0 to 2.4 log 

CFU/g on frozen Pangasius products processed in Vietnam (Chapter 4) and frozen 

Pangasius marketed in Belgium (Chapter 5 & Chapter 6), respectively. Variation of these 

counts could result from the filleting step and hygiene procedures implemented in the 

companies.  

 

In practice, Pangasius is filleted manually. Since the income of the workers depends on the 

amount of fish filleted in a month, the workers do fillet as fast as possible, without paying full 

attention to the quality of each fillet. On the other hand, a general characteristic of Vietnamese 
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companies processing Pangasius is the variability of workers due to a common turnover of 

workers (<1-5 years) (Chapter 4). Consequently, the workers who have the knowledge and 

experience to fillet Pangasius leave the companies at a regular rate. These factors have an 

impact on the performance of the filleting step with regards to the microbial quality attained 

after filleting.  

 

Therefore, the filleting step should be investigated more elaborately with regards to the 

possible cross-contamination from the prevalent microbiota in the guts of Pangasius fish and 

the influence of manipulation at the filleting step on the microbiota of Pangasius products. It 

is also suggested to pay the workers not only depending on the quantity but also on the quality 

of the fish filleted. 

7.2.2.2 Trimming 

The main purpose of the trimming step is to get uniform and smooth fillets by removing fat, 

bones, skins etc. Trimming was done manually at the companies evaluated in this thesis. The 

microbial quality and microbial ecology on Pangasius products are highly dependent on the 

hygiene conditions during trimming. As an example, Enterobacter and Wautersiella spp. were 

identified on trimmed Pangasius sampled from the small scale company (Chapter 2), 

reflecting the unhygienic handling and poor personal hygiene in the trimming step. These 

were linked to the high microbial counts observed on the Pangasius products sampled 

(Chapter 2 and Chapter 4). Hygiene indicators (S. aureus, E. coli, coliforms) were also 

found on the environmental samples i.e. gloves, tables, knives, baskets, etc. (Chapter 4). 

Additionally, human pathogens such as Klebsiella pneumonia and Shigella flexneri were 

detected not only on sampled at the trimming step but also on Pangasius samples at the final 

processing step. The main route of transmission can therefore occur from the environment 

onto Pangasius as observed during the processing of catfish (Chen et al., 2010). Therefore, 

more attention should be paid to the preventive measures, hygienic design, sanitation program, 

personnel hygiene, frequency of cleaning and disinfection, etc. to avoid (cross) contamination 

at the manual trimming step (Chapter 4).  

7.2.2.3 Tumbling  

Although the tumbling step is optional, it was implemented in both companies sampled of this 

work. The fillets were treated with additives during tumbling. A few studies have reported the 
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possible use of polyphosphates for treating Pangasius fillets as high amounts of sodium (222-

594 mg/100 g) (Orban et al., 2008) and reduction of thermal stability in the protein domains 

was observed (Karl et al., 2010). The use of polyphosphates in tumbling is mainly to increase 

the water retention capacity, reduce the drip loss, retard the oxidation of unsaturated fatty 

acids, and inhibit the growth of bacteria (Alvarez et al., 1996; Dziezak, 1990; Etemadian et al., 

2011; Masniyom et al., 2005; Zaika et al., 1997). The delay of microbial growth (i.e. 

coliforms, total aerobic counts) has been effectively demonstrated on aquatic products treated 

with polyphosphates during storage (Etemadian et al., 2011; Thepnuan et al., 2008). Although 

the evaluation of this practice was not an objective of this thesis, it was determined in Chapter 

3 that the water and salt content, pH and water activities of various frozen Pangasius 

marketed in Belgium differed significantly, indicating that some of the products could contain 

salts added during processing. Therefore, the use of additives during tumbling may influence 

the microbiota of the final frozen Pangasius products. Especially, the microbiota of frozen 

Pangasius products affects directly the spoilage microbiota on thawed products which are 

widely marketed in Western markets as fresh products. It is necessary to investigate further 

the composition of additives used during tumbling and their impacts on the quality and safety 

in general and the microbiota of Pangasius products in particular. 

7.2.3 Pangasius products  

The origins as well as identity of the microbiota of Pangasius products were established in 

this thesis. An overview of diversity of the microbiota on Pangasius fish is summarized in 

Figure 7.1. A good relationship was established between the microbiota of Pangasius isolated 

during processing (Chapter 2) and the microbiota of commercial Pangasius (Chapter 3). 

The prevalent genera identified on Pangasius during processing in Vietnam were 

Acinetobacter (19.5% or 34/174 isolates), Lactococcus (13.8%) and Enterococcus (8%) 

(Chapter 2). These genera were also found prevalently on frozen Pangasius marketed in 

Belgium (Chapter 3). In addition, some genera belonging to Enterobacteriaceae  e.g. 

Enterobacter, Klebsiella, Wautersiella, Serratia and Shigella spp. were found during 

processing and on final Pangasius fish products (Chapter 2). The origin of these genera can 

be in part explained by the high contamination with Enterobacteriaceae from the 

environments by means of the MAS (Microbial Assessment Scheme) performed in Chapter 4. 

The microbial safety of the final Pangasius products was reflected through the performance of 

food safety management systems (FSMS) currently applied at these companies. It is clear that 
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the food safety output can be greatly improved by means of implementing advanced core 

control and assurance activities (Jacxsens et al., 2009b; Jacxsens et al., 2010). As an example, 

the low microbial food safety risk of Pangasius products at the large company were a result of 

more advanced control activities (i.e. sanitation programs, personal hygiene, etc.) and mature 

assurance activities (i.e. validation and verification of preventive measures) (Chapter 4). The 

results obtained show that the microbial quality and safety of Vietnamese Pangasius products 

processed in the large company are quite good based on official standards and guidelines 

whereas more attention should be focused on the products processed in the small company 

due to the occurrence of Listeria monocytogenes and Shigella flexneri (Chapter 2 & Chapter 

4). In addition, the MAS developed by Jacxsens et al. (2009b) can give insight into the overall 

microbiological contamination (on fish, water, food contact surfaces and hands) from 

beginning until the end of processing. This assessment scheme is necessary to implement 

routinely in Pangasius processing companies in order to validate the food safety management 

system in place and to avoid economic losses due to microbial food safety–related product 

rejections summarized in Chapter 1. 

 

On the other hand, Noseda et al. (2012) found that Pseudomonas and Serratia spp. were the 

dominant spoilage microorganisms of thawed frozen Pangasius products from Vietnam stored 

in air or modified atmosphere package (MAP) conditions (Figure 7.1). These genera were 

also identified on Pangasius during processing (Chapter 2) and on frozen Pangasius 

marketed in Belgium (Chapter 3). Therefore, these results explain the origin of the 

microbiota of processed Pangasius products. Despite both of them being dominant on 

Pangasius, their contribution to the spoilage of Pangasius still has to be determined. If 

species belonging to these genera have the capacity to cause product spoilage they could be 

used as parameters to evaluate or indicate the microbiological quality of the product. 

Additionally, decontamination of fresh Pangasius fillets should be evaluated based on these 

species if they are potential spoilage organisms; subsequently, the further study aims to 

extend shelf life of Pangasius stored under fresh (for Vietnamese markets) and thawed forms 

(for international markets). 
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MAP 50%CO2 -50%O2 

Figure 7.1 Overview of microbiota identified on Pangasius fish by 16S rRNA gene sequencing from the present study and previous study, 

large company with non-chlorine and small company with chlorine – based process. 
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7.2.4 Decontamination currently employed in Vietnam and its optimization 

7.2.4.1 Washing performed in Vietnam 

The use of chlorine as a disinfectant in the wash water was determined to have no impact on 

the microbial counts of the Pangasius fillets at a large scale processing company in Vietnam 

(Chapter 2). The counts of spoilage and pathogenic microorganisms on Pangasius products 

were influenced by several other factors including the quality of materials, (good) 

manufacturing practices and the performance of the FSMS (Chapter 2 & Chapter 4). In 

addition, the processing line at the large scale company which utilized non-chlorinated water 

for washing of the fillets had a better food safety output than that of the small company which 

utilized chlorinated water for washing (Chapter 4). The possible reasons for the lack of effect 

of the chlorine in reducing the microbial loads of the Pangasius fillets included a lack of 

control of the concentration of chlorine and pH of the washing water during processing and 

build-up of organic matter in the chlorinated water during the washing of successive batches 

(Chapter 4 & Chapter 5). The reuse of non-chlorinated and chlorinated wash water resulted 

in the build-up of the total psychrotrophic counts (TPC) in the washing water used at the 

small scale company in Vietnam (Figure 7.2). The built up of microbial loads in the washing 

water can cause further contamination to the washed products (Allende et al., 2009). 

Therefore, to improve the quality of the washing water as well as the washing process itself, 

some important points to be considered are listed below. 

 

Figure 7.2 The total psychrotrophic counts (TPC) in the wash water sampled at a Vietnamese 

Pangasius processing company       



General discussion, conclusions & perspectives 

157 

 

7.2.4.2 Improvement of the washing process  

Based on the evaluation of the actual washing process implemented in a Vietnamese company, 

the washing process was also simulated on a laboratory scale (Chapter 5). 

An example of washing a batch is as follows: 

Ratio fish/water:   1/10 

pH of wash water:   6.5 

Temperature:    8 – 10
 o
C 

Initial concentration of chlorine: 44.7 ±  3.4 ppm 

The free chlorine levels had decreased by 73.3 ± 20.7% after 40 s of washing, during which 

time the organic matter had accumulated from 16.5 ± 3.5 to 238 ± 66.3 mg O2/L. In addition, 

the TPC of wash water were 3.9 ± 0.8 log CFU/100 ml (in chlorine) and 5.4 ± 0.1 log 

CFU/100 ml (in tap water as control) after 40 s (Chapter 5). As a result of rapid degradation 

of chlorine observed for one batch washing, it is clear that the compensation for the reacted 

free chlorine is necessary for the company where they applied this wash water for washing 

multiple batches (Chapter 6).  

 

Figure 7.3 The total psychrotrophic counts (TPC) in the wash water with chlorine 

continuously dosed performed at the laboratory scale for washing (12 batches), limit of 

detection  = 1 log CFU/100 ml.  

 

The TPC counts in the wash water during the successive washing of 12 batches of Pangasius 

fillets were reduced down to the detection limit (1 log CFU/100 ml) (Figure 7.3). As a result of 

the low microbial counts of the wash water, washing with enough chlorine in the wash water is 

essential to prevent further (cross) contamination (Casani et al., 2005; Van Haute et al., 2013a). In 

addition, the company needs to systematically establish the specific limit/guidelines of microbial 



Chapter 7 

 

158 

 

levels for all washing steps (i.e. bleeding, washing in water and washing in chlorine). These limits 

can improve the microbial safety of products taking into consideration the high risk of cross 

contamination from the wash water to the Pangasius products observed in Chapter 4. Especially, 

no real intervention steps to eliminate bacteria (i.e. heating) are applied for frozen Pangasius 

products, hence the chemical intervention of washing fish in chlorine can prevent cross 

contamination and can further contribute to improve the FSMS (Luning et al., 2008).  

 

However, the efficacy of chlorine is limited for decontaminating Pangasius fish washed during 

processing (Chapter 2 & Chapter 4), in a single batch (Chapter 5) or in dynamic (continuous 

multi-batch) system (Chapter 6). Chlorine is much more effective for inactivation of 

microorganisms in wash water itself, thus for improvement of the microbial quality of the wash 

water, than for reduction of these microorganisms on products such as fruits and vegetables (Gil et 

al., 2009; Sapers, 2001) or Pangasius as investigated in this thesis. To improve the 

decontamination of Pangasius, it is necessary to further investigate the attachment of bacteria on 

Pangasius fish and the susceptibility of these bacteria for disinfectants because both factors 

influence the efficacy of the decontamination of products (Takeuchi and Frank, 2001; Van Haute 

et al., 2013d). 

 

In the investigated dynamic system, the amounts and the cost of water can be reduced (Luo, 2007) 

because the wash water could be reused for up to 12 batches based on the chemical safety of both 

products and the wash water (Chapter 6). However, the high concentration of chlorine negatively 

affected the sensory properties of the products (Arbor, 2008). The sensory properties of Pangasius 

fillets washed in the final batch were discolored (bleaching) and had a noticeable chlorine odor 

(Chapter 6). To optimize the wash process by means of a dynamic chlorine dosing system, the 

safety of the by-products, sensorial quality of products after treatment in addition to the basic 

parameters (i.e. concentration, contact time, pH, organic matter, ratio product/water etc.) must be 

taken into account. Furthermore, some specific points are recommended for optimizing the 

washing process: 

 

 Chlorine and organic matter in the wash water can be estimated faster and more convenient 

than N,N-diethyl-p-phenylenediamine (DPD) colorimetric and the small-scale sealed-tube 

method by means of ORP (oxidation reduction potential) and UV absorbance, respectively, 
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because of their good correlation as seen in Chapter 6. The free chlorine in water can be 

determined by using a calibrated ORP (Suslow, 2001). However, the relationships of these 

values should be further investigated and modeled to get more accurate estimation. From this, 

the washing based on an on-line monitoring and controlling system (for direct control of the 

feed pumps of chlorine) may be optimized and applied. 

 In general, numerous studies on decontamination of artificially inoculated vegetables by 

sanitizers have been reported in Chapter 1. Only a few studies have reported the efficacy of 

these processes; however, up to date no inoculation studies on Pangasius have been reported. 

The natural background microbiota of thawed frozen Pangasius performed in this thesis 

(Chapter 5 & Chapter 6) had low numbers of bacteria so no conclusions could be made on the 

effect of chlorine on the target spoilage bacteria (e.g. lactic acid bacteria) or pathogenic bacteria 

(e.g. Shigella or other Enterobacteriaceae ) obtained in Chapter 2 and Chapter 4. This should 

be studied further by means of inoculating these target bacteria onto the surfaces of the fish (as 

the worst case) and evaluating thereafter the decontamination efficacy of chlorine on these fish. 

 To limit the accumulation of organic matter as well as chlorine-consumed, Pangasius fish 

should be pre-washed (or sprayed) in tap water to remove surface located organic matter prior to 

treatment in chlorinated water. On the other hand, the fish treated in chlorinated water should be 

further rinsed (by spraying) by tap water. As a result of this, the dose of chlorine used can be 

reduced and the risk of formation of harmful trihalomethanes can be limited. 

 The antimicrobial activity of chlorine also depends on the pH of the water. Therefore, the 

companies should adjust the pH of the water to the optimal antimicrobial range of 6.5 to 7.5. 

This will also prevent the formation of chlorine gas which can affect the health of the workers 

and corrode the equipment (especially when the process operates at low pH of 5). 

7.2.4.3 Alternative disinfectant 

Prolonged exposure to vapor chlorine can ultimately affect the heath safety of the workers in the 

washing areas. Additionally, the risk of formation of by-products i.e. trihalomethanes by over-

chlorination in the wash water containing high amounts of organic matter can also result in  a 

negative effect to humans. Therefore, a good alternative to chlorine in wash water used for several 

batches may be peracetic acid as the loss of peracetic acid due to the presence of organic matter is 

much lower than that of chlorine during washing (Chapter 5). It is also active over a wider pH 

range and produce far less toxic by-products. In addition, some countries in the EU including 

Belgium, Germany, Switzerland, Denmark and the Netherlands are not allowing the products 
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being washed in chlorinated water (EU, 2004b). Despite the the high cost, the alternative of 

peracetic acid could be a good option for processors. 

7.3 Concluding remarks 

Pangasius production has boomed rapidly in Vietnam with the quantity of exported Pangasius 

fillets increasing ca. 1000 times from 7,000 in 1997 to 726,000 tons in 2011 (VASEP, 2014). 

However, the sustainable development of Pangasius aquaculture is still a big challenge (Phan et 

al., 2009; Sinh, 2007; Van Sanh and Van Binh, 2013) due to the existence of many problems from 

the production to the processing phase (i.e. interaction between the Pangasius culture and the 

environment, farming technologies, supply chain development, quality control, etc.) (Van Sanh 

and Van Binh, 2013). However, the big gap concerning how to guarantee the microbial quality 

and safety of Pangasius catch to consumer is still not filled yet up to date. Therefore, the results 

obtained from this study fill part of the this gap and can therefore have a  significant impact on the 

microbial quality and safety of Vietnamese frozen Pangasius products destined for both local and 

international trade. To obtain this impact however, several implementation steps at different levels 

should be taken. Firstly, the GlobalGAP standard currently covers good aquaculture practices on 

the farm to control especially chemical contaminants during the farming of Pangasius. It is 

recommended that GlobalGAP should be expanded to cover biological hazards as well such as 

bacterial pathogens, parasitic and virus contaminants. As a result of this, the control of the 

microbial and chemical hazards of raw Pangasius can have a positive impact on the final products. 

Secondly at the processing level, microbial contaminants can initially be spread as from the 

filleting step onwards. Hence, the correct application of GMP (Good Manufacturing Practices) are 

considered as a crucial strategy to avoid (cross) contamination. Thirdly, chlorine can be a useful 

disinfectant to use in the washing steps for the purpose of avoiding (cross) contamination if 

correctly applied. In addition, alternative disinfectants (peracetic acid, ozone, and other organic 

acids) can also find its application at the industrial level. In-depth understanding and proper use of 

these disinfection agents is important for producers; therefore, validation of the efficacy in the 

washing steps is highly recommended. (Non) use of these disinfection agents for decontamination 

can be optional; however, good performance of food safety management greatly improves the 

food safety and quality output. To conclude, these strategies examined for Pangasius can also be 

implemented by companies processing other fishery products (i.e. catfish, tilapia, etc.) and 

seafood (shrimp, squid, etc.) in South-East Asian countries. 
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APPENDIXES 

Appendixes for Chapter 4 

Annex 4.1 Detailed results of the MAS of Pangasius processing plant evaluated in the large scale plant 

 

Number 

of 

sampling 

locations 

(SL) 

N=135 

Quality indicators Pathogenic microorganisms 

TPC
* 

TMC
* 

E. coli 
Enterobac 

-teriaceae 
S. aureus LAB

* 
L.monocytogenes Vibrio spp. V. cholerae 

1 3x3
1 

2.9-4.0
2
  5.3-6.4  <1.0-2.1  - - - A

3
  - - 

2  3x3 3.3-4.1  3.6-5.1  <1.0-1.7  <1.0-1.6  <1.0 -1.5  <1.0-2.3  A  <1.0-1.5 A  

3 3x3 2.9-4.8  - <1.0  - - - A  - - 

4 3x3 <2.0-4.4  - <1.0 - - - A  - - 

5 3x3 2.3-4.1  3.4-5.3  <1.0-1.7  <1.0-2.6  <1.0-3.3  <1.0-3.0  A  ≤1.0 A  

6 3x3 <2.0-2.8  3.1-3.8  <1.0  - - - A  - - 

7 3x3 2.3-4.3  3.2-4.3  <1.0-1.3  <1.0-1.8  <1.0-2.7  <1.0-3.0  A  <1 A  

8 3x3 2.0-4.3  - <1.0  - - - A  - - 

9 3x3 2.0-3.5  - <1.0  - - - A  - - 

10 3x3 2.0-3.4  3.0-4.1  <1.0 <1.0-1.8  <1.0-2.3  <1.0   A  <1 A  

11 3x3 <2.0-4.4  <1.0-3.4  ≤1.0  - - - A    

12 3x3 2.0-3.3  2.9-3.9  ≤1.0 <1.0-1.3  <1.0-2.1  <1.0   A    

13 3x3 <2.0-3.4  - <1.0  - - - A    

14 3x3 <2.0-3.4  - <1.0  - - - A    

15 3x3 2.5-3.6  3.6-4.2  ≤1.0 ≤1.0 <1.0 <1.0-2.3  A    

FS level   2  2  3 3 1 1 3 2 3 
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Annex 4.2 Detailed results of the MAS of Pangasius processing plant evaluated in the small scale plant 
 

 

 

 

 

 

 

 

 

 

1
3 subsequent visits x 3 independent sampling days

 

2 
Microbiological count range for fish (log CFU/g), hands and surfaces (log CFU/100 cm

2
) and water (log CFU/ml). Value with < 

symbol are below quantification limit 
3
A: absence and P: presence in 25g or 100 cm

2
 or 1 ml. 

4
 The number of positive samples for a particular pathogen on the total number of samples. 

*
 TPC: Total psychrotrophic plate count;  TMC: Total mesophilic plate count; LAB: lactic acid bacteria; (-): not determined

Number of 

sampling 

locations 

(SL) 

N=144 

Quality indicators Pathogenic microorganisms 

TPC
* 

E. coli Coliforms S. aureus L. monocytogenes Salmonella V. cholerae 

1 3x3
1 

4.4-5.9
2 

<1.0-1.7 1.6-3.3 - A
3
 A A 

2 3x3 3.7-6.1 <1.0-1.8 1.0-3.1 <1.0-2.6 A A P (1/9) 

3 3x3 4.2-7.0 1.7-4.2 2.9-5.4 <1.0-2.1 A A P (2/6) 

4 3x3 4.6-7.5 <1.0-3.4 2.8-4.5 - A A - 

5 3x3 4.3-6.2 <1.0-2.3 1.7-4.3 <1.0-2.7 A A P(1/9) 

6 3x3 5.1-6.6 1.7-3.7 4.1-5.7 <1.0-1.7 A A A 

7 3x3 5.5-7.4 1.3-3.9 4.0-4.9 - A A - 

8 3x3 4.0-6.4 <1.0-2.6 2.3-3.6 - A A P (1/9) 

9 3x3 5.3-6.7 1.8-3.1 3.2-4.7 <1.0-3.0 A A P (2/9) 

10 3x3 4.5-6.5 <1.0-2.6 2.3-3.5 - A A A 

11 3x3 5.5-6.5 2.2-3.5 3.2-4.7 <1.0-2.5 A A A 

12 3x3 3.6-5.8 <1.0-2.9 2.2-3.6 <1.0-3.1 A A P (2/6) 

13 3x3 4.6-7.0 1.2-3.4 3.1-4.8 <1.0-2.7 A A A 

14 3x3 4.1-6.2 <1.0-1.1 2.0-3.4 <1.0-1.9 A A P(2/6) 

15 3x3 3.5-6.6 <1.0 1.6-3.2 - A A - 

16 3x3 4.6-5.9 <1.0-2.2 2.8-4.5 <1.0-3.0 P (1
4
/9) A P(4/9) 

FS level  1 1 1 1 1 3 1 
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Appendixes for Chapter 5 

Annex 5.1 Statistical table to evaluate Triangle test. Entries are the minimum number of 

correct responses required for significance at the stated significance level % (i.e. column) for 

the coresponding number of panelist ―n‖  i.e. row). 
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SUMMARY 

 

The thesis investigated how the microbial quality of Pangasius is influenced during 

processing. In Chapter 1, a literature review was summarizing various aspects of the 

processing of Pangasius products. The overview of the growing global socio-economic 

importance of Vietnamese Pangasius products was described. Pangasius products have been 

reported to be good sources of valuable nutrients e.g. polyunsaturated fatty acids, minerals, 

(non) essential amino acids, etc. The studies performed to date on the microbial quality and 

safety of freshwater fish and Pangasius in particular were summarized in this chapter. It 

appears that very little information is available about the microbiota of Pangasius fillets 

during processing as well as the microbiological quality of Pangasius products themselves. 

Knowledge of the evolution of the microbiological quality during processing is essential to 

identify and apply corrective actions at processing steps which are critical for contamination 

of the products. Lastly, it was evident in literature that whilst the decontamination of fish with 

chlorine is practiced in some processing companies only a few studies have reported the 

efficacy of these processes. The focus of most of studies on disinfection has been on fresh-cut 

vegetables. An overview of the applications of chlorine and peracetic acid (as an alternative 

disinfectant) is also presented in the literature review together with some examples of their 

application on vegetables. 

In Chapter 2, culture-dependent methods were used in the first part of the study to determine 

the evolution of the microbiota of Pangasius fillets throughout the processing lines at two 

companies (large and small scale) located in the Mekong Delta of Vietnam. The large scale 

company employed the use of both chlorinated and non-chlorinated washing water (on 

separate processing lines), whilst the small scale company only used chlorinated wash water. 

The microbiological counts during processing in the large company were observed not to be 

significantly different (p > 0.05) between the fillets processed on the lines utilizing 

chlorinated and non-chlorinated wash water. Surprisingly, fillets washed in chlorinated water 

from the small scale company were revealed to have significantly higher microbial counts (p 

< 0.05) than the fillets washed with potable water at the large scale company. It was 

determined that temperature abuse during processing in the small scale company partly 

explained the high microbial counts observed on their fillets. The second part of Chapter 2 
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identified to the species level the spoilage related microbiota of Pangasius fillets by means of 

16S rRNA gene sequencing. On a total of 174 isolates, 20 genera and 38 species were 

identified along the processing chains. The microbiota related to spoilage on both processing 

lines at the large company was more diverse than those on the processing line of the small 

scale company. In general, the genera Aeromonas, Acinetobacter, Lactococcus and 

Enterococcus were prevalent at various processing steps on all of the processing lines 

evaluated. Serratia spp. was only observed on fillets sampled on both processing lines of the 

large company whereas a diverse range of isolates belonging to Enterobacteriaceae such as 

Providencia, Shigella, Klebsiella, Enterobacter and Wautersiella were isolated from fillets 

sampled from the small scale company. Therefore, the results obtained reflect a potential 

hazard with regards to the microbiological safety of the Pangasius products produced at the 

small scale factory that was evaluated in this thesis. 

In Chapter 3, the microbiota of frozen Vietnamese Pangasius products marketed in Belgium 

was determined. The results showed that the total psychrotrophic and mesophilic aerobic 

counts of the Pangasius products evaluated ranged from 3.8-5.2 log CFU/g and 3.8-4.8 log 

CFU/g, respectively. Lactic acid bacteria counts varied from 2.2 to 4.1 log CFU/g while the 

counts of presumptive Enterobacteriaceae ranged from 1.6 to 3.8 log CFU/g. Fourteen 

different genera and 18 different species were identified by means of 16S rRNA gene 

sequencing. The most prevalent genera were Lactococcus (31.2% of the isolates), 

Staphylococcus (11.7%), Serratia (10.4%), Acinetobacter (9.1%), Enterococcus (7.8%) and 

Pseudomonas spp. (6.5%). The overview of physico-chemical properties of the Pangasius 

products were also discussed in this chapter. 

In Chapter 4, a study was conducted to evaluate the performance of the food safety 

management systems (FSMS) applied at the small and large companies. This was performed 

by means of a FSMS self-assessment tool combined with a microbial assessment scheme 

(MAS). The MAS was applied to the processing line at the small scale company which 

utilized chlorinated water and on the line using non-chlorinated washing water at the large 

scale company. The results showed that the microbial safety and quality of products sampled 

in the small company was not guaranteed as the contamination levels remained high 

throughout processing. Escherichia coli, Staphylococcus aureus and Vibrio cholerae were 

present on the hands of food operators, especially those in the packaging area. The presence 

of Listeria monocytogenes (1 positive out of 9 samples) on the final products was likely a 
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result of inadequate hygiene practice. On the contrary, low levels of total psychrotrophic 

bacteria (ca. 3 log CFU/g) and E. coli (below quantification limit) were found on the final 

products sampled from the large scale company. In addition, L. monocytogenes and V. 

cholerae were absent in all the samples analysed. Also discussed in this chapter are the results 

of a self-assessment questionnaire, which provides insight into the performance of the food 

safety management system currently implemented at these companies. The problems of 

control activities and assurance activities resulted in the high safety risk of Pangasius 

products observed in the small size company. 

In the first part of Chapter 5, a preliminary evaluation of the decontamination efficacy of 

washing Pangasius in chlorinated water was performed at the same small company. As 

chlorine was only added at the beginning of the processing of a washing bath and was used 

continuously without renewal for 239 min, the total psychrotrophic counts, E. coli and 

coliforms on the Pangasius fillets did not reduce significantly (p > 0.05) after washing. This 

could be explained by the rapid accumulation of organic matter which resulted in a decrease 

in the level of free chlorine from 34.4 ± 2.9 ppm to 7.8 ± 3.6 ppm after 24 min of processing. 

In addition, the microbiological counts in the wash water increased to 5.7 (total 

psychrotrophic counts), 3.9 (coliforms) and 3.0 (E. coli) log CFU/100 ml after 24 min. of 

washing. The second part of Chapter 5 evaluated the disinfection efficacy of chlorine and 

peracetic acid (PAA) on both the processing water and Pangasius fillets on a laboratory 

scale. Washing with chlorine and PAA wash water resulted in a reduction of E. coli counts on 

Pangasius fish which ranged from 0-1.0 and 0.4-1.4 log CFU/g, respectively, while smaller 

reductions of total psychrotrophic counts, lactic acid bacteria and coliforms on Pangasius fish 

were observed. However, in comparison to PAA, chlorine was lost rapidly from the wash 

water. As an example, 53-83% of chlorine and only 15-17% of PAA was lost after washing 

for 40 s (chemical oxygen demand (COD) = 238.2 ± 66.3 mg O2/L). Therefore peracetic acid 

can be an alternative sanitizer, especially in companies were the wash water is recycled and 

used to wash several batches. However, its higher cost will have to be taken into account. 

Where (cheaper) chlorine is used, the processors have to pay close attention to the residual 

chlorine level, pH and COD level during treatment for optimal efficacy. 

Based on a screening performed in Chapter 5, Chapter 6 evaluated the continuous dosing of 

chlorine in the wash water on the decontamination of the fish, the evolution of the microbial 

load (quality) of the wash water and the sensory and chemical safety of the washed fillets. In 
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comparison to the control (where non-chlorinated wash water was used), a high reduction in 

the microbial counts of the wash water was observed when chlorine was continuously dosed 

into the wash water. As an example, the counts of psychrotrophic bacteria in the wash water 

continuously dosed with chlorine were 2-4 log CFU/100 ml lower than those in the non-

chlorinated wash water after 12 batches of filets had been washed. After the final batch of 

fillets were washed (batch 12), the total chlorine and organic matter in the water had 

accumulated up to 482.9 ± 17.0 ppm and 4447.5 ± 187.4 mg O2/L, respectively. However, 

only 8.9 ± 1.3 µg/L of trihalomethanes were formed in the chlorinated wash water whereas no 

trihalomethanes were detected in the washed Pangasius fillets after rinsing. It was concluded 

that the Pangasius fillets washed in continuously chlorinated water were safe for human 

consumption even after 12 batches had been washed. However, the organoleptic properties of 

Pangasius fillets washed in the final batch were unacceptable due to discoloration (bleaching) 

and chlorine odor. Therefore, according to the sensorial data, the number of batches washed 

with continuously chlorinated water should be limited to four batches. It was also determined 

that the quantity of organic matter and residues of free chlorine in the wash water can be 

estimated more rapidly and conveniently by measuring UV absorbance (249 nm) and 

oxidation reduction potential (ORP), respectively. The continuous dosing system appears to 

have a great potential for application in the washing process for the fish products where 

several batches are washed in one water bath.  
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SAMENVATTING 

 

Deze thesis onderzoekt hoe de microbiologische kwaliteit van Pangasius beïnvloed wordt 

tijdens de verwerking. In hoofdstuk 1 vat een literatuuronderzoek de verschillende aspecten 

van de verwerking van Pangasius producten samen. Het groeiende globale socio-

economische belang van Vietnamese Pangasius producten wordt beschreven. Pangasius 

producten zouden een goed bron zijn van waardevolle ingrediënten, o.a. polyonverzadigde 

vetzuren, mineralen, (niet) essentiële aminozuren, enz.. De onderzoeken die tot nu toe 

uitgevoerd zijn rond de microbiologische kwaliteit en veiligheid van zoetwater vis en 

specifiek Pangasius worden samengevat in dit hoofdstuk. Tot op heden is er nog maar weinig 

informatie voorhanden over de microbiota van Pangasius filets gedurende de verwerking of 

over de microbiologische kwaliteit van Pangasius producten zelf. Kennis over de evolutie van 

de microbiologische kwaliteit gedurende de verwerking is nochtans essentieel om de kritische 

stappen, leidend tot contaminatie van de producten, te identificeren en de juiste corrigerende 

maatregelen te treffen. Tenslotte, hoewel in literatuur duidelijk naar voren komt dat de 

decontaminatie van vis met chloor uitgevoerd wordt in sommige verwerkingsbedrijven, wordt 

de efficiëntie van dit proces maar zelden gerapporteerd. De focus van de meeste van deze 

studies rond desinfectie lagen op vers versneden groenten. Een overzicht van het gebruik van 

chloor en perazijnzuur (als een alternatief desinfectans) wordt ook weergeven in het 

literatuuronderzoek, naast een aantal voorbeelden van hun gebruik bij groenten. 

Hoofdstuk 2 bestaat uit twee deelstudies. In het eerste deel van de studie werden 

cultuurafhankelijke methodes gebruikt om na te gaan hoe de samenstelling van de  microbiota 

op Pangasius filets veranderen tijdens de productie van de filets. Er werden stalen genomen 

aan de productielijnen van twee bedrijven (een groot- en een kleinschalig bedrijf), gesitueerd 

in de Mekong Delta van Vietnam. Het grootschalig bedrijf had productielijnen waar 

gechloreerd water werd gebruikt en lijnen waar niet gechloreerd water werd gebruikt, terwijl 

bij het kleinschalig bedrijf enkel gechloreerd water werd gebruikt. De microbiologische 

tellingen van de filets die geproduceerd werden op de productielijnen met gechloreerd en niet-

gechloreerd water waren niet significant verschillend van elkaar (p > 0,05). Verder was het 

verrassend dat de filets die geproduceerd werden in het kleinschalig bedrijf en gewassen 

werden met gechloreerd water, significant hogere microbiologische tellingen hadden dan de 
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filets die met drinkbaar water gewassen werden in het grootschalig bedrijf (p < 0,05). 

Temperatuurmisbruik tijdens het productieproces kon de hogere tellingen in het kleinschalig 

bedrijf gedeeltelijk verklaren.  

In het tweede deel van de studie werden de bederf gerelateerde microbiota van Pangasius 

filets geïdentificeerd top op soortniveau met behulp van 16S rRNA gen sequenering. Een 

totaal van 174 isolaten, 20 genera en 38 soorten konden worden geïdentificeerd gedurende het 

productieproces. De bederforganismen die geïsoleerd werden bij de twee productielijnen van 

het grootschalig bedrijf waren meer divers dan deze geïsoleerd van de productielijn van het 

kleinschalige bedrijf. In het algemeen kwamen de genera Aeromonas, Acinetobacter, 

Lactococcus en Enterococcus voor tijdens verschillende productiestappen op alle onderzochte 

productielijnen. Serratia spp. werd alleen waargenomen op filets die afkomstig waren van het 

grootschalige bedrijf (beide productielijnen) terwijl een diverse range isolaten die behoorden 

tot de Enterobacteriaceae  zoals Providencia, Shigella, Klebsiella, Enterobacter en 

Wautersiella werden geïsoleerd van filets die werden gesampled in het kleinschalige bedrijf. 

Daarom lijkt het erop dat er een potentieel gevaar is op vlak van de microbiologische 

veiligheid van Pangasius producten die geproduceerd werden in het kleinschalig bedrijf dat in 

deze studie werd geëvalueerd.  

In Hoofdstuk 3 werd de microbiota van bevroren Vietnamese Pangasius producten die in 

België werden vermarkt, onderzocht. De resultaten tonen aan dat de totale  psychrotrofe en 

mesofiele aerobe tellingen van de Pangasius producten varieerden tussen 3.8-5.2 log KVE/g 

en 3.8-4.8 log KVE/g, respectievelijk. De melkzuur aantallen varieerden van 2.2 tot 4.1 log 

KVE/g terwijl het aantal vermoedelijke Enterobacteriaceae  tussen 1.6 en 3.8 log KVE/g lag. 

Er werden 14 verschillende genera en 18 verschillende soorten geïdentificeerd op basis van 

16S rRNA gen sequenering. De meest voorkomende genera waren Lactococcus (31,2%), 

Staphylococcus (11.7%), Serratia (10.4%), Acinetobacter (9.1%), Enterococcus (7.8%) en 

Pseudomonas spp. (6.5%). Het overzicht van de fysisch-chemische eigenschappen van de 

Pangasius producten wordt eveneens in dit hoofdstuk besproken. 

In hoofdstuk 4 werd een studie uitgevoerd in kleine en grote bedrijven om het 

kwaliteitszorgsysteem te analyseren naar de performantie inzake microbiologische 

voedselveiligheid. Dit gebeurde met behulp van een instrument voor zelfevaluatie en een 

Microbial Assessment Scheme (MAS). Dit laatste werd in het kleine bedrijf toegepast op een 

productielijn waarbij gechlorineerd waswater gebruikt wordt en in het grote bedrijf op een 
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productielijn waar niet-gechlorineerd waswater gebruikt wordt. De resultaten demonstreren 

dat de microbiële veiligheid en kwaliteit van de producten van het kleine bedrijf niet 

gegarandeerd kunnen worden omdat de contaminatieniveaus hoog blijven tijdens de productie. 

Escherichia coli, Staphylococcus aureus en Vibrio cholerae konden gedetecteerd worden op 

de handen van de arbeiders, vooral in de verpakkingsunit. De aanwezigheid van Listeria 

monocytogenes (1 positief resultaat op 9 monsters) in het eindproduct is dus waarschijnlijk te 

wijten aan onvoldoende hygiënepraktijken. Daarentegen werden op de eindproducten van het 

grote bedrijf slechts lage aantallen psychotrofe bacteriën (ca. 3 log kve/g) en E. coli (enkel 

detecteerbaar) teruggevonden. Bovendien waren L. monocytogenes en V. cholera afwezig in 

alle geanalyseerde monsters. In dit hoofdstuk worden ook de resultaten van de zelfdiagnose 

onder de loep genomen. Deze zelfdiagnose levert inzicht in de performantie van het huidig 

geïmplementeerde autocontrolesysteem. Problemen op het niveau van de controleactiviteiten 

en kwaliteitsborging in het kleine bedrijf resulteren in pangasiusfilets met een hoog risico 

inzake microbiologische voedselveiligheid. 

In een eerste deel van Hoofdstuk 5 werd een preliminaire evaluatie uitgevoerd om na te gaan 

in welke mate Pangasius gedecontamineerd werd in hetzelfde kleine schaal bedrijf. 

Aangezien chloor enkel toegevoegd werd in het begin van het wasproces en het water continu 

werd hergebruikt gedurende 239 min, werden het totaal psychrotroof kiemgetal, E. coli en 

coliformen op de Pangasius filets niet significant verwijderd (p > 0.05) tijdens het wassen. 

Dit kan verklaard worden door de snelle accumulatie van organische materie wat resulteerde 

in een dalend vrij chloor residu van 34.4 ± 2.9 ppm tot 7.8 ± 3.6 ppm na 24 min. Ook namen 

de microbiële aantallen in het waswater toe tot 5.7 (totaal kiemgetal), 3.9 (coliformen) en 3.0 

(E. coli) log KVE/100 mL na 24 min. In een tweede deel van hoofdstuk 5 werd de disinfectie 

efficiëntie van chloor en perazijnzuur (PAA) op zowel het proceswater als de Pangasius filets 

getest op laboschaal. Wassen met chloor en PAA resulteerde in een E. coli reductie op de 

Pangasius die varieerde van 0-1.0 en 0.4-1.4 log CFU/g respectievelijk, terwijl lagere 

reducties van totaal psychrotroof kiemgetal, melkzuurbacteriën en coliformen bereikt werden 

op Pangasius filets. Daarentegen, in vergelijking met PAA, reageerde chloor snel weg in het 

waswater. Bijvoorbeeld, 53-83% van het chloor en enkel 15-17 % van het PAA reageerde 

weg na wassen gedurende 40 s (Chemische Zuurstof Vraag (CZV) = 238.2 ± 66.3 mg O2/L). 

Daarom kan PAA dienen als alternatief waterdesinfectans, vooral in bedrijven waar het 

waswater hergebruikt wordt om meerdere batches te wassen. Maar, de hogere kost van PAA 

zal in rekening gebracht moeten worden. Bij toepassing van het (goedkopere) chloor, zullen 
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het residu aan chloor, pH en de CZV tijdens het desinfectieproces aandachtig gecontroleerd 

moeten worden om een optimale desinfectie te garanderen. 

Gebaseerd op de screening in Hoofdstuk 5, werd in Hoofdstuk 6 het effect van het continu 

doseren van chloor in het waswater geëvalueerd op het decontamineren van de Pangasius, de 

microbiële waswater kwaliteit en de sensorische kwaliteit en chemische veiligheid. In 

vergelijking met de controle (waar niet-gechloreerd waswater werd gebruikt), werd een hoge 

microbiële reductie waargenomen in het waswater bij continue dosering van chloor in het 

waswater. Bijvoorbeeld, de concentratie aan psychrotrofe micro-organismen in het waswater 

waren 2-4 log KVE/100 ml lager dan deze in niet-gechloreerd waswater na het wassen van 12 

batches filets. Na het wassen van de laatste batch filets (batch 12), waren de concentratie aan 

totaal chloor en organische materie in het water geaccumuleerd tot 482.9 ± 17.0 ppm en 

4447.5 ± 187.4 mg O2/L respectievelijk. Daarentegen, slechts 8.9 ± 1.3 µg/L aan 

trihalomethanen werden gevormd in het gechloreerde waswater en geen trihalomethanen 

werden gedetecteerd op de gewassen Pangasius filets na naspoelen. Er werd besloten dat 

Pangasius filets die gewassen werden in continu gechloreerd water, veilig waren voor 

menselijke consumptie, en dit voor alle batches (dus ook de laatste of 12
de

 batch). Maar, de 

organoleptische eigenschappen van de Pangasius filets in de laatste batch waren na wassen in 

chloor onacceptabel vanwege verkleuring (verbleking) en de aanwezigheid van een 

chloorgeur. Daarom, volgens de sensorische data, dient het aantal batches dat gewassen wordt 

in continu gechloreerd water gelimiteerd te zijn tot 4 batches. Er werd ook bepaald dat de 

hoeveelheid organische materie en de vrij chloor residuen in het waswater sneller en 

eenvoudiger bepaald konden worden door het meten van de UV absorbantie (bij 249 nm) en 

de redox potentiaal (ORP) respectievelijk. Het continue doseersysteem blijkt een groter 

potentieel te bezitten in een wasproces waar meerdere batches na elkaar gewassen worden in 

hetzelfde water. 
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