The complex Jacobi iterative method for threedimensional wide-angle beam propagation: erratum

Khai Q. Le^{1,*}, R. Godoy-Rubio², Peter Bienstman¹ and G. Ronald Hadley³

 ¹ Department of Information Technology, Ghent University-IMEC, St-Pietersnieuwstraat 4, B-9000 Ghent, Belgium
²Departamento de Ingeniería de Comunicaciones, University of Malaga, 29071, Spain
³ Sandia National Laboratories, Albuquerque, NM 87185 USA ^{*}Corresponding author: <u>khai.le@intec.ugent.be</u>

Abstract: An erratum is presented to correct the definition of coefficient ξ^* in Eq. (12) in our paper.

©2008 Optical Society of America

OCIS codes: (000.4430) General: Numerical approximation and analysis; (220.2560) Optical design and fabrication: Propagating methods; (350.5500) Other areas of optics: Propagation.

References and Links

 K. Q. Le, R. Godoy-Rubio, P. Bienstman, and G. R. Hadley, "The complex Jacobi iterative method for three-dimensional wide-angle beam propagation," Opt. Express 16, 17021-17030 (2008).

In Eq. (12) of our original paper [1] we wrote:

 ξ^* is the complex conjugate of ξ where

$$\xi = \frac{1}{4k^2 \left(1 + i\beta/2\right)} - \frac{i\Delta z}{4k}$$

However, the correct definition of ξ^* is

$$\xi^* = \frac{1}{4k^2(1+i\beta/2)} + \frac{i\Delta z}{4k}$$

Still, all calculations in [1] were performed using the correct formula.

#105375 - \$15.00 USD (C) 2008 OSA