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Any item may be caused at will to select immediately
and automatically another. This is the essential feature
of the memex. The process of tying two items together
is the important thing.

— Vannevar Bush, As We May Think (1945)





Preface
A moneymoon won’t �nd me
My head’s my only home
With nothing to remind me
But my vinyl wrapped-up soul

—Ozark Henry, Icon DJ (2002)

Like all things in life, research is not about the papers or processes,

but about the people behind them. They often say it takes a village to

write a book; I found out it takes several to successfully finish a PhD.

Research is standing on the shoulders of giants, and a few of those

giants deserve a special mention for their contribution to this work.

My supervisor Rik has given me the opportunity to work on a PhD

among some of the finest researchers in Belgium. I’m thankful for the

enlightening discussions we had, and I look forward to learning more

from him. My co-supervisor Erik has always been there for me with

understanding and support. His empathic and engaged leadership

style continues to be an inspiration. Also thanks to Davy, who taught

me the art of research and led me on the path of the Semantic Web.

On that path, I met many people, several of whom became friends.

Two encounters in particular have profoundly influenced me and my

research. When attending Tom’s talk in Hyderabad, I couldn’t have

suspected how many nice projects we would collaborate on. This

book would have been a different one without him. Only a month

later, we would both meet Seth on a beach in Crete. The ideas we

envisioned there that week will one day surely reshape the Web ;-)

At Multimedia Lab, I’m surrounded by helpful colleagues who

have become too numerous to name, but here’s a tip of the hat to

Sam, Miel, Pieter, Anastasia, Tom, Laurens, Dörthe, Pieterjan, Gerald,

Hajar, Joachim, Sebastiaan, Glenn, Jan, Steven, Fréderic, Jonas, Peter,

and Wesley. A special thanks to Ellen and Laura for their tremendous

efforts in keeping everything running smoothly—we all appreciate it!
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prof. Geert-Jan Houben, prof. Peter Lambert, and Jos De Roo, I wish

to express my sincerest gratitude for validating the work in this thesis.

I especially thank Jos for all he taught me about logic and the Web,

and for his fantastic work on the eye reasoner—the best is yet to come.

My profound gratitude goes out to Jean-luc Doumont, whose

quest for more efficient communication has forever changed the way

I write papers and deliver talks. This book’s language, structure, and

typography wouldn’t nearly have been what they are now without

“Trees, maps, and theorems”. Clearer writing makes research usable.

Thanks to the Agency for Innovation by Science and Technology

for providing me with a research grant for four wonderful years. Sadly,

high-quality education is not a given right for everybody in this world,

yet I do believe the Web will play an important role in changing this.

I am very grateful to Vincent Wade for inviting me as a visiting

researcher to Trinity College Dublin, and to Alex O’Connor and Owen

Conlan who worked with me there. This unique experience allowed

me to broaden my professional view in an international context.

Also thank you to many people I had the pleasure to meet over

the past few years for shaping my research in one way or another:

Rosa Alarcón, Mike Amundsen, Tim Berners-Lee, Peter Brusilovsky,

Max De Wilde, Marin Dimitrov, John Domingue, Michael Hausenblas,

Jim Hendler, Eelco Herder, Patrick Hochstenbach, Kjetil Kjernsmo,

Craig Knoblock, Jacek Kopecký, Markus Lanthaler, Maria Maleshkova,

David Martin, Simon Mayer, Sheila McIlraith, Peter Mechant, Barry

Norton, Natasha Noy, Pieter Pauwels, Carlos Pedrinaci, Elena Simperl,

Nora Srzentić, and Erik Wilde. The discussions I had with you—few

or many, short or long—definitely turned me into a better researcher.

Then of course, a warm-hearted thanks to my family and friends.

Thanks mom and dad for your lasting encouragement regardless of

the choices I make. Niels and Muriel, I’m proud to be your brother.

Thanks grandmother, I believe I inherited your sense of perspective.

A special thank you to my great friend Eddy, who told me I could

do anything I wanted, as long as I strived to be creative. It worked out!

Finally, I can’t say enough how I admire Anneleen for walking the

whole way with me. Thank you, my dear, for being everything I’m not.
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Summary

Ever since its creation at the end of the 20th century, the Web has

profoundly shaped the world’s information flow. Nowadays, the Web’s

consumers no longer consist of solely people, but increasingly of

machine clients that have been instructed to perform tasks for people.

Lacking the ability to interpret natural language, machine clients

need a more explicit means to decide what steps they should take.

This thesis investigates the obstacles for machines on the current

Web, and provides solutions that aim to improve the autonomy of

machine clients. In addition, we will enhance the Web’s linking

mechanism for people, to enable serendipitous reuse of data between

Web applications that were not connected previously.

The Web was not the first hypermedia system, and many earlier

alternatives had more complex features, especially with regard to

content interlinking. However, the Web was the first system to scale

globally. Achieving this required sacrificing more complex features:

the Web only offers publisher-driven, one-directional hyperlinks,

a crucial design choice that stimulated its growth into the world’s

leading information platform. It did not take long before application

development using the Web began, first in a way that resembled

traditional remote programming, and later in ways that embraced the

Web’s nature as a distributed hypermedia system.

In order to understand the Web’s properties for software develop-

ment, the Representational State Transfer (rest) architectural style

was created, capturing the constraints that govern the Web and other

distributed hypermedia systems. A subset of these constraints de-

scribe the uniform interface, which enable architectural properties

such as the independent evolution of clients and servers. The Web’s

Hypertext Transfer Protocol (http) implements the uniform interface

by providing a limited, standardized set of methods to access and

manipulate any resource in any Web application. Furthermore, the
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hypermedia constraint demands that hypermedia drives the inter-

action: clients should follow links and forms rather than engage in

a preprogrammed interaction pattern.

Combining the hypermedia constraint with the limitation that the

Web’s links can only be created by the information publisher, we arrive

at what we’ve called the affordance paradox: the client depends on

links supplied by the information publisher, which does not precisely

know the intentions of the client. Consequently, hypermedia can

only serve as the engine of application state to the extent that the

hypermedia document affords the actions the client wants to perform.

If a certain Web application does not link to a desired action in another

application, that action cannot be executed through hypermedia. This

currently necessitates hard-coded knowledge about both applications,

which endangers the independent evolution of clients and servers.

In order to solve this issue, we first need a way for machines to

interpret the effect of actions. The Semantic Web is a layer on top

of the existing Web that provides machine-interpretable markup. It

allows content publishers to annotate their existing data in a way

that enables intelligent machine processing. While several efforts

have also looked at describing dynamic aspects, there is currently

no method to rigorously capture the semantics of Web Application

Programming Interfaces (apis) that conform to the rest constraints.

This prompted us to create restdesc, a description format that

explains the functionality of an api by capturing it into first-order logic

rules. A restdesc description indicates which http request allows

the transition from certain preconditions to related postconditions.

In contrast to classical Web api descriptions, restdesc is designed

to support hypermedia-driven interactions at runtime instead of

imposing a hard-wired plan at compile-time.

As hypermedia documents allow clients to look ahead only

a single step at a time, it is necessary to provide a planning strategy

that enables reaching complex goals. restdesc rules are expressed

in the Notation3 (n3) language, so regular n3 reasoners can compose

restdesc descriptions into a plan. This is enabled by their built-in

proof mechanism, which explains how a certain goal can be reached

by applying rules as inferences. This proof also guarantees that, if

the execution of the Web apis happens as described, the composition

satisfies the given goal. The performance of current n3 reasoners

is sufficiently high to find the necessary Web apis and compose

them in realtime. Furthermore, the proposed mechanism allows

the automated consumption of Web apis, guided by a proof but still

driven by hypermedia, which enables dynamic interactions.
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The automated understanding of actions and the ability to find

actions that match a certain context allow us to solve the Web’s

affordance paradox. Instead of the current linking model, in which the

affordance on a certain resource is provided by the party that created

this resource, we can collect affordance from distributed sources.

With our proposed solution, called distributed affordance, a platform

dynamically adds hypermedia controls by automatically matching

a list of preferred actions to semantic annotations of the content.

For instance, users can have a set of actions they would like

to perform on movies, such as finding reviews or downloading

them to their digital television. A distributed affordance platform

in their browser can automatically make those actions available every

time a movie title appears on a page they visit. This removes the

limitation of having to rely on links supplied by the information

publisher. Especially on mobile devices, which have a more limited

set of input controls, such direct links can greatly enhance people’s

browsing experience. Furthermore, machine clients need not be

preprogrammed to use resources from one applications in another,

as they can rely on the generated links.

This leads to a more serendipitous use of data and applications

on the Web, in which data can flow freely between applications.

Similar to how people discover information on the Web by following

links, automated agents should be able to perform tasks they have

not been explicitly preprogrammed for. Thereby, they gradually

become serendipitous applications. In addition to autonomous agents

that act as personal assistants, we envision two other opportunities.

Semantics-driven applications are able to perform a specific service

on any given Linked Data stream, regardless of how it is structured.

Client-side querying improves scalability and fosters serendipity by

moving the intelligence from the server to the client.

The conclusion is that semantic technologies combined with

hypermedia allow a new generation of applications that are more

reusable across different contexts. Although it remains a challenge to

convince information and api publishers of their benefits, semantic

annotations significantly improve the opportunities for autonomous

applications on the Web.





Samenvatting
De uitvinding van het web heeft onze informatiemaatschappij op alle

vlakken voorgoed veranderd. Bovendien wordt het web de dag van

vandaag niet enkel gebruikt door mensen, maar in toenemende mate

ook door machines die in onze opdracht taken uitvoeren. Aangezien

machines momenteel geen natuurlijke taal begrijpen, hebben ze een

meer expliciete manier nodig om acties te kiezen op het web. Dit

proefschrift beschrijft de hindernissen die machines tegenkomen

online, en gaat op zoek naar oplossingen om hun zelfstandigheid op

het web te bevorderen. Daarnaast stellen we ook een verbetering voor

aan het linkmechanisme van het web om een spontaner hergebruik

tussen verschillende webtoepassingen mogelijk te maken.

Voor het Web werd uitgevonden, waren reeds andere hypermedia-

systemen in gebruik. Vaak boden deze zelfs meer complexe functies

aan, zoals geavanceerde links tussen verschillende mediafragmenten.

Het web was echter het eerste hypermediasysteem dat slaagde in een

wereldwijde verspreiding. Om dit mogelijk te maken, was het nodig

om complexere elementen uit het ontwerp te halen: het web kent

enkel eenrichtingslinks, die alleen door de auteur van de informa-

tie kunnen toegevoegd worden. Deze keuze bleek cruciaal om het

web te laten uitgroeien tot een wereldwijd informatieplatform. Het

duurde niet lang voor verschillende toepassingen gebruik begonnen

te maken van het web. Eerst gebeurde dit op een manier die meer

verwant was aan traditionele softwareontwikkeling, later werd meer

rekening gehouden met de unieke eigenschappen van het web als

gedistribueerd hypermediaplatform.

Om de implicaties van het web op softwareontwikkeling te begrij-

pen, werd rest (Representational State Transfer) geïntroduceerd, een

architecturale stijl die beschrijft welke principes ten grondslag liggen

aan gedistribueerde hypermediasystemen. Een deel van deze princi-

pes leidt tot de uniforme interface, die zorgt voor gunstige architectu-

rale eigenschappen zoals de onafhankelijke evolutie van cliënten en

servers. In het Hypertext Transfer Protocol (http) werd deze uniforme
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interface geïmplementeerd als een beperkte, gestandaardiseerde ver-

zameling methodes voor toegang tot en wijzigingen aan documenten.

Daarnaast legt het hypermediaprincipe de beperking op dat de inter-

actie moet gestuurd worden door hypermedia: cliënten moeten links

en formulieren gebruiken in plaats van een voorgeprogrammeerd

interactiepatroon te volgen.

Wanneer we het hypermediaprincipe en de auteursgebonden

creatie van hyperlinks met elkaar in verband brengen, ontstaat de

paradox van het interactiepad: de cliënt is afhankelijk van de links

die de auteur van de informatie aanbrengt, maar deze auteur kent

de intenties van de cliënt niet. De mate waarin hypermedia een

toegangspad biedt tot de interactie, beperkt zich dus tot de acties

die de auteur voorzien heeft in het hypermediadocument. Als een

bepaalde webtoepassing geen links voorziet naar een actie die de

cliënt zou willen uitvoeren op dit document, dan kan deze actie

niet tot stand gebracht worden via hypermedia. Dit zorgt ervoor

dat dergelijke acties momenteel voorgeprogrammeerd worden, wat

de onafhankelijke evolutie van cliënten en servers in gevaar brengt.

Om dit probleem op te lossen, hebben we eerst een methode

nodig die machines in staat stelt om de gevolgen van acties te inter-

preteren. Het semantisch web vormt een laag bovenop het bestaande

web die machinaal interpreteerbare annotaties toevoegt. Dit laat

auteurs van informatie toe om bestaande gegevens te verrijken op

een manier die machines in staat stelt deze informatie intelligent te

verwerken. Hoewel voor de beschrijving van dynamische aspecten

reeds verschillende oplossingen bestaan, is er momenteel geen me-

thode die de semantiek van web-apis (Application Programming In-

terfaces) kan bevatten die opgebouwd zijn volgens de rest-principes.

Daarom creëerden we restdesc, een beschrijvingsformaat dat de

functionaliteit van een api uitlegt als een regel binnen de eerste-orde-

logica. restdesc-beschrijvingen geven aan welk http-verzoek leidt

tot de transformatie van bepaalde pre-condities naar gerelateerde

post-condities. In tegenstelling tot traditionele webtoepassingen,

ondersteunt restdesc hypermediagestuurde interacties tijdens de

uitvoering van een programma in plaats van een plan dat vastgelegd

wordt tijdens de compilatie.

Vermits hypermediadocumenten slechts één stap per keer to-

nen aan cliënten, is het noodzakelijk om een planningsstrategie te

voorzien die toelaat om complexe doelen te bereiken. restdesc-

regels worden uitgedrukt in de Notation3-taal (n3), wat generieke

n3-redeneersoftware in staat stelt om een compositie te maken van

restdesc-beschrijvingen. Dit is mogelijk door de ingebouwde bewijs-
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functie, waarin een bewijs uitlegt hoe een bepaald doel kan bereikt

worden door de toepassing van regels als logische afleidingen. Dit

bewijs biedt tevens de garantie dat de compositie het vooropgestelde

doel kan bereiken als de uitvoering van de web-apis verloopt zoals

beschreven. De performantie van huidige n3-redeneersoftware is

voldoende hoog om de benodigde web-apis te vinden en samen te

stellen in ware tijd. Daarnaast laat de voorgestelde methode eveneens

toe om web-apis te gebruiken op een geautomatiseerde manier, geleid

door een formeel bewijs maar gestuurd door hypermedia, wat zorgt

voor dynamische interacties.

De automatische interpretatie van acties en de mogelijkheid om

acties te vinden die voldoen aan een bepaalde context, stellen ons in

staat om de paradox van het interactiepad op te lossen. In plaats van

het huidige hyperlinkmodel op het web, waarin de mogelijke interac-

tiepaden voor een mediafragment bepaald worden door de partij die

dit fragment publiceert, kunnen we interactiepaden van verschillende

aanbieders verwerken in de informatie. De oplossing die we voorstel-

len, gedistribueerde interactiepaden of distributed affordance, is een

platform dat op dynamische wijze hypermedia-elementen toevoegt

door een lijst van voorkeursacties van de gebruiker te instantiëren aan

de hand van semantische annotaties in het mediafragment.

Dit leidt tot een meer spontaan en situatiegedreven gebruik van

gegevens en toepassingen, waarin gegevens zich vrij tussen verschil-

lende toepassingen bewegen. Net zoals mensen informatie verkennen

door links te volgen op het web, kunnen geautomatiseerde agenten

taken uitvoeren waarvoor ze niet expliciet geprogrammeerd werden.

Daardoor evolueren deze tot situatiegedreven toepassingen. Naast

zelfstandige agenten die optreden als persoonlijke assistenten, zien

we nog twee mogelijkheden. Semantisch aangestuurde toepassingen

bieden een specifieke dienst aan die werkt op verschillende gegevens-

stromen. Door bevragingstechieken te verplaatsen van de informatie-

aanbieder naar de cliënt, worden intelligentere cliënten mogelijk, en

daarmee een serendipiteuzer gebruik van kennis.

We besluiten dat semantische technologieën in combinatie met

hypermedia aanleiding geven tot een nieuwe generatie van toepas-

singen met verhoogde herbruikbaarheid over verschillende situaties

heen. Het blijft echter een uitdaging om auteurs van informatie en apis

te overtuigen van de mogelijkheden die semantiek biedt voor het web.





Chapter 1

Introduction
Like the fool I am and I’ll always be
I’ve got a dream
They can change their minds
But they can’t change me

— Jim Croce, I’ve Got a Name (1973)

If you ask me, the World Wide Web has been the most important

invention of the past decades. Never before in human history have

we seen a faster spread of information throughout the entire world.

At the dawn of the 21st century, humans are no longer the only

information consumers: increasingly, automated software clients

try to make sense of what’s on the Web. This thesis investigates the

current obstacles and catalysts on the road toward a unified Web

for humans and machines. It then explores how such a symbiosis

can impact the role of the Web for people.

During three and a half years of research, I have been investigating

Is the search for intelligent

agents the ultimate goal

of the Semantic Web, or

is it just a story to explain

its potential? In any case,

the idea of autonomous

personal digital assistants

exerts a strong attraction.

how one day, autonomous pieces of software might use the Web

similar to the way people can. This was inspired by Tim Berners-Lee’s

vision of the Semantic Web [1], a layer on top of the existing Web that

makes it interpretable for so-called intelligent agents. At one of the

first conferences I attended, a keynote talk by Jim Hendler, co-author

of the Semantic Web vision article, left me rather puzzled. Near the

end of his talk—after convincing us all that the necessary technology

is already out there—he posed the question: “so where are the agents?”

More than a decade of Semantic Web research unquestionably

resulted in great progress, but nothing that resembles the envisioned

intelligent agents is available. The Web has rapidly evolved, and many
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automated clients were created—yet all of them are preprogrammed

for specific tasks. The holy grail of semantic technologies remains

undiscovered, and researchers are sceptical as to whether it exists.

The unbounded enthusiasm gradually makes place for pragmatism,

as with any technology that advances on the hype cycle [3].

I had to maintain a realistic viewpoint during my search for

solutions: trying to solve every possible challenge for autonomous

agents would result in disappointment. The Semantic Web remains

just a technology—albeit one that is assumed to make intelligent

applications on the Web easier than its predecessors [2]. However,

I believe the techniques discussed in this thesis advances the state of

the art by making certain autonomous interactions possible that were

significantly more difficult to achieve before. It cannot be a definitive

answer to the quest for intelligent agents, but it might offer one of the

stepping stones toward more autonomy for such agents.

Along the way, I will question some of the established principles

and common practices on the Web. In particular, I will examine

how we currently approach software building for the Web and plea

for several changes that can make it more accessible for machines.

As semantic technologies were never meant to be disruptive, the

presented methods allow a gradual transition, backward-compatible

with the existing Web infrastructure.

This thesis is structured in 8 chapters. After this introductory

chapter, I will discuss the following topics:

Chapter 2 – Hypermedia introduces the evolution of hypertext

and hypermedia into the current Web. We detail how the rest

architectural style has influenced the Web and examine why

the Web’s current hypertext design is insufficient to support

autonomous agents. This leads to the three research questions

that drive this thesis.

Chapter 3 – Semantics sketches the main components of Seman-

tic Web technology and zooms in on the vision of intelligent

agents. We discuss Linked Data as a pragmatic view on semantics.

Finally, we elaborate on the relation between hypermedia and

semantics on the Web.

Chapter 4 – Functionality argues that machine clients need a way

to predict the effect of actions on the Web. It introduces my work

on restdesc, a lightweight approach to capture the functionality

of Web apis. A hypermedia-driven process for agents can offer an

alternative to predetermined and rigid interaction patterns.
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Chapter 5 – Proof discusses my work on goal-driven Web api

composition and the importance of proof and trust in the context

of autonomous agents. We reconcile the error-prone act of api

execution with the strictness of first-order logic and proofs.

Chapter 6 – Affordance addresses an issue with the Web’s linking

model: information publishers are responsible for link creation,

yet they have insufficient knowledge to provide exactly those links

a specific client needs. I introduce the concept of distributed

affordance to generate the needed links in a personalized way.

Chapter 7 – Serendipity questions the current way of Web appli-

cation development. It proposes the use of semantic hypermedia

as an enabling mechanism for applications that adapt to a specific

client and problem context.

Chapter 8 – Conclusion reviews the content of the preceding

chapters, recapitulating the answers to the research questions

that guide this thesis.

This thesis has been conceived as a book with a narrative, prefer-

ring natural language over mathematical rigorousness to the extent

possible and appropriate. The underlying motivation is to make this

Since no act of research

ever happens in isolation,

I will use the authorial

“we” throughout the text,

except in places where

I want to emphasize my

own viewpoint.

work more accessible, while references to my publications guide the

reader towards in-depth explanations.

After the last chapter, four of my journal articles have been

included to provide another perspective on my research. Connections

to the chapters are indicated explicitly for easy reference.

I hope this introduction may be the start of a fascinating journey

through hypermedia and semantics. I learned a lot while conducting

this research; may the topics in this book inspire you in turn.
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Chapter 2

Hypermedia
J’irai où ton sou�e nous mène
Dans les pays d’ivoire et d’ébène

—Khaled, Aïcha (1996)

Hypermedia plays a fundamental role on the Web. Unfortunately,

in order to turn the Web into the global hypertext system it is today,

several compromises had to be made. This chapter starts with

a short history of hypermedia, moving on to its implementation

on the Web and its subsequent conceptualization through rest.

If we want machines to automatically perform tasks on the Web,

enhancements are necessary. This observation will lead to the

research questions guiding this doctoral dissertation.

In colloquial language, “the Internet” and “the Web” are treated

synonymously. In reality, the Internet [9] refers to the international

computer network, whereas the World Wide Web [5] is an information

system, running on top of the Internet, that provides interconnected

documents and services. As many people have been introduced to While the information sys-

tem is actually the Web, in

practice, people usually

refer to any action they

perform online simply as

“using the Internet”.

both at the same time, it might indeed be unintuitive to distinguish

between the two. An interesting way to understand the immense

revolution the Web has brought upon the Internet is to look at the

small time window in the early 1990s when the Internet had started

spreading but the Web hadn’t yet. The flyer in Figure 1 dates from

this period, and was targeted at people with a technical background

who likely had Internet access. It instructs them to either send an

e-mail with commands, or connect to a server and manually traverse

a remote file system in order to obtain a set of documents. In contrast,
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Figure 1: When usage of the Web was not widespread, Internet documents had to be retrieved by following
a list of steps instead of simply going to an address. This �yer from around 1993 instructs Internet users how
to retrieve �les by sending commands via e-mail or by manually traversing a server. ©Springer-Verlag
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the Web allows publishers to simply print an address that can be

typed into a Web browser. This address could point to an information

page that contains links to the needed documents. Nowadays, it is

This qr code leads you to

the page at springer.com

where the documents of

Figure 1 can be retrieved.

Compare the simplicity of

scanning the code or typ-

ing that link to following

the figure’s instructions.

even common to have a machine-readable qr code on such a flyer, so

devices like smartphones can follow the “paper link” autonomously.

Clearly, we’ve come a long way. This chapter will tell the history of

hypermedia and the Web through today’s eyes, with a focus on what is

still missing for current and future applications. These missing pieces

form the basis for this dissertation’s research questions, which are

formulated at the end of the chapter. The next section takes us back

in time for a journey that surprisingly already starts in 1965—when

the personal computer revolution was yet to begin.

A history of hypermedia

The first written mention of the word hypertext was by Ted Nelson

in a 1965 article [15], where he had introduced it as “a body of

written or pictorial material interconnected in such a complex way

that it could not conveniently be presented or represented on paper.”

In that same article, he mentioned hypermedia as a generalization

of the concept to other media such as movies (consequently called

hyperfilm). While this initial article was not very elaborate on the

Theodor Holm Nelson

(*1937) is a technology

pioneer most known for

Project Xanadu [23]. Even

though a fully functional

version has not been re-

leased to date, it inspired

generations of hypertext

research. When coining

the term, he wrote “we’ve

been speaking hypertext

all our lives and never

known it.” [16] ©Daniel Gies

precise meaning of these terms, his infamous cult double-book

“Computer Lib / Dream Machines” [16] provided context and examples

to make them more clear. Later, in “Literary Machines” [17], he

defined hypertext as “[. . .] non-sequential writing—text that branches

and allows choices to the reader, best read at an interactive screen.

As popularly conceived, this is a series of text chunks connected by links

which offer the reader different pathways.”

It is important to realize that Nelson’s vision differs from the

Web’s implementation of hypertext in various ways. He envisioned

chunk-style hypertext with footnotes or labels offering choices that

came to the screen as you clicked them, collateral hypertext to

provide annotations to a text, stretchtext, where a continuously

updating document could contain parts of other documents with

a selectable level of detail, and grand hypertext, which would consist of

everything written about a subject [16]. In particular, Nelson thought

of much more flexible ways of interlinking documents, where links

could be multi-directional and created by any party, as opposed

to the uni-directional, publisher-driven links of the current Web.

Information could also be intertwined with other pieces of content,

which Nelson called transclusion.

springer.com
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Although Nelson’s own hypertext platform Xanadu was never real-

ized [23], other computer pioneers such as Doug Engelbart started to

implement various kinds of hypertext software. By 1987, the field had

The idea of interlinking

documents even predates

Nelson. Vannevar Bush

wrote his famous article

“As We May Think” in 1945,

detailing a hypothetical

device the memex [8], that

enabled researchers to fol-

low a complex trail of doc-

uments. . . on microfilm.

That idea can in turn be

traced back to Paul Otlet,

who imagined a mesh of

many electric telescopes al-

ready in 1934 [18]. While

unquestionably brilliant,

both works now read like

anachronisms. They were

onto something crucial,

but the missing piece

would only be invented

a few decades later: the

personal computer.

sufficiently matured for an extensive survey, summarizing the then-

existing hypertext systems [10]. Almost none of the discussed systems

are still around today, but the concepts presented in the article sound

familiar. The main difference with the Web is that all these early

hypermedia systems were closed. They implemented hypermedia in

the sense that they presented information on a screen that offered

the user choices of where to go next. These choices, however, were

limited to a local set of documents. In the article, Conklin defines

the concept of hypertext as “windows on the screen [. . .] associated

with objects in a database” [10], indicating his presumption that there

is indeed a single database containing all objects. Those systems are

thus closed in the sense that they cannot cross the border of a sin-

gle environment, and, as a consequence, also in the sense that they

cannot access information from systems running different software.

As a result, hypertext systems were rather small: documentation,

manuals, books, topical encyclopedias, personal knowledge bases, . . .

In contrast, Nelson’s vision hinted at a global system, even though he

did not have a working implementation by the end of the 1980s, when

more than a dozen other hypertext systems were already in use. The

focus of hypertext research at the time was on adding new features to

existing systems. In hindsight, it seems ironic that researchers back

then literally didn’t succeed in thinking “outside the box”.

The invention of the Web

His World Wide Web was

only accepted as a demo

in 1991 [4]. Yet at the 1993

Hypertext conference, all

projects were somehow

connected to the Web, as

Tim Berners-Lee recalls.

©CERN

Looking through the eyes of that time, it comes as no surprise that Tim

Berners-Lee’s invention was not overly enthusiastically received by the

1991 Hypertext conference organizers [4]. The World Wide Web [5]

looked very basic on screen (only text with links), whereas other

systems showed interactive images and maps. But in the end, the

global scalability of the Web turned out to be more important than

the bells and whistles of its competitors. It quickly turned the Web into

the most popular application of the Internet. Nearly all other hyper-

text research was halted, with several researchers switching to Web-

related topics such as Web engineering or Semantic Web (Chapter 3).

Remaining core hypermedia research is now almost exclusively car-

ried out within the field of adaptive hypermedia (Chapter 6).

The Web owes its success to its architecture, which was designed

to scale globally. Therefore, it is crucial to have a closer look at the

components that make up the invention.
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The Web’s components
The Web is not a single monolithic block, but rather a combination

of three core components, each of which is discussed below.

Uniform Resource Locator (url) A url [7] has double functionality.

On the one hand, it uniquely identifies a resource, just like a national

http://w3.org /news/today

protocol

domain name path

urls start with a protocol

(http or https), followed

by a domain name to iden-

tify the server and a path

to identify the resource on

the server.

identification number identifies a person. On the other hand, it also

locates a resource, like a street address allows to locate a person.

However, note that both functions are clearly distinct: a national

identification number doesn’t tell you where a person lives, and

a street address doesn’t always uniquely point to a single person. urls

provide both identification and location at the same time, because

they are structured in a special way. The domain name part of a url

allows the browser to locate the server on the Internet, and the path

part gives the server-specific name of the resource. Together, these

parts uniquely identify—and locate—each resource on the Internet.

Hypertext Transfer Protocol (http) Web clients and servers com-

municate through the standardized protocol http [13]. This protocol

All http requests and re-

sponses contain metadata

in standardized headers.

For instance, a client can

indicate its version, and

a server can specify the

resource’s creation date.

has a simple request/response message paradigm. Each http request

consists of the method name of the requested action and the url

to the resource that is the subject of this action. The set of possible

methods is limited, and each method has highly specific semantics.

A client asks for a representation of a resource (or a manipulation

thereof), and the server sends an http response back in which the

representation is enclosed.

Hypertext Markup Language (html) Finally, the Web also needs

a language to mark up hypertext, which is html [3]. Although html is

only one possible representation format—as any document type can

be transported by http—its native support for several hypermedia

controls [1] makes it an excellent choice for Web documents. html

documents can contain links to other resources, which are identified

by their url. Upon activation of the link, the browser dereferences the

url by locating, downloading, and displaying the document.

URL

HTTPHTML

A url identifies a resource

in an http request, which

returns an html represen-

tation that links to other

resources through urls.

These three components are strongly interconnected. urls are the

identification and location mechanism used by http to manipulate

resources and to retrieve their representations. Many resources have

an html representation (or another format with hypermedia support)

that in turn contains references to other resources through their url.
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The Web’s architectural principles

Like many good inventions, the Web somehow happened by accident.

That’s not to say that Berners-Lee did not deliberately design urls,

http, and html as they are—it’s that the formalization and analysis of

the Web’s architectural principles had not been performed back then.

To this end, Roy Thomas Fielding introduced a conceptual framework

capable of analyzing large-scale distributed hypermedia systems like

the Web, which he called the Representational State Transfer (rest)

architectural style [11, 14]. rest is a tool to understand the architec-

tural properties of the Web and a guide to maintain these properties

when developing future changes or additions.

http, the protocol of

the Web, is not the only

implementation of rest.

And unfortunately, not

every http application

necessarily conforms to

all rest constraints. Yet,

full adherence to these

constraints is necessary

in order to inherit all de-

sirable properties of the

rest architectural style.

Fielding devises rest by starting from a system without defined

boundaries, iteratively adding constraints to induce desired properties.

In particular, there’s a focus on the properties scalability, allowing the

Web to grow without negative impact on any of the involved actors,

and independent evolution of client and server, ensuring interactions

between components continue to work even when changes occur on

either side. Some constraints implement widely understood concepts,

such as the client-server constraints and the cache constraints, which

won’t be discussed further here. Two constraints are especially

unique to rest (and thus the Web), and will play an important role

in the remainder of this thesis: the statelessness constraint and the

uniform interface constraints.

The statelessness constraint
When a client is sending

“give me the next page”,

the interaction is stateful,

because the server needs

the previous message to

understand what page it

should serve. In contrast,

“give me the third page of

search results for ‘apple’”

is stateless because it is

fully self-explanatory—at

the cost of a substantially

longer message length.

rest adds the constraint that the client-server interaction must be

stateless, thereby inducing the properties of visibility, reliability, and

scalability [11]. This means that every request to the server must

contain all necessary information to process it, so its understanding

does not depend on previously sent messages. This constraint is often

loosely paraphrased as “the server doesn’t keep state,” seemingly

implying that the client can only perform read-only operations. Yet,

we all know that the Web does supports many different kinds of write

operations: servers do remember our username and profile, and let

us add content such as text, images, and video. Somehow, there exists

indeed a kind of state that is stored by the server, even though this

constraint seems to suggest the contrary. This incongruity is resolved

by differentiating between two kinds of state: resource state and

application state [19]. Only the former is kept on the server, while the

latter resides inside the message body (and partly at the client).
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Before we explain the difference, we must first obtain an under-

standing of what exactly constitutes a resource. Resources are the

fundamental unit for information in rest. Broadly speaking, “any

The idea behind rest is to

define resources at the ap-

plication’s domain level.

This means that techno-

logical artefacts such as

“a service” or “a message”

are not resources of a book

store application. Instead,

likely resource candidates

are “book”, “user profile”,

and “shopping basket”.

information that can be named can be a resource” [11]. In practice, the

resources of a particular Web application are the conceptual pieces of

information exposed by its server. Note the word “conceptual” here;

resources identify constant concepts instead of a concrete value that

represents a concept at a particular point in time. For instance, the

resource “today’s weather” corresponds to a different value every day,

but the way of mapping the concept to the value remains constant.

A resource is thus never equal to its value; “today’s weather” is different

from an html page that details this weather. For the same reason,

“The weather on February 28th, 2014” and “today’s weather” are distinct

concepts and thus different resources—even if 28/02/2014 were today.

In a book store, resource

state would be the current

contents of the shopping

basket, name and address

of the user, and the items

she has bought.

Resource state, by consequence, is thus the combined state of

all different resources of an application. This state is stored by the

server and thus not the subject of the statelessness constraint. Given

sufficient access privileges, the client can view and/or manipulate

this state by sending the appropriate messages. In fact, the reason the

client interacts with the server is precisely to view or modify resource

state, as these resources are likely not available on the client side. This

is why the client/server paradigm was introduced: to give a client

access to resources it does not provide itself.

The book the user is con-

sulting and the credentials

with which she’s signed in

are two typical examples

of application state.

Application state, in contrast, describes where the client is in the

interaction: what resource it is currently viewing, what software it

is using, what links it has at its disposition, . . . It is not the server’s

responsibility to store this. As soon as a request has been answered,

the server should not remember it has been made. This is what makes

the interaction scalable: no matter how many clients are interacting

with the server, each of them is responsible for maintaining its own

application state. When making a request, the client sends the relevant

application state along. Part of this is encoded as metadata of each

request (for example, http headers with the browser version); another

part is implicitly present through the resource being requested. For

A back button that doesn’t

allow you to go to your pre-

vious steps is an indica-

tion the server maintains

the application state, in

violation of the stateless-

ness constraint.

instance, if the client requests the fourth page of a listing, the client

must have been in a state where this fourth page was accessible, such

as the third page. By making the request for the fourth page, the

server is briefly reminded of the relevant application state, constructs

a response that it sends to the client, and then forgets the state again.

The client receives the new state and can now continue from there.

The uniform interface, which is the next constraint we’ll discuss,

provides the means of achieving statelessness in rest architectures.
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The uniform interface constraints
The central distinguishing feature of the rest architectural style is its

emphasis on the uniform interface, consisting of four constraints,

which are discussed below. Together, they provide simplification,

visibility, and independent evolution [11].

In some Web applications,

we can see actions such as

addComment as the target

of a hyperlink. However,

these are not resources ac-

cording to the definition:

an “addComment” is not

a concept. As an unfor-

tunate consequence, their

presence thus breaks com-

patibility with rest.

Identification of resources Since a resource is the fundamental unit

of information, each resource should be uniquely identifiable so it

can become the target of a hyperlink. We can also turn this around:

any indivisible piece of information that can (or should) be identified

in a unique way is one of the application’s resources. Since resources

are conceptual, things that cannot be digitized (such as persons or

real-world objects) can also be part of the application domain—even

though they cannot be transmitted electronically.

Each resource can be identified by several identifiers, but each

identifier must not point to more than one resource. On the Web, the

role of unique identifiers is fulfilled by urls, which identify resources

and allow http to locate and interact with them.

The common human-

readable representation

formats on the Web are

html and plaintext. For

machines, json, xml, and

rdf can be found, as well

as many binary formats

such as jpeg and png.

Manipulation of resources through representations Clients never

access resources directly in rest systems; all interactions happen

through representations. A representation represents the state of

a resource—which is conceptual in nature—as a byte sequence in

a format that can be chosen by the client or server (hence the acronym

rest or “Representational State Transfer”). Such a format is called

a media type, and resources can be represented in several media types.

A representation consists of the actual data, and metadata describing

this data. On the Web, this metadata is served as http headers [13].

Out-of-band information

is often found in software

applications or libraries,

an example being human-

readable documentation.

It increases the difficulty

for clients to interoperate

with those applications.

Media types are only part

of the solution.

Self-descriptive messages Messages exchanged between clients

and servers in rest systems should not require previously sent or

out-of-band information for interpretation. One of the aspects of this

is statelessness, which we discussed before. Indeed, messages can only

be self-descriptive if they do not rely on other messages. In addition,

http also features standard methods with well-defined semantics

(GET, POST, PUT, DELETE, . . . ) that have properties such as safeness or

idempotence [13]. However, in Chapter 4, we’ll discuss when and how

to attach more specific semantics to the methods in those cases where

the http specification deliberately leaves options open.
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Hypermedia as the engine of application state The fourth and

final constraint of the uniform interface is that hypermedia must

be the engine of application state. It is sometimes referred to by

In rest Web applications,

clients advance the ap-

plication state by activat-

ing hypermedia controls.

Page 3 of a search result

is retrieved by following

a link, not by constructing

a new navigation request

from scratch.

its hateoas acronym; we will use the term “hypermedia constraint”.

From the statelessness constraint, we recall that application state

describes the position of the client in the interaction. The present

constraint demands that the interaction be driven by information

inside server-sent hypermedia representations [12] rather than out-

of-band information, such as documentation or a list of steps, which

would be the case for Remote Procedure Call (rpc) interactions [20].

Concretely, rest systems must offer hypermedia representations that

contain the controls that allow the client to proceed to next steps.

In html representations, these controls include links, buttons, and

forms; other media types offer different controls [1].

Many—if not most—Web

apis that label themselves

as “rest” or “restful” fail

to implement the hyper-

media constraint and are

thus merely http apis, not

rest apis. Part of the ig-

norance might be due to

Fielding’s only brief expla-

nation of this constraint in

his thesis [11]. As he later

explained on his blog [12],

where he criticized the in-

correct usage of the “rest”

label, this briefness was

because of a lack of time;

it does not imply the con-

straint would be less im-

portant than others. To

make the distinction clear,

Web apis that conform to

all rest constraints are

sometimes referred to as

hypermedia apis [2].

With the history of hypermedia in mind, this constraint seems

very natural, but it is crucial to realize its importance and neces-

sity, since the Web only has publisher-driven, one-directional links.

When we visit a webpage, we indeed expect the links to next steps

to be there: an online store leads to product pages, a product page

leads to product details, and this page in turn allows to order the

product. However, we’ve all been in the situation where the link we

needed wasn’t present. For instance, somebody mentions a product

on her homepage, but there is no link to buy it. Since Web linking is

unidirectional, there is no way for the store to offer a link from the

homepage to the product, and hence, no way for the user to complete

the interaction in a hypermedia-driven way. Therefore, the presence

of hypermedia controls is important.

While humans excel in finding alternative ways to reach a goal

(for instance, entering the product name in a search engine and then

clicking through), machine clients do not. These machine clients are

generally pieces of software that aim to bring additional functionality

to an application by interacting with a third-party Web application,

often called a Web api (Application Programming Interface) in that

context. According to the rest constraints, separate resources for

machines shouldn’t exist, only different representations. Machines

thus access the same resources through the same urls as humans. In

practice, many representations for machine clients unfortunately do

not contain hypermedia controls. As machines have no flexible coping

strategies, they have to be rigidly preprogrammed to interact with

Web apis in which hypermedia is not the engine of application state. If

we want machines to be flexible, the presence of hypermedia controls

is a necessity, surprisingly even more than for human-only hypertext.
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Hypermedia on the Web

Fielding coined his defini-

tion of hypertext only in

April 2008, several years af-

ter the derivation of rest,

in a talk titled “A little rest

and relaxation”. Yet, its

significance is important.

Fielding’s definition of hypertext [11] (and by extension, hypermedia)

guides us to an understanding of the role of hypermedia on the Web:

When I say hypertext, I mean the simultaneous presentation of

information and controls such that the information becomes

the affordance through which the user (or automaton) obtains

choices and selects actions. — Roy Thomas Fielding

As this definition is very information-dense, we will interpret the

different parts in more detail.

First, the definition mentions the simultaneous presentation

of information and controls. This hints at the use of formats that

intrinsically support hypermedia controls, such as html, where the

presentation of the information is necessarily simultaneous with the

controls because they are intertwined with each other. However,

intertwining is not a strict requirement; what matters is that the

client has access to the information and to the controls that drive

the application state at the same time.

Second, by their presence, these controls transform the informa-

tion into an affordance. As the precise meaning and significance of

the term affordance will be clarified in Chapter 6, it suffices here to say

that the controls make the information actionable: what previously

was only text now provides its own interaction possibilities.

Third, these interaction possibilities allow humans and machine

clients to choose and select actions. This conveys the notion of

Nelson’s definition that the text should allow choices to the reader on

an interactive screen [17]. Additionally, it refers to the hypermedia

constraint, which demands the information contains the controls that

allow the choice and selection of next steps.

Nowadays, most machine

clients have been prepro-

grammed for interaction

with a limited subset of

Web apis. However, I do

expect this to change in

the future—and I aim to

contribute to that change

with the work described

in this thesis.

Note how the definition explicitly includes machine clients. As

we said before, the rest architecture offers similar controls (or

affordances) to humans and machines, both of which use hypermedia.

We can distinguish three kinds of machine clients. A Web browser is

operated by a human to display hypermedia, and it can enhance

the browsing experience based on a representation’s content. An

api client is a preprogrammed part of a software application, designed

to interact with a specific Web api. An autonomous agent [6] is capable

of interacting with several Web apis in order to perform complex tasks,

without explicitly being programmed to do so.
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Research questions

If we bring together Fielding’s definition of hypertext, the hypermedia

constraint, and the publisher-driven, unidirectional linking model of

the Web, an important issue arises. Any hypermedia representation

The same decisions that

lead to the scalability of

the Web are those that

make it very hard to real-

ize the hypermedia con-

straint. The fact that the

publishers offer links to

a client makes it easier

for this client to continue

the interaction, but at the

same time puts a severe

constraint on those pub-

lishers, who won’t be able

to give every client exactly

what it needs.

must contain the links to next steps, yet how can the publisher of

information, responsible for creating this representation, know or

predict what the next steps of the client will be? It’s not because the

publisher is the client’s preferred party to provide the information,

that it is also the best party to provide the controls to interact with this

information [21, 22]. Even if it were, the next steps differ from client to

client, so a degree of personalization is involved—but based on what

parameters? And is it appropriate to pass those to the publisher?

Given the current properties of the Web, hypermedia can only

be the engine of application state in as far as the publisher is able to

provide all necessary links. While this might be the case for links that

lead toward the publisher’s own website, this is certainly not possible

on the open Web with an ever growing number of resources. The

central research question in this thesis is therefore:

How can we automatically offer human and machine clients the

hypermedia controls they require to complete tasks of their choice?

An answer to this research question will eventually be explained

in Chapter 6, but we need to tackle another issue first. After all, while

humans generally understand what to do with hypermedia links,

merely sending controls to a machine client is not sufficient. This

client will need to interpret how to make a choice between different

controls and what effect the activation of a certain control will have

in order to decide whether this helps to reach a certain goal. The

second research question captures this problem:

How can machine clients use Web apis in a more autonomous way,

with a minimum of out-of-band information?

Chapters 4 and 5 will explore a possible answer to this question,

which will involve semantic technologies, introduced in Chapter 3.

Finally, I want to explore the possibilities that the combination of

semantics and hypermedia brings for Web applications:

How can semantic hypermedia improve the serendipitous reuse of

data and applications on the Web?

This question will be the topic of Chapter 7, and is meant to inspire

future research. As I will explain there, many new possibilities reside

at the crossroads of hypermedia and semantics.
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In this chapter, we looked at the Web from the hypermedia perspective,

starting with the early hypertext systems and how the Web differs

from them. Through the rest architectural style, a formalization of

distributed hypermedia systems, we identified a fundamental problem

of the hypermedia constraint: publishers are responsible for providing

controls, without knowing the intent of the client or user who will

need those controls. Furthermore, hypermedia controls alone are not

sufficient for automated agents; they must be able to interpret what

function the controls offer. I will address these problems by combining

hypermedia and semantic technologies.
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Chapter 3

Semantics
Into this house we’re born
Into this world we’re thrown
Like a dog without a bone
An actor out on loan

— The Doors, Riders on the Storm (1971)

Since machines cannot fully interpret natural language (yet), they

cannot make sense of textual content on the Web. Still, humans

are not the only users of the Web anymore: many software agents

consume online information in one way or another. This chapter

details the efforts of making information machine-interpretable,

the implications this has on how we should publish information,

and the possibilities this brings for intelligent agents. We then

discuss whether semantics are a necessity for hypermedia.

It didn’t take long for machine clients to appear, as the Web’s excellent

scalability led to such tremendous growth that manually searching

for content became impossible. Search engines started emerging, In 2008, Google already

gave access to more than

1 trillion unique pieces of

content through keyword-

based search [2]. Lately,

the search engine started

focusing on giving direct

answers to a query instead

of presenting links to web-

pages that might provide

those answers [21].

indexing the content of millions of webpages and making them

accessible through simple keywords. Although various sophisticated

algorithms drive today’s search engines, they don’t “understand” the

content they index. Clever heuristics that try to infer meaning can

give impressive results, but they are never perfect: Figure 2 shows an

interesting case where Google correctly answers a query for paintings

by Picasso, but fails when we ask for his books.

If we want machines to do more complex tasks than finding

documents related to keywords, we could ask ourselves whether

we should make the interpretation of information easier for them.
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generated
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on query
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Figure 2: In addition to o�ering the traditional keyword-based matches, Google tries to interpret the query as
a question and aims to provide the answer directly. However, machine-based interpretation remains error-prone.
For instance, Google can interpret the query “paintings by Pablo Picasso” correctly, as it is able to show a list
of paintings indeed. The query “books written by Pablo Picasso” seemingly triggers a related heuristic, but the
results consist of books about—not written by—the painter; an important semantic di�erence. ©Google
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The Semantic Web

The idea of adding semantics to Web resources was popularized by

the now famous 2001 Scientific American article by Tim Berners-Lee,

Jim Hendler, and Ora Lassila, wherein they laid out a vision for what

they named the Semantic Web. Perhaps the most important starting

The original article starts

with a futuristic vision of

intelligent agents that act

as personal assistants. At

the 2012 International Se-

mantic Web Conference,

Jim Hendler revealed this

angle was suggested by

the editors, and then jok-

ingly tested how much of

this vision was already be-

ing fulfilled by Apple’s Siri

(which promptly failed to

recognize his own name).

©Scienti�c American

point is this fragment [12]:

The Semantic Web is not a separate Web but an extension of

the current one, in which information is given well-defined

meaning, better enabling computers and people to work

in cooperation. — Tim Berners-Lee et al.

The Web already harbors the infrastructure for machines, as explained

in the previous chapter when discussing the rest architectural style.

However, there’s only so much a machine can do with structural

markup tags such as those found in html documents: the data can be

parsed and transformed, but all those tasks require precise instruction

if there is no deeper understanding of that data. Compare this to

processing a set of business documents in a language you don’t

understand. If someone tells you how to classify them based on

structural characteristics, such as the presence of certain words or

marks, you might be able to do that. However, this strategy fails for

documents that are structured differently, even if they contain the

same information.

Knowledge representation
A first task of the Semantic Web is thus knowledge representation:

providing a model and syntax to exchange information in a machine-

interpretable way. The Resource Description Framework (rdf) [28] is

a model that represents knowledge as triples consisting of a subject,

predicate, and object. Different syntaxes exist; the Turtle syntax [4]

expresses triples as simple patterns that are easily readable for

humans and machines. Starting from a basic example, the fact that

Tim knows Ted can be expressed as follows in Turtle.

:Tim :knows :Ted.

The xml serialization of

rdf used to be the stan-

dard, but its hierarchical

structure is often consid-

ered more complex than

Turtle’s triple patterns.

This is a single triple consisting of the three parts separated by

whitespace, :Tim (subject), :knows (predicate), and :Ted (object),

with a final period at the end. While a machine equipped with a Turtle

parser is able to slice up the above fragment, there is not much

semantics to it. To a machine, the three identifiers are opaque and

thus a meaningless string of characters like any other.
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Just like on the “regular” Web, the trick is identification: if we use

urls for each part, then each concept is uniquely identified and thus

receives a well-defined interpretation.

<http://dbpedia.org/resource/Tim_Berners-Lee>←-
<http://xmlns.com/foaf/0.1/knows>←-
<http://rdf.freebase.com/ns/en.ted_nelson>.

In the above fragment, the identifiers have been replaced by urls

As we’ve seen in the last

chapter, a url identifies

a conceptual resource, so

it is perfectly possible to

point to a person or a real-

world relation. But how

can we represent a person

digitally? We can’t—but

we can represent a docu-

ment about this person.

If you open any of the

three urls in a browser,

you will see they indeed

redirect to a document

using http status code

303 See Other [23]. The

differentiation between

non-representable and

representable resources

has been the subject of

a long-standing discus-

sion in the w3c Technical

Architecture Group [7].

which correspond to, respectively, Tim Berners-Lee, the concept

“knowing”, and Ted Nelson. This is how meaning is constructed:

a concept is uniquely identified by one or more urls, and a machine

can interpret statements about the concept by matching its url. If

a machine is aware that the above url identifies Tim Berners-Lee, then

it can determine the triple is a statement about this person. If it is also

aware of the “knows” predicate, it can determine that the triple means

“Tim Berners-Lee knows somebody”. And of course, comprehension

of Ted Nelson’s url implies the machine can “understand” the triple:

Tim has a “knows” relation to Ted—or “Tim knows Ted” in human

language. Of course, the notion of understanding should be regarded

as interpretation here. It conveys the fact a machine can now apply the

properties of the “knows” relationship to infer other facts; it does not

trigger the cognitive, intellectual, or emotional response the same

information does when perceived by a human. This is not unlike the

Chinese room thought experiment [31]—the ability to manipulate

symbols doesn’t necessarily imply understanding.

Since urls appear a lot in rdf fragments, Turtle provides an

abbreviated syntax for them:

@prefix dbp: <http://dbpedia.org/resource/>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix fb: <http://rdf.freebase.com/ns/>.

dbp:Tim_Berners-Lee foaf:knows fb:ted_nelson.

Note how recurring parts of urls are declared at the top with prefix

directives, which saves space and improves clarity when there are

many triples in a document.

Time will tell if a compar-

ison to the human brain,

where information is en-

coded as connections be-

tween neurons, could be

appropriate.

Now what if a machine doesn’t have any knowledge about one

or more of the urls it encounters? This is where the power of the

“classic” Web comes in again. By dereferencing the url—using http

to retrieve a representation of the resource—the machine can discover

the meaning of the concept in terms of its relation to other concepts

it does recognize. Once again, the knowledge resides in the links [19].
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Ontologies
Related knowledge is often grouped together in ontologies, which Just like with regular Web

documents, concepts can

have many urls, as long

as one url identifies only

a single concept. Multi-

ple ontologies can thus

define the same concept

(but they’ll likely do it in

a slightly different way).

express the relationship between concepts. For instance, the “knows”

predicate on the previous page comes from the Friend of a Friend

(foaf) ontology, which offers a vocabulary to describe people and

their relationships. If we dereference the url of this predicate, we will

be redirected to an rdf document that expresses the ontology using

rdf Schema [18] (rdfs—a set of basic ontological properties) and

Web Ontology Language [29] (owl—a set of more complex constructs).

The relevant part of the ontology looks similar to this:

For brevity, prefixes used

before won’t be repeated;

Turtle parsers still need

them, though.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

foaf:knows a owl:ObjectProperty;

rdfs:domain foaf:Person;

rdfs:label "knows";

rdfs:range foaf:Person.

This expresses that “knows” is a property that can occur from a person

resource to another person resource. Also note the use of semicolons

for continued statements about a same subject, and the predicate

“a”, which is short for rdf:type. This ontology can help machines The rdf namespace is

http://www.w3.org/1999/

02/22-rdf-syntax-ns#.

to build an understanding of concepts—under the fair assumption

that they have built-in knowledge about rdfs and owl. For instance,

if a software agent wouldn’t recognize any of the urls in the earlier

“Tim knows Ted” example, it could look up the “knows” predicate and

derive that both Tim and Ted must be a foaf:Person.

Dan Brickley, the author

of foaf, noticed later that

foaf:knows, despite its

definition, became widely

used for uni-directional

“knows” relations; for in-

stance, the Twitter follow-

ers of a certain person.

This indicates that mean-

ing can evolve through us-

age, not unlike semantic

drift in natural languages.

The more ontological knowledge is available, the more deductions

can be made. For instance, the human-readable documentation of

foaf says that the “knows” property indicates some level of reciprocity.

With owl, we can capture this as:

foaf:knows a owl:SymmetricProperty.

This would allow a machine to conclude that, if “Tim knows Ted”,

the triple “Ted knows Tim” must also be a fact—even if it is not

explicitly mentioned in the initial Turtle fragment. It can even deduce

that without having to understand anything about the entities “Ted”,

“knows”, or “Tim”, because the knowledge that “knows” is a symmetric

predicate is sufficient to deduce the reverse triple.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
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Reasoning
To make such deductions, we need Semantic Web reasoners that are

able to make semantically valid inferences. Various types of reasoners

exist: some possess implicit, built-in knowledge about rdf and owl;

others are designed for explicit knowledge addition. An example

of the former category is Pellet [32]; examples of the latter category

are cwm [5] and eye [20]. In the context of my work, reasoners with

explicit knowledge are more helpful, as they allow a higher degree of

customization. In particular, cwm and eye are rule-based reasoners

Formulas enable the use

of a set of triples (between

braces) as the subject or

object of another triple.

for the Notation3 (n3) language [9], which is a superset of Turtle that

includes support for formulas, variables, and quantification, allowing

the creation of rules. For instance, the following rule indicates that

if person A knows person B , then person B also knows person A:

A rule is actually a regular

triple “:x => :y.”, where

the arrow => is shorthand

for log:implies, and the

log prefix expands to

http://www.w3.org/2000/

10/swap/log#.

{

?a foaf:knows ?b.

}

=>

{

?b foaf:knows ?a.

}.

If we supply the above rule to an n3 reasoner together with the

triple “:Tim foaf:knows :Ted”, then this reasoner will use n3logic

semantics [10] to deduce the triple “:Ted foaf:knows :Tim” from that.

As in any branch of software engineering, maximizing reuse is im-

portant for efficient development. Therefore, it is more interesting to

encode the symmetry of foaf:knows on a higher level of abstraction.

We can encode this meaning directly on the ontological level:

Rules for common rdfs

and owl predicates can be

loaded from the eye web-

site [20]. They provide ex-

plicit reasoning on triples

that use those constructs.

{

?p a owl:SymmetricProperty.

?a ?p ?b.

}

=>

{ ?b ?p ?a. }.

Indeed, for any symmetric property P that is true for A with respect

to B holds that it’s also true for B with respect to A. Therefore, the

statement that foaf:knows is symmetric, together with the above rule

for symmetric properties, will allow to make the same conclusion

about Tim and Ted. However, this rule can be reused on other

symmetric properties and is thus preferred above the first one.

http://www.w3.org/2000/10/swap/log#
http://www.w3.org/2000/10/swap/log#
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An important difference with offline reasoning is that Semantic

Web reasoning makes the open-world assumption. Since different

The far-reaching conse-

quence of an open world

is that no single resource

can contain the full truth:

“anyone can say anything

about anything” [8, 28].

sources of knowledge are spread across the Web, the fact that a triple

does not appear in a certain document does not entail the conclusion

that this triple is false or does not exist. Similar to how the Web treats

hypermedia, the Semantic Web gives up completeness in favor of

decentralization and openness. This gives an interesting flexibility

to knowledge representation, but also has limitations on what we

can do easily. For instance, negations are particularly hard to express.

Another consequence is that resources with different urls are not

necessarily different—this has to be explicitly indicated or deduced.

Agents

We might wonder to what

extent Apple’s digital as-

sistant Siri already fulfills

the Semantic Web vision

of intelligent agents [3].

Even though responding

to voice commands with

various online services

is impressive for today’s

standards, Siri operates

on a closed world: it can

only offer those services it

has been preprogrammed

for. Semantic Web agents

would need to operate on

an open world. ©Apple

One of the concepts that seems inseparably connected to the Semantic

Web is the notion of intelligent software agents that perform complex

tasks based on the knowledge they extract from the Web. The original

idea was that you could instruct your personal agent somehow

to perform tasks for you online [12]. Typical examples would be

scenarios that normally require a set of manual steps to be completed.

For instance, booking a holiday, which requires interacting with your

agenda and arranging flights, hotels, and ground transport, among

other things. It’s not hard to imagine the many steps this takes,

and every one of them involves interaction with a different provider.

If a piece of software can understand the task “booking a holiday”

and if it can interact with all of the involved providers, it should be

able to perform the entire task for us.

While the initial optimism was high by the end of the 1990s—and

certainly in the initial Semantic Web article [12]—the expectations

have not yet been met. Jim Hendler, co-author of that famous article,

rightly wondered where the intelligent agents are [24], given that

all necessary pieces of technology have been already developed.

However, this is also a question of usage, leading to the Semantic Web’s

classical chicken-and-egg problem: there aren’t enough semantic

data and services because there are no agents, and there are no

agents because there aren’t enough data and services. The possible

benefits semantic technologies might bring currently don’t provide

the necessary incentive for publishers to “semanticize” their data and

services [34]. Furthermore, one could doubt whether the technology

is sufficiently advanced to provide the degree of intelligence we desire.

Nonetheless, the current Semantic Web infrastructure provides the

foundations for agents to independently consume information on

the open Web.
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Linked Data

On more than one occa-

sion, Tim Berners-Lee has

called Linked Data “the

Semantic Web done right”.

In the early years of the Semantic Web, the focus on the agent

vision was very strong and this attracted several people from the

artificial intelligence community [24]. However, this also made the

Semantic Web a niche topic, difficult to understand without a strong

background in logics. And at the same time, the chicken-and-egg

deadlock situation still remained—no agents without data and vice-

versa. Tim Berners-Lee realized this, and proposed four rules to make

data available in the spirit of the (Semantic) Web. They became known

as the Linked Data principles [6]:

Confusingly, Berners-Lee

also coined the five stars

of Linked (Open) Data that

correspond roughly to the

four principles [6].

1. Use uris as names for things.

2. Use http uris so that people can look up those names.

3. When someone looks up a uri, provide useful information, using

the standards (rdf, sparql).

4. Include links to other uris so that they can discover more things.

The first principle is a matter of unique identification. Up until

now, we have only talked about Uniform Resource Locators (urls),

but Uniform Resource Identifiers (uris) [11] are a superset thereof,A common example of

uris that are not urls are

isbn uris. For instance,

urn:isbn:9780061122590

identifies a book, but does

not locate it.

providing identification but not necessarily location. The second

principle specifically asks for http uris (thus urls). This might seem

evident, but actually, many datasets and ontologies used non-http

uris in the beginning days of the Semantic Web. If we want software

agents to discover meaning automatically by dereferencing, urls as

identifiers are a prerequisite. Third, dereferencing these urls should

result in representations that are machine-interpretable. And fourth,

such representations should contain links to other resources, so

humans and machines can build a context.

More triples do not neces-

sarily bring more knowl-

edge though, as humor-

ously proven by Linked

Open Numbers, a dataset

with useless facts about

natural numbers [35].

Since their conception in 2007, these principles have inspired

many new datasets [15] and continue to be an inspiration. We are

now at a stage where a considerable amount of data with an open

license is available for automated consumption. Large data sources

are dbpedia [16], which contains data extracted automatically from

Wikipedia, and Freebase [17], a crowd-sourced knowledge base.

Linked Data is decentralized knowledge representation on a Web

scale. True to the Semantic Web principles, the meaning of the

data resides in its links. If a machine doesn’t recognize a url, it can

dereference this url to find an explanation of the resource in terms of

the resources that it links to. By design, no knowledge source will ever

be complete, but the open-world assumption allows for this. After all,

no Web page contains all information about a single topic.
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The hypermedia connection

The REST principles
How does hypermedia fit into the semantics story? After all, the The semantic and rest

communities tend to be

quite disparate, yet their

basic principles are very

similar.

Semantic Web happens on the Web, the basis of which is hypermedia.

If we take a closer look at the Linked Data principles, we notice that

they align well with the constraints of rest’s uniform interface. To

make this more obvious, let’s try to reformulate these constraints as

four rules that correspond to those of Linked Data:

1. Any concept that might be the target of a hypertext reference must

have a resource identifier.

2. Use a generic interface (like http) for access and manipulation.

3. Resources are accessed through various representations, consist-

ing of data and metadata.

4. Any hypermedia representation must contain controls that lead

to next steps.

In rest systems, hyper-

media should be the en-

gine of application state.

Similarly, on the Semantic

Web, hypermedia should

be the engine of knowl-

edge discovery.

The parallels are striking, but not surprising—what is important for the

Web must be important for the Semantic Web. In particular, the same

links that are the essence of Linked Data are crucial to satisfying the

hypermedia constraint. In that sense, this constraint is the operational

version of the fourth Linked Data principle: Linked Data requires links

in order to interpret a concept without prior knowledge; rest requires

links in order to navigate an application without prior knowledge.

A little semantics
html is a generic media

type, as it can accommo-

date any piece of content,

albeit with only limited

machine-interpretability.

The vCard format is highly

specific, as it can contain

only contact information,

but machines interpret it

without difficulty.

In rest architectures, media types are used to capture the structure

and semantics of a specific kind of resource [22, 36]. After all, the

uniform interface is so generic that application-specific semantics

must be described inside the representation. Yet, there’s a trade-off

between specificity and reusability [30]. Media types that precisely

capture an application’s semantics are likely too specific for any other

application, and media types that are generic enough to serve in

different applications are likely not specific enough to automatically

interpret the full implications of an action. Therefore, more media

types do not necessarily bring us closer to an independent evolution

of clients and servers.

If a machine can extract

an address from seman-

tic annotations in an html

page, it gets the same op-

tions as with vCard.

If semantic annotations are added to a generic media type, they

can provide a more specific meaning to a resource, enabling complex

interactions on its content. And, as we’ll see in the next chapter,

semantics can help a software agent understand what actions are

possible on that resource, and what happens if an action is executed.
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However, the explanation of the rest principles in the last chapter canThe phrase “a little seman-

tics goes a long way” must

be one of the most widely

known within the commu-

nity. (Some people like to

add “. . . but no semantics

gets you even further.”)

make us wonder why we would enhance media types with semantics.

Content negotiation can indeed make the same resource available in

separate human- and machine-targeted representations. In practice,

content-negotiation is not widespread. Part of this is because people

are unfamiliar with the principle, as we almost exclusively deal with

single-representation files when using a local computer. Additionally,

many Web developers are only vaguely familiar with representation

formats other than html. Finally, for many applications, human- and

machine-readable aspects are needed at the same time. For instance,

search engines process html content aided by annotations, and

a browser can read annotations to enhance the display of a webpage.

Several annotation mechanisms for html exist:

The 2012 version of the

Common Crawl Corpus

shows that Microformats

are currently most popu-

lar on the Web, followed

at a considerable distance

by rdfa and finally html5

Microdata [14]. Perhaps

in the future, the Micro-

formats advantage will de-

crease, as new formats

no longer emerge. The

question then becomes

whether rdfa and Micro-

data will survive, and

which of them will take

the lead.

Microformats [27] are a collection of conventions to structure infor-

mation based on specific html elements and attributes. Examples

are hCard to mark up address data and hCalendar for events. The

drawback of Microformats is that they are collected centrally and

only specific domains are covered. Furthermore, the syntax of

each Microformat is slightly different.

rdfa or Resource Description Framework in Attributes [1] is a format

to embed rdf in html representations. Its benefit is that any vo-

cabulary can be used, and with rdfa Lite [33], a less complex syn-

tax is possible. Usage of Facebook’s OpenGraph vocabulary [26] is

most common [14], thanks to the incentive for adopters to have

better interactions on the Facebook social networking site.

Microdata is a built-in annotation format in html 5 [25]. An incentive

to adopt this format is Schema.org [13], a vocabulary created and

endorsed by Google and other search engines. The expectation

is that they will index publishers’ content more accurately and

enhance its display if relevant markup is present [34].

While an increasing amount of semantic data on the Web is welcomed,

the current diversity makes it in a sense more difficult for publishers

to provide the right annotations. After all, the benefit of semantic

technologies should be that you are free to use any annotation,

since a machine is able to infer its meaning. However, the current

annotation landscape forces publishers to provide annotations in

different formats if they want different consumers to interpret them.

On the positive side, the fact that there are several incentives to

publish semantic annotations gives agents many opportunities to

perform intelligent actions based on the interpretation of a resource.
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The Semantic Web provides tools that help machines make sense

of content on the Web. The Linked Data initiative aims to get as

many datasets as possible online in a machine-interpretable way.

Semantic technologies can help agents consume hypermedia without

the need for a specific document type, improving the autonomy of

such agents. There are several incentives for publishers to embed

semantic markup in hypermedia documents, which aids automated

interpretation. However, fragmentation issues still remain.

References
[1] Ben Adida, Mark Birbeck, Shane McCarron, and Ivan Herman. rdfa core

1.1. Recommendation. World Wide Web Consortium, 7 June 2012. http:

//www.w3.org/TR/2012/REC-rdfa-core-20120607/

[2] Jesse Alpert and Nissan Hajaj. We knew the Web was big. . . Google Official

Blog, July 2008. http://googleblog.blogspot.com/2008/07/we-knew-web-

was-big.html

[3] Jacob Aron. How innovative is Apple’s new voice assistant, Siri? New

Scientist, 212(2836):24, 3 November 2011.

[4] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Caroth-

ers. Turtle – Terse Rdf Triple Language. Candidate Recommendation.

World Wide Web Consortium, 19 February 2013. http://www.w3.org/TR/

turtle/

[5] Tim Berners-Lee. cwm, 2000–2009. http://www.w3.org/2000/10/swap/

doc/cwm.html

[6] Tim Berners-Lee. Linked Data, July 2006. http://www.w3.org/DesignIssues/

LinkedData.html

[7] Tim Berners-Lee. What is the range of the http dereference function?

Issue 14. w3c Technical Architecture Group, 25 March 2002. http://www.

w3.org/2001/tag/group/track/issues/14

[8] Tim Berners-Lee. What the Semantic Web can represent, December 1998.

http://www.w3.org/DesignIssues/RDFnot.html

[9] Tim Berners-Lee and Dan Connolly. Notation3 (n3): a readable rdf

syntax. Team Submission. World Wide Web Consortium, 28 March 2011.

http://www.w3.org/TeamSubmission/n3/

[10] Tim Berners-Lee, Dan Connolly, Lalana Kagal, Yosi Scharf, and Jim

Hendler. n3logic: A logical framework for the World Wide Web. Theory

and Practice of Logic Programming, 8(3):249–269, May 2008.

[11] Tim Berners-Lee, Roy Thomas Fielding, and Larry Masinter. Uniform

Resource Identifier (uri): generic syntax. Request For Comments 3986.

Internet Engineering Task Force, January 2005. http://tools.ietf.org/html/

rfc3986

http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://www.w3.org/TR/2012/REC-rdfa-core-20120607/
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://www.newscientist.com/article/mg21228365.300-how-innovative-is-apples-new-voice-assistant-siri.html
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/2001/tag/group/track/issues/14
http://www.w3.org/2001/tag/group/track/issues/14
http://www.w3.org/2001/tag/group/track/issues/14
http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/DesignIssues/RDFnot.html
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://dx.doi.org/10.1017/S1471068407003213
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986


30 Chapter 3 Semantics

[12] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.

Scientific American, 284(5):34–43, May 2001.

[13] Bing, Google, Yahoo!, and Yandex. Schema.org, http://schema.org/

[14] Christian Bizer, Kai Eckert, Robert Meusel, Hannes Mühleisen, Michael

Schuhmacher, and Johanna Völker. Deployment of rdfa, Microdata, and

Microformats on the Web – a quantitative analysis. Proceedings of the

12th International Semantic Web Conference, October 2013.

[15] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data – the story

so far. International Journal on Semantic Web and Information Systems,

5(3):1–22, March 2009.

[16] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian

Becker, Richard Cyganiak, and Sebastian Hellmann. dbpedia – a crystal-

lization point for the Web of Data. Web Semantics: Science, Services and

Agents on the World Wide Web, 7(3):154–165, 2009.

[17] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie

Taylor. Freebase: a collaboratively created graph database for structuring

human knowledge. Proceedings of the acm sigmod International Confer-

ence on Management of Data, pages 1247–1250, 2008.

[18] Dan Brickley and Ramanathan V. Guha. rdf vocabulary description lan-

guage 1.0: rdf Schema. Recommendation. World Wide Web Consortium,

10 February 2004. http://www.w3.org/TR/rdf-schema/

[19] Vannevar Bush. As we may think. The Atlantic Monthly, 176(1):101–108,

July 1945.

[20] Jos De Roo. Euler Yet another proof Engine, 1999–2013. http://eulersharp.

sourceforge.net/

[21] Amir Efrati. Google gives search a refresh. The Wall Street Journal,

15 March 2012.

[22] Roy Thomas Fielding. rest apis must be hypertext-driven. Untangled –

Musings of Roy T. Fielding. October 2008. http://roy.gbiv.com/untangled/

2008/rest-apis-must-be-hypertext-driven

[23] Roy Thomas Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry

Masinter, Paul Leach, and Tim Berners-Lee. Hypertext Transfer Protocol

(http). Request For Comments 2616. Internet Engineering Task Force,

June 1999. http://tools.ietf.org/html/rfc2616

[24] James Hendler. Where are all the intelligent agents? ieee Intelligent

Systems, 22(3):2–3, May 2007.

[25] Ian Hickson. html microdata. Working Draft. World Wide Web Consor-

tium, 25 October 2012. http:// www.w3.org/ TR/ 2012/ WD- microdata-

20121025/

[26] Facebook Inc. The Open Graph protocol, http://ogp.me/

[27] Rohit Khare and Tantek Çelik. Microformats: a pragmatic path to the

Semantic Web. Proceedings of the 15th International Conference on World

Wide Web, pages 865–866, 2006.

http://www.scientificamerican.com/article.cfm?id=the-semantic-web
http://schema.org/
http://schema.org/
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://tomheath.com/papers/bizer-heath-berners-lee-ijswis-linked-data.pdf
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1016/j.websem.2009.07.002
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://eulersharp.sourceforge.net/
http://online.wsj.com/article/SB10001424052702304459804577281842851136290.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://dx.doi.org/10.1109/MIS.2007.62
http://www.w3.org/TR/2012/WD-microdata-20121025/
http://www.w3.org/TR/2012/WD-microdata-20121025/
http://www.w3.org/TR/2012/WD-microdata-20121025/
http://ogp.me/
http://ogp.me/
http://dx.doi.org/10.1145/1135777.1135917
http://dx.doi.org/10.1145/1135777.1135917


References 31

[28] Graham Klyne and Jeremy J. Carrol. Resource Description Framework

(rdf): Concepts and Abstract Syntax. Recommendation. World Wide Web

Consortium, 10 February 2004. http://www.w3.org/TR/rdf-concepts/

[29] Deborah Louise McGuinness and Frank van Harmelen. owl Web Onto-

logy Language – overview. Recommendation. World Wide Web Consor-

tium, 10 February 2004. http://www.w3.org/TR/owl-features/

[30] Leonard Richardson, Mike Amundsen, and Sam Ruby. restful Web apis.

O’Reilly, September 2013.

[31] John Rogers Searle. Minds, brains, and programs. Behavioral and Brain

Sciences, 3(3):417–427, September 1980.

[32] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and

Yarden Katz. Pellet: a practical owl-dl reasoner. Web Semantics: Science,

Services and Agents on the World Wide Web, 5(2):51–53, 2007.

[33] Manu Sporny. rdfa Lite 1.1. Recommendation. World Wide Web Consor-

tium, 7 June 2012. http://www.w3.org/TR/rdfa-lite/

[34] Ruben Verborgh, Erik Mannens, and Rik Van de Walle. The rise of the Web

for Agents. Proceedings of the First International Conference on Building

and Exploring Web Based Environments, pages 69–74, 2013.
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Chapter 4

Functionality
How do you do the things that you do?
No one I know could ever keep up with you
How do you do?
Did it ever make sense to you?

—Roxette, How Do You Do! (1992)

For people, navigating hypermedia feels entirely natural. We read

texts, view images and video, and through them, we can not only

reach the next piece of information we need; we can also perform

actions that modify things in a predictable way. Machines face far

greater difficulties. Even if they can interpret the information on

a page, it’s currently difficult for them to understand the impact of

change. Therefore, we’ve developed restdesc, a method to describe

the functionality of hypermedia controls in applications. Unlike

other approaches, it focuses on enabling autonomous agents to use

Web applications in a hypermedia-driven way.

The uniform interface constraints of the rest architectural style Unfortunately, on today’s

Web, many apis circum-

vent the uniform interface

by adding methods to the

url or the message body.

These apis then lose de-

sirable properties of rest,

moving the interpretation

from the message to out-

of-band documentation.

mandate that messages be self-descriptive [5]. This is why http

adopts standard methods that act on resources, as opposed to many

other remote protocols that allow the definition of any method. The

uniform interface brings simplicity through universal understanding:

a software agent knows that GET retrieves a document and that DELETE

removes it. However, there is only so much that can be expressed in

a uniform interface. Every application offers specific functionality

that cannot be accounted for unambiguously in a specification that

applies to any Web application.
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The POST method essentially encompasses everything no other

standard method provides. In the http specification, it is defined to

Sometimes, POST is even

used in those cases where

another standard http

method is perfectly ap-

plicable, stretching its se-

mantics beyond what was

accounted for. Part of

the explanation for this

non-standard usage is

that html only supports

GET and POST on forms,

even though it offers the

other methods through

JavaScript.

cover annotation of resources, message posting, data processing, and

database appending, but the actual function performed by the POST

method is “determined by the server and is usually dependent on the

request uri” [6]. This means that, for any POST request, the message is

self-descriptive in the sense that it asks for an action that follows the

definition, but that definition is so uniform that we don’t know what

exactly is going on. On the protocol level, we understand the message.

On the application level, we don’t—unless we look for clues in the

message body, but they are usually only interpretable by humans. And

once the message has been constructed, it might already be too late:

an operation with possible side effects could have been requested.

Summarizing, in addition to the semantics of the information itself,

agents require the semantics of the actions this information affords.

Describing functionality

Design goals
rdf could capture func-

tionality indirectly, but

this would necessitate an

interpretation that is not

native to rdf processors.

rdf, as its expansion to “Resource Description Framework” indicates,

has been created for the description of resources, the unit of informa-

tion in the rest architectural style. rdf captures the state of a resource

at a given moment in time, but it cannot directly capture state changes.

We need a method for dynamic information that conforms to the fol-

lowing characteristics.

The goal of descriptions is to capture functionality: expressing

the relation between preconditions and postconditions.

Consumers should require no additional interpretation beyond

knowledge of http.

The last four goals refer to

rest’s uniform interface

constraints [5]: resource-

orientation, manipulation

through representations,

self-describing messages,

and hypermedia as the en-

gine of application state.

Descriptions should be resource-oriented: they should describe

on the level of application-specific resources, not in terms of

generic concepts such as “services” or “parameters”.

Resources should be described in a representation-independent

way—the media type is determined at runtime.

Each description can be interpreted independently of others.

The runtime interaction should remain driven by hypermedia:

descriptions support the interaction but do not determine it.

With these goals in mind, we can derive the foundations of a method

to describe the functionality of those Web apis that conform to all

rest constraints, indicated by the term hypermedia apis [1].
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Description anatomy
In essence, there are three things we need to capture: preconditions,

postconditions, and the http request that allows the state transition

from the former to the latter. The other properties depend on the

design choices we make. Those three components are related to each

other as follows. Given a set of preconditions preA on a resource x,

a description of an action A should express what request is necessary

to obtain a set of postconditions postA. We could represent this

relationship schematically as follows:

A(x) ≡ preA(x)
reqA(x)=====⇒ postA(x)

The fact that the implication is fulfilled by executing the request reqA The preconditions only

imply the postconditions

through the execution of

the request.

is symbolized by indicating it on top of the implication arrow, but we

still need to formalize this meaning. A naive conversion to first-order

logic treats the request as a part of the precondition:

A(x) ≡ preA(x)∧ reqA(x) =⇒ postA(x)

The above equation expresses that, if the preconditions are fulfilled, Having preconditions in

the antecedent does not

account for errors that

are likely to happen in

distributed systems and

is thus insufficient.

an execution of the request will always lead to the postconditions.

However, this cannot be guaranteed in practice. On large distributed

systems such as the Web, requests can fail for a variety of reasons.

Therefore, we can only state that a hypothetical request r exists that

makes the postconditions true:

A(x) ≡ preA(x) =⇒∃r
(
reqA(x,r )∧postA(x,r )

)
So given preconditions preA(x), there always exists a request r for the Preconditions in the con-

sequent align best with

reality: some successful

request exists, but that

doesn’t guarantee success

for each similar request.

action A on the resource x for which postconditions postA(x,r ) hold.

We cannot be sure whether all requests that look like r will succeed,

since several components can fail, but we can attempt to construct r .

Consequently, this is the model we will use for descriptions.

This design choice is also necessary to avoid introducing a logical

contradiction in the process. Indeed, if we had modeled the request in

While monotonicity is not

strictly required, it makes

reasoning simpler and is

a prerequisite to generate

proofs, wherein the use of

retractable facts would be

problematic.

the antecedent of the rule, and its execution would fail for any reason,

then we couldn’t combine the prior knowledge about the action

(“the preconditions and request always lead to the postconditions”)

and the posterior knowledge (“the request has been executed but

the postconditions do not hold”) in a monotonic logic environment.

Additionally, the existential formulation allows “triggering” the rule

before the request has been issued—exactly what we need in order to

use descriptions for planning. In the next section, we will translate

this abstract syntax into a concrete description format.



36 Chapter 4 Functionality

Expressing descriptions

The presence of variables and quantification suggest that regular rdf

won’t possess the expressivity needed to convey these descriptions.

As indicated in the previous chapter, Notation3, an rdf superset, does

provide this support. Additionally, we need a vocabulary to detail

http requests: the existing “http vocabulary in rdf” [9] provides all

necessary constructs. The combination of n3 and this vocabulary form

the functional Web api description method I named restdesc [19, 20].

The skeleton of a restdesc description looks like this:

The specified precondi-

tions on a resource imply

the existence of a certain

request that effectuates

postconditions on this

resource. Variables like

?resource are universally

quantified; blank nodes

such as _:request are

existentially quantified [2].

{

?resource . . . . . . .

}

=>

{

_:request http:methodName [. . .];

http:requestURI [. . .];

http:resp [. . .].

?resource . . . . . . .

}.

For instance, the following description explains that you can receive

an 80px-high thumbnail of an image by performing a GET request on

the link labeled ex:smallThumbnail:

The ex: prefix is local to

the application; agents

aren’t assumed to already

understand it.

Actually, this restdesc

description explains what

the ex:smallThumbnail

relation means in terms

of non-local predicates,

for instance those from

dbpedia. In contrast to

“traditional” ontologies,

the meaning expressed

here is operational: it de-

tails what happens when

a certain request is exe-

cuted upon the object.

@prefix ex: <http://example.org/image#>.

@prefix http: <http://www.w3.org/2011/http#>.

@prefix dbpedia: <http://dbpedia.org/resource/>.

@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.

{

?image ex:smallThumbnail ?thumbnail.

}

=>

{

_:request http:methodName "GET";

http:requestURI ?thumbnail;

http:resp [ http:body ?thumbnail ].

?image dbpedia-owl:thumbnail ?thumbnail.

?thumbnail a dbpedia:Image;

dbpedia-owl:height 80.0.

}.
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Let’s examine this example description, considering the design goals.

The description captures functionality, in the sense that it ex-

presses the ex:smallThumbnail relation not in a static, ontolog-

ical way, but from the viewpoint of an http request it affords,

and the properties a result of this request will have. This allows

an agent to decide whether to issue the request, based on the

desirability of its effects.

Basic knowledge of http

is the only constraint

we put on agents, and

this is reasonable since

they need http in any

case. All other knowl-

edge is domain-specific;

we should strive to use

Linked Data so the agent

can look up any unknown

terms autonomously.

To generate the request, agents only need to understand the

http ontology, which is universal to all restdesc descriptions.

This particular description also uses an application-specific

ex ontology and dbpedia resources. An agent doesn’t need

knowledge about the ex ontology, as the description explains

the used predicate. The usage of dbpedia concepts seems to

cause more difficulties for agents, however, any agent consuming

this api will have to deal with images in some way, even if

only implicitly through goals set by the user. Since dbpedia is

published as Linked Data, we assume the agent is able to map

dbpedia:Image to its own understanding of “image” if required.

The description is resource-oriented: it focuses on the actual

application domain (images and thumbnails) instead of a meta-

level (such as services or parameters).

restdesc is not limited to

apis that communicate in

rdf, but those apis that do

have several benefits, as

we’ll see in Chapter 7.

The representation is not fixed and can be determined at runtime:

the description only explains that the image will be a thumbnail

of the original image and that it will have a height of 80 pixels.

No other descriptions are needed for interpretation. For instance,

it does not matter how the original image is created.

The description supports hypermedia-driven interactions, as it

doesn’t contain fixed urls or templates. Rather, it expresses the

fact that if we follow an image’s smallThumbnail link through

hypermedia, then we can perform a GET request on this link’s

target, which will result in a resource with these properties.

GET requests are safe and

idempotent, so they may

not change resource state.

In contrast to the unsafe

POST requests, they are de-

fined strictly and narrowly.

That doesn’t mean there’s

no use for descriptions—

agents need to know what

things they can retrieve.

One can question the utility of describing a GET request, since the http

specification specifies this method already in detail [6]. The answer

is twofold. On the one hand, dereferencing is assumed within Linked

Data, so we can indeed omit the implied GET request in descriptions.

On the other hand, the description above conveys an expectation:

it tells that the representation will be a thumbnail of the original

image. This can save us the GET operation if we don’t need that. More

importantly, it can guide an agent when planning a sequence of steps:

even if an image has not been created yet, the agent knows it will

be able to get its thumbnail.
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Functional descriptions are certainly necessary for methods that

are intentionally underspecified, such as http POST. Depending on

the resource uri, a wide variety of actions might happen. restdesc

narrows this down to what is described. For instance, the following

n3 rule states that an image posted to an album receives comments

and thumbnail links.

No restrictions are placed

on ?image; it can be an

image on the local file

system, or any image on

the Web. These details

are agreed on at runtime.

During planning, it suf-

fices to know that POSTing

the image will lead to the

described effects.

{

?profile ex:hasAlbum ?album.

?image a dbpedia:Image.

}

=>

{

_:request http:methodName "POST";

http:requestURI ?album;

http:body ?image;

http:resp [ http:body ?image ].

?image ex:comments _:comments;

ex:smallThumbnail _:thumb;

ex:mediumThumbnail _:mediumThumb;

ex:belongsTo ?album.

}.

It seems as if the response

(in http:resp) to POSTing

the image is the image it-

self. However, rest ac-

cesses resources through

representations: we send

a representation of the im-

age and receive another,

augmented with links.

This description captures an action that requires a link to an album

and, independently thereof, an image. The image can then be

used in the body of a POST request on the album, and this will

establish a belongsTo relation between the image and the book.

Furthermore, the image will provide access to links for comments

and thumbnails. Note that the previous description explained the

smallThumbnail relation, so the two descriptions together inform an

agent that, after uploading an image, it can retrieve the corresponding

80px-high thumbnail.

Upon critical inspection of the rule, an apparent contradiction

The fact that the conse-

quent of every POST rule

can be deduced if its pre-

conditions are satisfied

follows from our design

choices, since the rules

were created to contain

the “hypothetical request”

that makes the postcondi-

tions become true.

should be clarified. The consequent of an n3 rule is a conjunction of

triples, but P ⇒Q ∧R implies P ⇒Q. Thus, omitting the http request

from the rule is a semantically valid operation. Unfortunately, this

doesn’t correspond to reality: the mere existence of an album and

an image does not necessarily mean they are connected in any way.

Yet, we must accept the limitations of first-order logic: it doesn’t have

a time aspect; everything that can be true is instantaneously true.

Therefore, any POST request that can be executed is assumed to be

“executed”, or at least, its effects can serve as input for other rules.

When used to our advantage, this is a useful property for planning.
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Hypermedia-driven execution

The role of descriptions
Describing Web apis is only one part of the solution. Software agents

have to consume these descriptions as part of their process to meet

a certain goal set out by the user. This might seem contradictory, since

the hypermedia constraint demands that the interaction be driven by

hypermedia controls in order to guarantee the independent evolution

of client and server; out-of-band information should not be necessary

to engage in the interaction. However, there are two remarks on this.

The act of navigating in

a hypermedia-driven way

is sometimes expressed

colloquially as “following

your nose”. Indeed, at

each step, you can look

around and choose where

to go next, as if by chance.

However, following one’s

nose is easy for people, as

we ultimately know the

overall direction in which

we’re heading. In fact, this

is a form of out-of-band

information—and clearly

not a bad thing.

First, for humans, it is straightforward to use hypermedia, as

we often have implicit out-of-band knowledge of what we want to

achieve. For instance, suppose we want to buy a certain book online.

Before we even start, we know we will end up on a site that offers

several books for sale. One way to start would be to type the book’s

title into a search engine, which (as we expected) will give us links to

book sites. We can click one of them, and we assume there will be

a link “add to shopping basket” or similar. Before we click that link,

we know this will eventually let us pay for the items in the basket and

choose a delivery method. So while the actual interaction is driven

by hypermedia, the driver behind the process is planning, which is

based on expectation and intuition, implicit forms of out-of-band

information. Machines don’t have this kind of intuition, and the

descriptions provide the expectations they need for planning the

interaction—without changing the fact that each individual step

is driven by hypermedia. Descriptions merely help machines look

beyond the direct next steps each hypermedia document offers.

Most descriptions have

traditionally been used at

design time, where they

indeed served an-out-of-

band role. The applica-

tion was compiled against

a certain description, and

then unable to work with

other apis or versions.

restdesc descriptions are

designed for runtime use.

Second, the problem with out-of-band knowledge in rest archi-

tectures is that this information is in practice interpreted by a human

and then hard-coded into the system. For instance, in an rpc api,

where the interaction is not driven by hypermedia, the steps have

to be preprogrammed in the client software. This limits the client’s

capabilities to a certain api—even to a specific version of this api.

In contrast, restdesc descriptions are discovered by the agent and

at runtime. Thereby, the agent remains uncoupled from any specific

api and thus allows for an independent evolution of client and server.

In that sense, machine-interpretable descriptions discovered at run-

time are not out-of-band. They form the information that helps to use

the application, like natural language text on a novel Web application

guides the user who cannot rely on prior expectations.

In conclusion, runtime descriptions are no more out-of-band than

intuition and expectation, which makes them harmless.
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The interaction from begin to end
The agent should be as

generic as possible, so it

doesn’t need any domain-

specific knowledge; only

an understanding of http.

Having discussed the role of descriptions for autonomous agents, we

now investigate how the actual hypermedia interaction will happen.

As summarized in the schema below, the agent starts from a set of

instructions and discovers descriptions that it uses to create a plan,

based on the currently available knowledge. The first step of the plan

is executed, and its results are evaluated and added to the knowledge

base. If the goal is not reached yet, a new plan is created from the

current starting point and the loop continues. Otherwise, the agent

reports an answer (or error) back to the user.

Discovery Planning Execution Evaluation Report

instructions knowledge answer

Receiving instructions First, the user sends instructions to the

agent. One way is to set a certain goal that must be met, given some

background knowledge. For instance, the background knowledge

here includes the fact that the user has an online photo album:

<http://example.org/profiles/lisa>←-
ex:hasAlbum <http://example.org/albums/453>.

The user’s goal is to obtain a thumbnail of a chosen image:

<http://www.w3.org/images/logo>←-
dbpedia-owl:thumbnail ?logoThumbnail.

Humans can deal with in-

completeness: we often

have an idea of the initial

and last steps, and assure

ourselves we’ll find a way

to get through the middle.

Machines need concrete

plans: only if all steps are

there, they can determine

if the goal can be reached.

Therefore, they absolutely

require a description for

each step.

Discovering descriptions Next, the agent needs to find descriptions

to understand the possible actions. Broadly speaking, there are three

ways to make this happen. First, the hypermedia-driven way would

be to start from the background knowledge. For instance, starting

from the photo album, the agent looks for links toward descriptions.

These might be organized similarly to current human-readable api

documentation pages, with a homepage leading to deeper topics.

However, it might be difficult to find the right starting point in a large

knowledge base. Therefore, a second approach is to consult an index

or repository of descriptions (similar to search engines). In this case,

the query would consist of the dbpedia-owl:thumbnail predicate.

The third option is to dereference this predicate, since it might link

to relevant descriptions.



Hypermedia-driven execution 41

The technique to generate

a plan from restdesc de-

scriptions is explained in

detail in the next chapter.

A plan’s core consists of

instantiated descriptions.

Planning Once the descriptions have been retrieved, the agent

creates a plan that, given the background knowledge, finds steps

that lead toward the goal. These steps use resources and their links as

high-level concepts. For instance, the plan in our example will instruct

to post the image to an album, and then to follow the smallThumbnail

link—without detailing the specific urls (as those are yet unknown).

Executing The first step of the plan is read and executed through

hypermedia. Even though simply phrased, this is the crucial step

Execution is similar to

how we browse webpages:

guided by some plan, but

driven by hypermedia.

that makes this method different from others. “Through hypermedia”

means that the step, an instantiated description, will guide the action,

although hypermedia is used to execute it. Concretely, in our example,

the description’s antecedent

?profile ex:hasAlbum ?album.

?image a dbpedia:Image.

will have been instantiated in the plan with background knowledge as The instantiation can be

performed by a regular n3

reasoner, as will be de-

tailed in the next chap-

ter. The agent does thus

not need n3 parsing or

manipulation; regular rdf

knowledge is sufficient.

<http://example.org/profiles/lisa>←-
ex:hasAlbum <http://example.org/albums/453>.

<http://www.w3.org/images/logo> a dbpedia:Image.

and, as a result of this binding, the request in the consequent will be

_:request http:methodName "POST";

http:requestURI <http://example.org/albums/453>;

http:body <http://www.w3.org/images/logo>;

Executing this request directly is difficult, because we don’t know

in what format we should send the image. Instead, we consult

the original resource /albums/453, asking for a machine-readable

representation, and look for the form that allows uploading an image.

This will tell us whether we have to send the url directly or, for

instance, a jpeg representation. Therefore, through the hypermedia

controls inside the representation of /albums/453, the agent uploads

the image. Even before it performs the upload, the rest of the

instantiated description conveys expectations of what will happen:

Only image and album

have been instantiated,

because they were bound

variables in the descrip-

tion; the others were not.

<http://www.w3.org/images/logo>←-
ex:comments _:comments;

ex:smallThumbnail _:thumb;

ex:mediumThumbnail _:mediumThumb;

ex:belongsTo <http://example.org/albums/453>.
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In other words, the uploaded image will have comments, thumbnails,

and will belong to the album. Note how the actual urls of the

comments and thumbnails are still unknown; they will only be filled

out once the request has been executed. Nonetheless, the fact

that there will be some thumbnail link has been sufficient for the

planner to schedule the next step, which is to follow the concrete

smallThumbnail link once the server sends it.

Evaluating and replanning The challenge of interacting with dis-

tributed systems is that things don’t always go according to plan. Even

Replanning is important.

In the simplest case, if ev-

erything went as expected,

then the new plan is sim-

ply the current plan with-

out its already completed

first step. This stage is

where the expectation will

be checked against reality

(in contrast to rpc-style in-

teractions, where the en-

tire control flow is fixed).

It enables the agent to ac-

curately respond to any

situation at hand.

though the agent has several assumptions about what the response

will look like, there can never be a guarantee. Instead of steadily con-

tinuing with the plan, the agent inspects the hypermedia response and

extracts all machine-interpretable knowledge. In the worst case, the

response crucially differs from the expectation, and the goal will have

to be reached in another way. But in the best case, the response brings

us actually closer to the goal, maybe even more than anticipated.

We’re all familiar with this aspect on the Web: navigation happens

serendipitously. The agent then verifies whether the goal state has

been reached. If not, the background knowledge is augmented with

the extracted knowledge, and the agent goes back to the planning step.

The same goal still has to be reached, but it should now be closer than

before (even if this means we’ll have to find a different way).

Here, the new plan will contain the concrete link to the thumbnail,

which was found inside the image representation returned by the

server after the upload. In the subsequent execution step, the agent

will simply have to GET the link’s target to obtain the thumbnail.

In addition, real-world ef-

fects of the action might

also have occurred, if they

were part of the goal.

Reporting If the evaluation phase reveals the goal has been reached,

then the answer is reported back to the user. Should, for any reason,

the goal turn out to be unreachable, then the current status and

the reason for failure are displayed. The same happens with any

irrecoverable errors that cannot be solved by replanning.

This process indicates how descriptions and hypermedia can work

together to support dynamic complex interactions between a client

and a server in an evolvable way. Even though the descriptions and

the corresponding http request have been instantiated in the initial

plan, the hypermedia response is inspected at every step and the

current plan is adjusted according to the obtained result. Furthermore,

the application state will only be advanced through the hypermedia

controls supplied by each representation.
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Limitations
restdesc does not strive to be a solution for all semantic agent

requirements. Rather, it focuses on performing well in a broad range

of cases. Below, we discuss limitations and possible coping strategies.

restdesc is expressed in n3 rules, which are implications in

a monotonic first-order logic system. This limits what we can

express. In particular, monotonicity means that we cannot retract

statements after they have been asserted, which can give rise to

inconsistencies. For instance, suppose a photograph is either private

DELETE is an especially

tricky method: in mono-

tonic logic, a given thing

that exists cannot unexist.

However, we could mark

it as “deleted” with a flag.

or public, and that this can be changed through a PUT request. Then

we have a description that expresses “if the visibility is ‘public’, then

it can become ‘private’”. However, since a first-order world has no

notion of time (everything that can be true is true), this implies that

the photograph is private, contradicting the fact that it was public.

However, this is seldom a problem in practice. First, reasoning under

constraints is always difficult; therefore, over-restrictive knowledge

should be avoided (as is common with ontologies as well). Second,

methods such as PUT and DELETE are already precisely specified by

http and do not need application-specific clarification, unlike POST.

Third, the interaction process demands replanning in every step.

Therefore, facts that conflict with acquired knowledge can be omitted

from later stages, as they are no longer relevant.

Without hypermedia, the

glue between two related

resources isn’t a control,

but rather some common

piece of information.

Next, restdesc descriptions rely on the hypermedia constraint, as

they assume a link in the precondition. However, such a link is not

always present: what if we want to reuse a resource from one Web api

in another, but the apis do not link to each other? The answer is to use

descriptions that make the link on the semantic level instead:

For brevity, we use a list to

express uri construction,

but more sophisticated

mechanisms such as uri

templates offer a flexible

alternative.

{ ?book dbpedia-owl:isbn ?isbn. }

=>

{

_:request http:methodName "GET";

http:requestURI←-
("http://books.org/" ?isbn "/cover");

http:resp [ http:body _:cover ].

?book dbpedia-owl:thumbnail _:cover.

}.

Cases of missing links will

be discussed in detail in

Chapter 6, where descrip-

tions without a link in the

antecedent are crucial.

The above description expresses that if you have the isbn number of

a book, you can construct a url that will lead to an image of its cover.

This allows an agent to go from any page to the book api, even if that

page doesn’t provide the link. While this is hardly hypermedia-driven,

when the page doesn’t afford the action we need, it’s our only option.



44 Chapter 4 Functionality

Alternative description methods

Web service descriptions
We haven’t discussed Web

services so far, because

I don’t consider them first-

class Web citizens. They

exist and have a use, but

they operate by a separate

protocol on top of http

(or even something else)

and thus don’t integrate

with hypermedia at all.

rest apis instead function

on the level of the Web.

The idea of describing dynamic interactions on the Web has been

around for a long time, with substantially varying approaches depend-

ing on the underlying technology. The first generation of dynamic

content was brought by Web services, the idea of which is to exchange

messages (mostly in xml) over http in a way that enables remote pro-

cedure calling. The most widely-known Web service protocol is the

Simple Object Access Protocol (soap) [7]. A client sends a soap xml

message to a server, typically containing a specific action name and

its parameters, to which the server replies with another soap xml mes-

sage. Note that soap neither uses hypermedia nor conforms to other

rest uniform interface principles, as it works with an action/message-

centric rather than a resource-oriented model.

Interacting with soap services requires out-of-band knowledge.

The Web Service Description Language (wsdl) [4] describes the

interactions that are possible and what each message should look

like. According to its specification, wsdl also allows to describe

the abstract functionality provided by Web services. However, the

A wsdl document can be

compared to a header

file of a shared library

on a local system. Such

a file details in a machine-

processable way how to

interact with the library,

but does not explain its

provided actions.

definition of “functionality” is different from what we’ve assumed

in this chapter. In a wsdl description, the interface element

explains the supported operations of the service and the input

and output parameters each operation requires. The notion of

functionality is thus limited to the knowledge of a set of supported

method names and their parameters, similar to a method signature

in statically typed programming languages, albeit in a generic and

platform-independent way. As a result, wsdl descriptions do not

provide sufficient information for machines to decide whether the

functionality offered by the service matches their current goals.

In contrast, “functionality” in the context of restdesc means that

machines are able to match the description of a Web api to their own

knowledge base and/or goals in order to determine whether the api

performs an action that is meaningful to what they want to achieve.

It implies “understanding” in the Semantic Web sense of the word—

interpreting information by relating it to known concepts in a way

that enables acting upon that information.

soap tries to fit the Web

into the classical program-

ming paradigm, which is

not built to withstand con-

stant evolution.

wsdl descriptions can serve as a contract during development.

Tools can automatically generate code for the communication with

wsdl-described services, expressing them in a programming lan-

guage’s usual abstractions. Unfortunately, this closely ties applications

to the services offered by one server at a specific moment in time.



Alternative description methods 45

Web services played an important part in the initial Semantic

Web vision [3]. Therefore, much of the early work focused on making

services accessible for machines through semantic service descriptions.

One of the results of those efforts is owl for Services (owl-s) [15]. The Web Service Modeling

Ontology (wsmo) is the

other well-known seman-

tic Web service descrip-

tion method [14].

owl-s descriptions are expressed in rdf and consist of three parts:

a profile, a process model, and a service grounding. The profile

advertises what the service offers, using input and output parameters,

preconditions and results. These last two are expressed as literals in

specialized languages, embedded in the main rdf document. They

capture functionality in the Semantic Web sense, explaining the result

of a service invocation in terms of parameter relations. The process

model is meant to detail the interaction more precisely and comes

into play when the client actually wants to use the service. Finally,

the grounding explains how the parameters are captured in an actual

exchange between a client and a server.

owl-s comes with wsdl

support built in. However,

it allows for extension with

other groundings, for in-

stance, sparql [21].

Besides the focus on Web services instead of rest Web apis, the

difference between owl-s and restdesc lies in the way they express

functionality. First of all, owl-s describes services on the meta-level,

whereas restdesc conveys functionality on an api’s application domain

level. Thus, in an owl-s document, the interaction is described in

terms of parameters, whereas restdesc uses the application’s concepts

directly, thereby not enforcing a particular vocabulary or terminol-

ogy. This is possible because restdesc assumes the underlying api

conforms to the rest constraints, which demand resource-orientation.

owl-s supports three ex-

pression languages by de-

fault, while enabling the

addition of others such

as n3 [22].

Second, the interpretation of conditions and results in owl-s is

not integrated, as these are expressed in external languages. Therefore,

the interpretation of the rdf semantics of an owl-s document does

not imply an understanding of its functionality. With restdesc, the

interpretation of the description and its functionality are integrated:

the ability to parse n3 implies a correct interpretation of restdesc.

restdesc’s integration of

a function and the http re-

quest that affords it helps

composition, as the next

chapter will explain.

Third, restdesc describes the request together with the function-

ality, while owl-s separates the description of what the service does

from how this is achieved (although it only supports soap natively).

While this gives wsdl more flexibility, it comes with a considerable

overhead. Support for other groundings in restdesc was not consid-

ered, as we especially target hypermedia apis.

The information density

of restdesc is rather high,

allowing to understand de-

scriptions at a glance.

Finally, restdesc descriptions are substantially shorter than

their owl-s counterparts. A restdesc description contains typically

between 10 and 20 lines of rdf, while owl-s usually takes a hundred

lines or a multiple thereof. Brevity was an important restdesc design

consideration, which is partly enabled by the assumption of the

rest constraints.
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Web API descriptions
As Web apis surpassed the popularity of Web services, methods forTogether with several fel-

low api researchers, I’ve

written a more compre-

hensive survey on Web

api description [18]. This

section provides a brief

overview of our findings.

describing Web apis emerged. This is still an ongoing research topic,

so no method is widely adopted yet. Many methods don’t require full

compliance with all rest constraints, the most neglected one being

the hypermedia constraint. “Web apis” are therefore temporarily

treated synonymously to “http apis” here, as opposed to the term

“hypermedia apis”, which signals actual hypermedia-driven rest apis.

The Web Application Description Language (wadl) [8] can be

considered the native http equivalent of the messaging-driven wsdl.

It can describe resources and the links between them, albeit in a way

that tends to be more rpc-oriented. Its serialization format is an xml

document that details resource types and their methods syntactically,

without offering any form of functionality.

Several methods extend existing documents with annotations in

order to capture extra semantics. Microwsmo [12], built on top of the

html-based format hrests [10], uses microformats to add machine-

interpretable information to human-readable documentation. Yet,

these annotations don’t describe a functional relation. Microwsmo

also offers lifting and lowering, the transformation of representation

formats, whereas restdesc assumes this is handled by the server or

another intermediary. Semantic Annotations for wsdl (sawsdl) [11]

offer comparable functionality, but extend wsdl instead. It offers

functionality in the form of preconditions and effects. The Minimal

Service Model [16] approaches Web service and Web api description

in an operation-based manner, aiming to capture functional aspects

in addition to parameters and methods.

The realization that the expressivity of rdf is too limited to

directly express dynamic processes has inspired several methods

based on other expression languages. The common denominator

is the necessity for variables and quantification, which are easily

represented in sparql-like graph patterns. Linked Open Services [13]

and Linked Data Services [17] are two such approaches. As in owl-s,

graph patterns are expressed as literals, making the interpretation

of descriptions non-integrated.

restdesc differs from the above approaches in its focus on

hypermedia apis and a direct level of description without the use

of service elements such as parameters. It offers succinct descriptions

that allow the discovery of Web apis based on desired functionality.

Furthermore, it has a built-in composition mechanism, which is the

subject of the next chapter.
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People browsing hypermedia applications know how to proceed after

every page by relying on expectations and natural language, which is

impossible for machine clients. restdesc descriptions therefore help

machines look beyond the hypermedia controls offered in a single

step by providing expectations of what can happen. Descriptions

are instantiated into a plan to achieve a specific goal, given certain

background knowledge. The interaction itself is guided by the plan,

but remains driven by hypermedia: after each step, an agent reacts to

a hypermedia response by interpreting it and replanning accordingly.
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Chapter 5

Proof
I don’t need to �ght
To prove I’m right
I don’t need to be forgiven

— The Who, Baba O’Riley (1971)

Proofs justify how we arrived at a conclusion given a set of facts and

rules that we’re allowed to apply. On the Semantic Web, a proof

lets a machine explain precisely how it obtained a certain result.

Although usually reserved for static data, in this chapter, proofs will

play a crucial role in the dynamic world of Web apis. With some

creativity, they can guarantee the correctness of a composition of

several Web apis before its execution, and even serve as an efficient

method to automatically create such compositions.

The ability to prove that a conclusion is correct has become one of the

foundations of science. A proof justifies a statement by decomposing

it into more elementary pieces, which may only be combined using

a strictly constrained methodology. Those pieces can in turn be

Each individual argument

needs to be verifiable, as

contradicting facts lead to

the principle of explosion:

an inconsistency allows to

conclude anything.

proven, until we arrive at fundamental elements that we cannot

decompose and have chosen to accept as truth. The mechanisms of

proof allow us to discover knowledge derived from the truth—and

to distinguish that from what is false.

In a world where actions will be undertaken autonomously by

machines, an important question is whether these actions and their

results represent the intentions of the person who instructed those

machines. Therefore, it shouldn’t come as a surprise that the notion

of “proof” was already present in the initial Semantic Web vision [9].

Results obtained by machines can be trusted when accompanied
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by an independently verifiable, machine-readable proof document.

Such proofs can then be exchanged by different parties [12] and

verified by dedicated proof checkers.

Automated agents require

an even higher trust level

than most Web appli-

cations, because people

are no longer directly in

control of decisions.

Additionally, trust is an important aspect. If a proof uses a certain

piece of data as justification, then you need to be able to decide

whether you can rely on its source. Together with digital signatures

that allow to verify the authenticity of the information, trust records

ensure that the foundations of the proof are valid [9]. Certainly in

an environment where “anyone can say anything about anything” [7],

we need to be selective as to what information we let our conclusions

be built upon.

Unfortunately, proof on today’s Web is still at an early stage.

In Chapter 3, we discussed Linked Data as a pragmatic view on the

Semantic Web—and so far, proofs didn’t attract a lot of attention in

the Linked Data ecosphere. The focus on raw data might explain this,

The apparent shortage of

“Linked Rules” is rather

unfortunate, since a main

n3logic goal was precisely

to share information that

requires more expressivity

than regular rdf [8].

as things then become more a question of trust than proof. However,

many of the large datasets, such as dbpedia and Freebase, provide

data that originates from other sources. So at the very least, full trust

would require the provenance information of the original data, but

a proof that the resulting data has been correctly derived would be

necessary for total certainty. This illustrates a balance between trust

and proof: ultimately, we must accept some axioms, similar to the

choices mathematics and natural sciences have to make. Yet the more

we emphasize a verifiable proof, the less we need to (blindly) trust.

On the bright side, many current n3 reasoners provide support

to prove the conclusions drawn from triples and rules. As part of

As we would expect, n3

proofs generated by one

reasoner can be parsed

and interpreted by an-

other. Interoperability is

as crucial as with data.

the Semantic Web Application Platform [6], the cwm reasoner and

an ontology with elementary components like Proof and Inference

were created [5]. The ontology is usually referred to by the r prefix

and the corresponding url http://www.w3.org/2000/10/swap/reason#.

It provides the means to explain formally and in meticulous detail

how and why a reasoner was able to derive a certain set of facts.

Conveniently, an automated proof checker is available [5].

In this chapter, we will first discuss the essential components

of n3 proofs with static data and rules. Next, we will incorporate

dynamic information in those proofs by using restdesc descriptions

of Web apis. This then leads to the question of how we can be sure

that a given composition of Web apis realizes desired functionality,

and how such compositions can be created automatically. Finally,

we’ll explain the role of proofs in the hypermedia-driven execution

process of autonomous agents.

http://www.w3.org/2000/10/swap/reason#
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Understanding proofs

To understand how n3 reasoners generate proofs and how these proofs

are structured, we will study the n3 proof of a classical syllogism.

It expresses perhaps the most famous example of inference:

Ancient syllogisms have

had a profound influence

on deductive reasoning.

Socrates is a man, and all men are mortal.

Therefore, Socrates is mortal.

This translates into predicate logic as follows:

man (Socrates)

∀x (man (x) =⇒ mortal (x))

mortal (Socrates)

Our goal is to obtain this conclusion from an n3 reasoner. To that Storing data and rules as

separate resources allows

independent reuse.

end, we first have to represent the initial knowledge as rdf. The triple

below has been found at http://dbpedia.org/resource/Socrates:

dbpedia:Socrates a dbpedia-owl:Person.

The implication can be represented as follows in an n3 document:

{ ?person a dbpedia-owl:Person. }

=>

{ ?person a dbpedia-owl:Mortal. }.

We could present both resources to an n3 reasoner and demand

to derive all possible statements that can be entailed. However,

this might not always be practical: the number of entailed triples

can potentially be enormous, even with a moderate number of rules,

and not all of those triples are relevant to solve the given question.

In the worst case, rules can trigger recursively and lead to an infinite

stream of triples, which can of course never be generated.

Any rule in which the an-

tecedent and consequent

are the same might seem

a strange tautology. After

all, P ⇒ P always holds,

so why include it then?

The answer is that filter

rules are not knowledge

rules; they instruct a rea-

soner to find the graph P

and to derive a graph P ′,
which could (but doesn’t

need to) be identical to P .

Instead, we’ll ask a specific query: all triples that have Socrates

as the subject. This is the graph pattern “dbpedia:Socrates ?p ?o.”

Most n3 reasoners have a specific query mechanism called filter rules,

which are n3 rules used in a similar way to sparql CONSTRUCT queries.

A filter rule’s antecedent instructs the reasoner to find all matching

patterns, which are then shaped according to the rule’s consequent.

Since we are interested in “Socrates” triples, and we want to retrieve

them exactly as they are, our filter rule becomes:

{ dbpedia:Socrates ?p ?o. }

=>

{ dbpedia:Socrates ?p ?o. }.

The reasoner is asked to execute this query on the given n3 documents.

http://dbpedia.org/resource/Socrates
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Figure 3 lists an example proof generated by the eye reasoner [10]

in response to our input and query, using the following command:

eye socrates.ttl mortal.n3 --query query.n3

The query execution results in the following triples:Query results can contain

both pre-existing and en-

tailed triples.
dbpedia:Socrates a dbpedia-owl:Person.

dbpedia:Socrates a dbpedia-owl:Mortal.

We will now go through the proof to understand how the reasoner

arrived at this conclusion, thus starting from the result and heading

toward the initial facts. At the highest level, a proof consists of

a Proof entity, which is a Conjunction of different components. In

this case, those components are #lemma1 and #lemma2. The proof

gives the two Socrates triples, the derivation of which is detailed by

these Lemmata 1 and 2, which in turn have their own justification.

There are two possible lemma types: Inference and Extraction.

For consistency reasons,

the filter rule will always

be instantiated explicitly,

even if it is a pass-through

rule that simply returns

the same, as in this case.

The reasoner is obliged to

instantiate the filter rule

before arriving at the final

conclusion; its usage can

in fact be considered the

reasoner’s goal.

Lemma 1 is an inference that results in the fact that Socrates

is a man. It might seem surprising to see this fact is the result of

an inference rather than a simple extraction, as it was also present

in the input files. However, the rule used for this lemma is the

special filter rule (Lemma 4), which was instantiated with the triple

itself (Lemma 3), leading indeed to this conclusion. In other words,

Lemmata 3 and 4 detail the origin of the knowledge (“Socrates is

a man”) and the filter rule (“find a triple about Socrates and return it”),

whereas Lemma 1 details the instantiation of this rule with the

knowledge using rule and evidence predicates. Extractions such

as #lemma3 and #lemma4 don’t require further proving, as they directly

point to the source that must be parsed to obtain the triple or rule.

Lemma 2, the other component of the main proof, also shows

an application of the filter rule, as indicated by its rule property.

This lemma results in the fact that Socrates is a mortal. However,

the evidence isn’t an extraction this time, but another inference

detailed in Lemma 5. This lemma then derives Socrates’ mortality

Interestingly, proving the

“main” inference is only

a small part of the whole.

by applying the “if human, then mortal” rule (Lemma 6) on the fact

that Socrates is human (Lemma 3). As the binding details, the rule is

instantiated by replacing the variable ?person by dbpedia:Socrates:

{ dbpedia:Socrates a dbpedia-owl:Person. }

=>

{ dbpedia:Socrates a dbpedia-owl:Mortal. }.

This leads to the conclusion of Lemma 5, which was picked up by the

filter rule in Lemma 2 and finally propagated to the main proof.
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@prefix dbpedia: <http://dbpedia.org/resource/>.

@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.

@prefix var: <var#>.

@prefix r: <http://www.w3.org/2000/10/swap/reason#>.

@prefix n3: <http://www.w3.org/2004/06/rei#>.

<#proof> a r:Proof, r:Conjunction;

r:component <#lemma1>, <#lemma2>;

r:gives {

dbpedia:Socrates a dbpedia-owl:Person.

dbpedia:Socrates a dbpedia-owl:Mortal.

}.

<#lemma1> a r:Inference; r:gives { dbpedia:Socrates a dbpedia-owl:Person };

r:evidence (<#lemma3>);

r:binding [ r:variable [ n3:uri "var#p" ];

r:boundTo [ n3:uri "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" ]];

r:binding [ r:variable [ n3:uri "var#o" ];

r:boundTo [ n3:uri "http://dbpedia.org/ontology/Person" ]];

r:rule <#lemma4>.

<#lemma2> a r:Inference; r:gives { dbpedia:Socrates a dbpedia-owl:Mortal };

r:evidence (<#lemma5>);

r:binding [ r:variable [ n3:uri "var#p" ];

r:boundTo [ n3:uri "http://www.w3.org/1999/02/22-rdf-syntax-ns#type" ]];

r:binding [ r:variable [ n3:uri "var#o" ];

r:boundTo [ n3:uri "http://dbpedia.org/ontology/Mortal" ]];

r:rule <#lemma4>.

<#lemma3> a r:Extraction; r:gives { dbpedia:Socrates a dbpedia-owl:Person };

r:because [ a r:Parsing; r:source <socrates.ttl> ].

<#lemma4> a r:Extraction; r:gives { @forAll var:p, var:o.

{ dbpedia:Socrates var:p var:o } => { dbpedia:Socrates var:p var:o }};

r:because [ a r:Parsing; r:source <query.n3> ].

<#lemma5> a r:Inference; r:gives { dbpedia:Socrates a dbpedia-owl:Mortal };

r:evidence (<#lemma3>);

r:binding [ r:variable [ n3:uri "var#person" ];

r:boundTo [ n3:uri "http://dbpedia.org/resource/Socrates" ]];

r:rule <#lemma6>.

<#lemma6> a r:Extraction; r:gives { @forAll var:person.

{ var:person a dbpedia-owl:Person } => { var:person a dbpedia-owl:Mortal }};

r:because [ a r:Parsing; r:source <mortal.n3> ].

Figure 3: A proof is a conjunction of components, recursively constructed out of inferences and extractions.
This proof indicates that, if all men are mortal and Socrates is a man, then Socrates is mortal.
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From this example, it is apparent that n3logic proofs, just like

mathematical proofs, have a recursive structure. Each derived triple

Each proof is a graph that

starts from the conclusion,

going through inferences

to arrive at trusted facts.

must be justified by a lemma, the assumptions of which have to be

justified in turn, until we arrive at the parsing of input files, which

are the axioms. At that level, acceptance becomes a matter of trust,

unless the input files themselves are accompanied by a proof. Another

observation is that proofs have a backward flow: they start from the

conclusion, which is gradually decomposed into elementary parts.

This might lead to confusion at first, since we will encounter results

before we learn how they are derived. Yet, it fits the central philosophy

of tracing back each fact to a derivation from other verifiable facts,

until we arrive at the source.

Jim Hendler provides an

example wherein a server

states an agent is in debt.

Reluctant to transfer the

money without a cause,

the agent asks for proof.

The server then justifies

its demand with evidence

of some unpaid purchase.

Now convinced, the agent

sends the sum due [12].

In this context, the proof can be interpreted as a dialog. If one

agent claims that Socrates is a mortal, another agent can ask why.

In response, the first agent will say this is the result of applying

a specific rule on the fact that Socrates is a human. Still unsatisfied,

the other agent demands more details, upon which the first explains

this fact was obtained from socrates.ttlwith the rule extracted from

mortal.n3. The other can then choose to ask the same questions

to the data sources of these files, where it would perhaps learn

that the contents of socrates.ttl were taken from dbpedia. The

interrogation continues until the agent finds sources it trusts (or not,

in which case it rejects the proof result because of unsure premises).

The proofs we have discussed so far employ pre-existing facts

to justify a certain assertion. In contrast, we want to verify whether

the execution of a series of Web api calls—which contain dynamic

information that is not known beforehand—will deliver an intended

result (without undesired side-effects). This guarantee is necessary

for an agent before it can engage in complex interactions because,

as we recall from the previous chapter, hypermedia allows agents to

look only one step ahead. A proof that a particular step goes in the

right direction provides the confidence needed to take that step.

We’re again safeguarded

by restdesc’s choice to

place the http request

as an existential in the

conclusion: a proof will

state a chain of requests

matching the goal exists,

without claiming success

for all executions.

Since restdesc descriptions are expressed as n3 rules, they can

also serve as inferences in proofs. What distinguishes restdesc rules

from others is that they describe the expected results of Web api calls,

which are not necessarily executed. So under the assumption that

the employed restdesc descriptions accurately capture the result that

will occur in reality, proofs with restdesc rules can be interpreted

as Web api compositions that reach a certain goal. In addition to

indicating if a goal can be fulfilled, the proof will explain how,

by detailing a possible chain of http requests.
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Automatically generating compositions

Instead of applying proofs to verify the derivation of facts from static

knowledge, we will now discuss a proof that shows how a goal can be

achieved using Web api calls. Suppose an agent has access to the local

image lena.jpg as part of its background knowledge:

<lena.jpg> a dbpedia:Image.

The goal set by the user is to obtain a thumbnail of that specific image:

{ <lena.jpg> dbpedia-owl:thumbnail ?result. }

=>

{ <lena.jpg> dbpedia-owl:thumbnail ?result. }.

Descriptions can be given

explicitly or discovered

automatically, as we will

discuss in Chapter 7.

To solve this problem, it has several Web api descriptions at its

disposition, including the ones we have discussed in the previous

chapter. The description below explains that smallThumbnail links

lead to an 80px-high thumbnail:

{ ?image ex:smallThumbnail ?thumbnail. }

=>

{

_:request http:methodName "GET";

http:requestURI ?thumbnail;

http:resp [ http:body ?thumbnail ].

?image dbpedia-owl:thumbnail ?thumbnail.

?thumbnail a dbpedia:Image;

dbpedia-owl:height 80.0.

}.

The following description captures the fact that images uploaded to

the /images/ resource receive comments and smallThumbnail links:

Some details have been

omitted from the upload

description to simplify the

proof slightly. Yet, using

the exact description as

in Chapter 4 would yield

analogous results.

{ ?image a dbpedia:Image. }

=>

{

_:request http:methodName "POST";

http:requestURI "/images/";

http:body ?image;

http:resp [ http:body ?image ].

?image ex:comments _:comments;

ex:smallThumbnail _:thumb.

}.

In practice, many more descriptions will be available; it is precisely the

task of the reasoner generating the proof to select the relevant ones.
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Figure 4 shows the proof that was obtained by sending the

background knowledge and several descriptions to a reasoner with

the given query. As expected, its structure is similar to that of Figure 3:

Parsing details were not

listed; Lemmata 4 to 7 of

the proof correspond to

the respective snippets

on the previous page.

one main proof entity, recursively decomposed into inferences and

extractions. The difference lies in the usage of restdesc descriptions to

perform inferences. Since restdesc expresses functionality as regular

n3 rules, reasoners do not need additional knowledge to incorporate

them in proofs. At the same time, all the instantiated descriptions

retain their additional operational meaning.

While proofs are constructed from the conclusion toward the

initial assumptions, Web api executions start from an initial state to

finally arrive at a goal. Therefore, in this discussion, we will follow the

proof in the reverse direction, in order to highlight the connection

to Web apis. Since Lemmata 4 to 7 are merely extractions obtained

through parsing, we will skip to the first inference that uses them.

Lemma 3 details the instantiation of the restdesc description

for image uploading (Lemma 7). The knowledge that lena.jpg is

an image (Lemma 4) satisfies that description’s precondition, so it

is triggered. Note how the image variable is bound to lena.jpg,

At first sight, more exis-

tentials seem to appear

in the proof than in the

description. This is not

the case: even though the

resp triple is written in

[] notation, it remains

a blank node, which thus

needs a new identifier.

whereas all existentially quantified variables are instantiated with

newly created blank nodes, as can be seen by the Existential type.

Here, the parametrized request in the restdesc rule’s consequent has

been instantiated to a POST request to /images/ with a request body

of lena.jpg. All necessary information to construct this request is

thus in place. Even though the outcome of the request is unknown

at this stage, the description stated there would be comments and

smallThumbnail links. As their exact targets cannot be determined

yet, they’re represented by the new blank nodes _:sk2 and _:sk3.

Lemma 2 continues from the obtained result that lena.jpg has

a smallThumbnail link to _:sk3, instantiating this in the correspond-

ing restdesc api description (Lemma 6). The actual thumbnail url

is undetermined, which is reflected in the incompleteness of the

resulting api call—a GET request to _:sk3 that leads to the thumbnail.

While its actual value is still undetermined, _:sk3 is not unspecified:

The usage of blank nodes

in restdesc rules serves

as a way to track values

throughout a proof.

it refers to the target of the smallThumbnail link that will be obtained

through the POST request in Lemma 3. The hypermedia links and their

semantics propagate through the proof as blank nodes, substitutes for

concrete values that will be determined during the execution.

Finally, Lemma 1 is the obligatory instantiation of the filter rule

that represents the agent’s goal (Lemma 5). It takes the conclusion

of Lemma 2—the existence of a thumbnail—and finds _:sk3 as the

needed result. Lemma 1 is thereby sufficient to conclude the proof.
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<#proof> a r:Proof, r:Conjunction;

r:component <#lemma1>;

r:gives { <lena.jpg> dbpedia-owl:thumbnail _:sk3. }.

<#lemma1> a r:Inference;

r:gives { <lena.jpg> dbpedia-owl:thumbnail _:sk3. };

r:evidence (<#lemma2>);

r:binding [ r:variable [ n3:uri "var#result"];

r:boundTo [ a r:Existential; n3:nodeId "_:sk3"]];

r:rule <#lemma5>. # extracted by parsing agent_goal.n3

<#lemma2> a r:Inference;

r:gives { _:sk4 http:methodName "GET". _:sk4 http:requestURI _:sk3.
_:sk4 http:resp _:sk5. _:sk5 http:body _:sk3.

<lena.jpg> dbpedia-owl:thumbnail _:sk3.
_:sk3 a dbpedia:Image. _:sk3 dbpedia-owl:height 80.0. };

r:evidence (<#lemma3>);

r:binding [ r:variable [ n3:uri "var#image"];

r:boundTo [ n3:uri "lena.jpg"]];

r:binding [ r:variable [ n3:uri "var#thumbnail"];

r:boundTo [ a r:Existential; n3:nodeId "_:sk3"]];

r:binding [ r:variable [ n3:uri "var#x2"];

r:boundTo [ a r:Existential; n3:nodeId "_:sk4"]];

r:binding [ r:variable [ n3:uri "var#x3"];

r:boundTo [ a r:Existential; n3:nodeId "_:sk5"]];

r:rule <#lemma6>. # extracted by parsing description_smallThumbnail.n3

<#lemma3> a r:Inference;

r:gives { _:sk0 http:methodName "POST". _:sk0 http:requestURI "/images/".
_:sk0 http:body <lena.jpg>.
_:sk0 http:resp _:sk1. _:sk1 http:body <lena.jpg>.

<lena.jpg> ex:comments _:sk2. <lena.jpg> ex:smallThumbnail _:sk3. };

r:evidence (<#lemma4>); # extracted by parsing agent_background_knowledge.ttl

r:binding [ r:variable [ n3:uri "var#image"];

r:boundTo [ n3:uri "lena.jpg"]];

r:binding [ r:variable [ n3:uri "var#x1"];

r:boundTo [ a r:Existential; n3:nodeId "_:sk0"]];

r:binding [ r:variable [ n3:uri "var#x2"];

r:boundTo [ a r:Existential; n3:nodeId "_:sk1"]];

r:binding [ r:variable [ n3:uri "var#x3"];

r:boundTo [ a r:Existential; n3:nodeId "_:sk2"]];

r:binding [ r:variable [ n3:uri "var#x4"];

r:boundTo [ a r:Existential; n3:nodeId "_:sk3"]];

r:rule <#lemma7>. # extracted by parsing description_upload.n3

<#lemma4> a r:Extraction. <#lemma5> a r:Extraction. # Parsing details omitted for brevity

<#lemma6> a r:Extraction. <#lemma7> a r:Extraction. # (must be present in an actual proof).

Figure 4: This proof shows that a thumbnail of lena.jpg can be obtained by a composition of a POST and
a GET request. The properties of these requests are detailed in the proof through instantiated descriptions.
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We can make three core observations about a composition proof,

assuming that all of the used descriptions accurately reflect reality.

First, the existence of the proof indicates the desired goal is reachable

given the current knowledge and Web apis. Independent of whether

Proofs provide lookahead

functionality that serves

as a machine substitute

for people’s intuition on

possible further steps.

we’ll execute the composition (and whether each of its steps will

be successful), it is at least theoretically possible to reach the goal.

This might not really seem a significant achievement, but remember

that hypermedia-driven clients can only see the direct next steps;

the steps thereafter are unclear for automated agents.

Second, one way of achieving the goal is the Web api composition

suggested in the proof. Even though not all of the parameters are

fully determined yet—as they depend on the execution of earlier

api calls—a possible plan to arrive at the goal is directly available.

In fact, the proof is the composition and vice-versa. This doesn’t

mean all steps of the plan have to be followed; on the contrary, the

interaction will happen dynamically through hypermedia.

Third, each composition has at least one fully determined api call.

This is indeed a logical consequence of the structure of proofs: one

of the present restdesc descriptions must have been instantiated

solely with data from extractions or regular inferences. This request is

usually the first that is executed through hypermedia. Furthermore,

in those cases where relevant hypermedia controls are unavailable,

the agent can execute the http request as described in the proof. This

The trade-off between fol-

lowing hypermedia con-

trols and executing http

requests directly is fea-

tured in the next chapter.

happens for instance when two resources from different applications

are not connected. For example, the restdesc description of the

image upload relies on a hard-coded url instead of hypermedia.

This means we could take an image from any application and upload

it into the current one, even if there is no control that affords this.

Although the example proof presented here was rather simple,

more complex proofs can be realized. In particular, this proof’s

composition is a linear concatenation of Web apis, whereas in the

general case, complex interdependency patterns between api calls

are possible. As proofs prohibit circular dependencies, an executable

order of requests will always exist. Branches in the proof graph that

are independent of others can be executed in parallel; the proof

makes the dependencies visible through the various propagating

placeholders represented by blank nodes.

Ontologies compensate

for possible vocabulary

mismatches between api

descriptions from various

providers or applications.

Just like in any other proof, regular n3 rules and rdf or owl

ontological constructs can also serve as inferences. Mixing them

with restdesc rules can lead to the derivation of new facts even before

api calls have been executed—and these facts can then propagate

to other api calls.
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Pragmatic proofs for planning

Pre-proofs and post-proofs
Proofs are typically not

regarded pragmatic, as

they quite rigorously ver-

ify facts. Our pragmatic

angle captures the usage

of such a strict method

to control a process that

is inherently error-prone.

The method we’ve introduced for Web api composition should be

considered a pragmatic proof [19]. We call it “pragmatic” because it

realizes composition generation, at the cost of accepting that things

can (and will) go wrong every once in a while—a characteristic that

is usually unacceptable for proofs. Yet pragmatism is required for

consumers of Web apis: applications evolve constantly, so we trade

the safety of fixed message exchanges for the flexibility of dynamic

and serendipitous interactions.

As a result, composition proofs rely on stronger assumptions than

regular proofs. Whereas proofs are normally rooted in knowledge

and rules that have to be trusted (or proven in turn), proofs with

restdesc rules inherit the assumptions of these Web api descriptions.

Concretely, any restdesc rule assumes a request exists that derives

the postconditions from the preconditions. This allows the reasoner

to propagate these postconditions throughout the proof. Should

such request not exist (for instance, because the server has crashed),

the proof is invalid because of unjustified premises. In order to make

these assumptions explicit, we distinguish between two kinds of proof

during the process of the execution:

A pre-execution proof (pre-proof) assumes the execution of all

described Web api calls will behave as expected.

A post-execution proof (post-proof) contains static data as evi-

dence, obtained through executing Web api calls.

Any client could prohibit

restdesc descriptions as

fact sources to guarantee

that requests are already

executed.

As each proof details the sources that were used to generate it,

we can automatically verify what the assumptions were and hence

the degree of trust we need. If the extractions contain restdesc rules,

we need to be aware of the extra degree of trust needed. Therefore,

a recommended practice is to indicate this explicitly in resources that

contain restdesc descriptions.

Note that the above distinction between a pre- and post-proof

is relative rather than absolute. A complete pre-proof is generated

before any execution has taken place, such as as the proof in Figure 4.

Analogously, the generation of a complete post-proof happens after

all executions were performed. However, each execution can have its

The information gathered

during proof creation can

serve as provenance [11].

own pre- and post-proof. After one of the api calls from the complete

pre-proof has been executed, a post-proof at this stage replaces that

single api call by its results, which were determined by the execution.
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As an example, we will apply the concept of pre- and post-proofs

on the image upload scenario, as part of the execution process detailed

in the previous chapter. The proof in Figure 4 is a pre-proof and

forms the agent’s initial plan. It contains two api calls, a GET and POST

In the previous chapter,

the first step did involve

hypermedia controls; it

depends on the use case.

request, and only the latter has all necessary parameters in place

for execution. The agent therefore starts with the POST request. As

there are no hypermedia controls in this particular case, the request

is executed as listed in the proof.

In response, the server returns a representation that, as expected

from the api description, contains a smallThumbnail link. For

instance, assume the link points to /thumbs/538/. The classical

planning strategy would be to continue from the initial proof, as

we now know that the existential _:sk3 is bound to /thumbs/538/.

In contrast, the agent first verifies the success of the request by

generating a post-proof from the initial state, the response, and the

api descriptions. If successful, this post-proof should contain one lessReasoners will strive to

obtain the shortest proof,

so we’re sure the number

of apis doesn’t increase.

api call, as the needed smallThumbnail triple is now present as a fact

and needs not be derived. In case of failure, the post-proof will again

suggest the same POST request or result in a contradiction. In that

case, the corresponding description may not be used again, and

a new pre-proof should be generated.

A successful post-proof generated after this first request can

directly serve as a pre-proof to continue with the next request. Indeed,

it will contain all remaining api requests. However, to make the

request, the agent can simply follow the smallThumbnail link in the

representation, as the necessary hypermedia control is present. The

interaction thus continues in a hypermedia-driven way, with pre-

proofs as a guideline toward the next step, and post-proofs to verify

the correctness of the previous step. After following the link, the agent

receives a thumbnail. The reasoner can generate another post-proof

In the final post-proof,

the goal follows directly

from the combination of

background knowledge

and obtained api results.

from this, but it will be rather short: the goal of having a thumbnail

is now directly implied by the facts.

The diagram below summarizes the role of pre- and post-proofs

in this example execution. Note in particular how the decreasing

number of api calls in the proof indicates the goal is approaching.

Also, the correspondence of a successful post-proof to the subsequent

pre-proof is highlighted. This illustrates the pragmatic role of proofs

in hypermedia-driven execution.

initial state

POST

/images/

GET

/thumbs/538/ goal

pre-proof
API calls: 2

post-proof
API calls: 1

pre-proof
API calls: 1

post-proof
API calls: 0
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Performance of composition and selection
As of mid-2013, the widely

known Web api directory

ProgrammableWeb listed

more than 10,000 apis [4].

We still need to tackle the most pragmatic of all questions on the Web:

does it scale? Is proof-based composition generation a feasible strategy

given an ever increasing number of Web apis? The success of our

approach depends on whether state-of-the art n3 reasoners are able

to generate proofs within a reasonable amount of time. In practice,

the composition time should be negligible compared to the execution

time of the api calls.

To verify this, we have created a benchmark suite [18] that

generates test descriptions in such a way they can be composed into

graphs of a chosen length. Web api calls can depend on any number

of others. By varying the length and the number of dependencies

between calls, we can investigate the influence on performance. Below

are results obtained by the eye reasoner on a 2.66 ghz quad-core cpu.

number of apis 4 8 16 32 64 128 256 512 1,024
1 dependency

parsing 53 ms 54 ms 55 ms 58 ms 64 ms 78 ms 104 ms 161 ms 266 ms
reasoning 4 ms 5 ms 7 ms 11 ms 20 ms 43 ms 77 ms 157 ms 391 ms

total 57 ms 58 ms 62 ms 70 ms 84 ms 121 ms 181 ms 318 ms 657 ms

2 dependencies
parsing 53 ms 59 ms 56 ms 60 ms 67 ms 85 ms 117 ms 184 ms 331 ms

reasoning 6 ms 69 ms 41 ms 45 ms 56 ms 84 ms 174 ms 461 ms 1,466 ms
total 59 ms 128 ms 97 ms 104 ms 123 ms 169 ms 292 ms 645 ms 1,797 ms

3 dependencies
parsing 53 ms 68 ms 56 ms 61 ms 70 ms 90 ms 129 ms 208 ms 371 ms

reasoning 12 ms 45 ms 49 ms 61 ms 99 ms 200 ms 544 ms 1,639 ms 6,493 ms
total 66 ms 114 ms 105 ms 122 ms 169 ms 290 ms 673 ms 1,847 ms 6,864 ms

The total time has been split into the time used for the actual

reasoning and proof generation on the one hand, and the startup

and parsing time on the other hand, since parsing results can be

cached. Note how a chain of 1,024 api calls with a single dependency Parsing time can virtually

be eliminated by preload-

ing Web api descriptions.

takes less than a second to compose; the execution time of each of

those calls could typically take up to a few hundred milliseconds

already. More dependencies take longer, but are still manageable.

Furthermore, the number of dependencies will be small in practice.

The other important aspect is selection time: how fast can a rea-

soner find relevant descriptions? Therefore, we tested compositions of

length 32 with a variable number of dummy descriptions that looked

similar to others, but were not relevant to the composition. Note how

the reasoning time remains low, even with a high number of dummies.

number of dummies 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072
32 apis, 1 dependency

parsing 276 ms 528 ms 1,001 ms 1,949 ms 3,916 ms 7,827 ms 17,127 ms 34,526 ms
reasoning 12 ms 20 ms 18 ms 68 ms 107 ms 113 ms 122 ms 228 ms

total 289 ms 548 ms 1,019 ms 2,018 ms 4,023 ms 7,940 ms 17,249 ms 34,754 ms
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Other composition approaches

The bulk of the work on composition on the Web has been performed

in the context of classical Web services [13, 16]. The relatively

recent interest in rest apis, especially in industrial contexts, makes

composition of rest apis a yet underexplored topic—certainly with

regard to hypermedia-driven characteristics. Nonetheless, several

researchers have contributed to this domain, so we will summarize

their published work below.

In the decade following the year 2000, Web applications started

evolving rapidly, and so did Web services and later Web apis. Soon, the

idea came to combine those different services in small applications

called mashups, giving rise to a new generation of demand-driven

applications [3]. A key question in this area is how to integrate

different services with a minimum of case-specific programming.

Some approaches focus on the integration of rest apis in existing

tools and workflows. Pautasso extends the Business Process Execution

Language (bpel), normally targeted at traditional Web services, to

rest apis [15]. He explains how the composition for rest apis is

different because of the late binding to uri addresses and the use

of a uniform rather than a specific interface. The extensions proposed

in the paper enable manual bpel composition methods to work in

resource-oriented environments. In other work, he demonstrates the

integration with the visual composition language JOpera, and outlines

the important features a rest composition language should support:

dynamic late binding, the uniform interface, dynamic typing, content-

type negotiation, and state inspection [14]. An alternative model is

provided by Bite [17]. Bear in mind that the composition creation still

happens manually with these approaches; their contribution resides

on the interface and data flow level.

Alarcón, Wilde, and Bellido acknowledge the significant mismatch

between action-centric composition methods and rest, and propose

a novel method based on Petri nets [2] with apis described in the

Resource Linking Language [1]. The hypermedia constraint forms

a fundamental part of the method, as it focuses on hypermedia

controls and their semantics. The downside of the approach is that

the composition is static.

The difference with our method is that we strongly lean toward

the agent vision of the Semantic Web, combined with the hypermedia-

driven viewpoint of rest. Our aim is to have an autonomous agent

that consumes Web apis to satisfy a given goal. Pre- and post-proofs

enable a flexible way to adaptively respond in an interaction.
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When trying to reach a complex goal, agents need to plan beyond the

initial next steps offered in hypermedia-driven interactions. Proofs can

combine restdesc descriptions into a composition, designed to meet the

demands of a predefined goal. By distinguishing between pre- and post-

proofs, the assumption of successful execution can be made explicit,

while still obtaining a correct proof in the classical sense. In contrast

to most composition approaches, the composition plan serves only as

a guidance—the interaction itself remains fully driven by hypermedia

and can be verified at each step. Similar to how the resource-orientation

of rest apis allowed us to derive concise descriptions because of their

correspondence to the rdf model, n3 proofs seamlessly accommodate

dynamic rest interactions.
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Chapter 6

A�ordance
A room within a room
A door behind a door
Touch, where do you lead?
I need something more

—Daft Punk, Touch (2013)

The Web has made information actionable. For centuries, books

and essays have been referring to each other; hypertext has turned

those references into links that actually lead us to the other place.

In order to scale globally, the Web had to limit the flexibility of links:

they point in one direction and can only be created by the publisher

of information. Our actions on a webpage remain constrained to

those determined by its publisher. As ad-hoc interactions between

different online applications become crucial, a linking model that

allows a user-centered set of actions seems more appropriate.

The world around us is filled with affordances, properties of objects

that allow us to perform actions. For instance, a door handle affords

opening a door, hence we call it the affordance for opening that door.

Similarly, a pen is the affordance that allows us to write any note.

However, that same pen can afford stirring a cup of coffee and, with

some skill, even opening a bottle. Originally coined by psychologist

Norman’s definition states

“the term affordance refers

to the perceived and actual

properties of the thing, pri-

marily those fundamental

properties that determine

just how the thing could

possibly be used” [29].

James Gibson [19], the term gained popularity among technologists

through Donald Norman’s book The Design of Everyday Things [29].

Norman wondered why people struggle with everyday appliances,

and blamed common frustrations on the lack of properly designed

affordances. Especially with the increasing amount of electronic

devices that provide tactile capabilities, our intuition of what happens
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when we touch something (real or virtual) is challenged on a daily

basis. This rapid evolution becomes all the more apparent when

we find ourselves surpassed by young kids who use technology with

a seemingly native ability, faster than we ever will.

Smartphones and tablets

have made information

even more tangible than

it already was.

The virtue of hypertext is that it has transformed information into

an affordance. Texts are no longer static and inert, but they can be

clicked—on tactile screens even touched—to bring the reader to the

next destination. A piece of information is no longer a wall but a door,

actionable through a handle. Fielding emphasizes this [18]:

When I say hypertext, I mean the simultaneous presentation of

information and controls such that the information becomes

the affordance through which the user (or automaton) obtains

choices and selects actions. — Roy Thomas Fielding

When we introduced this definition in Chapter 2, we skimmed over

the word “affordance”. Together with the hypermedia constraint, we

can rephrase the crucial corresponding part as “the information must

afford the next steps the client wants to take.” However, with the Web’s

Recall that the Web’s deci-

sion for unidirectionality

allows global scalability:

the Web works because

links can break.

implementation of hypertext, links can only be added to a piece of

information by its publisher. Hence, the information merely affords

the actions envisioned by the publisher, which don’t necessarily

coincide with those needed by the client. Therefore, on the Web,

the information is only the affordance to the extent a publisher can

actually predict the controls a client needs. While this might be the

case within the closed context of a single application, it is virtually

impossible on the open Web.

For instance, suppose you’re reading a movie review on a webpage.

Typically, this page will offer links to pages of cast and crew members

and perhaps related movies. Yet, you want to watch the movie in

In particular, it is impossi-

ble to afford actions that

aren’t possible today, but

will be in the future. A few

years ago, we couldn’t yet

add links to download the

tablet version of a movie,

even though it was clear

that tablets could become

popular one day.

a nearby theater—and someone else might want to buy it for a mobile

device or stream it to a digital television. Since none of these actions

are afforded by the page, the hypermedia interaction breaks. You will

have to resort to another way, such as manually navigating to a search

engine and trying to find it from there. While slightly inconvenient,

this phenomenon happens frequently and we’re used to deal with it.

However, it touches on the essence of hypermedia: if we can’t perform

the action we need, the page becomes as non-interactive as any

regular text or book. Furthermore, we have no way to repair it, as

we cannot create links. Certainly on mobile devices, the omission

of needed navigation controls can seriously disturb the interaction,

as manual text entry on small devices takes considerable time.



67

The situation is substantially worse for machine clients that

want to engage in a hypermedia-driven interaction. As the previous

example shows, an affordance isn’t an enabler: the availability of an

action is independent of a control to execute it. However, if the action

Whether rest or rpc are

loosely or tightly coupled

leads to intense debate;

a precise definition of the

different facets clears up

the discussion [31].

is not supported through hypermedia, a hypermedia-driven agent

cannot perform it, even though it might be possible. Since machine

clients lack the flexible coping strategies of humans, they cannot

complete the interaction through alternative means. For that reason,

agents are currently preprogrammed to perform tasks spanning

different applications, leading to tight conversational coupling [31].

This brings us to the inconvenient conclusion that the application

of the hypermedia constraint on the Web’s publisher-driven linking

model is problematic: the sole party responsible for generating the

affordance toward next steps is unable to do this optimally for any

specific client. We have called this the Web’s affordance paradox [41].

Similarly, while the rest architectural style decreases conversational

coupling when compared to rpc-style interactions [31], it introduces

affordance coupling [39]. The fact that a client should be able to

Affordance coupling is an

excellent example of the

often overlooked trade-off.

rest’s architectural bene-

fits indeed come at a cost.

complete any interaction through hypermedia puts a heavy constraint

on the server, which cannot be fulfilled on the open Web. Clearly,

we must either abandon the hypermedia constraint and the desirable

architectural properties it induces, or find a way around its apparent

contradiction with the Web’s implementation of hypermedia controls.

The problem arises partly because “hypermedia as the engine

of application state” implicitly assumes that this application state

belongs to a single server. Given the relevant controls and semantic

descriptions, autonomous machine clients can indeed use a single

application in a hypermedia-driven way, as demonstrated before. Yet

on the current Web, it has become impossible to confine application

state to the boundaries of a single application. Instead, we should

As a matter of fact, the

Web is the application.

envision application state on a Web scale, where the affordance

provided by a piece of information is distributed across different

Web applications. This then transforms hypermedia affordance into

a subjective experience, not imposed by the publisher, but created

around the client.

In this chapter, we introduce our solution to the affordance

paradox. First, we provide an overview of related approaches and

their shortcomings. Next, the concept of our approach is detailed,

followed by its architecture and two implementations. The proposed

framework is then evaluated through a user study. We conclude

with a discussion of its advantages and drawbacks and explain how

semantic technologies and hypermedia work together.
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Toward more �exible links

A�ordance mismatches and the involved actors
Before inspecting methods to augment the affordance of hypermedia

representations, we should understand why clients sometimes cannot

complete actions. We identify three distinct possible causes [39]:

1. The affordance is present but unused.

Such a mismatch occurs when a person cannot find a link or when

In contrast to Gibson [19],

who considers all action

possibilities, even those

(seemingly) inaccessible

for a subject, Norman is

focusing on the perceived

affordance [29].

a machine doesn’t understand its semantics.

2. The affordance realizes the action with a different provider.

A client might have a certain action in mind that is afforded by

the representation, yet not in the preferred way.

3. The affordance is not present.

In this case, the action cannot be completed through hypermedia

at all, so the user must fall back to other mechanisms.

All of the above three causes involve the following actor groups:

The publisher offers a representation of a resource and, in the

Web’s linking model, its associated affordance.

For example, a publisher

offers a photograph that

the client wants to crop

with the online image ap-

plication ImageApp, one

of the many providers.

The client consumes this representation and depends on the

affordance therein to perform subsequent actions.

The provider is one of possibly many that offer an action desired

by the user; this actor can be the publisher itself or a third party.

The first of the three causes is the result of the client’s capabilities,

which the publisher can accommodate for with various strategies,

such as usability improvements for humans or semantic descriptions

for machines. The second and third causes concern objectively

missing affordances and therefore highlight those cases that require

dedicated solutions.

The current Web closely

couples the three actors

because of its unidirec-

tional linking model.

For the second cause, one option is to allow an interactive choice

of the action provider. However, such solutions fall short for the

third cause, as their implicit assumption is that, regardless of the

provider, a publisher can foresee all possible actions a user might

want to perform. Therefore, the second cause is actually a corner case

of the third, especially if we consider the client’s desired action the

combination of an intention and a specific provider.

Compromises and trade-

offs might of course prove

necessary. Our goal is to

maximize the affordance

with minimal coupling.

Consequently, we should especially keep the third cause in mind

when looking at possible solutions. For complete flexibility, resources

should be able to afford any action with any provider, regardless of

the specific application scenario the publisher had in mind when

designing the interaction.
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Adaptive hypermedia
The invention of the Web

heralded the end of core

hypermedia research, to

the extent that the Web is

considered the hypertext

system.

Before the Web was invented, fundamental hypertext research was

flourishing [11], yet the rise of a global hypertext system made much

of it obsolete. At least one discipline survived the Web’s revolution:

adaptive hypermedia, the research field of methods and techniques

for adapting hypertext and hypermedia documents to users and their

context [7, 9]. Adaptive hypermedia originated in the context of closed

hypermedia systems, in which the document set is under central con-

trol and hence modifiable according to an individual’s properties.

This is referred to as closed-corpus adaptation, in contrast to adapta-

tion on open corpora such as the Web. Broadly speaking, we differ-

entiate between adaptive presentation, modifying the content to the

user’s characteristics, and adaptive navigation support, changing the

hypermedia controls inside documents. Solutions to the affordance

paradox clearly belong to the latter group of techniques.

Adaptive navigation support systems can be subdivided into

five categories: direct guidance, link ordering, link hiding, link

annotation, and link generation [8]. The last category consists of A simple link annotation

method commonly seen

on the Web is coloring

already visited hyperlinks

to visually signal where

a user has been before [8].

three kinds of approaches: discovery of new links, similarity-based

links, and dynamic recommendations. Our envisioned solution

falls into the third group, but differs from existing solutions in the

following aspects. Whereas adaptation techniques focus on linking

related static documents together, we want to provide controls that

afford actions on the current resource. Furthermore, adaptation

methods are normally characterized by a specific kind of knowledge

representation [9]. Instead, we strive to decouple the information

needed for adaptation from specific representation formats in order

to enable flexible reuse. But most importantly, a generation strategy

that aims to solve the affordance paradox needs to be open-ended on

both sides of the generated controls. This means that any resource

should be able to afford any possible action, thereby allowing adaptive

link generation on open corpora such as the Web.

Open-corpus adaptive hypermedia has been identified as an im-

portant challenge [7], and Semantic Web technologies are considered

a possible solution to help overcome the problem of adaptation on

an open corpus [10]. In particular, ontologies and reasoning were Leading adaptive hyper-

media researchers identi-

fied adaptive Web-based

systems as an important

future direction [12].

deemed important [16], because of the initial interest in connecting

static documents. Examples of ontology-based systems are cohse [44],

which has a static database for linking, and SemWeB [33]. Both of

them can only generate links to related documents.
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Structure-based linking
Openurl was created at

Ghent University in the

late 1990s and has now

been adopted globally.

Identification and retrieval used to be a hard problem before the

invention of the Web. urls have solved this by coupling identification

and location, which enables the Web’s straightforward mechanism of

hyperlinking. However, there are cases when we deliberately want to

separate the two aspects. Bibliographical information is a prominent

example, as many institutions have their own article library. When you

click a link inside an information source towards an article, you want

to consult the copy bought by your institution, not an external version

that might require payment. The Openurl standard [35] started as

an initiative to provide dynamic and open links to bibliographical

items [37]. Even though its broadest implementation pertains to

bibliographical items, it evolved into a generic solution to provide

various services on a specific piece of content [36]. Openurl bears

a strong resemblance to the concepts introduced in this chapter, the

main difference being the technology stack and hence the possibilities

for extension. Using semantic technologies, functionality-based

matching and composition of services becomes possible.

“Documents containing

collections of inbound

and third-party links are

called link databases, or

linkbases.” [15]

The drawbacks of the Web’s choice for a simple linking model

have been studied before: links are static, directional, single-source,

and single-destination [25]. As these shortcomings could not be solved

by modifying the original documents, the idea came to describe the

relations between resources in separate documents called linkbases.

The xml Linking Language (xlink) was created for this purpose [15].

It separates the concept of association from traversal by providing

a structure to indicate the relatedness of several resources, and

another to detail arcs from resources to others. A client can thenThe concept of relating

resources has in a sense

been reflected in rdf.

augment a representation with additional links by consulting such

a linkbase. To identify what exactly should be linked, the xml Pointer

Language (xpointer) allows to indicate specific fragments in xml-

based documents such as certain elements or words [14]. However,

the concept has two inherent issues. First, the use of xpointer restricts

the representations to xml documents, and in general, xpointer is

highly dependent on a specific representation. As such, if the structure

of a representation changes, the method breaks. Second, the linkbase

concept implies that there is a party who is knowledgeable of the

resources involved in the relation (and also of their representations).

Hence, if it wants to connect resources from two applications, it needs

to know both of them, so dynamic action generation on the open

Web remains impossible.
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External interactions through widgets
Since around 2000, the Web started evolving toward an interactive

medium in which visitors contribute to the content of websites.

Particularly the advent of social networks, which encourage users to An abundance of Like and

Tweet buttons follows us

around the Web. They are

in fact affordances created

by third parties, yet the

publisher of information

still has to decide on their

inclusion on a page.

©Facebook / Twitter

exchange various snippets of content with friends and acquaintances,

have turned regular users into independent content creators. Part of

the experience is to share and comment on content from elsewhere

on the Web. To facilitate these activities, social networks offer widgets,

such as Facebook’s Like button [17] or Twitter’s Tweet button [34],

which form a very prominent form of external affordances on today’s

Web. We consider them external because they are commonly included

in html representations as script or iframe tags with a source url

that leads to an external domain, classifying them as embedded

link hypermedia factors [2]. Some of those widgets demonstrate

personalized affordance; for instance, Facebook can personalize its

button with pictures of the user’s friends with links to their profiles.

However, the decision as to what widgets should be included must

still be taken by the information publisher, so the affordance remains

publisher-driven. An additional issue is that different applications

demand different metadata for optimal widget integration, which can

make adding widgets costly [40].

In order to avoid the choice between different widgets and to

vastly simplify their integration, services such as AddThis [1] offer

personalized widgets to different social networking sites. Publishers

only have to include one external script to provide access to many

different interaction providers. Visitors who have an AddThis account

may indicate their preferred sharing applications, which are then

shown on visited pages that include the AddThis code. While solving

the issue of interfacing to several providers, the offered actions still

remain limited to what AddThis supports. Furthermore, the service

doesn’t exploit specific content characteristics, as all offered actions

are very generic and mostly restricted to social network activities.

The discussion surround-

ing social networks and

privacy is frequently fea-

tured in the media. An all

too obtrusive integration

of many social widgets in

websites raises questions

on their desirability.

An undesired side-effect in the case of social network widgets

is that users’ privacy can be compromised. When share buttons

are clicked, the social networking site of course has evidence of

what content a user interacts with, which can be used for targeted

advertising. Even more concerning is that users are already tracked

by merely visiting a website with a social widget if they are logged

in to their account [32], precisely because the widget script comes

from an external source. Personalized affordance should not imply

the exposure of one’s personal preferences to third parties.

https://developers.facebook.com/docs/reference/plugins/like/
https://dev.twitter.com/docs/tweet-button
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Web Intents
The Web Intents proposal

originated from Google.

In response, Mozilla has

coined Web Activities [26],

specifying the delegation

of actions, regardless of

discovery or protocol.

A technology that allows specific actions to be embedded in websites

is Web Intents [5, 24], which aim to offer a Web version of the Intents

system found on Android mobile devices. There, Intents are defined

as “messages that allow Android components to request functionality

from other components” [3]. With Web Intents, Web applications

can declaratively specify their intention to offer a certain action, and

websites can indicate they afford this action. For example, social

media sites can state they enable the action “share”, and a photo

website can offer their users to share pictures. When users initiate

the “share” action on the website, the Web Intents protocol then

allows them to share the photo through their preferred supporting

application. In contrast to AddThis, more content-specific actions

become possible, such as editing, viewing, subscribing, and saving.

Although Web Intents’ goals are similar to ours, there’s a crucial

difference in their architecture that severely limits their applicability.

The benefit of Web Intents is that they are scalable in the numberWeb Intents address the

choice of a provider, but

not users’ preference for

a certain action.

of action providers—without Web Intents, publishers have to decide

which action providers they support. For instance, the publisher

of the photo website would have to decide which specific sharing

applications it would offer its users. With Web Intents, users can share

photos through their preferred application, without the publisher

having to offer a link to it. A major drawback of Web Intents is that

they do not scale in the number of actions. Although the OpenIntents

initiative allows to define custom actions [30], a publisher still has to

decide which actions to include. In the photo website example, the

publisher might opt to include a “share” action, but that is not useful

if users want to order a poster print of a picture, download it to their

tablet, or edit it in their favorite image application. Due to the design

of Web Intents, there is no way to infer other possible actions on the

current resource based on the publisher’s selection.

While this strategy works on a platform such as Android, where the

set of possible actions is limited to those offered by the device, such

a closed-world assumption cannot hold on a Web scale. Summarizing,

we can say that Web Intents do not solve the core issue: a publisher

still has to determine what affordances a user might need. The

Despite enthusiasm from

its users and developers,

Web Intents support has

been removed from the

Chrome browser.

problem thus shifts from deciding which action providers to support

to deciding which actions to support. Therefore, Web Intents only

offer personalized affordance to a limited extent—they don’t offer

a full solution to the affordance paradox, as the actions selected by

publishers might not be those needed or expected by users.
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Distributed a�ordance

Concept
Our solution to the affordance paradox is inspired by the typical

user behavior when desired affordance is missing in the hypermedia

representation. For example, suppose a user wants to edit a photo on

a website through a specific online application. Unaware of the user’s

intentions, the publisher didn’t supply a hypermedia control for this.

Lacking an actual control, the user completes the interaction in an While users can construct

actions manually, simply

clicking through takes far

less effort and is how the

Web is supposed to work.

alternative way. One coping strategy would be to copy the image’s url,

using the browser’s address bar to navigate to the application, and

paste the url into a designated control there. This common scenario

is possible because the user on the one hand knows the application

supports photo editing, and on the other hand recognizes the current

object as a photograph.

The above example illustrates that a lack of affordance to execute

the action does not imply a lack of information. It does mean that the

affordance for this action does not reside in the representation itself,

but must rather be crafted manually by combining non-actionable

information in that representation and out-of-band knowledge about

the action provider. To automate this process, the representation

should be machine-interpretable, and the provider’s action should be

described in a machine-interpretable way. Based on a match between

a resource’s content and the descriptions of actions, affordances to

those actions can be generated.

Analogous to how human

understanding of a repre-

sentation allows to find

actions, semantic annota-

tions guide machines to

make content actionable

in a personalized way.

Distributed affordance is the concept of automatically generating

hypermedia controls to realize actions of the client’s interest, based

on semantic information about resources inside hypermedia repre-

sentations [41]. Publishers should provide semantic annotations in

representations, and action providers’ services should be described

semantically, so an automated client is able to infer which actions

are applicable on the current resource. This allows the generation of

affordances toward these actions, which are then intertwined with the

representation. To account for the preferences of individual clients,

the matching should happen in a personalized way.

This method is distributed because the affordance originates from

distributed sources, without requiring a central linkbase to connect

documents and actions. Support for new actions and providers

can be added without changing any components, as the decision

whether an action matches a resource happens locally. Some form of

understanding of the representation is required, but the annotations

are not specific to distributed affordance.
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Process
The task of a distributed affordance platform is to generate person-

alized hypermedia controls for the client. To this end, it needs to

address the following subproblems:

extracting non-actionable information from the representation;

organizing knowledge about actions offered by providers;

capturing a client’s action preferences;

combining non-actionable information and provider-specific

action knowledge into possible actions;

integrating affordance into the original representation.

All of the above should happen in a scalable way. Before the process

can start, the preconditions below must be satisfied:

The representation contains some form of semantic annotations.

Either the representation is structured in a machine-interpretable

format such as rdf (if the client is a machine), or either it contains

semantic markup (such as html with rdfa).

In case annotations are

missing, they could be

extracted using named-

entity recognition [28].

Provider actions are described semantically in a functional Web

api description format (such as restdesc). These descriptions can

be created by the provider or by third parties.

The client has a collection of such descriptions that correspond to

preferred action providers. For instance, they could be obtained

by a process similar to bookmarking; instead of a hyperlink to

a provider’s page, the action description is stored.

Automated affordance creation happens through the steps below:

In all steps, the platform

only needs access to local

knowledge. This means

that the affordance gen-

eration happens in a fully

distributed way.

1. After the client has received the representation from the publisher,

it is inspected by the distributed affordance platform.

2. The platform extracts semantic entities from the representation,

using format-specific parsers (rdf, rdfa, Microdata, . . . ) and

converts them to triples. This allows to maintain the semantic

information during the entire process.

3. Using Web api matching, descriptions that can act upon the

extracted entities are selected.

4. Matching descriptions are instantiated with the specific entities

found in the representation, thereby becoming a concrete action

instead of an abstract description.

5. Controls toward the instantiated actions are created and inter-

leaved with the representation.

After this process, the client has access to the augmented represen-

tation and can directly perform its preferred actions.
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Architecture
The components of the platform’s architecture can be grouped in five

functional units, which are discussed below.

ResourceExtractor

Representation

«use»

RepresentationEnricher
«use»

Resource
«instantiate»

APIDescription APICatalog
«instantiate»

ActionGeneratorAction
«instantiate»

«use»

PreferenceManager

Representations can con-

tain resource descriptions

of people, movies, books,

images, addresses, . . .

Information extraction A ResourceExtractor extracts rdf triples

from a representation. ResourceExtractor itself is only an interface,

as several annotations are possible. For textual representations, ex-

tractors could for instance use named-entity recognition techniques.

Action provider knowledge Functional Web api descriptions are

maintained by one or multiple APICatalog implementations, each

of which supports a specific method. The information in these

descriptions should be structured in such a way that, given certain

resource properties, it is simple to decide which apis support actions

on that resource.

A basic preference option

is bookmarking; other im-

plementations could use

social recommendation.

User preferences A PreferenceManager keeps track of a user’s

preferences and thereby acts as a kind of filter on the APICatalog,

typically selecting only certain apis and sorting them according to

appropriateness for the user. The role of the PreferenceManager can

be taken care of by the APICatalog, which then only includes api

descriptions that match the user’s preferences.

Each of the action gener-

ator implementations is

tied to a specific Web api

description method.

Action generation Based on a user’s preferences, ActionGenerator

components instantiate possible actions, which are the application

of a certain api on a specific set of resources. Thereby, every action is

associated with one or more resources inside the representation.

Affordance integration Finally, RepresentationEnricher imple-

mentations add affordances for the generated possible actions to

a hypermedia representation that is sent to the user. Through these

affordances, clients can choose and execute desired actions directly.

Implementations depend on the media type of the desired represen-

tation, as they need to augment its affordance in a specific way.
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Action generation
In order to generate actions, we must match and instantiate an api

description with extracted resources. Different implementations

are possible; we will demonstrate the mechanism with restdesc

descriptions. Recall from Chapter 4 that restdesc also offers a non-

hypermedia-oriented way to describe Web apis:

The antecedent does not

contain a link (because

there is none), but rather

captures a resource, for

which a possible action is

described.

{ ?book dbpedia-owl:isbn ?isbn. }

=>

{

_:request http:methodName "GET";

http:requestURI←-
("http://books.org/" ?isbn "/cover");

http:resp [ http:body _:cover ].

?book dbpedia-owl:thumbnail _:cover.

}.

The isbn number could

be expressed in different

vocabularies; ontologies

can provide the mapping.

In this case, starting from a book’s isbn number, the description

explains how to obtain its thumbnail image. Note how this can be any

book resource from any application anywhere on the Web, as long

as we know its isbn number. For instance, suppose we extract the

following triple from a representation:

The extraction result is in-

dependent of the original

representation format.

<#catcher> a dbpedia:Book;

foaf:name "The Catcher in the Rye"@en;

dbpedia-owl:isbn "978-0316769488".

Then any n3 reasoner can automatically match and instantiate the

Web api description above as:

_:request1 http:methodName "GET";

http:requestURI←-
("http://books.org/" "978-0316769488" "/cover");

http:resp [ http:body _:cover1 ].

<#catcher> dbpedia-owl:thumbnail _:cover1.

Thus the book description affords a GET request to http://books.org/

978-0316769488/cover to obtain the book cover. This allows the

To generate user-friendly

links, we could add meta-

data to the api description,

such as an action title like

“Buy this book”.

generation of a hyperlink toward the cover, which the user can activate

if desired. The principle works the same for any kind of api call, such

as buying the book or its e-book version, sharing it on social networks,

finding reviews, . . . The possibilities are as endless as the number

of descriptions, precisely because a machine can interpret that the

current resource is a book, and that the action under consideration

is possible on books.

http://books.org/978-0316769488/cover
http://books.org/978-0316769488/cover
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Implementations
Because the method only needs local knowledge to generate affor-

dance, we can choose between two implementation strategies [43].

On the one hand, we have the server-based approach, as necessarily

followed by most adaptive hypermedia solutions and widgets such

as AddThis. On the other hand, we can take a client-based approach

like Web Intents, while maintaining full adaptation flexibility.

Implementations of the server-based approach can be considered

affordance as a service. In this case, the publisher explicitly indicates

that it wants to provide distributed affordance for a client. For

instance, an html document could contain the following:

<div id="book" itemscope itemtype="http://schema.org/Book">

<span itemprop="name">The Catcher in the Rye</span>

written by <a href="/authors/salinger/" itemprop="author">J.D. Salinger</a>

</div>

<div class="affordances" data-for="book"></div>

<script src="http://shim.distributedaffordance.org/"></script>

Note the semantic markup with Microdata, which can serve other

purposes besides generating affordance. In addition, the publisher

has placed a div container with the marker class “affordances”, and

the “book” identifier that points to the information source. This

The central application

distributedaffordance.org

acts as a broker between

different platform imple-

mentations from which

the user can then choose.

In the example scenario,

only vyperlinks.org needs

to know about the user’s

preferences.

container is a placeholder for generated affordance. Using a so-called

shim script, the user’s personalized affordances are generated. We

have chosen for http://distributedaffordance.org/ as a coordinating

hub that can delegate to different platforms. As an example platform,

we created http://vyperlinks.org/. The idea is that the user registers for

an account with a platform of choice, which then inserts affordance

to preferred actions inside the affordances container.

The screenshot below shows an example of affordances generated

by vyperlinks.org on a page that contains information about a book.

a resource with
semantic annotations

automatically generated, personalized hyperlinks acting on that speci�c resource

http://distributedaffordance.org/
http://vyperlinks.org/
http://distributedaffordance.org/
http://vyperlinks.org/
http://rubenverborgh.github.io/Distributed-Affordance-Examples/2013/basic/book.html
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The problem of affordance as a service is that the information

publisher must explicitly ask for its support. The other option is to add

The shim script verifies

whether the client offers

affordance generation be-

fore deciding to activate

the server-side version.

client-based distributed affordance by extending the client software,

for instance through a browser plugin. The benefit is that any page

on the Web can be adapted, regardless of whether the publisher has

foreseen an affordance placeholder. The drawback is that users need

to install the extension to experience the generated affordances.

As it might be difficult to determine where the affordances should

be placed on any given webpage, generated links can be offered in

a context-sensitive way, for instance, in a popup menu or sidebar.

The screenshot below shows a version of an extension for the Chrome

browser. Every page that contains rdfa or Microdata markup is

equipped with matching actions that can be triggered on demand.

extension menu with
generated a�ordance for
the activated resource

A potential issue with this implementation is that the links are not

intertwined with the content (as would be the case on webpages).

When the user hovers over an item, the extension highlights the related

links. Further usability testing should reveal whether sidebar-based

hyperlinks are sufficient for day-to-day use.

A website can advertise

it affords certain actions,

which a distributed affor-

dance platform can apply

to any resource; similar to

Web Intents, but without

central coordination.

New actions can be added to the extension through the same

affordance mechanism: a webpage or document describes a Web api,

which is picked up by the extension. The last is then able to discover

this api description, and can suggest to remember it for the user.

For example, this could enable an online book store to offer the

“buy this book” action. If users like purchasing through this store,

they can add that action to their preferences for direct future use.
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User study

This study was conducted

together with the team of

Peter Mechant at mict.

While the properties of the platform have been analyzed during the

architectural discussion, and the feasibility is demonstrated by the

implementations, we still need to validate whether the generated links

positively influence people’s browsing behavior. We have conducted

a user study to investigate the usage of links, assuming situations

wherein people have a certain need that matches a previously created

user profile. When designing the study, we needed to choose between

a quantitative or a qualitative approach. At first, we were inclined

to set up a quantitative experiment to obtain statistical data on

users’ efficiency increase. However, attempts to measure the time

Participants would spend

remarkably more time on

tasks they seemed to like,

regardless of whether the

platform was activated.

spent performing a task in early experiment trials revealed the

timing variance for individuals on different tasks was far too high

for generalizable conclusions. Instead, we focused on qualitative

parameters in order to learn from people’s experiences by performing

an in-depth experiment with a smaller group.

Setup
Following Degler [13], who evaluated methods for improving Semantic

Web interaction design, we performed usability tests and interviews

with sixteen users in their home or professional setting. The aim of

the study was to evaluate the suitability of the distributed affordance

platform for “ordinary” Internet users, and to explore how users

experience and apply the affordances of the platform.

The exploratory study was designed as a repeated-measures two-

factorial quasi-experiment with two levels for each factor, meaning

participants were involved in every condition or factor of the re-

search [20]. The first factor was the platform itself, where participants

completed simple tasks with or without the platform enabled. The

second factor was briefed or non-briefed, where the tasks were pre-

sented to Internet users who were briefed on distributed affordance

and to Internet users who were not. In order to collect consistent

data from each participant, we programmed a proxy server in such

a way that for each scenario, the platform was activated in 2 out of

4 tasks the participants had to complete.

The complete interview

setup and questions are

detailed in a complemen-

tary appendix [42].

The study employed a multimethod approach [27] combining

three research and analysis methodologies: observation, survey, and

interview. These methods are complementary, yet offer different

forms of data. We were particularly interested in the use and usability

of distributed affordance, in observing which of the navigation options

subjects used, and in gathering information about overall perceived

usefulness and enjoyment of the platform.
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Participants
Sixteen Web users participated and were subjected to the quasi-

experiment in their home or professional setting. All participants

were volunteers and received a gift voucher for taking part in the

research. We briefly screened the participants beforehand to ensureWe were curious for the

difference between low-

and high-skilled users, as

we assumed that the latter

group would have better

coping strategies when

the affordance is missing.

that users with Web skills varying from low to high were included.

All participants were observed while completing four simple tasks

online. Afterwards, they were interviewed and asked to complete

an online survey.

The participants’ mean age was 35.8 years (σ = 15.2), and 56%

was female. On average, the participants have been using the Internet

for more than 10 years. Among them, 13 owned a desktop computer

and 14 a laptop, while 12 owned a smartphone and 7 a tablet. Chrome

was the preferred browser of 9 people, followed by Internet Explorer

(4 people) and Firefox (3 people).

Material
For each participant, we randomly selected two out of four tasks for

which the platform would provide enrichment; for the remaining two

tasks, we deactivated the platform. We used a proxy server to im-

plement distributed affordance hyperlinks into the chosen websites,

as not all of the websites provided the semantic annotations neces-

sary for the regular platform. As these hyperlinks were embeddedWe would actively listen

whether the participants

noted the presence of the

generated links (although

they could not recognize

them as such).

unobtrusively in the layout of the website, clicking the suggested links

was intuitive, but not enforced. Furthermore, the participants had

no explicit means of noticing whether the platform was active or not.

They were allowed to use their browser of choice in order to replicate

their usual browsing habits [38].

We asked participants to complete the following tasks in a varying

order on a portable computer:

book task – starting from a book review site, buy a book of choice;

restaurant task – starting from a restaurant review site, find

directions to a restaurant of choice;

cinema task – starting from a cinema website, find the age of an

actress in a specific movie;

sharing task – starting from a cartoonist website, share a cartoon

of choice on Facebook or Twitter.

These tasks were chosen to reflect common activities on the Web

that many of the participants could relate to. For the sharing tasks,

social media profiles were created as to not oblige participants to

have and use a personal account.
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Methodology
In the first phase of the study, we conducted semi-structured, in-depth

interviews to gain insights in the browsing behavior of the participants.

In addition to questions on media ownership, knowledge of Internet

browsers, and Internet use, we implemented questions derived from

media literacy research in order to assess the participants’ Web skills

in detail [13, 21].

The second phase of the study consisted of the participants—half

of them briefed on the distributed affordance platform—executing the

four tasks described above on a laptop in their home or professional

environment, while a researcher observed. During the completion

The Think Aloud Protocol

was particularly helpful to

understand participants’

reasoning regarding why

certain links were clicked.

of these tasks, we used the Think Aloud Protocol [23], which involves

participants explicitly stating their thoughts as they are performing

the described tasks. Participants were encouraged to say whatever

they are looking at, thinking, doing, and feeling as they go about their

tasks. More specifically, by applying the Think Aloud Protocol, we

tried to gain spontaneous user feedback on the platform.

In a third and final phase, a short debriefing interview was held

to gauge the participants’ requirements, expectations, experiences,

perceived advantages and disadvantages of the platform. Non-briefed

participants were informed first on the distributed affordance concept.

All participants were asked if they could distinguish the specific tasks

for which the platform was activated. Next, we confronted them

with the presence of the platform in each task, asking them what

they would have done if the link was not suggested. To conclude

the interview, the platform was evaluated using a short survey that

implements the System Usability Scale [4, 6] as well as the Mean

Opinion Score approach [22].

Results and discussion
Almost all participants, briefed or not, followed the links suggested

by the platform as those enabled them to achieve and complete the

tasks faster and more efficiently. Most participants expressed the

feeling that Web links should be adjusted to their individual needs

and were satisfied to find these direct links present on the websites

in the distributed affordance-enabled tasks. When the platform was

not activated for a given task, various participants spontaneously

indicated or complained about the lack of direct hyperlinks.

While observing the participants executing the tasks, we noticed

differences in self-efficacy and self-confidence between participants

with high and low Web skills. However, these differences were not
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reflected in the interviews or answers to the survey and neither in

participants’ appreciation of the platform.

If the platform was not activated, almost all participants used

Google when performing the restaurant, cinema, and book task.

When performing the sharing task, some participants copied and

pasted the image url; others downloaded the image to the computer

and subsequently uploaded it to the Facebook/Twitter profile page.

Especially for users without prior social network experience, the directA participant exclaimed

she couldn’t complete the

sharing task because she

never used Twitter, only

to then find the direct link

and still succeed.

link was a determining factor for success and therefore improved the

Web browsing experience. According to the participants, the main

added value of the platform is that it eliminates unnecessary steps in

the act of browsing. This perceived advantage was especially stressed

in the context of smartphones and mobile devices. Mark, a 29 year

old software analyst, told us:

Of course, I clearly prefer distributed affordance, because it

eliminates a number of extra steps [. . .]. I always want to find

things fast and it becomes very annoying if you need to take

a lot of steps to reach your goal. On a fixed device, you have

lots of screen space and input options, but on a smartphone,

your screen is a lot smaller and the keyboard is a lot clumsier.

It sometimes happened that distributed affordance links were present

for the completion of the task, but they were not followed—the

participant felt not triggered to click the link because he or she didn’t

notice it. In these cases, the platform misses its target. After all, the

hyperlink affordances of the platform entail a relationship between

an object on the Web and the intentions, perceptions, and capabilities

of a person—and affordances point to both the environment and the

observer [19]. In this context, participants mentioned that generated

links could be embedded on designated spaces in the website layout

or that they could be emphasized with special formatting to act as

a reference point for the user.

Participants indicated that they did not perceive or experience

the suggested links as annoying or cumbersome (in contrast to Web

advertising links). However, some other concerns were voiced. OneThe demand for privacy

can be met by the client-

side implementation, as

all preferences would be

stored locally.

concern raised by almost half of the participants was privacy, and

this was related to the private or personal information users need

to disclose in order to experience the personalized character of the

platform. Another concern raised during the interviews was on

potential constraints the platform can impose. Concretely, because

the platform eliminates the different steps that need to be executed
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toward the completion of the tasks in a regular browsing context,

the potential of accidentally finding new or unrelated information

during this searching process is lost when using distributed affordance.

Also, four respondents expressed concerns that, for the purchase of If a user’s profile contains

several providers, direct

links to different shopping

sites can actually appear;

a “lowest price” service

can even be one of them.

Therefore, buying items

at the best price would be

a possible feature.

consumer products, the platform could be exploited by commercial

organizations. In the words of Jenna, a 25 year old city official:

No, I don’t think I would use this system to shop or buy

products, shoes, or books for example. . . I would rather prefer

to first have a look at various shopping sites, to compare prices

and user comments. [. . .] With this system, I would feel limited

and I might pay too much for my books.

A minority of three participants stated that the platform might

prove to be “too much” and might give rise to an information overload

for the Internet user. In this context, Piet, a 59 year old civil servant,

told us the following:

Sometimes I do not need or want additional hyperlinks on the

webpage because I know the solution or the appropriate link

myself. In those cases, the hyperlinks provided by the platform

become ballast.

Although executing the task through the generated links might still

be faster, finding the right link among many others might become

difficult. Therefore, it is crucial the links are highly personalized

and specific. An important future research task should thus be

to investigate how preferences can be determined and applied to

concrete situations.

0 0
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2

1 2 3 4 5

The Mean Opinion Score’s

distribution reveals that

participants appreciate

the platform’s functions.

Despite these concerns, the overall evaluation and the experiences

and perceived advantages of the sixteen participants were quite

positive and pointed to the platform as a functional system that is

perceived as an enrichment for the Internet user (especially for those

who want to browse faster or more efficiently). This is also reflected in

the survey results: almost all of the participants rated their experience

with the platform as good, as evidenced by a Mean Opinion Score of

3.875 (σ= 0.62) on a scale of 1 (poor) to 5 (excellent). The platform’s

score on the System Usability Scale, a scale for assessing system

usability ranging from 0 to 100, was very high to excellent with an

average of 84. This allows us to conclude that distributed affordance

has the intended effect on users of the platform. Furthermore, the

gained feedback will guide future developments.
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Advantages and drawbacks

As a final step, we will provide an overview of the advantages and draw-

backs of the proposed distributed affordance platform. Regarding

The strongest feature of

distributed affordance is

its focus on open corpus

adaptive navigation gen-

eration, which is realized

through semantics.

the functional aspect, the platform offers the benefit of being able to

combine any resource with any possible action. This contrasts with

traditional adaptive hypermedia methods, which usually consider

“consulting a related document” as the only action. Similarly, social

widgets and related interfaces focus on variants of the “share” action,

which applies to any resource type. Web Intents goes further by sup-

porting an action set that allows extension; however, only actions

explicitly indicated by the information publisher can be activated on

any given resource. Because the matching for distributed affordance

is based on the semantic interpretation of resources and actions, new

action types can be supported directly.

On the architectural level, distributed affordance has the advan-

tage that it does not require an omniscient server, as is the case with

most open-corpus adaptive hypermedia methods, which generally

use proxy servers. Since distribute affordance can run locally, it scales

with the number of clients, without putting extra strain on any server.

It shares this benefit with widgets and Web Intents.

The major drawback of the platform is its dependency on the

same feature that gives it its power: semantic technologies. In all

fairness, the potential benefits of semantic annotations have not

sufficiently convinced Web publishers yet. Therefore, relying on

Before entity extraction

methods can replace se-

mantic annotations, their

accuracy must improve.

the presence of these annotations can be troublesome. In that

regard, a crucial decision for distributed affordance has been to rely

on existing markup techniques instead of inventing a proprietary

mechanism. We trust that the other features brought by annotations,

such as better searchability and interaction, will provide the necessary

incentives to provide some form of markup in the future [40].

The need for semantic Web api descriptions is probably the

most pressing: as discussed in Chapter 4, many approaches exist—

and we introduced another one, striving to make something simple

that is sufficiently expressive for automated agents. However, in

general, semantic descriptions of Web api functionality are virtually

non-existent. Could the incentive of potentially being used by any

customer on any site be sufficient? And if so, what description format

should be chosen? Pragmatic and lightweight approaches should

be the best candidates: sufficiently straightforward to allow rapid

integration, while still providing the means for dynamic discovery

in various contexts. In the meantime, automated techniques for

An equivalent of named-

entity extraction, target-

ing actions instead, could

prove a viable direction. capturing the semantics of Web apis could be explored.
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The Web provides affordance on an unforeseen scale: any document can

link to any other, regardless of where in the world the latter is located.

Yet, the Web’s publisher-driven linking model increasingly falls short as

the need grows to act on resources through different Web applications

in ways that the information publisher could not foresee. The proposed

distributed affordance platform offers a linking strategy based on

machine interpretation of a resource and its match to possible actions.

The automatic generation of personalized, relevant affordances on the

open corpus of the Web thereby becomes possible, but it depends on

the availability—or extraction—of semantic annotations.
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Chapter 7

Serendipity
Tri martolod yaouank i vonet da veajiñ
E vonet da veajiñ, gê!
Gant ’n avel bet kaset beteg an Douar Nevez

—Alan Stivell, Tri Martolod (1972)

The Web’s linking of information has alluring effects on the curious:

starting from a page, we can click through to anywhere in the world.

Many people can recall occurrences of online serendipity—when

they coincidentally found something interesting when looking for

something completely different. Yet, not everything on the Web

works this way. Especially for machine clients, who are currently

bound to rigid interaction patterns, using the Web in a flexible and

dynamic way remains difficult. This chapter therefore explores the

possibilities to achieve serendipitous applications.

Notoriously one of the hardest words to translate, “serendipity”

Serendipity: the faculty

or phenomenon of find-

ing valuable or agreeable

things not sought for.

©Merriam-Webster

stems from the ancient story “The Three Princes of Serendip”. The

princes get involved in spectacular adventures, go in the direction of

one goal only to arrive at another, but ultimately, everything always

ends well. Serendipity seems to imply chance and luck—in particular,

it appears mutually exclusive to planning or deliberate design. From

that viewpoint, the following guidance [11] might come as a surprise:

Engineer for serendipity. — Roy Thomas Fielding

Calling serendipity an engineerable property implies some systems

are inherently more fit for it than others [30]. To a certain extent, the
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Web itself was engineered for serendipity. The fact that links can point

from one resource to any other, regardless of the server the latter is

located on, accounts for many fortunate encounters that wouldn’t

be possible in systems with centralized linkbases. Yet at the same

time, publisher-driven hyperlink creation deprives us from following

connections that would have been created by third parties, which

could bring new viewpoints to existing content [7].

In the previous chapter, we used distributed affordance to bring

back interactions by providing controls toward preferred actions.

Whether we call this serendipity depends on the interpretation of

the word: is it coincidentally finding the things you want, or rather

discovering those things you didn’t know you wanted? During the

So far, we only looked at

implementations of dis-

tributed affordance with

one single user’s choices.

Preference exchange in

social graphs can lead to

truly serendipitous links.

user study we performed, one participant was concerned that the

platform, through its attempt to add desired links, would actually

remove the need to look around and thus reduce the occasions for

discovering new things. This indicates that the way toward a goal

might be as important as the goal itself. Fortunately, there are various

ways to support both interpretations of serendipity. For instance,

actions could be suggested using recommender systems, based on

other users of the system with a similar profile.

In this chapter, we will focus on bringing serendipity to Web

applications and machine clients of those applications. As discussed

The Hydra console shows

a rare example of a fully

generic, non-html hyper-

media client. It is non-

autonomous, providing

a user interface over any

rest api, given certain an-

notations [20].

before, many clients today are preprogrammed for a specific task,

making it impossible for them to engage in spontaneous interactions.

They can only perform the specific task they were designed for, and

as a result, we end up with many applications for many tasks, as

opposed to the single Web browser that allows us to manually solve

any task. The genericness of rest’s uniform interface lets different

clients interact with different applications. Still, we almost always

encounter single-purpose clients in practice—none of which can be

reused in similar but slightly different situations.

Serendipity can be supported in hypermedia-driven cases if the

client indeed tries to discover the possibilities of each representation

sent by the server. This implies a degree of freedom in the representa-

tion’s format, while still allowing to get a structured message across.

Hypermedia can be the engine of application state to a certain extent,Although it might seem

paradoxical, planning for

serendipity can lead to

flexible reuse [30].

but could hypermedia also be sufficient as the engine of serendipity?

This chapter will outline a strategic mindset we should adopt if we

want to design applications that can collaborate in more flexible ways

than currently possible. We start by advocating the combination of

hypermedia and semantic technologies, followed by a discussion with

examples of what serendipitous Web applications might look like.
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Semantic hypermedia

Semantic media types
Well-designed contracts

allow for an independent

evolution of clients and

servers.

Contracts are vital in distributed systems, as they determine the struc-

ture of interactions between different parties. In rest systems, the

contract is partially fixed by the uniform interface, which stipulates

resources as the unit of information, together with the rules on how

resource manipulation should happen [30]. The other part is defined

by the used media types, which detail the formats, processing model,

and hypermedia controls [31]. In fact, rest api design should focus

on defining media types and/or extending existing ones [12].

As outlined in Chapter 3, there is an inherent trade-off between

specificity and reusability: more specific media types carry more

detailed semantics, at the cost of being less portable across situations.

Therefore, the recommended strategy is to choose the media type with

the least expressivity that still fulfills the task at hand. In increasing

order of expressivity, we have generic hypermedia types, customizable

patterns, and domain-specific solutions [25].

Another issue with generic hypermedia types is that api publishers

often treat them as domain-specific types, but label them otherwise.

For instance, the publisher of a certain api might label all of its

In nearly all use cases,

application/json would

be too vague: many apis

offer resources that need

more accurate typing.

responses as application/json, the standard json media type, even

though they follow a structure with far stronger constraints than json.

While technically correct—and helpful to a parser—this designation

does not tell anything about the document’s interpretation. Instead,

it is highly likely that this interpretation will be communicated in

an out-of-band way, so that clients need to know beforehand how

to employ the information in a response. For machine clients, this

necessitates a preprogrammed interpretation.

However, it is a fallacy that media types eliminate out-of-band

information. For instance, that same api could choose instead to

Suffixes such as +json can

indicate the more generic

media type to which rep-

resentations conform [14].

The vnd prefix indicates

a vendor-specific type [13].

return responses in an application/vnd.myformat+jsonmedia type,

which would provide an interpretation specific to the application.

While this resolves the situation in which a client receives a resource

in a media type it can parse but not interpret, it doesn’t change the

fact that the client must be preprogrammed for this interpretation.

After all, media types are usually described in human-readable form.

We thus arrive at the paradoxical situation that specific media types

are created precisely to eliminate out-of-band information during the

interaction, yet the interpretation of the media type itself remains

out-of-band. This seriously hinders autonomous agents, which can

parse those representations, but not grasp their semantics.
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One of the four constraints of the rest uniform interface is the use

of self-descriptive messages [10]. As we explained in Chapter 2, this

reflects in http’s limited method set and standardized metadata fields.

We could also consider standardized media types as part of this, as

their interpretation is widespread. Domain-specific media types

can hardly be called self-descriptive because of the required out-of-

band information. However, if we embed the interpretation into theMedia types and their cor-

responding identifier can

be registered at the Inter-

net Assigned Numbers Au-

thority (www.iana.org).

representation of a resource, then the self-descriptiveness constraint

becomes fulfilled. With human-targeted media types such as html,

our understanding of natural language makes representations self-

descriptive. For machine clients, we can rely on semantic media types

such as rdf variants, which allow for automated interpretation.

We define semantic hypermedia as the subclass of rest apis

that send and accept machine-interpretable representations using

semantic media types (possibly in addition to others). Assuming

a client that understands the generic base type (such as Turtle, rdfa,

or rdf/xml) and a server that applies the Linked Data principles [2],

the response can be interpreted without relying on out-of-band

knowledge. However, we should be careful with the significance of

this statement. While “interpretation” of course doesn’t mean that

autonomous agents suddenly obtain capabilities comparable to those

of humans, it does lead to the following:

xml provides some level

of structural extensibility

through namespaces.

Representations can describe resources at any desired level of

detail. In contrast to structure-based formats such as json, where

consumers expect specific keys and values organized in a rather

strict way, rdf is entirely resource-centric and triples can detail

any (sub-)resource as desired. Clients and servers can simply

ignore triples irrelevant to their current task.

Semantic media types

can help realize Postel’s

law: “be conservative in

what you send, be liberal

in what you accept”.

Servers can allow their clients a flexible choice of vocabulary, as

reasoning enables inferring certain properties from others. For

instance, clients could indicate a resource’s label with rdfs:label,

dc:title, foaf:name or others; the server can infer equivalence.

To facilitate interpretation, both parties could express facts in

several vocabularies, as unneeded triples can be ignored anyway.

“Interpretation” is again

based on the matching

to known things, the core

idea behind Linked Data.

Agents that receive instructions in a semantic way, like in the

process detailed in Chapter 4, can relate a server’s response to

the query without needing application domain knowledge. For

instance, if the query requests a dbpedia-owl:Image with certain

properties, the agent can verify whether the server’s response

meets the criteria, without requiring a built-in notion of images.

Semantic hypermedia thus enables a higher autonomy of clients.

http://www.iana.org/
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We will contrast the approaches through an example. Suppose The differences between

various non-semantic and

semantic media types are

independent of a specific

representation design.

an api offers entity lookup: given properties about a topic, it tries to

find a unique identifier. We could create a specific media type for this,

based on json, that we name application/vnd.rv.entities+json.

An example query document could be represented as:

{ "entities": [

{ "name": "Pete Townshend", "type": "person" },

{ "name": "Terry Riley", "type": "person" } ] }

The server could then represent a response as:

{ "entities": [

{ "name": "Pete Townshend", "id": "dbpedia:Pete_Townshend" },

{ "name": "Terry Riley", "id": "freebase:07qf7" } ] }

To understand these fragments, clients need to know the meaning of

entities, name, type, and id, as well as their structure. Furthermore,

this knowledge is not transferable to other media types, which might

even have different interpretations for those fields.

Compare this to a possible rdf representation of the query:

_:p1 a foaf:Person; rdfs:label "Pete Townshend".

_:p2 a foaf:Person; dc:title "Terry Riley";

schema:birthDate "1935-06-24"^^xsd:date.

Note how the knowledge needed for interpretation is independent

of this specific media type: rdfs:label and schema:birthDate have

a universal meaning. Furthermore, if the meaning would be unknown,

a client can look it up through its property url and relate it to known

concepts. Note also how different properties indicate labels, and how To add new properties in

structure-based formats,

the field name would have

to be agreed on first.

an extra property birthDate was supplied to allow disambiguation.

Maybe the server doesn’t support it at the moment, but when it does,

the property will be recognized. The server could respond with:

dbpedia:Pete_Townshend rdfs:label "Pete Townshend".

freebase:07qf7 rdfs:label "Terry Riley";

dc:title "Terry Riley".

Again, this can be interpreted by any client that can parse Turtle. Note

that the server can specify the label in multiple vocabularies.

The json-ld media type

provides evolvable json

representations by giving

them rdf semantics [22].

This illustrates how semantic formats make representations self-

descriptive, removing the need for specific media types. Conveniently,

the transition to semantic hypermedia does not have to be disruptive:

content-negotiation allows the client to request either a json- or an

rdf-based representation of the resource.
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The remaining question is how clients can construct representa-

tions in absence of the rigid structure imposed by a specific media

type. While restdesc explains the functionality of an api by relating

its preconditions to its postconditions, it purposely does not detail

the representation of the exchanged messages. This allows clients toNon-hypermedia formats

can still allow hypermedia-

driven navigation through

Link headers in the http

response [24].

engage in content negotiation at runtime and to deal with non-textual

content such as images and videos. In the previous example, restdesc

could explain that properties of entities lead to identifiers of those

entities, but it would not detail the format of either message. While

a client can interpret a server’s response automatically because of the

embedded semantics, the restdesc description doesn’t detail how the

entities should be sent to the server. In this example, the rdf format is

so simple it could be “guessed”: it simply describes the available entity

properties. In the general case, more possibilities exist and we need

to understand the server’s preferences without a specific media type.

One solution is to explicitly describe the expected request and

response triple patterns [19]. These techniques often relate to

lifting and lowering, the transformation between non-semantic and

semantic representations [18]. Unfortunately, pattern descriptions

restrict the possibilities not enough on the one hand, such as when

only certain value ranges are allowed, and too much on the other

hand, since they block the flexibility that rdf brings. On the positive

side, they can be considered a machine-interpretable equivalent of

media type definitions, which the client can discover at runtime.

Making an api machine-

friendly means adjusting

its affordance accordingly.

However, we believe that a hypermedia strategy is the appropriate

solution here. Similar to how human-targeted representation formats

offer forms to structure input (such as html’s <form> element),

hypermedia representations for machine clients should provide the

controls that afford the desired actions. The rdf forms initiative [1]

was a first attempt to achieve this in rdf, yet further developments

are necessary [16]. The Hydra vocabulary [21] seems promising in

this regard. An alternative approach is to semantically annotate html

input fields, so machine clients can understand their purpose. Such

techniques for hypermedia forms make the interaction fully happen

in-band, similar to the mechanism for links. As a result, they integrate

seamlessly into the hypermedia-driven process of Chapter 4.

An error response should

also obey a client’s media

type preferences through

content negotiation, so

the client can act upon it.

As a final remark, we shouldn’t forget that error responses also

require machine interpretation. Recently, a generic method to detail

the cause of http error responses in json was proposed [23]. Again,

using a semantic media type for this would allow clients to interpret

errors without any prior understanding. An interpretation of an error’s

cause could help in finding an alternative strategy.
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Discovering semantic resources
Centralized indexes seem-

ingly contradict the nature

of distributed systems, but

they remain the quickest

method. Future advances

in distributed search tech-

niques might change this.

For agents to become truly autonomous, they should not only know

how to browse apis, but also how to find them. On a distributed system

such as the Web, efficient discovery relies on indexes. In the beginning

days of the Web, a manual list of servers was maintained, which

gradually became obsolete through the advent of keyword-based

search engines [3]. Much of our daily online activities involve search

engines: to find starting points for a task and, if the affordance toward

the next desired step is missing, to find that step as well.

Machine clients currently have only limited access to search.

One could think this is not necessary because Linked Data leads to

related resources, but the unidirectionality of Web linking prevents

many interesting lookups. For instance, photos of a certain person

are often annotated with an identifier of that person, but it’s highly

unlikely that the description of a person will link to all her photos.

Hence, if an agent needs to find all those photos, an identifier of the

person will not directly yield the needed information. We need the

equivalent of a search engine, but with a focus on machine clients.

Sindice is an index of machine-interpretable data on the Web that Business plans for indexes

targeting machine clients

require special thought, as

machines cannot generate

revenue through watching

advertisements.

crawls semantic formats such as rdf and semantic annotations in

html documents [26]. It allows finding documents about concepts

using their uri or property values through a Web api or a sparql

endpoint. However, ranking, the key feature of search engines to

display the most relevant results first, is currently difficult with triples.

Consequently, finding the relevant information to solve a certain task

often involves trial and error.

Furthermore, Sindice only indexes static content. To search for

Web apis that offer a certain functionality, we need more advanced

discovery mechanisms. Many solutions for service discovery have

been developed [17, 27], but none of them were deemed the definitive

answer. Given the performance of restdesc matching, we believe

that a repository with restdesc descriptions could give fast replies

to queries for a certain functionality. However, considering more

In many cases, full auton-

omy isn’t required. Agents

can simply receive access

to a large api description

collection, since selection

of apis happens fast.

complex matching operations that take vocabulary differences into

account can require significantly more server resources. Perhaps

functionality could be discovered in an indirect way by providing

uris of related concepts, similar to keyword-based search. An agent

could then retrieve semantically related api descriptions and evaluate

whether they match a task. Once a starting point has been given,

the client could discover an api in a hypermedia-driven process, like

the way developers browse an api’s documentation. Yet, the discovery

aspect of autonomous agents clearly still needs intensive research.
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Toward serendipitous Web applications

When automated clients have access to serendipitous interactions

on the Web, they themselves become providers of serendipity: users

can ask to achieve a certain goal and a client will do so, as if it was

programmed for this specific task by chance. We define serendipitous

Web applications as those applications that can use the Web in ways

they were not explicitly designed for. Although slightly utopian

today, we advance toward a Web on which machine clients can

perform increasingly complex tasks. We consider autonomous agents,

semantics-driven applications, and client-side querying.

Autonomous agents
Much of the thinking that underpins this work was inspired by the

Semantic Web vision of agents [4]. Even acknowledging the fact

that the authors were outlining an idea and not an actual plan,

the achieved successes so far have only laid the bare foundations.

Commercial personal digital assistants such as Apple’s Siri seemDavid Martin, one of the

driving forces behind Siri,

was also a co-author of

the owl-s specification,

so some of Siri’s roots lie

in the Semantic Web.

to come closer to the envisioned agents than the current research

of the scientific Semantic Web community. However, Siri isn’t an

agent in that sense, because it can only perform actions it has been

preprogrammed for (admittedly in an intuitive and personalized way).

In particular, it cannot interact with Web apis it hasn’t been designed

for. We thus wouldn’t call Siri a serendipitous application.

What is it then that Semantic Web agents can do, and what does

the technology introduced in the previous chapters add to that? The

Autonomous agents can

satisfy a goal on the Web,

for instance through the

hypermedia-driven pro-

cess we introduced. The

challenge is to make this

work outside of controlled

environments, as agents

do depend on semantic

descriptions, which are

not commonly available.

main goal is autonomy: having an agent perform a task without

(or with minimal) assistance. As we’ve outlined, this includes discov-

ery of data and functionality, an interpretation thereof, composition

of a plan, the execution of its steps, and reporting back to the user.

Thanks to the Web, agents can rely on knowledge and services from

many different providers; the challenge is to do this intelligently.

Hypermedia-driven execution is an important part of the solution, so

agents don’t need to know the steps of any interaction beforehand.

Instead, they can follow the controls provided by servers to advance

the application state. In case a representation doesn’t contain the

desired controls, they can be added through distributed affordance.

As long as agents cannot fully interpret natural language, they

need machine-readable representations of the content and function-

ality offered by Web apis. These also allow agents to plan in advance.

This semantic gap remains the most pressing issue, as it prevents users

from interacting with autonomous agents in a more fluent way. The

silver bullet is to allow the specification of tasks in natural language.
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Semantics-driven applications
“Unlike Web 2.0 mashups,

which work against a fixed

set of data sources, Linked

Data applications operate

on top of an unbound, glob-

al data space.” [5]

Linked Data is supposed to make the development of data mashups

easier, because it can be flexibly shaped into different formats.

However, applications developed with Linked Data often remain

confined to the silos they were created in [8]. Although Linked Data

should enable reuse in theory, few applications can readily switch

to another dataset. For instance, it would be common practice to

develop a new sightseeing application for every city—even though

all such applications fulfill essentially the same function, only with

different datasets. Those applications that do offer different cities

tend to work with one centralized, non-linked dataset.

Where did we go wrong? An explanation can be found in the way

Linked Data applications are currently developed. We notice that,

despite adopting rdf’s triple model, data is still treated the same way

as with more rigid models. Developers make assumptions about what

In practice, there might

be commercial reasons to

develop multiple applica-

tions. From the software

engineering viewpoint, it

isn’t a necessity.

properties will be used, which values will be there, and how concepts

can be identified. These assumptions have proven unportable across

different datasets, which are structured according to slightly different

design decisions. This illustrates how applications are primarily built

in a data-driven way that highly depends on the data’s structure,

even though the data model possesses more flexibility. We should

evolve toward a semantics-driven way, in which developers bind the

application to the semantics rather than to the data.

We need to shift our perspective to realize such semantics-driven

applications. While the current approach is to build applications on

top of datasets, we should create applications to which different data

streams can be connected. In other words, a specific dataset shouldn’t

influence the internal design of the application, but the application

should shape incoming data streams instead. Concretely, a specific

application must implement a certain service, and users should be

allowed to choose the dataset on which the application provides that

service—in a serendipitous way.

Binding to data semantics

will lead to higher devel-

opment costs for a single

application, yet only one

application is needed for

many different scenarios.

As different datasets are often expressed in different ways and

varying levels of granularity, we need to put mechanisms in place to

deal with this in a uniform way. By not querying the data directly

but asking a reasoner to infer the desired triples, differences between

ontologies can be bridged. This requires dereferencing the uris of the

used properties to supply input for the reasoner, which then relates

them to properties that are known to the application. Therefore, the

application only needs to be programmed against a specific set of

properties, as the semantics in the dataset allow a reasoner to shape

the data in the expected format.
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Client-side querying
The major challenge when consuming large quantities of data is to find

those specific elements you are looking for. The sparql protocol [9]

allows to execute sparql queries [15] on rdf data over the Web. TheThe load of http servers

is far more predictable, as

the server is responsible

for resource partitioning.

sparql, in contrast, allows

clients to send arbitrarily

complex requests [28].

current principle is that a client sends a query to a server, which then

executes this query over its internal rdf store. However, the scalability

of this approach quickly becomes problematic. With public sparql

endpoints, the server is not in control of the number of requests

and their complexity. As a result, the availability of public sparql

endpoints is notoriously problematic [6].

Serendipity can only happen if the client is sufficiently intelligent.

I believe that, in order to develop intelligent clients, we should refrain

from building intelligent servers. The sparql vision of having a single

We ran tests with com-

plex queries, which, in

medium to large num-

bers, quickly bring down

sparql servers. Most of

these queries could be ex-

ecuted client-side within

a few seconds [29].

endpoint that will solve any query might work in closed environments,

but not on a Web scale. Instead, we should offer clients the affordance

to solve queries themselves. The idea of Linked Data Fragments [29]

is to partition a data source into chunks of Linked Data, such that

client-side querying becomes possible. While this necessitates more

data transfer, each fragment is cacheable and reusable across multiple

clients. Partitionings are designed to require only minimal server

processing for a fragment. The conceptual difference is shown below.

SPARQL Server

Client
Client

Client

Client
Client

Client

Fragments Server

Client
ClientClient

Client

Client

Client

Client Client
Client

Note how, when using Linked Data Fragments, the clients perform

the actual computation, whereas the server merely supplies the data.

As a result, servers can handle many more clients because the com-

plexity of each request is controlled, and the number of computing

units increases linearly with the number of clients.

Additionally, client-side

query execution facilitates

querying from distributed

data sources. A client then

simply needs to combine

fragments from different

servers—the same way it

does for a single server.

A concrete partitioning that minimizes server effort while still

enabling powerful queries consists of fragments for all triple patterns

?s ?p ?o of a dataset, wherein each component can be variable or

fixed. In addition, the server should provide metadata such as counts,

and controls such as links to other triples. A query for a basic graph

pattern, consisting of many such triples, can then be solved at the

client side by iteratively querying for those subpatterns with the lowest

member count [29]. This enables dynamic, Web-scale querying.
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By combining the strengths of hypermedia and semantic technologies in

a pragmatic way, we can develop a new generation of Web applications

that serendipitously reach goals they were not specifically programmed

for. Such applications deliver the flexibility promised by Linked Data, if

we are willing to take the additional effort to bind our application not

to the data itself but to its semantics. In addition to functional descrip-

tions, semantic hypermedia types can play a fundamental role in the

autonomous consumption of apis by serendipitous applications. This

paves the way for autonomous agents, semantics-driven applications,

and scalable client-side querying on the Web.
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Chapter 8

Conclusion
I thought I saw down in the street
The spirit of the century
Telling us that we’re all standing on the border

—Al Stewart, On the Border (1976)

The goal of this thesis has been to investigate how machine clients

can use the Web in a more intelligent way. We introduced restdesc

to capture the functional semantics of Web apis, followed by a proof-

based Web api composition mechanism. We then used semantic

descriptions as a solution to the Web’s affordance paradox. Finally,

we zoomed in on serendipity for today’s Web applications. In this

concluding chapter, we review the initial research questions and

outline opportunities for future research.

Giving machine clients more autonomy essentially comes down to

offering them similar affordance as we provide to people, given that

both excel in different capabilities. This last fact is captured beautifully

in what became known as Moravec’s paradox [3]:

It is comparatively easy to make computers exhibit adult level

performance on intelligence tests or playing checkers, and

difficult or impossible to give them the skills of a one-year-old

when it comes to perception and mobility. — Hans Moravec

Nobody knows exactly how many years away machines are from

natural language understanding, and what “understanding” means in

that context. Until then, we will have to assist machines if we want

them to assist us. We do what we are best in, and they do the same.
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Review of the research questions

In Chapter 2, I introduced the three research questions that have

guided this thesis. I will now review how they have been answered.

In the context of the Web’s affordance paradox—the client de-

pends on links created by a publisher who doesn’t know the needs

of that client—the following question arose:

How can we automatically offer human and machine clients the

hypermedia controls they require to complete tasks of their choice?

While allowing global scalability, the Web’s linking model restricts

link creation to content publishers. Yet, hypermedia only works to the

extent it actually affords the actions clients want to perform (as op-

posed to solely those envisioned by publishers). For human informa-

tion consumers, our answer is distributed affordance: automatically

generating links based on the interpretation of a resource. Through

semantic technologies, a machine can decide locally which actions

are possible on a piece of content. This way, hypermedia controls can

be generated without an omniscient component, providing a solution

to the outstanding open-corpus adaptation problem [1].

It remains a tough challenge to incentivize publishers to enhance

their representations with semantic markup, which is a prerequisite

for distributed affordance. Fortunately, minimal markup can be

sufficient in many cases. For instance, specifying that a representation

contains a book with a certain title or a person with a certain address

already allows many matches. This markup can additionally serve

as input for many other purposes, precisely because semantics

allow for application-independent metadata. In absence of explicit

annotations, text processing algorithms could identify entities in

a representation, although this can require external knowledge.

For machine clients, we can apply the same mechanism. However,

even though hypermedia controls indeed turn information into an

affordance [2], part of the total affordance is inherent to the content

itself. For instance, the fact that a certain text mentions the author

of a book indirectly allows us to look up more books written by this

author—even if no direct link exists. An interpretation of the content

thus allows the execution of actions upon it. Therefore, the primary

focus of content publishers should lie on affording an interpretation of

the content to machines by providing either a semantic representation

or semantic annotations to existing representations. This then allows

creating distributed affordance as well as following the hypermedia-

driven process introduced in Chapter 4, which is the topic of the

next research question.
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How can machine clients use Web apis in a more autonomous way,

with a minimum of out-of-band information?

Since rest apis are actually interconnected resources, we interpret

“Web api” here as any site or application on the Web, regardless of

whether it has been labeled as such. Autonomous use of a Web api

means on the one hand the interpretation of the resources themselves,

and on the other hand an understanding of the possible actions that

can happen on those resources. The interpretation of resources is

possible through representations in semantic formats such as rdf,

the usage of which we’ve referred to as semantic hypermedia.

Conform to the rest architectural constraints, http implements

a limited set of well-defined methods. Hence, the understanding

of actions starts with the specification. The semantics of GET, PUT,

and most other methods doesn’t require any clarification, but the

POST method has been loosely defined on purpose. Hence, machine-

interpretable descriptions must capture the semantics of possible

POST requests. In addition, descriptions can capture the expectations

of requests that use the other methods in order to look beyond the

actions offered by a single hypermedia representation.

I believe that having some kind of action plan is unavoidable;

after all, people always have a plan when realizing a complex task. In

contrast to most planned interactions between clients and servers, we

want the client to respond dynamically to the current application state.

This is why, even though a plan indicates the steps, the interaction

happens through hypermedia by activating the relevant controls.

“Hypermedia as the engine of application state” remains a valid

interaction model, as long as we accept that the information publisher

cannot foresee all possible actions, and thus adjust accordingly (for

instance, through distributed affordance). Furthermore, the active

use of hypermedia reduces the amount of out-of-band information

to a minimum. If the api descriptions are offered and consumed in

a dynamic way, the interaction happens entirely in-band.

In order to satisfy a given goal, n3 reasoners can instantiate

restdesc descriptions into a composition. This composition is

generated by their built-in proof mechanism without requiring any

plugins, as restdesc descriptions act as regular n3 rules. The resulting

proof should be interpreted as a pre-proof, which assumes the used

Web apis behave as described. After executing the composition

through the hypermedia-driven process, we obtain a post-proof

with the actual values obtained through the apis. This proof-based

mechanism enables agents to autonomously determine a plan and

execute it in a fully hypermedia-driven way.
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How can semantic hypermedia improve the serendipitous reuse of

data and applications on the Web?

In Chapter 7, I reflected on the various applications that become

possible when Web apis add semantics to the representations of

the resources they offer. The need for application-specific media

types, which require clients to be preprogrammed, can be eliminated

by semantic media types. These allow generic clients to interpret

resources based on the task assigned to them. Thereby, clients can

perform tasks as if they were designed for it, which turns them into

serendipitous applications.

Semantic technologies are currently not expressive enough to

capture the nuances of natural language and therefore not a definitive

solution for all possible autonomous and serendipitous applications.

Indeed, we should always keep in mind that the rdf family of

technologies remains a means to an end, not a goal in itself, nor

the only means to reach that end. However, semantic hypermedia can

considerably simplify the development of such a novel generation of

applications. Instead of aiming to directly find the definitive solution

to autonomy and serendipity, we should first try to maximize the

usage of the current technologies. As I have illustrated, many useful

scenarios are supported with today’s mechanisms. Therefore, we

must support the initiatives that aim to convince data publishers and

application developers to adopt the technology that is already there.

Future work

To end this thesis, I will list future work that builds upon the intro-

duced technologies.

As far as restdesc is concerned, I plan to investigate its possi-

bilities in smart environments, where devices dynamically react to

a user. rest apis can play an important role in such environments

because they make a conceptual abstraction of different functional-

ities as resources. restdesc descriptions can enable the automated

integration of new devices, without requiring existing components

to be preprogrammed. As this could complicate the interactions,

we might need to move from a pure first-order logic to modal logic,

which allows different, mutually exclusive states to exist separately.

n3 supports this through formulas, but their impact on restdesc

descriptions and the composition process must be examined.

Another question is to what extent we can generate restdesc

descriptions in an automated or semi-automated way. Since the lack

of functional descriptions on the current Web remains an important
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obstacle for automated agents, we should facilitate description

creation as much as possible. Furthermore, we need research on the

organisation of such descriptions into next-generation repositories,

which would allow fast and flexible querying of functionality.

For distributed affordance, I want to search optimal ways of

capturing user preferences and displaying those links that are most

relevant. Existing work on adaptive hypermedia, and adaptive

navigation support systems in particular, could be applied to this new

platform. The combination with recommender systems, especially

in a social context, should provide new insights. To assess the

effectiveness of various personalization methods, I want to design

new user studies that focus on day-to-day use, which is a challenge

because the platform offers open-corpus adaptation.

One aspect I haven’t considered so far, but which will become im-

portant when striving for significant adoption, is the role of generated

affordance in commercial contexts. As I argued before, information

publishers are uncertain about the added value of providing semantic

annotations. Unfortunately, such annotations could prove a com-

petitive disadvantage: if machines can automatically determine the

vendor with the lowest price, then most of the established market-

ing techniques ought to be replaced. The same holds for distributed

affordance: what if the user prefers a link to a competitor?

There will always be a tension between the goals of users and

the goals of the party that provides the information (and thus might

expect something in return). This doesn’t mean that semantics and

new forms of affordances, both of which are ultimately designed to

make people’s lives easier, wouldn’t be commercially viable. The

Web has already brought us entirely different business strategies,

some of which are still not well understood. Analogously, those new

technologies could bring strategies of their own.

Perhaps the most significant contributions in future work can

be made through the development of serendipitous applications.

Agents with an increasing degree of autonomy can show the potential

of Semantic Web technologies and assist people with various tasks.

They can contribute to a new mindset for application development

that embraces the openness of the Web, instead of trying to constrain

it to the more established development models.

With this thesis, I aim to show how hypermedia and semantics can

lead to an unprecedented level of pragmatic serendipity on the Web.

Even though we hope automated interpretation of natural language

will eventually obsolete the current technology, the Semantic Web

still offers plenty of underexplored opportunities in the meantime.
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Selected journal publications
This appendix contains four journal publications which I have written as a first author in the

course of my PhD research (two of them published, two currently under review). They reflect

most of the work I conducted, and reveal the evolution of my point of view on Web technology.

The introductions below indicate how they are connected to the chapters in this thesis.

Enabling context-aware multimedia annotation

by a novel generic semantic problem-solving platform 111

This first article introduces a generic semantic problem-solving platform. Some of the ideas

are precursors to restdesc (Chapter 4) and its proof-based composition method (Chapter 5).

However, the notion of hypermedia and rest is not incorporated yet. Semantic technologies are

applied to the domain of multimedia annotation, which highlights the connection with other

ongoing research topics at Multimedia Lab.

Capturing the functionality of Web services

with functional descriptions 129

My second article lays the foundation of the restdesc functional description method discussed

in Chapter 4 of this book. Most of the current restdesc aspects are present; unlike Chapter 4, it

also covers non-hypermedia-driven use cases using uri templates embedded in descriptions. This

is reflected in the usage of restdesc for distributed affordance (Chapter 6), which covers those

cases in which the representation does not contain the desired hypermedia controls.

The pragmatic proof:

hypermedia-driven Web api composition and execution 145

This third article explains the use of proofs to compose apis, as covered in Chapter 5 of this

book. Additionally, it describes the hypermedia-driven execution process that is governed and

validated by pre-proofs and post-proofs. The composition algorithm is evaluated by the benchmark

discussed in Chapter 5.

Addressing the Web’s affordance paradox

with Linked Data and reasoning 161

Finally, the fourth and most recent article explores the Web’s affordance paradox and proposes

distributed affordance (Chapter 6) as a solution. It essentially combines the technology of the

previous articles into a real-world application, emphasizing scalability and loose coupling. The

user study of Chapter 6 serves as the evaluation of the platform.





Enabling context-aware multimedia annotation
by a novel generic semantic problem-solving platform
Authors: Ruben Verborgh, Davy Van Deursen, Erik Mannens, Chris Poppe, Rik Van de Walle
Published in: Multimedia Tools and Applications, Volume 61, Issue 1, pages 105–129
Date: November 2012

Automatic generation of metadata, facilitating the retrieval of multimedia items, potentially

saves large amounts of manual work. However, the high specialization degree of feature ex-

traction algorithms makes them unaware of the context they operate in, which contains valu-

able and often necessary information. In this article, we show how Semantic Web technologies

can provide a context that algorithms can interact with. We propose a generic problem-solving

platform that uses Web services and various knowledge sources to find solutions to complex

requests. The platform employs a reasoner-based composition algorithm, generating an execu-

tion plan that combines several algorithms as services. It then supervises the execution of this

plan, intervening in case of errors or unexpected behavior. We illustrate our approach by a use

case in which we annotate the names of people depicted in a photograph.

1. Introduction

The ever increasing multimedia production rate on the Internet cannot be harnessed unless

we have an efficient means of retrieving relevant information. There are many algorithms for

searching textual data; searching data types such as image and video however, is more difficult.

Metadata annotations [22] facilitate retrieval by describing each item. Unfortunately, metadata

generation is a tedious task that involves a significant amount of manual work and knowledge

about the annotation domain. For example, a person annotating press photographs needs to

recognize depicted people and situations. Algorithms for detecting and recognizing human

faces exist, but they are prone to errors and lack an understanding of the photograph in its

entirety. Furthermore, none of them are designed to handle composite problems; instead, they

are specialized for a specific task.

On the one hand, we can consider these algorithms as services on the World Wide Web. In

fact, the Web has evolved from a static document-oriented information source to a dynamic

service-oriented platform providing loosely coupled applications. The main focus of Web services

is to achieve interoperability between heterogeneous, decentralized, and distributed applications.

Furthermore, there is a growing need for composing Web services into more complex services due

to increasing user demands and inability of single Web services to achieve a user’s goal by itself.

On the other hand, there is the Semantic Web [3], which contains a vast amount of information

about diverse domains in extensive databases such as dbpedia [5] and Freebase [6]. This structured

data enables advanced reasoning about multimedia item contents, if we connect it to feature

extraction algorithms.
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Goal
This article describes how Semantic Web knowledge and technologies can provide a context to

feature extraction algorithms, generating multimedia annotations the algorithms cannot discover

individually. We present a generic semantic problem-solving platform, which automatically

combines Web services to achieve a predefined task and uses the Semantic Web as knowledge

source to initiate and actively maintain the task context.

The platform composes an execution plan that answers a certain request using services.

Furthermore, it supervises the execution of this plan, handling the information collection and

the interaction between services. When errors occur, it is able to find alternative paths that

lead towards an equivalent solution. We apply this platform to a multimedia annotation use

case, indicating the added value of context.

Use case
During this article, we will demonstrate the introduced concepts by means of an image annotation

use case. Take the case of a publisher of a current affairs magazine who has a digital photo archive

which needs to be annotated. Apart from the image bitmap data, no additional information is

available. As a first step, we would like to identify the people on the photographs, which will

mostly be celebrities. Annotations should be linked to the corresponding dbpedia entities to

enable semantic searches.

A major difficulty is that the photographs are taken under varying and sometimes poor

conditions (insufficient lighting, poor resolution etc.), which has an impact on the precision

of the algorithms. Also, given a limited training set and the current limitations of face recognition

technology, the probability associated with the results will not always cross a certain reliability

threshold. Contextual information can play an important role to generate better annotations.

Suppose we dispose of the following algorithms (among others):

a face detection algorithm;

a face recognition algorithm.

Furthermore, we assume access to the following knowledge:

image, region, and face ontologies and rules;

Semantic Web knowledge, particularly about celebrities, through dbpedia.

Article outline
In Section 2, we outline the architecture of the platform and introduce its main components,

which are detailed in the following sections. The interaction modalities and description of

services are described in Section 3. Section 4 details the composition algorithm used to combine

different services into a plan, the execution and error handling of which is discussed in Section 5.

A multimedia use case forms the subject of Section 6. Related work is listed in Section 7 and we

conclude with Section 8 and sketch future research possibilities.
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2. Architecture

The architecture of the problem-solving platform, depicted in Figure 1, implements the blackboard

architectural pattern [7] widely used in artificial intelligence applications. It consists of the

following components:

a blackboard that contains the currently requested and the gathered information;

a collection of services, accompanied by a description, that perform a variety of tasks;

a supervisor, which invokes the services that contribute to the solution of the request and

handles failures.

The supervisor accepts a sparql query [10] and the blackboard uses rdf [14] to store supplied

and gathered information while retaining all semantics. In our use case, the query in Listing 1

could start the process on the image Loft.jpg.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { <Loft.jpg> foaf:depicts ?person. }

WHERE {

<Loft.jpg> a foaf:Image;

foaf:depicts ?person.

}

Listing 1: SPARQL request for image annotation

The supervisor does not naively try different services, but follows an execution plan created

by a service composer. Both are assisted by formally described knowledge to relate the services

to the request and each other. Note that such knowledge can either be application-specific

or knowledge available in the Semantic Web, as detailed in Section 6. An iterative process

progresses towards a solution:

1. the supervisor invokes a service with the current blackboard contents;

2. the service produces a result and sends this to the blackboard;

3. the supervisor supplements the blackboard with inferred knowledge.

For our use case, the supervisor could invoke a face detection algorithm on the image

Loft.jpg. The algorithm would then return the coordinates of the detected regions and the

supervisor could for example infer that none of these regions overlap, which would otherwise

indicate a detection error.

Service2Service3

Supervisor Blackboard

Services request output

Semantic Web
Knowledge

Figure 1: Blackboard-based architecture of the platform
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3. Services

Our platform requires a flexible interaction model for services, as a great variety of different services

needs to be plugged in. It is of utmost importance that the semantics of the concepts of the

blackboard are preserved when communicating with a service. Furthermore, we need a formal

description of the capabilities and requirements of each service.

We access multimedia algorithms by invoking them as sparql endpoints [25]. Benefits include

interoperability, flexibility in terms of inputs and outputs, and formal communication with well-

defined semantics. For our platform, it is specifically interesting that input can be sent in rdf as

part of the WHERE clause of the query, and output can be retrieved as rdf by using a CONSTRUCT

query. An example of a face recognition service query is shown in Listing 2. This query is executed

directly at a service endpoint, which implements a specific face recognition algorithm.

CONSTRUCT { <Loft.jpg> foaf:depicts ?person }

WHERE {

[ a sr:Request;

sr:input [ sr:bindsParameter "region";

sr:boundTo <Loft.jpg#xywh=5,7,42,43> ];

sr:output [ sr:bindsParameter "person";

sr:boundTo ?person ]]

}

Listing 2: Face recognition SPARQL query

The algorithms can be described formally as Web services in owl-s [16], complemented with

formal input and output relationships described in an expression language [25]. These descriptions

should not only cover input and output types, but should also determine the effect of the former

on the latter. The description of the use case’s face recognition service with inputs, outputs,

preconditions, and postconditions is shown in Listing 3.

4. Composition

De�nitions
When discussing the composer, it is convenient to dispose of a formal definition of a service

composition. Firstly, we specify sets that appear in the definitions.

The set of parameter namesΠ which is the union of all possible input and output parameter

names of services. (e.g., image, language)

The set of parameter values Ω which is the union of all possible input and output values of

services. (e.g., <file.jpg>, "en-US")

The set of variable references Ψ, containing composer generated identifiers, used as place-

holders for unknowns. (e.g., ?image1, ?language7)

Definition 1. A parameter mapping β is a function β : Π→Ω∪Ψwhich assigns parameter names

to either a value or a variable reference. The set of all parameter mappings is B . An element (p, v)

of B is written as p 7→ v and called a parameter assignment of p to v .
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@prefix : <http://example.org/facerecognition#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix Process:

<http://www.daml.org/services/owl-s/1.1/Process.owl#>.

@prefix Expression:

<http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#>.

@prefix N3Expression:

<http://ninsuna.elis.ugent.be/ontologies/arseco/n3expression#>.

:FaceRecognitionProcess a Process:AtomicProcess;

Process:hasInput :Region;

Process:hasOutput :Face, :Person;

Process:hasPrecondition :RegionContainsFaceCondition;

Process:hasResult [ a Process:Result;

Process:hasEffect :DepictionEffect ].

:Region a Process:Input;

Process:parameterType

"http://www.w3.org/2004/02/image-regions#Region"^^xsd:anyURI.

:Face a Process:Output;

Process:parameterType

"http://example.org/ontologies/Face.owl#Face"^^xsd:anyURI.

:Person a Process:Output;

Process:parameterType

"http://xmlns.com/foaf/0.1/Person"^^xsd:anyURI.

:RegionContainsFaceCondition a N3Expression:N3-Expression;

Expression:expressionBody

"""@prefix imreg: <http://www.w3.org/2004/02/image-regions#>.

@prefix face: <http://example.org/ontologies/Face.owl#Face>.

?region imreg:regionDepicts [a face:Face].""".

:PersonDepictionEffect a N3Expression:N3-Expression;

Expression:expressionBody

"""@prefix imreg: <http://www.w3.org/2004/02/image-regions#>.

@prefix face: <http://example.org/ontologies/Face.owl#Face>.

?region imreg:regionDepicts ?face.

?face face:isFaceOf ?person.""".

Listing 3: Input and output conditions of the face recognition service in OWL-S
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Definition 2. A service invocation I is a triple (S,βin,βout), written asβin⇐\ Sβout, that represents

an execution of a service S with input mappings βin and output mappings βout. The domains of

βin and βout are the service input and output parameter names, respectively. The parameter value

for each parameter name must be an element of the corresponding service parameter domain. The

set of all invocations is Φ.

Definition 3. An invocation execution I is a process step that executes the service S of an

invocation (S,βin,βout), passing the actual values of the parameters in accordance with βin. The

output values returned by the service are stored in accordance with βout.

Definition 4. A service composition C is a directed, labeled, acyclic multigraph with

a subset Φ∆ of the invocation set Φas vertex set;

a subset Ψ∆ of the variable reference set Ψas edge label set.

An edge with label ψ from a vertex (S1,β1
in,β1

out) to a vertex (S2,β2
in,β2

out) is created if and only if

ψ ∈Ψ∆∩R(β1
in)∩R(β2

out). That is: if an input value of the first invocation is a variable reference

produced by the second invocation as an output value. An edge between two invocations signifies

a dependency of the first on the second. In a complete composition, dependencies are satisfied

by values or other invocation outputs: ∀IS (βin,βout) ∈ Φ∆ : ∀ψ ∈ R(βin)∩Ψ∆ : ∃IS′ (β′in,β′out) ∈
Φ∆ :ψ ∈R(β′out). This means that there exists at least one invocation execution order in which all

parameter values are known at the start of each execution. A composition is partial if it does not

satisfy this requirement.

For example, consider the following complete composition C0 of calculus service invocations,

which computes the value of the calculation (1+ 2)(1+2)·(−1+3).
Ia := {sum 7→ ?s} ⇐\ Add {termA 7→ 1, termB 7→ 2}

Ib := {sum 7→ ?t} ⇐\ Add {termA 7→ −1, termB 7→ 3}

Ic := {product 7→ ?p} ⇐\ Multiply { factorA 7→ ?s, factorB 7→ ?t}

Id := {result 7→ ?r} ⇐\ Exp {base 7→ ?s,exp 7→ ?p}

One possible execution order of all invocations of C0 is:

1. Ia : execute Add, using 1 for termA and 2 for termB,

storing the value of sum (= 3) in the variable ?s;

2. Ib : execute Add, using −1 for termA and 3 for termB,

storing the value of sum (= 2) in the variable ?t;

3. Ic : execute Multiply, using ?s for factorA and ?t for factorB,

storing the value of product (= 6) in the variable ?p;

4. Ic : execute Exp, using ?s for base and ?p for exp,

storing the value of result (= 729) in the variable ?r.

Service matching
The first obstacle in composition creation is to determine whether two services match. A start

service Sσ matches an end service Sε if an invocation ISσ (βσin,βσout) of Sσ exists that enables an

invocation ISε (βεin,βεout) of Sε. The first invocation implies fulfillment of both the input conditions
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(necessary to allow the invocation) and the output conditions (as a result of the invocation) of Sσ.

This signifies that a match is guaranteed when the union of the start service’s input and output

conditions implies the end service’s input conditions.

Listing 3 shows the description of a service that recognizes a face in an image region. It shows

the input conditions, consisting of the input type declarations and the preconditions. Similarly,

the output conditions consist of the output type declarations and the postconditions. Additional

conditions are expressed in the Notation3 format (n3, [2]). Input and output parameters are

referred to by variables in these expressions. Here, the preconditions state that Region should

depict the face of a person; the postconditions state that the Person’s Face is depicted in Region.

These complex expressions prevent that service matchers and composers only focus on data

type matching. For example, there is no point in passing a region of a chart to the recognition

algorithm. Therefore, semantic matching is required.

Inadequacy of point-to-point matching
Service composition comprises more than simple point-to-point matching.

Consider the following services:

1. face detection service

input: an image, output: the list of detected image regions that contain a face;

2. face recognition service:

input: a region that contains a face, output: the depicted person’s name.

Upon seeing these, we humans know that, in order to annotate people in an image, we need to

1) detect face regions in the image and 2) recognize the faces in each region. That is because

we realize that the person names returned by service 2 are connected to the image of service 1,

even though service 2 is completely unaware of the existence of such an image. We intuitively

construct a holistic vision on the problem by combining effects of different services on a concrete

problem instance.

Composers that function by matching services point-to-point are unable to transcend the

individual service capabilities and, as a consequence, cannot create similar complex compositions.

Although they understand the complete functionality of the above services and are even able to

match both services, they cannot devise that this composition recognizes faces in an image. This

occurs because they do not “remember” the semantics across different junctions, interpreting

the result of service 2 as a person in some region, not the person in that region of the image. This

example illustrates that we require a composer with a holistic vision on the problem, understanding

that the combination of services embodies more than a simple sum of their individual capabilities.

Translation into rules

Based on the owl-s description, an n3logic rule is generated, simulating the execution of an

actual service. Instead of producing actual content, the rule creates placeholders. The conversion

process translates input conditions into antecedents and output conditions into consequents.

Input parameters become unbound variables; outputs parameters become placeholder variables

that will be instantiated with a dummy value upon execution of the rule.
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@prefix : <http://example.org/facerecognition#>.

@prefix c: <http://example.org/composer#>.

@prefix imreg: <http://www.w3.org/2004/02/image-regions#>.

@prefix face: <http://example.org/#Face>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

{

?region a imreg:Region;

imreg:regionDepicts [a face:Face].

}

=>

{

?person a foaf:Person.

?face a face:Face;

face:isFaceOf ?person.

?region imreg:regionDepicts ?face.

({ :Face c:mappedTo ?face. }

{ :Person c:mappedTo ?person. }) c:boundBy

[ a c:Invocation;

c:ofService :FaceRecognitionService;

c:withInput ({ :Person c:mappedTo ?person. }) ].

}.

Listing 4: Automatic N3Logic rule translation of the face recognition service description of Listing 3

We complemented the rule with tracking information necessary to reconstruct the composition

later on, including the service name and the parameters it was invoked with. This was achieved by

adding to the consequence of the rule a boundBy statement, with the output mapping as subject

and the service name and input mapping as object. The parameter assignments of the input

and output mapping are formatted as a list of mappedTo statements. The automatic translation

of the face recognition service is displayed in Listing 4.

Note that some reasoners, such as eye [8], have an option to display a proof of the deducted

knowledge, eliminating the need of tracking. However, such a proof contains a lot of unnecessary

details and is more difficult to interpret than our custom tracking statements.

Reasoner deduction

Now that we dispose of n3logic rules for all services, we need one more rule representing the

request. Again, information to track the binding is added, using a hasBinding statement. Listing 5

shows the request rule representing the query of the use case.

A backward-chaining reasoner is called with the service rules, request rule, and possibly input

statements reflecting the current state of the blackboard. We ask to deduce all possible boundBy,

hasBinding and mappedTo statements, which are then stored for composition reconstruction. The
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@prefix c: <http://example.org/composer#>.

@prefix var: <http: /temp/variables#>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

{

<Loft.jpg> a foaf:Image;

foaf:depicts ?person.

}

=>

{

_:solution c:hasBinding

({var:Person c:mappedTo ?person.}).

}.

Listing 5: N3Logic rule translation of the use case request

reasoner will try to use the request rule, as this is the only way to generate hasBinding statements.

This requires the fulfillment of the rule’s antecedents, each of which can be satisfied either directly

by the inputs or by a service rule. In the latter case, the fulfillment of the rule’s antecedents is

necessary, again by inputs or a rule. The output is built up recursively using this principle.

It is important to notice that the reasoner’s knowledge is not limited to the n3 rules deduced

from the service descriptions. Indeed, application-specific ontologies and rules, and knowledge

available on the Semantic Web, can also be part of the reasoner’s knowledge, resulting in advanced

capabilities of the rule-based composer. Moreover, we should strive to create knowledge on the

highest possible level of abstraction, so that it can be reused across many problem domains.

Composition reconstruction

We then transform the generated statements using a three-step process:

1. find all solution bindings, indicated by hasBinding statements;

2. find all variable mappings that are unresolved, they will lead to new invocations;

3. recursively repeat step 2 to generate the entire composition graph.

The algorithm produces the correct result, because of the following reasons:

Each hasBinding statement corresponds to exactly one possible composition. The only rule

that creates such a statement is the request rule, which can solely be triggered if the solution

bindings were successful.

Each boundBy statement uniquely identifies the invocation that executed the binding, because

those statements are created only by service rules, which can solely be triggered if their input

conditions are satisfied.

The set of available invocations will not become empty until the composition is finished:

because the composition exists, a path that respects dependencies must exist as well.
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5. Supervision

The supervisor is a component responsible for solving a problem using services and an execution

plan composer. Its tasks include:

1. selecting the appropriate execution plan;

2. executing this plan;

3. recovering from unanticipated output or errors;

4. displaying the solution process progress (optional);

5. formulating a response to the request.

Note that we will not consider displaying the progress in this article. To formulate a response

to the request, we have two options. Only the requested output could be returned: the request

parameters are bound using the variable binding and returned, all other obtained information

is discarded. Alternatively, since often certain intermediary results are of interest as well, the

supervisor could also return all the statements available on the blackboard in addition to the

response output.

Composition selection
The supervisor firstly demands the composer to search for complete compositions. If none were

found, partial compositions can also be considered. The compositions can then evaluated by

criteria such as the following—where available in the service descriptions—which should be

balanced against each other. This balance is not predefined but depends on the application

domain and expected results. Possible evaluation criteria are:

Cost: the expected cost associated with the execution of the services. This cost is at least

the sum of the individual execution costs, but it can increase in case of failure. It should be

expressed as a mixture of different quantities, such as processor time and amount of money, as

external services and employees can be involved.

Accuracy: some services have a higher success rate than others, usually at the expense of

a higher cost.

Performance: faster compositions should be allocated to urgent tasks.

Availability: some services are not always available, which can be due to server outage or

working schedules if the service task involves people.

Completeness: if the request cannot be solved entirely or if the proposed solution is too

expensive, other solutions that only solve part of the problem can be included.

Composition execution
When the supervisor receives a new request, it initializes the blackboard and adds the input. The

composer transforms the blackboard and the request into in a number of possible executions, the

best of which is selected. We have to keep track of these additional items:

the current information kept on the blackboard;

the variable binding, a mapping of variable identifiers and values;

the current composition, current invocation and past invocations with results.
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Since a composition consists of an invocation list, its execution—in most basic form—comes

down to the execution of these invocations.

Variable binding clearly plays a crucial part in the contiguity of the execution and deserves

some explanation. Its concept is similar to that of a single-assignment store [20] in programming

languages, meaning that once a variable is assigned to, its value cannot change. The composition is

in fact a declarative program whose execution order is solely governed by data dependencies.

This declarativeness follows naturally from the fact that a composer constructs a plan that

indicates how to solve a certain problem. In contrast, the supervisor interprets the declarative

program, determining what steps should be performed. We can take advantage of this high

level of freedom to exploit parallel or batch execution capabilities. The following definition is

analogous to Definition 1 of a parameter mapping.

Definition 5. A variable binding βυ is a function βυ : Πυ→Ωυ, which assigns variable names to

a simple value (∈Ω∩Ωυ) or complex value (∈Ωυ). The set of all bindings is Bυ. An element (n, v) of

Bv is called a variable assignment, assigning v to n.

Failure recovery
The composer optimistically assumes correct and successful behavior of all involved services. If

we were to withdraw this assumption, the construction of viable compositions would be virtually

impossible since every service can be subject to failure. The supervisor therefore handles error

recovery, a process consisting of:

1. failure detection: catching runtime errors and incomplete service output;

2. impact determination: defining the consequences of the failure;

3. plan adaptation: changing the plan to reach (possibly adjusted) goals in a different way.

We now examine these different steps thoroughly.

Failure detection

We distinguish two kinds of failures: errors during service execution and normal execution with

incomplete output. Since the surrounding programming environment usually detects errors by

an exception mechanism, we assume that this task is trivial.

To detect incomplete or empty input, we make use of the invocation’s output mapping. If

certain parameters of the output mapping do not appear in the output, or if the postconditions

specified in the service’s description are not met, the output is incomplete and we should initiate

the failure recovery process.

For example, the face recognition service execution could fail because of server downtime

(error) or could fail to recognize the face (incomplete).

Impact determination

Once the point of failure is identified, we can determine the failure impact by searching for the

invocations that—directly or indirectly—depend on its output. At least one invocation will be

affected, since only outputs necessary for future invocations are mapped. The failure repeatedly
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propagates through these invocations, eventually reaching one or several of the solution generating

invocations. The affected part of the composition consists of all these invocations, starting at

the point of failure.

The relative size of the affected part indicates whether the composition should be adapted

locally or recreated as a whole. We designate a resumption point where normal execution is

continued. The selection of the resumption point is influenced by the availability of an alternative

plan and the history of attempted invocations. For example, if face detection fails, then face

recognition is also affected.

Plan adaptation

To recover from failure, the supervisor asks the composer to generate compositions for the affected

part of the plan. New compositions start with the current state of the blackboard and end in

the resumption point.

Prior to the generation, the supervisor deduces as many additional facts as possible from the

blackboard using application-specific knowledge and/or knowledge available in the Semantic

Web. The amount of available information is generally larger than that at the time of the initial

composition, since the partial execution may have yielded intermediary results. As a result, new

compositions that make use of this increased knowledge are possible. This practice can be seen as

a forward-chaining reasoning approach that, together with the backward-chaining approach used

for composition, constitutes a hybrid mechanism. This brings the advantages of forward-chaining

to the execution of compositions, that were created in a goal-driven way.

We only consider compositions without previously executed invocations—failed or successful—

to avoid infinite failure recovery loops and the overhead of duplicate invocations, whose results

are already known.

6. Use case

Set-up and environment
The framework developed so far is a general-purpose semantic problem-solver. The employed

knowledge and available services determine the problem domain in which a framework instance

operates. This section discusses a metadata generation use case, illustrating the added value of

Semantic Web technologies in metadata problem solving.

We return to the image annotation use case introduced in Section 1. We start by plugging in

services relevant to the problem domain. Therefore, we transformed two algorithms into sparql

endpoints and described them using owl-s. These algorithms were:

an implementation of the Viola-Jones face detection algorithm [27], which finds regions in an

image that contain a human face;

an implementation of the face recognition algorithm by Verstockt et al. [26], which recognizes

a face in a well-delineated region, using a training set.
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We add links to relevant ontologies and rulesets describing common facts about images, people

and faces. These include both simple and complex facts, such as:

a person has exactly one face;

a region belongs to exactly one image;

regions can depicts faces;

the depiction of a face of a person implies the depiction of that person;

. . .

For this use case, we direct our attention to the photograph Loft.jpg, shown in Figure 2. It is

a still of the movie Loft, depicting the four main actors. Automated face recognition is hampered by

lens blur (person 1), occlusion with the actor’s hand (person 1), and shadows (person 3). We

investigate how our semantic problem solver handles this image and how it overcomes the

aforementioned difficulties.

Execution plan
The user expresses the result as sparql (Listing 1) and starts the platform. The supervisor creates

a start service from the WHERE clause and an end service from the CONSTRUCT clause, which

are sent to the active composer. Although the composing process seems trivial because of the

limited number of services and parameters, Section 4 has shown the contrary. We should also

consider the presence of several other services in addition to the ones mentioned, hindering

a prima facie composition.

First, the composer tries to find a path from the request towards the input using backwards-

chaining. In this process, it transforms the request by using the facts in the ontologies and

rules, which relate the different concepts. From this, it can deduce that an image with a region

containing the person’s face is sufficient to meet the request. Our composer is able to deduce that

a composition of the face detection and face recognition services fulfills the request.

1
2

3
4

©Woestijnvis NV

Figure 2: Movie still depicting four persons
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Supervision process
Face detection

The invocation of the face detection service with parameter value <Loft.jpg> succeeds and returns

the coordinates of four regions, which are identified by media fragment uris [24]:

1. Loft.jpg#xywh=45,121,51,51;

2. Loft.jpg#xywh=221,91,56,56;

3. Loft.jpg#xywh=535,118,43,43;

4. Loft.jpg#xywh=734,83,69,69.

The four resource uris are assigned to a variable, as instructed by the composition. Visual

inspection of this output reveals that the detector finds the faces correctly.

Face recognition

We now proceed with the face recognition service invocation. The composition demands that this

is executed for every item assigned to the ?list1 variable. This results in respectively:

1. (no output);

2. dbpedia:Koen_De_Bouw;

3. (no output);

4. dbpedia:Bruno_Vanden_Broucke.

The service was able to find two of the four assignments for ?person1, but the others failed.

Looking at Figure 2, we can understand why: the correctly recognized faces of person 2 and 4

were relatively easy because of their orientation, illumination and contrast. The face of person 1

is harder to recognize because it appears slightly out of focus and the person’s right hand rests

on his chin. The left hand of person 3 casts a shadow on his face, decreasing the image contrast

locally, interfering with feature extraction. We now show how Semantic Web technologies can

help recognizing the two remaining persons.

Failure recovery
Failure detection and impact determination

Two face detection invocations do not return an answer, which the supervisor classifies as a failure.

The impacted part spans the face detection invocation and the end service. Peculiarly, this impact

is only partial in that half of the needed values are available. Consequently, the adaptation only

needs to find alternatives for the two failed invocations.

Blackboard enrichment

Prior to the generation of a new plan, the supervisor tries to enrich the blackboard by deriving new

semantic knowledge. This enrichment is a combination of semantic inference and a technique

known as sponging: looking up related information using semantic data sources. This follow-you-

nose concept works thanks to the principles of Linked Data [4]. For our use case, the sponging
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process on the two found actor names on dbpedia reveals facts such as their personal details,

movies they starred in, their co-stars, etc.

Plan adaptation

The question now is how this additional information can help us in repairing the composition.

The relationship between the people in the photograph can assist us. Our knowledge source is

aware that the statistical probability to appear in the same photograph is significantly higher

with acquaintances compared to random people. Furthermore, it assumes that people know

each other if a working relationship exists between them. Also, two actors co-starring in the

same movie implies a working relationship.

The supervisor can now employ this knowledge to guide the face recognition service. The latter

has an optional candidates parameter, by which we can suggest faces for the recognition process.

In response, the service can temporarily boost the probability of those faces in its internal training

set, enabling a more pronounced recognition result. The supervisor adapts the composition by

adding a new invocation, adding the derived acquaintances to the candidates parameter. Note

that the actual process is slightly more complex, but some details were omitted for brevity.

Face recognition (bis)
The execution of the second face recognition invocation returns the following values:

1. dbpedia:Koen_De_Graeve

or dbpedia:Bruno_Vanden_Broucke;

3. dbpedia:Matthias_Schoenaerts.

The information acquired through sponging has proven useful: person 3 is recognized

correctly as dbpedia:Matthias_Schoenaerts. However, the algorithm still doubts between two

alternatives for person 1 and returns both options, indicating its uncertainty, which can be

expressed straightforwardly in rdf. Semantic knowledge comes to the rescue again: it indicates

that a single person can only appear once in the same photograph.

Since dbpedia:Bruno_Vanden_Broucke already appears on <Loft.jpg>, the supervisor deduces

that person 1 must necessarily be dbpedia:Koen_De_Graeve. All people in the photograph are

now identified and the process terminates.

7. Related work

Semantic multimedia annotation
The focus of automatic annotation research traditionally involved the perfection of individual

algorithms. A comprehensive summary of the current state of the art, as well as future directions,

is offered by Hanjalic et al. [9]. Rahurkar et al. [18] employ an online encyclopedia to represent

high-level world knowledge in images. However, they primarily start from available metadata,

while our approach is to start from multimedia content using automatic feature extraction. It

could prove interesting to integrate information obtained by their approach as a service. Another

direction is that of multimodal multimedia analysis [1].
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Service matching
A number of approaches to match formally described Web services exist; most of them are based

on owl-s. For instance,owls-mx [13] and owl-s Matchmaker [23] use both the input and output

parameters of owl-s service descriptions to find proper matches. Li and Horrocks present a more

advanced matching method is presented based on description logic reasoning [15]. Junghans et al.

propose a formal model for Web services and requests [12], where service matching is enhanced by

using preconditions and effects described in first order logic rules, which is similar to our approach.

Service composition
Composition techniques

Next to service matching approaches, there also exist a number of algorithms for composing

formally described services. For instance, an ontology-based framework for the automatic

composition of Web services has been proposed [17]. Dynamic compositions based on owl-s

service descriptions using an htn planning algorithm have also been presented [11]. Shin et

al. [21] describe a method which uses path finding from an initial state to a desired state. However,

they only apply this intelligence on a point-to-point basis, so that propagations of the effects—

and thus holistic composition—are impossible. They also determine the usefulness of a certain

composition using precision and recall. This does not apply to our method, since a reasoner will

only return compositions that are logically sound (completeness requirement of a composition)

and thus satisfy the initial request. Redavid et al. [19] have suggested the use of a swrl reasoner

for composing services and follow a similar approach as our work: composition using translated

service rules. However, our approach has a number of advantages over theirs:

Their approach is limited to parameters characterized by an owl class, which is a limitation in

terms of expressivity. Our approach does not have such restrictions: all kinds of relationships

between parameters are expressible, even if the parameter has a primitive datatype.

Our approach does not suffer from unbound variables in the generated rules.

Although n3logic and swrl are both able to represent rules, n3logic has a number of advantages

compared to swrl: more built-ins are supported, an efficient reasoner is available, and last but

not least, n3logic integrates with existing rdf knowledge in a very natural and transparent way.

All of these systems focus either on the matching or the composition of services, while we use

a combined approach of service matching and composition resulting in a holistic vision on the

given request. As pointed out in Section 4, to create a holistic composition, we employ a reasoner

on the problem as a whole instead of solely on the junctions.

Reasoning and efficiency

Fortunately, the services required for metadata generation have no side-effects that “change the

world”; they only generate an answer based on a request. This means that the platform did

not have to provide a notion of time. Also, full forward-chaining reasoning would have proven

difficult, considering the massive amount of information available on the Semantic Web. The

simultaneous use of composer and supervisor, which uses a limited form of forward-chaining,
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creates a hybrid system that profits from forward-chaining when errors occur. A drawback of several

existing planners is that their functionality is inherently limited by the amount of intelligence

they contain. Our approach is able to take into account domain-specific knowledge provided

by the user or available on the Semantic Web.

As for efficiency and scalability, we use the eye reasoner, which outperforms several other

generic reasoners. Furthermore, we do not try to find rigorous solutions up front, but start with

a basic execution plan which the supervisor adapts as complications arise. The reasoner and

the blackboard can also cache intermediary results (e.g., additional knowledge derived from

existing facts and rules).

8. Concluding remarks and future research

The proposed generic semantic problem-solving platform integrates services and knowledge

in a novel way. The main contributions of this article include a blackboard architecture for

a generic semantic problem-solving platform; a reasoner-based composition algorithm able

to create holistic compositions; an supervisor governing the execution and providing advanced

error recovery measures through plan adaptation.

We indicated the importance of contextual information in multimedia annotation, and

demonstrated how the proposed platform can offer this context to multimedia feature extraction

algorithms. Several future research topics emerge. We should develop quality metrics comparing

the results of our platform to domain-specific tools, for example in multimedia annotation. It would

especially prove valuable to quantify the added value of the context provided by the blackboard.

Handling of imperfect information should receive special attention. We should be able to report on

specific characteristics of the solution such as uncertainty and incompleteness. The potential of

user interaction should be investigated. This could be by incorporating human-assisted services,

or by asking users to validate the output of the platform against specified requirements.
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Many have left their footprints on the field of semantic restful Web service description. Albeit

some of the propositions are even w3c recommendations, none of the proposed standards could

gain significant adoption with Web service providers. Some approaches were supposedly too

complex and verbose, others were considered not restful, and some failed to reach a significant

majority of api providers for a combination of the reasons above. While we neither have

the silver bullet for universal Web service description, with this article, we want to suggest

a lightweight approach called restdesc. It expresses the semantics of Web services by pre- and

postconditions in simple n3 rules, and integrates existing standards and conventions such as

Link headers, http options, and uri templates for discovery and interaction. This approach

keeps the complexity to a minimum, yet still enables service descriptions with full semantic

expressiveness. A sample implementation on the topic of multimedia Web services verifies the

effectiveness of our approach.

1. Introduction

The immense diversity of various multimedia analysis and processing algorithms makes it difficult

to integrate them in an automated platform to perform compound tasks. Yet, recent research has

indicated the importance of the fusion of different techniques [2]. It is impossible to make different

algorithms interoperate if there are no agreements or guidelines on how communication should

happen. A coordinating platform can only select algorithms based on their capabilities in presence

of a formal description detailing their preconditions and postconditions.

In this article, we show how to lift multimedia algorithms to the level of Semantic Web

services with a formal description mechanism that follows a pragmatic approach. Rather than

reinventing the existing methodologies, which focus on technical process details, we want to express

an algorithm’s functionality in a way that captures its functionality without requiring lengthy

specifications. Our intention is to use existing standards such as the http protocol, Link headers,

and RI templates and apply common best practices for implementing multimedia algorithms as

true Semantic Web services. The aim is a versatile description and communication model, enabling

fully automated service discovery and execution, even under changing conditions. The sole starting

point is a Web address of a server, required additional information is gathered at runtime.

Can a client just follow its nose—like humans do—and access the right service by reasoning?

We will explain our approach by three real-world multimedia use cases, each of which represents

challenges that are currently not fully addressed by alternative techniques. The aim of this

work is to provide a simple, flexible, and dynamic solution to semantically describe multimedia
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services and the associated communication models, thereby enabling their implementation

as Semantic Web services.

The remainder of this article is structured as follows: Section 2 gives an overview on related

work. Section 3 describes our restdesc approach for Semantic Web service description. Section 4

shows how our approach is able to adapt to change and react dynamically on errors. The article

terminates with Section 5, which provides a conclusion and gives an outlook on future work.

We have implemented a sample multimedia Web service with mock data that follows our

description approach. It is available at the website http://restdesc.org/.

2. Related work

Web Service Description Language
The description of Web services has a long history. The xml-based Web Service Description

Language (wsdl, [6]) provided one of the first models. wsdl focuses on the communicational aspect

of Web services, looking from a message-oriented point of view. The details of the message format

are written down in a very verbose way and concretized to actual bindings such as soap [11] or plain

http [9]. Finally, the description can contain endpoints, which implement the specified bindings.

For our use case, we spot two major problems with the use of wsdl. First, wsdl only provides

the mechanisms to characterize the technical implementation of Web services. It does not provide

the means to capture the functionality of a service. For example, a service that counts the number

of words in a text will be described by wsdl as an interface, which accepts a string and outputs

an integer. Clearly, an infinite number of algorithms share those input and output properties, so

this information is insufficient to infer any meaning or functionality. Second, in practice, a wsdl

description is used to generate module source code automatically, which is then compiled into

a larger program. If the description changes, the program no longer works, even if such a change

leaves the functionality intact. Therefore, wsdl cannot offer automatic service discovery at runtime

and why we should investigate other possibilities.

Semantic Annotations for WSDL
The w3c Recommendation named Semantic Annotations for wsdl and xml Schema (sawsdl, [16])

describes a way how to add semantic annotations to various parts of a wsdl document such as

interfaces and operations, and input and output message structures. In addition to that, Web

services can be assigned a category with the objective of making them discoverable in a central

registry of Web services. sawsdl also defines an annotation mechanism for specifying the data

mapping of xml Schema types to and from ontologies, often referred to as up- and down-lifting.

While the standard fulfills parts of our requirements, it inherits all the disadvantages from

wsdl, specifically its brittleness and verbosity. Although sawsdl provides semantic descriptions

that can be used at runtime, similarly in intent to our aim, we deliberately chose to start from

a different perspective. This allows us to provide an alternative for the legacy structures in sawsdl.

http://restdesc.org/
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REST services
A rest or restful Web service is built on the following principles [8]:

Servers and clients are separated from each other by a uniform interface. Both servers and

clients have well-defined responsibilities, also referred to as separation of concerns. This is to

guarantee maximum independence from the one and the other.

All client requests are stateless, this means that each request from a client has all the information

that the server needs to process it.

Responses can define themselves as cacheable using standard http caching techniques.

When layered systems are used, this fact must not be exposed to the api user.

A resource is to be differentiated from its representation. For example, a set of rdf triples (the

resource) might be represented in different serializations (syntaxes), such as rdf/xml or Turtle.

The manipulation of any of the representations should carry sufficient information to manipulate

the original resource. All messages need to be self-descriptive, for example, the media type of

a message needs to make clear what can be done with this message. Each representation needs to

communicate relevant related resources, or next steps the client can take at each state.

Web Application Description Language
The Web Application Description Language (wadl, [12]) is another Web service description format,

also xml-based, which does not degrade http to a tunneling mechanism for soap, but advocates

proper use of all the aspects of the http protocol. While wsdl 2.0 is also capable of specifying

bindings to restful endpoints, it still requires the abstractions that enable bindings to soap and

others. wadl, on the other hand, was tailored to the needs of restful services, but only exists as

a w3c Member Submission and will most likely never reach the w3c Recommendation status of

wsdl 2.0. In addition to that, wadl still suffers from the same problem: it does emphasize the

technical properties of the underlying service and does not leave any room for the semantics

of the task it performs. This also means that there is no way to automatically discover services

based on the desired functionality. Therefore, there is no reason why wadl would be used any

differently than wsdl.

The main criticism by the rest community, however, is that wadl does document beforehand

what, according to the rest principles [8], should be discovered dynamically at runtime. One of

the fundamental properties of rest is the so-called hypermedia constraint, which basically can be

summarized as the constraint that each server response should contain the possible next steps the

client can take, since the application state is not stored on the client. It should be noted that wadl

could be used in this way at runtime, yet most current usage continues to happen beforehand.

Semantic Markup for Web Services
owl-s [18] is an owl [19] ontology for describing Semantic Web services in rdf [14]. A service

description consists of three parts: a profile, a model and a grounding. Some aspects of profile

and model are very similar, in the sense that they both describe input, output, preconditions and

effects. The difference is that the profile is used for high-level discovery, while the model is used for
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more detailed condition matching. Finally, the grounding part specifies the implementation of

the service, for instance to wsdl, but other groundings are possible (e.g., in sparql [22]).

This marks the first time that there is a focus on the functionality of a service (profile and

model), separate from how the interaction (grounding) happens. However, there is no way to

enforce the consistency of profile, model, and grounding of a single service. owl-s input and output

types provide more or less the equivalent of what a wsdl message format contains, albeit with

rdf types, so there is only a minimal added semantic value on that level. The real possibilities

lie in the use of preconditions and postconditions (the latter under the form of result effects),

which allow to express complex relationships between input and output values, finally capturing

the semantics and functionality of the service.

Unfortunately, these conditions are not expressed within the rdf document that carries the

owl-s description. Instead, they exist inside string literals in that document, effectively forming

a different context. The semantics that connect the owl-s rdf document and the expression literals

are not inherent to neither rdf nor the expression language. Furthermore, a variety of languages

to create these expressions are possible. Other languages can be supported through extensions

e.g., n3logic, [4]). While this is a clear benefit for description authors, description interpreters are

now faced with a broad spectrum of languages they should a) support and b) be able to integrate

with the initial owl-s rdf document. We believe this is one of the main reasons why the conditions

mechanism of owl-s is seldom used, leaving the interpreter with a parameter-only description.

Furthermore, while owl-s offers functional descriptions capable of automatic discovery of

the capabilities of a single service, it does not provide mechanisms to express its relation to

other services. Also, descriptions contain redundancies and require a fair amount of vocabulary,

even to express conceptually simple services, and rely on external groundings for technical

implementations.

Linked Open Services
The obligation to make explicit the relation between input and output is present within the Linked

Open Service (los, [17]) principles. los does this by expressing preconditions and postconditions

with sparql [13] query graph patterns, because rdf currently cannot express quantification, as

we also argue in Section 3. The drawback of this approach is that these patterns also have to

be contained inside string literals, like the owl-s expression languages. This similarly results

in the expression of the conditions residing in a different document level from the remainder

of the service description.

Resource Linking Language
The Resource Linking Language (rell, [1]) aims to provide a natural mapping from restful services

to rdf. The authors recognize the issues regarding restful service descriptions in general and

provide an excellent discussion thereof. rell differs from our approach in that it only offers “static

description of restful services that does not cover [...] new resources or identification and access

schemes” [1], whereas we specifically aim to address these cases in the context of automated

service discovery and consumption.
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Universal Description, Discovery, and Integration
The xml-based oasis standard Universal Description, Discovery, and Integration (uddi, [21]) was

developed to enable the definition of a set of services supporting the discovery and description

of i) businesses, organizations, and other Web service providers, ii) the Web services that those

institutions offer, and finally iii) the technical interfaces, which may be used to access those services.

uddi was based on a common set of industry standards at that time, including http, xml, xml

Schema, and soap. The standard was designed to allow for the description and discovery of both

public services and non-public in-house services. It was meant to be used as a service broker

where parties interested in a special service could go to and retrieve a list of service providers

offering the desired service (for example, shipping address verification). Such services would be

described in the so-called Green Pages, including not only technical details, but also contact

details of the Web service provider.

While for various reasons out of scope of this article uddi could not gain the adoption its

creators had hoped for, the overall idea of automatically being able to select a service from a (not

necessarily central) registry of services still seems useful to us.

3. RESTdesc semantic description

Motivation
On the one hand there is the question whether Web service description is needed. In restful

systems, the common opinion is that each message should be self-descriptive enough so that

user agents can make sense of each message, given a documented media type that the message is

serialized in. On a pure technical layer this works well. For example, let us imagine a very simple

image search engine that simply returns the most adequate image of media type image/gif as

the result to a query, similar to Google’s “I’m feeling lucky” functionality. This gives the user agent

enough information to process the response with its image library, however, a priori it is not clear

that the image stands in a relation to a search query that the user agent has used as an input.

Therefore OpenSearch [7] defines a description format, which can be used to describe a search

engine so that it can be used by search client applications. While we could perfectly use OpenSearch

to describe this search api, even slight variations of the api semantics render its use impossible. For

instance, let us imagine a Web font preview api where you give the name of a Web font as an input,

and get a gif image with a preview of the text “The quick brown fox jumps over the lazy dog” in that

very Web font as an output. There is currently no universal way to describe the exact functionality

of such apis, and yet it might be desirable for a Web font vendor to announce its availability.

A second question is whether automatic discovery of Web services is needed. The first approach

for automatic service discovery was uddi, outlined in Section 2. It was driven by the vision that

central service registries would serve as so-called Green Pages for parties interested in a specific

service. The problem with this approach, however, is that companies do not work this way: there

is always a human being involved in the process. We see the potential of service discovery in

the generation and runtime supervision of automatic execution plans as outlined in [23], a task

that can highly profit from discoverable service descriptions.
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Multimedia example
To make the explanation more concrete, we introduce two related multimedia services, one for

face detection, and the other for face recognition. A user agent can upload a photo to the face

detection service and use it to check for the existence of faces in the uploaded image. If faces are

found, the user agent can use the face recognition service to try to find out more details on the

persons whose faces are contained in the image. Each image is considered a resource, for example

represented by a binary image file (like /photos/1). Each face is a resource, for example represented

by an rdf document serialized in Turtle, or a cropped version of the entire image showing only

the particular face (like /photos/1/faces/1). Each person is a resource (like /photos/1/persons/1),

for example represented by a string of the person’s name. Some of the potential next steps after

detecting faces could be, to follow a link to a Web service that allows for recognizing these faces, or

starting from the first person on an image, to follow a link to the next person on the image. We

will use these two sample Web services, namely a face detection and a face recognition Web

service, throughout the article.

Introducing RESTdesc
By now, it is clear that we aim to provide a semantic method to express the functionality of

a service—as well as its communication—in a concise way that appeals to humans and can be

processed automatically. The word “semantic” obviously hints at the Semantic Web [5] and its

core language rdf [14], upon which our solution will be based.

Listing 1 shows the general skeleton for restdesc descriptions. The expression language is

Notation3 (n3, [3]), which is based on rdf. The justification for this choice is explained in Section 3.

Here, we want to focus on the essential elements of the description format:

1. the preconditions, which indicate the state a certain resource should have before being able to

take part in the interaction;

2. the postconditions, which describe the new state for that resource (or related resource);

3. the request details, which explain exactly what http request should be made to achieve the

postconditions.

Deriving a functional description
We will now formulate the logic basis of restdesc, by applying it to the aforementioned example.

Let us first revise what we actually want to express. In the example, an informal expression

for photo retrieval could be:

I can retrieve a photo by going to the address formed by

concatenating “/photos/” and the photo’s identifier. (1)

An intuitive formalization of the above would be:

hasURI(request, {“/photos/”, id})∧photoId(photo, id)∧
hasResponse(request,resp)∧ represents(resp,photo) (2)

/photos/1
/photos/1/faces/1
/photos/1/persons/1
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@prefix http: <http://www.w3.org/2011/http#>.

{

Preconditions about a certain resource. . .

}

=> . . . imply . . .

{

. . . that a certain request exists:
_:request http:methodName [...];

http:requestURI [...];

http:resp [...].

This request then effectuates postconditions on the resource.

}.

Listing 1: The RESTdesc description skeleton

This is straightforward to represent in rdf:

:request :uri ("/photos/" :id);

:response [ :represents [:photoId :id] ]. (3)

Upon closer inspection, it is clear that the formalization 2—and thus its rdf counterpart 3—does

not contain all the semantics of the informal expression 1. While (1) implies (2), the opposite

implication (2) ⇒ (1) is broken, and thus the equivalence does not hold. Indeed, fragment 3 states

that there exists one specific request which returns the photograph with the identifier specified

in its uri. It does however not convey the intention of (1) that all requests with this uri structure

behave the same way. This is a problem of existential versus universal quantification, which has

important consequences that should be dealt with formally.

Revising (4) with quantifiers gives:

∀photo : ∃ id,request,uri,resp :

hasURI(request, {“/photos/”, id})∧photoId(photo, id)∧
hasResponse(request,resp) ∧ represents(resp,photo) (4)

However, this still remains insufficient, because the universal quantification introduces the claim

that every photograph in the world possesses an identifier—a false statement for the majority of

photographs, with the exception of those uploaded to the server. Similarly, requests exist for such

photographs only. Looking back at the informal expression 1, we now spot the (again, implicit)

assumption that the photograph we want to retrieve has a known identifier. Therefore, our last

revision of the formal expression takes into account this notion as follows:

∀photo, id : photoId(photo, id) ⇒∃request,uri,resp :

hasURI(request, {“/photos/”, id})

∧hasResponse(request,resp) ∧ represents(resp,photo) (5)
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The above expression now corresponds to the intended meaning of (1): that a representation

of every photograph with an identifier can be retrieved by following the constructed uri. Now the

issue of expressing 5 in rdf remains. The original rdf specification [14] does not include a form of

quantifiers. The most successful rdf variant that does is the w3c submission Notation3 (n3, [3]),

which also includes syntactical support for implications as an added benefit. Expressing (5)

in Notation3 gives:

@forAll :photo, :id.

@forSome :request.

{ :photo :photoId :id. }

:implies

{ :request :uri ("/photos/" :id);

:response [ :represents :photo ]. }. (6)

Note the automatic existential quantification of blank nodes. By turning the request also into

a blank node and using the expressive power of Notation3, we can write (6) as:

{ ?photo :photoId ?id. }

=>

{ _:request :uri ("/photos/" ?id);

:response [ :represents ?photo ]. }. (7)

This minimal syntax, together with the ontology defining the http-specific predicates, fully reflects

the functionality of the service as intended by the original equation 1. The uniqueness of this

approach lies in the fact that the logical underpinnings or Notation3 were so far only used in pure

reasoning contexts, where the accent is on the execution of the rule. Here, we use the descriptive

part of the rule paradigm to introduce service descriptions, while their executional semantics

provide automated composition possibilities.

RESTdesc description format
With the syntax and required concepts in mind, we now look at existing recommendations,

proposals, and vocabularies that we can integrate to obtain an interchangeable description format.

Since restful services are centered around the correct use of the http protocol, one of the

obvious elements we need is a way to describe http requests. The http vocabulary in rdf [15]

has already registered widespread use and has the status of a w3c Working Draft. It defines all the

necessary concepts to rigorously describe http messages, their structure, and their relationships.

The resource-oriented nature of restful services implies the use of descriptive uris, based on

a structure specific to each server. We can use uri templates [10] to refer to a category of resources.

Below is an example of a uri template for a person in a photograph:

http://example.org/photos/{photoId}/persons/{personId}

The identifiers between the curly braces are variables, which can be assigned a value. For example,

to get the person with identifier 3 on photograph 241, the uri gets expanded to:

http://example.org/photos/241/persons/3
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@prefix : <http://restdesc.no.de/ontology#>.

@prefix http: <http://www.w3.org/2011/http#>.

@prefix tmpl: <http://purl.org/restdesc/http-template#>.

{

?photo :photoId ?photoId.

}

=>

{

_:request http:methodName "GET";

tmpl:requestURI ("/photos/" ?photoId);

http:resp [ tmpl:represents ?photo ].

}.

Listing 2: RESTdesc description of photo retrieval

Next, we need a way to tie the uri templates to http request parameters such as the request

uri. Also, some additional template semantics are required, for instance to describe what the

response body contains. Since such a vocabulary was not available yet, we created the http

template ontology, located at http://purl.org/restdesc/uri-template.

Listing 2 shows the final description of the photo retrieval service. On a high level, we see the

precondition, followed by the request and the postcondition. Concepts detailing precise semantics

of the service are expressed in a server-specific vocabulary (in this case, photo identifiers) or by

reusing publicly available vocabularies (here, for people and depictions). The precondition thus

states that an object with a photo identifier is required. In the postcondition, we use the http

vocabulary to describe a GET request and its associated response. Finally, we use the http template

ontology to specify the uri template, and the contents of the response.

Contrary to its appearance, this short description conveys a vast amount of semantic

information. Of course, most importantly, there is the explicit relation expressing precisely how the

input relates to the output. An alternative way to look at the implication is to state that the specified

request only exists in presence of a photograph. The semantics of the quantification have been

highlighted in Listing 3, which contains the same description with the explicit quantifier syntax

(prefixes from this and further listings omitted for clarity). The incorporation of the uri template

is also particularly strong: the variables in the uri have been bound to the actual values that will

be present during execution. Interesting here is that these variables, due to the server-specific

ontology, do not only have an associated data type, but fully linked semantics. For instance, if

the server describes the photoId predicate by specifying its range as integers and its domain as

photographs, this information is propagated into the uri template. Also note that we do not need

an ontology for services: the description is complete by the expression of its functionality.

http://purl.org/restdesc/uri-template
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@prefix log: <http://www.w3.org/2000/10/swap/log#>.

@forAll :photo, :id. # ∀ photo, id :

@forSome :request, :response.

{

:photo :photoId :id. # photoId(photo,id)

}

log:implies # ⇒∃ request,r : resp(request,r)

{ # ∧ represents(r,photo) [ . . . ]

:request [ . . . ] http:resp :response.

:response tmpl:represents :photo.

}.

Listing 3: Listing 2 with explicit quanti�ers

@prefix foaf: <http://xmlns.com/foaf/>.

{

?photo a foaf:Image.

}

=>

{

_:request http:methodName "POST";

http:requestURI "/photos";

http:body [ tmpl:formData ("photo=" ?photo) ];

http:resp [ tmpl:location ("/photos/" _:photoId) ].

?photo :photoId _:photoId.

}.

Listing 4: RESTdesc description of photo upload

Listings 4 to 6 show example descriptions of other services on the same server. For photo

upload (Listing 4), we see the prerequisite is to have an image. Note that the service description

author is free to use any vocabulary. Since the request uri is fixed, no uri template was used. The

response, in contrast, will have a Location header with a uri containing the photo identifier. For

the request, we specify the format of the POST body. Note how the precondition of photo retrieval

(Listing 2) naturally follows from the postcondition of photo upload, hinting at a possible causality.

This effect is also visible in Listing 5 and Listing 6, which both demonstrate the ease of

expressing complex conditions. The required expressions involve a complicated indirection

(e.g., “the photograph contains a region that depicts a person”), yet they can be understood quite

easily, while the formal semantics are sound.
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{

?photo :photoId ?photoId.

}

=>

{

_:request http:methodName "GET";

tmpl:requestURI ("/photos/" ?photoId "/faces");

http:resp [ tmpl:representsMultiple _:region ].

_:region foaf:depicts [ a foaf:Person ];

:regionId _:regionId;

:belongsTo ?photo.

}.

Listing 5: RESTdesc description of face detection

{

_:region foaf:depicts ?person;

:regionId ?regionId;

:belongsTo [:photoId ?photoId].

}

=>

{

_:request http:methodName "GET";

tmpl:requestURI ("/photos/" ?photoId "/people/" ?regionId);

http:resp [ tmpl:represents ?person ].

?person foaf:name _:personName.

}.

Listing 6: RESTdesc description of face recognition

When we consider all of the above, it becomes apparent that restdesc descriptions are

an efficient way to describe Web services in an integrated semantic manner. They capture

the functional aspects formally without resorting to complex artifices. The use of the http

vocabulary and semantic identifiers was taken from previous work [20], as well as the use of

Notation3 conditions [22], both which were extended and combined into a single method. The

resulting restdesc descriptions can be used for automatic discovery, service composition, and

execution. In the next section, we will describe the mechanism of service composition using

restdesc descriptions.
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Automated interpretation and composition
An interesting fact about Notation3 implications is that, besides the descriptive/declarative

semantics we have used so far, they also entail operational semantics. This means that, given

a reasoner that is able to make modus ponens inferences, the following action takes place:

P ⇒Q,P

Q
(8)

This is a very relevant property for restdesc descriptions, which enables context-based discovery.

For example, we might want to know what we can do on a server given the situation where we

have an image. restdesc makes this a trivial task. The triple 9 below expresses our current condition:

<http://example.org/photo.jpg> a foaf:Image. (9)

It is also the precondition of photo upload (Listing 4). Consequently, using modus ponens 8, we

can derive the postcondition of photo upload. Yet it does not stop there. The statements of the

postcondition can also trigger other inferences. In the end, the result chain is:

we can upload the photo, upon which it will receive an identifier;

we can use this identifier to receive the photo;

we can use this identifier to detect faces within it;

we can then ask the server to recognize these faces.

In addition to what steps we can take, the inference process also tells us how to take this steps

by listing the concrete http requests.

An even more interesting approach is to add a goal, in addition to a starting point (9). If we

indeed want to know who is depicted in the photograph, our query might be:

<http://example.org/photo.jpg> foaf:depicts ?person.

The proof of the reasoner for this query forms a list of ordered steps to obtain the desired

results, again with detailed instructions on how to execute these steps. This differs from the

previous output, which was just an unordered list of possible actions. Here, the result is an

actual execution plan, instructing to first upload the photo, then ask for detected faces, and

finally find out the associated persons [23].

4. Adapting to change and errors

In this section, we describe how our approach reacts to change and errors. We investigate how

restdesc descriptions ensure clients can adapt to long-term changes and possible errors.

Focus on runtime decisions
restdesc is designed from the start to be consumed at runtime and to make decisions only at

the moment this becomes necessary. We want to mimic the flexibility of human beings browsing

the Web, who follow hyperlinks to achieve a predefined goal—which is perhaps adjusted along

the way. Mostly, humans have a high-level plan, that is refined as each step becomes more and

more concrete, and if necessary, steps can be taken back.
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Fluent change coping
This focus on the runtime aspect makes restdesc well adapted to changes. The key to that

functionality is offered by the operational semantics of the integrated pre- and postconditions: in

order for a restdesc description to apply, its preconditions must be satisfied. This is inherently

different from static descriptions, where the description can be interpreted separately. This

adaptive behavior does not only work for small interface changes, even more complex situations

can be handled gracefully.

We will briefly consider some examples. For instance, suppose the server changes its uri

structure (which is similar to the change of data format presented in 2). This does not pose

a problem, since the uri templating mechanism fills out the parameters dynamically. A more subtle

change, for instance, if the server only wants to accept images with maximum dimensions 600×600,

can be handled on two levels. The preconditions will state this requirement on the image, and

should the client attempt a larger image, the server will return an error code. More interestingly, the

server can also return hyperlinks to image resizing services, which can help the client to work out

a solution on its own. Even changes that affect the process structure can be handled transparently:

for example, if the face recognition algorithm needs grayscale input images, the preconditions

can list this requirement and the server could return service links in a similar way.

The central idea is that the client uses descriptions in a dynamic way: “Given a certain input,

how can the service descriptions reach my predefined goal?”. The server furthermore aims to

support the client by providing information on how to reach subsequent steps. This vision differs

completely from the traditional static approach, which cannot deal with changing contexts.

Adaptive error handling
wsdl and owl-s provided very detailed ways to specify error conditions and faults. This does

not correspond to the human strategy when browsing the Web: we just try, and if something

does not work out as expected, we continue, possibly aided by hyperlinks on last visited pages.

The underlying rationale is simple: if we had to anticipate every possible error (page not found,

irrelevant information, network failure, . . . ), we might as well give up before we start. Consequently,

our approach is to handle errors dynamically as they arise, guided by the service itself.

An important benefit of this pragmatic error handling is that all causes can be dealt with in an

uniform manner. Clients assume services will handle their request as described. If an exception or

error should occur, it is detected and remedied, irrespective of whether it could have been expected.

The central idea is that there is no point in anticipating foreseeable errors, since errors can always

occur. A restdesc description details necessary preconditions for executing a request, but it does

not strive to handle exceptional situations because it can never cover all of them.

The rest practice of correctly using http status codes forms the corner stone of error detection.

They can precisely identify the source of the problem (client, request, or server), its temporal

scope (temporary or permanent), and offer additional information (even in case of success). What

we suggest is that the service should supply hyperlinks that can help the client to remedy the

problem. For example, depending on the error, the server could list the photo upload api (image

does not exist), or an alternative api with a different face detection algorithm (no faces detected),

or even another server (server unavailable) in its responses.
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5. Conclusion and future work

In this article, we have shown a proposal for a Web service description and interaction approach

for automatic Web service discovery and execution called restdesc. Our approach builds on top

of restful principles and consists of a semantic mark-up model, offering a formal description of

a service’s functionality, with extensive flexibility, and an http-based discovery method of services,

both within a domain of related services, and also beyond. It is to be noted that in order for

our approach to work, obeying to rest principles is essential for the apis that restdesc should

be applied to. We have demonstrated the feasibility and the pragmatism of our proposal with

a concrete implementation. In addition to that, and unlike owl-s, our approach is integrated

in the normal Web service data flow.

Future work will be to prove the applicability of the approach to a broad family of existing

restful Web services. We are also planning to investigate ways to link to external services that not

necessarily follow our approach, including multi-domain-spanning Web services. In addition to

that, we want to perform an in-depth study of compatibility and exchangeability with other

standards and practices (namely with wsdl, wadl, and owl-s). Currently we are at the very

beginnings of our work towards allowing for complex automated execution plan creation including

the creation of automated clients against restdesc-described services. With this article we have

laid a humble foundation stone for semantic Web service description. Future versions of restdesc

will encourage the decoupled use of the method, meaning that instead of relying on uri templates

(which allow for a certain degree of freedom, but still introduce a form of tight coupling) we shift

the uri descriptions into the Link headers, and only specify the relation of those Link headers

to the result in the server response.
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Web apis allow software agents to use Web applications in an automated way. Composition

algorithms avoid the need for manual configuration to enable different Web apis to work

together. Unfortunately, most algorithms are implemented as specific tools, limiting their

usage to a smaller range of problems. Furthermore, compositions are usually rigid as they

do not allow flexible reactions to a server’s response. Therefore, in this article, we show how

Web apis can be composed automatically by generic Notation3 reasoners. This is achieved

through the generation of a proof based on semantic descriptions of the apis’ functionality.

To pragmatically verify the correctness of compositions, we introduce notion of pre-execution

and post-execution proofs. The runtime interaction between a client and a server is guided

by a proof but driven by hypermedia, allowing the client to react to the application’s actual

state indicated by the server’s response. We describe how to generate compositions from

descriptions, and verify reasoner performance on composition tasks using a benchmark suite.

The experimental results lead to the conclusion that proof-based composition and execution is

a feasible strategy at Web scale.

1. Introduction

The number of public Web apis grows at a tremendous rate. According to ProgrammableWeb,

more than 10,000 apis were available in September 2013, some of which are consulted billions of

times per day [3]. Thanks to all these Web apis, mobile and desktop application developers can

reuse the functionality of many providers’ services in their consumer applications. The provided

services range from social activities (e.g., share on Facebook or Twitter) over various detailed

information supplies (e.g., maps, events, or weather), to highly specific needs (e.g., multimedia

manipulation or language analysis). However, integrating these apis into an application requires

manual development work, such as writing the http requests that need to be executed and parsing

the returned http responses. Instructions on how to write this code can often be found on the

api’s website in the form of human-readable api documentation.

In order to automate this process, machine-readable documentation is necessary. On the

lowest level, this documentation describes the message format and modalities. On a higher level, it

also explains the specific functionality offered by the Web api, so a machine can autonomously

decide whether the api is appropriate for a certain use case. In the past, we have proposed such

a description method called restdesc, which offers an efficient way to capture the functionality

of Web apis [35] and is tailored to rest or hypermedia apis [34].

To enable automated composition and integration, an agent needs to apply this machine-

readable documentation to solve a specific problem. In other words, while programmers today
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need to interpret the human-readable documentation to choose an api and to implement it in

an application, with automated integration, a machine would interpret machine-readable docu-

mentation, choose an api and interact with this api at runtime without human intervention [33].

However, automatic composition and integration is challenging and requires addressing a number

of issues. An important step is the automated matching and composition of Web apis. In this

article, we therefore present an automated composition method based on proofs. This work is

twofold: first, we introduce pre-proofs and post-proofs, and second, we show how these proofs

are employed for goal-oriented composition generation.

The remainder of this article is structured as follows. Section 2 describes related work, followed

by an introduction to Web api description with restdesc in Section 3. Section 4 explains the use of

proofs to validate Web api compositions. Section 5 describes how to generate such proofs with

reasoners, an approach which is evaluated in Section 6. Finally, we end the article in Section 7

with conclusions and an outlook on future work.

2. Related work

Semantic Web service description and composition
Semantic Web service description has been a topic of intense research for at least a decade. There

are many approaches to service description with different underlying service models. owl-s [27]

and wsmo [23] are the most well-known Semantic Web Service description paradigms. They

both allow to describe the high-level semantics of services whose message format is wsdl [10].

Though extension to other message formats is possible, this is rarely seen in practice. Semantic

Annotations for wsdl (sawsdl, [20]) aim to provide a more lightweight approach for bringing

semantics to wsdl services. Composition of Semantic Web services has been well documented,

but all approaches require specific software. In contrast, the proposed approach purely and

exclusively relies on generic Semantic Web reasoners.

Web API description
Web apis are a more lightweight approach to support interaction with applications, because they

offer a resource-oriented structure that integrates better with the content model of the Web. In

recent years, more and more Web api description formats have been evolving. Linked Open

Services (los, [22]) expose functionality on the Web using Linked Data technologies, namely

http [15], rdf [18], and sparql [17]. Parameters are described with sparql graph patterns

embedded inside rdf string literals to achieve quantification, which rdf does not support natively.

Linked Data Services (lids, [30]) define interface conventions that are compatible with the Linked

Data principles [8] and are supported by a lightweight formal model. restdesc [34] is a hypermedia

api description format that describes Web apis’ functionality in terms of resources and links.

The Resource Linking Language (rell, [1]) features media types, resource types, and link

types as first class citizens for descriptions. The restler crawler finds restful services based

on these descriptions. The authors of rell also propose a method for rell api composition [2]

using Petri nets to describe the machine-client navigation. However, automatic, functionality-

based composition is not supported.
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Several methods aim to enhance existing technologies to deliver annotations of Web apis. html

for restful Services (hrests, [19]) is a microformats extension to annotate html descriptions of Web

apis in a machine-processable way. sa-rest [16] provides an extension of hrests that describes other

facets such as data formats and programming language bindings. Microwsmo [21], an extension

to sawsdl that enables the annotation of restful services, supports the discovery, composition,

and invocation of Web apis, but requires additional software. The Semantic Web sErvices Editing

Tool (sweet, [24]) is an editor that supports the creation of mashups through semantic annotations

with Microwsmo and other technologies. A shared api description model, requiring a special

invocation engine and providing common grounds for enhancing apis with semantic annotations

to overcome the current heterogeneity, has been proposed in the context of the soa4all project [25].

Semantic Web reasoning
Pellet [29] and the various Jena [12] reasoners are the most commonly known examples of publicly

available Semantic Web reasoners. Pellet is an owl dl [28] reasoner, while the Jena framework

offers transitive, rdfs [11], owl, and rule reasoners. The rule reasoner is the most flexible, as

it allows to incorporate custom derivations, but it uses a rule language that is specific to Jena

and therefore not interchangeable.

Another category of reasoners uses the Notation3 language (n3, [5]), a small superset of rdf

that adds support for formulas and quantification, providing a logical framework for inferencing [6].

The first n3 reasoner was the forward-chaining cwm [4], which is a general-purpose data processing

tool for rdf, including tasks such as querying and proof-checking. Another important n3 reasoner

is eye [13], whose features include backward-chaining and high performance. A useful capability

of both n3 reasoners is their ability to generate and exchange proofs, which can be used for

software synthesis or api composition [26, 37].

3. Describing Web APIs with RESTdesc

As we will present the composition of Web apis that are described with restdesc, we will briefly

introduce the restdesc description method using two examples. More details on restdesc,

including a full derivation of the description format, is available in earlier work [34, 35].

Hypermedia-driven interactions
restdesc descriptions are designed specifically for rest Web apis, which are apis that conform to

the principles of the rest architectural style [14]. In particular, these apis respect the constraints

of the uniform interface: each addressable resource should be identified by a unique identifier,

manipulations should happen through representations, messages should be self-descriptive, and

the interaction should be driven by hypermedia. This last constraint is crucial for the independent

evolution of client and server. It mandates that the client does not base its interaction with the

server on out-of-band information such as knowledge of the server’s process, as this would restrict

a client to those interactions it has been preprogrammed for. Rather, the hypermedia response

returned by the server should be inspected by the client and the next action should be selected

through the use of hypermedia controls. Concretely, a server sends a hypermedia representation to

the client, and the client looks inside this representation for a link that leads to the desired next step.
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However, this can be problematic for automated agents, since they might not be able to

determine which next step is the right one to complete a complex goal. Therefore, restdesc

descriptions are designed to guide such agents through an interaction with a Web api. restdesc

does not detail the interaction in advance at compile-time, because that would not be hypermedia-

driven and thus not be scalable. Instead, it offers agents expectations of what might happen during

an interaction. These expectations can then be used to plan in advance, but the interaction itself is

still performed through hypermedia. In essence, a restdesc description details the operational

meaning of a typed hyperlink. If two resources are connected through a specific link, a restdesc

description explains what will happen if this link is followed.

RESTdesc descriptions
restdesc descriptions are expressed in the n3 rule language. Listing 1 shows an example description

that describes the smallThumbnail relation. The description is an n3 rule, the antecedent of

which is the precondition that some resource (captured by the ?image variable) must have

a smallThumbnail relation to another resource (captured by the ?thumbnail variable). The

consequent contains on the one hand the http request, in this case, a GET request to the url

of ?thumbnail. The response to this request will be a representation of ?thumbnail. There

characteristics of this representation are detailed in the second part of the consequent, namely

the postconditions. These state that the original ?image will be in a thumbnail relationship (the

meaning of which is defined by dbpedia [9]) with ?thumbnail. Furthermore, ?thumbnail will be

an Image and have a height of 80.0 (these properties again being defined by dbpedia).

@prefix dbpedia: <http://dbpedia.org/resource/>.

@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.

@prefix ex: <http://example.org/image#>.

@prefix http: <http://www.w3.org/2011/http#>.

{ ?image ex:smallThumbnail ?thumbnail. }

=>

{

_:request http:methodName "GET";

http:requestURI ?thumbnail;

http:resp [ http:body ?thumbnail ].

?image dbpedia-owl:thumbnail ?thumbnail.

?thumbnail a dbpedia:Image;

dbpedia-owl:height 80.0.

}.

Listing 1: RESTdesc description of the action “obtaining a thumbnail” (desc_thumbnail.n3)
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There are two different ways to interpret this description. First, there is the declarative, static

way, obtained by replacing the predicates by their meaning. This could be phrased as “the existence

of the smallThumbnail relationship implies the existence of a GET request which leads to an 80px-

high thumbnail of this image.” Note how the description in fact explains the smallThumbnail

relationship; a client does not have to understand the application-specific ex: prefix, as the role of

the description is precisely to express that predicate’s functionality in terms of other vocabularies.

The other interpretation is the operational, dynamic way. In this case, a software agent has

a description of the world, against which the description is instantiated, i.e., the rule is applied.

Thus, given a concrete set of triples, such as:

</photos/37> ex:hasThumbnail </photos/37/thumb>.

Then, the description in Listing 1 would be instantiated to the one displayed in Listing 2.

Thereby, the description has been instantiated into a concrete http request that can be

executed by the agent. In addition, the instantiated postcondition explains the properties realized

by this concrete request. Here, an http GET request to /photos/37/thumb will result in a thumbnail

of the image /photos/37 that will have a height of 80 pixels. This dynamic interpretation is helpful to

agents that want to understand the impact of performing a certain action on resources they

have at their disposition.

restdesc descriptions are not limited to GET requests. They can also describe state-changing

operations realized through the POST method. Listing 3 shows a description for an image upload

action. The preconditions contain existential variables that are not referenced (_:comments and
_:thumb), which might appear strange at first sight. However, these triples are important to an

agent as they convey an expectation of what happens when an image is uploaded. Concretely, any

uploaded image will receive a comments link and a smallThumbnail link. Even though the exact

values will only be known at runtime when the actual POST request is executed, at design-time,

we are able to determine that there will be several links. The meaning of those links is in turn

expressed by other descriptions, such as the one in Listing 1 discussed above.

Summarizing, we can say that restdesc descriptions explain to a machine client the dynamic

meaning of a certain type of hyperlink or resource. Descriptions convey expectations that allow

the client to decide whether the execution of a specific request is desirable.

_:request http:methodName "GET";

http:requestURI </photos/37/thumb>;

http:resp [ http:body </photos/37/thumb> ].

</photos/37> dbpedia-owl:thumbnail </photos/37/thumb>.

</photos/37/thumb> a dbpedia:Image;

dbpedia-owl:height 80.0.

Listing 2: Example instantiation of the description of the thumbnail action

/photos/37/thumb
/photos/37
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{

?image a dbpedia:Image.

}

=>

{

_:request http:methodName "POST";

http:requestURI "/images/";

http:body ?image;

http:resp [ http:body ?image ].

?image ex:comments _:comments;

ex:smallThumbnail _:thumb.

}

Listing 3: RESTdesc description of the action “uploading an image” (desc_images.n3)

4. Proof of a composition’s correctness

Introduction to Web API composition
Composition is an essential problem in the area of Web apis, and can be defined as the question of

what series of api calls is necessary to achieve a predefined goal. More formally, a Web api can be

seen as a parametrized function of an application state, returning the resulting application state;

a Web api call binds a Web api to parameter values. A composition is then defined as a connected,

directed, acyclic graph, whose vertices are api calls and whose edges are dependencies between

those calls. In a composition, we introduce two “artificial” api calls: the initial state I , which does

not have any incoming edges, and the goal state G , which does not have any outgoing edges and

implies the predefined goal has been reached, as illustrated in Figure 1.

In this section, we will focus on the question whether a given composition achieves a specific

goal. This means we will assume here that a composition has already been created (e.g., manually

or by the method described in Section 5), and we need to verify its correctness before it is executed.

In other words, we require a valid proof that explains if—and why—the ordered execution of

Web api calls from the graph implies the fulfillment of the chosen goal. This is not unlike the

notion of proof in the original Semantic Web vision [7], where it is defined as a means to assert

the validity of a piece of (static) information.

I C1

C2

C3

C4 G

“is a dependency of”
Figure 1: A composition is a connected, directed, acyclic graph.
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Pre-proofs versus post-proofs
In this article, we extend the classical Semantic Web notion of proofs [7] to also include dynamic

information, i.e., data generated by Web apis. As a consequence of this dynamic nature, we

hereby introduce two different kinds of proof:

a pre-execution proof (“pre-proof ”) , in which the assumption is made that execution of all api

calls will behave as expected;

a post-execution proof (“post-proof ”) , in which the evidence is provided by the api calls’ actual

execution results, which are purely static data.

This distinction exists because, although error handling is possible, one can never guarantee

that a composition that has proven to work in theory will always and reliably achieve the desired

result in practice, since the individual steps can fail. For example, a Web api with a service-level

agreement of 99.99% fails to deliver the expected result in 1 out of 10,000 cases. Even if we

incorporate error handling, some errors (such as disk failures or power outages) can simply not

be predicted and may cause a composition not to reach a goal that would normally be possible.

Therefore, the pre-proof necessarily has to make the additional assumption that all apis will

function according to the expectation. The pre-proof’s objective thus becomes: “assuming correct

behavior of all Web apis, the composition must lead to the fulfillment of the goal.”

Regular proofs do not contain dynamic information that needs to be obtained at runtime. The

extension to pre-proofs that contain dynamic information, necessary to verify the correctness

of a composition before it is executed, requires a mechanism to express when Web api calls are

performed. restdesc descriptions can be considered rules that simulate the execution of a Web

api, using existentially quantified variables as placeholders for the Web api’s results, which are

still unknown at the time the pre-proof is to be verified.

Anatomy of a Web API composition proof
To formalize proofs in a machine-readable way, we will use the proof vocabulary created in the

context of the Semantic Web Application Platform. Resulting proofs are expressed in n3 [5], since

rdf does not offer variables and quantification, which is necessary to deal with proof constructs

such as implications. In this subsection, we will analyze an example Web api composition proof.

In addition to the two restdesc descriptions from Listings 1 and 3, the proof involves the input

files Listings 4 and 5, the purpose of which will be explained in Section 5. The inclusion of Listing 5

might be surprising from a logic standpoint, as it seems to express the tautology P ⇒ P , which

would clearly not yield any useful facts. However, this rule will not be passed as knowledge, but

instead as a filter rule that will trigger the reasoner to search for the triple in the antecedent and

return the triple in the consequent. It is different from other rules in that it indicates the end goal

for the reasoner; the reasoner’s last step will always be the application of the filter rule.

<lena.jpg> a dbpedia:Image.

Listing 4: The initial knowledge of the agent (agent_knowledge.n3)
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Listing 6 displays the example proof, explaining how, given an image, a thumbnail of this image

can be obtained. Its main element is r:Proof, which is a conjunction of different components,

indicated by r:component. In this example, there is only one, but there can be multiple if the

proof consists of triples deducted from separate rules. The conclusion of the proof (object of

the r:gives relation) is the triple <lena.jpg> dbpedia-owl:thumbnail _:sk3 (with _:sk3 an

existential variable), so that fact that lena.jpg has a certain thumbnail. This is the main outcome

of the proof, and not coincidentally the consequent of the filter rule in Listing 5. The remainder

of Listing 6 is the derivation that allows us to reach this conclusion.

The proof has 7 other components, which are lemmata to support the line of reasoning. We

note two kinds of lemmata: inferences and extractions. As their names indicate, an inference is

the application of a rule, whereas an extraction selects a statement from a source. Extractions are

fairly trivial and will therefore not be discussed in detail. In this proof, Lemmata 4 to 7 correspond

to extractions of each of the rules specified in Listings 1, 3, 4, and 5. The inferences describe

the actual reasoning carried out and thus merit a closer inspection. We will follow the path

backwards from the proof’s conclusion, tracing back inferences until we arrive at the atomic

facts that are the starting point of the proof.

The justification for the conclusion consists in this case of a single component, namely

Lemma 1. This lemma is an application of the inference rule in Lemma 7, which is the file

agent_goal.n3 shown in Listing 5. This rule has been instantiated according to the variable

bindings indicated by r:binding: here, the variable ?thumbnail (var#x0) is bound to the existential

variable _:sk3. Substituting _:sk3 for ?thumbnail in Listing 5 indeed gives the desired conclusion

<lena.jpg> dbpedia-owl:thumbnail _:sk3, which contributes to the final result of the proof.

The justification for this rule is given by r:evidence, leading to Lemma 2.

Lemma 2 is another inference, this time applying the rule from Lemma 4, which is the restdesc

description in Listing 1 that explains what happens when an image is uploaded. The instantiation

is again detailed with r:binding statements. The ?image variable (var#x0) is bound to lena.jpg,

the ?thumbnail variable (var#1) to the existential _:sk3. This is only possible because a statement

<lena.jpg> ex:smallThumbnail _:sk3 exists; its derivation will be detailed shortly. The other

variables var#x2 and var#x3 refer to the request and response resources in the consequent of

Listing 1 and are both instantiated with new existentials (_:sk4 and _:sk5 respectively). This

lemma is in turn possible because of another one.

Lemma 3 explains the derivation of the triple that is a necessary condition for Lemma 2:

<lena.jpg> ex:smallThumbnail _:sk3. The rule used for the inference is that from the upload

action in Listing 3 (Lemma 5), instantiated with the initial knowledge of the agent that it has access

to an image (Listing 4 / Lemma 6). Substituting this knowledge into the rule by binding ?image

to lena.jpg, gives the triples of the instantiated consequent, as shown by the r:gives predicate.

{ <lena.jpg> dbpedia-owl:thumbnail ?thumbnail. }

=>

{ <lena.jpg> dbpedia-owl:thumbnail ?thumbnail. }.

Listing 5: A �lter rule expressing the agent’s goal (agent_goal.n3)
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@prefix dbpedia: <http://dbpedia.org/resource/>.

@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.

@prefix ex: <http://example.org/image#>.

@prefix http: <http://www.w3.org/2011/http#>.

@prefix n3: <http://www.w3.org/2004/06/rei#>.

@prefix r: <http://www.w3.org/2000/10/swap/reason#>.

<#proof> a r:Proof, r:Conjunction;

r:component <#lemma1>; r:gives { <lena.jpg> dbpedia-owl:thumbnail _:sk3. }.

<#lemma1> a r:Inference;

r:gives { <lena.jpg> dbpedia-owl:thumbnail _:sk3. }; r:evidence (<#lemma2>);

r:binding [ r:variable [ n3:uri "var#x0"]; r:boundTo [ n3:nodeId "_:sk3"]];

r:rule <#lemma7>.

<#lemma2> a r:Inference;

r:gives { _:sk4 http:methodName "GET". _:sk4 http:requestURI _:sk3.

_:sk4 http:resp _:sk5. _:sk5 http:body _:sk3.

<lena.jpg> dbpedia-owl:thumbnail _:sk3.

_:sk3 a dbpedia:Image. _:sk3 dbpedia-owl:height 80.0. };

r:evidence (<#lemma3>); r:rule <#lemma4>;

r:binding [ r:variable [ n3:uri "var#x0"]; r:boundTo [ n3:uri "lena.jpg"]];

r:binding [ r:variable [ n3:uri "var#x1"]; r:boundTo [ n3:nodeId "_:sk3"]];

r:binding [ r:variable [ n3:uri "var#x2"]; r:boundTo [ n3:nodeId "_:sk4"]];

r:binding [ r:variable [ n3:uri "var#x3"]; r:boundTo [ n3:nodeId "_:sk5"]].

<#lemma3> a r:Inference;

r:gives { _:sk0 http:methodName "POST". _:sk0 http:requestURI "/images/".

_:sk0 http:body <lena.jpg>. _:sk0 http:resp _:sk1.

_:sk1 http:body <lena.jpg>. <lena.jpg> ex:comments _:sk2.

<lena.jpg> ex:smallThumbnail _:sk3. };

r:evidence (<#lemma6>); r:rule <#lemma5>;

r:binding [ r:variable [ n3:uri "var#x0"]; r:boundTo [ n3:uri "lena.jpg"]];

r:binding [ r:variable [ n3:uri "var#x1"]; r:boundTo [ n3:nodeId "_:sk0"]];

r:binding [ r:variable [ n3:uri "var#x2"]; r:boundTo [ n3:nodeId "_:sk1"]];

r:binding [ r:variable [ n3:uri "var#x3"]; r:boundTo [ n3:nodeId "_:sk2"]];

r:binding [ r:variable [ n3:uri "var#x4"]; r:boundTo [ n3:nodeId "_:sk3"]].

<#lemma4> a r:Extraction; r:because [ a r:Parsing; r:source <desc_thumbnail> ].

<#lemma5> a r:Extraction; r:because [ a r:Parsing; r:source <desc_images> ].

<#lemma6> a r:Extraction; r:because [ a r:Parsing; r:source <background> ].

<#lemma7> a r:Extraction; r:because [ a r:Parsing; r:source <agent_goal> ].

Listing 6: Example Web API composition proof
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Note in particular the binding of _:thumb (var#x4) to the newly created existential _:sk3; this

entails the triple <lena.jpg> ex:smallThumbnail _:sk3 which is needed for Lemma 2. Lemma 3

itself is justified by Lemma 6 (Listing 4), which is a simple extraction that stands on itself. Hence,

we have reached the starting proof’s starting point.

As a summary, we will briefly follow the proof in a forward way. Extracted from the

background knowledge in Listing 4, the triple <lena.jpg> a dbpedia:Image triggers the upload

rule from Listing 1, which yields <lena.jpg> ex:smallThumbnail _:sk3 for some existential

variable _:sk3. This triple in turn triggers the thumbnail rule from Listing 1, which yields

<lena.jpg> ex:smallThumbnail _:sk3. Finally, this is the input for the filter rule from Listing 5,

which yields the final result of the proof: the image has some thumbnail.

Web API calls inside a proof
The proof in Listing 6 is special in the sense that some of its implication rules, namely Listings 1

and 3, are actually Web api descriptions. Therefore, those steps in the proof can be interpreted

as http requests that should be performed in order to achieve the desired result. This proof

is indeed a pre-proof: it is valid under the assumption that the described http requests will

behave as expected, which can never be guaranteed on an environment such as the Internet.

The instantiation of a Web api description turns it into the description of a concrete api call. For

instance, Lemma 3 contains the following call:

_:sk0 http:methodName "POST". _:sk0 http:requestURI "/images/".

_:sk0 http:body <lena.jpg>. _:sk0 http:resp _:sk1.

_:sk1 http:body <lena.jpg>. <lena.jpg> ex:comments _:sk2.

<lena.jpg> ex:smallThumbnail _:sk3.

This instructs an agent to perform an http POST request (_:sk0) to /images/ with lena.jpg as

the request body. This request will return a response (_:sk1) with a representation of lena.jpg,

which will contain ex:comments and ex:smallThumbnail links. Note how the link targets, are not

known yet at this stage; they are represented by the newly created existential variables _:sk2 and
_:sk3. At runtime, the http request will return the actual link targets, but at the pre-proof stage,

it suffices to know that some target for those links will exist.

Indeed, the outcome of this rule—the fact that some smallThumbnail links will exist—serves

as input for the next Web api call in Lemma 2. The consequent of this rule is instantiated as follows:

_:sk4 http:methodName "GET". _:sk4 http:requestURI _:sk3.

_:sk4 http:resp _:sk5. _:sk5 http:body _:sk3.

<lena.jpg> dbpedia-owl:thumbnail _:sk3.

_:sk3 a dbpedia:Image. _:sk3 dbpedia-owl:height 80.0

This describes a GET request (_:sk4) to the url _:sk3, which will return a representation of

a thumbnail that is 80 pixels high. This request is interesting because it is incomplete: _:sk3

is not a concrete url that can be filled out. However, this identifier is the same variable as the

one in Lemma 3, so this description essentially states that whatever will be the target of the

smallThumbnail link in the previous POST request should be the url of the present GET request.

The existential variables thus serve as placeholders for results of actual Web api calls.
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While the proof above is a pre-proof, a post-proof can be obtained by actually executing the

POST http request, which has all values necessary for execution (as opposed to the GET request

where the url is still undetermined). This execution will result in a concrete value for the comments

and smallThumbnail link placeholders _:sk2 and _:sk3. They can then be used to generate a post-

proof that uses these concrete values, and hence that proof not need the assumption that the

POST request will execute successfully (because we know it did).

As stated in its definition, a pre-proof implicitly assumes that each Web api will indeed deliver

the functionality as stated in its restdesc description. The proof thus only holds under that

assumption. For example, if a power outage occurs during the calculation of the aspect ratio,

the placeholder will not be instantiated with an actual value during the execution, which can

pose a threat to subsequent Web api calls that depend on this value. However, the failure of

a single Web api call does not necessarily imply the intended result cannot be achieved. Rather, it

means the assumption of the pre-proof was invalid and an alternative pre-proof—a new Web api

composition—should be created, starting from the current application state. Such a pragmatic

approach to proofs containing Web api calls is unavoidable: no matter how low the probability

of a certain call to fail, failures can never be eliminated. Therefore, pragmatism ensures that

planning in advance is possible. Each proof should be stored along with its assumptions in order

to understand the context it which it can be used.

5. Hypermedia-driven composition generation and execution

In contrast to fully plan-based methods, the steps in the composition obtained through reasoner-

based composition are not executed blindly. Instead, the interaction is driven by the hypermedia

responses from the server; the composition in the proof only serves as guidance for the client, and

as a guarantee (to the extent possible) that the desired goal can be reached. The composition that

starts from the current state helps an agent decide what its next step towards that goal should

be. Once this step has been taken, the rest of the pre-proof is discarded because it is based on

outdated information. After the request, the state is augmented with the information inside the

server’s response. This new state will be the input for a new pre-proof that takes into account the

actual situation, instead of the expected (and incomplete) values from the Web api description.

In this section, we will detail this iterative composition generation and execution.

Goal-oriented composition generation
Since a composition is equivalent to a pre-proof, creating a composition that satisfies a goal comes

down to generating a proof that supports the goal. Inside this proof, the necessary Web api calls

will be incorporated as instantiated rules. Proof-based composition generation, unlike other

composition techniques, requires no composition-specific tools or algorithms. A generic reasoner

that supports the rule language in which the Web APIs are described is capable of generating

a proof containing the composition. For example, since restdesc descriptions are expressed in

the n3 language, compositions of Web apis described with restdesc can be performed by any

n3 reasoner with proof support. The fact that proof-based composition can be performed by

existing reasoners is an advantage in itself, because no new software has to be implemented and

tested. Furthermore, this offers the following benefits.
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incorporation of external knowledge It is straightforward to incorporate existing knowledge in

the composition process. Whereas composition algorithms that are specifically tailored to

certain description models usually operate on closed worlds, generic Semantic Web reasoners

are built to incorporate knowledge from various sources. For example, existing ontology

mappings can be used to compose Web apis described in different ontologies.

evolution of reasoners Many implementations of reasoners exist and they continue to be updated

to allow enhanced performance and possibilities. The proof-based composition method

directly benefits from these innovations. This also counters the problem that many single-

purpose composition algorithms are seldom updated after their creation because they are

highly specific.

independent validation When dealing with proof and trust on the Web, it is especially important

that the validation can happen by an independent party. Since different reasoners and

validators exist, the composition proof can be validated independently. This contrasts with

other composition approaches, whose algorithms have to be trusted.

In order to make a reasoner generate a pre-proof of a composition, it must be invoked with the

initial state, the available Web apis, and the desired goal. Here, we will examine the case for

n3 reasoners and Web apis described with restdesc n3 rules, but the principle of proof-based

composition is generalizable to all families of inference rules.

To invoke the reasoner, we must have the following at our disposal:

Initial state , capturing all resource and application states the client is currently aware of. This

will presumably consist of rdf descriptions of currently known resource properties and typed

hypermedia links to related resources.

Goal state , indicating on a symbolic level what the client wants to achieve. This will consist of

property constraints on resources, which can be defined exactly or with placeholders.

Web api descriptions , which are the rule-based functional relationships established by all Web

apis available to the client. In practice, the number of supplied available Web apis will be

substantially higher than the number of apis in the resulting composition.

Background knowledge (optional) , which can consist of ontologies and business rules.

Given the above, the reasoner will try to infer the goal state, asserting the other inputs as part

of the ground truth. The initial state and background knowledge will generally correspond to

reality, i.e., hold regardless of the results of the actual execution, provided the descriptions are

accurate. In contrast, the Web api description rules only hold under the assumption of successful

execution, due to the nature of the pre-proof.

If the reasoner can infer the goal state given the ground truth, we can conclude that

a composition exists. To obtain the details of the composition, the reasoner must return the

proof of the inference, i.e., the data and rules applied to achieve the goal. Inside this proof, there

will be placeholders for return values by the server that are unknown at design-time. The proof

will be structured as in Listing 6, where the initial state was Listing 4, the goal state Listing 5, and

the descriptions Listings 1 and 3. No background knowledge was needed there, but it could have

been useful for instance if the image of the initial state was described in different ontology, in

which case the conversion to dbpedia would be necessary.
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Hypermedia-driven execution
In order to achieve a certain goal in a hypermedia-driven way, the following process steps can

be followed.

1. The reasoner generates a pre-proof towards the goal, given the current state and a set of Web

api descriptions.

1a. The existence of a proof indicates that the goal can be reached from the current state (under

the assumption that the api calls will succeed). If no proof can be generated, the goal cannot

be reached and the process terminates.

1b. If the proof does not make use of any Web api descriptions, then the current state directly

entails the goal and the agent proceeds to Step 5.

2. Out of this pre-proof, an api call for which all necessary parameters are available (i.e., are actual

values and not placeholders) is selected. The acyclic nature of a proof guarantees that such

a call always exists.

3. The agent executes the http request to perform the api call, parses the server’s response and

adds it to the existing state, possibly applying inferencing to derive new facts.

4. The reasoner is invoked with the new state and the api descriptions to generate a post-proof.

4a. If the execution delivered a result that matches the expectations, the proof should now be one

step shorter, as the proof can now directly use the obtained knowledge instead of instantiating

a Web api description with placeholders. The post-proof of this iteration the corresponds to

the next iteration’s pre-proof, starting from the next Web api call. Proceed with Step 1.

4b. If the proof is not shorter or leads to a contradiction, the Web api did not deliver the expected

result. In that case, the corresponding api description is removed from the set, as we can no

longer rely on it. Proceed with Step 1.

5. If no Web api calls are left in the proof, the resulting state is reported and the process terminates.

Let us run through a possible execution of the composition example introduced previously.

(Step 1) Given the background knowledge, initial state, and goal, the reasoner generates the

pre-proof from Listing 6, which contains two api calls.

(Step 2) The Web api call to upload the image is fully instantiated, so it is selected.

(Step 3) The agent executes the http request by posting the image to /images/ and retrieves

a hypermedia response in return. Inside this hypermedia response, there is a comments link to

/comments/about/images/37 and a smallThumbnail link to /images/37/thumb/.

(Step 4) A post-proof is generated from the new state, revealing that the goal can now be

completed with one api call. Indeed, only an http GET request to /image/37/thumb is needed.

(Step 1) A new pre-proof is generated; it will correspond to the previous post-proof.

(Step 2) The pre-proof only contains one Web api call, so it is selected.

(Step 3) The agent executes the GET request to /image/37/thumb and thereby obtains a repre-

sentation of the thumbnail of the image.

(Step 4) The post-proof is generated; it consists entirely of data as the necessary information to

reach the goal has been obtained.

(Step 5) The thumbnail is reported back to the user.
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Note in this example how the proof guides the process, but hypermedia drives the interaction.

For instance, the url needed for the GET request was not hard-coded; rather, it was obtained as

a hypermedia control from the server. This means that, even if the server changes its internal url

structure or the layout of the representation, the interaction can still take place. The client does

not additional descriptions to be able to plan ahead, otherwise, it would have no way of knowing

that the upload of an image results in a link to the thumbnail. However, once this expectation

is there, the client navigates through hypermedia.

6. Evaluation

The evaluation of this article is presented in Chapter 5 of this book (page 61).

7. Conclusion

In this article, we have explained a novel solution to automated composition and execution of

Web apis. A crucial part in generating a composition is the ability to determine whether it will satisfy

a given goal without any undesired effects. This has led us to the approach of a pragmatic proof,

wherein Web api calls are incorporated as inference rules. We distinguish between a pre-execution

proof and a post-execution proof, where the former has the additional assumption that all Web api

calls will succeed, hence the “pragmatic” label of the method.

The benefits of proof-based composition is that they do not require new algorithms and tools,

but can be applied with existing Semantic Web reasoners. Those reasoners can easily incorporate

external sources of knowledge such as ontologies or business rules. Furthermore, the performance

of composition generation improves with the evolution of those reasoners. Also, the fact that

a third-party tool is used allows independent validation of the composition.

Our approach is a special use case for proofs, which have traditionally been regarded as a part

of trust on the Semantic Web. While pre-proofs partly contribute to this, they also have the added

functionality of generating a composition during that process. It will be interesting to explore

other opportunities to exploit the power of proof creation and the mechanisms behind it. This

application can serve as an example of how to apply such ideas.

In the past, we have already employed the method in the domain of sensor apis [32], yet we

want to extend the approach to other domains such as multimedia analysis and transcoding [31, 36].

In the longterm, we aim at offering the composition method described in this article as a Web

api itself, so it can be used for dynamic mash-up and composition generation.

An important part of the proof-based method is that the interaction remains driven by

hypermedia. In contrast to the traditional approach, where a plan determines the full interaction,

the composition here serves as a guideline to complete the interaction. Until the moment

machines are able to autonomously interpret the meaning of following a hyperlink—like we

humans can—guiding them through a hypermedia application with descriptions and proofs

might be the pragmatic alternative.
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On a Web evolving towards more and more links between data, the lack of interconnectedness

between applications becomes increasingly apparent. Linked Data brings serendipitous reuse

of data, but Web applications still largely remain walled gardens: taking a resource from one ap-

plication and reusing it in another requires significantly more effort than in-application reuse.

In order to transcend these walls, we have developed a platform that generates hyperlinks from

one application to others in a personalized way by reasoning on semantic data inside hyperme-

dia responses. This article details the architecture and implementation of this platform and

explains the crucial role of Semantic Web technologies therein. We evaluate the added value

of such generated links through a user study with usability tests and interviews. Participants

stated that the additional links considerably simplify the execution of various tasks, without

causing distraction. This indicates that the use of Linked Data and reasoning to generate per-

sonalized links is a viable direction to realize serendipitous interconnections between different

applications on the Web.

1. Introduction

Predated by many other hypertext applications [13], the World Wide Web was the first hypertext

system that could scale globally. The Web deliberately simplified the hyperlink mechanism to

be distributed and uni-directional [5]. It introduced urls as a universal identification/location

mechanism of resources and html as a hypertext language that allowed linking to resources

by their url. A url then lets http transport the corresponding resource to the client, from

anywhere in the world.

While the absence of a centralized or shared link database enables global scalability, it also

entails an important disadvantage compared to other hypertext systems: only the publisher of

a piece of information can add hyperlinks to the document. The client’s preference for the publisher

as information source does not necessarily imply this publisher is also the best source for navigation.

For instance, relevant pages visited by friends or colleagues can be more significant to a user than

the next pages suggested by the publisher, who might have different interests or expectations. Even

in Vannevar Bush’s 1945 vision of interlinked documents, so-called information trails could be

created by several parties, as opposed to only the information publisher [12]. The Web’s deliberate

omission of this functionality has been the key to its success, since world-wideness was deemed

more important than multi-party link creation, which at the time involved a centralized and thus

non-scalable system. However, in an information society where on-demand integration between

different applications is more crucial than ever before, this limitation makes it difficult to achieve

a flexible cross-application flow, customized to any individual client’s needs. After all, if a certain

application does not link to another, the user has no means of establishing this link.
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The a�ordance paradox
In order to analyze the properties induced by the Web’s architecture, Roy Fielding devised the rest

architectural style, which captures the principles of large-scale distributed hypermedia systems

in several design constraints [16]. One of them is the hypermedia constraint, the fact that each

hypermedia representation must contain the links that lead to possible next steps. This constraint

guarantees the independent evolution of a client and a server by ensuring the interaction is

driven by hypermedia instead of out-of-band information. This idea is captured in Fielding’s

definition of hypertext as “the simultaneous presentation of information and controls such that

the information becomes the affordance through which the user (or automaton) obtains choices

and selects actions” [17]. Hypertext thus presents information and controls in an intertwined way

(like html combines text and links), transforming the information into an affordance [25], a set

of fundamental properties that determine its usage. In that way, hypertext documents should

offer choices and thereby afford the next step a client wants to take.

Looking at the hypermedia constraint with the knowledge that links on the Web are publisher-

driven, we face a fundamental issue. The client must have the controls that lead to next steps, and

these can only be created by the information publisher. However, how can this publisher know what

next steps a client wants to take? We call this the Web’s affordance paradox: the only party who can

provide the affordance towards next steps has likely insufficient knowledge and/or interest to do so.

Consider the following concrete example. A user is skimming the plot of the movie The Usual

Suspects on the Internet Movie Database (imdb) website. Having to decide whether or not to watch

it, he wants to visit the Rotten Tomatoes page for this movie, which conveniently lists reviews.

Unfortunately, the imdb website does not provide that link (due to different commercial interests).

Later, he decides to buy the movie on the online iTunes store. Again, the imdb website does not

afford this (because it does not know the user has an iTunes-compatible device). Note that the

missing affordance does not mean the user cannot complete the action. For instance, a search

engine with the keywords “usual suspects itunes” will likely lead to the desired result. However,

it does mean the interaction cannot be completed through hypermedia: the information is only

the affordance in as far as it actually affords the desired action.

This problem is even more severe when the client is a software agent. In addition to human

users, Fielding’s hypertext definition also includes automata as clients of hypermedia systems. The

last few years, the number of machine-accessible Web apis has increased tremendously, extending

the Web’s availability to such clients. At the moment, many interactions between automated clients

and servers are still hard-coded, but more developers are starting to appreciate the flexibility of

software clients that use hypermedia [2]. The beneficial properties of the rest architectural style,

such as the independent evolution of client and server, indeed also apply to software agents of

hypermedia systems. Unfortunately, software agents are far less capable of finding other solutions

than the one they expect. While people have the ability to solve a given task using alternative

ways if hypermedia-based navigation fails for a particular task, automated hypermedia clients

are limited to the controls that are present in a representation. As such, if the needed controls

are missing, the desired action cannot be completed in any way.

To address issues surrounding the affordance paradox, in this article, we will employ

annotations, semantic Web api descriptions, and reasoning technologies to realize hypermedia
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documents with distributed affordance: personalized navigation controls from distributed sources.

The idea is that, even if there is no html link from one resource to another, there is a semantical

relationship between the resources’ contents. A browser can then exploit the semantics to establish

an actual link that can be activated by the client. The personal aspect herein is crucial, because

every user has his or her own preferences to close the affordance gap. The goal of this article is

to demonstrate the feasibility of automatically generating relevant affordance on the open Web

for each client. We detail the architecture and implementation of distributed affordance with

reasoning techniques that allow the creation of complex hypermedia links. The applicability of

the implemented platform is validated by a task-based user study.

The remainder of this article is structured as follows. First, we review related work in

the next section. Section 3 introduces distributed affordance and details the architecture and

implementations. Section 4 explains how actions are generated from semantic Web api descriptions.

The approach and results of the user study are presented in Section 5, and we conclude the

article in Section 6.

2. Related work

This section discusses existing work on personalized affordance creation (adaptive hypermedia

and Web Intents). Furthermore, it lists the technologies employed by our proposed solution

(resource and service descriptions).

Adaptive hypermedia
Adaptive navigation support systems are part of adaptive hypermedia, the research field of methods

and techniques for adapting hypertext and hypermedia documents to users and their context.

Brusilovsky [10] distinguishes five categories of adaptive navigation: direct guidance, link ordering,

link hiding, link annotation, and link generation. The latter category consists of three kinds of

approaches: discovery of new links, similarity-based links, and dynamic recommendations. The

solution discussed in the present article falls into the latter group, but differs from existing solutions

in the following aspects. Whereas adaptation techniques are traditionally characterized by a specific

kind of knowledge representation, our technique decouples the information needed for adaptation

from a specific representation format. Furthermore, we focus on linking to actions relevant to

the current resource instead of connecting static documents together. But most importantly,

our generation strategy is open-ended on both sides of the link, allowing adaptation on an open

corpus such as the Web, whereas traditional adaptive navigation techniques mostly consider

closed corpora and specific domains.

Open-corpus adaptive hypermedia has been named an important challenge [9], and Semantic

Web technologies have been identified as a possible solution to help overcome the open-corpus

problem of adaptation on the Web [11]. In particular, ontologies and reasoning were deemed

important [15], because of the initial interest in connecting static documents. An examples of an

ontology-based system is SemWeB [29], which generates links to related documents. In contrast,

our solution employs Linked Data [8] and semantic service matching [32] to create links to dynamic

resources, i.e., service calls that act on the information inside the originating document.



164 Addressing the Web’s a�ordance paradox with Linked Data and reasoning

Web Intents
One approach to link generation has been implemented in Web Intents [6, 20], designed as a Web

version of the Intents system found on Android devices, where intents are defined as “messages

that allow Android components to request functionality from other components” [3]. With Web

Intents, Web applications can declaratively indicate their intention to offer a certain action, and

Web applications can indicate they afford this action. For example, social media sites can indicate

they enable the action “sharing”, and a photo website can offer their users to “share” pictures.

When a user initiates the “share” action on the website, Web Intents then allow him to share the

photo through his preferred supported application.

While Web Intents’ goals are similar to ours, there is a crucial difference in their architecture

that severely limits their applicability. The benefit of Web Intents is that they are scalable in the

number of action providers. Without Web Intents, publishers have to decide which action providers

they support. For instance, the publisher of the photo website would have to decide which specific

sharing applications it would offer its users. With Web Intents, the user can share photos through

his preferred application, without the publisher having to offer a link to it. A major drawback of

Web Intents is that they do not scale in the number of actions. Although the OpenIntents initiative

allows to define custom actions [26], a publisher still has to decide what actions to include. In the

photo website example, the publisher might opt to include a “share” action, but that is not useful if

the user wants to order a poster print of a picture, download it to his tablet, or edit it in his favorite

image application. While this strategy works on a single-device platform such as Android, where

the set of possible actions is limited and known in advance (calling, sending a message, adding to

contacts, etc.), such a closed-world assumption cannot hold on a Web scale. Summarizing, we can

say that Web Intents do not solve the core issue: a publisher still has to determine what affordances

a user might need. Web Intents shifts the problem from deciding what action providers to support

to deciding what actions to support, still not solving the affordance paradox.

Resource description
Since the introduction of rdf [21], many resources have been made available in a machine-

interpretable format, especially following the conception of the Linked Data principles [8]. While

an immense amount of rdf has been published already, the barrier is still high for many website

owners. However, the promise that semantic annotations might increase visibility on search

engines and social networks [30] has lead many publishers to experiment with rdfa-based Open

Graph [18] and/or html 5-based Schema.org markup [7], which are perceived as more lightweight

than pure rdf. Fortunately, all these different models can ultimately be represented as triples

(possibly in graphs), and therefore in rdf. This enables the platform presented in this article

to use rdf as the internal representation throughout the entire process, only requiring parsing

functionality if a certain representation is to be supported.

Services and service description
The first generation of Web services were essentially remote procedure call (rpc) platforms with

an xml-based message format, for example, soap with the associated owl-s semantic description

format [23]. rpc-style interactions score high on most metrics of tight coupling [27], a property that



Distributed a�ordance 165

is undesired for evolvable systems such as the Web itself. soap is a messaging protocol on top of the

Web’s existing protocol http, and perceived as rather complex for the majority of Web applications.

As a result, a second generation of pure http-based solutions became popular, which use—when

implemented properly—urls to identify resources instead of actions, more in the spirit of the Web’s

architecture [19]. Such Web services are often labeled “restful” after the rest architectural style [16],

although many of them neglect the hypermedia constraint and are thus merely lightweight rpc apis.

Efforts to describe http apis with semantics include Microwsmo [22] and msm [28].

Third-generation Web apis that do comply with the hypermedia constraint are referred to

as hypermedia apis [2]. They thus contain controls (e.g., links and forms) that lead to next steps.

However, this brings us back to the affordance paradox: how can the publisher of such an api

know what actions a (human or machine) client might need and therefore, how can it supply the

necessary hypermedia controls? The distributed affordance concept discussed in this article

aims to provide an appropriate answer.

3. Distributed a�ordance

In this section, we will explain how to tackle the problem of missing affordance, i.e., how to

address the situation where the user wants to perform an action for which there is no hypermedia

control on the requested page.

Actors
Three actors are involved in the life cycle of hypermedia controls:

The publisher offers the hypermedia representation and, on the current Web, is therefore also

responsible for hypermedia control creation. A hypermedia representation might contain

multiple (conceptual) resources, each of which can have many related hypermedia controls.

The provider handles the operation afforded by the hypermedia control. In case of hyperlinks,

it provides the document that is the target of the link. However, the possible operations are not

limited to static document retrieval, as the control might afford the execution of an action on

the provider side.

The client selects one of the hypermedia controls in the representation and activates it to

perform the provider’s operation on the publisher’s resource.

Example 1. A publisher of book reviews offers a link to buy the book online with a book store that

provides a shopping application. The client activates the link and the book is added to an online

shopping basket.

Example 2. A stock photo publisher places a link next to each photo towards its black-and-white

version. When the client uses the link, the provider’s Web service converts the photo on the fly.

The advantages in the above examples are that the client does not need any knowledge about

the provider, because it simply activates a hypermedia control. Similarly, the provider does not

need to know about the resources offered by the publisher, because the publisher fills out the

control’s operation. There is thus no coupling from the client to the provider, nor from the

provider to the publisher.



166 Addressing the Web’s a�ordance paradox with Linked Data and reasoning

The major disadvantages are that the publisher needs knowledge on how to interact with

the provider, and furthermore, it needs to somehow predict what actions the client would like

to perform. There is thus a tight conversational coupling [27] from the publisher to the provider.

Additionally, there is a tight coupling from the publisher to the client, since the client can only

complete its interaction if the publisher offers the right hypermedia controls. We identify this

as a dimension of coupling, called affordance coupling, which has important consequences on

the interaction. For instance, every other client in the context of Example 1 will want to perform

totally different actions, such as borrowing the book from a local library or buying the e-book

version. In Example 2, the client might actually never use the “black and white” functionality,

so this link is needlessly complicating the application. While techniques such as Web Intents

can decrease the conversational coupling by abstracting the interface and choice of different

providers for a specific action, they maintain the tight affordance coupling, since they cannot

find what actions on a specific resource the client is interested in. Our solution addresses both

conversational coupling and affordance coupling.

Integrating a�ordance from distributed sources
Distributed affordance is the concept of automatically generating hypermedia controls to realize

actions of the client’s interest based on semantic information about resources in hypermedia

documents. An information publisher I offers a resource R through a hypermedia representation H

containing a set of controls C H = {C1, . . . ,Cn }. Each control provides an action Ay ∈ AH on R with

one of the interaction providers Pz ∈ P , i.e., any control Cx implements a function Cx : (R,P )� AH .

Seen the dimensions of the Web and the limited size of a representation, the actions AH ( A

offered through the representation H are a subset of all possible actions with |AH | ¿ |A|. In

addition, the client U has its own preferred set of actions AU ( A. The ideal case is when the

client’s preferred actions are already present in the representation, such that AH ⊆ AU . However,

this implies tight affordance coupling and is in practice not feasible for all possible clients U , as

argued before. Therefore, the goal of a distributed affordance platform D is to generate additional

controls Cx′ ∈C D with every Cx′ : (R,P)� AD in order to enhance the original representation R

such that the client’s preferred actions are afforded to the extent possible. In other words, the value

|(AH ∪ AD )∩ AU |

should be maximized by trying to add as many elements from AU to AD as possible.

The construction of the distributed affordance control set C D will be achieved by combining

the non-actionable information already present in the representation with action descriptions

obtained from distributed sources. This allows augmenting the affordance of the representation

with controls that directly relate to the representation itself, instead of merely to its context.

Furthermore, we do not need to assume the publisher knows the desired actions the client wants to

perform or the providers it prefers, as the only data needed from the publisher is information about

the representation itself. Based on the client’s profile, we construct the most relevant affordance,

depending on its preferences and current browsing context.
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The problems that need to be addressed are the following:

extracting non-actionable information from the representation;

organizing knowledge about actions offered by providers;

capturing a client’s action preferences;

combining non-actionable information and provider-specific action knowledge into actions;

integrating affordance for these actions into the original representation.

Furthermore, this should happen in a scalable way. Our proposed solution to generate distribute

affordance functions as follows. We require the preconditions below.

The representation contains some form of semantic annotations. Either the representation

is in a fully machine-interpretable format such as rdf (if the client is a machine), or either it

contains semantic markup (such as html with rdfa). If no annotations are present, they can

be generated through techniques such as named-entity recognition [24].

Provider actions are described semantically in a functional Web api description format. These

descriptions can be created by the provider or by third parties.

The client has a collection of action descriptions of preferred services. They can be obtained by

a process similar to bookmarking; instead of the link to a provider’s page, the action description

is stored.

Then, affordance creation can be realized with the following steps:

1. After the client has received the representation from the publisher’s server, it is inspected by

the distributed affordance platform. This platform can run locally, as to maximize scalability.

2. The platform extracts semantic resources from the representation, using format-specific

parsers (rdf, rdfa, microdata, etc.) and converts them to triples in order to maintain the

semantic information.

3. Using service matching techniques, descriptions that can act upon the extracted resources are

selected.

4. Matching descriptions are instantiated for the specific resources, thereby becoming a concrete

action instead of an abstract description.

5. Controls towards the instantiated actions are created and interleaved with the representation.

Before we detail the process of action creation, we will first provide a high-level overview of the

platform architecture in order to illustrate the interactions between the different components.

Platform architecture
The platform architecture, depicted in Figure 1, consists of five groups of components, which

are discussed below.

Information extraction A ResourceExtractor extracts rdf triples from a representation. The

ResourceExtractor component is only an interface, as several annotations are possible (rdf,

rdfa, microdata, etc.). For textual representations, extractors could for instance use named-

entity recognition techniques.
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ResourceExtractor

Representation

«use»

RepresentationEnricher
«use»

Resource
«instantiate»

APIDescription APICatalog
«instantiate»

ActionGeneratorAction
«instantiate»

«use»

PreferenceManager

Figure 1: Architecture—the resources inside a representation are extracted and combined with API descriptions,
based on the user’s preferences, into actions, for which a�ordances are added to the representation.

Action provider knowledge Semantic Web api descriptions are maintained by one or multiple

APICatalog implementations, each of which supports a specific method such as owl-s [23] or

restdesc [31, 32]. The information in these descriptions should be structured in such a way that,

given certain resource properties, it is simple to decide which apis support actions on that resource.

User preferences A PreferenceManager keeps track of a user’s preferences and thereby acts as

a kind of filter on the APICatalog, typically selecting only certain apis and sorting them according

to appropriateness for the user. The role of the PreferenceManager can be taken care of by the

APICatalog, which then only includes api descriptions that match the user’s preferences.

Action generation Based on a user’s preferences, an ActionGenerator instantiates possible

actions, which are the application of a certain api on a specific set of resources. Thereby, every

action is associated with one or more resources inside the representation. Action generation

will be detailed in Section 4.

Affordance integration A final category of components are RepresentationEnricher imple-

mentations, which add affordances for the generated possible actions to a hypermedia representa-

tion that is sent to the user. Through these affordances, the user can chose and execute the desired

actions directly. Implementations depend on the media type of the desired representation, as they

need to augment its affordance in a specific way.

In the architectural diagram, it is important to note that the resource extraction method is

independent from the api description method, i.e., api catalogs allow searching for apis based

on rdf resources and their relationships, preventing coupling between information and api

descriptions. This allows dynamic action creation, regardless of how the involved resources

were described. Figure 2 shows possible instantiations of the interfaces.

Semantic technologies play a crucial role in the platform to ensure a loose coupling between

the different parties. First, a loose affordance coupling from the publisher’s server to the client is

realized by making use of semantic annotations inside a representation to find matching service

descriptions. In contrast, currently, either the publisher has to include all necessary links (tight

affordance coupling), or either the client cannot complete the interaction through hypermedia.
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ActionResource

ResourceExtractor

RDFaExtractor

MicrodataExtractor

APIDescription

OWLSDescription

RESTdescDescription

ActionGenerator
RESTdescActionGenerator

OWLSActionGenerator

Figure 2: Architectural polymorphism—Service descriptions are instantiated into actions, independent of
the representation’s semantic annotation format. As such, multiple combinations of extractors and generator
implementations are possible.

Second, the publisher is not bound to a specific annotation model, because the architecture

decouples resource extraction from action generation. Publishers can thus annotate resources

based on other usages they want to support. Third, the publisher does not need to be aware of how

actions can be invoked, which leads to loose conversational coupling. This is enabled by semantic

descriptions of the api offered by the provider. In each of those three cases, semantics offer the

means to realize the connection at run-time instead of coupling components at design-time.

Implementation strategies
Client-based The architecture that provides the distributed affordance can be implemented

directly in a hypermedia client, or as a plugin thereof. In the common case of a Web browser, it

can be programmed as a browser extension. The benefit is that some of the client’s functional

blocks can be reused, such as the representation parser. When the client requests a representation,

the extractor will be triggered to find resources therein, which will prompt the action provider

to combine these resources with relevant api descriptions into actions. Affordances for these

actions can then be added in the interface. In graphical clients, they could become part of

the user interface or the hypermedia browsing space. For machine clients, they are added to

the existing affordance set.

Affordance as a service The drawback of the above approach is that users need a supporting

client to profit from the augmented affordance. This assumption can lead to a bootstrapping

problem. Therefore, the architecture can also be offered as a service, exposing a hypermedia

api with distributed affordance as resources. Meant as a transitional measure, these resources

can be included as embedded links in representations [1] to augment them with dynamically

generated affordance. This strategy is thus able to leverage distributed affordance without

explicit client support.
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4. Action generation

Action generation is the description-format-dependent task of matching resource triples to a service

description and subsequently instantiating the matching descriptions, with the goal of creating

a hypermedia control for the resource. This is a variant of service matching, although the question

here is to match resources to services instead of one service to another. In addition, considering

the personalisation aspect, the user is only interested in services that perform a task that matches

his preferences. Such preferences can either be stated explicitly by selecting specific services

beforehand, or implicitly by indicating the preferred actions on a high level (e.g., buying, shipping

to home address, or sharing on a social network). In the latter case, the service’s description

must semantically express the action it offers. We will discuss action generation for restdesc

descriptions, but the method works similarly for formats such as owl-s.

RESTdesc-based action generation
In the context of hyperlinks on the Web, lightweight services are common, i.e., a limited number

of inputs and a simple action. For these purposes, developers mostly use either pure http

apis or rest apis. restdesc is a semantic description format for such apis, with an emphasis

on functional discovery.

To generate actions, the extracted resources, the restdesc descriptions, and possibly ontologies

are given as input to a Notation3 reasoner such as cwm [4] or eye [14]. Using forward-chaining

reasoning, api descriptions that act on the extracted resources are triggered. By generating a proof

of the inference, the triggered descriptions—as well as the correct parameter instantiations—can

be extracted. Due to the design of restdesc descriptions, the necessary http requests will be

present in this proof as well. For each request, the necessary http control can be generated

(e.g., a link for GET requests and a form for POST).

For instance, Listing 2 shows an example description for the Buy on Amazon service. It

states that, given a book and its title, a GET request to its corresponding page on Amazon can

be performed, allowing the book to be bought. If the extracted triples of the representation

(Listing 1) and the description are given as input to an n3 reasoner, together with the ontological

knowledge about the equivalency of book and title, then the result is the instantiated description

of a GET request with the concrete url http://amazon.com/books?title=The+Catcher+in+the+Rye.

This can then be visualized in an html link element using the corresponding href attribute,

allowing the user to execute the action.

:book a schema:Book;

schema:name "The Catcher in the Rye".

schema:bookFormat :Paperback;

schema:author :salinger.

Listing 1: Subset of the extracted triples from a hypermedia representation of a book.

http://amazon.com/books?title=The+Catcher+in+the+Rye
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{

?book a dbpedia-owl:Book;

rdfs:title ?title.

}

=>

{

_:request http:methodName "GET";

http:requestURI ("http://amazon.com/books?title=" ?title);

http:resp [ http:body ?book ].

?book amzn:buyForm _:form.

}.

Listing 2: Description of the “Buy on Amazon” service, indicating how a book and its title result in a request.

5. User study

The user study of this article is presented in Chapter 6 of this book (pages 79–83).

6. Conclusion
Hypermedia has transformed information into an affordance: publishers augment representations

with controls such as hyperlinks to allow clients to select next steps directly [17]. Although

publishers might foresee the possible actions within their own information space, it is impossible

to predict all desired actions on the information by any client in an open corpus such as the Web.

We have identified this as the Web’s affordance paradox: the publisher, who must provide the

affordance, cannot know the intent of the client, who needs that affordance. This causes affordance

coupling from the publisher to the client. Therefore, in this article, our goal has been to verify

whether it is possible to generate the relevant affordance for a client in an automated way.

Our proposed platform generates hyperlinks that enrich a representation with resource-specific

actions, which are created by matching semantic information inside the representation to service

descriptions selected based on the client’s preferences. The user study performed in the context of

this article indicates users are able to achieve various tasks more efficiently through distributed

affordance, and also reveals several improvement opportunities. Furthermore, the platform scores

high on usability because of its unobtrusive integration in the existing hypermedia experience.

The results of the user study lead us to conclude that Semantic Web technologies are an enabler of

automated relevant affordance generation, and thereby a solution to the affordance paradox.

In the future, we want to make the distributed affordance technique more widely available,

as we currently depend on the presence of annotations at the publisher side and descriptions at

the provider side. It is therefore useful to investigate whether named-entity recognition [24] can

supply sufficient annotations if a publisher did not provide markup. Automated service description

generation might be helpful to make providers’ services machine-usable. Instead of looking at

simple service matches, we could also consider service composition. Finally, we also aim to invest

research into the semantic modelling of user preferences.



172 Addressing the Web’s a�ordance paradox with Linked Data and reasoning

Semantic technologies play a crucial role in distributed affordance, since they are the

fundamental driver behind the platform’s scalability. Previous systems that aim to solve the

affordance gap had limited scalability because they were tightly coupled in one way or another.

Traditional adaptive navigation systems operate on a closed corpus [10], implying a tight coupling

between the platform and the publisher. Web Intents [20], which act on an open corpus, have a tight

coupling between the publisher and the user, because the publisher must determine the possible

actions for the user. In contrast, with distributed affordance, the involved actors do not require

knowledge of each other because they interact with open ends that are tied together at run-time by

semantics. On the publisher’s end, resources in documents are semantically annotated (e.g., with

rdf, rdfa, or html 5 microdata) in a way that is not specific to the distributed affordance platform

or certain action providers, and thus serves other purposes as well. On the action provider’s

end, services are semantically described (e.g., with owl-s or restdesc) without any specific usage

in mind. So while the publisher and action provider are not coupled at all, semantics enable

the platform to generate relevant and specific links between them at run-time. This indicates

that semantic technologies are the key to the loose coupling offered by distributed affordance:

semantics effectively replace the coupling on the application level.

Distributed affordance is a novel practical application of semantic annotations in document

on the one hand, and of semantic service descriptions and matching on the other hand. While

a lot of research into semantic services has been conducted, few other applications bring these

results to the average Web user. Linked Data has given us serendipitous reuse of data; perhaps

distributed affordance can bring serendipitous reuse of applications [33] through the presence

of Linked Data in hypermedia representations.
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