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Abstract

Answer Set Programming (ASP) is a declarative programming language based on the stable
model semantics and geared towards solving complex combinatorial problems. The strength
of ASP stems from the use of a non-monotonic operator. This operator allows us to retract
previously made conclusions as new information becomes available. Similarly, in common-
sense reasoning, we may arrive at conclusions based on the absence of information. When
an animal is for example a bird, and we do not know that this bird is a penguin, we
conclude that the bird can fly. When new knowledge becomes available (e.g. the bird
is a penguin) we may need to retract conclusions. However, while ASP similarly allows
us to revise knowledge, it is not an ideal framework to model common-sense reasoning.
For example, in ASP we cannot model multi-context systems, where each context encodes
a different aspect of the real world. Extensions of ASP have been proposed to model such
multi-context systems, but the exact effect of communication on the overall expressive-
ness remains unclear. In addition, ASP lacks the means to easily model and reason about
uncertain information. While extensions of ASP have been proposed to deal with uncer-
tainty, namely Possibilistic Answer Set Programming (PASP), there are contexts in which
the current semantics for PASP lead to unintuitive results.
In this thesis we address these issues in the followings ways. Firstly, we introduce

Communicating Answer Set Programming (CASP), which is a framework that allows us to
study the formal properties of communication and the complexity of the resulting system
in ASP. It is based on an extension of ASP in which we consider a network of ordinary
ASP programs. These communicating programs are extended with a new kind of literal
based on the notion of asking questions. As such, one ASP program can conceptually
query another program as to whether it believes some literal to be true or not, i.e. they
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Abstract

can communicate. For the least complex variant of ASP, simple programs, it is shown
that the addition of this easy form of communication allows us to move one step up in
the polynomial hierarchy. Furthermore, we modify the communication mechanism to also
allow us to focus on a sequence of communicating programs, where each program in the
sequence may successively remove some of the remaining models. This mimics a sequence
of leaders, where the first leader has the first say and may remove models that he or she
finds unsatisfactory. Using this particular communication mechanism allows us to capture
the entire polynomial hierarchy.
Secondly, we show how semantics for PASP can be defined in terms of constraints on

possibility distributions. These new semantics adhere to a different intuition for negation-
as-failure than current work on PASP to avoid unintuitive conclusions in specific settings.
In addition, since ASP is a special case of PASP in which all the rules are entirely certain,
we obtain a new characterization of ASP in terms of constraints on possibility distributions.
This allows us to uncover a new form of disjunction, called weak disjunction, that has not
been previously considered in the ASP literature. When examining the complexity of weak
disjunction we unearth that, while the complexity of most reasoning tasks coincides with
disjunction in ordinary ASP, some decision problems are easier.
Thirdly, we highlight how the weight attached to a rule in PASP can be interpreted

in different ways. On the one hand, the weight can reflect the certainty with which we
can conclude the head of a rule when its body is satisfied. This corresponds with how
the weight is understood when defining semantics for PASP in terms of constraints on
possibility distributions. On the other hand, the weight can reflect the certainty that the
rule itself is correct. ASP programs with incorrect rules may have erroneous conclusions,
but due to the non-monotonic nature of ASP, omitting a correct rule may also lead to
errors. To derive the most certain conclusions from an uncertain ASP program, we thus
need to consider all situations in which some, none, or all of the least certain rules are
omitted. This corresponds to treating some rules as optional and reasoning about which
conclusions remain valid regardless of the inclusion of these optional rules. Semantics for
PASP are introduced based on this idea and it is shown that some interesting problems in
Artificial Intelligence can be expressed in terms of optional rules.
For both CASP and the new semantics for PASP we show that most of the concepts that

we introduced can be simulated using classical ASP. This provides us with implementations
of these concepts and furthermore allows us to benefit from the performance of state-of-
the-art ASP solvers.
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1 | Introduction

Throughout history there has been significant interest in trying to model how human
beings think and how they reason. Logic, in particular, is a very broad field of study
that is concerned with formalizing the different ways in which we reason and what can be
considered as valid forms of reasoning [Jacquette 2005]. It should therefore come as no
surprise that theories of logic have been developed independently throughout the world1.
Also, logic has been applied to many areas of science such as mathematics, philosophy,
linguistics and computer science. The earliest study of formal logic in the Western world
is credited to Aristotle, who wrote his famous Analytica Priora in the 4th century BC.
In this work, the polymath Aristotle made significant contributions to the study of logic2.
One such contribution is the idea of a syllogism, which is a logical argument where the
conclusion is supported by two or more premises. An example of such a syllogism is
the following:

If it is raining, I will go see a movie
It is raining

therefore

I will go see a movie

This is actually a special case of a syllogism, namely a hypothetical syllogism or modus
ponens, which is a rule of inference. Specifically, modus ponens is a type of reasoning

1Source: https://en.wikipedia.org/wiki/Logic, retrieved March 8, 2013.
2Source: http://plato.stanford.edu/entries/aristotle/, retrieved March 8, 2013.
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CHAPTER 1. INTRODUCTION

of the form “A is true. When A is true, we can infer B. Therefore we know that B”.
For this example, we have that A = “it is raining” and B = “I will go see a movie”. As an
alternative, we could also write this in a more compact form as:

raining → movies

raining

movies

The foundations laid out by Aristotle formed what is now known as Aristotelian logic,
which remained the de facto logic for many centuries to come3. It was only in the 19th cen-
tury, when the English mathematician George Boole presented his work Laws of Thought,
that new insights would challenge the dominance of Aristotelian logic4. Boole proposed
to express logical propositions as algebraic expressions. The algebraic manipulation of
these expressions would then provide a fail-safe method of logical deduction. As such,
in Boolean algebra, the values of the variables can either be true (1) or false (0). Fur-
thermore, rather than operators such as addition, multiplication and subtraction, we use
the operators conjunction ∧, disjunction ∨ and negation ¬ [Corcoran 2003]. The beha-
viour of each of these operators can, in turn, be defined in relation to the truth of the
subcomponents of its arguments. For example, if we know that rain is true and cold is
true, we know that the conjunction rain ∧ cold must also be true. Importantly, the work
from Boole is seen as the starting point of the study of mathematical logic and fuelled the
continuous study of logic [Corcoran 2003]. Logic now also became a mathematical study,
rather than a purely philosophical one.
The development of Boolean algebra was a fundamental step towards the development

of computer science, as e.g. Claude Shannon showed in 1937 how Boolean algebra could
be used to improve the design of systems with electronic relays and how such relays could
be used to solve Boolean algebra problems5. As such, it became possible to use electronic
relays (which are the precursors to modern computer chips) to perform logical deduction.
This led to the development of the world’s first working, programmable and automated
computers. Programming languages were developed to interact with these computers.
Most of these programming languages are imperative programming languages, i.e. the
programmer needs to describe both what the program should do and how the program
should accomplish this goal.

3Source: http://plato.stanford.edu/entries/aristotle-logic/, retrieved March 8, 2013.
4It is important to note that Boole was not set to disprove Aristotelian logic. Rather, Boole approached

logic differently and ended up supplementing the work of Aristotle. This is evident in modern logics, where
we see influence of both Aristotelian logic and Boolean algebra.

5Source: http://dspace.mit.edu/bitstream/handle/1721.1/11173/34541425.pdf, retrieved March 8,
2013.
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Declarative programming languages6, on the other hand, express the logic of the com-
putation without describing the control flow. The programmer therefore only needs to
describe what the program should do, while it is left to the implementation of the pro-
gramming language to define how this will be accomplished. Most programming languages
based on logic are declarative programming languages. Prolog [Wielemaker et al. 2012] is
an example of such a programming language and is based on a subset of first-order logic,
namely Horn clauses, which are rules of the form:

conclusion ← premise1, ..., premisen.

Horn clauses are in some sense the modern equivalent of syllogisms [Flach and Kakas 2000]
and the inference in Prolog is based on the modus ponens syllogism. Originally designed
for natural language processing, Prolog also proved to be well-suited for building expert
systems, control systems, etc. Other programming languages, such as (subsets of) SQL
and regular expressions, are not based on logic but are nevertheless declarative. How-
ever, whereas Prolog is a general-purpose language, these languages are domain specific.
Domain-specific languages are programming languages that are created specifically to solve
problems in one application domain and are not meant to be used outside of that applica-
tion domain7. Such languages often allow the problem to be expressed more clearly than
with a general purpose language, as they can already incorporate features specific to that
particular domain.
Answer Set Programming (ASP), which will be used throughout this thesis, is a de-

clarative domain-specific programming language for solving hard combinatorial problems.
While similar to Prolog, ASP is not Turing-complete, i.e. not all the problems solvable on
a Turing machine (which we discuss in more detail in Chapter 2) can be solved using ASP.
As a benefit, given a good implementation, an ASP avoids the halting problem8, i.e. an
ASP program always finishes running. In this thesis, we will look at a number of epistemic
extensions of ASP. As such, we describe the history and ideas that underlie ASP and
epistemic reasoning in more detail in Section 1.1 and Section 1.2. The extensions of ASP
that we introduce are Communicating Answer Set Programming (CASP) and Possibilistic
Answer Set Programming (PASP). CASP is a framework that allows for a number of ASP
programs to communicate and as such solve more complex problems. In particular, we
investigate which communication mechanisms are necessary to allow for an increase in the
expressive power of ASP. We then look at semantics for PASP, which is an extension of
ASP that allows for reasoning under uncertainty based on possibility theory, of which we
outline the underlying ideas in Section 1.3.

6Source: https://en.wikipedia.org/wiki/Declarative_programming, retrieved March 8, 2013.
7Source: https://en.wikipedia.org/wiki/Domain-specific_language, retrieved March 8, 2013.
8Source: http://en.wikipedia.org/wiki/Halting_problem, retrieved April 21, 2013
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CHAPTER 1. INTRODUCTION

1.1 Answer Set Programming
To build systems capable of common-sense reasoning, we need a programming language
that offers the capability to both represent knowledge and reason about this knowledge.
A language based on logic seems a natural approach to solve this particular problem.
However, logics such as Boolean algebra and Aristotelian logic are monotonic, i.e. earlier
conclusions cannot be retracted when new information becomes available. Nevertheless,
such non-monotonicity occurs naturally in human reasoning. For example, in general, we
accept that birds fly. However, if we learn that a particular bird is a penguin, we revise
our conclusion because a penguin is an exception to the general rule that all birds fly.
To overcome these problems, research has since the late 1960’s focused on non-monotonic

logics, which are a family of approaches designed to be able to reason in a defeasible way9.
Essentially, defeasible inference allows us to infer conclusions that are rationally compelling
but not necessarily deductively valid. Or, in other words, we want to accept conclusions
when they are consistent with our current knowledge of the problem. This type of human
reasoning is widely used and does not affect our ability to act rationally. If a person is
harmed when crossing the street – after carefully checking that no cars were in the vi-
cinity – by a meteoroid, no one would question his rationality. Still, crossing the road
proved not to be safe. The research on defeasible logic gained significant attention in the
domain of Artificial Intelligence (AI) in the late 1960’s, when problems were discovered
when working on expert systems [Mccarthy and Hayes 1969] and the modelling of such sys-
tems with monotonic logics. Since then, many non-monotonic logics have been proposed,
including circumscription [McCarthy 1980], default logic [Reiter 1980], autoepistemic lo-
gic [Moore 1985] and stable models for negation-as-failure [Gelfond and Lifschitz 1988].
ASP falls in this last category and is also often referred to as the stable model semantics.
Negation-as-failure is a special construct denoted as ‘not l’, where, intuitively, ‘not l’ is

true when we cannot prove that ‘l’ is true. This allows us to write

fly(X)← bird(X), not penguin(X)

which elegantly captures the common-sense knowledge that birds fly, unless they are known
to be penguins. Still, while negation-as-failure captures an intuitive idea, it proved to be
hard to find acceptable semantics for negation-as-failure. At the heart of this problem
lay two competing ideas of what a logic program without negation-as-failure repres-
ents. According to [Van Emden and Kowalski 1976], such a program represents the least
Herbrand model, i.e. the set of all atomic logical consequences of the program. However,
in [Clark 1978] the program is seen as a representation of the completion of the program,

9While non-monotonic logics have been studied intensely since the late 1960’s, the first studies of
defeasible reasoning date back to Aristotle and his work on dialectic reasoning in Posterior Analytic.
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1.1. ANSWER SET PROGRAMMING

which, loosely speaking, interprets the implication as an equivalence (or, symbolically,
← is interpreted as ≡). Because the latter understanding often resulted in unwanted
models, the least Herbrand models turned out to provide a better semantics for logic
programs without negation-as-failure. However, when logic programs include negation-as-
failure, the semantics based on the least Herbrand models resulted in unwanted models,
whereas the completion gave the more satisfactory results. Finding a semantics that com-
bined these two ideas, and that had no unwanted models whether negation-as-failure was
present or not, took more than a decade of research [Lifschitz 2008].
The stable model semantics, which solve this apparent enigma, were initially defined

in terms of autoepistemic logic [Moore 1985]. Autoepistemic logic introduces a modal
operator L where La intuitively means “a is believed [to be true]”. As such, in autoepistemic
logic, we are able to reason about our own knowledge and beliefs. The semantics of
autoepistemic logic are defined in terms of stable expansions, where the stable expansion
w.r.t. a set of axioms A intuitively corresponds with that which a rational agent might
believe if he knew A [Moore 1985]. In [Gelfond 1987] the expression ‘not a’ was identified
as ‘¬La’, i.e. “It is not believed that a [is true]”. Similarly, it is possible to define the
stable model semantics in terms of default logic. However, in both cases, the stable model
semantics rely on an underlying logic, which made it difficult to be used in practice.
Research then focused on finding an equivalent definition of the stable model semantics

that did not explicitly rely on an underlying logic. This resulted in the definition of the
stable model semantics in terms of a reduct [Gelfond and Lifschitz 1988]. This paramount
work lies at the basis of ASP and it is the most widely used definition of the stable model
semantics. Soon after, these semantics were extended to also cover classical negation10 and
disjunction. The latter increases the expressiveness and the complexity of the stable model
semantics, making it possible to model and solve a larger class of problems. It was realised
in [Lifschitz 1999, Marek 1999] that ASP, i.e. logic programming based on the stable model
semantics, is a programming paradigm well-suited for solving hard combinatorial problems.
Such problems are modelled using ASP programs and particular solutions of such programs,
i.e. the answer sets, then correspond with solutions to the original problem.
To illustrate the ASP paradigm, we look at the problem of map colouring. This problem

is concerned with determining, for a given map, a colour for each region such that no two
adjacent regions share the same colour. To solve this problem with ASP, we divide it into
two parts. First, we need to colour each region. Second, we need to verify whether our
choice is a good map colouring, i.e. whether no adjacent regions share the same colour.

10Classical negation differs from negation-as-failure since classical negation indicates that the proof that
the statement is false can explicitly be derived.
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This problem can be solved with the following rules:
colour(X, red)← region(X), not colour(X, blue), not colour(X, green), not colour(X, yellow)

colour(X, blue)← region(X), not colour(X, red), not colour(X, green), not colour(X, yellow)
colour(X, green)← region(X), not colour(X, red), not colour(X, blue), not colour(X, yellow)

colour(X, yellow)← region(X), not colour(X, red), not colour(X, blue), not colour(X, green)
← adjacent(X, Y ), colour(X, C), colour(Y, C)

Intuitively, the first 4 rules are used to assign a colour to each region. The first rule can
be read as “colour the region X red unless you already coloured it blue, green or yellow”.
The other three rules can be similarly understood. The last rule states that when X and Y
are adjacent they cannot have the same colour C.
Thus far, we described the general problem, but we did not specify a problem instance.

The problem instance can also be specified in the form of rules, as above. These rules
are somewhat different in that they are unconditionally true, i.e. the rules describe facts.
We consider the following problem instance, which represents the Belgian provinces and
Brussels:

region(we)← region(ea)← region(an)←
region(lm)← region(fl)← region(wa)←
region(br)← region(ha)← region(na)←
region(li)← region(lu)←

adjacent(we, ea)← adjacent(we, ha)← adjacent(ea, an)←
adjacent(ea, fl)← adjacent(ea, ha)← adjacent(an, fl)←
adjacent(an, lm)← adjacent(lm, fl)← adjacent(lm, li)←
adjacent(li, f l)← adjacent(li, wa)← adjacent(li, na)←
adjacent(li, lu)← adjacent(lu, na)← adjacent(na,wa)←

adjacent(na, ha)← adjacent(wa, fl)← adjacent(fl, br)←
adjacent(ha, fl)← adjacent(ha,wa)←

Together these rules form the ASP program Pmap. When an ASP program is solved, it
may have zero, one or many answer sets. A program with zero answer sets represents a
problem without a solution. When there is one answer set, then this corresponds with the
unique solution to the problem. Otherwise, the problem has a number of answers and the
user can either reason over all the answer sets (e.g. “must Brussels and Antwerp always
have the same colour?”) or ask for one or more answer sets. The ASP program Pmap
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1.1. ANSWER SET PROGRAMMING

has multiple answer sets, including the following:

M ∪ {colour(we, blue), colour(ea, green), colour(an, red), colour(li, blue),
colour(ha, red), colour(br , red), colour(fl, yellow), colour(wa, green),
colour(na, blue), colour(li, red), colour(lu, green)}

where M contains information w.r.t. the facts, i.e. the problem instance. The correspond-
ing colouring is shown in Figure 1.1.

Figure 1.1: A map colouring corresponding with an answer set.

Other semantics have been devised to deal with expressions of the form ‘not a’. Spe-
cifically, in [Van Gelder et al. 1988] the well-founded semantics are introduced. These
semantics are three-valued and assign to each atom the value true, false or unknown.
It was realised, however, in [Baral and Subrahmanian 1993] that the well-founded se-
mantics agree with the stable model semantics. That is, atoms that were found to be true
or false remained true or false, respectively, under the stable model semantics. The well-
founded semantics, however, have the benefit that they are easier to compute and can be
used as a preliminary step in the computation of the answer sets of a program. This in
turn led to solvers for ASP [Simons 1999, Niemelä and Simons 2000, Baral 2003], which
can be used to efficiently compute the answer sets of ASP programs such as Pmap. Over
the last two decades, many others definitions of the stable model semantics have been
formulated where each new definition has contributed new insights [Lifschitz 2008]. In
Chapter 4 of this thesis we present another such definition, where we show how the se-
mantics of ASP can be expressed as constraints on possibility distributions, which we will
discuss in more detail in Section 1.3 and 2.3. Such a characterization allows us to define
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the semantics of Possibilistic Answer Set Programming (PASP), an extension of ASP to
allow us to reason about uncertain information, in a natural way. Furthermore, as we will
see in Section 4.3.2, using this characterization we can unearth a new form of disjunction
in ASP with interesting complexity results.
While ASP is an excellent tool to model e.g. planning problems, it is not an ideal vehicle

for modelling multi-agent problems or problems with uncertainty. However, such problems
are widespread in common-sense reasoning. For example, we may be uncertain whether or
not a booked flight will leave on time. Information of this form cannot easily be modelled
in ASP, since information in ASP is either true or false and we have no means of expressing
uncertainty w.r.t. such statements. Still, humans are able to reason with such information
and would be able to conclude that e.g. they still need to go to the airport. The ability
to communicate and exchange information is also an important part of common-sense
reasoning. Let us consider the following example, which we present in more detail in
Chapter 3. Two agents look at a box from different angles. The box itself has a 2×3 floor
plan and the ball, which both agents try to find, is located on one square of this floor plan.
To complicates matters, some sections of the box are out of sight. From the point of view
of Mr .1 the box is divided into two parts – of which one is blocked – and he cannot see
a ball in the unblocked part. The other agent, Mr .2 , can see that the box is divided into
three parts – two of which are blocked – but this agent can see a ball in the unblocked
part. This is depicted in Figure 1.2. By cooperating, which requires communication, the
agents can work together to determine the exact location of the ball. Once again, such
information is hard to encode in ASP since ASP does not provide means to e.g. allow for
communication between different ASP programs. In the next two sections, we look at a
number of ideas which will allow us to devise such epistemic extensions of ASP.

1
Mr. 2

Mr.

Figure 1.2: A magic box.

1.2 Epistemic Reasoning
In the previous section we discussed how the stable model semantics can be defined
by equating an expression of the form ‘not a’ with ‘¬La’, i.e. “it is not believed that
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‘a’ [is true]”. We thus express the semantics of ASP in terms of what is believed or
known. Reasoning about what is known or believed is an interesting subdomain of lo-
gic, called epistemic logic or the Theory of Knowledge. The focus in this subdomain is
on the nature of knowledge and how it relates to concepts such as justification, truth
and belief. Epistemic logic forms a subset of modal logic [Chellas 1980] and was already
studied by Aristotle, although the logic proposed by Aristotle at the time exhibited many
flaws [Uckelman and Johnston 2010]. The work in [von Wright 1951] can be seen as the
start of the formal study of epistemic logic as it is known today.
Epistemic logic can be used to provide useful insights of an individual agent. By intro-

ducing a modal operator K, i.e. “it is known that”, it becomes possible to reason about
what this agent knows. For example, we are able to differentiate between ‘winner’ and
‘Kwinner’, i.e. we can differentiate between ‘the agent is the winner of the jackpot’ and
‘the agent knows that he is the winner of the jackpot’. Clearly, these two things can be
very different (just imagine the difference in excitement). Epistemic logic also helps to
provide interesting insights when we are dealing with a group of agents. Indeed, we can
not only reason about what each individual agent knows, but we can furthermore reason
about what is known by the group as a whole. Still, even though ASP can be defined
in terms of an epistemic logic, classical ASP does not allow for multiple ASP programs,
or agents, to communicate and cooperate. Such extensions have been proposed in the
literature, but it remains unclear what exactly contributes to an increase in the power
of such ASP programs. This is a problem which we discuss and clarify in Chapter 3 by
showing that the choice of the communication mechanism is paramount in terms of the
expressive power of the resulting system.
To define the semantics of epistemic logic, we can represent the information in epistemic

logic by means of possible worlds, one of which is the actual world. Each such world is
compatible with the beliefs of the agent, i.e. it corresponds with a possible scenario of
the actual world according to the agent. Worlds indiscernible by the agent are connected
by an accessibility relation, represented by arrows. An example is given in Figure 1.3. In

rain, sunday ¬rain, sunday

Figure 1.3: Representation of an epistemic state.

this example, the agent is unable to differentiate between a world in which it rains and
one in which it is not raining. At the same time, only worlds in which Sunday is true
are consistent with his beliefs. As such, the agent knows that it is Sunday, i.e. Ksunday,
whereas the agent does not know whether it is raining, i.e. ¬Krain. Still, as indicated,
one of these worlds is the actual world. As such we may e.g. have that rain is true.
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Autoepistemic logic [Moore 1985], which we already briefly discussed, is another logic
that can be used for epistemic reasoning. In autoepistemic logic a modal operator L,
which is read as “it is believed that”, is considered instead of a modal operator K. As such,
autoepistemic logic can be used to model an agent reflecting upon his own beliefs. The se-
mantics were originally defined in terms of a fixpoint operator, but can also be defined
in terms of possible worlds semantics [Moore 1984]. Specifically, in autoepistemic logic,
the stable autoepistemic theories can be identified as the sets of formulas that are true in
a complete possible world structure11, i.e. a structure in which every world is accessible
from every world [Moore 1984].
The stable model semantics, the semantics that underpin ASP, also have a strong epi-

stemic foundation, as shown in [Loyer and Straccia 2006]. Intuitively, we already discussed
how the original definition of the stable model semantics equates an expression of the form
‘not a’ with ‘¬La’, i.e. “it is not believed that ‘a’ [is true]”. In a sense, when looking at an
ASP program from an epistemic point of view, negation-as-failure can thus be seen as a
form of epistemic uncertainty, i.e. uncertainty caused by the practical inability to determine
the truth of some statement. This is the case in Figure 1.3, where the agent is unable
to determine whether it is raining. This inability may have many causes. It may be too
costly for the agent to find out whether it is raining (e.g. the agent may be underground
and unwilling/incapable to check wether it is raining) or the agent may simply be ignorant
as to whether or not it is raining.
However, uncertainty can be more general than merely the absence of information. In-

deed, we may have a degree of certainty towards a statement. For example, in Figure 1.3,
the agent may have overheard a discussion where he thought they were saying that it is
raining. As such, the agent may prefer his belief that it is raining over his belief that it is
not raining. Or, to put it differently, the agent will be more surprised when he would dis-
cover that is not raining. This specific type of uncertainty has a qualitative characteristic,
as it only allows us to rank-order the different worlds. In the next section, we describe a
theory specifically developed to reason about such (qualitative) uncertainty.

1.3 Possibility Theory
Aristotle already realized that being able to deal with uncertainty is an essential component
of common-sense reasoning. Aristotle was in particular interested in determining what is
possible and necessary12. Still, at the time, the concepts of possibility and necessity
were strongly rooted in modal logic and described binary concepts, i.e. statements that

11Specifically, we need to consider an S5 structure, i.e. a structure corresponding with the S5 modal
logic: http://en.wikipedia.org/wiki/S5_(modal_logic).

12Source: http://plato.stanford.edu/entries/aristotle-logic/, retrieved March 16, 2013.
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1.3. POSSIBILITY THEORY

are either true or false. In the 1960’s, Shackle presented work on degrees of potential
surprise [Shackle 1961], an idea closely related to possibility theory, that allows for dealing
with incomplete information. In this view, potential surprise is understood as disbelief.
For example, when betting on horses we may know that one of the two horses, horse B,
has an injury. If horse B still won, we would be surprised, i.e. we believe it to be more
plausible that horse A will win in this race.
Later, in the 1970’s, the philosopher David Lewis introduced the notion of a graded

possibility in [Lewis 1973]. This notion, called comparative possibility, was defined as a
form of weak ordering between the possible worlds. He furthermore extended upon this
idea by showing that the notion of similarity between possible worlds and the notion of a
most plausible world can be defined in terms of comparative possibility.
The first work on possibility theory, where it is named as such, is [Zadeh 1978]. In this

work, Zadeh interprets membership functions of fuzzy sets as possibility distributions that
act as flexible constraints on the values that can be assigned to a variable. For example,
the membership function µtall , which describes the word ‘tall ’, induces a possibility dis-
tribution Π where Π denotes how compatible the value x is with tall. As such, we would
e.g. find that Π(1.90m) ≈ 1 as it is entirely possible that someone who is considered
to be tall has an actual height of 1.90m. Similarly, Π(1.40m) ≈ 0 as we would be very
surprised if someone identifies a person of only 1.40m as tall. This idea immediately links
back to the notion of potential surprise from [Shackle 1961]. Indeed, we would be more
surprised to find a person described as tall to have an actual height of 1.40m, which we
consider almost impossible, than that we would be if the person has a height of 1.90m,
which we consider entirely possible.
The work from Zadeh is important for a number of reasons. First, it highlights the close

link between possibility theory and fuzzy sets, where fuzzy sets combine both uncertainty
(which can be modelled by possibility theory) with gradualness (or multi-valuedness).
This highlights a principal distinction between possibility theory and multi-valued theories.
Indeed, stating that a bottle is half full (denoted as bottle full = 0.5) is different from
stating that it is somewhat possible that the bottle is full (denoted as Π(bottle full) = 0.5).
Specifically, in the latter case we are expressing our uncertainty about whether or not the
Boolean statement bottle full is true or not. In the first case we no longer consider a
Boolean statement, but rather assume that the bottle is in a state between empty and
full. In addition, the difference between possibility theory and most multi-valued logics
is not merely conceptual. Indeed, possibility theory is e.g. not truth-functional. As such,
the truth of a statement in possibility theory is not necessarily a function of the truth of
its constituents. In fact, possibility theory would become trivial when it is forced to be
truth-functional [Dubois and Prade 2001].
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Furthermore, the work from Zadeh shows important relations, and differences, between
possibility and probability theory (see e.g. [Loève 1977]). Both theories are used to deal
with uncertainty and Zadeh showed how possibility theory can be used as an approximation
of probability theory. However, possibility theory differs from probability theory by the use
of a pair of dual set-functions (namely possibility and necessity measures) instead of only
one function (probability-measure). Probability theory, which has a single set-function
and in which uncertainty is additive, is a good model of randomness and indecisiveness.
Possibility theory only exploits the fact that the unit interval is a total ordering. Together
with the use of a pair of dual set-functions, this makes possibility theory a good model
of partial ignorance [Dubois et al. 1993] and epistemic uncertainty. As such, both pos-
sibility and probability theory capture a different facet of uncertainty and both theories
complement each other.
In the last two decades Dubois and Prade considerably elaborated on the work from

Zadeh w.r.t. possibility theory and developed it into an effective framework for reasoning
about uncertainty. Aside from many interesting technical results, they also proposed
possibilistic logic in [Dubois et al. 1994]. Possibilistic logic combines possibility theory
with propositional logic to obtain a logic capable of reasoning under uncertainty. As we will
see in this thesis, this forms the basis of PASP, which is an extension of ASP first proposed
in [Nicolas et al. 2006] that allows us to combine non-monotonic reasoning, declarative
programming and reasoning about uncertainty in a single framework. However, we will
discuss in Chapter 4 that the existing semantics for PASP, do not always correspond with
the intuition of the problem. This is due to their particular treatment of negation-as-
failure. As such, we show in Chapter 4 how alternative semantics for PASP can be defined
that adhere to a different intuition of negation-as-failure. These new semantics can be
used when the existing semantics for PASP offer unintuitive results. In addition, these new
semantics will allow us to provide a new characterization for ASP which will allow us to
unearth a new form of disjunction. In Chapter 5 we furthermore show that the uncertainty
in PASP can be interpreted in a number of ways. This will allow us in Section 5.3 to use
PASP to solve a number of important problems in Artificial Intelligence.

1.4 Thesis Outline

Answer Set Programming (ASP) is capable of modelling and solving hard combinatorial
problems. However, the lack of abilities in ASP to model knowledge of a network of agents,
who can cooperate, and the inability to deal with uncertainty hamper its practical ability
to be used for common-sense reasoning.
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The aim of this thesis is to look at epistemic extensions of ASP, i.e. we are interested
in extensions of ASP that allow us to reason about the knowledge described in a given
context. For starters, we are interested in ways of extending ASP such that we can con-
ceptually reason about a group of contexts. To this end, we propose CASP in Chapter 3,
which is a declarative domain-specific programming language that allows for a network of
ASP programs to share knowledge and collaborate towards finding a solution to complex
problems. We show how the simple mechanism of asking questions is sufficient to sim-
ulate negation-as-failure. We furthermore show that the addition of focussing, another
simple mechanism used to define a linear order among the agents, considerably affects the
complexity and expressiveness of the resulting framework.
Furthermore, in this thesis we want to look at extensions of ASP that allow us to reason

about uncertainty. Specifically, we will present new semantics for PASP in Chapter 4 and 5.
PASP combines ASP with Possibilistic Logic to provide a declarative framework for non-
monotonic reasoning under uncertainty. Syntactically, a weight is associated with a classic
ASP rule, where the weight denotes the maximum certainty with which we can derive
the conclusion. The existing semantics of PASP, however, have a number of issues which
we point out in Chapter 4. To uncover alternative semantics for PASP, we show how
ASP can be characterized in terms of constraints on possibility distributions. This new
characterization of the stable model semantics can then trivially be extended to cover
PASP, which overcomes some of the issues of the existing semantics for PASP. In addition,
this new characterization reveals a new interpretation of disjunction in ASP called weak
disjunction. This new form of disjunction is closer to an epistemic understanding of ASP
and turns out to be non-trivial. Indeed, this new form of disjunction is more complex and
expressive than normal programs, although less so than strong disjunction, i.e. the form
of disjunction widely used in ASP.
While the new semantics for PASP solve a number of issues, they are not the only way

in which the weights attached to the rules can be interpreted. In particular, both the
semantics which we introduce in Chapter 4 and the existing semantics of PASP associate
the weight, which is attached to a classic ASP rule, with the certainty of the conclusion.
It is also possible to see this weight as the certainty with which the rule itself is true,
i.e. the certainty that the information encoded in the rule is valid. These two views,
uncertain conclusions versus uncertain rules, are contrasted in Chapter 5. We find that
the new view of uncertain rules results in new decision problems and we thoroughly discuss
their complexity.
In Chapter 6 we look back at CASP and PASP and we discuss how these newly introduced

frameworks can be efficiently translated to classical ASP. As such, we demonstrate that
it is possible to use the highly optimised solvers available for ASP to efficiently compute
both communicating and possibilistic answer sets.
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The results in this thesis have been published, or submitted for publication, in in-
ternational journals and the proceedings of international conferences with peer review.
Specifically, CASP was first introduced in [Bauters et al. 2010a], extended with focussing
in [Bauters et al. 2011a] and studied in more detail in [Bauters et al. 2013a]. The ap-
plicability of CASP for modelling negotiations was briefly discussed in [Bauters 2011].
New semantics for PASP and the characterization of ASP in terms of constraints on possib-
ility distributions were proposed in [Bauters et al. 2010b]. In [Bauters et al. 2011b] it was
shown that this characterization naturally gave rise to a new form of disjunction in ASP.
These results were bundled and studied in further detail in [Bauters et al. 2012a]. The al-
ternative interpretation of weights in ASP was first introduced in [Bauters et al. 2012b]
and further discussed and contrasted with the earlier views in [Bauters et al. 2013b].
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2 | Preliminaries

In this chapter we introduce some preliminary notions from complexity theory, answer set
programming, possibilistic logic and possibilistic answer set programming.

2.1 Complexity Theory

We start by recalling some notions from complexity theory. A Turing machine [Turing 1936,
Papadimitriou 1994] is a hypothetical machine that forms the cornerstone of complexity
theory. A representation of a possible Turing machine is given in Figure 2.1.

q0
q1

q2

q3
q4

q5

current state input new state action
q1 a q1 R
q1 b q2 L

.

.

.
.
.
.

.

.

.
.
.
.

tape

cell tape head

rule table
control

Figure 2.1: A graphical representation of a Turing machine.
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A Turing machine consists of a finite set of states Q (i.e. the control), an infinite tape
divided in cells each containing a symbol from the alphabet Γ (i.e. the memory) and
a tape head used to read/write from/to the tape. The tape head is always positioned
over exactly one cell. Initially, the Turing machine is in the initial state q0 ∈ Q and
the tape is filled with blank symbols B ∈ Γ except for a contiguous finite sequence of
cells (i.e. the input). The tape head is positioned above the first cell of this sequence.
At each time step, depending on the current state q ∈ Q and the symbol γ ∈ Γ read
from the tape, the Turing machine can transition to another state q′ ∈ Q and perform
an action with the tape head. As an action, the tape head can write a symbol from
the alphabet Γ to the tape or it can be moved either to the cell on the left (L) or the
right (R) of the current cell. The way that the Turing machine behaves is described by
a set of rules, i.e. the rule table. Each rule has the form (q, s, q′, a) with q, q′ ∈ Q, s ∈ Γ
and a an action, i.e. either a symbol s′ ∈ Γ or L or R. Some of the states q ∈ Q are
special. In particular, we consider a set QA ⊆ Q of accepting states and a set QR ⊆ Q of
rejecting states. A Turing machine halts immediately when it enters either an accepting
or a rejecting state. Consequently, we say that the input is accepted or rejected when
the Turing machine has entered an accepting or rejecting state, respectively. The Turing
machine may also enter a loop, where the machine runs indefinitely and never enters a
state in which the machine halts. A Turing machine is deterministic when for every pair
q, s there is exactly one rule (q, s, q′, a), i.e. given the current state q and the symbol s
read from the tape, there is exactly one corresponding new state q′ and action a. A Turing
machine is non-deterministic when for every pair q, s there may be zero or more rules of the
form (q, s, q′, a). Whenever there is no deterministic choice, the Turing machine branches
into many copies where each branch follows one of the possible transitions. Thus, rather
than a single computation path, a non-deterministic Turing machine has a computation
tree. If at least one of these branches halts in an accepting state, we say that the input
is accepted. This branching behaviour is illustrated in Figure 2.2.

(a) computation path of a
deterministic TM

(b) computation tree of
a non-deterministic TM

Figure 2.2: Deterministic versus non-deterministic TM.
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A Turing machine as described above is a theoretical model of computability that can
easily be understood. Still, it is powerful enough to encompass everything that is com-
putable. Specifically, the Church-Turing thesis states that a function is algorithmically
computable if and only if it is computable by a Turing machine.

Example 1

Consider the Turing machine M such that Q = {go, end}, QA = {end}, QR = {},
Γ = {0, 1, B} and q0 = go. Furthermore, the rule table consists of the following
three rules:

(go, 0, go, 1) (go, 1, go, R) (go, B, end, B)

When the Turing machine reads a 0 on the tape, it writes a 1. When it reads a 1, it
moves the tape head to the right. When it reaches the end of the input (i.e. it reads
a blank B symbol), it goes into an accepting state. As such, we have successfully
defined a program that will overwrite the input with 1’s.

In complexity theory we are often interested in languages, where a language over an
alphabet Σ is a subset of Σ∗, i.e. the set of all strings over symbols in Σ including the
empty string. A Turing machine is said to accept a language L if and only if the Turing
machine accepts the input when the input is a member of L and rejects the input otherwise.
We are particularly interested in deciders, i.e. Turing machines that always either accept
or reject given an input. Problems that can be solved by deciders are also often referred
to as decision problems, i.e. those problems for which the solution is either yes or no.
The complexity class P is defined as the set of languages accepted on a deterministic

Turing machine in time O(nc), with n the input length and c a natural number, i.e. the
Turing machine makes at most O(nc) steps before reaching either an accept or reject state.
Equivalently, the complexity class P can thus be defined as the set of decision problems that
can be solved in polynomial time on a deterministic Turing machine [Papadimitriou 1994].
The complexity class NP is defined as the class of decision problems that can be solved
in polynomial time on a non-deterministic Turing machine, i.e.

• if the answer is yes, at least one computational path exists that accepts the input;
• if the answer is no, all the computational paths reject the input.

An equivalent definition of the complexity class NP is that it is the set of decision prob-
lems for which the proof that the answer is yes can be verified in polynomial time by a
deterministic Turing machine, i.e. in P [Papadimitriou 1994].
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These two complexity classes give rise to a whole range of new complexity classes.
The complexity classes ΣP

k and ΠP
k are defined as follows, for i ∈ � [Papadimitriou 1994]:

ΣP
0 = ΠP

0 = P

ΣP
i+1 = NPΣP

i

ΠP
i+1 = co

(
ΣP
i+1
)

where NPΣP
i is the class of decision problems that can be solved in polynomial time on a

non-deterministic Turing machine with an ΣP
i oracle, i.e. assuming a procedure that the

Turing machine can call to solve ΣP
i decision problems in constant time. We have that

co
(
ΣP
i+1
)
is the class of problems whose complement is a decision problem in ΣP

i+1, i.e. the
problem where we reverse the yes and no answer. We also consider the complexity class
BH2 [Cai et al. 1988], which is the class of all languages L such that L = L1 ∩ L2, where
L1 is in NP and L2 is in coNP. For a general complexity class C, a problem is C-hard if
any problem in C can be efficiently reduced to this problem. In particular, this means that
we have a log-space reduction to this problem when the problem is in P or a polynomial
time reduction to this problem when the problem is in some complexity class other than
P. A problem is said to be C-complete if the problem is in C and the problem is C-hard.
Before we define some well-known problems in the complexity classes that we just defined,

we need to introduce some additional terminology. An expression such as x1 is called
an atom. Expressions such as x1 and ¬x2 are called literals, i.e. an atom or an atom
preceded by classical negation. A clause is a disjunction of literals, e.g. (x1 ∨¬x2 ∨¬x3).
An expression is said to be in conjunctive normal form (CNF) when it is a conjunction
of clauses, e.g. (x1 ∨ ¬x2 ∨ ¬x3) ∧ (x2 ∨ x4 ∨ x5). Similarly, an expression is said to
be in disjunctive normal form (DNF) when it is a disjunction of terms where each term
is a conjunction of literals.
The boolean satisfiability problem (SAT) is the decision problem of determining for some

boolean expression φ whether an assignment of true or false to the variables exists that
makes the expression true in the usual sense. This problem is NP-complete [Cook 1971].

Example 2

Consider the expression φ = (x1 ∨ x2 ∨ x3)∧ (¬x1 ∨¬x2) where ∨, ∧ and ∨ denote
classical disjunction, conjunction and negation, respectively. An assignment that
makes φ true is, e.g. where x1 is true and x2 is false and the value of x3 can either
be true or false. The expression ψ = (x1 ∨¬x2 ∨¬x3)∧¬x1 ∧ x2 ∧ x3 on the other
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hand is not satisfiable, i.e. there does not exist an assignment of truth values to make
the expression ψ true.

The unSAT problem is the complementary problem of SAT. Thus this is the problem
of verifying, given a boolean expression φ, whether φ has no assignment that makes the
expression true. This problem is coNP-complete [Cook 1971]. SAT-unSAT is the canonical
BH2-complete problem and consists of determining for some pair (T, S) of propositional
theories in conjunctive normal form (CNF) whether T is satisfiable and S is unsatisfiable.
A generalization of SAT is the Quantified Boolean Formula (QBF) problem. In this

generalization, both existential and universal quantifiers can be applied to each variable.
Let p(X1, X2, ..., Xn) be a propositional formula defined over the variables X1, X2, ..., Xn.
Deciding the validity of a QBF φ = ∃X1∀X2 . . .ΘXn·p(X1, X2, ..., Xn) withXi, 1 ≤ i ≤ n,
sets of variables, Θ = ∃ if n is odd and Θ = ∀ otherwise, is the canonical ΣP

n-complete
problem. Deciding the validity of a QBF φ = ∀X1∃X2...ΘXn · p(X1, X2, ..., Xn) with
Θ = ∀ if n is odd and Θ = ∃ otherwise, is the canonical ΠP

n-complete problem. Moreover,
these results also hold when we restrict ourselves to problems with p(X1, X2, ..., Xn) in
disjunctive normal form (DNF), except when the last quantifier is an ∃.1

Example 3

The QBF ∃x1∀x2, x3 · φ with φ as defined in Example 2 is not satisfiable. Indeed,
if x1 is true then φ is not satisfiable when x2 is true. If x1 is false, then φ is not
satisfiable when x2 is also false. However, the QBF ∃x1, x3∀x2 ·φ is satisfiable since,
when x1 is false and x3 is true, φ is true regardless of the assignment of x2.

2.2 Answer Set Programming

We now introduce Answer Set Programming (ASP) [Gelfond and Lifschitz 1988]. In this
subsection, we first define the syntax and the semantics of ASP. Then, we discuss the
complexity of various classes of ASP. Finally, we discuss how an ASP program can be sim-
ulated using a set of clauses, which will be used in Chapter 6 to simulate normal programs.

1Given a QBF with the last quantifier an ∃ and a formula in disjunctive normal form, we can reduce
the problem in polynomial time to a new QBF without the last quantifier. To do this, for every variable
quantified by this last quantifier we remove those clauses in which both the quantified variable and its
negation occur (contradiction) and then remove all occurrences of the quantified variables in the remaining
clauses as well as the quantifier itself. The new QBF is then valid if and only if the original QBF is valid.
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2.2.1 Syntax
To define ASP programs, we start from a finite set of atoms A. A literal is defined as an
atom ‘a’ or its classical negation ‘¬a’. For a set of literals L, we use ¬L to denote the
set {¬l | l ∈ L} where, by definition, ¬¬a = a. A set of literals is said to be consistent
when L∩¬L = ∅, i.e. L does not contain two contradictory literals. The set of all literals
is written as L = A ∪ ¬A. A naf-literal is either a literal ‘l’ or an expression of the form
‘not l’, where ‘not’ denotes negation-as-failure. Intuitively, we have that ‘not l’ is true
when we have no proof for ‘l’.
A disjunctive rule is an expression of the form

l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln

where li is a literal for every 0 ≤ i ≤ n. We say that l0; ...; lk is the head of the rule
(interpreted as a disjunction) and that lk+1, ..., lm, not lm+1, ..., not ln is the body of
the rule (interpreted as a conjunction). For a given rule r we use head(r) and body(r) to
denote the set of naf-literals in the head and the body of the rule, respectively. Specifically,
we use body+(r) to denote the set of literals in the body that are not preceded by the
negation-as-failure operator ‘not’ and body−(r) for those literals that are preceded by ‘not’.

Example 4

Consider the rule

r = (bbq; beach ← sunny,¬work, not rain).

We have that bbq; beach is the head of the rule, while sunny,¬work, not rain is
the body of the rule. Furthermore, we have that head(r) = {bbq, beach} and
body(r) = {sunny,¬work, not rain}. More precisely, we have that body+(r) =
{sunny,¬work} and body−(r) = {rain}.

Specific types of rules can be identified based on their syntactic properties. In particular,
we distinguish the following types.

• When a rule r has an empty body, i.e. body(r) = ∅, we say that the rule is a fact
rule. This is a shorthand notation for (l0; ...; lk ← >) with > a special language
construct denoting tautology.

• When a rule r has an empty head, i.e. head(r) = ∅, we say that the rule is a con-
straint rule. This is a shorthand notation for (⊥ ← lk+1, ..., lm, not lm+1, ..., not ln)
with ⊥ another special language construct denoting contradiction.
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• When a disjunctive rule r does not contain negation-as-failure, i.e. when m = n, we
say that the rule is a positive disjunctive rule.

• When a disjunctive rule r has at most one literal in the head, i.e. |head(r) | ≤ 1, we
say that the rule is a normal rule.

• When a normal rule r does not contain negation-as-failure, i.e. body−(r) = ∅, we
say that the rule is a simple rule.

• When a simple rule r does not contain classical negation, i.e. all the literals are
atoms, we say that the rule is a definite rule.

Definition 1

A disjunctive (resp. positive disjunctive, normal, simple, definite) program is a finite
set of disjunctive (resp. positive disjunctive, normal, simple, definite) rules.

Example 5

sunny ←
day off ←

bbq; beach ← sunny,¬work, not rain
¬work ← day off

← broke

The first two rules are examples of fact rules. The third rule is a disjunctive rule. It is
not a positive disjunctive rule, since it uses negation-as-failure in its body. The pen-
ultimate rule is a simple rule. It is not a definite rule, since it uses classical negation
in the head. The last rule is an example of a constraint rule. This set of rules form
a disjunctive program. It is not a positive disjunctive program, however, due to the
third rule in the program.

2.2.2 Semantics
Thus far we discussed how the language of ASP is constructed. We now attach a meaning
to an ASP program. Intuitively, we want the semantics of ASP to correspond with the con-
clusions that can be derived from the knowledge that is expressed using an ASP program.
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We start by defining the Herbrand base BP of a disjunctive program P , which is the
set of atoms appearing in P . The set of literals relevant for a disjunctive ASP program
is defined as LitP = (BP ∪ ¬BP ). An interpretation I of a disjunctive program P is any
set of literals I ⊆ LitP . A consistent interpretation is an interpretation I that does not
contain both ‘a’ and ‘¬a’ for some a ∈ I.

Definition 2

A consistent interpretation I is amodel of a positive disjunctive rule r if head(r)∩I 6=
∅ or body(r) 6⊆ I, i.e. the body is false or the head is true.

In particular, a consistent interpretation I is a model of a constraint rule r if body(r) 6⊆ I.
If for an interpretation I and a constraint rule r we have that body(r) ⊆ I, then we say
that the interpretation I violates the constraint rule r. Notice that for a fact rule we
require that head(r) ∩ I 6= ∅, i.e. at least one of the literals in the head must be true.
Indeed, otherwise I would not be a model of r. The body of the rule can thus be seen as
the preconditions under which the head of the rule, the conclusions, are true.

Definition 3

An interpretation I of a positive disjunctive program P is a model of P either if I is
consistent and for every rule r ∈ P we have that I is a model of r, or if I = LitP .

It follows from this definition that LitP is always a model of P , and that all other
models of P (if any) are consistent interpretations, which we will further on also refer
to as consistent models.

Definition 4

We say that an interpretation I is an answer set of the positive disjunctive program
P if I is a minimal model of P w.r.t. set inclusion, i.e. there does not exist another
model I ′ of P such that I ′ ⊂ I.

Example 6

Consider the program P6 with the rules

red; green; blue ← ball
ball ←
← blue
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It is easy to see that this is a positive disjunctive program. We can verify that this
program has two minimal models, namely M1 = {ball, red} and M2 {ball, green}.
Both M1 and M2 are answer sets of P6.

Thus far we only considered positive disjunctive programs, i.e. programs without negation-
as-failure. For programs with negation-as-failure, the minimal models need not necessarily
correspond with our intuition.

Example 7

Consider the program P7 with the rules

sunny ←
bbq ← sunny, not rain

Intuitively, this program encodes that it is sunny, and that when it is sunny and
there is no indication that it rains we will hold a barbecue. This program has two
minimal models. The minimal models {sunny, rain} and {sunny, bbq} both contain
knowledge that was not explicitly present. Indeed, the first minimal model assumes
that rain is true, whereas the second minimal model assumes that there is no evidence
to support that rain is true.

Intuitively, ‘not l’ is understood as “it cannot be proven that l is true”. Given this
intuition, we only want the second minimal model from P7 in Example 7. To this end, the
semantics of an ASP program with negation-as-failure are based on the idea of a stable
model [Gelfond and Lifschitz 1988].

Definition 5

The reduct P I of a disjunctive program P w.r.t. the interpretation I is defined as
the set of rules:

P I = {l0; ...; lk ← lk+1, ..., lm | ({lm+1, ..., ln} ∩ I = ∅)
and (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln) ∈ P}.

Intuitively, we guess some interpretation I and use this guess to remove negation-as-
failure from the original program. We discard those rules r where body−(r) ∩ I 6= ∅,
i.e. those rules that are trivially satisfied by I (since the body can intuitively not be
satisfied by I), and we remove the naf-literals of the form ‘not l’ from the remaining rules.
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Definition 6

An interpretation I is said to be an answer set of the disjunctive program P when I
is an answer set of the positive disjunctive program P I (hence the notion of stable
model).

Whenever a disjunctive program P has consistent answer sets, i.e. answer sets that are
consistent interpretations, we say that P is a consistent program.2 When P has the answer
set LitP , then this is the unique [Baral 2003] inconsistent answer set and we say that P
is an inconsistent program.

Example 8

Consider the normal program P8 with the rules:

apple ← green ← not blue blue ← not green ← blue

We have that BP = {apple, blue, green}. Three consistent interpretations of P are
{apple, blue, green}, {apple, green} and {apple, blue}. The first and last interpreta-
tion violate the constraint rule. Furthermore, the first interpretation is not minimal
w.r.t. the other two interpretations. Only the second interpretation is a model of P .
In particular, for I = {apple, green} we have that P I is the program with the set of
rules

apple ← green ← ← blue

for which it is immediately clear that {apple, green} = I is the minimal model and
thus the answer set of P I , i.e. I is an answer set of P . Furthermore, we say that P
is a consistent program since it has consistent answer sets.

Answer sets of simple programs can also be defined in a more procedural way.

Definition 7

The immediate consequence operator TP is defined for a simple program P w.r.t. an
interpretation I as:

TP (I) = {l0 | (l0 ← l1, ..., lm) ∈ P and l1, ..., lm ⊆ I} .

2Notice that also the empty set can be a consistent answer set.
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It is easy to see that this operator is monotonic and the operator is defined over a
complete lattice. Due to [Tarski 1955] we then know that the least fixpoint of TP
w.r.t. set inclusion can be computed by repeatedly applying TP starting from the
empty interpretation ∅. We denote this least fixpoint by P ?.

Proposition 1: from [Baral 2003]

Let P be a simple program without constraint rules. When the interpretation P ? is
consistent, P ? is the unique and consistent answer set of P .

When we also want to take programs with constraint rules under consideration, we can
use the observation that, in general, a program P can be written as P = P ′ ∪ C with C
the set of constraint rules in P . When we allow constraint rules, an interpretation is a
(consistent) answer set of P = P ′ ∪ C iff I is a (consistent) answer set of P and I is a
model of C, i.e. I does not violate any constraints in C.

2.2.3 Complexity of ASP
When we want to analyse the complexity of ASP, we are not only interested in the answer
sets themselves but also in a number of reasoning tasks. In particular, we are interested
in whether a consistent answer set exists and whether a given literal is true in some or
all answer sets of the program.

Definition 8

Let P be a disjunctive ASP program. We use |=b and |=c to denote brave inference
and cautious inference, respectively, in ASP, i.e.

• P |=b l iff ∃M ·M is an answer set of P and l ∈M ;
• P |=c l iff 6 ∃M ·M is an answer set of P and l /∈M .

Depending on the syntactic properties of our ASP program, the computational complexity
of these reasoning tasks can vary considerably.

Proposition 2: from [Baral 2003, Eiter and Gottlob 1995a]

Let P be an answer set program. Answer set existence, i.e. determining wether P
has a consistent answer set is:

• ΣP
2 -complete when P is a disjunctive program;
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• NP-complete when P is a positive disjunctive program;
• NP-complete when P is a normal program;
• P-complete when P is a simple program;
• P-complete when P is a definite program.

Proposition 3: from [Baral 2003, Eiter and Gottlob 1995a]

Let P be an answer set program. Let ‘l’ be a literal. Brave reasoning, i.e. determining
whether P |=b l, is:

• ΣP
2 -complete when P is a disjunctive program;

• ΣP
2 -complete when P is a positive disjunctive program;

• NP-complete when P is a normal program;
• P-complete when P is a simple program;
• P-complete when P is a definite program.

Proposition 4: from [Baral 2003, Eiter and Gottlob 1995a]

Let P be an answer set program. Let ‘l’ be a literal. Cautious reasoning, i.e. determ-
ining whether P |=c l, is:

• ΠP
2 -complete when P is a disjunctive program;

• coNP-complete when P is a positive disjunctive program;
• coNP-complete when P is a normal program;
• P-complete when P is a simple program;
• P-complete when P is a definite program.

Recalling the canonical problems from Section 2.1, this means that we can use brave
reasoning over a disjunctive program to simulate a QBF of the form ∃X1∀X2 · p(X1, X2).
However, to simulate such a QBF we need a technique called saturation. This technique
was first proposed in [Eiter and Gottlob 1995b] and plays an important role in a number
of proofs in this thesis.

Proposition 5: from [Baral 2003]

Let φ ≡ ∃X1∀X2 · p(X1, X2) be a QBF with p(X1, X2) an expression in DNF,
i.e. p(X1, X2) is of the form θ1∨ ...∨θn with θi for 1 ≤ i ≤ n a conjunction of literals
constructed from the variables in X1 and X2. Let the corresponding disjunctive
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program Pφ be defined as the set of rules:

{x;x′ ← | x ∈ (X1 ∪X2)} (2.1)
∪ {sat← θ′i | 1 ≤ i ≤ n} (2.2)
∪ {x← sat | x ∈ X2}
∪ {x′ ← sat | x ∈ X2} (2.3)

with θ′i obtained from θi by replacing every occurrence of ¬x by x′, e.g. when
θi = (x ∧ ¬y ∧ z) we have θ′i = (x ∧ y′ ∧ z). The QBF φ is satisfiable if and only if
Pφ |=b sat.

We refer the reader to [Baral 2003] for the proof of Proposition 5. Because the saturation
technique used in Proposition 5 plays an important role in a number of proofs in Chapter 4
and 5, we briefly explain the intuition behind saturation below and illustrate it with 2
small examples.
The intuition of the program is that an assignment is guessed in (2.1). The rules in (2.2)

verify whether this assignment makes the expression p(X1, X2) true. The saturation is
applied in the rules (2.3) and makes use of the definition of an answer set as a minimal
model to enforce that ‘sat’ will only be contained in an answer set when the expression
p(X1, X2) is true for every possible assignment of variables in X2. Indeed, let M be a
model of Pφ that contains literals corresponding to the variables of X1 and X2, i.e. M
defines an assignment of X1 and X2, such that the expression p(X1, X2) is true. Due to
the rules (2.2) we have sat ∈ M and, due to the rules (2.3), M must contain literals
corresponding with all the possible assignments of X2.
Now suppose that there exists some other model M ′ of Pφ that defines the same as-

signment of X1 as M , but another assignment for X2. In particular, assume that M ′
defines an assignment of X2 such that the expression p(X1, X2) is false. Then due to the
rules (2.2) this means that sat /∈ M ′. However, due to the rules (2.3) we had that M
contains literals corresponding with every possible assignment of X2, i.e. we must have
M ′ ⊂ M . Clearly, in this case M is not a minimal model of Pφ and thus not an answer
set. Only if we are unable to find an M ′ that defines an assignment of X2 such that the
expression p(X1, X2) is false will we be able to have an answer set M of Pφ such that
sat ∈ M and thus Pφ |=b sat.

Example 9

Consider the QBF φ ≡ ∃x1, x2∀y1, y2 · p(x1, x2, y1, y2) with p(x1, x2, y1, y2) the
formula (x1 ∧ y1) ∨ (x2 ∧ y2). Notice how this QBF is not satisfiable. Indeed, if we
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take y1 and y2 to be false, then p(x1, x2, y1, y2) is false for every choice of assignment
for x1, x2.
We have that Pφ according to Proposition 5 is the set of rules:

x1;x′1 ← y1; y′1 ←
x2;x′2 ← y2; y′2 ←
sat← x1, y1 y1 ← sat y′1 ← sat

sat← x2, y2 y2 ← sat y′2 ← sat

Let us consider the interpretations I1 = {x1, x2, y1, y2} and I2 = {x1, x2, y
′
1, y
′
2}.

The first interpretation is a representation of an assignment where we take all the vari-
ables to be true. Specifically, in that case we have that the formula p(x1, x2, y1, y2)
is true. The second interpretation corresponds with an identical assignment of x1
and x2, but where we take y1 and y2 to be false. For this assignment, as we already
discussed, we have that the formula p(x1, x2, y1, y2) is false.
It is clear that I1 is a model of the topmost four rules. However, we need to extend
I1 for it to be a model of the bottommost six rules. Indeed, we need to add the
set of literals {sat, y′1, y′2} to I1 to make it a model of Pφ. As such, we find that
I ′1 = {x1, x2, y1, y2, sat, y

′
1, y
′
2} is a model of Pφ. We can verify that I2 is a model

of Pφ, without the need for adding literals. As such, we have found that I ′1 and I2
are models of Pφ, although I2 ⊂ I ′1. It can in fact be shown that of the models
I ′1 and I2 only I2 is an answer set of Pφ. Thus, by using saturation, we prevented I ′1
from being a minimal model.

Example 10

Consider the QBF φ′ ≡ ∃x1, x2∀y1, y2 · p(x1, x2, y1, y2) with p(x1, x2, y1, y2) the
formula (x1 ∧ x2) ∨ (y1 ∧ y2). This is a QBF with the same variables but with a
different formula. This QBF is satisfiable. Indeed, when assigning true to x1 and x2
the formula p(x1, x2, y1, y2) is true for every choice of assignment for y1 and y2.
We have that Pφ′ according to Proposition 5 is the set of rules:

x1;x′1 ← y1; y′1 ←
x2;x′2 ← y2; y′2 ←
sat← x1, x2 y1 ← sat y′1 ← sat

sat← y1, y2 y2 ← sat y′2 ← sat
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We again consider the interpretations I1 = {x1, x2, y1, y2} and I2 = {x1, x2, y
′
1, y
′
2}.

As before, we need to extend I1 with {sat, y′1, y′2} for it to be a model of Pφ′ .
We can then verify that I ′1 = {x1, x2, y1, y2, sat, y

′
1, y
′
2} is indeed a model of Pφ′ .

This time around, however, I2 = {x1, x2, y
′
1, y
′
2} is not yet a model of Pφ′ . In-

deed, we need to extend I2 with the set of atoms {sat, y1, y2} to obtain I ′2 =
{x1, x2, y

′
1, y
′
2, sat, y1, y2}, which is a model of Pφ′ . Unlike in the previous example,

we do not have I ′2 ⊂ I ′1 but instead find that I ′1 = I ′2. Furthermore, it can be shown
that I ′1 is a minimal model, i.e. an answer set of Pφ′ . We thus find that sat is true
in an answer set of Pφ′ , i.e. we have verified that the QBF φ′ is satisfiable.

2.2.4 Translating ASP programs to sets of clauses
Given that normal programs and the boolean satisfiability problem (SAT) share the same
complexity, and because efficient solvers for SAT exist, a lot of effort has been made in
the literature to translate a normal program into an equivalent SAT problem. For the class
of tight normal programs this translation is straightforward. To define this class, we first
need to define the dependency graph of an ASP program. The dependency graph of an
answer set program P is a directed graph with signed edges (either + or −) such that
vertices of the graph are the literals mentioned in P . There is a directed positive edge from
li to l0 if there is a rule r ∈ P such that head(r) = l0 and li ∈ body+(r). Similarly, there
is a directed negative edge from li to l0 if there is a rule r ∈ P such that head(r) = l0
and li ∈ body−(r). We say that there is a positive path from l1 to l2 if and only if there
is a path in the dependency graph from vertex l1 to vertex l2 consisting only of positive
edges. A normal program P is said to be tight if it does not contain a positive cycle, i.e. a
positive path starting and ending in a vertex l.
The completion [Clark 1978] comp(P ) of a normal program P (without classical nega-

tion) is the following set of propositional formulas:{
a ≡

∨
body′(r) | r ∈ P and head(r) = a

}
∪ {a ≡ ⊥ | 6 ∃r ∈ P · head(r) = a}
∪ {¬body′(r) | r ∈ P and head(r) = ∅}

where body′(r) = > whenever body(r) = ∅. Otherwise, body′(r) is obtained from body(r)
by replacing not with ¬.
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Example 11

Consider the tight normal program P11 with the rules

wealthy ← win lottery work hard←
wealthy ← work hard, not prison ← prison.

We have that comp(P ) is

wealthy ≡ (win lottery) ∨ (work hard ∧ ¬prison)
work hard ≡ >
win lottery ≡ ⊥
¬prison

The minimal model is {wealthy,¬win lottery, work hard,¬prison}, which is equi-
valent to the unique answer set M = {wealthy, work hard} of P .

We have that M is an answer set of a tight normal program (without classical negation)
if and only if it is a classical model of its completion [Fages 1994].
In general, any normal program can be translated to a set of clauses. However, no

linear translation is known. Furthermore, such translations cannot be both faithful,
i.e. solutions of the translation correspond with those of the original program and vice
versa, and modular, i.e. the translation of P ∪ P ′ is the union of the translations of
P and P ′ [Janhunen 2006]. Since we want faithful translations, the only option is to
consider non-modular translations. The translation from [Lin and Zhao 2003] transforms
a normal program into an inherently tight program, i.e. a program where all the com-
pletion models are stable models. As such, it allows to simply compute the completion
to transform the inherently tight version of the normal program into a set of clauses.
This particular translation is quadratic. An even more compact translation was proposed
in [Janhunen 2004] and is currently the only known sub-quadratic translation to a set
of clauses.

2.3 Possibility Theory

Possibility theory [Dubois and Prade 1988] is a theory of uncertainty capable of dealing
with incomplete information. The theory is defined in terms of a possibility distribution π,
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which maps elements ω from a (finite) universe onto the interval [0, 1], i.e. π : Ω→ [0, 1].3
The function π represents the knowledge of an agent and in particular encodes to what ex-
tent the agent finds ω plausible to be the real world. By convention, π(ω) = 0 means that ω
is impossible and π(ω) = 1 means that no available information prevents ω from being the
actual world. A possibility distribution π is said to be normalized if ∃ω ∈ Ω · π(ω) = 1,
i.e. at least one interpretation is entirely plausible. Conversely, when ∀ω ∈ Ω · π(ω) = 0
we say that the possibility distribution π is vacuous. A normalized possibility distribution
expresses consistent belief and is thus preferred, as a possibility distribution that is not
normalized indicates the presence of conflicting information. Possibility degrees are mainly
interpreted qualitatively: when π(ω) > π(ω′), ω is considered more plausible than ω′.
For two possibility distributions π1 and π2 with the same domain Ω we write π1 ≥ π2
when ∀ω ∈ Ω · π1(ω) ≥ π2(ω) and π1 > π2 when π1 ≥ π2 as well as π1 6= π2. When
we impose constraints on possibility distributions, we are usually only interested in the
least specific possibility distributions, i.e. the greatest possibility distribution w.r.t. the
ordering >, that satisfies the constraints.
A possibility distribution π induces two uncertainty measures. The possibility measure

Π is defined by [Dubois and Prade 1988]:

Π(A) = max {π(ω) | ω ∈ A} with A ⊆ Ω

and evaluates the extent to which a world ω in A is consistent with the beliefs expressed
by π. The dual necessity measure N is defined by:

N(A) = 1−Π(A) with A ⊆ Ω

and evaluates the extent to which all possible worlds belong to A. We always have that
N(Ω) = 1 since Π({}) = 0. However, we only have Π(Ω) = 1 and, conversely, N({}) = 0
when the possibility distribution is normalized. To identify the possibility/necessity measure
associated with a specific possibility distribution πX, we will use a subscript notation,
i.e. ΠX and NX are the corresponding possibility and necessity measure, respectively.
We omit the subscript when the possibility distribution is clear from the context.

2.4 Possibilistic Logic

Now we introduce the concepts of possibilistic logic [Dubois et al. 1994], which is a logic
capable of dealing with uncertainty based on possibility theory. Thus far, we have seen
that interpretations in ASP can be partial. As such, they are different from interpretations

3The codomain is often the unit interval [0, 1] but can in general be any totally ordered scale.
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in classical logic. The semantics of possibilistic logic, on the other hand, are defined
w.r.t. classical interpretations. We represent such an interpretation as a set of atoms ω,
where ω |= a if a ∈ ω and otherwise ω |= ¬a, with |= the satisfaction relation from
classical logic. The set of all interpretations is defined as Ω = 2A, with A a finite set of
atoms. At the semantic level, possibility distributions over Ω are considered.

Example 12

Consider the possibility distribution π12 defined as:

π({a, b, c}) = 0 π({b, c}) = 0
π({a, b}) = 1 π({b}) = 0.4
π({a, c}) = 0 π({c}) = 0
π({a}) = 0.7 π({}) = 0.2

The possibility distribution π12 is normalized since the world {a, b} is entirely possible.
We can see that a world in which ‘a’ and ‘b’ are true simultaneously is preferred over
worlds in which either ‘a’ or either ‘b’ is true since π12({a, b}) > π12({a}) and
π12({a, b}) > π12({b}). We can also see that, given this possibility distribution, we
do not entertain the possibility that ‘c’ is true since for every world ω ∈ Ω with ω |= c

we have π12(ω) = 0.

The two uncertainty measures from possibility theory can then be used to rank proposi-
tions. Indeed, the possibility measure Π can now be written as

Π(p) = max {π(ω) | ω |= p}

which evaluates the extent to which a proposition p is consistent with the beliefs expressed
by π [Dubois et al. 1994]. The dual necessity measure N defined as

N(p) = 1−Π(¬p)

evaluates the extent to which a proposition p is entailed by the available beliefs expressed
by π [Dubois et al. 1994]. In particular, the notations Π(p) and N(p) with p a proposi-
tion are thus defined as shorthands for Π({w | w |= p}) and N({w | w |= p}). Note that
we now always have N(>) = 1 for any possibility distribution, while Π(>) = 1 (and
N(⊥) = 0) only holds when the possibility distribution is normalized, i.e. only normalized
possibility distributions can express consistent beliefs [Dubois et al. 1994].
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Example 13

Consider the possibility distribution π12 from Example 12. Since π({a, b}) = 1 we
find that Π(a) = Π(b) = 1, i.e. it is consistent to believe that ‘a’ and ‘b’ will be true in
the actual world. Since {a, b} |= ¬c we furthermore have that N(c) = 1−Π(¬c) = 0.
Indeed, given this possibility distribution, we have no reason to conclude that ‘c’ is
true. We furthermore find that N(a) = 0.6 and N(b) = 0.3, i.e. we are more certain
that ‘a’ is true.

An important property of necessity measures is their min-decomposability w.r.t. conjunc-
tion: N(p ∧ q) = min(N(p), N(q)) for all propositions p and q. However, for disjunction
only the inequality N(p ∨ q) ≥ max(N(p), N(q)) holds. As possibility measures are
the dual measures of necessity measures, they have the property of max-decomposability
w.r.t. disjunction, while for the conjunction we have that only the inequality Π(p ∧ q) ≤
min (Π(p),Π(q)) holds.4
At the syntactic level, a possibilistic knowledge base consists of pairs (p, c) where p is a

propositional formula and c ∈ ]0, 1] expresses the certainty that p is the case. Formulas of
the form (p, 0) are not explicitly represented in the knowledge base since they encode trivial
information. A formula (p, c) is interpreted as the constraint N(p) ≥ c, i.e. a possibilistic
knowledge base Σ corresponds to a set of constraints on possibility distributions. Typically,
there can be many possibility distributions that satisfy these constraints. In practice, we
are usually only interested in the minimally specific possibility distributions, which are
the possibility distributions that make minimal commitments, i.e. the maximal possibility
distributions w.r.t. the ordering >. For the constraints induced by a possibilistic logic
base, there is a unique minimally specific distribution, which is called the least specific
distribution [Dubois et al. 1994].

Example 14

Consider the possibilistic knowledge base consisting of the pairs:

(¬c, 1) (a ∨ b ∨ c, 0.8)
(¬a ∨ b, 0.3) (¬b ∨ a, 0.6).

4This is a notable difference with fuzzy logic, which is truth-functional. Furthermore, both logics handle
different sources of information. Indeed, in fuzzy logic we are able to express that a bottle is half empty,
i.e. we deal with multi-valuedness. On the other hand, in possibilistic logic we are able to express that
N(full) = 0.5, i.e. we are somewhat certain that the bottle is full. Still, in the actual world the bottle will
either be full or empty, as we have no means of expressing multi-valuedness with possibility theory alone.
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This knowledge base imposes the constraints

N(¬c) = 1 N(a ∨ b ∨ c) ≥ 0.8
N(¬a ∨ b) ≥ 0.3 N(¬b ∨ a) ≥ 0.6

or, equivalently

Π(c) = 0 Π(¬a ∧ ¬b ∧ ¬c) ≤ 0.2
Π(a ∧ ¬b) ≤ 0.7 Π(b ∧ ¬a) ≤ 0.4

The least specific possibility distribution that satisfies these constraints is π12 from
Example 12.

2.5 Possibilistic Answer Set Programming

Finally, we introduce Possibilistic Answer Set Programming (PASP), which combines ASP
and possibility theory by associating a weight with each rule. Throughout this thesis,
we will use the name PASP for a family of approaches that share a common syntax and
which all rely on possibility theory and ASP. In this section we introduce the semantics
from [Nicolas et al. 2006], which we will refer to as PASPG.5

2.5.1 Syntax
A possibilistic disjunctive (resp. positive disjunctive, normal, simple, definite) program is a
set of pairs p = (r, c) with r a disjunctive (resp. positive disjunctive, normal, simple, defin-
ite) rule and c ∈ ]0, 1] a certainty associated with r. As in possibilistic logic we will not, in
general, consider pairs with c = 0 since such rules encode trivial information. A pair such as
p = (r, c) with r a disjunctive rule of the form (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln)
will also often be written in the form:

λ : l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln.

For a possibilistic rule p = (r, c) we use p∗ to denote r, i.e. the classical rule obtained
by ignoring the certainty. Similarly, for a possibilistic program P we use P ∗ to denote
the set of rules {p∗ | p ∈ P}. The set of all weights found in a possibilistic program P

5As we will see in Chapter 4, the treatment of negation-as-failure in the semantics
of [Nicolas et al. 2006] can be equated to the use of a Gödel negator.
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is denoted by cert(P ) = {c | p = (r, c) ∈ P}. We also use the extended set of weights
cert+(P ) = {c | c ∈ cert(P )} ∪ {1− c | c ∈ cert(P )} ∪ {0, 1/2, 1}. 6

Example 15

Consider the possibilistic normal program P15 with the following set of possibilistic
normal rules:

0.1 : normal ←
1 : abnormal ← not normal

0.8 : problematic ← abnormal

This program describes an automated computer system. Intuitively, as we will see
in detail when discussing the semantics, this program models that we have very
limited evidence that this system is still operating normally. If the system is no
longer operating normally, it is operating abnormally. And if the system is operating
abnormally, it is very likely that keeping the system running will result in problematic
behaviour. We have that cert(P15) = {0.1, 0.8, 1}.

2.5.2 Semantics
The semantics of PASP define how one should treat the weight associated with a rule.
In PASPG this weight is the necessity with which the head of the rule can be concluded,
given that the body is known to hold. If it is uncertain whether the body holds, the
necessity with which the head can be derived is the minimum of the weight associated
with the rule and the degree to which the body is necessarily true.
However, before we can present the semantics, we need to introduce a generalization

of the concept of an interpretation. In classical ASP, an interpretation can be seen as a
mapping I : LitP → {0, 1}, i.e. a literal l ∈ LitP is either true or false. This notion is
generalized in PASP to a valuation, which is a function V : LitP → [0, 1]. The underlying
intuition of V (l) = c is that the literal ‘l’ is true with certainty ‘c’. Note that, like
interpretations in ASP, these valuations are of an epistemic nature, i.e. they reflect what
we know about the truth of atoms. For notational convenience, we often also use the set

6Programs such as the program with the single rule (1 : a ← not a) will give rise to the answer set{
a

1/2
}

in the semantics which we present in Chapter 4. As such, we require the intermediate weight 1/2

due to the particular treatment of negation-as-failure in that chapter.
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notation V = {lc, . . .}. In accordance with this set notation, we write V = ∅ to denote
the valuation in which each literal is mapped to 0. For c ∈ [0, 1] and V a valuation, we use
V c to denote the set {l | l ∈ LitP , V (l) ≥ c}. We also use V c = {l | l ∈ LitP , V (l) > c}.
A valuation is said to be consistent when V 0 is consistent. In such a case, there always

exists a normalized possibility distribution πV such that NV (l) = V (l).
We can now formally introduce the semantics. Let the c-cut Pc of a possibilistic pro-

gram P , with c ∈ [0, 1], be defined as:

Pc = {r | (r, c′) ∈ P and c′ ≥ c} ,

i.e. the rules in P with an associated certainty higher than or equal to ‘c’.

Definition 9

Let P be a possibilistic simple program and V a valuation. The immediate con-
sequence operator TP is defined as:

TP (V )(l0) = max {c ∈ [0, 1] | V c |= l1, ..., lm and ((l0 ← l1, ..., lm), c′) ∈ Pc} .

The intuition of Definition 9 is that we can derive the head only with the certainty of the
weakest piece of information, i.e. the necessity of the conclusion is restricted either by the
certainty of the rule itself or the lowest certainty of the literals used in the body of the rule.
Note that the immediate consequence operator defined in Definition 9 is equivalent to the
one proposed in [Nicolas et al. 2006], although we formulate it somewhat differently. Also,
the work from [Nicolas et al. 2006] only considered definite programs, even though adding
classical negation does not impose any problems and is a fairly trivial extension. Indeed,
even if we did not extend the definitions to also allow for classical negation it would still
be possible to simulate classical negation in ASP [Baral 2003] (and thus also in PASP).
As before, we use P ? to denote the fixpoint obtained by repeatedly applying TP starting

from the minimal valuation V = ∅, i.e. the least fixpoint of TP w.r.t. set inclusion.
A valuation V is said to be the possibilistic answer set of a possibilistic simple program
if V = P ? and V is consistent. Possibilistic answer sets of possibilistic normal programs
are defined using a reduct. Let L be a set of literals. The reduct PL of a possibilistic
normal program is defined as [Nicolas et al. 2006]:

PL = {(head(r)← body+(r), c) | (r, c) ∈ P and body−(r) ∩ L = ∅} .

A consistent valuation V is said to be a possibilistic answer set of the possibilistic normal
program P iff

(
P (V 0)

)?
= V , i.e. if V is the possibilistic answer set of the reduct P (V 0).
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Example 16

Consider the possibilistic normal program P15 from Example 15. It is easy to verify
that

{
normal0.1

}
is a possibilistic answer set of P . Indeed, P {normal} is the set of

rules:

0.1 :normal← 0.8 : problematic← abnormal

from which it trivially follows that P ? =
{
normal0.1

}
since the body of the second

rule is never true.

In Chapter 4 we discuss how the semantics of PASPG can have unintuitive results due
to the particular treatment of negation-as-failure in the presence of uncertainty. Similarly,
the semantics proposed in [Nieves et al. 2007] to extend PASPG to disjunctive possibilistic
answer set programming share the same issues. To overcome these problems, we present
new semantics for PASP in Chapter 4 that adhere to a different intuition. Furthermore, we
highlight how these new semantics for PASP allow us to unearth a new form of disjunction,
both in the possibilistic and the classical case. Then, in Chapter 5, we show how the
treatment of weights in PASP is not unique. Specifically, we show how the weights can
also be interpreted as the certainty of the rule itself, rather than the certainty of the
conclusion (i.e. the certainty of the head of the rule).
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3 | Communicating Answer
Set Programming

3.1 Introduction

A multi-context system (MCS) [Giunchiglia and Serafini 1994] is a framework to formalise
the reasoning about belief in a multi-agent system, which is a system that allows us
to model agents, their environment and their interaction with each other. In general,
the agents in a multi-agent framework can be located on physically distinct machines,
which implies that the computations in a multi-agent framework often need to be made
in a decentralised way. In a MCS, however, we are mainly interested in the structure
of the problem and we want to be able to compute the solutions in a centralised way.
The idea of a MCS is that we have a number of contexts that each have access to
only a subset of the available information. Each context has a local model and local
reasoning capabilities, i.e. each context is a finite representation of the reasoner’s beliefs
and its reasoning capabilities. As discussed in Chapter 1, the ability to communicate and
exchange information is an important part of common-sense reasoning. This is no different
in a MCS, where we also define an information flow between the different contexts. Because
of this information flow, information can be exchanged and we can solve multi-dimensional
problems (e.g. a police investigation with multiple witnesses) where each context/agent
only has the knowledge contained in one or a few of the dimensions (e.g. the witness
only saw the burglar enter the building). As such, a MCS can be used for epistemic
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reasoning, where the knowledge/beliefs of an agent are modelled in a context and where
communication allows for information to be exchanged to solve the problem at hand.
A standard example to illustrate the usefulness of multi-context systems is shown in Fig-

ure 3.1.1 The figure depicts two people who are looking at a box. The box is called magic
because neither agent can make out its depth. The information the agents have is further
limited because parts of the box are blinded. By cooperation, both agents can pinpoint the
exact location of the ball. Indeed, Mr .2 sees a ball on his left side. From this information
Mr .1 knows that there is a ball and that it must therefore be on his left (since he cannot
see a ball on his right). This knowledge can be relayed back to Mr .2 . Both agents now
know the exact position and depth of the ball.

1
Mr. 2

Mr.

Figure 3.1: A magic box.

ASP seems to be an ideal language to specify the individual contexts in a MCS. Indeed,
since we are modelling the belief of an agent, we may, at some point, need to revise
earlier decisions as new information becomes available. Indeed, the need for such a non-
monotonic operator was propounded in [Roelofsen and Serafini 2005]. To allow us to
model these types of problems in ASP, however, we need to extend ASP with means of
communication. Indeed, as we have seen in Chapter 2, classical ASP does not have the
mechanisms to allow for communication between ASP programs or for communication
between an ASP program with an outside source.
Unsurprisingly, the combination of ASP, or logic programming in general, with communic-

ation, or multi-agent systems in general, is nothing new. Extensions of logic programming
that offer such a combination have been explored for a variety of reasons. For example,
such an extension can be used to describe the (rational) behaviour of the agents in a
multi-agent network, as in [Dell’Acqua et al. 1999]. Alternatively, it can be used to com-
bine different flavours of logic programming languages [Luo et al. 2005, Eiter et al. 2008].
It can also be used to externally solve tasks for which ASP is not suited, while remaining
in a declarative framework [Eiter et al. 2006].
The combination that we are interested in is where ASP is combined with communication

to allow for a form of cooperation as in a multi-context system (MCS). Specifically, this
1Illustration from [Roelofsen and Serafini 2005] used with permission from the authors.
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allows the contexts to share information which in turn allows them to conjointly solve a
difficult problem. As in a MCS, we only consider multiple contexts on a conceptual level,
i.e. we model these different contexts in a single program, for which we want compute
the solutions in a centralised way. We are particularly interested in how such a conceptual
collaboration of different ASP programs affects the expressiveness of the overall system.
Still, unearthing the complexity of the addition of communication is difficult. Complexity
results from [Brewka et al. 2007] show that computing the answer sets of a logic program
extended with a form of communication is in NP, i.e. communication does not affect the
expressiveness of this system. However, the work from [Van Nieuwenborgh et al. 2007]
describes a multi-context system based on ASP where each context is modelled using
the extended answer set semantics, which is a fairly expressive variant of ASP. The net-
work is a linear “hierarchical” network (i.e. information only flows in one direction) where
the idea of a failure feedback mechanism is used. Intuitively, a failure feedback mechan-
ism allows the previous agent in a network to revise his conclusion when the conclusion
leads to an unresolvable inconsistency for the next agent in the network. The work
in [Van Nieuwenborgh et al. 2007] gives rise to a higher expressiveness, namely ΣP

n for
a hierarchical network of n agents. In other words: the specific form of communication
used in [Van Nieuwenborgh et al. 2007] affected the expressiveness of the overall system.
In this chapter we present a systematic study of the additional expressiveness offered

by allowing ASP programs to communicate. The structure of this chapter is as follows.
In Section 3.2 we introduce Communicating Answer Set Programming (CASP), which are
ordinary ASP programs extended with a new kind of literal that allows for communica-
tion between the individual programs. This new form of communication is based on the
notion of asking questions, where one ASP program can query another program as to
whether it believes some literal to be true or not. CASP is different from previous works
in that we start from simple and normal ASP programs for the contexts. This allows
us to better identify what exactly contributes to an increase in expressiveness when we
allow ASP programs to communicate. In addition, also our communication mechanism is
simple and does not rely on any kind of feedback as in [Van Nieuwenborgh et al. 2007].
While we thus consider simple programs and a simple communication mechanism, we show
in Section 3.3 that communicating simple programs are sufficiently expressive to simulate
(communicating) normal programs. Importantly, this shows that communication does in-
crease the expressiveness. Still, in line with the results from [Brewka et al. 2007], we find
that combining both communication and negation-as-failure does not further increase the
expressiveness.
Furthermore, we illustrate that the introduction of communication in ASP ensues that the

concept of minimality becomes ambiguous. Recall that answer sets are minimal models of
the program. For example, if {a} and {a, b} are the only models of a program P , then {a}
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is the answer set since {a} ⊆ {a, b}. In CASP, however, information is deduced in a given
context. To denote that we can derive ‘a’ and ‘b’ from context Q and ‘c’ from context R
we would write {Q :a,Q :b, R :c} in accordance with the notation that we will introduce
in Section 3.2. Now assume that the sets {Q :a,Q :b, R :c} and {Q :a,R :c,R :d} are
the only two models of a given CASP program. On a global level, i.e. when we do not
take the context into account and interpret e.g. Q :a as a literal, then both models are
minimal models. On a local level this need not be the case. For example, when we only
look at the information deduced from Q, then only the second model is an answer set
since {a, b} ⊇ {a}. If we look at the information deduced from R, then only the first
model is an answer set. This idea, where we determine the minimality on the level of a
single program (or context) is called focussing and is developed in Section 3.4. Specifically,
we will show that this idea can be applied repeatedly, where we focus on a sequence of
distinct ASP programs used in a communicating program. These multi-focused answer sets
considerably increase the expressiveness compared to the expressiveness of each individual
program. Indeed, we step up one level in the polynomial hierarchy for each time we
focus. Using multi-focused answer set programs thus allows us to express any problem in
PSPACE (i.e. the set of all decision problems that can be solved by a Turing machine using
a polynomial amount of space). As such, we can solve certain complex problems for which
the current semantics of ASP lack the expressivity. In the case study from Section 3.5 we
show how such complex problems can indeed be intuitively modelled using the framework
introduced in this chapter.

3.2 Communicating Programs
The underlying intuition of communication between ASP programs is that of a function call
or, in terms of agents, asking questions to other agents. This communication is based on a
new kind of literal ‘Q : l’, as in [Giunchiglia and Serafini 1994, Roelofsen and Serafini 2005,
Brewka and Eiter 2007]. If the literal l is not in the answer set of program Q then Q : l
is false; otherwise Q : l is true. The semantics presented in this section are closely re-
lated to the minimal semantics of [Brewka and Eiter 2007] and especially the semantics
of [Buccafurri et al. 2008].
Let P be a finite set of program names. A P-situated literal is an expression of the form
Q : l with Q ∈ P and l a literal. For R ∈ P, a P-situated literal Q : l is called R-local if
Q = R. For a set of literals L, we use Q :L as a shorthand for {Q : l | l ∈ L}. For a set of
P-situated literals X and Q ∈ P, we use XQ to denote {l | Q : l ∈ X}, i.e. the projection
of X on Q. A set of P-situated literals X is consistent iff XQ is consistent for all Q ∈ P.
By ¬X we denote the set {Q :¬l | Q : l ∈ X} where we define Q :¬¬l = Q : l. An extended
P-situated literal is either a P-situated literal or a P-situated literal preceded by not. For a
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set of P-situated literals X, we use not(X) to denote the set {not Q : l | Q : l ∈ X}. For a
set of extended P-situated literals X we denote by Xpos the set of P-situated literals in X,
i.e. those extended P-situated literals in X that are not preceded by negation-as-failure,
while Xneg = {Q : l | not Q : l ∈ X}.
A P-situated disjunctive rule is an expression of the form Q :γ ← (α ∪ not(β)) where
γ is a set of literals, called the head of the rule, and (α ∪ not(β)) is called the body of
the rule with α and β sets of P-situated literals. A P-situated disjunctive rule Q :γ ←
(α ∪ not (β)) is called R-local whenever Q = R. A P-component disjunctive program Q

is a finite set of Q-local P-situated disjunctive rules. Henceforth we shall use P to both
denote the set of program names and to denote the set of actual P-component disjunctive
programs. A communicating disjunctive program P is then a finite set of P-component
disjunctive programs.
A P-situated normal rule is an expression of the form Q : l← (α ∪ not(β)) where Q : l is

a single P-situated literal. A P-situated simple rule is an expression of the form Q : l ←
α, i.e. a P-situated normal rule without negation-as-failure. A P-component normal
(resp. simple) program Q is a finite set of Q-local P-situated normal (resp. simple) rules.
A communicating normal (resp. simple) program P is then a finite set of P-component
normal (resp. simple) programs.
In the remainder of this chapter we drop the P-prefix whenever the set P is clear from

the context. Whenever the name of the component disjunctive program Q is clear, we
write l instead of Q : l for Q-local situated literals. Note that a communicating disjunctive
(resp. normal, simple) program with only one component program thus trivially corres-
ponds to a classical disjunctive (resp. normal, simple) program. Finally, for notational
convenience, we write communicating program when it is clear from the context whether
the program is a communicating simple program or a communicating normal program.
Similarly, we simply write answer set when it is clear from the context that it is a com-
municating answer set.

Example 17

Consider the communicating normal program P = {Q,R} with the following situated
rules:

Q :a← R :a Q :b← Q :c← Q :c
R :a← Q :a R :b← not Q :c.

Q :a, Q :b, Q :c, R :a and R :b are situated literals. The situated simple rules on
the top line are Q-local since we respectively have Q :a, Q :b and Q :c in the head
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of these rules. The situated normal rules on the bottom line are R-local. Hence
Q = {a← R :a, b←, c← c} and R = {a← Q :a, b← not Q :c}.

Similar as for a classical program, we can define the Herbrand base for a component
program Q as the set of atoms BQ = {a | Q :a or Q :¬a appearing in Q}, i.e. the set
of atoms occurring in the Q-local situated literals in Q. Similarly, we are then able to
define BP =

{
Q :a | Q ∈ P and a ∈

⋃
R∈P BR

}
as the Herbrand base of the communic-

ating program P.

Example 18

We consider the communicating normal program P = {Q,R} from Example 17.
We have BQ = {a, b, c}, BR = {a, b} and BP = {Q :a,Q :b,Q :c,R :a,R :b, R :c}.

We say that a (partial) interpretation I of a communicating disjunctive program P is
any consistent subset I ⊆ (BP ∪ ¬BP). Given an interpretation I of a communicating
disjunctive program P, the reduct QI for Q ∈ P is the component disjunctive program
obtained by deleting

• each rule with an extended situated literal ‘not R : l’ such that R : l ∈ I;
• each remaining extended situated literal of the form ‘not R : l’;
• each rule with a situated literal ‘R : l’ that is not Q-local such that R : l /∈ I;
• each remaining situated literal ‘R : l’ that is not Q-local.

Note that this definition actually combines two types of reducts together. On the one
hand, we remove negation-as-failure according to the given knowledge. On the other
hand, we also remove situated literals that are not Q-local, again according to the given
knowledge. The underlying intuition of the reduct remains unchanged compared to the
classical case: we take the information into account which is encoded in the guess I and
we simplify the program so that we can easily verify whether or not I is stable, i.e. whether
or not I is a minimal model of the reduct. Analogous to the definition of the reduct for dis-
junctive programs [Gelfond and Lifschitz 1991], the reduct of a communicating disjunctive
program thus defines a way to reduce a program relative to some guess I. The reduct
of a communicating disjunctive program is a communicating disjunctive program (without
negation-as-failure) that only contains component disjunctive programs Q with Q-local
situated literals. That is, each remaining component disjunctive program Q corresponds
to a classical disjunctive program.
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Example 19

Let us again consider the communicating normal program P = {Q,R} from Ex-
ample 17. Given I = {Q :a,Q :b, R :a,R :b} we find that QI = {a←, b←, c← c}
and RI = {a←, b←}. We can easily treat QI and RI separately since they now
correspond to classical programs.

Definition 10

We say that an interpretation I of a communicating disjunctive program P is an
answer set of P if and only if ∀Q ∈ P·(Q :IQ) is the minimal model w.r.t. set inclusion
of QI . In other words: an interpretation I is an answer set of a communicating
disjunctive program P if and only if for every component program Q we have that
the projection of I on Q is an answer set of the component program QI under the
classical definition.

In the specific case of a communicating normal program P we can equivalently say that I
is an answer set of P if and only if we have that ∀Q ∈ P · (Q :IQ) =

(
QI
)?.

Example 20

The communicating normal program P = {Q,R} from Example 17 has two answer
sets, namely {Q :b, R :b} and {Q :a,Q :b, R :a,R :b}.

Example 21

Consider the magic box as illustrated in Figure 3.1. Let us assume that Mr .1 names
the locations north and south (where he does not see the ball in the southern location)
and that Mr .2 names the locations left, middle and right with the ball in the leftmost
location. We have the communicating simple program P with the rules:

Mr1 :south ← Mr1 :¬north Mr1 : left ← Mr2 : left
Mr1 :north ← Mr1 :¬south Mr1 :middle ← Mr2 :middle

Mr1 :¬south ← Mr1 :right ← Mr2 :right

Mr2 : left ← Mr2 :north ← Mr1 :north
Mr2 :south ← Mr1 :south
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The unique communicating answer set of P is

{Mr1 :north,Mr1 : left,Mr2 :north,Mr2 : left} .

Both Mr .1 and Mr .2 thus know the exact location of the ball in this magic box.

Note that while most approaches do not allow self-references of the form Q :a ← Q :a,
in our approach this poses no problems as it is semantically equivalent to a ← a.
Also note that our semantics allow for “mutual influence” as in [Brewka and Eiter 2007,
Buccafurri et al. 2008] where the belief of an agent can be supported by the agent it-
self, via belief in other agents, e.g. {Q :a← R :a,R :a← Q :a}. Furthermore we want to
point out that the belief between agents is the belief as identified in [Lifschitz et al. 1999],
i.e. the situated literal Q : l is true in our approach whenever “¬not Q : l” is true in the
approach introduced in [Lifschitz et al. 1999] for nested logic programs and treating Q : l
as a fresh atom.
Before we introduce our first proposition, we generalise the immediate consequence op-

erator for (classical) normal programs to the case of communicating simple programs.
Specifically, the operator TP is defined w.r.t. an interpretation I of P as

TP(I) = I ∪ {Q : l | (Q : l← α) ∈ Q,Q ∈ P, α ⊆ I}

where α is a set of P-situated literals. It is easy to see that this operator is monotone.
Together with a result from [Tarski 1955] we know that this operator has a least fixpoint.
We use P? to denote this fixpoint obtained by repeatedly applying TP starting from
the empty interpretation. Clearly, this fixpoint can be computed in polynomial time.
Furthermore, just like the immediate consequence operator for (classical) normal programs,
this generalised operator only derives the information that is absolutely necessary, i.e. the
fixpoint P? is globally minimal.

Proposition 6

Let P be a communicating simple program. We then have that:

• there always exists at least one answer set of P;

• there is always a unique answer set of P that is globally minimal;

• we can compute this unique globally minimal answer set in polynomial time.
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Example 22

Consider the communicating simple program P with the rules

Q :a← R :a R :a← Q :a Q :b← .

This communicating simple program has two answer sets, namely {Q :a,Q :b, R :a}
and {Q :b}. We have that P? = {Q :b}, i.e. {Q :b} is the answer set that can be
computed in polynomial time. Intuitively, this is the answer set of the communic-
ating simple program P where we treat every situated literal as an ordinary literal.
For example, if we replace the situated literal Q :a (resp. Q :b, R :a) by the literals
qa (resp. qb, ra) we obtain the simple program

qa← ra qb← ra← qa

which has the unique answer set {qb}, with qb the literal that replaced Q :b. Note
that the procedure involving the generalised fixpoint does not allow us to derive the
second answer set. In general, no polynomial procedure will be able to verify whether
there is some answer set in which a given literal is true (unless P=NP).

Although finding an answer set of a communicating simple program can be done in
polynomial time, we will see in the next section that brave reasoning (the problem of de-
termining whether a given situated literal Q : l occurs in any answer set of a communicating
simple program) is NP-hard. Furthermore, cautious reasoning (the problem of determining
whether a given situated literal Q : l occurs in all answer sets of a communicating simple
program) is coNP-hard.

3.3 Simulating Negation-as-Failure with Communication
The addition of communication to ASP programs can provide added expressiveness over
simple programs and a resulting increase in computational complexity for brave reason-
ing and cautious reasoning. To illustrate this observation, in this section we show that
a communicating simple program can simulate normal programs.2 Furthermore, we il-
lustrate that, surprisingly, there is no difference in terms of computational complexity
between communicating simple programs and communicating normal programs; a com-
municating simple program can be constructed which simulates any given communicating
normal program.

2Recall that simple programs are P-complete and normal programs are NP-complete [Baral 2003].
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We start by giving an example of the transformation that allows us to simulate (com-
municating) normal programs using communicating simple programs. A formal definition
of the simulation is given below in Definition 11. The correctness is proven by Propos-
itions 7 and 8.

Example 23

Consider the communicating normal program P with the rules

Q1 :a← not Q2 :b
Q2 :b← not Q1 :a.

Note that if we were to take Q1 = Q2 then this example corresponds to a normal
program. In our simulation, the communicating normal program P is transformed
into the following communicating simple program P ′ = {Q′1, Q′2, N1, N2}:

Q′1 :a← N2 :¬b† N1 :a† ← Q′1 :a
Q′2 :b← N1 :¬a† N2 :b† ← Q′2 :b

Q′1 :¬a† ← N1 :¬a† N1 :¬a† ← Q′1 :¬a†

Q′2 :¬b† ← N2 :¬b† N2 :¬b† ← Q′2 :¬b†.

The transformation creates two types of component programs or ‘worlds’, namely Q′i
and Ni. The component program Q′i is similar to Qi but occurrences of extended
situated literals of the form not Qi : l are replaced by Ni :¬l†, with l† a fresh literal.
The non-monotonicity associated with negation-as-failure is simulated by introducing
the rules ¬l† ← Ni :¬l† and ¬l† ← Q′i :¬l† in Q′i and Ni, respectively. Finally, we
add rules of the form l† ← Q′i : l to Ni, creating an inconsistency when Ni believes
¬l† and Q′i believes l.
The resulting communicating simple program P ′ is an equivalent program in that

its answer sets correspond to those of the original communicating normal program,
yet without using negation-as-failure. Indeed, the answer sets of P are {Q1 :a} and
{Q2 :b} and the answer sets of P ′ are {Q′1 :a} ∪

{
Q′2 :¬b†, N2 :¬b†, N1 :a†

}
and

{Q′2 :b} ∪
{
Q′1 :¬a†, N1 :¬a†, N2 :b†

}
.

Note that the simulation given in Example 23 can in fact be simplified. Indeed, in this
particular example there is no need to have two additional component programs N1 and
N2 since Q1 and Q2 do not share literals. Also, in this particular example, we need not
use ‘a†’ and ‘b†’ since the simulation would work just as well if we simply considered
‘a’ and ‘b’ instead. Nonetheless, for the generality of the simulation such technicalities
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are necessary. Without adding an additional component program Ni for every original
component program Qi the simulation would in general not work when two component
programs shared literals, e.g. Q1 :a and Q2 :a. Furthermore, we need to introduce fresh
literals as otherwise the simulation would in general not work when we had true negation
in the original program, e.g. Q :¬a. We now give the definition of the simulation which
works in the general case.

Definition 11

Let P = {Q1, ..., Qn} be a communicating normal program. The communicating
simple program P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with 1 ≤ i, j ≤ n that simulates P is
defined by

Q′i =
{
l← α′pos ∪

{
Nj :¬k† | Qj :k ∈ αneg

}
| (l← α) ∈ Qi

}
(3.1)

∪
{
¬b† ← Ni :¬b† | Qi :b ∈ Eneg

}
(3.2)

Ni =
{
¬b† ← Q′i :¬b† | Qi :b ∈ Eneg

}
(3.3)

∪
{
b† ← Q′i :b | Qi :b ∈ Eneg

}
(3.4)

with α′ =
{
Q′j : l | Qj : l ∈ α

}
, Eneg =

⋃n
i=1

(⋃
(a←α)∈Qi αneg

)
and with αpos and

αneg as defined before.

Note how this is a polynomial transformation with at most 3·|Eneg | additional rules. This
is important when later we use the NP-completeness results from normal programs to show
that communicating simple programs are NP-complete as well. Recall that both ¬b† and
b† are fresh literals that intuitively correspond to ¬b and b. We use Q′i+ to denote the set
of rules in Q′i defined by (3.1) and Q′i− to denote the set of rules in Q′i defined by (3.2).
The intuition of the simulation in Definition 11 is as follows. The simulation uses the

property of mutual influence to mimic the choice induced by negation-as-failure. This is
obtained from the interplay between rules (3.2) and (3.3). As such, we can use the new
literal ‘¬b†’ instead of the original extended (situated) literal ‘not b’, allowing us to rewrite
the rules as we do in (3.1). In order to ensure that the simulation works even when the
program we want to simulate already contains classical negation, we need to specify some
additional bookkeeping (3.4).
As will become clear from Proposition 7 and Proposition 8, the above transformation

preserves the semantics of the original program. Since we can thus rewrite any normal
program as a communicating simple program, the importance is twofold. On one hand, we
reveal that communicating normal programs do not have any additional expressive power
over communicating simple programs. On the other hand, it follows that communicating
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simple programs allow us to solve NP-complete problems. Before we show the correctness
of the simulation in Definition 11, we introduce a lemma.

Lemma 1

Let P = {Q1, ..., Qn} and let P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with P a communicating
normal program and P ′ the communicating simple program that simulates P defined
in Definition 11. Let M be an answer set of P and let the interpretation M ′ be
defined as:

M ′ = {Q′i :a | Qi :a ∈M}
∪
{
Q′i :¬b† | Qi :b /∈M

}
∪
{
Ni :¬b† | Qi :b /∈M

}
∪
{
Ni :a† | Qi :a ∈M

}
.

(3.5)

For each i ∈ {1, ..., n} it holds that (Q′i+)M ′ =
{
l← α′ | l← α ∈ QMi

}
with Q′i+

the set of rules defined in (3.1) with α′ = {Q′i :b | Qi :b ∈ α}.

Using this lemma, we can prove thatM ′ as defined in Lemma 1 is indeed an answer set of
the communicating simple program that simulates the communicating normal program P
when M is an answer set of P.

Proposition 7

Let P = {Q1, ..., Qn} and let P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with P a communicating
normal program and P ′ the communicating simple program that simulates P as
defined in Definition 11. If M is an answer set of P, then M ′ is an answer set of P ′
with M ′ defined as in Lemma 1.

Next we introduce Lemma 2, which is similar to Lemma 1 in approach but which states
the converse.

Lemma 2

Let P = {Q1, ..., Qn} and let P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with P a communicating
normal program and P ′ the communicating simple program that simulates P. Assume
thatM ′ is an answer set of P ′ and that (M ′)Ni is total w.r.t. BNi for all i ∈ {1, ..., n}.
Let M be defined as

M =
{
Qi :b | Q′i :b ∈

(
(Q′i+)M

′)?}
(3.6)
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For each i ∈ {1, ..., n}, it holds that (Q′i+)M ′ =
{
l← α′ | l← α ∈ QMi

}
with

α′ = {Q′i :b | Qi :b ∈ α}.

Proposition 8

Let P = {Q1, ..., Qn} and let P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with P a communicating
normal program and P ′ the communicating simple program that simulates P. Assume
thatM ′ is an answer set of P ′ and that (M ′)Ni is total w.r.t. BNi for all i ∈ {1, ..., n}.
Then the interpretation M defined in Lemma 2 is an answer set of P.

It is important to note that Lemma 2 and, by consequence, Proposition 8 require (part
of) the answer set M ′ to be total. This is a necessary requirement, as demonstrated by
the following example.

Example 24

Consider the normal program R = {a← not a} which has no answer sets. The cor-
responding communicating simple program P ′ = {Q′, N} has the following rules:

Q′ :a← N :¬a† N :¬a† ← Q′ :¬a†

Q′ :¬a† ← N :¬a† N :a† ← Q′ :a.

It is easy to see that I = ∅ is an answer set of P ′ since we have Q′I = N I = ∅.
Notice that I does not correspond with an answer set of R, which is due to IN = ∅
not being total and hence we cannot apply Proposition 8.

Regardless, it is easy to see that the requirement for the answer set to be total can be
built into the simulation program. Indeed, it suffices to introduce additional rules to every
Ni with 1 ≤ i ≤ n in the simulation defined in Definition 11. These rules are{

Ni :a← Ni :a†, Ni :a← Ni :¬a† | a† ∈ BNi
}

∪ {Ni : total← β} with β =
{
Ni :a | a† ∈ BNi

}
.

Thus the requirement that (part of) the answer set must be total can be replaced by the
requirement that the situated literals Ni : total must be true in the answer set. Hence, if we
want to check whether a literal Q : l is true in at least one answer set of a (communicating)
normal program, it suffices to check whether Q : l and Ni : total can be derived in the
communicating simple program that simulates it. Clearly we find that brave reasoning for
communicating simple programs is NP-hard.
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What we have done so far is important for two reasons. First, we have shown that the
complexity of brave reasoning for communicating normal programs is not harder than brave
reasoning for communicating simple programs. Indeed, the problem of brave reasoning for
communicating normal programs can be reduced in polynomial time to the problem of
brave reasoning for communicating simple programs. Second, since normal programs are
a special case of communicating normal programs and since we know that brave reasoning
for normal programs is an NP-complete problem, we have successfully shown that brave
reasoning for communicating simple programs is NP-hard. In order to show that brave
reasoning for communicating simple programs is NP-complete, we need to additionally
show that this is a problem in NP. To this end, consider the following algorithm to find
the answer sets of a communicating simple program P:

guess an interpretation I ⊆ (BP ∪ ¬BP)
verify that this interpretation is an answer set as follows:

calculate the reduct QI of each component program Q
calculate the fixpoint of each simple component program QI

verify that Q : IQ = (QI)? for each component program Q

The first step of the algorithm requires a choice, hence the algorithm is non-deterministic.
Next we determine whether this guess is indeed a communicating answer set, which involves
taking the reduct, computing the fixpoint and verifying whether this fixpoint coincides with
our guess. Clearly, verifying whether the interpretation is an answer set can be done in
polynomial time and thus the algorithm to compute the answer sets of a communicating
simple program is in NP, and thus NP-complete, regardless of the number of component
programs. These same results hold for communicating normal programs since the reduct
also removes all occurrences of negation-as-failure.
For communicating disjunctive programs it is easy to see that the ΣP

2 -completeness of
classical disjunctive ASP carries over to communicating disjunctive programs. Cautious
reasoning is then coNP and coΣP

2 for communicating normal programs and communicating
disjunctive programs, respectively, since this decision problem is the complement of brave
reasoning. Finally, the problem of answer set existence is carried over from normal pro-
grams and disjunctive programs [Baral 2003] and is NP-hard and coΣP

2 -hard, respectively.
Most of these complexity results correspond with classical ASP, with the results from com-
municating simple programs being notable exceptions; indeed, for communicating simple
programs the communication aspect clearly has an influence on the complexity. Table 3.1
summarises the main complexity results.
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Table 3.1: Completeness results for the main reasoning tasks for a communicating
program P = {Q1, ..., Qn}

reasoning task → answer set existence brave reasoning cautious reasoning
component programs ↓

simple program P NP coNP
normal program NP NP coNP

disjunctive program ΣP
2 ΣP

2 coΣP
2

3.4 Multi-Focused Answer Sets
Answer set semantics are intuitively based on the idea of minimal models. When dealing
with agents that can communicate, it becomes unclear how we should interpret the notion
of minimality. One option is to assume global minimality, i.e. we minimise over the conclu-
sions of all the agents in the network. This is the approach that was taken in Section 3.3.
Another option is to assume minimality on the level of a single agent, i.e. local minimality.
Since it is not always possible to find a model that is minimal for all individual agents, the
order in which we minimise over the agents matters, as the next example illustrates.

Example 25

An employee (‘E’) needs a new printer (‘P ’). She has a few choices (loud or silent,
stylish or dull), preferring silent and stylish. Her manager (‘M ’) insists that it is
a silent printer. Her boss (‘B’) does not want an expensive printer, i.e. one that
is both silent and stylish. We can consider the communicating normal program
P = {P,E,M,B} with:

P :stylish← not P :dull P :dull← not P :stylish (3.7)
P :silent← not P : loud P : loud← not P :silent (3.8)

E :undesired← P :dull E :undesired← P : loud (3.9)
M :undesired← P : loud (3.10)
B :expensive← P :stylish, P :silent. (3.11)
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The rules in (3.7) and (3.8) encode the four possible printers and the rules in (3.9),
(3.10) and (3.11) encode the inclinations of the employee, manager and boss, re-
spectively. The answer sets of this program, i.e. those with global minimality, are

M1 = {P :stylish, P :silent,B :expensive}
M2 = {P :stylish, P : loud,E :undesired,M :undesired}
M3 = {P :dull, P : loud,E :undesired,M :undesired}
M4 = {P :dull, P :silent, E :undesired}

The answer sets that are minimal for agent B are M2,M3 and M4, i.e. the answer
sets that do not contain B :expensive. The only answer set that is minimal for agent
E isM1, i.e. the one that does not contain E :undesired. Hence when we determine
local minimality for CASP, the order in which we consider the agents is important as
it induces a priority over them, i.e. it makes some agents more important than others.
In this example, if the boss comes first, the employee no longer has the choice to
pick M1. This leaves her with the choice of either a dull or a loud printer, among
which she has no preferences. Since the manager prefers a silent printer, when we
first minimise over ‘B’ and then minimise over ‘M ’ and ‘E’ (we may as well minimise
over ‘E’ and then ‘M ’, as ‘E’ and ‘M ’ have no conflicting preferences) we end up
with the unique answer set M4.

In this section, we formalise such a communication mechanism. We extend the semantics
of communicating programs in such a way that it becomes possible to focus on a sequence
of component programs. As such, we can indicate that we are only interested in those
answer sets that are successively minimal with respect to each respective component pro-
gram. The underlying intuition is that of leaders and followers, where the decisions that
an agent can make are limited by what its leaders have previously decided.

Definition 12

Let P be a communicating normal program and {Q1, ..., Qn} ⊆ P a set of component
programs. A (Q1, ..., Qn)-focused answer set of P is defined recursively as follows:

• M is a (Q1, ..., Qn)-focused answer set of P and there are no
(Q1, ..., Qn−1)-focused answer sets M ′ of P such that M ′Qn ⊂MQn ;

• a ()-focused answer set of P is any answer set of P.

In other words, we say that M is a (Q1, ..., Qn)-focused answer set of P if and only if
M is minimal among all (Q1, ..., Qn−1)-focused answer sets w.r.t. the projection on Qn.
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Example 26

Consider the communicating normal program P = {Q,R, S} with the rules

Q :a← R :b← S :c S :a←
Q :b← not S :d R :a← S :c S :c← not S :d, not R :c
Q :c← R :c R :a← S :d S :d← not S :c, not R :c

R :c← not R :a

The communicating normal program P has three answer sets, namely

M1 = Q :{a, b, c} ∪R :{c} ∪ S :{a}
M2 = Q :{a, b} ∪R :{a, b} ∪ S :{a, c}
M3 = Q :{a} ∪R :{a} ∪ S :{a, d}.

The only (R,S)-focused answer set of P26 is M1. Indeed, since {a} = (M3)R ⊂
(M2)R = {a, b} we find that M2 is not a (R)-focused answer set. Furthermore
{a} = (M1)S ⊂ (M3)S = {a, d}, hence M3 is not an (R,S)-focused answer set.

Proposition 9

Let P be a communicating simple program. We then have:

• there always exists at least one (Q1, ..., Qn)-focused answer set of P;

• we can compute this (Q1, ..., Qn)-focused answer set in polynomial time.

To investigate the computational complexity of multi-focused answer sets we now show
how the validity of QBF can be checked using multi-focused answer sets of communicating
ASP programs.

Definition 13

Let φ = ∃X1∀X2 · · ·ΘXn · p(X1, X2, · · ·Xn) be a QBF where Θ = ∀ if n is even
and Θ = ∃ otherwise, and p(X1, X2, · · ·Xn) is a formula of the form θ1 ∨ ...∨ θm in
disjunctive normal form over X1 ∪ ...∪Xn with Xi, 1 ≤ i ≤ n, sets of variables and
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where each θt is a conjunction of propositional literals. We define Q0 as follows:

Q0 = {x← not ¬x,¬x← not x | x ∈ X1 ∪ ... ∪Xn} (3.12)
∪ {sat← Q0 :θt | 1 ≤ t ≤ m} (3.13)
∪ {¬sat← not sat} . (3.14)

For 1 ≤ j ≤ n− 1 we define Qj as follows:

Qj = {x← Q0 :x,¬x← Q0 :¬x | x ∈ (X1 ∪ ... ∪Xn−j)} (3.15)

∪

{
{¬sat← Q0 :¬sat} if (n− j) is even
{sat← Q0 :sat} if (n− j) is odd.

(3.16)

The communicating normal program corresponding with φ is Pφ = {Q0, ..., Qn−1}.
For a QBF of the form φ = ∀X1∃X2 · · ·ΘXn · p(X1, X2, · · ·Xn) where Θ = ∃ if n

is even and Θ = ∀ otherwise and p(X1, X2, · · ·Xn) once again a formula in disjunct-
ive normal form, the simulation only changes slightly. Indeed, only the conditions
in (3.16) are swapped.

Example 27

Given the QBF φ = ∃x∀y∃z ·(x∧y)∨(¬x∧y∧z)∨(¬x∧¬y∧¬z), the communicating
normal program P corresponding with the QBF φ is defined as follows:

Q0 :x← not ¬x Q0 :y ← not ¬y Q0 :z ← not ¬z
Q0 :¬x← not x Q0 :¬y ← not y Q0 :¬z ← not z

Q0 :sat← x, y Q0 :sat← ¬x, y, z Q0 :sat← ¬x,¬y,¬z
Q0 :¬sat← not sat

Q1 :x← Q0 :x Q1 :y ← Q0 :y
Q1 :¬x← Q0 :¬x Q1 :¬y ← Q0 :¬y Q1 :¬sat← Q0 :¬sat

Q2 :x← Q0 :x Q2 :¬x← Q0 :¬x Q2 :sat← Q0 :sat

The communicating normal program in Example 27 can be used to determine whether the
QBF φ is valid. First, note that the rules in (3.12) generate all possible truth assignments of
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the variables, i.e. all possible propositional interpretations. The rules in (3.13) ensure that
‘sat’ is true exactly for those interpretations that satisfy the formula p(X1, X2, ..., Xn).
Intuitively, the component programs {Q1, ..., Qn−1} successively bind fewer and fewer

variables. In particular, focussing on Q1, ..., Qn−1 allows us to consider the binding of
the variables in Xn−1, ..., X1, respectively. Depending on the rules from (3.16), focussing
on Qi allows us to verify that either some or all of the assignments of the variables in
Xn−j make the formula p(X1, ..., Xn) satisfied, given the bindings that have already been
determined by the preceding components. We now prove that the QBF φ is satisfiable iff
Q0 :sat is true in some (Q1, ..., Qn−1)-focused answer set of the corresponding program.

Proposition 10

Let φ and P be as in Definition 13. We have that a QBF φ of the form φ =
∃X1∀X2 · · ·ΘXn · p(X1, X2, · · ·Xn) is satisfiable if and only if Q0 :sat is true in
some (Q1, ..., Qn−1)-focused answer set of P. Furthermore, we have that a QBF
φ of the form φ = ∀X1∃X2 · · ·ΘXn · p(X1, X2, · · ·Xn) is satisfiable if and only if
Q0 :sat is true in all (Q1, ..., Qn−1)-focused answer sets of P.

Corollary 1

Let P be a communicating normal program with Qi ∈ P. The problem of deciding
whether there exists a (Q1, ..., Qn)-focused answer set M of P such that Qi : l ∈M
(brave reasoning) is ΣP

n+1-hard.

Corollary 2

Let P be a communicating normal program with Qi ∈ P. The problem of deciding
whether all (Q1, ..., Qn)-focused answer sets contain Qi : l (cautious reasoning) is
ΠP
n+1-hard.

In addition to these hardness results, we can also establish the corresponding member-
ship results.

Proposition 11

Let P be a communicating normal program with Qi ∈ P. The problem of deciding
whether there exists a (Q1, ..., Qn)-focused answer set M of P such that Qi : l ∈M
(brave reasoning) is in ΣP

n+1.
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Since cautious reasoning is the complementary problem of brave reasoning it readily
follows that cautious reasoning is in coΣP

n+1. Now that we have both hardness and
membership results, we readily obtain the following corollary.

Corollary 3

Let P be a communicating normal program with Qi ∈ P. The problem of deciding
whether Qi : l ∈M withM a (Q1, ..., Qn)-focused answer set of P is ΣP

n+1-complete.

The next proposition shows that the complexity remains the same when going from
normal component programs to simple component programs.

Proposition 12

Let P be a communicating simple program with Qi ∈ P. The problem of deciding
whether there exists a (Q1, ..., Qn)-focused answer set M of P such that Qi : l ∈M
(brave reasoning) is in ΣP

n+1.

Finally, we also have a result for communicating disjunctive programs instead of com-
municating normal programs.

Proposition 13

Let P be a communicating disjunctive program with Qi ∈ P. The problem of
deciding whether Qi : l ∈ M with M a (Q1, ..., Qn)-focused answer set of P is in
ΣP
n+2.

Table 3.2 summarises the membership results for brave reasoning that were discussed in
this section.

Table 3.2: Membership results for brave reasoning with (multi-focused) answer sets of
the communicating program P = {Q1, ..., Qn}

form of communication → none situated literals multi-focused
type of component program ↓

simple program P NP ΣP
n+1

normal program NP NP ΣP
n+1

disjunctive program ΣP
2 ΣP

2 ΣP
n+2
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3.5 Case Study: subset-minimal abductive diagnosis
In this section we work out an example that highlights the usefulness of multi-focused
answer sets. Although a lot of interesting problems are indeed in P, NP or ΣP

2 , there
are still some important problems that are located higher up in the polynomial hierarchy.
One such a problem is a special form of abductive diagnostics. An abductive diagnostic
problem is encoded as a triple 〈H,T,O〉 [Eiter et al. 1997], where H is a set of atoms
referred to as hypotheses, T is an ASP program referred to as the theory and O is a set of
literals referred to as observations. Intuitively, the theory T describes the dynamics of the
system, the observations O describe the observed state of the system and the hypothesesH
try to explain these observations within the theory. The goal in subset-minimal abductive
diagnosis is to find the minimal set of hypotheses that explain the observation. That is,
we want to find the minimal set of hypotheses such that O ⊆ M with M an answer set
of T ∪H. Subset-minimal abductive diagnostics over a theory consisting of a disjunctive
program is a problem in ΣP

3 and hence we cannot directly rely on classical ASP to find
the solutions to this problem. However, as we will see in the next example, we can easily
solve this problem using multi-focused answer sets.

Example 28: Adapted from [Eiter et al. 1999]

Consider an electronic circuit, as in Figure 3.2, where we have a power source, a
control lamp, three hot-plates wired in parallel and a fuse to protect each hot-plate.
It is known that some of the fuses are sensitive to high current and may consequently
blow, but it is not known which fuses. Furthermore, plate A sits near a source of
water (e.g. a tap). If water comes into contact with plate A, this causes a short
circuit which blows the nearest fuse, i.e. fuse A, to prevent any damage.

bulb

fuse A

fuse B

fuse C

plate A

plate B

plate C

AC power

Figure 3.2: Schematics of the electronic circuit we want to diagnose.
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Upon inspection, we find that the control lamp is on and that plate A feels cold to the
touch. We want to find the subset minimal diagnoses that would explain the problem,
i.e. we want to find the minimal causes that can explain this situation.
First we need to describe the theory, i.e. the schematics. The theory describes the

dynamics of the system and thus also how the system may fail. We can describe the
theory as follows. For starters, a melted fuse can be caused by a high current, or, for fuse
A, due to a hazardous water leak:

Q :melted A; Q :melted B; Q :melted C ← Q :high
Q :melted A← Q : leak.

Furthermore, under a number of conditions the control light will be off:

Q : light off ← Q :power off
Q : light off ← Q :broken bulb
Q : light off ← Q :melted A,Q :melted B,Q :melted C .

Then we describe under what conditions each plate will be hot:

Q :hot plateA← not Q :melted A,not Q :power off
Q :hot plateB ← not Q :melted B,not Q :power off
Q :hot plateC ← not Q :melted C ,not Q :power off .

We now encode the hypotheses. We have a number of causes, each of which may by
itself or in conjunction with other causes explain our observation. In total, we have four
causes. The power can be off (power off ), the light bulb might be broken (broken bulb),
there may have been a high current (high) and/or a water leak may have occurred (leak).
We describe all these hypotheses as follows:

Q :power off ← not Q :no power off
Q :no power off ← not Q :power off

Q :broken bulb ← not Q :no broken bulb
Q :no broken bulb ← not Q :broken bulb

Q :high ← not Q :no high
Q :no high ← not Q :high

Q : leak ← not Q :no leak
Q :no leak ← not Q : leak.
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It is easy to see that these rules in Q encode all possible subsets of hypotheses that
may have occurred. We then add rules to a separate component program H which merely
relays the information on the set of hypotheses that we chose. The reason for this separate
component program H is that we can now minimise over the set of hypotheses that is
assumed, simply by focussing on H.

H :power off ← Q :power off
H :broken bulb ← Q :broken bulb

H :high current ← Q :high
H :water leak ← Q : leak

Finally, we model the observation. We observe that the control light is on and that plate
A is cold. In other words, we obtain the rules (which encode constraints):

Q :contradiction ← not Q :contradiction,Q : light off
Q :contradiction ← not Q :contradiction,Q :hot plateA

which intuitively tell us that we cannot have that the light is off, nor can we have that
plate A is hot.
The (H)-focused answer sets give us the subset minimal abductive diagnoses. It is

easy to see that the focus on H is needed to minimise over the hypotheses. The pro-
gram P = {Q,H} has two (H)-focused answer sets M1 and M2, both containing
Mshared = {Q :no power off , Q :no broken bulb, Q :hot plateB, Q :hot plateC}:

M1 = Mshared ∪ {Q :melted A,Q :no leak,Q :high,H :high current}
M2 = Mshared ∪ {Q :melted A,Q : leak,Q :no high,H :water leak} .

Hence the minimal sets of hypotheses that support our observation, i.e. MH with M an
(H)-focused answer set, are that either there was a high current (which melted fuse A)
or there was a water leak (which also melted fuse A).

3.6 Work Related to CASP
Important work has been done in the domain of MCSs and multi-agent ASP to enable
collaboration between different contexts/ASP programs. We discuss some of the more
prominent work in these areas in this section. The work of [Roelofsen and Serafini 2005]
proposes an extension of MCSs [Giunchiglia and Serafini 1994] that allows MCSs to reason
about absent information, i.e. they introduce non-monotonicity in the context of MCSs.
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The idea of a MCS, as we have seen in the introduction of this chapter, is that we have
a number of contexts that each have access to only a subset of the available information.
Each context has a local model and reasoning capabilities, but there is also an information
flow defined by the system between the different contexts. It is this idea that was later
adopted in the ASP community and in this chapter in particular.
Our work has a comparable syntax as [Roelofsen and Serafini 2005] but rather different

semantics. The semantics in [Roelofsen and Serafini 2005] are closely related to the well-
founded semantics [Gelder et al. 1991], while our semantics are closer in spirit to the stable
model semantics [Gelfond and Lifschitz 1988]. Another point where our semantics differ
is that we allow a restricted circular explanation of why a literal is true, if that circular
explanation is due to our reliance on other component programs. This particular form of
circular reasoning has been identified in [Buccafurri et al. 2008] as a requirement in the
representation of social reasoning.
The work in [Brewka et al. 2007] extends upon the work in [Roelofsen and Serafini 2005]

and addresses a number of problems and deficiencies. The paper is, to the best of our
knowledge, the first to offer a syntactical rather than semantical description of commu-
nication in multi-context systems, making it easier to implement an actual algorithm.
A number of interesting applications of contextual frameworks, including information fu-
sion, game theory and social choice theory are highlighted in the paper. Lastly, the paper
identifies that the complexity of the main reasoning task is on the second level of the
polynomial hierarchy.
Along similar lines the work in [Brewka and Eiter 2007] combines the non-monotonicity

from [Roelofsen and Serafini 2005] with the heterogeneous approach which was presen-
ted in [Giunchiglia and Serafini 1994] into a single framework for heterogeneous non-
monotonic multi-context reasoning. The work in [Brewka and Eiter 2007] introduces
several notions of equilibria, including minimal and grounded equilibria. In our approach,
local reasoning is captured by grounded equilibria (which does not allow circular explan-
ations) while communicating with other component programs is captured by the weaker
minimal equilibria. The work in [Brewka and Eiter 2007] offers various membership results
on deciding the existence of an equilibrium and is one of the first to note that multi-context
systems, due to the nature of the bridge rules/situated literals, can be non-monotonic even
if all the logics in the component programs themselves are monotonic.
An initial implementation of a distributed solver for heterogeneous multi-context systems

was first discussed in [Dao-Tran et al. 2010]. While solvers exist to compute multi-context
systems locally, this is the first work to consider an algorithm which is both distributed
(i.e. no shared memory) and modular (i.e. computation starting from partial models).
When the context under consideration uses e.g. ASP, loop formulas can be devised which
allow bridge rules to be compiled into local classical theories. It is then possible to use
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SAT solvers to compute the grounded equilibria of the heterogeneous multi-context sys-
tem. Later work in [Drescher et al. 2011] improved on the idea by offering a mechanism
to identify and break symmetries (i.e. permutations of belief which result in identical
knowledge). As such, the solver need never visit two points in the search space that
are symmetric, thus potentially offering a considerable speedup. Experimental results
show that the solution space can indeed be (significantly) compressed. A similar idea
might be used to compute answer sets of a communicating ASP program in a distributed
fashion. Indeed, such answer sets are closely related to the idea of minimal equilibria
from [Brewka and Eiter 2007]. A few modifications should nonetheless be made. For ex-
ample, the Herbrand base needs to be redefined in a way that is safe in such a distributed
setting, e.g. by only taking situated literals into account that occur in a given component
program. Optimizations to the distributed algorithm also seem likely to be applicable to
the setting of CASP. On the other hand, it does not seem to be straightforward to extend
these ideas to compute multi-focused answer sets in a distributed fashion.
One of the most recent extensions to multi-context systems are managed multi-context

system (mMCS) [Brewka et al. 2011]. Normally, bridge rules can only be used to pass
along information which allows for e.g. selection and abstraction of information between
contexts. In an mMCS, however, additional operations on knowledge bases can be freely
defined. For example, operations may be defined that remove or revise information. Such
operations are performed by the context itself, i.e. by the legacy system that is used such
as ASP, but mMCS allow to cope with this additional functionality in a principled way.
As one would expect, adding such complex operations increases the expressiveness of the
resulting system considerably. Our work, on the other hand, only allows for information
to be passed along. By varying the way that the communication works, we achieved a
comparable expressiveness.
We now direct our attention to work done within the ASP community. The ideas presen-

ted in this chapter are related to HEX programs [Eiter et al. 2005] in which ASP is
extended with higher-order predicates and external atoms. These external atoms allow
to exchange knowledge in a declarative way with external sources that may implement
functionality which is inconvenient or impossible to encode using current answer set
programming paradigms. Application-wise, HEX is mainly proposed as a tool for non-
monotonic semantic web reasoning under the answer set semantics. Hence HEX is not
primarily targeted at increasing the expressiveness, but foremost at extending the applic-
ability and ease of use of ASP.
In [De Vos et al. 2005] a multi-agent framework called LAIMA is developed, similar as

in [Van Nieuwenborgh et al. 2007], in which multiple agents/component programs can
communicate with each other. It allows to represent and model knowledge obtained
from different contexts. Each of these contexts is represented as an OCLP or OCLP or
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Ordered Choice Logic Program [Brain and De Vos 2003], which is an expressive variant of
classical ASP. IN OCLP, negation-as-failure is not modelled explicitly but with preferences.
Contrary to [Van Nieuwenborgh et al. 2007], agents can communicate with whoever they
want and circular communication is allowed (where agent A tells something to agent B
which tells something to A . . . ). However, only positive information can be shared and
the authors do not examine the expressiveness of the LAIMA framework.
We also mention [Dao-Tran et al. 2009] where recursive modular non-monotonic logic

programs (MLP) under the ASP semantics are considered. The main difference between
MLP and our work is that our communication mechanism is parameter-less, i.e. the truth
of a situated literal is not dependent on parameters passed by the situated literal to the
target component program. Our approach is clearly different and we cannot readily mimic
the behaviour of the networks presented in [Dao-Tran et al. 2009]. Our expressiveness
results therefore do not directly apply to MLPs.
Finally, there is an interesting resemblance between multi-focused answer sets and the

work on multi-level integer programming [Jeroslow 1985]. In multi-level integer program-
ming, different agents control different variables that are outside of the control of the other
agents, yet are linked by means of linear inequalities (constraints). The agents have to fix
the values of the variables they can control in a predefined order, such that their own linear
objective function is optimized. Similarly, in CASP, literals belong to different component
programs (agents), and their values are linked through constraints, which in this case take
the form of rules. Again the agents act in a predefined order, but now they try to minimise
the set of literals they have to accept as being true, rather than a linear objective function.
Although there is an intuitive link, further research is required to make this link between
multi-focused answer sets and the work on multi-level integer programming explicit.

3.7 Summary
In Chapter 1 we emphasized how we wanted to look at extensions of ASP for epistemic
reasoning. ASP can, by itself, be used to model the knowledge of a single agent. However,
ASP lacks the means to allow for communication, i.e. ASP lacks the means to model
the knowledge of a network of interacting agents. To this end, we introduced CASP,
which combines ASP with mechanisms for communication in a way that is similar to the
approach taken in a MCS.
Combining the expressive power of multiple ASP programs to solve a complex problem

is not a new idea, but current approaches start from expressive and non-standard forms
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of ASP or consider involved communication mechanisms. As such, while often demon-
strating a higher overall expressivity, these approaches do not fully examine the necessary
contributions needed to arrive at such a higher expressivity.
In this chapter we have systematically studied the effect of adding communication to

ASP in terms of expressiveness and computational complexity. We started from simple
programs, i.e. definite programs extended with true negation. Determining whether a lit-
eral belongs to an answer set of a simple program is a problem in P. We extended these
simple programs by means of a straightforward construct that allows one program to ask
questions to another program. A network of these simple programs, which we called com-
municating simple programs, is expressive enough to simulate normal programs as we have
shown in Proposition 8. In other words, determining whether a literal belongs to an answer
set of a communicating simple program is NP-hard. Importantly, this added expressive-
ness is directly related to the use of classical negation, which forms an essential part in
our simulation. Furthermore, communicating simple programs can also simulate commu-
nicating normal programs provided that the resulting answer sets are partially complete,
thus showing that adding negation-as-failure to communicating simple programs does not
further increase the expressiveness. Nevertheless, the addition of negation-as-failure is
desirable, as it can often provide an easy and intuitive way to model complex problems.
We furthermore show in Section 3.3 how it is possible to simulate CASP with ASP. This
will provide us in Chapter 6 with an easy and performant implementation of CASP.
In addition, we introduced multi-focused answer sets for communicating programs in

Section 3.4. The underlying intuition is that of leaders and followers, where the choices
available to the followers are limited by what the leaders have previously decided. On a
technical level, the problem translates to establishing local minimality for some of the
component programs in the communicating program, rather than global minimality on
the level of a communicating program. In general, however, it is not possible to ensure
local minimality for all component programs. Thus an order must be defined among
component programs on which to focus. The resulting framework demonstrates an increase
in expressiveness, where the problem of deciding whetherQi : l ∈M withM a (Q1, ..., Qn)-
focused answer set of a communicating normal program P is ΣP

n+1-complete, as shown
in Proposition 10. We showed in Section 3.5 how this framework can be used to model
complex problems (that cannot be expressed in a classical disjunctive ASP program) in
an intuitive way.
Throughout this chapter we purposefully only considered a simple form of communication,

i.e. a mechanism where programs can ask questions to each other. Most of the approaches
that combine ASP with communication mechanisms use such a simple form of commu-
nication, making it easier to generalise the complexity results obtained in this chapter to
these other approaches. Nevertheless, it will be interesting to analyse how more complex
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communication mechanisms affect the overall complexity. For example, in a blackboard
architecture [Erman et al. 1980, Pang 1991] a shared data region is available which can be
iteratively updated by the agents involved in the computation. Each of these agents can up-
date the blackboard whenever the information available on the blackboard allows them to
derive new conclusions. In addition, a control mechanism is defined that mediates between
the different agents and determines when an agent is allowed to modify the information on
the blackboard. The resulting architecture makes it possible for agents to collaborate to
solve complex problems. However, new problems arise with the use of more complex com-
munication mechanisms. For example, in the blackboard architecture the problem arises of
how to deal with inconsistent information on the shared data region. Much work has been
done on inconsistency handling, and data fusion in general. Possibility theory, as described
in Section 1.3, can be used for data merging. For example, in e.g. [Benferhat et al. 2000],
an approach is presented for merging prioritized knowledge bases, where the priorities
are represented using possibilistic logic. Paraconsistent logics [Bremer 2005] are another
family of logic systems that are able to handle inconsistent information and that can be
used for data fusion. Merging methods based on ASP have also been proposed in the
literature. For example, in[Delgrande et al. 2009] two different merging techniques are
proposed based on ASP, where the merging operators do not affect the complexity of the
base formalism. When dealing with inaccurate information rather than completely incor-
rect information, approaches such as [Schockaert and Prade 2011] can be used. In this
approach statements are interpreted in a more flexible way, rather than merely ignoring
the information, in an attempt to resolve the inconsistencies. A more elaborate overview
of various techniques for data merging can be found in e.g. [Konieczny and Pérez 2011].
Clearly, however, extending the CASP framework to more elaborate forms of communic-
ation is the subject of future work.
To conclude, we have considered an epistemic extension of ASP where, by adding means

of communication, we are able to use ASP to model a network of contexts where the
contexts can share information with one another. We find that the choice of the com-
munication mechanism is paramount w.r.t. the expressiveness of the overall system, in
addition to the expressiveness of the individual agents. An overview of our results is
presented in Table 3.2, which highlights the membership results for brave reasoning ob-
tained in Section 3.4.

76



4 | Characterizing and
extending ASP using

possibility theory

4.1 Introduction
In the previous chapter we looked at an extension of ASP that allows for communication
between a network of ASP programs. We discussed how different mechanisms of com-
munication affect the complexity in different ways. We also illustrated how CASP, and
multi-focused answer sets in particular, can be used to solve problems that cannot be
modelled in classical ASP. However, we did not look at how an individual program can
reason about uncertain information. Still, when we want to model what an agent knows
or what an agent believes, uncertainty plays an important role.
The Possibilistic Answer Set Programming (PASP) extension of ASP, which allows us to

deal with uncertainty, already exists and was discussed in Section 2.5 of Chapter 2. We can
consider PASP to be a family of approaches that share a common syntax and that have
semantics based on possibility distributions. Syntactically, a weight λ is associated with a
rule (head ← body). In PASPG we can derive the head with certainty min(λ,N(body))
for possibilistic simple rules, i.e. the certainty of head is restricted by the least certain
piece of information in the derivation chain. The semantics for PASP which we present
in this chapter, which we refer to as PASPŁ, treat the weight in the same way when
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considering possibilistic simple rules. However, there will be a notable difference in how
negation-as-failure is treated. Recall that, when faced with negation-as-failure, in PASPG
this means that the weights associated with the rules are initially ignored, the classical
reduct is determined and the weights are then reassociated with the corresponding rules in
the reduct. Given this particular treatment of negation-as-failure, the underlying intuition
of ‘not l’ is “l cannot be derived with a strictly positive certainty”. Indeed, as soon as
‘l’ can be derived with a certainty λ > 0, ‘l’ is treated as true when determining the
reduct. However, this particular understanding of negation-as-failure is not always the
most intuitive one.
Consider the following example. You want to go to the airport, but you notice that your

passport will expire in less than three months. Some countries require that the passport is
at least valid for an additional three months on the date of entry. As such, you have some
certainty that your passport might be invalid (invalid). When you are not entirely certain
that your passport is invalid, it is still useful to go the airport (airport) and check-in.
Indeed, since you are not absolutely certain that you will not be allowed to board, you
might still get lucky. We have the possibilistic program:

0.1 : invalid ←
1 : airport ← not invalid

where 0.1 and 1 are the weights associated with the rules (invalid ←) and airport ←
invalid, respectively. Clearly, what we would like to be able to conclude with a high
certainty is that you need to go to the airport to check-in. However, as the semantics
from [Nicolas et al. 2006] adhere to a different intuition of negation-as-failure, the con-
clusion is that you need to go to the airport with a necessity of 0. Or, in other words,
you should not go to the airport at all.
As a first contribution in this chapter, we present new semantics for PASP by inter-

preting possibilistic rules as constraints on possibility distributions. We will refer to these
semantics as PASPŁ. The answers sets from PASPŁ do not, in general, correspond with the
semantics from PASPG when considering programs with negation-as-failure. Specifically,
the semantics presented in this chapter can be used in settings in which the possibilistic
answer sets according to PASPG do not correspond with the intuitively acceptable results.
For the example mentioned above, the conclusion under the new semantics will be that
you need to go to the airport with a necessity of 0.9.
In addition, the new semantics that we present in this chapter allow us to uncover a

new characterization of classical ASP in terms of possibility theory. Over the years, many
equivalent approaches have been proposed to define the notion of an answer set. One of
the most popular characterizations is in terms of a reduct [Gelfond and Lifschitz 1988] in
which an answer set is guessed and verified to be stable. This characterization is used
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in PASPG. Alternatively, the answer set semantics of normal programs can be defined in
terms of autoepistemic logic [Marek and Truszczyński 1991], a well-known non-monotonic
modal logic which we briefly mentioned in Section 1.2. An important advantage of the
latter approach is that autoepistemic logic enjoys more syntactic freedom, which opens the
door to more expressive forms of logic programming. However, as has been shown early on
in [Lifschitz and Schwarz 1993], the characterization in terms of autoepistemic logic does
not allow us to treat classical negation or disjunctive rules in a natural way, which weakens
its position as a candidate for generalizing ASP from normal programs to e.g. disjunctive
programs. Equilibrium logic [Pearce 1997] offers yet another way for characterizing and
extending ASP, but does not feature modalities which limits its potential for epistemic
reasoning as it does not allow us to reason over the established knowledge of an agent.
The new characterization of ASP, as presented in this chapter, is a characterization in
terms of necessary and contingent truths, where possibility theory is used to express our
certainty in logical propositions. Such a characterization is unearthed by looking at ASP
as a special case of PASP in which the rules are certain. It highlights the intuition of ASP
that the head of a rule is certain when the information encoded in its body is certain.
Furthermore, this characterization stays close to the intuition of the Gelfond-Lifschitz
reduct, while sharing the explicit reference to modalities with autoepistemic logic.
As a second contribution, we show in this chapter how this new characterization of

ASP in terms of possibility theory can be used to uncover a new form of disjunction in
both ASP and PASP. As indicated, we have that the new semantics offer us an explicit
reference to modalities, i.e. operators with which we can qualify a statement. Epistemic
logic is an example of a modal logic in which we use the modal operator K to reason
about knowledge, where K is intuitively understood as “we know that”, as mentioned
in Section 1.2. A statement such as a ∨ b ∨ c can then be treated in two distinct ways.
On the one hand, we can interpret this statement as Ka ∨ Kb ∨ Kc, which makes it
explicit that we know which one of the disjuncts is true. This treatment corresponds
with the understanding of disjunction in disjunctive ASP and will be referred to as strong
disjunction. Alternatively, we can interpret a ∨ b ∨ c as K(a ∨ b ∨ c) which only states
that we know that the disjunction is true, i.e. we do not know which of the disjuncts is
true. We will refer to this form of disjunction as weak disjunction. This is the new form of
disjunction that we will discuss in Section 4.3.2, as it allows us to reason in settings where
a choice cannot or should not be made. Still, such a framework allows for non-trivial forms
of reasoning, as we will see in e.g. Example 36. This is also apparent when we study the
complexity of weak disjunction. In particular, we show that while most complexity results
coincide with the strong disjunctive semantics, the complexity of brave reasoning (deciding
whether a literal ‘l’ is entailed by a consistent answer set of program P ) in absence of
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negation-as-failure is lower for weak disjunction. Still, the expressiveness is higher than for
normal programs. The complexity results are summarized in Table 4.1 in Section 4.4.
The structure of this chapter is as follows. In Section 4.2 we introduce new semantics for

PASP, referred to as PASPŁ, based on constraints on possibility distributions. These new
semantics agree with PASPG for simple programs. However, they adhere to a different
intuition for negation-as-failure. Specifically, in PASPŁ we have that ‘not l’ is understood
as “the degree to which ‘¬l’ is possible”. Classical ASP can furthermore be seen as a
special case of PASPŁ. Indeed, in classical ASP we consider rules that are absolutely
certain and we do not allow for uncertainty in the answer sets. We show that under these
conditions PASPŁ can be used to characterize ASP.
In Section 4.3 we highlight that the treatment of a rule as a constraint on possibility

distributions allows for two ways to treat disjunction. One of these can be used to charac-
terizing disjunctive ASP programs. The other form of disjunction, called weak disjunction,
does not enforce a choice and is treated propositionally. This allows us to reason in settings
where a choice cannot or should not be made. In Section 4.4 we investigate the complex-
ity of PASPŁ and, specifically, of weak disjunction. We find that for possibilistic normal
programs and possibilistic disjunctive programs the complexity coincides with the classical
case. For weak disjunction, we find that most complexity results coincide with strong
disjunction. However, interestingly, for the problem of brave reasoning without negation-
as-failure and, crucially, with classical negation, the complexity results are between normal
programs and programs with strong disjunction. These results show that weak disjunction
is non-trivial, as it is more expressive than normal programs while being less complex than
disjunctive programs under the strong semantics.

4.2 Characterizing (P)ASP
ASP lends itself well to being characterized in terms of modalities. For instance, ASP can
be characterized in autoepistemic logic by interpreting ‘not a’ as the epistemic formula
¬La (“a is not believed”) [Gelfond 1987]. In this chapter, as an alternative, we show how
ASP can be characterized within possibility theory. To arrive at this characterization, we
first note that ASP is essentially a special case of PASP in which every rule is certain.
As such, we will show how PASP can be characterized within possibility theory. We refer to
these new semantics for PASP as PASPŁ. A characterization of ASP is then obtained from
these new semantics by considering the special case in which all rules are entirely certain.
This characterization of ASP, while still in terms of modalities, stays close in spirit to

the Gelfond-Lifschitz reduct. In contrast to the characterization in terms of autoepistemic
logic it does not require a special translation of literals to deal with classical negation
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and disjunction. The core idea of our characterization is to encode the meaning of each
rule as a constraint on possibility distributions. Particular minimally specific possibility
distributions that satisfy all the constraints imposed by the rules of a program will then
correspond to the answer sets of that program.
In this section, we first limit our scope to possibilistic simple programs (Section 4.2.1).
Afterwards we will broaden the scope and also consider possibilistic normal programs
(Section 4.2.2). The most general case, in which we also consider possibilistic disjunctive
programs, will be discussed in Section 4.3.

4.2.1 Characterizing Possibilistic Simple Programs
When considering a fact, i.e. a rule of the form r = (l0 ← >), we know by definition that
this rule encodes that the literal in the head is necessarily true, i.e. N(l0) = 1. If we
attach a weight to a fact, then this expresses the knowledge that we are not entirely
certain of the conclusion in the head, i.e. for a possibilistic rule p = (r, λ) we have that
N(l0) ≥ min(N(>), λ). Note that the constraint uses ≥, as there may be other rules in
the program that allow us to deduce l0 with a greater certainty.
In a similar fashion we can characterize a rule of the form (l0 ← l1, ..., lm) as the

constraint N(l0) ≥ N(l1 ∧ ... ∧ lm) which is equivalent to the constraint N(l0) ≥
min(N(l1), ..., N(lm)) due to the min-decomposability property of the necessity meas-
ure. Indeed, the intuition of such a rule is that the head is only necessarily true when
every part of the body is true. When associating a weight with a rule, we obtain
the constraint N(l0) ≥ min(N(l1), ..., N(lm), λ) for a possibilistic rule p = (r, λ) with
r = (l0 ← l1, ..., lm). Similarly, to characterize a constraint rule, i.e. a rule of the form
r = (⊥ ← l1, ..., lm), we use the constraint N(⊥) ≥ min(N(l1), ..., N(lm)), or, in the
possibilistic case with p = (r, λ), the constraint N(⊥) ≥ min(N(l1), ..., N(lm), λ).

Definition 14

Let P be a possibilistic simple program and π : Ω → [0, 1] a possibility distribu-
tion. For every p ∈ P , the constraint γ(p) imposed by p = (r, λ) with λ ∈ ]0, 1],
r = (l0 ← l1, ..., lm) and m ≥ 0 is given by

N(l0) ≥ min(N(l1), ..., N(lm), λ). (4.1)

CP = {γ(p) | p ∈ P} is the set of constraints imposed by program P . If π satisfies
the constraints in CP , π is said to be a possibilistic model of CP , written π |= CP .
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A possibilistic model of CP will also be called a possibilistic model of P . We write
SP for the set of all minimally specific possibilistic models of P .

Definition 15

Let P be a possibilistic simple program. Let π be a minimally specific model of P ,
i.e. π ∈ SP . Then V =

{
lN(l) | l ∈ LitP

}
is called a possibilistic answer set of P .

Example 29

Consider the possibilistic simple program P with the rules:

0.8 : a← 0.6 :¬b← a

0.7 : c← a,¬b 0.9 : d← d.

The set CP consists of the constraints:

N(a) ≥ 0.8 N(¬b) ≥ min(N(a), 0.6)
N(c) ≥ min(N(a), N(¬b), 0.7) N(d) ≥ min(N(d), 0.9).

It is easy to see that the last constraint is trivial and can be omitted and that the
other constraints can be simplified to Π(¬a) ≤ 0.2, Π(b) ≤ 0.4 and Π(¬c) ≤ 0.4.
The least specific possibility distribution that satisfies these constraints is given by:

π({a, b, c, d}) = 0.4 π({a, c, d}) = 1 π({b, c, d}) = 0.2 π({c, d}) = 0.2
π({a, b, c}) = 0.4 π({a, c}) = 1 π({b, c}) = 0.2 π({c}) = 0.2
π({a, b, d}) = 0.4 π({a, d}) = 0.4 π({b, d}) = 0.2 π({d}) = 0.2
π({a, b}) = 0.4 π({a}) = 0.4 π({b}) = 0.2 π({}) = 0.2.

By definition, since the possibility distribution π satisfies the given constraints, it
is a possibilistic model. Furthermore, it is easy to see that π is the unique min-
imally specific possibilistic model (due to least specificity). We can verify that
N(¬a) = N(b) = N(¬c) = N(¬d) = 0 since we have that π({a, c, d}) = 1 and that
N(d) = 0 since π({a, c}) = 1. Furthermore it is easy to verify that N(a) = 0.8,
N(¬b) = 0.6 and N(c) = 0.6. Hence we find that V =

{
a0.8,¬b0.6, c0.6

}
is a

possibilistic answer set of P .
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In particular, when we consider all the rules to be entirely certain, i.e. λ = 1, the results
are compatible with the semantics of classical ASP.

Example 30

Consider the program P = {(b← a), (¬a←)}. The set of constraints CP is given
by N(b) ≥ N(a) and N(¬a) ≥ N(>). The first constraint can be rewritten as
1 − Π(¬b) ≥ 1 − Π(¬a), i.e. as Π(¬a) ≥ Π(¬b). The last constraint can be
rewritten as 1−Π(a) ≥ 1, i.e. as Π(a) = max {π(ω) | ω |= a} = 0. Given these two
constraints, we find that SP contains exactly one element, which is defined by

π({a, b}) = 0 π({a}) = 0
π({b}) = 1 π({}) = 1.

Notice how the first constraint turned out to be of no relevance for this particular
example. Indeed, due to the principle of minimal specificity and since there is nothing
that prevents Π(¬a) = 1, we find that N(a) = 1 − Π(¬a) = 0. Therefore the first
constraint simplifies to N(b) ≥ 0. Once more, due to the principle of minimal
specificity we thus find that N(b) = 0 as there is no information that prevents
Π(¬b) = 1. To find out whether a, b, ¬a and ¬b are necessarily true w.r.t. the
least specific possibility distribution π ∈ SP arising from the program, we verify
whether N(a) = 1, N(b) = 1, N(¬a) = 1 and N(¬b) = 1, respectively, with N the
necessity measure induced by the unique least specific possibility distribution π ∈ SP .
As desired, we find that N(¬a) = 1−Π(a) = 1 whereas N(a) = N(b) = N(¬b) = 0.
The unique possibilistic answer set is therefore

{
¬a1}. As we will see, it then follows

from Proposition 14 that the unique classical answer set of P is {¬a}.

In Propositions 14 and 15, below, we prove that this is indeed a correct characterization
of simple programs. First, we present a technical lemma.

Lemma 3

Let L be a set of literals, M ⊆ L a consistent set of literals and let the possibility
distribution π be defined as π(ω) = 1 if ω |= M and π(ω) = 0 otherwise. Then
M = {l | N(l) = 1, l ∈ L}.
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Proposition 14

Let P be a simple program. If π ∈ SP then either the unique consistent answer set
of P is given by M = {l | N(l) = 1, l ∈ LitP } or π is the vacuous distribution, in
which case P does not have any consistent answer sets.

Proposition 15

Let P be a simple program. IfM is an answer set of P then the possibility distribution
π defined by π(ω) = 1 iff ω |= M and π(ω) = 0 otherwise belongs to SP .

4.2.2 Characterizing Possibilistic Normal Programs
To deal with negation-as-failure, we rely on a reduct-style approach in which a valuation
is guessed and it is verified whether this guess is indeed stable. The approach taken
in [Gelfond and Lifschitz 1988] to deal with negation-as-failure is to guess an interpretation
and verify whether this guess is stable. We propose to treat a rule of the form r = (l0 ←
l1, ..., lm, not lm+1, ..., not ln) as the constraint

N(l0) ≥ min (N(l1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln))

where V is the guess for the valuation and where we assume min({}) = 1. Or, when we
consider a possibilistic rule p = (r, λ), we treat it as the constraint

N(l0) ≥ min (N(l1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ) .

We like to make it clear to the reader that the characterization of normal programs in
terms of constraints on possibility distributions in its basic form is little more than a refor-
mulation of the Gelfond-Lifschitz approach. The key difference is that this characterization
can be used to guess the certainty with which we can derive particular literals from the
available rules, rather than guessing what may or may not be derived from it. Nevertheless,
this difference plays a crucial role when dealing with uncertain rules. In particular, this
characterization of PASP does not coincide with the semantics of [Nicolas et al. 2006]
and adheres to a different intuition for negation-as-failure.
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Definition 16

Let P be a possibilistic normal program and let V be a valuation. For every
p ∈ P , the constraint γ

V
(p) induced by p = (r, λ) with λ ∈ ]0, 1], r = (l0 ←

l1, ..., lm, not lm+1, ..., not ln) and V is given by

N(l0) ≥ min (N(l1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ) . (4.2)

C(P,V ) = {γ
V

(p) | p ∈ P} is the set of constraints imposed by program P and valu-
ation V , and S(P,V ) is the set of all minimally specific possibilistic models of C(P,V ).

Definition 17

Let P be a possibilistic normal program and let V be a valuation. Let π ∈ S(P,V ) be
such that

∀l ∈ LitP ·N(l) = V (l)

then V =
{
lN(l) | l ∈ LitP

}
is called a possibilistic answer set of P .

Example 31

Consider the possibilistic normal program P from Section 4.1. The constraints CP
induced by P are:

N(invalid) ≥ 0.1
N(airport) ≥ min(1− V (invalid), 1)

From the first constraint it readily follows that we need to choose V (invalid) = 0.1
to comply with the principle of minimal specificity. The other constraint can then
readily be simplified to:

N(airport) ≥ 0.9

Hence it follows that V =
{
invalid0.1, airport0.9

}
is the unique possibilistic answer

set of P .

It is easy to see that the proposed semantics remain closer to the intuition of the pos-
sibilistic normal program discussed in the introduction. Indeed, we conclude with a high
certainty that we need to go to the airport.
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Still, it is interesting to further investigate the particular relationship between the se-
mantics for PASP as proposed in [Nicolas et al. 2006] and the semantics presented in this
section. Let the possibilistic rule r be of the form:

λ : l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln.

When we determine the reduct w.r.t. a valuation V of the possibilistic program containing
r, then the certainty of the rule in the reduct that corresponds with r can be verified to be:

min(FN (V (lm+1)), ..., FN (V (ln)), λ)

with FN a fuzzy negator, i.e. where FN is a decreasing function with FN (0) = 1 and
FN (1) = 0. In particular, for the semantics of [Nicolas et al. 2006] we have that FN is the
Gödel negator FG, defined as FG(0) = 1 and FG(c) = 0 with 0 < c ≤ 1. In the semantics
for PASP presented in this section, FN is the Łukasiewicz negator FŁ(c) = 1 − c with
0 ≤ c ≤ 1. Thus, for a rule such as:

0.9 : b← not a

and a valuation V =
{
a0.2} we obtain under the approach from [Nicolas et al. 2006] the

reduct (0 : b ←), whereas under our approach we obtain the constraint N(b) ≥ min(1 −
0.2, 0.9), which can be encoded by the rule (0.8 : b←). Essentially, the difference between
both semantics can thus be reduced to a difference in the choice of negator. However,
even though the semantics share similarities, there is a notable difference in the underlying
intuition of both approaches. Specifically, in the semantics presented in this chapter, we
have that ‘not l’ is understood as “the degree to which ‘¬l’ is possible”, or, equivalently,
“the degree to which it is not the case that we can derive ‘l’ with certainty”. This contrasts
with the intuition of ‘not l’ in [Nicolas et al. 2006] as a Boolean condition and understood
as “we cannot derive ‘l’ with a strictly positive certainty”.
Interestingly, we find that the complexity of the main reasoning tasks for possibilistic

normal programs remains at the same level of the polynomial hierarchy as the corresponding
normal ASP programs.
While we will see in Section 4.4 that the complexity of possibilistic normal programs

remains unchanged compared to classical normal programs, it is important to note that
under the semantics proposed in this section there is no longer a 1-on-1 mapping between
the classical answer sets of a normal program and the possibilistic answer sets. Indeed,
if we consider a possibilistic normal program constructed from a classical normal program
where we attach certainty λ = 1 to each rule, then we can sometimes obtain additional
intermediary answer sets. Consider the next example:
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Example 32

Consider the normal program with the single rule a ← not a. This program has no
classical answer sets. Now consider the possibilistic normal program P with the rule

1 : a← not a.

The set of constraints C(P,V ) is given by

N(a) ≥ min(1− V (a), 1).

This constraint can be rewritten as

N(a) ≥ min(1− V (a), 1)
≡ N(a) ≥ 1− V (a)
≡ 1−Π(¬a) ≥ 1− V (a)
≡ Π(¬a) ≤ V (a).

We thus find that the set S(P,V ) is a singleton with π ∈ S(P,V ) defined by π({a}) = 1
and π({}) = V (a). We can now establish for which choices of V (a) it holds that
V (a) = N(a):

V (a) = N(a)
Π(¬a) = 1−Π(¬a)

2 ·Π(¬a) = 1

and thus, since Π(¬a) ≤ V (a), we have π({}) = 0.5. The unique possibilistic answer
set of P is therefore

{
a0.5}. In the same way, one may verify that the program

1 : a← not b 1 : b← not a

has an infinite number of possibilistic answer sets, i.e.
{
ac, b1−c

}
for every c ∈ [0, 1].

For practical purposes, however, this behaviour has a limited impact as we only need to
consider a finite number of certainty levels to perform brave/cautious reasoning. Indeed,
we only need to consider the certainties used in the program, their complement to account
for negation-as-failure and 1

2 to account for the intermediary value as in Example 32.
Thus, for the main reasoning tasks it suffices to limit our attention to the certainties from
the set cert+(P ).
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We now show that when we consider rules with an absolute certainty, i.e. classical normal
programs, we obtain a correct characterization of classical ASP, provided that we restrict
ourselves to absolutely certain conclusions, i.e. valuations V for which it holds that ∀l ·
V (l) ∈ {0, 1}.

Example 33

Consider the program P with the rules

a← b← b c← a, not b.

The set of constraints C(P,V ) is then given by

N(a) ≥ 1 N(b) ≥ N(b) N(c) ≥ min (N(a), 1− V (b)) .

We can rewrite the first constraint as 1−Π(¬a) ≥ 1 and thus Π(¬a) = 0. The second
constraint is trivially satisfied and, since it does not entail any new information,
can be dropped. The last constraint can be rewritten as Π(¬c) ≤ 1 − min(1 −
Π(¬a), 1 − V (b)), which imposes an upper bound on the value that Π(¬c) can
assume. Since we already know that Π(¬a) = 0 we can further simplify this inequality
to Π(¬c) ≤ 1−min(1− 0, 1− V (b)) = 1− (1− V (b)) = V (b). In conclusion, the
program imposes the constraints

Π(¬a) = 0 Π(¬c) ≤ V (b).

The set S(P,V ) then contains exactly one element, which is defined by

π({a, b, c}) = 1 π({b, c}) = 0
π({a, b}) = V (b) π({b}) = 0
π({a, c}) = 1 π({c}) = 0
π({a}) = V (b) π({}) = 0.

Note that this possibility distribution is independent of the choice for V (a) and V (c)
since there are no occurrences of ‘not a’ and ‘not c’ in P . It remains then to
determine for which choices of V (b) it holds that V (b) = N(b), i.e. for which the
guess V (b) is stable. We have:

V (b) = N(b) = 1−Π(¬b) = 1−max {π(ω) | ω |= ¬b} = 0
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and thus we find that π({a, b}) = π({a}) = 0. We have N(a) = 1 − Π(¬a) = 1,
N(c) = 1 − Π(¬c) = 1 and N(b) = 1 − Π(¬b) = 0. As we will see in the next
propositions, the unique answer set of P is therefore {a, c}.

Proposition 16

Let P be a normal program and V a valuation. Let π ∈ S(P,V ) be such that

∀l ∈ LitP · V (l) = N(l) ; and (4.3)
∀l ∈ LitP ·N(l) ∈ {0, 1} (4.4)

then M = {l | N(l) = 1, l ∈ LitP } is an answer set of the normal program P .

Proof. This proposition is a special case of Proposition 18 presented below.

Note that the requirement stated in (4.4) cannot be omitted. Let us consider Example 32,
in which we considered the normal program P = {a← not a}. This normal program P

has no classical answer sets. The constraint that corresponds with the rule (a← not a) is
N(a) ≥ 1−V (a). For a choice of V =

{
a0.5}, however, we would find that V (a) = N(a)

and thus that V is an answer set of P if we were to omit this requirement.

Proposition 17

Let P be a normal program. If M is an answer set of P , there is a valuation V ,
defined by V (l) = 1 if l ∈ M and V (l) = 0 otherwise, and a possibility distribution
π ∈ S(P,V ) such that for every l ∈ LitP we have V (l) = N(l) (i.e. N(l) = 1 if
l ∈M and N(l) = 0 otherwise).

Proof. This proposition is a special case of Proposition 19 presented below.

We like to point out to the reader that we could try to encode the information in a rule in
such a way that we interpret ‘not a’ as Π(¬a), which closely corresponds to the intuition
of negation-as-failure. Indeed, when it is completely possible to assume that ‘¬a’ is true,
then surely ‘not a’ is true. Under this encoding, however, we run into a significant problem.
Consider the rules (b← not c) and (c← not b). These rules would then correspond with
the constraints N(b) ≥ Π(¬c) and N(c) ≥ Π(¬b), respectively. Notice though that both
constraints can be rewritten as the constraint 1−Π(¬b) ≥ Π(¬c). This would imply that
both rules are semantically equivalent in ASP, which is clearly not the case. Hence we
cannot directly encode ‘not a’ as Π(¬a) and guessing a valuation is indeed necessary since
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without the guess V we would not be able to obtain a unique set of constraints. As we
have shown this only affects literals preceded by negation-as-failure and we can continue
to interpret a literal ‘b’ as N(b).

4.3 Possibilistic Semantics of Disjunctive ASP Programs
We now turn our attention to how we can characterize disjunctive rules. We found in
Section 4.2 that we can characterize a rule of the form r = (head ← body) as the
constraint N(head) ≥ N(body), or, similarly, that we can characterize a possibilistic
rule p = (r, λ) as the constraint N(head) ≥ min(N(body), λ). Such a characterization
works particularly well due the min-decomposability w.r.t. conjunction. Indeed, since the
body of e.g. a simple rule r = (l0 ← l1, ..., lm) is a conjunction of literals we can write
body = l1 ∧ ... ∧ lm. Then N(body) can be rewritten as min(N(l1), ..., N(lm)), which
allows for a straightforward simplification. In a similar fashion, for a positive disjunctive rule
r = (l0; ...; lk ← lk+1, ..., lm) we can readily write N(body) as min(N(lk+1), ..., N(lm)).
We would furthermore like to simplify N(head) with head = l0 ∨ ... ∨ lk. However, we
do not have that N(head) = max(N(l0), ..., N(lk)). Indeed, in general we only have that
N(head) ≥ max(N(l0), ..., N(lk)). This means that we can either choose to interpret the
head as max(N(l0), ..., N(lk)) or N(l0 ∨ ... ∨ lk). In particular, a possibilistic disjunctive
rule p = (r, λ) with

r = (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln)

can either be interpreted as the constraint

max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ) (4.5)

which we will call the strong interpretation of disjunction, or as the constraint

N(l0 ∨ ... ∨ lk) ≥ min(N(lk+1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ) (4.6)

which we will call the weak interpretation of disjunction.
The choice of how to treat disjunction is an important one that crucially impacts the

nature of the resulting answer sets. For example, the non-deterministic nature of strong
disjunction provides a useful way to generate different (candidate) solutions, whereas weak
disjunction is oftentimes better suited when we are interested in modelling the epistemic
state of an agent since it amounts to accepting the disjunction as being true rather than
making a choice of which disjunct to accept. In this section we consider both character-
izations; the characterization of disjunction as (4.5) is discussed in Section 4.3.1 and in
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Section 4.3.2 we discuss the characterization as (4.6). In particular we will show that the
first characterization of disjunction corresponds to the semantics of disjunction found in
ASP whereas the Boolean counterpart of the second characterization has, to the best of
our knowledge, not yet been studied in the literature.

4.3.1 Strong Possibilistic Semantics of Disjunctive Rules
We first consider the characterization of disjunction in which we treat a disjunction of the
form ‘l0; ...; lk’ as max(N(l0), . . . , N(lk)). As it turns out, under these strong possibilistic
semantics the disjunction behaves as in classical ASP.

Definition 18

Let P be a possibilistic disjunctive program and let V be a valuation. For every
possibilistic disjunctive rule p = (r, λ) with λ ∈ ]0, 1] and r a rule of the form
r = (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln) the constraint γs

V
(p) induced by p

and V is given by

max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ)
(4.7)

Cs
(P,V ) =

{
γs
V

(p) | p ∈ P
}
is the set of constraints imposed by program P and V ,

and Ss
(P,V ) is the set of all minimally specific possibilistic models of Cs

(P,V ).1

Whenever P is a positive disjunctive program, i.e. whenever P is a disjunctive program
without negation-as-failure, (4.7) is independent of V and we simplify the notation to
γs, Cs

P and Ss
P .

Notice that, unlike in possibilistic logic where a unique least specific possibility distribution
exists because of the specific form of the considered constraints, the constraint of the form
(4.7) can give rise to multiple minimally specific possibility distributions of which some will
correspond with answer sets. Indeed, the program P = {a; b←} induces the constraint
max(N(a), N(b)) ≥ 1, which has two minimally specific possibility distributions, yet no
least specific possibility distribution. Indeed, we have the minimally specific possibility
distributions π1, π2 defined by

π1({a, b}) = 1 π1({b}) = 0 π2({a, b}) = 1 π2({b}) = 1
π1({a}) = 1 π1({}) = 0 π2({a}) = 0 π2({}) = 0

1We use the superscript ‘s’ to highlight that we employ the semantics of strong disjunction.
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Definition 19

Let P be a possibilistic disjunctive program and let V be a valuation. Let π ∈ Ss
(P,V )

be such that
∀l ∈ LitP ·N(l) = V (l)

then V =
{
lN(l) | l ∈ LitP

}
is called a possibilistic answer set of P .

We now further illustrate the semantics and the underlying intuition by considering a
possibilistic disjunctive program in detail.

Example 34

Consider the possibilistic (positive) disjunctive program P with the following rules:

0.8 : a; b←
0.6 : c← a

0.4 : c← b.

The constraints Cs
P induced by this program are:

max(N(a), N(b)) ≥ 0.8
N(c) ≥ min(N(a), 0.6)
N(c) ≥ min(N(b), 0.4).

From the first constraint it follows that we either need to choose V (a) = 0.8 or
V (b) = 0.8, in accordance with the principal of minimal specificity. Hence, we either
obtain V (c) = 0.6 or V (c) = 0.4. As such we find that the two unique possibilistic
answer sets of P are

{
a0.8, c0.6

}
and

{
b0.8, c0.4

}
.

As before, if we restrict ourselves to rules that are entirely certain we obtain a character-
ization of disjunctive programs in classical ASP.

Example 35

Consider the program P with the rules

a; b← a← b
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The set of constraints Cs
P is given by

max(N(a), N(b)) ≥ N(>) = 1 N(a) ≥ N(b).

Intuitively, the first constraint induces a choice. To satisfy this constraint, we need
to take either N(a) = 1 or N(b) = 1. Depending on our choice, we can consider two
possibility distributions. The possibility distribution π1 is the least specific possibility
distribution that satisfies the constraints N(a) = 1 and N(a) ≥ N(b), whereas π2
is the least specific possibility distribution satisfying the constraints N(b) = 1 and
N(a) ≥ N(b):

π1({a, b}) = 1 π1({b}) = 0
π1({a}) = 1 π1({}) = 0

and

π2({a, b}) = 1 π2({b}) = 0
π2({a}) = 0 π2({}) = 0.

It is clear that the possibility distribution π2 cannot be minimally specific w.r.t. the
constraints max(N(a), N(b)) = 1 and N(a) ≥ N(b) since π1({a}) > π2({a}) and
π1(ω) ≥ π2(ω) for all other interpretations ω. We thus have that Ss

P only contains
a single element, namely π1. With N the necessity measure induced by π1 we obtain
N(a) = 1 and N(b) = 0. As will follow from Proposition 18 and 19 the unique
answer set of P is therefore {a}.
Let us now add the rule (b← not b) to P . Notice that in classical ASP this extended
program has no answer sets. The set of constraints Cs

(P,V ) is given by:

Cs
P ∪ {N(b) ≥ 1− V (b)} .

This new constraint, intuitively, tells us that ‘b’ must necessarily be true, since we
force it to be true whenever it is not true. Note, however, that the act of making ‘b’
true effectively removes the motivation for making it true in the first place. As ex-
pected, we cannot find any minimally specific possibilistic model that agrees with the
constraints imposed by P and V such that ∀l ∈ LitP ·N(l) ∈ {0, 1}. The problem
has to do with our choice of V (b). If we take V (b) = 1 then the constraint imposed by
the first rule still forces us to choose either N(a) = 1 or N(b) = N(a) = 1 due to the
interplay with the constraint imposed by the second rule. However, Ss

(P,V ) contains
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only one minimally specific possibility distribution, namely the one with N(a) = 1.
Hence N(b) = 0 6= V (b). If we take V (b) = 0 then the last rule forces N(b) = 1.
Hence V (b) = 0 6= 1 = N(b).

Now that we have clarified the intuition, we can formalize the connection between the
strong possibilistic semantics and classical disjunctive ASP.

Proposition 18

Let P be a disjunctive program, V a valuation and let π ∈ Ss
(P,V ) be such that

∀l ∈ LitP · V (l) = N(l) ; and (4.8)
∀l ∈ LitP ·N(l) ∈ {0, 1} (4.9)

then M = {l | N(l) = 1, l ∈ LitP } is an answer set of the disjunctive program P .

Proposition 19

Let P be a disjunctive program. If M is an answer set of P , there is a valuation V ,
defined as V (l) = 1 if l ∈M and V (l) = 0 otherwise, and a possibility distribution π,
defined as π(ω) = 1 if ω |= M and π(ω) = 0 otherwise, such that π ∈ Ss

(P,V ) and
for every l ∈ LitP we have V (l) = N(l).

4.3.2 Weak Possibilistic Semantics of Disjunctive Rules
Under the strong possibilistic semantics of disjunction we consider all the disjuncts of a
satisfied rule separately. Under this non-deterministic view the rule (a; b ←) means that
‘a’ is believed to be true or ‘b’ is believed to be true. When looking at answer sets as
epistemic states it becomes apparent that there is also another choice in how we can treat
disjunction in the head. Indeed, we can look at the disjunction as a whole to hold, without
making any explicit choices as to which of the disjuncts holds. When trying to reason
about one’s knowledge there are indeed situations in which we do not want, or simply
cannot make, a choice as to which of the disjuncts is true. This implies that we need to
look at an answer set as a set of clauses, rather than a set of literals. In the remainder of
this chapter, we syntactically differentiate between both approaches by using the notation
l0; ...; lk and l0 ∨ ... ∨ lk to denote strong disjunction and weak disjunction, respectively.
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Example 36

Consider the following example. A SCADA (supervisory control and data acquisition)
system is used to monitor the brewing of beer in an industrialised setting. To control
the fermentation, the system regularly verifies an air-lock for the presence of bubbles.
An absence of bubbles may be due to a number of possible causes. On the one hand
there may be a production problem such as a low yeast count or low temperature.
Adding yeast when the temperature is low results in a beer with a strong yeast fla-
vour, which should be avoided. Raising the temperature when there is too little yeast
present will kill off the remaining yeast and will ruin the entire batch. On the other
hand, there may be technical problems. There may be a malfunction in the SCADA
system, which can be verified by running a diagnostic. The operator runs a diagnostic
(diagnostic), which reports back that there is no malfunction (¬malfunction). Or,
alternatively, the air-lock may not be sealed correctly (noseal). The operator fur-
thermore checks the temperature because he suspects that the temperature is the
problem (verifytemp), but the defective temperature sensor returns no temperature
when checked (notemp). These three technical problems require physical mainten-
ance and the operator should send someone out to fix them. Technical problems do
not affect the brewing. As such, the brewing process should not be interrupted for
such problems as this will ruin the current batch. If there is a production problem,
however, the brewing process needs to be interrupted as soon as possible (in addi-
tion, evidently, to interrupting the brewing process when the brewing is done). This
prevents the current batch from being ruined due to over-brewing but also allows
the interaction with the contents of the kettle. In particular, when the problem is
diagnosed to be low yeast the solution is to add a new batch of yeast and restart the
process. Similarly, low temperature can be solved by raising the kettle temperature
and restarting the fermentation process. Obviously, the goal is to avoid ruining the
current batch. An employer radios in that the seal is okay. We have the following
program:

lowyeast ∨ lowtemp ∨ noseal ∨malfunction ← not bubbles

diagnostic ←
¬malfunction ← diagnostic

verifytemp ←
notemp ← verifytemp

maintenance ← noseal ∨malfunction ∨ notemp
brew ← not (lowyeast ∨ lowtemp ∨ done)
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addyeast ← lowyeast
raisetemp ← lowtemp

ruin ← raisetemp, not lowtemp
ruin ← addyeast, not lowyeast
ruin ← not brew, not (lowtemp ∨ lowyeast)

← ruin
¬noseal ←

The program above does not use the standard ASP syntax since we allow for
disjunction in the body. Furthermore, the disjunction used in the head and the
body is weak disjunction. The only information that we can therefore deduce from
e.g. the first rule is (lowyeast ∨ lowtemp ∨ noseal ∨ malfunction). At first, this
new form of disjunction may indeed appear weaker than strong disjunction since it
does not induce a choice. Still, even without inducing a choice, conclusions ob-
tained from other rules may allow us to refine our knowledge. In particular, note
that from lowyeast ∨ lowtemp ∨ noseal ∨malfunction together with ¬malfunction
and ¬noseal we can entail lowyeast ∨ lowtemp. Similarly, conclusions can also have
prerequisites that are disjunctions. For example, we can no longer deduce brew
since lowyeast ∨ lowtemp entails lowyeast ∨ lowtemp∨ done. From maintenance ←
noseal∨malfunction∨notemp and notemp we can deduce that we should call main-
tenance. However, we do not yet have enough information to diagnose whether yeast
should be added or whether the temperature should be raised. The unique answer
set of this program, according to the semantics of weak disjunction which we present
in this section, is given by

{lowyeast ∨ lowtemp,maintenance,
diagnostic,¬malfunction, verifytemp,notemp,¬noseal}.

To conclude this example, note that e.g. (noseal ∨malfunction ∨ notemp) cannot
simply be replaced by a single atom. An atom would be needed for every subset of
disjuncts and there may be an exponential number of such subsets. This approach
would therefore not be efficient in examples with a large number of disjuncts.

In the remainder of this section we extend the PASP semantics with the notion of clauses,
rather than literals, and define an applicable immediate consequence operator for programs
composed of clauses. We then prove some important properties, such as the monotonicity
of the immediate consequence operator. For the classical case (i.e. when omitting weights),
we furthermore characterize the complexity of clausal programs, both with and without
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negation-as-failure in Section 4.4. In particular, we show how the complexity is critically
determined by whether we restrict ourselves to atoms and highlight, as shown by the
higher complexity of some of the reasoning tasks, that weak disjunction is a non-trivial
extension of ASP.
We start by giving the definition of possibilistic clausal programs, i.e. possibilistic pro-

grams with a syntax that allows for disjunction in the body. We then define the weak
possibilistic semantics of such clausal programs in terms of constraints on possibility
distributions. We also introduce an equivalent characterization based on an immediate
consequence operator and a reduct, which is more in line with the usual treatment of
ASP programs. When all the rules are entirely certain we obtain the classical counterpart,
which we name clausal programs.

Semantical Characterization

We rely on the notion of a clause, i.e. a finite disjunction of literals. Consistency and
entailment for sets of clauses are defined as in propositional logic. As such, we can derive
from the information ‘a ∨ b ∨ c’ and ‘¬b’ that ‘a ∨ c’ is true.

Definition 20

A clausal rule is an expression of the form (e0 ← e1, ..., em, not em+1, ..., not en)
with ei a clause for every 0 ≤ i ≤ n. A positive clausal rule is an expression of the
form (e0 ← e1, ..., em), i.e. a clausal rule without negation-as-failure. A (positive)
clausal program is a finite set of (positive) clausal rules.

For a clausal rule, which is of the form r = (e0 ← e1, ..., em, not em+1, ..., not en), we
say that e0 is the head and that e1, ..., em, not em+1, ..., not en is the body of the clausal
rule. We use the notation head(r) and body(r) to denote the clause in the head, resp. the
set of clauses in the body. The Herbrand base BP of a clausal program P is still defined
as the set of atoms appearing in P . As such, possibility distributions are defined in the
usual way as π : 2BP → [0, 1] mappings.
Until now, we were able to define the possibility distributions that satisfied the constraints

imposed by the rules in a program in terms of a valuation V , i.e. a V : LitP → [0, 1]
mapping. This need no longer be the case. Specifically, note that we will now impose
constraints of the form N(l0∨ ...∨ lk) ≥ λ. Assume that we have a possibility distribution
π defined as

π({a, b, c}) = 0 π({a, b}) = 0 π({a, c}) = 1 π({a}) = 1
π({b, c}) = 0 π({b}) = 0 π({c}) = 1 π({}) = 0.
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This possibility distribution is the least specific possibility distribution that satisfies the
constraints N(a ∨ b ∨ c) = 1 and N(¬b) = 1. However, it can be verified that this
possibility distribution cannot be defined in terms of a mapping V : LitP → [0, 1].
Instead, we define the set of clauses appearing in the head of the rules of a clausal pro-

gram P as ClauseP = {head(r) | r ∈ P}. Given a clausal program, it is clear that the only
information that can be derived from the program are those clauses that are in the head
of a rule. To compactly describe a possibility distribution imposed by clausal programs we
therefore consider sets of weighted clauses, where a set of weighted clauses E corresponds
with the set of constraints

{
N(e) ≥ λ | eλ ∈ E

}
. We use the notations Eλ and Eλ to

denote the sets
{
eλ
′ | eλ′ ∈ E, λ′ ≥ λ

}
and

{
eλ
′ | eλ′ ∈ E, λ′ > λ

}
, respectively. Entail-

ment for sets of weighted clauses is defined as in possibilistic logic, i.e. if we consider the
least specific possibility distribution πE satisfying the constraints

{
NE(e) ≥ λ | eλ ∈ E

}
then E |= pλ with ‘p’ a proposition iff NE(p) ≥ λ. In particular, recall from possibilistic
logic the inference rules (GMP) or graded modus ponens, i.e. we can infer from N(α) ≥ λ
and N(α → β) ≥ λ′ that N(β) ≥ min(λ, λ′). In addition recall the inference rule (S),
i.e. we can infer from N(α) ≥ λ that N(α) ≥ λ′ with λ ≥ λ′. Consistency for sets of
weighted clauses is also defined as in possibilistic logic.

Definition 21

A possibilistic (positive) clausal program is a set of possibilistic (positive) clausal
rules, which are pairs p = (r, λ) with r a (positive) clausal rule and λ ∈ ]0, 1] a
certainty associated with r.

We define P ∗ and the λ-cut Pλ as usual.
We are now almost able to define the semantics of weak disjunction. In the previous

sections we guessed a valuation and used this valuation to deal with negation-as-failure.
However, for clausal programs, a new problem arises. Note that the least specific possibility
distribution that satisfies the constraints N(a∨ b∨ c) = 1 and N(¬b) = 1 is also the least
specific possibility distribution that satisfies the constraints N(a∨ c) and N(¬b). As such,
if ClauseP = {(a ∨ b ∨ c), (¬b), (a ∨ c)}, there would not be a unique set of weighted
clauses that can be used to define this least specific possibility distribution. Indeed, a set
of weighted clauses uniquely defines a possibility distribution, but not vice versa. To avoid
such ambiguity, we will instead immediately guess a possibility distribution πE and use
this possibility distribution to deal with negation-as-failure in a clausal program.
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Definition 22

Let P be a possibilistic clausal program and let πE be a possibility distribution.
For every p ∈ P , the constraint γw

πE (p) induced by p = (r, λ) with λ ∈ ]0, 1],
r = (e0 ← e1, ..., em, not em+1, ..., not en) and πE under the weak possibilistic
semantics is given by

N(e0) ≥ min(N(e1), ..., N(em), 1−NE(em+1), ..., 1−NE(en), λ). (4.10)

Cw
(P,πE) =

{
γw
πE (p) | p ∈ P

}
is the set of constraints imposed by program P and πE ,

and Sw
(P,πE) is the set of all minimally specific possibilistic models of Cw

(P,πE).

Whenever P is a possibilistic (positive) clausal program, i.e. whenever P is a possibilistic
clausal program without negation-as-failure, (4.10) is independent of πE and we simplify
the notation to γw, Cw

P and Sw
P .

Definition 23

Let P be a possibilistic clausal program. Let πE be a possibility distribution such
that πE ∈ Sw

(P,πE). We then say that πE is a possibilistic answer set of P .

As already indicated we can also use a set of weighted clauses E to concisely describe
πE . For compactness, we slightly abuse the terminology. Specifically, when we say that
E is a possibilistic answer set of the clausal program P we are stating that the possibility
distribution induced by E is a possibilistic answer set of the clausal program P . Finally,
a (possibilistic) answer set E of the clausal program P is said to be consistent when the
set of weighted clauses E is consistent.

Lemma 4

Let P be a possibilistic positive clausal program. Then Sw
(P,πE) is a singleton,

i.e. π ∈ Sw
(P,πE) is a least specific possibility distribution.

Proof. This readily follows from the form of the constraints imposed by the rules p ∈ P
and since a possibilistic positive clausal program is free of negation-as-failure.
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Example 37

Consider the possibilistic clausal program P with the rules:

1 : a ∨ c ∨ d←
0.4 :¬d←
0.8 : e← not (a ∨ b ∨ c).

We have that Cw
(P,πE) is the set of constraints:

N(a ∨ c ∨ d) ≥ 1
N(¬d) ≥ 0.4
N(e) ≥ min(1−NE(a ∨ b ∨ c), 0.8).

We can rewrite the first constraint as N(¬d → a ∨ c) ≥ 1. Given the second
constraint N(¬d) ≥ 0.4 we can apply the inference rule (GMP) to conclude that
N(a∨ c) ≥ 0.4. From propositional logic we know that (a∨ c)→ (a∨ b∨ c), i.e. we
also have N(a ∨ b ∨ c) ≥ 0.4.
For πE to be an answer set of P we know from Definition 23 that we must have

that π ∈ Sw
(P,πE) with π = πE . In other words, we must have that NE(a ∨ b ∨ c) =

N(a ∨ b ∨ c) ≥ 0.4. Due to the principle of least specificity, which implies that
N(a ∨ b ∨ c) = 0.4, the last constraint can be simplified to N(e) ≥ min(1− 0.4, 0.8)
or N(e) ≥ 0.6. As such, the least specific possibility distribution defined by the
constraints N(e) ≥ 0.6, N(a ∨ c ∨ d) ≥ 1 and N(¬d) ≥ 0.4 is a possibilistic answer
set of P .

Notice that we implicitly defined the possibilistic answer set of the previous example as a
set of weighted clauses, i.e. in terms of clauses that appear in the head. Alternatively we
could thus write that E =

{
e0.6, a ∨ b ∨ d1,¬b0.4

}
defines the possibilistic answer set of

P . This idea will be further developed in Section 4.3.2 to avoid the need to explicitly define
a possibility distribution (which would require an exponential amount of space) and instead
rely on an encoding of a possibility distribution by a (polynomial) set of weighted clauses.
For the crisp case, we only want clauses that are either entirely certain or completely

uncertain, i.e. true or false. To this end, we add the constraint (4.11), which is similar
to (4.4) from Proposition 16.
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Definition 24

Let P be a clausal program and πE ∈ Sw
(P,πE) a possibility distribution such that

∀ω ∈ Ω · πE(ω) ∈ {0, 1} (4.11)

then πE is called an answer set of P .

Syntactic Characterization

We now introduce a syntactic counterpart of the semantics for weak disjunction by defining
an immediate consequence and reduct operator. As such, it is more in line with the classical
Gelfond-Lifschitz approach. In addition, the syntactic approach only needs a polynomial
amount of space (as we will only consider clauses appearing in the head of the clausal
rules). Indeed, what we will do is formalise the idea of using a set of weighted clauses
to determine the possibilistic answer sets of a clausal program, rather than relying on an
exponential possibility distribution.

Definition 25

Let P be a possibilistic positive clausal program. We define the immediate con-
sequence operator Tw

P as:

Tw
P (E)(e0) = max

{
λ ∈ [0, 1] | (e0 ← e1, ..., em) ∈ Pλ

and ∀i ∈ {1, ...,m} · Eλ |= ei
}
.

We use P ?w to denote the fixpoint which is obtained by repeatedly applying Tw
P

starting from the empty set E = ∅, i.e. the least fixpoint of Tw
P w.r.t. set inclusion.

When P is a positive clausal program we take λ ∈ {0, 1}.

Example 38

Consider the clausal program P with the clausal rules

1 : a ∨ b ∨ c←
0.4 :¬b←
0.8 : e← (a ∨ c ∨ d).
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We can easily verify that, starting from E = ∅, we obtain

Tw
P (E)(a ∨ b ∨ c) = 1 and

Tw
P (E)(¬b) = 0.4.

In the next iteration we furthermore find that

Tw
P (Tw

P (E))(e) = 0.4

since (0.8 : e ← (a ∨ c ∨ d)) ∈ P0.4 and since (Tw
P (E))0.4 |= a ∨ c ∨ d. In addition,

this is the least fixpoint, i.e. we have P ?w =
{

(a ∨ b ∨ c)1
,¬b0.4, e0.4

}
.

Notice that this definition of the immediate consequence operator is a generalization of
the immediate consequence operator for possibilistic simple programs (see Definition 9).
Indeed, for a possibilistic positive clausal program where all clauses contain only a single
literal, i.e. a possibilistic simple program, we have that P ? = P ?w. In addition, when all
clauses contain only a single literal, we can simplify the immediate consequence operator
and simply write ei ∈ Eλ instead of Eλ |= ei.
We now show that the fixpoint obtained from the immediate consequence operator Tw

P

is indeed the answer set of P .

Proposition 20

Let P be a possibilistic positive clausal program without possibilistic constraint rules.
Then P ?w is a possibilistic answer set of P .

Thus far, we only considered possibilistic positive clausal programs. If we allow for
negation-as-failure, we will also need to generalize the notion of a reduct. As usual, in the
classical case we want that an expression of the form ‘not e’ is true when ‘e’ cannot be
entailed. Furthermore, since we are working in the possibilistic case, we want to take the
degrees into account when determining the reduct.
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Definition 26

Given a possibilistic clausal program P and a set of weighted clauses E, the reduct
PE of P w.r.t. E is defined as:

PE = { ((e0 ← e1, ..., em),min(λrule, λbody)) | min(λrule, λbody) > 0
∧ λbody = max

{
λ | ∀i ∈ {m+ 1, ..., n} · E1−λ 6|= ei, λ ∈ [0, 1]

}
∧ ((e0 ← e1, ..., em, not em+1, ..., not en), λrule) ∈ P}

This definition corresponds with the Gelfond-Lifschitz reduct when we consider crisp
clausal programs where each clause consists of exactly one literal. Indeed, if we con-
sider clauses with exactly one literal, we could simplify ∀i ∈ {m+ 1, ..., n} · E1−λ 6|= ei
to {em+1, ..., en} ∩ E1−λ = ∅. This new reduct generalises the Gelfond-Lifschitz reduct
in two ways. Firstly, we now have clauses, i.e. we now need to verify whether the negative
body is not entailed by our guess. Secondly, we need to take the weights attached to
the rules, which we interpret as certainties, into account. In particular, the certainty of
the reduct of a rule is limited by the certainty of the negative body of the rule and the
certainty of the rule itself. In the crisp case these certainty degrees would become trivial.

Proposition 21

A set of weighted clauses E is a possibilistic answer set of the possibilistic clausal
program P without possibilistic constraint rules iff E is a possibilistic answer set of
PE .

Before we discuss the complexity results, we look at an example to further uncover the
intuition of clausal programs.

Example 39

Consider the possibilistic clausal program P with the following rules:

0.7 : a ∨ b ∨ c← 0.2 :¬b← 1 : d← not (a ∨ c ∨ f) 1 : e← not c.

The reduct PE with E =
{

(a ∨ b ∨ c)0.7
, (¬b)0.2

, d0.8, e1
}

is then:

0.7 : a ∨ b ∨ c← 0.2 :¬b← 0.8 : d← 1 : e←
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since E1−0.8 |= a ∨ c but E1−0.8 6|= a ∨ c and E1−1 6|= c. We then have that
(PE)?w =

{
(a ∨ b ∨ c)0.7

, (¬b)0.2
, d0.8, e1

}
, hence E is indeed an answer set of P .

4.4 Complexity Results of PASP
Before we discuss the complexity results of the weak possibilistic semantics for disjunctive
rules (Section 4.3.2), we first look at the complexity results of both possibilistic normal
programs (Section 4.2.2) and the strong possibilistic semantics for disjunctive rules (Sec-
tion 4.3.1). We find that for possibilistic normal programs the addition of weights does
not affect the complexity compared to classical normal programs.

Proposition 22: possibilistic normal program; brave reasoning

Let P be a possibilistic normal program. The problem of deciding whether there
exists a possibilistic answer set V of P such that V (l) ≥ λ is NP-complete.

Proposition 23: possibilistic normal program; cautious reasoning

Let P be a possibilistic normal program. The problem of deciding whether for all
possibilistic answer sets V of P we have that V (l) ≥ λ is coNP-complete.

Similarly, we find for possibilistic disjunctive programs under the strong disjunctive se-
mantics that the addition of weights does not affect the complexity compared to classical
disjunctive programs.

Proposition 24: possibilistic disjunctive program; brave reasoning

Let P be a possibilistic disjunctive program. The problem of deciding whether there
is a possibilistic answer set V such that V (l) ≥ λ is a ΣP

2 -complete problem.

Proposition 25: possibilistic disjunctive program; cautious reasoning

Let P be a possibilistic disjunctive program. The problem of deciding whether for all
possibilistic answer sets V we have that V (l) ≥ λ is a ΠP

2 -complete problem.
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We now look at the complexity of the weak possibilistic semantics for disjunctive rules for
a variety of decision problems and under a variety of restrictions. In particular, through-
out this section we look at the complexity of weak disjunction in the crisp case that
allows us to compare these results against the complexity of the related decision prob-
lems in classical ASP and other epistemic extensions of ASP, e.g. [Truszczyński 2011,
Vlaeminck et al. 2012]. As we will see, for certain classes of clausal programs, decision
problems exist where weak disjunction is computationally less complex than disjunctive
programs while remaining more complex than normal programs.
An overview of the complexity results available in the literature for disjunctive programs

as well as the new results for weak disjunction (in the crisp case) which we discuss in the
remainder of this section can be found in Table 4.1.

Table 4.1: Completeness results for the main reasoning tasks with references

no NAF, no ¬ existence brave reasoning cautious reasoning
strong disjunction NP (1) ΣP

2
(1) coNP (1)

weak disjunction P (6) P (6) P (6)

no NAF, ¬ existence brave reasoning cautious reasoning
strong disjunction NP (1) ΣP

2
(1) coNP (1)

weak disjunction NP (4) BH2
(3) coNP (5)

NAF, ¬ existence brave reasoning cautious reasoning
strong disjunction ΣP

2
(2) ΣP

2
(2) ΠP

2
(2)

weak disjunction ΣP
2

(8) ΣP
2

(7) ΠP
2

(9)

“no NAF” (resp. “no ¬”) indicates results for programs without negation-as-failure (resp. classical negation)

(1) [Eiter and Gottlob 1993] (6) Proposition 28
(2) [Baral 2003] (7) Proposition 29 and 30
(3) Proposition 26 and 27 (8) Corollary 8
(4) Corollary 5 (9) Corollary 31
(5) Corollary 6

Proposition 26: weak disjunction, positive clausal program; brave reasoning

Let P be a positive clausal program. The problem of deciding whether a clause ‘e’
is entailed by a consistent answer set E of P is BH2-hard.
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Proposition 27: weak disjunction, positive clausal program; brave reasoning

Let P be a positive clausal program. The problem of deciding whether a clause ‘e’
is entailed by a consistent answer set E of P is in BH2.

Corollary 4

Let P be a positive clausal program. The problem of deciding whether a clause ‘e’
is entailed by a consistent answer set E of P is BH2-complete.

Corollary 5: weak disjunction, positive clausal program; answer set existence

Determining whether a positive clausal program P has a consistent answer set is an
NP-complete problem.

Corollary 6: weak disjunction, positive clausal program; cautious reasoning

Cautious reasoning, i.e. determining whether a clause ‘e’ is entailed by every answer
set E of a positive clausal program P is coNP-complete.

Surprisingly, the expressivity of positive clausal programs under the weak interpretation
of disjunction is directly tied to the ability to use classical negation in clauses. If we
limit ourselves to positive clausal programs without classical negation we find that the
expressiveness is restricted to P.
In order to see this, let us take a closer look at the immediate consequence operator for

clausal programs as defined in Definition 25. When there are no occurrences of classical
negation we can simplify this immediate consequence operator to

Tw
P (E) = {e0 | e0 ← e1, ..., em ∈ P ∧ ∀i ∈ {1, ...,m} · ∃e ∈ E · e ⊆ ei}

where e ⊆ ei is defined as the subset relation where we interpret e and ei as sets of literals,
i.e. e = (l1 ∨ ... ∨ ln) is interpreted as {l1, ..., ln}.

Proposition 28

Let P be a positive clausal program without classical negation. We can find the
unique answer set of P in polynomial time.
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We now examine the complexity of general clausal programs. We will do this by showing
that the problem of determining the satisfiability of a QBF of the form φ = ∃X1∀X2 ·
p(X1, X2) with p(X1, X2) in DNF can be reduced to the problem of determining whether
a clause ‘e’ is entailed by a consistent answer set M of the clausal program P . We start
with the definition of our reduction.

Definition 27

Let φ = ∃X1∀X2 · p(X1, X2) be a QBF with p(X1, X2) = θ1 ∨ ... ∨ θn a formula in
disjunctive normal form with Xi sets of variables. We define the clausal program Pφ
corresponding to φ as

Pφ = {x← not ¬x | x ∈ X1} ∪ {¬x← not x | x ∈ X1} (4.12)
∪ {¬θt ∨ sat← | 1 ≤ t ≤ n} (4.13)
∪ {← not sat} (4.14)

with ¬θt the clausal representation of the negation of the formula θt, e.g. when
θt = x1 ∧ ¬x2 ∧ ... ∧ ¬xk then ¬θt = ¬x1 ∨ x2 ∨ ... ∨ xk.

Example 40

Given the QBF φ = ∃p1, p2∀q1, q2 · (p1 ∧ q1) ∨ (p2 ∧ q2) ∨ (¬q1 ∧ ¬q2) the clausal
program Pφ is

p1 ← not ¬p1

¬p1 ← not p1

p2 ← not ¬p2

¬p2 ← not p2

¬p1 ∨ ¬q1 ∨ sat ←
¬p2 ∨ ¬q2 ∨ sat ←

q1 ∨ q2 ∨ sat ←
← not sat.

Notice how M = {p1, p2,¬p1 ∨ ¬q1 ∨ sat,¬p2 ∨ ¬q2 ∨ sat, q1 ∨ q2 ∨ sat} is an an-
swer set of Pφ and that M |= sat. Accordingly we find that the QBF is satisfied.
If we take the QBF φ′ = ∃p1, p2∀q1, q2 · (p1 ∧ q1) ∨ (p2 ∧ q2) then the clausal

program Pφ′ corresponding to φ′ is the program Pφ in which the penultimate rule
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has been removed. Notice how Pφ′ has no answer sets, because we are not able to
entail ‘sat’ from any of the models of Pφ′ . Indeed, the QBF φ′ is not satisfiable.

Proposition 29: weak disjunction; brave reasoning

Let P be a clausal program. The problem of deciding whether a clause ‘e’ is entailed
by a consistent answer set E of P is ΣP

2 -hard.

Proposition 30: weak disjunction; brave reasoning

Let P be a clausal program. The problem of deciding whether a clause ‘e’ is entailed
by a consistent answer set E of P is in ΣP

2 .

Corollary 7

Let P be a clausal program. The problem of deciding whether a clause ‘e’ is entailed
by a consistent answer set E of P is ΣP

2 -complete.

Corollary 8: weak disjunction; answer set existence

Determining whether a clausal program P has a consistent answer set is an ΣP
2 -

complete problem.

Proposition 31: weak disjunction; cautious reasoning

Cautious reasoning, i.e. determining whether a clause ‘e’ is entailed by every answer
set E of a clausal program P , is ΠP

2 -complete.

4.5 Work Related to PASPŁ

The work presented in this chapter touches on various topics that have been the subject of
previous research. Since we will continue our work on PASP in Chapter 5, and since a lot
of work is related to both this chapter and Chapter 5, we postpone some of our discussions
w.r.t. work related to PASPŁ, and PASP in general, to Section 5.4. In this section we focus
our discussion along two main lines which are mainly relevant to PASPŁ. In Section 4.5.1
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previous work on the semantics of disjunctive programs is discussed. In Section 4.5.2 we
look at prior work on characterizing rules with possibility theory and fuzzy logic.

4.5.1 Semantics of Disjunctive Programs
Several authors have already proposed alternatives and extensions to the semantics of
disjunctive programs. Ordered disjunction [Brewka 2002] falls in the latter category and
allows to use the head of the rule to formulate alternative solutions in their preferred order.
For example, a rule such as l1×...×lk ← represents the knowledge that l1 is preferred over
l2 which is preferred over l3 . . . , but that at the very least we want lk to be true. As such it
allows for an easy way to express context dependent preferences. The semantics of ordered
disjunction allow certain non-minimal models to be answer sets, hence, unlike the work in
this chapter, it does not adhere to the standard semantics of disjunctive rules in ASP.
Annotated disjunctions are another example of a framework that changes the semantics

of disjunctive programs [Vennekens et al. 2004]. It is based on the idea that every dis-
junct in the head of a rule is annotated with a probability. Interestingly, both ordered
and annotated disjunction rely on split programs, as found in the possible model se-
mantics [Sakama and Inoue 1994]. These semantics provide an alternative to the minimal
model semantics. The idea is to split a disjunctive program into a number of normal
programs, one for each possible choice of disjuncts in the head, of which the minimal
Herbrand models are then the possible models of the disjunctive programs. Intuitively this
means that a possible model represents a set of atoms for which a possible justification is
present in the program. In line with our results for weak disjunction, using the possible
model semantics also leads to a lower computational complexity.
Not all existing extensions of disjunction allow non-minimal models. For example, in

[Buccafurri et al. 2002] an extension of disjunctive logic programs is presented which adds
the idea of inheritance. Conflicts between rules are resolved in favour of more specific
rules. Such an approach allows for an intuitive way to deal with default reasoning and
exceptions. In particular, the semantics allow for rules to be marked as being defeasible
and allows to specify an order or inheritance tree among (sets of) rules. Interestingly,
the complexity of the resulting system is not affected and coincides with the complexity
of ordinary disjunctive programs.

4.5.2 Characterization Rules using Multi-Valued Logics
A large collection of research has focused on how possibility distributions can be used
to assign a meaning to rules. For example, possibility theory has been used to model
default rules [Benferhat et al. 1992, Benferhat et al. 1997]. Specifically, a default rule
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“if a then b” is interpreted as Π(a ∧ b) > Π(a ∧ ¬b), which captures the intuition that
when a is known to hold, b is more plausible than ¬b, if all that is known is that a holds.
In this approach entailment is defined by looking at the least specific possibility distributions
which is similar in spirit to our approach for characterizing ASP rules (although the notion
of least specific possibility distribution is defined, in this context, w.r.t. the plausibility
ordering on interpretations induced by the possibility degrees).
The work on possibilistic logic [Dubois et al. 1994], as discussed in Section 2.4, forms

the basis of possibilistic logic programming [Dubois et al. 1991]. The idea of possibilistic
logic programming is to start from a necessity-valued knowledge base, which is a finite
set of pairs (φ α), called necessity-valued formulas, with φ a closed first-order formula
and α ∈ [0, 1]. Semantically, a necessity-valued formula expresses a constraint of the form
N(φ) ≥ α on the set of possibility distributions. A possibilistic logic program is then a set
of necessity-valued implications. As rules are essentially modelled using material implica-
tion, however, the stable model semantics cannot straightforwardly be characterized using
possibilistic logic programming. For example, the knowledge base {(a→ b 1), (¬b 1)},
which represents the program {b← a,¬b←}, induces that N(¬a) = 1. Indeed, the se-
mantics of this knowledge base indicate that Π(a ∧ ¬b) = 0 and Π(b) = 0, i.e. we find
that Π(a) = 0. In other words: a direct encoding using possibilistic logic programming
allows for contraposition, which is not in accordance with the stable model semantics.
Rules in logic can also be interpreted as statements of conditional probability [Jaynes 2003].

In the possibilistic setting this notion has been adapted to the notion of conditional
necessity measures. Rules can then also be modelled in terms of conditional necessity meas-
ures [Benferhat et al. 1997, Dubois and Prade 1997, Benferhat et al. 2002]. The condi-
tional possibility measure Π (ψ | φ) is defined as the greatest solution to the equation
Π(φ∧ψ) = min(Π (ψ | φ) ,Π(φ)) in accordance with the principle of least specificity. It can
be derived mathematically that Π (ψ | φ) = 1 if Π(ψ∧φ) = Π(φ) and Π (ψ | φ) = Π(ψ∧φ)
otherwise whenever Π(φ) > 0. When Π(φ) = 0, then by convention Π (ψ | φ) = 1 for
every ψ 6= ⊥ and Π (⊥ | φ) = 0, otherwise. The conditional necessity measure is defined as
N (ψ | φ) = 1−Π (¬ψ | φ). However, there does not seem to be a straightforward way to
capture the stable model semantics using conditional necessity measures, especially when
classical negation is allowed. For example, consider the program {b← a,¬a←}, which
has the corresponding constraints N (b | a) ≥ 1 and N (¬a | >) ≥ 1. Using the definition
of the conditional necessity measure, the first constraint is equivalent to 1−Π (¬b | a) ≥ 1,
i.e. Π (¬b | a) = 0. The second constraint simplifies to Π(a) = 0, which, using the con-
vention stated above gives rise to Π (¬b | a) = 1, clearly a contradictory result to the
earlier conclusion that Π (¬b | a) = 0. The semantics presented in this chapter avoid both
these contradictions and the problem of contraposition, yet still characterize ASP using
the machinery of possibilistic logic. They thus benefit from the capabilities of possibilistic
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logic to reason about uncertain information, while being in accordance with the stable
model semantics.
Possibility theory, which can e.g. be used for belief revision, has a strong epistemic notion

and shares a lot of commonalities with epistemic entrenchments [Dubois and Prade 1991].
Furthermore, in [Dubois et al. 2012] a generalization of possibilistic logic is studied, which
corresponds to a weighted version of a fragment of the modal logic KD. In this logic,
epistemic states are represented as possibility distributions, and logical formulas are used
to express constraints on possible epistemic states. In this chapter, we similarly interpret
rules in ASP as constraints on possibility distributions, which furthermore allows us to
unearth the semantics of weak disjunction.
Possibility theory has also been used to define various semantics of certain versions of

fuzzy if-then rules [Zadeh 1992]. Rather than working with literals, fuzzy if-then rules
can consider fuzzy predicates which each have their own universe of discourse. To draw
conclusions from a set of fuzzy if-then rules, mechanisms are needed that can produce an
(intuitively acceptable) conclusion from a set of such rules.

4.6 Summary
In this chapter we defined new semantics for PASP, a framework that combines possibility
theory and ASP to allow for reasoning under (qualitative) uncertainty. These semantics,
called PASPŁ, are based on the interpretation of possibilistic rules as constraints on pos-
sibility distributions. We showed how PASPŁ differs from the existing semantics for PASP,
referred to as PASPG. Specifically, PASPŁ adheres to a different intuition for negation-as-
failure. As such, these semantics can be used to arrive at acceptable results for problems
where the possibilistic answer sets according to PASPG do not necessarily agree with our
intuition of the problem. In addition, we showed how PASPŁ allowed for a new character-
ization of ASP. When looking at ASP as a special case of PASP, we naturally recover the
intuition that the head of a rule is certain whenever we are certain that the body holds.
The resulting characterization stays close to the intuition of the stable model semantics, yet
also shares the explicit reference to modalities with autoepistemic logic. We showed that
this characterization not only naturally characterizes normal programs, i.e. programs with
negation-a-failure, but can also naturally characterize disjunctive programs and programs
with classical negation.
Due to our explicit reference to modalities in the semantics, we are furthermore able

to characterize an alternative semantics for disjunction in the head of a rule that has
a more epistemic flavour than the standard treatment of disjunction in ASP, i.e. given
a rule of the form (a ∨ b ←) we do not obtain two answer sets, but rather we have
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‘a∨ b’ as-is in the answer set. While such a characterization might seem weak, we showed
that the interplay with literals significantly affects the expressiveness. Indeed, we found
that the problem of brave reasoning/cautious reasoning under these weak semantics for
disjunction for a program without negation-as-failure, but with classical negation, is BH2-
complete and coNP-complete, respectively. This highlights that weak disjunction is not
merely syntactic sugar, i.e. it cannot simply be simulated in normal ASP without causing
an exponential blow-up. For strong disjunction, on the other hand, we have obtained
that brave and cautious reasoning without negation-as-failure are ΣP

2 -complete and coNP-
complete, respectively. As such, the weak semantics for disjunction detailed in this chapter
allow us to work with disjunction in a less complex way that still remains non-trivial. If,
however, we restrict ourselves to atoms, then brave reasoning under the weak semantics
for disjunction is P-complete.
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5 | Possibilistic ASP:
uncertain rules versus

rules with uncertain
conclusions

5.1 Introduction
In the previous chapter we introduced PASPŁ, new semantics for PASP which are based
on interpreting possibilistic rules as constraints on possibility distributions. We showed
how these new semantics are different from PASPG in how they view negation-as-failure.
Furthermore, we highlighted how PASPŁ is firmly rooted in ASP. Indeed, we showed how
a characterization of ASP can be obtained by looking at ASP as a special case of PASPŁ
in which all rules are certain and no uncertainty is allowed in the answer sets.
While the intuition of PASPG and PASPŁ is clearly different, both semantics coincide for

simple programs. This is because both semantics interpret the weight as an assessment of
the certainty that the conclusion of the rule holds, given that the body is known to hold.
This, however, is not the only way in which such a weight can be interpreted. In fact,
two natural motivations can be envisaged for introducing degrees of uncertainty in the
setting of ASP. On the one hand, we may wish to model weighted epistemic states, in
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which an agent can be completely certain about the truth of some literals, while believing
in the truth of other literals without complete certainty. This is the approach taken in
PASPG and PASPŁ. On the other hand, we may wish to keep epistemic states Boolean,
but rather express that the rules which constrain the possible epistemic states are not
fully certain. In the latter case, an ASP program should correspond to a weighted set
of classical answer sets.
In this chapter, we develop semantics for PASP based on the notion that the weight

represents the uncertainty of the rule. Such an interpretation of uncertainty is quite natural.
Indeed, we are often uncertain whether the rules we encode are actually reliable, e.g. when
they are coming from possibly unreliable sources. We will refer to these semantics as
PASPr, where the ‘r’ signifies that we are considering uncertain rules rather than uncertain
conclusions. In this chapter, we furthermore compare and contrast both motivations,
i.e. we evaluate PASPr against PASPG and PASPŁ.
As an example, and to further clarify the difference in intuition, let us consider the

following program:

0.7 : paper title(title)←
0.9 : author(John Doe)← paper title(title)
0.2 : author(Jane Roe)← paper title(title)

1 :← author(John Doe), author(Jane Roe).

This program encodes that, during a conference, a colleague shares the title of an inter-
esting paper with us. We are quite certain that we recall the name of the title correctly
and we would like to find out who the principal author of the paper is. We consult the
university website, which in the past has given reliable answers. However, a quick search
on the internet results in a different principal author for the same paper. Evidently, they
cannot both be the principal author of the paper.
The uncertainty attached to each rule now expresses how certain we are that the in-

formation encoded in the rule is indeed valid. In particular, any world in which both John
Doe and Jane Roe are the principal author of the paper can immediately be discarded due
to the absolute certainty of the last rule. We do, however, acknowledge that neither of
the candidate authors may be correct because we do not have absolute certainty as to
whether we correctly recall the title of the paper. Of the two remaining rules, we have
the most confidence in the rule that identifies John Doe as the author. Thus, we expect
that the conclusion that the actual principal author of the paper is John Doe can be de-
duced with a higher certainty than the conclusion that the principal author is Jane Roe.
Semantics that agree with this intuition, i.e. that agree with the idea of uncertain rules
rather than uncertain conclusions, are discussed in Section 5.2. Notice, furthermore, that
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both PASPG and PASPŁ are inadequate to solve the aforementioned problem. Indeed, In
neither PASPG nor PASPŁ does the above program have any answer set since we deduce
both author(John Doe) and author(Jane Roe) with some certainty, which conflicts with
the constraint rule (1 :← author(John Doe), author(Jane Roe)).
The remainder of this chapter is organized as follows. In Section 5.2 we present semantics

for PASP in which we treat weights as an expression of confidence in the validity of a rule.
When such a PASP program has no possibilistic answer sets, we might intuitively want
to exclude the least reliable rules in order to still reach a conclusion. Indeed, if we have
e.g. (0.8 : a←) and (0.2 :¬a←) then it seems more intuitive to conclude that ‘a’ is true
(to some degree) rather than that ‘¬a’ is true. This is the approach taken in possibilistic
logic. Due to the non-monotonicity of ASP, however, we cannot simply choose to omit
the least certain rules to derive the most certain conclusions. Indeed, as we will see,
both including invalid rules and excluding valid rules may lead to errors. For example, if
we have the additional rule (1 : b ← not ¬a) then the exclusion of (0.2 :¬a ←) would
allow us to deduce ‘b’, where previously we were not able to conclude ‘b’. As such, we
need to consider all situations in which some, none, or all of the least certain rules are
omitted. This naturally leads to the idea of an ASP program with optional rules. Given
such a program with optional rules, we want to determine whether particular conclusions
hold irrespective of the inclusion of the optional rules. In addition, we show how the new
semantics require us to define new main reasoning tasks. In Section 5.3 we show how some
of these reasoning tasks can be applied to the much wider problem range of programs with
optional rules. In particular, we show how two interesting problems in AI, namely cautious
abductive reasoning and conformant planning, can be expressed in terms of programs with
optional rules. In Chapter 6, we will provide simulations using ASP for PASPr. As such,
we will obtain an implementation for these AI problems.

5.2 Semantics & Complexity Results of Uncertain Rules
In PASPG and PASPŁ the weight associated with a rule is interpreted as the certainty
with which we can deduce the head when the body is known to hold. As such, we obtain
semantics based on weighted epistemic states, where we relate exactly one possibility
distribution with each possibilistic answer set of the program. We can, however, look
at these certainties in another way. Rather than considering weighted epistemic states,
we can use Boolean epistemic states and use the certainties associated with the rules to
express that some epistemic states are more plausible than others. We thus look at the
weight associated with a rule as expressing our uncertainty as to whether the rule is valid.
Indeed, the information encoded in the various rules may e.g. come from different sources
and this may affect the degree to which we believe the rule to be valid.
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Example 41

Consider the program P with the rules:

0.2 : raining ←
0.9 : slippery ← raining
0.7 : safe ← not slippery.

We will use this program to clarify the semantics proposed in this chapter. Intuitively,
the program encodes the knowledge that it is raining, that raining makes the floor
slippery and that a floor which is not slippery is safe to walk on without risk of injury.

Clearly, if we incorrectly consider a rule to be valid we may draw incorrect conclusions.
The usual strategy, which is adopted in e.g. possibilistic logic, is to discard the least reliable
pieces of knowledge when we want to ensure that what we derive is reliable. However,
such a strategy would not work in ASP due to its non-monotonic nature. Indeed, while
failing to discard incorrect rules may lead to erroneous conclusions, the same may happen
when we incorrectly discard a valid rule. For example, we may choose to omit the rule that
encodes the information that it is raining because we believe that this rule is insufficiently
reliable. However, as a result, we are not able to conclude that the floor is slippery. This,
in turn, enables us to derive that it is safe to walk on the floor, i.e. the omission of a
rule allowed us to derive additional information. Hence, to assess the certainty with which
a literal can be derived, we need to consider all the subprograms of a given program,
including the complete program itself. Some of these subprograms are more likely than
others to correspond with an accurate representation of the considered problem. An answer
set is then said to be necessary to the extent that it is an answer set of all the plausible
subprograms. Similarly, we say that an answer set is possible to the extent that it is an
answer set of some plausible subprogram.
Each subprogram corresponds with the assumption that some particular rules are wrong,

namely those rules from the program that are missing, while the rules in the subprogram
are assumed to be correct (in particular, we can also assume all rules to be correct or
all rules to be wrong). Ideally, we thus want to associate a possibility degree with each
subprogram, i.e. the degree to which we believe that this subprogram consists exactly of
the valid rules. In practice, however, it is not feasible to list all subprograms and associate
a possibility with each individual subprogram. Instead, we encode a possibility distribution
over subprograms by associating a certainty with each rule in our possibilistic program P .
The possibility of each subset is then determined by looking at the certainties of the rules
that are omitted from the program. If we omit a rule with a certainty of 1, i.e. a rule
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of which we are certain that it is valid, then the rules in the subprogram can never be
the set of all rules that are valid. Thus, our possibility that the rules in the subprogram
correspond with the set of valid rules is 0. Conversely, if we only omit rules with a low
certainty, then we retain a high possibility that the rules in our subprogram are exactly
those rules that are valid. In particular, in the above example, omitting only the first rule
would result in a subprogram with a high possibility of 0.8. However, omitting the second
rule with a certainty of 0.9 would result in a subprogram which contains the valid rules
with a possibility of 0.1.
Following this line of reasoning, we conceptually need a possibility distribution over

subprograms of P . Specifically, we interpret a possibilistic rule (r, c) as the constraint
N(r) ≥ c, where N(r) stands for N({P ′ | P ′ ⊆ P and P ′ contains the rule r}). The pos-
sibility distribution πP is then the least specific possibility distribution that satisfies these
constraints. Thus, a subprogram is considered possible to the extent that it contains all
of the certain rules.

Definition 28

Let P be a PASP program. We define the possibility distribution πP over the subsets
P ′ ⊆ P as

πP (P ′) =
{

1−max {c | (r, c) ∈ P \ P ′} when P ′∗ consistent
0 otherwise

Intuitively, this definition states that the less certain the rules are that we omit from the
subprogram P ′, the more possible it is that P ′ is the correct program. It is not hard
to see that this definition corresponds with the least specific possibility distribution that
satisfies the constraints N(r) ≥ c for every (r, c) ∈ P , with the additional constraint that
inconsistent programs are impossible. Indeed, we have that:

∀(r, c) ∈ P ·N(r) ≥ c
≡ ∀(r, c) ∈ P ·N({P ′ | P ′ ⊆ P and (r, c) ∈ P ′}) ≥ c
≡ ∀(r, c) ∈ P ·Π({P ′ | P ′ ⊆ P and (r, c) ∈ (P \ P ′)}) ≤ 1− c
≡ ∀(r, c) ∈ P ·max {π(P ′) | P ′ ⊆ P, (r, c) ∈ (P \ P ′)} ≤ 1− c
≡ ∀(r, c) ∈ P · ∀P ′ ⊆ P, (r, c) ∈ (P \ P ′) · π(P ′) ≤ 1− c
≡ ∀P ′ ⊆ P · π(P ′) ≤ min {1− c | (r, c) ∈ (P \ P ′)}
≡ ∀P ′ ⊆ P · π(P ′) ≤ 1−max {c | (r, c) ∈ (P \ P ′)}
≡ ∀P ′ ⊆ P · π(P ′) ≤ πP (P ′)
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Notice furthermore that πP is a normalized possibility distribution whenever P ∗ is con-
sistent since then πP (P ) = 1.

Example 42

Consider the program P from Example 41. For compactness, we name the rules r1, r2
and r3 from top to bottom. The possibility distribution π over the subprograms of
P is defined as:

π({r1, r2, r3}) = 1 π({r2, r3}) = 0.8
π({r1, r3}) = 0.1 π({r3}) = 0.1
π({r1, r2}) = 0.3 π({r2}) = 0.3

π({r1}) = 0.1 π({}) = 0.1

We now define the main reasoning tasks for these new semantics.

Definition 29

Let P be a PASP program. Let πP be as in Definition 28. The degree to which it is
possible that ‘l’ is a brave/cautious consequence of P is defined as:

Π
(
P |=b l

)
= max

{
πP (P ′) | P ′ ⊆ P and P ′∗ |=b l

}
Π (P |=c l) = max

{
πP (P ′) | P ′ ⊆ P and P ′∗ |=c l

}
i.e. this is the degree to which some program P ′ ⊆ P is possible which has ‘l’ as a
brave/cautious consequence. The degree to which it is necessary that P has ‘l’ as a
brave/cautious consequence is defined as:

N
(
P |=b l

)
= 1−max

{
πP (P ′) | P ′ ⊆ P and P ′∗ 6|=b l

}
N (P |=c l) = 1−max

{
πP (P ′) | P ′ ⊆ P and P ′∗ 6|=c l

}
.

Note that this is the degree to which all programs P ′ ⊆ P that do not have ‘l’ as a
brave/cautious consequence are impossible.

In the remainder of this chapter, we will also write P |=b
Π lλ to denote that Π

(
P |=b l

)
≥ λ,

and similar for the notations P |=c
Π lλ, P |=b

N lλ and P |=c
N lλ.

The differences between these types of inference are shown in the next example.
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Example 43

Consider the PASP program P with the rules:

0.8 : b← not c 0.3 : c← d, not b 0.9 : d← .

We have that

πP (P ) = 1 {b, d} , {c, d}
πP (0.8 : b← not c; 0.9 : d←) = 0.7 {b, d}
πP (0.3 : c← d, not b; 0.9 : d←) = 0.2 {c, d}
πP (0.9 : d←) = 0.2 {d}
πP (0.8 : b← not c; 0.3 : c← d, not b) = 0.1 {b}
πP (0.8 : b← not c) = 0.1 {b}
πP (0.3 : c← d, not b) = 0.1 {}
πP ({}) = 0.1 {}.

where the possibility associated with each subprogram is shown on the left and the
classical answer set(s) of each subprogram is shown on the right. We obtain the
following conclusions:

P |=b
N

{
b0.8, c0.3, d0.9} P |=c

N

{
b0, c0, d0.9}

P |=b
Π
{
b1, c1, d1} P |=c

Π
{
b0.7, c0.2, d1} .

When the particular understanding of negation-as-failure in PASPG prevents us from
obtaining intuitive results, both the approach presented in this section as well as PASPŁ
can be used to obtain more satisfactory results. We illustrate this in the next example.

Example 44

Consider the following possibilistic normal program P , which describes the operations
of a computer system:

0.1 : normal ←
1.0 : abnormal ← not normal
0.8 : problematic ← abnormal.
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The intuition of this program is different depending on the semantics that are used.
In both PASPG and PASPŁ the intuition of the first and last rule is the same. Indeed,
the first rule describes that we have a low certainty that the system is operating
normally. The last rule encodes that we are fairly certain that the system is operating
problematically whenever the system is operating abnormally. However, the intuition
of the second rule does differ significantly. Indeed, in PASPG the second rule would
read “the system is operating abnormally, unless there is some certainty that the
system is operating normally”. Under PASPŁ, however, the second rule would be
understood as “the system is operating abnormally to the degree that the system is
not working normally”.
Under the new semantics presented in this chapter, which we refer to as PASPr,

the intuition of the rules changes slightly. For example, we are certain with a fairly
high degree that the last rule, which describes that an abnormal system is behaving
problematically, is indeed valid. In PASPŁ, one would expect a conclusion in which
we deduce with a high certainty that the system will give problematic errors. Indeed,
the second rule states that we will assume that the system is working abnormally,
unless we are very certain that the system is working normally, i.e. we act cautiously.
Using the last rule, we then obtain with a high certainty that the system will cause
problematic behaviour. The results obtained by the different semantics are:

semantics from PASPG
{
normal0.1

}
semantics from PASPŁ

{
normal0.1, abnormal0.9, problematic0.8

}
semantics from PASPr P |=c

N

{
normal0.1, abnormal0, problematic0

}
P |=b

N

{
normal0.1, abnormal0, problematic0

}
P |=c

Π
{
normal1, abnormal0.9, problematic0.9

}
P |=b

Π
{
normal1, abnormal0.9, problematic0.9

}
Note that in PASPG, because the certainty is ignored when determining the reduct,

‘normal’ is assumed to be true without doubt. Hence, the second rule is removed
from the reduct and we have no way of concluding that the system is performing
abnormally. In PASPŁ, however, the certainty is taken into consideration and we con-
clude, with a fairly high certainty, that ‘abnormal’ is true. The semantics proposed
in this chapter, for this given example, agree with PASPG when we are interested in
the inference based on cautious necessity. On the other hand, the conclusions are
closer to those of PASPŁ when we look at the inference based on brave possibility.
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Furthermore, note that since each subprogram has a unique answer set both brave
and cautious reasoning coincide.

In general though, neither of the semantics for PASP need to agree with each other, as
can be seen in the next example:

Example 45

Consider the PASP program P with the rules:

1 : lost ← not visible
1 : visible ← not hidden

0.5 : hidden ←

For easy reference, we name these rules from top to bottom r1, r2 and r3. Intuitively,
this example describes a simple game where an agent loses when he cannot see an
object. However, there is uncertainty as to whether or not the object itself is hidden.
We have that:

πP (P ) = 1 {hidden, lost}
πP (r1, r2) = 0.5 {visible}

whereas the possibility of all the other subprograms P ′ ⊆ P is 0. Since each subpro-
gram has a unique answer set, brave and cautious reasoning once again coincide.
The results obtained by the different semantics are:

semantics from PASPG
{
hidden0.5, lost1

}
semantics from PASPŁ

{
hidden0.5, visible0.5, lost0.5

}
semantics from PASPr P |=c

N

{
hidden0.5, visible0, lost0.5

}
P |=b

Π
{
hidden1, visible0.5, lost1

}
Neither of these conclusions agree. Nevertheless, the semantics proposed in this

chapter provide an intuitively satisfiable answer to the outcome of the game that the
agent plays. Indeed, we can conclude that it is entirely possible that the agent has
lost (since P |=b

Π lost1), while at the same time we know that this is not necessarily
so (since P |=c

N lost0.5).
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Still, some interesting links exist between the semantics for PASP that we thus far dis-
cussed in this thesis.

Proposition 32

Let P be a simple PASP program. For each literal ‘l’ we have that N (P |=c l) ≥ λ
iff M(l) ≥ λ with M the possibilistic answer set of P under the semantics from
PASPŁ, which in turn coincides with the semantics from PASPG.

The previous result is not surprising because, without negation-as-failure, all semantics for
PASP adhere to the semantics of possibilistic logic (interpreting rules in terms of material
implication). Furthermore, notice that for simple programs, which have a unique answer
set, checking whether N

(
P |=b l

)
≥ λ is equivalent to checking whether N (P |=c l) ≥

λ and, similarly, checking whether Π (P |=c l) ≥ λ is equivalent to checking whether
Π
(
P |=b l

)
≥ λ. Thus, also the complexity of these reasoning types coincide. This is not

the case for possibilistic normal/disjunctive programs.

Proposition 33

Let P be a possibilistic normal program. Deciding whether

Π
(
P |=b l

)
≥ λ is NP-complete;

N (P |=c l) ≥ λ is coNP-complete;
Π (P |=c l) ≥ λ is ΣP

2 -complete;
N
(
P |=b l

)
≥ λ is ΠP

2 -complete.

A similar jump in the polynomial hierarchy can be seen for possibilistic disjunctive programs.

Proposition 34

Let P be a possibilistic disjunctive program. Deciding whether

Π
(
P |=b l

)
≥ λ is ΣP

2 -complete;
N (P |=c l) ≥ λ is ΠP

2 -complete;
Π (P |=c l) ≥ λ is ΣP

3 -complete;
N
(
P |=b l

)
≥ λ is ΠP

3 -complete.

Thus far, we have considered a possibility distribution over the subprograms. However,
from an application perspective, it often makes more sense to consider the possibility or
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necessity of an answer set. Clearly, each subprogram P ′ ⊆ P may have zero or more
answer sets. Furthermore we may have that two subprograms P ′ ⊆ P and P ′′ ⊆ P have
the same answer set, even if πP (P ′) 6= πP (P ′′). This leads us to the following definition.

Definition 30

Let P be a PASP program. Let πP be the possibility distribution over the subsets
P ′ ⊆ P . We define the possibility distribution πA over the interpretations M :

πA(M) = max
{
πP (P ′) |M is an answer set of P ′∗

}
Note that this definition implies that πA(M) = 0 whenever M is not an answer
set of any subprogram P ′ ⊆ P . Let πA be the possibility distribution over the
interpretations M . The possibility that l is a literal in the epistemic state of the
agent is given by Π(l) = max {πA(M) | l ∈M}. The necessity that l is a literal in
the epistemic state of the agent is given by N(l) = 1−max {πA(M) | l /∈M}.

Interestingly, we have that Π(l) = Π
(
P |=b l

)
and N(l) = N (P |=c l). We now show

that the new semantics are a proper extension of ASP.

Example 46

Consider the program from Example 43. We can verify that:

Π(b) = 1 Π(c) = 1 Π(d) = 1
N(b) = 0 N(c) = 0 N(d) = 0.9

Since all the associated weights are 1, only the subprogram consisting of all the rules
has a non-negative weight. Thus, only the classical answer sets are considered to
be possible and the reasoning tasks from Definition 29 reduce to cautious and brave
reasoning.

We now provide a more elaborate example, which highlights a complex setting in which
humans can fairly easily come to a satisfactory conclusion, but which is not easy to encode
using e.g. classical ASP.

Example 47

Triage at an accident site with a large number of casualties is an essential part of
medical treatment when resources are limited. With the help of triage, it becomes
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possible to distinguish which casualties can wait for medical attention at a hospital
and which casualties need to be treated on the spot. For brevity of this example,
we consider a triage system with three levels. The casualty may have minor injur-
ies (minor), which means that the person can wait for treatment at the hospital.
The casualty may need to be treated immediately because of life-threatening, yet
treatable injuries (nowait). The final category is beyond urgency (beyond) and en-
compasses those casualties which are so severely injured that, for the time being,
medical attention is better directed towards casualties in the nowait category as the
chances of survival of casualties in this latter category are far higher.
A rescue helper is faced with a casualty with extensive external injuries (extensive),

which indicates that he/she either falls in the nowait or beyond category. The casu-
alty is faintly moaning (moaning), which, with a very low certainty, is an indication
of the casualty still being conscious (conscious). Similarly, the casualty is exhibit-
ing a bleeding nose (nosebleed), which might indicate internal bleeding (internal).
The rescue helper would be a lot more certain that the casualty is experiencing in-
ternal bleeding when he/she also had low blood pressure (lowblood), but this has not
been established. Whenever the casualty does not appear to be conscious, he/she
is assumed to be in the nowait or beyond category. When there is no indication of
internal bleeding, the casualty is in the nowait category. A classification in one of
the categories is never entirely certain since it is not possible, due to time constraints,
to perform all the required tests. We have the program with the rules:

1 : extensive←
0.9 :minor ← not extensive

1 :moaning ←
0.1 : conscious← moaning

0.9 :nowait← not beyond, not internal, not conscious, extensive

0.9 : beyond← not nowait, not conscious, extensive

1 :nosebleed←
0.1 : internal← nosebleed

0.7 : internal← nosebleed, lowblood

1 : ← nowait, beyond, extensive

1 : ← not nowait, not beyond, extensive

The last two rules encode that one and exactly one category needs to be assigned
to the casualty (either nowait or beyond), a requirement for an efficient triage.
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Notice that at least one rule needs to be omitted to make the program consist-
ent. Indeed, if we look at the classical program by ignoring the weights, then it is
clear that we have information (with varying degrees of certainty) to support both
nowait and beyond. In PASPG, we are unable to take the low certainty of the lit-
eral conscious into account when reasoning with negation-as-failure. As such, the
literal conscious, for the purpose of determining the reduct, is considered as entirely
true, which immediately removes the rules with nowait or beyond in the head of
the rule from the reduct. In PASPŁ, on the other hand, we are unable to choose
between nowait and beyond. Indeed, we obtain an infinite number of answer setsM
such that

{
nowaitc, beyond1−c} ⊂ M with c ∈ [0.1, 0.9]. Under the semantics

proposed in this chapter, however, we obtain that P |=b
Π
{
beyond0.9, nowait0.9

}
,

P |=c
Π
{
beyond0.9, nowait0.1

}
, P |=b

N

{
beyond0.9, nowait0.1

}
and furthermore that

P |=c
N

{
beyond0.1, nowait0.1

}
. The new semantics are thus capable of arriving at

the desired conclusion. Indeed, since the necessity associated with beyond is higher
or equal to the necessity associated with nowait for all reasoning tasks, a reasonable
classification for the casualty is beyond. This corresponds with our intuition, as a
number of indications hint towards this worst case scenario (e.g. the bleeding nose).
If we added the fact that the casualty has low blood pressure, then even a brave con-
clusion with possibility measures would indicate that the casualty is beyond urgency,
i.e. it would further reaffirm our conclusion.

5.3 Applications
The semantics for PASP proposed in this chapter, and the related concept of optional
rules, have a number of interesting applications. In particular, in this section we prove
how two interesting AI problems, namely cautious abductive reasoning and conformant
planning, can be expressed in terms of programs with optional rules. This allows us to
solve these problems with the implementations that will be presented in Chapter 6 and
furthermore allows to trivially extend these problems with certainty weights. Notably, we
will use the decision problems N

(
P |=b l

)
≥ λ and Π (P |=c l) ≥ λ, as these are the

most expressive. We look at cautious abductive reasoning in Section 5.3.1 and show how
cautious abductive reasoning can be used to simulate PASPr and how, in turn, PASPr can
be used to simulate cautious abductive reasoning. In Section 5.3.2 we look at the problem
of conformant planning and prove a simulation of this problem with PASPr.
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5.3.1 Cautious abductive reasoning
Recall from Section 3.5 an abductive diagnosis program [Eiter et al. 1997] is encoded as
a triple 〈H,T,O〉 where H is a set of atoms referred to as hypotheses, T is a (normal)
ASP program referred to as the theory and O is a set of literals referred to as observa-
tions. Contrary to what we have done in Section 3.5, where we used CASP to solve an
instance of a brave abductive reasoning problem, we are now interested in how we can
solve cautious abductive reasoning problems. Cautious abductive reasoning is concerned
with the problem of finding hypotheses that could explain the observations in O. Spe-
cifically, we are interested in a set E ⊆ H such that T ∪ E |=c O, where E is said to
be a cautious explanation.
We first show how the decision problems N

(
P |=b l

)
≥ λ and Π (P |=c l) ≥ λ can be

expressed in terms of cautious abductive reasoning.

Definition 31

Let P be a possibilistic disjunctive program. We define Pelem(λ) as the set of rules:

{r′i ← | (ri, ci) ∈ P, ci > 1− λ} (5.1)
∪ {head(ri)← body(ri) ∪ {r′i} | (ri, ci) ∈ P} (5.2)

Intuitively, the program Pelem(λ) simulates the semantics of PASPr using classical ASP.
In particular, the rules in (5.1) ensure that all rules with a sufficiently high certainty are
considered as valid. These rules, along with the rules that will be guessed by the hypotheses
in our abductive cautious reasoning program, are applied using (5.2).

Proposition 35

Let P be a possibilistic disjunctive program. Let 〈H,T,O〉 be an abductive dia-
gnosis program with H = {r′i | (ri, ci) ∈ P, ci ≤ 1− λ}, T = Pelem(λ) and O = {l}.
We have that Π(P |=c l) ≥ λ iff the abductive diagnosis program 〈H,T,O〉 has a
cautious explanation.

Using the relationship between assertions of the form N(P |=b l) ≥ λ and assertions of
the form Π(P |=c l) ≥ λ, we easily obtain the following proposition.

Proposition 36

Let P be a possibilistic disjunctive program. Let 〈H,T,O〉 be an abductive diagnosis
program withH = {r′i | (ri, ci) ∈ P, ci ≤ λ′}, T = Pelem(1−λ′)∪{missing ← not l}
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and O = {missing}. Let λ′ ∈ cert+(P ) be such that λ′ < λ and for which we have
that 6 ∃λ′′ ∈ cert+(P ) ·λ′ < λ′′ < λ. We have that N(P |=b l) ≥ λ iff the abductive
diagnosis program 〈H,T,O〉 has no cautious explanations.

Conversely, we can express a cautious abductive reasoning problem in terms of the de-
cision problems Π (P |=c l) ≥ λ by utilizing the notion of optional rules.

Proposition 37

Let Pabd be the possibilistic normal program defined for an abductive diagnosis pro-
gram 〈H,T,O〉 as

{0.5 : block h← | h ∈ H} (5.3)
∪ {1 :h← not block h | h ∈ H} (5.4)
∪ {1 : goal← O} (5.5)
∪ {1 : r | r ∈ T} . (5.6)

It holds that 〈H,T,O〉 has a cautious explanation iff Π (Pabd |=c goal) ≥ 0.5. In par-
ticular, E is a cautious explanation iff for P ′ = Pabd \ {block h← | h ∈ E} we have
that (P ′)∗ |=c goal.

Given that a cautious abductive reasoning problem can be expressed in terms of decision
problems of PASPr, it becomes trivial to extend cautious abductive reasoning with weights.
This further increases the expressive capabilities of the cautious abductive reasoning.

Example 48

John wants to become rich. He can either choose to invest his money in stocks, or
to invest it in bonds (he lacks the money to do both). He can either win or fail with
his investment, where he resp. becomes rich or bankrupt. Bonds are safer, but we
are less certain that this will make John rich. Whether or not he should invest will
also depend on how certain he is that his investment will succeed (very certain) or
fail (somewhat certain) and his confidence that investing in bonds will make him rich
(somewhat certain):

0.8 : win ← not fail, stocks 0.5 : fail ← not win, stocks
1 : rich ← win 1 : bankrupt ← fail

0.5 : rich← bonds 1 :← stocks, bonds
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Given the hypotheses H = {stocks, bonds}, it is clear that when we ignore the
weights only E = {bonds} is a cautious abductive explanation for the observation
O = {rich}. If we take the certainties into account, then E1 = {bonds} is only a
cautious explanation when we take λ = 0.5. In other words: we are only somewhat
certain that the action bonds will cautiously make us rich. Notice that E2 = {stocks}
will only be a cautious explanation for λ = 0.2. Indeed, we are far less certain that
buying stocks will be a guaranteed way to make us rich. Conversely, if we were
looking for a brave explanation, then we would sooner be advised to buy stocks as
these have a high potential of making us rich.

5.3.2 Conformant planning
Conformant planning is the problem of determining whether a plan (i.e. a series of actions)
exists that always leads to the desired goal, regardless of the incompletely known initial
state of the agent. Such problems are typically expressed using an action language.
An action language is built from a finite number of fluents f1, ..., fn. A state is a finite

set of fluents. The properties of the initial state s0 are described by formulas of the form
‘initially f ’, which are called value propositions, with f a fluent literal, i.e. a fluent or
a fluent preceded by ¬. Changes of states are defined using a finite number of actions
a1, ..., ak. Formulas of the form ‘a causes f if f1, ..., fm’ are called effect propositions,
with f, f1, ..., fm fluent literals and a an action. A domain D is a finite set of value
and effect propositions. A proper domain, to which we limit ourselves in this thesis, is a
domain in which we can determine in polynomial time what the successor state is, given
the current state and an action. A plan is a sequence of actions [a1, ..., aj ]. The planning
problem is to determine for a given domain D and a fluent literal f whether a plan exists
leading from s0 to a state in which f is true, where we call f the goal fluent. To solve
a planning problem, the domain is translated to ASP. Particularly, such a translation can
be written as Pact ∪Prem where Pact are those rules used to describe the actions, whereas
Prem are the remaining rules that among others describe the (incomplete) initial state and
rules to ensure inertia. Then, a plan exists when an answer set contains the goal fluent.
However, not all forms of planning problems can be solved in this way. When we say

that we have an incomplete domain, this means that the initial values of some fluents are
unknown. Conformant planning is the problem of determining whether for an incomplete
domain and a fluent f a plan exists leading to a state in which f is true, regardless of the ini-
tial values of the unknown fluents. Only some action languages, e.g. K [Eiter et al. 2000],
have the expressive power to describe conformant planning problems. For solving such
problems, DLV K relies on a two-step translation to ASP where a plan is generated (that
is not necessarily a conformant plan) and verified to be an actual conformant plan, until
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an actual conformant plan is found. However, these methods are not designed to work
with uncertainty and cannot, e.g. compute the most reliable plan when no conformant
plan can be found.

Example 49

The BT (p) problem is the basic version of the bomb in the toilet problem, which we
discuss in more detail in Section 6.5. We know that there are p packages, exactly
one of which is a bomb (armed). There is one toilet in which we can dump these
packages. If the package with the bomb is not dumped in the toilet, it remains armed.
Once the package with the bomb is dumped in the toilet, the bomb deactivates
(−armed) and we reach a safe state. The goal is to reach this safe state without
knowing which package is the bomb. We assume concurrency, i.e. only a single
package can be dumped each time step. An encoding in e.g.DLV K of this problem is:
f l u e n t s :

armed (P) r e q u i r e s package (P ) .
un sa f e .

a c t i o n s :
dump(P) r e q u i r e s package (P ) .

a lways :
i n e r t i a l −armed (P ) .

caused −armed (P) a f t e r dump(P ) .
caused un sa f e i f not −armed (P ) .

execu tab l e dump(P ) .
nonexecutab le dump(P) i f dump(Q) , P < > Q.

goa l : not un sa f e ?

The only action that we can undertake is to dump a package in the toilet. In the
always section we describe the inertia of the bomb, the effect of dumping the bomb,
the unsafe state, and when the action dump can or cannot be performed. The above
encoding can then be translated to an equivalent ASP program [Eiter et al. 2000]
(where we still need to provide the parameters on the number of packages to consider
and the desired plan length). A solution to this planning problem for 4 packages and
a plan length of 4 is e.g. the plan dump(1), dump(2), dump(3), dump(4), i.e. we
sequentially dump the packages. Any permutation of this plan is clearly also a plan.
The encoding of this problem in ASP is listed in Appendix 1.

129



CHAPTER 5. POSSIBILISTIC ASP FOR UNCERTAIN RULES

We now show how conformant planning can be expressed in terms of a decision problem
of the form N

(
P |=b l

)
≥ λ. Note that the existence of a conformant plan can also be

written as ∃p ∀iv·P (p, iv, pp) where P (p, iv, pp) describes that for the planning problem pp

and for all initially unknown values iv the plan p leads to the goal fluent.

Proposition 38

Let Pcon be the possibilistic normal program defined for a conformant planning prob-
lem with the atom ‘goal’ the desired goal fluent. We express the domain knowledge
as a normal ASP program Pact ∪ Prem. Then Pcon is:

{0.5 : block i← | ri ∈ Pact} (5.7)
∪ {1 :head(ri)← body(ri) ∪ {not block i} | ri ∈ Pact} (5.8)
∪ {1 : r | r ∈ Prem} (5.9)
∪ {1 : ← not goal} (5.10)

A conformant plan exists iff Π (Pcon |=c goal) ≥ 0.5.

An extract of this translation for Example 49 is given in Appendix 2.
Contrary to cautious abductive reasoning, many performant solvers for conformant plan-

ning exist, including DLV K. Nevertheless, such solvers cannot take certainties into
account. For practical purposes though, when no “perfect” conformant plan exists, a plan
that is conformant with a “high certainty” is preferred over choosing a plan arbitrarily.

Example 50

A firm has a client calling from city C to ask for an appointment the next day.
The secretary knows that the sales person is either in city A (inA) or city B (inB).
The secretary is almost certain (resp. absolutely certain) that a sales person can get
from city A (resp. city B) to city C in one day (toC), assuming there is no road block.
There are some rumours of a possible road block on the route from city A to C. Cities
A and B also connect to city D, which is definitely reachable in one day from A and
B (toD). This problem can be encoded as the following ASP program:

1 : inA← not inB 0.8 : toC ← inA, gotoC, not blockAC

1 : inB ← not inA 1 : toD ← inA, gotoD, not blockAD

0.2 : blockAC ← 1 : toC ← inB, gotoC, not blockBC

1 : toD ← inB, gotoD, not blockBD
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The additional rules Pact = {1 : gotoC ←,1 : gotoD ←} describe the actions to go
to either city C or city D. If the goal would be to get a sales representative to city D,
then a (perfect) cautious plan exists. Indeed, the plan consisting of the single action
‘gotoD’ can, regardless of the initial state, take us to city D. However, this example
specifically calls for sending a representative to city C. Since there is uncertainty as
to whether or not the road is blocked between A and C, no cautious plan exists. Still,
depending on how certain we want to be that we reach city C in time, a conformant
plan may still exist. Given the low certainty of (blockAC ←), it seems reasonable to
assume that, with a fairly high possibility, a representative will be able to make it to
city C from city A. Hence the plan consisting of the single action ‘gotoC ’ is, with a
high certainty, a cautious plan.

5.4 Work Related to PASPŁ and PASPr

A large collection of previous work in the literature is applicable to the work we presented
in both this chapter and Chapter 4. We structure our discussion of these works along
3 main lines. Prior works that have combined logic programming with mechanisms to
reason about uncertainty are explored in Section 5.4.1. In Section 5.4.2 we look at how
ASP and possibility theory have been used in the literature for epistemic reasoning. Finally,
in Section 5.4.3, we look at work on dealing with preferences and inconsistency handling,
which are two of the domains for which uncertainty handling can be used.

5.4.1 Reasoning about Uncertainty in Logic Programming
The combination of logic programming and uncertainty handling in a single framework
has been an active topic of research during the last decennia. The idea of combining
logic programming and possibility theory was pioneered in [Dubois et al. 1991]. How-
ever, this approach was limited to classical formulas and as such did not include default
negation, i.e. non-monotonic reasoning. In [Wagner 1998], a framework was proposed
in which stable models are combined with a semi-possibilistic first-order logic, used as a
logic of graded truth, to deal with uncertainty. Specifically, this semi-possibilistic logic
is a compositional version of possibilistic logic, in which compositionality is preserved on
the basis of a Heyting algebra. As a direct consequence, classical Boolean tautologies
are no longer preserved in semi-possibilistic logic [Dubois and Prade 1994]. A more re-
cent approach is the work from [Chesñevar et al. 2004], which combines defeasible logic,
a form of non-monotonic reasoning involving both strict and defeasible rules, with pos-
sibility theory in a single framework. This allows, among other things, to resolve conflicts
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between contradictory goals. Possibility theory has also been combined with argument-
ation frameworks, e.g. in [Amgoud and Prade 2004], where revision rules allow an agent
to revise its beliefs and goals.
Many probabilistic extensions of logic programming have also been considered. One of

the first generalizations of propositional logic based on probability theory is [Nilsson 1986].
In this work, a logic is defined in terms of probability distributions over possible worlds,
where the probability attached to a formula corresponds with the probability that the
real world is among those that make the formula true. This idea was later extended to
probabilistic logic programming [Lukasiewicz 2002], where maximum entropy takes on a
role that is very similar to the role of minimal specificity, as shown in the transforma-
tion from [Dubois et al. 1993]. Similar work on combining probability theory with logic
programming had already been done in [Ng and Subrahmanian 1991]. Indeed, this is one
of the earliest works where, in the setting of probabilistic deductive databases, prob-
ability theory is combined with non-monotonic negation. While many works exist that
combine probability theory and logic programming in general, only few have tried to
combine probability theory and ASP. One of the most notable exceptions is the work
from [Baral et al. 2009], where probabilistic atoms are used to encode the probability that
an associated random variable will take on a given value.
Other frameworks to deal with uncertainty can also be used. Bayesian Logic Program-

ming [Kersting and De Raedt 2001], where a generalization of Bayesian networks is used to
reason over Horn clauses, is one such example. Bayesian networks employ well-understood
Bayesian models for representing joint probabilities and offer a good graphical represent-
ation of local influences. Other popular approaches for dealing with uncertainty include
Markov Logic Networks [Richardson and Domingos 2006], where first-order logic is used
to compactly specify a Markov Network and as such allow for uncertain inference. Markov
Logic Networks make it easy to specify interactions between random variables, and allow
for dealing with cyclic dependencies. However, inference in Markov Logic Networks is of-
ten computationally quite complex. Furthermore, the weights attached to the formulas in
Markov Logic Networks tend to be counterintuitive in that their influence in the network
as a whole is not immediately obvious.

5.4.2 Epistemic Reasoning with ASP and Possibility Theory
In [Gelfond 1991] it was argued that classical ASP, while later proven to have strong
epistemic foundations [Loyer and Straccia 2006], is not well-suited for epistemic reason-
ing. Specifically, ASP lacks mechanisms for introspection and can thus not be used to
e.g. reason based on cautiously deducible information. At the same time, however, it
was shown that extensions of ASP could be devised that do allow for a natural form of
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epistemic reasoning. The language ASPK proposed in [Gelfond 1991] allows for modal
atoms, e.g. Ka, where K is a modal operator that can intuitively be read as “it is known
that [a is true]”. These new modal atoms can in turn be used in the body of rules. The se-
mantics of ASPK were originally based on a three-valued interpretation (to allow for the
additional truth value ‘uncertain’), but later, in [Truszczyński 2011], it was shown that
this is not essential and that a more classical two-valued possible world structure can also
be considered. In addition, further extensions are discussed that allow for epistemic reas-
oning over arbitrary theories, where it is shown that ASPK can be encoded within these
extensions. The complexity is studied for these extensions and is shown to be brought up
one level w.r.t. ASP, e.g. to ΣP

3 for disjunctive epistemic programs.
Alternatively, existing extensions of ASP can be used to implement some epistemic reas-

oning tasks, such as reasoning based on brave/cautious conclusions. This idea is proposed
in [Faber and Woltran 2009] to overcome the need for an intermediary step to compute
the desired consequences of the ASP program P1, before being fed into P2. Rather, they
propose a translation to manifold answer set programs, which exploit the concept of weak
constraints [Buccafurri et al. 2000] to allow for such programs to access all desired con-
sequences of P1 within a single answer set. As such, for problems that can be cast into this
particular form, only a single ASP program needs to be evaluated and the intermediary
step is made obsolete.
As was mentioned in Section 1.1 and Section 4.5.1, the semantics of ASP can also be

expressed in terms of autoepistemic logic [Marek and Truszczyński 1991]. These semantics
have the benefit of making the modal operator explicit, allowing for an extensions of ASP
that incorporates such explicit modalities to better express exactly which form of knowledge
is required. However, since autoepistemic logic treats negation-as-failure as a modality, it
is quite hard to extend to the uncertain case.
Finally, a formal connection also exists between the approach from Section 4.2 and the

work on residuated logic programs [Damásio and Pereira 2001] under the Gödel semantics.
Both approaches are different in spirit, however, in the same way that possibilistic logic
(which deals with uncertainty or priority) is different from Gödel logic (which deals with
graded truth). The formal connection is due to the fact that necessity measures are min-
decomposable and disappears as soon as classical negation or disjunction is considered.

5.4.3 Uncertainty, Preferences and Inconsistency Handling
From a practical point of view, being able to deal with uncertainty plays an important
(although often implicit) role in economics and in dealing with preferences, handling incon-
sistencies and dealing with weak constraints. Indeed, the uncertainty of costs [Mills 1959]
is an important problem, where factors such as demand, production and actual costs are all
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pervaded by uncertainty [Sandmo 1971]. Unsurprisingly, this is a very active domain where
probability theory plays a significant role [Garvey 2000]. Preferences, on the other hand,
are an important topic within the ASP community. For example, ordered logic programs,
introduced in [Van Nieuwenborgh and Vermeir 2002], are used to deal with preferences.
Ordered logic programs assume a partial order among rules, allowing less important rules to
be violated in order to satisfy rules with higher importance. In some sense, the use of such
preferences among rules is related to using certainty weights, although the resulting se-
mantics are closer in spirit to the approach from [Nicolas et al. 2006] than to the semantics
we have developed throughout the last two chapters. Quite a number of other works also
deal with preference handling in non-monotonic reasoning; a thorough overview is given
in [Delgrande et al. 2004]. Weak constraints [Buccafurri et al. 1997] are yet another ex-
ample of a problem that can be seen as a problem of preferences amongst rules. Indeed,
weak constraints are constraints that we try to apply, while we are still willing to violate
such constraints if applying the constraint would otherwise prevent us from finding an an-
swer set. When dealing with inconsistencies in ASP, a number of different approaches can
be taken. Indeed, approaches exist to highlight inconsistencies (e.g. [Gebser et al. 2008]),
to resolve inconsistencies (e.g. [Balduccini and Gelfond 2003]) or to reason in inconsistent
knowledge bases. Examples of the latter case include pstable models [Osorio et al. 2006],
which are a framework characterized by a fusion of ASP and paraconsistent logic and
which offer alternative semantics for PASP. The focus of these pstable models is mostly
on handling inconsistency. For instance, the program containing the rule (c : a ← not a)
has (a, c) as its unique possibilistic pstable model, which is not compatible with a reading
of ‘not a’ as “it cannot be established that a is certain”. Specifically, such pstable models
are closer to the intuition of classical models and possibilistic logic than they are to stable
models, as in our approach. Also the semantics introduced in this chapter can be applied
to handle inconsistencies. Indeed, we have seen that the semantics from this chapter are
able to deal with inconsistencies in settings where PASPG and PASPŁ are not.

5.5 Summary
In this chapter we contrasted two different semantics for PASP based on the idea that an
ASP program can be seen as a means to reason over the epistemic states of an agent,
where each answer set is interpreted as an epistemic state. When extending this idea to
PASP, the weights attached to the rules can be treated in two dual ways. On the one
hand, weighted epistemic states can be considered where the weight attached to each rule
reflects the certainty an agent would have in the conclusion of the rule, knowing that the
body is satisfied. In other words, weighted rules are interpreted as rules with uncertain
conclusions. This was the view proposed in Chapter 4.
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Alternatively, we can maintain crisp epistemic states and use the weights associated
with rules to express that some epistemic states are more compatible with available meta-
knowledge than others. This has been the view developed in this chapter. Given this
understanding of a PASP program, we treat the weight attached to each rule as the
certainty that the rule is valid. As such, weighted rules are seen as rules whose validity is
uncertain. We showed how treating a PASP program like this comes down to an efficient
encoding of a possibility distribution over the exponentially many subprograms of an ASP
program. This gives rise to four distinct types of inference, for which we have examined
the computational complexity. We find that two of these inference types are as complex
as the corresponding inference types in classical ASP, while the complexity of the other
two inference types goes up one level in the polynomial hierarchy.
We showed the practical significance of our work in Section 5.3, beyond managing un-

certainty in ASP, by showing how cautious abductive reasoning and conformant planning
can be naturally seen as special cases of the considered problem. In addition, since PASP
is a formalism for reasoning about uncertainty, these problems can trivially be extended
with certainty degrees to increase their expressive power and e.g. find solutions with a high
certainty when perfect solutions are not attainable.
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6 | Simulating CASP and
PASP using classical ASP

6.1 Introduction
In the previous three chapters, we discussed the CASP and PASP extensions of ASP.
However, we did not look at how these extensions can be implemented. In this chapter we
show how these problems can be simulated using ASP. As such, we can rely on existing
solvers for ASP, such as DLV [Leone et al. 2006] and clasp [Gebser et al. 2011], which
have been demonstrated to be highly efficient [Denecker et al. 2009, Calimeri et al. 2011].
Furthermore, since we rely on third party implementations, we immediately benefit from
any improvements made to these solvers.
The remainder of this chapter is organised as follows. In Section 6.2 we show how CASP

can be simulated with ASP. However, this only applies to standard communicating answer
sets. Indeed, no simulation with ASP is currently known to compute the multi-focused
answer sets. However, such a simulation would only be feasible for normal component
programs where we focus on at most a single program. Indeed, if we considered disjunctive
component programs, or if we focus on more than a single program, then we would have a
higher expressiveness than the most expressive form of classical ASP, i.e. a simulation using
ASP would not be possible. As such, to simulate multi-focused answer sets in general, we
cannot rely on a simulation using ASP. In Section 6.3 we provide a simulation of PASPŁ
with ASP. Such a simulation is based on the syntactic counterpart of PASPŁ that was
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defined in Section 4.3.2. In Section 6.4 we show that also PASPr can be simulated using
ASP. While some reasoning tasks turn out to be straightforward to simulate, we show
that the most complex reasoning tasks require a more involved simulation. Specifically,
in these simulations we will rely on the simulation of ASP to a set of clauses to be able
to reason over an ASP program within the simulation program. Finally, in Section 6.5 we
end the chapter with a brief discussion.

6.2 Simulating CASP
We start by showing how ASP can be used to compute the communicating answer sets of a
communicating disjunctive program. Specifically, there is a direct (linear) translation that
transforms P into a disjunctive program P ′ such that the answer sets of P ′ correspond to
the answer sets of P. Recall from Chapter 3 that a communicating disjunctive program
is a finite set of P-component disjunctive programs, where each P-component disjunctive
program is a finite set of P-component disjunctive rules. We have:

Proposition 39

Let P be a communicating disjunctive program. Let P ′ be the disjunctive program
defined as follows. For every Q : l ∈ (BP ∪ ¬BP) we add the following rules to P ′:

guess(Q l)← not not guess(Q l) not guess(Q l)← not guess(Q l)
← guess(Q l), not Q l ← not guess(Q l), Q l. (6.1)

For every disjunctive communicating rule P of the form

r = Q :γ ← body

with Q ∈ P, γ a set of literals and body a set of extended situated literals, we
add the rule Q γ ← body′ to P ′ with Q γ the disjunctive set of situated literals
{Q l | l ∈ γ}. We define body′ as follows:

body′ = {Q b | Q :b ∈ body}
∪ {guess(R c) | R :c ∈ body,Q 6= R}
∪ {not S d | (not S :d) ∈ body} . (6.2)
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Note that we do not guess situated literals preceded by not, as the guess is already
implicitly performed by the reduct of a classical ASP program. We have that M =
{Q : l | Q l ∈M ′} is an answer set of P if and only if M ′ is an answer set of P .

Due to the extra expressiveness and complexity of multi-focused answer sets, it is clear
that in the general case no translation to classical (disjunctive) ASP is possible without
an exponential blow-up unless the polynomial hierarchy collapses. Possible future imple-
mentations may, however, be based on a translation to other polynomial space (PSPACE)
complete problems such as decision problems about QBF formulas or modal logics. A trans-
lation to QBF formulas seems to be the most natural. However, such translations are the
subject of future research.

6.3 Simulating the PASPŁ Semantics
A simulation for PASPŁ can be devised based on the reduct operator that was defined in
Section 4.3.2 for PASP programs with weak disjunction. However, this reduct operator
was based on logical entailment, which is not readily available in ASP. When we restrict
ourselves to strong disjunction we can simplify the reduct operator as follows.

Definition 32

Let P be a possibilistic disjunctive program P and let V be a valuation, i.e. a
V : LitP → [0, 1] mapping. The reduct PV of P w.r.t. V is defined as:

PV = { ((l1; ...; lk ← lk+1, ..., lm),min(λrule, λbody)) | min(λrule, λbody) > 0
∧ λbody = max

{
λ | {lm+1, ..., ln} ∩ V 1−λ = ∅, λ ∈ [0, 1]

}
∧ ((l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln), λrule) ∈ P}

Note that PV is a possibilistic positive disjunctive program. If we take P to be a possib-
ilistic normal program, then PV is is possibilistic simple program. The intuition of this
reduct is similar as before. Indeed, on the one hand the certainty of the reduct of a rule
is limited by the certainty of the rule itself. Furthermore, the certainty is limited by the
certainty of the negative body of the rule. Based on this reduct, we can define a disjunctive
program Q that simulates P with P a possibilistic normal program.

Definition 33

Let P be a possibilistic normal program. Let C be a set of certainty values. The
normal program Q that simulates P contains for each (r, λ) ∈ P with r = (l0 ←
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l1, ..., lm, not lm+1, ..., not ln) and for each µ ∈ C such that 0 < µ ≤ λ the rule:

l0µ← l1µ, ..., lmµ, not lm+1ν, ..., not lnν

with ν = min {ξ | ξ > 1− µ, ξ ∈ C} and with lc a fresh literal for each l ∈ LitP and
c ∈ C.

Example 51

Consider the possibilistic normal program P with the rules

0.6 : travel plane ← concert booked, not canceled
1 : concert booked ←

0.2 : canceled ← .

This program encodes that we booked a concert. We are quite certain that we will
need to travel by plane to get to the concert site. We also read on a blog online that
the concert is cancelled, although we only have a low certainty that this is indeed the
case given the source of the information.
For compactness, in the remainder of this example we will write tp, cb and can in-

stead of travel plane, concert booked and canceled, respectively. We take C =
cert+(P ) = {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1}. The disjunctive program Q defined by
Definition 33 is then the program consisting of the rules

cb(1)← cb(0.8)← cb(0.6)← cb(0.5)←
cb(0.4)← cb(0.2)← can(0.2)←

tp(0.6)← cb(0.6), not can(0.5)
tp(0.5)← cb(0.5), not can(0.6)
tp(0.4)← cb(0.4), not can(0.8)
tp(0.2)← cb(0.2), not can(1)

Q has the answer set

M = {cb(1), cb(0.8), cb(0.6), cb(0.5), cb(0.4), cb(0.2)}
∪ {tp(0.6), tp(0.5), tp(0.4), tp(0.2)} ∪ {can(0.2)}
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which indeed corresponds to the possibilistic answer set
{
cb1, tp0.6, can0.2} of P .

Let us now consider that we are entirely certain that we need to travel by plane
when we booked the concert and the concert is not cancelled. We thus have the rule

1 : travel plane ← concert booked, not canceled.

We can easily modify Q in accordance by adding the rules

tp(1)← cb(1), not can(0.2)
tp(0.8)← cb(0.8), not can(0.4).

Q now has the answer set

M = {cb(1), cb(0.8), cb(0.6), cb(0.5), cb(0.4), cb(0.2)}
∪ {tp(0.8), tp(0.6), tp(0.5), tp(0.4), tp(0.2)} ∪ {can(0.2)}

which again corresponds to the possibilistic answer set
{
cb1, tp0.8, can0.2} of P .

The next two propositions confirm that this simulation is indeed correct and that we can
use a classical normal program to obtain the possibilistic answer sets of our possibilistic
normal program.

Proposition 40

Let P be a possibilistic normal program and Q the simulation of P defined as in
Definition 33 with C = cert+(P ). Let V be the valuation defined by V (l) =
max {λ | lλ ∈M}. If M is a classical answer set of Q, then V is a possibilistic
answer set of P .

Proposition 41

Let P be a possibilistic normal program and Q the simulation of P defined as in
Definition 33, and M = {lλ | λ ≤ V (l), λ ∈ C}. If V is a possibilistic answer set of
P such that V (l) ∈ C for all l ∈ BP , then M is a classical answer set of Q.

Note that only those possibilistic answer sets for which V (l) ∈ C are found using our
simulation. In particular, only a finite number of answer sets can thus be found. As
discussed in Section 4.2.2, this has few practical implications since we only need to consider
the finite set of certainty values cert+(P ) for brave and cautious reasoning. The simulation
as defined above can also be used to simulate possibilistic disjunctive programs. However,
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such a simulation would generate a large number of extra answer sets that do not directly
correspond with a valuation of the corresponding possibilistic disjunctive program. In the
example above, if we had (travel plane; travel car), instead of travel plane, we would
obtain answer sets that contain e.g. tp(1), but we would also have answer sets that
contain e.g. tp(1) and tc(0.8) with tc a shorthand for travel car . While such a simulation
is still useful to simulate brave and cautious reasoning, it cannot be used to compute the
possibilistic answer sets.

6.4 Simulating the PASPr Semantics
Now we show how the semantics presented in Chapter 5 can be simulated using existing
formalisms. In particular, the decision problems Π(P |=b l) ≥ λ or N(P |=c l) ≥ λ will
be simulated using brave and cautious reasoning over classical programs. The remaining
decision problems, which have a higher expressiveness, will be simulated by relying on a
translation of ASP to a set of clauses. We start by describing the simulation of the decision
problems Π(P |=b l) ≥ λ or N(P |=c l) ≥ λ, which share a common base program Pbasic.

Definition 34

Let P be a possibilistic disjunctive program. We define Pbasic(λ) as the set of rules:

{r′i ← not nr′i | (ri, ci) ∈ P, ci ≤ 1− λ}
{nr′i ← not r′i | (ri, ci) ∈ P, ci ≤ 1− λ} (6.3)
∪ {r′i ← | (ri, ci) ∈ P, ci > 1− λ} (6.4)
∪ {head(ri)← body(ri) ∪ {r′i} | (ri, ci) ∈ P} (6.5)

Intuitively, the program Pbasic(λ) simulates the semantics from Section 5.2 using classical
ASP. In particular, the rules from (6.3) generate as many answer sets as there are choices
of rules such that the possibility of the associated subprograms remains sufficiently high,
i.e. greater than or equal to λ. The rules in (6.4) ensure that all rules with a sufficiently high
certainty are considered as valid. Depending on the choice made in (6.3), the information
encoded in the respective rules is applied using (6.5).

Example 52

Consider the possibilistic normal program P with the rules

0.8 : b← not c 0.3 : c← d, not b 0.9 : d← .
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We have the classical normal program Pbasic(0.7) with the rules

r′1 ← r′2 ← not nr′2 r′3 ←
nr′2 ← not r′2

b← not c, r′1 c← d, not b, r′2 d← r′3

The program Pbasic(λ) can now be extended to solve the main reasoning tasks on the
second level of the polynomial hierarchy.

Definition 35

Let P be a possibilistic disjunctive program. The classical disjunctive program
PΠ

brave(l, λ) to verify Π(P |=b l) ≥ λ is defined as Pbasic(λ) ∪ {← not l}.

Intuitively, the simulation PΠ
brave(l, λ) will look for a world in which ‘l’ is true, and has

an associated possibility of λ. If such a world exists, i.e. if we have an answer set, then
Π(P |=b l) ≥ λ is true.

Proposition 42

Let P be a possibilistic disjunctive program and PΠ
brave(l, λ) the classical disjunctive

program as defined in Definition 35. We have that Π(P |=b l) ≥ λ iff PΠ
brave(l, λ)

has a classical consistent answer set.

Definition 36

Let P be a possibilistic disjunctive program. The classical disjunctive program
PNcautious(l, λ) to verify N(P |=c l) ≥ λ with λ > 0 is defined as Pbasic(1−λ′)∪{← l}
with λ′ ∈ cert+(P ) such that λ′ < λ and for which we have that 6 ∃λ′′ ∈ cert+(P ) ·
λ′ < λ′′ < λ.

Note that when λ = 0, it trivially holds that N(P |=c l) ≥ λ is true.
Intuitively, to determine whether N(P |=c l) ≥ λ we need to verify that we have that

max
{
πP (P ′) | P ′ ⊆ P and P ′∗ 6|=c l

}
≤ 1− λ. In other words, whether we do not have

any subprogram P ′ such that P ′∗ 6|=c l and πP (P ′) > 1−λ. The simulation PNcautious(l, λ)
intuitively looks for a world with a certainty higher than 1 − λ in which ‘l’ is false, i.e. l
is not a cautious consequence. If such a world does not exist, i.e. if we find no answer
sets, then N(P |=c l) ≥ λ.
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Proposition 43

Let P be a possibilistic disjunctive program, λ > 0 and PNcautious(l, λ) the classical
disjunctive program as defined in Definition 36. We have that N(P |=c l) ≥ λ iff
PNcautious(l, λ) has no classical consistent answer set.

For the decision problems in Proposition 42 and 43, it was sufficient to find one answer
set of a particular subprogram that satisfies some condition, which is why we were able to
simulate these problems relatively straightforwardly. To decide whether Π (P |=c l) ≥ λ

or N
(
P |=b l

)
≥ λ, on the other hand, we need to verify a particular condition for each

answer set of a particular subprogram. Since the complexity of these decision problems
is higher, we are only able to provide simulations for P a possibilistic normal program as
these are already ΣP

2 -hard and ΠP
2 -hard, respectively.

Our simulation is based on the idea that we can use a disjunctive ASP program to reason
about the answer sets of a normal ASP program. This will be accomplished by translating
the normal ASP program to a set of clauses to ensure that the program is free of negation-
as-failure. This is needed to be able to apply saturation techniques over a normal program.
If a program is tight (i.e. it has no positive loops), then a translation to clauses can be
obtained by determining the completion of the original program [Fages 1994]. Not every
ASP program, however, is tight. As such, we will need to rely on more complex translations
of ASP programs to sets of clauses, such as the translation based on a characterization in
terms of level numbering presented in [Janhunen 2004]. Once we have the translation to a
set of clauses, we generate answer sets for every subprogram and we apply saturation tech-
niques to both validate whether a given interpretation is a valid model of the subprogram
and to verify whether a given literal is a desired conclusion of the given subprogram.

Definition 37

Let P = {p1, ..., pn} be a possibilistic normal program and every pi = (ri, ci) for
1 ≤ i ≤ n a possibilistic normal rule. The disjunctive program Pcomplex(λ) is defined
as the set of rules:

{ri ← not ¬ri | 1 ≤ i ≤ n, ci ≤ 1− λ}
∪ {¬ri ← not ri | 1 ≤ i ≤ n, ci ≤ 1− λ} (6.6)
∪ {ri ← | 1 ≤ i ≤ n, ci > 1− λ} (6.7)

∪
{
cl← | cl ∈ cls(P r)†

}
(6.8)

∪
{

(sat← a, na) | a ∈ at(cls(P r)†)
}

(6.9)
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∪
{

(a← sat) | a ∈ at(cls(P r)†)
}

∪
{

(na← sat) | a ∈ at(cls(P r)†)
}

(6.10)
∪ {← not sat} (6.11)

∪
{
cl′r ← | cl ∈ cls(P r)†

}
(6.12)

∪
{
← a′, na′ | a ∈ at(cls(P r)†)

}
(6.13)

where cls(P ) is a representation of the normal program P as a set of clauses
(e.g. [Janhunen 2004]), P r is the set of rules {head(ri)← body(ri), ri | (ri, ci) ∈ P}
with ‘ri’ a fresh atom, C† is the set of clauses obtained from C by replacing every
occurrence of a negated atom ¬a with a fresh atom na except for the atoms ‘ri’
and at(C) is the set of atoms appearing in C from which we remove the atoms ‘ri’.
Finally, cl′r is obtained from a clause cl by replacing every literal from LitP with l′.

Proposition 44

Let P be a possibilistic normal program and P c
Π(l, λ) the disjunctive program defined

as Pcomplex(λ)∪{sat← l}. Then Π (P |=c l) ≥ λ iff P c
Π(l, λ) has a classical answer

set.

Proposition 45

Let P be a possibilistic normal program and P b
N(l, λ) the disjunctive program defined

as Pcomplex(1− λ′) ∪ {sat← not l} with λ′ defined as in Proposition 43. Then
N
(
P |=b l

)
≥ λ iff P b

N(l, λ) has no classical answer set.

6.5 Implementation in pasp2asp
All of the simulations discussed in this section can easily be implemented. Furthermore,
in most cases, the simulations are linear and allow us to quickly compute the correspond-
ing communicating or possibilistic answer set. The simulation presented in Definition 37,
however, is more elaborate, but can nevertheless easily be implemented using mostly off-
the-shelf tools. To verify its effectiveness in practice, we have implemented a prototype
which is available from http://www.cwi.ugent.be/kim/pasp2asp/. The translator
pasp2sat prepares an input PASP program by removing the certainties and adding the
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fresh atom ri to the body of each rule ri ∈ P . The resulting ASP program is converted
to an equivalent set of clauses using the technique from [Janhunen 2004]. The output
in DIMACS CNF form is converted back into ASP rules by clause2asp. The rules
(6.8) – (6.13) are constructed from the information of the translation to clauses, while
λ is needed to add the rules (6.6) – (6.7) and l is required to add the rules that are
specific to the simulation of the decision problem as identified in Proposition 44 and 45.
An overview of the implementation is given in Figure 6.1. The answer sets of the result-
ing ASP program can then be computed using an ASP solver for disjunctive programs,
e.g. DLV [Eiter et al. 1999, Leone et al. 2006].

P
pasp2sat

(P ∗)r
clause

translation

l

λ

clause2asp

clauses

P c
Π(l, λ)

or P b
N(l, λ)

ASP solver
answer set(s)

Figure 6.1: overview of the implementation.

While no benchmark instances exist for PASP, we know from Section 5.3 that conformant
planning can be modelled as a problem in PASPr. We can thus compare our solver against
DLV K, which is a solver specifically made for conformant planning and which is built on
top of DLV, an ASP solver. For both solvers, we consider a world-state encoding in action
language K of the BT (p) and BMTUC(p, t) problem [Eiter et al. 2003]. As we have seen
in Section 5.3.2, BT (p) is the basic version of the bomb in the toilet problem. We know
that there are p packages, exactly one of which is a bomb. There is one toilet in which we
can dump these packages. Once the package with the bomb is dumped in the toilet, the
bomb deactivates and we reach a safe state. The goal is to reach this safe state, without
knowing which one of the packages is the actual bomb. The BMTUC(p, t) problem is
a much harder variant of the BT (p) problem. In this variant, we have p packages and t
toilets. Clogging may occur when we dump a package in the toilet, preventing us from
dumping additional packages in this toilet. We can flush a toilet when it is clogged,
which always unclogs the toilet. As before, a safe state is reached when the bomb is
deactivated by dumping it into an unclogged toilet. The goal is once again to arrive at a
safe state irrespective of which package contains the actual bomb. We now briefly discuss
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how pasp2asp compares to DLV K on a number of problem instances. The results are
summarized in Table 6.11.

BT (p) DLV K pasp2asp BMTUC(p, 4) DLV K pasp2asp
BT (2) 0.015 s 0.050 s BMTUC(2, 4) 0.015 s 0.075 s
BT (3) 0.015 s 0.052 s BMTUC(3, 4) 0.015 s 0.072 s
BT (4) 0.016 s 0.055 s BMTUC(4, 4) 0.017 s 0.128 s
BT (5) 0.014 s 0.057 s BMTUC(5, 4) 0.144 s 38.876 s
BT (6) 0.015 s 0.056 s BMTUC(6, 4) – s – s

Table 6.1: comparison of pasp2asp and DLV K on BT (p) and BMTUC(p, t) instances

On the BT (p) instances our implementation is slower thanDLV K. This can be explained
by the increased complexity of our simulation, where the translation to clauses generates
a considerable number of additional rules. However, similar to DLV K, our results scale
well when considering larger instances of BT (p). When looking at the BMTUC(p, 4)
instances, both our own implementation and DLV K are able to solve BMTUC(2, 4),
BMTUC(3, 4) and BMTUC(4, 4) in less than a second. However, when there are more
packages than toilets, our implementation demonstrates a considerable hit in performance.
Neither DLV K nor our own implementation are able to find a conformant plan before the
cut-off time of 60 seconds for the BMTUC(6, 4) instance. Similar behaviour can be
observed for other BMTUC(p, t) instances where we take t 6= 4.
Although our solver is somewhat slower than DLV K, it is competitive on most problem

instances. Moreover, while DLV K is optimized for the problem of conformant planning,
our solver is more generic and can thus not exploit problem-specific heuristics. In these
experiments we furthermore did not consider optimizations based on the tightness of the
programs. Indeed, if we check for tightness we can translate an ASP program P more
efficiently to a set of clauses by determining the complement comp(P ), rather than relying
on a more complex translation such as the one we use from [Janhunen 2004].

6.6 Summary
In this chapter we have shown how the extensions of ASP that were presented in Chapter 3,
4 and 5 can be simulated using classical ASP. Many of these simulations are fairly
straightforward and rely on a linear translation, which makes them easy to implement.

1All results averaged over 3 runs and obtained on a 2.4Ghz Intel Core 2 Duo system with 8GB RAM
(using OS X 10.8 64 bit). Run-times longer than 60 s are omitted.
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Furthermore, since these simulations rely on classical ASP, they allow us to quickly com-
pute communicating or possibilistic answer sets using current state-of-the-artASP solvers.
We have seen that a simulation does not (yet) exist for the computation of multi-focused

answer sets. Still, in theory classical disjunctive ASP has the expressive power to simulate
communicating normal programs where we focus on a single component program. When
we want to focus on more than one component program, classical ASP lacks sufficient
expressivity and we would need a translation to e.g. QBF formulas.
The most complex decision problems of PASPr, namely deciding whether Π (P |=c l) ≥ λ

or N
(
P |=b l

)
≥ λ, required more involved simulations. Indeed, the simulation needs to

reason over the answer sets of the classic program obtained from P . To do this, we had
to rely on a translation of ASP to clauses. Our simulation uses such a translation as a
black box, and can thus easily be adapted to a more performant version, as advances
in this area are made. Furthermore, we implemented this simulation and verified its
feasibility. The implementation does not yet take certain optimisations into account,
such as verifying whether or not a program is tight. Since most ASP programs are indeed
tight, and since tight programs can more easily be translated to a set of clauses with
equivalent models, such optimisations may in the future allow us to considerably speed up
our implementation. Even though our implementation is still preliminary, our comparison
with DLV K showed that it is already capable of solving real-life problems in reasonable
time. For most instances, our solver needed an amount of time which was of the same order
of magnitude as DLV K, even though DLV K, being specifically optimized for conformant
planning, was faster.
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Answer Set Programming (ASP) is a domain-specific programming language based on the
stable model semantics for logic programming. An ASP program consists of a set of rules,
where each rule is of the form (conclusion ← conditions). A rule encodes the information
that its conclusion must be true whenever all of its conditions are satisfied. To solve a
problem using ASP, we encode it in such a way that specific models, called the answer sets,
correspond with the solutions of the original problem. An important component of ASP is
the use of a non-monotonic operator ‘not’, called negation-as-failure, in the condition part
of a rule. Intuitively, an expression of the form ‘not sunny’ is true when there is no proof
for ‘sunny’. In this example, sunny is an atom, i.e. a logical formula that contains no
connectives and that is either true or false. The use of a non-monotonic operator, where
we obtain conclusions based on the absence of information, is different from the use of
classical negation. Indeed, concluding that ‘¬sunny’ is true would require us to be able
to effectively prove that it is not sunny. Classical negation is also considered in ASP in
the form of literals, where a literal is either an atom or the classical negation of an atom.
The use of a non-monotonic operator in ASP influences its expressivity. ASP programs

are divided in specific categories based on syntactic restrictions on the rules in an ASP
program. The least expressive class of programs that we consider are those in which ‘not’
does not occur and where each rule has a deterministic conclusion. Such programs are
referred to as simple programs. Rules in a simple program are of the form (l0 ← l1, ..., lm).
Normal programs are ASP programs that do allow for the operator ‘not’ in the condition
part, but where each rule still only has a deterministic conclusion. These rules are of
the form (l0 ← l1, ..., lm, not lm+1, ..., not ln). Programs in which we allow ‘not’ in the
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conditions and where each rule can have a non-deterministic conclusion are called disjunct-
ive programs. Such rules are of the form (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln).
The expressivity of simple programs, normal programs and disjunctive programs is P, NP
and ΣP

2 , respectively.
The use of a non-monotonic operator in ASP allows us to model and revise knowledge.

The revision of knowledge is an important part of common-sense reasoning. For example,
we may usually take the train to go to work, unless we find out that there will be a strike.
However, we cannot intuitively use ASP to model that different pieces of knowledge have
been obtained from different sources, since ASP is defined as one program consisting of a
set of rules. Nevertheless, examples are plentiful where different sources provide different
pieces of information, such as a police investigation where each witness only knows some
of the facts. In this thesis we were particularly interested in how information can be
exchanged between different contexts and how this affects the complexity. Furthermore,
ASP cannot be used in an intuitive way to reason about uncertainty. For example, in
common-sense reasoning we should be able to derive conclusions based on knowledge such
as “the train will possibly be cancelled”, while the uncertainty inherent in this phrase
cannot easily be modelled in ASP. In this thesis we looked at how ASP can be extended
to reason about qualitative uncertainty (e.g. as in the statement “I will open my umbrella
when I am fairly certain that it is raining outside”), which is distinct from quantitative
uncertainty (e.g. “the letter will be delivered tomorrow with a 99% certainty”).
To model multi-context systems and uncertainty in ASP, we considered epistemic exten-

sions of ASP in this thesis. Specifically, we have introduced Communicating Answer Set
Programming (CASP), an extension of ASP that allows for a network of ASP programs
to communicate, and we investigated new semantics for Possibilistic Answer Set Program-
ming (PASP), which adds a layer of uncertainty to ASP. Furthermore, we thoroughly
studied the complexity of these extensions to get a good understanding of their expressiv-
ity. To clarify all the concepts that are used in this thesis, we recalled some preliminary
notions on complexity, ASP, possibility theory and PASP in Chapter 2.
CASP was introduced in Chapter 3, where we considered a network of ASP programs that

are able to communicate and where we were particularly interested in the effect that this
communication has on the overall complexity. We showed that the introduction of a new
literal ‘Q : l’ allows us to exchange information between programs. The intuition of this
literal is that of asking a question (“do you believe the literal ‘l’ to be true?”) to some other
program (namely the program ‘Q’). We found that a network of communicating simple
programs (which, individually, have an expressivity of P) are able to simulate a normal
program (which has an expressivity of NP). However, a network of normal programs are
not expressive enough to simulate a disjunctive program (which has an expressivity of ΣP

2 ).
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An elaboration on this idea of communication is the concept of ‘focussing ’. Normally,
the solutions of an ASP program without negation-as-failure are defined as its minimal
models. In other words: a solution is the minimally necessary information that can be
derived from the program. However, when we consider a network of communicating
programs, the notion of minimality becomes ambiguous. Indeed, minimality can be defined
on a global level, i.e. where we do not differentiate between programs, or minimality can be
defined on the level of a single program. The idea of focussing introduced in Section 3.4 is
based on this last notion of minimality. In addition, focussing can be applied repeatedly by
focussing on a series of different programs in the network. In that case, the order in which
we focus becomes important. When we studied the complexity, we saw that every time we
focussed on another program in the network a jump is made in the polynomial hierarchy
(i.e. from P to NP to ΣP

2 etc.). In this way it is possible to solve all problems in polynomial
space (PSPACE), as long as there are sufficiently many unique programs on which to focus.
Aside from having a network of programs that are able to communicate, we were also

interested in reasoning about uncertain information. PASP is an existing extension of
ASP [Nicolas et al. 2006] that allows for the representation of, and reasoning about,
uncertain information. To this end, the syntax of ASP is extended by associating a
weight λ ∈ ]0, 1] with a rule. As such, a PASP program is a set of rules of the form
(λ : conclusion← conditions). This weight can be interpreted as the maximum certainty
with which the conclusion of the rule can be derived when all the conditions of the rule
are satisfied. Current semantics for PASP, however, can have unintuitive results in certain
settings. The underlying cause is the particular interpretation of the non-monotonic oper-
ator ‘not’. Specifically, the existing semantics interpret a statement such as ‘not sunny’
as “we have no strictly positive certainty that ‘sunny’ is true”. As a result, it is not
possible to differentiate between situations in which sunny is somewhat necessary and
situations in which sunny is completely necessary. Alternatively, however, ‘not sunny’ can
be interpreted as “the degree to which ‘¬sunny’ is possible”, or, equivalently, “the degree
to which it is not the case that we can derive ‘sunny’ with certainty”. In Chapter 4 we
looked at how semantics for PASP can be defined as constraints on possibility distributions
that adhere to this new interpretation. These new semantics offer intuitively acceptable
solutions in many situations where previous semantics for PASP do not.
These new semantics for PASP can be used as a characterization of classical ASP

(i.e. without certainty degrees). Interestingly, when extending this characterization to
disjunctive programs, two different views of disjunction are unearthed. One of these
views corresponds with classical disjunctive programs, whereas the other view leads to
new semantics. These new semantics interpret disjunctions mainly in an atomic way.
The complexity of programs with this new form of disjunction is in between of the com-
plexity of normal programs and classical disjunctive programs when we allow for classical
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negation. However, the complexity coincides with the complexity of normal programs
when we do not consider classical negation.
Both the new semantics as well as the existing semantics for PASP interpret the weight

attached to a rule as the maximum certainty with which the conclusion can be derived when
the conditions of the rule are satisfied. As such, these semantics allow us to model that
we believe particular information only with a limited certainty. Alternatively, the weight
attached to a rule can be interpreted in a different way, namely as the certainty with
which we believe the information encoded in the rule itself to be valid. As such we express
uncertainty on the level of the model itself, rather than on the level of the information
(which is either true or false). Given this understanding we view a PASP program as a set
of uncertain rules, rather than as a set of rules with uncertain conclusions. To define the
semantics of uncertain rules we can look at the semantics of possibilistic logic. Conclusions
that can be derived with a high certainty in possibilistic logic are those conclusions that
we are still able to derive after we have removed the least certain information. However,
due to the use of a non-monotonic operator in ASP, the omission of rules may allow us
to derive new information. This newly derived information may itself be incorrect. Hence,
merely omitting the least certain rules is not enough and instead we — conceptually —
need to consider all the subsets of uncertain rules. Each such subset corresponds with the
assumption that those particular rules are exactly those rules that are valid. We can then
associate a possibility with each of these subsets, where a subset of rules is progressively
less possible as rules with a progressively higher certainty are omitted from it.
We introduced semantics based on this view in Chapter 5. Furthermore, we compared the

new semantics proposed in Chapter 5 with the already discussed semantics from Chapter 4,
along with a study of the complexity of the most important decision problems of these new
semantics. The semantics of uncertain rules furthermore revealed the concept of optional
rules. We showed that a number of important problems in Artificial Intelligence can be
expressed in terms of such optional rules and can therefore be modelled using a PASP
program. One such problem is conformant planning, where we are uncertain about the
initial state of the problem, but we nevertheless want to find a reliable plan that leads us
to a specific goal state. An example of such a problem is a preprogrammed robot placed in
a building with the goal of closing all the windows (where not necessarily all the windows
will currently be open/closed).
Finally, we looked in Chapter 6 at how the proposed extensions can be implemented.

Specifically, we looked at how they can be simulated using classical ASP. This offers us
a number of advantages. Such simulations tend to be relatively straightforward, as they
remain within the ASP framework and we can use performant off-the-shelf tools to compute
the answer sets of an ASP program. We showed that CASP can indeed be simulated using
ASP, but only if we do not consider focussing. Our first alternative semantics for PASP can
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also be simulated using ASP by noting that, in practice, only a finite number of certainty
degrees need to be considered for the main decision problems. The second semantics for
PASP, based on the concept of uncertain rules, can also be simulated using ASP. For the
hardest decision problems our simulations rely on a translation of ASP to clauses (i.e. sets
of disjunctions of literals).
In conclusion, we have proposed a number of extensions of classical ASP where on the one

hand we want to reason about the knowledge of a network of ASP programs and, on the
other hand, we want to reason about uncertain information. We showed with CASP that
communication indeed influences the complexity of the overall network. In particular, we
found that the choice of the communication mechanism crucially influences the complexity
of the resulting system. With our first new semantics for PASP we showed that it is
possible to find intuitive solutions for settings in which the existing semantics of PASP
are unsatisfactory. In addition, these new semantics could be used to characterize ASP,
which in turn allowed us to unearth a new form of disjunction in ASP with interesting
complexity results. When we interpreted PASP as a set of uncertain rules, we obtained
another semantics for PASP that is based on the notion of optional rules. We showed
how the concept of optional rules can be used to model some important problems within
Artificial Intelligence. Finally, we illustrated that a large part of the extensions that we
proposed in this thesis can be simulated using classical ASP. As such, we have efficient
implementations for both CASP and PASP.
For future work, improvements to both CASP and PASP can be envisaged, along with

the combination of CASP and PASP in a single framework. Below we mention several of
these potential extensions that seem very interesting, while fully realizing that this list is not
exhaustive. Firstly, in CASP we currently consider a straightforward form of communication
where programs can ask questions to each other. More elaborate forms of communication
can be envisaged such as a blackboard architecture [Erman et al. 1980], where the different
programs share a data region and a moderator controls when a program is allowed to modify
the information in the shared data region. Also the topology of the programs could be
taken into account. For example, it might be that only some programs are close enough to
another program to be able to communicate. It would be interesting to analyse how such
communication mechanisms affect the complexity. In addition, when using more complex
forms of communication that allow e.g. a shared data region, then inconsistencies may
arise. To deal with inconsistencies we would be required to implement techniques based
on e.g. possibility theory [Benferhat et al. 2000] or paraconsistent logics [Bremer 2005].
Secondly, no implementation is currently available for computing focussed answer sets of

a given CASP program. If we want to simulate focussed answer sets using classical ASP
we would need to restrict ourselves to focussing on at most a single program in a commu-
nicating normal program. Due to the computational complexity of focussing, however, the
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general problem of finding the focussed answer sets cannot be implemented by simulating
the problem in ASP without an exponential blow-up in the size of the program. Instead,
for these problems we would need to rely on approaches with a higher computational com-
plexity, such as certain variants of modal logics or expressing the problem as a Quantified
Boolean Formula (QBF) and using solvers for QBF to compute the solutions.
Thirdly, when we looked at a PASP program as a set of uncertain rules, we encoded the

certainty of each rule in such a way that it is independent of the certainty of the other
rules. Using e.g. possibilistic networks [Benferhat and Smaoui 2007] would allow us to
define the relationship between the uncertainties associated with each rule, i.e. it would
allow us to specify the certainty that we have in a rule given that some other rules are
found to be (in)correct. This would enhance our ability to capture the uncertainty that
arises when reasoning about information coming from different sources. Indeed, if a rule
from some source is found to be (in)correct, this may affect the certainty that we have
towards the other rules encoding the information obtained from that same source.
Finally, combining CASP and PASP in a single framework introduces additional inter-

esting challenges. We could choose to let each program individually and internally reason
about uncertainty. This is, in essence, equivalent to introducing situated literals to PASP
and considering a group of PASP programs. In addition, we might have that the commu-
nication between the programs itself is uncertain. For example, faulty connections could
be modelled by associating a weight with the (currently implicit) connections that exist
between the different programs.
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Answer Set Programmeren (ASP) is een domein-specifieke programmeertaal gebaseerd
op logisch programmeren. Een ASP programma bestaat uit een verzameling van regels.
Elke regel is van de vorm conclusie ← voorwaarden, waarbij de conclusie van een regel
voldaan is wanneer alle voorwaarden van de regel voldaan zijn. Een probleem kan je
oplossen met ASP door een ASP programma te schrijven waarbij de oplossingen van dit
ASP programma, de answer sets, overeenkomen met de oplossingen van het originele
probleem. Een belangrijke eigenschap van ASP is het gebruik van een ‘negatie als falen’-
operator ‘not’ in de voorwaarden. Intuïtief is een uitdrukking zoals ‘not zonnig’ waar
wanneer er geen bewijs is dat het zonnig is. Hierbij is ‘zonnig’ een atoom, m.a.w. een
logische formule die waar of vals kan zijn en die verder niet opgebouwd is uit andere
formules. Het gebruik van een niet-monotone operator, waarbij we conclusies trekken uit
de afwezigheid van informatie, wijkt af van het gebruik van klassieke negatie. Zo vereisen
we bij klassieke negatie, wanneer we willen vaststellen dat ‘¬zonnig’ waar is, dat we een
bewijs hebben om aan te tonen dat het niet zonnig is. In ASP gaan we ook klassieke
negatie beschouwen in de vorm van een literaal, wat ofwel een atoom is of de klassieke
negatie van een atoom.
Het gebruik van een niet-monotone operator in ASP beïnvloedt de expressiviteit van

ASP en maakt het mogelijk om complexere problemen op te lossen. ASP programma’s
worden onderverdeeld in klassen, naargelang de vorm van de regels die er in voorkomen.
De programma’s met de laagste expressiviteit die we beschouwen zijn deze waarbij dat
de not operator niet voorkomt in de voorwaarden en waarin alle regels een enkelvou-
dige conclusie hebben. Deze programma’s worden eenvoudige programma’s genoemd.
De regels in een eenvoudig programma zijn van de vorm (l0 ← l1, ..., lm). Normale
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programma’s zijn programma’s waarbij we wel de not operator in de voorwaarden toela-
ten, maar waarbij alle regels nog steeds een enkelvoudige conclusie hebben. Deze regels
zijn van de vorm (l0 ← l1, ..., lm, not lm+1, ..., not ln). Programma’s waarin we de not
operator in de voorwaarden toelaten en waarbij alle regels meervoudige conclusies kun-
nen hebben, worden disjunctieve programma’s genoemd. Deze regels zijn dan van de
vorm (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln). De expressiviteit van eenvoudige pro-
gramma’s, normale programma’s en disjunctieve programma’s is repsectievelijk P, NP
en ΣP

2 .
De niet-monotone operator in ASP biedt ons de mogelijkheid om kennis te herzien.

Dit doen we ook wanneer we zelf redeneren op basis van gezond verstand. Zo beslissen
we bijvoorbeeld om de trein te nemen naar het werk, tenzij we te weten komen dat er
een staking zal zijn. In ASP kunnen we echter niet eenvoudig redeneren over de kennis
van een ander programma, want ASP wordt gedefiniëerd als één programma met meerdere
regels. Nochtans zijn er talloze voorbeelden waarbij verschillende bronnen, of contexten,
beschikken over verschillende stukken informatie. Zo heb je bij een politieonderzoek dat
verschillende getuigen elk maar een deel van de feiten kennen. In deze thesis ligt de
nadruk op het uitzoeken hoe informatie uitgewisseld kan worden tussen ASP programma’s
en welke invloed dit heeft op de complexiteit. We kunnen ASP ook niet intuïtief gebruiken
om te redeneren over onzekerheid. Zo kunnen we bijvoorbeeld wel met ons gezond verstand
redeneren over situaties zoals “de trein wordtmogelijk afgeschaft”, terwijl er geen duidelijke
manier bestaat om deze onzekere informatie in ASP te beschrijven. In deze thesis hebben
we gekeken hoe ASP uitgebreid kan worden om te redeneren over kwalitatieve onzekerheid
(uitdrukking zoals “als ik redelijk zeker ben dat het buiten regent ga ik mijn paraplu
openen”), wat verschillend is van kwantitatieve onzekerheid (“een brief wordt met 99%
zekerheid de volgende dag geleverd”).
Om kennis afkomstig uit meerdere contexten en onzekere kennis te kunnen modelleren,

hebben we in deze thesis epistemische uitbreidingen van ASP bestudeerd. Meer bepaald
hebben we de uitbreiding Communicerende ASP (CASP) geïntroduceerd, waarbij meerdere
ASP programma’s kennis kunnen uitwisselen, en we hebben gekeken naar nieuwe seman-
tieken voor Possibilistische ASP (PASP), waarbij we ASP uitbreiden met mechanismen om
te redeneren over onzekerheid. Aanvullend hebben we de complexiteit van deze uitbrei-
dingen bestudeerd om een goed idee te krijgen van hun complexiteit. Om alle begrippen
die we in deze thesis beschrijven duidelijk te maken, hebben we voorafgaand werk omtrent
complexiteit, ASP, possibiliteitstheorie en PASP beschreven in Hoofdstuk 2.
In Hoofdstuk 3 introduceerden we Communicerende ASP (CASP), waarbij we wilden

nagaan hoe we meerdere ASP programma’s kunnen laten communiceren en welke com-
municatiemechanismen de complexiteit beïnvloeden. We toonden hierbij aan dat de
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introductie van een nieuw soort literaal, Q : l, ons toelaat om informatie tussen pro-
gramma’s uit te wisselen. Deze literaal komt intuïtief overeen met het stellen van een
vraag (is de literaal ‘l’ waar?) aan een ander programma (namelijk aan Q). Hierbij
stelden we vast dat een netwerk van communicerende eenvoudige programma’s (met een
individuele expressiviteit die beperkt is tot P) dezelfde expressiviteit oplevert als een nor-
maal programma (met een hogere expressiviteit van NP). Het is echter niet zo dat een
netwerk van normale programma’s expressief genoeg is om een disjunctief programma te
beschrijven (met een complexiteit van ΣP

2 ).
Een aanvullende uitbreiding op het idee van communicatie betreft het idee van ‘focus-

sen’. Normaal worden de oplossingen van een ASP programma beschreven als de minimale
modellen van het programma. Met andere woorden: een oplossing is de minimaal nood-
zakelijke informatie die uit een ASP programma kan worden afgeleid. Wanneer er echter
meerdere programma’s gebruikt worden waartussen communicatie mogelijk is, is het idee
van een minimaal model niet langer uniek gedefiniëerd. Wordt er met een minimaal model
een algemeen minimaal model bedoeld, of een model dat minimaal is ten opzichte van
één programma? Het idee van focussen dat we introduceerden in Sectie 3.4 is gebaseerd
op deze laatste vorm van minimaliteit. Bovendien kan focussen herhaaldelijk toegepast
worden en dan wordt het belangrijk in welke volgorde we dit toepassen. Wanneer we
de complexiteit bestudeerden, dan konden we zien dat er, elke keer er gefocust wordt,
een sprong gemaakt wordt in de polynomiale hiërarchie. Op deze manier is het mogelijk
om alle problemen in PSPACE op te lossen met CASP, zolang er maar voldoende unieke
programma’s zijn om op te focussen.
Naast de mogelijkheid om meerdere programma’s met elkaar te laten communiceren,

hadden we ook interesse in het redeneren op basis van onzekere kennis. Possibilistische
ASP is een bestaande uitbreiding op ASP [Nicolas et al. 2006] waarbij het mogelijk wordt
om ASP te combineren met onzekere informatie en eveneens te redeneren op basis van
deze onzekere informatie. Om dit mogelijk te maken wordt er syntactisch gezien een ge-
wicht λ ∈ ]0, 1] gekoppeld aan een regel. Een PASP programma is dus een verzameling
van regels van de vorm (λ : conclusie← voorwaarden). Dit gewicht kan geïnterpreteerd
worden als de maximale zekerheid waarmee we de conclusie van een regel kunnen afleiden
als de voorwaarden van die regel vervuld zijn. De huidige aanpak van PASP levert echter
resultaten op die niet altijd intuïtief zijn. De oorzaak hiervan ligt in de specifieke interpre-
tatie van de niet-monotone operator ‘not’. Zo wordt ‘not zonnig’ in de huidige aanpak van
PASP geïnterpreteerd als “er is geen enkele zekerheid dat het zonnig is”. Een probleem van
deze interpretatie is dat we geen onderscheid kunnen maken tussen “ik ben redelijk zeker
dat het ‘zonnig’ is” en “ik ben absoluut zeker dat het ‘zonnig’ is”. We kunnen ‘not zonnig’
echter ook interpreteren als “de mate waarin we ‘¬zonnig’ kunnen aannemen”, wat op
zijn beurt neerkomt op “de mate waarin we zonnig niet met zekerheid kunnen afleiden”.
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In Hoofdstuk 4 bekeken we hoe we een semantiek op basis van deze nieuwe interpretatie
kunnen definiëren aan de hand van restricties op possibiliteitsdistributies. Deze nieuwe
semantiek biedt intuïtief aanvaardbare oplossingen in veel situaties waarin de oplossingen
volgens de bestaande semantiek van PASP niet intuïtief zijn.
Aanvullend stelden we vast dat de nieuwe semantiek voor PASP gebruikt kan worden

om de klassieke versie van ASP (zonder zekerheidsgraden) te karakteriseren. De karak-
terisatie van normale programma’s kan hierbij op twee manieren uitgebreid worden naar
disjunctieve programma’s. Een van deze uitbreidingen is een karakterisatie van de klassieke
semantiek, en de andere is een nieuwe semantiek. Deze nieuwe semantiek voor disjunctieve
programma’s behandelt de disjuncties vooral als een soort atoom. De complexiteit van
deze nieuwe semantiek bevindt zich tussen de complexiteit van normale programma’s en
disjunctieve programma’s wanneer klassieke negatie toegelaten wordt en valt samen met de
complexiteit van normale programma’s wanneer er geen klassieke negatie gebruikt wordt.
Zowel de bestaande semantiek voor PASP alsook de nieuwe semantiek die we voorstelden

interpreteren het gewicht gekoppeld aan een regel als de maximale zekerheid waarmee we
de conclusie van die regel kunnen afleiden. Op deze manier kunnen we met deze aanpak
uitdrukken dat bepaalde conclusies slechts met een beperkte zekerheid gelden. We kunnen
dit gewicht echter ook op een andere manier interpreteren, met name als de zekerheid
waarmee de informatie die in de regel beschreven wordt daadwerkelijk geldig is. In dat
geval hebben we onzekerheid omtrent ons model, eerder dan onzekerheid over de conclusies
die we afleiden. Op deze manier krijgen we een verzameling van onzekere regels, eerder dan
een verzameling van regels met onzekere conclusies. Om de semantiek van een verzameling
van onzekere regels vast te leggen hebben we gekeken naar possibilistische logica, waarbij
de meest onzekere regels weglaten worden. Zo zijn de conclusies die we in possibilistische
logica met grote zekerheid kunnen afleiden de conclusies die we nog steeds kunnen afleiden
nadat we de meest onzekere informatie weggelaten hebben. Het is echter zo, omdat ASP
een niet-monotone operator bevat, dat het weglaten van regels ertoe kan leiden dat we
nieuwe kennis afleiden. Deze nieuwe kennis kan echter foutief zijn. Daarom kunnen we
niet zomaar de meest onzekere regels weglaten en beschouwen we in de plaats daarvan
– conceptueel gezien – alle deelverzamelingen van onzekere regels. Elke deelverzameling
komt dan overeen met net die regels waarvan we uitgaan dat ze geldig zijn. Met zo
een deelverzameling konden we vervolgens een graad van mogelijkheid associëren, waarbij
een deelverzameling van regels minder mogelijk wordt naarmate er regels met een steeds
hogere zekerheid uit weggelaten worden.
In Hoofdstuk 5 bespraken we een semantiek gebaseerd op dit idee van onzekere re-

gels. In dit hoofdstuk gingen we bovendien de vergelijking aan met de reeds besproken
semantieken uit Hoofdstuk 4 en bestudeerden we de complexiteit van de belangrijkste
beslissingsproblemen van deze nieuwe semantiek in detail. We konden deze semantiek
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van onzekere regels bovendien ook beschouwen als een semantiek van optionele regels.
Een aantal belangrijke problemen binnen Artificiële Intelligentie kunnen we beschrijven
als problemen met optionele regels en konden we dan ook met PASP oplossen. Een be-
langrijk planningsprobleem is bijvoorbeeld het probleem waarbij we niet zeker zijn van de
begintoestand, maar waarbij we desondanks een betrouwbaar plan willen om een bepaalde
eindtoestand te bereiken. Een voorbeeld van een dergelijk probleem is een voorgeprogram-
meerde robot die in een gebouw alle ramen moet sluiten (waarbij niet noodzakelijk alle
ramen open of gesloten zijn).
Ten slotte bekeken we in Hoofdstuk 6 hoe we de hiervoor besproken uitbreidingen kunnen

implementeren. We hebben daarbij nagegaan of het mogelijk is om deze uitbreidingen
te simuleren met ASP. Dit biedt een aantal voordelen. Dergelijke simulaties zijn veelal
eenvoudiger omdat we binnen het raamwerk van ASP blijven. Daarnaast kunnen we gebruik
maken van vrij te verkrijgen programma’s om answer sets van een ASP programma te
berekenen. We toonden aan dat CASP inderdaad gesimuleerd kan worden met ASP, maar
enkel als we geen ‘focussing’ beschouwen. De semantiek voor PASP die we voorgesteld
hebben in Hoofdstuk 4 kon ook gesimuleerd worden met ASP dankzij de vaststelling dat
we hiervoor slechts een eindig aantal zekerheidsgraden moeten beschouwen. De tweede
semantiek voor PASP, op basis van onzekere regels, konden we eveneens simuleren met
ASP. Voor de moeilijkste beslissingsproblemen maken we hierbij gebruik van bestaande
vertaling van ASP naar clausules, waarbij een clausule een disjunctie van literalen is.
Samenvattend hebben we uitbreidingen van ASP voorgesteld waarbij we enerzijds willen

redeneren over kennis van meerdere ASP programma’s en anderzijds willen redeneren over
onzekere kennis. We toonden aan met CASP dat communicatie de complexiteit inderdaad
beïnvloedt, alhoewel de mate van invloed sterk afhangt van de keuze van communica-
tiemechanisme. Op basis van onze eerste nieuwe semantiek voor PASP toonden we aan
dat we intuïtieve oplossingen kunnen vinden voor problemen waar de bestaande seman-
tiek voor PASP niet toereikend is. Bovendien kon deze semantiek gebruikt worden om
ASP te karakteriseren, wat op zijn beurt geleid heeft tot een nieuwe vorm van disjunctie
binnen ASP met interessante complexiteitseigenschappen. Beschouwden we PASP als een
verzameling van onzekere regels, dan bekwamen we een semantiek die dicht aanleunt bij
het idee van optionele regels. We toonden hoe dergelijke optionele regels gebruikt kunnen
worden om belangrijke problemen binnen Artificiële Intelligentie te modelleren. We stelden
ten slotte vast dat het grootste deel van de uitbreidingen die in deze thesis voorgesteld
werden te simuleren zijn door middel van ASP. Daardoor beschikken we over efficiënte
implementaties voor zowel CASP als PASP.
Met het oog op toekomstig onderzoek kunnen we kijken naar verbeteringen van zowel

CASP en PASP, maar ook naar de combinatie van CASP en PASP. Hieronder vermelden
we een aantal uitbreidingen die er heel interessant uit zien, maar waarbij we ons uiteraard
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realiseren dat deze opsomming van mogelijke uitbreidingen niet compleet is. Ten eerste,
als we enkel kijken naar CASP, dan stellen we vast dat we momenteel een voor de hand
liggende manier van communicatie beschouwen waarbij programma’s vragen aan elkaar
kunnen stellen. We kunnen ook meer omvangrijke manieren van communicatie gebrui-
ken zoals een blackboard architectuur [Erman et al. 1980]. In zo een architectuur kunnen
meerdere programma’s informatie delen via een gezamenlijk informatiebord en bepaalt een
bemiddelaar welk programma op welk moment de toestemming krijgt om de informatie op
het gedeelde bord aan te passen. Ook de topologie van het probleem kan interessant zijn.
Zo kan het bijvoorbeeld zijn dat slechts een aantal programma’s zich dicht genoeg bij een
ander programma bevinden om met dat programma te kunnen communiceren. Hierbij zou
het interessant zijn om na te gaan hoe dergelijke communicatiemechanismen de complexi-
teit beïnvloeden. Aanvullend is het zo, wanneer we bijvoorbeeld een gedeeld informatiebord
gebruiken, dat er tegenstrijdigheden kunnen onstaan. Om met dergelijke tegenstrijdigheden
overweg te kunnen, moeten we technieken gebruiken gebaseerd op bijvoorbeeld possibili-
teitstheorie [Benferhat et al. 2000] of paraconsistente logica’s [Bremer 2005].
Ten tweede beschikken we op dit moment niet over een implementatie voor het berekenen

van gefocuste answer sets. Als we dit probleem willen simuleren met ASP, dan moeten
we ons beperken tot een netwerk van normale programma’s waarbij we maximaal op één
programma focussen. Omwille van de complexiteit van focussen kunnen we echter in het
algemeen geval het probleem van het bepalen van de gefocuste answer sets niet meer
simuleren met ASP. In de plaats daarvan moeten we gebruik maken van aanpakken met
een hogere complexiteit, zoals bepaalde varianten van modale logica’s of het simuleren
van het probleem als een QBF waarbij we vervolgens implementaties voor het oplossen
van QBFs kunnen gebruiken om de oplossing te berekenen.
Ten derde gingen we er, wanneer we in PASP het gewicht interpreteerden als de ze-

kerheid waarmee de informatie in die regel inderdaad geldig is, vanuit dat de zekerheid
van de regels onderling onafhankelijk was. Door gebruik te maken van possibilistische
netwerken [Benferhat and Smaoui 2007] wordt het mogelijk om de relatie tussen de onze-
kerheidsgraden van verschillende regels te beschrijven, m.a.w. het wordt mogelijk om de
zekerheid van een regel aan te passen als we te weten komen dat een bepaalde regel al dan
niet geldig is. Een dergelijke uitbreiding maakt het mogelijk om informatie afkomstig van
verschillende bronnen beter voor te stellen. Zo is het aannemelijk om te veronderstellen,
wanneer een regel die informatie beschrijft van een bepaalde bron (on)geldig blijkt te zijn,
dat dit een invloed zal hebben op onze zekerheid omtrent de andere regels die informatie
beschrijven van dezelfde bron.
Tenslotte ontstaan er nieuwe en interessante uitdagingen wanneer we CASP en PASP

willen combineren. We kunnen er bijvoorbeeld voor kiezen om elke programma individueel
en intern te laten redeneren over onzekerheid. Dit komt ruwweg neer op het introduceren
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van literalen van de vorm Q : l in een netwerk van PASP programma’s. Aanvullend kunnen
we hebben dat de communicatie tussen de verschillende programma’s zelf onzeker is.
Op basis van deze uitbreiding kunnen we bijvoorbeeld een gewicht koppelen aan het (op
dit moment impliciete) communicatiekanaal tussen twee verschillende programma’s om op
deze manier onbetrouwbare kanalen te modeleren.
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Proofs of Chapter 3

Proposition 6

Let P be a communicating simple program. We then have that:

• there always exists at least one answer set of P;

• there is always a unique answer set of P that is globally minimal;

• we can compute this unique globally minimal answer set in polynomial time.

Proof. We can easily generalise the immediate consequence operator for (classical) simple
programs to the case of communicating simple programs. Specifically, the operator TP is
defined w.r.t. an interpretation I of P as

TP(I) = I ∪ {Q : l | (Q : l← α) ∈ Q,Q ∈ P, α ⊆ I}

where α is a set of P-situated literals. It is easy to see that this operator is monotone.
Together with a result from [Tarski 1955] we know that this operator has a least fixpoint.
We use P? to denote this fixpoint obtained by repeatedly applying TP starting from the
empty interpretation. Clearly, this fixpoint can be computed in polynomial time.
We need to verify that P? is indeed an answer set. Since P is a communicating simple

program, we know that the reduct QP? will only remove rules that contain situated literals
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R : l that are not Q-local with R : l /∈ P?. In other words, rules that are not applicable
(α 6⊆ P?) and that contain non-Q-local situated literals are removed. Furthermore, re-
maining situated literals of the form R : l that are not Q-local (i.e. those where R : l ∈ P?)
are removed from the body of the remaining rules. Hence the remaining rules are all
Q-local. Notice that the operator TP is clearly an extension of the operator TQ. Indeed,
for a component simple program Q′ that is Q′-local it is easy to verify that if (Q′)? = M ′

then ((P ′)?)Q′ = M ′ with P ′ = {Q′}. It then readily follows, since all rules are Q-local
and therefore independent of all other component programs, that

(
QP

?)? = (P?)Q for all
Q ∈ P.
So far we found that an answer set exists and that it can be computed in polynomial

time. All that remains to be shown is that this answer set is globally minimal. This trivially
follows from the way we defined the operator TP since it only makes true the information
that is absolutely necessary, i.e. the information that follows directly from the facts in the
communicating simple program. Hence this is the minimal amount of information that
needs to be derived for a set of situated literals to be a model of the communicating simple
program at hand and thus the fixpoint P? is the globally minimal answer set.

Lemma 1

Let P = {Q1, ..., Qn} and let P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with P a communicating
normal program and P ′ the communicating simple program that simulates P defined
in Definition 11. Let M be an answer set of P and let the interpretation M ′ be
defined as:

M ′ = {Q′i :a | Qi :a ∈M}
∪
{
Q′i :¬b† | Qi :b /∈M

}
∪
{
Ni :¬b† | Qi :b /∈M

}
∪
{
Ni :a† | Qi :a ∈M

}
.

(3.5)

For each i ∈ {1, ..., n} it holds that (Q′i+)M ′ =
{
l← α′ | l← α ∈ QMi

}
with Q′i+

the set of rules defined in (3.1) with α′ = {Q′i :b | Qi :b ∈ α}.

Proof. To prove this, we first show that any rule of the form (l← α) ∈ QMi reappears in
(Q′i+)M ′ under the form (l ← α′) for any i ∈ {1, ..., n}. The second step, showing that
the converse also holds, can then be done in an analogous way.
Suppose (l← α) ∈ QMi for some i ∈ {1, ..., n}. By the definition of the reduct we know

that there is some rule of the form (l ← α ∪ not β ∪ γ) ∈ Qi such that β ∩M = ∅
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and γ ⊆ M is a set of situated literals of the form Qj :d with i 6= j, 1 ≤ j ≤ n.
From Definition 11, we know that the communicating normal rule (Qi : l ← α ∪ not β ∪
γ) is transformed into the rule (Q′i : l ← α′ ∪ β′ ∪ γ′) with α′ = {Q′i :b | Qi :b ∈ α},
β′ =

{
Nk :¬c† | Qk :c ∈ β, k ∈ {1, ..., n}

}
and γ′ =

{
Q′j :d | Qj :d ∈ γ, j ∈ {1, ..., n}

}
.

We show that, indeed, (l← α) ∈ QMi reappears in (Q′i+)M ′ under the form (l← α′).
First, whenever Qk :c ∈ β, we know that Qk :c /∈ M since β ∩ M = ∅. From the

construction of M ′ we have that Nk :¬c† ∈ M ′. Similarly, since γ ⊆ M we know from
the construction of M ′ that Q′j :d ∈ M ′ whenever Qj :d ∈ γ. Hence when determining
the reduct (Q′i+)M

′
, the extended situated literals in β′ and γ′ will be deleted.

Finally, whenever α ∩M 6= ∅ we know from the construction of M ′ that Q′i :b ∈ M ′
whenever Qi :b ∈ α. Clearly, when determining the reduct, none of these extended situated
literals will be deleted as they are Q′i-local. Hence it is clear that the reduct of the
communicating rule (Q′i : l← α′ ∪ β′ ∪ γ′) is the rule Q′i : l← α′. This completes the first
part of the proof. As indicated, the second part of the proof is completely analogous.

Proposition 7

Let P = {Q1, ..., Qn} and let P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with P a communicating
normal program and P ′ the communicating simple program that simulates P as
defined in Definition 11. If M is an answer set of P, then M ′ is an answer set of P ′
with M ′ defined as in Lemma 1.

Proof. This proof is divided into two parts. In part 1 we only consider the component
programs Q′i with i ∈ {1, ..., n} and show that

(
(Q′i)M

′
)?

= (M ′)Q′
i
. In part 2 we do

the same, but we only consider the component programs Ni with i ∈ {1, ..., n}. As per
Definition 10 we have then shown that M ′ is indeed an answer set of P ′.
Consider a component program Q′i with i ∈ {1, ..., n}. By Definition 11 we have that
Q′i = (Q′i+) ∪ (Q′i−) and thus

(Q′i)
M ′ = (Q′i+)M

′

∪ (Q′i−)M
′

. (6.14)

ForQ′i− we know by construction that it only contains rules that are of the form (Q′i :¬b† ←
Ni :¬b†) and that the only rules of this form are in Q′i−. Therefore, due to the definition
of the reduct, we have

(Q′i−)M
′

=
{
¬b† ← | Ni :¬b† ∈M ′

}
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and because of the construction of M ′, see (3.5), we obtain

(Q′i−)M
′

=
{
¬b† ← | b /∈MQi

}
. (6.15)

Hence (Q′i−)M
′
only contains facts about literals that, by construction of Q′i, do not occur

in Q′i+. This means that from (6.14) and (6.15) we obtain(
(Q′i)

M ′
)?

=
(

(Q′i+)M
′)?
∪
{
¬b† ← | b /∈MQi

}
. (6.16)

From Lemma 1 we know that (Q′i+)M ′ =
{
l← α′ | l← α ∈ QMi

}
where we have that

α′ = {Q′i :b | Qi :b ∈ α}. Because of the definition of an answer set of a communicating
program we have

MQi =
(
QMi

)? =
(

(Q′i+)M
′)?

. (6.17)

Combining this with (6.16) we get(
(Q′i)

M ′
)?

= MQi ∪
{
¬b† | b /∈MQi

}
= (M ′)Q′

i
(definition of M ′, see (3.5))

This concludes the first part of the proof.
In the second part of the proof, we only consider the component programs N ′i with
i ∈ {1, ..., n}. By construction of Ni we know that all the rules of the form ¬b† ← Q′i :¬b†
and b† ← Q′i :b are in Ni and that all the rules in Ni are of this form. We have

(Ni)M
′

=
{
¬b† ← | Q′i :¬b† ∈M ′

}
∪
{
b† ← | Q′i :b ∈M ′

}
which, due to the definition of M ′ can be written as

=
{
¬b† ← | b /∈MQi

}
∪
{
b† ← | b ∈MQi

}
from which it follows that

(
(Ni)M

′)?
= (M ′)Ni .

Lemma 2

Let P = {Q1, ..., Qn} and let P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with P a communicating
normal program and P ′ the communicating simple program that simulates P. Assume
thatM ′ is an answer set of P ′ and that (M ′)Ni is total w.r.t. BNi for all i ∈ {1, ..., n}.
Let M be defined as

M =
{
Qi :b | Q′i :b ∈

(
(Q′i+)M

′)?}
(3.6)
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For each i ∈ {1, ..., n}, it holds that (Q′i+)M ′ =
{
l← α′ | l← α ∈ QMi

}
with

α′ = {Q′i :b | Qi :b ∈ α}.

Proof. To prove this, we first show that any rule of the form (l ← α′) ∈ (Q′i+)M
′

reappears in QMi under the form l ← α for any i ∈ {1, ..., n}. We then show that the
converse also holds, which is rather analogous to the proof of the first part of Lemma 1.
Due to some technical subtleties in the second part of the proof, however, we present the
proof in detail.
Suppose (l ← α′) ∈ (Q′i+)M

′
. By the definition of the reduct of a communicating

simple program we know that there is some communicating simple rule of the form (l ←
α′ ∪ β′ ∪ γ′) ∈ Q′i+ such that β′ ⊆ M ′ is a set of situated literals of the form Nk :¬c†
and γ′ ⊆M ′ is a set of situated literals of the form Q′j :d with i 6= j and 1 ≤ j, k ≤ n.
From the definition of Q′i+, we know that (Q′i : l ← α′ ∪ β′ ∪ γ′) corresponds to a

rule (l ← α ∪ not β ∪ γ) ∈ Qi where we have that α = {Qi :b | Q′i :b ∈ α′}, β ={
Qk :c | Nk :¬c† ∈ β′

}
and γ =

{
Qj :d | Q′j :d ∈ γ′

}
. We show that, indeed, (l ← α′) ∈

(Q′i+)M
′
reappears in QMi under the form (l← α).

First, since β′ ⊆ M ′, whenever Nk :¬c† ∈ β′ we know that Nk :¬c† ∈ M ′. Since
M ′ is a model (indeed, it is an answer set) it is an interpretation (and thus consistent).
Therefore, if Nk :¬c† ∈M ′ then surely Nk :c† /∈M ′. Now, if we were to have Q′k :c ∈M ′,
then applying the immediate consequence operator on the rule Nk :c† ← Q′k :c found in
the component program Nk would force us to have Nk :c† ∈ M ′ which results in a
contradiction. Hence we find that Q′k :c /∈ M ′. By Definition 11 we know that Q′k =
(Q′k+) ∪ (Q′k−) and thus, by the definition of the reduct, we know that (Q′k)M

′
=

(Q′k+)M
′
∪ (Q′k−)M

′
. Then we find that ((Q′k)M

′
)
?

= ((Q′k+)M
′
)
?
∪ ((Q′k−)M

′
)
?
since

all the rules in Q′k− have fresh literals in the head and literals from Nk in the body
and hence cannot interact with the rules from Q′k+ which only depend on information
derived from Q′k+ and Nk in their bodies. Recall from the definition of an answer set of
a communicating program that ∀Q′k ∈ P ′ · (Q′k :M ′Q′

k
) =

(
(Q′k)M

′)?
. Since we already

found that Q′k :c /∈M ′ we must have Q′k :c /∈
(

(Q′i+)M
′)?

, or, because of the definition
of M , that Qk :c /∈ M . Hence when determining the reduct (l← α ∪ not β ∪ γ)M , the
extended situated literals in not β will be deleted.
In a similar way of reasoning, since γ′ ⊆ M ′ and because γ =

{
Qj :d | Q′j :d ∈ γ′

}
we know from the construction of M that γ ⊆ M . Hence when determining the re-
duct, the situated literals in γ will be deleted. Finally, since α′ ⊆ M ′ and because
{Qi :b | Q′i :b ∈ α′} ⊆ M we know from the construction of M that α ∈ M . Clearly,
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when determining the reduct, none of the situated literals in α will be deleted as they are
Qi-local. Hence the reduct of the communicating rule (Qi : l← α∪ not β ∪ γ) is the rule
Qi : l← α. This completes the first part of the proof.
We now come to the second part. This time we show that any rule of the form (l ←
α) ∈ QMi reappears in (Q′i+)M ′ under the form (l← α′) for any i ∈ {1, ..., n}.
Suppose (l← α) ∈ QMi for some i ∈ {1, ..., n}. By the definition of the reduct we know

that there is some rule of the form (l ← α ∪ not β ∪ γ) ∈ Qi such that β ∩M = ∅
and γ ⊆ M is a set of situated literals of the form Qj :d with i 6= j, 1 ≤ j ≤ n. From
Definition 11, we know that the communicating normal rule (Qi : l ← α ∪ not β ∪ γ)
is transformed into the rule (Q′i : l ← α′ ∪ β′ ∪ γ′) with α′ = {Q′i :b | Qi :b ∈ α}, β′ ={
Nk :¬c† | Qk :c ∈ β, k ∈ {1, ..., n}

}
and γ′ =

{
Q′j :d | Qj :d ∈ γ, j ∈ {1, ..., n}

}
. We

show that, indeed, (l ← α) ∈ QMi reappears in (Q′i+)M ′ under the form (l ← α′) when
M ′Ni is total w.r.t. BNi for all i ∈ {1, ..., n}.
First, since γ ⊆ M we know from the construction of M that Qj :d ∈ M whenever
Q′j :d ∈ γ′. Also, when Qk :c ∈ β, we know that Qk :c /∈ M since β ∩M = ∅. From
the construction of M we then know that Q′k :c /∈ M ′ and since M ′ is an answer set
we readily obtain that Nk :c† /∈ M ′ due to the construction of Nk. Together with the
requirement that M ′Nk is total w.r.t. BNk we then must have that Nk :¬c† ∈M ′. Hence
when determining the reduct (Q′i+)M

′
, the extended situated literals in β′ and γ′ will be

deleted.
Finally, whenever α ∩M 6= ∅ we know from the construction of M ′ that Q′i :b ∈ M ′

whenever Qi :b ∈ (α ∩M). Clearly, when determining the reduct, none of these extended
situated literals will be deleted as they are Q′i-local. Hence it is clear that the reduct of
the communicating rule (Q′i : l← α′ ∪ β′ ∪ γ′) is the rule Q′i : l← α′. This completes the
second part of the proof.

Proposition 8

Let P = {Q1, ..., Qn} and let P ′ = {Q′1, ..., Q′n, N1, ..., Nn} with P a communicating
normal program and P ′ the communicating simple program that simulates P. Assume
thatM ′ is an answer set of P ′ and that (M ′)Ni is total w.r.t. BNi for all i ∈ {1, ..., n}.
Then the interpretation M defined in Lemma 2 is an answer set of P.

Proof. Lemma 2 tells us that (Q′i+)M ′ =
{
l← α′ | l← α ∈ QMi

}
where we have α′ =

{Q′i :b | Qi :b ∈ α}. Hence we have
(

(Q′i+)M ′
)?

=
(
QMi

)? since repeatedly applying the
immediate consequence operator must conclude the same literals l due to the correspond-
ence of the rules in the reducts and because of the way α′ is defined. Since we defined M
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as {
Qi :b | Q′i :b ∈

(
(Q′i+)M

′)?}
it follows immediately that M is an answer set of P since

∀i ∈ {1, ..., n} ·
(
QMi

)? = MQi (6.18)

which completes the proof.

Proposition 9

Let P be a communicating simple program. We then have:

• there always exists at least one (Q1, ..., Qn)-focused answer set of P;

• we can compute this (Q1, ..., Qn)-focused answer set in polynomial time.

Proof. We know from Proposition 6 that we can always find a globally minimal answer
of P in polynomial time. Due to the way we defined the immediate fixpoint operator TP
this operator only makes true the information that is absolutely necessary, i.e. the minimal
amount of information that can be derived (for each component program). It is then easy
to see that no component program can derive any less information (we have no negation-
as-failure) and thus that this globally minimal answer set is also locally minimal and thus
a (Q1, ..., Qn)-focused answer set of P.

Proposition 10

Let φ and P be as in Definition 13. We have that a QBF φ of the form φ =
∃X1∀X2 · · ·ΘXn · p(X1, X2, · · ·Xn) is satisfiable if and only if Q0 :sat is true in
some (Q1, ..., Qn−1)-focused answer set of P. Furthermore, we have that a QBF
φ of the form φ = ∀X1∃X2 · · ·ΘXn · p(X1, X2, · · ·Xn) is satisfiable if and only if
Q0 :sat is true in all (Q1, ..., Qn−1)-focused answer sets of P.

Proof. We give a proof by induction. Assume we have a QBF φ1 of the form ∃X1 · p(X1)
with P1 = {Q0} the communicating normal program corresponding with φ1 according
to Definition 13. If the formula p1(X1) of the QBF φ1 is satisfiable then we know that
there is a ()-focused answer set M of P1 such that Q0 :sat ∈ M . Otherwise, we know
that Q0 :sat /∈M for all ()-answer sets M of P1. Hence the induction hypothesis is valid
for n = 1.
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Assume the result holds for any QBF φn−1, which is an expression that is of the form
∃X1∀X2 . . .ΘXn−1 · pn−1(X1, X2, ..., Xn−1). We show in the induction step that it
holds for any QBF φn of the form ∃X1∀X2 . . .ΘXn · pn(X1, X2, ..., Xn). Let P =
{Q0, ..., Qn−1} and P ′ =

{
Q′0, ..., Q

′
n−2
}
be the communicating normal programs that

correspond with φn and φn−1, respectively. Note that the component programsQ2, ..., Qn−1
are defined in exactly the same way as the component programs Q′1, ..., Q′n−2, the only
difference being the name of the component programs. What is of importance in the
case of φn is therefore only the additional rules in Q0 and the new component pro-
gram Q1. The additional rules in Q0 merely generate the corresponding interpretations,
where we now need to consider the possible interpretations of the variables from Xn as
well. The rules in the new component program Q1 ensure that Q1 :x ∈ M whenever
Q0 :x ∈M and Q1 :¬x ∈M whenever Q0 :¬x ∈M for every M an answer set of P and
x ∈ (X1 ∪ ... ∪Xn−1). Depending on n being even or odd, we get two distinct cases:

• if n is even, then we have (sat ← Q0 :sat) ∈ Q1 and we know that the QBF φn
has the form ∃X1∀X2 . . . ∀Xn · pn(X1, X2, ..., Xn). Let us consider what happens
when we determine the (Q1)-focused answer sets of P. Due to the construction of
Q1, we know that M ′Q1 ⊂MQ1 can only hold for two answer sets M ′ and M of P if
M ′ and M correspond to identical interpretations of the variables in X1 ∪ ...∪Xn−1.
Furthermore, M ′Q1 ⊂MQ1 is only possible if Q1 :sat ∈M while Q1 :sat /∈M ′.
Now note that given an interpretation of the variables in X1 ∪ ... ∪ Xn−1, there is
exactly one answer set for each choice of Xn. When we have M ′ with Q1 :sat /∈M ′
this implies that there is an interpretation such that, for some choice of Xn, this
particular assignment of values of the QBF does not satisfy the QBF. Similarly, if we
have M with Q1 :sat ∈M then the QBF is satisfied for that particular choice of Xn.
Determining (Q1)-focused answer sets of P will eliminate M since M ′Q1 ⊂ MQ1 .
In other words, for identical interpretations of the variables in X1 ∪ ... ∪ Xn−1, the
answer set M ′ encodes a counter-example that shows that for these interpretations
it does not hold that the QBF is satisfied for all choices of Xn. Focussing thus elim-
inates those answer sets that claim that the QBF is satisfiable for the variables in
X1∪ ...∪Xn−1. When we cannot find such M ′Q1 ⊂MQ1 this is either because none
of the interpretations satisfy the QBF or all of the interpretations satisfy the QBF. In
both cases, there is no need to eliminate any answer sets. We thus effectively mimic
the requirement that the QBF φn should hold for all Xn.

• if n is odd, then (¬sat← Q0 :¬sat) ∈ Q1 and we know that the QBF φn has the
form ∃X1∀X2 . . . ∃Xn · pn(X1, X2, ..., Xn). As before, we know that M ′Q1 ⊂ MQ1

can only hold for two answer setsM ′ andM of P ifM ′ andM correspond to identical
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interpretations of the variables in X1 ∪ ...∪Xn−1. However, this time M ′Q1 ⊂MQ1

is only possible if Q1 :¬sat ∈M while Q1 :¬sat /∈M ′.
If we have M with Q1 :¬sat ∈ M then the QBF is not satisfied for that particular
choice of Xn, whereas when M ′ with Q1 :¬sat /∈M ′ then there is an interpretation
such that, for some choice of Xn, this particular assignment of the variables does
satisfy the QBF. Determining (Q1)-focused answer sets of P will eliminate M since
M ′Q1 ⊂ MQ1 . For identical interpretations of the variables in X1 ∪ ... ∪Xn−1, the
answer set M ′ encodes a counter-example that shows that for these interpretations
there is some choice of Xn such that the QBF is satisfied. Focussing thus eliminates
those answer sets that claim that the QBF is not satisfiable for the variables in
X1∪ ...∪Xn−1. When we cannot find such M ′Q1 ⊂MQ1 this is either because none
of the interpretations satisfy the QBF or all of the interpretations satisfy the QBF. In
both cases, there is no need to eliminate any answer sets. We effectively mimic the
requirement that the QBF φn should hold for some Xn.

For a QBF of the form ∀X1∃X2 . . .ΘXn ·p(X1, X2, ..., Xn), with Θ = ∃ if n is even and
Θ = ∀ otherwise, the proof is analogous. In the base case, we know that a QBF φ1 of the
form ∀X1 ·p(X1) is satisfiable only when for every ()-focused answer setM of P1 = {Q0}
we find that Q0 :sat ∈M . Otherwise, we know that there exists some ()-focused answers
sets M of P1 such that Q0 :sat /∈M . Hence the induction hypothesis is valid for n = 1.
The induction step is then entirely analogous to what we have proven before, with the only
difference being that the cases for n being even or odd are swapped. Finally, since the
first quantifier is ∀, we need to verify that Q0 :sat is true in every (Q1, ..., Qn−1)-focused
answer set of P.

Proposition 11

Let P be a communicating normal program with Qi ∈ P. The problem of deciding
whether there exists a (Q1, ..., Qn)-focused answer set M of P such that Qi : l ∈M
(brave reasoning) is in ΣP

n+1.

Proof. We show the proof by induction on n. In the case where n = 1, we need to guess
a (Q1)-focused answer set M of P which can clearly be done in polynomial time. We now
need to verify that this is indeed a (Q1)-focused answer set which is a problem in coNP.
Indeed, verifying that M is not a (Q1)-focused answer set can be done using the following
procedure in NP:

• guess an interpretation M ′
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• verify that M ′ is an answer set of P

• verify that M ′Q1 ⊂MQ1 .

Hence, to find a (Q1)-focused answer set, we guess an interpretation, verify that it is an
answer set in polynomial time, and we subsequently use an NP oracle to decide whether
this answer set is (Q1)-focused, i.e. the problem is in ΣP

2 . Assume that there exists an
algorithm to compute the (Q1, ..., Qn−1)-focused answer sets of P that is in ΣP

n. In a
similar fashion, we can guess a (Q1, ..., Qn)-focused answer set and verify there is no
(Q1, ..., Qn)-focused answer set M ′ of P such that M ′Qn ⊂ MQn using a ΣP

n oracle,
i.e. the algorithm is in ΣP

n+1.

Proposition 12

Let P be a communicating simple program with Qi ∈ P. The problem of deciding
whether there exists a (Q1, ..., Qn)-focused answer set M of P such that Qi : l ∈M
(brave reasoning) is in ΣP

n+1.

Proof. We know from Proposition 7 that one normal program can be simulated by a
communicating simple program with two component programs. Since only the program
Q0 in the simulation in Definition 13 includes negation-as-failure, it suffices to add a
single simple component program in order to simulate the negation-as-failure. Since the
number of component programs is of no importance in Proposition 11, the result readily
follows.

Proposition 13

Let P be a communicating disjunctive program with Qi ∈ P. The problem of
deciding whether Qi : l ∈ M with M a (Q1, ..., Qn)-focused answer set of P is in
ΣP
n+2.

Proof. This result can easily be verified by looking at the proof of Proposition 11 and
noticing that the only part of the algorithm that is affected by the use of communicating
disjunctive programs P is the base step. In this base step, we use an oracle in NP to
check whether our guess M is indeed an answer set of P. Since M is an answer set of
P iff ∀i ∈ {1, ..., n} · (QMi )? = MQi and since Qi is a disjunctive component program we
know that we will instead need an oracle in ΣP

2 to deal with communicative disjunctive
programs. The remainder of the algorithm sketch remains unaffected.
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Proofs of Chapter 4

Lemma 3

Let L be a set of literals, M ⊆ L a consistent set of literals and let the possibility
distribution π be defined as π(ω) = 1 if ω |= M and π(ω) = 0 otherwise. Then
M = {l | N(l) = 1, l ∈ L}.

Proof. It is easy to see that for every l ∈ M we have N(l) = 1. Indeed, assume that
l ∈M . Then ω |= ¬l (which is equivalent to ω 6|= l) implies ω 6|= M , and, by the definition
of π, that π(ω) = 0. We thus obtain

N(l) = 1−Π(¬l) = 1−max {π(ω) | ω |= ¬l} = 1.

Furthermore, for every l /∈ M we must have N(l) = 0. Indeed, assume that l /∈ M ,
then M ∪ {¬l} is consistent. Thus there exists a world ω0 such that ω0 |= (M ∪ {¬l}),
i.e. ω0 |= M and ω0 |= ¬l, or, by the definition of π, π(ω0) = 1 and ω0 |= ¬l. We thus
obtain

N(l) = 1−Π(¬l) = 1−max {π(ω) | ω |= ¬l}
≤ 1− π(ω0) = 0

Since, by construction of π, N(l) is either 0 or 1, this concludes the proof.

Proposition 14

Let P be a simple program. If π ∈ SP then either the unique consistent answer set
of P is given by M = {l | N(l) = 1, l ∈ LitP } or π is the vacuous distribution, in
which case P does not have any consistent answer sets.

Proof. We can write the simple program P as P = P ′ ∪ C with C the set of constraint
rules and P ′ the set of all the remaining rules. Since π ∈ SP , we also know that for every
rule r ∈ P we have that π satisfies the constraint γ(r).
We now consider the two cases stated in the proposition:

• ∃ω ∈ Ω · π(ω) > 0 (i.e. π is not the vacuous distribution)
This implies that there is no constraint rule r ∈ C that is violated byM . Indeed, we
cannot have for a constraint rule r = (← l1, ..., lm) that N(l1) = ... = N(lm) = 1
since γ(r) would then imply that N(⊥) = 1, i.e. ∀ω ∈ Ω · π(ω) = 0. Hence we find
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that {l1, ..., lm} 6⊆M due to the construction of M , i.e. r is not violated by M . As
such, we know for the remainder of this part of the proof that we only need to take
the rules in P ′ into account, as the rules in C are not applicable.
We now verify thatM is a model of P . First recall that every rule r ∈ P of the form
r = (l0 ← l1, ..., lm) imposes the constraint γ(r) = (N(l0) ≥ min(N(l1), ..., N(lm))).
Thus, whenever N(l1) = ... = N(lm) = 1 we know that γ(r) enforces that
N(l0) = 1. Since π satisfies γ(r) and due to the construction of M we thus
have that l0 ∈M whenever {l1, ..., lm} ⊆M , i.e. M is a model of P .
In addition, we can show that M is a consistent model. If M were not a consistent
model, then there would be a literal l such that both l ∈ M and ¬l ∈ M . Thus,
by construction of M , we would have that N(l) = 1 and N(¬l) = 1. In this
case we have min(N(l), N(¬l)) = 1 and, because of the min-decomposability of N
w.r.t. conjunction, N(l ∧ ¬l) = 1. This would imply that N(⊥) = 1 i.e. we would
have that ∀ω ∈ Ω · π(ω) = 0. Since we assumed that this is not the case, we must
have that M is a consistent model.
We can now verify that M is a minimal model. To see this, assume that M is a
consistent model, but not a minimal model of P . Since M is not a minimal model,
we know that there exists another consistent model M ′ of P such that M ′ ⊂ M .
Let us take π′ such that π′(ω) = 1 if ω |= M ′ and π′(ω) = 0 otherwise. From
Lemma 3 we obtain that M ′ = {l | N ′(l) = 1, l ∈ LitP } with N ′ the necessity
measure induced by π′. We then have that π′ ∈ CP . Indeed, by assumption M ′ is
a model and thus for every rule r ∈ P with r = (l0 ← l1, ..., lm) we have l0 ∈ M ′
whenever {l1, ..., lm} ⊆M ′. Due to the relationship between M ′ and N ′ and since
for every literal l we know that N ′(l) ∈ {0, 1} by construction, we have that π′
satisfies the constraint γ′(r) = N ′(l0) ≥ min(N ′(l1), ..., N ′(lm)) imposed by every
rule r ∈ P and hence π′ ∈ CP .
We now show that M ′ ⊂ M leads to a contradiction. Since M ′ ⊂ M we know
that there is some literal l ∈ M \ M ′ with N ′(l) < N(l) due to the defini-
tions of M and M ′. Thus ∃ω ∈ Ω · π′(ω) > π(ω). Furthermore we have that
∀ω ∈ Ω · π′(ω) ≥ π(ω) by construction, unless it were the case that π′(ω) = 0
while π(ω) > 0 for some ω. Given the construction of M , we know that whenever
ω 6|= M , i.e. whenever for some l ∈ M we have ω 6|= l (or equivalently ω |= ¬l),
that π(ω) = 0 since l ∈M implies that max {π(ω) | ω |= ¬l} = 0. Hence whenever
π(ω) > 0, we know that ω |= M . Thus we find ω 6|= M ′ by construction and
ω |= M , which cannot be the case sinceM ′ ⊂M . Hence we conclude that we must
have ∃ω ∈ Ω · π′(ω) > π(ω) and ∀ω ∈ Ω · π′(ω) ≥ π(ω), i.e. we find that π 6∈ SP .
This is a contradiction; M must therefore be a minimal model of P .
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• ∀ω ∈ Ω · π(ω) = 0
We consider the two possible cases in which a program P = P ′∪C has the vacuous
distribution as a minimally specific possibilistic model. In that case, we may have
π ∈ SP ′ , i.e. even without considering the constraints, the vacuous distribution is
a minimally specific model of the rules in P ′. Otherwise we have π ∈ CP \ CP ′ ,
i.e. we need to consider the constraint rules in C to obtain the vacuous distribution.
Assume that π ∈ SP ′ . We have that M = LitP ′ is trivially a model of P ′. We can
furthermore prove that M is a minimal model. Indeed, let M ′ ⊂M . Note that due
to the definition of a model in ASP, we must either have that M ′ is a consistent
model or that M ′ = LitP , which cannot be the case since M ′ ⊂ LitP . Let π′
be defined as in the first part of this proof. We can then apply the same line of
reasoning as in the first part of this proof where we show thatM is indeed a minimal
model and hence an answer set of P ′.
Clearly, since M is an inconsistent answer set of P ′, then due to the semantics of
constraint rules we know that either P is an inconsistent program (if M violates no
constraint rules in C) and thus has LitP as the unique inconsistent answer set or P
has no answer sets (if M violates some constraint rule in C).
Now assume that π ∈ CP \ CP ′ . We then know that there exists some π′ with
π′ > π such that π′ ∈ SP ′ . As in the first part of this proof we obtain that
M ′ = {l | N ′(l) = 1, l ∈ LitP ′}, with N ′ the necessity measure induced by π′,
is the unique answer set of P ′. Because of the semantics of constraint rules we
furthermore know that either M ′ is the answer set of P or that P has no answer set
(i.e. M ′ violates some constraint rule in C).
We know by assumption that we obtain π, the vacuous distribution, from π′ by
considering the constraints associated with the constraint rules in C. We further-
more know that for a rule r = (← l1, ..., lm) with r ∈ C we must have that
min(N ′(l1), ..., N ′(lm)) > 0, as otherwise π′ would be a model of C, i.e. we would
be in the first case of this proof. Thus, it readily follows that M ′ is not an answer
set of P because M ′ violates some constraint r ∈ C, i.e. P has no answer sets.

Proposition 15

Let P be a simple program. IfM is an answer set of P then the possibility distribution
π defined by π(ω) = 1 iff ω |= M and π(ω) = 0 otherwise belongs to SP .

Proof. If M is an answer set of P , then M is by definition a model of P . If M is
consistent, then for every rule r = (l0 ← l1, ..., lm) with r ∈ P we know that l0 ∈ M
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whenever {l1, ..., lm} ⊆M . Otherwise, we know that M = LitP . Furthermore, due to
Lemma 3 we know that defining π(ω) = 1 if ω |= M and π(ω) = 0 gives us M =
{l | N(l) = 1, l ∈ LitP }. It is then easy to see that π satisfies every constraint in CP and
thus that π |= CP .
We now show that π is a minimally specific possibilistic model. To prove this, assume

that this is not the case, i.e. π 6∈ SP . This implies that there exists some other possibilistic
model π′ such that π′ > π and in particular that there is some world ω such that π′(ω) >
π(ω) = 0. By definition, π(ω) = 0 if ω 6|= M , i.e. π(ω) = 0 if for some literal l ∈ M we
have that ω 6|= l or, equivalently, ω |= ¬l. Then since π′(ω) > 0, we find that N ′(l) < 1
whereas N(l) = 1 due to the construction of π. Now let M ′ = {l | N ′(l) = 1, l ∈ LitP }.
It is easy to see that M ′ is a model of P since π′ is by assumption a possibilistic model,
i.e. π′ satisfies the constraints N ′(l0) ≥ min(N ′(l1), ..., N ′(lm)) imposed by the rules
(l0 ← l1, ..., lm) ∈ P and thus l0 ∈M ′ whenever {l1, ..., lm} ⊆M ′ due to the construction
ofM ′. However, since π′ > π we know thatM ′ ⊆M and due to N ′(l) < 1 and N(l) = 1
for some l ∈ M we know that M ′ ⊂ M . Thus we find that M is not a minimal model
and therefore that M is not an answer set, which is a contradiction.

Proposition 18

Let P be a disjunctive program, V a valuation and let π ∈ Ss
(P,V ) be such that

∀l ∈ LitP · V (l) = N(l) ; and (4.8)
∀l ∈ LitP ·N(l) ∈ {0, 1} (4.9)

then M = {l | N(l) = 1, l ∈ LitP } is an answer set of the disjunctive program P .

Proof. We need to prove, whenM is consistent, thatM is a minimal model of the positive
disjunctive program PM . Consider a rule r ∈ P with r a rule of the form (l0; ...; lk ←
lk+1, ..., lm, not lm+1, ..., not ln). We know from Definition 18 that π ∈ Ss

(P,V ) satisfies
the constraint

max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln)). (6.19)

Note that due to (4.8) and (4.9) we know that V (lm+1), ..., V (ln) all belong to {0, 1}.
Moreover, because we use the minimum, as soon as V (li) = 1 and thus (1− V (li)) = 0
for some i ∈ {m+ 1, ..., n}, the constraint (6.19) becomes trivial. Indeed, the constraint
becomes max(N(l0), ..., N(lk)) ≥ 0. Correspondingly we know that in that case we have
V (li) = 1 or, equivalently, N(li) = 1 then that li ∈ M per definition of M . Thus the
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rule r will be completely omitted from the reduct PM . Otherwise, when V (lm+1) = ... =
V (ln) = 0, the constraint simplifies to

max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm)) (6.20)

in which case the reduct PM will contain the rule (l0; ...; lk ← lk+1, ..., lm). Also, con-
tinuing in the same line of reasoning, we find that Cs

PM = Cs
(P,V ) and Ss

PM = Ss
(P,V ).

We can then verify that M is a minimal model of PM . In the same line of reasoning as
in the proof of Proposition 14, we can show that M is a model of PM . Specifically, we
now have that the constraint imposed by a rule ensures that N(li) = 1 for some li with
0 ≤ i ≤ k. Assuming that M is a consistent model, we can use the same line of reasoning
as in the proof of Proposition 14 to show that M is a minimal model of PM .
Finally, we need to ensure that LitP is the unique answer set of P if P has no consistent

answer sets. This implies that M is inconsistent, as otherwise we would be in the case
mentioned above. Inconsistencies can only arise since either N(⊥) = 1, i.e. because a
constraint was violated, or N(l) = 1 and N(¬l) = 1 with l ∈ LitP , i.e. because the
program has two inconsistent conclusions. This is due to the constraints induced by P
and due to (4.9), from which we know that these necessity degrees can only be 1 (if they
were 0, they would not cause inconsistencies). Furthermore, we have that l ∧ ¬l ≡ ⊥.
As such, we know that for some l ∈ LitP we have that Π(¬l) = Π(l) = 0. By definition of
the possibility measure Π this means that for every ω ∈ Ω we have that π(ω) = 0. This can
only be the case if Ss

(P,V ) is a singleton, since for every other possibility distribution π′ 6= π

we have that π′ > π. We thus find that Ss
(P,V ) = {π} and that ∀l ∈ LitP · N(l) = 1,

i.e. M = LitP .

Proposition 19

Let P be a disjunctive program. If M is an answer set of P , there is a valuation V ,
defined as V (l) = 1 if l ∈M and V (l) = 0 otherwise, and a possibility distribution π,
defined as π(ω) = 1 if ω |= M and π(ω) = 0 otherwise, such that π ∈ Ss

(P,V ) and
for every l ∈ LitP we have V (l) = N(l).

Proof. When M is consistent, it readily follows from Lemma 3 that N(l) = 1 if l ∈ M
and N(l) = 0 otherwise. If M is inconsistent, i.e. if M = LitP , then for every ω we have
π(ω) = 0 since there does not exist ω |= LitP , i.e. for every l ∈ LitP we have N(l) = 1.
Hence in both cases we find that V (l) = N(l).
We now show that π ∈ Ss

(P,V ). We start by showing that Cs
PM = Cs

(P,V ). Since M
is an answer set of the disjunctive program P , it is also a minimal model of the reduct
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PM . This reduct is obtained by considering the rules r ∈ P which are of the form
(l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln). The corresponding constraint γ

V
(r) in

Cs
(P,V ) is then

max(N(l0), ..., N(lk)) ≥ min(N(l1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln)).

For every rule r ∈ P we have r′ ∈ PM with r′ = (l1; ...; lk ← lk+1, ..., lm) whenever
{lm+1, ..., ln} ∩M = ∅. Notice that this implies that V (lm+1) = ... = V (ln) = 0 due to
how we defined V and thus we obtain

max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm))

which corresponds exactly to the constraint induced by r′ ∈ PM . Otherwise, whenever
{lm+1, ..., ln}∩M 6= ∅ we have that r has no counterpart in PM . Similarly, the constraint
then reduces to the form max(N(l0), ..., N(lk)) ≥ 0, which is trivially true. We thus find
that CPM = C(P,V ) and SPM = S(P,V ).
It now readily follows that π is a possibilistic model of PM . Indeed, for every constraint

max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm))

imposed by a rule (l0; ...; lk ← lk+1, ..., lm) ∈ PM we have that there exists some li ∈M
with 0 ≤ i ≤ k whenever {lk+1, ..., lm} ⊆M . Otherwise M would not be a model of PM
and then M would certainly not be an answer set. Due to the construction of π, where
N(l) = 1 whenever l ∈ M , it readily follows that π satisfies every constraint in Cs

PM ,
i.e. π is a possibilistic model of PM . Similar as in the proof of Proposition 15, we can
then verify that π is indeed a minimally specific possibilistic model.

Proposition 20

Let P be a possibilistic positive clausal program without possibilistic constraint rules.
Then P ?w is a possibilistic answer set of P .

Proof. We need to prove that P ?w is a possibilistic answer set of P , or, equivalently,
that the minimally specific possibility distribution π encoded by the set of constraints{
N(e) ≥ λ | eλ ∈ P ?w

}
is a possibilistic answer set of P .

To see this, recall that for every possibilistic rule p ∈ P of the form p = (r, λ) with
r = (e0 ← e1, ..., em) we know from Definition 22 that we have the corresponding con-
straint N(e0) ≥ λ′ in Cw

P with λ′ = min(N(e1), ..., N(em), λ). We obtained P ?w by
repeatedly applying the operator Tw

P as defined in Definition 25, starting from the empty
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set E = ∅, until the fixpoint is reached. As such, we know that when e0
λ′′ ∈ P ?w then

∃r = (e0 ← e1, ..., em) ∈ Pλ′′ such that ∀i ∈ 1, ...,m · (P ?w)λ
′′
|= ei.

We then have that λ′′ = λ′. Indeed, assume that λ′′ < λ′. This would imply that either
r /∈ Pλ′ or that ∃i ∈ 1, ...,m · (P ?w)λ

′
6|= ei. The first cannot be the case since this would

imply that p = (r, λ) ∈ P with λ < λ′, i.e. λ′ 6= min(N(e1), ..., N(em), λ). Similarly,
the latter cannot be the case since then min(N(e1), ..., N(em)) < λ′. A similar line of
reasoning can be used to verify that we do not have that λ′′ > λ′ as this would imply that
P ?w is not a least fixpoint.
Since we have that λ′ = λ′′ this implies that the constraints imposed by P ?w and Cw

P are
the same. Hence also their minimally specific possibility distributions are the same. Thus
we find that π ∈ Sw

P .

Proposition 21

A set of weighted clauses E is a possibilistic answer set of the possibilistic clausal
program P without possibilistic constraint rules iff E is a possibilistic answer set of
PE .

Proof. (⇒) Let the set of weighted clauses E be a possibilistic answer set of P and π the
corresponding possibility distribution such that E =

{
eN(e) | e ∈ ClauseP

}
. Furthermore,

we choose an E′ such that E′(e) = N(e). From Definition 23 we know that π ∈ Sw
(P,πE′ )

since E is a possibilistic answer set of P . Let us now consider any possibilistic rule p ∈ P
with p = (r, λ), r = (e0 ← e1, ..., em, not em+1, ..., not en) and λ ∈ ]0, 1]. We know from
Definition 22 that π satisfies the constraint

N(e0) ≥ min(N(e1), ..., N(em), 1−NE′(em+1), ..., 1−NE′(en), λ). (6.21)

This constraint either reduces to the trivial constraintN(e0) ≥ 0 (wheneverNE′(em+1) =
1 or ... or NE′(en) = 1) or it simplifies to

N(e0) ≥ min(N(e1), ..., N(em), λ′) (6.22)

with λ′ = min(1 − E′(em+1), ..., 1 − E′(en), λ). Note that we can also write λ′ as λ′ =
min(λbody, λrule) with λ = λrule and λbody = 1−max(NE′(em+1), ..., NE′(en)). Hence
we find from Definition 26 that the reduct PE will contain the rule ((e0 ← e1, ..., em), λ′).
In the same line of reasoning we find that Cw

PE = Cw
(P,πE′ )

and Sw
PE = Sw

(P,πE′ )
. Hence

we find that E is also a possibilistic answer set of PE since π ∈ Sw
PE .

(⇐) Let the set of weighted clauses E be a possibilistic answer set of PE and π the
corresponding possibility distribution such that E =

{
eN(e) | e ∈ ClauseP

}
. Furthermore,
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we choose an E′ such that E′(e) = N(e). We now follow a similar line of reasoning
as before. Indeed, we know from Definition 22 that π satisfies the constraints (6.22)
induced by the rules in PE . By definition of the reduct from Definition 26 we know
that the rules in PE are obtained from a corresponding program P consisting of rules
of the form p = (r, λ) with r = (e0 ← e1, ..., em, not em+1, ..., not en), each of which
induces the constraint (6.21). Specifically, due to the definition of the reduct operator,
we know that the rule p′ = (r′, λ′) ∈ PE corresponds with a rule p = (r, λ) ∈ P

such that λ′ = min(1 − NE′(em+1), ..., 1 − NE′(en), λ) and for which we know that
NE′(em+1) 6= 1 and ... and NE′(en) 6= 1. For all other rules in P that do not correspond
with a rule in PE we know from Definition 26 that N(e0) ≥ 0, i.e. the rule encodes
trivial information and can be ignored. As such we again find that Cw

PE = Cw
(P,πE′ )

and Sw
PE = Sw

(P,πE′ )
. Hence we find that E is also a possibilistic answer set of P since

π ∈ Sw
P .

Proposition 22: possibilistic normal program; brave reasoning

Let P be a possibilistic normal program. The problem of deciding whether there
exists a possibilistic answer set V of P such that V (l) ≥ λ is NP-complete.

Proof. (membership) Notice that the reduct defined in Definition 26 can also be applied
to possibilistic normal programs. Indeed, possibilistic normal programs are a special cases
of possibilistic clausal programs where every clause consists of exactly one literal. Since
possibilistic normal programs are a special case, it readily follows from previous proofs
that we can use this syntactic method to find possibilistic answer sets of possibilistic
normal programs. Furthermore, when considering a possibilistic normal program, we can
simplify the reduct. We can write ∀i ∈ {m+ 1, ..., n} · ei 6∈ V 1−λ instead of ∀i ∈
{m+ 1, ..., n} · V 1−λ 6|= ei, i.e. the reduct PV with P a possibilistic normal program can
be determined in polynomial time.
To determine whether V (l) ≥ λ with V a possibilistic answer set we need to guess a

valuation V such that V (l) ≥ λ. Given such a non-deterministic guess, we can determine
the reduct PV in polynomial time. We can then verify in polynomial time using the
immediate consequence operator TPV from Definition 25 whether V is indeed a possibilistic
answer set of PV and thus a possibilistic answer set of P . Indeed, since we are dealing
with literals we can simplify V λ |= ei to ei ∈ V λ to make this operator polynomial, similar
as how we did for the reduct from Definition 26. Hence determining whether V (l) ≥ λ

with V a possibilistic answer set is an NP problem.
(hardness) We reduce the problem of determining the satisfiability of a QBF of the form
φ = ∃X · p(X) with p(X) in disjunctive normal form (DNF), i.e. of the form θ1 ∨ ... ∨ θn
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with each θi a conjunction of literals, to the problem of deciding whether there exists a
possibilistic answer set V such that V (l) ≥ λ. We define the possibilistic normal program
Pφ corresponding to φ as

Pφ = {1 :x← not ¬x | x ∈ X} ∪ {1 :¬x← not x | x ∈ X} (6.23)
∪ {1 : sat← θt | 1 ≤ t ≤ n} (6.24)

where we identify the conjunction of literals θt in (6.24) with a set of literals. It readily
follows that the QBF is satisfiable if and only if V (sat) = 1. Indeed, the rules in (6.23)
generate as many possibilistic answer sets as there are interpretations of X. The rules from
(6.24) ensure that ‘sat’ is contained in the possibilistic answer set whenever for a chosen
interpretation of X it holds that p(X) is satisfiable. It readily follows from the construction
of Pφ that N(sat) = 1 iff φ is satisfiable. Hence we have reduced the boolean satisfiability
problem to the problem of determining whether there exists a possibilistic answer set V
such that V (sat) = 1.

Proposition 23: possibilistic normal program; cautious reasoning

Let P be a possibilistic normal program. The problem of deciding whether for all
possibilistic answer sets V of P we have that V (l) ≥ λ is coNP-complete.

Proof. (membership) We show that the complementary problem is in NP. To determine
whether there exists a possibilistic answer set V with V (l) < λ, we guess such a valuation
V . Given this non-deterministic guess, we can determine the reduct PV in polynomial time
(where we take PV as discussed in Proposition 22). We can then verify in polynomial time
using the immediate consequence operator TPV from Definition 25 (simplified as in the
proof of Proposition 22) whether V is indeed a possibilistic answer set of PV and thus a
possibilistic answer set of P . Hence determining whether there exists a possibilistic answer
set V such that V (l) < λ is a problem in NP. Deciding whether for all possibilistic answer
sets V we have that V (l) ≥ λ is thus in coNP.
(hardness) Analogous to the hardness proof in Proposition 22 where we now solve a QBF
of the form φ = ∀X · p(X) and where we are interested in whether for all possibilistic
answer sets V we have that V (sat) = 1. In particular, the possibilistic answer sets of P
are exactly the models of the proposed boolean satisfiability problem (SAT) problem (or
QBF). Hence the problem described in this proposition corresponds with the problem of
entailment checking.
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Proposition 24: possibilistic disjunctive program; brave reasoning

Let P be a possibilistic disjunctive program. The problem of deciding whether there
is a possibilistic answer set V such that V (l) ≥ λ is a ΣP

2 -complete problem.

Proof. (membership) We discussed in the proof of Proposition 22 how the reduct defined in
Definition 26 can also be applied to possibilistic normal programs. In addition, notice that
the reduct only affects the body of the rule. As such, we can also apply the reduct (where
we consider literals instead of clauses, which ensures that the reduct can be determined
in polynomial time) to a possibilistic disjunctive program to obtain a possibilistic positive
disjunctive program. Furthermore, because the reduct only affects the body, it is easy to
see that this syntactic method is also correct for possibilistic disjunctive programs (i.e. the
possibilistic answer sets obtained through the syntactic method corresponds perfectly with
the semantical definition from Definition 19). Indeed, in the proof of Proposition 21
we then have that (6.21) becomes max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm), 1−
V (lm+1), ..., 1−V (ln), λ) whereas (6.22) becomes the constraint max(N(l0), ..., N(lk)) ≥
min(N(ek+1), ..., N(em), λ). As such, we can verify that indeed Ss

PV = Ss
(P,V ). We can

thus prove correctness of this syntactic approach following a similar line of reasoning as in
Proposition 21.
To determine whether there is a possibilistic answer set V such that V (l) ≥ λ we need

to guess a valuation V such that V (l) ≥ λ. Given such a non-deterministic guess, we
can determine the reduct PV in polynomial time. Since PV is a possibilistic positive
disjunctive program, we know that PV does not necessarily have a unique possibilistic
answer set. We can show that V is not an answer set by guessing a V ′ such that V ′ ⊂ V
with V ′ a model of PV . Thus, to verify in constant time whether V is a possibilistic
answer set of the possibilistic positive disjunctive program PV , we can rely on an NP-
oracle. Thus, determining whether there is a possibilistic answer set V of a possibilistic
disjunctive program such that V (l) ≥ λ is in NPNP, i.e. in ΣP

2 .
(hardness) We reduce the problem of determining the satisfiability of a QBF of the form
φ = ∃X1∀X2 · p(X1, X2) with p(X1, X2) in DNF, i.e. of the form θ1 ∨ ... ∨ θn with each
θi a conjunction of literals, to the problem of deciding whether there exists a possibilistic
answer set V of a possibilistic disjunctive program such that V (l) ≥ λ. We define the
possibilistic disjunctive program Pφ corresponding to φ as

Pφ = {1 :x;x′ ← | x ∈ (X1 ∪X2)} (6.25)
∪ {1 : sat← θ′t | 1 ≤ t ≤ n} (6.26)
∪ {1 :x← sat | x ∈ X2} ∪ {1 :x′ ← sat | x ∈ X2} (6.27)
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where we identify the conjunction of literals θ′t in (6.26) with a set of literals and where
we replace occurrences of negated atoms of the form ¬x with fresh atoms x′.
It readily follows that the QBF is satisfiable if and only if V (sat) = 1. Indeed, the rules

in (6.25) generate as many possibilistic answer sets as there are interpretations of X1 and
X2. The rules from (6.26) ensure that ‘sat’ is contained in the possibilistic answer set
whenever, for a chosen interpretation of X1 and X2, it holds that p(X1, X2) is satisfiable.
It readily follows from the construction of Pφ that N(sat) = 1. The rules in (6.27) then
employ saturation to ensure that it holds for every interpretation of X2. Indeed, assume
that for some interpretation of X1 and some interpretation of X2 it holds that p(X1, X2) is
satisfiable, but not for some other interpretation of X2. In particular, assume that the first
interpretation gives rise to the possibility distribution πsat and the latter to the possibility
distribution πnotsat. Then, clearly, Nnotsat(sat) = 0. Furthermore, since an interpretation
of X2 is a strict subset of X2 due to (6.25), we know that due to the rules in (6.27) that
∀ω · πnotsat(ω) ≤ πsat(ω) and in particular that ∃ω · πnotsat(ω) < πsat(ω), i.e. πsat is not
a least specific possibility distribution and would not give rise to a possibilistic answer set.
Thus, if p(X1, X2) did not hold for every interpretation of X2 we would not have that
N(sat) = 1.

Proposition 25: possibilistic disjunctive program; cautious reasoning

Let P be a possibilistic disjunctive program. The problem of deciding whether for all
possibilistic answer sets V we have that V (l) ≥ λ is a ΠP

2 -complete problem.

Proof. (membership) Take P ′ = P ∪ {1 : l′ ← not l}. An answer set V ′ of P ′ exists with
V ′(l′) > 1− λ iff we do not have for all answer sets V of P that V (l) ≥ λ. As such, this
is the complementary problem of Proposition 24 and thus in in ΣP

2 .
(hardness) We reduce the problem of determining the satisfiability of a QBF of the form
φ = ∀X1∃X2 · p(X1, X2) with p(X1, X2) in conjunctive normal form (CNF), i.e. of the
form θ1∧...∧θn with each θi a disjunction of literals, to the problem of deciding whether for
all possibilistic answer sets V of a possibilistic disjunctive program we have that V (l) ≥ λ.
We define the possibilistic disjunctive program Pφ corresponding to φ as

Pφ = {1 :x;x′ ← | x ∈ (X1 ∪X2)} (6.28)
∪ {1 :unsat← θ′t | 1 ≤ t ≤ n} (6.29)
∪ {1 :x← unsat | x ∈ X2} ∪ {1 :x′ ← unsat | x ∈ X2} (6.30)
∪ {1 : sat← not unsat} (6.31)
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where θ′t in (6.29) is obtained by taking the negation of θt, i.e. if θt is the disjunction
x11 ∨ x21 ∨¬x12 then θ′t is the conjunction x′11 ∧ x′21 ∧ x12. Furthermore, we identify the
resulting conjunction of literals with a set of literals and we replace occurrences of negated
atoms of the form ¬x with fresh atoms x′.
It readily follows that the QBF is satisfiable if and only if V (sat) = 1. Indeed, the rules

in (6.28) generate as many possibilistic answer sets as there are interpretations of X1 and
X2. The rules from (6.29) ensure that ‘unsat’ is contained in the possibilistic answer set
whenever, for a chosen interpretation ofX1 andX2, it holds that p(X1, X2) is unsatisfiable.
It readily follows from the construction of Pφ that N(unsat) = 1. The rules in (6.30)
then employ saturation to ensure that p(X1, X2) is unsatisfiable for every interpretation
of X2. Indeed, assume that for some interpretation of X1 and some interpretation of X2
it holds that p(X1, X2) is unsatisfiable, but that there is some other interpretation of X2
such that p(X1, X2) is satisfiable. In particular, assume that the first interpretation gives
rise to the possibility distribution πunsat and the latter to the possibility distribution πsat.
Then, clearly, Nsat(unsat) = 0. Furthermore, since an interpretation of X2 is a strict
subset of X2 due to (6.28), we know that due to the rules in (6.30) that ∃ω · πsat(ω) ≤
πunsat(ω) and in particular that ∃ω · πsat(ω) < πunsat(ω), i.e. πunsat is not a least specific
possibility distribution and would not give rise to a possibilistic answer set. Finally, due
to (6.31) we know that N(sat) = 1 whenever N(unsat) = 0. Thus, if p(X1, X2) was
unsatisfiable for all interpretations of X2 for some interpretation of X1 we would not have
that N(sat) = 1.

Proposition 26: weak disjunction, positive clausal program; brave reasoning

Let P be a positive clausal program. The problem of deciding whether a clause ‘e’
is entailed by a consistent answer set E of P is BH2-hard.

Proof. It readily follows from Lemma 4 that when E is the answer set of P we have that E
is unique. It may however be that P does not have a consistent answer set. For instance,
P = {(a←), (¬a←)} does not have a consistent answer set.
To prove hardness, i.e. to prove that we can solve BH2-complete problems using brave reas-
oning over positive clausal programs, we show that the sat-unsat problem can be modelled
using positive clausal programs. Sat-unsat is the canonical BH2-complete problem and con-
sists of determining for some pair (T, S) of propositional theories in conjunctive normal
form (CNF) whether T is satisfiable and S is unsatisfiable. We can see the propositional
theory T as a formula of the form

φ = (k11 ∨ . . . ∨ k1i1) ∧ (k21 ∨ . . . ∨ k2i2) ∧ . . . ∧ (kn1 ∨ . . . ∨ knin)
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and the propositional theory S as a formula of the form

ψ = (s11 ∨ . . . ∨ s1j1) ∧ (s21 ∨ . . . ∨ s2j2) ∧ . . . ∧ (sm1 ∨ . . . ∨ smjm)

where kij and sij are literals such that none of the literals used in φ occur in ψ and vice
versa. The positive clausal program P = P1∪P2 that can be used to solve the SAT-unSAT
problem contains the set of rules P1:

k11 ∨ . . . ∨ k1i1 ←
k21 ∨ . . . ∨ k2i2 ←

...
kn1 ∨ . . . ∨ knin ←

and the set of rules P2:

unsat ∨ s11 ∨ . . . ∨ s1j1 ←
unsat ∨ s21 ∨ . . . ∨ s2j2 ←

...
unsat ∨ sm1 ∨ . . . ∨ smjm ← .

The rules in P1 are used to determine whether T is satisfiable. Indeed, since an answer
set M 6= ClauseP of P must, by definition, be consistent, it readily follows that whenever
P has a consistent answer set E we must have that the formula φ is satisfiable. The
rules in P2 are used to verify whether S is unsatisfiable. Notice that we will only be able
to derive ‘unsat’ from P if and only if S is unsatisfiable. Indeed, ‘unsat’ can only be
derived from an answer set E if ‘unsat’ is true in every model of program P . If S were
satisfiable, we could always take a model of S, which would automatically be a model of
program P2 in which ‘unsat’ is false, thus preventing us from deriving ‘unsat’. Hence we
find that there exists a consistent answer set E of the positive clausal program P such
that E |= unsat iff T is satisfiable and S is unsatisfiable.

Proposition 27: weak disjunction, positive clausal program; brave reasoning

Let P be a positive clausal program. The problem of deciding whether a clause ‘e’
is entailed by a consistent answer set E of P is in BH2.

Proof. We translate the problem of deciding whether ‘e’ is entailed by a consistent answer
set M of the positive clausal program P to the problem of consistency and entailment
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checking in meta-epistemic logic (MEL) [Banerjee and Dubois 2009]. MEL corresponds
to a fragment of KD modal logic [Huth and Ryan 2004] where nesting of propositional
formulas and modalities is not allowed (i.e. the depth of modal operators is limited to
exactly 1).
Let V = 2BP be the set of all interpretations, where each interpretation w ∈ V is defined

as a mapping w : BP → {0, 1}. For a formula φ in propositional logic, w |= φ indicates
that w satisfies φ, i.e. that w is a model of φ. The set of models of a propositional formula
φ is denoted by [φ] = {w | w |= φ}. The epistemic state of an agent E is represented by
K ⊆ V. We have K |= �φ iff K ⊆ [φ], K |= ¬φ iff K 6|= φ, K |= φ ∧ ψ iff K |= φ and
K |= ψ and we have ∨ defined in the usual way, i.e. φ∨ψ := ¬(¬φ∧¬ψ). The models of
MEL-formulae are called meta-models to avoid confusion with the models of propositional
formulae.
For every r ∈ P , where r is of the form

e0 ← e1, ..., em (6.32)

with ei clauses for 0 ≤ i ≤ m, we add the MEL-formula

¬�(e1 ∧ ... ∧ em) ∨�e0. (6.33)

to the MEL theory K. What this tells us is that either e1 ∧ ... ∧ em is not entailed by
K or, that e0 is entailed by K. We now show that every meta-model K of the MEL
theory K corresponds with a possibilistic model π of P iff P has consistent models,
which is because N(ei) = 1 iff K |= �(ei). Let K be a meta-model of the MEL
theory K and let π be defined as π(ω) = 1 if ω ∈ K and π(ω) = 0 otherwise. For
a rule of the form (6.32) it can readily be seen that π is a possibilistic model. Indeed,
assume that N(e1) = ... = N(em) = 1. This implies that for every world ω such that
ω |= ¬e1 ∨ ... ∨ ¬em we have that π(ω) = 0. Hence, for every ω such that π(ω) = 1 we
must have that e0 is satisfied in ω as otherwise the MEL-formula (6.33) is not satisfied,
i.e. we must have N(e0) = 1. When we do not have that N(e1) = ... = N(em) = 1 then
the constraint N(e0) ≥ min(N(e1), ..., N(em)) is vacantly satisfied. It can also easily
be seen that every meta-model corresponds with exactly one possibilistic model given
the construction. It readily follows that for π a possibilistic model of P we have that
K = {ω | π(ω) = 1} is also a meta-model of K using a similar line of reasoning, given
that P is a consistent program.
Due to the correspondence between meta-models and possibilistic models, we have that a

possibilistic model corresponding with a consistent answer set only exists if the associated
MEL-theory K is satisfiable. From Lemma 4 we also know that the clause e is entailed
by the answer set of P iff for every possibilistic model π of P we have that N(e) = 1, as
otherwise we would not have for π ∈ Sw

P that N(e) = 1. Hence we know that e is entailed
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by an answer set of P if K |= �e for every meta-model K of K. A clause ‘e’ thus belongs
to a consistent answer set M of P if K is satisfiable and for every meta-model K of K it
holds that K |= �e. As satisfiability and entailment in KD for a modal depth of 1 are in
NP and coNP respectively [Nguyen 2005], this concludes the proof.

Corollary 5: weak disjunction, positive clausal program; answer set existence

Determining whether a positive clausal program P has a consistent answer set is an
NP-complete problem.

Proof. The problem of determining whether a positive clausal program P has an answer set
reduces to the problem of satisfiability checking in MEL as in the proof of Proposition 27,
which is a problem in NP. Furthermore, from the proof of Proposition 26 we know that
satisfiability of a propositional theory can be checked by verifying whether a program P

has an answer set, hence this problem is also NP-hard.

Corollary 6: weak disjunction, positive clausal program; cautious reasoning

Cautious reasoning, i.e. determining whether a clause ‘e’ is entailed by every answer
set E of a positive clausal program P is coNP-complete.

Proof. This problem reduces to the problem of entailment checking in MEL as in the
proof of Proposition 27, which is a problem in coNP. Furthermore, from the proof of
Proposition 26 we know that unsatisfiability of a propositional theory can be checked by
verifying whether some clause ‘e’ (in particular, ‘unsat’ in Proposition 26) is entailed by
the answer sets of a positive clausal program P , hence this problem is also coNP-hard.

Proposition 28

Let P be a positive clausal program without classical negation. We can find the
unique answer set of P in polynomial time.

Proof. Applying the simplified immediate consequence operator can be done in polynomial
time. Furthermore, only a polynomial number of applications of the operator are necessary
since it is never possible to derive more information than the union of all the heads of all
the rules and because after each application we either obtain at least one new clause or
we have found an answer set.
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Proposition 29: weak disjunction; brave reasoning

Let P be a clausal program. The problem of deciding whether a clause ‘e’ is entailed
by a consistent answer set E of P is ΣP

2 -hard.

Proof. We reduce the problem of determining the satisfiability of a QBF of the form
φ = ∃X1∀X2 · p(X1, X2) with p(X1, X2) in DNF to the problem of deciding whether a
clause ‘e’ is entailed by a consistent answer set E of P . Since the problem of determining
satisfiability of QBFs of that form is the canonical ΣP

2 -complete problem, this shows that
the problem of deciding whether a clause ‘e’ is entailed by a consistent answer set E of P
is indeed ΣP

2 -hard. To prove this we use the clausal program Pφ that simulates φ from
Definition 27.
The rules in (4.12) ensure that as many candidate answer sets are generated as there are

interpretations of X1. The rules from (4.13) verify whether, for the chosen interpretation
of X1, it holds that p(X1, X2) is satisfied for all interpretations of X2. To see this, we
first draw the attention of the reader to the fact that these rules are exactly the construct
used in Proposition 26 to simulate entailment. Hence we are only able to derive ‘sat’ if
the set of propositional clauses {¬θ1, ...,¬θn} is unsatisfiable. Notice furthermore that the
set {¬θ1, ...,¬θn} is unsatisfiable iff formula p(X1, X2) is false. Finally, the rule (4.14)
eliminates every answer set in which ‘sat’ is not true. Thus the program Pφ only has
answer sets from which ‘sat’ can be entailed or it does not have any answer sets at all.
Hence the problem of deciding whether a clause ‘sat’ is entailed by an answer setM of Pφ
corresponds to determining whether or not a QBF of the form φ = ∃X1∀X2 · p(X1, X2)
is satisfiable.

Proposition 30: weak disjunction; brave reasoning

Let P be a clausal program. The problem of deciding whether a clause ‘e’ is entailed
by a consistent answer set E of P is in ΣP

2 .

Proof. To show that this problem is indeed in ΣP
2 , we construct an algorithm to decide

whether a clause ‘e’ is entailed by an answer set E of P :
guess a subset E of {head(r) | r ∈ P}
verify that this interpretation is an answer set as follows:

calculate the reduct PE of the clausal program P
calculate the fixpoint (PE)?w
verify that E is entailed by (PE)?w
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The first step of the algorithm requires a choice and makes our algorithm non-deterministic.
Next, we verify whether this guess is indeed an answer set which involves taking the
reduct (which can be done in polynomial time), computing the fixpoint (which depends on
entailment, an NP-complete problem) and finally determining whether our guess is entailed
by this fixpoint (which we found in Corollary 4 to be a problem that is BH2-complete). The
penultimate and last step thus require the use of an oracle that can solve NP problems in
constant time. Hence we find that the problem of deciding whether a clause ‘e’ is entailed
by an answer set E of P is indeed in ΣP

2 .

Corollary 8: weak disjunction; answer set existence

Determining whether a clausal program P has a consistent answer set is an ΣP
2 -

complete problem.

Proof. Notice that in the proof of Proposition 29 the program Pφ only has answer sets
from which ‘sat’ can be entailed or that it does not have any answer sets at all. Hence the
problem of determining the satisfiability of a QBF of the form φ = ∃X1∀X2 · p(X1, X2)
with p(X1, X2) in DNF can be reduced to the problem of deciding answer set existence
for a clausal program P .

Proposition 31: weak disjunction; cautious reasoning

Cautious reasoning, i.e. determining whether a clause ‘e’ is entailed by every answer
set E of a clausal program P , is ΠP

2 -complete.

Proof. This problem is complementary to brave reasoning, i.e. we verify that there does
not exist an answer set E′ of P such that ‘¬e’ is entailed by E′.
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Proofs of Chapter 5

Proposition 32

Let P be a simple PASP program. For each literal ‘l’ we have that N (P |=c l) ≥ λ
iff M(l) ≥ λ with M the possibilistic answer set of P under the semantics from
PASPŁ, which in turn coincides with the semantics from PASPG.

Proof. For each literal ‘l’ we have that N (P |=c l) ≥ λ iff M(l) ≥ λ with M the pos-
sibilistic answer set of P under the semantics from [Nicolas et al. 2006] and as given in
Section 2.5. To see this, note that M(l) ≥ λ iff l is in the unique answer set Mλ of
the λ-cut of P . Indeed, we can only conclude M(l) ≥ λ if we have only used rules with
associated weights equal or greater than λ to deduce ‘l’. Similarly, N (P |=c l) ≥ λ iff
there does not exist some subprogram P ′ such that πP (P ′) > 1 − λ for which we have
that P ′ 6|=c l. But, the only subprograms for which πP (P ′) > 1 − λ are exactly those
subprograms from which we did not remove any rules with associated weights equal or
greater than λ. Thus we have that l can be deduced from every subprogram P ′ with
πP (P ′) > 1 − λ. In particular, because of the monotonicity of inference of simple pro-
grams, it suffices to consider the subprogram that corresponds exactly with the λ-cut of P .
Hence N (P |=c l) ≥ λ iffM(l) ≥ λ. As discussed in Section 4.2.2, where we investigated
the relationship between PASPG and PASPŁ, the semantics of PASPG and PASPŁ coincide
for possibilistic simple programs. Thus, the result also holds for M the possibilistic answer
set of P under PASPŁ.

Proposition 33

Let P be a possibilistic normal program. Deciding whether

Π
(
P |=b l

)
≥ λ is NP-complete;

N (P |=c l) ≥ λ is coNP-complete;
Π (P |=c l) ≥ λ is ΣP

2 -complete;
N
(
P |=b l

)
≥ λ is ΠP

2 -complete.

Proof. Part 1: deciding whether Π
(
P |=b l

)
≥ λ is NP-complete.

(membership) To determine whether Π
(
P |=b l

)
≥ λ we need to guess a subset P ′ of

rules from P such that πP (P ′) ≥ λ and an interpretation M which includes ‘l’. Given
such a non-deterministic guess, we can verify in polynomial time whether M is indeed an
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answer set and hence whether P ′∗ |=b l. Hence determining whether Π
(
P |=b l

)
≥ λ is

in NP.
(hardness) NP-hardness follows trivially from the NP-hardness of brave reasoning for

classical normal programs.

Proof. Part 2: deciding whether N (P |=c l) ≥ λ is coNP-complete.
(membership) We will show that the complementary problem is in NP. To determine
whether N (P |=c l) 6≥ λ we guess a subset P ′ of rules from P such that πP (P ′) >
1 − λ and a consistent interpretation M , which does not include ‘l’. Given such a
non-deterministic guess, we can verify in polynomial time that M is an answer set of
P ′
∗ and hence that P ′∗ 6|=c l. From Definition 29 we know that N (P |=c l) = 1 −

max {πP (Q) | Q ⊆ P and Q∗ 6|=c l} ≤ 1 − πP (P ′) < λ. In other words: determining
whether N (P |=c l) 6≥ λ is in NP. Deciding whether N (P |=c l) ≥ λ is thus in coNP.
(hardness) The coNP-hardness follows trivially from the coNP-hardness of cautious reas-
oning for classical normal programs.

Proof. Part 3: deciding whether Π (P |=c l) ≥ λ is ΣP
2 -complete.

(membership) To determine whether Π (P |=c l) ≥ λ we need to guess a subset P ′ of
rules from P such that πP (P ′) ≥ λ. We cannot immediately guess an interpretation to
determine whether P ′∗ |=c l since this requires that ‘l’ is true in every single interpretation.
Given a non-deterministic guess of P ′, however, we can rely on an NP-oracle [Baral 2003]
to verify in constant time whether P ′∗ |=c l, as P ′∗ is a classical normal program. Hence
determining whether Π (P |=c l) ≥ λ is in NPNP, i.e. in ΣP

2 .
(hardness) We reduce the problem of determining the satisfiability of a QBF of the form
φ = ∃X1∀X2 ·p(X1, X2) with p(X1, X2) in DNF, i.e. of the form θ1∨ ...∨θn with each θi
a conjunction of literals, to the problem of deciding whether Π (P |=c l) ≥ λ. We define
the possibilistic normal program Pφ corresponding to φ as

Pφ = {0.5 :x← | x ∈ X1} ∪ {0.5 :¬x← | x ∈ X1} (6.34)
∪ {1 :x← not ¬x | x ∈ X2}
∪ {1 :¬x← not x | x ∈ X2} (6.35)
∪ {1 : sat← θt | 1 ≤ t ≤ n} (6.36)

where we identify the conjunction of literals θt in (6.36) with a set of literals. We now show
that the QBF is satisfiable if and only if Π (Pφ |=c sat) ≥ 0.5.
The rules in (6.34) ensure that there are as many subprograms P ′ ⊆ Pφ as there are

interpretations of X1. The subprograms P ′ with πPφ(P ′) > 0 then contain the rules
(6.35) that generate as many answer sets as there are interpretations of X2. The rules
from (6.36) ensure that ‘sat’ is contained in the classical answer set whenever for a chosen
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interpretation of X1 and X2 it holds that p(X1, X2) is satisfied. Notice that the certainty
attached to the rules ensures that removing any of the rules from (6.35) or (6.36) results
in πPφ(P ′) = 0, i.e. it indicates that these rules are completely necessary.
We then have that Π (Pφ |=c sat) ≥ 0.5 if and only if the QBF is satisfiable. Indeed,

from the construction of Pφ, and in particular from the rules (6.34), we know that for
every interpretation of X1 there will be a corresponding consistent subprogram for which
the possibility is 0.5. Also, P ′∗ |=c sat if and only if P ′ corresponds to an interpretation of
X1 such that p(X1, X2) is consistent for every interpretation of X2. Using the consistent
possibility measure (i.e. finding max

{
πPφ(P ′) | P ′ ⊆ Pφ and P ′∗ |=c sat

}
) implies that

the QBF is satisfied whenever we find at least one such an interpretation X1.
Some of the subprograms of Pφ may either be inconsistent subprograms or may corres-

pond to partial interpretations of X1. However, the inconsistent subprograms P ′ have
πPφ(P ′) = 0 by definition and can therefore never be used to derive Π (Pφ |=c sat) ≥ 0.5.
Furthermore, any subprogram P ′ with incomplete assignments for the variables in X1 from
which we can conclude that P ′∗ |=c sat can trivially be extended to a subprogram P ′′ to
which we add some rules from (6.34) to complete the assignment for the variables in X1
and we will still be able to conclude that P ′′∗ |=c sat.

Proof. Part 4: deciding whether N
(
P |=b l

)
≥ λ is ΠP

2 -complete.
(membership) We will show that the complementary problem is in ΣP

2 . To determine
whether N

(
P |=b l

)
6≥ λ we guess a subset P ′ of rules from P such that πP (P ′) > 1− λ.

Given a non-deterministic guess for P ′, we rely on an NP-oracle [Baral 2003] to verify
in constant time that P ′∗ 6|=b l. Similar as in Part 2 of this proof this gives us a
counter-example for N

(
P |=b l

)
≥ λ. Hence determining whether N

(
P |=b l

)
≥ λ

is in co
(

NPNP
)
, i.e. in ΠP

2 .
(hardness) Let Q be the program defined as P∪{1 :x← not l} with x a fresh literal. Then
N
(
Q |=b l

)
≥ λ if and only if Π (Q |=c x) ≤ 1− λ. Indeed, we know from Definition 29

that N
(
Q |=b l

)
≥ λ is true whenever 1−max

{
πQ(P ′) | P ′ ⊆ Q and P ′∗ 6|=b l

}
≥ λ,

i.e. whenever we have that max
{
πQ(P ′) | P ′ ⊆ Q and P ′∗ 6|=b l

}
≤ 1− λ. Because the

newly added rule (x ← not l) will be in every subprogram P ′ with πQ(P ′) > 0 (since
the certainty attached to this rule is 1), we know that there is at least one answer set in
which l is true if and only if it is not the case that x is true in every answer set. Thus, the
previous inequality is equivalent to max

{
πQ(P ′) | P ′ ⊆ Q and P ′∗ |=c x

}
≤ 1−λ and, by

applying Definition 29, to Π (Q |=c x) ≤ 1− λ. Since the set of certainty values associated
with the rules is finite, this equation is equivalent to Π (Q |=c x) < λ′ for some λ′. Hence
we have that ¬(Π (Q |=c x) ≥ λ′). This problem is therefore the complement of the
decision problem from Part 3 of this proof. Thus deciding whether N

(
P |=b l

)
≥ λ is

ΠP
2 -hard.
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Proposition 34

Let P be a possibilistic disjunctive program. Deciding whether

Π
(
P |=b l

)
≥ λ is ΣP

2 -complete;
N (P |=c l) ≥ λ is ΠP

2 -complete;
Π (P |=c l) ≥ λ is ΣP

3 -complete;
N
(
P |=b l

)
≥ λ is ΠP

3 -complete.

Proof. Part 1: deciding whether Π
(
P |=b l

)
≥ λ is ΣP

2 -complete.
(membership) Analogous to the proof in Part 1 of the proof of Proposition 33, where we
are able to verify in constant time that M is an answer set of P ∗, which now is a positive
possibilistic program, by using an NP-oracle.
(hardness) Analogous to the proof of the hardness in Part 1 of the proof of Proposition 33.

Proof. Part 2: deciding whether N (P |=c l) ≥ λ is ΠP
2 -complete.

Entirely analogous to the proof in Part 2 of the proof of Proposition 33.

Proof. Part 3: deciding whether Π (P |=c l) ≥ λ is ΣP
3 -complete.

(membership) Analogous to the membership proof in Part 3 of the proof of Proposition 33,
but where we now require a ΣP

2 -oracle to verify in constant time whether for P ′∗, with
P ′
∗ being a classical disjunctive program, we have that P ′∗ |=c l.

(hardness) Analogous to the hardness proof in Part 4 of the proof of Proposition 33, where
we can now reduce the complement of this problem to an instance of the decision problem
from Part 4 of this proof.

Proof. Part 4: deciding whether N
(
P |=b l

)
≥ λ is ΠP

3 -complete.
(membership) Analogous to the proof of membership proof in Part 4 of the proof of
Proposition 33.
(hardness) We reduce the problem of determining the satisfiability of a QBF of the form
ψ = ∀X1∃X2∀X3 ·p(X1, X2, X3) with p(X1, X2, X3) in DNF, i.e. of the form θ1∨ ...∨θn
with each θi a conjunction of literals, to the problem of deciding whether N

(
P |=b l

)
≥ λ.
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We define the possibilistic disjunctive program Pψ corresponding to ψ as

Pψ = {1 :x;x′ ← | x ∈ X3} (6.37)
∪ {0.5 :x← | x ∈ X1} ∪ {0.5 :¬x← | x ∈ X1} (6.38)
∪ {1 :x← not ¬x | x ∈ X2}
∪ {1 :¬x← not x | x ∈ X2} (6.39)
∪ {1 : sat← θ′t | 1 ≤ t ≤ n} (6.40)
∪ {1 :x← sat | x ∈ X3} ∪ {1 :x′ ← sat | x ∈ X3} (6.41)

where we identify the conjunction of literals θ′t in (6.40) with a set of literals and we
have furthermore replaced all negative literals of the form ¬x by a fresh atom of the
form x′ for every x ∈ X3. We now show that the QBF is satisfiable if and only if
N
(
Pψ |=b sat

)
≥ 0.25.

The rules in (6.38) ensure that there are at least as many subprograms P ′ ⊆ Pψ as there
are interpretations of X1. Furthermore, the subprograms P ′ with πPψ (P ′) > 0 contain the
rules (6.37) and (6.39), which generate as many answer sets as there are interpretations
of (X2 ∪X3). The rule (6.40) ensures that ‘sat’ is contained in the classical answer set
whenever for a chosen interpretation of X1, X2 and X3 it holds that p(X1, X2, X3) is
satisfied. Notice that the certainty attached to the rules ensures that removing any of the
rules from (6.37), (6.39), (6.40) or (6.41) results in πPψ (P ′) = 0, i.e. it indicates that
these rules are completely necessary.
Thus far, we have not discussed the rules from (6.41). These rules work together with

the rules from (6.37) to resolve the last ∀. Indeed, the rules from (6.41) implement a
saturation technique [Baral 2003] over a disjunctive program to ensure that sat will only
be true in an answer set when p(X1, X2, X3) is satisfied for every interpretation of X3,
given some interpretation of (X1, X2). In particular, let P ′ be a subprogram of Pψ with
πPψ (P ′) > 0, and let M be an answer set of P ′ that contains sat. Because of the rules
from (6.38) and (6.39) in P ′, M contains literals corresponding to the variables of X1
and X2, and as such defines an interpretation of X1 and X2. Furthermore, because of the
saturation rules (6.41), M contains the literals x and x′ for every x ∈ X3. Now suppose
that there would exist an interpretation M ′ of P ′ that contains the same literals as M
corresponding to the variables of X1 and X2 but that does not contain sat, then we have
that M ′ ⊂ M . Furthermore, since M ′ contains the same literals as M corresponding
to the variables of X2, (P ′)M = (P ′)M

′
. If M ′ would be an answer set of P ′, then by

definition it would be a minimal model of (P ′)M . This, together with M ′ ⊂ M , would
contradict the fact that M is an answer set of P ′. Hence M ′ is not an answer set of P ′.
We conclude that when sat is contained in an answer setM of P ′, then sat is contained in
all answer sets of P ′ that contain the same literals corresponding to the variables of X1 and
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X2 as M , regardless of which choice is made by rules (6.37) for the literals corresponding
to the variables of X3, i.e. regardless of the interpretation of X3.
We then have that the QBF is satisfied iff N

(
Pψ |=b sat

)
≥ 0.25. Indeed, from the

construction of Pψ, and in particular from the rules (6.38), we know that for every in-
terpretation of X1 there will be a corresponding consistent subprogram P ′ for which
the possibility is 0.5. Also, P ′∗ |=b sat if and only if P ′ has an answer set such that
p(X1, X2, X3) is satisfied for every interpretation of X3. Using the necessity measure, it
then holds that the QBF is satisfied for every interpretation of X1. Finally, note that we
need to consider a necessity strictly smaller than 0.5, e.g. 0.25. Indeed, we have

N(Pψ |=b sat) ≥ λ
≡ 1−max

{
πPψ (P ′) | P ′ ⊆ Pψ and P ′∗ 6|=b sat

}
≥ λ

≡ max
{
πPψ (P ′) | P ′ ⊆ Pψ and P ′∗ 6|=b sat

}
≤ 1− λ

≡ ∀P ′ ⊆ Pψ, P ′
∗ 6|=b sat · πPψ (P ′) ≤ 1− λ

≡ ∀P ′ ⊆ Pψ, πPψ (P ′) > 1− λ · P ′∗ |=b sat.

Furthermore, the possibility associated with each subprogram P ′ is πPψ (P ′) ∈ {0, 0.5, 1}.
Hence, by verifying N(Pψ |=b sat) ≥ λ with λ = 0.5, we have only verified that sat is a
brave conclusion of those subprograms P ′ with πP (P ′) = 1. Instead, we want to verify
for those subprograms P ′ with πP (P ′) = 0.5 whether P ′ |=b sat, i.e. we need to verify
whether N

(
Pψ |=b sat

)
≥ λ for an arbitrary λ in ]0.5, 1].

Some of the subprograms of Pψ may either be inconsistent subprograms or may cor-
respond to partial interpretations of X1. However, the inconsistent subprograms P ′ have
πPψ (P ′) = 0 by definition and can therefore never be used to deriveN

(
Pψ |=b sat

)
≥ 0.75

(also, we already established that for every interpretation of X1 there will be a corres-
ponding consistent subprogram P ′). Furthermore, any subprogram P ′ with incomplete
assignments for the variables in X1 from which we can conclude that P ′∗ |=b sat can
trivially be extended to a subprogram P ′′ to which we add some rules from (6.38) to
complete the assignment for the variables in X1 and we will still be able to conclude
that P ′′∗ |=b sat. Thus, these additional subprograms do not affect our ability to derive
N
(
Pψ |=b sat

)
≥ 0.25.
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Proposition 35

Let P be a possibilistic disjunctive program. Let 〈H,T,O〉 be an abductive dia-
gnosis program with H = {r′i | (ri, ci) ∈ P, ci ≤ 1− λ}, T = Pelem(λ) and O = {l}.
We have that Π(P |=c l) ≥ λ iff the abductive diagnosis program 〈H,T,O〉 has a
cautious explanation.

Proof. We want to determine whether Π (P |=c l) ≥ λ. By Definition 29 we know this is
equivalent to max

{
πP (P ′) | P ′ ⊆ P and P ′∗ |=c l

}
≥ λ, or, determining whether there

exists some subprogram P ′ ⊆ P with P ′∗ |=c l such that πP (P ′) ≥ λ. Since we want
πP (P ′) ≥ λ, we must have that Preq ⊆ P ′∗ with Preq = {r | (r, c) ∈ P, c > 1− λ}. Thus
the problem reduces to determining whether Popt ⊆ {r | (r, c) ∈ P, c ≤ 1− λ} we have
P ′
∗ = (Preq ∪ Popt) such that P ′∗ |=c l. By construction of Pelem(λ) we know that

every rule in Preq is applied. Furthermore, every explanation E ⊆ H corresponds with
a choice of Popt. This choice of Popt will be applied by the rules in Pelem(λ). Finally,
the observation O is that ‘l’ must be a conclusion. Clearly, then Π (P |=c l) ≥ λ when
Pelem(λ) ∪ E |=c O, i.e. when 〈H,T,O〉 has a cautious explanation.

Proposition 36

Let P be a possibilistic disjunctive program. Let 〈H,T,O〉 be an abductive diagnosis
program withH = {r′i | (ri, ci) ∈ P, ci ≤ λ′}, T = Pelem(1−λ′)∪{missing ← not l}
and O = {missing}. Let λ′ ∈ cert+(P ) be such that λ′ < λ and for which we have
that 6 ∃λ′′ ∈ cert+(P ) ·λ′ < λ′′ < λ. We have that N(P |=b l) ≥ λ iff the abductive
diagnosis program 〈H,T,O〉 has no cautious explanations.

Proof. We need to determine whether

min
{

1− πP (P ′) | P ′ ⊆ P and P ′∗ 6|=b l
}
≥ λ.

In other words, we need to determine if for every P ′ ⊆ P with P ′∗ 6|=b l we have that
πP (P ′) ≤ 1− λ, or, that for every P ′ ⊆ P with πP (P ′) > 1− λ we have that P ′∗ |=b l.
Clearly, Pelem(1 − λ′) ensures that all the rules with a high enough certainty are applied
to ensure that πP (P ′) > 1 − λ. Finally, the rule (missing ← not l) is used to verify,
together with the observation O, whether P ′∗ |=b l. Indeed, missing is true in an answer
set when l is not in the answer set. Thus, to verify whether P ′∗ |=b l it suffices to verify
whether P ′∗ 6|=c missing. The remainder of the proof is then analogous to the proof in
Proposition 35.
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Proposition 37

Let Pabd be the possibilistic normal program defined for an abductive diagnosis pro-
gram 〈H,T,O〉 as

{0.5 : block h← | h ∈ H} (5.3)
∪ {1 :h← not block h | h ∈ H} (5.4)
∪ {1 : goal← O} (5.5)
∪ {1 : r | r ∈ T} . (5.6)

It holds that 〈H,T,O〉 has a cautious explanation iff Π (Pabd |=c goal) ≥ 0.5. In par-
ticular, E is a cautious explanation iff for P ′ = Pabd \ {block h← | h ∈ E} we have
that (P ′)∗ |=c goal.

Proof. For Π (Pabd |=c goal) ≥ 0.5, we must have some P ′ ⊆ Pabd such that P ′ |=c goal

and π(P ′) ≥ 0.5. Thus, clearly, all the rules defined in (5.4), (5.5) and (5.6) must be
in P ′. It is furthermore easy to see that for every h ∈ E we have that (h←) ∈ ((P ′)∗)M

(since the corresponding rules from (5.3) are removed from the subprogram P ′) for every
answer set M of P ′∗ and, since (P ′)∗ |=c goal, that E is a cautious explanation.

Proposition 38

Let Pcon be the possibilistic normal program defined for a conformant planning prob-
lem with the atom ‘goal’ the desired goal fluent. We express the domain knowledge
as a normal ASP program Pact ∪ Prem. Then Pcon is:

{0.5 : block i← | ri ∈ Pact} (5.7)
∪ {1 :head(ri)← body(ri) ∪ {not block i} | ri ∈ Pact} (5.8)
∪ {1 : r | r ∈ Prem} (5.9)
∪ {1 : ← not goal} (5.10)

A conformant plan exists iff Π (Pcon |=c goal) ≥ 0.5.

Proof. When Π (Pcon |=c goal) ≥ 0.5 then, by definition, there exists a subprogram P ′ ⊆
P such that (P ′)∗ |=c goal with πP (P ′) ≥ 0.5. Since πP (P ′) ≥ 0.5 we know that all the
rules from (5.8), (5.9) and (5.10) are in P ′. Thus, only rules from (5.7) may be in P \P ′.
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In that case, the corresponding rule from (5.8) ensures that for every answer set M of
(P ′)∗ we have that (head(ri) ← body(ri)) ∈ ((P ′)∗)M . Thus, the action is no longer
blocked and can be applied. Because of the available actions we can, regardless of the
initial state described in (5.9), cautiously derive ‘goal’. Indeed, otherwise we know due to
(5.10) that M is not a model. In other words: the choice made in (5.7) corresponds with
a set of actions that form a cautious plan for the given planning problem.
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Proofs of Chapter 6

Proposition 39

Let P be a communicating disjunctive program. Let P ′ be the disjunctive program
defined as follows. For every Q : l ∈ (BP ∪ ¬BP) we add the following rules to P ′:

guess(Q l)← not not guess(Q l) not guess(Q l)← not guess(Q l)
← guess(Q l), not Q l ← not guess(Q l), Q l. (6.1)

For every disjunctive communicating rule P of the form

r = Q :γ ← body

with Q ∈ P, γ a set of literals and body a set of extended situated literals, we
add the rule Q γ ← body′ to P ′ with Q γ the disjunctive set of situated literals
{Q l | l ∈ γ}. We define body′ as follows:

body′ = {Q b | Q :b ∈ body}
∪ {guess(R c) | R :c ∈ body,Q 6= R}
∪ {not S d | (not S :d) ∈ body} . (6.2)

Note that we do not guess situated literals preceded by not, as the guess is already
implicitly performed by the reduct of a classical ASP program. We have that M =
{Q : l | Q l ∈M ′} is an answer set of P if and only if M ′ is an answer set of P .

Proof. The essential difference between a disjunctive program and a communicating dis-
junctive program is in the reduct. More specifically, the difference is in the treatment
of situated literals of the form R : l which are not Q-local. Indeed, such literals can, like
naf-literals, be guessed and verified whether or not they are stable, i.e. whether or not
the minimal model of the reduct corresponds to the initial guess. It can readily be seen
that this behaviour is mimicked by the rules in (6.1). The first two rules guess whether
or not some situated literal Q : l is true, while the last two rules ensure that our guess
is stable; i.e. we are only allowed to guess Q : l when we are later on actually capable of
deriving Q : l. The purpose of (6.2) is then to ensure that guessing of situated literals
is only used when the situated literal in question is not Q-local and is not preceded by
negation-as-failure.

199



Proofs

Proposition 40

Let P be a possibilistic normal program and Q the simulation of P defined as in
Definition 33 with C = cert+(P ). Let V be the valuation defined by V (l) =
max {λ | lλ ∈M}. If M is a classical answer set of Q, then V is a possibilistic
answer set of P .

Proof. Let (r, λ) ∈ P with r = (l0 ← l1, ..., lm, not lm+1, ..., not ln). Due to the construc-
tion ofQ, as given in Definition 33, we know that for each (r, λ) ∈ P and for each µ ∈ C we
have (l0µ← l1µ, ..., lmµ, not lm+1ν, ..., not lnν) ∈ Q with ν = min {ξ | ξ > 1− µ, ξ ∈ C}.
By Definition 5 on the classical reduct we know that (l0µ← l1µ, ..., lmµ) ∈ QM if and
only if {lm+1ν, ..., lnν} ∩M = ∅. By construction of V we thus know that V (li) < ν

for all i ∈ {m+ 1, ..., n}. Specifically, since we know that there does not exist some ξ
such that ν > ξ > 1 − µ, we have that V (li) ≤ 1 − µ or, equivalently, that li /∈ V 1−µ.
From Definition 26, we then find that (r′, λ′) ∈ PV with r′ = (l0 ← l1, ..., lm) and with
λ′ = min(λ, ν). Note in particular that we always implicitly have that (r′, λ′′) ∈ PV

whenever (r′, λ′) ∈ PV and λ′′ ≤ λ′. Conversely we know that (r′, λ′) ∈ PV with λ′ ≤ λ
and r′ = (l0 ← l1, ..., lm) iff {lm+1, ..., ln} ∩ V 1−λ′ = ∅. By construction of V this
means that liλ′′ /∈ M for all λ′′ > 1− λ′ and all i ∈ {m+ 1, ..., n}. By definition of the
Gelfond-Lifschitz reduct, we thus obtain that (l0λ′ ← l1λ

′, ..., lmλ
′) ∈ QM .

Now let Mk be the result of k times applying the immediate consequence operator TQM ,
starting from the empty interpretation. Similarly, let Vk be the valuation resulting from
k times applying the possibilistic immediate consequence operator TPV , starting from the
minimal valuation. We show by induction that for all l ∈ LitP and all λ in C (λ > 0), it
holds that lλ ∈Mk iff Vk(l) ≥ λ, for all λ ∈ �. Clearly this holds for k = 0.
To show the induction step, assume that l0λ′ ∈Mk \Mk−1 with k ≥ 1. This means that

there is a rule (l0λ′ ← l1λ
′, ..., lmλ

′) ∈ QM such that l1λ′ ∈ Mk−1, ..., lmλ
′ ∈ Mk−1.

This means however, that Vk−1(l1) ≥ λ′, ..., Vk−1(lm) ≥ λ′ and thus that Vk(l0) ≥ λ′

is obtained by applying TPV on Vk−1, since we already established that PV contains the
rules (l0 ← l1, ..., lm) with certainty λ′. Conversely, we also find that when Vk(l0) ≥ λ′

and Vk−1(l0) < λ′, it must be the case that l0λ′ ∈ Mk \Mk−1. Thus we find that the
least fixpoint of TPV is V and therefore, by Proposition 20, that V is a possibilistic answer
set of P .
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Proposition 41

Let P be a possibilistic normal program and Q the simulation of P defined as in
Definition 33, and M = {lλ | λ ≤ V (l), λ ∈ C}. If V is a possibilistic answer set of
P such that V (l) ∈ C for all l ∈ BP , then M is a classical answer set of Q.

Proof. Entirely analogous to the proof of Proposition 40.

Proposition 42

Let P be a possibilistic disjunctive program and PΠ
brave(l, λ) the classical disjunctive

program as defined in Definition 35. We have that Π(P |=b l) ≥ λ iff PΠ
brave(l, λ)

has a classical consistent answer set.

Proof. We want to determine whether Π
(
P |=b l

)
≥ λ. By Definition 29 we know this is

equivalent to max
{
πP (P ′) | P ′ ⊆ P and P ′∗ |=b l

}
≥ λ, or, determining whether there

exists some subprogram P ′ ⊆ P with P ′∗ |=b l such that πP (P ′) ≥ λ. Since we want
πP (P ′) ≥ λ, this implies that Preq ⊆ P ′∗ with Preq = {r | (r, c) ∈ P, c > 1− λ}. Thus
the problem reduces to determining whether for the rules Popt ⊆ {r | (r, c) ∈ P, c ≤ 1− λ}
we have P ′∗ = (Preq∪Popt) such that P ′∗ |=b l. By construction of Pbasic(λ), in particular
due to the rules (6.4), we know that every rule in Preq is chosen. Furthermore, every choice
made in (6.3) corresponds with a choice of Popt. This choice Popt, along with the rules
Preq, will be applied by the rules in Pbasic due to the rules (6.5). Finally, the addition
of the rule {← not l} ensures that ‘l’ must be a conclusion of some answer set of the
simulation PΠ

brave(l, λ), or otherwise PΠ
brave(l, λ) will not have any answer sets. Clearly,

then Π
(
P |=b l

)
≥ λ when PΠ

brave(l, λ) has a classical consistent answer set.

Proposition 43

Let P be a possibilistic disjunctive program, λ > 0 and PNcautious(l, λ) the classical
disjunctive program as defined in Definition 36. We have that N(P |=c l) ≥ λ iff
PNcautious(l, λ) has no classical consistent answer set.

Proof. Analogous to the proof in Proposition 42.
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Proposition 44

Let P be a possibilistic normal program and P c
Π(l, λ) the disjunctive program defined

as Pcomplex(λ)∪{sat← l}. Then Π (P |=c l) ≥ λ iff P c
Π(l, λ) has a classical answer

set.

Proof. We want to determine whether Π (P |=c l) ≥ λ, i.e. whether there exists a P ′ ⊆ P
such that P ′∗ |=c l and πP (P ′) ≥ λ. The latter condition means that (r, c) ∈ P ′ for
every (r, c) ∈ P with c > 1− λ. Similar as in Proposition 42, the rules in (6.6) and (6.7)
generate as many answer sets as there are subprograms P ′ ⊆ P for which πP (P ′) ≥ λ.
For each such subprogram P ′ we want to determine whether P ′∗ has ‘l’ a cautious

conclusion. By construction, {cl← | cl ∈ cls(P r)} is equivalent to P r. In particular,
every model of these rules corresponds to an answer set of P r. Since we removed classical
negation in (6.8), however, we need to add the rules in (6.9) to ensure that ‘sat’ is
contained in the answer set whenever ‘a’ and the opposite atom ‘na’ are true at the same
time. The intuition of making ‘sat’ true is thus to indicate that this is not a valid answer
set of the subprogram P ′. The rule (sat ← l) is used to try to make ‘l’ false, by once
again ensuring that ‘sat’ is contained in the answer set whenever ‘l’ is in the answer set.
Intuitively, we thus say that an answer set in which ‘l’ is true is undesirable, i.e. we prefer
answer sets of P ′ in which ‘l’ is false. The rule (6.11) is then used to block all answer sets
in which ‘sat’ is false. In other words: unless for every answer set of P ′ we have that ‘l’
is true in the answer set, we have not found that ‘l’ is a cautious consequence of P ′.
Thus far we have not discussed the use of the rules (6.10). Together with the atom ‘sat’,

these rules are used to implement a saturation technique [Baral 2003] over our disjunctive
simulation, as discussed in detail in Section 2.2. To recount, the intuition of saturation is
that we use the property that an answer set is a minimal model. In particular, the rules
in (6.10) will add all the atoms under consideration to the model M to try and prevent
it from being an answer set. Indeed, if we find a model M ′ ⊆ M then clearly M cannot
be an answer set. As such, we can ensure that consistent models of P ′ are preferred over
inconsistent models, and that models of P ′ in which ‘l’ is false are preferred over models
in which ‘l’ is true. Then, only if no consistent answer set (in which ‘l’ is false) exists for
P ′, will we have that ‘sat’ is true in an answer set of P c

Π(l, λ).
Finally, when a subprogram P ′ is inconsistent, then π(P ′) = 0, i.e. we do not want

to consider this subprogram. Notice, however, that the rule (6.9) would not work as
expected in this case. Indeed, if P ′ is inconsistent it does not have a consistent model
and the saturation technique would not exclude this subprogram. As such, we repeat our
simulation of the subprogram P ′ in (6.12) and use constraints in (6.13) to effectively block
inconsistent subprograms.
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Proposition 45

Let P be a possibilistic normal program and P b
N(l, λ) the disjunctive program defined

as Pcomplex(1− λ′) ∪ {sat← not l} with λ′ defined as in Proposition 43. Then
N
(
P |=b l

)
≥ λ iff P b

N(l, λ) has no classical answer set.

Proof. This proof is analogous to the proof of Proposition 44, similar as how the proof of
Proposition 43 was analogous to the proof of Proposition 42.
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Appendix 1: ASP encoding of Example 49

Below is a listing of the ASP encoding of the conformant planning problem described
in Example 49. Notice that the ASP encoding of Example 49 does not compute
a conformant plan. Indeed, the DLV K uses a two-step process to compute the
conformant plan. In particular, this encoding merely defines the behaviour of the
conformant planning problem but does not encode the knowledge on how to determine
whether such a plan is indeed conformant. This is to be expected, since DLV K first
computes a plan and then verifies whether such a plan is conformant.
% a c t i o n s can be per fo rmed or not
dunk (1 , 0 ) ; −dunk ( 1 , 0 ) .
dunk (2 , 0 ) ; −dunk ( 2 , 0 ) .
dunk (3 , 0 ) ; −dunk ( 3 , 0 ) .
dunk (4 , 0 ) ; −dunk ( 4 , 0 ) .
dunk (1 , 1 ) ; −dunk ( 1 , 1 ) .
dunk (2 , 1 ) ; −dunk ( 2 , 1 ) .
dunk (3 , 1 ) ; −dunk ( 3 , 1 ) .
dunk (4 , 1 ) ; −dunk ( 4 , 1 ) .
dunk (1 , 2 ) ; −dunk ( 1 , 2 ) .
dunk (2 , 2 ) ; −dunk ( 2 , 2 ) .
dunk (3 , 2 ) ; −dunk ( 3 , 2 ) .
dunk (4 , 2 ) ; −dunk ( 4 , 2 ) .
dunk (1 , 3 ) ; −dunk ( 1 , 3 ) .
dunk (2 , 3 ) ; −dunk ( 2 , 3 ) .
dunk (3 , 3 ) ; −dunk ( 3 , 3 ) .
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dunk (4 , 3 ) ; −dunk ( 4 , 3 ) .

% dunking a package d i s a b l e s the
% package i n the next t ime s t e p
−armed (2 , 1 ) :− dunk ( 2 , 0 ) .
−armed (4 , 1 ) :− dunk ( 4 , 0 ) .
−armed (3 , 1 ) :− dunk ( 3 , 0 ) .
−armed (1 , 1 ) :− dunk ( 1 , 0 ) .
−armed (2 , 2 ) :− dunk ( 2 , 1 ) .
−armed (4 , 2 ) :− dunk ( 4 , 1 ) .
−armed (3 , 2 ) :− dunk ( 3 , 1 ) .
−armed (1 , 2 ) :− dunk ( 1 , 1 ) .
−armed (2 , 3 ) :− dunk ( 2 , 2 ) .
−armed (4 , 3 ) :− dunk ( 4 , 2 ) .
−armed (3 , 3 ) :− dunk ( 3 , 2 ) .
−armed (1 , 3 ) :− dunk ( 1 , 2 ) .
−armed (2 , 4 ) :− dunk ( 2 , 3 ) .
−armed (4 , 4 ) :− dunk ( 4 , 3 ) .
−armed (3 , 4 ) :− dunk ( 3 , 3 ) .
−armed (1 , 4 ) :− dunk ( 1 , 3 ) .

% i n e r t i a w. r . t . −armed
−armed (2 , 2 ) :− −armed ( 2 , 1 ) .
−armed (4 , 2 ) :− −armed ( 4 , 1 ) .
−armed (3 , 2 ) :− −armed ( 3 , 1 ) .
−armed (1 , 2 ) :− −armed ( 1 , 1 ) .
−armed (2 , 3 ) :− −armed ( 2 , 2 ) .
−armed (4 , 3 ) :− −armed ( 4 , 2 ) .
−armed (3 , 3 ) :− −armed ( 3 , 2 ) .
−armed (1 , 3 ) :− −armed ( 1 , 2 ) .
−armed (2 , 4 ) :− −armed ( 2 , 3 ) .
−armed (4 , 4 ) :− −armed ( 4 , 3 ) .
−armed (3 , 4 ) :− −armed ( 3 , 3 ) .
−armed (1 , 4 ) :− −armed ( 1 , 3 ) .

% the s t a t e r ema ins u n s a f e u n l e s s
% a l l packages have been d i sa rmed
% by a g i v e n t ime s t e p
un sa f e (1 ) :− not −armed ( 1 , 1 ) .
un sa f e (1 ) :− not −armed ( 2 , 1 ) .
un sa f e (1 ) :− not −armed ( 3 , 1 ) .
un sa f e (1 ) :− not −armed ( 4 , 1 ) .
un sa f e (2 ) :− not −armed ( 1 , 2 ) .
un sa f e (2 ) :− not −armed ( 2 , 2 ) .
un sa f e (2 ) :− not −armed ( 3 , 2 ) .
un sa f e (2 ) :− not −armed ( 4 , 2 ) .
un sa f e (3 ) :− not −armed ( 1 , 3 ) .
un sa f e (3 ) :− not −armed ( 2 , 3 ) .
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un sa f e (3 ) :− not −armed ( 3 , 3 ) .
un sa f e (3 ) :− not −armed ( 4 , 3 ) .
un sa f e (4 ) :− not −armed ( 1 , 4 ) .
un sa f e (4 ) :− not −armed ( 2 , 4 ) .
un sa f e (4 ) :− not −armed ( 3 , 4 ) .
un sa f e (4 ) :− not −armed ( 4 , 4 ) .

% we e n f o r c e c o n c u r r e n t event s , i . e .
% we cannot dunk two packages at the
% same t ime s t e p .
:− dunk (2 , 0 ) , dunk ( 4 , 0 ) .
:− dunk (2 , 0 ) , dunk ( 3 , 0 ) .
:− dunk (2 , 0 ) , dunk ( 1 , 0 ) .
:− dunk (4 , 0 ) , dunk ( 2 , 0 ) .
:− dunk (4 , 0 ) , dunk ( 3 , 0 ) .
:− dunk (4 , 0 ) , dunk ( 1 , 0 ) .
:− dunk (3 , 0 ) , dunk ( 2 , 0 ) .
:− dunk (3 , 0 ) , dunk ( 4 , 0 ) .
:− dunk (3 , 0 ) , dunk ( 1 , 0 ) .
:− dunk (1 , 0 ) , dunk ( 2 , 0 ) .
:− dunk (1 , 0 ) , dunk ( 4 , 0 ) .
:− dunk (1 , 0 ) , dunk ( 3 , 0 ) .
:− dunk (2 , 1 ) , dunk ( 4 , 1 ) .
:− dunk (2 , 1 ) , dunk ( 3 , 1 ) .
:− dunk (2 , 1 ) , dunk ( 1 , 1 ) .
:− dunk (4 , 1 ) , dunk ( 2 , 1 ) .
:− dunk (4 , 1 ) , dunk ( 3 , 1 ) .
:− dunk (4 , 1 ) , dunk ( 1 , 1 ) .
:− dunk (3 , 1 ) , dunk ( 2 , 1 ) .
:− dunk (3 , 1 ) , dunk ( 4 , 1 ) .
:− dunk (3 , 1 ) , dunk ( 1 , 1 ) .
:− dunk (1 , 1 ) , dunk ( 2 , 1 ) .
:− dunk (1 , 1 ) , dunk ( 4 , 1 ) .
:− dunk (1 , 1 ) , dunk ( 3 , 1 ) .
:− dunk (2 , 2 ) , dunk ( 4 , 2 ) .
:− dunk (2 , 2 ) , dunk ( 3 , 2 ) .
:− dunk (2 , 2 ) , dunk ( 1 , 2 ) .
:− dunk (4 , 2 ) , dunk ( 2 , 2 ) .
:− dunk (4 , 2 ) , dunk ( 3 , 2 ) .
:− dunk (4 , 2 ) , dunk ( 1 , 2 ) .
:− dunk (3 , 2 ) , dunk ( 2 , 2 ) .
:− dunk (3 , 2 ) , dunk ( 4 , 2 ) .
:− dunk (3 , 2 ) , dunk ( 1 , 2 ) .
:− dunk (1 , 2 ) , dunk ( 2 , 2 ) .
:− dunk (1 , 2 ) , dunk ( 4 , 2 ) .
:− dunk (1 , 2 ) , dunk ( 3 , 2 ) .
:− dunk (2 , 3 ) , dunk ( 4 , 3 ) .
:− dunk (2 , 3 ) , dunk ( 3 , 3 ) .
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:− dunk (2 , 3 ) , dunk ( 1 , 3 ) .
:− dunk (4 , 3 ) , dunk ( 2 , 3 ) .
:− dunk (4 , 3 ) , dunk ( 3 , 3 ) .
:− dunk (4 , 3 ) , dunk ( 1 , 3 ) .
:− dunk (3 , 3 ) , dunk ( 2 , 3 ) .
:− dunk (3 , 3 ) , dunk ( 4 , 3 ) .
:− dunk (3 , 3 ) , dunk ( 1 , 3 ) .
:− dunk (1 , 3 ) , dunk ( 2 , 3 ) .
:− dunk (1 , 3 ) , dunk ( 4 , 3 ) .
:− dunk (1 , 3 ) , dunk ( 3 , 3 ) .

% the g o a l i s to r each
% a s a f e s t a t e i n 4 s t e p s
goa l :− not un sa f e ( 4 ) .

% omit answer s e t s t h a t
% do not r each the g o a l
:− not goa l .

Appendix 2: conformant plan encoding in PASPr (Proposition 38)

The PASPr program corresponding with Appendix 1 according to Proposition 38
assumes all rules to be certain, except for those rules encoding an action. These
action rules are encoded as follows:
% o p t i o n a l r u l e s d e s c r i b e i f the a c t i o n i s b l o cked
0 . 5 : block_dunk ( 1 , 0 ) .
0 . 5 : block_dunk ( 2 , 0 ) .
0 . 5 : block_dunk ( 3 , 0 ) .
0 . 5 : block_dunk ( 4 , 0 ) .
0 . 5 : block_dunk ( 1 , 1 ) .
0 . 5 : block_dunk ( 2 , 1 ) .
0 . 5 : block_dunk ( 3 , 1 ) .
0 . 5 : block_dunk ( 4 , 1 ) .
0 . 5 : block_dunk ( 1 , 2 ) .
0 . 5 : block_dunk ( 2 , 2 ) .
0 . 5 : block_dunk ( 3 , 2 ) .
0 . 5 : block_dunk ( 4 , 2 ) .
0 . 5 : block_dunk ( 1 , 3 ) .
0 . 5 : block_dunk ( 2 , 3 ) .
0 . 5 : block_dunk ( 3 , 3 ) .
0 . 5 : block_dunk ( 4 , 3 ) .

% i f the a c t i o n i s not b locked , i t i s e xecu ted
1 : dunk (1 , 0 ) :− not block_dunk ( 1 , 0 ) .
1 : dunk (2 , 0 ) :− not block_dunk ( 2 , 0 ) .
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1 : dunk (3 , 0 ) :− not block_dunk ( 3 , 0 ) .
1 : dunk (4 , 0 ) :− not block_dunk ( 4 , 0 ) .
1 : dunk (1 , 1 ) :− not block_dunk ( 1 , 1 ) .
1 : dunk (2 , 1 ) :− not block_dunk ( 2 , 1 ) .
1 : dunk (3 , 1 ) :− not block_dunk ( 3 , 1 ) .
1 : dunk (4 , 1 ) :− not block_dunk ( 4 , 1 ) .
1 : dunk (1 , 2 ) :− not block_dunk ( 1 , 2 ) .
1 : dunk (2 , 2 ) :− not block_dunk ( 2 , 2 ) .
1 : dunk (3 , 2 ) :− not block_dunk ( 3 , 2 ) .
1 : dunk (4 , 2 ) :− not block_dunk ( 4 , 2 ) .
1 : dunk (1 , 3 ) :− not block_dunk ( 1 , 3 ) .
1 : dunk (2 , 3 ) :− not block_dunk ( 2 , 3 ) .
1 : dunk (3 , 3 ) :− not block_dunk ( 3 , 3 ) .
1 : dunk (4 , 3 ) :− not block_dunk ( 4 , 3 ) .

Appendix 3: output of pasp2sat on Example 47

e x t e n s i v e .
minor :− not e x t e n s i v e , r1 .
moaning .
c o n s c i o u s :− moaning , r2 .
nowa i t :− not beyond , not i n t e r n a l , not con s c i ou s , e x t e n s i v e , r3 .
beyond :− not nowait , not con s c i ou s , e x t e n s i v e , r4 .
no s eb l e ed .
i n t e r n a l :− noseb l e ed , r5 .
i n t e r n a l :− noseb l e ed , lowblood , r6 .
:− nowait , beyond , e x t e n s i v e .
:− not nowait , not beyond , e x t e n s i v e .

Appendix 4: output of pasp2asp for deciding P |=b
N beyond0.8 of Example 47

The output found below is the disjunctive ASP program that simulates the decision
problem P |=b

N beyond0.8 for Example 47 based on the implementation defined in
Definition 37. Since the output of pasp2sat as given in Appendix 3 can be verified
to be tight, the completion as defined in Section 2.2.4 can be used to transform the
program into set of clauses. The output program, which has answer sets if and only
if P |=b

N beyond0.8 is given by:
r1 .
r2 :− not n_r2 .
n_r2 :− not r2 .
r3 .
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r4 .
r5 :− not n_r5 .
n_r5 :− not r5 .
r6 .

n_nowait ; n_beyond ; n_ex t en s i v e .
nowa i t ; beyond ; n_ex t en s i v e .
e x t e n s i v e .
minor ; e x t e n s i v e ; −r1 .
n_minor ; n_ex t en s i v e .
n_minor ; r1 .
moaning .
c o n s c i o u s ; n_moaning ; −r2 .
n_consc ious ; moaning .
n_consc ious ; r2 .
nowa i t ; beyond ; i n t e r n a l ; c o n s c i o u s ; n_ex t en s i v e ; −r3 .
n_nowait ; n_beyond .
n_nowait ; n_ i n t e r n a l .
n_nowait ; n_consc ious .
n_nowait ; e x t e n s i v e .
n_nowait ; r3 .
beyond ; nowa i t ; c o n s c i o u s ; n_ex t en s i v e ; −r4 .
n_beyond ; n_nowait .
n_beyond ; n_consc ious .
n_beyond ; e x t e n s i v e .
n_beyond ; r4 .
i n t e r n a l ; n_noseb leed ; −r5 .
i n t e r n a l ; n_noseb leed ; n_lowblood ; −r6 .
n_ i n t e r n a l ; n o s eb l e ed ; no s eb l e ed .
n_ i n t e r n a l ; n o s eb l e ed ; r5 .
n_ i n t e r n a l ; l owb lood ; no s eb l e ed .
n_ i n t e r n a l ; l owb lood ; r5 .
n_ i n t e r n a l ; r6 ; n o s eb l e ed .
n_ i n t e r n a l ; r6 ; r5 .
no s eb l e ed .
n_lowblood .

e x t e n s i v e :− s a t u r a t e .
n_ex t en s i v e :− s a t u r a t e .
minor :− s a t u r a t e .
n_minor :− s a t u r a t e .
moaning :− s a t u r a t e .
n_moaning :− s a t u r a t e .
c o n s c i o u s :− s a t u r a t e .
n_consc ious :− s a t u r a t e .
nowa i t :− s a t u r a t e .
n_nowait :− s a t u r a t e .
beyond :− s a t u r a t e .
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n_beyond :− s a t u r a t e .
i n t e r n a l :− s a t u r a t e .
n_ i n t e r n a l :− s a t u r a t e .
no s eb l e ed :− s a t u r a t e .
n_noseb leed :− s a t u r a t e .
l owb lood :− s a t u r a t e .
n_lowblood :− s a t u r a t e .

n_nowait_s ; n_beyond_s ; n_ex ten s i v e_s .
nowait_s ; beyond_s ; n_ex ten s i v e_s .
e x t e n s i v e_ s .
minor_s ; e x t e n s i v e_ s ; −r1 .
n_minor_s ; n_ex t en s i v e_s .
n_minor_s ; r1 .
moaning_s .
con s c i ou s_s ; n_moaning_s ; −r2 .
n_consc ious_s ; moaning_s .
n_consc ious_s ; r2 .
nowait_s ; beyond_s ; i n t e r n a l _ s ; c on s c i ou s_s ; n_ex t en s i v e_s ; −r3 .
n_nowait_s ; n_beyond_s .
n_nowait_s ; n_ i n t e r n a l_ s .
n_nowait_s ; n_consc ious_s .
n_nowait_s ; e x t e n s i v e_ s .
n_nowait_s ; r3 .
beyond_s ; nowait_s ; con s c i ou s_s ; n_ex ten s i v e_s ; −r4 .
n_beyond_s ; n_nowait_s .
n_beyond_s ; n_consc ious_s .
n_beyond_s ; e x t e n s i v e_ s .
n_beyond_s ; r4 .
i n t e r n a l _ s ; n_noseb leed_s ; −r5 .
i n t e r n a l _ s ; n_noseb leed_s ; n_lowblood_s ; −r6 .
n_ i n t e r n a l_ s ; no seb l e ed_s ; no seb l e ed_s .
n_ i n t e r n a l_ s ; no seb l e ed_s ; r5 .
n_ i n t e r n a l_ s ; lowblood_s ; noseb l e ed_s .
n_ i n t e r n a l_ s ; lowblood_s ; r5 .
n_ i n t e r n a l_ s ; r6 ; no seb l e ed_s .
n_ i n t e r n a l_ s ; r6 ; r5 .
no seb l e ed_s .
n_lowblood_s .

s a t u r a t e :− e x t e n s i v e , n_ex t en s i v e .
s a t u r a t e :− minor , n_minor .
s a t u r a t e :− moaning , n_moaning .
s a t u r a t e :− con s c i ou s , n_consc ious .
s a t u r a t e :− nowait , n_nowait .
s a t u r a t e :− beyond , n_beyond .
s a t u r a t e :− i n t e r n a l , n_ i n t e r n a l .
s a t u r a t e :− noseb l e ed , n_noseb leed .
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s a t u r a t e :− l owblood , n_lowblood .

:− e x t en s i v e_s , n_ex t en s i v e_s .
:− minor_s , n_minor_s .
:− moaning_s , n_moaning_s .
:− consc ious_s , n_consc ious_s .
:− nowait_s , n_nowait_s .
:− beyond_s , n_beyond_s .
:− i n t e r n a l_ s , n_ i n t e r n a l_ s .
:− noseb leed_s , n_noseb leed_s .
:− lowblood_s , n_lowblood_s .

s a t u r a t e :− beyond .
:− not s a t u r a t e .
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)

class of decision problems of which complement is in ΣP
i+1, page 28

NP class of problems decidable in polynomial time on no-deterministic TM,
page 27

ΣP
i class of decision problems decidable in polynomial time on a non-deterministic

Turing machine with the use of a ΣP
i oracle, page 28

P class of problems decidable in polynomial time on deterministic Turing ma-
chine (TM), page 27

ΠP
k class of decision problems defined as co(ΣP

k), page 28

q0 an initial state, page 26

QA the set of accepting states from Q, page 26

QR the set of rejecting states from Q, page 26

Σ∗ the set of all strings over symbols in Σ, page 27

ΣP
k class of decision problems defined as NPΣP

k−1 , page 28
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ASP

⊥ language construct denoting contradiction, page 30

|=b brave inference, page 35

|=c cautious inference, page 35

> language construct denoting tautology, page 30

P ? the fixpoint of the operator TP , page 35

A finite set of atoms, page 30

BP Herbrand base, i.e. set of atoms appearing in program P , page 32

body−(r) the set of literals in the body of the rule r preceded by not, page 30

body+(r) the set of literals in body(r) \ body−(r), page 30

body(r) the set of naf-literals in the body of the rule r, page 30

comp(P ) completion of program P , page 39

head(r) the set of literals in the head of the rule r, page 30

L set of all literals defined as A ∪ ¬A, page 30

LitP set of literals appearing in program P , page 32

¬L set defined as {¬l | l ∈ L}, page 30

not negation-as-failure operator, page 30

P I reduct of the program P w.r.t. the interpretation I, page 33

TP immediate consequence operator, page 34

Possibility Theory / Possibilistic Logic

(p, c) pair of a propositional formula p and an associated certainty c in a possib-
ilistic knowledge base, page 43

ω |= ¬a ¬a is satisfied in ω, page 42

ω |= a a is satisfied in ω, page 42

232



List of Symbols

Ω domain in possibility theory; chosen as set of all interpretations 2A in pos-
sibilistic logic, page 42

π possibility distribution, page 40

Π(A) possibility measure over set of worlds A, page 41

Π(p) possibility measure over proposition p, page 42

ΠX possibility measure corresponding with possibility distribution πX , page 41

N(p) necessity measure over proposition p, page 42

N(A) necessity measure over set of worlds A, page 41

NX necessity measure corresponding with the possibility distribution πX , page
41

PASPG (see Chapter 2)

(r, c) pair of a rule r and an associated certainty c in PASPG, page 44

cert(P ) the set of all weights found in a possibilistic program P , page 45

cert+(P ) the set of all weights found in a possibilistic program P , extended with the
negated weights and the weights {0, 1/2, 1}, page 45

P ∗ the set of classical rules of a possibilistic program P , page 44

p∗ the classical rule r of a possibilistic rule p = (r, c), page 44

PL the reduct of a possibilistic program P w.r.t. a set of literals L, page 46

Pc the c-cut of P , page 46

TP (V )(l0) the immediate consequence operator for PASPG and PASPŁ, page 46

V a valuation, page 45

V c the set {l | l ∈ LitP , V (l) ≥ c}, page 46

V c the set {l | l ∈ LitP , V (l) > c}, page 46

lc a literal ‘l’ that is necessary to degree ‘c’, i.e. N(l) ≥ c, page 46
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List of Symbols

CASP

〈H,T,O〉 triple used to encode abductive diagnosis program, page 69

BP the Herbrand base of a communicating program P, i.e. the set of situated
literals than can occur in the communicating program P, page 54

BQ the Herbrand base of a component program Q, page 54

l† a fresh literal, page 58

¬X used to denote the set {Q :¬l | Q : l ∈ X}, page 52

not(X) used to denote the set {not Q : l | Q : l ∈ X}, page 52

P a finite set of program names, page 52

P? the least fixpoint of the immediate consequence operator for communicating
simple programs, page 56

QI the reduct QI for Q ∈ P with I an interpretation of a communicating
disjunctive program P, page 54

TP the immediate consequence operator for communicating simple programs,
page 56

Q :L a shorthand for {Q : l | l ∈ L}, page 52

Q : l determine whether program Q considers the literal l to be true, page 52

XQ used to denote {l | Q : l ∈ X}, i.e. the projection of X on Q, page 52

Xneg used to denote the set {Q : l | not Q : l ∈ X}, i.e. those extended P-situated
literals in X preceded by negation-as-failure, page 52

Xpos used to denote the set of P-situated literals in X, i.e. those extended P-
situated literals in X that are not preceded by negation-as-failure, page
52

PASPr (see Chapter 5)

Π
(
P |=b l

)
degree to which ‘l’ is possibly a brave consequence of P , page 118

Π (P |=c l) degree to which ‘l’ is possibly a cautious consequence of P , page 118

πA possibility distribution over answer sets in PASPr, page 123
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N(r) necessity measure over rule r, page 117

P |=b
N lλ shorthand for N

(
P |=b l

)
≥ λ, page 118

P |=b
Π lλ shorthand for Π

(
P |=b l

)
≥ λ, page 118

P |=c
N lλ shorthand for N (P |=c l) ≥ λ, page 118

P |=c
Π lλ shorthand for Π (P |=c l) ≥ λ, page 118

〈H,T,O〉 triple used to encode abductive diagnosis program, page 126

N
(
P |=b l

)
degree to which ‘l’ is necessarily a brave consequence of P , page 118

N (P |=c l) degree to which ‘l’ is necessarily is a cautious consequence of P , page 118

Pabd possibilistic normal program used to simulate cautious reasoning over an
abductive diagnosis program, page 127

Pact set of rules used to encode the actions of a planning program, page 128

Pcon possibilistic normal program to simulate conformant planning, page 130

Pelem elementary program used to simulate certain reasoning tasks of PASPr with
cautious abductive reasoning, page 126

Prem set of rules used to encode a planning program but that are not used to
model actions, page 128

Simulations

cls(P ) representation of a program P as a set of clauses, page 145

P c
Π(l, λ) the disjunctive program to simulate the decision problem Π (P |=c l) ≥ λ,

page 145

Pbasic(λ) common base program used for the simulation of the decision problems
Π(P |=b l) ≥ λ and N(P |=c l) ≥ λ, page 142

PΠ
brave(l, λ) the program to simulate the decision problem Π(P |=b l) ≥ λ, page 143

PΠ
cautious(l, λ) the program to simulate the decision problem N(P |=c l) ≥ λ, page 143

Pcomplex(λ) common base program used for the simulation of the decision problems
N
(
P |=b l

)
≥ λ and Π (P |=c l) ≥ λ, page 144

P b
N(l, λ) the disjunctive program to simulate the decision problem N

(
P |=b l

)
≥ λ,

page 145
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(Q1, ..., Qn)-focused answer set, 64
P-component

disjunctive program, 53
normal program, 53
simple program, 53

P-situated
disjunctive rule, 53
normal rule, 53
simple rule, 53

P-situated literal, 52

abductive reasoning
cautious, 126
hypotheses, 69
observation, 69
subset-minimal, 69
theory, 69

action, 128
of Turing machine, 26

answer set
clausal
possibilistic,PASPŁ, 99

definite
classical, 32
possibilistic, PASPG, 46

disjunctive
classical, 34
communicating, 55
possibilistic,PASPŁ, 92

normal
classical, 34
communicating, 55
possibilistic, PASPG, 46
possibilistic,PASPŁ, 85

of a communicating program, 55
of a disjunctive program, 34
of a positive disjunctive program, 32
positive disjunctive

classical, 32
simple

classical, 32
communicating, 55
possibilistic, PASPG, 46
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answer set programming, see ASP
ASP, 29–40

complexity, 35
definite, 31
disjunctive, 31
normal, 31
positive disjunctive, 31
semantics, 31
simple, 31
syntax, 30
translation to clauses, 39

atom, 28

body
P-situated rule, 53
rule, 30

brave inference, 35

C-complete, 28
C-hard, 28
CASP, 49–76
cautious abductive reasoning, 126
cautious inference, 35
cell, 26
classical negation, 28
clausal program, 97

positive, 97
possibilistic, 98

clausal rule, 97
positive, 97

clause, 28
clause2asp, 146
CNF, 29
communicating disjunctive program, 53
complexity theory, 25
conformant planning, 128
conjunctive normal form, 29

consistent, 30
P-situated literals, 52
answer set, 34
model, 32
program, 34
valuation, 46

constraint rule, 30

decider, 27
decision problem, 27
definite program, 31
definite rule, 31
dependency graph, 39
deterministic Turing machine, 26
directed negative edge, 39
directed positive edge, 39
disjunction

strong, 79
weak, 79

disjunctive normal form, 28
disjunctive program, 31
disjunctive rule, 30
DNF, 28
domain, 128

effect propositions, 128
extended P-situated literal, 52

fact rule, 30
fixpoint, 35
fluent, 128
fluent literal, 128

global minimality, 63
goal fluent, 128

halts, 26
head, 30
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Herbrand base
of a communicating program P, 54
of a component program, 54
of an ASP program, 32

hypotheses
abductive reasoning, 69

immediate consequence operator, 34
inconsistent

answer set, 34
program, 34

initial state
in conformant planning, 128
of Turing machine, 26

interpretation, 32
consistent, 32
total, 60, 166

language, 27
least specificity, 41
literal, 30
local minimality, 63

minimal model, 32
minimal specificity, 43
model, 32

of a constraint rule, 32
of a positive disjunctive program, 32

mutual influence, 56

naf-literal, 30
necessity measure, 41
negation

classical, 28
negation-as-failure, 30

negation-as-failure, 30
non-deterministic Turing machine, 26
normal program, 31
normal rule, 31

normalized, 41
NP, 27

observation
abductive reasoning, 69

P, 27
PASP

PASPG, 44–47
PASPŁ, 77–112
PASPr, 113–135

pasp2asp, 145
pasp2sat, 145
plan, 128
planning problem, 128
positive clausal program, 97
positive clausal rule, 97
positive cycle, 39
positive disjunctive program, 31
positive disjunctive rule, 31
positive path, 39
possibilistic answer set

of PASPG, 46
of PASPŁ, 82

possibilistic answer set programming, 44
possibilistic clausal program, 98

positive, 98
possibilistic disjunctive rule, 90
possibilistic knowledge base, 43
possibilistic logic, 41
possibilistic positive clausal program, 98
possibility distribution, 40

least specific, 41
minimally specific, 43

possibility measure, 41
possibility theory, 40
probability theory, 22
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program
ASP
definite, 31
disjunctive, 31
normal, 31
positive disjunctive, 31
simple, 31

CASP
disjunctive, 53
normal, 53
simple, 53

inconsistent, 34
PASP
definite, 44
disjunctive, 44
normal, 44
positive disjunctive, 44
simple, 44

proper, 128

QBF, 29

R-local, 52
reduct, 33

for possibilistic disjunctive program, 139
of a component program, 54

rule
clausal, 97
positive, 97

definite, 31
disjunctive, 30
situated, 53

normal, 31
situated, 53

positive disjunctive, 31
simple, 31
situated, 53

rule table, 26

SAT, 28
saturation, 36
self-reference, 56
simple program, 31
simple rule, 31
state, 128
strong disjunction, 79
strong negation, see classical negation
subset-minimal abductive reasoning, 69

tape head, 26
theory

abductive reasoning, 69
tight, 39
Turing machine, 25

unSAT, 29

vacuous, 41
valuation, 45
value propositions, 128
violate, constraint rule, 32

weak disjunction, 79
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