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Samenvatting

Overzicht
De belangrijkste resultaten van het verrichtte wetenschappelijk onderzoek wor-
den voorgesteld in dit proefschrift. In het algemeen handelen ze over het
numeriek oplossen van elektromagnetische problemen. Elektromagnetische
velden worden opgewekt door bronnen, bijvoorbeeld elektrische ladingen en
stromen, en planten zich voort doorheen de ruimte volgens de vergelijkingen
van Maxwell (zie hoofdstuk 1). Typisch zijn bij een elektromagnetisch probleem
de geometrie, d.w.z. de verdeling en elektromagnetische eigenschappen van
materie in de ruimte, en bronnen gekend en is men op zoek naar de opgewekte
velden. Slechts voor een beperkt aantal elektromagnetische problemen (bv.
verstrooiing aan een perfect geleidende bol in een homogene ruimte∗) kan de
oplossing geschreven worden als een wiskundige formule met gekende functies.
Voor de meeste problemen, waaronder vele praktische antenneproblemen en
ingewikkelde geometrieën, is men op zoek naar een benaderde oplossing van de
Maxwellvergelijkingen met behulp van een numerieke oplossingsmethode (zoals
een eindige-elementen- of randelementenmethode). De benaderde oplossing
ligt in een ruimte met eindige dimensie n (grofweg gesproken kan ze enkel
veranderen in n mogelijke richtingen), en de hoofdgedachte is dat ze conver-
geert naar de exacte oplossing als we n laten toenemen (ten koste van hogere
berekeningstijden), een eigenschap die bewezen is voor de meeste bestaande
numerieke oplossingsmethoden.

Het proefschrift is opgebouwd als volgt. Hoofdstuk 1 voert de heersende vergelij-
kingen en notaties in die gebruikt worden doorheen het manuscript. De volgende
hoofdstukken zijn onderverdeeld in twee delen, die de twee verschillende soorten
van onderzochte elektromagnetische problemen weerspiegelen. In het eerste
deel wordt een elektromagnetischegolfanalyse van golfgeleiders met meerdere
geleiders beschreven. Het tweede deel bespreekt een preconditioneerder voor
de Poincaré-Steklov-operator van een heterogeen gebied die het oplossen van
verstrooiingsproblemen versnelt.

∗Voor de geïnteresseerde lezer: dit komt doordat de Helmholtz-differentiaalvergelijking
scheidbaar is in bolcoördinaten (waarin de punten op het boloppervlak een constante radiale
coördinaat hebben), wat een mogelijke manier is om de Maxwellvergelijkingen analytisch op
te lossen. Er kan aangetoond worden dat er slechts 11 coördinaatsystemen bestaan waarin
deze truc met scheiding van veranderlijken kan worden toegepast.
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Deel I
Talrijke toepassingen, waaronder golfgeleiders verbonden met een antenne of mi-
crogolfovencaviteit, elektrische verbindingen op een printplaat, trans-Atlantische
optischevezelkabels, coaxkabelnetwerken en hoogspanningsleidingen, steunen
op de voortplanting van elektromagnetische golven voor de overbrenging van
informatie of energie door een structuur die als onveranderlijk kan worden
beschouwd in een bepaalde ruimtelijke richting, bijgenaamd de lengterichting∗.
Het nauwkeurig voorspellen van alle optredende elektromagnetische verschijnse-
len, waaronder demping ten gevolge van verliezen, voortplantingssnelheid van
golfpakketten, overspraak, (mode)dispersie, verdeling van elektromagnetische
energie en gevoeligheid voor elektromagnetische storing, komt in wezen neer op
dezelfde vraag: wat is (zijn†) de oplossing(en) van de Maxwellvergelijkingen voor
een gegeven tweedimensionale geometrie en een gegeven excitatie. Het eerste
deel beoogt het voorstellen van een efficiënt numeriek raamwerk, gebaseerd
op een randelementenmethode (REM) voor de elektromagnetischegolfanalyse
(d.w.z. vertrekkend vanuit de Maxwellvergelijkingen) van de belangrijke en prak-
tisch relevante klasse van golfgeleiders die bestaan uit stuksgewijs homogene,
isotrope en mogelijks goedgeleidende materiaalgebieden.

Het inleidende hoofdstuk 2 heeft tot doel de lezer vertrouwd te maken met de
eigenmodeanalyse van golfgeleiders (met meerdere geleiders) in het frequen-
tiedomein. Een opsplitsing van de eigenmodes, op basis van de ligging van
hun overeenkomstige voortplantingsconstantes in het complexe vlak, wordt
besproken en twee benaderende theorieën voor de bepaling van de fundamen-
tele modes van een golfgeleider met meerdere geleiders, de quasi-TEM- en
quasi-TM-analyse, worden in herinnering gebracht.

Technologische vorderingen in halfgeleidergebaseerde informatieverwerkings-
systemen gedurende de laatste tientallen jaren, hebben het mogelijk gemaakt
voor gebruikers om complexe inhoud (bv. hogeresolutiebeelden, afbeeldingen,
spraak) te delen over digitale communicatiekanalen met een hoge bandbreedte‡.
Vaak worden de informatiestromen van meerdere gebruikers tegelijk verzonden
over dezelfde fysische golfgeleider (bv. optischevezelkabel, coaxkabel, gekop-
pelde microstripbaantjes), waardoor elektromagnetische golven op nog hogere
frequenties vereist zijn om verstoring te vermijden. Aangezien de quasi-TEM-
∗sommige klassen van golfgeleiders die niet aan deze voorwaarde voldoen, zoals de

wijdverspreide getwistpaarkabel, zijn alsnog gelijkwaardig met een inhomogene anisotrope
golfgeleider die onveranderlijk is in de lengterichting langsheen de kabel, na een geschikte
coördinatentransformatie
†het bestaan van meerdere oplossingen van de bronloze Maxwellvergelijkingen in het

frequentiedomein, genaamd eigenmodes (zie hoofdstuk 2), treedt op nadat de randvoorwaarde
op oneindig in de lengterichting wordt verzacht (t.t.z. de oplossingen worden toegelaten om
zich te gedragen als een golf invallend vanuit oneindig)
‡voor een gegeven signaalvermogen aan de zender en ruisvermogen op het kanaal stijgt

de minimaal vereiste bandbreedte in Hz voor het verzenden van een bitstroom met een
willekeurig lage kans op fouten als de zendsnelheid in bits/s toeneemt, ten gevolge van de wet
van Shannon-Hartley
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en quasi-TM-analyse enkel geldig zijn voor voldoende lage frequenties, is er
een duidelijke nood aan een elektromagnetischegolfanalyse voor de huidige en
toekomstige generatie van geavanceerde hogesnelheidsverbindingen.

Om nauwkeurig alle golfverschijnselen te voorspellen die optreden in gelei-
ders (zoals de gelijkmatige stroomverdeling bij lage frequenties en de ophoping
van stroom nabij de randen ten gevolge van het skin- en nabijheidseffect bij
hogere frequenties), stelt hoofdstuk 3 een nieuwe methode voor voor de effici-
ënte berekening van interactie-integralen in een 2.5-D REM, voor willekeurige
geleidbaarheden en frequenties.

Een nauwkeurige voorspelling van de voorplantingssnelheid van golfpakketten
(die latentie beïnvloedt) en modedispersie (die een lineaire tijdsinvariante vervor-
ming van een golfpakket veroorzaakt naargelang het zich voortplant doorheen
de golfgeleider) vereist kennis van de dispersiekrommen van de eigenmodes,
m.a.w. van het gedrag van de overeenkomstige voortplantingsconstantes in
functie van de frequentie. In hoofdstuk 4 leiden we een aantal analytische eigen-
schappen af van de numeriek verkregen dispersiekrommen. Deze eigenschappen
worden gebruikt in een numeriek raamwerk dat in staat is om de dispersie-
krommen en eigenmodeveldverdelingen van golfgeleiders met meerdere geleiders
nauwkeurig te bepalen, in functie van de frequentie, zoals geïllustreerd door
numerieke voorbeelden. Bovendien wordt de invloed van een verlieshebbende
afschermingsgeleider op de complexe modes van een afgeschermde diëlektrische
‘beeld’-geleider voor het eerst onderzocht.

Deel II
Men kan gerust stellen dat de twee belangrijkste eigenschappen van een nume-
rieke oplossingsmethode bestaan uit de convergentie naar de exacte oplossing
bij een toenemend aantal basisfuncties n, zoals eerder uitgelegd, en de conditie-
eigenschappen als functie van n. In essentie is de numerieke oplossing van een
grote klasse van lineaire problemen, waaronder de elektromagnetische verstrooi-
ingsproblemen die beschouwd worden in dit deel, de oplossing van een lineair
systeem met n vergelijkingen en n onbekenden, voorgesteld door een complexe
vierkante matrix M en een complexe rechterlidvector b. In een digitaal opslag-
en informatieverwerkingstoestel worden de elementen van M en b afgerond naar
een voorstelbaar getal dat behoort tot een eindige verzameling getallen, hetgeen
impliceert dat de opgeslagen versies M̃ en b̃ over het algemeen verschillen van
M en b∗. Het conditiegetal van M, d.w.z. de verhouding van de grootste tot de
kleinste singuliere waarde, is een belangrijke grootheid voor het schatten van de
mogelijke fout van de benaderde oplossing x̃ = M̃−1b̃ t.o.v. de foutvrije oplossing
x = M−1b. Als het conditiegetal groot is, kan de relatieve fout van x̃ veel groter
zijn dan de relatieve fout van M̃ en b̃. Bovendien heeft een hoog conditiegetal de

∗een andere bron van fouten vloeit voort uit de benaderde berekening van de elementen
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neiging om het aantal iteraties van een iteratief oplossingsalgoritme te verhogen,
voor een gegeven nauwkeurigheid∗.

Uit de voorgaande beschouwingen volgt dat het wenselijk is dat het conditiegetal
van M zo dicht mogelijk bij 1 ligt. Helaas is dit voor veel operatoren, waaronder
de gediscretiseerde elektrische-veldintegraaloperator (EVIO) T, gedefinieerd
in hoofdstuk 5, en de gediscretiseerde Poincaré-Steklov-operator (PS) P van
een heterogeen gebied, gedefinieerd in hoofdstuk 6, niet het geval en blijft het
conditiegetal zelfs stijgen voor toenemende n, zonder een maximumwaarde aan
te nemen. Een mogelijke oplossing is het voorvermenigvuldigen van het lineaire
systeem met een preconditioneerder.

Hoofdstuk 5 bespreekt de belangrijkste wiskundige resultaten die geleid heb-
ben tot een vermenigvuldigende Calderón-preconditioneerder (VCP) A van de
EVIO, gebaseerd op een familie van Buffa-Christiansenfuncties die duaal zijn
met de Rao-Wilton-Glissonfuncties. Er wordt aangetoond dat het spectrale
conditiegetal van AT uniform begrensd is in n.

In hoofdstuk 6 stellen we voor het eerst een VCP voor de PS-operator van een
heterogeen gebied voor. Er wordt bewezen dat de continue EVIO de continue
PS-operator regulariseert, t.t.z. dat hun product kan geschreven worden als een
compacte perturbatie van een goedgeconditioneerde operator, in de geschikte
Sobolevruimte. Er wordt numeriek bevestigd dat het conditiegetal van AP
begrensd is, onafhankelijk van n. We tonen aan dat de VCP het iteratief oplos-
sen versnelt van een nieuwe herleidde hybride eindige/randelementenmethode,
d.i. een numerieke oplossingsmethode voor verstrooiingsproblemen aan een
heterogeen gebied ingebed in een homogene ruimte.

∗dit is bewezen voor positief-definiete systemen die opgelost worden met de ‘conjugate-
gradient’-methode; er bestaat tot op heden geen iteratieve methode die bewijsbaar goed
presteert voor algemene systemen, maar men kan wel stellen dat voor de meeste methodes
niet alleen het conditiegetal, maar ook de verdeling van de eigenwaarden in het complexe
vlak van belang is (het geval van eigenwaarden die in het rechterhalfvlak liggen is beter dan
eigenwaarden die de oorsprong omcirkelen, voor een gegeven conditiegetal)



Summary

Outline
The main results of the conducted scientific research are presented in this
dissertation. In general, they concern the numerical solution of electromagnetic
problems. Electromagnetic fields are excited by sources, for example electric
charges and currents, and propagate through space according to Maxwell’s
equations (see chapter 1). Typically, in an electromagnetic problem, the geom-
etry, i.e., the distribution and electromagnetic properties of matter in space,
and sources are given, and the generated electromagnetic fields are sought
for. Only for a few electromagnetic problems (e.g., scattering at a perfectly
conducting spherical ball embedded in a homogeneous space∗), the solution
can be written as a mathematical formula in terms of known functions. For
most problems, including many practical antenna problems and complex geome-
tries, an approximate solution to Maxwell’s equations is sought for, by using
a numerical solution technique (such as a finite element or boundary element
method). The approximate solution lies in a space with finite dimension n
(loosely speaking, it can only vary in n possible directions), and the principal
idea is that it converges to the exact solution if we increase n (at the cost of
higher computational times), a property that has been proven for most existing
numerical solution techniques.

The dissertation is structured as follows. Chapter 1 introduces the govern-
ing equations and notations that are used throughout the manuscript. The
subsequent chapters are divided over two parts, which reflect the two distinct
types of investigated electromagnetic problems. In the first part, a full-wave
analysis of multiconductor waveguides is described. The second part discusses
a preconditioner for the Poincaré-Steklov operator of a heterogeneous domain
that accelerates the solution of scattering problems.

Part I
Numerous applications, including waveguides connected to an antenna or a
microwave oven cavity, signal traces on a printed circuit board, transatlantic

∗For the interested reader: this is because the Helmholtz differential equation is separable
in spherical coordinates (in which the points on the spherical boundary surface have a constant
radial coordinate), which is one way to solve Maxwell’s equations analytically. It can be shown
that there are only 11 coordinate systems where we can apply this separation of variables
trick.
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optical fiber cables, coaxial cable networks, and overhead power lines, rely on
the propagation of electromagnetic waves for the transportation of information
or energy through a structure that can be considered invariant in a certain
spatial direction, called the longitudinal direction∗. Accurate prediction of
all occurring electromagnetic phenomena, including attenuation due to losses,
propagation speed of wave packets, crosstalk, (modal) dispersion, distribution
of electromagnetic energy, and susceptibility to electromagnetic interference,
essentially boils down to the same question: what is (are†) the solution(s) to
Maxwell’s equations for a given two-dimensional geometry and a given excitation.
The goal of the first part is to present an efficient numerical framework, based
on a boundary element method (BEM), for the full-wave (i.e., starting from
Maxwell’s equations) modal analysis of the important and practically relevant
class of waveguides consisting of piecewise homogeneous isotropic, and possibly
highly conductive, material regions.

The introductory chapter 2 aims to acquaint the reader with the frequency-
domain modal analysis of (multiconductor) waveguides. A classification of the
eigenmodes, based on the location of their corresponding propagation constants
in the complex plane, is discussed and two approximative theories for the
determination of the fundamental modes of a multiconductor waveguide, the
quasi-TEM and quasi-TM analyses, are recalled.

Technological advances of semiconductor-based information processing systems
in the past decades, have enabled users to share complex content (e.g. high-
definition video, images, voice) using high-bandwidth‡ digital communication
channels. Often, the information streams of multiple users are multiplexed over
the same physical waveguide (e.g. optical fiber cable, coaxial cable, coupled
microstrip lines), which requires the use of electromagnetic waves at even higher
frequencies, to avoid interference. As the quasi-TEM/TM analyses are only
valid for sufficiently low frequencies, the need for a full-wave analysis of current
and future state-of-the-art high-speed interconnects is apparent.

To accurately predict all wave phenomena occurring inside conductors (such as
the uniform distribution of the current at low frequencies, and the concentration
of current near the edges due to the skin and proximity effect at higher frequen-
cies), chapter 3 presents a novel method for the efficient evaluation of interaction
integrals in a 2.5-D BEM, for arbitrary conductivities and frequencies.

∗some types of waveguides that do not satisfy this condition, such as the ubiquitous twisted
pair cable, are still equivalent to an inhomogeneous anisotropic waveguide that is invariant in
the longitudinal direction along the cable after a suitable coordinate transformation
†the existence of multiple solutions to the sourceless frequency-domain Maxwell equations,

called eigenmodes (see chapter 2), follows after relaxing the boundary condition at infinity in
the longitudinal direction (i.e., the solutions are allowed to behave as an incoming wave from
infinity)
‡for a given power level of the transmitter and noise power level of the channel, the

minimal required bandwidth in Hz to transmit a bitstream with arbitrarily low bit error rate,
increases with increasing transmission rate in bits/s, by the Shannon-Hartley theorem
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Accurate prediction of the propagation speed of wave packets (which influences
latency) and modal dispersion (which causes a linear time-invariant deformation
of a wave packet as it travels through the waveguide), necessitates knowledge of
the dispersion curves of the eigenmodes, i.e., the behavior of the corresponding
propagation constants as a function of frequency. In chapter 4, we derive some
analytic properties of the numerically obtained dispersion curves. These proper-
ties are leveraged in a numerical framework, capable of accurately determining
the propagation constants and eigenmode field distributions of multiconductor
waveguides as a function of frequency, as illustrated by numerical examples.
Moreover, the influence of a lossy shielding conductor on the complex modes of
a shielded dielectric image guide is investigated for the first time.

Part II
Arguably, the two most important properties of a numerical solution technique
are convergence to the exact solution for an increasing number n of basis
functions, as explained earlier, and conditioning properties as a function of n.
In essence, for a large class of linear problems, including the electromagnetic
scattering problems considered in this part, the numerical solution is the solution
of a linear system of n equations with n unknowns, represented by a complex
square matrix M, and a complex right hand side vector b. In a digital storage
and information processing device, the elements of M and b are rounded to
a representable number belonging to a finite set of numbers, implying that
the stored versions M̃ and b̃ are different from M and b, in general∗. The
condition number of M, i.e., the ratio of its largest to smallest singular value, is
an important parameter for estimating the possible error on the approximate
solution x̃ = M̃−1b̃ w.r.t. the error-free solution x = M−1b. If the condition
number is large, the relative error of x̃ can be much higher than the relative
error of M̃ and b̃. Moreover, a high condition number tends to increase the
number of iterations of an iterative solution algorithm, for a given precision†.

From the previous considerations, it is desirable that the condition number of
M is as close to 1 as possible. Unfortunately, for a lot of operators, including
the discretized electric field integral operator (EFIO) T, defined in chapter
5, and the discretized Poincaré-Steklov (PS) operator P of a heterogeneous
domain, defined in chapter 6, this is not the case and the condition number
even continues to increase without bound for increasing n. A possible remedy
is to premultiply the linear system with a preconditioner.

∗another source of error originates from the approximate calculation of the elements
†this has been proven for positive definite systems solved by the conjugate gradient

method; to date, no iterative method exists that provably performs well for general systems,
but it can be stated that, for most methods, not only the condition number, but also the
distribution of the eigenvalues in the complex plane is important (the case of eigenvalues
lying in the right half-plane is better than eigenvalues surrounding the origin, for a given
condition number)
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Chapter 5 recalls the main mathematical results that have led to a Calderón
multiplicative preconditioner (CMP) A of the EFIO, based on a family of Buffa-
Christiansen functions that are dual to the Rao-Wilton-Glisson functions. It is
shown that the spectral condition number of AT is bounded uniformly in n.

In chapter 6, we present a CMP for the PS operator of a heterogeneous do-
main, for the first time. It is proven that the continuous EFIO regularizes the
continuous PS operator, i.e., that their product can be written as a compact per-
turbation of a well-conditioned operator, in the appropriate Sobolev space. It is
confirmed numerically that the condition number of AP is bounded, independent
of n. We show that the CMP accelerates the convergence of the iterative solu-
tion of a novel reduced hybrid finite/boundary element method (FEM-BEM), a
numerical solution technique for scattering problems at a heterogeneous domain
embedded in a homogeneous space.
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1
Introduction

F F F

“Changing electric fields produce magnetic fields, and changing mag-
netic fields produce electric fields. Thus these fields can animate one
another in turn, giving birth to self-reproducing disturbances that
travel at the speed of light. Ever since Maxwell, we understand that
these disturbances are what light is.”

Frank Wilczek, The Lightness of Being

1.1 Maxwell’s equations
1.1.1 Time domain equations
The interactions between the electric field E in V/m, the magnetic field H
in A/m, the dielectric displacement D in C/m2, the magnetic induction B in
Wb/m2, the electric current density J in A/m2, the electric charge density P
in C/m3, the magnetic current density∗ M in V/m2 and the magnetic charge
density Pm in Wb/m3 (the last two quantities have not yet been experimentally
observed, but are added to make the equations more symmetric) as a function
of space and time, are governed by Maxwell’s equations [2], written (under
some mild and mostly valid assumptions, such as flat spacetime and negligible
quantum effects) as a system of coupled linear partial differential equations
in (1.1)–(1.4). These equations were first postulated, albeit in a different but
∗note that we adopt the sign convention of [1], which allows us to write the Calderón

projectors in Section 1.3 as mappings from
(

m
j

)
to
(

n̂× e
n̂× h

)
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equivalent formulation, by the Scottish physicist James Clerk Maxwell in the
nineteenth century [3].

∇×E(r, t) = −∂tB(r, t) + M(r, t) (1.1)
∇×H(r, t) = ∂tD(r, t) + J(r, t) (1.2)
∇ ·D(r, t) = P (r, t) (1.3)
∇ ·B(r, t) = Pm(r, t) (1.4)

1.1.2 Time-harmonic equations
In this thesis, all quantities are assumed to behave sinusoidally in time, with
the same∗ angular frequency ω = 2πf . In that case Maxwell’s equations reduce
to (1.5)–(1.8), after introducing complex phasors (written in lowercase, e.g.
E(r, t) = <[e(r)ejωt]). This frequency domain formulation is commonly used
for the description of narrow-band systems (e.g. the calculation of antenna
properties).

∇× e(r) = −jωb(r) + m(r) (1.5)
∇× h(r) = jωd(r) + j(r) (1.6)
∇ · d(r) = ρ(r) (1.7)
∇ · b(r) = ρm(r) (1.8)

The properties of the material (e.g. dielectrics, conductors or (ferro)-magnetic
materials) in which the fields exist, define the relations between the fields and the
inductions†. In this thesis, the occurring media are considered locally reacting,
linear and time-invariant (we further refrain from so-called bi-materials, i.e.
e and h only depend on d and b, respectively), leading to the constitutive
equations (1.9)–(1.10), with ¯̄ε and ¯̄µ the permittivity and permeability dyadics,
respectively.

d(r) = ¯̄ε(r) · e(r) (1.9)
b(r) = ¯̄µ(r) · h(r) (1.10)

Sometimes we additionally assume that the materials are isotropic, leading to
the constitutive equations (1.11)–(1.12), with ε ∈ C and µ ∈ C the permittivity
and permeability, respectively.

d(r) = ε(r)e(r) (1.11)
b(r) = µ(r)h(r) (1.12)

∗note that this additionally assumes time invariance of the constitutive equations and
boundary conditions, preventing e.g. the movement of scatterers w.r.t. the introduced Cartesian
coordinate system
†let us call e and h the fields, d and b the inductions, j and m the currents and ρ and

ρm the charges
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1.1.3 Time- and space-harmonic equations
In Part I, we investigate solutions of Maxwell’s equations (1.5)–(1.8) for trans-
lation invariant structures∗, i.e., structures for which ∂z ¯̄ε(ρ) = ∂z ¯̄µ(ρ) = ¯̄0,
that have an e−jβz dependence (β ∈ C). It is easy to show that the pha-
sor fields (written in non-italic upper case, i.e. e(r) = E(ρ)e−jβz, imply-
ing that E(r, t) = <[e(r)ejωt] = <[E(ρ)ej(ωt−βz)]) satisfy (1.13)–(1.16), with
∇t = ∂xx̂ + ∂yŷ.

(∇t − jβẑ)×E(ρ) = −jωB(ρ) + M(ρ) (1.13)
(∇t − jβẑ)×H(ρ) = jωD(ρ) + J(ρ) (1.14)
(∇t − jβẑ) ·D(ρ) = P(ρ) (1.15)
(∇t − jβẑ) ·B(ρ) = Pm(ρ) (1.16)

Denoting† E(ρ) = Et(ρ) + Ez(ρ)ẑ (and likewise for the other fields), the curl
equations (1.13)–(1.14) further reduce to (1.17)–(1.20).

∇t ×Et(ρ) = −jωBz(ρ)ẑ +Mz(ρ)ẑ (1.17)
−jβẑ×Et(ρ) +∇t × Ez(ρ)ẑ = −jωBt(ρ) + Mt(ρ) (1.18)

∇t ×Ht(ρ) = jωDz(ρ)ẑ + Jz(ρ)ẑ (1.19)
−jβẑ×Ht(ρ) +∇t ×Hz(ρ)ẑ = jωDt(ρ) + Jt(ρ) (1.20)

1.2 Function spaces
It is natural to ask to which set of functions the fields and inductions belong
(we restrict ourselves to the three-dimensional time-harmonic phasor fields).
Let us consider a bounded domain Ω ⊂ R3 with boundary Γ and outward unit
normal n̂ (Fig. 1.1). For square integrable volume sources m(r), j(r), ρ(r) and
ρm(r), the total electric and magnetic energy inside Ω is finite, implying that
the electric and magnetic fields belong to the Sobolev space (see e.g. [4] or the
introductory chapters of [5] for an introduction to functional analysis) H(curl,Ω)
with elements u : Ω→ C3, defined in (1.21), with L2(Ω) = (L2(Ω))3 the Hilbert
space of square integrable vector functions (distributions, in fact) on Ω and all
derivatives considered in distributional sense (see [6] for the specific Sobolev
spaces introduced in this section).

e,h ∈ H(curl,Ω) =
{

u ∈ L2(Ω) | ∇× u ∈ L2(Ω)
}

(1.21)

For square integrable sources, the inductions, as well as the currents, belong to
H(div,Ω).

d,b, j,m ∈ H(div,Ω) =
{

u ∈ L2(Ω) | ∇ · u ∈ L2(Ω)
}

(1.22)
∗if assumed, translation invariance is along the z dimension
†Et is called the transversal component, i.e., Et ·ẑ = 0, and Ez the longitudinal component
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Figure 1.1: Domain Ω ⊂ R3 with currents j,m flowing on its boundary Γ and
generating fields in R3.

In the following section, we define some operators that operate on boundary
functions, i.e., restrictions of the fields to the boundary Γ. We are thus interested
in the trace space of H(curl,Ω). Under the rather technical assumption of
Lipschitz continuity (see e.g. [5] for a definition) of Γ, there exists a continuous
and surjective trace operator γt that maps H(curl,Ω) onto the tangential trace
space∗ H− 1

2 (divΓ,Γ) (see [7] for the subtler details and precise definition for
Lipschitz domains).

H− 1
2 (divΓ,Γ) = {ψ ∈ H− 1

2 (Γ) | ψ · n̂ = 0 and ∇Γ ·ψ ∈ H−
1
2 (Γ)} (1.23)

Indeed, we cannot simply evaluate a given electric field e ∈ H(curl,Ω) at the
boundary by evaluating n̂× e on Γ, as this makes no sense in the distributional
context (i.e., we can change the field on a set with zero measure, for example on
the surface Γ, without altering the distribution it represents). However, mostly
because the considered distributions in practice have a continuous representative
in the neighborhood of Γ, we will not ensue these technicalities in this thesis
and colloquially refer to γte as n̂× e|Γ.

The fields and inductions in R3\Ω belong to spaces with locally square integrable
densities (and curl or divergence, respectively). We refer to [6] for more details.

It should be noted that in most cases we consider current densities j,m flowing
on the boundary, but this will be clear from the context. Thus, with slight
abuse of notation we write j,m ∈ H− 1

2 (divΓ,Γ) for surface current densities in
A/m and V/m, respectively.

∗note that, for notational convenience, we refrain from the subscript t used by some
authors
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1.3 Calderón projectors
In this section, some boundary integral operators that map tangential current
densities to their excited tangential boundary fields in a homogeneous isotropic
domain (i.e., with constant ε and µ) will be defined. We introduce the so-called
Calderón projectors in three dimensions, which will be used in Part II, and the
Fourier transformed equivalent operators for translation-invariant structures,
which will be used for the waveguide analysis in Part I.

1.3.1 Time-harmonic fields
Consider a homogeneous isotropic space R3 (i.e., constant ε and µ), with
tangential current densities j,m ∈ H− 1

2 (divΓ,Γ) flowing on the boundary Γ of
a bounded Lipschitzian domain Ω (Fig. 1.1). The currents generate fields in
Ω− , Ω and Ω+ , R3 \ Ω, called the interior and exterior domain, respectively.
The exterior and interior traces of the (rotated) tangential electric and magnetic
field are given by

lim
Ω±3r→Γ

(
n̂× e
n̂× h

)
= P±

(
m
j

)
, P± =

(
Kk ± 1

2 −ηTk
Tk/η Kk ± 1

2

)
, (1.24)

with η =
√
µ/ε the impedance of the homogeneous medium, P+ and P− the

exterior and interior Calderón projectors, respectively [1], [6], and the operators
Tk : H− 1

2 (divΓ,Γ) → H− 1
2 (divΓ,Γ) and Kk : H− 1

2 (divΓ,Γ) → H− 1
2 (divΓ,Γ)

given by∗

Tk : m 7→ n̂× jk
∫

Γ
g(r− r′)m(r′)dS′ (1.25)

− n̂× 1
jk

∫
Γ
∇g(r− r′)∇′ ·m(r′)dS′,

Kk : m 7→ n̂×
[
∇×

∫
Γ
g(r− r′)m(r′)dS′

]
, (1.26)

with k = ω
√
εµ the wavenumber and g(r − r′) = e−jk|r−r′|/(4π|r − r′|) the

Green’s function of the three-dimensional scalar Helmholtz operator that satisfies
the Sommerfeld radiation condition and the distributional equation

∇2g(r) + k2g(r) = −δ(r). (1.27)

The projector property (P±)2 = P± immediately implies the so-called Calderón
identities

TkKk +KkTk = 0, (1.28)

K2
k − T 2

k = 1
4 . (1.29)

∗all integrals are considered in Cauchy principal value sense, i.e., as the limit for δ → 0 of
the integrals over the surface Γ \ Γδ , with Γδ the intersection of Γ with a ball with radius δ,
centered around the singularity r ∈ Γ of the integrands [2]
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Figure 1.2: Cross-section Ω̃ ⊂ R2 of a translation-invariant structure with
currents J,M flowing on its boundary Γ̃ and generating fields in R3.

1.3.2 Time- and space-harmonic fields
If the structure of Fig. 1.1 is translation-invariant (denote Ω̃ ⊂ R2 and Γ̃ as
the restrictions of Ω and Γ to the cross sectional (x, y) plane, Ω̃− , Ω̃ and
Ω̃+ , R2 \ Ω̃, as shown in Fig. 1.2) and the sources and fields have an e−jβz
dependence, Maxwell’s equations (1.13)–(1.16) hold. Equation (1.24) reduces to

lim
Ω̃±3ρ→Γ̃

(
n̂×E
n̂×H

)
= P̃±

(
M
J

)
, P̃± =

(
K̃k ± 1

2 −ηT̃k
T̃k/η K̃k ± 1

2

)
, (1.30)

with P̃± the 2.5-D∗ Calderón projectors and†

T̃k : M 7→ n̂× jk
∫

Γ̃
G(ρ− ρ′)M(ρ′)dc′ (1.31)

− n̂× 1
jk

∫
Γ̃
(∇t − jβẑ)G(ρ− ρ′)(∇′t − jβẑ) ·M(ρ′)dc′,

K̃k : M 7→ n̂×
[
(∇t − jβẑ)×

∫
Γ̃
G(ρ− ρ′)M(ρ′)dc′

]
, (1.32)

with γ =
√
k2 − β2 the transversal wavenumber‡ and G(ρ−ρ′) = − j4H

(2)
0 (γ|ρ−

ρ′|) the Green’s function of the two-dimensional scalar Helmholtz operator that
∗although the geometry is translation-invariant, the fields have a longitudinal dependence

e−jβz , implying that Maxwell’s equations do not split into purely 2-D TE and TM equations
†all integrals are considered in Cauchy principal value sense, i.e., as the limit for δ → 0 of

the integrals over the surface Γ̃ \ Γ̃δ , with Γ̃δ the intersection of Γ̃ with a disc with radius δ,
centered around the singularity ρ ∈ Γ̃ of the integrands
‡the branch cuts are chosen on the hyperbola in the β plane such that =γ ≤ 0 and the

Sommerfeld radiation condition of the Green’s function is satisfied
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satisfies the Sommerfeld radiation condition and the distributional equation

∇2
tG(ρ) + γ2G(ρ) = −δ(ρ). (1.33)

Proof. Introducing m(r′) = M(ρ′)e−jβz′ into (1.26) leads, with r = |ρ− ρ′|
and |r− r′| =

√
r2 + (z − z′)2, to

Kk(m)(r) = n̂×
[
∇×

∫
Γ
g(r− r′)M(ρ′)e−jβz

′
dS′
]

= n̂×
[
∇×

∫
Γ̃

M(ρ′)dc′
∫ ∞
−∞

e−jk
√
r2+(z−z′)2

4π
√
r2 + (z − z′)2

e−jβz
′
dz′

]

= n̂×
[
∇×

∫
Γ̃

M(ρ′)e−jβzdc′
∫ ∞
−∞

e−jkr
√

1+u2

4π
√

1 + u2
e−jβrudu

]

= n̂×
[
∇×

∫
Γ̃

M(ρ′)e−jβzdc′
∫ ∞
−∞

1
4π e

−jr(k cosh v+β sinh v)dv

]
= n̂×

[
∇×

∫
Γ̃

−j
4 H

(2)
0 (r

√
k2 − β2)M(ρ′)e−jβzdc′

]
= K̃k(M)(ρ)e−jβz,

where we made the substitutions (z − z′)/r = u = sinh v and the penultimate
step follows from [8, equation 10.9.16]. Completely similar, one shows that
Tk(m)(r) = T̃k(M)(ρ)e−jβz, for m(r′) = M(ρ′)e−jβz′ .

1.4 Representation formulas
The following representation formulas∗ (1.34)–(1.37), which will be used in
Part I, express relations between the transverse tangential (subscript t) and
longitudinal (subscript z) components of the phasors of the time- and space-
harmonic total electric and magnetic field E = Ett̂ + Enn̂ + Ez ẑ and H =
Htt̂ +Hnn̂ +Hz ẑ, respectively, and the incoming electric and magnetic field
E(i) = E

(i)
t t̂ + E

(i)
n n̂ + E

(i)
z ẑ and H(i) = H

(i)
t t̂ +H

(i)
n n̂ +H

(i)
z ẑ due to sources

in Ω̃−, respectively, expanded in the local orthogonal coordinate system on the

∗the integrals of the terms in ∂2G(ρ−ρ′)
∂n∂n′ are interpreted in Hadamard finite part sense

(or, equivalently, as the limit of the integrals for ρ→ Γ̃), all other integrals are considered
in Cauchy principal value sense, i.e., as the limit for δ → 0 of the integrals over the surface
Γ̃ \ Γ̃δ , with Γ̃δ the intersection of Γ̃ with a disc with radius δ, centered around the singularity
ρ ∈ Γ̃ of the integrands
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(a) Original problem

(b) Equivalent interior problem (c) Equivalent exterior problem

Figure 1.3: Homogeneous domain Ω̃−, embedded in a (possibly inhomogeneous)
domain Ω̃+, with incoming fields E(i) and H(i) and total fields E and H

boundary Γ̃ with n̂ = t̂× ẑ the outward unit normal vector (see Fig. 1.3(a)).

1
2Ez(ρ) = E(i)

z (ρ)−
∮

Γ̃

[
Ez(ρ′)

∂G(ρ− ρ′)
∂n′

+
(
jγ2

ωε
Ht(ρ′)−

β

ωε

∂Hz(ρ′)
∂t′

)
G(ρ− ρ′)

]
dc′ (1.34)

1
2Et(ρ) = E

(i)
t (ρ) +

∮
Γ̃

[
jβ

γ2Ez(ρ
′)∂

2G(ρ− ρ′)
∂t∂n′

− jωµ

γ2 Hz(ρ′)
∂2G(ρ− ρ′)

∂n∂n′

+jωµ

γ2

(
jγ2

ωµ
Et(ρ′)−

β

ωµ

∂Ez(ρ′)
∂t′

)
∂G(ρ− ρ′)

∂n

+jβ

γ2

(
jγ2

ωε
Ht(ρ′)−

β

ωε

∂Hz(ρ′)
∂t′

)
∂G(ρ− ρ′)

∂t

]
dc′ (1.35)
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1
2Hz(ρ) = H(i)

z (ρ)−
∮

Γ̃

[
Hz(ρ′)

∂G(ρ− ρ′)
∂n′

−
(
jγ2

ωµ
Et(ρ′)−

β

ωµ

∂Ez(ρ′)
∂t′

)
G(ρ− ρ′)

]
dc′ (1.36)

1
2Ht(ρ) = H

(i)
t (ρ) +

∮
Γ̃

[
jβ

γ2Hz(ρ′)
∂2G(ρ− ρ′)

∂t∂n′
+ jωε

γ2 Ez(ρ
′)∂

2G(ρ− ρ′)
∂n∂n′

+jωε

γ2

(
jγ2

ωε
Ht(ρ′)−

β

ωε

∂Hz(ρ′)
∂t′

)
∂G(ρ− ρ′)

∂n

−jβ
γ2

(
jγ2

ωµ
Et(ρ′)−

β

ωµ

∂Ez(ρ′)
∂t′

)
∂G(ρ− ρ′)

∂t

]
dc′ (1.37)

Formula (1.34) can be easily derived from (1.30)–(1.32), as shown below.

Proof of (1.34). The total interior fields E and H and incoming fields E(i)

and H(i) of the original problem of Fig. 1.3(a) and the equivalent interior
problem of Fig. 1.3(b) are equal. Therefore, we introduce equivalent sources
M = −n̂×E and J = −n̂×H on the boundary Γ̃ and denote the fields excited
by these sources as (E(s),H(s)) (called scattered), implying that (E,H) =
(E(s),H(s)) + (E(i),H(i)). By (1.30) the scattered electric field in Ω̃ is given by
(note that ẑ′ = ẑ, whereas t̂′ and n̂′ depend on ρ′)

n̂×E(s) = E
(s)
t ẑ− E(s)

z t̂ (1.38)

=
(
K̃k −

1
2

)
(Ez t̂′ − Etẑ)− ηT̃k(Hz t̂′ −Htẑ), (1.39)

implying that

E(s)
z = t̂ ·

[(
K̃k −

1
2

)
(Etẑ− Ez t̂′)− ηT̃k(Htẑ−Hz t̂′)

]
. (1.40)

The term t̂ ·
(
K̃k − 1

2
)
Etẑ vanishes, as t̂ · ẑ = 0 and

t̂ · K̃k(Etẑ) = t̂ ·
(

n̂×
[
(∇t − jβẑ)×

∫
Γ̃
G(ρ− ρ′)Et(ρ′)ẑ dc′

])
(1.41)

= t̂ ·
(

n̂× (κ(ρ)̂t + λ(ρ)n̂)
)

(1.42)

= 0. (1.43)



12 Chapter 1. Introduction

The term −t̂ · K̃k(Ez t̂′) is equal to

−t̂ · K̃k(Ez t̂′) = −t̂ ·
(

n̂×
[
(∇t − jβẑ)×

∫
Γ̃
G(ρ− ρ′)Ez(ρ′)̂t′ dc′

])
(1.44)

= −t̂ ·
(

n̂×
[∫

Γ̃
∇tG(ρ− ρ′)× (Ez(ρ′)̂t′) dc′

])
(1.45)

= −t̂ ·
(

n̂×
[∫

Γ̃
(Ez(ρ′)̂t′)×∇′tG(ρ− ρ′) dc′

])
(1.46)

= −t̂ ·
(

n̂×
[∫

Γ̃
(Ez(ρ′)̂t′)× (∂t′Gt̂′ + ∂n′Gn̂′) dc′

])
(1.47)

= −
∫

Γ̃

∂G(ρ− ρ′)
∂n′

Ez(ρ′)dc′. (1.48)

The term −ηt̂ · T̃k(Hz t̂′) is equal to

−ηt̂ · T̃k(Hz t̂′) = ηt̂ ·
(

n̂× 1
jk

∫
Γ̃
(∇t − jβẑ)G(ρ− ρ′)∂t′Hz(ρ′)dc′

)
(1.49)

= β

ωε

∫
Γ̃
G(ρ− ρ′)∂Hz(ρ′)

∂t′
dc′. (1.50)

The term ηt̂ · T̃k(Htẑ) is equal to

ηt̂ · T̃k(Htẑ) = jη

(
k − β2

k

)
t̂ ·
(

n̂×
∫

Γ̃
G(ρ− ρ′)Ht(ρ′)ẑ dc′

)
(1.51)

= −jγ
2

ωε

∫
Γ̃
G(ρ− ρ′)Ht(ρ′)dc′. (1.52)

Substituting (1.48), (1.50) and (1.52) into (1.40) leads to

E(s)
z = 1

2Ez −
∫

Γ̃

[
Ez(ρ′)

∂G(ρ− ρ′)
∂n′

+
(
jγ2

ωε
Ht(ρ′)−

β

ωε

∂Hz(ρ′)
∂t′

)
G(ρ− ρ′)

]
dc′. (1.53)

Together with Ez = E
(i)
z + E

(s)
z , (1.34) follows.

Formulas (1.36)–(1.37) follow from the duality substitutions E→ H, H→ −E,
E(i) → H(i), H(i) → −E(i) and ε↔ µ in (1.34)–(1.35).

The identities (1.54)–(1.57) follow from lim
Ω̃−3ρ→Γ̃

[(∇t−jβẑ)×E+jωµH] = 0 and

lim
Ω̃−3ρ→Γ̃

[(∇t − jβẑ)×H− jωεE] = 0 (and mutatis mutandis for the incoming
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fields∗).

Et = jωµ

γ2
∂Hz

∂n
− jβ

γ2
∂Ez
∂t

(1.54)

Ht = −jωε
γ2

∂Ez
∂n
− jβ

γ2
∂Hz

∂t
(1.55)

E
(i)
t = jωµ

γ2
∂H

(i)
z

∂n
− jβ

γ2
∂E

(i)
z

∂t
(1.56)

H
(i)
t = −jωε

γ2
∂E

(i)
z

∂n
− jβ

γ2
∂H

(i)
z

∂t
(1.57)

Substituting (1.34) and (1.36) into (1.54) leads, together with (1.56), to formula
(1.35).

∗note that this additionally assumes that incident fields are excited by sources that vanish
in a neighborhood of Γ̃
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Full-wave Multiconductor

Waveguide Analysis





2
Multiconductor Waveguides

F F F

This chapter aims to acquaint the reader with the eigenmode analysis
of waveguides consisting of a finite number of conductors embedded in
piecewise homogeneous isotropic dielectrics. Approximative theories,
such as the quasi-TEM and quasi-TM analyses, are presented and the
need for a full-wave analysis, which will be elaborated in subsequent
chapters, is emphasized.

2.1 Introduction
Consider a uniform waveguide, i.e., a structure in R3 whose material parameters
are invariant in the so-called longitudinal direction (assume that it coincides
with the ẑ axis of a Cartesian coordinate system, Fig. 2.1). Assume further that
all occurring media are isotropic (for an extension of the results in this chapter to
(bi)-anisotropic media, we refer to [1]), implying that the waveguide is completely
characterized by the functions ε(ρ) and µ(ρ), representing the permittivity and
permeability in the cross section, respectively (with ρ = xx̂+yŷ ∈ R2). In most
practical cases, these functions are piecewise constant, which has the benefit
that their corresponding waveguides can be numerically solved via a boundary
element method (BEM), as explained in subsequent chapters.

With {Ωi | 0 ≤ i ≤ N} a finite partition of R2 with N+1 connected components
(i.e. Ωi is open and connected, ∪iΩi = R2 and Ωi ∩ Ωj = ∅ unless i = j) and
Ωi>0 bounded (i.e. the only unbounded domain is Ω0), we restrict ourselves in
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Figure 2.1: Geometry of a uniform waveguide with piecewise constant material
parameters

this thesis to the following subset of uniform waveguides∗:{
ε(ρ ∈ Ωi) = εi ∈ C0 ∪∞,
µ(ρ ∈ Ωi) = µi ∈ C0 ∪∞.

(2.1)

From here on, we use the term waveguide for a uniform waveguide that satisfies
assumption (2.1). Note that the isotropic property of the media implies that
all considered waveguides are reciprocal.

A waveguide is called lossless if ∀i : εi, µi ∈ R∪∞, and lossy if ∀i : =εi,=µi ≥ 0
and ∃j : =εj > 0 or =µj > 0.

A waveguide is called closed if ε0 =∞ or µ0 =∞ (or if Ω0 is a good electric or
magnetic conductor, implying that |ε0| ≈ ∞ or |µ0| ≈ ∞), otherwise it is called
open.

An electric multiconductor waveguide (MCW) is a waveguide with Nc electric
conductors Ωc(i) (1 ≤ i ≤ Nc). A perfect electric multiconductor waveguide
is an MCW with perfect electric conductors, i.e., with εc(i) = ∞. A perfect
electric MCW can be lossless or lossy (depending on whether there are dielectric
losses), an imperfect electric MCW is necessarily lossy† (Fig. 2.2).

The coaxial cable in Fig. 2.3 is an example of a closed MCW with Nc = 2
conductors (dashed regions). The coupled microstrip lines in Fig. 2.4 are an
example of an open MCW with Nc = 3 conductors.

∗the cases ε = ∞ and µ = ∞ correspond to perfect electric and magnetic conductors,
respectively
†for simplicity and because they are rarely used in practice, we do not consider materials

with gain (with either =εi < 0 or =µi < 0)
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Figure 2.2: Classification of electric multiconductor waveguides
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Figure 2.3: Coaxial cable with unbounded outer conductor
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Figure 2.4: Coupled microstrip lines on a bounded substrate

2.2 Eigenmodes

2.2.1 Definitions and properties
For certain β ∈ C, there exist non-zero solutions of the sourceless (i.e., with
M = J = 0 and P = Pm = 0) time- and space-harmonic Maxwell equations
(1.13)–(1.16). Such a solution (E,H) is called an eigenmode of the waveguide
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with propagation constant β, i.e., if (2.2)–(2.5) hold.

∇t ×Et(ρ) = −jωµ(ρ)Hz(ρ)ẑ (2.2)
−jβẑ×Et(ρ) +∇t × Ez(ρ)ẑ = −jωµ(ρ)Ht(ρ) (2.3)

∇t ×Ht(ρ) = jωε(ρ)Ez(ρ)ẑ (2.4)
−jβẑ×Ht(ρ) +∇t ×Hz(ρ)ẑ = jωε(ρ)Et(ρ) (2.5)

It is easy to show that if (Et + Ez ẑ,Ht + Hz ẑ) is an eigenmode with prop-
agation constant β, then (Et − Ez ẑ,−Ht + Hz ẑ) is another eigenmode with
propagation constant −β. This property of the considered waveguides is called
bidirectionality.

The number of linearly independent eigenmodes with the same propagation
constant β is called the multiplicity of the propagation constant, denoted ν(β).

An eigenmode (E,H) is called a guided eigenmode if (E,H) ∈ L2(R2)2, i.e., if
its cross-sectional field distributions are square integrable.

Denote the wavenumber and transversal wavenumber in region Ωi as ki =
ω
√
εiµi and γi =

√
k2
i − β2, respectively. The branch cuts of γ0 as a function

of β are chosen on the hyperbola through the branch points ±k0 with the real
and imaginary axes as asymptotes, implying that =γ0 ≤ 0 and that the Green’s
function G0(ρ) = − j4H

(2)
0 (γ0|ρ − ρ′|) remains bounded for arbitrarily large

|ρ− ρ′| [1].

2.2.2 Distribution of propagation constants
Fig. 2.5 shows the distribution of possible propagation constants in the complex
plane for different types of waveguides, at a fixed frequency ω.

The propagation constants of a lossless closed waveguide form an infinite set
of discrete points (Fig. 2.5(a)). A finite number of guided modes have a real
propagation constant and are called propagating. They transport, or propagate,
electromagnetic energy in the longitudinal direction without attenuation, as
their fields have an e−jβz dependence (with β ∈ R). An infinite number of
discrete propagation constants is located on the imaginary axis. They represent
evanescent eigenmodes, whose fields decay exponentially in the longitudinal
direction. As the frequency increases, the imaginary propagation constants move
along the imaginary axis towards the origin. When they reach the origin, at
the so-called cut-off frequency, they move to the real axis: the evanescent mode
transforms into a propagating mode. In certain closed lossless inhomogeneous
waveguides, discrete modes appear with complex propagation constants (non-
zero real and imaginary parts) at certain frequencies [2]. They constitute
an intriguing class of complex modes and are further explored numerically in
chapter 4.
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Figure 2.5: Distribution of possible propagation constants for different types of
waveguides (at a fixed frequency ω)
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The propagation constants of a lossless open waveguide split into two classes.
Similarly to the lossless closed waveguide, a finite∗ number of guided modes
have a real propagation constant [3] and are called propagating. It can be shown
that these propagation constants are restricted to the interval ]k0,maxi ki[ [3].
Their fields decay exponentially as a function of the distance to the waveguide
core R2 \ Ω0, with Ω0 the unbounded background medium (see section 2.1).
Fundamental differences with the closed waveguide are the lack of complex
modes and discrete evanescent modes in exchange for a continuous set of
radiation modes. Their propagation constants are located on the branch cut of
γ0 such that =γ0 ≤ 0, i.e., the union of the interval [−k0, k0] and the imaginary
axis (Fig. 2.5(b)).

The propagation constants of a lossy open waveguide can be viewed as a
perturbation of those from its lossless counterpart. A finite number of discrete
guided† modes now have a complex propagation constant, whose imaginary
part represents the attenuation of the modes due to losses (Fig. 2.5(c)). For a
lossy background medium Ω0, the continuous set of propagation constants of
the radiation modes lies on the hyperbola with the real and imaginary axes as
asymptotes [1].

For a discussion of the distribution of propagation constants in other types of
waveguides, e.g. those with layered structures (whose layers introduce additional
branch cuts which represent surface waves), we refer to [1].

2.2.3 Fundamental modes
In an MCW with Nc conductors, there are Nc − 1 modes that are called
fundamental modes‡ [1]. They belong to the class of propagating or guided
eigenmodes (see section 2.2.2), depending on whether the MCW is lossless or
lossy. They exist for all frequencies ω ≥ 0 and reduce to the static Nc − 1
dimensional space of theNc current carrying wires at ω = 0 (under the constraint
of equal total forward and backward currents to avoid charge accumulation at
infinity).

2.3 Quasi-TEM analysis
In this section, we investigate the fundamental modes (En,Hn) (with 1 ≤ n ≤
Nc−1) of a perfect electric MCW. At low frequencies, we show that Enz ≈ 0 and
Hn
z ≈ 0 (if the MCW consists, besides perfect electric conductors, of dielectrics

with material parameters of the form (2.11)–(2.12)) and call the fundamental
modes quasi-TEM (quasi transverse electromagnetic).
∗each of the finite number of real propagation constants has a finite multiplicity [3]
†note that we reserve the qualifier propagating for real propagation constants
‡this is under the assumption that the conductors are not touching; the touching of two

or more conductors reduces the number of fundamental modes
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We note that Enz = Hn
z = 0 ∀ω ≥ 0 only if for every two touching dielectric

regions Ωi and Ωj it holds that εiµi = εjµj (MCWs with a single homogeneous
dielectric region are a special case), in which case the modes are called TEM
(see [1] for a proof).

Consider an eigenmode (E,H) with propagation constant β. As we are interested
in the low-frequency behavior, we expand the fields, propagation constant
and material parameters as a Taylor series around ω = 0∗. Since E(r, t) =
<[e(r, ω)ejωt] = <[e(r,−ω)e−jωt], it follows that e(r, ω) = e(r,−ω), with α
the complex conjugate of α ∈ C. By e(r, ω) = E(ρ, ω)e−jβ(ω)z, it follows that
E(ρ, ω) = E(ρ,−ω) and β(ω) = −β(−ω). Completely similar, one shows that
H(ρ, ω) = H(ρ,−ω). This implies that ER , <E, HR , <H and βI , =β
are even functions of ω, whereas EI , =E, EI , =H and βR , <β are odd
functions of ω. This leads to the Taylor expansions (2.6)–(2.10) (note that we
omit the dependence on ρ of the fields and material parameters for notational
convenience).

Et(ω) =
+∞∑
i=0

ω2i [ER
t,i + jωEI

t,i

]
(2.6)

Ez(ω) =
+∞∑
i=0

ω2i [ERz,i + jωEIz,i
]

(2.7)

Ht(ω) =
+∞∑
i=0

ω2i [HR
t,i + jωHI

t,i

]
(2.8)

Hz(ω) =
+∞∑
i=0

ω2i [HR
z,i + jωHI

z,i

]
(2.9)

β(ω) =
+∞∑
i=0

ω2i [βIi + jωβRi
]

(2.10)

Since ε(ω) and µ(ω) are the Fourier transforms of real impulse responses, it holds
that ε(ω) = ε(−ω) and µ(ω) = µ(−ω). Assume that the material parameters
are given by (2.11)–(2.12), with εR , <ε, εI , =ε, µR , <µ and µI , =µ
independent of ω. In case there are (semi)-conducting material regions with
finite conductivity σ, the permittivity is given by ε(ω) = εR − jσ/ω, and the
quasi-TM analysis of section 2.4 is appropriate.

ε(ω) = εR + jωεI (2.11)
µ(ω) = µR + jωµI (2.12)

From a static analysis, it follows that ERz,0 = HR
z,0 vanish and, since there is no

propagation at ω = 0, that βI0 also vanishes [1]. Note that this implies that, for
∗the subsequent analysis and derivation are inspired by [1]
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sufficiently low frequencies, (Et,Ht) ∼ 1 and (Ez, Hz) ∼ ω, justifying the term
quasi-TEM.

ERz,0 = HR
z,0 = βI0 = 0 (2.13)

Substituting (2.6)–(2.12) into (2.2)–(2.5), equating terms of the same order in
ω and using (2.13) leads to (2.14)–(2.21).

∇t ×ER
t,0 = 0 (2.14)

∇t ×EI
t,0 = 0 (2.15)

−jβR0 ẑ×ER
t,0 +∇t × EIz,0ẑ = −µRHR

t,0 (2.16)
βR0 ẑ×EI

t,0 − jβI1 ẑ×ER
t,0 +∇t × ERz,1ẑ = µRHI

t,0 + µIHR
t,0 (2.17)

∇t ×HR
t,0 = 0 (2.18)

∇t ×HI
t,0 = 0 (2.19)

−jβR0 ẑ×HR
t,0 +∇t ×HI

z,0ẑ = µRER
t,0 (2.20)

βR0 ẑ×HI
t,0 − jβI1 ẑ×HR

t,0 +∇t ×HR
z,1ẑ = −εREI

t,0 − εIER
t,0 (2.21)

For sufficiently low frequencies, it is permissible to add higher order terms in ω
to (2.14)–(2.21). Under this assumption, (2.22)–(2.25) are approximately valid
for a quasi-TEM mode (EQTEM,HQTEM) = (EQTEM

t + EQTEM
z ẑ,HQTEM

t +HQTEM
z ẑ)

with propagation constant βQTEM at low frequencies. Comparison with the exact
equations (2.2)–(2.5) shows that the right hand side terms of (2.2) and (2.4)
are missing in (2.22) and (2.24), respectively, implying that (EQTEM,HQTEM) is,
in general∗, only an exact solution to Maxwell’s equations for ω = 0.

∇t ×EQTEM
t = 0 (2.22)

−jβQTEMẑ×EQTEM
t +∇t × EQTEM

z ẑ = −jωµHQTEM
t (2.23)

∇t ×HQTEM
t = 0 (2.24)

−jβQTEMẑ×HQTEM
t +∇t ×HQTEM

z ẑ = jωεEQTEM
t (2.25)

On a more positive note, equations (2.22)–(2.25) are easier to solve than (2.2)–
(2.5), for perfect electric multiconductor waveguides. From (2.22) it follows
that EQTEM

t = −∇tΦ. Taking the divergence of (2.23) and using (2.22) shows
that ∇t · (µHQTEM

t ) = 0 and thus µHQTEM
t = ∇t ×Ψẑ. The divergence of (2.25)

shows that the potential Φ is a solution of the modified Laplace equation (2.26),
whereas (2.24) implies that the flux function Ψ is a solution of the modified
Laplace equation (2.27).

∇t · (ε∇tΦ) = 0 (2.26)

∇t ·
(

1
µ
∇tΨ

)
= 0 (2.27)
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Figure 2.6: Multiconductor waveguide with one reference conductor C0 and two
signal conductors C1 and C2

Let us consider a perfect electric MCW, with Nc non-touching PECs Ci , Ωc(i)
(for 0 ≤ i ≤ Nc−1) with boundaries ∂Ci, exterior unit normal n̂i and tangential
unit vector t̂i = ẑ × n̂i (Fig. 2.6 shows an example with Nc = 3). Since the
tangential component of the electric field and the normal component of the
magnetic field vanish on ∂Ci, it follows that Φ and Ψ are constant on ∂Ci.
Therefore, a∗ general solution of (2.26) and (2.27) is a linear combination of the
N , Nc−1 basis functions φi and ψi (for 1 ≤ i ≤ N), as shown in (2.28)–(2.29),
that satisfy (2.26) and (2.27), respectively, and are equal to 1 on ∂Ci and vanish
on all ∂Cj with i 6= j.

Φ =
N∑
i=1

Viφi (2.28)

Ψ =
N∑
i=1

Fiψi (2.29)

The coefficient vectors V̄ =
(
V1 V2 ... VN

)T and F̄ =
(
F1 F2 ... FN

)T ,
which represent the voltages on each signal conductor Ci (w.r.t. the refer-
ence conductor C0) and fluxes of the magnetic induction through the paths
pi connecting the reference and signal conductors, respectively, are not inde-
pendent. First, there is the relation (2.30) between the longitudinal current

∗as mentioned earlier, there exist waveguides whose fundamental modes are TEM for all
frequencies, which is also a sufficient condition for (2.22)–(2.25) to hold exactly
∗note that we can choose Φ|∂C0 = Ψ|∂C0 = 0, as the addition of a constant term to Φ or

Ψ does not influence the fields; in essence, we are assigning the role of reference conductor to
C0
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Ii =
∮
∂Ci

HQTEM
t · t̂i dc through the signal conductor Ci and the fluxes.

Ii = jω

N∑
j=1

(Z−1)ijFj (2.30)

(Z−1)ij = − 1
jω

∮
∂Ci

1
µ

∂ψj
∂ni

dc (2.31)

Integrating ẑ×(2.25) along the boundary ∂Ci leads to (2.32).

jβQTEMIi =
N∑
j=1

(Y)ijVj (2.32)

(Y)ij = −jω
∮
∂Ci

ε
∂φj
∂ni

dc (2.33)

Integrating ẑ×(2.23) along the path pi leads, together with the fact that Ez = 0
on the PEC boundaries, to (2.34).

jβQTEMVi = jωFi (2.34)

Combining (2.30)–(2.34) leads to (2.35)–(2.36), with Ī =
(
I1 I2 ... IN

)T .
jβQTEMĪ = YV̄ (2.35)
jβQTEMV̄ = ZĪ (2.36)

Combining (2.35)–(2.36) leads (2.37)–(2.38).

−
(
βQTEM)2 Ī = YZĪ (2.37)

−
(
βQTEM)2 V̄ = ZYV̄ (2.38)

To each eigenvector Ī of YZ with eigenvalue − (βQTEM)2 corresponds an eigenvec-
tor V̄ = 1

jβQTEM ZĪ of ZY with the same eigenvalue and a quasi-TEM eigenmode
(−
∑N
i=1 Vi∇tφi + EQTEM

z ẑ, µ−1∑N
i=1 Fi∇tψi × ẑ + HQTEM

z ẑ) with propagation
constant βQTEM that satisfies (2.22)–(2.25)∗.

In conclusion, the N = Nc − 1 fundamental modes of a perfect electric MCW
withNc conductors at low frequencies are approximately equal to the quasi-TEM
modes obtained via the solution of the modified Laplace equations (2.26)–(2.27)
and an eigendecomposition of the N -dimensional matrix YZ.

∗equations (2.23) and (2.25) are used as definitions for EQTEM
z and HQTEM

z [1]
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2.4 Quasi-TM analysis
The quasi-TM analysis of the fundamental modes of an imperfect MCW in [4]
is similar to the previous section, but now the term in the longitudinal electric
field component EQTM

z inside the imperfect conductors Ci (0 ≤ i ≤ Nc − 1),
with conductivity σi and permittivity εi ≈ −jσi/ω, cannot be neglected w.r.t.
∇t × HQTM

t in (2.4). This leads, with the same approximations as for the
quasi-TEM analysis, to system (2.39)–(2.43).

∇t ×EQTM
t = 0 (2.39)

−jβQTMẑ×EQTM
t +∇t × EQTM

z ẑ = −jωµHQTM
t (2.40)

∇t ×HQTM
t = 0 (in R2 \ ∪iCi) (2.41)

∇t ×HQTM
t = σiE

QTM
z ẑ (in Ci) (2.42)

−jβQTMẑ×HQTM
t +∇t ×HQTM

z ẑ = jωεEQTM
t (2.43)

Similar to the quasi-TEM analysis, (2.39) implies that EQTM
t = −∇tΦ, whereas

the divergence of (2.40) implies that µHQTM
t = ∇t × Ψ̃ẑ. Taking the divergence

of (2.43) and using (2.41) leads to (2.44), whereas (2.41)–(2.42) lead to (2.45)–
(2.46).

∇t · (ε∇tΦ) = 0 (in R2 \ ∪iCi) (2.44)

∇t ·
(

1
µ
∇tΨ̃

)
= 0 (in R2 \ ∪iCi) (2.45)

∇t ·
(

1
µ
∇tΨ̃

)
= −σiEQTM

z (in Ci) (2.46)

In [4], it is argued that Et · t̂i = 0 on the conductor boundaries ∂Ci. This
implies that Φ is constant on ∂Ci, and a∗ general solution of (2.44) is given by
(2.47), with N = Nc − 1. Note that this also implies that the basis functions
φi are the same as for the quasi-TEM analysis, i.e., for the case where the
conductors in the MCW are assumed perfect.

Φ =
N∑
i=1

Viφi (2.47)

An important difference between the quasi-TEM and quasi-TM analyses is the
fact that Ψ̃ is not constant on the conductor boundaries (as opposed to Ψ of
section 2.3). For more details on the definition and numerical determination of
Y and Z, called the capacitance and inductance problem, we refer to [4], [5].

∗as in section 2.3, it is assumed that Φ|∂C0 = 0, with C0 the so-called reference conductor
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2.5 Full-wave analysis
The need for a full-wave analysis of multiconductor waveguides, starting from
Maxwell’s equations (2.2)–(2.5), which will be elaborated in subsequent chapters,
is apparent from the following considerations:

• The quasi-TEM and quasi-TM analyses are only approximately valid
at sufficiently low frequencies, i.e., if no wave phenomena occur in the
waveguide cross section or, otherwise stated, if the wavelength in the
unbounded domain Ω0 is sufficiently larger than the diameter |R2 \Ω0| of
the core of the waveguide (see [1] for a proof for quasi-TEM).

• Only (approximations of) the fundamental modes of an MCW are provided
by the quasi-TEM and quasi-TM analyses. Higher-order modes (i.e.,
modes that have a cut-off frequency higher than zero) or complex modes
in closed waveguides are not predicted.
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3
Efficient Evaluation of 2.5-D BEM
Interaction Integrals in Conductors

based on the contributions [1] and [2]

F F F

The solution of the time-harmonic Maxwell equations with a bound-
ary element method, for 2-D geometries illuminated by arbitrary 3-D
excitations, gives rise to numerical difficulties if highly conductive
media are present. In particular, the interaction integrals arising
in the method of moments involve kernels that strongly oscillate in
space and, at the same time, decay exponentially. We present an
accurate method to tackle these issues over a very broad conductivity
range (from lossy dielectric to conductor skin-effect regime), for both
magnetic and non-magnetic conductors. Important applications are
the modal analysis of waveguides with non-perfect conductors, scat-
tering problems and shielding problems with enclosures with arbitrary
permeability and conductivity and 3-D noise sources.

3.1 Introduction
Boundary element methods (BEMs) provide a powerful framework to solve the
time- and space-harmonic Maxwell equations (1.13)–(1.16) numerically. If the
problem domain consists of homogeneous material regions, a BEM generally
requires fewer unknowns than a volumetric discretization technique. This
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chapter considers two-dimensional geometries with conductive material regions,
which can be magnetic, illuminated by arbitrary three-dimensional sources,
leading to a so-called 2.5-D boundary element method. Important applications of
this class of problems are the eigenmode analysis of non-perfect multiconductor
transmission lines (see chapters 2 and 4) [3]–[6], scattering problems [7] and
shielding problems [1].

Interaction integrals appearing in the method of moments (MoM), with the scalar
Green’s function G(ρ) and its normal derivatives as kernels, are numerically
challenging due to two specific and interplaying aspects. First, the kernels in
good conductors are strongly oscillating and exponentially decaying in space, due
to the large magnitude and imaginary part of the conductor’s wavenumber w.r.t.
the free space wavenumber. Second, the kernels are singular, or nearly singular,
in those regions of the integration domain where the test and basis functions’
supports overlap or lie close to each other, respectively. This behavior requires
special care for an accurate numerical evaluation. Moreover, the combination
of the two aspects, i.e. interaction integrals with both (nearly) singular and
oscillating as well as exponentially damped integrands, poses further difficulties.
In this chapter we present an accurate method to handle both problems.

A large amount of literature is available concerning the numerical evaluation of
MoM interaction integrals in low-loss dielectric media. Integrals with singular or
nearly singular integrands are usually evaluated with a singularity extraction [8]–
[10] or cancellation technique [11]–[13]. In 3-D, [14] uses singularity cancellation
with RWG basis functions [15] to evaluate the interaction integrals in conductive
media more accurately. A good overview of the additional problems that arise
in conductive media can be found in [16], where, similarly as in this chapter, a
so-called cutoff distance is introduced to limit the numerical integration domain
of the interaction integrals in the three-dimensional case.

This chapter proposes a new method specifically tailored to the properties
of the 2.5-D Green’s function G(ρ) in conductive media. It is shown, both
theoretically and through corroborating examples, that the method accurately
evaluates interaction integrals for a wide range of electrical conductivities
(low-loss dielectric to highly conductive) and frequencies, and allows media
with arbitrary permeability. In addition to the earlier mentioned fields of
application, the new method is highly relevant to the accurate full-wave analysis
of state-of-the-art multiconductor waveguides and enclosures.

The structure of this chapter is as follows: in sections 3.2 and 3.3 we briefly
outline the employed integral equations and the interaction integrals appearing
in the MoM. The problems encountered in evaluating the integrals in conductive
media are elaborated in section 3.4, followed by our new method in section
3.5. Finally, the numerical examples in section 3.6 testify to the accuracy
and applicability of the method, and clearly demonstrate the advantages over
existing methods. Conclusions are formulated in section 3.7.
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3.2 Geometry and Boundary Integral Equations
Consider a 2-D geometry consisting of isotropic homogeneous material regions
Ωi, with permittivity εi ∈ C0, permeability µi ∈ C0, and a single unbounded
domain Ω0

∗ (Fig. 2.1). Assume that all sources and fields have a common
time and longitudinal dependence ej(ωt−βz) (β ∈ C), i.e., the time- and space
harmonic Maxwell equations (1.13)–(1.16) hold for the phasor fields. A general
three-dimensional excitation can be expanded into sources of this kind via
Fourier transformation in the z direction. The unknowns of the problem are
the phasors of the time- and space harmonic tangential electric and magnetic
boundary fields, given by n̂×E×n̂ = Ett̂+Ez ẑ and n̂×H×n̂ = Htt̂+Hz ẑ, with
Et and Ht the transverse tangential components, Ez and Hz the longitudinal
components, n̂ the outward unit normal to Ωi and t̂ = ẑ×n̂. The representation
formulas (1.34)–(1.37) hold, with E(i)

t t̂ + E
(i)
z ẑ the incoming tangential electric

field generated by sources in Ωi, Γ̃ the boundary of Ωi, ρ = xx̂ + yŷ, ε = εi,
µ = µi and γ =

√
ω2εiµi − β2.

A system of coupled integral equations is obtained after imposing continuity
of the tangential fields at the boundaries, yielding a 2.5-D version of the
PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) operator [17]–[19]. A
finite-dimensional linear system is obtained with the MoM, as explained in the
next section.

3.3 MoM Interaction Integrals
Before presenting our new theory from section 3.4 onwards, we briefly recall
which types of interaction integrals occur in the MoM of the 2.5-D PMCHWT
boundary integral equation [20], [21]. The boundaries are meshed into a union
of segments Sj with length lj , separated by nodes ρk (Fig. 3.1). The transverse
tangential components Et and Ht are expanded in terms of pulse functions
pj(ρ), with support over segment Sj , whereas the longitudinal components
Ez and Hz are expanded into triangular functions tk(ρ), with support over
segments that share a node ρk [20], [21]:

pj(ρ) = 1 ρ ∈ Sj ,
tk(ρ) = 1− |ρ− ρk| l−1

j ρ,ρk ∈ Sj .
(3.1)

The continuity equations for Ez and Hz are tested with pulse functions, whereas
the equations for Et and Ht are tested with triangular functions. To calculate
the elements in the MoM system matrix, the interaction integrals (3.2)–(3.4)
below need to be evaluated numerically for basis and test functions with support
over segments that have Ωi as a neighboring medium. This can be easily seen by
inspecting (1.34) and (1.35). The tangential derivatives of the Green’s function
∗note that this geometry corresponds to the definition in section 2.1 of a waveguide

without perfect electric and magnetic conductors
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Figure 3.1: The boundaries are approximated with straight segments along
which triangular and pulse functions are defined.

can be transferred to the test function using integration by parts such that only
three types of interaction integrals remain:

I(1)
jk =

∫
Γ̃
pj(ρ)dc

∫
Γ̃
G(ρ− ρ′) pk(ρ′)dc′, (3.2)

I(2)
jk =

∫
Γ̃
pj(ρ)dc

∫
Γ̃

∂G(ρ− ρ′)
∂n′

tk(ρ′)dc′, (3.3)

I(3)
jk =

∫
Γ̃
tj(ρ)dc

∫
Γ̃

∂2G(ρ− ρ′)
∂n∂n′

tk(ρ′)dc′. (3.4)

3.4 Difficulties in Conductive Media
Consider a conductive region Ω, with conductivity σ, complex permittivity
ε = ε0 − j σω and permeability µ. The transversal wavenumber γ can be written
as a function of the skin depth δ =

√
2/(ωµσ) for moderate to high conductivity

values, as follows:

γ =
√
ω2µ(ε0 − jσ/ω)− β2 (3.5)

≈
σ�ωε0

1− j
δ

. (3.6)

The particular form of this wavenumber is responsible for the difficulties that
arise in evaluating the interaction integrals (3.2)–(3.4) in a highly conductive
medium. The Green’s function in the conductor reduces to − j4H

(2)
0 ((1− j)r/δ),

with r = |ρ− ρ′|, while its normal derivatives are expressible in terms of the
zeroth, first and second order Hankel functions of the second kind (see appendix
3.8). For large |γr|, the Hankel function of the second kind and order ν behaves
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as [22]

H(2)
ν (γr) ∼

(
2
πγr

) 1
2

e−jγr+j
π
4 (2ν+1) (| arg γr| < π). (3.7)

In a highly conductive medium, the large imaginary part of the wavenumber
causes a strong exponential decay of the Green’s function and its derivatives.
Moreover, the wavelength λ = 2πδ is small w.r.t. the free space wavelength,
which leads to a spatially strong oscillation of the Green’s function and its
derivatives. If Sj is a segment on the interface between the conductive region Ω
and a dielectric region Ωd, it is sufficient to choose the segment length to be
a fraction of the wavelength λd in the dielectric, say lj = λd

10 = 2π
10ω√εdµd , in

order to capture the varying field behavior at the interface. This is because the
tangential fields at the interface can only vary at a pace on the order of λd in the
dielectric and remain continuous at the interface (there are no surface currents).
Typically δ � lj and accordingly a lot of oscillations occur along one segment
and standard quadrature techniques fail to correctly evaluate the interaction
integrals in the conductive region. Choosing lj = λ

10 (with λ corresponding to
the wavelength in the conductor) to try to tackle this problem is unnecessary
to capture the field behavior and would lead to a very large increase of the
number of unknowns.

3.5 Efficient Evaluation of Interaction Integrals
This section proposes a new method to accurately evaluate the MoM interaction
integrals in conductive media, with a relatively low quadrature order. The
method reduces to the traditional approach in [21] for σ � ωε0 (low-loss
dielectric case), and is therefore applicable to arbitrary conductivities σ ∈ [0,∞[,
as shown in this section and corroborated by the numerical examples in section
3.6.

3.5.1 Cutoff Distance
The key to accurately integrate the strongly oscillating and exponentially
decaying integrands in conductive media, for a fixed number of quadrature points,
is to distribute those points over the integration domain where the Green’s
function has a non-negligible value. Because the magnitude of the Green’s
function decays exponentially in a good conductor, it can be approximated as
− j4H

(2)
0 (γr)H(rcut − r), neglecting its tail, with H the Heaviside step function

and rcut the cutoff distance.

The cutoff distance is the distance above which the asymptotic Green’s function
(using (3.7)) becomes smaller in magnitude than a threshold ∆cut. It can be
written in terms of the principal branch of the Lambert W function [23], denoted
W(z).
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Definition 1 (Cutoff distance rcut).

rcut = − 1
2=γW

(
−4=γ
π∆2

cut|γ|

)
≈

σ�ωε0

δ

2W
(

2
√

2
π∆2

cut

)
(3.8)

An upper bound on the Green’s function itself is given in Theorem 3.5.1. For
sufficiently small ∆cut, the asymptotic expansion (3.7) is a good approximation
and C ≈ 1.

Theorem 3.5.1. For |ρ| ≥ rcut it holds that |G(ρ)| ≤ C∆cute
(|ρ|−rcut)=γ with

C = 1 + 1
8|γ|rcut

.

Proof. Note that H(2)
0 (z) =

√
2
πz e
−j(z−π4 )

(
1− θ2(z)

8jz

)
, with |θ2(z)| < 1 if

=z < 0 [24]. For r ≥ rcut, this leads to∣∣∣∣ j4H(2)
0 (γ|ρ|)

∣∣∣∣ ≤ 1
4

√
2

π|γ|rcut
ercut=γe(|ρ|−rcut)=γ

(
1 + 1

8|γ|rcut

)
(3.9)

= C∆cute
(|ρ|−rcut)=γ , (3.10)

where the last step follows from Definition 1.

To illustrate the use of the cutoff distance in the calculation of the interaction
integrals, consider I(1)

jk in a conductive medium:

I(1)
jk ≈

∫
Sj

pj(ρ)dc
∫
Sk

G(ρ− ρ′)H(rcut − |ρ− ρ′|)pk(ρ′)dc′. (3.11)

The boundaries of the test integral over test segment Sj follow from the inter-
section of Sj with the set of points that are closer than the cutoff distance from
the source segment Sk (region Υk in Fig. 3.2). Because Υk is convex, either
Sj ∩Υk = ∅ (no interaction) or Sj ∩Υk is a subsegment (AB in Fig. 3.2). For
each test point ρ ∈ (Sj ∩Υk), the basis integration interval is a subsegment of
Sk (CD in Fig. 3.3).

In this way, interactions between points that are separated further than rcut
are neglected and the quadrature points are distributed over the region where
the integrand is non-negligible, which alleviates the problem of the exponential
damping of the integrand. At the same time, the number of oscillations of the
integrands in the interaction integrals is small, independent of the conductivity,
allowing a relatively low quadrature order. To show this, consider an interface
between free space (wavelength λ0) and a conductive region (conductivity
σ, wavenumber γ =

√
ω2µ0(ε0 − jσ/ω)− β2), with boundary segment length

equal to l = λ0/10. The integrands of the interaction integrals (3.2)–(3.4) can
be expressed in terms of Hankel functions of the second kind, as shown in (3.13).
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Figure 3.2: Test integration interval AB, where the interactions from segment
Sk are non-negligible.

Figure 3.3: Basis integration interval CD, for test point ρ.

For σ � ωε0, it is evident from (3.8) that rcut ∼ δ, implying that the number
of oscillations of H(2)

η (γr) in r ∈ [0, rcut] is bounded for high conductivities. For
σ � ωε0, rcut > l and the number of oscillations of H(2)

η (γr) for r ∈ [0, l] in
a dielectric region is also bounded. A measure for the maximum number of
oscillations of the integrands is given by

Z = max
σ∈[0,∞[

β∈[0,ω√ε0µ0]
η∈{0,1,2}
P∈{<,=}

z(PH(2)
η (γr), [0,min(rcut, l)]), (3.12)

where z(f(r),A) denotes the number of zero-crossings of f(r) in r ∈ A. It can be
easily verified that Z = 2, 4 and 6 if ∆cut = 10−3, 10−6 and 10−9, respectively,
which shows that the number of oscillations increases if a higher accuracy
is required (larger rcut), but remains small, allowing a low quadrature order,
independent of σ. In conclusion, the cutoff distance alleviates both problems
of exponentially damped and highly oscillatory kernels in conductive media.
This approach is an extension of the traditional method in [21], to accurately
evaluate the interaction integrals in media with arbitrary conductivity.
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3.5.2 Singularity Extraction
The three types of interaction integrals (3.2)–(3.4) can be written as

I(l)jk =
∫

Γ̃
w

(l)
j (ρ)

∫
Γ̃
b
(l)
k (ρ′)H(rcut − r)

2∑
η=0

f (l)
η (ρ,ρ′)H(2)

η (γr)dc′ dc, (3.13)

with r = |ρ− ρ′|. The test and basis functions are given by

w
(1)
j (ρ) = w

(2)
j (ρ) = pj(ρ), (3.14)

w
(3)
j (ρ) = tj(ρ), (3.15)

b
(1)
k (ρ′) = pk(ρ′), (3.16)

b
(2)
k (ρ′) = b

(3)
k (ρ′) = tk(ρ′). (3.17)

As shown in appendix 3.8, the functions f (l)
η (ρ,ρ′) that are not identically zero

are given by

f
(1)
0 = − j4 , (3.18)

f
(2)
1 = −jγ4 (n̂′ · r̂), (3.19)

f
(3)
0 = −jγ

2

8 (n̂ · n̂′), (3.20)

f
(3)
2 = jγ2

8 (2(n̂ · r̂)(n̂′ · r̂)− n̂ · n̂′) . (3.21)

If the test and basis functions’ supports overlap or lie next to each other, the
integrands in (3.13) have a singularity in the integration domain. We employ
a singularity extraction technique with an extracted singular part that is also
limited by the cutoff distance, given by

I(l)jk,sing =
∫

Γ̃
w

(l)
j (ρ)

∫
Γ̃
b
(l)
k (ρ′)H(rcut − r)

2∑
η=0

f (l)
η (ρ,ρ′)Sη(γr)dc′ dc. (3.22)

The functions Sη are given by

S0(γr) = 2j
π

log r, (3.23)

S1(γr) = − 2j
πγr

, (3.24)

S2(γr) = − 4j
πγ2r2 . (3.25)
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The integrals of the limited singular parts are known in closed-form. For
example, the self-patch term of the first type is given by

I(1)
jj,sing = j

π
a((4lj − 2a) log a− 4lj + a), (3.26)

with a = min(rcut, lj).

3.6 Numerical Results
Plane wave scattering at a conductive cylinder is used to validate the accuracy
of the proposed method as a function of the accuracy parameter ∆cut, for a wide
range of electrical conductivities in the general case of oblique incidence (β 6= 0),
and to compare it with existing methods. The next examples are practically
relevant shielding problems, in which a conductive and (non-)magnetic enclosure
with apertures is used to shield the interior from the fields generated by an
exterior electric current source. The new method is able to accurately calculate
the shielding performance over a broad frequency range, and outperforms
existing methods in terms of accuracy and simulation time.

3.6.1 Scattering at a Conductive Cylinder
To validate the accuracy of the proposed 2.5-D BEM for conductive media
and compare it with existing numerical methods, we consider the problem of
plane wave scattering at a conductive cylinder (diameter d, finite conductivity
σ and permittivity ε0− jσ/ω), embedded in free space (Fig. 3.4). An analytical
expression of the solution can be obtained via separation of variables [25]. The
accuracy of the proposed method is compared with the traditional method
without cutoff distance, and with a surface impedance approximation, over a
wide conductivity range, from the low-loss dielectric (ωε0 � σ) to the conductive
region (ωε0 � σ).

The numerically obtained radar cross section (RCS), denoted Sn(φ), is compared
with the analytical solution, denoted Sa(φ). The relative error between these
cross sections is defined by

E =

√√√√∑K
k=1 |Sn(φk)− Sa(φk)|2∑K

k=1 |Sa(φk)|2
, (3.27)

with φk = 2πk/K and K = 100. Figures 3.5-3.6 show the relative error as a
function of the skin depth for the two polarizations (VV and VH) of oblique
plane wave incidence (α = 45◦). The skin depth δ =

√
2/(ωµ0σ) ranges

from 10−5 m to 10 m, covering the region between a good conductor with
conductivity σ = 107 S/m and a low-loss dielectric with relative dielectric
constant 1 − 5 · 10−4j. Observe that, in general, the error decreases if the
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Figure 3.4: Plane wave scattering at a conductive cylinder with conductivity σ,
permittivity ε0 − jσ/ω and diameter d = 1 m. The cylinder is illuminated by a
linearly polarized plane wave, with free space wavelength λ0 = 1 m, impinging
at an angle α w.r.t. the (x, y) plane.

accuracy threshold ∆cut becomes smaller. The relative error saturates around
five significant digits for small and large skin depths, but this lower bound is
determined mostly by the boundary meshing of the circular cross section into
straight segments. The asymptotic value for the cutoff distance in (3.8), in case
of high conductivity, is shown in the legend. For rcut > d, no interactions are
neglected, and the numerical solution becomes independent of ∆cut, as can be
seen for high δ/d values.

The inability of the traditional method without cutoff distance (i.e. the proposed
method with rcut = ∞) to accurately evaluate the interaction integrals in
conductive media, for a fixed quadrature order and constant number of boundary
segments, is clearly demonstrated in Fig. 3.6. The problems mentioned in
section 3.4, i.e. the exponential decay combined with strong oscillation of the
integrands, render the traditional method inaccurate or useless for low values
of δ/d. The proposed method focuses the quadrature points in the region
where the integrands are non-negligible, by introducing the cutoff distance (3.8)
and a singularity extraction with limited extracted part, which in turn limits
the number of oscillations. This leads to a near constant accuracy over the
considered conductivity range (if enough oscillations are taken into account, i.e.
for sufficiently low ∆cut). For rcut > d, or equivalently for high δ/d values, our
new method reduces to the traditional one, and the numerical solution is the
same for both methods.

Another approach to incorporate good conductors in a BEM is the use of a
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Figure 3.5: Relative error of the co-polarization RCS (VV) as a function of
the skin depth δ for oblique incidence (α = 45◦) for the proposed method, the
traditional method without cutoff distance and limited extracted part, and a
surface impedance approximation. The quadrature order of the interaction
integrals (Q = 32) and number of boundary segments (N = 630) are constant.

surface impedance approximation, by imposing the condition E× n̂ = Zs(n̂×
H× n̂) on the conductor boundary, with Zs = (1 + j)

√
ωµ0
2σ and n̂ the outward

normal to the conductive region. Figures 3.5-3.6 show that this is a good
approximation for low values of δ/d, i.e. in the conductor skin-effect regime
(note that the error does not saturate around 100 dB because the analytical
solution with surface impedance approximation is considered). It is apparent
from Fig. 3.6 that the proposed method (with ∆cut = 10−9) outperforms the
surface impedance approximation and traditional method in terms of accuracy,
in the transition region between low-loss dielectric and skin-effect regime.

3.6.2 Slotted Coaxial Shield
In this example, we investigate the shielding performance of a coaxial enclosure
with one or two slots at angles α1 and α2 (Fig. 3.7). The coaxial enclosure
is illuminated by an electric line current I0δ(ρ − ρ0)ẑ (hence β = 0), which
induces an unwanted noise current I1 in the enclosed copper signal conductor.
Remark that, in addition to our MoM integral equation technique, scattering
at a concentrically loaded cylindrical shield with n− 1 apertures can be solved
by reducing an n-series problem to an equivalent Riemann-Hilbert problem
[26], [27]. A similar radial mode matching technique has been employed for
multi-slotted shields with finite thickness [28]. We consider three enclosure
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Figure 3.6: Relative error of the cross-polarization RCS (VH) as a function
of the skin depth δ for oblique incidence (α = 45◦) for the proposed method,
the traditional method without cutoff distance and limited extracted part, and
a surface impedance approximation. The quadrature order of the interaction
integrals (Q = 32) and number of boundary segments (N = 630) are constant.

materials: copper (σ = 5.8 · 107 S/m, µr = 1), a magnetic conductor with the
same skin depth (σ = 5.8 ·104 S/m, µr = 1000), and a perfect electric conductor
(σ =∞). The configurations with one and two slots are described by α1 = 90◦
and (α1, α2) = (60◦, 120◦), respectively.

Figure 3.8 shows the relative noise current amplitude |I1/I0| of the copper
and perfect electric conducting (PEC) enclosure, over a broad frequency range
(from 100 Hz to 1 GHz). Observe that the analytical solution for the closed
coaxial enclosure (no slots) coincides with the numerical solution. At low
frequencies, there is leakage through the copper enclosure, as the skin depth
is comparable to the thickness, and the presence of slots does not deteriorate
the shielding performance significantly. At high frequencies, the predominant
leakage mechanism is diffraction of the fields at the slots, and the copper and
PEC shields exhibit the same behavior. For the given position of the slots and
line current, the noise current for two slots is about 15 dB higher than for one
slot.

Figure 3.9 shows the relative noise current amplitude for the magnetic conducting
enclosure. For the configuration without slots, the numerical and analytical
solution coincide. Compared to the copper enclosure, at low frequencies, the
presence of slots now has a larger influence. This is due to a different shielding
mechanism in the magnetic conductor, adding to the effect of the conductivity.
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Figure 3.7: Cross section of a coaxial enclosure with conductivity σ and relative
permeability µr, illuminated by an electric line current I0, and enclosing a
copper signal conductor with induced noise current I1. There are one or two
slots present at angles α1 and α2.

If µr > 1, the magnetic induction produced by the source is diverted into the
enclosure, then shunted within the material in a direction nearly parallel to
its surface, and finally released back into free space [29]. The presence of slots
disturbs the flux shunting, and negatively affects the shielding performance.

It is interesting to compare our new method with the traditional method
(rcut = ∞) in terms of accuracy and simulation time. Fig. 3.10 shows the
calculated shielding performance as a function of the quadrature order Q, for
the copper shield with two slots. For ∆cut = 10−9, the new method already
converges to the solution for Q = 10, compared to Q = 80 for the traditional
method. For the same quadrature order Q = 10, the traditional method fails to
accurately predict the shielding performance, due to the problems mentioned
in section 3.4. Evidently, the need for a smaller quadrature order to obtain
the same accuracy leads to a decrease in simulation time (Table 3.1). Even for
the same quadrature order (Q = 10), our method is faster than the traditional
method because interactions between segments separated by at least the cutoff
distance are not taken into account.

3.6.3 Cable Tray Shield
The geometry of a metal cable tray with polygonal cross section (Fig. 3.11) is
similar to the previous example, but arguably more interesting from a practical
perspective. In this case, no closed-form analytical solution is available for
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Figure 3.8: Shielding performance of the coaxial enclosure as a function of
frequency, for a copper and perfect electric conducting (PEC) enclosure, with a
varying number of slots.

Table 3.1: Simulation time of the new method (top) and the traditional method
(bottom), versus the quadrature order Q (see Fig. 3.10).

Q Time (s)
10 10
10 17
20 45
40 150
80 575

the closed cable tray (g = 0). The enclosure is illuminated by an electric line
current I0δ(ρ− ρ0)ẑ (hence β = 0), which induces unwanted noise currents Ii
in the three copper signal conductors. Figure 3.12 shows the relative current
magnitude |I2/I0| in the middle conductor, for an open and closed cable tray
(aperture length g = 5.5 mm and g = 0, respectively). We consider three
enclosure materials: copper (σ = 5.8 · 107 S/m, µr = 1), a magnetic conductor
with the same skin depth (σ = 5.8 · 104 S/m, µr = 1000), and a perfect electric
conductor (σ =∞).

At low frequencies (up to 105 Hz), we notice that the influence of the apertures
can be neglected, as the open and closed cable tray yield approximately the
same shielding performance, for both copper and the magnetic conductor.
In this region, the skin depth is comparable to the thickness, allowing the
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Figure 3.9: Shielding performance of the coaxial enclosure as a function of
frequency, for the magnetic conductor, with a varying number of slots.

fields to penetrate the enclosure. At high frequencies, the copper and perfectly
conducting open cable tray behave in the same way, indicating that diffraction of
the fields through the aperture is the predominant leakage mechanism. Observe
that the magnetic conductor exhibits a worse shielding performance than copper,
for all considered frequencies.

3.7 Conclusions
This chapter presents a novel method to accurately and efficiently calculate 2.5-
D MoM interactions integrals in conductive media, with arbitrary permeability.
The resulting BEM is practically relevant to a large number of application
domains, including full-wave modal analysis of non-perfect multiconductor
waveguides (see chapter 4), scattering problems, and shielding problems with
general three-dimensional sources.
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Figure 3.10: Comparison between the traditional method (with rcut = ∞)
and the new method in this chapter (with ∆cut = 10−9), of the calculated
shielding performance of the copper coaxial enclosure with two slots, for a
varying quadrature order Q.

Figure 3.11: Cross section of an open cable tray with conductivity σ and relative
permeability µr, illuminated by an electric line current I0, and enclosing three
copper signal conductors with induced noise currents I1 to I3. The geometry is
symmetrical w.r.t. a vertical line through the center of the middle conductor.
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Figure 3.12: Shielding performance of the open (g = 5.5 mm) and closed (g = 0)
cable tray as a function of frequency, for various shielding materials.
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Figure 3.13: Relevant to the derivation of the normal derivatives.

3.8 Derivation of the Green’s function’s normal
derivatives

Using the notations of Figure 3.13, the transverse gradients of the Green’s
function G(ρ − ρ′) = − j4H

(2)
0 (γr) w.r.t. the observation point ρ and source

point ρ′ are given by

∇tG(ρ− ρ′) = −∇′tG(ρ− ρ′) = jγ

4 H
(2)
1 (γr)r̂. (3.28)

From these expressions, the normal derivatives of the Green’s function follow
immediately:

∂G(ρ− ρ′)
∂n

= jγ

4 H
(2)
1 (γr)(n̂ · r̂), (3.29)

∂G(ρ− ρ′)
∂n′

= −jγ4 H
(2)
1 (γr)(n̂′ · r̂). (3.30)

Taking the gradient w.r.t. ρ′ of (3.28) leads to the following dyadic, with the
dot representing the derivative of a holomorphic function:

∇′t∇tG(ρ− ρ′) = −∇′t
(
jγ

4 Ḣ
(2)
0 (γr)

)
r̂− jγ

4 Ḣ
(2)
0 (γr)∇′tr̂

= jγ2

4 Ḧ
(2)
0 (γr)r̂r̂ + jγ

4r Ḣ
(2)
0 (γr)φ̂φ̂. (3.31)

After some manipulations, the second order normal derivative of the Green’s
function can finally be written as

∂2G(ρ− ρ′)
∂n∂n′

= n̂′ · ∇′t∇tG · n̂

= −jγ
2

8

(
H

(2)
0 (γr) +H

(2)
2 (γr)

)
n̂ · n̂′ + jγ2

4 H
(2)
2 (γr)(n̂ · r̂)(n̂′ · r̂).

(3.32)
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4
Analytic Properties of Dispersion
Curves for an Efficient Full-Wave

Multiconductor Waveguide Analysis

based on the contributions [1] and [2]

F F F

In this chapter, some properties of numerical dispersion curves in
general isotropic piecewise homogeneous waveguides are rigorously
derived. These properties are leveraged in a numerical implementa-
tion capable of determining the dispersion curves and eigenmodes
of such waveguides with cross-sectional materials that can be highly
conductive (such as copper). The influence of a lossy shielding con-
ductor on the complex modes of a shielded dielectric image guide is
investigated for the first time. Another numerical example illustrates
the proposed full-wave modal analysis of a multiconductor waveguide,
whose efficiency stems from incorporating the derived theorems.

4.1 Introduction
The recent development of computer-based information systems shows a clear
tendency towards higher bit rates and miniaturization of (opto-)electronic
components. The design of reliable information-carrying waveguides, driven at
high frequencies to sustain the bandwidth requirements, is hampered by the
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presence of modal dispersion, crosstalk and losses. Accurate prediction of all
electromagnetic phenomena occurring in the waveguide cross section, including
the dispersion curves of the eigenmode propagation constants, is of utmost
importance for the design and optimization of wave-guiding structures. This
chapter derives properties that contribute to this goal, and presents an efficient
full-wave modal analysis of waveguides (cf. section 2.5).

There are many techniques available, developed during the past decades, to
determine waveguide propagation characteristics. The effective dielectric con-
stant method is an approximate technique that has been used to predict the
dispersion relations of several types of dielectric waveguides [3]. However, it
only works well under certain assumptions.

The mode-matching technique [4], [5] has the benefits of being both exact
(provided a sufficient number of modes is considered) and yielding full modal
information, i.e., both propagation constants and modal field distributions. The
method requires that the individual constituents of the cross section are of
simple geometrical shape, such that the modes can be determined analytically.

Finite difference and finite element techniques have been successfully applied
to the analysis of dielectric waveguide structures [6], [7]. Advantages of the
methods are the easy incorporation of inhomogeneous material regions, where
the material parameters can vary continuously as a function of place, and
the straightforward determination of the modal characteristics by solving an
eigenvalue problem. Although its linear system is sparse, the employed volume
discretization technique can yield a large number of unknowns in comparison
with a boundary element method. Moreover, the analysis of open waveguides
is somewhat problematic, as it leads to a larger simulation domain and the
introduction of (non-perfect) boundary conditions or an absorbing layer at the
boundary. Finally, these methods require a sufficiently fine mesh in regions with
rapid field variations, and, therefore, become infeasible in highly conductive
regions with skin effect phenomena.

Methods based on the Green’s functions of the material regions can be classified
into domain and boundary integral methods. The first type was used to study
the properties of open planar stratified dielectric waveguides with embedded
inhomogeneous material regions [8], [9]. For waveguides with piecewise ho-
mogeneous material regions, a boundary integral formulation was applied to
analyze dielectric waveguides and lossy multiconductor transmission lines in
multilayered media [10], [11]. However, the use of a spectral representation of
the Green’s function in [10] requires a final spatial inverse Fourier transform,
which becomes numerically infeasible for material regions with high losses. For
open waveguides, Green’s function based methods automatically ensure the
radiation conditions at infinity and the prediction of leaky waves. Moreover,
less unknowns are needed than with a finite difference or finite element method,
as only the inhomogeneous domains and boundaries of piecewise homogeneous
domains need to be meshed. Drawbacks of the methods are the non-sparseness
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of the resulting linear system and the less trivial determination of the dispersion
curves, based on the search of the (complex) zeros of the system matrix’s
determinant.

The study of modal interactions has been thoroughly investigated in the past
[12], [13], and the smoothness of the characteristic determinant in the dispersion
equation is generally taken as an ansatz (based on the physical nature of the
problem). In this chapter, we investigate the behavior of a single dispersion
curve in general isotropic waveguides. The numerical description allows us to
explicitly establish the (domain of) holomorphy of the characteristic determinant
and prove some useful theorems regarding the properties of dispersion curves.
The explicit incorporation of the numerical framework in the derived properties
is by no means a limitation, considering existing convergence theorems, but this
has not been investigated in this chapter.

A Green’s function based boundary element method is employed to calculate the
dispersion curves of waveguides with arbitrarily shaped piecewise homogeneous
material regions. Use of a technique to evaluate method of moments (MoM)
interaction integrals in highly conductive materials allows the treatment of
both dielectric and electric waveguides with non-perfect conductors. As the
formulation is based on a two-dimensional version of the PMCHWT (Poggio-
Miller-Chang-Harrington-Wu-Tsai) integral equation [14]–[16], spurious modes
are nonexistent. It is shown that the evolution of a propagation constant in the
complex plane as a function of frequency can be tracked efficiently based on
the derived theorems.

In section 4.2, the geometry of the considered waveguides is presented, along
with the employed boundary integral equations. The obtained system of coupled
integral equations is then transformed to a finite-dimensional linear system
by means of the MoM, as explained in section 4.3. Some properties regarding
the MoM system matrix that will be needed in the sequel are also derived.
The properties of the dispersion curves that simplify and speed up a numerical
implementation are derived in section 4.4. Section 4.5 discusses these numerical
techniques to search for and track the propagation constants in the complex plane
as a function of frequency. Numerical examples demonstrating the correctness
and accuracy of the methods are presented in section 4.6.

4.2 Geometry and Boundary Integral Equations
Consider a waveguide whose cross section, in line with assumption (2.1) of
section 2.1, is the union of linear isotropic piecewise homogeneous material
regions Ωi characterized by their complex electric permittivity εi and magnetic
permeability µi, with Ω0 the only unbounded domain. Assume that all sources
and fields have a common time and longitudinal dependence ej(ωt−βz) (β ∈ C),
i.e., the time- and space-harmonic Maxwell equations (1.13)–(1.16) hold for
the phasor fields. The unknowns of the problem are the phasors of the time-
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Figure 4.1: Waveguide cross section with arbitrarily shaped piecewise homoge-
neous material regions

and space-harmonic tangential electric and magnetic boundary fields, given by
n̂×E×n̂ = Ett̂+Ez ẑ and n̂×H×n̂ = Htt̂+Hz ẑ, with Et andHt the transverse
tangential components, Ez and Hz the longitudinal components, n̂ the outward
unit normal to Ωi and t̂ = ẑ × n̂. The representation formulas (1.34)–(1.37)
hold, with E(i)

t t̂ +E
(i)
z ẑ and H(i)

t t̂ +H
(i)
z ẑ the incoming tangential electric and

magnetic field generated by sources in Ωi, respectively, Γ̃ the boundary of Ωi,
ρ = xx̂ + yŷ, ε = εi, µ = µi and γ = γi =

√
ω2εiµi − β2.

A system of coupled integral equations is obtained after imposing continuity
of the tangential fields at the boundaries, yielding a 2.5-D version of the
PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai) operator [14]–[16]. A
finite-dimensional linear system is obtained with the MoM, as explained in the
next section. The incoming tangential electric and magnetic fields E(i)

t t̂ +E
(i)
z ẑ

and H(i)
t t̂ +H

(i)
z ẑ, respectively, are due to sources in Ωi, and contribute to the

right hand side vector of the matrix equation after discretization in the MoM
[17]. However, in an eigenmode analysis, no sources are present, implying that
E

(i)
t = E

(i)
z = H

(i)
t = H

(i)
z = 0 in (1.34)–(1.37).

4.3 Discretized System with the Method of
Moments

4.3.1 Properties of the Interaction Integrals
First, we briefly recall which types of interaction integrals occur in the MoM of
the 2.5-D PMCHWT boundary integral equation [10], [17].

Assume that the boundaries ∂Ωi are approximated by a union (denoted Γi)
of straight segments Sj with length lj and end points ρj and ρj+1 (Fig. 4.2),
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Figure 4.2: The boundaries are approximated by means of straight segments,
over which triangular and pulse functions are defined

although the properties and numerical techniques derived in this chapter still
hold for general curved segments. Following [10], the transverse tangential
components Et and Ht are expanded into pulse functions pj(ρ), with support
over segment Sj , whereas the longitudinal components Ez and Hz are expanded
into triangular functions tj(ρ), with support over Sj and Sj+1:

pj(ρ) = 1
lj

ρ ∈ Sj , (4.1)

tj(ρ) =
{

1− |ρ− ρj+1| l−1
j

1− |ρ− ρj+1| l−1
j+1

ρ ∈ Sj
ρ ∈ Sj+1.

(4.2)

Moreover, a Petrov-Galerkin approach is employed, after choosing the same set
of basis and test functions. Testing the continuity equations of the longitudinal
components Ez and Hz with pulse functions, and the equations for Et and Ht

are with triangular functions leads to a stable discretization [10]. To calculate
the elements in the PMCHWT MoM system matrix, the interaction integrals
(4.3)–(4.5) below are evaluated numerically for basis functions, denoted pk and
tk, and test functions, denoted pj and tj , with support over segments that have
Ωi as a neighboring medium, with Γ̃ = Γi the (approximated) boundary of
Ωi. This can easily be seen by inspecting (1.34) and (1.35). The tangential
derivatives of the Green’s function can be transferred to the test function using
Stokes’ theorem such that only the three types of interaction integrals (4.3)–(4.5)
remain.

I(1)
jk =

∫
Γ̃
pj(ρ)dc

∫
Γ̃
G(ρ− ρ′) pk(ρ′)dc′, (4.3)

I(2)
jk =

∫
Γ̃
pj(ρ)dc

∫
Γ̃

∂G(ρ− ρ′)
∂n′

tk(ρ′)dc′, (4.4)

I(3)
jk =

∫
Γ̃
tj(ρ)dc

∫
Γ̃

∂2G(ρ− ρ′)
∂n∂n′

tk(ρ′)dc′. (4.5)
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More explicitly, one can rewrite the interaction integrals as in (4.6)–(4.8) (see
section 3.8 and Fig. 3.13). Note that the inner integral of the last type is to be
interpreted in Hadamard finite part sense (p.f.).

I(1)
jk =−

∫
Γ̃

pj(ρ)
∫
Γ̃

j

4H
(2)
0 (γir) pk(ρ′) dc′ dc, (4.6)

I(2)
jk =−

∫
Γ̃

pj(ρ)
∫
Γ̃

jγi
4 H

(2)
1 (γir)(n̂′ · r̂) tk(ρ′) dc′dc, (4.7)

I(3)
jk =

∫
Γ̃

tj(ρ) p.f.
∫
Γ̃

[
jγ2
i

4 H
(2)
2 (γir)(n̂· r̂)(n̂′· r̂)

−jγ
2
i

8

(
H

(2)
0 (γir) +H

(2)
2 (γir)

)
n̂·n̂′

]
tk(ρ′) dc′dc. (4.8)

Consider a fixed mesh Γ̃, independent∗ of the frequency ω and longitudinal
wavenumber β. The branch cuts Bi(ω) of the transversal wavenumber γi =√
ω2εiµi − β2 at the frequency ω are chosen on the hyperbola in the complex

β-plane with the real and imaginary axes as asymptotes such that =γi < 0 for
β ∈ (C \Bi(ω)) [18]. Likewise, denote B̃i(β) as the branch cuts of γi, for a fixed
β and viewed as a function of ω, such that =γi < 0 for ω ∈ (C \ B̃i(β)). It is
easy to see that γi(ω, β) is a holomorphic function of the two variables ω and β
in the domain Oi = C2 \ {(ω, β) | β ∈ Bi(ω)} = C2 \ {(ω, β) | ω ∈ B̃i(β)}. It
will be proved in the following theorems that the interaction integrals (4.6)–(4.8)
are also holomorphic functions of ω and β in Oi.

Theorem 4.3.1. Given ν ∈ N. Suppose a(r) is a piecewise continuous complex
function of a positive real argument r > 0 that vanishes for r > R. Then, if the
function F (ω, β) = limε→0

∫ R
ε
a(r)H(2)

ν (γi(ω, β)r)dr converges as an improper
Riemann integral in Oi = C2 \ {(ω, β) | β ∈ Bi(ω)}, it is holomorphic in Oi.

Proof. Suppose that F (ω, β) converges as an improper Riemann integral in Oi.
We will first prove that, for fixed ω0, F (ω0, β) is holomorphic in the variable
β ∈ Ψ = C \ Bi(ω0). Consider a fixed ε > 0. Thanks to the choice of the
branch cuts Bi(ω0), H(2)

ν (γi(ω0, β)r) is holomorphic for r > 0 and β ∈ Ψ. As
by assumption Fε(β) =

∫ R
ε
a(r)H(2)

ν (γi(ω0, β)r)dr is Riemann integrable in
Ψ, the sequence of its holomorphic Riemann sums converges uniformly on all
compact subsets of Ψ. Therefore, for each value of ε, the limit of this sequence
of holomorphic Riemann sums, namely Fε(β), is found to be holomorphic too,
by a well-known theorem of Weierstrass. As limε→0 Fε(β) exists, the sequence
of the holomorphic functions F1/n(β) for n→∞ also converges uniformly on all
∗suppose that Γ̃ is sufficiently fine to model all wave phenomena in the frequency and

longitudinal wavenumber range of interest
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compact subsets of Ψ, implying that the limit function F (ω0, β) = limε→0 Fε(β)
is holomorphic in Ψ.

Completely analogously, one can prove that, for fixed β0, F (ω, β0) is holomorphic
as a function of ω in C \ B̃i(β0). Application of Hartogs’ fundamental theorem,
also called the separate analyticity theorem [19], leads to the proposition.

Theorem 4.3.2 (Holomorphy of the interaction integrals). The interaction
integrals (4.6)–(4.8) are holomorphic functions of the two complex variables ω
and β in the domain Oi.

Proof. It can be shown that interactions of the form (4.6) and (4.7) can be
reduced to the form of F (ω, β) in theorem 4.3.1, which converges as an improper
Riemann integral in Oi. Interactions of the last form (4.8) cannot be written
straightforwardly as an improper Riemann integral if the kernel in the integration
domain contains a hypersingularity. By extracting the hypersingular part of
the second order Hankel function, the regularized integrand is (improperly, if
basis and test functions are overlapping or tangent) Riemann integrable, and
by arguments similar to the proof in theorem 4.3.1, the integral leads to a
holomorphic function in Oi. The finite part integral of the hypersingular part is
independent of ω and β, and thus trivially holomorphic. Indeed, it is given by:

I(3)
jk,sing =

∫
Γ̃

tj(ρ) dc p.f.
∫
Γ̃

1
2πr2

[
n̂ · n̂′

− 2(n̂ · r̂)(n̂′ · r̂)
]
tk(ρ′) dc′.

This lets us conclude that the interaction integrals are holomorphic functions
of ω and β in Oi.

4.3.2 Properties of the System Matrix
We denote the MoM system matrix at frequency ω and longitudinal wavenumber
β as M(ω, β) ∈ Cn×n, i.e., it has the same dimension n for all ω and β,
resulting from the earlier assumed fixed discretization of the boundaries ∂Ωi.
Its determinant will be written as D(ω, β) = det M(ω, β). The employed
methods to search for propagation constants of the waveguide, discussed in
section 4.4, rely on the determination of the zeros of D(ω, β) in the β-plane. A
few interesting properties of the dispersion curves as a function of frequency
can be proved, taking into account the holomorphy of the determinant. The
latter is the subject of the following theorems.

Theorem 4.3.3 (Holomorphy of the matrix elements). The matrix elements
of M(ω, β) are holomorphic functions of ω and β in the domain O = (C0×C) \
(∪i{(ω, β) | β ∈ Bi(ω)}).
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Proof. The discretized linear system arises after expanding the tangential
boundary field components into a set of basis functions and imposing moments
of the continuity relations, arising from the representation formulas (1.34)–
(1.37), as explained in section 4.2. Therefore, each matrix element can be
written as a finite sum of products of the prototype integrals (4.6)–(4.8) (that
are holomorphic in ∩iOi, by theorem 4.3.2) with functions that are holomorphic
in O (note that some factors have a pole at ω = 0).

Theorem 4.3.4 (Holomorphy of the determinant). The system matrix deter-
minant D(ω, β) is holomorphic as a function of ω and β in the domain O,
defined in theorem 4.3.3.

Proof. This follows immediately from theorem 4.3.3 and the fact that the
determinant is a finite sum of finite products of matrix elements (up to a
sign).

The following theorem discusses the symmetry of the matrix determinant as a
function of β, if the cross section consists entirely of lossless materials. This
property implies that the numerically found complex waves (cf. Fig. 2.5(a))
always come in pairs with complex conjugate propagation constants.

Theorem 4.3.5 (Symmetry property of the determinant for lossless structures).
Suppose εi, µi ∈ R0 and (ω, β) ∈ O, then D(ω, β) = D(ω, β), where a stands
for the complex conjugate of a.

Proof. We shall make use of the identity H(2)
n (−z) = (−1)n+1H

(2)
n (z) if =z < 0

and n ∈ Z, which can be proved using elementary properties of Bessel functions
[20]. When we replace β with β in the interaction integrals (4.6)–(4.8), we
can use the previous identity for (ω, β) ∈ O, as then =(γir) < 0. Note that in
the process of replacing β → β, we have γi → −γi and γ2

i → γ2
i . This lets us

conclude that I(1)
jk → I(1)

jk , I(2)
jk → I(2)

jk and I(3)
jk → I(3)

jk if β → β. By examining the
additional factors in the representation formulas (1.34)–(1.37), it can be seen
that some contributions, for example Ht as a source for Ez (denoted [EzHt]),
will be transformed according to [EzHt]→ −[EzHt]. Others, for example Ez as
a source for Ez, will be transformed according to [EzEz]→ [EzEz]. However,
M(ω, β) and M(ω, β) will only differ up to a multiplication of the same number
of columns and rows with −1. This leads to the proposition.

4.4 Properties of the Dispersion Curves
Given (ω0, β0) ∈ O, with ω0 ∈ R+

0 . Suppose that β0 is a zero of the determinant
at the operating frequency ω0, i.e., D(ω0, β0) = 0. In the current context, β0
corresponds to the propagation constant of one or more eigenmodes that can



4.4. Properties of the Dispersion Curves 63

exist in the structure. As a consequence of Hartogs’ lemma, also called the
Osgood-Brown theorem [19], the zero (ω0, β0) cannot be an isolated one. The
Weierstrass preparation theorem and the fact that D(ω, β) may be expressed a
power series around (ω0, β0), which has a term only involving β−β0, independent
of ω − ω0 (otherwise D(ω0, β) would be identically zero in the neighborhood
where the power series holds, and thus, by analytic continuation, the determinant
would vanish for ω = ω0), allows to write the following local representation for
D(ω, β), valid in a neighborhood∗ Uε = B(ω0, ε)×B(β0, ε) of (ω0, β0) [21]:

D(ω, β) =
[

(β − β0)ν +
ν−1∑
i=0

ci(ω)(β − β0)i
]
φ(ω, β), (4.9)

where φ(ω, β) is holomorphic and zero-free in Uε, ν ∈ N0 and the functions
ci(ω) are holomorphic in B(ω0, ε) and vanish at ω0. From (4.9), it is clear that
the zero β0 of the function D(ω0, β) has multiplicity ν. The following theorem
describes the behavior of this zero as a function of ω, in a neighborhood of ω0
on the real axis.

Theorem 4.4.1 (Behavior of a dispersion curve as a function of frequency).
Suppose that (ω0, β0) is a zero of D(ω, β) with multiplicity ν, with ω0 ∈ R+

0 and
Uε a neighborhood of (ω0, β0) where (4.9) holds. If, for each ω in a real interval
(a, b) ⊂ (ω0 − ε, ω0 + ε) (with b > a), it holds that D(ω, β) has exactly one zero
(ω, β1(ω)) with multiplicity ν in Uε, then the same holds for all ω ∈ B(ω0, ε),
for which D(ω, β) has zeros inside Uε. Moreover, the dispersion curve of the
zero β1(ω) inside Uε will be smooth.

Proof. For ω ∈ (a, b), there is only one zero with multiplicity ν inside Uε. This
means that the term in brackets in (4.9) is uniquely factorized in the following
way, for ω ∈ (a, b):

(β − β0)ν +
ν−1∑
i=0

ci(ω)(β − β0)i = (β − β1(ω))ν (4.10)

=
ν∑
i=0

(
ν

i

)
(−1)ν−i(β − β0)i(β1(ω)− β0)ν−i. (4.11)

This implies that ci(ω) =
(
ν
i

)
(−1)ν−i(β1(ω)− β0)ν−i for i = 0, 1, ..., ν − 1. Or,

equivalently, the following relations hold:

β1(ω) = β0 −
1
ν
cν−1(ω), (4.12)

ci(ω) =
(
ν

i

)(
cν−1(ω)

ν

)ν−i
. (4.13)

∗B(z0, ε) = {z ∈ C : |z − z0| < ε}, is the open disk centered at z0 with radius ε, whereas
B(z0, ε) denotes its closure.



64 Chapter 4. Properties of Dispersion Curves for Efficient MCW Analysis

As the interval (a, b) contains a limit point, the relations (4.13) will hold for all
ω ∈ B(ω0, ε). Thus, the factorization (4.10) holds in the whole neighborhood
Uε, implying that for all ω ∈ B(ω0, ε), for which D(ω, β) has zeros inside Uε,
the zero is unique and has multiplicity ν. From (4.12), it clear that β1(ω) is
holomorphic in B(ω0, ε) and thus smooth for ω ∈ (ω0 − ε, ω0 + ε).

Corollary 4.4.2 (Dispersion curves cannot split up by themselves). Suppose
that β1(ω) is a complex-valued function of real argument ω ∈ (ω0− ε, ω0], repre-
senting a zero of the determinant with constant multiplicity ν, i.e.,D(ω, β1(ω)) =
0. Then there exists a δ > 0 such that β1(ω) can be smoothly extended to the
interval ω ∈ (ω0 − ε, ω0 + δ), still obeying D(ω, β1(ω)) = 0 with multiplicity ν.
Therefore, dispersion curves cannot split up by themselves. There has to be at
least an intersection with another curve or an intersection with a branch cut
Bi(ω).

Fig. 4.3 visualizes some implications of corollary 4.4.2. The bifurcation of the
dispersion curve β1(ω) at the frequency ω0 is possible, as this happens on the
branch cut Bi(ω0). A physical example of this situation is the bifurcation of a
mode into two complex modes [22]. However, the bifurcation of β2(ω) at ω0 is
not possible, as it would violate corollary 4.4.2.

Figure 4.3: Corollary 4.4.2 implies that the bifurcation of the dispersion curve
β1(ω) at the frequency ω0 is possible, as it happens on the branch cut Bi(ω0).
However, the bifurcation of β2(ω) at ω0 is not possible.

The following theorem provides a connection between the multiplicity of a
propagation constant and the dimension of the null space of the system matrix.

Theorem 4.4.3. Suppose D(ω0, β0) = 0, i.e., β0 is a zero at the frequency ω0
with multiplicity ν(β0). Denote the nullity of the MoM matrix as ν(M(ω0, β0)).
Then ν(M(ω0, β0)) ≤ ν(β0).
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Proof. As M(ω0, β) is an square matrix of dimension n with holomorphic
elements in a neighborhood of β0 (see theorem 4.3.3), it can there be expanded
into the following Taylor series:

M(ω0, β) =
∞∑
i=0

Mi(β − β0)i, (4.14)

with Mi ∈ Cn×n and, as β0 is a zero of the determinant function, det M0 = 0.
Suppose the dimension of the null space of the matrix M0 is equal to ν0, i.e.,
ν0 = ν(M0) = ν(M(ω0, β0)). Now let us write the determinant function in the
following form:

D(β) = det
( ∞∑
i=0

Mi(β − β0)i
)

=
∞∑
j=0

αj(β − β0)j , (4.15)

with αj ∈ C, with α0 = 0. Let us look at a term αj(β − β0)j for 0 < j < ν0. It
can be seen that αj can be written as a sum of determinants of matrices M0
with k ≤ j rows replaced by corresponding rows of the matrices Mi (for i > 0).
Because only k ≤ j < ν0 rows are replaced in this process, the untouched n− k
rows of M0 will be linearly dependent, implying αj = 0 for j < ν0, and thus
ν(M(ω0, β0)) ≤ ν(β0).

4.5 Numerical Techniques
The location of the propagation constants in the complex plane, as found with
the argument principle, is refined using an adaptive quadrature scheme with
adjustable accuracy. The tracking of a propagation constant as a function of
frequency is eased by considering the derived theorems.

4.5.1 Argument Principle
As a first coarse estimate of the distribution of the propagation constants for
a fixed angular frequency ω, we use Cauchy’s argument principle (as in [23]).
The regions where propagation constants are likely to be found are meshed into
rectangular boxes that contain no branch cuts. The argument principle can then
be used to determine the number of zeros of the determinant function, counted
with their multiplicity, inside a rectangular box R in the β-plane with the sole
knowledge of the function values on the boundary. Indeed, if R ⊂ (C \ ∪iBi(ω))
(no branch cuts through R) and D(ω, β) 6= 0 for β ∈ ∂R (no zero on the
boundary), then the determinant function has the following number of zeros
inside R, where the contour integral is taken in counterclockwise direction:

nR = 1
2πj

∮
∂R+

∂βD(ω, β)
D(ω, β) dβ. (4.16)
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The winding number nR of the determinant function along ∂R and is equal to
the number of times the curve {D(ω, β) | β ∈ ∂R} circles around the origin.
This last quantity can be easily calculated numerically by inspecting the change
in argument of the determinant function between neighboring sample points on
the boundary [24].

4.5.2 Adaptive Quadrature Scheme
A more accurate estimate of the distribution of the propagation constants can
be obtained by subsequently refining boxes with nR > 0 and applying the
argument principle. However, this approach becomes infeasible if one wants to
know the location of the zeros up to a fixed (and high) accuracy. To solve this
issue, the coarse search with the argument principle is followed by a refinement
step, consisting of numerically evaluating the following integral:

z = 1
2πnRj

∮
∂R+

β
∂βD(ω, β)
D(ω, β) dβ. (4.17)

If there is only one zero with multiplicity nR inside R, then z precisely represents
the location of this zero. Otherwise, z represents the center of mass of the
enclosed zeros, weighted with their multiplicities. A sufficient refinement of the
boxes via the argument principle is able to exclude the latter case.

We have implemented a numerical quadrature scheme, capable of evaluating
(4.17) to a given precision of the real and imaginary part, taking into account
the rather high cost of evaluating the determinant function in a point. These
considerations lead to a Gauss-Kronrod quadrature rule, as the addition of
N + 1 Kronrod nodes to the N Gauss-Legendre nodes in order to estimate the
error of the original Gauss-Legendre rule, allows to reuse the function values at
the Gauss-Legendre nodes.

In this way, the integral in (4.17) is split up into four parts, with each one
corresponding to a segment of ∂R. The integrand of such a segment integral
is smooth (by theorem 4.3.4) and the derivative ∂βD(ω, β) at the 2N + 1
quadrature points is numerically estimated by a linear transformation of the
determinant values at the nodes, which is essentially a projector of the function
values at the quadrature nodes onto a set of orthogonal polynomials, followed
by a derivative operator of the polynomials at the same nodes. If the error of
the segment integral is too high to guarantee the accuracy of the end result,
the segment is divided into two equal segments where the same procedure is
performed [25]. The quadrature scheme can thus be classified as an adaptive
Gauss-Kronrod scheme.

4.5.3 Frequency sweep
The numerical procedure of tracking the dispersion curve of a propagation
constant as a function of frequency is greatly facilitated by the use of previously
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derived theorems. At the start of the frequency sweep, we choose a fixed mesh
along the material boundaries that is fine enough to accurately represent the
boundary and electromagnetic wave behavior at the considered frequencies
and longitudinal wavenumbers. In this way, the curve β(ω) we are looking for,
starting from a seed value β0 at ω0, will be smooth as a function of frequency
(by theorem 4.4.1). This allows the use of an extrapolation method to accurately
estimate the location of the propagation constant at the next frequency point.
This prediction will then be refined by using the adaptive quadrature scheme,
discussed in the previous paragraph.

The property that the winding number of the curve β(ω) stays constant, as a
consequence of theorem 4.4.1 (unless two curves cross or a branch cut is met),
is used to check if the box around the estimation contains no extra propagation
constants. If the box around the estimated propagation constant at the next
frequency point is chosen too large, such that another zero of the determinant
lies inside it, formula (4.17) will give the center of mass of the enclosed zeros,
and not the sought value. However, this case can be detected as the winding
number increases, which signals the numerical procedure to reduce the box.

4.5.4 Calculation of the Cross-sectional Eigenmode Profiles
The cross-sectional eigenmode profiles, i.e., the electric and magnetic field
distribution of the eigenmodes corresponding to a propagation constant β0
at the frequency ω0, are calculated from the tangential boundary fields using
representation formulas. The eigenvectors in the null space of M(ω0, β0) are the
expansion coefficients of the tangential traces of the eigenmodes on the material
boundaries. The number of linearly independent eigenvectors is upper bounded
by ν(β0) (Theorem 4.4.3).

4.6 Examples
4.6.1 Complex Modes in a Shielded Dielectric Image Guide
In this example, the presented boundary element method is employed to nu-
merically determine the dispersion curves of complex modes. These modes can
arise in certain inhomogeneous waveguides, and have propagation constants
with non-zero real and imaginary part, even if all material regions in the cross
section are lossless. Consider the shielded dielectric image guide of Figure 4.4,
which is essentially a rectangular waveguide loaded with a dielectric material
region with relative permittivity εr = 9, located at the bottom conductor.

It is well-known that complex modes can exist in this type of waveguide [7]. If
the shielding conductor Ωc is a perfect electric conductor (PEC), there are no
losses inside the structure, which is reflected by the fact that complex modes
exist in pairs with conjugate propagation constants [22], [26]. In the lossless
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case, the complex conjugate symmetry of the propagation constants of the mode
pair is nicely predicted by the numerical framework (see theorem 4.3.5). If
the dielectric load material is lossy, the propagation constants are no longer
each other’s complex conjugate [7]. We will show that the same applies for the
case with non-perfectly conducting waveguide walls and lossless dielectric load
material.

a

Ωc

ǫ0, µ0 ǫr = 9

w

h

b
t

Figure 4.4: Cross section of a shielded dielectric image guide

To illustrate the applicability of the boundary element method to a highly
conductive region, consider a non-perfect shielding conductor Ωc with electric
conductivity σ and thickness t = 1 mm. In the numerical examples, we study
the effect of the conductivity by choosing two distinct values σa = 5.8e7 S/m
(copper) and σb = 10−4σa. We use the same geometry as in [7], i.e., a = 2b =
15.798 mm, w = 6.9 mm and h = 3.2 mm. Figures 4.5 and 4.6 show the
normalized real and absolute value of the normalized imaginary part of two
propagation constant curves, termed β1(f) and β2(f), for the two conductivities,
with the frequency f = ω/2π varying between 12 GHz and 15 GHz.

In the waveguide with PEC boundary, a true bifurcation of the complex modes
occurs around fb = 14.5 GHz, and the modes are exactly each other’s complex
conjugate before the bifurcation, i.e., β1(f) = β2(f) if f < fb [7]. At first
glance, the bifurcation for a lossless waveguide with PEC boundary seems to
be in contradiction with corollary 4.4.2. However, this bifurcation happens
on the branch cuts of the transversal wavenumbers of both lossless material
regions (free space and the dielectric load material), i.e., on the real axis in the
complex β-plane around 0.4k0, and theorem 4.4.1 only holds for (ω0, β0) ∈ O,
i.e., outside the branch cuts Bi(ω).

For the considered case of a lossy shielding conductor, the bifurcation disappears
and the two modes are no longer conjugate (Fig. 4.5 and 4.6). It was verified
that by increasing the conductivity of the shielding conductor, the dispersion
curve β1(f) converges to β2(f) for f < fb. This can be expected, as a PEC
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Figure 4.5: Real part of the normalized dispersion curves for different conduc-
tivities
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Figure 4.6: Absolute value of the imaginary part of the normalized dispersion
curves for different conductivities

boundary corresponds to the case σ →∞. As the curves β1(f) and β2(f) do
not cross a branch cut, and because they cannot cross each other (both lie
on the opposite side of the branch cuts), no bifurcation is allowed (corollary
4.4.2). Moreover, their curves in the complex plane are smooth, but this is
not really apparent from Figures 4.5 and 4.6. However, Figures 4.7 and 4.8
clearly demonstrate this fact, by showing the logarithm of the real part and the
absolute value of the normalized imaginary part of both curves.
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Figure 4.7: Logarithm of the real part of the normalized dispersion curves for
different conductivities

−4

−3

−2

−1

0

1

12 12.5 13 13.5 14 14.5 15

lo
g 1

0(
|=
β
/k

0|
)

Frequency (GHz)

σa, β1
σa, β2
σb, β1
σb, β2

Figure 4.8: Logarithm of the absolute value of the imaginary part of the
normalized dispersion curves for different conductivities

4.6.2 Coupled Microstrip Lines on a Finite Substrate
The presented method allows an efficient eigenmode analysis of a pair of coupled
microstrip lines on a finite substrate and ground conductor (inset of Fig. 4.9).
The two microstrip lines and the ground conductor have electric conductivity
σ = 5.8 · 107 (Ωm)−1, the substrate has relative permittivity εr = 9.8 and the
background medium is free space. The dimensions of the waveguide are given
by d = 1 mm, w = d/0.635, t = 0.3w and h = w.
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Figure 4.9: Real part of the dispersion curves of the fundamental modes of the
two coupled microstrip lines sketched in the inset. d = 1 mm, w = d/0.635,
t = 0.3w, h = w, εr = 9.8 and σ = 5.8 · 107 (Ωm)−1. Symbols: this method
with copper conductors and finite substrate, dashed lines: Coluccini et al. [27]
with perfect conductors and infinite substrate.

Fig. 4.9 shows the real part of the propagation constant of the two fundamental
modes, normalized to the free space wave number k0 = ω

√
ε0µ0, as a function

of w/λ0 = wf/c, with c the speed of light in vacuo and f varying between
7 GHz and 70 GHz. At high frequencies, the curves coincide with published
results for the microstrip pair with perfect conductors and infinite substrate
and ground plane [27]. The electric and magnetic field of the eigenmodes at
high frequencies (Fig. 4.11 and 4.12) are mostly confined in the substrate region
directly below the microstrip lines, so that the finity of the substrate has no
major influence on the propagation constants.

The imaginary part of the propagation constant of the two fundamental modes
is shown in Fig. 4.10, and represents the waveguide losses that are caused by
the finite conductivity of the conductors. For a waveguide of length l, the power
loss of a propagating eigenmode is equal to 1− e2l=β . Observe that the power
loss increases with frequency, which is caused by two phenomena. First, the
thickness of the skin effect layer in the conductors decreases with frequency,
which increases the resistance per unit length (

√
f behavior). Second, at higher

frequencies, the current in the microstrip lines is mostly flowing on the bottom
edge and is less spread over the conductor boundary than at lower frequencies
(this can be observed from the magnetic field distribution in Fig. 4.12), which
further increases losses.
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Figure 4.10: Imaginary part of the dispersion curves of the fundamental modes
of the two coupled microstrip lines.

(a) Electric field of odd mode (7 GHz) (b) Electric field of even mode (7 GHz)

(c) Electric field of odd mode (70 GHz) (d) Electric field of even mode (70 GHz)

Figure 4.11: Cross-sectional tangential electric field distribution (normalized)
of the two fundamental modes of the coupled microstrip lines at the frequencies
7 GHz (w/λ0 ≈ 0.037) and 70 GHz (w/λ0 ≈ 0.37).

4.7 Conclusions
Theorems were presented stating some properties of the dispersion curves for
general isotropic piecewise homogeneous waveguides. These theorems were
leveraged in a numerical implementation of a set of boundary integral equations
to determine the waveguide eigenmodes and their propagation constants. These
boundary integral equations can handle highly conductive materials (such as
copper).
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(a) Magnetic field of odd mode (7 GHz) (b) Magnetic field of even mode (7 GHz)

(c) Magnetic field of odd mode (70 GHz) (d) Magnetic field of even mode (70 GHz)

Figure 4.12: Cross-sectional tangential magnetic field distribution (normalized)
of the two fundamental modes of the coupled microstrip lines at the frequencies
7 GHz (w/λ0 ≈ 0.037) and 70 GHz (w/λ0 ≈ 0.37).

Challenging numerical examples demonstrate the possibilities of our tool. To
the best of our knowledge, this is the first time that the effect of a lossy shielding
conductor on the complex modes of a shielded dielectric image guide has been
numerically investigated.
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Part II
Preconditioning Techniques





5
Introduction

F F F

We briefly recall the main results that lead to a Calderón multiplica-
tive preconditioner for the electric field integral equation (EFIE),
based on a family of basis functions that are dual to the Rao-Wilton-
Glisson (RWG) functions. The final cornerstone was provided by
Buffa and Christiansen in [1], with the introduction of so-called
Buffa-Christiansen (BC) functions. Arguably, the first paper that
diffused these findings to the engineering community is [2].

5.1 A Calderón multiplicative preconditioner for
the electric field integral equation

Denote V = H− 1
2 (divΓ,Γ) the Sobolev space of tangential current densities on

the boundary Γ of a Lipschitz domain Ω ⊂ R3, with norm ‖.‖V and dual space
W = H− 1

2 (curlΓ,Γ) (with L2(Γ) as pivot space [3]).

The solution of a scattering problem at a perfect electric conducting domain
Ω with outward unit normal vector n̂ can be obtained with the electric field
integral equation (EFIE)∗, i.e., find j ∈ V such that

a(λ, j) , 〈λ, n̂× Tkj〉 = −〈λ, n̂× e(i)〉 ∀λ ∈ V, (5.1)

∗at least, in absence of resonances, i.e., if the squared wavenumber k2 does not belong to
the denumerable set of interior electric Maxwell eigenvalues [4]
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with n̂× e(i) ∈ V the (rotated) tangential incident electric field, Tk defined in
(1.25), and 〈., .〉 the duality pairing of V and W [4]. As Tk is continuous in V
[4], the sesquilinear form a is continuous too.

Let Rh ⊂ V and Bh ⊂ V be finite-dimensional subspaces of Rao-Wilton-
Glisson [5] (RWG) and Buffa-Christiansen [1] (BC) basis functions, respectively,
depending on a mesh density parameter h, and with dimRh = dimBh. Under
some regularity assumptions on the family of meshes, it can be shown that the
bilinear form d : Rh × Bh → C : (rh,bh) 7→

∫
Γ rh · (n̂ × bh) dS is continuous

and satisfies the inf-sup condition (5.2), with cd > 0 independent of h [1].

inf
rh∈Rh

sup
bh∈Bh

|d(rh,bh)|
‖rh‖V ‖bh‖V

≥ cd (5.2)

Moreover, under the same regularity assumptions of the meshes, it can be
shown that the two discrete inf-sup conditions (5.3)–(5.4) hold, with c1, c2 > 0
independent of h [1].

inf
rh∈Rh

sup
r̃h∈Rh

|a(rh, r̃h)|
‖rh‖V ‖r̃h‖V

≥ c1 (5.3)

inf
bh∈Bh

sup
b̃h∈Bh

|a(bh, b̃h)|
‖bh‖V ‖b̃h‖V

≥ c2 (5.4)

After picking bases {r1
h, r2

h, ..., rnh} and {b1
h,b2

h, ...,bnh} in Rh and Bh, respec-
tively, with n = dimRh = dimBh, we define the Galerkin discretizations of a
w.r.t. these bases as T,Tbc ∈ Cn×n, defined in (5.5)–(5.6).

(T)ij , a(rih, r
j
h) (5.5)

(Tbc)ij , a(bih,b
j
h) (5.6)

Moreover, define the so-called mixed Gram matrix G ∈ Cn×n with

(G)ij , d(rih,b
j
h). (5.7)

It follows from [6, Theorem 2.1] and [7, §1.2.2] that

κ(G−TTbcG−1T) ≤ ‖a‖2‖d‖2

c1c2c2d
, (5.8)

with κ(.) the spectral condition number of a square matrix. Although the
condition number of T diverges for h → 0 (i.e., for an increasing number of
basis functions n), as shown numerically in [2], κ(G−TTbcG−1T) is bounded
independently of h (for h small enough). We call G−TTbcG−1 (or TbcG−1, as G
is well-conditioned) a Calderón multiplicative preconditioner for the Galerkin
discretization T of the electric field integral operator Tk.
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6
A Calderón Multiplicative

Preconditioner for the Poincaré-Steklov
Operator of a Heterogeneous Domain

based on the contribution [1]

F F F

We prove that the Poincaré-Steklov operator acting on traces of so-
lutions to the time-harmonic Maxwell equations in a heterogeneous
domain with a smooth boundary is regularized by a well-known bound-
ary integral operator related to the homogeneous exterior domain.
This property allows us to simultaneously construct a Calderón mul-
tiplicative preconditioner for the discretized operator and for a 3-D
hybrid finite/boundary element method formulation. Numerical ex-
amples demonstrate the effectiveness of the preconditioner, even for
heterogeneous domains with non-smooth boundaries.

6.1 Introduction
A Poincaré-Steklov operator (PS for short), also called Dirichlet-to-Neumann
operator, embodies a connection between the boundary values and (a function
of) their derivatives of solutions to a boundary value problem of a linear
partial differential operator. PS operators and their discretizations are present
in continuous and discrete formulations of a wide spectrum of equations in
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computational physics, including heat problems, fluid dynamics [2], structural
mechanics, acoustics and electromagnetics [3]–[5]. They naturally allow to
impose field continuity constraints at the interface between physical domains
and are consequently found in domain decomposition methods of finite element
methods [6]–[8] and in hybrid finite/boundary element method (FEM-BEM)
formulations [3], [4], [9]. For differential operators acting on scalar fields, for
example the Helmholtz operator ∆ + k2, the PS operator maps the scalar
boundary value of a solution onto its normal derivative [10]. In this chapter, we
focus on the vectorial time-harmonic electromagnetic PS operator mapping the
tangential boundary value of the electric field e, which satisfies the heterogeneous
vector Helmholtz equation ∇×∇× e + k2(x, y, z)e = 0 in the interior domain,
onto the corresponding tangential component of the magnetic field trace [5],
[11].

The presence of ill-conditioned discretized PS operators in numerical formula-
tions severely increases the number of iterations and hampers the convergence
speed of Krylov iterative methods. This has incited the development of pre-
conditioners in past research, of which we intend to give a few examples. The
Neumann-Neumann and Interface Strip preconditioner have been proposed for
the global PS operator in domain decomposition methods [2], [12]. Moreover, we
note that the application of a Calderón preconditioner for the Poincaré-Steklov
operator of the 2-D scalar heterogeneous Helmholtz equation on a structured
square domain has been investigated in [13].

In this chapter, we propose a Calderón multiplicative preconditioner for the
finite element Schur complement discretization of the PS operator, denoted
P, for the vector heterogeneous Helmholtz equation on a general 3-D domain.
First, we prove a decomposition of P in terms of well-known boundary integral
operators. Then, we show that P is regularized by the so-called electric field
integral operator Tk, further defined in (6.10), meaning that their product can
be written as a compact perturbation of a well-conditioned operator. The self-
regularizing property of Tk itself, i.e., the fact that T 2

k is a compact perturbation
of the identity operator (up to a constant multiplicative factor) on domains with
smooth boundaries, was the source of inspiration for efficient preconditioners
in BEMs for various integral equations, such as the electric field integral
equation (EFIE) [14], [15], the combined field integral equation (CFIE) [16],
the regularized combined field integral equations (CFIER) of [17], a single
source CFIE for dielectric scattering [18], the Poggio-Miller-Chan-Harrington-
Wu-Tsai (PMCHWT) equation [19], an electric current formulation [20] and
the EFIE in a layered medium [21]. We emphasize that the cited BEMs are
restricted to piecewise homogeneous scatterers, and are not applicable to general
heterogeneous domains. The multiplicative nature of the preconditioners in [15],
[16], [18]–[20] and the specific choice for Buffa-Christiansen (BC) basis functions
[22], for the discretization of the Tk operator appearing in the preconditioner, has
the benefit that existing method of moments (MoM) algorithms for Rao-Wilton-
Glisson (RWG) functions [23] can still be used, albeit on the barycentrically
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refined mesh.

A wide class of preconditioners for hybrid FEM-BEM formulations exists [24]–
[28], with an important subset of them relying on domain decomposition methods
[29], [30]. For the first time, a Calderón multiplicative preconditioner is applied
to a novel reduced hybrid FEM-BEM formulation for electromagnetic scattering
at a heterogeneous obstacle, and is compatible with existing matrix vector
product acceleration schemes, such as the multilevel fast multipole algorithm
(MLFMA) [31]–[34].

This chapter is structured as follows: in section 6.2 we introduce the electro-
magnetic Poincaré-Steklov operator P of a heterogeneous domain and derive
a decomposition in terms of Tk, which implies that Tk regularizes P, in a
Sobolev space framework. Inspired by these properties, we construct a Calderón
multiplicative preconditioner (CMP) for a Schur complement finite element
discretization of P and investigate its effect on the singular value distribution of
the discretized PS operator in section 6.3. We present a novel hybrid FEM-BEM
formulation, whose reduced form is amenable to the CMP, in section 6.4, and
demonstrate the effectiveness of the preconditioner in the numerical examples
of section 6.5.

6.2 Electromagnetic Poincaré-Steklov Operator of
a Heterogeneous Domain

In this section, the governing time-harmonic Maxwell equations for scattering at
a bounded heterogeneous domain are introduced. We define the Poincaré-Steklov
operator P of the heterogeneous domain and derive some of its continuous prop-
erties, for the first time, in a Sobolev space framework. An interesting corollary
is the regularization of P by a boundary integral operator Tk, sometimes called
the electric field integral operator [35], which is frequently used in scattering at
perfect electric conducting objects [15], [36], [37]. This property hints at a dis-
crete Calderón multiplicative preconditioner for the ill-conditioned discretization
of P, which is numerically investigated in section 6.3.

6.2.1 Scattering at a Bounded Heterogeneous Domain:
Maxwell’s equations

Consider a connected open bounded Lipschitz (see e.g. [38] for a definition)
domain Ω− ⊂ R3, with boundary Γ and external unit normal n̂, representing
a heterogeneous isotropic region with permittivity ε1(r) ∈ C and constant
permeability µ0 > 0 (Fig. 6.1). The domain Ω− is embedded in a homogeneous
medium, with permittivity ε0 > 0 and permeability µ0. The structure is
excited by an incoming field (e(i),h(i)) in the homogeneous exterior region
Ω+ = R3 \ Ω−, with Ω− = Ω− ∪ Γ being the closure of Ω−. The solution
(e,h) satisfies Maxwell’s equations (6.1)–(6.2) in the frequency domain (angular
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Figure 6.1: Geometry consisting of a heterogeneous domain Ω−, embedded in a
homogeneous space.

frequency ω, time factor ejωt), boundary conditions (6.3) at Γ, and a suitable
radiation condition (6.4) [36], [39]:

∇× e = −jωµ0h, ∇× h = jωε0e (in Ω+), (6.1)
∇× e = −jωµ0h, ∇× h = jωε1(r)e (in Ω−), (6.2)

[n̂× e]Γ = n̂× e(i), [n̂× h]Γ = n̂× h(i) (on Γ), (6.3)
lim

|r|→∞
e× r + η|r|h = 0, (6.4)

with η =
√
µ0/ε0 the characteristic impedance of the exterior medium and

[ψ]Γ = limΩ−3r→Γψ − limΩ+3r→Γψ, i.e., the jump of ψ across the interface Γ.

6.2.2 Function Spaces and Calderón Projectors
The precise statement and the proofs of the properties of the PS operator in
§6.2.3 make use of the following Sobolev spaces (see [40], [41] for definitions):

L2(Ω−) = (L2(Ω−))3, (6.5)
Hs(Ω−) = (Hs(Ω−))3, (6.6)

Hs(Γ) = {χ ∈ (Hs(Γ))3 | χ · n̂ = 0}, (6.7)
Hs(curl,Ω−) = {φ ∈ Hs(Ω−) | ∇× φ ∈ Hs(Ω−)}, (6.8)
Hs(divΓ,Γ) = {ψ ∈ Hs(Γ) | divΓψ ∈ Hs(Γ)}, (6.9)

with Hs(Γ) = W s,2(Γ) and Hs(Ω−) = W s,2(Ω−) Hilbert spaces for all s ∈ R,
with the convention that s = 0 if omitted, i.e., H = H0 = L2 the space of
square integrable densities, and all derivatives considered in distributional sense.
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Assume that the fields e and h belong to H(curl,Ω−). The trace theorem shows
that the tangential traces n̂×e and n̂×h in that case belong to H− 1

2 (divΓ,Γ) [41].
Moreover, we define the following boundary integral operators∗ in H− 1

2 (divΓ,Γ),
related to the homogeneous exterior domain Ω+:

Tk : m 7→ n̂× jk
∫

Γ
g(r− r′)m(r′)dS′ (6.10)

− n̂× 1
jk

∫
Γ
∇g(r− r′)∇′ ·m(r′)dS′,

Kk : m 7→ n̂×
[
∇×

∫
Γ
g(r− r′)m(r′)dS′

]
, (6.11)

with k = ω
√
ε0µ0 the exterior wavenumber and g(r−r′) = e−jk|r−r′|/(4π|r−r′|)

the outgoing fundamental solution of the scalar Helmholtz equation. Recall
that, in a completely homogeneous free space R3, electric and magnetic surface
current densities on Γ, denoted j,m ∈ H− 1

2 (divΓ,Γ), respectively, give rise to
the following field traces:

lim
Ω±3r→Γ

(
n̂× e
n̂× h

)
= P±

(
m
j

)
, P± =

(
Kk ± 1

2 −ηTk
Tk/η Kk ± 1

2

)
, (6.12)

with P+ and P− the exterior and interior Calderón projectors, respectively [37],
[41]. The projector property (P±)2 = P± immediately implies the so-called
Calderón identities

TkKk +KkTk = 0, (6.13)

K2
k − T 2

k = 1
4 . (6.14)

Lemma 6.2.1. Kk is compact in H− 1
2 (divΓ,Γ) on smooth Γ.

Proof. This follows from the fact that Kk : H− 1
2 (divΓ,Γ) → H 1

2 (divΓ,Γ) is
continuous on smooth Γ (as proven in [41, Lemma 11]) and the compact
embedding H 1

2 (divΓ,Γ) ⊂⊂ H− 1
2 (divΓ,Γ).

6.2.3 Definition and Properties of the Poincaré-Steklov
Operator

The electromagnetic Poincaré-Steklov operator, denoted P, is defined in this
chapter† as the boundary operator that maps the tangential electric field trace
n̂× e|Γ of a solution to the sourceless Maxwell equations inside Ω− onto the
corresponding tangential magnetic field trace n̂× h|Γ.
∗all integrals are considered in Cauchy principal value sense, i.e., as the limit for δ → 0 of

the integrals over the surface Γ \ Γδ , with Γδ the intersection of Γ with a ball with radius δ,
centered around the singularity r ∈ Γ of the integrands [36]
†note that n̂× P is called the Poincaré-Steklov operator in [5]
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Definition 2 (Poincaré-Steklov Operator). P : H− 1
2 (divΓ,Γ)→ H− 1

2 (divΓ,Γ) :
n̂× e|Γ 7→ n̂× h|Γ, with

∇× e = −jωµ0h, ∇× h = jωε1e (in Ω−). (6.15)

In the sequel, we prove a specific decomposition of P (under certain restrictions
on Γ and ε1). This decomposition explains the dense mesh discretization
breakdown of a finite-dimensional discretization of P, denoted P ∈ Cn×n,
implying that the condition number of P grows without bound for an increasing
number n of basis functions, as observed in section 6.3.

Theorem 6.2.2 (Decomposition of P). Suppose the boundary Γ is smooth,
and the permittivity ε1 ∈ C1(R3), with ε1(ρ) 6= 0 ∀ρ ∈ R3 and ε1|Ω+ = ε0. Let
k > 0 not be a resonant wavenumber of Ω−. Then

P = −2
η
Tk(1 + C),

with C compact in H− 1
2 (divΓ,Γ).

Proof. Consider a magnetic current density m ∈ H− 1
2 (divΓ,Γ) that flows on Γ

and generates electric and magnetic fields e and h inside Ω−. With ε1 = ε0(1+ε̃),
Maxwell’s equations (6.15) can be written as

∇× e = −jωµ0h, (6.16)
∇× h = jωε0e + jc, (6.17)

where jc = jωε0ε̃e is the so-called contrast current. Consider the following
operators:

A : H− 1
2 (divΓ,Γ)→ H(curl,Ω−) : m 7→ ∇ ×

∫
Γ
g(r− r′)m(r′)dS′, (6.18)

B : H(curl,Ω−)→ H(curl,Ω−) : e 7→ k2
∫

Ω−
g(r− r′)ε̃(r′)e(r′)dV ′

+∇
∫

Ω−
g(r− r′) 1

1 + ε̃
∇′ε̃ · e dV ′. (6.19)

The operator A maps the magnetic current density onto the electric field it
generates in a homogeneous region Ω− (with constant permittivity ε0). It
follows from [41, Theorem 5] that A is bounded. Taking the divergence of
equation (6.17) shows that ∇ · [ε̃e] = 1

1+ε̃
∇ε̃ · e, so that the operator B maps

this incoming electric field onto the electric field generated by the contrast
current jωε0ε̃e. The assumption ε1 ∈ C1(R3) implies that |ε1| and |∇ε1| are
continuous on the compact set Ω− and, hence, by the extreme value theorem,
they attain a minimum and maximum in Ω−, implying that |∇ε1| = |∇ε̃| and
|ε̃| are bounded in Ω−. Moreover, by the assumption that ε1(ρ) 6= 0 ∀ρ ∈ R3,
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the attained minimal value of |ε1| = |ε0| · |1 + ε̃| is bigger than zero, implying
that ∃c > 0 : |1 + ε̃| ≥ c in Ω−. Therefore, |∇ε̃/(1 + ε̃)| is also bounded in
Ω−, implying that B is a weakly singular integral operator, and thus compact
in L2(Ω−). Moreover, ∇× B is also a weakly singular integral operator, and
thus compact in L2(Ω−) [42]. This implies that B is compact in H(curl,Ω−)
and that, as the heterogeneous scattering problem has a unique solution [43,
section 9.2], (1−B)−1 is bounded in H(curl,Ω−). In the last step, we transform
the electric scattered field back to the boundary with the trace operator γt :
H(curl,Ω−)→ H− 1

2 (divΓ,Γ) : u 7→ n̂× u|Γ. The continuity of this operator is
well-established [41]. This leads to the following expression for the scattered
electric field, generated by the contrast currents, for the given incoming field
Am:

n̂× ec = γtB (1− B)−1Am, (6.20)

with Q = γtB (1− B)−1A compact in H− 1
2 (divΓ,Γ), as B is compact and A,

(1− B)−1 and γt are all bounded. The scattered magnetic field follows from the
observation that the scattered field is a solution of Maxwell’s equations (6.1) in
Ω+ satisfying the radiation condition (6.3). This means that its traces belong
to the kernel of the interior Calderón projector P− [41, Theorem 8], defined in
(6.12), leading to

n̂× hc = 1
η
Tk
(
Kk + 1

2

)−1
Qm. (6.21)

To conclude, the total tangential electric and magnetic fields on the boundary
(by taking the limit from the interior region Ω−) can be written as a sum of the
incoming fields, generated by m, and scattered fields, generated by the contrast
currents, as:

n̂× e =
[
Kk −

1
2 +Q

]
m, (6.22)

n̂× h =
[

1
η
Tk + 1

η
Tk
(
Kk + 1

2

)−1
Q

]
m. (6.23)

This yields the following expression for the Poincaré-Steklov operator:

P = 1
η
Tk

[
1 +

(
Kk + 1

2

)−1
Q

] [
Kk −

1
2 +Q

]−1
. (6.24)

In case of a homogeneous interior domain, ε̃ = 0 implies that Q = 0 and (6.24)
reduces to the well-known result P = 1

ηTk
[
Kk − 1

2
]−1 [17].

For smooth Γ, the operator Kk is compact (see Lemma 6.2.1). Note that the
inverses (Kk + 1

2 )−1 and (Kk − 1
2 +Q)−1 in (6.24) exist, because we assume
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that k > 0 is not a resonant wavenumber of the heterogeneous (permittivity ε1)
or homogeneous (constant permittivity ε0) domain Ω−. By the compactness
of Kk and Q, these inverses are also bounded. Combining the compactness
of Q and the boundedness of (Kk + 1

2 )−1 and (Kk − 1
2 + Q)−1 leads to the

proposition.

Corollary 6.2.3. Under the stated assumptions, TkP = 1
2η + D, with D

compact in H− 1
2 (divΓ,Γ).

Proof. This follows directly from the decomposition of P in Theorem 6.2.2,
together with the Calderón identity (6.14) and Lemma 6.2.1.

Moreover, every operator Tk′ (with wavenumber k′ > 0) can be used to regularize
P , as indicated by the following corollary. It explains the successful application of
the Calderón multiplicative preconditioner (6.43) to the hybrid system (6.42) for
scattering at a heterogeneous domain with ε1|Γ 6= ε0 (i.e., with a discontinuous
jump of the permittivity at the boundary), as demonstrated in the examples of
Section 6.5.

Corollary 6.2.4. Under the stated assumptions, Tk′P = 1
2η

(
k′

k Π∇Γ + k
k′Π−→curlΓ

)
+

D′, with D′ compact in H− 1
2 (divΓ,Γ) ∀k′ > 0, Π∇Γ and Π−→curlΓ

orthogonal pro-
jectors and Π∇Γ + Π−→curlΓ

= 1 in H− 1
2 (divΓ,Γ).

Proof. The proposition follows directly from Theorem 6.2.2 and the fact that
Tk′Tk is a compact perturbation of − 1

4

(
k′

k Π∇Γ + k
k′Π−→curlΓ

)
for k′ > 0 [17],

with Π∇Γ and Π−→curlΓ
the orthogonal projectors associated to the Helmholtz

decomposition of H− 1
2 (divΓ,Γ) and defined in [17].

6.3 Discretized Poincaré-Steklov Operator
The numerical simulation of the time-harmonic Maxwell equations (6.2) in a
heterogeneous domain may typically involve the finite element method (FEM)
[44], [45]. The hereafter introduced discretization of the PS operator, denoted P,
originates from the Schur complement of the FEM matrix w.r.t. the boundary
degrees of freedom. Its conditioning, including dense mesh discretization break-
down and the effect of the proposed Calderón multiplicative preconditioner on
its singular values and condition number, stem from the derived theorems in
§6.2.3 and are investigated as a function of the mesh density.
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6.3.1 Finite Element Schur Complement Discretization
Consider the electric field wave equation in the heterogeneous domain (6.25),
which follows directly from (6.2), and its weak formulation (6.26).

∇×∇× e− ω2µ0ε1(r)e = 0 (6.25)∫
Ω−
ψ · (∇×∇× e− ω2µ0ε1(r)e) dV = 0 (6.26)

By a suitable Green’s theorem [36], (6.26) reduces to∫
Ω−

((∇×ψ) · (∇× e)− ω2µ0ε1(r)ψ · e) dV =
∫

Γ
(n̂×ψ) · (∇× e) dS.

(6.27)

Electric fields e ∈ H(curl,Ω−) that satisfy (6.27) ∀ψ ∈ H(curl,Ω−) are exact
solutions to the Maxwell equations in the heterogeneous domain. In the finite
element method, e and ψ are restricted to a finite-dimensional finite element
space Vh ⊂ H(curl,Ω−), with h > 0 denoting the characteristic size of the
mesh elements, i.e., we are interested in approximate solutions e ∈ Vh such
that (6.27) holds ∀ψ ∈ Vh. Let us denote the subspace of finite elements with
vanishing tangential trace as Vhi = {e ∈ Vh : n̂ × e|Γ = 0}, which contains
the finite elements associated to the Ni = dim(Vhi ) interior degrees of freedom,
and a subspace denoted Vhb , containing the finite elements associated to the
Nb = dim(Vhb ) boundary degrees of freedom and isomorphic to the quotient
space Vh/Vhi . This implies the following splitting, with ⊕ the direct sum:

Vh = Vhi ⊕ Vhb . (6.28)

Denote the components of e ∈ Vh as ei ∈ Vhi and eb ∈ Vhb , with e = ei + eb
(and, mutatis mutandis, for ψ). With the bases {bji}1≤j≤Ni and {bjb}1≤j≤Nb
of characteristic functions corresponding to the degrees of freedom in Vhi and
Vhb , respectively, denote ēi ∈ CNi such that ei =

∑
j(ēi)jb

j
i (and likewise for

eb). This reduces (6.27), with e,ψ ∈ Vh, to the following linear system:(
Aii Aib
Abi Abb

)(
ēi
ēb

)
=
(

0̄
āb

)
. (6.29)

The elements of the sparse complex symmetric system matrix and the right
hand side vector are given by

(Amn)kl =
∫

Ω−
[(∇× bkm) · (∇× bln)− ω2µ0ε1(r)bkm · bln] dV, m, n ∈ {i, b},

(6.30)

(āb)k =
∫

Γ
(n̂× bkb ) · (∇× e) dS. (6.31)
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Definition 3 (Finite Element Discretization of P). If Aii is invertible (i.e.,
away from Dirichlet and Neumann frequencies of the heterogeneous domain),
the finite element discretization of P is defined as

P = 1
jωµ0

(
Abb − AbiA−1

ii Aib
)
. (6.32)

This immediately implies that

Pēb = 1
jωµ0

āb. (6.33)

Lemma 6.3.1 provides a connection between P and P.

Lemma 6.3.1. If e ∈ Vh is an exact solution to the wave equation (6.25), then
(Pēb)k =

∫
Γ bkb · P(n̂× eb) dS.

Proof. If e ∈ Vh satisfies (6.25), then e and h = j
ωµ0
∇ × e satisfy (6.15),

implying that n̂× ( j
ωµ0
∇× e) = P(n̂× e) = P(n̂× eb). By (6.33) and (6.31)

we get

(Pēb)k = 1
jωµ0

(āb)k =
∫

Γ
bkb · (n̂× ( j

ωµ0
∇× e)) dS. (6.34)

For an exact solution e to the wave equation (6.25) that lies not necessarily
in Vh, it can be shown that P converges to the continuous operator P, in the
sense that

(Pēb)m −→
h→0

∫
Γ

bmb · P(n̂× e) dS, (6.35)

if Πh(n̂ × e) =
∑
k(ēb)k(n̂ × bkb ) is an interpolation of n̂ × e onto the set of

functions n̂ × bkb (which depend on h) with Πh(n̂ × e) −→
h→0

n̂ × e, and −→
h→0

denoting convergence if the mesh size goes to zero (for a family of regular
meshes [41], [44]). Therefore, P can be called an approximation of a Galerkin
discretization of P w.r.t. the boundary functions bkb .

6.3.2 Basis Functions
In this chapter, we approximate the domain Ω− as a partition of tetrahedra,
with h > 0 the maximum edge length. Consequently, the boundary Γh is
a triangulated surface. Moreover, we choose Vh as the space of lowest order
Nédélec curl conforming elements [46], with basis functions bmi and bnb associated
to the tangential electric field degrees of freedom on the internal and boundary
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Figure 6.2: Divergence conforming Rao-Wilton-Glisson (left, n̂ × bkm) and
Buffa-Christiansen (right, dn) basis functions associated to the edges (in dotted
line) of the triangulated surface mesh Γh.

edges, respectively. This implies in particular that the divergence conforming
basis function n̂ × bmb , i.e., the rotated trace of the Nédélec boundary edge
element bmb , corresponds to a lowest order Rao-Wilton-Glisson (RWG) function
[23] (see Fig. 6.2). For the discretization of the boundary operators Tk, which
arises in the Calderón preconditioner, and Kk, which arises in the hybrid
formulation of section 6.4, we use the same triangular surface mesh Γh and
define two types of basis functions on this mesh, associated with the edges (see
Fig. 6.2). First, we use the RWG basis functions n̂× bkb ∈ H− 1

2 (divΓ,Γ) for a
Galerkin discretization of Tk, denoted T.

(T)mn =
∫

Γ
bmb · Tk(n̂× bnb ) dS (6.36)

The discretization of the left Tk operator in the well-conditioned operator
products TkTk and TkP, which arise in the hybrid formulation of section 6.4,
makes use of the basis of Buffa-Christiansen (BC) functions [22] dn, defined on
the barycentrically refined mesh and dual to the RWG basis functions (Fig. 6.2).
Denote the Galerkin discretization of Tk w.r.t. the BC basis dn ∈ H− 1

2 (divΓ,Γ)
as Tbc.

(Tbc)mn =
∫

Γ
(n̂× dm) · Tkdn dS (6.37)

The mixed discretization of the operator Kk, with RWG basis functions and
n̂×BC test functions, is denoted K.

(K)mn =
∫

Γ
(n̂× dm) · Kk(n̂× bnb ) dS (6.38)

The mixed Gram matrix G links the RWG and BC bases.

(G)mn =
∫

Γ
bmb · dn dS (6.39)
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Figure 6.3: Condition number of P, with diagonal preconditioner diag(P)−1

and Calderón preconditioner C, versus the relative mesh element size h/λ for a
Luneburg lens.

6.3.3 Dense Mesh Discretization Breakdown
Fig. 6.3 shows that the condition number of P (for the example of the Luneburg
lens of §6.5.2) is already considerable for the moderate mesh size h = 0.05λ, and
continues to grow monotonically if the mesh size decreases. This undesirable
ill-conditioning, which is called dense mesh discretization breakdown, severely
hampers both the accuracy (due to an increased sensitivity of the solution
vector on the matrix and the right hand side accuracies) and convergence speed
of iterative solvers [47]. The latter will be illustrated in the numerical examples
of section 6.5.

The breakdown can be explained by the decomposition of P in Theorem
6.2.2. Note that P is proportional, up to a compact term (as Tk is bounded
in H− 1

2 (divΓ,Γ)), to the Electric Field Integral Operator (EFIO) Tk, whose
Galerkin discretization is known to suffer from dense mesh discretization break-
down [15]. The compact term does not influence the singular value distribution
of P significantly, as its singular values accumulate at 0. Indeed, the singular
value distributions of T and P for a dense mesh (h/λ = 1.7 · 10−3, Nb = 4521
unknowns) are very similar (Fig. 6.4), with the well-known two branches of
singular values accumulating at 0 and ∞ (for Nb → ∞) clearly visible [15].
As a consequence, the h−2 behavior of the condition number of T [48] is also
encountered in the discretization P (see Fig. 6.3).
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Figure 6.4: Singular value distribution of T and P, with and without Calderón
preconditioner, for the Luneburg lens with h/λ = 1.7 · 10−3 and Nb = 4521
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preconditioner, for the homogeneous dielectric cube with εr = 10− 0.1j, h/λ =
2.3 · 10−3 and Nb = 4962 unknowns.
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6.3.4 Calderón Multiplicative Preconditioner
Our goal is to propose a multiplicative preconditioner C ∈ CNb×Nb such that
the condition number of CP is uniformly bounded as a function of Nb, i.e., such
that C cures P of dense mesh discretization breakdown. Corollary 6.2.3 states
that the operator product 2ηTkP is the sum of a compact operator (whose
singular values accumulate at zero) and the identity operator, implying that
TkP is well-conditioned in H− 1

2 (divΓ,Γ) (its singular values accumulate at 1
2η ).

Inspired by these observations, we are looking for C such that CP is a discretiza-
tion of the continuous operator TkP. The specific expression for C described
hereafter corresponds to the multiplicative preconditioner of the EFIO Tk based
on RWG and BC basis functions for the discretization of the two operators
in the product TkTk [15], [22]. This has the additional advantage that C is
also a preconditioner for T, which will be exploited in the construction of an
efficient preconditioner for the proposed hybrid formulation in section 6.4. In
line with [15] and with contributions on similar preconditioning strategies for
other operators [16], [18]–[21], [49], [50], we call C a Calderón multiplicative
preconditioner. Similar to [15], we choose

C = TbcG−1. (6.40)

By (6.35), P is (an approximation of) a Galerkin discretization of P with RWG
basis functions n̂× bmb . By (6.36), Tbc is a Galerkin discretization of Tk with
BC basis functions dm. It has been proven that the condition number of the
sparse mixed Gram G, linking RWG and BC functions, is uniformly bounded as
a function of Nb (for regular meshes) [22], and is small in practice [15], which
ensures a fast iterative solution of its inverse. The choice of BC functions for
the discretization of Tk, which leads to a well-conditioned mixed Gram matrix
G, ensures that the beneficial spectral properties of TkP are inherited by the
discretization CP.
Observe in Fig. 6.3 that the condition number of CP is relatively small and
stays constant as a function of the relative mesh size h/λ. Unlike the diagonal
preconditioner, the Calderón multiplicative preconditioner removes the dense
mesh discretization breakdown of P. This is also reflected by the singular value
distributions of the Calderón preconditioned operators ηG−TCP and G−TCT
for the Luneburg lens, shown in Fig. 6.4, which manifest one cluster of singular
values (instead of the two separated branches of T and P) around 1

2 and 1
4 ,

respectively, as expected from Corollary 6.2.3 and Calderón identity (6.14).
Note that the transposed inverse (well-conditioned) Gram matrix G−T does not
significantly influence the condition number of CT and CP or the behavior of
their singular value distribution, but is merely added such that the accumulation
points 1

2 and 1
4 correspond to those of the continuous operators ηTkP and T 2

k ,
respectively.

Fig. 6.5 illustrates the effect of a discontinuity in the permittivity at the
boundary Γ on the singular value distribution of the discretized operators,
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for the example of the homogeneous dielectric cube of §6.5.3 with relative
permittivity εr = 10 − 0.1j. We observe two clusters of singular values of
the Calderón preconditioned operator ηG−TCP around

∣∣∣ k′2k

∣∣∣ = 1
2 |εr|

−1/2 and∣∣ k
2k′
∣∣ = 1

2 |εr|
1/2, in line with Corollary 6.2.4 (although Γ is strictly speaking

not smooth), with k′ the wavenumber of the homogeneous exterior domain in
this case, and k = √εrk′ and η the wavenumber and characteristic impedance
of the homogeneous cube, respectively. Therefore, the preconditioner C (with
wavenumber k′ in the discretization Tbc) cures P (with wavenumber k at the
boundary) from dense discretization breakdown, even if k 6= k′. However, the
appearance of two clusters of singular values leads, in general, to a higher
condition number of ηG−TCP (whose logarithm is equal to the length of the
smallest interval that contains the support of the curves in Figs. 6.4 and 6.5),
in comparison with the case k = k′.

6.4 Preconditioned Reduced Hybrid FEM-BEM
Formulation

The numerical simulation of the scattering problem (6.1)–(6.4) at a hetero-
geneous domain typically combines a boundary element method (BEM) [38],
[41], [51], with unknown current densities in a finite-dimensional subspace of
H− 1

2 (divΓ,Γ), with a finite element method [44], [45], with an unknown elec-
tric field in a finite-dimensional subspace of H(curl,Ω−), resulting in a hybrid
FEM-BEM method, sometimes called FE-BI (finite element, boundary integral)
method [39], [52]. In this way, the advantages of both methods, i.e., the natural
incorporation of heterogeneous material parameters in FEM and the inherent
validity of the radiation condition of the scattered fields in BEM, are combined.

In this section, we propose a hybrid FEM-BEM formulation whose reduced
form (after elimination of the interior FEM degrees of freedom) is suitable for
Calderón preconditioning. The proposed Calderón multiplicative preconditioner
for the reduced FEM-BEM system relies on the fact that C (as introduced in
§6.3.4) is a preconditioner for both T and P.

6.4.1 Formulation
Consider a tangential magnetic current density m0 ∈ H− 1

2 (divΓ,Γ) flowing on
Γ and generating scattered fields in the exterior domain Ω+ (Fig. 6.1). In order
to make the formulation amenable to multiplicative Calderón preconditioning,
as explained in the next section, m0 is the only source for the scattered fields
in Ω+ (no electric current density is assumed). This implies that, in general,
m0 is different from the trace of the total tangential electric field, similar to the
magnetic current formulation of [53]. Along with the unknown current density
m0, we consider this total tangential electric field at the boundary, i.e., the
interior limit of n̂× e to the boundary, as another independent unknown of the
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formulation. The exterior traces of the total tangential electric and magnetic
fields follow immediately from (6.12) and are given by n̂× e(i) + (Kk + 1

2 )m0
and n̂× h(i) + 1

ηTkm0, respectively. The interior traces of the total tangential
electric and magnetic fields are given by n̂ × e and P(n̂ × e), respectively.
Expressing the the tangential continuity of the electric and magnetic fields at
the boundary leads to the following system (6.41).{

(Kk + 1
2 )m0 − n̂× e = −n̂× e(i)

1
ηTkm0 − P(n̂× e) = −n̂× h(i) (6.41)

After expanding the unknowns m0 and n̂ × e into RWG functions n̂ × bmb ,
testing the first equation of (6.41) with n̂× BC functions n̂×dm and the second
equation with n̂×RWG functions bmb , and using equations (6.35)–(6.38), we
obtain the discretized system(

K− 1
2GT −GT

T/η −P

)(
ᾱ

β̄

)
=
(
ā

b̄

)
, (6.42)

with ᾱ and β̄ the expansion coefficients of m0 and n̂× e, respectively, (ā)m =
−
∫

Γ dm · e(i)dS and (b̄)m =
∫

Γ(n̂ × bmb ) · h(i)dS. The presence of the ill-
conditioned submatrices T/η and P, which suffer from dense mesh discretization
breakdown as explained in section 6.3.3, causes an ill-conditioned system matrix,
which negatively affects the convergence speed of an iterative solution algorithm
of system (6.42) (see section 6.5).

6.4.2 Calderón Multiplicative Preconditioner
It is well-known that the mixed Gram matrix does not suffer from dense mesh
discretization breakdown and is well-conditioned [15], [22]. Moreover, the
submatrix K− 1

2GT in (6.42) is the so-called mixed discretization of the MFIE
(magnetic field integral equation) operator Kk − 1

2 , and is known to be well-
conditioned [54]. Taking these observations into account and the fact that
C is a preconditioner for both T and P, we propose the following Calderón
multiplicative preconditioner for hybrid system (6.42), with I the identity matrix:

Cs =
(

I 0
0 C

)
. (6.43)

This leads to the preconditioned reduced hybrid FEM-BEM system(
K− 1

2GT −GT
TbcG−1T/η −TbcG−1P

)(
ᾱ

β̄

)
=
(

ā

TbcG−1b̄

)
, (6.44)

Note that the desired property that the preconditioned hybrid system matrix in
(6.44) is well-conditioned does not necessarily follow from the fact that its sub-
matrices are well-conditioned (an illustrative counterexample is a block matrix
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filled with identity submatrices), but will be shown to hold for representative
numerical examples in Section 6.5. The preconditioner Cs is fully compatible
with existing matrix vector product acceleration schemes, such as the multilevel
fast multipole algorithm (MLFMA) [31]–[34].

6.4.3 Low-frequency behavior
Suppose Ω− is simply connected. Then it is well known that the mixed
discretization K − 1

2GT is an accurate and well-conditioned discretization of
the MFIE operator Kk − 1

2 at arbitrarily low frequencies, without the explicit
need to refine the mesh [55]. Moreover, in absence of numerical cancellation
errors in the calculation of T, Tbc and the matrix products (which can be
circumvented by using a loop-star decomposition), TbcG−1T is an accurate and
well-conditioned discretization of the Calderón preconditioned EFIE operator
T 2
k for arbitrarily low frequencies [56]. Considering the similarities between

the Calderón preconditioned EFIE and PS operators (cf. Corollary 6.2.3 and
Section 6.3.4), it is expected that TbcG−1P is an accurate and well-conditioned
discretization of the Calderón preconditioned PS operator TkP for arbitrarily
low frequencies, in which case the preconditioned reduced hybrid FEM-BEM
system (6.44) is expected to be accurate and well-conditioned at arbitrarily low
frequencies. However, these statements, along with a loop-star decomposition
for TbcG−1P, require further investigation and are beyond the scope of this
chapter.

For multiply connected Ω−, nontrivial nullspaces of the static limits of the
operators Kk− 1

2 and T 2
k lead to ill-conditioning of their respective discretizations

K − 1
2GT and TbcG−1T at low frequencies [57]. By Theorem 6.2.2, the same

phenomenon pertains to TkP , although further investigation is required to solve
the resulting ill-conditioning of TbcG−1P at low frequencies for those multiply
connected domains.

6.5 Numerical Examples
6.5.1 Scattering at a Homogeneous Dielectric Ball
This example investigates the accuracy of the proposed hybrid formulation
(6.42), for the case of linearly polarized plane wave scattering at a dielectric
ball with constant relative permittivity εr = ε1/ε0 = 2 and diameter d. Fig.
6.7 shows excellent agreement between the scattered electric far field λ2R|e|
(scaled with the distance R), obtained with the hybrid formulation for the mesh
of Fig. 6.6, and the analytical Mie solution [58], [59], for low (λ = 10d, Rayleigh
scattering regime) and high (λ = d) frequencies.
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Figure 6.6: Truncated mesh of a spherical ball with diameter d, maximum edge
length h = 0.05d, Nb = 4491 boundary edges and Ni = 40393 interior edges.

0.1 1direction
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electric
field
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Mie series solution

Figure 6.7: Scattered electric far field for the dielectric ball of Fig. 6.6 (εr = 2)
at low (λ = 10d) and high (λ = d, in bold lines and symbols) frequencies.
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Figure 6.8: Relative electric field magnitude in a Luneburg lens with diameter
d (cut to visualize the interior field) for linearly polarized plane wave scattering
with wavelength λ = 0.8d and unit electric field magnitude.

6.5.2 Scattering at a Luneburg Lens
In this example the effectiveness of the Calderón multiplicative preconditioner
for the hybrid formulation (6.42) will be investigated. Consider scattering at a
classical Luneburg lens, which is a spherical lens with diameter d with spherically
symmetric relative permittivity εr = ε1/ε0 = 2− r2/(d/2)2 depending on the
distance r to its center. In the high frequency limit, i.e. in the ray optics regime
(valid for wavelengths λ� d), it has been proven that a parallel bundle of rays
impinging on the lens is focused in a point at the other side on the spherical
surface [60]. Fig. 6.8, which results from the solution of the preconditioned
hybrid system with the mesh of Fig. 6.6, shows that this property is still
approximately valid for plane wave incidence at λ = 0.8d.

Figs. 6.9 and 6.10 illustrate the effect of dense mesh discretization breakdown
of the discretized Poincaré-Steklov operator P (as shown in Fig. 6.3) on the
number of iterations and the convergence of the reduced hybrid FEM-BEM
system (6.42), even with diagonal preconditioner. As expected the Calderón
multiplicative preconditioner (6.43), which cures the system from the breakdown,
leads to a nearly constant number of iterations for different mesh sizes h/λ, for
fixed wavelength λ and precision of the iterative solution algorithm (TFQMR
[61] is used in all examples).



104 Chapter 6. A CMP for the PS Operator of a Heterogeneous Domain

0
200
400
600
800

1000
1200
1400
1600

0.02 0.03 0.04

N
um

be
r
of

ite
ra
tio

ns

h/λ

no prec.
diagonal prec.
Calderón prec.

Figure 6.9: Number of iterations for the solution of (6.42) (TFQMR, 10−9 preci-
sion) for scattering at the Luneburg lens of Fig. 6.8, for different preconditioners,
as a function of the relative mesh size h/λ (with λ = 4d).

The increase in number of iterations is reflected by the execution times in Fig.
6.11, where it should be noted that the execution time of the TFQMR algorithm
with Calderón preconditioner increases for lower h/λ because of the increasing
dimensionality of the system, but the number of iterations stays constant (see
Fig. 6.9). The calculation of P, present in formulation (6.42), involves the
calculation of a Schur complement of the sparse FEM system matrix, as shown
in (6.32). This step is accomplished by the parallel sparse direct multifrontal
solver MUMPS [62], and one observes in Fig. 6.11 that it executes faster than
the iterative solution for the considered mesh sizes.

6.5.3 Scattering at a Lossy Homogeneous Dielectric Cube
In the previous example, the boundary Γ is smooth, allowing the direct applica-
tion of Theorem 6.2.2 and Corollary 6.2.3 to explain the observed lack of dense
mesh discretization breakdown of the preconditioned system (6.44). In order to
investigate the effects of a non-smooth (but Lipschitzian) boundary and a dis-
continuity of the permittivity at Γ (i.e., a configuration where limΩ−3ρ→Γ ε1(ρ)
is constant but different from the permittivity ε0 of the exterior homogeneous
domain Ω+), we consider scattering at the lossy homogeneous dielectric cube of
Fig. 6.12 with relative (with respect to ε0) permittivity εr = 10− 0.1j.

In line with the results of scattering at the Luneburg lens, we observe in Fig.
6.13 that the Calderón preconditioned system (6.44) again outperforms the
original system (6.42), with or without diagonal preconditioner, in terms of
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E h/λ
number of iterations

no prec. diag. prec. Cald. prec.

Luneburg lens

10−9 4.8 · 10−2 364 115 31
10−9 2.6 · 10−2 552 195 26
10−9 1.1 · 10−2 1485 449 31
10−6 1.1 · 10−2 1019 224 22
10−3 1.1 · 10−2 406 145 10

Cube
10−6 4.2 · 10−2 148 66 40
10−6 1.0 · 10−2 691 215 57
10−6 4.9 · 10−3 1421 395 79

Graded-index fiber
10−6 5.3 · 10−3 566 171 29
10−6 3.8 · 10−3 950 225 34
10−6 2.0 · 10−3 2223 408 46

Table 6.1: Number of iterations for the solution of (6.42) for scattering at the
Luneburg lens (cf. Figs. 6.9 and 6.10), the lossy dielectric cube (cf. Fig. 6.13)
and the bent graded-index fiber (cf. Fig. 6.15), for different preconditioners, as
a function of the relative residual error E of the iterative solver (TFQMR) and
the relative mesh size h/λ (with λ = 4d, 10d and 9l, respectively).
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Figure 6.10: Relative residual error of the iterative solution algorithm (TFQMR)
as a function of the number of iterations for the Luneburg lens with h/λ = 0.01
and 2Nb = 14016 total unknowns.
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Figure 6.11: Execution times of the iterative solution for different preconditioners
(for the same parameters of Fig. 6.9) and the Schur complement calculation
using MUMPS.
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Figure 6.12: Relative electric field magnitude on the boundary (interior limit)
of a lossy dielectric cube with relative permittivity εr = 10 − 0.1j and edge
length d for linearly polarized plane wave scattering with wavelength λ = 10d
and unit electric field magnitude.
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Figure 6.13: Number of iterations for the solution of (6.42) (TFQMR, 10−6

precision) for scattering at the homogeneous dielectric cube of Fig. 6.12, for
different preconditioners, as a function of the relative mesh size h/λ (with
λ = 10d).

number of iterations of the iterative solution. However, Table 6.1 reveals that
the number of iterations, for a fixed precision E , still increases slowly for a
decreasing relative mesh size h/λ, which is not the case for the Luneburg lens.
Therefore, the slow increase increase in number of iterations can be attributed
to the non-smooth boundary, which causes singular tangential electric field
components (of the exact solution) around the sharp corners (as can be observed
in Fig. 6.12).

For the same precision E = 10−6 and comparable relative mesh sizes h/λ =
1.0 · 10−2 and h/λ = 1.1 · 10−2, we observe in Table 6.1 that the number of
iterations for the cube is significantly higher than for the Luneburg lens (57
versus 22, respectively). This is due the higher condition number of the discrete
preconditioned PS operator TbcG−1P for the cube, which is caused by the jump
in permittivity at the boundary, as explained in Section 6.3.4 and shown in
Figs. 6.4 and 6.5 (where the logarithm of the condition number is equal to the
length of the smallest interval that contains the support of the functions).

6.5.4 Scattering at a Bent Graded-index Fiber
Consider plane wave scattering at a bent graded-index fiber, with parabolically
varying permittivity ε1 ranging from 4ε0 (at the center of the fiber) to 2ε0 (on
the boundary), as shown in Fig. 6.14. In addition to its practical relevance,
this example is interesting because its permittivity, although in C1(Ω−), is not
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Figure 6.14: Relative electric field magnitude on the boundary (interior limit)
of a bent graded-index fiber (with permittivity varying parabolically from 4ε0
at the center to 2ε0 on the boundary) with length l and diameter d for linearly
polarized plane wave scattering with wavelength λ = 5d = 0.9l and unit electric
field magnitude.

constant on the boundary (it varies parabolically on the two cross sections).

Nevertheless, we observe in Fig. 6.15 and Table 6.1 that the Calderón precondi-
tioner (6.43) cures the system (6.42) from dense mesh discretization breakdown,
as indicated by the nearly constant number of iterations, whereas the number
of iterations with diagonal preconditioner increases with decreasing mesh size.
This is reflected by the execution times in Fig. 6.16, where we observe that the
relative gain of the Calderón preconditioner w.r.t. the diagonal preconditioner
increases for finer meshes, due to the earlier mentioned breakdown occurring
with the latter preconditioner. Similar to the results in Fig. 6.11, the execution
time of the iterative solution of the dense reduced hybrid system (6.42) domi-
nates the calculation of the Schur complement (6.32) using the direct sparse
solver MUMPS, as shown in Fig. 6.16, for all considered mesh sizes.

6.6 Conclusions
We prove that the electric field boundary integral operator can be used to
regularize the continuous time-harmonic electromagnetic Poincaré-Steklov op-
erator of a heterogeneous domain. The beneficial implications of a discrete
Calderón multiplicative preconditioner (CMP) on the condition number of its
finite element discretization are numerically investigated. This paves the way
for an efficient iterative solution of reduced hybrid FEM-BEM problems. We
demonstrate the accuracy of a formulation that is amenable to the CMP on
a canonical problem and the effectiveness of the preconditioner in practically
relevant scattering problems.
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Figure 6.15: Number of iterations for the solution of (6.42) (TFQMR, 10−6

precision) for scattering at the bent graded-index fiber of Fig. 6.14, for different
preconditioners, as a function of the relative mesh size h/λ (with λ = 9l).
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Figure 6.16: Execution times of the iterative solution for different preconditioners
(for the same parameters of Fig. 6.15) and the Schur complement calculation
using MUMPS.
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Conclusions and Future Research

Presented research
The first part presents a full-wave analysis technique for multiconductor waveg-
uides with imperfect conductors, based on an efficient root-finding algorithm
for the determinant of a MoM discretization of the 2.5-D PMCHWT integral
equation, in the complex longitudinal wavenumber plane. Chapter 3 presents a
novel technique to efficiently evaluate MoM interaction integrals in media with
arbitrary conductivities, for a given precision, allowing an accurate prediction
of all wave phenomena occurring inside conductors, including losses. In chapter
4, some analytic properties of the numerically obtained dispersion curves are
derived, with the help of some known results of complex analysis in several
variables. Some properties regarding the smoothness of dispersion curves, the
possible intersections of dispersion curves, the multiplicity of the numerically
found propagation constants and its relation to the nullity of the MoM matrix,
are proven and incorporated into an efficient numerical framework that is capa-
ble of determining the propagation constants and eigenmode field distributions
of a multiconductor waveguide as a function of frequency.

Part II presents a Calderón multiplicative preconditioner (CMP) for the Poincaré-
Steklov (PS) operator of a heterogeneous domain, for the first time. In chapter
6, a specific decomposition of the PS operator is derived, under some regularity
assumptions on the domain and permittivity, which implies that it is regularized
by the electric field integral operator, i.e., that their product can be written as
a compact perturbation of a well-conditioned operator, in the natural Sobolev
space of tangential current densities. Moreover, a novel hybrid finite/boundary
element method is presented whose reduced form is amenable to the proposed
CMP. Numerical examples corroborate the correctness of the formulation, the
effect of the CMP on the singular values of the discretized PS operator, and the
effectiveness of the CMP for the reduction of the required number of iterations
for the solution of the reduced hybrid formulation, in comparison with a diagonal
preconditioner.

Future research
Unfortunately, some interesting questions and research topics that arose during
the research or in retrospect have not been explored further, mainly due to lack
of time. Nevertheless, it seems valuable to outline those research topics, not
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only in view of potential future research, but also to better sketch the context
of the presented research.

First, it seems interesting to compare the full-wave modal analysis to the quasi-
T(E)M analysis of chapter 2, to investigate the validity range of the latter for
different types of waveguides. Although the employed 2.5-D PMCHWT system
has the advantages of a lack of resonances and a relatively high accuracy for the
lowest-order basis functions, it remains susceptible to dense mesh discretization
breakdown and low frequency breakdown. Possibly, both types of breakdown
can be solved by a Calderón preconditioner, by analogy with the 3-D PMCHWT
equation [1], although the presence of global loops might necessitate some extra
projectors and scalings (cf. [2]). One might also resort to other integral equations,
such as the Müller equation, for which it is easy to see that the properties
derived in chapter 4 still hold.

Concerning the results in chapter 6, a lot of possible avenues for future research
exist. It seems interesting to investigate the scalability and time complexity of
the different steps of the Calderón preconditioned hybrid formulation, in view of
the simulation of structures that are very large with respect to the wavelength.
The numerical results of section 6.5 already indicate that the calculation of the
Schur complement in the reduced formulation will be the predominant factor in
the time complexity of the total solution. Instead of using a direct solver to
eliminate the internal unknowns, a scalable (preconditioned) iterative solver, e.g.
FETI-DP [3], might be used to lower the time complexity. Also, it is interesting
to compare the performance of the proposed Calderón preconditioned hybrid
formulation to other preconditioned hybrid formulations in literature, e.g. [4],
[5]. Finally, several other properties of the proposed preconditioned PS operator
and hybrid formulation, including low-frequency stability, might be investigated.
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