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A certain type of perfection can only be realized through a limitless
accumulation of the imperfect.

– Haruki Murakami, Kafka on the Shore





Dankwoord

Toen ik in 2010 afstudeerde, was ik in alle eerlijkheid niet zeker over wat ik wilde
doen. Een doctoraat sprak me wel aan, maar ik twijfelde of ik dat zomaar zou
mogen aanvatten. Toch ging ik op een mooie dag aankloppen bij mijn promotor
Houssaine die, toen ik onzeker mijn idee voorstelde, zeer enthousiast reageerde.
Een paar maanden later werkte ik als assistent aan de vakgroep. Bedankt, Houssaine,
voor het vertrouwen dat je niet alleen toen, maar heel de weg lang in mij gesteld
hebt. Ook voor jou was dit onderzoek op vlak van hydraulica een onbekend gebied,
maar met jouw grenzeloze enthousiasme om je in het onderwerp te verdiepen ben
je een grote hulp voor mij geweest. Niet alleen op technisch vlak ben je erg kundig,
maar je bent ook een warm persoon en een uitstekende coach.

Tijdens mijn 1e Masterjaar bood Frederik me een onderwerp aan voor mijn
Masterproef. Dankbaar nam ik de kans aan om samen met De Watergroep (toen nog
de VMW) onderzoek te verrichten naar de optimalisatie van drinkwaternetwerken,
wat de aanleiding gaf tot het aanvatten van dit doctoraat. Ik wens hem daarom ook
van harte te bedanken voor de vlotte samenwerking en de vriendschappelijke band
die we intussen hebben opgebouwd. Daarnaast wil ik ook de mensen van de groep
’Watertechnologie’ bedanken voor hun hulp tijdens deze eerste fase, alsook Ludo
Gelders voor het verschaffen van nuttige inzichten.

De heren van de jury wens ik te bedanken voor hun kritische vragen en sugges-
ties die de kwaliteit van dit proefschrift sterk hebben verbeterd.

Ondanks de uiterste zorg die ik in dit werk gestoken heb, was het zeker niet
foutloos op het gebied van grammatica en spelling. Mogelijks kwamen bepaalde
passages ook wat verwarrend over. Indien u nog zulke onvolkomenheden tegenkomt
tijdens het lezen van dit werk, gelieve u dan te richten tot de correctors Leona,
Luc, Laura en Koen. Hen wil ik uiteraard bedanken om het aantal fouten tot een
minimum te beperken.

De dagelijkse fietstocht naar het verre Zwijnaarde maakte ik telkens met veel
plezier, mede dankzij de goede werksfeer die er heerst op vakgroep EA18. Naast het
werk was er plaats voor een goede babbel met de vele bureaugenoten, en de dagen
waarop ik op tijd was kon ik genieten van de deugddoende ochtendlijke koffiepauzes.
Ik wens Veerle en Peggy te bedanken om me bij te staan in administratieve zaken
en voor alle hulp die ze steeds met plezier geven. Kurt, bedankt om je inzichten

iii



iv

in de ICT maar ook in de actualiteit met mij te delen. Op technisch vlak wens ik
nog Cédric te bedanken voor zijn hulp met tal van software en algemene kennis
van computers. De mooie matlab figuurtjes hadden niet tot stand kunnen komen
zonder de bijdrage van Rodrigo, waarvoor dank. Met velen van jullie heb ik ook
een pak tijd doorgebracht in meer centrale delen van Gent. Onne, Karel, Kurt,
Rodrigo, Cédric, Benedikt, Sarah, Ehsan: thank you for all the good times! I
would like to thank everyone at EA18 for making this department a nice and warm
place: Luiza, Behnam, Birger, Wouter, Matthias, Hemen, Yves, Alessandro, Rik,
Stijn, Ozcan and Dieter. Of course I did not forget about the colleagues that have
left the department while I was still struggling with my PhD: Ihsan, Veronique,
Pieter, Thomas, Tim, Thomas, A, Kamarul and Yiqing, thank you all for the good
memories.

Naast mijn collega’s zou ik graag nog mijn dank betuigen aan enkele vrienden
die mij allemaal nauw aan het hart liggen. Zij zorgden ervoor dat ik ook naast het
onderzoek mijn tijd op een erg goede manier besteedde. Arno en Gert, bedankt
voor jullie volharding om reeds vanaf het eerste jaar universiteit onze periode in
Gent samen te beleven en er een geweldige fase uit mijn leven van te maken. Dimi
en Luc, naast jullie vriendschap kan ik mij geen betere trainingspartners wensen;
zij het voor een fietstocht door Gent en omstreken, een wedstrijdje squash indoor,
een potje golf op het terrein van Puyenbroeck of zelfs een marathon naar de Mont
Saint-Michel, altijd kan ik op jullie rekenen om mijn fysieke conditie op peil te
houden! Ook bedankt aan Eliane, Koen en Sofie voor de gezellige etentjes en aan
Laura en Eva voor de toffe avonden in het Gentse. Ik besluit deze paragraaf met
een (wellicht onvolledige) lijst van mensen die ik nog wens te bedanken voor de
leuke tijden in Gent, Antwerpen en omstreken: Raph, Tom, Stijn, Tine, Chloé, Sam,
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Nederlandse samenvatting

Als gevolg van de steeds toenemende kost van waterbehandeling en distributie
waarmee drinkwaterbedrijven worden geconfronteerd, neemt het belang van kost-
efficiënte waterproductie en -levering toe. Efficiëntie binnen een waterproductie
en -distributienet legt zich niet enkel toe op kostenbesparing tijdens de productie-
fase maar ook op het doeltreffend transport naar elk leveringspunt. Na de initiële
ontwerpfase van het toevoernet, kan een optimaal beheer van de daaropvolgende
operationele activiteiten aanleiding geven tot significante besparingen van de be-
trokken middelen. Zo is bijvoorbeeld het hoofdnetwerk van Berlijn gekoppeld aan
een elektronisch optimalisatiesysteem [4, 5] waarbij productie- en energiekosten
worden geminimaliseerd, terwijl het pijpleidingnet in Pittsburgh en Adelaide is
uitgerust met een softwarepakket dat suboptimale pompconfiguraties berekent [6, 7].
In [8] stelt de auteur een geı̈ntegreerde optimalisatiemethode voor waarin productie
en distributie gelijktijdig geanalyseerd worden, wat resulteert in een substantiële
verbetering van de nettowinst.

Tegenwoordig wordt de planning van de dagelijkse productie en distributie in
vele drinkwatermaatschappijen ondersteund door simulatiesoftware zoals EPANET
[9]. Hiermee worden de waarden van de debieten en drukken in het netwerk
iteratief geüpdatet door een zgn. ‘gradient based method’. Dit is ook het geval voor
drinkwatermaatschappijen in Vlaanderen.

In tegenstelling tot simulatie kunnen optimalisatiemethoden voor waterproduc-
tie en -distributie drinkwatermaatschappijen helpen om hun middelen wijselijk
te besteden, zowel op economisch als ecologisch vlak. Optimale operationele
oplossingen voor watertoevoernetwerken resulteren ontegensprekelijk in lagere
productiekosten en een efficiënter gebruik van netwerkpompen. Recent is het onder-
zoek naar zulke methodes toegenomen, maar vaak zijn de bestudeerde netwerken
relatief klein en niet representatief voor realistische netwerken.

Aangezien de wereldbevolking aan een gestaag tempo toeneemt, wordt de
schaarsheid van water een steeds belangrijker gegeven. Daarom is een generiek
operationeel ondersteuningsmodel voor waterbeheer onontbeerlijk. Dit model dient
niet alleen kostenefficiënt te zijn, maar moet ook overal in het netwerk de watervoor-
ziening garanderen en kunnen reageren op veranderingen in de infrastructuur en de
vraag naar water. Talrijke modellen zijn reeds voorgesteld in voorgaand onderzoek,
maar meestal zijn deze gericht op kleinere netwerken. Voor het bestuderen van
grotere netwerken zijn echter technieken nodig die op efficiënte wijze de structuur
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van het netwerk benutten om oplossingen van hoge kwaliteit te bekomen binnen
redelijke rekentijd.

Eén van de doelstellingen van dit werk is om een model te bekomen dat voldoet
aan deze eisen en voornamelijk gebaseerd is op het Vlaamse drinkwaternet maar
potentieel gebruikt kan worden voor allerlei types drinkwaternetwerken. Aan de ba-
sis van dit model ligt een ‘minimum cost flow’ probleem met bijkomende restricties
die eigen zijn aan een drinkwaternetwerk. Meerbepaald omvat het model restricties
die de ingewikkelde instroomwerking aan buffers en de frequentiegestuurde pomp-
curves modelleren met behulp van binaire variabelen. Ladingsverliezen worden
gemodelleerd met de formule van Prandtl-Kármán voor de wrijvingsfactor, wat
leidt tot een nauwkeurig model over een groot gebied van mogelijke waarden voor
het debiet. Daarnaast is deze formule rekenkundig gemakkelijker te evalueren
in vergelijking met andere formules. Om een productieschema te evalueren op
zijn juistheid wordt een doelfunctie opgesteld die bestaat uit de productiekost (per
waterproductiecenter) en de energiekost van elke pomp. Daarenboven kunnen drink-
waterbedrijven onderling water aan- of verkopen op plaatsen waar hun netwerken
elkaar ontmoeten. Deze kost vertegenwoordigt een derde term in de doelfunctie.
Twee subnetwerken van het eigenlijke net dat in gebruik is door De Watergroep
worden aangewend als testnetwerken voor dit wiskundige model. Als bestaande
solvers worden losgelaten op dit model, blijkt het vinden van een (globaal) opti-
male oplossing binnen redelijke tijd een zeer zware taak. Daarom worden andere
methodes voorgesteld in dit werk.

De niet-lineaire restricties die gebruikt worden om ladingsverliezen te model-
leren, kunnen door een stuksgewijze lineaire benadering vervangen worden. Ook
pompcurves kunnen op die manier benaderd worden. Om goede oplossingen te vin-
den is het belangrijk om de maximale benaderingsfout in elk interval te reduceren.
Dit kan bereikt worden door het aantal intervallen te vergroten, wat onvermijdbaar
leidt tot een zeer groot aantal binaire variabelen en restricties. Het aantal binaire
variabelen kan logaritmisch worden verminderd middels een efficiëntere aanpak
waarbij het aantal intervallen op een binaire vector wordt geprojecteerd. Aangezien
het model frequentiegestuurde pompen bevat, wordt een apart model voorgesteld
voor multivariate functies. In dit model is de convergentiesnelheid echter afhan-
kelijk van de beoogde nauwkeurigheid, waardoor een lage benaderingsfout pas
bereikt kan worden na een significant grote rekentijd.

Om de hoge rekentijd tegen te gaan, wordt het voorgestelde model gekoppeld
aan een ‘gradient method’, een methode die courant gebruikt wordt in simulatie-
software voor watertoevoernetten. In tegenstelling tot deze standaardsimulaties,
wisselt de voorgestelde hybride methode informatie uit waardoor de productie- en
distributiekosten geminimaliseerd worden. De (suboptimale) oplossing van het
gelineariseerde model kan immers gebruikt worden als startpunt voor de gradient
method, waarbij de waarden voor de debieten iteratief worden gewijzigd tot de
approximatie is weggewerkt en de oplossing overeenkomt met de oorspronkelijke
niet-lineaire functies. De resultaten op de testnetwerken vertonen een duidelijke
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verbetering ten opzichte van deze bekomen met het oorspronkelijke model, hoewel
de grootte van het netwerk een snelle convergentie van de methode kan verhinderen.

In [10] werden de ‘Generalized Benders Decomposition (GBD)’ en ‘Outer
Approximation (OA)’ methodes getest op modellen voor waterbeheer. De model-
len in desbetreffende paper zijn nietconvexe MINLP’s met binaire variabelen en
bilineaire functies, maar kunnen eenvoudig worden gelineariseerd zodat het globaal
optimum kan gevonden worden. Aangezien het masterprobleem van de OA me-
thode veel groter is dan dat van de GBD methode, besluiten de auteurs dat de GBD
methode efficiënter is wanneer grote modellen dienen te worden opgelost. Een
interessante werkwijze wordt gebruikt in [11], waar de auteurs GBD gebruiken op
twee niet-lineaire modellen voor waterbeheer. Aangezien de functies binnen deze
modellen niet-separabel zijn is het vinden van een globaal optimum geen zekerheid.
In onderhavig werk wordt deze werkwijze uitgebreid naar een model dat niet enkel
niet-lineaire restricties bevat, maar ook binaire variabelen voor pompactivaties en
bufferwerking. Daarenboven zijn sommige pompen frequentiegestuurd waardoor
de selectie van bemoeilijkende variabelen een zware taak wordt. Slackvariabelen
worden toegevoegd zodat het subprobleem altijd een toegelaten oplossing bevat
en vanwege de niet-separabiliteit van de niet-lineaire functies worden approxima-
tiecuts toegevoegd aan het masterprobleem. De methode convergeert maar is erg
afhankelijk van de keuze van bemoeilijkende variabelen. Daarenboven hebben de
keuze van bepaalde restricties en de grootte van de ‘penalty factor’ een significante
invloed op de rekentijd. Resultaten van experimenten op de twee netwerken worden
uitgebreid besproken.





English summary

As a result of an ever increasing cost of water treatment and distribution drinking
water companies are confronted with, they need to produce water and deliver it
to their customers as efficiently and cost-effectively as possible. Efficiency in a
water production and distribution network is concerned with water related cost
savings during its production phase as well as its efficient transportation to each
final delivery point. After the initial design phase of the water supply network, an
optimal management of the subsequent operational activities can lead to significant
savings of the involved resources. As an example, the Berlin network is coupled
with an electronic optimization system [4, 5] that minimizes production and energy
costs, while the piping systems in the cities of Pittsburgh and Adelaide have
been equipped with a software package for calculating a suboptimal pumping
configuration [6, 7]. In [8] the author proposes an integrated optimization approach
for which production and distribution are analyzed simultaneously, which results in
a substantial improvement of the net profit.

Nowadays many water companies still plan daily production and distribution
in their water supply network by using simulation software such as EPANET [9].
These tools seek to iteratively update the values of flows and pressures in the
network by using an iterative gradient based method. This is also the case for water
companies in Flanders, Belgium.

Unlike simulation, optimization approaches for water supply production and
distribution can assist drinking water companies to wisely use their water resources,
both economically and ecologically. Undeniably, optimal operating solutions for
water supply networks yield lower production costs and more efficient usage of
network pumps. Recently more research is being devoted to this type of optimiza-
tion, but many of the common benchmark networks are relatively small and not
representative of a real-world network.

Because of the never-decreasing population, the scarcity of water becomes
increasingly important. Therefore it is useful to obtain a generic operational support
model that is cost efficient, guarantees water supply in all parts of the network
and can react on changes in water demand and infrastructure. Many models have
been proposed in the literature, but they are usually aimed at small networks.
When larger networks are envisaged however, techniques that efficiently exploit the
structure of the network are required to obtain high-quality solutions in reasonable
computational time.

xxi
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One of the aims of this work is to propose such a model that is targeted at the
Flemish water supply networks but potentially covers many networks worldwide.
At the basis of this model lies a minimum cost flow problem. Specific constraints
include complicated inflow mechanics at buffer entrances and variable speed pumps
that require additional binary variables. Pressure loss equations are modeled using
the formula of Prandtl-Kármán for the friction factor, which leads to an accurate
model for most flow ranges while being computationally inexpensive. To evaluate
a valid production plan, the objective function consists of the production cost (per
water production center) and an energy cost for each pump. Furthermore water
companies can exchange water at the borders of their networks, which represents
a third cost term. The resulting model is a nonconvex Mixed Integer Nonlinear
Program (MINLP). Two subnets of the water network of De Watergroep, a major
drinking water company in Flanders, Belgium, serve as case studies for this realistic
model. When they are modeled and tackled using established MINLP solvers,
finding a (global) optimal solution within reasonable computational time is a very
hard task. Therefore different methods are proposed.

Here, a piecewise linear (PWL) approach is used on the pressure loss equality
constraints in pipes and pumps. The pump curves are approximated in a similar
way. In order to find good solutions, it is important to reduce the maximum error
on each interval. This can be achieved at the price of a large number of intervals.
However, this inevitably leads to a very large number of additional binary variables
and constraints. The number of binary variables in the PWL approximation is
reduced logarithmically by using an efficient approach that projects the number of
intervals on a binary vector. Since the model contains variable speed pumps, an
additional model is proposed for multivariate functions. The convergence speed
clearly depends on the desired accuracy. For a low (acceptable) maximum error the
computation time is still significant.

As a way to remedy the long computational time, the above method is cou-
pled with a gradient algorithm, a typical method used in water supply simulation
software. Whereas in those standard methods no cost optimization is done, the
hybrid approach proposed here will effectively exchange information in such a
way that costs are minimized. The (suboptimal) solution of the PWL model can
be used as a starting point for the gradient method, that will gradually alter the
flows until the approximations are repaired and the solutions correspond with the
original nonlinear equations. The results on several test networks show a clear
improvement over the MINLP model, although the network size may still restrict
fast convergence of the method.

In [10] both a Generalized Benders Decomposition (GBD) method and an
outer approximation (OA) method to solve water resource models were tested.
The proposed models are nonconvex MINLP’s with binary variables and bilinear
functions that are however easily linearized so that the global optimum can be
found. Since the master problem of the OA method is much larger than that of the
GBD method, the authors stated that the GBD method was generally more efficient
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than OA for solving large MINLP problems. An interesting Benders decomposition
approach was also used on two different nonlinear water resource models where
finding the global optimum is no longer certain since the functions are nonseparable
[11]. In this dissertation the approach is extended to a model which not only
contains nonlinear pressure loss equality constraints, but also binary variables to
control pumps and water exchange at the buffers. Furthermore, some of these pumps
are variable speed pumps, which makes the selection of complicating variables an
even harder task. Slack variables are used to make the subproblem always feasible
and because of the nonseparability of the nonlinear functions, approximation cuts
are added to the master problem. The method converges, but is greatly dependent
on the choice of the complicating variables. Additionally, the choice of restrictions
to which the slack variables are added and the penalty factor significantly impact
the computational time. Results of the experiments on the two networks are shown
and discussed.





1
Introduction

1.1 Research motivation and challenges in drinking
water production and distribution systems

Effectively and efficiently managing the production and distribution of drinking
water is becoming a vital issue from economic, social, as well as environmental
perspectives. Reliable production and distribution of drinkable water is a strategic
problem that is growing to become more important over time. The EU water
framework directive states that the correct usage and management of water on earth
will be one of the biggest challenges of the 21st century [12]. For example, the
yearly average ground water extraction is not allowed to exceed the import. As a
result, alternative sources have to be used in an efficient way [13]. Water treatment
and its transport are becoming more and more expensive as a result of chemical
and microbial contamination of natural water bodies and the steadily increasing
cost of energy. Moreover, the upward trend of the densely populated urban areas
has changed the patterns of the drinking water demand, making the current water
production and supply infrastructure expensive to operate. As a consequence, many
water supply companies would benefit from decision support tools to efficiently
manage operations of their water supply networks instead of relying on simulation
software and the experience of their operators. Research in this direction has
shown that ‘optimally’ (re)designing and efficiently managing these, usually very
old, water supply networks enables the companies to achieve significant water
and energy savings, which ultimately result in important financial savings [14].

1-1
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Furthermore, this imperative requirement of efficiency and its resulting financial
savings enable companies to provide their consumers with a high quality service
at a minimum cost. The latter can then be used as a competitive advantage. A
couple of successful implementations have been accomplished: the Berlin network
is coupled with an electronic optimization system [4, 5] that minimizes production
and energy costs. A software package for calculating a pumping configuration at a
minimal cost has been coded for the city of Pittsburgh [6]. The piping system in
Adelaide has been upgraded with a similar system [7].

The process of optimizing and monitoring water production and distribution
in large water-supply networks involves several equally important phases, starting
from the strategic design phase and ending with the operational planning phase
(see among others [15], [16]). However, the network design phase and network
operational planning phase are the two major and critical ones in this process,
and most research papers focus on either one of these stages. Whereas the actual
objective of the studied networks vary, they have many restrictions in common. The
optimal design phase of a water network considers various aspects such as opti-
mal layout of the network, optimal dimensions of the systems components (pipes,
pumps, valves, reservoirs, etc). The optimization process here involves a very large
number of combinations of pipe materials, diameters, pumping stations locations
and capacities which makes the underlying optimization model for this phase rather
complex. The optimal operational planning phase of water production and distribu-
tion in a designed water-supply network involves operational parameters such as
hydraulic pressure zone boundaries, demand patterns, control valve settings, and
pump operating schedules. The relation of the flow to the pressure is modeled using
energy conservation or pressure loss equations, possibly joined by characteristic
pump functions. This leads to complex formulations with nonlinear restrictions and
binary variables and corresponding large computational times. Dropping or relaxing
some of these constraints leads to simplistic models that are often not usable in
practice. Furthermore the test instances that researchers focus their research on
are very small and not representative for real-world networks. These models are
not sufficiently generic for implementation in other drinking water networks and
in particular the one of Flanders, Belgium. This network contains variable speed
pumps and complex buffer mechanics over multiple periods, which are usually
not considered. Given these limitations, the need for complete and realistic model
formulations and mathematical techniques to solve these, rises.

For historical reasons, the Flemish drinking water network is being managed
by a number of different operators (see figure 1.1). The policy objectives of the
Flemish government mention the desire for mutual cooperation and the valorization
of acquired expertise with the aim of efficiency gain [17]. It is beyond doubt
that one single model for the full water supply network in Flanders will not only
guarantee drinking water delivery but will also lower operational costs by more
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efficient usage of the available water sources.
These challenges bring with them the need for a generic operational support

model that is cost efficient, guarantees water supply in all parts of the network
and can react on changes in water demand and infrastructure. Such a model can
potentially motivate cooperation between the different drinking water operators
because mutual management of some parts of the network can lead to a more
efficient flow configuration which results in lower operational costs. In 2010 this
research started as a Master Thesis that had the goal to develop a first model for part
of the drinking water network in West-Flanders operated by De Watergroep (which
at that time was called VMW, Vlaamse Maatschappij voor Watervoorziening). A
network configuration with a suboptimal cost was generated using state-of-the-
art solvers [18]. When larger networks are envisaged however, techniques that
efficiently exploit the structure of the network are required to obtain high-quality
solutions in reasonable computational time.

1.2 The optimal water supply system operations net-
work problem

This section focuses on the operational aspects of water supply systems and briefly
introduces a way of modeling this. In what follows, we consider a fixed-topology
network i.e. the network is already designed so that no expansions/alterations on
the network will be done.

A general network for this purpose can be seen in figure 1.2.
In general water supply systems, we distinguish 2 major decisions that have to

be made. In each water production center (WPC), a certain amount of water is to
be produced either for storage or to be injected in the distribution net. The total
amount of water produced over all WPCs has to be sufficient to satisfy the total
demand in the network. The amount is limited by the production capacity and every
WPC has a different production cost. A second decision concerns pump operations.
During each period, the status (on/off) and speed setting of the pump has to be
determined. Associated with this operation are limits imposed by the pump curve
and energy consumption costs.

The general model for water supply operations is based on the minimal cost
flow problem [19, 20]. Given is a directed graph G = [N , A], where N denotes the
nodes and A represents the arcs. An arc (i, j) in a directed graph is an ordered pair
in which i is the start node and j the end node. In this network it is assumed that
two nodes are never directly connected by more than one arc.
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Figure 1.1: SVW map for water supply in Flanders. Each color depicts a different drinking
water company
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Figure 1.2: Typical components of a drinking water network

If we define:

• Qij : the (water) flow from i to j;

• cij : the cost for sending one unit from i to j;

• lij and uij : the lower bound and upper bound for the flow going from i to j;

• di: the demand in node i;

then the minimum cost flow problem is given by:

Minimize
∑

(i,j)∈A

cij Qij

subject to ∑
k:(k,i)∈A

Qki −
∑

j:(i,j)∈A

Qij = di ∀i ∈ N

lij ≤ Qij ≤ uij ∀(i, j) ∈ A
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This can be interpreted as ‘Given the demand in each node and the capacities
in each arc, send flow through the network at minimal cost so that all demand
and capacity restrictions are respected’. Please note that Q is the variable (to be
determined) in this problem whereas cost c, capacity l, u and demand d are the
parameters of the problem.

The problem treated in this work is basically a minimum cost flow problem, in
which arcs represent the pipes of the network. The bounds imposed will be linked
to the maximum flow velocity while di and cij represent clustered demand in a
node and production/pumping or delivery cost, respectively. Additional hydraulic
constraints need to be formulated.

Next to the flow Q, pressure is another important variable in the water supply
network. Work by moving the water through pressure differences is related to
changes in gravitational potential and kinetic energy. Water in a pipe flows from
places with high pressure to lower pressure areas, and steadily loses pressure due to
friction of the pipe. When neglecting friction losses, these energy exchanges can be
derived by using Bernoulli’s law between two points in a pipe [21]:

p1

γ
+
v2

1

2g
+ h1 =

p2

γ
+
v2

2

2g
+ h2

where p1 and p2 are the manometric pressures, g is the gravitational acceleration,
γ = ρ g is the specific weight of water (with ρ the density), v1 and v2 are the
velocities, and h1, h2 are the elevations with respect to the sea level.

Instead of pressure, the components in the equation are referred to as head.
p/γ is the pressure head (associated with flow work), v2/2g the velocity head
(associated with kinetic energy) and h the elevation head (associated with potential
energy). The total sum of these components is the so-called ‘piezometric head’,
denoted by the symbol H . Since velocity heads are negligible, the relation becomes
H = h+ p/γ. This variable will be used to model the pressure in this dissertation.
Pressure losses caused by friction hf are defined as the difference in total head
from the beginning of the pipe to the end over a certain distance. When accounting
for these losses and assuming water flows from point 1 to point 2, Bernoulli’s law
can be rewritten as:

H1 = H2 + hf

When a pump is active in a pipeline, it discharges water to a higher head at its
discharge side than the original head at the pump inlet. It thus adds an amount of
pressure that we call ‘pump head’ (∆H) and the pressure loss equation is rewritten
as:

H1 + ∆H = H2 + hf
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The pump head ∆H varies with the amount of water Q according to the pump
characteristic curve.

For modeling purposes, we define the horizon 1, ..., T which usually spans one
24-h day divided over several discrete intervals. Each interval has a length τt that is
usually composed of several hours. Subsequently, the hourly state of the network
is considered to be constant: the pressure and flow rate do not change and are
considered as an average of the real values within the interval. Furthermore, this
distribution is based on the daily water consumption pattern and the energy cost.
No more than one day will be modeled since the same optimized production plan is
assumed to be repeatedly used on a daily basis. Since multiple periods are covered,
buffers (water towers and reservoirs) play an important role in the network: they
can be used to store water with the help of pumps when electricity tariff is low and
add robustness to the network for demand variability. Pressure losses, pump curves,
and buffers restrictions will be further detailed in chapter 3.

The modeling is restricted to the main supply network. The underlying distri-
bution net which connects every single household with the supply network is thus
not taken into account. This implies that the actual demand needs to be clustered
in several dedicated demand nodes in the modeled network, which can be done
using the GIS (Geographic Information System) database. In this dissertation we
will not make a distinction between the terms ‘water supply network’ and ‘water
distribution network’, both of which denote the generally studied networks.

Lastly, the cost function cij Qij consists of three major parts:

• Production cost at WPCs. This cost consists of 4 major components: elec-
tricity (lighting + energy raw water pumps), taxes (ground water extraction),
loans (personnel) and chemicals.

• Energy cost for pure water pumps. This is the cost for pumping water in
the water supply net. Prices are higher during the day (‘normal hours’) than
at night (‘silent hours’).

• Delivery costs. In some parts of the network, water can be sold or bought
from other drinking water companies at a fixed cost.

1.3 Research objectives
This dissertation is concerned with the optimization of water production and distri-
bution operations in real-world large-scale mesh structured water supply networks,
based on the water supply infrastructure of De Watergroep. The main goal is to
develop a decision support model that provides cost efficient configurations, guar-
antees water delivery and is able to respond to demand changes or network defects
in reasonable computation time. The main characteristics of such a model are:
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• Generality: many different hydraulic components are included in the math-
ematical model. Because of this, a large array of different water supply
network configurations can be solved with the proposed model. At the least,
every water supply network provider in Belgium should be able to imple-
ment and use the models and methods on their infrastructure. Many of the
proposed networks found in the literature are composed of elements that are
contained in the model that is proposed here. Because of this we believe the
model to be suitable for obtaining good solutions on many different network
configurations worldwide.

• Accuracy: a full hydraulic model that takes into account many of the impor-
tant hydraulics such as pressure losses and pump characteristic curves, and
that makes sure that pressure is within the limits everywhere in the network.
Special attention goes to a detailed modeling of the buffer model, where
additional binary variables have to be added to ensure an accurate representa-
tion of the actual situation. Delivery points that allow water exchange with
other drinking water companies are also considered. Furthermore the optimal
solution should be very close to and if possible equal to the global optimum.

• Reasonable computation time: methods will be proposed to overcome the
computational difficulties inherent to the problem formulation. These meth-
ods should not only be robust but the computational time should be within
reasonable limits. In contrast to many of the proposed (meta)heuristics found
in literature, the goal is not to find a (sub)optimal solution in the shortest
computation time possible. Getting a good estimate of the global optimal
solution by exploiting the characteristics of the water supply system, and
within a reasonable time frame, is the main goal.

1.4 Research outline

This dissertation starts with an overview of past research that has been conducted
on water supply network optimization (chapter 2). A general way of structuring
such networks is covered, and afterwards several different models and methods are
discussed. Emphasis will be put on both operational aspects and optimal design
during this review.

In order to generate an optimal configuration (production scheme and pump
control), an accurate hydraulic model is needed. In chapter 3 such a model is
proposed. Specific focus is put on the modeling of the buffer, in which water flows
in or out depending on the relation of the net pressure with the water level in the tank.
Further emphasis is put on the highly nonlinear pressure loss equations, for which
different hydraulic laws have been proposed. A graphical representation allows
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comparison of these approximations. Most research papers, discussed in chapter 2,
that are concerned with optimal pump configurations do not take into account pumps
with variable speed settings. Here, a representation for these VSPs (variable speed
pumps) is added, where the degree of nonlinearity is decreased as much as possible
without giving in too much on accuracy. The total cost function is composed of
three terms: production, energy and delivery cost. The nonconvex Mixed Integer
NonLinear Programming (MINLP) model is tested on several instances using a
state-of-the-art solver.

The proposed model is very hard to solve, mostly due to its nonlinear nature.
Therefore, an alternative model is proposed in chapter 4. Using piecewise linear
functions, nonlinearities can be avoided at the price of additional binary variables
and constraints. Since the resulting Mixed Integer Linear Programming (MILP)
model computationally outperforms the MINLP model but at the cost of loss of
accuracy, the goal here is to correct the optimal solution to get it within a very tight
feasibility tolerance. In order to understand how this ‘fixing’ works, an overview
of steady-state hydraulic analysis is given. An overview is given of different
methods that can obtain a solution for network states where certain information,
such as tank levels in buffers and pump configurations, is already known beforehand.
Afterwards the MILP model is adjusted to be used with the Newton’s method (or
gradient method) for pipe equations. Information from the optimal MILP solution
is given as a starting point for this method. All bounds on variables are dropped
and only general flow and pressure variables are updated. The hybrid algorithm is
again tested on realistic networks and results are compared with those found with
the MINLP model.

A different approach on solving the proposed model is outlined in chapter
5. Here, a decomposition method called Generalized Benders Decomposition is
proposed to solve the MINLP model. This algorithm is originally made for convex
MINLP models or for nonconvex formulations that can be decomposed in convex
subproblems under certain conditions. One of these conditions is the separability
property of the nonlinear functions. The general model proposed in chapter 3
does not satisfy this property, potentially making the algorithm computationally
ineffective. By using approximation cuts however, this issue is circumvented at a
certain price: the possibility of loss of a global optimal solution. Great care is taken
in adequately selecting the variables for the decomposed master and subproblem, as
well as the selection of slack variables and their corresponding penalty costs. With
these carefully fine-tuned parameters, the algorithm converges to what is likely the
global optimal solution and greatly outperforms the state-of-the-art solvers with
respect to computational time. Results on all test instances are reported.

In chapter 6 the most important results of this dissertation are highlighted,
followed by an extensive discussion. Although this work aims at giving a complete
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model with good and efficient methods to solve it, a lot can still be improved. Some
guidelines and recommendations for future research are therefore given.

1.5 Contributions and publications

The operational management of water supply in Flanders is currently done using
simulation software and experience of the operators. In first instance, a decision
support model is proposed that minimizes operational costs while guaranteeing
water supply and valid pressures everywhere in the network. The main benefits
this network has in comparison with other models from literature is an accurate
modeling of water towers (in general: buffers), which play an important role in
energy efficiency by storing water during periods with low average demand and
feeding the network gravitationally during the day when electricity tariffs are high.
A second contribution is a detailed modeling of variable speed pumps, where
nonlinearities in the formulation are limited. The power term in the cost function
was linearized without reducing the hydraulic accuracy of the model.

The accuracy of the proposed model unfortunately implies a highly nonlinear
and nonconvex structure. Solutions that are (near) global optimal are hard to
acquire using existing state-of-the-art solvers. Therefore a piecewise-linear (PWL)
approximation method is proposed that generates over- and underestimators for the
nonlinear pressure loss constraints and pump characteristic curves. This decreases
the accuracy of the system depending on the number of intervals that are used.
For few intervals a good solution can be acquired in very short time, whereas very
accurate approximations are computationally ineffective. The PWL method is
therefore coupled with the gradient method, which is very popular in simulation
software. The quickly generated solution from the MILP is hereby passed on to
this method and repaired to a solution that is hydraulically feasible under certain
conditions.

The proposed hybrid MILP/PWL method is able to obtain good results, although
the computational time can still be improved for larger network instances. This is
especially useful when uncertainty is added to the water supply system e.g. a sudden
failure of a critical pump or a pipe that breaks, which may require a new operational
plan on a relatively short term. In order to accomplish this, a Generalized Benders
Decomposition (GBD) approach is formulated. The application is unique in the
sense that a water supply model is solved that is not only nonlinear but also contains
many binary variables. By carefully tuning the parameters of the model, good
results can be generated in decent computational time that are very competitive in
comparison with those obtained by state-of-the-art solvers. It is shown that GBD is
a worthwhile alternative to common heuristics and provides an efficient operating
solution to large-scale water supply networks.
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2
State of the art on water supply

network optimization

Water supply optimization has been widely researched, however different kinds of
optimization on different kinds of networks exist. It is therefore useful to describe
the different optimization stages that exist in the domain of water supply as well as
distinct the different kinds of studied networks. This chapter consists of 4 sections.
The first one defines the two main research topics of water supply optimization,
operations and design, and gives a general way of structuring these networks. Next
a small section is devoted to demand forecasting. The two final sections describe the
main part of this chapter: an analysis of different models to describe the complex
problem that optimization of drinking water networks is and a listing of the most
relevant methods and programs for solving these optimization problems.

2.1 General classification of water supply network
problems

The water supply network optimization problem can be divided in two general
phases. The first phase is the network design problem that is mainly concerned with
static parameters such as pipe diameters, whereas the second phase is the search
for an optimal operational planning for fixed-topology networks, that is concerned
with the dynamics of the network such as pump rates and buffer mechanics in
response to varying demand rates (for a review see [15, 16]). The first two sections

2-1
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describe these two phases, next is a small section on the structure of drinking water
networks, and the final section covers benchmark networks to estimate the quality
of an optimization strategy.

2.1.1 Optimization of drinking water network design

The design phase of a water supply network considers various aspects such as
optimal layout of the network and optimal dimensions of the systems components.
In most cases reservoirs, pumps and valves are disregarded and the model reduces
to the optimal choice of pipe diameters given a set of discrete values, while demand
has to be satisfied. The main restrictions are the flow conservation in nodes and
the pressure loss equations in pipes. In their paper, [22] show that even the very
simplest type of branching problem is solved in non-deterministic polynomial
time (otherwise stated it is NP-hard) and suggest that research should be aimed at
proposing good approximation methods to find optimal solutions.

2.1.2 Optimization of drinking water network operations

As previously mentioned, the operational planning and monitoring phase of water
production and distribution in a water supply network involves operational param-
eters such as hydraulic pressure zone boundaries, demand patterns, control valve
settings, and pump operating schedules. While pipe diameters are fixed, pump
and valve parameters have to be controlled and production rates determined while
delivering good-quality water to customers at reasonable flow and pressure. Ob-
viously a decision support model for such a system has to be paired with a good
design and the expertise of the operators. As stated in [23], water system operations
are extremely complicated. Thousands of customers, pumps and tanks may be
involved as well as several water sources. Nowadays most of the operations at
water supply companies are supported by simulation software such as EPANET [9].
This software is able to calculate the pressures and flows in a network on a detailed
level given the configuration. In chapter 4 the gradient algorithm, which is used in
EPANET, will be discussed in detail.

As is pointed out in [16], the main difference between the design and operation
problems is the contrast between static and dynamic modeling. When looking for
a solution to optimally operate a network, demand patterns have to be taken into
account. Furthermore pumps may be switched on and off over time. Nevertheless
similar approaches may be exploited to solve both types of modeling.
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2.1.3 Structure of drinking water networks

Another way to categorize water supply networks is topology. The linear networks
tend to be easier to solve, whereas meshed networks need sophisticated algorithms
to provide a solution. This is mainly because actions in individual branches may
not affect the rest of the network in the first case, whereas hydraulics in each branch
of the second network globally influence this network [1]. The authors make a
classification of four types, as shown in figures 2.1- 2.4. The star-structured network
contains a single reservoir as central source, from which water flows to the demand
nodes with a fixed sense. There is no further branching apart from the central source
and each branch contains at most one reservoir. Because of this, the pressure loss
equations can be dropped. This kind of network is called a mass-balance model in
[23]. The difficulty stems from the fact that the pumping cost corresponding to a
certain flow is nonlinear.

In contrast to star structures, a tree structure contains multiple intermediate
locations from which multiple branches depart to the demand nodes. If there is
only one branch the resulting network is called a cascade structured network. In
general these models can be solved quite easily by linearization methods. They are
however only suitable for regional supply systems in which flow is carried primarily
by major pipelines rather than distribution networks that contain loops.

The mesh structured network, finally, is a highly interconnected network with
multiple reservoirs in which flows have no fixed sense. Apart from flow conservation
constraints, energy conservation has to be respected in these networks which makes
them much harder to solve.

Figure 2.1: Network with star structure
[1]

Figure 2.2: Network with tree structure
[1]
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Figure 2.3: Network with cascade
structure [1]

Figure 2.4: Network with mesh structure
[1]

2.1.4 Benchmark water distribution networks

Many of the common test networks found in the literature are rather small and do
not represent real-life water networks. Most of them are used for water supply
network design.

2.1.4.1 Van Zyl Test Network

This network was proposed in [24] and consists of one main reservoir that feeds
two tanks. The small network is composed of 2 pumping stations and several pipes.

2.1.4.2 Hanoi Network

The Hanoi network consists of one gravity-fed reservoir, 32 nodes and 34 pipes
organized in 3 loops. No pumping facilities are considered since only a single fixed
head source at elevation of 100 m is available. Only 6 possible pipe diameters are
available for selection [25].

2.1.4.3 New York water supply system

This network was first mentioned by [26] and consists of a single reservoir and
21 pipes. The problem is to determine the most economically effective design
for proposed additions to the primary water distribution system. This system is a
gravity flow system drawing water from the single reservoir.

2.1.4.4 Anytown water distribution network

The objective of this network problem is to determine the most economically
effective design to reinforce the existing system to meet demands. Pumping costs
and capital expenditure are hereby taken into account [27]. The problem variables
are 35 pipes considered for duplication or cleaning and lining and 6 additional new
pipes. Furthermore 2 potential new tank locations are considered.
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2.1.4.5 Richmond water distribution network

This network is one proposed for operational optimization. The primary objective
is to determine the optimum trigger levels that minimize pumping costs. Two pairs
of trigger levels are used for each level control pump, one for off-peak, and the
other for peak electricity tariff periods. It contains about 40 pipes and junctions and
additionally 7 pumps and 6 tanks fed by one main reservoir [24].

2.1.4.6 Balerma Network

This looped irrigation water distribution network is the largest network currently
studied in literature [28]. It consists of 454 pipes connecting 447 junctions with 8
loops.

As is rightfully stated in [15], most of these benchmark networks are rather small
and simplistic, leading to the fact that most of the proposed methods (discussed in
the next sections) result in high-quality solutions. It is therefore not proven that fast
metaheuristic methods succeed when applied on large and complex real-life water
supply optimization models. More recently, the same authors have developed a tool
called HydroGen that generates realistic water distribution configurations of varying
size to allow researchers to test their methods on more, and importantly, larger
realistic water supply networks [29]. Since most of these networks are optimized
for design purposes, data is limited to a single time interval. Usually none or
few pumps are considered, and variable speed pumps are usually not present in
those networks. Complexity increases significantly when buffer volumes play an
important role in multiperiod optimization and when the network size and number
of pumps increases. The model proposed in this dissertation will be focused on
real-life networks that contain all of these restrictions and as such will most likely
be applicable on the benchmark networks presented in this section as well.

2.2 Demand forecast

Since the actual daily demand schedule is not known in advance, a forecast model
has to be used. According to [23], three different approaches can be used to incor-
porate forecasted demands in decision support models for water supply systems.
In a lumped approach, one single value is used that represents system demands.
This kind of forecast is normally used with mass-balance hydraulic models i.e.
models where pressure loss/energy constraints are not taken into account (usually
star-structured or tree-structured networks). For models with pump curves and
pressure losses (regression-based models) a second approach based on proportional
demands is used. Regression relationships are derived from a demand pattern that
may vary proportionally to total system demand. A distributed demand approach
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is a third type where demands are assigned both temporally and spatially to the
network. Clearly this is the most accurate approach that will be used for detailed
simulation and optimization models. Predictions are based on different factors such
as weather conditions and seasons. The distribution of the demand among different
junctions can be done using historical data or database information. Further disag-
gregation in hourly demands can be done based on the demand patterns, day of the
week and seasonal variations [30, 31].

In [32] two different forecasting techniques are compared: one is based on time
series and the other is a representation by neural networks. The author concludes
that both methods are serviceable for demand forecasting purposes.

2.3 Models for solving water supply network opti-
mization problems

Both the design and operations optimization problems have similarities since hy-
draulics play an important role in each. For the design problem, changing the diam-
eter of one pipe causes the pressures to change throughout the network, whereas
altering the pump speed in the operational problem does the same. In the following
section, models for both optimization problems will be addressed. The general
mathematical model is a MINLP (Mixed Integer Nonlinear Program), but many
authors have proposed simplified models to overcome computational difficulties.
An overview is given below.

2.3.1 Linear Programming (LP) Models

In water supply networks, nonlinearities stem from the pump curves and headloss
equations, which are usually represented using regression curves. These can either
be acquired by using a calibrated simulation model for several instances of tank
levels and loading combinations or by using database information relating pump
head, discharge, tank levels and demands [33]. The authors in [23] note that such
regression curves may lead to errors if the forecasted demands are outside the range
of the database.

During the early stages of water supply optimization, many researchers used
simplified hydraulic models for this purpose. When spatial decomposition com-
bined with dynamic programming is not possible, LP models could provide an
advantageous alternative. The authors in [34] used a linear model based on ‘duties’
for pumps in a mesh structure: for each pump station a specific configuration is
chosen that corresponds with a delivery in each reservoir during a certain time
within each interval. The method is however network-dependent: the nodal heads
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need to be satisfied everywhere and the pump head is extremely large compared to
network nodal changes elsewhere.

In [35] the authors use simulation techniques to find pump configurations that
are feasible in terms of water demand and pressure constraints. Least-cost surfaces
for each feasible configuration are then derived using numerical algorithms for
convex polytopes. Each combination of pump configurations is then again tested
and its associated cost is calculated.

The objective function of the linear problem formulated in [7] consists of costs
for shortfalls below target storage levels, reservoir spillage costs and the negative of
the value of water in the reservoirs at the end of the time period, apart from pumping
electricity costs. The mass balance constraints are written for each reservoir as
well as piecewise linearized pump cost curves. Pressure at nodes is not taken into
account.

In [36] an LP model is linked with a simulation package to minimize the sum
of penalties for deviations from target reservoir storages and performance levels.
An extensive forecasting model is made for real-time reservoir operations, and the
optimality of the solution is dependent on the quality of the forecast.

An LP model combined with a directed graph algorithm is used to tackle a
simplified water supply system in [37]. The use of upstream and downstream nodes
circumvents the implementation of the pressure loss constraints but the operating
plan may not be feasible in practice. An equivalent formulation is used in [38].

2.3.2 Mixed Integer Linear Programming (MILP) Models

Mixed integer linear programming is used when binary variables are introduced
to the model. Most of the time these variables represent the activity status of the
pumps during a certain time period.

The authors in [39] use a simplified MILP model for a cascade structured
network where the pressure in the central source was held constant. The binary
variables represent the on/off status of the pumps.

An MILP model is proposed in [40] where discretized pump states are rep-
resented by binary variables and pressure losses are assumed to be negligible
compared to the geographic height differences.

2.3.3 Nonlinear Programming (NLP) Models

When more accurate representations of the hydraulic laws in the network are
required, nonlinear equations are introduced to the model. This will mostly be
the case with highly interconnected mesh-structured networks, where the pressure
losses/energy conservation between nodes can not be neglected.
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In [41] a nonlinear objective term is introduced that represents the total power
consumption of the pumps. Furthermore, energy conservation and the characteristic
pump curves are taken into account. Instead of introducing binary variables that
represent the activity status of the pumps, the authors multiply the pump pressure
constraints with the continuous value of the flow, making them even more nonlinear.
Furthermore penalty variables are added to these constraints and represented in the
objective function with a big penalty value.

A large-scale multisource water supply system for cost minimization with
additional penalties for demand, water quality, emergency sources and excess
discharge is modeled as an NLP in [42]. The model contains nonlinear penalty
functions and mixing constraints.

The general drawback of NLP methods is that they rely on the initial solution
and do not guarantee the identification of a global optimum. In the case of network
design where the pipe diameters are discrete market sizes the quality of the optimal
solution is reduced.

2.3.4 Mixed Integer Nonlinear Programming (MINLP) Models

In these models most of the hydraulic components are accurately described. The
pressure loss constraint and pump characteristic curves introduce nonlinearities,
whereas binary variables are introduced for pump status or, in the case of design
problems, to decide which market size of pipes is chosen.

The authors in [43] propose a MINLP model involving energy conservation
along loops and pump characteristic curves that minimizes the sum of the pipe
replacement, pipe rehabilitation, expected repair cost and energy cost. Binary
variables are introduced that denote whether a pipe or pump is to be replaced or
rehabilitated.

In [14] the authors transform their minimal pump cost MINLP model to an NLP
by using continuous pump controls. The values of the optimal solution to this NLP
are then used in the next stage, where the actual pump schedule is calculated. The
big advantage of this method is that the model decomposes by time interval since
the optimal values of the reservoir volumes in the continuous problem are used as
estimates for the final solution.

A very complete model for the water supply network in Berlin is described
in [4, 5]. The authors model smoothed versions of the pressure loss functions
and nonlinear pump curves for fixed-speed and variable-speed pumps. Control
variables for pumps and valves result in an MINLP with binary variables. It is noted
that this formulation may be solvable by global optimization problems based on
nonlinear branch and bound for small networks. The resulting model is however
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very large containing 1481 nodes and 192 arcs over 24 hourly intervals. Therefore
the proposed model is modified to an NLP variant, in which negative flows for
pumps are allowed but generate very high costs which the solver will avoid. As
such the binary control variables can be omitted. Furthermore pump switching is
prevented by introducing smoothed nonlinear complementarity functions, leading
to good approximations.

In recent years, many heuristic approaches have been proposed to solve MINLP
models (see section 2.4.5 for details).

2.4 Methods for solving water supply network opti-
mization problems

Many optimization methods have been proposed, mostly focused on optimal design
problems. Early methods cover simplified LP methods or dynamic programming,
which are mostly limited to small tree-structured networks. NLP solvers and Branch
and Bound have also been proposed, although these are less frequently encountered
in literature. Heuristic approaches such as Genetic Algorithms on the other hand
are an established value in water network design optimization.

Note that many of these optimization methods are coupled with simulation
software. In [35] the network simulator GINAS5 was used to identify feasible pump
schedules for fixed-speed as well as variable-speed pumps (tested at minimum and
maximum speed) over a 24-h period. The selection procedure was used to identify
the optimal pump selection for a part of London’s water network.

2.4.1 LP methods

These LP methods are usually solved by the primal/dual simplex method or varia-
tions thereof (see [44]).

[7] used an LP solver to tackle a simplified model, which resulted in a 5-10 %
reduction in operating costs for the Adelaide headworks system in South Australia.

Instead of simplifying the model, an approach such as the one proposed in
[45] can be used. The authors solve a design problem in which the length of
segments with a constant diameter in each link is to be determined. The authors
use a decomposition approach in which a flow problem is solved and a separate
problem in which all other variables are determined. The dual value of the energy
conservation constraints is used to update the flows in the next iteration. A similar
method is used in [46], where the LP is coupled with the Hardy Cross method (see
section 4.2.1).
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2.4.2 Dynamic Programming

Dynamic programming has been very popular with researchers in the early stages
of research on water supply optimization. The dynamic programming recursion
minimizes the total cost from the current stage (t) until the end of the problem,
given that at stage t the state is known. The state is chosen from all possible states
the system can be in at that stage. Note that both linear and nonlinear formulations
can be tackled using this method.

The possible states are usually the tank water levels, defined over a number of
discrete time steps (stages). The optimal solution is found by evaluating all state
transitions between adjacent stages instead of evaluating every possible combination.
The big advantage is that a complex problem involving different subproblems can
be reduced to different problems with a single variable. The downside of this
method is that the efficiency goes down substantially as the number of variables
increases. Therefore most of the models solved by this method are single-tank
systems (star or tree structured).

Extension of this method to networks with multiple tanks is possible when
combined with spatial decomposition techniques. The system is broken down in
various subnetworks, each of them with only one or two tanks and thus easily
solvable. Policies for each of these networks are connected on a higher level
in order to find a solution for the complete system. The paper [47] discusses a
dynamic programming approach to solve a (simplified) tree structured network.
The optimization function here is the total energy cost for operating the pumps
(quadratic) and the constraints are the continuity equations for volume in reservoirs
and bounds on flow and volume variables. The pressure constraints are not taken
into account so all restrictions are linear. The model is decomposed in time steps and
for each step the trajectories connecting two reservoirs are handled independently.
More specifically the discharges are determined such that the cost is minimized for
fixed volume levels (determined in an initial step).

In [6] a similar approach is used in which a tree structured network is solved
using an LP model that is decomposed in space and time. Dynamic programming is
used for the continuous relaxation of the problem, after which a simple heuristic is
used to rearrange the discretized pump schedules in order to reduce the frequency
of pump switching.

A variation on this method can be found in [48, 49]. Here the authors make a
hierarchical decomposition in three distinct levels: an upper level in which reservoir
storage is optimized using nonlinear dynamic programming, an intermediate level
for source extraction and a lower level for the individual sources. The fixed tank
trajectories are passed on to the lower levels where pump combinations are selected
using binary variables.
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In [50] the optimal pump operation plan is achieved in two phases: the first one
is the development of an optimal tank trajectory, and secondly the development
of an optimal pump operating policy. The optimal trajectory is determined using
dynamic programming while the pump policy is determined using an explicit
enumeration scheme. The authors in [51] also based their methodology on this idea.
Simulations are used to determine the rate of change of tank water levels given an
initial water level for every pump/demand combination. Avoiding excessive pump
switching was also considered in the model. It was shown that acceptable solutions
can be obtained on small networks with a single tank, however when extended
towards multi-reservoirs models with many pumps the algorithm is not suitable.
This shortcoming is also pointed out in [52].

2.4.3 NLP solvers

2.4.3.1 MINOS

This NLP solver is especially effective for problems with nonlinear objective
function and sparse linear constraints. It is suitable for handling a large numbers
of nonlinear constraints. The nonlinear functions should be smooth, but need
not be convex [53]. When a nonlinear objective is present, the solver uses a
reduced gradient algorithm in conjunction with a quasi-Newton method. A projected
augmented Lagrangian algorithm is added to the package in case of nonlinear
constraints.

In [41] a solution for an NLP model applied to a water supply network consisting
of 34 pipes and 8 pumps connecting 16 junctions and 2 reservoirs. The optimization
algorithm is able to find a solution, but the initial starting conditions need to be
specified carefully.

The network of the Berliner Wasserbetreibe described in [5] was modeled as
an NLP problem and solved using the commercial solver MINOS . The resulting
model contained 25000 variables and was solved in very reasonable computational
time.

MINOS was also successfully used on the NLP model in [42] for a network
consisting of about 150 nodes and arcs.

2.4.3.2 CONOPT

CONOPT is a nonlinear programming solver that uses a generalized reduced
gradient algorithm (GRG, [54]). The algorithm distinguishes two types of variables:
basic variables that are calculated from the equality constraints, and super-basic
variables which are allowed to change freely. Only for the latter type of variables is
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the gradient calculated. This solver is very efficient for models with few degrees of
freedom.

The authors in [14] make use of this algorithm to solve the NLP subproblem
of their MINLP formulation. They are able to solve a large reduced network that
contains 252 nodes and 530 components, including 35 pumps, over 6 periods in
reasonable computational time. A total saving of 14% on the operating cost is
made.

2.4.4 Branch and bound (B&B)

In a B&B algorithm, a tree is formed from a root node which represents an initial
solution (to the linearized version of the MILP). Next, an integer variable is chosen
which has a non-integer value in the LP solution. This value is then rounded up to
its nearest integer value, and a new subproblem (branch) is created with this value
as lower bound for the branched variable. Likewise a second subproblem is created
where the rounded down value is imposed as upper bound. Both subproblems are
solved. If the LP solution is worse than the best-known IP (Integer Programming)
solution, the branch is cut off (fathomed) and the subproblems discarded. If the
solution to a subproblem is integer, the optimal value serves as an upper bound for
the IP problem. Branching continues until there are no unfathomed sub-problems
left.

In [43] a specific branch and bound structure is used to determine which pipes
have to be replaced or rehabilitated. The values of the binary variables of the pipes
that have not yet been assigned values are hereby relaxed. In every iteration the
last optimal node is branched into three new nodes for the next pipes: one node
represents the replacement, one the rehabilitation and the third neither of these. The
three nonlinear subproblems are then again solved (with continuous variables for
pipes that have not yet been assigned) and the node with the lowest objective value
is then branched off again. Iterations continue until all pipes have fixed integer
values. The nonlinear subproblems are solved using a gradient method coupled
with simulation software through an augmented Lagrangian penalty method. Note
that such a solution procedure is only effective when the number of pipes/pumps to
be renewed is relatively small.

An extension of this method called nonlinear B&B can be used on MINLP
formulations, where an NLP solver is used to tackle the subproblem at each node in
the tree. Since the NLPs are generally nonconvex, pruning a node may be based on
a local optimal solution and the global optimum is abandoned. The general optimal
solution is not guaranteed to be a globally optimal one as a consequence. In [55]
nonlinear B&B is applied on a water network design problem.
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In [16] two other versions of this framework are discussed: LP/NLP based B&B
and spatial B&B.

2.4.4.1 LP/NLP-based branch and bound

The feasible region of the MINLP is approximated by a polyhedron formed by
first order taylor approximations of the nonlinear functions, a process called outer
approximation (OA). The resulting MILP is solved to optimality and the optimal
solution is used to refine the polyhedral relaxation. Instead of solving the entire
B&B tree at each iteration, the corresponding NLP in every integer feasible node is
solved to optimality and the OA cuts corresponding to that node are added. The
LP relaxation with the newly added cuts is resolved and the search continues. This
algorithm has been implemented in the open-source solver BONMIN [56]. Note
that if the MINLP is nonconvex (usually the case with water supply optimization
problems), the OA may cut off part of the feasible region, resulting in locally
optimal solutions.

In [57] each network arc is copied for every possible diameter value in the
design problem in order to get univariate pressure loss functions. Binary variables
are introduced to indicate the direction of the flow on each of these arcs. As a
consequence, the nonconvex constraints can be relaxed to two convex constraints,
allowing the B&B algorithm to find a global optimum.

2.4.4.2 Spatial branch and bound

This general-purpose algorithm is able to solve nonconvex MINLP’s to global opti-
mality by making subproblems through branching on integer as well as continuous
variables. When the relaxation of a nonlinear constraint becomes tighter when its
domain is reduced, spatial branching gradually refines the relaxations until they are
tight enough to provide ε-feasible solutions. This algorithm is implemented in the
MINLP solver COUENNE [58].

2.4.5 (Meta)heuristic methods

Since solving a complete MINLP model for water supply networks is hard in
practice, many researchers use heuristic approaches to find solutions for these
networks. These approaches’ main advantage is that they can come up with good
solutions in short computational time, however there is no guarantee that a global
optimal solution is found. In what follows, different techniques are briefly explained.
Most of these methods are directed towards optimal design of the network. For
an extensive review of different (meta)heuristic methods applied on water supply
network design problems, the reader is referred to [15].
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2.4.5.1 Simulated annealing (SA)

This method draws the analogy with the physical annealing of crystals to low energy
states. The current solution is compared with other candidates in its neighbourhood.
Better solutions will always be accepted and, to reduce getting stuck in local optima,
worse solutions are accepted with a certain probability. This probability depends
on the temperature parameter. The temperature decreases during the process and
terminates the algorithm when it falls below the stopping value. In [59] SA is
applied on the design of water distribution networks.

2.4.5.2 Genetic algorithms (GA)

This evolutionary algorithm mimics the process of natural selection. Starting from
an initial population of solutions, usually chosen at random, selection procedures
are devised that allow this population to evolve over a number of generations [60].
A chromosome stores values of decision variables for each individual. Fitness
functions are used to measure how good each chromosome is with respect to an
objective function. Based on this fitness value individuals are then selected and
recombined with a certain probability, resulting in an offspring chromosome. This
process is called crossover or recombination. Mutation then randomly alters certain
genes (variable values) in the chromosome. Although crossover and mutation are
the main genetic operators, variants exist e.g. regrouping or migration. Generally
the mutation rate should be chosen small enough so that the loss of good solutions
is avoided. Similarly, high recombination rates may lead to premature convergence.
Because of the stochastic nature of GA there is no guarantee that the global optimum
will be found but in general good solutions can be generated. An extensive overview
of the current state of the art in GA’s for water supply systems can be found in [61].

The authors in [62] code their decision variables for pipe diameters as binary
strings made up of substrings that represent the pipe diameters. The fitness value is
determined by running the gradient method (see section 4.2.4). Instead of ignoring
infeasible solutions (solutions where pressure values are outside of their imposed
limits), they are taken into the population with a penalty. A single gene is randomly
chosen from each of the parents during recombination, while the mutation rate is
set to a very low value. The method is tested on the simple Hanoi and New York
water supply systems.

In [40] a GA approach is used to solve a simplified least-cost pump schedule.
[63] combine the GA with a decomposition method that is limited to gravitational
systems i.e. networks without pumping elements.

The GA can also be coupled with other local search algorithms to improve its
convergence. Such a hybrid approach is suggested in [24], where the authors couple
GA with a hillclimber method. It was shown that the hybrid algorithm performed



2.4 METHODS FOR SOLVING WATER SUPPLY NETWORK OPTIMIZATION
PROBLEMS 2-15

better in terms of computational time and solution quality on the Richmond water
distribution system.

2.4.5.3 Differential Evolution (DE)

Instead of relying on crossover methods, the focus with DE lies on mutation. The
crossover in DE is uniform in the sense that child vector parameters from one parent
are more often taken than from the other. The recombination shuffles information
on successful combinations which lies the focus on the most promising area of
the solution space. Compared to GA, DE is significantly faster and increases the
chance of finding a global optimum. DE generates new vectors in each iteration by
adding a weighted difference vector of two population vectors to a third population
member vector. This is called the noisy random vector. Next crossover is applied
on this vector and the target vector, resulting in the offspring called the trial vector.
Lastly the objective value of this trial vector is matched with the one from the
target vector. If the objective is better (lower) than the trial vector replaces the
target vector. This is repeated for each member of the population to form the next
generation. The process is continued until a termination criterion is met. In [64]
DE is used to minimize the network design cost and maximize the resilience of the
New York water supply system and the Hanoi water distribution system. The pipe
diameter values found by the DE optimization algorithm are rounded to the nearest
commercial pipe diameter before they are passed to EPANET. The conservation of
flow and energy constraints are hereby checked with EPANET instead of in the DE
framework which may result in infeasible solutions. The DE algorithm matched
the feasible lowest cost solutions obtained from previous studies for both networks.

2.4.5.4 Ant Colony Optimization

This metaheuristic is inspired by the behavior of some species of ants. These ants are
able to find an optimal path between nest and food through indirect communication
by means of trails of pheromones laid by other ants along the way. This behavior is
adapted in [65] where ants stochastically build a path in a graph. Nodes represent
decision points and edges are possible choices. The ants decide at each node which
edge they add to their path, based on the pheromone value of that edge. The higher
this value, the greater the probability that this edge is chosen. The pheromone values
decrease every iteration for every edge, while pheromone values associated with
edges that are part of the best solution are increased. Furthermore the authors use a
time-based trigger representation for pump switches. The method was tested on
the Van Zyl and Richmond Test Networks. The advantage of their representation is
that the number of potential solutions and thus the search space can be significantly
reduced. Furthermore no penalty values need to be introduced since infeasible
solutions are ranked in order of infeasibility.
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2.4.5.5 Other local search algorithms

A greedy algorithm was coupled with an LP model and simulation software in [66].
The algorithm hereby started a search from the optimal pumping schedule from
the linearized problem. The method was tested on the Anytown and Richmond
Networks, providing good solutions in very short computation times when compared
with genetic algorithms.

Even though heuristics and metaheuristics seem to be suitable methods to use for
solving large water supply network problems, an important remark needs to be made
at this stage. Most of the studies in the literature focus on water network design
problems. In this process the heuristic methods used produce a set of discrete pipe
diameters and then feed these solutions to the simulation software to check whether
the corresponding configuration is feasible or not. This will often be the case
for such ‘simple’ networks, especially when it is tree structured. When multiple
time periods, buffer filling requirements and pumps are involved, the problem
becomes much more complex. Consequently, producing feasible configurations
is such setting is much harder and the chances that a heuristic solution would
achieve feasibility is almost zero. Finding a feasible solution is an intricate task,
and we therefore chose to start the solution process for the investigated operational
water supply network with exact methods. With these exact methods, which can
be hybridized with (meta)heuristics, we are able to produce solutions which are
feasible and close to optimal.



3
Modeling Real-World Water Supply

Systems

A drinking water network is a system of pipes, pumps, junctions and reservoirs
designed to supply water to every demand node at adequate pressure and flow.
This system of pipes has many components of which the hydraulic characteristics
will be addressed in this chapter, along with a mathematical formulation for the
constraints they induce. As already stated, the network that is discussed, modeled
and analyzed in this dissertation is the supply network operated by De Watergroep.
Specific features of this network include water towers with additional in- and
outflow characteristics, variable speed pumps and multiple sources with distinct
production costs. Only the supply network is modeled, this is the main pipeline
structure containing large buffers, delivery points and clustered demand points
connected by large diameter pipes. The lower level network consisting of pipes
with small diameters through which water is distributed to the end user is not
studied since it is assumed that a feasible solution for the main supply network will
also be feasible for the underlying distribution network. This assumption relies on
the fact that the pressures throughout the network are sufficiently high and that the
clustered points are close to each other and at approximately the same elevation so
that large pressure losses are prevented.

Before addressing these components, we introduce the discrete time setting that
is required to be able to model the complex water supply system. Next, the different
sets, variables and parameters that are used throughout the chapter are defined. The
modeling is done for each set separately and additional attention is given to the

3-1
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modeling of pressure losses. Afterwards, different goal functions are formulated.
The resulting model is a nonconvex MINLP (mixed integer nonlinear program).

3.1 Discrete time setting

Flow in a water network is a continuous process. From a practical point of view,
modeling such a system is done in a discrete time setting. This means that a day
is divided into discrete periods during each of which the state of the network is
assumed to be constant. We will denote an interval by the subscript t ∈ [1, T ],
where T represents the total number of periods. The length of each period is
denoted by τt. Usually a division in 24 hours is proposed, as is the case in [5]. The
authors note that discretization is motivated by the discrete nature of the forecasted
demand and electricity tariffs.

A typical demand pattern (provided by the department of Water Technology of
De Watergroep) is displayed in figure 3.1.
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Figure 3.1: A typical daily water demand pattern

The consumption factor ct represents the dimensionless relative usage.

Every time period that is added to the model introduces a very large amount of
additional variables and constraints. Based on similar coefficients in subsequent
periods and taking into account the different day and night tariffs for electricity, the
number of periods can be reduced by clustering. The gain in computational time
has to be weighed against the loss of accuracy; experiments with different divisions
will be carried out. Figure 3.2 shows a division over five periods, in which periods
1 and 5 correspond to low energy tariff (10pm-7am) and periods 2-4 to high energy
tariff (7am-10pm). The red lines indicate the start of each period. Note that during
weekends the low energy tariff is used 24 hours per day.
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Figure 3.2: A division of the demand pattern in 5 periods with corresponding coefficients

Here, we find the following values for ct and τt:

τ1 = 7, τ2 = 4, τ3 = 6, τ4 = 5, τ5 = 2

c1 = 0.02, c2 = 0.06, c3 = 0.04, c4 = 0.06, c5 = 0.04

with
∑5
t=1 τt ct = 1.

Finally, seasonal variations in demand exist. For practical purposes we work
with different demand coefficients for winter and summer.

3.2 Sets, variables and parameters
The general graph structure of the model was already introduced. First we define sets
that represent components as nodes or arcs. Next, a reference list of variables and
parameters is presented together with a short description. The network is modeled
as a directed graph G = (N ,A), where N is the node set representing junctions,
delivery points, buffers and raw water sources; A is the arc set representing simple
pipes and pipes with pure and raw water pumps. In the remainder of this work,
nodes will be indicated by the subscript i, whereas the subscript ij will be used to
represent pipes connecting nodes i and j.

3.2.1 Sets

Nodes:

- J : junctions;

- D: delivery nodes;
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- B: buffers;

- S: raw water source;

- N = J ∪ D ∪ B ∪ S .

Arcs:

- Pi: pipes;

- Pu: pure water pumps;

- Puv ⊆ Pu: variable speed pumps;

- V: valves

- Pr: raw water pumps;

- Prt ⊆ Pr: raw water pumps type 2;

- A = Pi ∪ Pu ∪ V ∪ Pr.

3.2.2 Model parameters with their corresponding units

- T : maximum number of periods (-);

- τt: length of period t (h);

- g: gravitational acceleration (m/s2);

- ct(e): electricity cost in period t (e/kWh).

Nodes:

- hi: geographic height in node i (m);

- dit: (clustered) demand (m3/h) at node i in period t ;

- lminit : minimum delivery at delivery node i in period t (m3/day);

- lmaxit : maximum delivery at delivery node i in period t (m3/day);

- hminit : minimal piezometric pressure at delivery node i in period t (m);

- hmaxit : maximal piezometric pressure at delivery node i in period t (m);

- pi: price of water in delivery node i (e/m3);

- Ai: cross-sectional area of tank i (m2);
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- lmini : minimum level in tank i (m);

- lmaxi : maximum level in tank i (m);

- hfli : level of tank i’s floor (m);

- hini : level of inflow in tank i (m).

Arcs:

- kij : pipe/pump (i, j)’s roughness (m);

- dij : pipe/pump (i, j)’s diameter (m);

- lij : pipe/pump (i, j)’s length (m);

- κij : loss coefficient of pipe/pump (i, j) (h2/m5);

- vmaxij : maximum speed of flow in arc (i, j) (m/s);

- h1
ij , h

2
ij , h

3
ij : head coefficients of pump (i, j)(varies);

- e1
ij , e

2
ij , e

3
ij : efficiency coefficients of pump (i, j)(varies);

- p1
ij , p

2
ij : power coefficients of pump (i, j)(varies);

- qminij : pump (i, j)’s minimum working flow (m3/h);

- qmaxij : pump (i, j)’s maximum working flow (m3/h);

- qcapij : production capacity in WPC (i, j) (m3/h);

- qlimij : daily extraction limit in WPC (i, j) (m3/h);

- fij : max fluctuation in water production from one period to the next in WPC
(i, j) (m3/h);

- cij(p): production cost in a water production center (i, j) (e/m3).

With the exception of the number of periods T and the tank’s cross-sectional
area (A), all parameters are denoted by lower-case letters.
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3.2.3 Model variables with their corresponding units

Nodes:

- Hit : Piezometric head at node i in period t (m);

- I+
it : Inflow at entrance buffer i in period t (m3/h);

- I−it : Outflow at entrance buffer i in period t (m3/h);

- Oit : Outflow at exit buffer i in period t (m3/h);

- Vit : Volume in tank i at end of period t (m3);

- Lit : Level of tank i at end of period t (m);

- HM
it : Mean piezometric head of tank i in period t (m);

- ϑ1
it : Binary variable inflow of tank i in period t (-);

- ϑ2
it: Binary variable outflow of tank i in period t (-).

Arcs:

- Qijt : Flow on arc (i, j) during period t (m3/h);

- ∆Hijt : Pump (i, j)’s head increase during period t (m);

- Pijt : Power pump (i, j) during period t (W);

- Fijt : Frequency of variable speed pump (i, j) during period t (Hz);

- ϑijt : Binary activity status pump/valve (i, j) during period t (-).

The central decision variables of the model are the amounts of water (Qijt)
produced in the water production centers (WPC), the activity status (ϑijt, on/off)
and the working point (Qijt,∆Hijt) of a pump. For variable speed pumps the
frequency Fijt at which the pump works needs to be determined. Knowledge about
the values of these variables during each period will allow operators to optimally
control the entire network. The other variables are thus dependent and can be
determined based on the above sets of decision variables. Note that all variables are
symbolized with a capital or greek letter.

The flow variables Qijt can take on negative values since we work in a directed
graph. If Q is positive, water will flow from node i to j; if Q < 0 an amount of
water |Q| will be transferred from j to i. It is furthermore assumed that the flow in
a pipe is constant within the same period, as opposed to research in other works
[67].
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The piezometric pressure (or head) H is conventionally measured as a height
and is obtained as the sum of the elevation head (height) h and the pressure head

p

ρg
,

where p is the manometric pressure, ρ the density of water and g the gravitational
acceleration.

3.3 MINLP model

In this section we will fully describe the working components of the drinking water
network. For each of these components, the corresponding restrictions will be
mathematically modeled. A typical drinking water network structure can be seen in
figure 3.3.

The following restrictions are valid for each t ∈ [1, T ] unless otherwise stated.

3.3.1 Nodes (i ∈ N )

The manometric pressure in every part of the network has to be kept below the
design pressure. In the studied network a general upper bound of 10 bar is imposed.
From a practical point of view, this pressure is calculated in the end points of each
pipe. We implicitly assume that the geographic height at every position of the arc
(i, j) lies between that of its endpoints. Otherwise stated, each pipe/pump’s height
is monotone increasing or decreasing between the two nodes that it connects.

Since the meter is used to quantify the piezometric head, the values need to be
converted. The manometric pressure is given as

p

ρg
and

ρg = 1000
kg

m3
× 9, 81

m

s2
≈ 10 000

Pa

m
= 0.1

bar

m

Subsequently the pressure restriction becomes (taking into account no negative
pressure may occur):

0 ≤ Hit − hi ≤ 100 (3.1)

3.3.1.1 Junctions (i ∈ J )

Junctions are the most common nodes in which either the pipe’s characteristics
change, the pipe splits up between two or more sections or a nonzero (clustered)
demand d is assigned (see figure 3.4).

The flow conservation constraints at these nodes are given by:∑
k:(k,i)∈A

Qkit −
∑

j:(i,j)∈A

Qijt = dit (3.2)

where dit denotes the demand (+) or supply (-) in node i.
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Figure 3.3: Example of the studied mesh structured drinking water network
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Figure 3.4: Junction (a) between two pipes with different diameter, (b) between 3 pipes, (c)
with assigned demand

3.3.1.2 Delivery Nodes (i ∈ D)

At borders of the network, interaction with other drinking water companies can
occur. Since each organization has its own distribution network, exchange of
drinking water can take place at these border nodes. Water can be bought as well as
sold at a fixed price ap. Usually, the agreed upon amount has to be in between lmin

and lmax levels:

lminit ≤
∑

k:(k,i)∈A

Qkit −
∑

j:(i,j)∈A

Qijt ≤ lmaxit (3.3)

The pressure at these nodes is however dependent on the situation at the other side
of the border. From historical data, the minimum and maximum pressure levels can
be derived:

hminit ≤ Hit ≤ hmaxit (3.4)

3.3.1.3 Buffers (i ∈ B)

Buffers and their storage capacity play an essential role in drinking water supply
networks. In addition to their deployment to hedge against demand variability,
the possibility of buffering water in itself is of a major economic importance. At
night, when the energy tariff is low, water can be stored in the reservoirs using
pumps. The next day the stored amounts of water can flow gravitationally to
the underlying distribution network or, albeit exceptionally, back into the supply
network to economically meet part of the demand. Consequently, high energy costs
due to excessive pumping during the day can be avoided. Both pure water reservoirs
and water towers are categorized as buffers: the latter ones can be considered as
elevated tanks on an underlying construction.

Figure 3.5 shows how a buffer typically operates. This figure is based on the
detailed model in appendix A (property of De Watergroep). Despite the complexity
of its operations and the multitude of connections, each buffer is modeled as a
single conceptual node. Through the connection pipe (a) water flows in (I+) or out
(I−) depending on the piezometric head H at this node. Actual inflow takes place
only through connection (a1) during periods in which the head at the conceptual
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Figure 3.5: Model of a buffer: depending on the variable value of the head (H) at the
entrance i, water can flow either in or out of the buffer.

node is larger than the height of the inflow point hin, which is usually located ≈
1 meter above the edge of the buffer’s tank. Due to quality measures water never
flows directly into the tank. This could cause the water in the highest part of the
tank to leave less easily, thus reducing the water’s quality. During periods in which
the mean piezometric head of the water in the tank HM is higher than the head at
the conceptual node, water is re-injected into the network through connection pipe
(a2). This is expressed by the following relations:

I+
it ≤ Ai lmaxi ϑ1

it (3.5)

I−it ≤ Ai lmaxi ϑ2
it (3.6)

Hit − hini ≥ (hi − hini ) (1− ϑ1
it) (3.7)

HM
it −Hit ≥ (hfli − 100− hi) (1− ϑ2

it) (3.8)

ϑ1
it + ϑ2

it ≤ 1 (3.9)

In this set of equations, the binary variables ϑ1
it and ϑ2

it are used to model in- and
outflow. Inflow I+

it > 0 only takes place if the pressure Hit at the entrance is higher
than the inflow level hini . Similarly, water flows out of the buffer (I−it > 0) only
if HM

it ≥ Hit. The big-M term 100 is derived from the fact that the manometric
pressure cannot exceed 10 bar (100 m) in any part of the network - see also equations
(3.1). Pipe (b) represents the connection with the underlying distribution network.
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This network consists of pipes with a very small diameter and is too detailed to be
modeled at this level. We cluster the demand of all the consumers in one single
demand point d which can be fed directly by the buffer.

Some buffers can have an additional connection at the exit. Through this
connection pipe (c), boosters or fresh water pumps are used to transport water out
of the buffer. Denoting this outflow by O−it , the conservation of flow in the buffer is
then given by: ∑

k:(k,i)∈A

Qkit −
∑

j:(i,j)∈A\Pu

Qijt = I+
it − I−it + dit (3.10)

∑
j:(i,j)∈Pu

Qijt = O−it (3.11)

An important variable is the buffer volume at the end of a period, Vit, because
it links two subsequent periods through the filling rate.

Vit = Vi,t−1 + (I+
it − I−it −Oit)τt (3.12)

Vi0 ≤ ViT (3.13)

Observe that the second constraint prevents the optimal configuration from
depleting all buffers in the last period, and essentially allows the optimal 24-hour
plan to be extended to several days (if the demand parameters and electricity prices
remain constant).

To obtain an approximation of the mean head of the water level in the buffer
during a period, the mean fluid level is augmented by the geometric height of the
tank floor:

HM
it = hfli +

Lit + Li,t−1

2
(3.14)

where Lit =
Vit
Ai

is the water level in the buffer at the end of period t. The cross

section of the water tank, Ai, is approximated by a circle with constant diameter
over the entire height, despite the fact that the tank may be conical in shape. The
fluid level is restricted by a lower bound due to water quality considerations and by
an upper bound, the total height of the buffer.

lmini ≤ Lit ≤ lmaxi (3.15)

Finally it has to be noted that the model presented here is a very general one.
For some buffers the rerouting of water into the network is prohibited. In those
cases, no additional binary variables are introduced.
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3.3.2 Arcs ((i, j) ∈ A).

We discern pipes, constant and variable speed pumps, valves and raw water pumps.

3.3.2.1 Pipes ((i, j) ∈ Pi).

As water flows through a pipe, pressure losses caused by friction occur. From a
mathematical point of view, the general formula to describe this function is (see
[16]):

Hit −Hjt = Φij(Qijt)

where Φ is a strictly increasing uneven function that is concave on the negative
axis of its domain and convex on the positive axis. Exact formulations depend on
the viscosity of the water and the pipe characteristics. The Reynolds number is
used to characterize the nature of the flow ([68]):

Re =
d v ρ

µ

where d is the diameter of the pipe, v the speed of the flow and ρ the density of
water. The speed v (in m/s) is given by

v =
4Q

3600πd2

The dynamic viscosity µ is dependent of the temperature, but in analysis of
water supply networks a constant temperature of 20 °C will be assumed. The
dimensionless Reynolds number states whether a flow is turbulent or laminar.
General values are given in table 3.1. In the transitional region, other factors (e.g.
pipe roughness) will determine whether the flow is turbulent or laminar.

Table 3.1: Reynolds Number for various flow regimes

Flow Regime Reynolds Number
Laminar < 2000
Transitional 2000− 4000
Turbulent > 4000

The most commonly used pressure loss formulas are the Hazen-Williams (H-W)
equation and the Darcy-Weisbach (D-W) equation:
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Hit −Hjt =
10.7 lij

36001.852 C1.852
ij d4.87

ij

sign(Qijt)|Qijt|1.852 (H-W)

Hit −Hjt =
8 lij

36002 g π2 (dij)5
λij Qijt|Qijt| (D-W)

C is the Hazen-Williams coefficient that represents the carrying capacity. λ
denotes the (dimensionless) friction coefficient. Both formulas introduce nonconvex
and nonlinear constraints in the network. Furthermore, the H-W formula is not
second order differentiable while the second order derivative of the D-W equation
with constant friction coefficient is discontinuous for Q = 0. Here, the second
(D-W) formula will be used. Different formulations for the friction coefficient λ
exist. The most commonly used one is Colebrook-White:

1√
λCW

= −0.86 ln(
k

3.7d
+

2.51

Re
√
λCW

)

The letter k represents the roughness of the pipe. This formulation introduces
two problems: it is implicit for λ and the Reynolds number Re, as a function
of the variable Q, is logarithmic. This strongly increases the complexity of the
mathematical model. The formula of Swamee-Jain [69].

λSJ =
1.325(

ln( k
3.7d + 5.47

Re0.9 )
)2

circumvents the implicitness of the formulation but is still nonlinear in terms
of the Reynolds number (and hence the flow). According to [70] the formula is
accurate within 1 % compared to the Colebrook-White formula over the interval

4.103 ≤ Re ≤ 1.108 and 1.10−6 ≤ k/d ≤ 1.10−2.
The formula of Prandtl-Kármán, finally, offers an approximation that is inde-

pendent on the Reynolds number and is computationally very cost-efficient:

λPK = (2 log
k

3.71 d
)−2

A comparison of these different formulations is displayed in figure 3.6 for a
typical pipe with a diameter of d = 500mm and a roughness of k = 0.5.

The Swamee-Jain formula approximates the friction factor quite well, but it
shows a jump discontinuity at the origin. Clearly, the PK formulation underestimates
the friction losses. For small values of the flow, the relative difference is quite big.
However, in a drinking water supply network such values for the flow are very
uncommon, which makes this approximation sufficiently accurate for this model.
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Figure 3.6: Friction coefficients (top) and pressure losses (bottom) for different formulations
in function of large values of the flow (left) and small values (right).

Furthermore it is independent of Re making it the formula of choice here. For a
more precise calculation of the friction losses, the reader is referred to [5]. Fig. 3.7
shows a plot of a nonconvex pressure loss constraint.
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Figure 3.7: Pressure losses in a pipe with l = 5 km, d = 500 mm, k = 0.5

In general, the friction loss in pipes is given as:
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Hit −Hjt = κij Qijt|Qijt| (3.16)

where the loss coefficient κij is given by:

κij =
8 lij

36002 g π2 (dij)5
λij

The maximum value that water velocity (vmax) can reach in a pipe sets off
bounds on the value of the flow of water through this pipe [71]:

−3600
π

4
vmaxij (dij)

2 ≤ Qijt ≤ 3600
π

4
vmaxij (dij)

2 (3.17)

Note that these are general bounds and tighter bounds may be applied where
needed.

3.3.2.2 Pure water pumps ((i, j) ∈ Pu)

Water flows from points of high pressure to points of low pressure. If water needs
to be pushed to a place where a high pressure is present, pumps will be installed
to increase the pressure. They also fulfill the role of providing water in tanks for
intermediate storage. Pure water pumps are either delivery pumps or boosters.
Delivery pumps add pressure to push water from the fresh water basements at the
production centers into the network, whereas boosters are installed on well-chosen
places, generally locations in the network where extra pressure is needed due to
friction losses. Since a pump is connected to a pipe, they are modeled together as a
single conceptual arc. The following bounds are imposed on the flow in these arcs:

ϑijt q
min
ij ≤ Qijt ≤ ϑijt qmaxij (3.18)

where ϑijt is a binary variable which indicates whether the pump is active or shut
down during period t and [qij(min), qij(max)] is the feasible working range of
the pump.

The head delivered by the pump, ∆H , is added to the right hand side of the
pressure loss restriction related to the pipe in which it is active:

Hit −Hjt = κij (Qijt)
2 −∆Hijt ∀i ∈ N\B (3.19)

HM
it −Hjt = κij (Qijt)

2 −∆Hijt ∀i ∈ B (3.20)

Note that always Q > 0 here, so the quadratic function correctly models the
pressure loss. The second constraints apply to pumps transporting water out of a
buffer (connection pipe (c) in figure 3.5). Here, the starting pressure is equal to the
pressure in the tank HM

it .
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Fixed speed pumps (i, j) ∈ Pu\Puv The pump head depends on the flow
that is pushed through the pump. Data provided by the pump supplier is used to
approximate the relation between the head, ∆H , and the flow, Q. This is the pump
characteristic curve. Head produced by a regular speed pump, when operating, is
given by:

∆Hijt = h1
ij (Qijt)

2 + h2
ij Qijt + h3

ij ϑijt

An inactive pump needs to have a flow rate of zero, but the pump head can take on
any value. This is modeled as

− (1− ϑijt) 200 ≤ ∆Hijt − h1
ij (Qijt)

2 − h2
ij Qijt − h3

ij ϑijt

≤ (1− ϑijt) 200 (3.21)

Here 200 is a strict bound on the maximum allowed pressure difference between
two adjacent nodes. Clearly, if the pump is switched on during a certain period
(ϑijt = 1) the original restriction is restored. If ϑijt = 0 then from (3.18) it follows
that Qijt = 0 and ∆Hijt can take on any value in the interval [−200, 200].

The total pump efficiency E for a fixed speed pump is given as the product of
mechanic efficiency Emech and electric motor efficiency Eelec:

E = Emech × Eelec

The mathematical equation for pump efficiency can be derived from the pump data
and is given as:

Eijt = e1
ij(Qijt)

2 + e2
ij Qijt + e3

ij

Figures 3.8(a) and 3.8(b) show approximating curves of the head and efficiency of a
typical pump that is currently in use in the water supply network of De Watergroep.

The power term P is given by:

P =
γ∆H Q

E

Recall that γ is the specific weight of water and is the product of g and ρ and is
equal to≈ 10 000kg/(m2 s2). Since Q is expressed in m3/h, this number needs to
be divided by 3600 to get the correct unit for P (Watt). The expression then comes
down to:

Pijt = 2.73
∆HijtQijt

Eijt
(P-1)
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(a) Fitted pump characteristic using pump data
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(b) Fitted efficiency curve using pump data

Figure 3.8: Graphical display of plotted pump data

To avoid numerical difficulties we force the coefficient e3
ij in the efficiency

inequality to be strictly positive. This prevents the efficiency, and thus the denom-
inator of the power term P , from taking the value 0 when the pump is not active
(Qijt = 0).

Since the previous expression for the power term is computationally very
expensive, we choose to model it differently. The equations for efficiency and
head are substituted in (P-1) to produce the curve equation for the power based on
pump data (see Fig. 3.9). Then we fit a first-order curve given by the following
expression:

Pijt = p1
ij Qijt + p2

ij ϑijt (3.22)

where p1 and p2 are the power coefficients. Here again, the binary variable ϑijt is
added to ensure that Pijt = 0 when Qijt = 0.

Although this formula is physically not correct, its use in our model will not
lead to any practical infeasibilities in the generated operating plan. The reason is
that P is solely used to calculate the energy cost term and does not appear in any of
the important hydraulic restrictions. Therefore the only effect of the approximation
is a small error on the total energy cost.

Variable speed pumps (i, j) ∈ Puv . A cost efficient way to change the pump’s
characteristic curve is to change its speed by altering the frequency of the source
voltage to the electric motor. By default the frequency is 50 Hz and by altering this
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Figure 3.9: Fitted power function using pump data

frequency the turning speed of the pump changes, causing the pump characteristic
to shift according to figure 3.10(a). A new working point is established which
causes an increase in flow, pressure and power.
The relationship of these variables with the turning speed is given by:

∆H1

∆H2
=
n1

n2

Q1

Q2
=

(
n1

n2

)2

P1

P2
=

(
n1

n2

)3

where ni (i = 1, 2) is the turning speed. The efficiency in a variable speed pump
can be expressed as the product of mechanic efficiency Emech, electric motor
efficiency Eelec and the efficiency of the frequency control Efreq:

E = Emech × Eelec × Efreq

For small changes of the turning speed, the efficiency remains approximately
constant, whereas for larger changes it can be calculated by:

E1 ≈ 1− (1− E2)(n2/n1)0.1

Since this difference is only notable for small values of the efficiency (which are
avoided in the optimal solution of this model), it is neglected here and efficiency is
assumed to be independent of turning speed (and thus frequency).
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Figure 3.10(b) displays the complete working area of a typical variable speed
pump. This area is limited by the minimum and maximum speeds of the electro
motor. In this model we impose a lower bound of 30 Hz and an upper bound of 55
Hz.
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Fig. 2.14 Undercutting impeller tips 

2.2.2.3  The adjustment of operating characteristic of multistage split case pumps 
can be achieved by the fitting of dummy stages. According to the requirement, the 
impeller and guide vanes of one or more stages can be replaced by dummy stages. 
The total head of the pump is reduced depending on the number of dummy stages. 
If at the design stage of an installation it can be foreseen that at a later phase an 
increased head will be required, then the pump can be supplied for the initial phase 
with dummy stage(s), which will be replaced by pumping stages for the subsequent 
phase(s).

2.2.2.4  In the case of speed variation of a centrifugal pump, the pump 
characteristic curve varies in accordance with the pump affinity laws. The following 
relationships apply for the flowrate and head: 
Qx / Q = nx / n
Hx / H = (nx / n)²
If the H(Q) curve is known for one speed of 
rotation n then it can be converted for another 
speed nx . The intersection of the new Hx (Qx)
curve with the system curve gives the new 
duty point. 

Fig. 2.15  Change of flowrate due to change of speed of rotation. 

© Sterling Fluid Systems B.V 

(a) Working point
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In such cases it may be better to divide the total flowrate between a multiple of 
equally sized pumps, or even different sizes, but without speed control. Another 
alternative is to operate a base load pump at constant speed and to satisfy the peak 
loads with speed controlled pumps. 

Fig. 2.16 Characteristic of a single stage volute case pump with speed control 

The figure also shows the interaction between the pump characteristic and flat and 
steep system characteristics. 

© Sterling Fluid Systems B.V 

(b) Working area

Figure 3.10: Characteristics of a variable speed pump [2]

Using the previous relations, the head delivered by an operating variable speed
pump can be modeled as:

∆Hijt = h1
ij (Qijt)

2 + h2
ij

Fijt

frefij

Qijt + h3
ij

(
Fijt

frefij

)2

frefij is the reference frequency of 50 Hz. Subsequently the restriction is given
by

−(1− ϑijt) 200 ≤ ∆Hijt − h1
ij (Qijt)

2 − h2
ij

Fijt

frefij

Qijt − h3
ij

(
Fijt

frefij

)2

≤ (1− ϑijt) 200

(3.23)

If ϑijt = 0, ∆H is not necessarily restricted to the interval [−200, 200]. In
order to obtain this, we introduce the following limits on the frequency:

ϑijt 30 ≤ Fijt ≤ ϑijt 55 (3.24)
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forcing F to be 0 when ϑijt = 0 and thus effectively validating constraint
(3.23).

The approximated power term of the variable speed pump is given by the
following expression:

Pijt = p1
ij Qijt

(
Fijt

frefij

)2

+ p2
ij

(
Fijt

frefij

)3

(3.25)

Unfortunately this constraint again contains nonlinear functions.
Although not included in this model, it is worth noting that other transient condi-

tions are often included by other authors. These restrictions involve the prevention
of excessive pump switching. Additional integer variables and constraints have
to be added. Due to the division of the optimization horizon in hourly intervals,
motivated by demand forecasts and electricity prices, these minimum run- and
downtimes are automatically satisfied.

3.3.2.3 Valves ((i, j) ∈ V)

For completeness we also mention valves. These can also be modeled as pipes.
The simplest kind of valves are those that prevent flow from going in a specific
direction, so called check valves (CV). If a backward flow from node j to node i is
to be avoided, one can simple add the restriction Qijt ≥ 0 for all time steps.

Valves can also be used to separate two pipes when they are closed in the sense
that they prevent flow from passing through. The variable ϑijt denotes the activity
status of the valve (on:1, off: 0). Given the bounds on flow and head values, the
constraints can be written as

−3600
π

4
vmaxij (dij)

2ϑijt ≤ Qijt ≤ 3600
π

4
vmaxij (dij)

2ϑijt (3.26)

−200 (1− ϑijt) ≤ Hit −Hjt − κij Qijt|Qijt| ≤ 200 (1− ϑijt) (3.27)

A closed valve forces the flow to be 0, while the pressure variables are decoupled
(can take on any value in [−200, 200]); when the valve is open the regular pressure
loss formula applies.

In [67] several other types of valves (gate valves, flow control valves and
pressure breaker valve) are described and modeled in detail. In the current work
only check valves appear in the network instances.

3.3.2.4 Raw water pumps ((i, j) ∈ Pr)

Raw water pumps are used to draw water from ground water wells or surface water
basins. In this model, they conceptually represent the whole of a water production
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center (WPC). These arcs cover every production step, from pumping raw water
out of surface water basins or ground water wells, through the treatment phases,
to the storage of fresh water in the fresh water basins (modeled as a buffer). As
such, the treatment capacities and daily extraction limits are linked to the amounts
of water extracted by raw water pumps:

0 ≤ Qijt ≤ qcapij (3.28)
T∑
t=1

Qijt ≤ qlimij (3.29)

Ground water wells are modeled as sources with infinite capacity and the volume
of surface water basins after each period is registered but in general these do not
restrict the production center’s capacity. The second set of constraints applies to
ground water sources, where excessive pumping can harm the environment. These
yearly restrictions are simplified to daily capacities here. For production centers
with surface water basins this restriction is dropped.

To prevent water quality problems from occurring, the change in the flow levels
between two subsequent periods has to be limited to some fixed percentage (f ) of
the treatment capacity:

−fij qcapij ≤ Qijt −Qij,t−1 ≤ fij qcapij (3.30)

−2 fij q
cap
ij ≤ QijT −Qij,0 ≤ 2 fij q

cap
ij (3.31)

Again the second restriction is added to allow the optimal production plan to be
repeated on a daily basis.

Raw ground water pumps type 2 ((i, j) ∈ Prt). In some ground water stations,
each individual well is equipped with a ‘type 2’ pump. These pumps are set to a
fixed flow to guarantee water quality. Furthermore, frequent on/off switching of
these pumps is undesirable. The joint flow is therefore a discrete value of a set,
KPrt that contains all possible combinations (qcapk , k ∈ KPrt ) of the configuration
of type 2 pumps in set Prt. We define the variable αk ∈ [0, 1] for each possible
combination k. The total production flow in a type 2 station can then be defined as:

Qijt =
∑

k∈KPrt

αkq
cap
k (3.32)

Only allowing one possible combination throughout the planning horizon, we add
the following restrictions: ∑

k∈KPrt

αk = 1 (3.33)
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3.3.3 Goal functions

We define three types of costs: water treatment and production costs at WPCs,
energy costs at pumping stations and delivery costs at border nodes.

3.3.3.1 Production/electricity cost at the water production centers

This cost consists of many components: electricity, taxes, loans and chemicals. The
variance of cost in each of these components results in big differences between the
various water production centers.

Electricity The total yearly electricity cost contains the cost for lighting and
electricity required for water treatment, as well as energy cost to power the raw water
pumps. Since the pump head required to push water through the water production
center is negligible, it is assumed to be dependent on the total production flow as
opposed to the power. This gives a direct way to calculate the power, assuming a
constant pump head. The average electricity cost is based on the electricity bill of 1
production week (168 hours) and as such is not dependent on day/night tariff.

Taxes This cost is notably different for surface water and ground water production
centers. This is a direct consequence of the fact that drinking water companies pay
taxes on ground water extraction. Excessive pumping can result in a lower growth
of vegetation. The yearly cost on taxes is assumed to be proportional to the total
extracted volume.

Loans Cost for personnel is assumed to be independent of produced amounts
of water and therefore not included in the production cost. In reality however,
transportation of work forces between WPCs takes place. Therefore, the indirect
personnel cost is taken into account when the model is used to make strategic
decisions.

Chemicals The usage of chemicals is very dependent on the type of WPC as well
as the seasonal water quality in the case of surface water.

The total production cost is given as:

ZWP =

T∑
t=1

∑
(i,j)∈Pr

cij(p) τtQijt (3.34)
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3.3.3.2 Energy cost of the pure water pumps

For fixed speed pumps the approximated cost function is:

ZFSP =

T∑
t=1

∑
(i,j)∈Pu\Puv

ct(e)

1000
τt
(
p1
ij Qijt + p2

ijϑijt
)

(3.35)

For variable speed pumps, this function is given as:

ZV SP =

T∑
t=1

∑
(i,j)∈Puv

ct(e)

1000
τt

p1
ij Qijt

(
Fijt

frefij

)2

+ p2
ij

(
Fijt

frefij

)3
 (3.36)

3.3.3.3 Cost at delivery nodes

At delivery points the company can buy/sell a certain quantity of water at some
fixed unit price api (dependent on the location of the exchange point i):

ZDP =

T∑
t=1

∑
i∈D

api τt

 ∑
j:(i,j)∈A

Qijt −
∑

k:(k,i)∈A

Qkit

 (3.37)

Finally, the total cost is to be minimized:

Minimize ZWP + ZFSP + ZV SP + ZDP (3.38)
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3.3.3.4 Complete MINLP model formulation

Minimize ZWP + ZFSP + ZV SP + ZDP (3.38b)

s.t.

ZWP =

T∑
t=1

∑
(i,j)∈Pr

cij(p) τtQijt (3.34b)

ZFSP =

T∑
t=1

∑
(i,j)∈Pu\Puv

ct(e)

1000
τt
(
p1
ij Qijt + p2

ijϑijt
)

(3.35b)

ZV SP =

T∑
t=1

∑
(i,j)∈Puv

ct(e)

1000
τt

p1
ij Qijt

(
Fijt

frefij

)2

p2
ij

(
Fijt

frefij

)3
 (3.36b)

ZDP =

T∑
t=1

∑
i∈D

api τt

 ∑
j:(i,j)∈A

Qijt −
∑

k:(k,i)∈A

Qkit

 (3.37b)

∀i ∈ N , t ∈ [1, T ] :

0 ≤ Hit − hi ≤ 100 (3.1b)

∀i ∈ J , t ∈ [1, T ] :∑
k:(k,i)∈A

Qkit −
∑

j:(i,j)∈A

Qijt = dit (3.2b)

∀i ∈ D, t ∈ [1, T ] :

lminit ≤
∑

k:(k,i)∈A

Qkit −
∑

j:(i,j)∈A

Qijt ≤ lmaxit (3.3b)

hminit ≤ Hit ≤ hmaxit (3.4b)

∀i ∈ B :

Vi0 ≤ ViT (3.13b)

∀i ∈ B, t ∈ [1, T ] :

I+
it ≤ Ai lmaxi ϑ1

it (3.5b)

I−it ≤ Ai lmaxi (3.6b)
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Hit − hini ≥ (hi − hini ) (1− ϑ1
it) (3.7b)

HM
it −Hit ≥ (hfli − 100− hi) (1− ϑ2

it) (3.8b)

ϑ1
it + ϑ2

it ≤ 1 (3.9b)∑
k:(k,i)∈A

Qkit −
∑

j:(i,j)∈A\Pu

Qijt = I+
it − I−it + dit (3.10b)

∑
j:(i,j)∈Pu

Qijt = O−it (3.11b)

Vit = Vi,t−1 + (I+
it − I−it −Oit)τt (3.12b)

HM
it = hfli +

Lit + Li,t−1

2
(3.14b)

lmini ≤ Lit ≤ lmaxi (3.15b)

∀(i, j) ∈ Pi, t ∈ [1, T ] :

Hit −Hjt = κij Qijt|Qijt| (3.16b)

− 3600
π

4
vmaxij (dij)

2 ≤ Qijt ≤ 3600
π

4
vmaxij (dij)

2 (3.17b)

∀(i, j) ∈ Pu, t ∈ [1, T ] :

ϑijt q
min
ij ≤ Qijt ≤ ϑijt qmaxij (3.18b)

Hit −Hjt = κij (Qijt)
2 −∆Hijt, ∀i ∈ N\B (3.19b)

HM
it −Hjt = κij (Qijt)

2 −∆Hijt, ∀i ∈ B (3.20b)

− (1− ϑijt) 200 ≤ ∆Hijt − h1
ij (Qijt)

2 − h2
ij Qijt − h3

ij ϑijt

≤ (1− ϑijt) 200, ∀(i, j) ∈ Pu\Puv (3.21b)

Pijt = p1
ij Qijt + p2

ij ϑijt, ∀(i, j) ∈ Pu\Puv (3.22b)

− (1− ϑijt) 200 ≤ ∆Hijt − h1
ij (Qijt)

2 − h2
ij

Fijt

frefij

Qijt − h3
ij

(
Fijt

frefij

)2

≤ (1− ϑijt) 200, ∀(i, j) ∈ Puv (3.23b)

ϑijt 30 ≤ Fijt ≤ ϑijt 55, ∀(i, j) ∈ Puv (3.24b)

Pijt = p1
ij Qijt

(
Fijt

frefij

)2

+ p2
ij

(
Fijt

frefij

)3

, ∀(i, j) ∈ Puv (3.25b)

∀(i, j) ∈ V, t ∈ [1, T ] :

− 3600
π

4
vmaxij (dij)

2ϑijt ≤ Qijt ≤ 3600
π

4
vmaxij (dij)

2ϑijt (3.26b)

− 200 (1− ϑijt) ≤ Hit −Hjt − κij Qijt|Qijt| ≤ 200 (1− ϑijt) (3.27b)
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∀(i, j) ∈ Pr, t ∈ [1, T ] :

0 ≤ Qijt ≤ qcapij (3.28b)

∀(i, j) ∈ Pr, t ∈ [2, T ] :

− fij qcapij ≤ Qijt −Qij,t−1 ≤ fij qcapij (3.30b)

∀(i, j) ∈ Pr :

− 2 fij q
cap
ij ≤ QijT −Qij,0 ≤ 2 fij q

cap
ij (3.31b)

T∑
t=1

Qijt ≤ qlimij (3.29b)

∀(i, j) ∈ Prt, t ∈ [1, T ] :

Qijt =
∑

k∈KPrt

αkq
cap
k (3.32b)

∑
k∈KPrt

αk = 1 (3.33b)

Hit ≥ 0, ∀i ∈ N
I+
it , I

−
it , Oit, Vit, Lit, H

M
it ≥ 0, ∀i ∈ B

ϑ1
it, ϑ

2
it ∈ {0, 1}, ∀i ∈ B

Qijt ≥ 0, ∀i ∈ A
∆Hijt, Pijt ≥ 0, ∀i ∈ Pu
Fijt ≥ 0, ∀i ∈ Puv

ϑijt ∈ {0, 1}, ∀i ∈ Pi ∪ Pu ∪ V
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3.4 Results on two realistic networks

In this section several networks will be described and tested with state-of-the-art
solvers. Two different networks are considered. One is an existing part of the
main supply network currently operated by De Watergroep. The second one is an
artificial test network which is smaller in size and therefore ideal for preliminary
testing purposes.

Coding is done in the mathematical programming language AMPL [72]. All
tests were performed on an i7-2760QM CPU at 2.40 GHz, running Windows 7
Professional 64-bits with 8 GB of RAM. Since the nonconvex MINLP problem is
NP-hard, obtaining a global optimal solution is very difficult. To find a solution
for the MINLP model, the open-source solver BONMIN [56] is used. This solver
generates local optimal solutions to nonconvex MINLP’s. Bonmin’s version is
1.5.1, Cbc 2.7.5 and Ipopt 3.10.1 are used as subsolvers. It has two interesting
functionalities for our purpose. The first is a B-BB (branch & bound) algorithm,
used to solve nonconvex problems to local optimality. The second is the Feasibility
Pump (FP) heuristic, used to find feasible starting solutions for nonconvex MINLP’s.
The FP heuristic iteratively solves two subproblems: one with relaxed integer
variables (NLP) and one with relaxed nonlinear constraints (MILP). The aim is to
make both subproblems converge to a unique point that is feasible for the original
problem. FP is called at the root node, when solving our problem with BONMIN,
and after finding a feasible solution the branching phase starts [73].

3.4.1 Test network

This (smaller) network will be used to test both model formulations with readily
available solvers and other algorithms described further in this work. It is based on
an existing subnetwork of the water company De Watergroep and contains most of
the components presented in the previous sections. However, fictional numbers are
used for parameters. A graphical representation of this network is given in Figure
3.3. The network consists of the following nodes: 9 buffers (5 of which are water
towers (WT) and the other 4 pure water reservoirs (R) ), three raw water sources
(WS), two delivery nodes (D) and 13 junctions (J). Artificial junctions were created
for the WPCs to make a conceptual connection with the network (WPC). The arcs
include 3 raw water pumps (one for each WPC), 5 regular speed pumps and 22
pipes. The corresponding data is given in appendix B, tables (B.1-B.4). Note that
in these tables the capacity of the WPCs is always linked to the corresponding raw
water pump, e.g. WS1-R1 has capacity 150 for WPC1. To divide a typical day into
suitable periods, we refer to the daily consumption pattern presented in section 3.1,
figure 3.1. The optimization is started at 7AM and ends at the same time the next
day. This means that in the first three periods a day tariff (of 0,15 e/kWh) will be
imposed, whereas the tariff during the last two periods is 0,1 e/kWh (night tariff).
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The results for the MINLP model are presented in table 3.2.

Table 3.2: Results with BONMIN on the MINLP for the test network

method CPU time (s) obj. prod. cost energy cost
(e) (e/day) (e/night)

FP 16.89 3740.72 N/A N/A N/A
B-BB 448.35 3646.82 2058.63 1203.14 385.06

A solution with feasibility pump is already found after almost 17 s. This solution
is improved by about 2.5 % using the B-BB method but this takes noticeably more
time. Remark that if the relative optimality gap is reduced to 1 % the (sub)optimal
solution of e3646.82 is already obtained by B-BB after 150.33 s. FP was called at
the root node and apart from the objective value its results were not stored in the
memory. For the sake of completeness, the solution obtained with B-BB can be
found in appendix C.

3.4.2 High-level transport optimization model

As a result of the collaboration between different drinking water companies in
Flanders, a significant amount of drinking water will be added to a part of the
main supply network of De Watergroep. Hence arises the need of a high level
decision model that investigates the impact of these changes on the operations of
the drinking water supply network. More specifically, water will be traded with
other drinking water companies in delivery points (D) located at the border of
their networks. Since a detailed modeling of the lower level (pipes with small
diameters) of the water network is unnecessary to address this question, only the
highest level transport network (the backbone subnetwork with large diameter
pipes) is considered. The water supply network contains about 100 nodes and
arcs including eight variable-speed pumps. Given the typical water usage over one
day for this network, a division in 7 intervals was proposed in which periods with
similar demand levels have been clustered. A part of this network is shown in figure
3.11.

The results for the MINLP model are presented in table 3.3.

Table 3.3: Results with BONMIN on the MINLP for the transport optimization network

method CPU time (s) obj.
FP 334.65 21596.30
B-BB 7200* 21399.331
* manually stopped, best possible solution 20795.016
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Figure 3.11: Part of the network for the high-level transport optimization model [3]

The Feasibility pump algorithm was able to find a solution after 334.65 seconds,
which was slightly improved with the Branch and Bound method. Note that the
B-BB method only found a lower bound and was stopped after 2 hours of CPU
time.

3.5 Conclusion

A complete formulation for the Flemish water supply model leads to a large non-
convex MINLP model. A careful analysis on network mechanics in buffers has
been conducted, leading to additional constraints involving binary variables. After a
discussion on different formulations of pressure losses, the Darcy-Weisbach formu-
lation with the Prandtl-Kármán formula for the friction loss coefficient was chosen
as the most beneficial model for our purpose. Pump characteristic curves were
modeled as nonlinear functions based on manufacturer’s data. In this study variable
speed pumps are also included. Nonlinearity is avoided as much as possible by
using an alternative formulation to model of these curves. To evaluate the quality of
a solution, three different types of costs are taken into account. Since the network
consists of multiple water production centers, each of them imposes a different
production cost that is linear with the produced amount of water. Another important
term is the energy cost of the pumps. The power term was linearized to decrease the
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complexity of the model. Lastly, the cost for delivering water to and receiving water
from other water supply companies is added to the objective function. Using the
Branch & Bound algorithm implemented in BONMIN, an locally optimal solution
can be found for the test network within reasonable computational time, although
the method does not converge within 1h of CPU time for the larger network.



4
A hybrid gradient algorithm for the

piecewise linear MILP model

In an attempt to reduce the complexity, this chapter proposes a piecewise linear
approximation of the nonlinear constraints which leads to an MILP model. To
obtain an accurate solution to the original problem with this model, the number
of segments in the piecewise linear functions has to be quite high. This leads to a
higher number of binary variables and an increased computational time required to
solve the problem. Furthermore, the obtained solution is not necessarily feasible
for the more accurate MINLP problem formulation. Therefore, we use the solution
of this model to serve as a starting point for the classical Newton’s method. The
second section resumes several well-known methods to find feasible solutions for
(simple) pipe networks. The gradient algorithm is adapted in the third section to
be used on the water supply model of the Flemish network. The section thereafter
explains which modifications have to be made in order to couple the MILP model
with the gradient algorithm and provide a final feasible solution of good quality. In
the last section several results on different instances are presented.

4-1
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4.1 MILP model

The above model is very complex in the sense that it contains many binary variables
and nonlinear nonconvex pressure losses and pump constraints (3.16, 3.19-3.21,
3.23, 3.27). Moreover, the pressure loss related constraints are nonsmooth. This
makes the resulting model very hard to solve, especially in large networks. Not
many solvers exist that are able to tackle this kind of NP-had problems in reasonable
computation time, let alone come up with a global optimum. Therefore, it might
be beneficial to relax the nonlinearities and reduce the model to an (approximated)
MILP (Mixed Integer Linear Programming) model. Solving this relaxed model by
mixed integer linear techniques has the advantage that these methods are nowadays
very robust and able to solve problems with many variables to global optimality.
On the other hand, by eliminating the nonlinearities, the model does not accurately
represent the original formulation anymore. As a consequence, solutions provided
by these methods may be infeasible for the original problem depending on the
tightness of the relaxation.

In this section we will first describe several methods to obtain piecewise linear
over- and underestimates for general nonlinear functions. The method of choice
here is a formulation that requires only a logarithmic amount of binary variables
([74, 75]). It is shown that the maximum approximation error can be determined a
priori. Afterwards the extension to multivariate functions is made.

4.1.1 Piecewise linear formulations for univariate functions

The following is based on [76]. In general we consider a function of one variable
f(x) and a subdivision of the domain [xmin, xmax] of f by introducing K + 1

additional vertices xmin = x0 < x1 < ... < xK = xmax. At each of these vertices
we evaluate f and note this value as yk = f(xk), k = 0..K. Now the pairs (xk, yk)

and (xk+1, yk+1) are connected by lines to obtain linear functions. The choice and
number of these vertices will be discussed further. It should be clear that the more
vertices are introduced, the more accurate the model becomes but the computational
time will increase accordingly. Also note that the linear function obtained here is
considered to be a strict lower or upper bound.

One of the most commonly used methods is the ‘convex combination method’.
The variable x is expressed as a linear combination of xk−1, xk of one interval k.
The variable Λk represents the weight that each vertex xk contributes to x. After
introduction of binary variables βk, k = 0..K − 1 the formulation is as follows
(see [77, 78]):
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x =

K∑
k=0

Λkxk

f(x) =

K∑
k=0

Λkyk

K∑
k=0

Λk = 1

Λ0 ≤ β0

Λk ≤ βk−1 + βk ∀k ∈ 1..K

ΛK ≤ βK
K∑
k=0

βk = 1

Λk ≥ 0 ∀k ∈ 0..K

βk ∈ {0, 1} ∀k ∈ 0..K − 1

The first three restrictions express x and its function value as linear combinations
of (xk, yk). Only one interval can be chosen (

∑K
k=0 βk = 1) and the remaining

restrictions make sure that only the Λ’s corresponding to the vertices of this interval
are positive.

The ‘incremental method’ (see also [77]) expresses x as lying in interval k with
value xk−1 + δ:

x = x0 +

K∑
k=1

δk

f(x) = y0 +

K∑
k=1

yk − yk−1

xk − xk−1
δk

(xk − xk−1)βk ≤ δk ∀k ∈ 1..K − 1

δk+1 ≤ (xk+1 − xk)βk ∀k ∈ 1..K − 1

0 ≤ δk ≤ xk − xk−1 ∀k ∈ 1..K

βk ∈ {0, 1} ∀k ∈ 1..K − 1
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The variables βk enforce the condition that if δk > 0 then all δi with i < k are
at their upper bound of xi − xi−1, so that we can rewrite:

x = x0 +

K∑
i=1

δi = x0 +

k−1∑
i=1

δi + δk = xk−1 + δk

According to [76] both methods are generic and readily incorporated in MILPs.
The main drawback of these methods is the fact that they introduce a large number
of additional binary variables and restrictions to the model. Branching on these
binary variables furthermore results in deep and unbalanced branch-and-bound trees.
Vielma and Nemhauser [74] pointed out that the number of binary variables can be
reduced drastically. Their ‘logarithmic method’ is described here, for more details
we refer the reader to [74, 75]. First, we define the function B : {0..K − 1} →
{0, 1}log2(K) which projects every interval on a binary vector of length log2(K).
Since we work with SOS2 constraints, this function needs to be SOS2 compatible,
meaning that the functionsB(k) andB(k+1) should differ in at most 1 component.
With σ(B) the support vector of B, we then define:

K+(l, B) = {k ∈ 1..K − 1 : l ∈ σ(B(k)) ∩ σ(B(k + 1))}
∪{0 if l ∈ σ(B(1))} ∪ {K if l ∈ σ(B(K))}

K0(l, B) = {k ∈ 1..K − 1 : l /∈ σ(B(k)) and l /∈ σ(B(k + 1))}
∪{0 if l /∈ σ(B(1))} ∪ {K if l /∈ σ(B(K))}

Essentially for each vertex xk and each binary l it is determined whether k belongs
to set K+(l, B), K0(l, B) or neither of those, based on the binary projections
of intervals k and k + 1. If both of these are equal to 1 in component l then
k ∈ K+(l, B), if both are 0 then k ∈ K0(l, B). With this information, the PWL
constraints can then be written as:

x =

K∑
k=0

Λkxk

f(x) =

K∑
k=0

Λkyk

K∑
k=0

Λk = 1
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∑
k∈K+(l,B)

Λk ≤ βl ∀l ∈ 1.. log2K∑
k∈K0(l,B)

Λk ≤ 1− βl ∀l ∈ 1.. log2K

Λk ≥ 0 ∀k ∈ 0..K

βl ∈ {0, 1} ∀l ∈ 1.. log2K

Here, βl is a binary variable that is equal to 1 of component l of the binary vector
is chosen. Each combination of β’s thus determine a unique interval. With this
formulation it is possible to describe each of the K intervals using only log2(K)

instead of K binary variables. This is of course even more interesting if we choose
the number of intervals K = 2n with n an integer. This is the formulation that will
now be applied on the model for the water supply network.

4.1.2 PWL formulation applied to the water supply model

We can write in general (for each arc/time combination individually, with Kijt the
total number of segments for that arc):

Qijt =

Kijt∑
k=0

Λijtkqijtk (4.1)

f(Hit, Hjt,∆Hijt) =

Kijt∑
k=0

Λijtk(g(qijtk) + cijk) (4.2)∑
k∈K+(l,B)

Λijtk ≤ βijtl ∀l ∈ 1.. log2(Kijt) (4.3)

∑
k∈K0(l,B)

Λijtk ≤ 1− βijtl ∀l ∈ 1.. log2(Kijt) (4.4)

K∑
k=0

Λijtk =

{
1 if (i, j) ∈ Pi
ϑijt if (i, j) ∈ Pu\Puv ∪ V (4.5)

Λijtk ≥ 0 ∀k ∈ 0..Kijt (4.6)

βijtl ∈ {0, 1} ∀l ∈ 1.. log2(Kijt) (4.7)

Here,

K+(l, B) = {k ∈ 1..Kijt − 1 : l ∈ σ(B(k)) ∩ σ(B(k + 1))}
∪ {0 if l ∈ σ(B(1))} ∪ {Kijt if l ∈ σ(B(Kijt))}
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K0(l, B) = {k ∈ 1..Kijt − 1 : l /∈ σ(B(k)) and l /∈ σ(B(k + 1))}
∪ {0 if l /∈ σ(B(1))} ∪ {Kijt if l /∈ σ(B(Kijt))}

For constraint (4.5) an additional case is made for pumps. When these are shut off
(ϑijt = 0) it is desirable that Qijt = 0. In this case the constraint actually forces
Λijtk = 0,∀k ∈ 0..Kijt, giving the desired result through (4.1).

An example is shown in figure 4.1 with K = 4, B(1) = {0, 0}, B(2) = {0, 1},
B(3) = {1, 1}, B(4) = {1, 0}. For l = 1 (first component of the 2-dimensional
binary vector) we find that K+(1, B) = {3, 4} since their adjacent intervals both
have a binary value of 1, whereas K0(1, B) = {0, 1} because the projected values
are equal to 0. For l = 2 these sets can be found in the same manner and our
formulation then becomes:

Λijt3 + Λijt4 ≤ βijt1, Λijt0 + Λijt1 ≤ 1− βijt1
Λijt2 ≤ βijt2, Λijt0 + Λijt4 ≤ 1− βijt2

Λijtk ≥ 0 ∀k ∈ 0..4

βijt1, βijt2 ∈ {0, 1}

Q

2

f(Q)

f(Q) = 0.1Q|Q|

[1, 1]

[1, 0]

[0, 0]

[0, 1]

0 1 3 4

Figure 4.1: Example division in intervals with logarithmic number of binary variables

In order to get a comparison of the number of additional variables and restric-
tions introduced by each of these formulations, we remark the following. The
constraints considered here are the univariate nonlinear constraints (3.16, 3.19-3.21,
3.27). Let us denote the subset of A that makes up this group as Auni. To reduce
the complexity, we combine (3.19, 3.20) with (3.21) by substituting for ∆H . Fur-
thermore we over- and underestimate the original constraints using linear segments
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as is shown on figure 4.1, effectively doubling the expressions for f(Q) (more
details on this will be given further on). This brings us to table 4.1.

Table 4.1: Comparison of the number of variables and constraints on the water supply
model using different PWL formulations

Method variables constraints
cont. binary

convex (K + 1)|Auni| K|Auni| (K + 6)|Auni|
incremental K|Auni| K|Auni| (3K + 1)|Auni|
logarithmic (K + 1)|Auni| log2(K)|Auni| (2 log2(K) + 3) |Auni|

Clearly the logarithmic formulation has the biggest benefits, because for each
value of K both the number of binary variables and constraints is strictly smaller
than those in the other two formulations.

The proposed formulation approximates the pressure loss equations for pipes,
pumps and valves. The feasible interval of the flow variable on each of these
arcs is divided into an appropriate number of sub-intervals on which a linear
approximation of the nonlinear function is satisfactory. Let us consider positive
values for Q on figure 4.1. The pressure loss on each arc here is approximated from
above by the defined linear functions over the chosen vertices. Rather than modeling
these constraints as strict equalities, they are instead used as upper bounds for the
original function. Furthermore the nonlinear functions can be bounded from below
(underestimated) by subtracting from each linear function the maximal pressure
loss error over the interval. Together they define a feasible region in which the
pressure losses are approximated. The big advantage of approximating the pressure
losses in this way is that a feasible (although approximate) solution will always be
found, whereas a single linear approximation will often return infeasible solutions.
The critical issue that arises is how many intervals are needed to guarantee an
approximation error that is reasonably small. The following proposition states how
large the maximum error is:

Proposition 4.1.1. The maximum error resulting from a linear approximation to

the quadratic function f(q) = γq2 in interval [qk−1, qk] occurs at
qk−1 + qk

2
and

its value is equal to
γ

4
(qk−1 − qk)2.

This can easily be derived for a general quadratic function by writing down
both the linear and nonlinear function for Q ∈ [qk−1, qk]:
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f1(Q) = q2
k−1 +

q2
k − q2

k−1

qk − qk−1
(Q− qk−1) (Q-1)

f2(Q) = Q2 (Q-2)

Subtracting the right hand side of (Q-2) from (Q-1) and deriving to Q gives
qk−1 + qk

2
as value for Q. Substituting this value in (Q-1) gives the desired result.

The function coefficient γ depends on the constraint and is equal to κ for pressure
losses and h1 for the pump curve. We observe that if we multiply the number of
intervals by n, then the error will be reduced by a factor n2.

For the sake of completeness the exact formulations for (4.2) are given for pipes,
pumps and valves respectively. Pipes:

Hit −Hjt − κij
∑

k∈0..Kijt

Λijtkqijtk|qijtk| ≤ (1− βijt,log2(Kijt))ε
1
ijt (4.8)

Hit −Hjt − κij
∑

k∈0..Kijt

Λijtkqijtk|qijtk| ≥ −βijt,log2(Kijt)ε
1
ijt (4.9)

Pumps:

HM
it −Hjt − κij

∑
k∈0..Kijt

Λijtkq
2
ijtk + ∆Hijt ≤ 0 ∀i ∈ B (4.10)

HM
it −Hjt − κij

∑
k∈0..Kijt

Λijtkq
2
ijtk + ∆Hijt ≥ −ε2ijt ∀i ∈ B (4.11)

Hit −Hjt − κij
∑

k∈0..Kijt

Λijtkq
2
ijtk + ∆Hijt ≤ 0 ∀i ∈ N\B (4.12)

Hit −Hjt − κij
∑

k∈0..Kijt

Λijtkq
2
ijtk + ∆Hijt ≥ −ε2ijt ∀i ∈ N\B (4.13)

∆Hijt −
∑

k∈0..Kijt

Λijtk(h1
ijq

2
ijtk + h2

ijqijtk)− h3
ijϑijt + (1− ϑijt)100 ≥ 0

(4.14)

∆Hijt −
∑

k∈0..Kijt

Λijtk(h1
ijq

2
ijtk + h2

ijqijtk)− h3
ijϑijt − (1− ϑijt)100 ≤ ε3ijt

(4.15)

Valves:

Hit −Hjt − κij
∑

k∈0..Kijt

Λijtkq
2
ijtk − (1− ϑijt)100 ≤ 0 (4.16)

Hit −Hjt − κij
∑

k∈0..Kijt

Λijtkq
2
ijtk + (1− ϑijt)100 ≥ −ε4ijt (4.17)
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Here the ε’s denote the a-priori maximum error in the corresponding interval.
For pipes this error is multiplied with an additional term to ensure the correct
bounds for positive values of Q (βlog2(K) = 1) and negative values (βlog2(K) = 0).

Apart from increasing the number of intervals, the error can be further reduced
by providing good upper- and lower bounds on the values of the components of the
vector Q. Tighter bounds mean smaller intervals and, consequently, a smaller error.
In addition to the readily available bounds (3.17),(3.18), we add another general
bound for each time period:

|Qt| ≤ max

 ∑
i∈N\D

dit +
∑

i∈D:lmax
it >0

lmaxit ,
∑

(i,j)∈R

qcapij −
∑

i∈D:lmax
it <0

lmaxit


This bound is valid since the max flow through the network is either limited by the
total capacity (in case the buffers are filled), or by the total demand (in case the
buffers are used to satisfy demand), adjusted by delivered amounts. For pipes, we

can deduce yet another bound. Combining (3.1) and (3.16), we find
√

100+|hi−hj |
κij

to be a valid bound for Qij as well. For active regular speed pumps, we combine
(3.1), (3.19) and (3.21) to find an upper bound of

h2
ij +

√
(h2
ij)

2 − 4(κij − h1
ij) (−hi + hj − 100− h3

ij)

2 (κij − h1
ij)

The smallest upper bound and largest lower bound for each arc and each timestep
will then determine the length of interval ijt.

The MILP model can be strengthened further by adding some valid inequality
cuts. For the example given in figure 4.1, possible inequality cuts are:

2 Λijt0 + Λijt1 + Λijt4 ≤ 2− βijt1 − βijt2 (4.18)

Λijt2 + Λijt3 + Λijt4 ≤ βijt1 + βijt2 (4.19)

For n intervals, a total of 2
∑log2(n)
i=2 Cilog2(n) cuts can be added.

4.1.3 Multivariate functions

Until now the piecewise functions were defined for the nonlinear univariate func-
tions that concern pipes, regular speed pumps, and valves. The constraints (3.23)
and (3.25) were not yet addressed since they contain terms that exist of functions
of the form xy and xy2. As stated in [67] this kind of functions needs a two-
dimensional triangulation in general. Two alternatives are provided here: one is
based on decomposition and we also propose a reformulation.
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4.1.3.1 Decomposition of the functions

A decomposition of nonlinear terms can be done by using the Binomial theorem to
rewrite bivariate terms of the form xy in univariate ones:

xy =
1

2
(Z2 − x2 − y2)

Z = x+ y

Now each of the functions x2, y2, Z2 can be reformulated using the technique
described in the previous section. The functions xy2 that appear in the power term
(3.25) can then be decomposed as:

xy2 =
1

2
(Z2 − x2 − y4)

Z = x+ y2

Unfortunately, each of these requires additional linearizations for the variable
Z which further enlarge the MILP. In [79] a more interesting approach is used. The
author starts with the one-variable piecewise linear approximation for the variable
x. For any value in the interval [yl, yl+1] the approximated function value xyapprox
is then given as:

xyapprox ≤
∑

k∈0..K

Λk xk ỹl +M(1− βl)

xyapprox ≥
∑

k∈0..K

Λk xk ỹl −M(1− βl)

where ỹ is a sampling coordinate in the associated interval (e.g. the middle of
the interval). βl = 1 if the corresponding interval l is chosen and M is a very large
value.

Since we want to give more freedom to the model variables, we propose a
decomposition based on lower- and upper bounds as is the case for univariate
functions. Therefore, the above formulation is rewritten as

xyapprox ≤
∑

k∈0..K

Λk xk yl +M(1− βl)

xyapprox ≥
∑

k∈0..K

Λk xk yl−1 −M(1− βl)
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Applied on restriction (3.23), and substituting
∑
k∈0..Kijt

Λijtkqijtk = Qijt,
this gives (for interval l):

∆Hijt ≤ h1
ij

∑
k∈0..Kijt

Λijtkq
2
ijtk + h2

ij

fijtl

frefij

Qijt

+ h3
ij

∑
m∈l−1..l

Λfijtm

(
fijtm

frefij

)2

+ ε5ijt + (1− ϑijt) 200 + (1− βijtl)200

∆Hijt ≥ h1
ij

∑
k∈0..Kijt

Λijtkq
2
ijtk + h2

ij

fijt,l−1

frefij

Qijt

+ h3
ij

∑
m∈l−1..l

Λfijtm

(
fijtm

frefij

)2

− (1− ϑijt) 200− (1− βijtl)200

This effectively creates a larger feasible region and a predicted shorter solution
time for the model.

4.1.3.2 Reformulation of F

As the method of decomposition will bring with it a considerable amount of addi-
tional variables and constraints, we look at a different approach. First, remark that
the multivariate functions here are functions of Q and F . The variable F , denoting
the frequency, lies within the interval {0} ∪ [30, 55]. Instead of defining it as a
continuous variable, it is plausible to model it as an integer variable:

F = 30φ1 + ...+ 55φp =

P∑
p=1

(p+ 29)φp

P∑
p=1

φp ≤ 1

φ is a vector of binary variables. Equivalently, each higher power univariate
function of F can be rewritten as F i =

∑P
p=1(p + 29)iφp. Based on the paper

[80], the mixed integer product Qφp can be replaced by a continuous variable Zp

while adding the following constraints:

Zp ≥ Q− qmax(1− φp)
Zp ≥ qminφp

Zp ≤ Q− qmin(1− φp)
Zp ≤ qmaxφp
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This effectively introduces P additional binary and continuous variables and
4P constraints per variable speed pump and per period. It further limits the problem
in the sense that F can not take on all continuous values in the interval [30, 55]. In
comparison, the decomposition method introduces less binary variables (2 log2(K)

in total for Z and F ) and (4 log2(K) + 6) additional constraints. Both methods
will be modeled and experimented with. A visual comparison of the different
approximations for the multivariate VSP curve can be seen in figures 4.2 - 4.4.

Figure 4.2: Original nonlinear formulation of the VSP curve
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Figure 4.3: Approximation with decomposition
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Figure 4.4: Approximation with reformulation

Note that the solution can only be found on the linear grid in figure 4.3 or the
lines on 4.4.
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4.2 Steady-state hydraulic analysis of pipe networks

In this section a very basic water supply network is considered in which the nodes
only consist of junctions and nodes with fixed pressure, and the arcs represent pipes
and regular speed pumps. For such a network we are now interested in a feasible
flow and pressure distribution, e.g. one that satisfies the laws of conservation of
mass and energy (= pressure losses in loops). All of the presented methods are
iterative but are distinctive in the way the energy conservation laws are written;
these can be formulated as node, loop or pipe equations [81].

4.2.1 Hardy Cross method

The oldest technique covered in this section was developed for solution by hand
and is not computationally efficient for large systems [82]. The main equations
used here are the conservation of mass (3.2) and the conservation of energy that
can be written for closed loops (assume positive flow in the sense of the loop for
simplicity):

∑
(i,j)∈Pi

κijQ
2
ijt +

∑
(i,j)∈Pu

(
(κij − h1

ij)Q
2
ijt − h2

ij Qijt − h3
ij

)
= 0

This equation is simply found by adding the RHS of equations (3.16) and (3.19)
along the loop and setting the expression equal to zero. Note that all pumps are
assumed to be working. Only the smallest loops (called primary loops) are identified
so that each pipe appears at most twice in the set of loop equations. Between two
nodes with fixed pressure (fixed-grade nodes, such as reservoirs with fixed volume
tanks) the energy must also be conserved. We can then write down the independent
equations in the form

∑
(i,j)∈Pi

κijQ
2
ijt +

∑
(i,j)∈Pu

(
(κij − h1

ij)Q
2
ijt − h2

ij Qijt − h3
ij

)
= ∆EFGN

∆EFGN is the piezometric pressure difference between the two fixed-grade
nodes. Assuming |L| loops and |F| fixed-grade nodes, the |N + L + F − 1|
equations can be solved using the following solution procedure. Starting with a
solution for Q that satisfies the conservation of flow constraints, a correction ∆QL
is determined for each loop during each iteration. These are determined so that
conservation of flow is preserved at all times. With the initial values of Q the
conservation of energy is likely not satisfied. For each iteration and each loop/FGN
pair ∆QL is added to the equation:
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∑
(i,j)∈Pi

κij(Qijt + ∆QL)2

+
∑

(i,j)∈Pu

(
(κij − h1

ij) (Qijt + ∆QL)2 − h2
ij (Qijt + ∆QL)− h3

ij

)
= ∆E

∆E is 0 for closed loops. This expression can be approximated using a Taylor
expansion (assume ∆Q small):

∑
(i,j)∈Pi

κijQ
2
ijt +

∑
(i,j)∈Pi

2κijQijt∆QL+

∑
(i,j)∈Pu

(
(κij − h1

ij)Q
2
ijt − h2

ij Qijt − h3
ij

)
+

∑
(i,j)∈Pu

(
2(κij − h1

ij) (Qijt∆QL)− h2
ij∆QL

)
= ∆E

And subsequently ∆Q can be determined:

∆QL = −

∑
(i,j)∈Pi

κijQ
2
ijt +

∑
(i,j)∈Pu

(
(κij − h1

ij)Q
2
ijt − h2

ijQijt − h3
ij

)
−∆E∑

(i,j)∈Pi
2κijQijt +

∑
(i,j)∈Pu

2
(
(κij − h1

ij)Qijt − h2
ij

)
The correction can either be computed for each loop seperately and applied

before going to the next one or computed and applied simultaneously. For each
iteration k, the next vector of flowQ(k) is computed byQ(k) = Q(k−1)+∆Q

(k−1)
L .

Repeat until ∆QL is smaller than some predefined value.

4.2.2 Linear theory method

Linear theory linearizes the energy equations and thus solves the following set of
constraints:

∑
(i,j)∈Pi

κijQ
(k−1)
ijt Q

(k)
ijt +

∑
(i,j)∈Pu

(
(κij − h1

ij)Q
(k−1)
ijt Q

(k)
ijt − h2

ij

)
= 0, ∀ |L| closed loops

∑
(i,j)∈Pi

κijQ
(k−1)
ijt Q

(k)
ijt +

∑
(i,j)∈Pu

(
(κij − h1

ij)Q
(k−1)
ijt Q

(k)
ijt − h2

ij

)
= ∆EFGN , ∀ |F| − 1 independent pseudo-loops
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which, together with the conservation of flow constraints, form a set of linear
equations that can be solved for Q(k). The absolute differences between successive
flow estimates are compared to a convergence criterion. If this is not satisfied, the
average of the flows from the previous two iterations should be used as an estimate
for the next iterations.

4.2.3 Newton’s method for node equations

The node equations are the flow conservation constraints written in terms of piezo-
metric heads. This can be done by substituting the pressure loss and pump curve
constraints in terms of Q. For pipes, this would give:

Qijt = sign(Hit −Hjt)

√
|Hit −Hjt|

κijt

To find a solution, start with an initial configuration H(0). At iteration k the set
of node equations f(H) is solved for H(k) using Newton’s method:

f(H(k)) = −f ′(H(k))∆H(k) (4.20)

after which the heads are updated: ∆H(k+1) = H(k) + ∆H(k). Continue until
a stopping criterion is reached.

4.2.4 The gradient algorithm for pipe equations

This method, which is also implemented in EPANET [9], makes use of pipe
equations. These are the constraints (3.16 - 3.21) as defined in section 3. The
equations are solved to Q and H simultaneously [83]. The general structure is the
one outlined in algorithm 1.

Initialization:
Initial configuration q0(vectors of Q), Nonlinear equation f(x) = 0.

Iteration m:
Update qm through Newton’s iterative method
f ′(x(m))(x(m+1) − x(m)) = −f(x(m)), x(0)prescribed, m = 0, 1, 2, ...

Until:
φ(q(m+1)) =

∑
(i,j)∈A,t∈1..T |Q

(m+1)
ijt −Q(m)

ijt |/
∑

(i,j)∈A,t∈1..T |Q
(m+1)
ijt | ≤ δstop

Algorithm 1: (Newton’s method)

A matrix structure containing these constraints in addition to the flow conserva-
tion equations is built. The incidence matrices identify node connections. Todini
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and Pilati [83] devised an efficient recursive formula for H(k+1) and Q(k+1) based
on matrix inversions. More recently, Simpson and Elhay [84] revised this algorithm
for the Darby-Weisbach headloss formula to gain quadratic convergence.

According to [81], a comparison of the 4 previous methods points out that all
methods converge in reasonable computational time, except for the Hardy Cross
method which is left out of the discussion. In general, the gradient method combined
with pipe equations seemed to work best for different conditions.

4.3 The gradient method applied on the general wa-
ter supply model

The gradient method is implemented directly in the MINLP model defined in chapter
3. Instead of recursive schemes, the original nonlinear equations are replaced by the
linear ones. The nonlinear functions in the original system are the pressure losses
and pump constraints (3.16, 3.19-3.21, 3.23). For friction losses in pipes (3.16), we
easily find the linearized constraint in iteration m:

−2κij |Q(m)
ijt |Qijt = −Hit +Hjt − κij Q(m)

ijt |Q
(m)
ijt | (4.21)

For regular speed pumps, the constraints are (substituting for ∆H and assuming
the pumps are active):

(−2κij Q
(m)
ijt + 2h1

ij Q
(m)
ijt + h2

ij)Qijt =

−Hit +Hjt − (κij − h1
ij)(Q

(m)
ijt )2 − h3

ij ,

∀(i, j) ∈ Pu\Puv : i ∈ N\B (4.22)

(−2κij Q
(m)
ijt + 2h1

ij Q
(m)
ijt + h2

ij)Qijt =

−HM
it +Hjt − (κij − h1

ij)(Q
(m)
ijt )2 − h3

ij ,

∀(i, j) ∈ Pu\Puv : i ∈ B (4.23)

For the variable speed pumps finally, the constraints are replaced by

(−2κij Q
(m)
ijt + 2h1

ij Q
(m)
ijt + h2

ij

F
(m)
ijt

frefij

)Qijt + (h2
ij Q

(m)
ijt − 2h3

ij

F
(m)
ijt

frefij

)
Fijt

frefij

=

−Hit +Hjt − (κij − h1
ij)(Q

(m)
ijt )2 + h2

ij

F
(m)
ijt

frefij

Q
(m)
ijt + h3

ij

(F
(m)
ijt )2

(frefij )2
,

∀(i, j) ∈ Puv : i ∈ N\B (4.24)
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(−2κij Q
(m)
ijt + 2h1

ij Q
(m)
ijt + h2

ij

F
(m)
ijt

frefij

)Qijt + (h2
ij Q

(m)
ijt − 2h3

ij

F
(m)
ijt

frefij

)
Fijt

frefij

=

−HM
it +Hjt − (κij − h1

ij)(Q
(m)
ijt )2 + h2

ij

F
(m)
ijt

frefij

Q
(m)
ijt + h3

ij

(F
(m)
ijt )2

(frefij )2
,

∀(i, j) ∈ Puv : i ∈ B (4.25)

4.4 The hybrid algorithm
Since solving the hydraulic model as an MINLP is computationally expensive, the
MILP formulation provides a good alternative. As will be shown in the results
section however, the solution time increases exponentially with the number of
PWL intervals. For a lower number of K (and an approximated power term in
the goal function), a solution can be found reasonably fast. However this solution
is not necessarily feasible for the original MINLP formulation depending on the
accuracy of the approximation. Therefore, the solution obtained by solving the
MILP will now serve as a starting point for the presented gradient algorithm. The
idea is to adjust the values for (Q,F,H) without altering any other variables so that
the nonlinear pressure losses and pump constraints are satisfied. Afterwards the
previously satisfied constraints have to be checked to make sure the configuration
is globally feasible.

Algorithm 2 displays the pseudocode for the proposed algorithm. Start with
K = 2 intervals and solve the MILP model described in this chapter. Set the
convergence parameters to their initial values. Then start iterating the gradient
algorithm described in the previous section. Update Q(m), F (m) - during the first
iteration this means setting them equal to the values of the optimal solution of the
MILP. Next, solve an iteration of Newton’s method on the limited model described
as follows:

Maximize(3.34− 3.37)

subject to(3.2, 3.3, 3.10− 3.12, 4.21− 4.25)

Q,F,H,∆H, I+, I−, O−u.r.s.

In order for this algorithm to work with our model formulation, it is necessary
that we drop all bounds on variables and maintain only the equality constraints:
flow conservation, storage volume in buffer and the newly defined linear functions.
Furthermore all binary variables are fixed. Volume in buffers is also fixed and
regarded as additional demand/supply in between periods. The production rate is
fixed in order to ensure that the constraints (3.28-3.29) are satisfied.
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1: K ← 2, check ← 0 . Start with two intervals
2: repeat
3: Solve MILP . Solve complete problem with linearized constraints
4: numer ← 100, denom← 1
5: δ ← 1e− 12 . convergence tolerance
6: iter ← 0
7: for (i, j) ∈ Pu, t ∈ [1, T ] do
8: qoffijt ← 0

9: repeat
10: for (i, j) ∈ Pi ∪ Pu, t ∈ [1, T ] do
11: Q

(m)
ijt ← Qijt

12: for (i, j) ∈ Pu, t ∈ [1, T ] do
13: F

(m)
ijt ← Fijt

14: if iter = 2, 4, 6, 8 then
15: if h3

ij < Hjt −Hit then . If shutoff head pump smaller than
pressure gain then switch off pump

16: fix ϑijt ← 0, Qijt ← 0

17: Q
(m)
ijt ← 0

18: if (i, j) ∈ Puv then
19: fix Fijt ← 0

20: F
(m)
ijt ← 0

21: qoffijt ← 1

22: if qoffijt = 1 & h3
ij ≥ Hjt −Hit then . If pump is switched off

check if it can be reactived
23: fix ϑijt ← 1

24: Q
(m)
ijt ←

h2
ij+
√

(h2
ij)2−4(κij−h1

ij) (Hjt−Hit−h3
ij)

2(κij−h1
ij)

25: unfix Qijt
26: if (i, j) ∈ Puv then
27: F

(m)
ijt ← 50

28: unfix Fijt
29: qoffijt ← 0

30: Solve Newton . Solve limited model
31: iter ← iter + 1
32: numer ←∑

(i,j)∈Pi∪Pu |Qijt −Q
(m)
ijt |,

33: denom←∑
(i,j)∈Pi∪Pu |Qijt|

34: until numer/denom < δ
35: if All constraints satisfied then
36: check ← 1
37: else K ← K × 2

38: until check = 1

Algorithm 2: The hybrid algorithm
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With the updated information, solve this limited model repeatedly until con-
vergence is reached. Every other iteration (up until the 10th) a check is made on
the pumps. If the shutoff head of the pump (maximum possible head delivered by
pump) is smaller than the head gain (negative of head loss) then the flow is fixed
to Q = 0 and the binary pump variable ϑ becomes 0 as well. If these conditions
are not present, the pump becomes active again and the flow is calculated from
the pump curve and the current value for H ( This method is also used in [9]).
Because this is not mentioned in the EPANET manual, an extension for variable
speed pumps is made here. If the pump is to be switched off, the variable F is set to
0 as well. If the pump is reactivated the frequency becomes equal to the reference
value of 50. Note that the respective constraint (4.22-4.25) is dropped if the pump
gets switched off. Once the convergence criterion is satisfied, a final check on the
solution is made. Since the gradient method can not handle bounds on variables,
their value compared to the minimum and maximum values needs to be verified.
Furthermore, in (3.5-3.9) water can essentially flow into the buffer although there
is not enough pressure. The same may be true for water flowing out of the buffer.
If one or more of these constraints are not satisfied within a certain tolerance, the
number of intervals is doubled and the next iteration starts.

4.5 Computational results

For the MILP model a much wider array of solvers is available. Here, Gurobi [85]
version 6.0.4 is used.

4.5.1 Test network

The MILP model can be solved for a varying number of intervals. PWL-1 is the
formulation without additional inequalities, while PWL-2 contains those additional
constraints. Table 4.2 summarizes the results for several values of K. Note that the
same number of intervals is considered here for each pump and pipe, independent
of the period: Kijt = K, ∀(i, j) ∈ Pi ∪ Pu, t ∈ [1, T ].

Table 4.2: Results with Gurobi on the MILP for the test network

# K PWL-1 PWL-2
nvars ncons time (s) nvars ncons time (s) obj. ε (m)

2 1268 2122 0.43 1268 2122 0.41 3646.50 28.75
4 1673 2392 3.32 1673 2662 4.98 3646.76 7.19
8 2348 2662 7.38 2348 3742 9.88 3646.82 1.80
16 3563 2932 24.43 3563 5902 65.72 3646.81 0.45
32 5858 3202 170.06 5858 10222 298.76 3646.82 0.11

nvars = # variables; ncons = # constraints
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The number of variables and constraints increases substantially each time K
doubles. The goal function is always a lower bound to the solution of the MINLP
method. The displayed error ε is the maximum error among all segments in all time
periods: max{ε1, ε2, ε3, ε4}. Note that with 8 intervals the error is already relatively
small (1.8 m, which corresponds to 0.18 bar). With 16 intervals the values of all
variables are almost equal to those found by Bonmin’s B-BB algorithm although
the computational time is significantly smaller. From 32 intervals onwards the
solution time goes up rapidly and the MINLP model outclasses the MILP model.
The PWL-2 formulation is comparable with PWL-1 when the number of intervals
is small, but it is obvious from the table that the number of additional constraints
significantly slows down the solver starting from K = 16. Therefore the PWL-1
model will be used for the following real-world instances.

Table 4.3 shows the solution when the PWL formulation is coupled with the
gradient algorithm. It displays per interval the final solution with Newton’s method
for every interval and the result after the final feasibility check. The final goal
value is the objective value achieved with Newton’s method. Note that the error is
only present after the PWL optimization and disappears after the correction with
Newton’s method. The computation time for the Newton method is negligible
compared with that of Gurobi.

Table 4.3: Results of the hybrid method on test network

# Intervals goal Feasibility check

K=2 INF (INF)

4 3646.76 (INF)

8 3646.82 (INF)

16 3646.81 (FEAS)

32 3646.82 (FEAS)
nvars = # variables; ncons = # constraints

The algorithm converges for every instance of K except the first one. As
mentioned previously, we note that the final solution is infeasible (INF) for small
values of K. From values of K = 16 onwards the final solution satisfies all the
restrictions from the original problem (FEAS, within a tolerance of 1%). In the
first loop (K = 2) the Newton method did not converge because no solution was
possible with the fixed values of the variables. For K = 4, 8 the method did
converge but the solution was rejected because of infeasibilities in the dropped
constraints. Most of the time infeasibility was due to the fact that water was flowing
out of the buffer while the pressure in the network was actually too high. AtK = 16

a solution is found that satisfies all the constraints and the algorithm is terminated.
Note that the Newton’s method did not alter the objective value found with the
PWL model, indicating that the pump schedule was not modified. Most probably
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the global optimum has been found - this is also the same optimal value as found
by BONMIN.

4.5.2 High-level transport optimization model

Two different formulations are proposed for the multivariate functions (3.23,3.25)
in the MILP model: decomposition (MILP-d) and reformulation (MILP-r). For
computational purposes Gurobi was set to solve to a relative optimality of 1%.
Again K was given the same value over all arcs and time intervals. The term (3.25)
in the objective function made it hard for the solver to come up with a solution in
an acceptable computational time. Only for 2 and 4 intervals a solution was found
within reasonable time for the MILP-d model; see Table 4.4. The MILP-r model
performed considerably worse and no solutions was found within 3600 s.

Table 4.4: Results with Gurobi on the MILP-d for the transport optimization network

# K nvars ncons time (s) obj. error (m)
2 5194 8917 0.87 20916.88 30.23
4 7210 10555 3504.53 21112.62 7.56

nvars = # variables; ncons = # constraints

Clearly the difference in computational time between 2 and 4 interval is ex-
tremely big. For a more accurate division in intervals the objective function was
made cheaper to evaluate and (3.36) changed into:

Minimize ZFSP =

T∑
t=1

∑
(i,j)∈Puv

ct(e)

1000
τt

(
p1
ij Qijt + p2

ij

Fijt
fij

)
(4.26)

This makes the objective function too steep for low values of F while the offset
for Q = 0 is too high. Consequently, it is expected that the goal function will
generally be overestimated. The results are found in table 4.5.

Table 4.5: Results with Gurobi on the MILP-d for the transport optimization network,
altered goalfunction

# K nvars ncons time (s) obj. obj. (corr) error (m)
2 5138 8805 4.28 21337.92 21339.1 30.23
4 7154 10331 90.70 21421.49 21373.3 7.56

nvars = # variables; ncons = # constraints

In this table obj. (corr) displays the corrected cost according to the original goal
function. For some reason the computation time for 2 intervals increases, whereas
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it decreases for larger numbers of intervals. From K = 8 intervals onwards,
the computational time increased dramatically. Therefore these results are no
longer displayed. Note that the solution times and objective values are otherwise
very competitive to the best solution obtained by BONMIN on the MINLP model
(21399.33).

In table 4.6 the result of the hybrid method is shown. For 4 intervals the
approximation already seems tight enough so that the solution can be corrected
using the gradient method. Another explanation for this ‘earlier’ convergence
may be due to the presence of variable speed pumps, which give the model more
flexibility.

Table 4.6: Results of the hybrid method on the transport optimization network

# Intervals goal Feasibility check

K=2 INF (INF)

4 21373.3 (FEAS)
nvars = # variables; ncons = # constraints

4.6 Conclusion
The MILP formulation successfully reduces the complexity of the model by using
a piecewise linear approximation of the nonlinear formulations. The results show
a big gain in computational effort for the test network in comparison with the
MINLP solver. For a small number of intervals this method is even faster than
the FP heuristic. For the more complex network with variable speed pumps, the
multivariate functions need to be approximated which requires more additional
variables and constraints. This results in the fact that the method is not suitable
for this network when the number of intervals is too high. For a small number
of intervals, on the other hand, the approximation error may be too high for the
solution to be realistic. Experiments show that a decomposition method is more
beneficial than a reformulation of the multivariate functions. Using the gradient
method, the solution can be repaired to satisfy the original restrictions. The clear
advantage here is instead of doing a multiperiod simulation, the optimal values
for the buffers and raw water pumps from the MILP model are fixed ensuring the
transient conditions remain valid. Since the flow and pressure values are allowed to
vary during this iterative process however, the final solution may not satisfy variable
bounds and inflow constraints at buffer entrances. Consequently the number of
intervals needs to be increased and the iterative process is restarted. Even for larger
networks a solution may be found using this method, although the large number of
binary variables may still prove to be a computational bottleneck.





5
Generalized Benders Decomposition to

re-optimize water production and
distribution operations

As stated before, finding an optimal solution for either the MINLP or the MILP
with many intervals proposed in chapter 3 is not a trivial task. While the binary
variables for pump activation and inflow constraints at the buffers complicate the
model, the nonconvex nonlinear constraints (3.16-3.23) are the real computational
bottlenecks. The resulting model is thus very challenging and hard to solve. Section
3.4 shows that the search for a global optimal solution for the MINLP leads to
unacceptable computation times, even for small networks. In this chapter a method
based on Generalized Benders Decomposition (GBD) is proposed to obtain good
solutions for the MINLP model in a reasonable computational time. In general,
decomposition is done to break the structure of a complicated model into one
or more subproblems which are coupled by a master problem. This optimization
problem gathers information from the optimal solution of the subproblems and, after
it is solved, redirects information back to the subproblems for the next iteration.
From a computational perspective the subproblems are easier to solve than the
original problems. This can be either because they have a special structure (e.g.
max flow problem) for which efficient algorithms exist, or simply because they
are much smaller in size. The decomposition method proposed by Benders [86]
facilitates the subproblems by finding the optimal value of so-called ‘complicating
variables’ in the master problem and then fixing their values in the subproblem. The

5-1
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next section provides a detailed description of the general algorithm. Geoffrion [87]
extended this approach for the nonlinear mixed integer case. In [11], the authors
implement this ‘Generalized Benders Decomposition’ algorithm on two nonconvex
water resource management systems, in which the Master problem contains most of
the restrictions. Approximation cuts [88] are used to decrease computational time
and lead to good solutions. In section 5.2 this approach is extended so that in can be
used for the nonconvex mixed integer structure inherent to the water supply models
in this dissertation. In the final section test results are presented and thoroughly
discussed.

5.1 General background on Benders Decomposition
algorithms

In this section the main ideas behind the classical Benders decomposition are
given. Furthermore the extension of this method to nonlinear problems, known as
Generalized Benders Decomposition, is outlined.

5.1.1 Benders Decomposition

The general MIP problem discussed in this section has the form

Minimizex,y {cx+ fy subject to Ax+By ≥ b, x ≥ 0, y ∈ Y } (5.1)

x and y represent vectors of continuous and integer variables respectively. For
fixed values of y the remaining subproblem is stated as [86]:

Minimizex≥0 {cx subject to Ax ≥ b−Bȳ}

Transforming this inner minimization to its dual, the complete minimization
problem can be rewritten as

Minimizeȳ∈Y [fȳ + Maximizeu≥0 {u(b−Bȳ) subject to uA ≤ c}] (5.2)

The vector u is the vector of dual variables. Note that for fixed values of y the
subproblem is an LP problem. Its dual solution can either be bounded or unbounded.
If the problem is unbounded (corresponding to an infeasible primal problem), the
values of y resulting in an unbounded dual subproblem must be avoided. After
obtaining the unbounded ray ū the following cut is valid (∀y):

ū(b−By) ≤ 0
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As a result, the problem 5.2 can be rewritten as Benders reformulation:

Minimizey∈Y z + fy (5.3)

subject to z ≥ ūk(b−By), k = 1..K (5.4)

ūl(b−By) ≤ 0, l = 1..L (5.5)

Since this problem can be extremely large, only a limited set of constraints
is considered. The above formulation is therefore known as the reduced master
problem (RMP). In order to find a solution to the complete problem, the procedure
of algorithm 3 is followed.

1: l = 0, k = 0
2: y ← y0 . Start with a feasible solution by solving (5.3) without cuts
3: LB ← −∞
4: UB ←∞
5: while UB − LB > δ do . δ = convergence tolerance
6: solve SP: Maximizeu≥0 {u(b−Bȳ) s.t. uA ≤ c}
7: if Unbounded then
8: l← l + 1
9: Get ray ūl and add cut ūl(b−By) ≤ 0 to (5.3)

10: else
11: k ← k + 1
12: Get extreme point ūk and add z ≥ ūk(b−By) to (5.3)
13: UB ← min{UB, fy + ūk(b−By)}
14: Solve (5.3)
15: LB ← z̄

Algorithm 3: Benders Decomposition algorithm

The master and subproblem are iteratively solved until convergence is reached.
This method is very interesting when applied on difficult problems that decompose
in easy-to-solve master and subproblems.

5.1.2 Generalized Benders Decomposition

In his seminal paper, Geoffrion [87] proposed an extension of Benders’ famous al-
gorithm for integer linear optimization problems to nonlinear optimization problems
of the form:

Minimizex,y {f(x, y) subject to G(x, y) ≤ 0, x ∈ X, y ∈ Y } (5.6)

The variables are separated in two subsets x and y, where y is the vector of
so-called complicating variables. In general, it is assumed that the original problem
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becomes easier to solve in x when y is held fixed. In his paper, Geoffrion states
three different situations in which GBD may be beneficial:

1. For fixed y, (5.6) decomposes into a number of independent optimization
problems, each with a different subvector xi;

2. For fixed y, (5.6) the remaining problem has a specific structure for which
efficient algorithms exist (e.g. transportation problems);

3. For fixed y, the nonconvex problem (5.6) becomes a convex problem in x.

The third situation is the one we wish to exploit here. After initialization of y,
the following problems are solved to optimality at each iteration:

Minimizex∈X {f(x, ŷ) subject to G(x, ŷ) ≤ 0}

which is the subproblem (SP) providing an upper bound (UB) and

miny∈Y,y0 y0

subject to y0 ≥ L∗(y, uj), j = 1..p,

L∗(y, λ
j) ≤ 0, j = 1..q,

is now the reduced master problem (RMP). uj is the vector of optimal dual variables
for the j’th subproblem (if it is feasible) and λj the vector of extreme rays (in case
of infeasibility). At every iteration the optimal solution is a lower bound (LB) to
the original problem. Here, L∗ and L∗ are given by:

L∗(y, uj) = infimumx∈X{f(x, y) + uTj G(x, y)}
L∗(y, λj) = infimumx∈X{λTj G(x, y)}

The solution ŷ of each RMP is plugged in the next SP. Solving this generates
new cuts that can be added to the RMP. At each iteration, set LB = y0 (the optimal
solution to the RMP) and UB = v(ŷ), the optimal solution to the subproblem; then
continue iterating until (UB − LB)/LB < δ. The algorithm converges if [87]:

• f and g are convex on x for each fixed y ∈ Y ,

• X is a nonempty compact convex set,

• the RMP can be solved to global optimality,

Furthermore, the functions L∗ and L∗ should essentially be explicitly obtained
independent of y to make the algorithm computationally efficient (this is Property
(P) introduced by [87]).

The idea here is to apply GBD on the MINLP model formulation for the water
supply network. This is motivated by the fact that the complicating variable can
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be chosen in a quadratic term through the replacement of x2 by xx′ and x = x′.
Furthermore, the authors in [10] already proposed both a GBD method and an outer
approximation (OA) method to solve water resource models. Because the master
problem of the OA method is much larger than that of the GBD method, it can be-
come a big bottleneck in terms of computational time. As a result, the GBD method
was generally more efficient than OA for solving large MINLP problems, thus
motivating the choice of this algorithm here. The proposed models are nonconvex
MINLP’s with binary variables and bilinear functions. However, these functions
are easily linearized so the methods will converge to the global optimum. The
paper concludes by stating that future work should include the extension of these
methods to problems with nonconvex subproblems. In [11] the authors apply the
method on two bilinear water resource models. Approximation cuts are used so that
convergence to global optimality is not guaranteed. Nevertheless their approach
gives good results in a reasonable number of iterations. Here, the method will be
extended to be used with our model which not only contains nonlinear pressure loss
equality constraints, but also binary variables to control pumps and water exchange
at the buffers. Furthermore, some of these pumps are actually variable speed pumps,
which adds to the complexity of the system.

5.2 GBD for the investigated water supply network

In this section a general selection of coupling restrictions is made. All restrictions
of the MINLP model described in chapter 3 are taken into account. Next, two
formulations (selection of complicating variables) are proposed for applying GBD:
one with an integer RMP (GBD-a) and another with an integer SP (GBD-b). Along
the same line as [11], we add slack variables to make the subproblem always
feasible. Afterwards, the approximation cuts are explicitly derived. The final part
outlines how one could theoretically solve the RMP in an exact fashion.

5.2.1 Selection of coupling constraints

The implementation of this approach for the model is based on [89]. First, the
variables β,Qp, Qm, φ are introduced subject to the following constraints:

βijt = Qpijt −Qmijt, ∀(i, j) ∈ Pi (5.7)

βijt = Qijt, ∀(i, j) ∈ Pu (5.8)

φijt = Fijt, ∀(i, j) ∈ Puv. (5.9)
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Qp ≥ 0, Qm ≤ 0 are related by the following equalities:

Qijt = Qpijt +Qmijt, ∀(i, j) ∈ Pi (5.10)

Qpijt ≤ 3000ϑijt, ∀(i, j) ∈ Pi (5.11)

Qmijt ≥ −3000 (1− ϑijt), ∀(i, j) ∈ Pi (5.12)

where ϑ is a binary variable.

(3.16, 3.19 - 3.23) are now rewritten as follows:

Hit −Hjt − κij Qijtβijt = 0, ∀(i, j) ∈ Pi (5.13)

Hit −Hjt − κij Qijtβijt + ∆Hijt = 0, ∀(i, j) ∈ Pu : i ∈ N\B (5.14)

HM
it −Hjt − κij Qijtβijt + ∆Hijt = 0, ∀(i, j) ∈ Pu : i ∈ B (5.15)

∆Hijt − h1
ij Qijtβijt − h2

ij βijt − h3
ij ϑijt = 0, ∀(i, j) ∈ Pu\Puv (5.16)

∆Hijt − h1
ij (Qijt)βijt − h2

ij

Qijtφijt

frefij

− h3
ij

Fijtφijt

(frefij )2
= 0, ∀(i, j) ∈ Puv

(5.17)

Furthermore, the part of the goal function accounting for the power of variable
speed pumps (3.36) changes to p1

ij Qijt (φijt/f
ref
ij )2 + p2

ij Fijtφ
2
ijt/(f

ref
ij )3.

Two separate formulations of the GBD method are proposed, which we call
GBD-a and GBD-b:

5.2.2 GBD-a: Integer RMP and Linear SP.

If one member of ((Q,ϑ, F ), (β, φ)) is fixed, the pressure loss constraints become
linear. It seems logical to choose only (β, φ) as the set of complicating y variables,
since their number is not very large. However, the authors in [11] report to have
good results when making the SP as small as possible. When applied on our
model, that would mean choosing (β, φ) as the vector x and all other variables
as the vector y. Instead a more ‘natural’ decomposition is proposed here. By
also taking the pressure variables H in the subproblem, the RMP becomes a flow
problem with capacity restrictions and storage over multiple periods, whereas the
subproblem is still small enough to be quickly solvable. This will also give the
subproblem some more flexibility, thus improving the chance of finding feasible
solutions. Consequently, we define x = {β, φ,H} and y the vector of all other
variables. The set X consists of bounds on pressure variables and Y is defined by
(3.2-3.3, 3.10-3.6, 3.9-3.15, 3.17-3.18, 3.24, 3.28-3.33, 5.10-5.12). Furthermore,
the coupling constraints G(x, y) are (5.7-5.9, 5.13-5.17), and the constraints in
buffers linking binary variables and pressure in the tank (3.7-3.8).
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5.2.3 GBD-b: Linear RMP and Integer SP.

With the previous decomposition, experiments showed that the RMP was the
bottleneck since cuts containing binary variables are added in each iteration, thus
increasing the computational time. Therefore, we place the binary variables in
the subproblem, while maintaining the same structure as the GBD-a model. The
resulting set x thus becomes x = {β, φ,H, ϑ}. The gain in computational time is
traded off against the inaccuracy of the generated cuts (from the continuous version
of the MIP subproblem).

In what follows, we analyze the structure of the GBD problem in the same
fashion as in [11] to find an explicit formulation of the functions L∗ and L∗.

5.2.3.1 Derivation and analysis of the cut functions: approximation cuts

For purposes of generality, the coupling constraints are rewritten as follows:

G(x, y) = f(y)x− b = 0 (5.18)

where f(y) is a vector of (possibly constant) coefficients of x in the subproblem
and b is a vector of constants. Note that the equality sign is not necessarily strict.

Since we want to ensure that the subproblem is feasible for any value of f(y),
we add slack variables to the coupling constraints. Hereto, we partition G(x, y)

in two sets: G2(x, y), the set of restrictions with artificial slack variables s, e and
G1(x, y), which contains all other restrictions. We now change (5.18) to:

G1(x, y) = f(y)x− b = 0 (5.19)

G2(x, y) = f(y)x− b = s− e (5.20)

The restrictions making up the set G1 have to be chosen carefully so that conver-
gence is improved while feasibility is ensured. The chosen restrictions will be
discussed in the results section. The objective then becomes (we consider a linear
function cxx for simplicity) :

Minimize [cxx+ cyy +M(s+ e)] (5.21)

where the value of M has to be determined experimentally. We now define the
subproblem (SP) as the minimization of (5.21) over x, s and e for fixed y subject to
(5.19, 5.20) and x ∈ X .

The subproblem is always feasible and it is optimal if all slack variables (the
penalty term s+e) are equal to zero. The Lagrangian function corresponding to this
subproblem, where u, u2 are the dual variables derived from the optimal solution,
is given by:

L(x, y, s, e, u) = cxx+ cyy +M(s+ e)− uT (f(y)x− b)− uT2 (e− s)
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and the optimality cut function is:

L∗(y, u) = min
x∈X,s≥0,e≥0

L(x, y, s, e, u)

As demonstrated by [11] the function L is linear and by complementary slack-
ness can be rewritten as:

L∗(y, u) = uT b+ cyy + min
x∈X

(cx − uT f(y))x (5.22)

It can easily be seen that this function is non-separable and should be computed
separately for each instance of y, and thus Property (P) [87] does not hold. This
means that the functions L∗ can not be obtained without knowing the value of y.
Depending on the choice of variables in the set X , this can be computationally
expensive. As a consequence, we will use approximate cuts and add them to our
RMP without any guarantee that our algorithm will converge, as suggested in
[88]. This means plugging the optimal values x∗, u∗ for subproblem j in the j’th
Lagrangian function, which the authors in [90] refer to as v-GBD. In that same
paper it is stated that the Lagrangian cut function may cut off part of the feasible
region and local optimal points or non-optimal points may be found. The authors
state that finding an optimal solution is very dependent on the starting solution and
the convergence speed on the tightness of the MINLP formulation. In [89] also, the
authors warn for the convergence to local minima.

5.2.4 Towards exact cuts

Here we theoretically derive the exact formulation of the optimality cuts. For
simplicity we only consider the GBD-a model, although the cut functions for GBD-
b can be derived in the same fashion. As already mentioned, solving the RMP to
global optimality will not be possible. In the case where the constraints x ∈ X
are reducible to xmin ≤ x ≤ xmax it can be shown that L∗ is a concave piecewise
separable function, see [11]. Since y0 − L∗ is a concave nonlinear function, the
constraints y0 ≥ L∗(y, uj) define a reverse concave problem. We explicitly define
these functions here. In a given iteration, the coefficient cx−uT f(y) of β in (5.22),
for (i, j) ∈ Pi, is given by:

−u1
ijt κijQijt − u2

ijt

where u1 and u2 are the dual prices of (5.13) and (5.7), respectively.

For pumps, these coefficients are also linear functions of Q and may be derived
in the same way. The second set of variables composing the set X are the pressure
variables H . Their coefficients in the function L are merely composed of dual
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prices of SP, denoted as u3. The last term of (5.22) then comes down to:

Minimize
(
−u1f(Q)− u2

)
β − u3H

subject to: hmin ≤ H ≤ hmax

Clearly, depending on the sign of u3, H is either set to its lower or upper bound.
The coefficient of β depends on Q. There are no explicit bounds put on β but
these can actually be related to those imposed on Q. If (−u1f(Q)− u2) < 0 then
β = |Qmax|, otherwise β = 0. This requires adding one binary variable and two
constraints to the RMP for every x ∈ X in each iteration. As a result, the size
of the RMP increases exponentially. Experiments show that after a few iterations
the computation time already increases drastically and thus this model has been
abandoned.

5.3 Results

The proposed approach is tested on the three networks described in chapter 3. The
model varies depending on the choice of the constraints set G2 and the size of
the penalty factor M . Furthermore, some components of the goal function can be
optimized at the level of the subproblem instead of having them all optimized in
the RMP.

Experiments showed that the algorithm performs better if the set G2 includes
constraints (5.13 - 5.17), making the equality constraints (5.7 - 5.9) strict. Some
constraints that contain binary variables needed additional slack variables to make
sure that the subproblem is always feasible. Also considering the part of the energy
cost function that is linear in β in the subproblem instead of keeping it in the RMP
as a function of Q, turns out to be effective as this produces much better results.
Deviating from the suggestion of the authors in [11], we choose the initial values
of y by solving the RMP without any cut constraints. However, the original goal
function is considered in this optimization step. We experimented with the penalty
factor M varying it from 0.1 to 100 to assess its impact. Again, Gurobi is used as
the MIP solver of our choice.

5.3.1 Test network

The findings are summarized in Table 5.1 below. For each method, the value of
the goal function, the total processing time (in seconds) as well as the number of
iterations are shown.
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Table 5.1: Results of the used algorithms on the subnetwork

method goal function CPU time (s) nr. iterations
GBD-a penalty=1.0 3646.29 196.61 208
GBD-a no penalty 3645.89 648.629 275
GBD-b penalty=1.2 3679.80 3.8 65

5.3.1.1 GBD-a

Clearly, the FP heuristic produces a good feasible solution quickly but the resulting
optimality gap remains rather large. We distinguish two versions of the GBD-a
algorithm. The first version includes the cost term c β in the goal function at the
level of the subproblem and sets the penalty factor to M = 1. The second version
keeps the term cQ in the original goal function of the RMP. The goal function of
the subproblem thus consists of the sum of the artificial variables only, and the
penalty factor M is dropped. The first version is solved in a computational time that
is competitive with BONMIN’s B-BB algorithm. Compared to this first version, the
second one requires a lot more time before it converges. However, it still performs
well compared to BONMIN. Other model variations were tested as well. However,
these were not performing better than the two versions above. This confirms the
fact that the algorithm is very sensitive to the choice of the complicating constraints,
the artificial variables and the penalty size.

Figure 5.1 depicts the convergence behavior of the GBD-a algorithm (with the
penalty term). The curve of the lower bound shows a rapid increase towards the
final value during the first 50 iterations. The upper bound curve strongly fluctuates
until it converges to the final value of 3646.29 after 208 iterations. The penalty
curve s+ e from (5.21) is also displayed and converges to 0.

Fig. 5.2 depicts the impact of the penalty factor M on the behavior of the
GBD-a algorithm. For M = 0.1 the resulting penalty is still unacceptably big,
around 500, and the final value is 3494.4. The experiments show that choosing
M < 1 does not ensure convergence, whereas for higher values (M = 10) the
algorithm converges but is very slow.

5.3.1.2 GBD-b

When the binary variables are transferred to the primal subproblem, computational
time decreases considerably. This is clearly a consequence of the fact that an ‘easier’
RMP is solved at each iteration. The disadvantage is that the cuts are not strong
anymore, and thus the final objective value is slightly higher (≈ 1%, see table 5.1).
Still, if one prefers fast solutions, this model is a good choice as it still provides
near-optimal solutions. Notice that the penalty factor is always present in the SP
because of the binary variable ϑ in the goal function.
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Figure 5.1: Upper bound, lower bound and penalty term in function of iterations (GBD-a,
M = 1.0)
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Figure 5.2: Lower bound in function of iterations for different instances of M (GBD-a)
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In this case, varying the penalty coefficient M has a very unpredictable effect
on the final value as well as on the remaining penalty (sum of slack variables).
Table 5.2 summarizes these results for different values of M . Although it is difficult
to draw general conclusions, the algorithm behaves badly for M ≤ 0.5 (big penalty
slack remaining at the end) and M ≥ 1.8 (penalty + worse objective value). Some
unexpected results are however obtained: when M = 1.6, the goal function and
slack at the end are both large while for M = 1.7 a very low value for the slack
and a good objective value are obtained. If the slack is lower than 10 for this
specific model, the resulting solution is usually considered as acceptable. Choosing
M smaller than 1 is therefore not recommended, while choosing M larger than
2 usually leads to a large objective value with slack values that are less evenly
distributed. In general, one should carefully experiment with the penalty factor
until a solution that satisfies the targeted trade-off (high objective vs. low slack) is
found. The recommended range of values for M proved to be effective for the two
cases we investigated in this paper.

Table 5.2: Effect of M on the goal function and remaining slack in GBD-b

M goal function remaining penalty CPU time (s) nr. iterations
0.1 3686.75 34.8 1.515 32
0.2 3699.82 61.28 1.567 29
0.4 3698.74 32.19 2.1 42
0.6 3692.35 10.94 2.422 40
0.8 3721.68 47.24 2.05 44

1 3693.85 5.55 3.385 62
1.2 3679.80 3.97 3.8 65
1.4 3711.30 4.19 3.57 68
1.6 3770.35 20.1322 3.77 70
1.7 3688.18 1.48 3.55 63
1.8 3804.82 47.24 5.45 87

2 3800.78 34.82 4.372 67
5 3925.15 7.85 5.34 79

10 4461.41 55.28 6.57 103
25 4387.41 9.27 5.59 91
50 4509.03 6.33 9.13 136

100 5247.90 10.05 6.99 115

Furthermore, to generate different final solutions, we also attempted to start the
process from different initial solutions. This is carried out by using variants of the
goal function. Figure 5.3 shows the convergence for these different initial solutions
with M = 1.2.

The model in which only the pump costs are used in the goal function converges
faster than the other ones, but leads to a worse objective value (3719.67). Further-
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Figure 5.3: Lower bound in function of iterations for different initial solutions with GBD-b
for M = 1.2 with goal functions: production + pumping cost (Full), production cost only

(Raw), no objective (None) and pumping costs (Pump)

more, the final value of the penalty is still too large for the solution to be acceptable.
Otherwise, the four models converge within approximately the same times, with
only small (< 0.3%) differences in the objective value.

To resume for the test network: GBD-b produces solutions faster than GBD-a;
however the quality of the solutions obtained by GBD-a is better. GDB-b might
nevertheless be useful to tackle very large networks, as is shown in the following
test.

5.3.2 High-level transport optimization model

Findings for this case study are summarized in Table 5.3.

Table 5.3: Results of the algorithms on the transport optimization model

Solver/method goal function CPU time (s) nr. iterations
BONMIN/FP 21596.30 334.65 root node
BONMIN/B-BB 21399.331 7200* 339104
Gurobi/hybrid method 21373.3 94.98 -
Gurobi/GBD-b penalty=1 21327.9 3050.31 1000

*

manually stopped, best possible solution 20795.016

Since the optimization problem for this case study is quite large and contains a
significant number of binary variables, GBD-b is the most suitable method. Also,
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Figure 5.4: Upper bound, lower bound and penalty term in function of iterations (GBD-b,
M = 1.0)

the objective function in the SP contains a quadratic term due to the presence of
variable speed pumps. Even with the RMP solved as a linear program, it takes a
lot of computational time to solve the problem (especially during the last couple of
iterations). Figure 5.4 shows how the algorithm (LB + UB) converges after about
1000 iterations. Since the penalty term is large, a significant amount of iterations is
needed. The results of GBD-a on this case are not presented as it did not converge
to a good solution even after a very large amount of computational time. Again,
GBD-b seems to be the best alternative for very large networks with variable speed
pumps. Note that the result is also better than the one found with the hybrid method
in chapter 4.

5.3.3 General observations

To conclude, the implementation and use of GBD with approximation cuts may
have an edge, in terms of solution quality and computational time, over other
nonconvex MINLP solvers. However, the underlying RMP and SP models and their
related parameters must be chosen very carefully. Our findings for the investigated
networks show that:

• A ‘natural’ decomposition where the RMP represents a flow problem and the
SP contains the pressure variables is usually preferred;

• An objective term cx in the subproblem accelerates convergence of the
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method;

• When the penalty factor is set to M < 1 the algorithm terminates while the
penalty is still too high. On the other hand, increasing M too much seems to
considerably slow down the convergence;

• If the variables and parameters are carefully selected convergence to a global
optimum can be assured;

• GBD-a provides solutions with a better quality, but GBD-b seems to be the
version to use for large networks with complicating features such as variable
speed pumps.

5.4 Conclusion
The major contribution of this chapter is the extension of the method proposed
in [10] and [11] to solve the nonconvex mixed integer models of water supply
systems that contain binary pump variables and variable speed pumps with higher
degree constraints. It has been shown that GBD is a worthwhile alternative to
common heuristics and provides an efficient operating solution to large-scale water
supply networks. Careful tuning of some parameters of the approach is however
required to get good final solutions with an acceptable remaining penalty. A natural
decomposition of the RMP in a pure flow model with several side constraints gives
good results for the case studies investigated. When compared with results acquired
with the Feasibility Pump algorithm and branch and bound (both implemented in
BONMIN) the overall quality of our solutions is better but more importantly they
are generated quickly, making them better suited to practical application in a water
utility distribution system.





6
Conclusions and perspectives

A mathematical model can serve as a valuable tool for decision making in oper-
ational management of large-scale water supply systems. This has already been
proven by several research papers, where the authors implemented their models on
real-life networks. The Berliner Wasserbetreibe (Berlin’s main water supply net-
work) has been coupled with an electronic optimization system [4, 5] that minimizes
production and energy costs. The authors hereby approximated the full MINLP
formulation with a nonlinear one. For the cities of Pittsburgh [6] and Adelaide [7]
similar approaches have been implemented, where the software is able to produce
suboptimal control configurations. These systems have proven to save up to 20%
on operational costs.

Recently, other approaches have been proposed for solving similar networks. In
the last decades (meta)heuristics have begun to dominate the field of water supply
network optimization, on operational as well as design aspects. However, it needs
to be pointed out that these networks are often either too simplified or too small
when they are compared with real-life instances.

The drinking water network in Flanders can also benefit from a decision support
model for operational management. Such a model will not only guarantee drinking
water delivery but also lower operational costs by more efficient usage of the
available water sources. The water supply network of Flanders has a complex
structure that includes variable speed pumps, multiple network loops and buffers
with additional constraints. The proposed models found in literature and their
accompanying methods can not be implemented on this network for various reasons.

6-1
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Either these models discard nonlinearities, which lead to poor approximations.
Dynamic programming is a method that is very beneficial for smaller networks but
fails when applied on large-scale instances. Proposed NLP approximations may be
worth considering but these methods are not suited for exact pump scheduling or
models that require binary variables for flow dynamics at buffers. Finally, heuristics
are definitely worth considering. We distinguish two types of heuristics: those
for the design case and those constructed for operational optimization. Whereas
the first type can be used to determine optimal pump schedules and let simulation
software such as EPANET calculate the exact network hydraulics, the second type
of heuristics has to cope with transient conditions such as buffer storage. For this, a
multiperiod optimization is required. One can start with the first period, optimize
the configuration and plug the final buffer volume values in the starting values
for the next period. Clearly, this may lead to a solution where not enough water
is available to satisfy either demand or buffer volumes in the last period, but the
solution is definitely suboptimal.

Here, a full MINLP model is proposed that takes into account all the relevant
active components in the Flemish drinking water network. The final model is
nonconvex and contains many nonlinear constraints (pressure losses and pump
characteristic curves) as well as binary variables for pump activation and buffer
flows. The model is accurate up to a certain limit: pressure losses are modeled
using the approximate law of Prandtl-Kármán, and pump curve equations are based
on discrete data points delivered by the pump manufacturer. Demand uncertainty
was not taken into account, which can of course influence the optimal solution more
than the small inaccuracies inherent to the model. Furthermore a discretization of
the time horizon was proposed, where the state of the network is assumed to be
constant over the length of each time period.

Using the MINLP solver BONMIN to test the formulation led to high computa-
tional times. Instead of using an NLP approximation, the use of piecewise linear
functions was proposed to reduce the complexity of the model. These functions
serve as over- and underestimators for the nonlinear pressure loss and pump charac-
teristic functions, reducing the model to an MILP variant. Given that the number
of intervals is sufficiently large, the solution of this model closely approximates
the one found by BONMIN in decreased computational effort. Special attention is
dedicated to variable speed pumps, which are modeled as multivariate functions in
the MINLP. Different formulations to overcome this difficulty are proposed.

Since the MILP model seems to have a significant computational benefit, work
is continued to derive an accurate solution. Here the link with simulation software
methods is made. Using a modified version of the gradient algorithm, the solution
from the MILP is fixed to satisfy the original MINLP formulation, at a marginal
computational cost. Since pressure and flow bounds may be invalid, the necessary
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number of intervals to ensure feasibility has to be determined experimentally. As a
result the method may be suitable for medium-sized networks but the computational
time for large-scale networks may be high due to the required number of intervals
and, accordingly, binary variables. Future efforts to reduce the complexity may
include even tighter bounds on a local level. For example, a pipe that is connected
with a buffer at a border of the network will never transport more than the sum of
the total volume of this buffer divided by the length of the period and the hourly
demand in this buffer. To take this aspect into account, a more thorough analysis of
the network is needed.

In an effort to find good solutions in a more efficient way, a Generalized
Benders Decomposition algorithm was proposed. This method efficiently splits
the model in a master and subproblem, both of which can be solved in short
computational time. Careful selection of the complicating variables and fine-tuning
of the parameters allows this method to converge rapidly using approximation cuts.
For larger problems the computation time is still high but a good solution can
be found that approximates what is probably the global optimal solution. In this
regard the method may be preferable in comparison to the hybrid method, where
the number of intervals may prevent the algorithm from converging. The RMP is
clearly the bottleneck since its complexity increases with every iteration. It is a
worthwhile direction to investigate the use of efficient network algorithms to solve
a part of the problem. In addition, the knowledge of the properties and structure of
the problem can be used to integrate the GDB algorithm with appropriate heuristics
and take advantage of their speed. In this regard the master problem may be solved
heuristically and convergence will still be achieved. Furthermore this may result
in achieving a smaller gap to the optimal value compared with a purely heuristic
approach.

Other perspectives include the application of the proposed model and its meth-
ods on network design optimization problems. This will involve adding discrete
sets of pump diameters and an altered objective value. These discrete diameters
may be reformulated with the use of binary variables. Additional pressure loss
constraints need to be imposed for each possible diameter value. This will increase
the complexity, but on the other hand optimization is done over only one period
so computational difficulties are minimal unless a big number of pipes have to
be renewed. This model could be coupled with the proposed hybrid method in
this dissertation. A nonlinear way to go about this is described in [71], where the
authors use area (A) instead of diameter to decrease the nonlinearity of the model.
Heuristic methods such as genetic algorithms (GA), differential evolution (DE) or
ant colonization may also prove to be beneficial here however.

Since maximum limits on extraction in ground water wells are determined on
a yearly basis(3.29), a more accurate model should be optimized over 365 days.
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Furthermore contractual obligations exist in the Flemish water supply network
where the water supplier has to extract a minimal yearly volume from a certain
source. These contracts impose additional costs to the water supply network
problem. Since solving the model over a horizon of 365 days is computationally
impossible, another approach can be proposed. By adding seasonal weights for
example, the model can still be solved on a daily basis while taking into account
the actual extraction during the previous periods.

Demand variability can also be taken into account. Using historical data, fore-
casting techniques can be adopted to generate expected values of the demand.
Uncertainty could be added by making use of stochastic model structures. These
will however increase the complexity even more, which will require new optimiza-
tion methods to find good solutions in reasonable computational time.

Electrical power flow equations and pressure losses in gas pipes are quadratic
equations that resemble the friction loss equations in water pipes. The similarities
between water supply networks and electric grids/gas networks may allow the
proposed methods to be used for designing and operating those networks as well.

The proposed methods are proven to be capable of solving large-scale water
networks to near-optimality. A practical implementation can be carried out for
weekly planning purposes. This would of course require a user-friendly interface
and a close cooperation between hydraulic and industrial engineers.
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Table B.1: Node parameters for the example network

Node A (m2) lmin (m) lmax (m) hfl (m) hin (m) d (m3/day) h (m)
WT1 150 1 6 40 47 2500 4
WT2 125 1 6 50 57 7000 15
WT3 200 1 7 40 48 1000 2
WT4 150 1 7 40 48 2500 5
WT5 200 1 5 70 76 2500 25

R1 150 2 4 14 19 0 10
R2 4000 2 5 2 8 0 0
R3 750 2 4 20 25 0 10
R4 2000 1 4 5 10 4000 0

WS1 - - - - - 0 10
WS2 - - - - - 0 10
WS3 - - - - - 0 10

D1 - - - - - 4000 10
D2 - - - - - 7500 10

J1 - - - - - 0 10
J2 - - - - - 0 20
J3 - - - - - 150 10
J4 - - - - - 3500 5
J5 - - - - - 1000 10
J6 - - - - - 0 5
J7 - - - - - 200 5
J8 - - - - - 0 20
J9 - - - - - 0 15
J10 - - - - - 0 25
J11 - - - - - 0 20
J12 - - - - - 0 20
J13 - - - - - 800 20

WPC1 - - - - - 0 10
WPC2 - - - - - 0 10
WPC3 - - - - - 0 10

Table B.2: Raw water pump parameters for the example network

Node Node qcap (m3/h) qlim (m) c(p) (e/m3)
WS1 R1 150 3600 0.20
WS2 R2 1500 - 0.05
WS3 R3 175 4200 0.15
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Table B.4: Pipe parameters for the example network

Node Node l (m) d (mm) λ (-)
WPC1 J1 8000 500 0.01962
J1 WT1 10000 400 0.02073
J1 WT2 500 500 0.01962
J2 J3 5000 500 0.01962
WPC2 J3 1000 500 0.01962
WPC2 J4 1000 1000 0.01669
J4 J5 5000 600 0.01878
J5 J6 5000 300 0.02231
J6 WT3 3000 300 0.02231
J5 D1 5000 500 0.01962
J2 J8 8000 900 0.01709
J3 J7 2000 400 0.02073
J7 WT4 4000 400 0.02073
J7 R4 10000 400 0.02073
J8 D2 10000 500 0.01962
J9 R4 5000 400 0.02073
J9 J10 2000 400 0,02073
WPC3 J10 500 500 0.01962
J10 J11 1000 500 0.01962
J11 D2 2000 400 0.02073
J12 J13 1000 600 0.01878
J12 WT5 500 500 0.01962
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Table C.1: Optimal values for head in
junctions (part I)

Node Period H(m)
J1 1 62.24
J1 2 61.40
J1 3 62.69
J1 4 97.22
J1 5 82.30
J2 1 54.55
J2 2 67.99
J2 3 54.18
J2 4 23.31
J2 5 45.89
J3 1 65.41
J3 2 79.54
J3 3 63.83
J3 4 23.40
J3 5 59.34
J4 1 70.68
J4 2 84.16
J4 3 69.05
J4 4 23.26
J4 5 67.63
J5 1 69.92
J5 2 83.83
J5 3 68.03
J5 4 23.25
J5 5 67.22
J6 1 69.92
J6 2 83.83
J6 3 65.94
J6 4 32.56
J6 5 62.00
J7 1 61.19
J7 2 77.05
J7 3 58.76
J7 4 25.11
J7 5 49.49
J8 1 54.42
J8 2 67.89
J8 3 54.09
J8 4 23.30
J8 5 45.54
J9 1 52.82
J9 2 65.13
J9 3 53.18
J9 4 25.01
J9 5 29.79

Table C.2: Optimal values for head in
junctions (part II)

Node Period H(m)
J10 1 52.00
J10 2 65.07
J10 3 52.44
J10 4 25.00
J10 5 32.76
J11 1 51.87
J11 2 65.07
J11 3 52.32
J11 4 24.75
J11 5 33.22
J12 1 77.89
J12 2 77.84
J12 3 77.25
J12 4 55.70
J12 5 77.57
J13 1 77.89
J13 2 77.84
J13 3 77.24
J13 4 55.69
J13 5 77.57
WPC1 1 62.24
WPC1 2 61.40
WPC1 3 62.69
WPC1 4 97.51
WPC1 5 82.30
WPC2 1 70.71
WPC2 2 84.18
WPC2 3 69.08
WPC2 4 23.26
WPC2 5 67.64
WPC3 1 52.00
WPC3 2 65.07
WPC3 3 52.44
WPC3 4 25.10
WPC3 5 32.76
D1 1 68.67
D1 2 83.27
D1 3 67.02
D1 4 22.67
D1 5 67.10
D2 1 51.05
D2 2 65.01
D2 3 51.58
D2 4 23.11
D2 5 36.19
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Table C.3: Optimal values for head, volume and mean level in buffers

Node Period H(m) V (m3) HM (m)
R1 1 60.81 500.00 17.33
R1 2 60.81 500.00 17.33
R1 3 60.81 500.00 17.33
R1 4 60.65 307.20 16.69
R1 5 63.11 500.00 16.69
R2 1 53.10 15274.27 5.91
R2 2 53.09 15691.32 5.87
R2 3 53.07 14658.65 5.79
R2 4 53.13 17658.65 6.04
R2 5 53.17 16000.00 6.21
R3 1 65.16 2638.48 23.43
R3 2 65.22 2843.58 23.65
R3 3 65.27 2957.20 23.87
R3 4 65.21 2500.00 23.64
R3 5 65.14 2500.00 23.33
R4 1 54.87 4507.10 10.25
R4 2 65.25 4193.92 7.18
R4 3 55.04 2340.66 6.63
R4 4 25.05 2000.00 6.09
R4 5 22.37 6000.00 7.00
WT1 1 61.41 445.35 43.98
WT1 2 57.30 889.34 44.45
WT1 3 62.69 188.79 43.59
WT1 4 96.24 150.00 41.13
WT1 5 79.99 750.00 43.00
WT2 1 61.97 315.22 53.66
WT2 2 61.20 445.62 53.04
WT2 3 62.30 702.47 54.59
WT2 4 97.22 125.00 53.31
WT2 5 82.22 600.00 52.90
WT3 1 69.92 750.00 44.38
WT3 2 83.83 500.00 43.13
WT3 3 64.69 641.83 42.85
WT3 4 38.14 200.00 42.10
WT3 5 58.87 1000.00 43.00
WT4 1 59.69 956.42 46.19
WT4 2 77.05 331.42 44.29
WT4 3 55.21 941.49 44.24
WT4 4 29.44 150.00 43.64
WT4 5 48.25 900.00 43.50
WT5 1 77.86 639.14 73.60
WT5 2 77.81 673.39 73.28
WT5 3 77.23 481.04 72.89
WT5 4 55.70 200.00 71.70
WT5 5 77.54 800.00 72.50



C-4 CHAPTER C. OPTIMAL SOLUTION FOR THE TEST NETWORK

Table C.4: Optimal values for flow in
pipes (part I)

Node Node Period Q (m3/h)
WPC1 J1 1 0.00
WPC1 J1 2 0.00
WPC1 J1 3 0.00
WPC1 J1 4 96.40
WPC1 J1 5 0.00
J1 WT1 1 80.09
J1 WT1 2 178.16
J1 WT1 3 0.00
J1 WT1 4 87.06
J1 WT1 5 133.79
J1 WT2 1 366.31
J1 WT2 2 313.40
J1 WT2 3 443.68
J1 WT2 4 9.34
J1 WT2 5 202.47
J2 J3 1 -736.70
J2 J3 2 -759.47
J2 J3 3 -694.24
J2 J3 4 -67.89
J2 J3 5 -819.63
WPC2 J3 1 1150.18
WPC2 J3 2 1076.33
WPC2 J3 3 1145.75
WPC2 J3 4 -183.62
WPC2 J3 5 1439.97
WPC2 J4 1 531.25
WPC2 J4 2 354.17
WPC2 J4 3 560.78
WPC2 J4 4 183.62
WPC2 J4 5 296.98
J4 J5 1 312.50
J4 J5 2 208.33
J4 J5 3 364.63
J4 J5 4 34.58
J4 J5 5 229.67
J5 J6 1 0.00
J5 J6 2 0.00
J5 J6 3 84.41
J5 J6 4 -178.33
J5 J6 5 133.52

Table C.5: Optimal values for flow in
pipes (part II)

Node Node Period Q (m3/h)
J6 WT3 1 0.00
J6 WT3 2 0.00
J6 WT3 3 84.41
J6 WT3 4 -178.33
J6 WT3 5 133.52
J5 D1 1 250.00
J5 D1 2 166.67
J5 D1 3 224.18
J5 D1 4 170.33
J5 D1 5 76.92
J2 J8 1 290.31
J2 J8 2 267.90
J2 J8 3 250.56
J2 J8 4 67.89
J2 J8 5 483.36
J3 J7 1 404.11
J3 J7 2 310.61
J3 J7 3 443.10
J3 J7 4 -257.90
J3 J7 5 617.46
J7 WT4 1 170.35
J7 WT4 2 0.00
J7 WT4 3 262.12
J7 WT4 4 -289.29
J7 WT4 5 155.22
J7 R4 1 221.25
J7 R4 2 302.28
J7 R4 3 169.77
J7 R4 4 22.88
J7 R4 5 458.39
J8 D2 1 290.31
J8 D2 2 267.90
J8 D2 3 250.56
J8 D2 4 67.89
J8 D2 5 483.36
J9 R4 1 -178.44
J9 R4 2 -44.60
J9 R4 3 -169.77
J9 R4 4 -22.88
J9 R4 5 339.13
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Table C.6: Optimal values for flow in pipes (part III)

Node Node Period Q (m3/h)
J9 J10 1 178.44
J9 J10 2 44.60
J9 J10 3 169.77
J9 J10 4 22.88
J9 J10 5 -339.13
WPC3 J10 1 0.00
WPC3 J10 2 0.00
WPC3 J10 3 0.00
WPC3 J10 4 228.60
WPC3 J10 5 0.00
J10 J11 1 178.44
J10 J11 2 44.60
J10 J11 3 169.77
J10 J11 4 251.48
J10 J11 5 -339.13
J11 D2 1 178.44
J11 D2 2 44.60
J11 D2 3 169.77
J11 D2 4 251.48
J11 D2 5 -339.13
J12 J13 1 50.00
J12 J13 2 33.33
J12 J13 3 44.84
J12 J13 4 34.07
J12 J13 5 15.38
J12 WT5 1 116.04
J12 WT5 2 109.87
J12 WT5 3 101.64
J12 WT5 4 -34.07
J12 WT5 5 133.79



C-6 CHAPTER C. OPTIMAL SOLUTION FOR THE TEST NETWORK

Table C.7: Optimal values for flow in raw water pumps variables

Node Node Period Q (m3/h)
WS1 R1 1 0.00
WS1 R1 2 0.00
WS1 R1 3 0.00
WS1 R1 4 0.00
WS1 R1 5 27.54
WS3 R3 1 34.62
WS3 R3 2 34.18
WS3 R3 3 22.72
WS3 R3 4 0.00
WS3 R3 5 0.00
WS2 R2 1 1500.00
WS2 R2 2 1500.00
WS2 R2 3 1500.00
WS2 R2 4 1500.00
WS2 R2 5 1500.00
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Table C.8: Optimal values for flow and head increase in regular speed pumps variables

Node Node Period Q (m3/h) ∆H (m)
R1 WPC1 1 0.00 44.91
R1 WPC1 2 0.00 44.07
R1 WPC1 3 0.00 45.36
R1 WPC1 4 96.40 80.82
R1 WPC1 5 0.00 65.61
R3 WPC3 1 0.00 28.57
R3 WPC3 2 0.00 41.42
R3 WPC3 3 0.00 28.57
R3 WPC3 4 228.60 1.47
R3 WPC3 5 0.00 9.43
J2 J1 1 446.39 59.14
J2 J1 2 491.56 55.79
J2 J1 3 443.68 59.33
J2 J1 4 0.00 73.91
J2 J1 5 336.26 65.60
R4 J12 1 166.04 70.82
R4 J12 2 143.21 71.07
R4 J12 3 146.48 71.04
R4 J12 4 0.00 49.61
R4 J12 5 149.18 71.02
R2 WPC2 1 1681.43 64.80
R2 WPC2 2 1430.49 78.31
R2 WPC2 3 1706.53 63.29
R2 WPC2 4 0.00 17.22
R2 WPC2 5 1736.95 61.43








