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Chapter 1. Introduction

When students embark on a dissertation project in psychology,

they often have an idealized vision of the enterprise of research. They

will  get  up  in  the  morning,  awakened  by  a  creative  spark  and

formulate a research hypothesis that will clearly follow from a well-

defined theory. All they have to do next is to design and perform an

elegant experiment in the afternoon, analyze the data in the evening,

and finish writing a paper by the end of the week.

Of course, this idealized version of the cycle of research does

not fully reflect the research practice. The first reason is that the time-

frame described above resembles more that of a TV-show in which

events occurring in the course of an entire year are compressed into 50

minutes. The second reason is that it lacks a dramatic element, namely

the constant worry about p-values. The third reason, which is the one I

will  focus  on,  is  that  researchers  never  function  completely

independently: A great deal of a their time is spent on a frustrating

wait for colleagues or scientists from other fields to deliver the tools

and  resources  that  are  essential  to  their  research  question.  In

psycholinguistics  in  particular  the  researcher  depends  on  many

language-related  resources,  from  generally  used  resources  such  as

dictionaries, grammars, over text corpora, lists of word frequencies,

and ratings of stimuli collected from human subjects, to specialized

software, to compute lexical statistics or to create nonword stimuli in

many languages.

Researchers who work on languages such as English, Dutch, or

French are relatively lucky, because the essential materials and tools

are  relatively  well-developed  for  these  languages.  In  many  other
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languages,  however,  a  complete  lack  of  reliable  resources  makes

psycholinguistic research almost impossible.

In our  idealized example,  the researcher  does  not  encounter

these practical limitations and has complete freedom in formulating

the hypothesis  and then designing the experiment.  In reality, many

researchers will find that some critical resources are missing and be

forced to give up and modify their research questions or to provide the

materials for themselves. Luckily, the second option is becoming more

and more feasible as the ubiquity of storage of information in digital

form has caused a rapid increase in the total amount of data one can

collect and use for research.

First, it is far easier now to collect text corpora that can be used

to create resources such as word frequencies for different languages,

different registers, etc. Second, traces of behavior are constantly being

produced by anyone using a digital device and, because many of such

devices are now connected via Internet, a researcher can even design

on-line experiments (e.g.,  Crump,  McDonnell,  Gureckis,  & Gilbert,

2013) that will easily reach a huge number of potential participants

without bringing them to the laboratory.

It  has  been  proposed  that  developments  like  these  are

transformative for the science of psychology, leading to a new field

which has tentatively been called psychoinformatics, which combines

novel data collection techniques and methods from computer science

and machine learning with psychology (Yarkoni,  2012; Markowetz,

Błaszkiewicz, Montag, Switala, & Schlaepfer, 2014)1. Importantly, the

1 Other scientific fields have seen a similar evolution. For example, in the field of genomics,

the increase in the amount of biological data has led to the emergence of bioinformatics,

which is now a firmly established field, credited for many of the current advances in biology



11

mere fact that more data are available and that they can be processed

quickly and efficiently, is  not  the only transformation. Instead, these

resources and methods also allow researchers to find new ways to do

psychology.

First, in contrast to data collected in traditional psychological

experiments which are designed to answer one specific question, large

datasets  are  conductive to being re-used and re-analyzed.  This also

encourages sharing the datasets with other researchers, who can often

provide a new perspective and deliver new insights based on the same

data.2

Second,  large  datasets  promote  application  of  analytical

techniques that go beyond traditional null-hypothesis  testing,  which

has  been  strongly  criticized  for  being  poorly  understood  and

mindlessly applied (Gigerenzer, 2004). Large datasets encourage the

expansion of the psychologist's  statistical  toolbox. For instance,  the

mere fact that the large number of data points often provide enormous

statistical  power  and  allows  to  detect  even  trivial  effects  naturally

shifts researcher's focus to comparisons of effect sizes. 

Third,  large datasets  are  suitable  for  performing exploratory

analyses which are considered as  an essential  part  of  the scientific

process (Jewett, 2005), especially in a field such as psychology, where

we are often unable to even formulate the problem in a way that can

be solved (O'Donohue, & Buchanan, 2001).

Fourth, easier compilation of psycholinguistic resources offers

an opportunity to create resources for  underresourced  languages and

2 Publicly releasing the data or the resource often has the additional positive side-effect of

increasing the number of citations of the associated paper, because the researchers refer to it

every time they use the resource or the dataset.
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to  compile  tailor-made  resources  for  studying  specific  populations.

For  example,  a  researcher  investigating  child-language  can  easily

compile  word  frequencies  based  on  materials  targeted  towards

children if those materials are available in digital form.

Finally, the increased availability of digital materials and the

potential to reach large populations of participants using web-based

experiments  can  remove the  practical  limitation  that  often  leads  to

excessive focus  on easily  accessible  groups of  participants  such as

undergraduate students of the university where the researcher works.

This may be especially important in psycholinguistics where we need

to make sure that the results generalize not only to all demographic

groups but also to all languages (see Myers, submitted).

To come full circle: In the age of psychoinformatics, a day in a

researcher's  life  could  consist  of  data-mining  on  rich,  publicly

available  datasets  of  behavioral  data  to  develop  ideas  about  the

direction in which a theory could evolve. The researcher could then

design  an  experiment  based  on  specialized  materials  that  exactly

match their needs and collect data from thousands of participants in a

remote  location.  Alternatively,  they  could  test  the  hypothesis  on

another already existing dataset. In the course of the afternoon, they

would make the data available to other researchers, who could use it

in a computational model or for purposes completely unrelated to the

original research. Because collecting data would become so easy that

every study would have enough power to actually detect non-trivial

effects,  this  day  in  the  life  would  unfortunately  lack  the  dramatic

element of the constant  concern about p-values.3

3 To be clear, this idealized version is probably as remote from the current reality as the first

one. 
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What this idealized version of a day in a researcher's life has in

common with the first one, is that events spanning the course of a year

are  compressed  into  a  completely  unrealistic  timespan.  It  does

however  illustrate  that  psychological  research  does  not  consist  of

doing purely theoretical research in a vacuum. Instead, it encompasses

the entire enterprise that makes research possible.

In this dissertation, I deal simultaneously with the development

of new resources that are valuable to the field of psycholinguistics and

beyond,  the improvement  of  the  methodology for  developing these

resources,  and  with  theoretical  questions  in  the  field  of  lexical

processing that can be addressed with these resources.

The common ground of the chapters in this dissertation is that

they all consist of the development or exploitation of a new resource,

the methodological challenges associated with this development, and

reflection on theoretical questions that can be addressed using these

resources.  In  describing  the  chapters  that  form  the  core  of  this

dissertation, I will therefore focus on three different elements: First,

what does the research bring to the research community in terms of

resources?; Second, how has the research improved methodology for

developing new resources?; Third, what are the theoretical questions

that were addressed using these resources?

In the first empirical chapter of this dissertation (chapter 2), we

present a new set of word frequency norms for British English based

on a stream of subtitles broadcasted on BBC channels over a period of

two years. The dataset also includes information about frequencies of

parts-of-speech and lemmas associated with different words as well as

frequencies  derived  from  materials  targeted  towards  children.  The

quality of the new resource is evaluated by comparing it to the word
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frequency  norms  derived  from  the  British  National  Corpus.

Methodologically,  an  interesting  aspect  of  this  dataset  is  that  the

subtitles are encoded as text and contain reliable metadata about the

associated programs. This allowed us to compile a corpus which does

not  suffer  from problems with  optical  character  recognition  and in

which duplicates were easy to detect.  Being broadcasted on British

television and accompanied by British English captions, the contained

materials  contrast  with   the  widely-used  SUBTLEX-US  list  word

frequencies  (Brysbaert  &  New, 2009),  in  which  American  English

dominates.  Using  two  lexical  decision  megastudy  databases  –  one

conducted in the USA (Balota et al., 2007) and one conducted in the

UK (Keuleers, Lacey, Rastle, & Brysbaert, 2012), it was possible to

address the long-standing methodological and theoretical concern to

what extent differences between British and American English in the

source  material  for  frequency  norms  have  an  effect  on  predicting

behavioral data from participants in the UK and in the US .

Chapter 3 moves the focus away from English and presents the

first database of word frequencies based on movie subtitles for Polish.

Similarly to the resources presented in chapter 2, the database also

includes  information  about  the  frequencies  of  parts-of-speech  and

about lemmas associated with each word form. This information is

especially valuable for researchers working in Polish because it is a

highly  inflected  language.  The  absence  of  existing  behavioral  data

that  could  be  used  to  evaluate  the  word  frequencies  inspired  a

methodological  question  which  is  important  for  developing

psycholinguistic  research  in  any  languages,  for  which  limited

resources are available: How can we evaluate frequency norms in the

most  efficient  way.  First,  I  investigate  whether  the  validation  of
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frequency norms can be made easier by using a carefully selected set

of validation stimuli instead of the traditional method which uses large

amounts  of  behavioral  data,  and  therefore  requires  an  existing

megastudy. Second, I collect the validation data in a small web-based

experiment,  which has the additional advantage that participants do

not need to be locally available. A theoretically interesting aspect of

chapter 3  is that the new resource allowed us to look at the relative

importance  of  the  inflected  word  form  frequency  and  the lemma

frequency for predicting performance in the lexical decision task in a

highly inflecting language such as Polish.

In chapter 4, I take the approach of web-based experiments a

step further by analyzing data from two massive on-line vocabulary

tests  conducted  in  Dutch  and  English  with  almost  1.5  million

participants  in  total.  These experiments  were  designed primarily  to

collect a large amount of data regarding word knowledge in a wide

population of individuals. The collected datasets have already proved

to be a useful source of knowledge about human language processing

(Keuleers, Stevens, Mandera, & Brysbaert, 2015; Brysbaert, Stevens,

Mandera, & Keuleers, 2016). I analyze the response times collected in

these experiments and show that megastudies can be extended from

the existing approach, where responses to many stimuli are collected

on relatively few participants in laboratory settings, to a new approach

in which responses to a large number of stimuli are collected from a

very large set of demographically diverse participants using browser-

based presentation on a wide range of devices including smartphones

and tablets. This is important for two reasons. First,  it  allows us to

evaluate to what extent effects found in frequently studied groups of

participants,  typically  undergraduate  students,  generalize  to  other
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groups. Second, because the geographical proximity of the researcher

and  the  participants  is  irrelevant,  it  removes  a  boundary  in  doing

psycholinguistic research in languages that are currently understudied.

In this chapter, I establish that the chronometric data collected in the

aforementioned  studies  are  useful  for  psycholinguistic  research  by

using a standard psychometric approach to reliability measurement as

well  as  by  looking  at  the  qualitative  pattern  of  correlations  with

existing  datasets.  I  also  show  that  differences  in  empirical  effects

between groups  of  participants  in  these  studies  are  informative  for

psycholinguistic theory. Specifically, I show that the changes in the

word frequency effect associated with age, proficiency and education

can  be  explained  by  combining  the  simple  learning  principles

described with the power function (Newell & Rosenbloom, 1981) with

the properties of word frequency distributions. 

The  first  three  empirical  chapters  of  the  thesis  combined

megastudy  data  with  corpus-based  measures  of  word  frequency, a

critical variable for visual word recognition. However, word frequency

is  just  one of  the  possible  measures  that  can be derived from text

corpora.  The last  two empirical chapters focus on how information

derived from text corpora using distributional semantics methods can

be useful  in  psycholinguistics.  The most  prominent  models  of  this

kind,  such  as  HAL  (Lund  &  Burgess,  1996),  LSA  (Landauer  &

Dumais, 1997) or Beagle (Jones & Mewhort, 2007), have been used in

psycholinguistics for some time. Recent developments have made the

application  of  distributional  semantics  to  psycholinguistics

particularly  interesting:  New  methods  of  deriving  semantic

information have become available (Mikolov, Chen, Corrado, & Dean,

2013),  text  corpora  have  become larger  and  more  specialized,  and
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large  datasets  of  behavioral  data  that  tap  into  semantic  knowledge

have been published (e.g.,  Hutchison et  al.,  2013).  However, using

distributional semantics models often requires specialized knowledge

of  programming,  data  processing,  and  access  to  substantial

computational resources.

In chapter 5, I create distributional semantic spaces for Dutch

and  English,  and  present  a  novel  visual  interface  that  allows

researchers to explore semantic spaces resulting from the analysis of

word co-occurrence data. The interface can also be used with spaces

created by other researchers, independently of the underlying model

used  to  generate  the  spaces.  The  methodological  and  theoretical

questions in this chapter are how and why traditional approaches to

distributional  semantics  differ  from  the  newer  class  of  models

(Mikolov et  al.,  2013).  I  address  these questions by discussing the

theoretical  relationships  between  the  different  types  of  the

distributional  semantics  models,  by  evaluating  and discussing  their

performance in predicting human behavior on a broad set of tasks and

by investigating the  effect  that  different  text  corpora  have on their

performance.  Based on these results, I provide a set of distributional

semantic spaces for English and Dutch that should be of particular

value  in  psycholinguistics  (i.e.,  they  perform  very  well  on  the

aforementioned  tasks)  and  that  can  be  used  with  the  interface  I

developed.

Finally, in chapter 6, I use existing databases of human ratings

to move beyond the simple evaluation logic that I employed in chapter

5.  This chapter finds its roots in a proposal  by Bestgen & Vincze

(2012)  that  distributional  semantics  models  could  be  used  in

combination  with  extrapolation  methods  to  estimate  human  ratings
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based on a small seed of ratings. For example, if one knows that the

word cake and party have positive valence and that the word birthday

is semantically related to these two, one can make an informed guess

about whether the word birthday is positive or negative. Following the

enthusiasm associated with these methods I hoped that it  would be

possible  to  create  large  datasets  for  new  variables  and  for

underresourced  languages.  I  analyse  this  approach  by  examining

whether (1) the estimated values can substitute for original ratings in

research  practice  and  (2)  whether  the  extrapolation  procedure

introduces  statistical  artifacts  to  the estimated  values,  which  would

make it impossible to use these values as a substitute for the original

ratings,  for  instance  as  an  experimental  or  control  variable  in

behavioral  research.  I  also  investigate  for  which  variables  and  in

which  way  the  semantic  component  is  informative,  which  is

theoretically  interesting.  For  example,  when  applied  to  age-of-

acquisition  ratings,  this  method  can  give  us  an  idea  if  language

acquisition follows a  thematically  organized trajectory and whether

semantically similar words are acquired around the same age.
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Chapter 2. SUBTLEX-UK: A new and improved

word frequency database for British English1

ABSTRACT

We present  word  frequencies  based  on  subtitles  of  British

television  programmes.  We  show  that  the  SUBTLEX-UK  word

frequencies explain more of the variance in the lexical decision times

of the British Lexicon Project than the word frequencies based on the

British  National  Corpus  and  the  SUBTLEX-US  frequencies.  In

addition to the word form frequencies, we also present measures of

contextual  diversity  part-of-speech  specific  word  frequencies,  word

frequencies  in  children  programmes,  and word bigram frequencies,

giving researchers of British English access to the full range of norms

recently made available for other languages. Finally, we introduce a

new measure of word frequency, the Zipf scale, which we hope will

stop the current misunderstandings of the word frequency effect.

1 This chapter was published as Van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert,

M.  (2014).  SUBTLEX-UK:  A new  and  improved  word  frequency  database  for  British

English. Quarterly Journal of Experimental Psychology, 67(6), 1176-1190.
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INTRODUCTION

Word  frequency  arguably  is  the  most  important  variable  in

word recognition research (Brysbaert, Buchmeier, et al., 2011). Words

that  are  often encountered are processed faster  than words  that  are

rarely encountered. Figure 1 shows the course of the word frequency

effect.  It  includes  mean  standardized  reaction  times  (z-values)  for

samples of 1000 words going from an average frequency of 0.06 per

million words (a log10 value of −1.2) to an average frequency of nearly

1000 per  million  words  (a  log10 value of  nearly  3.0).  The reaction

times come from the English Lexicon Project (ELP; circles; Balota et

al.,  2007) and the British Lexicon Project (BLP; squares;  Keuleers,

Lacey,  Rastle,  &  Brysbaert,  2012),  which  contain  lexical  decision

times to over 40 thousand words of American English (ELP) or over

28  thousand  monosyllabic  and  disyllabic  words  of  British  English

(BLP). The word frequencies come from the British National Corpus

(BNC; Kilgarriff, 2006), a 100-million-word collection of samples of

mostly  written  and  some  spoken  language  from  a  wide  range  of

sources, collected between 1991 and 1994 and designed to represent a

wide cross-section of British English at that time. Another database of

word frequency norms often used for British English is the CELEX

lexical database (Baayen, Piepenbrock, & Gulikers, 1995), based on a

corpus of 17.9 million words assembled along the same criteria  as

those for the BNC.
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Figure 1 The course of the word frequency effect in mean standarized reaction

times  from  the  British  Lexicon  Project  (squares)  and  the  English  Lexicon

Project (circles). The standard errors are represented by whiskers.

Research  in  American  English  and  other  languages  has

suggested that word frequencies based on film and television subtitles

are better predictors of word processing times than word frequencies

based on books and other written sources (Brysbaert, Buchmeier, et

al., 2011; Brysbaert, Keuleers, & New, 2011; Brysbaert & New, 2009;

Cai  &  Brysbaert,  2010;  Cuetos,  Glez-Nosti,  Barbon,  & Brysbaert,

2011; Dimitropoulou, Duñabeitia, Avilés, Corral, & Carreiras, 2010;

Ferrand  et  al.,  2010;  Keuleers,  Brysbaert,  &  New,  2010;  New,

Brysbaert,  Veronis,  & Pallier,  2007).  This  is  an  important  finding,

because the more variance can be explained by word frequency the

fewer other variables are needed to account for word processing times.

Brysbaert  and  Cortese  (2011),  for  example,  found  that  word

familiarity  did  not  explain  much extra  variance  in  lexical  decision
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times to monosyllabic English words when the SUBTLEX-US subtitle

frequency measure was used (Brysbaert & New, 2009) instead of a

commonly used, outdated frequency measure based on a small corpus

of written sources (Kučera & Francis, 1967).

Although  word  frequency  estimates  based  on  American

subtitles can be used (and have been used) in British word recognition

research, some precision is lost, because some words have a different

spelling (e.g., labor vs. labour) or a different meaning (e.g., biscuits,

pants) in the two languages. The divergences between American and

British word usage imply that British researchers should limit  their

research to the words fully shared among the languages if they use

American  subtitle  frequencies.  Otherwise,  their  findings  risk

overestimating the impact of nonfrequency variables, such as age of

acquisition,  word  familiarity,  word  length,  or  similarity  to  other

words.  Suboptimal  frequency  estimates  also  increase  the  risk  of

stimulus selection errors. This will be the case when words must be

selected  on the  basis  of  frequency information  (e.g.,  words  having

different numbers of closely resembling words, so-called orthographic

neighbours,  with  higher  frequencies)  or  when  words  of  different

conditions  must  be  matched  on  frequency  (e.g.,  highly  emotional

words vs. neutral words).

To address the limitations that researchers working with British

English are confronted with, we decided to collect subtitle-based UK

word frequency norms. In addition, because we were able to directly

capture the subtitles from a variety of television programmes, for the

first  time  we  also  collected  subtitle  frequencies  from  channels

specifically aimed at children. Below we describe the collection of the
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data, the summary statistics calculated, and the first validation studies

we ran.

METHOD

CORPUS COLLECTION

In  line  with  UK  regulations,  since  2008  the  British

Broadcasting Corporation (BBC) subtitles all scheduled programmes

on its main channels, to help the hearing impaired.2 These subtitles are

not broadcasted through the main channel, but can be superimposed

on the programme by those who wish so (e.g., by using Teletext). To

have the widest  possible range of language input,  we collected the

words  and word pairs  of  the  subtitles  from nine channels  (BBC1–

BBC4, BBC News, BBC Parliament, BBC HD, CBeebies, and CBBC)

broadcasted  over  a  period  of  three  years  (January  2010–December

2012).  Of these channels, BBC1 is the most popular and extensive

(aimed  at  all  types  of  audiences).  The  other  channels  have  more

limited hours. Of further interest is that the CBeebies channel is meant

for preschool children (0–6 years) and the CBBC channel for primary

school children (6–12 years). This allowed us to compile frequency

norms for these groups.

Notwithstanding  the  provisions  relating  to  “fair  dealing”

provided under Section 29 of the Copyright Designs & Patents Act

1988 (Government United Kingdom, 1988), the full textual content of

the relevant subtitles was not stored or reproduced for the purpose of

this research. A count of individual words and consecutive words was

2 On the basis of anecdotal evidence we can add that these subtitles are also appreciated by

viewers with English as second language.
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undertaken,  obtainable  from  public  transmissions.  The  method

employed does not detract from or otherwise undermine the value of

this evaluative work.

TEXT CLEANING

The  broadcasts  were  cleaned  semiautomatically  for  doubles

(programme repeats) and subtitle-related information not broadcasted

to  the  viewers.  Also  the  parts  of  the  subtitles  not  related  to  the

conversation were eliminated (e.g., the words “silence” or “thunder”

to describe the ongoing scene; these are usually presented in upper

case, or in a different font or colour in the subtitle). After the cleaning

we  obtained  a  total  of  201.7  million  words,  coming  from  45,099

different  broadcasts.  This  is  larger  than  the  other  existing  subtitle

corpora (Brysbaert & New, 2009; Cai & Brysbaert, 2010; Cuetos et

al.,  2011;  Dimitropoulou  et  al.,  2010;  Keuleers  et  al.,  2010)3 and

allowed  us  to  calculate  more  precise  parts-of-speech  dependent

frequencies and word bigrams.

WORD FREQUENCY MEASURES

WORD FREQUENCY COUNTS

A first decision to be made was what to do with hyphenated

words.  In  British  English,  words  are  often  hyphenated  when  they

function as adjectives. So, a potion that saves lives can be described as

“a life-saving potion”. This phrase could be counted as consisting of

three word types (a, life-saving, potion) or four word types (a, life,

3 Brysbaert and New (2009) reported that the word type frequencies themselves show little

difference once the corpus contains 30 million words, a finding that was replicated in the

present analyses.
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saving, potion). The problem was particularly relevant for the BBC

subtitles,  because  nearly  one  out  of  four  word  types  contained  a

hyphen in the first  analysis  of the data.  The vast majority of these

hyphenated  entries  were  of  low  frequency  (fewer  than  100

observations on a total of 200 million words). Because there are no a

priori considerations about how to handle this finding (also because

there  is  quite  some  individual  variability  in  the  use  of  hyphens;

Kuperman & Bertram, 2013), we decided to use a pragmatic criterion

and looked at  which word frequencies correlated most with the 28

thousand lexical decision times of the BLP (Keuleers et al., 2012). As

this clearly favoured the dehyphenated word frequencies (a difference

in  variance explained of  5%),  we decided to  dehyphenate the data

before counting the words.4

The  dehyphenated  subtitles  resulted  in  a  total  of  332,987

different  word  types  for  a  total  of  201,712,237  tokens.  Of  these,

31,368 types were in the CBeebies subtitles with a total of 5,860,275

tokens, and 70,755 types were in the CBBC subtitles with a total of

13,644,165 tokens. Because the vast majority of words observed in a

single broadcast were typos and other nonword-like structures (like

“aaaarrrrgh”  or  “zzzzzzzzzzzz”),  we decided to  take out  all  entries

observed in a single broadcast only. This reduced the number of types

to 159,235 with a total token count of 201,335,638 for the complete

corpus,  5,848,083  for  the  CBeebies  subcorpus  (27,236  types),  and

13,612,278 for the CBBC subcorpus (58,691 types).

4 Dehyphenation also occurs in automatic text parsers,  such as CLAWS and the Stanford

parser (to be described later).  Because the Stanford parser dehyphenates more words than

CLAWS, the outcome of this parser outperformed that of CLAWS on the raw corpus, but no

longer on the dehyphenated corpus.
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A STANDARDIZED FREQUENCY MEASURE: THE ZIPF SCALE

Although the frequency counts are the most versatile measure

(as will  become clear  later, when we calculate  all  types of derived

measures), they have one big disadvantage. The interpretation of the

frequency  measure  depends  on  the  size  of  the  corpus.  Therefore,

authors have looked for a standardized frequency measure, an index

with the same interpretation across all corpora collected.

Thus far, the most popular standardized frequency measure has

been frequency per million words (fpmw). It is the frequency measure

that we made available in our previous work on subtitle frequencies as

well. However, we increasingly noticed that this measure leads to an

incorrect understanding of the word frequency effect.

Because  their  corpus  contained  only  1  million  words,  the

lowest value in the word frequencies made available by Kučera and

Francis (1967) was 1 fpmw. This contributed to the assumption that 1

fpmw is the lowest possible frequency. Obviously, this is no longer the

case for larger corpora. As it happens, about 80% of the word types in

SUBTLEX-UK have a frequency of less than 1 fpmw (i.e., fewer than

200 occurrences  in  all  broadcasts).  Second,  as  shown in  Figure  1,

nearly half of the word frequency effect is situated below 1 fpmw, and

there is very little difference above 10 fpmw. The frequency effect of

lexical decision times between 0.1 fpmw and 1 fpmw is equal to or

larger than the effect between 1 fpmw and 10 fpmw. A logarithmic

transformation  of  frequency  measures,  as  is  routinely  performed,

alleviates  this  problem.  However,  the  logarithms  of  fpmw become

negative for frequencies lower than 1 (as again shown in Figure 1),

which uninformed users tend to avoid. Because of these properties,

fpmw as a standardized measure puts users on the wrong foot.
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To make the word frequency effect easier to understand, one

needs a scale with the following properties:

1. It  should be a logarithmic scale (e.g.,  like the decibel scale of

sound loudness).

2. It should have relatively few points, without negative values (e.g.,

like a typical Likert rating scale, from 1 to 7).

3. The middle of the scale should separate the low-frequency words

from the high-frequency words.

4. The scale should have a straightforward unit.

Once we know what the scale should look like,  it  is  not so

difficult to come up with a good transformation. In particular, when

we  take  the  log10 of  the  frequency  per  billion  words  (rather  than

fpmw), the scale fulfils the first three requirements. To meet the last

requirement, we propose to call the new scale the Zipf scale, after the

American  linguist  George  Kingsley  Zipf  (1902–1950)  who  first

thoroughly  analysed  the  regularities  of  word  frequency distribution

and formulated a law (Zipf, 1949), which was later named after him.

The unit then becomes the Zipf.

The Zipf scale is a logarithmic scale, like the decibel scale of

sound intensity, and roughly goes from 1 (very-low-frequency words)

to 6 (very-high-frequency content words) or 7 (a few function words,

pronouns, and verb forms like “have”). The calculation of Zipf values

is  easy  as  it  equals  log10 (frequency  per  billion  words)  or  log10

(frequency per million words) + 3. So, a Zipf value of 1 corresponds

to words with frequencies of 1 per 100 million words, a Zipf value of

2 corresponds to words with frequencies of 1 per 10 million words, a

Zipf value of 3 corresponds to words with frequencies of 1 per million

words, and so on.
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Table 1 summarizes the information. It also helps to clear one

more  misunderstandings  about  word  frequencies  among

psycholinguists, namely that words with frequencies below 1 fpmw

are too uncommon to be known. There are hundreds of derived and

inflected word forms and even lemmas with frequencies of lower than

0.1 fpmw that are perfectly known, as can be seen in Table 1. Content

words rarely have a Zipf value higher than 6, so that for most practical

research purposes, the Zipf scale will be a scale from 1 to 6 with the

tipping point from low frequency to high frequency between 3 and 4.

Table 1. The Zipf scale of word frequency

Note. The Zipf scale is a word frequency scale going from 1 to 7. Words with Zipf values of 3 or lower

are low-frequency words; words with Zipf values of 4 and higher are high-frequency words. Examples

are based on the SUBTLEX-UK word frequencies. fpmw = frequency per million words.

One more addition that is of interest for the Zipf scale is the

possibility to include words with frequency counts of 0 (i.e., words not

observed in the corpus). Although these words are less common in

large  corpora,  they  are  by  no  means  absent.  Such  words  pose  a

problem for the Zipf scale as a result of the logarithmic transformation

(given that the logarithm of 0 is minus infinity). In a recent review,

Zipf value fpmw Examples

1 0.01 antifungal, bioengineering, farsighted, harelip, proofread

2 0.1 airstream, doorkeeper, neckwear, outsized, sunshade

3 1 beanstalk, cornerstone, dumpling, insatiable, perpetrator

4 10 dirt, fantasy, muffin, offensive, transition, widespread

5 100 basically, bedroom, drive, issues, period, spot, worse

6 1000 day, great, other, should, something, work, years

7 10000 and, for, have, I, on, the, this, that, you
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Brysbaert and Diependaele (2013) concluded that the best way to deal

with 0 word frequencies is  the Laplace transformation.  Rather than

working with the raw frequency counts, one works with the frequency

counts  +  1.  This  means  that  all  frequency  values  are  (slightly)

elevated. The proper application of the algorithm also implies that the

theoretical  size  of  the corpus is  a  little  larger  than  the  actual  size,

because  one  is  leaving  room  for  N unobserved  word  types  with

frequency 1. N is the number of word types in the frequency list. So,

for the full corpus the Laplace transformation assumes that there are

159,235  unobserved  word  types  extra  in  the  language,  all  with  a

frequency of 1.

In practice, the following equation is needed to calculate the

Zipf values on the basis of the frequency counts of the total corpus:

Zipf =log10(
frequency_count+1

201.336+0.159
)+3.0

The values in the denominator are the size of the corpus in

millions plus the number of word types in millions. Specifically, the

Zipf value of an unobserved word type will be:

Zipf = log10(
0+1

201.336+0.159
)+3.0=0.696

The Zipf value of a word type observed once in the complete

corpus will be 0.997; that of a word observed 10 times will be 1.737,

and so on.

To calculate the Zipf values for the CBeebies corpus, we have

to use the following equation:
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Zipf =log10(
frequency_countCBeebies+1

5.848+0.027
)+3.0

For the CBBC subcorpus the equation is

Zipf = log10(
frequency_countCBBC+1

13.612+0.059
)+3.0

Specifically, this means that words with a 0 frequency in the

CBeebies corpus get a Zipf value of 2.231; those with a 0 frequency in

the CBBC corpus get a Zipf value of 1.864. The higher values for

unobserved word types are due to the smaller sizes of the corpora and

also mean that one should be sensible in their use. There is no point in

blindly using these values for all missing words in the lists, as one

assumes that the missing words are known to preschoolers (CBeebies)

or primary school children (CBBC). As we see below, this may be one

reason why the childhood frequencies are not correlating very well

with the lexical decision times of the British Lexicon Project when

calculated across all words.

To give  readers  a  better  feeling  for  the  Zipf  scale,  Table  2

tabulates the summary statistics of the Zipf values used in two classic

word  frequency  studies  in  British  English  (Monsell  et  al.,  1989;

Morrison & Ellis, 1995). Two interesting observations can be made.

First,  the standard deviations  of the Zipf values are similar for the

high- and the low-frequency words (as they should be), whereas for

fpmw the standard deviations are considerably larger in the conditions

with high-frequency words than in the conditions with low-frequency

words. Second, we see that in both studies the low-frequency words

had  Zipf  values  above  3,  because  the  researchers  derived  their

frequency estimates from the Kučera and Francis list and considered 1
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fpmw as the lower end of the frequency range. With the availability of

more refined word frequency measures,  we hope that  in the future

more use will be made of words with Zipf values below 3. As Figure 1

indicates,  this  is  a  sensible  thing  to  do,  as  in  this  range the  word

frequency effect  is  at  its  strongest.  Furthermore,  about  80% of  the

word types in SUBTLEX-UK have Zipf values below 3 (i.e., below 1

fpmw).  So,  there  is  much  more  choice  at  the  low  end  of  the

distribution  than  at  the  high  end.  In  our  current  estimate,  low-

frequency words ideally have a mean Zipf value at (or below) 2.5, and

high-frequency words have a mean Zipf value of 4.5. 

Table 2. Frequencies used in two classical studies of the word frequency effect,

expressed as frequency per million words and as Zipf values

Note. Means, with standard deviations in parentheses. Frequencies based on SUBTLEX-UK. fpmw =

frequency per million words.

CONTEXTUAL DIVERSITY

Adelman,  Brown,  and  Quesada  (2006;  see  also  Adelman  &

Brown, 2008; Perea, Soares, & Comesaña, 2013; Yap, Tan, Pexman,

&  Hargreaves,  2011)  argued  that  not  so  much  the  frequency  of

occurrence of a word matters, but the number of contexts in which the

word appears. Words only encountered in a small number of contexts

(say,  a  word  with  a  frequency  of  100  occurring  in  one  or  two

Study Condition Fpmw Zipf

Monsell et al. (1989) Low frequency words (N = 48)    2.12 (2.22) 3.15 (.39)

(Experiments 1 and 2) Medium frequency words (N = 48) 15.40 (10.81) 4.09 (.29)

High frequency words (N = 48) 84.65 (62.66) 4.78 (.40)

Morrison & Ellis (1995) Low frequency words (N = 24)      6.52 (4.61) 3.66 (.44)

High frequency words (N = 24) 166.03 (168.4) 5.07 (.37)

Early acquired words (N = 24)    33.49 (34.8) 4.34 (.44)

Late acquired words (N = 24)      9.91 (16.5) 3.63 (.55)
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television  episodes)  will  be  more  difficult  to  process  than  equally

frequent words encountered in a variety of contexts (e.g., a word with

a frequency count  of 100 used in  80 different  broadcasts).  A good

proxy  for  contextual  diversity  (CD)  is  the  number  of  television

programmes/films (or the percentage of programmes/films) in which

the word appears.  Brysbaert  and New (2009) indeed observed that

log(CD) explained up to 4% of variance more in lexical decision times

than  log(frequency).  Part  of  the  advantage  was  methodological,

however. Two factors were involved. First, the effect of log(CD) on

reaction times (RTs) is more linear than the effect of log(frequency),

which becomes flat for high-frequency words, as can be seen in Figure

1.  When  nonlinear  regression  analysis  was  used,  the  difference

between CD and frequency became smaller than 2%. Another part of

the difference was due to the fact that some words occurred with very

high frequency in a few films because they were the names of main

characters  (e.g.,  archer,  bay,  brown).  The  CD  statistic  is  less

influenced by these instances than the frequency statistic.

Still, the CD measure seems to have added value. Therefore,

we provide this  information for the different  corpora we used (full

corpus, CBeebies, CBBC). The values are available both as the total

number of television programmes in which the word occurred and as

the  percentage  of  television  programmes  in  which  the  word  was

encountered. As indicated above, the total number of broadcasts in the

complete corpus was 45,099. The number of broadcasts in CBeebies

was 4847; in CBBC it was 4848.5

5 The reason why these numbers are very similar is that both channels have a similar rotation

of programmes with repeats after a rather short period of time.
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PART-OF-SPEECH DEPENDENT FREQUENCIES

For many purposes it is good to know what roles words play in

sentences and the relative frequencies of these roles (Brysbaert, New,

& Keuleers, 2012). This enables researchers interested in nouns, for

instance, to limit their stimulus materials to words that are always (or

mostly) used as nouns. It also allows researchers to know whether an

inflected word is used more often as an adjective (e.g., appalling) or as

a verb (e.g., played). This is important information to decide which

words  to  include  in  rating  studies  (e.g.,  Kuperman,  Stadthagen-

Gonzalez, & Brysbaert, 2012).

Part-of-Speech (PoS) frequencies  can only be obtained after

the corpus has been parsed (i.e., the sentences broken down into their

constituent parts) and tagged (i.e., the words given their correct part of

speech in the sentence). For a long time this was virtually impossible

given the  amount  of  work  involved.  However, the  development  of

automatic PoS taggers has made it possible to get a reasonably good

(though not perfect) outcome in reasonable time and at an affordable

price. For a long time, the CLAWS tagger developed at the University

of  Lancaster  was  the  golden  standard  (Garside  &  Smith,  1997;

Lancaster  University  Centre  for  Computer  Corpus  Research  on

Language, n.d.). It was used for the BNC corpus, and we also used it

for our SUBTLEX-US corpus (Brysbaert et al., 2012). However, in

recent  years  the  Stanford  tagger  (initial  version:  Toutanova,  Klein,

Manning, & Singer, 2003; The Stanford Natural Language Processing

Group,  n.d.)  has  become  a  worthy  competitor.  As  it  happens,  the

outcome of the first analyses with the Stanford tagger correlated more

with the BLP word processing times than the outcome of the CLAWS

tagger did. As indicated in Footnote 3, this was due to the fact that the
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Stanford  tagger  is  more  consistent  in  dehyphenating  words  than

CLAWS. When the subtitles were cleared of hyphens before running

the taggers, both gave comparable output.

Another advantage of the Stanford software6 is that it gives the

most  likely  lemma  associated  with  an  inflected  form.  The

lemmatization is based on an algorithm developed by Minnen, Carroll,

and Pearce (2001). It works on two main principles. First, it looks up

whether  a  word  form  is  present  in  the  dictionary.  If  so,  then  the

associated lemma can be read out. If a word is lacking, the most likely

lemma is allocated on the basis of rules and pattern comparisons (e.g.,

the most likely lemma of the stimulus “martialisations”, identified as a

noun, is “martialisation”; and the most likely lemma of the stimulus

“Martialis”,  identified  as  a  name,  is  “Martialis”).  As  discussed  at

greater  length  in  Brysbaert  et  al.  (2012),  the  outcome  of  these

algorithms is not 100% correct7 and, hence, should always be checked

by the user, certainly for low-frequency words. However, they are a

big step forward (with accuracy estimates of 97% and higher) and,

therefore,  are  provided  in  our  database.  More  precisely,  we  give

information about the most frequent PoS associated with each word

type, the frequency of this PoS, and the lemma associated with it, next

to  all  the  parts  of  speech  associated  with  the  word  type  and their

6 A disadvantage of the Stanford tagger is that in its default mode it Americanizes the spellings

of  the words.  So,  one must  be careful  to  change  this  when one is  working with British

spellings.

7 A notorious example is “horsefly”, which both CLAWS and Stanford parse as an adverb

(arguably because the word is not in the programme’s lexicon, so that too much reliance is put

on the end letters  –ly).  Ironically, Stanford does correctly  classify “horseflies” as a noun

associated with the lemma “horsefly” (presumably because the end letters, –lies, are more

likely to be associated with plural nouns than with other parts of speech).
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respective frequencies. Because of the lemmatization and because the

output  was  as  good  as  that  of  CLAWS,  the  data  presented  in  the

SUBTLEX-UK database are based on the Stanford parser and tagger.

Table 3 gives an example of the output. All frequencies are given as

raw frequency counts based on the entire corpus, because this value is

the  most  informative  to  calculate  derived  statistics  from (e.g.,  the

percentage use as the dominant PoS).

BIGRAM FREQUENCIES

Because  extra  information  can  be  obtained  from  word

combinations  (Arnon  &  Snider,  2010;  Baayen,  Milin,  Filipovic

Durdevic, Hendrix, & Marelli, 2011; Siyanova-Chanturia, Conklin, &

van Heuven, 2011), we also collected word bigram frequencies in the

entire  corpus  (i.e.,  the  frequency  with  which  word  pairs  were

observed). This resulted in over 1.5 million lines of consecutive word

pairs observed in the corpus. For each pair we give information about

the number of times it was observed, the symbols written between the

words  (space,  punctuation  mark,  hyphen,  … )  and  their  respective

frequencies.  This  makes  it  possible  for  everyone  to  calculate

interesting additional metrics. For instance, it allowed us to add the

787  hyphenated  words  with  a  frequency  count  of  more  than  100

(fpwm = 0.5) to the database.    8 

8 These frequencies were not subtracted from the frequencies of the individual words, under

the assumption that the component words of a hyphenated word get coactivated upon seeing

the hyphenated word.
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Table 3. Example of the PoS analysis

Note. PoS = part of speech. For each word type (in the column “Spelling”), the most frequent PoS (DomPoS), the associated lemma (DomPoSLemma), the number of times this

PoS is observed in all SUBTLEX-UK subtitles (DomPosFreq), the total frequency of the lemma in the subtitles (DomPoSLemmaTotalFreq), all parts of speech associated with

the word type (AllPoS), and the frequencies of these parts of speech in all subtitles (AllPoSFreq) were determined. From this table, we see that according to the Stanford tagger,

the word type “finalise” is used mostly (164 times) as a verb (associated with the lemma “finalise”), but also occasionally (6 times) as a noun. The total frequency of the verb

lemma “finalise” (which also includes the frequencies of the word types “finalises”, “finalised”, and “finalising”) is 466.

RowNr Spelling DomPoS DomPoSLemma DomPoSFreq DomPoSLemmaTotalFreq AllPoS AllPoSFreq

50277 finalisation noun finalisation 5 5 .noun. .5.

50278 finalise verb finalise 164 466 .verb.noun. .164.6.

50279 finalised verb finalise 206 466 .verb.adjective. .206.5.

50280 finalises verb finalise 10 466 .verb. .10.

50281 finalising verb finalise 86 466 .verb.noun. .86.3.

50282 finalist noun finalist 703 2201 .noun.adjective.name.verb. .703.77.12.2.

50283 finalists noun finalist 1498 2201 .noun.name. .1498.18.

50284 finality noun finality 28 29 .noun. .28.

50285 finally adverb finally 27804 27804 .adverb.name. .27804.2.

50286 finals noun final 4450 4450 .noun.name. .4450.52.

50287 finaly adverb finaly 4 4 .adverb. .4.

50288 finance noun finance 3364 3364 .noun.name.verb. .3364.1225.628.

50289 financed verb finance 335 1102 .verb. .335.

50290 financer noun financer 3 4 .noun. .3.

50291 finances noun finances 2806 2806 .noun.verb.name. .2806.11.1.

50292 financesed verb financese 4 4 .verb. .4.

50293 financess noun financess 2 2 .noun. .2.

50294 financial adjective financial 15048 15048 .adjective.name. .15048.1302.

50295 financialisationnoun financialisation 3 3 .noun. .3.

50296 financially adverb financially 1557 1557 .adverb. .1557.

50297 financials noun financial 43 43 .noun. .43.

50298 financier noun financier 72 150 .noun.name. .72.1.

50299 financiers noun financier 78 150 .noun. .78.
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It also allowed us to warn researchers when a compound word is more

likely to be written as two separate words than as a single word (for

instance, the word “makeup” is observed 308 times in the subtitles

(Zipf = 3.18),  but  the  spellings  “make-up”  and  “make  up”  have  a   

combined frequency of 8998, making “makeup” a bad choice for a

low-frequency word).

CORRELATIONS WITH LEXICAL DECISION MEASURES

Given the ease with which word frequencies can be collected

nowadays, it is important to check whether a new frequency measure

adds something extra to the existing ones. On the basis of previous

research, we can expect this to be the case given the superiority of

subtitle-based  frequency  estimates,  but  still  it  is  good  to  test  this

explicitly, also to make sure no calculation errors have been made.

The most interesting dataset is the BLP (Keuleers et al., 2012), which

provides  lexical  decision  reaction  times  and  accuracy  measures  of

British  students  for  over  28  thousand  monosyllabic  and  disyllabic

words. The main competitors to the SUBTLEX-UK word frequencies

are  the  BNC  frequencies,  the  CELEX  frequencies,  and  the

SUBTLEX-US  frequencies.  Words  not  observed  in  a  corpus  were

assigned a frequency of 0, and log frequencies were the Zipf values

(with Laplace transformation). The Laplace transformation was also

used for the CD measure.

Table 4 shows the results for the accuracy data. As expected,

the SUBTLEX-UK frequencies outperform the other measures, more

so for the CD measure than for the Zipf measure. Because of the large

number of observations, the differences are all highly significant. For
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instance, the t-value of the Hotelling–Williams test (Steiger, 1980)9 of

the  difference  in  correlation  with  SUBTLEX-UK (Zipf)  and  BNC

(Zipf)  equals  16.8  (df = 28,282,    p < .001).  In  terms  of  percentage   

variance explained, the difference is nearly 3%, which is high given

that many variables explain less than 1% of variance, once the effects

of  word  frequency, word  length,  and  similarity  to  other  words  are

partialled  out  (Brysbaert,  Buchmeier,  et  al.,  2011;  Brysbaert  &

Cortese, 2011; Kuperman et al., 2012).

Interestingly, the correlations with the childhood frequencies

are  much  lower,  in  particular  the  correlation  with  the  CBeebies

frequencies (preschool children). Two reasons for this are the smaller

sizes of the corpora (including the many missing words not known to

children but  given rather high Zipf estimates)  and the fact that the

overall  SUBTLEX-UK  frequencies  include  the  subtitles  from

CBeebies and CBBC television programmes (almost 10% of the total

SUBTLEX-UK).

Table 5 shows the correlations for the reaction times (RTs) to

the  words.  Because  RTs are  only  interesting  when  the  words  are

known, we set percentage accuracy to >66% (N = 20,557). Very much   

the  same  picture  appears,  with  superior  performance  for  the

SUBTLEX-UK measures (CD slightly more so than Zipf).

9 An easy introduction to the test and an Excel file to calculate the exact values are available

on the website (http://crr.ugent.be/ archives/546)
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Table 4. Correlations between the various frequency measures and the BLP accuracy data

Note. The upper part shows the correlations. The lower part shows the percentages of variance accounted for by nonlinear regression analyses (lm-procedure in R, restricted cubic

splines with 4 knots). BLP = British Lexicon Project; BNC = British National Corpus; CD = contextual diversity. N = 28,285.

SUBTLEX-UK SUBTLEX-UK_CD SUBTLEX-US BNC Celex CBeebies CBBC

Accuracy .600 .628 .557 .564 .553 .390 .535

SUBTLEX-UK .992 .881 .898 .858 .724 .887

SUBTLEX-UK_CD .877 .904 .866 .702 .876

SUBTLEX-US .830 .830 .705 .851

BNC .927 .633 .789

Celex .642 .778

CBeebies .821

Percentage of variance accounted for

SUBTLEX-UK (Zipf) 40.40%

SUBTLEX-UK (log(CD+1)) 47.10%

SUBTLEX-US (Zipf) 35.70%

BNC (Zipf) 35.90%

Celex (Zipf) 34.60%
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Table 5. Correlations between the various frequency measures and the BLP RT data

Note. The upper part shows the correlations. The lower part shows the percentages of variance accounted for by nonlinear regression analyses (lm-procedure in R, restricted cubic

splines with 4 knots). BLP = British Lexicon Project; BNC = British National Corpus; CD = contextual diversity; RT = reaction time. N = 20,557.

SUBTLEX-UK SUBTLEX-UK_CD SUBTLEX-US BNC Celex CBeebies CBBC

RT -.664 -.674 -.645 -.638 -.624 -.535 -.642

SUBTLEX-UK .991 .885 .900 .862 .727 .893

SUBTLEX-UK_CD .878 .906 .869 .701 .880

SUBTLEX-US .822 .828 .698 .847

BNC .937 .611 .771

Celex .626 .762

CBeebies .817

Percentage of variance accounted for

SUBTLEX-UK (Zipf) 46.1%

SUBTLEX-UK (log(CD+1)) 47.1%

SUBTLEX-US (Zipf) 43.3%

BNC (Zipf) 42.2%

Celex (Zipf) 40.7%
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Table  6.  Percentages  of  variance  accounted  for  by  the  various  frequency

measure in the ELP data

Note. ELP = English Lexicon Project;  CD = contextual diversity; RT = reaction time; LDT = lexical

decision task.

Table 7. Correlations of the SUBTLEX-UK frequencies with the CPWD word

frequencies

Note. All values log transformed after Laplace transformation; N = 9125 word types shared between both

lists. CPWD = Children’s Printed Word Database.

To make sure that the higher correlations between SUBTLEX-

UK and the  BLP measures  than  between  SUBTLEX-US and  BLP

were  due  to  language  congruency  and  not  to  the  better  quality  of

SUBTLEX-UK  overall,  we  ran  similar  analyses  of  the  ELP  data,

which were collected on American students. As can be seen in Table 6,

the difference between SUBTLEX-UK and SUBTLEX-US indeed has

to do with differences in word use between the two languages rather

Accuracy_LDT RT_LDT RT_nam

(N = 40,468) (N = 33,997) (N = 33,997)

SUBTLEX-US (Zipf) 20.5% 36.7% 26.0%

SUBTLEX-US (CD) 22.3% 37.2% 26.1%

SUBTLEX-UK (Zipf) 19.0% 34.8% 24.2%

SUBTLEX-UK (CD) 20.5% 34.8% 24.2%

Frequency measure

CPWD .664 .756 .690

SUBTLEX-UK (Zipf) .734 .925

Cbeebies (Zipf) .803

SUBTLEX-UK 
(Zipf)

CBeebies 
(Zipf)

CBBC 
(Zipf)
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than with the inherent qualities of the frequency lists.  Whereas the

SUBTLEX-UK frequencies are better  for the British BLP data (see

Tables 4 and 5), the SUBTLEX-US data are better for the American

ELP data (Table 6).

CORRELATIONS WITH THE CHILDREN'S PRINTED WORD 

DATABASE (CPWD)

The  best  existing  British  database  of  word  frequencies  for

children is the Children's Printed Word Database (CPWD; available at

http://www.essex.ac.uk/psychology/cpwd/;  checked  on  May  21,

2013). It includes the frequencies with which 12,193 different word

types are observed in 1011 books (995,927 tokens) for 5–9-year-old

children in the UK (Masterson, Stuart, Dixon, & Lovejoy, 2010). We

could download data for 9659 word types from the database, 9125 of

which were also in the SUBTLEX-UK list (the ones not in the list

were mainly genitive forms, hyphenated forms, and numbers). Table 7

gives  the  correlations  between  log  CPWD frequencies  and  various

SUBTLEX-UK frequencies for the 9125 shared word types. As can be

seen,  the  correlations  are  reasonably  high,  in  particular  with  the

CBeebies  word  frequencies.  The  Hotelling–Williams  test  indicated

significant  differences  between  the  CBeebies  frequencies  and  the

other  frequencies  (e.g.,  difference  between  CBeebies  and  CBBC,

t(9122) = 15.6,      p < .001).  This  confirms  that  the  SUBTLEX-UK   

children  frequencies  are  an  interesting  addition  to  the  CPWD

frequencies  and  can  be  used  to  study  frequency  trajectories  from

childhood to adulthood10 (Lété & Bonin, 2013).

10 SUBTLEX-UK frequencies not including childhood frequencies can easily be obtained by

subtracting the CBeebies and CBBC frequency counts from the total frequency counts.
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DISCUSSION

In this paper, we presented a new database of word frequencies

for British English, based on television subtitles. On the basis of our

previous  research,  we expected  that  these  frequencies  would better

predict word processing performance than word frequencies based on

written  sources  (in  particular,  the  British  National  Corpus).  This

indeed turned out to be the case, when we tried to predict the lexical

decision times and accuracies of the British Lexicon Project (Tables 4

and 5). The British subtitle frequencies were also better for predicting

the BLP data than were the American subtitle frequencies, but they

were  inferior  for  accounting  for  the  ELP  data,  in  line  with  the

observation that word usage is not completely the same in British and

American English. The extra variance accounted for amounted to 3–

5%, which is considerable given that many variables explain less than

1% of the variance once the effects of word frequency, length, and

similarity to other words are partialled out (Brysbaert, Buchmeier, et

al., 2011; Brysbaert & Cortese, 2011; Kuperman et al., 2012).

While analysing the findings, we were once again struck by

how  misleading  the  standardized  word  frequency  measure  fpmw

(frequency per million words) is  to understand the word frequency

effect. Therefore, we proposed an alternative, the Zipf scale, which is

better suited to the use of word frequencies in psychological research.

This scale goes from slightly less than 1 to slightly more than 7 and

can easily be interpreted as follows: Values  of 3 and less are  low-

frequency  words;  values  of  4  or  more  are  high-frequency  words.

Words  not  in  SUBTLEX-UK get  a  Zipf  value  of  0.696  when  the

frequencies are based on the complete corpus, 1.864 when the CBBC

frequencies are used, and 2.231 when the CBeebies frequencies are
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used. The differences in minimal values are caused by the differences

in corpus size and agree with the fact that missing words of interest in

CBeebies  or  CBBC are  likely  to  be  more  familiar  than  words  not

found in the entire corpus.

In addition to the word frequencies, the new database offers

other information, which will allow British researchers to do cutting-

edge investigations. These are:

• Part-of-speech-related  frequencies,  which  make  it  possible  for

researchers to better control their stimulus materials.

• A measure  of  contextual  diversity  (CD),  which  is  particularly

interesting for predicting which words will be known and which

not (compare Tables 4 and 5).

• Word frequencies in materials aimed at very young (preschool)

and young (primary school) children.

• Information about word bigrams.

AVAILABILITY

The  SUBTLEX-UK  data  are  available  in  three  easy-to-use

files.  The  first  one  (SUBTLEX-UK_all)  is  a  332,988 × 15  matrix   

containing  information  of  all  word  types  (including  numbers)

encountered  in  the  dehyphenated  subtitles.  The  15  columns  give

information about:

• The spelling of the word type (Spelling).

• The number of times the word has been counted in all subtitles

(Freq).

• The number of times the word started with a capital (CapitFreq).
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• The  percentage  of  broadcasts  containing  the  word  type  in  all

subtitles (CD).

• The number  of  broadcasts  containing  the  word in  all  subtitles

(CDCount).

• The most frequent part of speech of the word (DomPoS).

• The  number  of  times  this  dominant  Pos  was  observed

(DomPosFreq).

• The lemma associated with the dominant Pos (DomPosLemma).

• The number of times this  lemma was observed in all  subtitles

(DomPosLemmaFreq).

• The  summed  frequencies  of  all  the  times  this  lemma  was

observed irrespective of the PoS (DomPosLemmaTotalFreq).

• All parts of speech taken by the word type (AllPos).

• The respective frequencies of these PoS (AllPosFreq).

• The  associated  lemma  information  (AllLemmaPos,

AllLemmaPosFreq, AllLemma PosTotalFreq).

The second file  (SUBTLEX-UK) contains more information

about  the  160,022  word  types  (159,235  single  words  and  787

hyphenated words) that are observed in more than one broadcast and

which  only  contain  letter  information  (i.e.,  no  digits  or

nonalphanumerical  symbols).  This  file  is  the  file  most

psycholinguistic  researchers  will  want  to  use.  It  has  27  columns,

containing:

• The word type.

• The frequency counts in all subtitles, the CBeebies subtitles, the

CBBC subtitles, and the British National corpus.
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• The Zipf values associated with the various frequencies.

• The CD counts and percentages in the three SUBTLEX corpora.

• The dominant PoS, its associated lemma, and their frequencies.

• All the PoS and frequencies of the word.

• The frequency of the word starting with a capital.

• Whether the lower-case spelling of the word type was accepted

by a UK word spell checker (UK), a US word spell checker (US),

both spell checkers (UK US), or none (X)11. This is an interesting

column when words must be selected, and one wants to avoid the

inclusion of names or other uninteresting entries.

• Whether the entry contains a hyphen (cf. the 787 added entries

with hyphens).

• Whether  the  entry  has  another  homophonic  entry.  This  is

interesting  for  finding  homophones,  but  also  to  make  sure

selected  low-frequency  words  do  not  have  a  higher  frequency

spelling alternative.

• Whether or not the word type has been encountered as a bigram

in the subtitles.

• The  frequency  of  the  bigram  (summed  across  all  types  of

intervening  symbols,  in  particular,  blank  spaces,  punctuation

marks, and hyphens).

Finally,  the  third  file  (SUBTLEX-UK_bigrams)  contains

information about word pairs. Because this file has nearly 2 million

lines  of  information,  it  cannot  be  made  available  as  an  Excel  file

11 The speller was the MS Office 2007 spellchecker, augmented with a list of lemmas one of

the authors (M.B.) is compiling.
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(although we have such a file with all entries observed 12 times or

more). Each line contains information about Word 1 and Word 2, the

frequency of the combination, the CD count of the combination, and

which  symbols  were  found  between  the  two  words  with  which

frequencies. This is important information when researchers want to

include  transition  probabilities  in  their  investigations,  or  when

expressions (e.g., object names, particle verbs) consist of two words.

SUPPLEMENTAL MATERIAL

Supplemental  files  are  available  via  the  ‘Supplemental’ tab  on  the

article's  online  page

(http://dx.doi.org/10.1080/13506285.YEAR.850521).  They  can  also

be  downloaded  from  our  websites  (http://crr.ugent.be/,  or

http://www.psychology.nottingham.ac.uk/subtlex-uk/),  where  we  in

addition intend to make them available as online consultable internet

databases.
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Chapter 3. SUBTLEX-PL: Subtitle-based word

frequency estimates for Polish1

ABSTRACT

We present SUBTLEX-PL, Polish word frequencies based on

movie subtitles. In two lexical decision experiments, we compare the

new measures with frequency estimates derived from another Polish

text corpus that includes predominantly written materials. We show

that  the  frequencies  derived from the  two corpora  perform best  in

predicting human performance in a lexical decision task if used in a

complementary way. Our results  suggest  that  the  two corpora may

have unequal potential for explaining human performance for words

in  different  frequency  ranges  and  that  corpora  based  on  written

materials  severely  overestimate  frequencies  for  formal  words.  We

discuss some of the implications of these findings for future studies

comparing different frequency estimates. In addition to frequencies for

word forms, SUBTLEX-PL includes measures of contextual diversity,

part-of-speech-specific  word  frequencies,  frequencies  of  associated

lemmas, and word bigrams, providing researchers with necessary tools

for  conducting  psycholinguistic  research  in  Polish.  The database is

freely available for research purposes and may be downloaded from

the authors’ university Web site at http://crr.ugent.be/subtlex-pl.

1 This chapter was published as Mandera, P., Keuleers, E., Wodniecka, Z., & Brysbaert, M.

(2015).  SUBTLEX-PL:  Subtitle-based  word  frequency  estimates  for  Polish.  Behavior

Research Methods, 47(2), 471-483.
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INTRODUCTION

Word  frequency  estimates  derived  from  film  and  television

subtitles  have  proved  to  be  particularly  good  at  predicting  human

performance in behavioral tasks. Since lexical decision latencies are

particularly  sensitive  to  word  frequency  (e.g.,  Balota,  Cortese,

Sergent-Marshall,  Spieler,  &  Yap,  2004),  correlating  human

performance  in  this  task  with  various  word  frequency  estimates

became  a  standard  method  of  validating  their  usefulness.  Word

frequencies derived from subtitle corpora were shown to outperform

estimates based on written texts for French (New, Brysbaert, Veronis,

& Pallier, 2007), English (Brysbaert & New, 2009), Dutch (Keuleers,

Brysbaert, & New, 2010), Chinese (Cai & Brysbaert, 2010), Spanish

(Cuetos Vega, González Nosti, Barbón Gutiérrez, & Brysbaert, 2011),

German  (Brysbaert  et  al.,  2011),  and  Greek  (Dimitropoulou,

Duñabeitia, Avilés, Corral, & Carreiras, 2010).

Following these developments,  we present  SUBTLEX-PL,  a

new  set  of  psycholinguistic  resources  for  Polish,  which  includes

frequency estimates for word forms, associated parts of speech, and

lemmas. To our knowledge, this it is the first subtitle word frequency

validation  study  for  a  Slavic  language.  In  terms  of  number  of

speakers, Polish is the largest language in the West Slavic group and

the  second  largest  of  all  Slavic  languages  after  Russian  (Lewis,

Simons,  & Fennig,  2013).  It  is  a  highly inflected language and, as

compared with most Germanic languages, has a much richer inflection

of nouns, adjectives, verbs, pronouns, and numerals. Polish is written

in  the  Latin  alphabet,  with  several  additional  letters  formed  with

diacritics. In contrast to English, Polish has a transparent orthography:
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In most cases, letters or their combinations correspond to phonemes of

spoken Polish in a consistent way.

Even though the collection of text corpora of considerable size

is easier than ever before, the standard way of validating the quality of

the word frequencies based on these corpora has typically involved

collection  of  data  for  thousands  of  words  in  strictly  controlled

laboratory  settings  (Balota  et  al.,  2007;  Keuleers,  Diependaele,  &

Brysbaert, 2010; Keuleers, Lacey, Rastle, & Brysbaert, 2011). In order

to compare frequency estimates derived from two corpora, it may be

more efficient to use words for which the two corpora give diverging

estimates, rather than a random set of words. This idea is based on the

observation that the words for which the frequency estimates between

two corpora differ most are also the sources of potential difference in

performance  of  these  frequency  norms  when  predicting  behavioral

data.  This  approach  can  increase  the  statistical  power  of  the

experiment; if only randomly sampled words are included in the study,

due to very high correlation between different frequency estimates, it

is  more  difficult  to  detect  differences  in  performance  of  these

estimates  without  including  a  very  large  number  of  words  in  the

experiment. Dimitropoulou et al. (2010) approached this problem by

using a factorial design in which the critical conditions included words

with a high frequency in one corpus and a low frequency in the other.

In the present study, we will  use an approach based on continuous

sampling over the full range of word frequencies.

Although using words for which the two corpora give the most

diverging  estimates  may  help  to  detect  differences  between  their

performance in predicting behavioral data, there is a possibility that

this  approach  may  bias  the  experiment  in  favor  of  one  of  the
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frequency estimates. For instance, words in the formal register tend to

have  a  much  higher  frequency  in  written  corpora  than  in  spoken

corpora. Stimulus selection based solely on a criterion of maximum

divergence would lead to a large selection of words from the formal

register, while the formal register may represent just a small part of

the  corpus.  To  account  for  this  possibility,  in  Experiment  1,  we

included an additional set of words that were randomly sampled from

all word types observed in the compared corpora. In Experiment 2, we

included only randomly sampled words.

CURRENT AVAILABILITY OF FREQUENCY NORMS FOR POLISH

For a long time, the only available word frequency norms for

Polish  were  based  on  a  corpus  compiled  between  1963  and  1967

(containing about 500,000 words) and published by Kurcz, Lewicki,

Sambor, Szafran, and Woroniczak (1990). More recently, several other

Polish  text  corpora  have  been  compiled,  and  resources  such  as

concordances  and  collocations  have  been  made  available  to

researchers.  This  is  the case for the IPI PAN Corpus of about 250

million  words  (Przepiórkowski  &  Instytut  Podstaw  Informatyki,

2004), the Korpus Języka Polskiego Wydawnictwa Naukowego PWN

(n.d.), containing about 100 million words, and the PELCRA Corpus

of  Polish  (~100 million  words;  http://korpus.ia.uni.lodz.pl/).  To our

knowledge, none of them provides an easily accessible list of word

frequencies.

The  largest  of  the  Polish  corpora  contains  over  1.5  billion

words (National Corpus of Polish [NCP]; Przepiórkowski, 2012). It is

based mainly on press and magazines (~830 million tokens), material

downloaded from the Internet (~600 million tokens), and books (~100
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million  tokens).  It  also  contains  a  small  sample  of  spoken,

conversational  Polish  (~2  million  tokens).  In  addition  to  the  full

corpus, a significant effort has been invested in creating a subcorpus

that  is  representative  of  the  language  exposure  of  a  typical  native

speaker of Polish. This balanced subcorpus (BS–NCP) contains about

250  million  words.  Spoken  materials  (conversational  and  recorded

from media) constitute about 10 % of the subcorpus. The remaining

90 % is based on written texts (mainly from newspapers and books).

Since  the  word frequencies  derived from the  NCP balanced

subcorpus seem to be the most appropriate existing word frequencies

for psycholinguistic research in Polish, we decided to compare them

with the new SUBTLEX-PL frequencies.

SUBTLEX-PL

CORPUS COMPILATION, CLEANING, AND PROCESSING

We processed about 105,000 documents containing film and

television  subtitles  flagged  as  Polish  by  the  contributors  of  http://

opensubtitles.org.  All  subtitle-specific  text  formatting  was  removed

before further processing.

To  detect  documents  containing  large  portions  of  text  in

languages  other  than  Polish,  we  first  calculated  preliminary  word

frequencies on the basis of all documents and then removed from the

corpus all files in which the 30 most frequent types did not cover at

least 10 % of a total count of tokens in the file. Using this method,

5,365 files were removed from the corpus.

Because many documents are available in multiple versions, it

was necessary to remove duplicates from the corpus. To do so, we first
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performed a topic analysis using Latent Dirichlet Allocation (Blei, Ng,

& Jordan, 2003), assigning each file to one of 600 clusters. If any pair

of files within a cluster had an overlap of at least 10 % unique word-

trigrams, the file with the highest number of hapax legomena (words

occurring only once) was removed from the corpus, since more words

occurring once would indicate more misspellings.

After  removing  duplicates,  27,767  documents  remained,

containing  about  146  million  tokens  (individual  strings,  including

punctuation marks, numbers, etc.),  out of which 101 million tokens

(449,300 types) were accepted as correctly spelled Polish words by

the Aspell spell-checker (http://aspell.net/; Polish dictionary available

at  ftp://ftp.gnu.org/gnu/aspell/dict/pl/)  and  consisted  only  of  legal

Polish, alphabetical characters. All words were converted to lowercase

before  spell-checking.  Because  Aspell  rejects  proper  names  spelled

with lowercase, this number does not include proper names.

FREQUENCY MEASURES

Word frequency

In addition to raw frequency counts, it is useful for researchers

to have measures of word frequency that are independent of corpus

size. First, we report word frequencies transformed to the Zipf scale2

(van Heuven, Mandera, Keuleers, & Brysbaert 2014). The Zipf scale

was proposed as a more convenient scale on which word frequencies

may be measured. In order to reflect the nature of the frequency effect,

2 z i=log10(
c i+1

∑
k=1

n

ck+n

+9)  (van Heuven, Mandera, Keuleers, & Brysbaert, 2014) where zi is a

Zipf value for word i, ci is its raw frequency, and n is the size of the vocabulary.
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it is a logarithmic scale (like the decibel scale of sound intensity), but,

in contrast to the logarithm of frequency per million words, it does not

result in negative values for corpora of up to 1 billion words. In order

to make interpretation of the frequency values easier, the middle of the

scale separates low-frequency from high-frequency words, and, for a

majority of words, the measure takes a value between 1 to 7, which

resembles  a  Likert  scale.  Another  compelling  property  of  the  Zipf

scale  is  that  it  allows  assigning  a  value  to  words  that  were  not

observed  in  a  corpus  by  incorporating  Laplace  smoothing,  as

recommended  by  Brysbaert  and  Diependaele  (2013);  without  the

transformation, such words pose a problem, since the logarithm of 0 is

undefined,  which  makes  it  impossible  to  estimate  log10 of  word

frequency  per  million  for  these  words.  In  addition  to  the  raw

frequency and the Zipf scale frequencies, we also provide the more

traditional logarithm of frequency per million words.

Contextual diversity

Adelman,  Brown,  and  Quesada  (2006)  proposed  that  the

number of contexts in which a word appears may be more important

than word frequency itself and that the number of documents in which

a  word  occurs  may  be  a  good  proxy  measure  for  the  number  of

contexts  (contextual  diversity  [CD]).  According  to  this  view, even

words with equal frequency would be processed faster if they occur in

more contexts. Brysbaert and New (2009) observed that CD accounts

for 1%–3% more variance than does word frequency.

Part-of-speech-specific frequencies

For languages with a rich inflectional system, such as Polish, it

is crucially important to provide researchers with information above
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the level of individual word forms. For each word in SUBTLEX-PL,

we also provide the lemma and the dominant part of speech and their

frequencies.

Providing the lemma associated with each given word form

allows us to group inflected forms of the same word. This may be

useful  when  investigating  the  specific  contributions  of  surface  and

lemma frequencies in word processing (Schreuder & Baayen, 1997) or

in order to avoid including inflections of the same word when creating

a stimulus set for an experiment.

Information  about  the  dominant  part  of  speech  allows

researchers to choose words of a particular grammatical class (e.g.,

when a researcher wants to include only nouns in a stimulus list).

To obtain part-of-speech and lemma information for words, we

used  TaKIPI,  a  morphosyntactic  tagger  for  Polish  (Piasecki,  2007)

supplied with the morphological analyzer Morfeusz (Woliński, 2006).

The  resulting  tag  set  was  too  detailed  for  our  purposes,  so  we

translated  the  original  tags  to  a  simpler  form  that  includes  only

information  about  parts  of  speech  and  discards  other  details.3 The

tagging process assigned each of the word forms consisting of legal

Polish alphabetical characters and accepted by the spell-checker to 1

of 78,361 lemmas.

Bigram frequencies

Although in this article we focus on unigram frequencies, we

also  provide  frequency  estimates  for  word  bigrams,  which  are  of

increasing interest to researchers (Arnon & Snider, 2010; Siyanova-

Chanturia, Conklin, & van Heuven, 2011).

3 For mapping between original and simplified tags, see supplementary materials.



63

EXPERIMENT 1

METHOD

Stimuli

We selected stimuli  from the list  of words common to both

BS–NCP and  SUBTLEX-PL.4 All  stimuli  considered  for  selection

contained only alphabetical characters and occurred without an initial

capital in most cases. We used the list of 1-grams (available at http://

zil.ipipan.waw.pl/NKJPNGrams) to generate the BS–NCP frequency

list used in the present study. We processed the raw list by summing

frequencies of all forms that were identical after removing punctuation

marks attached to some of the forms in the original list.

To  make  the  experiment  maximally  informative,  we  chose

stimuli for which BS–NCP and SUBTLEX-PL gave highly divergent

frequency  estimates.  We  performed  a  linear  regression  on  the

SUBTLEX-PL  frequencies,  using  the  BS–NCP  frequencies  as  a

predictor. All frequencies were transformed to the Zipf scale. We then

ordered  the  words  according  to  their  residual  error  and chose  155

words from both extremes of the resulting list, ensuring that different

forms of the same lemma were not selected more than once. Words at

one extreme (with a large positive residual error value) were much

more frequent in SUBTLEX-PL than would be expected on the basis

of BS–NCP, while words at the other extreme (with a large negative

residual error value) occurred much less often in SUBTLEX-PL than

would be expected on the basis of BS–NCP. In addition, we randomly

4 A nonfinal version of SUBTLEX-PL, based on nearly 50 million tokens, was used when

choosing stimuli for the experiment.



64 CHAPTER 3

sampled 155 words from the remaining words, with the probability of

each word being selected equal to its probability in the subtitle corpus.

Figure 1. Frequencies of words in the BS–NCP and SUBTLEX-PL corpora for

all  words  (upper  panel;  the  red  line  shows  a  regression  line  predicting

SUBTLEX-PL frequencies based on BC–NCP frequencies) and words included

in Experiment 1 (bottom panel)  showing randomly sampled words (red) and

words with higher frequency (green) and lower frequency (blue) in SUBTLEX-

PL than in BS–NCP

Figure  1  illustrates  the  frequency  distribution  of  stimuli

according to this procedure. As the top panel of Fig. 1 shows, it is

important to note that the regression line on which the residual error

values are based is pulled downward by a large number of words with
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a low frequency in SUBTLEX-PL. While this seems to indicate that

SUBTLEX-PL contains a higher proportion of low-frequency forms, it

is  an  artifact  of  selecting  words  from  corpora  of  unequal  size.5

Words that had a much higher frequency in one corpus than in

the other may be categorized into several groups. For example, words

related  to  the  Polish  administrative  and  legislative  system  (e.g.,

“województwo,”  district;  “urzędowym,”  administrative),  as  well  as

those  occurring  mostly  in  fairly  sophisticated  contexts  (e.g.,

“pejzażu,” landscape) are much more frequent in the BS–NCP corpus.

On the other hand, words with much higher frequency in SUBTLEX-

PL included those used mostly in dialogues (e.g., “skarbie,”  honey),

swear words (“pierdol,” fuck), those related to (American) film themes

(e.g., “kowboju,” cowboy), and function words (e.g., “ale,” but; “się,”

self).

For  each word  that  was included in  the  experimental  set,  a

corresponding nonword was generated using Wuggy, a  multilingual

pseudoword generator (Keuleers & Brysbaert, 2010).

For  the  full  set  of  words  included  in  the  experiment,  the

standard  deviation  (SD)  in  word  frequency  (Zipf  scale)  was  1.14

(mean = 4.09) for BS–NCP and 1.76 (mean = 3.63) for SUBTLEX-

PL.  The  two  variances  were  significantly  different,  F(464,  464)  =

0.42, p < .001, and Welsch’s t-test has shown significant differences in

the mean frequency derived from the two corpora, t(794) = 4.7, p < .

001, for this set of stimuli.

5 As an example, consider a list of 200,000 words and a list of 400,000 words. A typical

characteristic of word frequency distributions is that about half of the words in each list will

have a frequency of one. In that case, the base probability that any word found in both lists

would have a frequency of 1 in the first list would be 1/100,000, while it would be 1/200,000

for the second list.
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For the 155 word stimuli that were randomly sampled from the

words common to both word frequency lists,  SD was 1.08 (mean =

4.44) for BS–NCP and 1.19 (mean = 4.11) for SUBTLEX-PL. The

difference between variances was not statistically significant,  F(154,

154)  =  0.82,  p =  .23,  but  the  mean frequencies  were  significantly

different according to Welsch’s t-test, t(308) = 2.6, p = .01.

Participants

Twenty-six  students  from  the  Jagiellonian  University  in

Kraków participated in the experiment (20 female, 6 male; mean age 

= 23.76,    SD = 2.06) either on a voluntary basis  or in exchange for

course credit.

Design

Words and nonwords were randomly assigned to  10 blocks.

Nine blocks contained 50 words and 50 nonwords in a random order;

1 block contained the remaining 15 words and nonwords in a random

order. Ten different permutations of block orders were generated, and

each participant was randomly assigned to one of the permutations.  

Due to a coding error, 10 words were not presented to the first

10  participants.  Further  analysis  is  therefore  based  on  455  words,

instead of 465 words.

Within each block, stimuli were presented in a random order in

white characters on a black background. Presentation of each stimulus

was preceded by a  blank screen.  After  500 ms, a vertical  line was

displayed  above  and  below the  center  of  the  screen.  Finally,  after

another 500 ms, the stimulus was presented between the vertical lines.

A  standard  QWERTY  PC  keyboard  was  used  to  collect

responses. Participants were instructed to press “/” (the rightmost key
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on the second row) if they saw a word and “Z” (the leftmost key on

the second row) if they saw a nonword. The time-out for giving the

response  was  2,000  ms.  After  six  training  trials,  the  experimental

blocks were presented. The experiment took about 30 min.

RESULTS

Of the trials on which reaction times (RTs) were outside of a

range  of  whiskers  of  a  boxplot  adjusted  for  skewed  distributions

(calculated separately for words and nonwords for each participant in

each block; Hubert & Vandervieren, 2008), 5.2% were removed from

the data set.

Accuracy  and  RTs were  the  two  dependent  variables  in  all

analyses. Three stimuli with less than one-third correct answers were

excluded from the data set. The analyses are reported first for the full

set of words included in the experiment and then separately only for

the 155 word stimuli  that  were randomly sampled from the  words

common to both word frequency lists.

For the full set of word stimuli, the mean RT was 592.00 (SD =

67.34), and the mean accuracy was .94 (SD = .08). Words occurring

less often in SUBTLEX-PL than in BS–NCP had a mean RT of 652.19

(SD  = 52.23) and a mean accuracy of .96 (SD = .06), while words

occurring more often in SUBTLEX-PL than in BS–NCP had a mean

RT of 551.02 (SD = 48.74) and a mean accuracy of .91 (SD = .11).

The randomly selected words had a mean RT of 574.00 (SD = 54.00)

and a mean accuracy of .96 (SD = .07).

For nonwords, the mean RT was 666.88 (SD = 70.23), and the

mean accuracy was .94 (SD = .09).
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To estimate the reliability of the RT and accuracy measures, we

computed  split-half  correlations  for  100  random  splits  of  the  data

across participants. The resulting correlations were corrected with the

Spearman–Brown  prediction  formula  (Brown,  1910;  Spearman,

1910), giving an average corrected reliability of .81 (SD = .013) for

RTs and .72 (SD = .021) for accuracy.

Adjusted R2 was used as a measure of explained variance in all

analyses. The percentage of variance in RT and accuracy accounted

for by linear regression models using different frequency measures is

summarized in Table 1. All frequency measures were transformed to

the Zipf scale (van Heuven et al., 2014). Because it was shown that

the frequency effect is not completely linear (Balota et al., 2004), we

added a term with squared word frequency (Zipf scale) to the linear

regression. To control for word length, we also included number of

letters in a word in the regression model.

The relationship between word frequencies and RTs is shown

in Fig. 2. As is shown in Table 1, when all words were included in the

analysis,  the  BS–NCP  word  frequencies  explained  39.09  %  of

variance in RTs and 8.90 % of variance in accuracy. For this set of

words, SUBTLEX-PL frequencies explained 58.64 % of variance in

RTs and 19.07 % in accuracy, which is 19.55 % more for RTs and

10.17 % more for accuracy in comparison with BS–NCP frequencies.

To  test  for  statistical  difference  between  models,  we  applied  the

Vuong test for nonnested models (Vuong, 1989). The differences in

performance of the two models were statistically significant for both

RTs (z = −6.11. p < .001) and accuracy (z = −2.5, p = .012).
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Table 1. Percentages of variance accounted for by the various frequency measures in Experiment 1

Note. Columns 2 and 3 show the results for all words in the experiment; columns 4 and 5 show the results for randomly sampled words. WF = word frequency (Zipf scale), DLF

= log 10 of dominant lemma frequency, BS–NCP =Balanced Subcorpus–National Corpus of Polish, SUB-PL = Polish Subtitle Corpus, WF SUM = normalized (Zipf scale) sum of

word frequencies in SUBTLEX-PL and BS–NCP, WF AVG = averaged Zipf scale frequency in the two corpora

Model RT (%; all words) Accuracy (%; all words) RT (%; sampled words) Accuracy (%; sampled words)

39.09 8.90 45.53 20.58

58.64 19.07 53.88 18.43

59.72 20.81 54.35 19.26

58.80 20.16 53.59 18.52

59.77 21.64 54.10 19.20

50.99 19.14 51.01 22.01

58.36 21.38 55.46 21.77

length +   WFBS −   NCP +   WFBS −   NCP
2

length +   WFSUB −   PL +   WFSUB −   PL
2

length +   CDSUB −   PL +   CDSUB −   PL
2

length +   WFSUB −   PL +   WFSUB −   PL
2 +   DLF

length +   CDSUB −   PL +   CDSUB −   PL
2 +   DLF

length +   WFSUM +   WFSUM
2

length +   WFAVG +   WFAVG
2
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Figure 2. Reaction times in Experiment 1 for words and their frequencies in the

BS–NCP (left) and SUBTLEX-PL (right) corpora. Reaction times for words that

had  much  higher  frequencies  in  BS–NCP, as  compared  with  SUBTLEX-PL

(blue), are shifted upward from the regression line, while words that have higher

frequencies in SUBTLEX-PL than in BS–NCP (green) tend to be responded to

faster than would be predicted on the basis of BS–NCP frequencies. Reaction

times  predicted  on  the  basis  of  SUBTLEX-PL  line  up  much  closer  to  the

regression  line.  For  words  that  were randomly  sampled  from the  full  set  of

words (red), this difference is less apparent, but it is still reflected in  R2. Red

lines represent predictions of a linear model with word frequency and its square

term as predictors (with standard error in the shaded area)

When only words that were randomly sampled from the corpus

were included in the analysis, the frequencies derived from the BS–

NCP corpus explained 45.53 % of the variance in RTs and 20.58 % in

accuracy.  In  this  case,  the  difference  between  the  BS–NCP  and
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SUBTLEX-PL corpora  was  smaller,  and  word  frequencies  derived

from the SUBTLEX-PL corpus explained 8.35 % more variance for

RTs but 2.15 % less variance for accuracy. The difference was not

significant for RTs (z = −1.84, p = .065) or accuracy (z = 0.45, p = .

65).

For the full set of words, CD measures calculated on the basis

of SUBTLEX-PL accounted for the largest part  of the variance for

both RTs and accuracy, explaining 59.72 % and 20.81 % of variance,

respectively. This improvement of model predictions, relative to the

one based on word frequencies, was statistically significant for both

RTs (z = 2.41, p = .016) and accuracy (z = 2.57, p = .010).When only

randomly selected words were included in the analysis, CD explained

54.35 % of variance for RTs and 19.26 % for accuracy. This was not

significantly better than the model based on subtitle word frequencies

for RTs (z = 0.86, p = .39) or for accuracy (z = 1.15, p = .25).

To examine the importance of lemma frequency, we conducted

further analyses including dominant lemma frequency as an additional

predictor.  This  predictor  turned  out  to  add  very  little  to  the  total

amount of explained variance. The Vuong test has not indicated in any

case that the model including this predictor should be preferred over a

simpler model.

In  addition  to  analyses  based  on  frequencies  derived  from

SUBTLEX-PL and BS–NCP, we also calculated compound measures

of word frequency, taking into account frequencies in the two corpora

simultaneously:  their  summed  frequency  (transformed  to  the  Zipf

scale  after  summation)  and  their  averaged  normalized  (Zipf  scale)

frequency. In the case of the full set of word stimuli, in comparison

with BS–NCP frequencies, the summed frequency measure explained
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11.89 % more variance in RTs (z= 6.38, p < .001) and 10.24 % more

variance in accuracy (z = 2.97, p = .003). In comparison with subtitle

frequencies, it explained 7.66 % less variance in RTs (z = −2.93, p = .

003) and a similar amount of variance in accuracy (z = 0.016, p = .99).

The averaged frequency explained 7.3% more variance in RTs than

did  the  summed frequency (z = 4.40,  p <  .001)  and a  comparable

amount of variance to subtitle frequencies (z = −0.16,  p = .87). For

accuracy, its  predictions  were not  significantly  better  than summed

frequencies (z = 0.84, p = .40) or subtitle frequencies (z = 1.03, p = .

30) and outperformed only BS–NCP-based frequencies (by 12.50% of

explained variance; z = 4.157, p < .001).

For a randomly sampled set of words, the compound measures

performed  particularly  well:  The  model  using  estimates  based  on

averaged normalized frequency in the two corpora accounted for 1.1%

more  variance  in  RTs  than  did  the  next  best  model  (based  on

SUBTLEX-PL contextual  diversity),  but the difference between the

two models was not  statistically  significant  (z = 0.38,  p = .70).  In

comparison with the model based on BS–NCP word frequencies, both

summed frequency (z = 2.86,  p = .004) and averaged frequency (z =

3.65,  p < .001) performed significantly better in predicting RTs. As

compared with the model  based on SUBTLEX-PL frequencies,  the

difference was not statistically significant for either of the compound

measures  (for  summed  word  frequency,  z =  −0.073,  p =  .46;  for

averaged  word  frequency  z =  0.57,  p =  .57).  The  two  compound

measures  were  also  best  at  predicting  accuracy,  but  none  of  the

differences in accuracy reached the level of statistical significance (z <

1.96).
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DISCUSSION

In Experiment 1, we found a general advantage of SUBTLEX-

PL  frequencies.  The  difference  was  larger  when  stimuli  with

extremely  divergent  frequency  estimates  were  included  in  the

analyzed  data  set.  At  first  sight,  these  results  suggest  that  the

SUBTLEX-PL word frequencies are more balanced than the BS–NCP

word frequencies: RTs for the three different groups of stimuli are in

line with the predictions from SUBTLEX-PL. On the other hand, the

BS–NCP frequencies seem to severely underestimate RTs for words

that have a much lower occurrence in SUBTLEX-PL (shown in blue

in Fig. 2). This could indicate that the BS–NCP corpus has inflated

frequency  estimates  for  these  words,  of  which  most  could  be

characterized as belonging to a very formal register.

However,  we  should  note  that  the  frequency  range  of  the

sample of words for which BS–NCP makes the worst predictions is

very  restricted,  making  a  general  conclusion  about  the  global

suitability of the BS–NCP frequencies premature. Researchers will not

often encounter a situation where an experiment requires exactly this

register  of  words.  Moreover,  when  only  randomly  sampled  words

were included in the data set, the difference between performance of

the  two  frequency  estimates  was  smaller,  and  the  advantage  of

SUBTLEX-PL was no longer statistically significant.

In  additional  analyses,  we  have  shown  that  compound

frequency estimates, taking into account both corpora simultaneously,

can  be  particularly  good  predictors  of  performance  in  a  lexical

decision task.  This can be due to the fact  that  considering the two

corpora simultaneously involves a significant increase in the overall
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size  of  a  sample  of  a  language  on  which  frequency  estimates  are

based.  In  addition  to  that,  compounding  word  frequency  estimates

may help reduce bias for certain registers that may be present in the

individual corpora.

In Experiment 2, we propose a comparison of the two word

frequency  measures  in  which  the  entire  frequency  distribution  is

examined and undue bias from a particular register is avoided.

EXPERIMENT 2

METHOD

Participants

For the second experiment, 43 female participants and 15 male

participants  took  part  in  an  online  experiment.  Mean  age  of  the

participants was 27.07 (SD = 4.08; 1 of the participants did not give

information about age).

Stimuli

Three  hundred word  stimuli  were  selected  using  a  two-step

sampling procedure. First, simple Good-Turing Smoothing (e.g., Gale

& Sampson, 1995) was applied to the word frequencies from BS–NCP

and SUBTLEX-PL (Brysbaert & Diependaele, 2013). Words that were

present in both word frequency lists and had a length of at least three

letters were considered for further selection if they were included in

the  PWN  dictionary  (http://sjp.pwn.pl).  The  probability  of  a  word

being selected for the experiment was proportional to its simple Good-

Turing  Smoothed  probability,  averaged  over  BS–NCP  and

SUBTLEX-PL. Once a word had been selected, other words forms of
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the same lemma were ignored, avoiding including different inflections

of the same word in the stimulus list. Three hundred nonwords were

generated using Wuggy (Keuleers & Brysbaert, 2010) on the basis of

an independent  sample of  words  from the  SUBTLEX-PL and BS–

NCP corpora.

Figure  3  shows  the  relationship  between  the  BS–NCP and

SUBTLEX-PL word  frequencies  for  the  stimuli  in  Experiment  2.

Standard deviation in word frequency (Zipf scale) was 1.46 (mean =   

3.81) for BS–NCP and 1.59 (mean = 3.72) for SUBTLEX-PL. There   

were  no  statistically  significant  differences  between  frequencies

derived  from  the  two  corpora  in  means  (Welsh’s  t-test),  t(594)  =

−0.74, p = .46, or their variances, F(299, 299) = 1.2, p = .14.

Figure 3.  Frequencies in  the BS–NCP and SUBTLEX-PL corpora for words

included in Experiment 2
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Design

The  experiment  was  administered  in  a  Web  browser,  using

custom-designed  software,  taking  into  account  timing  (Crump,

McDonnell,  &  Gureckis,  2013).  Participants  were  instructed  to

respond by pressing “J” if  they thought that the presented stimulus

was a word and “F” if they thought that it was not a word. After a

short  training  block  with  4  words  and  4  nonwords,  during  which

feedback  was  given  after  each  trial,  experimental  stimuli  were

presented in five blocks. For each block, 60 words and 60 nonwords

were chosen at random. After each block, feedback was given about

performance  (mean  RT  for  words  and  overall  accuracy  in  the

preceding  block).  Participants  were  allowed  to  take  a  short  break

between  blocks.  Stimuli  were  presented  in  black  font  on  a  white

background  until  the  participant  gave  a  response,  after  which  the

screen  would  be  blank  for  500  ms  before  the  next  stimulus  was

displayed.  During  the  experiment,  a  continuous  progress  bar  was

presented in the upper part of the screen.

RESULTS

To exclude  outliers  from  the  analyzed  data  set,  a  two-step

procedure was applied. First, we excluded all trials with RTs longer

than 3,000 ms. Next,  all  observations in which RTs were outside a

range  of  whiskers  of  a  boxplot  adjusted  for  skewed  distributions

(calculated separately for words and nonwords for each participant in

each block; Hubert  & Vandervieren,  2008) were removed from the

data set. In total, 8 % of trials were removed.

The mean accuracy was .96 for words and .97 for nonwords.

Mean RT was 893.97 (SD = 188.03) for words and 1,043.79 (SD =
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174.63) for nonwords. On average, the RTs were substantially longer

than in the first experiment, most likely because of the lack of a time-

out and the fact that most participants in Experiment 1 were used to

taking experiments for course credit.

Reliability of the RT and accuracy measures was computed in

the  same way as  for  Experiment  1.  The  mean  corrected  reliability

was .94 (SD = .005) for RTs and .88 (SD = .013) for accuracy.

In Experiment 2, as compared with SUBTLEX-PL frequencies,

the BS–NCP frequencies accounted for 2.4 % more variance in RTs

and for 3 % more variance in accuracy (see also Table 2 and Fig. 4);

however, the difference in performance of the two models was not

statistically significant for RTs (z = 1.12, p = .26) or for accuracy (z =

1.00, p = .32). The compound frequency estimates turned out to give

the most accurate predictions of RTs. Although, in comparison with

the model based on BS–NCP word frequencies, this difference was

not statistically significant for summed frequencies (z = 1.49, p = .14)

or for averaged frequencies (z = 0.83, p = .40), in comparison with the

model based on movie subtitles, both compound measures performed

significantly better: The summed frequencies explained 3.4 % more

variance (z = 2.02,  p = .043) and averaged frequencies 3.2 % more

variance  (z =  2.66,  p =  .008)  in  RTs.  The  model,  which  included

dominant  lemma  frequencies  in  addition  to  subtitle  frequencies,

significantly outperformed the model without this predictor (z = 2.11,

p = .035).

For  accuracy, the measures  derived from BS–NCP followed

these  based  on  SUBTLEX-PL  contextual  diversity  and  dominant

lemma frequency in explained percentage of the variance. None of the
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differences in accuracy reached the level of statistical significance (z <

1.96).

Table  2  Percentages  of  variance  accounted  for  by  the  various  frequency

measures in Experiment 2

Note. WF = word frequency, BS–NCP = Balanced Subcorpus–National Corpus of Polish, SUB-PL =

Polish Subtitle Corpus

Figure 4. Reaction times for words and their frequencies in the BS–NCP (left)

and  SUBTLEX-PL (right)  corpora.  The  red  lines  represent  predictions  of  a

linear model with word frequency and its square term

Model RT (%) Accuracy (%)

70.48 19.05

68.06 16.02

68.32 17.40

70.71 18.96

70.72 19.55

71.45 18.37

71.31 18.51

length +   WFBS −   NCP +   WFBS −   NCP
2

length +   WFSUB −   PL +   WFSUB −   PL
2

length +   CDSUB −   PL +   CDSUB −   PL
2

length +   WFSUB −   PL +   WFSUB −   PL
2 +   DLF

length +   CDSUB −   PL +   CDSUB −   PL
2 +   DLF

length +   WFSUM +   WFSUM
2

length +   WFAVG +   WFAVG
2
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DISCUSSION

In Experiment 2, the compound measures again performed best

in  predicting  behavioral  data.  Interestingly,  for  models  based  on

frequency estimates  derived from BS–NCP and SUBTLEX-PL,  we

observed a reversed pattern, relative to Experiment 1: The SUBTLEX-

PL frequencies were now worse at predicting RTs, as compared with

the  compound  measures,  but  this  was  not  the  case  for  BS–NCP

frequencies. Even more surprisingly, the randomly sampled words in

Experiment 1 showed the reverse pattern. We suspected that this was

caused  by  different  means  and  standard  deviations  in  frequencies

between the two experiments. The average frequency was higher in

the first experiment (for both corpora) than in the second experiment.

Hence,  the  two  corpora  may  differ  in  their  potential  to  explain

variance in RTs in various frequency ranges. To test this hypothesis,

we performed an additional analysis using a linear regression model

with number of letters, word frequency in BS–NCP, word frequency in

SUBTLEX-PL, and the interaction between the frequencies of both

corpora.  Table  3  shows  the  results  of  this  analysis.  Because  the

interaction  between  the  two  frequency  measures  turned  out  to  be

highly significant, we decided to conduct an additional analysis. We

split the set of words in Experiment 2 at the median point of average

word frequency in the two corpora (3.8, Zipf scale). We observed (see

Table 4) that the BS–NCP frequencies are better in predicting RTs and

accuracy in the lower part of the frequency range, while SUBTLEX-

PL frequencies are better in predicting these variables in the higher

part  of  the  frequency  range.  The  difference  in  performance  of  the

models based on frequencies derived from individual corpora was not

significant in the upper part of the frequency range (z = 1.72, p = .086)
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or in the lower part of the frequency range (z = 1.34, p = .18), but the

model  based  on  averaged  frequencies  was  best  in  both  frequency

ranges.  It  significantly  outperformed BS–NCP-based frequencies  in

the higher range (z = 2.34, p = .019) and the model based on subtitle

frequencies in the lower range (z = 2.03, p = .042). For accuracy, the

Vuong test did not show preference for any of the models (z < 1.96).

In  order  to  verify  whether  a  similar  interaction  between

frequency estimates derived from primarily written-text and subtitle-

based  corpora  can  be  found  in  other  languages,  we  conducted  an

additional analysis using RTs collected in the British Lexicon Project

(BLP; Keuleers et al., 2011). We used frequency estimates from the

British  National  Corpus  (BNC;  Kilgarriff,  2006),  which  consists

mostly of written language and contains about 100 million words, and

SUBTLEX-UK (van Heuven et al., 2014). To emulate the setup of the

experiment reported in the present article and to  better  balance the

number  of  words  from  different  frequency  ranges,  we  ran  1,000

simulations in which we randomly chose 300 words from the BLP

with weights proportional to the averaged word frequency (Zipf scale)

of the BNC and SUBTLEX-UK. For each sample, we fitted a linear

model  with  number  of  letters,  word  frequency  in  the  BNC,  word

frequency in SUBTLEX-UK, and the interaction between the word

frequencies of both corpora.
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Table 3. Regression model for predicting reaction times using length of a word,

frequencies  derived  from BS–NCP and  SUBTLEX-PL,  and inter-action  term

between the two corpora

Adjusted R2 = .71; F(4, 295) = 186.00, p < 2e-16

Note. The frequencies were centered before being entered into the linear regression

Table 4. Percentage of variance explained by frequency estimates derived from

the two corpora (the data set from Experiment 2 was split at the median)

Estimate SE t-value p

Intercept 772.67 21.07 36.67 < 2e-16

Length 15.46 2.58 5.99 6.10E-009

-105.87 13.28 -7.97 3.50E-014

-101.47 14.75 -6.88 3.60E-010

17.05 2.61 6.54 2.70E-010

WFBS-NCP

WFSUB − PL   

WFSUB − PL     * WFBS-NCP

Frequency Model RT (%) Accuracy (%)

> median 27.49 9.65

> median 33.89 11.72

> median 31.89 11.63

> median 33.79 12.17

<= median 45.70 14.05

<= median 38.38 12.92

<= median 46.20 13.89

<= median 45.45 14.38

length +   WFBS −   NCP +   WFBS −   NCP
2

length +   WFSUB −   PL +   WFSUB −   PL
2

length +   WFSUM +   WFSUM
2

length +   WFAVG +   WFAVG
2

length +   WFBS −   NCP +   WFBS −   NCP
2

length +   WFSUB −   PL +   WFSUB −   PL
2

length +   WFSUM +   WFSUM
2

length +   WFAVG +   WFAVG
2
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We  found  that  the  interaction  between  the  two  frequency

measures was highly significant (p < .001) in all 1,000 simulations. At

the same time, we did not find an advantage of BNC word frequencies

in the lower part of the frequency spectrum when the stimuli in each

of the samples was split at the median point (mean median point =   

3.21, SD = 0.061, Zipf scale). Across all the samples, in the lower part

of the range, SUBTLEX-UK frequencies accounted for 9.59 % of the

variance (SD = 5.00), and BNC frequencies for 6.61 % (SD = 4.23) of

the variance. In the upper part of the frequency range, SUBTLEX-UK

frequencies accounted for 29.73 % (SD = 6.9) of the variance, and

BNC  frequencies  for  24.59  %  (SD =  6.26)  of  the  variance.

Interestingly, averaged word frequency accounted  for  slightly  more

variance than did SUBTLEX-UK in both lower (mean = 10.53 %,     SD

= 5.00) and upper (mean = 30.25 %,     SD = 6.58) ranges. The averaged

word frequency was also slightly better at predicting RTs for the full

set  of  words  (mean = 44.04  %,      SD =  4.74)  than  were  individual

frequency  measures  (SUBTLEX-UK,  mean = 43.23  %,      SD =  4.77;

BNC, mean = 40.34 %,     SD = 4.66). We compared R2  values obtained

in the simulations using the Welsh t-test. Due to the large number of

simulations,  all  reported  differences  were  statistically  significant,

except  for  the  difference  between  averaged  word  frequencies  and

SUBTLEX-UK frequencies in the upper part of the frequency range.

CONCLUSIONS

We presented new word frequency estimates for Polish based

on  film  and  television  subtitles  and,  in  two  lexical  decision

experiments,  validated  their  usefulness  by  comparing  them  with
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estimates derived from BS–NCP, as well as with compound frequency

estimates derived from the two text corpora.

We found a large advantage of SUBTLEX-PL over BS–NCP

when words for which estimates given by the two corpora differed

most  were  used  as  stimuli.  In  contrast,  when  we  sampled  words

randomly, the advantage became less pronounced (Experiment 1) or

tended to favor the BS–NCP-derived frequencies (Experiment 2).

These results suggest that the relationship between frequency

estimates derived from different corpora and human performance in

behavioral tasks may be complex. In particular, this shows that the

stimulus selection procedure may affect the outcome of a validation

experiment. For a comparative study to be informative, it is essential

to  find  an  unbiased  method  of  stimulus  selection.  Although  it  is

reasonable to  assume that  the more words included in a validation

study, the more relevant its results, it has to be taken into account that

even selecting words from a megastudy for validation (e.g., Keuleers

et  al.,  2010) may introduce bias  and make it  easier  for  one of the

corpora to provide good frequency estimates than do other corpora.

For instance,  if  only mono- and disyllabic words are included in a

study, the mean frequency may be shifted, relative to the mean in the

full  lexicon,  because  of  a  negative  correlation  between  word

frequency and word length. In such a case, a corpus that does better in

predicting behavioral measures in higher parts of the frequency range

would  be  favored.  Using  the  BLP data,  we  failed  to  replicate  the

advantage  of  a  written  text  corpus  in  the  lower  frequency  range,

although  we  found  a  similar  overall  interaction  between  word

frequency  measures.  Also,  the  small  total  amount  of  explained

variance in the range below the median point  in  this  analysis  may
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suggest that mono- and disyllabic words do not represent the lexicon

well in that frequency range.

Moreover, it should be considered whether including a full set

of  words  in  validation  studies  is  an  optimal  choice.  If  a  word

frequency distribution of a full lexicon were reflected in a stimulus set

of a validation study, due to properties of a Zipfian distribution, the

vast majority of words would have to be on the low extreme of the

possible  frequency  range,  and,  because  in  linear  regression  all

observations contribute equally to the results, R2 would be determined

mostly in the very low part of the frequency distribution. In this case,

the results of linear regression would not be very informative for high-

frequency words.

Table 5. Regression model for predicting reaction times in Experiment 2 using

word length,  word frequency  (WFSUB−PL),  log10 of  dominant  lemma frequency

(DLF), and the interaction between form and lemma frequencies

Adjusted R2 = .719; F(4, 295) = 193.00, p < 2e-16 

Note. The frequencies were centered before being entered into the linear regression

In addition to these methodological aspects, we would like to

point out that it  is also possible that some properties of the lexicon

may have contributed to the pattern of results obtained in the present

Estimate SE t-value p

Intercept 787.87 20.69 38.09 < 2E-016

Length 13.52 2.53 5.34 1.90E-007

-137.22 14.26 -9.62 < 2E-016

DLF -107.38 12.69 -8.46 1.20E-015

21.66 2.91 7.44 1.10E-012

WFSUB − PL   

WFSUB − PL     * DLF
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study. It is possible that during word processing, lemma frequency is a

source of facilitation that is stronger for low-frequency words than for

high-frequency words. As Table 5 shows, in an exploratory analysis,

we  observed  a  statistically  significant  interaction  between  word

frequency and lemma frequency when these two variables and word

length  were  entered  into  a  linear  regression  as  predictors  and  RTs

obtained in Experiment 2 as a dependent variable. It is possible that

this extra facilitation for low-frequency words corresponds to slightly

higher frequency estimates  for low-frequency words in written text

corpora than in subtitle corpora. If that were the case, the advantage of

the  written  text  corpus,  in  comparison  with  the  subtitle  corpus

observed in the low-frequency range, could be incidental, rather than

reflecting a real advantage of written-text corpora.

To fully explore these issues, it would be necessary to conduct

analyses across different sets of stimuli and for different languages.

Lexical  decision  megastudies  (Balota  et  al.,  2007;  Keuleers  et  al.,

2010;  Keuleers  et  al.,  2011)  provide  a  good  opportunity  for  such

analyses.

Nevertheless,  even  with  a  validation  using  a  limited  set  of

words,  the  results  of  the  two  experiments  suggest  that  both

SUBTLEX-PL and BS–NCP are valuable sources of word frequency

estimates.  In  most  cases,  we  would  advise  researchers  to  use  the

averaged compound measure derived from the two corpora whenever

possible.  At  the  same  time,  we  do  not  have  enough  evidence  to

strongly suggest the same practice in other languages. It must also be

kept in mind that for certain classes of words, one of the corpora may

give strongly biased frequency estimates. We have shown that for BS–
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NCP,  a  subset  of  low-frequency  words  used  mostly  in  formal

communication may belong to such a category.

AVAILABILITY

SUBTLEX-PL frequencies and compound SUBTLEX-PL/BS–

NCP  frequencies  are  available  for  research  purposes  and  can  be

downloaded  in  RData  and  csv  formats  from  http://crr.ugent.be/

subtlex-pl. They can also be accessed online using a Web interface.

Frequencies  for  words  with  contextual  diversity  above  2  are  also

available in the xlsx (Microsoft Excel) format.

The whole  word  frequency data  set  for  individual  words  is

contained in two files. The first file includes all strings found in the

text corpus with rich information about their part-of-speech tags. The

columns give information about the following:

• spelling

• spellcheck—whether the string was accepted as a correct word by

the Aspell spell-checker

• alphabetical—whether  the  word  contains  only  alphabetical

characters

• nchar—number of characters in the string

SUBTLEX–PL frequency measures:

• freq—count of how many times the type appears in the subtitles

• capit.freq—count of how many times the type was capitalized

• cd—percentage of film subtitles in which the type appears

• cd.count—count of film subtitles in which the type appears

• dom.pos—most frequent part of speech assigned to the type
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• dom.pos.freq—how many times this part of speech was assigned

to the type

• dom.lemma.pos—dominant lemma6 for the type

• dom.lemma.pos.freq—how many times this lemma was assigned

to the type

• dom.lemma.pos.total.freq—total frequency of the most frequent

lemma for the type (across all types)

• all.pos—list of all part-of-speech assignments for the type

• all.pos.freq—list  of  frequencies  for  all  corresponding  part-of-

speech assignments in all.pos for the type

• all.lemma.pos—list of all lemma assignments for the type

• all.lemma.pos.freq—list of frequencies for corresponding lemmas

in all.lemma.pos for the type

• all.lemma.pos.total.freq—total  frequencies  (across  all  types)  of

all corresponding lemmas in all.lemma.pos

• lg.freq—log10 of subtitle word frequency

• lg.mln.freq—log10 of subtitle word frequency per million

• zipf.freq—Zipf scale word frequency

• lg.cd—log10 of contextual diversity

Compound frequency measures:

• freq.sn.sum—sum  of  SUBTLEX-PL  and  BS–NCP  word

frequencies

6 For practical reasons, we assume that lemma is equivalent to a concatenation of a base form

of a word and an associated part of speech tag.
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• zipf.freq.sn.sum—normalized (Zipf scale) sum of SUBTLEX-PL

and BS–NCP word frequencies

• avg.zipf.freq.sn—averaged  Zipf  frequencies  in  SUBTLEX-PL

and BS–NCP

The  second  file  contains  detailed  information  about  lemma

frequencies and particular forms for which this lemma was assigned.

The columns in this file are the following:

• lemma—spelling of a base form of a lemma

• pos—part-of-speech tag assigned to a lemma

• spelling—word form assigned to a lemma

• freq—total frequency of a lemma or its inflected form

• cd.count—count of unique film subtitles in which the lemma or

its inflected form appears

• cd—percentage of unique film subtitles in which the lemma or

one of its inflected forms appears

Frequencies  for  word  bigrams  are  included  in  a  third  file

giving information about bigram frequency, contextual diversity, and

all punctuation marks separating the words and their frequencies.

ACKNOWLEDGMENTS

This study was supported by an Odysseus grant awarded by the

Government of Flanders to M.B. and a subsidy from the Foundation

for Polish Science (FOCUS program) awarded to Z.W. We thank Jon

Andoni Duñabeitia, Gregory Francis, and an anonymous reviewer for

insightful  comments  on  an  earlier  draft  of  the  manuscript,  Adam

Przepiórkowski  for  providing  access  to  the  BS–NCP  word



89

frequencies, and Jakub Szewczyk for his help with syllabification of

Polish words.



90 CHAPTER 3

REFERENCES

Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual Diversity, Not 

Word Frequency, Determines Word-Naming and Lexical Decision Times. 

Psychological Science, 17(9), 814–823. doi:10.1111/j.1467-

9280.2006.01787.x

Arnon, I., & Snider, N. (2010). More than words: Frequency effects for multi-word 

phrases. Journal of Memory and Language, 62(1), 67–82. 

doi:10.1016/j.jml.2009.09.005

Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. 

(2004). Visual Word Recognition of Single-Syllable Words. Journal of 

Experimental Psychology: General, 133(2), 283–316. doi:10.1037/0096-

3445.133.2.283

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., …

Treiman, R. (2007). The English lexicon project. Behavior Research 

Methods, 39(3), 445–459. Retrieved from 

http://link.springer.com/article/10.3758/BF03193014

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. The 

Journal of Machine Learning Research, 3, 993–1022.

Brown, W. (1910). Some experimental results in the correlation of mental abilities. 

British Journal of Psychology, 3(3), 296–322.

Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A. M., Bölte, J., & Böhl, A. 

(2011). The Word Frequency Effect: A Review of Recent Developments and 

Implications for the Choice of Frequency Estimates in German. Experimental

Psychology (formerly Zeitschrift für Experimentelle Psychologie), 58(5), 

412–424. doi:10.1027/1618-3169/a000123

Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical 

evaluation of current word frequency norms and the introduction of a new 

and improved word frequency measure for American English. Behavior 

Research Methods, 41(4), 977–990. doi:10.3758/BRM.41.4.977

Brysbaert, M., & Diependaele, K. (2013). Dealing with zero word frequencies: A 

review of the existing rules of thumb and a suggestion for an evidence-based 

choice. Behavior Research Methods, 45(2), 422–430. doi:10.3758/s13428-

012-0270-5



91

Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character 

frequencies based on film subtitles. PLoS One, 5(6), e10729. Retrieved from 

http://dx.plos.org/10.1371/journal.pone.0010729

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon’s 

Mechanical Turk as a Tool for Experimental Behavioral Research. PLoS 

ONE, 8(3), e57410. doi:10.1371/journal.pone.0057410

Cuetos Vega, F., González Nosti, M., Barbón Gutiérrez, A., & Brysbaert, M. (2011). 

SUBTLEX-ESP: Spanish word frequencies based on film subtitles. 

Psicológica: Revista de metodología y psicología experimental, 32(2), 133–

143. Retrieved from http://dialnet.unirioja.es/servlet/articulo?

codigo=3663992

Dimitropoulou, M., Duñabeitia, J. A., Avilés, A., Corral, J., & Carreiras, M. (2010). 

Subtitle-Based Word Frequencies as the Best Estimate of Reading Behavior: 

The Case of Greek. Frontiers in Psychology, 1. 

doi:10.3389/fpsyg.2010.00218

Gale, W., & Sampson, G. (1995). Good-Turing frequency estimation without tears. 

Journal of Quantitative Linguistics, 2, 217–237. Retrieved from 

http://www.grsampson.net/AGtf.html

Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed 

distributions. Comput. Stat. Data Anal., 52(12), 5186–5201. 

doi:10.1016/j.csda.2007.11.008

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual pseudoword generator.

Behavior Research Methods, 42(3), 627–633. doi:10.3758/BRM.42.3.627

Keuleers, E., Brysbaert, M., & New, B. (2010). SUBTLEX-NL: A new measure for 

Dutch word frequency based on film subtitles. Behavior Research Methods, 

42(3), 643–650. doi:10.3758/BRM.42.3.643

Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice Effects in Large-

Scale Visual Word Recognition Studies: A Lexical Decision Study on 14,000 

Dutch Mono- and Disyllabic Words and Nonwords. Frontiers in Psychology, 

1. doi:10.3389/fpsyg.2010.00174

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2011). The British Lexicon 

Project: Lexical decision data for 28,730 monosyllabic and disyllabic English

words. Behavior Research Methods, 44(1), 287–304. doi:10.3758/s13428-

011-0118-4



92 CHAPTER 3

Kilgarriff, A. (2006). BNC database and word frequency lists. Retrieved May 25, 

2014, from http://www. kilgarriff.co.uk/bnc-readme.html 

Korpus Języka Polskiego Wydawnictwa Naukowego PWN. Retrieved January 9, 

2014, from http://korpus.pwn.pl/

Kurcz, I., Lewicki, A., Sambor, J., Szafran, K., & Woroniczak, J. (1990). Słownik 

frekwencyjny poszczyzny współczesnej. Kraków: Instytut Języka Polskiego 

PAN.

Lewis, M. P., Simons, G., & Fennig, C.D. (Eds.). (2013). Ethnologue: Languages of 

the World, Seventeenth edition. Dallas, Texas: SIL International. Online 

version: http://www.ethnologue.com.

New, B., Brysbaert, M., Veronis, J., & Pallier, C. (2007). The use of film subtitles to 

estimate word frequencies. Applied Psycholinguistics, 28(04). 

doi:10.1017/S014271640707035X

Piasecki, M. (2007). Polish Tagger TaKIPI: Rule Based Construction and 

Optimisation. Task Quarterly, 11(1–2), 151–167.

Przepiórkowski, A. (2012). Narodowy Korpus Jezyka Polskiego: praca zbiorowa. 

Warszawa: Wydawnictwo Naukowe PWN.

Przepiórkowski, A., & Instytut Podstaw Informatyki. (2004). The IPI PAN corpus: 

preliminary version. Warszawa: IPI PAN.

Schreuder, R., & Baayen, R. H. (1997). How Complex Simplex Words Can Be. 

Journal of Memory and Language, 37(1), 118–139. 

doi:10.1006/jmla.1997.2510

Siyanova-Chanturia, A., Conklin, K., & van Heuven, W. J. B. (2011). Seeing a 

phrase “time and again” matters: The role of phrasal frequency in the 

processing of multiword sequences. Journal of Experimental Psychology: 

Learning, Memory, and Cognition, 37(3), 776–784. doi:10.1037/a0022531

Spearman, C. (1910). Correlation calculated from faulty data. British Journal of 

Psychology, 3(3), 271–295.

Woliński, M. (2006). Morfeusz — a Practical Tool for the Morphological Analysis 

of Polish. In M. Kłopotek, S. Wierzchoń, & K. Trojanowski (Eds.), 

Intelligent Information Processing and Web Mining (Vol. 35, pp. 511–520). 

Springer Berlin Heidelberg. Retrieved from doi:10.1007/3-540-33521-8_55

van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert, M. (2014). Subtlex-

UK: A new and improved word frequency database for British English. The 



93

Quarterly Journal of Experimental Psychology, 67(6), 1176-1190. 

doi:10.1080/17470218.2013.850521

Vuong, Q. H. (1989). Likelihood Ratio Tests for Model Selection and non-nested 

Hypotheses. Econometrica, 57(2), 307–333.





95

Chapter 4. An exposure-based account of the

changes in the word frequency effect

ABSTRACT

Although  word  frequency  is  usually  measured  using  a  logarithmic

scale,  the  relationship  between  log-transformed  frequencies  and

behavioral data is not completely linear but tends to flatten out for

high  frequency  words.  It  is  also  well  known  that  the  size  of  the

frequency  effect  changes  depending  on  reader's  proficiency.  We

consider whether statistical properties of a language sample (extreme

distribution of word frequencies, underspecification of frequencies in

the low frequency range) combined with a practice effect described by

a power function can account for these findings. We demonstrate that

these factors explain multiple phenomena observed in lexical research.

We do so using corpus simulations and response time and accuracy

measures collected in two massive word recognition experiments for

English and Dutch with almost 1.5 million participants representing

various demographic groups.
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INTRODUCTION 

Word frequencies in text corpora span an extremely wide range

of  values:  a  few very  frequent  words  occur  multiple  times  in  one

paragraph while  others  have  minuscule  probabilities  of  occurrence.

Such  extreme  values  are  not  typically  observed  in  behavioral

measures in standard psycholinguistic experiments and although word

frequency is one of the strongest predictors of human performance in

such tasks,  that is  the case only after transforming the frequencies.

Dating back to the seminal study by Howes and Solomon (1951), the

logarithmic transformation is most commonly applied in this context.

While the logarithmic transformation is both convenient and easy to

understand,  it  lacks  a  clear  theoretical  justification.  However,  the

simple  assumption  that  learning  to  recognize  words  is  not

fundamentally different from acquisition of other skills can lead to an

alternative transformation. McCusker (1977; after Murray & Forster,

2004) and later Murray and Forster (2004) already tried to address this

issue. They considered whether a power law (Newell & Rosenbloom,

1981)  or  an  exponential  function  (Heathcote,  Brown,  &  Mewhort,

2000),  which  are  often  considered  to  accurately  describe  the

relationship between performance and practice, could also provide an

adequate description of  how frequency influences recognition time.

They rejected this possibility by reasoning that this kind of asymptotic

function  would  predict  a  diminishing  word  frequency  effect  with

increased exposure to language, for example in older participants on

the grounds that it was inconsistent with the available data. Before we

revisit  this  prediction  in  greater  depth,  we  review  a  few
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methodological innovations and associated empirical findings that can

shine some more light on this issue.

The first methodological innovation in lexical research is the

development  of  megastudies,  in  which  data  for  a  large  number  of

stimuli  are  collected  and can  be  subsequently  used  to  test  various

hypotheses (for a review see Keuleers and Balota, 2015). Importantly,

because  they  provide  behavioral  measures  for  a  large  number  of

stimuli,  these  studies  enable  the  application  of  regression  analysis

instead  of  factorial  experiments.  This  approach  is  conductive  to

investigating various effects in more detail,  including the functional

relationship between word frequency and word processing efficiency.

In  the  current  paper,  we  will  make  use  of  megastudy  data  from

participants covering a broad range of demographic characteristics.

The second important development is a more nuanced view on

the use of text corpora in psycholinguistics. Firstly, currently available

text corpora are much larger than the ones used for a long time in

psycholinguistics.  Secondly,  several  studies  have  shown  that

frequencies  from certain  types  of  textual  materials,  such as  movie

subtitles,  are  more  adequate  for  use  in  psycholinguistics  (e.g.,

Brysbaert & New, 2009; Keuleers, Brysbaert, & New, 2010). Finally,

distributional  properties  of  text  corpora  are  also  considered  in  the

context of psycholinguistics (Kuperman & Van Dyke, 2013). This is

interesting given that this combination can create a synergy between

psycholinguistics  and  a  broad  body  of  knowledge  accumulated  in

corpus linguistics. There is a reason to believe that corpus statistics

should be  looked at  more carefully  by psycholinguists  because the

statistical  properties  of  text  corpora  can  be  assumed  to  also

characterize  the  language  samples  on  which  the  human  linguistic
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system is trained, potentially leaving its trace on how humans process

language. For example, Blevins, Milin and Ramscar (2015) argue that

regularity in language may be an effect of gaps in the paradigms of

many words that are associated with Zipfian distribution of words.

In  the  current  paper  we  make  use  of  large  text  corpora,

including corpora of movie subtitles, and, by conducting corpus based

simulations,  we  investigate  how  statistical  properties  of  language

samples  could  affect  human  performance  in  psycholinguistic

experiments.

Logarithmic functions have the mathematical property that the

difference between the logarithms of two numbers remains constant

when  both  of  these  numbers  are  multiplied  by  a  third  number.

Therefore, when modeling differences in the processing characteristics

of two words,  it  does not  matter  whether  logarithms of relative or

absolute frequencies are used. Because of this property, the difference

between  the  log  frequencies  of  two  words  does  not  change  with

increasing total exposure as long as the relative frequencies stay the

same.  After  logarithmic  transformation,  the  difference  between one

word and another word that is 10 times less probable is the same for a

person who has experienced the first word 100 times and the second

word 10 times as for a person who was experienced the first word 10

times and the second word once. As a result, the logarithmic function

does not predict changes in the amount of the frequency effect with

increased exposure (see also Figure 1). 
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Figure 1. Predicted differences in time required to recognize word w1 occurring

with probability p1  = 2e-6 and word w2 occurring with probability p2 = 6e-6

after  1  million  learning  trials  (green)  and  5  million  (red)  learning  trials

according to a power function (left) and a log function (right). The difference

decreases asymptotically  for any pair  of  probabilities  p1 and p2  for  a  power

function but remains constant for a log function.

Interestingly, the empirical findings, which are largely based

on the methodological innovations listed above, seem to suggest that

the relationship between behavioral measures and word frequencies is

not exactly logarithmic. It is quite clear that the relationship between

log transformed word frequency and response times in lexical decision

(Keuleers, Lacey, Rastle, Brysbaert, 2012; Keuleers, Diependaele, &

Brysbaert,  2010; Balota,  Cortese,  Sergent-Marshall,  Spieler, & Yap,

2004) or eye-tracking experiments (Cop, Keuleers, Drieghe, & Duyck,

2015;  Kuperman  & Van  Dyke,  2013)  is  not  completely  linear  but

tends to flatten out for the high frequency words. In fact, the word

frequency effect is not distributed equally across the entire frequency

range but has been observed to concentrate in the range between 1 per
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million  and  10  per  million.  Van  Heuven,  Mandera,  Keuleers  and

Brysbaert (2014) even proposed that a new scale which is centered in

the middle of its typical range, called a Zipf scale, should be used to

measure word frequencies.1

Secondly,  it  has  been  regularly  observed  that  the  word

frequency effect becomes less steep for more proficient participants,

both when comparing behavioral measures collected from non-native

and  native  speakers  of  a  language  (Van  Wijnendaele  & Brysbaert,

2002; Gollan, Montoya, Cera, & Sandoval, 2008; Duyck, Vanderelst,

Desmet, & Hartsuiker, 2008; Gollan et al., 2011; Whitford & Titone,

2012; Lemhöfer et al., 2008) and within groups of  native and non-

native  speakers  as  a  function  of  their  language  proficiency

(Diependaele,  Lemhöfer, & Brysbaert,  2012).  Increased  proficiency

can  be  considered  to  be  associated  with  more  experience  with  a

language so these results are compatible with other studies that looked

at  the  size  of  the  frequency effect  as  a  function  of  the  amount  of

exposure to print (Chateau and Jared, 2000) or proficiency (Pugh et

al., 2008, Shaywitz et al., 2003).

Although  the  empirical  relationship  between  the  size  of  the

word  frequency  effect  and  language  proficiency  is  rather

uncontroversial, its interpretation is much less clear. Diependaele and

colleagues (2012) contrasted two potential explanation of this effect in

bilinguals, a structural one, according to which competition between

1 The Zipf scale is a logarithmic measure of the number of occurrences per billion words with

Laplace  smoothing.  The  scale  was  proposed  as  a  more  convenient  scale  on  which  word

frequencies may be measured. In order to reflect the nature of the frequency effect, it is a

logarithmic scale (like the decibel scale of sound intensity), but, in contrast to the logarithm of

frequency per million words, it does not result in negative values for corpora of up to 1 billion

words.
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two languages can lead to an increased word frequency effect and one

based purely on within language characteristics. They found that the

size of the frequency x skill interaction can be fully explained based

on within-language factors, clearly favoring the second interpretation.

Kuperman and Van Dyke (2013) proposed that the interaction between

skill  and  word  frequency  effect  may  be  an  artifact  attributed  to

overestimation of the word frequencies  in the low frequency range

when  applying  large  text  corpora  to  explain  the  behavior  of

participants who have much less language experience. They also show

that the interaction between skill  and proficiency is  removed when

using subjective word frequencies instead of word frequencies derived

from text corpora.

If one considers that reading proficiency is likely to be strongly

associated with the total amount of exposure to language (even if this

is  not  the  only  influencing  factor),  arguments  against  the  power

function as describing the functional relationship between frequency

and  behavioral  measures  becomes  less  obvious.  A critical  piece  of

evidence  on  which  Murray  and  Forster  (2004)  rejected  the  power

function as a potential candidate for such a relationship was based on

empirical studies showing equal or stronger frequency effect in older

participants,  who should  have  more  language exposure  and should

thus  show  a  smaller  frequency  effect,  than  younger  participants

(Tainturier,  Tremblay,  &  Lecours,  1989;  Balota  &  Ferraro,  1996;

Spieler & Balota, 2000). However, given the direction of the skill x

proficiency  interaction  described  above,  the  results  of  the  studies

which looked at the relationship between age of participants and the

size of the word frequency effect are puzzling. Finding a larger effect

in older participants would be paradoxical, considering that there is
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good evidence that older participants have a larger vocabulary size

(O'Dowd,  1984;  see also Keuleers,  Stevens,  Mandera & Brysbaert,

2015 analyses based on a part of the dataset used also in the current

paper) and that vocabulary size was used as a measure of language

proficiency in many studies that found a frequency x skill interaction

with  the  opposite  pattern  (Diependaele  et  al.,  2012).  One  of  the

reasons why this paradoxical effect of age may have been observed,

could be that in the studies investigating this topic, typically a group

of very young adults (typically university students) is contrasted with

a group of much older adults (typically around 70 years old). Instead

of focusing on the extreme groups, it would be more beneficial to look

at how the word frequency effect changes across the entire lifespan

rather than focus on the two groups of extreme ages. The question of

how  the  word  frequency  effect  changes  across  lifespan  is  also

interesting in the context of the discussion about the existence of an

age-related cognitive decline. Because it has been argued that some

effects associated with aging may be a simple consequence of learning

(Ramscar,  Hendrix,  Shaoul,  Milin,  &  Baayen,  2014),  it  would  be

interesting to know whether there is a consistent pattern of changes in

the  word  frequency  effect  associated  with  systematic  exposure  to

linguistic stimuli.

Although not directly related to the word frequency effect, it is

interesting  that,  based  on the  analysis  of  a  large  dataset  of  lexical

responses  (Keuleers,  Stevens,  Mandera,  &  Brysbaert,  2015),  we

observed  that  the  pattern  of  the  increase  in  vocabulary  size  with

increased age is remarkably similar to the vocabulary growth curve

observed in  text corpora.  This pattern is  approximated by Herdan's

law (Herdan, 1960), which states that the probability of encountering a
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new  word  type  decreases  with  the  number  of  encountered  word

tokens, which results in vocabulary size increasing at an ever slower

pace.

This is  an interesting observation,  also in the context of the

current  discussion,  because  it  suggests  that,  given  a  large  enough

sample of  participants  and linguistic  stimuli,  it  may be  possible  to

observe behavioral patterns reflecting the properties of the language

samples experienced by the participants. In the current paper, we re-

examine the predictions made by the power function in describing the

word frequency effect's dependence on the size of the language input

that different groups of participants have experienced. We first make

theoretical  predictions  that  are  the  consequence  of  applying  power

functions to samples of language. Importantly, we do so in the context

of  language statistics.  We support  these considerations  with  corpus

simulations.  Next,  we  describe  two  web  based  word  knowledge

experiments in Dutch and English, with a total of nearly 1.5 million

participants. We evaluate the quality of the response times collected in

these experiments, and, finally, show that the patterns expected purely

based on applying a power function to language samples, can be also

observed in the word recognition data. Importantly, in our analyses we

do  not  rely  on  fitting  different  non-linear  functions  (such  as  the

logarithm and  the  power  function)  to  empirical  data  to  distinguish

which one best describes the dataset, as such approach can easily lead

to spurious findings (Clauset, Shalizi, & Newman, 2009). Instead, we

test predictions that the power functionand logarithmic function make

regarding the changes in the frequency effect in groups with different

degrees of linguistic exposure.
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LANGUAGE STATISTICS AND THE POWER FUNCTION

It is known that a practice curve is asymptotic – the time to

perform  a  task  generally  decreases  with  practice  but  for  each

subsequent  repetition  the  improvement  becomes  smaller.  It  was

proposed that this relationship can accurately be described by a power

function 2(Newell & Rosenbloom, 1981):

T=BN−α (Eq 1.)

where B and alpha are parameters and N is the trial number (repetition

of a task).

One obvious consequence of using this function to model word

frequencies  is  that  it  can  account  for  the  nonlinearity  in  the  word

frequency effect that is observed when word frequencies are measured

on the logarithmic scale.  The power function first  leads to  a faster

decrease in reaction times than the logarithmic function but leads to a

slower decrease later on. This results in a pattern that compensates for

the flattening out of the response times for high frequency words and

predicts  a  stronger  frequency effect  in  the  lower frequency ranges.

Secondly, the power function makes concrete predictions for different

words not only based on their relative frequency in a language but also

depending  on  the  total  amount  of  experience  that  a  person  has.

Thirdly, its predictions can be easily tested by combining the power

2 It has been argued that an exponential function may better approximate practice effect when

data from individual participants are considered (Heathcote, Brown, & Mewhort, 2000) and

that the observed power function between practice and performance may be a consequence of

averaging data from individual participants. In this paper, we work with data aggregated over

participants so we consider the power function to be a sufficient description. See also the

comments in the Discussion.
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function with corpus-based simulations if we assume that differences

in the amount of exposure to language in human participants can be

modeled in terms of the size of the language sample that the person

has been exposed to.

If we consider the recognition of each individual word to be a

task that has to be mastered, and if we know the probabilities with

which  words  occur  in  a  language,  we can  easily  modify  Eq  2.  to

describe the functional relationship between the sample of a language

that the person has experienced and the recognition time of a given

word:

T=B ( pw S)
−α (Eq 2.)

where  pw is  the  probability  of  the  word  and  S  is  the  size  of  the

language sample.

The word frequency effect can be rephrased as a difference in

response time to two words, p1 and p2, which can be expressed as:

T2−T1=B( p2 S)
−α

−B( p1 S )
−α (Eq. 3)

For any pair  p1 > p2,  this  difference approaches zero as  the

sample size approaches infinity (see also Figure 1.), so Murray and

Forster  (2014)  correctly  recognized  that  the  entire  word  frequency

effect should eventually disappear (for a finite vocabulary size).

However,  words  are  not  experienced  as  independent

phenomena – they are always part of a larger sample. Therefore, if we

are  considering  difference  associated  with  the  recognition  of  two

words  occurring  with  a  given  frequency  in  a  language,  we should

consider them as parts of a frequency distribution and not in isolation.
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The distribution of word frequencies was seminally described by Zipf

(1949) and is associated with a number of properties.

Firstly, the  consequence  of  the  Zipfian  distribution  of  word

frequencies is that probabilities of words in a language vary across

multiple orders of magnitude: there are some words with very high

probabilities but most words are concentrated in the extremely low

part of the frequency distribution. What are the consequences of this

fact for the differences based on the power function? Eq 3. describing

the  difference  in  required  effort  to  recognize  two  words,  can  be

simplified to:

T2−T1=B( p2
−α

−p1
−α

)S−α (Eq 4.)

So the difference in processing time is proportional to p1
-α – p2

-

α. If we assume that we use a log10 scale, as is usually done with word

frequencies, then each unit on a log scale is associated with an order

of magnitude change in word probabilities. In other words, p1  = 10p2,

and:

p2
−α

−p1
−α

=(1−10−α
) p1

−α  (Eq 5.).

From this follows that the difference depends on the p1 in such

a way that the extreme differences in p1 cause large differences in the

size of the predicted frequency effect. At the same time the speed at

which this difference is changing is equal to:

d T 2−T 1

dS
=−α B( p2

−α
− p1

−α
)S(−α−1 ) (Eq 6.)

In other words both the speed at which the difference in the

response times for two words decreases and their absolute values are
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larger in the low frequency range. It is also clear that the difference

will reach very low values for high frequency words very quickly, but

that this is not the case in the low frequency range (see Figure 2.).

Figure 2. The leftmost panel shows predicted differences in  time required to

process two low frequency words (red) occurring with probability  1e-9 (Zipf

value 0) and 1e-7 (Zipf value 2), medium frequency words (green) occurring

with probability 1e-7 (Zipf value 2) and 1e-5 (Zipf value 4) and high frequency

words (blue) occurring with probability 1e-5 (Zipf value 4) and 1e-2 (Zipf value

6) as a function of total amount of experience with language. The remaining

three panels show slopes of predicted lines connecting these pairs of words after

1  million  trials,  5  million  trials  and  10  million  trials.  Similarly,  to  what  is

observed in behavioral data the frequency effect decreases. The effect rapidly

becomes very small for the high frequency words. The difference between the

medium and high frequency pairs of words decreases fast but is still robust even

after a substantial number of learning trials.

In general, this is in line with the observation that the word

frequency effect is  stronger for low frequency words than for high

frequency words regardless of the proficiency level of a participant. At

the same time,  the difference between the more and less proficient

participants,  corresponding  to  larger  and  smaller  language  samples

that these participants have experienced respectively, is predicted to be
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larger for the low frequency words than for the high frequency words

as observed in empirical studies (e.g. Diependaele et al., 2013).

Another property of the Zipfian distribution is that it is very

difficult to obtain precise frequency estimates for the low frequency

words. In the above simulations we assumed that the frequency values

constitute a fully continuous variable and can take any real value. In

reality,  observed  frequencies  can  only  take  integer  values.  In

consequence, it is known that a very large proportion of the words is

either unobserved in a language sample of any size (have frequency

0), or occurs only once (frequency 1). This is true for any sample size

if we consider a theoretical Zipfian distribution, but also in practice if

we consider a text corpus of a realistic size and a finite vocabulary

(Baayen, 2001).

As  a  consequence,  differences  in  frequency  between  high

frequency  words  become  stable  even  in  very  small  samples,  but

differences between low frequency words remain singular (see Figure

3) and a much larger sample size is necessary to differentiate between

frequencies of the low-frequency words.
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Figure 3. Relative frequency estimates for a set of words distributed over the

entire range of frequencies in the UKWAC corpus, shown as a function of the

sample size taken from the corpus. Relative frequencies of high frequency words

are stable even in small sample sizes. In the case of the low frequency words,

even in relatively large sample size many words have singular frequencies or

noisy frequency estimates.  The blue dashed line shows Zipf  value associated

with words that have frequency 0 in the respective sample sizes.

To understand what this  implies for the frequency effect,  let

us consider a hypothetical language user who has experienced only

100  words  in  her  entire  life.  Assuming  perfect  retention,  a  power

function  predicts such a person to have a very strong frequency effect

since all the words will be relatively far from the asymptote. On the

other hand, roughly 10 of the words that she experienced will be just

the most frequent words, a few others will have frequencies 2 to 4,

and  the  remaining  tens  of  words  will  have  frequency  1.  The  vast

majority of the words will not be observed at all. As a result, for the
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extremely high frequency words, which would likely have been the

ones with frequencies larger than 1 in the sample, we can expect to see

a very strong frequency effect.  Although the effect  should be even

stronger for the low frequency words based on the predictions of the

power function, it is impossible to observe it as there is no variability

for the low frequency words. As we keep increasing the sample size,

the frequency effect will become increasingly observable in the very

low frequency range, even though at the same time, due to the nature

of the power function, practice would decrease the underlying effect.

Necessarily, for any frequency range and at any point in time one of

these two opposite tendencies will dominate: as we increase the size

of  the  sample,  the  underlying  difference  will  decrease  due  to  the

asymptotic nature of the practice function, but in the low frequency

range  the  effect  is  not  observable  in  the  beginning  due  to

underspecification of the frequencies. Any increase in the sample size

will increase the observable effect for the low frequency words.

Importantly, the inaccuracies in the low frequency range and

the  size  of  the  frequency  effect  for  the  higher  frequency  range

predicted by the power function are not independent phenomena but

are  tied  together  because  in  any  language  sample  the  absolute

frequencies of the high frequency words are necessarily tied to the

amount  of  the  variability  and  the  quality  of  the  estimates  for  low

frequency words and vice versa.

It is reasonable to ask how the sampling inaccuracies would be

expressed in the behavioral data. For accuracy, it is quite clear that one

should not be able to recognize a word that one has never seen and

that  the probability  of  recognizing a  word should be an  increasing

function of the experience with this  word until  it  reaches  a ceiling
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effect (which does not need to be equivalent to the asymptote of the

learning effect). For reaction times, because typically only the correct

responses are usually considered in the response times, first of all we

should  expect  to  have  fewer  observations  for  the  low  frequency

words.  It  has  also  been  reported  (Diependaele,  Brysbaert  &  Neri,

2012) that both for accuracy and response times participants are much

more probable to respond randomly (the responses are more noisy) for

the  low frequency  words.  All  in  all  we  would  expect  to  find  less

responses  in  the  low frequency range and more  random responses,

which should result in lack of a reliable effect for such words.

A CORPUS-BASED SIMULATION OF THE SIZE OF THE FREQUENCY 

EFFECT

In order to evaluate how these predictions would materialize in

language samples of varying size–which could be assumed to reflect

varying  exposure  to  language  in  participants  with  different  age,

proficiency, educational level, etc.– we conducted a corpus simulation

based on UKWAC, a corpus of about 2 billion words resulting from a

web crawl (Ferraresi, Zanchetta, Baroni, & Bernardini, 2008).  First,

we  selected 150 random sample sizes in the range between 2 million

and 200 million words. For each of the sample sizes, we selected a

random starting  point  in  the  UKWAC corpus  and  calculated  word

frequencies based on the portion of the corpus from the starting point

until the desired sample size was reached.

Next,  we  looked  at  the  speed  with  which  the  correlations

between the frequency estimates derived from different sample sizes

and  the  word  frequencies  calculated  based  on  the  entire  corpus

increased in different frequency ranges. In order to look at individual
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frequency bands we split the full frequency range into three parts: the

high frequency range including all words with Zipf values higher than

4, the medium frequency range including all words with Zipf values

between 2 and 4,  and the low frequency range including all  words

with Zipf values below 2. The frequency ranges were defined in this

way because they divide the full frequency range more or less equally

and  roughly  correspond  to  different  parts  of  the  frequency  curve

reported  in  lexical  decision  tasks  (Keuleers,  Diependaele,  &

Brysbaert,  2010;  Keuleers,  Lacey,  Rastle,  &  Brysbaert,  2011;  Van

Heuven et al., 2014). 

The pattern of obtained correlations can be seen in Figure 4. As

expected based on the properties of the Zipfian distribution,  in  the

highest frequency range the estimates were almost perfect even in the

smallest  samples.  In  the  medium frequency  range,  the  increase  in

correlations was smaller but also reached a very high level quite fast.

In  the  lowest  frequency  range,  however,  the  correlations  increased

rather slowly and even for the sample including 200 million words did

not reach 0.9.

Next,  in  order  to  simulate  the  practice  effect  we  applied  a

power function to the frequencies in each of the corpus samples. We

used an arbitrary exponent  equal  to  -0.322 which corresponds to  a

80% learning rate (the time required to perform a task drops to 80% of

the value with each doubling of the number of learning trials). The

choice  of  this  exponent  was  arbitrary,  but  the  purpose  of  this

simulation was to demonstrate a general consequence of the practice

combined with different language sample sizes, and a similar pattern

can be observed with other values of this parameter.
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Figure 4. Correlations between log 10 of the word frequency estimates in the full

UKWAC corpus and samples of varying size in different frequency ranges (left

panel).  The  correlation  between  the  sample  frequencies  and  the  full  corpus

frequencies increases rapidly in the high and medium frequency range, but for

the low frequency the increase is much slower. The right panel shows slopes

fitted using a piecewise regression in the three different frequency ranges, after

applying a power function to word frequencies in the different sample sizes. For

the  high  frequency  words,  the  frequency  effect  is  present  only  for  extremely

small sample sizes. In the medium frequency range the slope slowly becomes

less steep. For the low frequency words, initially the slope becomes steeper with

increasing sample sizes due to improvement in correlation between the word

frequencies derived from a sample and the word frequencies in the full corpus.

Note that the frequency effect results in negative slopes and that an absence of a

frequency effect corresponds to a slope of 0.

Finally,  we  conducted  a  regression  analysis  to  quantify  the

amount of the word frequency effect in each of the frequency ranges.

In contrast to the theoretical exposition  presented earlier, in which we

considered only differences in predicted response times between pairs

of words, in the case of the language samples we had to deal with

words being dispersed across the entire range of word frequencies. In
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order  to  quantify  the  amount  of  the  word  frequency  effect,  while

simultaneously taking into account all words, we applied a piecewise

regression  analysis,  with  slopes  free  to  change  in  each  of  the

frequency  ranges  (defined  in  the  same  way  as  in  the  correlation

analysis). We used Zipf values derived from the full UKWAC corpus

as  an  independent  variable  and  the  response  times  predicted  by

applying the power function to word frequencies in each sample size

as a dependent variable. The piecewise regression technique allowed

us to model changes in the shape of the word frequency effect in the

different frequency ranges.3

The results of the corpus simulations can be seen in Figure 4.

As  expected,  in  the  highest  frequency  range  the  coefficient  was

approaching 0 even for very small  samples  (corresponding to low-

proficient  participants)  as  the  absolute  frequencies  of  the  high

frequency words increased rapidly and the effect diminished due to

the properties of the power function. As could be predicted based on

the mathematical derivation presented above, the frequency effect in

the  medium  frequency  range  was  much  more  robust  and  was

decreasing  slowly  with  increasing  sample  size.  In  the  lowest

frequency range a reversed pattern was observed: increasing sample

size  led  to  an  increased  frequency  effect.  This  effect  may  seem

paradoxical but becomes quite clear if you consider the slow increase

in  the  correlation  between  sample  and  full-corpus  word  frequency

estimates in that frequency range as well as the fact that the power

function would predict a strong frequency effect in that range.

3 We confirmed the analyses conducted using the piecewise regression, by fitting a completely

independent regression lines in each of the frequency bands. However, this did not change the

qualitative patterns of results, so these analyses are not reported in the paper.
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In  summary,  this  simulation  fully  confirms  the  theoretical

predictions presented in the previous section. Increased sample size,

which we consider to be equivalent to increased language exposure,

when combined with a power function and properties of the Zipfian

distribution leads to a rapid decrease in the word frequency effect for

the  high  frequency words,  a  slower  but  systematic  decrease  in  the

slope  for  medium  frequency  words,  but  can  lead  to  the  reversed

pattern  in  the  case  of  the  low  frequency  words,  where  increasing

accuracy of sample estimates outweighs the decreases predicted by the

power function. Assuming that language proficiency and exposure are

equivalent to increased experience with words, we can expect to see

the  same patterns  for  more  proficient  and  experienced  participants

with increasing sample size from a text corpus.

Although  these  simulations  have  shown  the  predictions

regarding  different  language  sample  sizes,  in  psycholinguistic

experiments we often deal with averages of measures collected from

multiple participants. Because of that it should be considered whether

the  line of thought which led us to say that frequency estimates in the

low  frequency  range  are  unreliable  also  applies  to  frequencies

averaged across different samples. In order to answer this question we

conducted another corpus simulation in which we drew 100 samples

of 1 million tokens and 100 samples of 3 million words and looked at

whether the correlation between the average of the log10 frequencies in

smaller sample sizes can be used to approximate a larger sample size

(see Figure 5.)
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Figure 5. Effect of averaging sample sizes of 1 million (left panel) and 3 million

words  (right  panel)  on the  correlations  between the log 10 of  the averaged

frequencies and log 10 of word frequencies in the full corpus. For the high and

medium frequency words both sample sizes give an almost perfect correlations

with the estimates derived from the full corpus after averaging frequencies from

a relatively small number of samples. For the low frequency words, correlations

increase more slowly. The correlations increase faster when averaging larger

sample sizes than when averaging smaller sample sizes.

We  see  that  an  average  of  smaller  samples  gives  lower

correlations  with  the  full  corpus  than  the  same  number  of  larger

samples. Based on this we can conclude that our use of single samples

instead  of  averaging  a  larger  number  of  smaller  samples  in  the

previous simulation is a valid approach.

MEGASTUDIES

The question about the shape of the word frequency effect is a

question about the shape of the relationship between two variables. In

this  case  it  is  important  to  consider  both  behavioral  measures  and
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word frequency as continuous variables. The benefits of this approach

over factorial designs has been discussed in the literature (Balota, Yap,

Hutchison, & Cortese, 2012; Balota & Keuleers, 2015; Baayen, 2010).

The regression designs work particularly well  if  they are combined

with  the  megastudy approach  (Balota  et  al.,  2004;  Keuleers  et  al.,

2010; Keuleers et al., 2011; Brysbaert, Stevens, Mandera, & Keuleers,

2015), in which data for a large number of stimuli are collected. 

Despite the fact that the megastudy approach has proven to be

successful  in  many  ways,  the  creation  of  this  kind  of  datasets  is

resource  consuming  because  of  the  large  number  of  words  in  a

language that are potential stimuli.  Moreover, although megastudies

are so comprehensive and constitute an almost complete snapshot of a

language in terms of the range of stimuli that they cover, they are very

limited when it  comes to  whose language they represent.  They are

based almost exclusively on the language of fairly young participants,

native speakers of a language, typically undergraduate students.

To test the evolution of the word frequency across groups with

varying the amount of exposure,  such as participants with different

educational level and age, we would ideally have megastudy data for

each of the groups.

The problem with collecting megastudy data while taking into

account different demographic groups is that there is a multiplicative

relationship  between  the  number  of  observations  required  and  the

number of levels that we want to consider, which is a problem if we

consider the high number of trials required to cover the wide range of

linguistic stimuli.
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COLLECTION OF REACTION TIMES

Due to practical limitations, collecting data for all words from

a wide range of demographic groups in traditional laboratory-based

settings would be very challenging. So, we decided to investigate the

associated changes in the shape of the word frequency effect using

reaction times collected in a web based word knowledge experiment

that  we  recently  conducted.  Although,  collection  of  human  ratings

through  various  Internet-based  platforms  is  now a  well-established

method  (Brysbaert,  Warriner,  &  Kuperman,  2014;  Kuperman,

Stadthagen-Gonzalez,  &  Brysbaert,  2012;  Warriner,  Kuperman,  &

Brysbaert, 2013), this kind of collection of other types of behavioral

data  such  as  accuracies  and,  in  particular,  the  RTs  is  a  topic  of

increasing  importance.  It  has  been shown that  this  method of  data

collection can be useful, although caution is required with respect to

some  experimental  procedures  and  experimental  designs.  For

example,  Crump,  McDonnell  and  Gureckis  (2013)  used  Amazon

Mechanical  Turk  to  replicate  some  classical  psychological  effects.

They attempted a replication of the Stroop, switching, flanker, Simon

effect,  attentional  blink,  subliminal  priming,  and  category  learning

task.  They  managed  to  replicate  most  of  these  effects,  including

effects as small as 20-ms but failed to replicate the effect of masked

priming, likely due to technical issues with the control of presentation

time, and category learning, likely due to lack of sufficient motivation

in  their  participants.  More  recently,  Reimers  and  Stewart  (2015)

conducted a detailed evaluation of the presentation and measurement

accuracy of different systems that can be used to conduct Web-based

experiments. They found that within-system variability is rather small.

However,  the  between-system variabilities  can  be  substantial.  This
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finding has consequences for the types of experimental designs that

can be used with on-line collection of reaction times. Because of the

low variability within systems, collection of a slightly larger number

(10% according  to  Reimers  and  Stewart,  2015)  of  observations  is

sufficient  to  compensate  for  the  increased  amount  of  noise.  The

between  system  variability,  however,  can  be  more  problematic  in

some cases. Especially, when between-subjects comparisons are made

based on their absolute response times, spurious correlations can be

found. For instance, if older participants are more probable to use Web

browsers  which  give  slower  reaction  time  measurements,  this  can

result in spurious correlations between age and an absolute reaction

time. If we consider, however, within-subject effects such as a Stroop

effect,  even if  the measurement in  some browsers is  systematically

longer  or  shorter,  it  is  the  same for  both  conditions,  so  the  effect

should be the same.

In  summary,  we  need  to  be  cautious  when  dealing  with

experimental procedures that require an extremely precise timing in

presentation of stimuli (such as masked priming; Crump et al., 2013)

and  where  we  intend  to  make  between-subject  comparisons  of

absolute  response  times  (Reimers,  &  Stewart,  2015).  The  type  of

analyses  conducted  in  this  paper  is  largely  unaffected  by  these

problems:  the  word knowledge task does  not  depend on extremely

accurate  presentation  times  and  our  analyses  compare  differences

between  response  times  for  different  stimuli  (the  word  frequency

effect)  rather  than  absolute  reaction  times.  In  addition,  there  is  no

reason to believe that some systems will systematically overestimate

reaction times selectively for low frequency words or high frequency

words.
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To further  control  for  the  influence  of  differences  between

platforms, in all analyses we also use standardized reaction times per

participant  in  addition  to  the  raw  reaction  times.  This  procedure

removes potential influences associated with using various platforms

as  we  compute  them  for  individual  sessions  which  use  the  single

platform.  We also  correlate  our  values  with  existing  databases  of

reaction times.

METHOD 

PROCEDURE

We  conducted  two  word  knowledge  studies  –  in  Dutch

(http://woordentest.ugent.be)  and  in  English

(http://vocabulary.ugent.be).  The  analyses  reported  in  the  current

paper are based on data collected over a period from March 2013 to

December 2013 for Dutch and January 2014 until  August 2015 for

English. 

In total 54,333 words and 21,748 pseudowords were used in

the  Dutch  test  and 61,856 words  and 329,851 pseudowords  in  the

English test. The pseudowords were created using Wuggy (Keuleers &

Brysbaert, 2010).

Both studies were based on the principle that the experiment

should  be  short  and that  nothing  is  obligatory. After  accessing  the

website, participants were presented with an instruction asking them

to indicate for each letter  sequence that would be presented on the

screen whether they knew the word. They were informed that some

letter sequences were made-up words and that their final score would

be penalized if they responded 'yes' to these pseudowords.



121

Because the test was designed to work on computers but also

on other devices such as smartphones and tablets, the instruction was

tailored  separately  for  devices  with  a  physical  keyboard  and  for

devices with a touchscreen. For the keyboard devices the instruction

indicated that the buttons 'j' and 'f' should be used to give 'word' and

'non-word'  responses  respectively.  On  touchscreen  devices,  two

buttons with 'yes' and 'no' labels (or Dutch translations of these words)

were shown on the screen during the experiment and the responses

were given by touching these buttons (see Keuleers et al,  2015, for

more information).

After being presented with the instructions, participants were

asked  to  give  answers  to  a  set  of  questions  regarding  their

demographic background. In the Dutch test, questions regarding age,

gender,  location,  education  level,  mother  tongue,  number  of  other

languages known, best other language, level of knowledge of the other

language, and handedness were asked. In the English test, a similar set

of questions was asked with a difference that instead of asking for the

level of the best  other language we asked for the level of English.

Answering any or all of these questions was not required to proceed to

the word knowledge part of the experiment.

Next,  participants  were  presented  with  100  items,  which

included 70 words and 30 pseudowords. For the Dutch test,  sets of

100  items  were  collected  into  fixed  lists  before  the  start  of  the

experiment.  As  a  result,  each  word  and  pseudoword  was  always

presented within the same set of words and pseudowords, although the

order of presentation within each list was randomized. In the English

test, a new list was created by randomly sampling 70 words and 30

pseudowords  every  5  seconds  and  this  set  was  presented  to  all
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participants starting the test in this 5-second time window. As a result

most participants were presented with a unique set of stimuli. There

was no time limit to give a response.

After  completing  the  test,  participants  were  presented  with

their score, calculated as a percentage of correctly recognized words

minus  the  percentage  of  incorrectly  accepted  pseudowords.

Participants were allowed to do the test multiple times. In the part of

the experimental procedure in which participants were asked to fill-in

the profile information, the answers to the questions given previously

were shown. If nothing was changed in the profile information, we

considered  all  experimental  sessions  completed  without  making  a

change in the profile as representing the same participant.

RESULTS

ENGLISH

In  total,  for  the  English  test  we  collected  about  89  million

responses (words: mean = 1007, SD = 159; pseudowords: mean = 80,

SD = 31) from 890 thousand experimental  sessions.  We performed

basic cleaning of the full dataset in order to limit the amount of noise.

We considered only responses from the 3 first sessions associated with

each  profile  and  considered  only  the  responses  from  the  10th and

subsequent responses given in the test. Trials 1-9 were considered as

training trials although they were not explicitly specified as such in

the instruction. We also removed all trials with responses longer than

8000  ms  and  subsequently  removed  exceedingly  fast  and  slow

responses using an adjusted boxplot method (Hubert & Vandervieren,
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2008)  calculated  separately  for  words  and  pseudowords  in  each

individual session.

After applying this cleaning procedure, 70 million responses

(words: mean = 800,  SD = 130; pseudowords: mean = 63,  SD = 25)

from 837 thousand sessions remained in the dataset. 299 thousand of

these sessions were collected using devices with touchscreen and 538

thousand  from  keyboard  devices.  After  applying  the  cleaning

procedure, we calculated standardized reaction times (zRT) based on

correct  responses,  separately  for  words  and  pseudowords  in  each

experimental session.

Overall accuracy in the cleaned dataset was 73.0% for words

and 91.4% for pseudowords. Average response times were equal to

1265  ms  (SD =  859)  for  words  and  1466  ms  (SD =  925)  for

pseudowords.

DUTCH

In total,  in the Dutch test  we collected about  60 million responses

(words: mean = 796, SD = 115; pseudowords: mean = 777, SD = 137)

from  600  thousand  experimental  sessions.  The  same  cleaning

procedures  as  for  English  were  applied.  After  cleaning,  about  43

million responses (words: mean = 572, SD = 88; pseudowords: mean

= 552, SD = 102) from 513 thousand sessions remained in the dataset.

139  thousand  of  these  sessions  were  collected  using  devices  with

touchscreen and 373 thousand from keyboard devices.

Overall accuracy in the cleaned dataset was 83.8% for words

and 87.2% for pseudowords. Average response time for correct trials

was 1270 ms (SD = 778) for words and 1797 ms (SD = 1034) for

pseudowords. 
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QUALITY OF THE COLLECTED REACTION TIMES

Reliability

First, in order to evaluate the quality of the collected reaction

times we calculated split-half reliabilities of reaction time estimates

for words and pseudowords. The two halves were created by randomly

selecting half of the total number of experimental sessions, calculating

the  statistics  for  each  of  the  stimuli,  calculating  the  correlations

between the measures  derived from the two halves  and applying a

Spearman-Brown correction (Brown, 1910; Spearman, 1910).

The general reliability of the reaction times collected for words

was almost perfect.  It  was equal to 0.98 for raw RTs and 0.99 for

standardized RTs in the English test and to 0.97 for RTs and 0.99 for

the  standardized  RTs  in  the  Dutch  test.  For  pseudowords,  the

reliabilities in the English test were equal to 0.77 for raw RTs and 0.88

for  standardized  RTs.  In  Dutch  they  were  equal  to  0.96  and  0.98

respectively. 

Next, we considered the reliability of different subsets of the

full dataset. We calculated reliabilities for various demographic groups

by selecting only sessions collected from participants from that group

and  then  following  the  same  procedure  as  in  the  case  of  the  full

dataset.
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Table 1. Information about individual subgroups in the Dutch word knowledge

experiment.

Words Pseudowords
Reliability Reliability

N sessions Accuracy Mean RT RT zRT Accuracy Mean RT RT zRT
age group (native speakers)
0 - 9 7546 .82 1287.58 .26 .52 .84 1783.44 .21 .46
10 - 17 24254 .74 1410.18 .45 .65 .78 1794.83 .45 .64
18 - 23 60774 .79 1249.82 .75 .86 .84 1621.03 .74 .87
24 - 29 58257 .82 1299.77 .78 .88 .86 1725.63 .74 .87
30 - 39 77651 .84 1353.79 .83 .91 .87 1838.20 .80 .90
40 - 49 74029 .85 1341.80 .84 .92 .88 1846.15 .80 .91
50 - 59 72057 .87 1326.61 .84 .93 .89 1851.00 .80 .91
>= 60 60890 .88 1350.00 .82 .92 .89 1913.26 .78 .90

country (native speakers)
Belgium 180248 .83 1316.86 .92 .96 .86 1822.05 .90 .95
Netherlands 239673 .84 1341.54 .94 .97 .88 1792.47 .92 .97

education (native speakers)
No 1684 .77 1491.19 .04 .23 .75 2072.01 .11 .26
Primary 8462 .77 1524.85 .25 .48 .77 2083.20 .19 .40
Secondary 120902 .83 1354.80 .88 .94 .84 1857.36 .85 .93
Bachelor 156724 .84 1311.73 .91 .95 .87 1778.39 .90 .95
Master 143571 .85 1306.40 .91 .95 .90 1773.16 .89 .95

gender (native speakers)
Female 229574 .83 1308.32 .93 .97 .87 1760.64 .92 .97
Male 202669 .84 1348.02 .93 .96 .87 1856.03 .92 .96

handedness (native speakers)
Right-handed 375104 .84 1325.68 .96 .98 .87 1804.69 .95 .98
Left-handed 58573 .84 1327.30 .78 .89 .87 1802.97 .74 .87

best foreign language (native speakers)
English 323897 .84 1316.89 .95 .98 .88 1778.26 .95 .98
French 46331 .85 1336.24 .78 .88 .87 1885.63 .72 .85
German 24307 .86 1342.56 .64 .81 .88 1854.46 .55 .76

level of best foreign language (native speakers)
I know a few words. 3853 .77 1530.92 .16 .37 .77 2081.02 .12 .29
I can have a simple conversation. 42800 .83 1388.81 .73 .86 .85 1901.84 .69 .84
I can read a simple book. 55167 .83 1363.80 .78 .89 .87 1843.55 .73 .87
It is my second mother tongue. 31287 .84 1293.82 .67 .81 .85 1800.93 .59 .77
I speak and read the language fluently. 296317 .84 1310.03 .95 .98 .88 1779.21 .94 .97

number of foreign languages (native speakers; at least 1000 sessions)
0 2166 .80 1475.63 .13 .35 .81 2104.97 .17 .28
1 43116 .81 1390.48 .70 .85 .84 1864.49 .66 .83
2 145184 .83 1343.97 .90 .95 .86 1820.54 .89 .95
3 167579 .84 1313.91 .91 .96 .88 1790.41 .90 .96
4 54552 .85 1285.83 .79 .89 .88 1767.34 .73 .87
5 14455 .86 1264.18 .52 .70 .88 1753.39 .39 .63
6 3760 .87 1224.41 .24 .43 .89 1734.59 .16 .36

native language
Arabisch 1255 .75 1487.32 .19 .25 .72 2001.45 .21 .23
Duits 2226 .81 1457.21 .18 .31 .79 2076.32 .15 .36
Engels 2172 .79 1455.41 .15 .31 .79 2001.94 .12 .28
Frans 3896 .79 1453.57 .21 .36 .79 1996.26 .24 .37
Fries 2692 .84 1252.62 .20 .40 .87 1720.48 .15 .32
Nederlands 435458 .84 1325.94 .96 .98 .87 1804.55 .96 .98
Turks 1284 .75 1418.26 .14 .25 .72 1924.56 .14 .25
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Table  2.  Information  about  data  collected  from  different  subgroups  in  the

English word knowledge experiment.
Words Pseudowords

Reliability Reliability

N sessions Accuracy Mean RT RT zRT Accuracy Mean RT RT zRT

age group (native speakers)
10 - 17 28693 .69 1174.64 .46 .67 .88 1230.93 .09 .19
18 - 23 69646 .74 1211.80 .76 .86 .91 1306.57 .20 .35
24 - 29 80071 .77 1265.63 .83 .90 .92 1414.14 .25 .42
30 - 39 103113 .79 1295.42 .88 .93 .92 1490.87 .32 .49
40 - 49 76240 .81 1311.74 .86 .92 .93 1525.91 .27 .44
50 - 59 52318 .82 1342.76 .82 .90 .93 1567.78 .22 .39
>= 60 32981 .83 1427.60 .74 .85 .94 1663.07 .17 .34

country (native speakers)
Australia 21561 .77 1270.03 .60 .74 .93 1419.00 .14 .27
Canada 35846 .78 1289.47 .71 .82 .92 1460.42 .17 .32
United Kingdom 95536 .78 1269.58 .86 .92 .93 1422.86 .28 .46
USA 269759 .78 1302.85 .95 .97 .92 1487.41 .53 .71

education (native speakers)
Primary 4516 .70 1316.33 .23 .36 .86 1479.12 .04 .13
Secondary 109823 .75 1332.15 .86 .93 .90 1501.97 .28 .46
Bachelor 203662 .78 1287.15 .93 .96 .92 1452.60 .46 .65
Master 89546 .80 1273.38 .87 .92 .93 1449.42 .29 .46
PhD 34359 .82 1225.81 .72 .83 .94 1414.98 .18 .32

gender (native speakers)
Female 249704 .78 1282.91 .94 .97 .92 1456.20 .51 .69
Male 198274 .78 1299.76 .92 .96 .92 1471.47 .43 .62

handedness (native speakers)
Right-handed 393589 .78 1290.92 .96 .98 .92 1462.39 .62 .78
Left-handed 56092 .79 1279.19 .78 .87 .92 1457.45 .19 .35

level of english (all)
I know a few words. 10337 .57 1503.94 .21 .36 .84 1525.02 .08 .18
I can have a simple conversation. 23502 .52 1652.81 .39 .54 .87 1522.92 .11 .22
I can read a simple book. 57511 .57 1606.71 .63 .76 .89 1516.33 .18 .32
I speak and read the language fluent 239257 .70 1400.31 .92 .96 .90 1497.13 .46 .65
It is my mother tongue. 415124 .79 1283.08 .97 .98 .92 1455.75 .64 .79

native language (all)
English 455142 .78 1289.49 .97 .98 .92 1462.74 .66 .81
Dutch 16880 .70 1413.48 .50 .65 .91 1469.25 .12 .25
Finnish 12453 .71 1513.65 .47 .62 .91 1593.68 .15 .28
French 11273 .69 1366.63 .39 .54 .92 1408.80 .11 .23
German 17723 .68 1454.63 .50 .65 .92 1480.65 .13 .26
Italian 10635 .70 1448.81 .40 .55 .90 1576.51 .16 .27
Polish 22150 .56 1516.95 .46 .61 .91 1422.40 .16 .27
Spanish; Castilian 45668 .62 1470.28 .62 .75 .89 1450.70 .17 .31
Hungarian 35626 .62 1657.17 .62 .74 .88 1655.41 .21 .35

number of foreign languages (native speakers)
0 249490 .77 1324.70 .94 .97 .92 1494.59 .50 .69
1 131154 .79 1261.56 .89 .94 .92 1430.80 .34 .52
2 48105 .80 1224.26 .77 .86 .93 1399.55 .18 .33

best foreign language (native speakers)
Chinese 3037 .77 1118.59 .26 .40 .94 1199.71 .08 .19
French 34938 .81 1222.88 .74 .84 .94 1390.52 .17 .32
German 12247 .81 1227.76 .50 .65 .94 1418.98 .14 .26
Italian 2819 .82 1189.45 .30 .43 .94 1410.59 .15 .22
Japanese 2969 .80 1191.28 .29 .42 .94 1363.51 .09 .20
Latin 1311 .83 1129.12 .26 .37 .92 1417.72 .13 .25
Russian 1248 .81 1152.34 .26 .36 .94 1396.72 .14 .19
Spanish; Castilian 21760 .80 1245.72 .62 .75 .93 1412.93 .16 .28
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The reliabilities reported in Table 1 and Table 2 show that we

collected  high-quality  average  response  time  estimates  for  a  wide

range  of  different  demographic  groups.  In  general,  the  reliabilities

were  higher  for  standardized  reaction  times  than  for  raw  reaction

times.  In  the  English test,  there was a  particularly  large  difference

between  words  and  pseudowords  in  terms  of  the  reliabilities.  This

difference  is  caused  by a  much  lower  number  of  observations  per

pseudoword in this test as the total pool of pseudowords from which

pseudowords were selected was much larger.

From the perspective of the analyses conducted in the current

paper  the  most  important  conclusion  that  can  be  drawn  from  the

reported reliabilities is that we obtained stable estimates of response

times for a wide range of variables that should be naturally associated

with increased exposure to language. For different educational levels,

in both the Dutch and the English test the reliabilities were very high

for all subgroups of participants with Secondary education or higher

(in all cases higher than 0.85 for RTs and 0.90 for zRTs). Similarily,

we obtained reliable response time estimates for different age groups

in both the English and the Dutch test (in all cases above 0.74 for RTs

and 0.85 for zRTs for age groups 18 – 23 and higher).

Interestingly, many non-native English speakers participated in

the English test and this led to relatively reliable set of response times

for native speakers of several languages. For example, the reliabilities

in the case of standardized reaction times were equal or higher than

0.60  for  Spanish  (0.75),  Hungarian  (0.74),  German  (0.65),  Dutch

(0.65), Finnish (0.62) and Polish (0.61) native speakers. This allows us

to  conduct  an  analysis  of  the  word  frequency effect  on  non-native

speakers of a large number of languages.
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Correlations with existing datasets

In  order  to  further  evaluate  the  quality  of  the  collected

response  time  estimates,  we  also  calculated  their  correlations  with

existing megastudy datasets. In particular we looked at the correlation

between  the  standardized  reaction  times  from the  English  Lexicon

Project (Balota et al, 2007) and the British Lexicon Project (Keuleers

et al.,  2011) with the reaction times collected in the English test as

well  as  between  response  times  in  the  Dutch  Lexicon  Project

(Keuleers et al., 2010) and the Dutch Lexicon Project 2 (Brysbaert et

al., 2015) with those from our Dutch test.

We found  that  the  correlations  between  the  response  times

collected in the current study and the existing databases were high.

The correlation between the subset of the current dataset for native

speakers was equal to 0.73 for BLP and 0.79 for ELP in the case of the

English test, and 0.70 for DLP, 0.72 for DLP2 in the case of our Dutch

test. Importantly, these correlations have to be considered in the light

of the internal reliability of the existing databases, which are generally

in the range 0.8 – 0.9 and constitute an upper bound for the correlation

which  one  may  expect  to  obtain  with  these  databases.  It  is  also

important to note that the correlation between the response times in

BLP and ELP is 0.77 and between DLP and DLP2 it is 0.79. This

suggests that the word knowledge task taps into very much the same

word recognition processes as the lexical decision task,  despite  the

larger stress on personal knowledge and the smaller stress on response

speed.

Next, in order to investigate whether the subsets of the current

data  can  be  assumed  to  carry  meaningful  information  within  each
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subgroup, we looked at the amount of variance explained in different

subsets of the current datasets and the existing measures.

First,  we took advantage of the fact that ELP and BLP data

were  collected  in  the  United  States  and  the  United  Kingdom

respectively,  and  that  both  DLP and  DLP2 data  were  collected  in

Belgium and not in the Netherlands. Although the same language is

used  in  these  pairs  of  countries,  there  is  a  considerable  linguistic

variation between them. If our dataset reflects this variability well, we

would  expect  to  find  a  stronger  correlation  between  ELP and  the

subset of our data that was collected from the participants in the US

than in the UK, but this pattern should be reversed for the BLP. This is

indeed  what  we  observed  –  the  correlation  with  ELP  for  the

participants in the US was 0.687 and 0.668 for the participants in the

UK. For  BLP correlations  with these two subgroups were equal  to

0.595 and 0.618 respectively. This analysis was based on a random

sample  of  21,561  sessions  for  the  three  countries  from which  the

highest number of native speakers participated in our test (Australia,

Canada, UK, US). This is a conservative approach which allows to

reduce  potential  differences  in  reliabilities  of  different  datasets

associated with unequal number of sessions that we collected for each

of these countries, although it lowers the correlations relative to these

that could be achieved based on the full dataset.

Also for Dutch, in line with our expectations we observed that

the  subset  of  the  data  based  on  Belgian  participants  had  stronger

correlation with the DLP (r = 0.703) and DLP2 (r  = 0.728) than the

data collected in the Netherlands (DLP: r = 0.660; DLP2: r = 0.656).

This analysis was based on the 180,248 sessions sampled for each of

the countries.
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Table  3.  Correlations  between  standardized  reaction  times  collected  in  the

existing databases and for various subgroups in the current test. The analyses

for different countries are based on a sample of 21,561 experimental sessions in

each subgroup for the English test and 180,248 sessions for the Dutch test. The

analyses  for  different  age  groups  are based  on  28,693  test  for  the  English,

43,968 for the Dutch test.

Finally,  because  all  the  existing  datasets  are  based  on

experiments  in  which  the vast  majority  of  participants  were young

adults, we wanted to look whether age-related differences can also be

found in our dataset. For this purpose, we sampled 43,968 sessions for

each age group in the Dutch test and 28,693 sessions for each group in

the English test.  As shown in Table 3.,  we indeed found a stronger

correlation between the data collected from young participants in our

test compared to older participants.

Correlation Correlation

English test BLP ELP Dutch test DLP DLP2

country country

Australia .63 .68 Belgium .70 .73

Canada .60 .69 Netherlands .66 .66

United Kingdom .62 .67

USA .59 .69

age group age group

18 - 23 .66 .72 18 - 23 .72 .74

24 - 29 .64 .71 24 - 29 .69 .72

30 - 39 .64 .71 30 - 39 .67 .69

40 - 49 .63 .70 40 - 49 .64 .67

50 - 59 .61 .70 50 - 59 .62 .65

>= 60 .59 .68 >= 60 .58 .62
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SIZE OF THE FREQUENCY EFFECT IN DIFFERENT FREQUENCY 

BANDS

After  establishing  the  quality  of  the  collected  datasets  we

conducted  the  critical  analyses  of  how  the  word  frequency  effect

varies  with  exposure.  We  assumed  that  the  amount  of  linguistic

exposure should vary with the three demographic variables that we

collected.  First  of  all,  we  assumed  that  the  group  with  the  least

exposure to language are non-native speakers of this language. This

assumption  is  confirmed  by  relatively  low  accuracy  in  the  tests

collected from these participants (see Table 1). Because we collected a

sufficiently large dataset from non-native speakers only for English,

we conducted this particular analysis only on the English dataset.

Frequency measures

For  all  analyses  of  the  English  data  we  used  an  extended

version  of  the  SUBTLEX-US  (Brysbaert  &  New,  2009)  corpus

including 385 million words. The corpus was created by downloading

204,408  documents  from  the  Open  Subtitles  website

(http://opensubtitles.org)  whose language was tagged as  English  by

the contributors of that website. Next, we removed all subtitle-related

formatting from the files. To eliminate all documents that contained a

large  proportion  of  text  in  a  language  other  than  English,  we

calculated preliminary word frequencies based on all documents, and

removed all documents if the 30 most frequent words did not cover at

least 30% of the total number of tokens in that subtitle file. Because

many  subtitles  are  available  in  multiple  versions  we  implemented
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duometer4, a tool for detecting near-duplicate text documents using the

MinHash algorithm (Broder, 1997). The final version of the corpus

contained 69,382 documents and 385 million tokens. We will refer to

this corpus as SUBTLEX-US-V2.

The Dutch corpus was created by downloading 52,209 subtitle

files from the same source. We applied the same cleaning procedure as

in the case of the English subtitle  corpus.  The final  Dutch subtitle

corpus contained about 26,618 documents and 130 million tokens. As

the  created  corpus  is  an  extended  version  of  the  SUBTLEX-NL

(Keuleers et al., 2010), we will refer to that corpus as SUBTLEX-NL-

V2.

Native vs non-native speakers of a language

Because  only  in  the  English  test  a  significant  number  of

participants  specified  that  they  are  non-native  speakers  of  this

language, this analysis was not done on the Dutch test.

In  order  to  look  at  the  frequency  effect  we  conducted  a

piecewise regression with raw reaction times (RTs) and standardized

reaction times (zRTs) as well  as accuracies  as dependent  variables,

akin to the one that we used in the corpus simulations. We split the

frequency range in the same way as in that case, low frequency range

included all words with Zipf frequency below 2, medium frequency

from 2 to 4 and high frequency above 4 (for an illustration see Figure

6).

4 We released duometer as an open-source project. The tool and its source code are available

at: http://github.com/pmandera/duometer/ 
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Figure 6. Word frequency effect in three groups of participants with different

levels of exposure: non-native speakers of English (top panel), native speakers

with secondary education (bottom, left panel) and native speaker with Master's

degree (bottom, right  panel).  The slope in the low frequency range becomes

more negative in more proficient groups but the opposite tendency is observed in

the medium and high frequency ranges.

Because in  our dataset  the number of  sessions collected for

different languages differed significantly, which could bias the size of

the effects for groups for which we had more observations as data for

these groups can be expected to be more reliable, we considered the

coefficients  for  differing  numbers  of  sessions.  For  each  group  we

started by randomly selecting just 1000 sessions and then increasing

the  number  of  sessions  used  to  calculate  averaged  RTs,  zRTs and

accuracies by 1000 until a total number of sessions for this group was

reached.
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The coefficients in different frequency ranges for native and

non-native speakers of different languages are shown in Figure 7.

Figure 7. Slopes of the word frequency effect in different frequency ranges, as a

function of cumulative number of sessions used,  for native speakers of English

(yellow) and other languages (other colors; due to a large number of languages

the detailed legend is not shown). In the high frequency range the slope is close

to 0 for native speakers but a considerable effect can be observed for the non-

native speakers. The effect is larger also for the non-native speakers of English.

The reversed pattern is observe in the high frequency range.
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As predicted  by a  power  function,  in  the  highest  frequency

range we found a much stronger effect for non-native speakers. In this

group the average coefficient calculated for the maximum number of

sessions for each non-native language was equal to -49.80 for RTs,

-0.06 for zRTs and 0.01 for accuracies.  For the native speakers the

typical  word  frequency  effect  was  not  observed  in  that  frequency

range, in fact a small reversed relationship was observed (8.22 in the

case of RTs, 0.01 for zRTs and -0.04 for accuracies). In the medium

frequency range the effect was generally much stronger than in the

high frequency range. The slopes were again steeper for non-native

speakers (-222.29 on average for RTs, -0.29 for zRTs and 0.15 for

accuracies) compared to the native speakers (-173.26 for RTs, -0.25

for  zRTs and  0.09  for  accuracies).  In  the  lowest  frequency  range

however we observed a much stronger effect for the native speakers of

the language; for native speakers in the case of all the sessions the

coefficient was equal to -291.76 for RTs, -0.41 for zRTs and 0.16 for

accuracies, while for the non-native speakers it averaged -198.90 in

the case of RTs, -0.25 for zRTs and 0.08 for accuracies for the total

number of sessions for each individual language.

Effects of education

Next, we conducted a similar analysis based on subsets of the

data corresponding to different education groups. In this analysis only

data collected from English native speakers from the English test and

the Dutch native speakers in the Dutch test  were included. For the

English  data  groups  with  Secondary,  Bachelor,  Master  and  PhD

educational levels were included in the analyses. As there were fewer

than 5000 sessions collected from participants with Primary education

in the English test we did not include it in the analyses. For Dutch, the
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option to specify PhD as an educational level was not available in the

questionnaire administered before the test.

Figure 8. Slopes of the word frequency effect in different frequency ranges, as a

function of cumulative number of sessions used, for different educational levels

of English native speakers (English test).
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Figure 9. Slopes of the word frequency effect in different frequency ranges, as a

function of cumulative number of sessions used,  for different educational levels

of Dutch native speakers (Dutch test).

As could be expected based on the analysis reported above, the

slopes  in  the  highest  frequency  range  for  all  education  groups  in

English test were very close to 0 or revealed a weak reversed pattern

of word frequency. In the Dutch test weak effects of frequency were

observed in this frequency range for response times. The slopes were

steepest for participants with only Primary education (-62.00 for RTs,

-0.06  for  zRTs)  followed by those  collected  from participants  with

Secondary  education  (-23.48  for  RTs,  -0.04  for  zRTs),  Bachelor's
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degree (-20.01 for RTs, -0.04 for zRTs) and Master's degree (-19.37

for RTs, -0.04 for zRTs).

In  the  medium  frequency  range  the  slopes  systematically

decreased with increasing educational  level.  In  the English test  the

slopes were the least steep for participants that specified PhD as their

educational level  (-137.63 for RTs, -0.21 for the zRTs, and 0.07 for

accuracies),  followed by the slopes in the dataset  from participants

holding a Masters's degree (-159.62 for RTs, -0.23 for zRTs and 0.08

for accuracies), Bachelor's degree (-175.59 for RTs, -0.25 for zRT and

0.10  for  accuracies)  and  then  for  participants  with  secondary

education (-197.25 for RTs, -0.27 for zRTs and 0.12 for accuracies).  

We did not  collect  enough data  from participants  with only

primary education to observe a meaningful pattern in that case

In this frequency range, in the Dutch test the least steep slopes

were observed for participants holding Master's degree (-114.25 for

RTs,  -0.19  for  the  zRTs  and  0.03  for  accuracies),  then  Bachelors

degree  (-124.41  for  RTs,  -0.21  for  zRTs and  0.04  for  accuracies),

secondary education (-131.28 for RTs, -0.21 for zRTs and 0.05 for

accuracies) and finally primary education (-141.75 for RTs, -0.22 for z

RTs and 0.08 for accuracies).

Similarly, to the analysis based on data from native and non-

native speakers,  the pattern of the size of the effect generally reversed

in the lowest frequency range. In the case of the English test, a regular

pattern of an increasing frequency effect was observed for participants

with  a  Master's  degree  (-312.29  for  RTs,  -0.45  for  zRTs,  0.17  for

accuracy), Bachelor's degree (-296.84 for RTs, -0.42 for zRTs and 0.16

for accuracy), and secondary school education (-273.12 for RTs, -0.37

for zRTs and 0.15 for accuracies). The only exception to this trend was
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observed for participants with a PhD degree in case   who showed a

slightly  weaker  effect  compared  to  participants  holding  a  Master's

degree(-296.95 for RTs, -0.45 for zRTs and 0.16 for accuracies).

In the Dutch test the pattern was completely regular also in the

lowest  frequency  range,  the  strongest  effects  were  observed  for

participants with Master's degree (-312.08 for RTs, -0.51 for zRTs, and

0.26 for accuracies), followed by those holding Bachelor's degreee (-

282.94 for RTs, -0.47 for zRTs and 0.26 for accuracies), secondary

education (-259.18 for RTs, -0.43 for zRTs and 0.24 for accuracies),

and primary education (-194.51 for RTs, -0.30 for zRTs and 0.18 for

accuracies).

Age related differences

Finally,  we  looked  at  whether  changes  in  the  amount  of

exposure associated with age are also reflected in the size of the word

frequency effect. Again, only data collected from native speakers were

used in this analysis.
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Figure 10. Slopes of the word frequency effect in different frequency ranges, as a

function  of  cumulative  number  of  sessions  used,  for  different  age  groups  of

English native speakers (English test).



141

Figure 11. Slopes of the word frequency effect in different frequency ranges, as a

function  of  cumulative  number  of  sessions  used,  for  different  age  groups  of

Dutch native speakers (Dutch test).

The slopes for the maximum number of sessions in each age

group is reported in Table 4.
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Table 4. Slopes of word frequency effect in various age groups.

Again,  as  could  be  expected,  the  frequency  effect  was  not

present in the highest frequency range for most age groups, for both

English and Dutch. One more time we observed a  regular pattern of

slopes  associated  with  word  frequency  becoming  less  steep  in  the

medium  frequency  range  and  increasing  slopes  in  the  lowest

frequency range. This pattern was completely regular for both RTs and

zRTs in the case of the Dutch test. In the English test, the pattern was

as  expected  in  the  lowest  frequency  range  for  both  measures  of

response  times.  In  the  medium frequency  range,  the  two  youngest

groups had less steep slopes than would be expected for raw RTs but

this  irregularity  disappeared completely in  the case of standardized

RTs.

Additional analyses

The  two irregularities  in  the  otherwise  regular  pattern  were

found in the English test in RTs associated with age (for young age

groups) in the medium frequency range and for both RTs and zRTs in

the case of education (PhD holders) in the low frequency range. If the

hypothesis  regarding  the  changes  of  the  word  frequency  effect  is

correct, the observed patterns would be explained due to the fact that

RT zRT Accuracy
N sessions LF MF HF LF MF HF LF MF HF

English
10 - 17 28000 -146.39 -163.07 -5.98 -0.25 -0.29 -0.02 0.11 0.17 -0.04
18 - 23 69000 -217.25 -178.85 8.46 -0.33 -0.29 0.01 0.14 0.14 -0.05
24 - 29 80000 -275.14 -180.24 11.90 -0.39 -0.27 0.02 0.16 0.11 -0.04
30 - 39 103000 -305.09 -177.42 8.58 -0.42 -0.25 0.02 0.17 0.09 -0.04
40 - 49 76000 -326.88 -168.62 8.11 -0.45 -0.24 0.02 0.17 0.07 -0.03
50 - 59 52000 -341.57 -162.76 7.20 -0.47 -0.23 0.01 0.18 0.06 -0.03
>= 60 32000 -379.36 -161.30 12.43 -0.50 -0.22 0.02 0.18 0.05 -0.02
Dutch
10 - 17 24000 -138.78 -164.76 -38.67 -0.21 -0.24 -0.05 0.19 0.11 -0.01
18 - 23 60000 -225.06 -143.96 -20.49 -0.36 -0.24 -0.03 0.25 0.08 -0.02
24 - 29 58000 -268.91 -134.90 -24.84 -0.42 -0.22 -0.03 0.26 0.06 -0.01
30 - 39 77000 -305.18 -127.56 -22.78 -0.48 -0.20 -0.03 0.27 0.04 -0.01
40 - 49 74000 -309.92 -119.19 -21.48 -0.52 -0.19 -0.04 0.26 0.03 0.00
>= 60 60000 -315.73 -97.40 -16.89 -0.55 -0.17 -0.03 0.23 0.02 0.00
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we chose the boundaries between frequency ranges arbitrarily. It  is

possible  that  for  the  youngest  participants,  with  relatively  little

exposure,  the same process that is  increasing the effect in the high

frequency range may also play a role in the medium frequency range.

For the PhD holders on the other hand, who we can assume to have

the most exposure in the investigated groups, the point at which the

effect already starts to decrease may have been reached also in the low

frequency range.

If  this  hypothesis  is  true  we  should  be  able  to  adjust  the

irregularities  by  shifting  the  boundary  between  the  low  and  the

medium frequency range to higher values for the age related effects

and towards lower values for the education related effects.

In the case of the age effect, after shifting the boundary to a

Zipf  value  of  2.5,  we  observed  a  completely  regular  pattern  of

decreasing steepness of the word frequency effect with increasing age

group from -165.19 for the age group 17 – 21 to -109.46 for the age

group >= 60.  The pattern  was  also  perfectly  regular  in  the  lowest

frequency range where the steepness increased with age from -148.89

for the age group 17 – 21 to -343.51 for the age group >= 60.

For the analysis of the educational levels, we first shifted the

boundary  to  a  Zipf  value  of  1.5,  which  resulted  in  a  weaker

irregularity but the slope in the low frequency range was still larger

for  the  participants  with  Master's  education  (-351.71)  compared  to

those with PhD (-339.15), in the medium frequency range the effect

was  as  expected.  After  shifting  the  boundary  to  Zipf  value  1,  the

difference in the low frequency range became even smaller, (-440.73

for PhD , -446.43 for Master education).  If  we looked at  the same

analysis  conducted  on  standardized  reaction  times,  the  pattern  was
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completely  regular  with the slope becoming steeper  with  increased

education from -0.47 for Secondary education to -0.64 for Master's

education and -0.65 for PhD. The pattern was also completely regular

in the medium frequency range, with the steepness decreasing with

education  from  -0.30  for  Secondary  education  to  -0.28  for  PhD

education.

CORPUS SIZE AND VARIANCE EXPLAINED IN DIFFERENT GROUPS

A  recent  explanation  regarding  the  observed  interaction

between skill and proficiency, proposed by Kuperman and Van Dyke

(2014), attributed the interaction to the fact that larger corpora, which

are often used to calculate word frequencies, overestimate the relative

frequencies of low-frequency words in smaller samples, which can be

assumed  to  be  representative  of  the  language  exposure  of  less

proficient readers. The straightforward prediction of this hypothesis is

that smaller corpora should be better at predicting variance for less

proficient  groups  of  participants.  Because  this  hypothesis  does  not

make  distinct  predictions  regarding  separate  frequency  ranges,  we

conducted  an  analysis  in  which  we  fitted  linear  regression  models

without splitting the sets of words depending on their frequency range.

We used a standard linear regression with standardized response times

derived from different age groups in English and Dutch with a linear

and quadratic effect of word frequency. Critically, we varied the size

of the corpus that was used to calculate word frequencies. For English,

we used subsets  of  SUBTLEX-US-V2 including 5,  10,  30,  50,  80,

100, 150, 200, 250, 300, 350 and 384 million words and for Dutch 5,

10, 30, 50, 80, 100 and 130 million word subset of SUBTLEX-NL-

V2.  Next,  we looked at  the  amount  of  variance  explained in  each
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group  by  the  frequencies  derived  from  different  corpus  sizes.  To

equate the number of experimental sessions used in each age group for

the English test we sampled 28 thousand sessions. In the Dutch test

we  sampled  24  thousand  sessions  for  each  of  the  levels.  For  the

analysis of educational levels we sampled 34 thousand sessions in the

English test and 120 thousand sessions in the Dutch test.

Figure 12. Percentage of explained variance in standardized reaction times in

different age (left panels) and educational levels (right panels) in the English

(top panels) and Dutch (bottom panels) test depending on corpus size used to

calculate word frequencies.
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The results of this analysis are shown in Figure 12.

In contrast to what would be expected if overestimation would

be the only reason for the frequency x skill interaction, the amount of

variance explained never decreased with increasing corpus size.  On

the other hand, based on the predictions presented in the current paper

we  expect  the  amount  of  explained  variance  to  increase  with

increasing corpus size. Critically, because the word frequency effect

decreases in the high frequency range with increased exposure, while

the frequency effect increases in the low frequency range, it becomes

increasingly important to have precise word frequency estimates in the

low frequency range for more proficient participants and this requires

a larger corpus. Hence, we expect that the size of the corpus is more

important  for  the  amount  of  variance  explained in  older  and more

highly  educated  participants.  This  is  indeed  the  pattern  that  we

observed  in  the  data.  For  younger  participants  the  percentage  of

explained variance became saturated very fast with increasing corpus

size,  however  this  was  not  the  case  for  older  participants.  In  fact,

based on the observed trends we could expect that for the groups with

the most  exposure,  the amount  of  explained variance could  further

increase if the size of the corpus was further increased beyond what

was available to us.

DISCUSSION 

In  this  paper,  we  have  shown  that  the  shape  of  the  word

frequency curve and its  changes associated with proficiency can be

explained purely as a function of exposure if we assume that the time

to  respond  is  described  by  a  power  function.  First,  we  derived

theoretical predictions regarding the changes in the word frequency
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effect associated with increased exposure. Next, we confirmed these

predictions using a corpus simulation. Finally, the predicted patterns

were  confirmed  in  behavioral  data  collected  in  two  massive  word

knowledge experiments for Dutch and English with almost 1.5 million

participants.  The predicted pattern was confirmed based on a  large

spectrum of educational levels and, also, for the first time, when an

evolution of the word frequency effect over the entire lifespan was

analyzed.

The revealed pattern supports the practice effect as a primary

source of the frequency effect. As predicted by Murray and Forster

(2014), for such a function the word frequency effect decreases with

increasing amount of exposure. However, if one jointly considers two

properties of the Zipfian distribution  –   extreme differences in how

often we experience different words and how little experience we have

with the low frequency words in general  – it becomes clear that the

effect  does  not  have  to  completely  disappear  but  may  even  be

increasing in the low frequency range.

In a sense, the pattern of increasing word frequency effect in

the low frequency range could be interpreted as an artifact, because

we have fewer observations  and less  data  in  that  frequency range.

However,  this  phenomenon  is  also  a  natural  consequence  of  how

words are  distributed in  a language and could be observed even if

there are no other factors affecting word recognition than the sample

size as shown by our corpus simulation.

Interestingly, the power function as a basic principle describing

the  practice  effect,  allows  us  to  explain  a  range  of  phenomena

observed in behavioral data. Firstly, it accounts for the shape of the

frequency curve and in particular for the facts that the steepness of the
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frequency effect increases with deceasing frequency range, and that

the frequency effect in the low frequency range can be observed only

in  the  lowest-proficiency  speakers.  Secondly,  it  explains  why  a

stronger  word  frequency  effect  has  been  observed  for  non-native

speakers  of  a  language.  Thirdly  it  explains  the  proficiency  x  skill

interaction in general (and why the frequency effect is strongest in the

low frequency range).

Yet another interesting property of the power function is that it

becomes linear in log-log scale. In other words, researchers that are

log-transforming  reaction  times  and  then  using  log-transformed

frequencies  as  a  predictor, are  already implicitly  applying a  power

function to their data.

The  power  function  of  practice  also  offers  an  alternative

explanation of the proficiency x skill interaction to the one based on

attributing  it  to  an  overestimation  of  the  frequency  estimates  in

smaller language samples (less proficient participants, Kuperman &

Van Dyke, 2013). In this case we would expect to find smaller corpora

to predict performance of less proficient participants better than larger

corpora but this was not observed in the analyzed dataset: the larger

corpora were always better  than smaller corpora for all  proficiency

groups.  Yet  another  pattern  emerged  from  our  analyses:  due  to  a

combination of the overall decrease of the effect in the high frequency

range and an increase of the effect in the low frequency with increased

exposure,  the  observable  word  frequency effect  shifts  to  the  lower

frequency range. Because the estimation of the frequencies of the low

frequency range is especially affected by the size of the corpus, the

size  is  especially  important  for  more  proficient  age  groups.

Nevertheless, we do not deny that using subjective word frequencies
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may correct  for  this  effect,  but  it  has  to  be  kept  in  mind that  the

subjective ratings of frequency may also be prone to the same power

function practice effect as behavioral measures.

The described shift in the word frequency effect also means

that, methodologically speaking, it may be difficult to talk about low-

and  high-frequency  words  without  referring  to  the  details  of  the

discussed participants. Moreover, it seems that larger corpora may be

necessary  to  model  the  word  frequency  effect  in  more  proficient

participants.

An important methodological innovation of this paper was the

web based collection of  data. The massive amount of data collected

shows how efficient this method can be. The collected dataset seems

to be of a very high quality in terms of its reliability and patterns of

correlation with existing databases. Most importantly, it covers a very

wide  range  of  demographic  groups  and  a  very  large  part  of  the

lexicon.  However,  it  has  to  be  kept  in  mind  that   comparisons  of

absolute reaction times between different groups should be made with

caution as the technical details which may have affected the absolute

values of response time measurements may systematically vary across

demographic groups.

Another particularity of the current dataset is that it is based on

a  word  knowledge  task.  This  fact  was  reflected  in  longer  overall

reaction times than in typically used, speeded lexical decision tasks.

However, the high correlations with existing sets of lexical decision

data  provide  evidence  that  the  word  knowledge  task  has  a  large

similarity to the lexical decision task, so that the observed pattern of

results most probably generalizes to that task.
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A natural question to ask in the context of the current findings

is which of the existing models of word recognition could account for

the  power function  transformation  of  word frequencies.  A rigorous

derivation of the predictions of the functional shape of the frequency

effect  for  several  models  was  conducted  by  Adelman  and  Brown

(2008).  It  showed  that  at  least  some  existing  models,  such  as  the

instance  model  and  its  variants  (Logan,  1988),  predict  such  a

functional relationship between word frequencies and response times,

while other models, such as the Bayesian reader model (Norris, 2006)

and the  DRC (Coltheart,  Rastle,  Perry, Langdon,  & Ziegler, 2001)

would not predict this kind of relationship. Further work should look

at whether learning-based models of word acquisition, can account for

the patterns shown in the current paper. For example, it is known that

the Rescorla-Wagner model can account for an asymptotic shape of

the learning curve (Miller, Barnet,  & Grahame, 1995). However, it

would  be  interesting  to  see  if  modern  incarnations  of  this  model,

aimed  particularly  at  language  processing  (see  Baayen,  Milin,

Filipovic Durdevic, Hendrix, & Marelli, 2011) and considered in the

context of cognitive aging (Ramscar et al., 2014), would predict the

observed patterns.

It  is  also  important  to  further  investigate  the  details  of  the

processes involved for the very low frequency words. Diependaele et

al. (2012) have shown that the responses are becoming very noisy in

that frequency range. Nevertheless, we observed very strong effects in

the low frequency range for groups with sufficiently high proficiency. 

Finally, we do not claim that the shape of the practice curve, as

it is observed for word frequencies is exactly described by a power

function.  In  fact,  it  is  well  known  that  averaging  a  mixture  of
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exponentials  can  give  rise  to  a  power  function  (Newell  &

Rosenbloom, 1981; Newman, 2005). It has also been observed that the

exponential function is more adequate for describing practice effects

when  data  from  individual  participants  are  considered  (Heathcote,

Brown, Mewhort, 2000). We do not want to make claims about what

is  the  best  function  to  describe  the  practice  effect  at  the  level  of

individual speakers and it is possible that the shape that we observed

resembles  a  power  function  only  because  we  considered  averaged

responses. It also has to be kept in mind that there is a wide spectrum

of  functions  hat  are  intermediate  between  exponential  and  power

function (Newell & Rosenbloom, 1981). What is critical here is that

the practice effect cannot be excluded as a primary source of the word

frequency effect in general and of the changes in the effect in groups

of  participants  with  different  language  exposure  in  particular.

Nevertheless, it would certainly be interesting to re-examine the issue

of  an  exact  functional  shape  of  the  practice  effect  using  currently

available, large datasets of behavioral data.
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Chapter 5. Explaining human performance in

psycholinguistic tasks with models of semantic

similarity based on prediction and counting: A

review and empirical validation1

ABSTRACT

Recent  developments  in  distributional  semantics  (Mikolov  et  al.,

2013) include a new class of prediction-based models that are trained

on a text corpus and that measure semantic similarity between words.

We discuss the relevance of these models for psycholinguistic theories

and compare them to more traditional distributional semantic models.

We compare the models' performances on a large dataset of semantic

priming  (Hutchison  et  al.,  2013)  and  on  a  number  of  other  tasks

involving semantic processing and conclude that the prediction-based

models usually offer a better fit to behavioral data. Theoretically, we

argue that these models bridge the gap between traditional approaches

to  distributional  semantics  and  psychologically  plausible  learning

principles. As an aid to researchers, we release semantic vectors for

English and Dutch for a range of models together with a convenient

interface  that  can  be  used  to  extract  a  great  number  of  semantic

similarity measures.

1 This  chapter  is  based  on  a  paper  accepted  for  publication  in  Journal  of  Memory  and

Language pending minor changes as Mandera, P., Keuleers, E., & Brysbaert, M. (accepted).

Explaining human performance in psycholinguistic tasks with models of semantic similarity

based on prediction and counting: A review and empirical validation. Journal of Memory and

Language. 
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INTRODUCTION

Distributional semantics is based on the idea that that words

with similar meanings are used in similar contexts (Harris, 1954). In

this line of thinking, semantic relatedness can be measured by looking

at the similarity between word co-occurrence patterns in text corpora.

In psychology, this  idea inspired a  fruitful  line of research starting

with Lund and Burgess (1996) and Landauer and Dumais (1997). The

goal of the present paper is to incorporate a new family of models

recently introduced in computational linguistics and natural language

processing research by Mikolov and colleagues (Mikolov, Sutskever,

Chen, Corrado, & Dean, 2013; Mikolov, Chen, Corrado, Dean, 2013)

into  psycholinguistics.  In  order  to  do  so,  we  will  discuss  the

theoretical foundation of these models and evaluate their performance

on predicting behavioral data on psychologically relevant tasks. 

COUNT AND PREDICT MODELS 

Although  there  are  different  approaches  to  distributional

semantics, what they have in common is that they start from a text

corpus and that they often represent words as numerical vectors in a

multidimensional space. The relatedness between a pair of words is

quantified  by  measuring  the  similarity  between  the  vectors

representing these words.

The  original  computational  models  of  semantic  information

(arising from the psychological literature) were based on the idea that

the number of co-occurrences of words in particular contexts formed

the  basis  of  the  multidimensional  space  and  that  the  vectors  were

obtained by applying a set of transformations to the count matrix. For



163

instance, Latent Semantic Analysis (LSA; Landauer & Dumais, 1997)

starts  by  counting  how  many  times  a  word  is  observed  within  a

document  or  a  paragraph.  The  Hyperspace  Analogue  to  Language

(HAL; Lund & Burgess, 1996) counted how many times words co-

occurred in a relatively narrow sliding window, usually consisting of

up to ten surrounding words. Because of the common counting step,

following Baroni,  Dinu & Kruszewski (2014) we will  refer  to  this

family of models as count models. 

In  count  models,  the  result  of  this  first  step  is  a  word  by

context  matrix.  What  usually  follows is  a  series  of transformations

applied  to  the  matrix.  The transformations  involve  some kind of  a

weighting scheme, based on frequency-inverse document frequency,

positive pointwise mutual information (PPMI), log-entropy, and/or a

dimensionality  reduction  step  (most  commonly  singular  value

decomposition; SVD). Sometimes the transformation is the defining

component of the method, as is the case for LSA, which is based on

SVD. In other cases, however, the transformations have been applied

rather  arbitrarily  to  the  counts  matrix  based  on  empirical  studies

investigating which transformations optimized the performance on a

set of tasks. For example, in its original formulation, the HAL model

did  not  involve  complex  weighting  schemes  or  dimensionality

reduction  steps,  but  later  it  was  found  that  they  improved  the

performance  of  the  model  (e.g.,  Bullinaria  &  Levy,  2007,  2012).

Transformations  are  now often  applied  when training  models  (e.g.,

Recchia & Louwerse, 2015; Mandera, Keuleers, & Brysbaert, 2015).

If  we  consider  Marr's  (1982)  distinction  between

computational,  algorithmic,  and  implementational  levels  of

explanation, the count models are  only defined at the  computational
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level  (Landauer  & Dumais,  p.  216):  They consist  of  functions that

map from a text corpus to a count matrix and from the count matrix to

its  transformed versions.  Regarding the algorithmic level,  Landauer

and Dumais (1997) did not attribute any realism to the mechanisms

performing the mapping. They only proposed that the counting step

and  its  associated  weighting  scheme  could  be  seen  as  a  rough

approximation of conditioning or associative processes and that the

dimensionality reduction step could be considered an approximation

of a data reduction process performed by the brain. In other words, it

cannot  be assumed that  the brain stores a  perfect  representation of

word-context pairs or runs complex matrix decomposition algorithms

in the same way that digital computers do.2 In the case of HAL, even

less  was  said  about  the  psychological  plausibility  of  the  selected

algorithms.  Another  problem  is  that  count  models  require  all  the

information  to  be  present  before  the  transformations  are  applied,

whereas, in reality, learning in cognitive systems is incremental, not

conditional on the simultaneous availability of all information.

2It  is  known that  dimension reduction can be performed by biological  (e.g.  Olshousen &

Field, 1996) and artificial (Hinton & Salakhutdinov, 2006) neural networks. This fact is rarely

mentioned  when  authors  discuss  various  approaches  to  distributional  semantics  in  the

psycholinguistic literature.
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Figure 1. Both the CBOW and the skip-gram models are simple neural networks

(a) composed of the input, the hidden and the output layer. In the input and the

output layers each node corresponds to a word so the number of nodes in these

layers is equal to the total number of entries in the lexicon of the model. The

number of nodes in the hidden layer is a parameter of the model. The training is

performed by sliding a window through a corpus and adjusting the weights to

better fit training examples. When the model encounters a window including a

phrase black furry cat, the CBOW model (b) represents the middle word furry by

an activation  of  the  corresponding  node in  the  output  layer  and all  context

words (black and cat) are simultaneously activated in the input layer. Next, the

weights are adjusted based on the prediction error. In the case of the skip-gram

model (c) the association between each of the context words (black and cat) is

predicted by the target word (furry) in a separate learning step. When training

is finished, the weights between the nodes and the input layer and the hidden

nodes are exported as the resulting word vectors
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In  other  words,  although  the  count  models,  like  all

computational models, were very specific about which properties were

extracted  from  the  corpus  to  build  the  count  matrix,  and  which

mathematical  functions  were  applied  to  the  counts  matrix  in  the

transformation  step,  they  made  it  much  less  clear  how  these

computations  could  be  performed by the  human cognitive  system.3

This  is  surprising,  given  that  the  models  originated  in  the

psychological literature.

Unexpectedly, a recent family of models, which originated in

computer  science  and  natural  language  processing,  may  be  more

psychologically  plausible  than  the  count  models.  Mikolov  and

colleagues (2013a) argued that a relatively simple model based on a

neural network (see Figure 1) can be surprisingly efficient at creating

semantic spaces. 

This family of models is built  on the concept of prediction.

Instead  of  explicitly  representing  the  words  and  their  context  in  a

matrix, the model is based on a relatively narrow window (similar in

size  to  the  one  often  used in  the  HAL model)  sliding  through the

corpus. By changing the weights of the network, the model learns to

predict the current word given the context words (Continuous Bag of

Words model; CBOW) or the context words given the current word

(skip-gram  model).  Because  of  the  predictive  component  in  this

family of models, again following Baroni et al. (2014), we will refer

to these models as predict models. As indicated above, there are two

main types: the CBOW model and the skip-gram model.

3Although Landauer and Dumais (1997) discuss how the LSA algorithm could hypothetically

be implemented in a neural network, this aspect is not reflected in their implementation of the

model.
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Even though the predict models originated outside the context

of psychological research and were not concerned with psychological

plausibility, the simple underlying principle – implicitly learning how

to predict one event (a word in text corpus) from associated events–, is

arguably much better  grounded psychologically  than  constructing  a

count matrix and applying arbitrary transformations to it. The implicit

learning principle is congruent with other biologically inspired models

of associative learning (Rescorla  & Wagner, 1972),  given that  they

both learn on the basis of the deviation between the observed event

and  the  predicted  event  (see  Baayen,  Milin,  Filipovic  Durdevic,

Hendrix, & Marelli, 2011). An additional advantage of the model is

that it is trained using a stochastic gradient descent, which in this case

means that it can be trained incrementally with only one target-context

pairing to be available for each update of the weights, and does not

require all co-occurrence information to be present simultaneously as

is the case with the count models.

To illustrate in what sense we consider the predict models to be

psychologically  plausible,  we  would  like  to  compare  them  to  the

Rescorla-Wagner model – a classical learning model (for a review see

Miller, Barnet, & Grahame, 1995), which has also been successfully

applied to psycholinguistics (Baayen et al., 2011). This model learns

to associate cues with outcomes by being sequentially presented with

training  cases.  For  each  training  case,  if  there  is  a  discrepancy

between the outcomes predicted based on current association weights

and the observed outcomes (lack of an expected outcome or presence

of an unexpected outcome), the weights are updated using a simple

learning rule.



168 CHAPTER 5

Interestingly, the update rule of the Rescorla-Wagner model is

known to be mathematically equivalent to the delta rule (Sutton and

Barto, 1981), which describes stochastic gradient descent in a neural

network composed of a single layer of connections and which was

independently  proposed  outside  of  the  context  of  psychological

research (Widrow-Hoff, 1960). The same rule has been generalized to

networks consisting of multiple layers of connections and non-linear

activation  functions  as  a  backpropagation  algorithm  (Rumelhart,

Hinton,  &  Williams,  1986)  and  is  used  to  determine  changes  in

connection  weights  in  connectionist  models.  In  other  words,  the

Rescorla-Wagner model is just a special case of the backpropagation

algorithm used with a stochastic gradient descent.

Similarly  to  the  Rescorla-Wagner  model,  the  learning

mechanism which is used to train the predict models is also based on

backpropagation with stochastic gradient descent. These models learn

to minimize errors between the outcomes predicted based on the cues

and the observed outcomes by updating the weights of the connections

between the nodes in the network when observing events in  a text

corpus.  Here  cues  and  outcomes  correspond  to  target  and  context

words in a sliding window, and each update of the weights is based on

a  predicted  and  observed  pairing  between  the  target  word  and  its

context. The learned semantic representation, which can be thought of

as a pattern of activation of the hidden nodes for a word in an input

layer, is learned as a by-product of learning to associate contexts and

target words. The model is usually trained in one pass over the corpus

with the number of the training cases being dependent on the size of

the corpus.
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In this  sense,  the predict  models are  trained using a  similar

technique as the Rescorla-Wagner learning rule, adapted for a network

which includes a hidden layer and a non-linear activation function. It

could be argued that introducing the hidden layer and non-linearity to

the  model  make  it  conceptually  more  complex  than  the  Rescorla-

Wagner  model.4 However,  it  is  clear  that  it  may  be  impossible  to

represent more complex phenomena, such as semantics, in models as

simple  as  the  Rescorla-Wagner  model.  In  the  case  of  the  predict

models, the hidden layer is necessary to introduce a dimensionality

reduction step (Olshousen & Field,  1996;  Hinton & Salakhutdinoy,

2006) and a non-linear (softmax) activation function is necessary to

transform activations of outcomes to probabilities. In fact it has been

argued that  using neural networks deeper than three layers may be

necessary and justified to simulate and explain cognitive phenomena:

deep neural networks have proven to be successful in a large variety

of  fields  (for  a  review see  Le  Cun,  Bengio,  & Hinton,  2015)  and

hierarchal processing is also recognized as a fundamental principle of

information processing in the human brain (Hinton, 2007). The need

for recognizing deeper architectures as valid approaches to cognitive

modeling  has  also  been  proposed  in  the  psychological  literature

(Zorzi, Testolin, & Stoianov, 2013; Testolin, Stoianov, Sperduti, Zorzi,

2015). 

4 It  is  important  to  note  that  although a  network  with  no  hidden  layers  may be  simpler

conceptually, it does not necessarily mean that it is more parsimonious in terms of the number

of parameters that need to be specified. For example, consider a network with 50,000 words

as cues and the same number of outcomes. A fully-connected network with a single layer of

connections, such as the Rescorla-Wagner model, would require 50,000 x 50,000 = 2.5 billion

parameters (weights) to be specified, while introducing a hidden layer including 300 nodes

drastically reduces this number to 2 x 50,000 x 300 = 30 million parameters (weights).
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In  addition  to  their  potential  theoretical  appeal,  the  predict

models were shown to offer a particularly good performance across a

set of tasks and generally outperform the count models (Baroni et al.,

2014; Mandera et al., 2015) or perform as well as the best tuned count

model. On the other hand, it has also been argued that the superior

performance of the predict models is largely due to using better tuned

parameters as default for training these models than is the case for the

count models (Levy, Goldberg, Dagan, & Ramat-Gan, 2015). Even if

the performance of the predict  models does not surpass that of the

count models, they are generally much more compact in terms of how

much computational resources they require, which is also of practical

importance.

Although  the  predict  models  are  built  on  a  quite  simple

principle, it is not as obviously clear as in the case of the count models

what, in mathematical terms, these models are computing (Goldberg

& Levy, 2014).  Interestingly,  it  has  been  argued  that  some of  the

predict  models  may  implicitly  perform  a  computation  that  is

mathematically equivalent to the dimensionality reduction of a certain

type  of  the  count  model.  In  particular,  Levy  and  Goldberg  (2014)

argued  that  the  skip-gram  model  is  implicitly  factorizing  a  PMI

transformed count  matrix  shifted by a constant  value.  If  this  is  the

case, and the relationship between the two classes of models becomes

well  understood,  this  could  create  an  interesting  opportunity  for

psychologists  by  showing  how  mathematically  well-defined

operations (PPMI, SVD) can be realized on psychologically plausible

systems (neural networks) to acquire semantic information.

Given  the  potential  convergence  of  the  predict  and  count

models  it  becomes  especially  important  to  introduce  the  predict
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models to psycholinguistics. If the count models are well specified at

Marr's (1982) computational level of explanation, the predict models

could provide an algorithmic level explanation, bringing us closer to

understanding  how  semantic  representations  may  emerge  from

incrementally updating the predictions about co-occurrences of events

in the environment. Nevertheless, because to our knowledge this is the

first time these models are discussed in a psycholinguistic context, in

the current paper we did not focus on investigating the convergence of

the two classes of models but chose to train different semantic spaces

with typical parameter settings and details of the training procedures.

To advance our understanding of the new predict models (both

CBOW and skip gram) and their relationship to the more traditional

count models in a psychological context, we performed an evaluation

of the three types of models against a set of psychologically relevant

tasks. In order to gain a more complete picture of how these models

perform we tried to explore their parameter space instead of limiting

ourselves to a single set of parameters. In addition, we wanted to find

out how much of what we have learned about count models can be

generalized to the predict models.

Of  course,  the  investigated  implementations  of  the  predict

models are only loosely related to psychologically plausible principles

(such as  prediction).  We do not  claim that  the  investigated  predict

models  represent  a  human  capacity  to  learn  semantics  in  a  fully

realistic  way, but  rather  we argue  that  they  should  be  investigated

carefully because they may represent an interesting starting point for

bridging  the  theoretical  gap  between  the  count  models,  various

transformations  applied  as  part  of  these  models,  and  fundamental

psychological principles.
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COMPARING DISTRIBUTIONAL MODELS OF SEMANTICS

There  is  a  rich  literature  in  which  different  approaches  to

distributional semantics have been evaluated. In general they form two

types of investigations: Either various parameters and transformations

within  one  approach  are  tested  to  find  the  most  successful  set  of

parameter settings (e.g. Bullinaria and Levy 2007, 2012), or different

approaches are compared to each other to establish the best one (e.g.

Baroni et al., 2014; Levy et al., 2015).

The evaluations are often based on a wide range of tasks. For

example, Bullinaria and Levy (2007, 2012) compared the performance

of a HAL-type count model on four tasks: The Test of English as a

Foreign  Language  (TOEFL;  Landauer  &  Dumais,  1997),  distance

comparison,  semantic  categorization  (Patel  et  al.,  1997;  Battig  &

Montague, 1969), and syntactic categorization (Levy et al., 1998). The

authors  varied  a  number  of  factors  such  as  the  window  size,  the

applied  weighting  scheme,  whether  dimensionality  reduction  was

performed, whether or not the corpus was lemmatized (all inflected

words replaced by their base forms), and so on. They found that the

best results on their battery test were achieved by the models that used

narrow windows, the PPMI weighting scheme, and a custom, SVD-

based  dimensionality  reduction  step.  The  lemmatization  or  use  of

stop-words did not improve the performance of the model. 

Comparisons  of  different  classes  of  models include a  recent

comparison of the predict approach to the traditional count model on a

range  of  computational  linguistic  benchmark  tasks:  Baroni  et  al.

(2014) compared the models using semantic relatedness (Rubenstein

and  Goodenough,  1965;  Agirre  et  al.,  2009,  Bruni  et  al.,  2014),

synonym detection (TOEFL; similar to Landauer and Dumais, 1997),
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concept  categorization  (purity  of  clustering  categorization,

Almuhareb, 2006; Baroni et al., 2008; Baroni et al., 2010), selection

preferences (noun-verb pairs, how similar are they as subject-verb or

object-verb  pairs,  Baroni  and  Lenci,  2010;  Padó  &  Lapata,  2007;

McRae et al., 1998), and analogy (Mikolov et al., 2013a) and found

that the predict models had a superior performance on computational

linguistic benchmark tasks and were more robust to varying parameter

settings.  Levy,  Goldberg,  Dagan,  &  Ramat-Gan  (2015)  show  that

although count models lack the robustness of predict models, they can

work  equally  well  with  specific  weighting  schemes  and

dimensionality reduction procedures. 

It  is  clear  that  the  benchmark  tasks  from  computational

linguistics  may not  be  the  most  relevant  ones  for  issues  related to

human semantic processing and representation. For instance, a lot of

attention has been devoted to how well various distributional semantic

models perform on the TOEFL, which consists of choosing which of

four response alternatives most closely matches a target word over 80

trials with increasing difficulty. Unless we want to model scholastic

over-achievement, there is no a priori reason to believe that the model

scoring best on this test is also the psychologically most plausible one.

A  simple  psycholinguistic  benchmark  could  consist  of  correctly

predicting the proportion of alternatives chosen by participants. In this

respect, the relatedness ratings or elicited associations tasks used in

the computational linguistics benchmarks can also be considered valid

benchmarks for psycholinguistics. However, evaluating computational

models in psycholinguistics also involves comparing predictions about

the  time  course  associated  with  processing  stimuli.  The  most

frequently used task to study the time course of semantic processing in
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humans is semantic priming. This task consists of the presentation of a

prime word followed by a target stimulus. Usually, the task involves

either reading the target word out loud (naming) or deciding whether

the stimulus is an existing word or a pseudoword (lexical decision).

The task  does  not  involve  an  explicit  response  about  the  semantic

relationship between prime and target. However, it is assumed that the

time it takes to read the word out loud or to make a decision on its

lexicality is decreased by the degree of semantic relatedness between

the prime and the target. Therefore, in contrast to other benchmarks in

which participants are asked to give explicit responses about semantic

content, semantic priming is assumed to inform us about the implicit

working of semantic memory.

PREDICTING SEMANTIC PRIMING WITH DISTRIBUTIONAL 

MODELS

The question of whether semantic similarity measures derived

from distributional semantics models can predict semantic priming in

human subjects has been investigated in a number of psycholinguistic

studies.  In terms of the employed methodology these investigations

can be divided in two classes. Some studies simply look at the stimuli

across  related  and  unrelated  priming  conditions  and  investigate

whether  there  is  a  significant  difference  in  semantic  space  derived

similarity scores between these conditions. Other studies try to model

the semantic priming at the item level by means of regression analysis.

The first class of studies is exemplified by Lund, Burgess, &

Atchley (1995) who found that the HAL-derived similarity measures

significantly  differed  for  semantically  related  and  unrelated

conditions.  A similar  approach  was  taken  by  McDonald  &  Brew
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(2004) and Pado & Lapata (2007), who used distributional semantics

models to model semantic priming data from Hodgson (1991). Jones,

Kintch, & Mewhort (2006) compared the BEAGLE, HAL and LSA

models on a wide range of priming tasks, and investigated differences

in how well these methods mimicked the results of multiple priming

studies. 

The regression-based approach was already employed in Lund

and Burgess (1996), who reported that relatedness measures derived

from HAL significantly correlated with semantic priming data from an

existing  priming  study  (Chiarello,  Burgess,  Richards,  &  Pollock,

1990). A detailed examination of the factors modulating the size of the

semantic priming effect based on 300 pairs of words was conducted

by  Hutchison,  Balota,  Cortese,  &  Watson  (2008).  In  a  regression

design the authors found no effect of the LSA score. However, it is

worth noting that a large number of other predictors were entered in

the analysis, including other semantic variables, such as forward and

backward association strength from an association study by Nelson,

McEvoy,  &  Schreiber  (1998).  Collinearity  of  these  measures  may

have contributed to the fact that no significant effect of the LSA score

was  found.  In  addition,  the  null  result  does  not  prove  that

computational indices are unable to predict semantic priming, as the

quality of the used semantic space may have been suboptimal. 

Another item-level study was conducted recently by Günther,

Dudschig  and  Kaup  (2016)  in  German.  In  that  study  the  authors

carefully  selected  a  set  of  items  spanning  the  full  range  of  LSA

similarity scores computed on the basis of a relatively small corpus of

blogs  (about  5  million  words).  The  authors  found  a  small  but

significant effect of the LSA similarity scores. The critical difference
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between this study and the one conducted by Hutchison et al. (2008)

was in how the authors analyzed the data: Hutchison et al. (2008) first

subtracted RTs in the related condition from the RTs in the unrelated

contition  and  then  fitted  regressions  to  the  resulting  difference.

Günther et al. (2015) simply predicted the reaction times to the target

words  while  including a  set  of  other  variables  (including semantic

similarity  with  the  prime)  as  predictors.  Difference  scores  between

correlated variables are known to have a low reliability (Cronbach &

Furby, 1970) and arguably reduced reliability may have contributed to

lack of significant effect in the study by Hutchison et al. (2008).

Although  the  item-level,  regression  based  approach  has

multiple advantages over factorial designs (Balota, Cortese, Sergent-

Marshall,  Spieler,  &  Yap  2004;  Balota,  Yap,  Hutchison,  Cortese,

2012), until recently it was difficult to conduct this type of analysis on

a sufficiently large number of items. Fortunately, due to the recent rise

of megastudies (Keuleers & Balota, 2015), the situation is improving

rapidly.  Thanks  to  the  semantic  priming  project  (SPP)  ran  by

Hutchison  and  colleagues  (2013),  we  now  have  a  much  better

opportunity to  look at  how much of the total  variability  in  primed

lexical decision times (LDT) and word naming times can be explained

by semantic variables based on distributional semantics models. The

advantage of this approach is that with enough data we can directly

model RTs as a function of semantic similarity between the prime and

the target, also including other critical predictors known to influence

performance  on  psycholinguistic  tasks.  Because  in  a  megastudy

approach it is natural to focus on effect sizes more than on categorical

decisions based on statistical significance, the method lends itself to
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comparing various semantic spaces by examining how much variance

in RTs they account for.

CORPUS EFFECTS IN DISTRIBUTIONAL SEMANTICS 

The  performance  of  distributional  semantics  models  in

accounting for human data can be affected by the degree to which the

training  corpus  of  the  model  corresponds  to  the  input  human

participants have been exposed to. Ideally, the model would be trained

on  exactly  the  same  quality  and  size  of  data  as  participants  of

psycholinguistic experiments (typically first-year university students).

Of course, this ideal can only be approximated. In particular, much of

the language humans have been exposed to is spoken and can only be

used  for  modeling  purposes  after  a  time-consuming  transcription

process.  Instead,  models  are  typically  based  on  written  language

which is available in large quantities but is often less representative of

typical language input.

However, it has been observed that frequency measures based

on  corpora  of  subtitles  from  popular  films  and  television  series

outperform  frequency  measures  based  on  much  larger  corpora  of

various written sources. For instance, Brysbaert, Keuleers, and New

(2011) showed that word frequency measures based on a corpus of 50

million words from subtitles predicted the lexical decision times of the

English Lexicon Project (Balota et al., 2007) better than the Google

frequencies  based  on a  corpus  of  hundreds  of  billions  words  from

books.  A  similar  finding  was  reported  by  Brysbaert,  Buchmeier,

Conrad,  Jacobs,  Bölte,  and  Böhl  (2011)  for  German.  In  particular,

word frequencies  derived from non-fiction,  academic  texts  perform

worse  (Brysbaert,  New,  &  Keuleers,  2012).  On  the  other  hand,
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Mandera,  Keuleers,  Wodniecka,  & Brysbaert  (2015) showed that  a

well-balanced corpus of written texts from various sources performed

as well as subtitle-based frequencies in a Polish lexical decision task.

An interesting question in  this  respect  is  how important  the

corpus size is for distributional semantics vectors. Whereas a corpus

of  50  million  words  may  be  enough  for  frequency  measures  of

individual words, larger corpora are likely to be needed for semantic

distance  measures,  as  estimation  of  semantic  vectors  composed  of

hundreds of values may be a more demanding task than assigning a

frequency to a word. Some evidence along these lines was reported by

Recchia and Jones (2009), who observed that using a large corpus is

more  important  than  employing  a  more  sophisticated  learning

algorithm. The two corpora they compared contained 6 million words

versus 417 million words. On the other hand, De Deyne, Verheyen, &

Storms (2015),  based  on a  comparison between corpus samples  of

various sizes, conclude that corpus size is not critical  for modeling

mental  representations.  So,  in  addition  to  the  effects  of  size,  the

language  register  tapped  into  by  the  corpus  could  also  influence

semantic distance measures based on distributional models. We will

discuss this issue by comparing the performance of models based on

subtitle  corpora  with  the  performance  of  models  based  on  written

materials.  If  subtitle  corpora  perform  better  than  the  larger  text

corpora of written materials, this indicates that register is an important

variable. In addition, if the concatenation of both corpora turns out to

be inferior on some tasks, this is again an indication of the importance

of the register captured by subtitle corpora.
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EVALUATING SEMANTIC SPACES AS PSYCHOLINGUISTIC 

RESOURCES 

The  availability  of  the  priming  lexical  decision  and  word

naming megastudy data collected by Hutchison and colleagues (2013)

makes  a  systematic  comparison  of  various  measures  of  semantic

relatedness  feasible  and  opportune.  In  addition  to  various

distributional semantic models, semantic relatedness ratings can also

originate  from  feature-based  data  (McRae,  Cree,  Seidenberg,  &

McNorgan, 2005), human association norms (Nelson et al., 1998), or

semantic relatedness ratings (Juhasz, Lai, & Woodcock, 2015). While

we will  include  these  alternatives  in  our  comparison,  it  should  be

noted that they have some important practical limitations: (1) they are

defined only for a subset of words and (2) they do not exist in most

languages that can be potentially of interest to psycholinguists. 

To  perform  the  evaluation,  the  logic  of  evaluating  word

frequency norms (Brysbaert  and New, 2009;  Keuleers et  al.,  2010)

will be followed. In these evaluations, various word frequency norms

are used to predict lexical decision and word naming RTs in order to

identify the set of norms that accounts for the largest percentage of

variance  in  the  behavioral  data  (ideally  together  with  other  lexical

variables that affect word processing times, such as word length and

neighborhood density). An almost identical procedure can be applied

to  semantic  spaces.  A linear  regression  model  can  be  fitted  to  the

lexical  decision  and  naming latencies  of  target  words  preceded  by

semantically  related  or  unrelated  primes.  The  variables  known  to

influence word recognition (frequency, length, and similarity to other

words)  will  be  used  as  baseline  predictors,  to  which  the  semantic

distance between the prime and the target derived from the various
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distributional  semantics  models  will  be  added.  This  leads  to  the

measurement of how much extra variance in behavioral data can be

accounted for by adding relatedness measures from each distributional

semantic model.

Although  this  approach  can  be  informative  of  a  model's

absolute performance,  it  does not give an indication of the relative

evidence in favor of each model. The approach based on comparing

amount of variance explained is also biased towards more complex

models when comparing them against  the baseline (including more

variables gives more explanatory power but may result in overfitting

the training data). In order to overcome these limitations, we applied a

regression  technique  based  on  Bayes  factors  (e.g.  Wagenmakers,

2007)  as  described  by  Rouder  and  Morey  (2013;  see  also  Liang,

Paulo, Molina, Clyde, & Berger, 2008). The Bayes factor is a measure

of relative probability of the data under a pair of alternative models.

This  method  also  automatically  incorporates  a  penalty  for  model

complexity (Wagenmakers, 2007) and is flexible with respect to which

models can be compared, for instance to allow for the comparison of

non-nested models, which is difficult in a frequentist approach (Kass

& Raftery, 1995).  This  property  allows  us  to  quantify  the  relative

evidence  in  favor  of  different  models  including  predictors  derived

from various semantic spaces.

Although  we  consider  the  data  from  the  semantic  priming

project to be the most informative with respect to getting insight into

the semantic system of typical participants in psychology experiments,

we will  also  look at  how well  the  various  measures  perform on a

number of other tasks, and we will include some data from the Dutch

language, to test for cross-language generalization. In addition, where
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possible we will compare the outcome of the new variables to those

currently used by psycholinguists.

Initially,  we  intended  to  compare  two  count  models  (LSA-

inspired  and  HAL-inspired)  with  two  predict  models  (CBOW and

skip-gram). However, when we tried to calculate the LSA-type model

on  our  corpora,  it  became  clear  that  the  number  of  documents

(particularly in the UKWAC corpus) was too large to represent the

term by document matrix in computer memory and perform SVD on

that matrix. As a result, we had to use a non-standard, more scalable

implementation  of  the  SVD algorithm implemented  in  the  Gensim

toolkit (Rehurek & Sojka, 2010), which returned vectors that were not

doing  particularly  well.  Because  it  is  not  clear  whether  the  bad

performance  of  the  LSA-type  measure  is  due  to  the  inferior

performance  of  the  LSA approach  itself  or  to  the  algorithm,  and

because LSA-based measures in the past have done worse than HAL-

based measures, we decided not to include the former in the analyses

reported  below.  For  the  most  important  task  (semantic  priming),

however,  we  do  provide  the  LSA  measures  as  provided  by  the

Colorado website for comparison purposes.

 Finally, to  obtain  a  more  nuanced view of  how the  models

perform across different parameter settings we explore their parameter

space. By doing so, we make sure that we give each model maximal

opportunity  and  we  can  examine  whether  all  models  are  similarly

affected  by, for  instance,  the  size of  the  window around the target

word or the number of dimensions included in the model.
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CURRENT STUDY

For each corpus the tokenization was done by extracting all the

alphabetical strings. Following Bullinaria and Levy (2007, 2012) no

lemmatization or exclusion of function words was used. To represent

the  degree  to  which  two  words  are  related  according  to  the  used

semantic spaces we computed cosine distances between word vectors

u and v according to the formula: 

Dcos(u , v )=[1−
u⋅v

‖u‖‖v‖
]

In this formula u · v stands for a dot product between vectors u

and  v,  and  ||u|| and  ||v|| for  the  length  of  the  vector  u  and  v

respectively.

ENGLISH

Text corpora 

The corpora we used for creating the English semantic spaces

were UKWAC (a corpus of about 2 billion words resulting from a web

crawling program; Ferraresi, Zanchetta, Baroni, & Bernardini, 2008)

and  a  corpus  of  about  385 million  words  compiled  from film and

television subtitles. More information about UKWAC can be found in

Ferraresi et al. (2008). 

The subtitle corpus was created based on 204,408 documents

downloaded from the Open Subtitles website (http://opensubtitles.org)

whose  language  was  tagged as  English  by  the  contributors  of  that

website.  We first  removed  all  subtitle  related  formatting.  Next,  to

eliminate all documents that contained a large proportion of text in a
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language  other  than  English,  we  calculated  preliminary  word

frequencies based on all  documents, and removed all  documents in

cases where the 30 most frequent words did not cover at least 30% of

the total number of tokens in that subtitle file. Because many subtitles

are available in multiple versions we implemented duometer 5, a tool

for  detecting  near-duplicate  text  documents  using  the  MinHash

algorithm (Broder, 1997). The final version of the corpus contained

69,382 documents and 385 million tokens.

We  also  combined  the  two  corpora  for  the  purpose  of

computing the semantic spaces. The combined corpus contained 2.33

billion tokens and 2.76 million documents. 

Model training 

We  trained  the  (HAL-type)  count  model  by  sliding  a

symmetrical  window  through  the  corpus  and  counting  how  many

times  each  pair  of  words  co-occurred.  We considered  the  300,000

most frequent terms in the corpus as both target and context elements

(Baroni  et  al.,  2014).  Next,  we  transformed  the  resulting  word  by

word  co-occurrence  matrix  using  the  positive  pointwise  mutual

information  (PPMI)  scheme  (Bullinaria  &  Levy,  2007).  The

transformation  involved  computing  pointwise  mutual  information

(Church & Hanks, 1990) for each pair of words x and y according to

the formula: 

PMI( x , y)=log2

p (x , y )

p(x ) p( y)

5We released duometer as an open-source project. The tool and its source code are available

at: http://github.com/pmandera/duometer 
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Where p(x) is the probability of the word x in the text corpus,

p(y) is the probability of the word y in the text corpus and p(x, y) is the

probability of the co-occurrence of the words x and y. In the final step,

the values of the cells in the matrix for which the pointwise mutual

information values were negative were substituted with 0, so that the

matrix contained only non-negative values (hence  positive  pointwise

mutual information).

We trained the CBOW and skip-gram models using Gensim

(Rehurek & Sojka, 2010)6, an implementation that is compatible with

word2vec (Mikolov et al., 2013a) – the original implementation of the

predict models. For these models, all word forms occurring minimally

5 times in the corpus were included. Each model was trained using 50,

100,  200,  300  and  500  dimensions.  We  set  the  parameter  k  for

negative sampling to 10 and the sub-sampling parameter to 1e-5. Sub-

sampling is a method of mitigating the influence of the most frequent

words (Mikolov et al.,  2013a) by randomly removing words with a

probability higher than a pre-specified threshold. Negative sampling is

a computational optimization that avoids computing probabilities for

all words in an output layer. In each learning case only a subset of

words is considered.

An important parameter influencing the performance of count

models  (Bulinaria  &  Levy,  2007,  2012)  is  the  size  of  the  sliding

window. We varied this parameter for the count and predict models in

the range from 1 to 10 words before and after the target word7 (i.e., the

6 The toolkit is available at https://radimrehurek.com/gensim/

7 The CBOW and skip-gram models limit the size of the window used on individual learning

trials to a randomly chosen value in the range from 1 to the requested window size.
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minimal  window size  of  1  included 3 words:  the target  word,  one

word before, and one word after). 

Evaluation tasks 

In order to keep vocabulary size constant across the count and

predict  models and across the three corpora used (subtitles,  written

texts, and their combination), we used only the subset of words that all

semantic  spaces  had  in  common.  We also  wanted  to  compare  our

semantic  spaces  with  the best  performing space  from Baroni  et  al.

(2014; CBOW model with 400 dimensions, window size 5, negative

sampling  value  10,  trained  on  the  concatenation  of  the  UKWAC,

Wikipedia  and  the  British  National  corpus  including  2.8  billion

words)8. Therefore, we further limited the vocabulary of the models to

the  intersection  with  the  vocabulary  of  that  dataset.  The  resulting

semantic spaces contained 113,000 distinct words. 

Semantic priming – method

We  used  the  data  from  the  Semantic  Priming  Project

(Hutchison et  al.,  2013),  which contains  lexical  decision times and

naming times to 1,661 target words preceded by four types of primes.

Two prime types were semantically related to the target but differed in

their association strength; the other two types were unrelated primes

matched  to  the  related  primes  in  terms  of  word  length  and  word

frequency. The Semantic Priming Project contains two more variables

of interest for our purpose. They are the semantic similarity measures

derived  from  LSA  (based  on  the  general  reading  ability  dataset,

trained on the TASA corpus, 300 dimensions; Landauer & Dumais,

1997) and from BEAGLE (Jones et al., 2006). These numbers allow

8 Downloaded from: http://clic.cimec.unitn.it/composes/semantic-vectors.html
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us to compare the newly calculated measures to the current state of the

art in psycholinguistics. As the data were not available for all prime-

target pairs, this further reduced the dataset. In the end 5,734 of the

original 6,644 prime-target pairs remained.

For lexical decision (LDT) all non-word trials were excluded

from the dataset and for both LDT and word naming we excluded all

erroneous responses. We excluded all trials with RTs deviating more

than  3  standard  deviations  from the  mean  and  computed  z-scores

separately for each participant and each session. Finally, we averaged

the  z-scores  for  each  prime-target  pair  and  used  the  result  as  the

dependent variable in our analyses.

 Next,  we  fitted  linear  regression  models  with  various

predictors to evaluate the amount of variance in the standardized RTs

that  could  be  accounted  for. First,  we calculated  a  baseline  model

including  log  word  frequency  (SUBTLEX-US;  Brysbaert  &  New,

2009),  word  length  (number  of  letters),  and  orthographic

neighborhood density (Coltheart, Davelaar, Jonasson, & Besner, 1977)

of  both  the  prime  and  the  target  (all  variables  as  reported  in  the

Semantic  Priming  Project  dataset).  Then,  we  fitted  another  linear

regression model including the baseline predictors plus the measure of

semantic distance between the prime and the target provided by the

semantic space we were investigating, and looked at how much extra

variance the semantic similarity estimate explained. We used all pairs

of  stimuli  irrespective  of  the  condition  (both  related  and unrelated

words).

Semantic priming – results

The baseline regression model including the logarithm of word

frequency, length, and neighborhood density (all predictors included
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for  both  the  prime  and  the  target  word)  explained  38.9%  of  the

variance in the lexical decision RTs and 31.2% of the variance in word

naming latencies (see Figure 2). 

Figure 2. Performance of the three types of models on the Semantic Priming

Project (Hutchison et al.,  2013) dataset.  The straight blue lines indicate the

performance of the baseline model which did not include semantic predictors.

Although the best count model in the LDT tasks performs slightly better than the

best predict model (CBOW), its performance decreases rapidly with increasing

window size. For naming, the predict models generally provide a better fit to

behavioral  data.  The  models  trained  on  the  subtitle  corpora  or  on  the

concatenation  of  the  subtitle  corpus  and  the  UKWAC  corpus  perform

particularly well on these tasks.

When the relatedness scores from the distributional semantics

models were added as a predictor, the amount of variance explained

increased  for  both  tasks.  The  improvement  was  already  highly
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significant for the relatedness measure based on the worst performing

model.  For  LDT,  this  was  the  skip-gram  model  trained  on  the

concatenation  of  the  subtitle  and  the  UKWAC  corpus  with

dimensionality  500 and  window size  1  [F(1,  5729)  =  367.27,  p <

0.001)]; for word naming it was the skip-gram model trained on the

UKWAC corpus with dimensionality  500 and window size 1 [F(1,

5729) = 99.778, p < 0.001)].

On average, the models with added distance measures derived

from the count model explained 44.5% (SD = 0.63%) of the variance

in lexical decision and 32.8% (SD = 0.27%) in naming. The models

based on CBOW similarities  explained 44.5% (SD  = 0.5%) of  the

variance in the primed lexical decision task and 33.0% (SD = 0.1%) of

the variance in the naming task. The models involving the skip-gram

relatedness explained 43.9% (SD = 0.5%) of the variance in the lexical

decision reaction times and 32.7% (SD  = 0.2%) of the variance in

word naming latencies.

The best performing count model, both for lexical decision RTs

and  word  naming  latencies,  was  the  model  trained  on  the  subtitle

corpus with window size 3. It explained 45.7% of the total variance in

lexical  decision  reaction  times  and 33.2% of  the  variance  in  word

naming latencies.

The best performing CBOW model in lexical decision had 300

dimensions  and  was  trained  on  the  subtitle  corpus  with  a  sliding

window of 6 words to the left and 6 words to the right. It explained

45.5% of the total variance in reaction times. For word naming, the

best performing CBOW model had 300 dimensions, was trained on

the  concatenation  of  the  UKWAC  and  the  subtitle  corpus  using

window size of 8 (33.2% of explained variance).
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For  the  skip-gram  models,  the  best  performing  model  for

lexical  decision  had  200  dimensions  and  was  trained  on  the

concatenation of the subtitle corpus and the UKWAC corpus using a

window  size  of  10.  It  explained  44.6% of  the  variance.  The  best

performing  skip-gram model  for  naming  was  trained  on  the  same

corpus but had 200 dimensions and a window size of 10. It explained

33.2% of the variance in naming latencies. 

Several interesting findings emerged from our analyses. First,

in many cases the models trained on the subtitle corpus outperformed

the models based on the UKWAC written corpus or the combination

of the two corpora.  This effect was particularly clear for the count

models (both in LDT and word naming) and the CBOW models (in

LDT). The difference was less clear for the skip-gram models. In all

cases, however, the addition of 385 million words from the subtitle

corpus  to  the  2.33  billion  corpus  of  written  texts  considerably

improved performance.

A second remarkable observation is that the best models are

quite comparable but have different window sizes. In particular, for

the  count  model  there  is  a  steep  decrease  in  performance  with

increasing  window  size  above  3  which  was  not  observed  for  the

predict models. As a result, the optimal window size is larger for the

predict models than for the count model.

Semantic  priming  –  a  comparison  with  the  existing  measures  of

semantic similarity

To further gauge the usefulness of the new semantic similarity

measures,  we  compared  the  extra  variance  they  explained  to  that

explained by currently used measures. The Semantic Priming Project

database  includes  measures  for  LSA and BEAGLE.  Currently, if  a



190 CHAPTER 5

distributional  semantics  model  is  used  for  the  purpose  of  selecting

experimental  stimuli,  psychologists  tend  to  rely  on  the  LSA space

available  through  a  web  interface  at  the  University  of  Colorado

Boulder (http://lsa.colorado.edu/; Landauer & Dumais, 1997). This is

understandable,  as the semantic  space was created to accompany a

classic paper and because the resource has a practical interface which

makes  data  extraction  easy. Yet,  given  the  recent  developments  in

distributional semantics and the availability  of much larger corpora

than the  one  on which  the  CU Boulder  spaces  were  trained (most

prominently the TASA corpus of about 11 million words), there is a

need to reevaluate whether the LSA-based semantic spaces should be

the default choice for measuring semantic relatedness in psychological

research. 

The TASA-based LSA similarity scores explained 43.9% of the

variance in lexical decision reaction times and 32.7% of the variance

in naming. The BEAGLE scores explained 43.0% of the variance in

lexical  decision  reaction  times  and 32.3% of  the  variance  in  word

naming latencies.9 All values are below those of the best performing

CBOW model (45.5% in LDT and 33.2% in naming).

Our  best  models  also  compare  well  relative  to  the  spaces

trained by Baroni et al. (2014). The best performing semantic space of

Baroni  et  al.  (2014)  explained  44.0%  of  the  variance  in  lexical

decision reaction times and 33.0% of the variance in word naming

latencies.

To examine how much more variance could be explained by

human  word  association  norms  (Nelson  et  al.,  1998)  and  feature

norms (McRae et al., 2005), we performed an analysis on the subsets

9 BEAGLE scores based on cosine distances; the other measures performed worse.
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of  words  that  are  included  in  these  datasets.10 We compared  the

semantic similarity indices based on the human data to those of the

best count, CBOW and skip-gram spaces for the lexical decision task.

There were 2,904 cue-target pairs that were simultaneously present in

the  priming data,  the  association  norms and the  vocabulary  of  our

semantic spaces. 

For this subset of Semantic Priming Project data, the baseline

regression model including logarithm of word frequency, length and

neighborhood density of both the cue and the target explained 38.9%

of the variance in lexical decision times and 31.2% in word naming

latencies.  The  model  that  additionally  included  human  forward

association  strength  explained  41.7%  of  the  variance  in  lexical

decision RTs and 32.7% of the total variance in word naming. The best

performing count model (trained on the subtitle corpus, using window

size 3) explained 42.3% of the variance in lexical decision RTs and

31.9% of  the  variance  in  word naming latencies.  The best  CBOW

model (trained on the subtitle corpus; 300 dimensions; window size 6)

accounted for 41.9% of the variance in LDT RTs and 32.0% in word

naming  latencies.  The  best  skip-gram  model  (trained  on  the

concatenation of the UKWAC and subtitle corpus; 200 dimensions;

window 10) explained 41.0% of the variance in lexical decision and

32.1%  of  the  variance  in  naming.  As  can  be  seen,  all  models

performed very similarly and close to what can be achieved by human

data.  We would  like  to  note,  however,  that  it  is  harder  to  explain

additional  variance  in  RTs based  on  relatedness  data,  because  the

10 Similar analysis could in theory be run using the scores derived from the Simlex-999 and

the Wordsim-353 ratings but the overlap with the semantic priming data was too small in

these cases to allow a meaningful analysis.
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subset of the Semantic Priming Project that was used for this analysis

contained only pairs of words generated as associates in the Nelson et

al.  (1998)  database,  which  significantly  reduced  the  range  of

relatedness values.

The intersection between the feature norms from McRae et al.

(2005),  the  semantic  priming data,  and the  vocabulary  data  of  our

datasets  included  100  word  pairs.  The  baseline  model  explained

37.0% of the variance in LDT RTs and 29.3% of the variance in word

naming  latencies.  Adding  the  relatedness  scores  computed  as  the

cosine  between  the  features  vectors  increased  the  percentage  of

variance accounted for by the model to 42.7% for LDT RTs and to

29.8% for word naming latencies. The amount of variance explained

by the model in which we inserted the measures derived from the best

performing count model was 54.6% for LDT RTs and 35.3% for word

naming.  In  the  case  of  the  best  CBOW model,  the  total  explained

variance  amounted  to  52.8%  for  lexical  decision  and  32.3%  for

naming. When the best performing skip-gram model  word distance

estimates  were  included  in  the  model,  it  explained  52.3%  of  the

variance  in  LDT RTs and  31.9% of  the  variance  in  word  naming

latencies.  So,  for  this  dataset,  the  semantic  spaces  actually

outperformed the human data.

Semantic priming – Bayes factors analysis

For all Bayesian analyses reported in this paper we adopted an

approach  described  by  Rouder  and  Morey  (2013;  see  also  Liang,

Paulo, Molina, Clyde, & Berger, 2008). We used default11 mixture-of-

variance priors on effect size. We also conducted a series of analyses
11The default 'medium' setting for the rscaleCont argument in the regressionBF function in the

R BayesFactor package, corresponding to the r scale = sqrt(2)/4.
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with altered priors but this did not change the qualitative pattern of

results, so we report only analyses conducted with default settings.

The results of the analysis are reported in Table 1.

For both LDT and naming we first identified baseline models

that  included  an  optimal  combination  of  lexical,  non-semantic

covariates.  For  both  the  prime  and  the  target,  we  considered  the

following co-variates: log of word frequency, length, and orthographic

neighborhood density. The subsequent analyses were conducted with

reference to the best baseline models identified for each of the tasks.

In  the  first  analysis,  to  obtain  the  most  conservative  indication  of

whether the semantic relatedness measures reported here improve the

models  based  on  lexical  predictors,  we  again  considered  all  the

possible submodels of the six lexical covariates with addition of the

worst performing semantic relatedness measures for each task. In the

case of both LDT and naming even the models including the worst

performing  semantic  measures  compared  favorably  to  the  baseline

models.
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Table 1. The results of the Bayes factor analysis of the English semantic priming data. Bayes factors for the baseline models are

reported with reference to the intercept-only model and for the remaining models with reference to the baseline model. The worst and

best relatedness measures included in the Bayesian analyses were selected separately for each task based on the R2 in the previous

analyses.

Note. WFtarget  = log10 of the target word frequency; WFprime  = log10 of the prime word frequency; lentarget = number of letters in the target word; lenprime = number of letters in the

prime word; ONtarget = orthographic neighborhood density of the target word; relworst = the worst relatedness measure; relbest = the best relatedness measure; relCBOW = the best

CBOW relatedness measure; relcount = the best count measure; relBEAGLE = the relatedness measure based on BEAGLE.

Model type Variables in the selected model Bayes Factor

LDT

baseline (lexical only)

lexical + worst relatedness

lexical + best relatedness

lexical + multiple relatedness

Naming

baseline (lexical only)

lexical + worst relatedness

lexical + best relatedness

lexical + multiple relatedness

WF
target

 + len
target

 + ON
target

BF
10

 = 2.15 x 10605

WF
target

 + WF
prime

+ len
target

 + ON
target

 + rel
worst

BF
1baseline

 = 1.24 x 1074

WF
target

 + WF
prime

 + len
target

 + ON
target

  +  rel
best

BF
1baseline

 = 2.10 x 10144

WF
target

 + WF
prime

 + len
target

 + ON
target

 + rel
BEAGLE

 + rel
CBOW

 + rel
count

BF
1baseline

 = 4.79 x 10161

WF
target

 + WF
prime

 + len
target

 + len
prime

BF
10

 = 5.99 x 10457

WF
target

 + WF
prime

 + len
target

 + len
prime 

+ rel
worst

BF
1baseline

 = 1.72 x 1020

WF
target

 + WF
prime

 + len
target

 + len
prime

 + rel
best

BF
1baseline

 = 2.34 x 1036

WF
target 

+ len
target

 + len
prime

 + rel
CBOW

 + rel
count

BF
1baseline

 = 5.50 x 1041
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Secondly, in order to establish which variables would make it

to  the  model  with  the  highest  Bayes  factor,  for  the  two  tasks  we

considered models including the best performing semantic relatedness

measures  in  addition  to  the  lexical  variables.  The  results  of  this

analysis can be inspected in Table 1.

In  the  next  Bayes  factor  analysis,  we  evaluated  whether

different  semantic  spaces  carry  unique  information  that  may  be

informative  for  predicting  behavioral  data.  We  simultaneously

included multiple semantic relatedness measures: the Colorado LSA

space, BEAGLE, the space trained by Baroni et al. as well as the best

of  each type of  the  semantic  spaces  (CBOW, skip-gram and count

space) trained for the current study in addition to log target and prime

word frequency, length of the prime and the target and orthographic

neighborhood density  for  the  target  (for  the  sake  of  computational

efficiency,  we  removed  orthographic  neighborhood  density  of  the

prime from the set  of predictors).  Interestingly, this  analysis  shows

that  the  optimal  model  includes  multiple  measures  of  semantic

similarity both in the LDT and in the naming task.

Finally, we considered the models including word association

data and feature norms data as predictors in the model in addition to

the lexical variables and the three best semantic relatedness measures t

hat we trained. In these analyses, word association norms and feature

norms were not among the most successful models, which included

semantic predictors based on our semantic spaces.

Because in many cases the differences in R2 associated with

models including different relatedness measures were rather small, we

directly compared models including each type of relatedness measures

(count, CBOW and skip-gram). For each of the type of the models we
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first considered all subsets of the lexical predictors and the relatedness

measure which explained the highest percentage of the variance in the

analyses above. Next, we directly compared the best models including

each type of relatedness measures. In the analysis of the LDT data the

best  performing  count  model  (trained  on  the  subtitle  corpus  with

window  size  3)  performed  better  than  the  best  CBOW  model

(including  300  dimensions,  trained  on  the  subtitle  corpora  with

window size 6; BF10  = 521) and the best skip gram model (trained on

the  concatenation  of  the  UKWAC  and  subtitle  corpora,  200

dimensions, window size 10, BF10  = 5.77 x 1024). For naming, the

best  of  all  three  types  of  models  explained  about  33.2%  of  the

variance  in  lexical  decision.  However,  when performing the  Bayes

factor analysis of this dataset the best model including the relatedness

measures derived from the CBOW model included one more predictor

(log of prime word frequency), as a result due to increased complexity

it had a lower Bayes factor relative to the best model associated with

the best count (BF01 = 17.08) and skip-gram models (BF01 = 21.18).

In  summary,  the  Bayesian  analysis  showed  overwhelming

evidence in favor of including semantic relatedness measures derived

from semantic spaces in both naming and lexical decision tasks, even

when  the  worst  performing  of  our  models  were  evaluated.

Interestingly,  the  optimal  model  included  relatedness  measures

derived from multiple models. This suggests that different models may

carry  unique  information  that  independently  explains  human

performance in semantic priming. Finally, it seems that distributional

semantics  models  outperform the  available  human associations  and

featural norms in explaining human performance in semantic priming.
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Word association norms – method 

In order to evaluate how well the different models can predict

human  association  data  we  used  the  dataset  collected  by  Nelson,

McEvoy and Schreiber  (1998).  This  contains  word associations  for

5,019  stimulus  words  collected  from  over  6,000  participants.  We

limited the analysis to those associations that were present in all our

semantic spaces, which resulted in a dataset of 70,461 different cue-

response pairs (on average 14 associates per word). 

To compare  the  word  associations  generated  by  humans  to

those generated by semantic spaces, we computed a metric based on

the relative entropy between the probability distribution of the top 30

associates generated by the model and the associates generated by the

human participants. This metric captures not only the probabilities for

the words generated by humans but also evaluates whether the same

words are generated by the semantic spaces.

To calculate the metric, the following steps were followed: 

1. For  each  semantic  space,  we  calculated  the  cosine  distances

between the cue word and all the other words, and selected the

30 words  that  were  nearest  to  the  cue  word.  A value  of  30

corresponds to about  twice the number of associates that are

typically generated in human data. As such, it allows for enough

responses to be considered while not deviating too much from

the number of associates generated by humans.

2. Next, the similarity score for each associate was normalized by

dividing it by the sum of all the similarity values for the cue.

The same procedure was applied to the human association data,

with associate  counts  being converted to  probabilities.  If  the
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semantic space did not include the associate that was present in

the human data or vice versa, a value of 0 was assigned. 

3. Next,  an additive smoothing was applied to each distribution

using a  smoothing term of 1/n,  in  which n is  the number of

elements in the distribution. 

4. The  relative  entropy  between  probability  distribution  P  and

another  probability  distribution  Q  was  computed  with  the

formula:

DKL(P∥Q)=∑
i

P(i ) log2

P(i )
Q (i)

5. Finally,  the  relative  entropies  were  averaged  across  all  cue

words and the average relative entropy was used as the final

score of a given semantic space. Note that a relative entropy

measure  is  a  measure  of  distance  between  probability

distributions and, hence, the smaller the measure, the better the

fit. 

Word association norms - results

To compute a baseline for the performance of the models on

the association norms, we used a set of semantic spaces with word

vectors containing nothing but random values.  The average relative

entropy  between  the  associations  norms  and  10  such  randomly

generated semantic spaces was 0.84 (SD = 0.0001; see Figure 3).
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Figure 3. Performance of the three types of models on the association norms

dataset  (upper  panels)  and  on  TOEFL  (lower  panels).  The  predict  models

generally  outperform the  count models.  Models  trained on a subtitle  corpus

perform worse than the models trained on the UKWAC corpus or concatenation

of the two corpora. Note that for the association norms lower entropy is better.

Both the predict  and the count  semantic  spaces managed to

achieve lower relative entropies than the baseline (recall that lower is

better, as relative entropy measure is a measure of distance between

distributions). The best performing count model was trained on the

subtitle corpus using window size 2 (relative entropy = 0.70).

The best performance of the predict models was achieved by

the CBOW model with 500 dimensions trained on the concatenation

of the subtitle and the UKWAC corpora with window size 7, which

had a relative entropy of 0.63. The best skip-gram model was trained
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on  the  same  corpus,  used  the  same  window  size,  but  had  300

dimensions and had relative entropy of 0.66. 

The average relative entropy for the measures derived from the

count models was 0.73 (SD  = 0.02). For the CBOW models it was

0.69 (SD = 0.03) and for the skip-gram model 0.71 (SD = 0.03). 

Like  before,  the  best  count  models  were  those  with  small

window sizes, whereas small window sizes were detrimental for the

predict models. On this task, CBOW performed best, followed by the

skip-gram  model,  and  finally  by  the  HAL-type  count  model.  For

comparison,  the  semantic  space  from  Baroni  et  al.  (2014)  had  a

relative  entropy of  0.68,  which  was  better  than  the  average  of  the

models evaluated here but worse than the best of those models.

Similarity/Relatedness ratings - method

We  used  two  datasets  of  human  judgments  of  semantic

similarity and relatedness to evaluate semantic distance estimates on

the basis of semantic spaces.

Wordsim-353 (Agirre et al., 2009) is a dataset including 353

word pairs, with about 13 to 16 human judgments for each pair. For

this  dataset  the  annotation  guidelines  given  to  the  judges  did  not

distinguish between similarity and relatedness. However, the dataset

was split into a subset of related words and a subset of similar words

on the basis of two further raters'  judgment about the nature of the

relationship for each word pair. 

The  second  set  of  human  judgments  is  Simlex-999  (Hill,

Reichart, & Korhonen, 2014), which contains similarity scores for 999

word pairs.  What  makes it  different  from Wordsim-353 is  its  clear

distinction between similarity and relatedness. In the case of Simlex-
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999 participants were given very clear instruction to pay attention to

the similarities  between words  and not  to  their  relatedness,  so that

word  pairs  such  as  car and  bike received  high  similarity  scores,

whereas  car and  petrol, despite being strongly related, received low

similarity scores. 

To evaluate  how  well  each  semantic  space  reflects  human

judgments  we  computed  Spearman  correlations  between  the

predictions of the models and the human ratings. When calculating the

correlations we included only those pairs of words that were present in

the combined lexicon of the semantic spaces. 

Similarity/Relatedness ratings - results

The average correlation between the Wordsim-353 subset  of

related words (n  = 238) and the semantic distance measures derived

from the  count  model  was  -0.35  (SD  = 0.09;  see  Figure  4.).  The

negative correlations in this section reflect the fact that the relatedness

measures are expressed in terms of distances rather than similarities.

For CBOW models it was -0.66 (SD = 0.04), and for the skip-

gram model -0.59 (SD = 0.04). The measures derived from the count

model  correlated  -0.43  (SD  =  0.15)  with  the  similarity  subset  of

Wordsim-353 (n  = 196),  against  -0.76 (SD  = 0.02) for CBOW and

-0.70 (SD = 0.04) for skip-gram. 

The correlations with the Simlex-999 dataset (n  = 998) were

much lower. For the count model the average correlation was -0.10

(SD = 0.11), for CBOW it was -0.35 (SD = 0.06), and for skip-gram

-0.27 (SD = 0.08).
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Figure  4.  Performance  of  the  three  types  of  models  on  the  similarity  and

relatedness ratings datasets (absolute values of correlations). There is a robust

advantage  of  the  predict  models.  The  models  trained  on  subtitle  corpora

underperformed  compared  to  models  trained  on  UKWAC  or  on  the

concatenation of the two corpora.

As shown in Figures 1-3, the worse performance of the count

models was caused by the prediction power rapidly decreasing with
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window size. The best performing count models had window size 1.

For  the  Wordsim-353  relatedness  subset  and  Simlex-999  the  best

count model was trained on the UKWAC corpus and correlated -0.55

and -0.31 with the human norms respectively. The best count model

for the Wordsim-353 similarity subset (r = -0.72) also used window of

size 1 but was trained on the subtitle corpus. 

The skip-gram model also showed deteriorating performance

with increasing window size for the similarity  judgments.  The best

performing  skip-gram models  were  the  combined  corpus  with  100

dimensions and window size 1 for the Wordsim-353 similarity subset

(r  = -0.78),  and on the  UKWAC corpus  with 500 dimensions  and

window size 1 for the Simlex-999 dataset (r  = -0.42). Surprisingly,

window size had a different effect for the relatedness judgments. For

the Wordsim-353 relatedness subset, the best performance for a skip-

gram model was achieved by training on the subtitle corpus with 200

dimensions and window size 7 (r = -0.67).

The CBOW models outperformed the other two model types.

The best CBOW model  for the Wordsim-353 similarity subset was

trained on the subtitle corpus with 200 dimensions and window size 6

(r = -0.80), on the UKWAC corpus with 500 dimensions and window

size 2 (r  = -0.45) for the Simlex-999 dataset. For the Wordsim-353

relatedness subset, the best CBOW model was based on the UKWAC

corpus  with  200  dimensions  and  window  size  9  (r  =  -0.72).

Importantly, there  was  little  effect  of  window size  for  the  CBOW

models  (except  for  the  smallest  sizes,  which  resulted  in  less  good

performance).
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Interestingly,  for  this  task,  models  trained  on  individual

corpora  tended  to  perform  better  than  models  trained  on  the

combination of corpora. 

TOEFL - method

TOEFL is a dataset of 80 multiple choice questions created by

linguists  to  measure  English  vocabulary  knowledge  in  non-native

speakers. The task of the person taking the test is to decide which of

four candidate words is most similar to the target word. Landauer and

Dumais  (1997)  first  used  this  task  to  evaluate  a  distributional

semantics model. 

In our evaluation, we consider that a model provides a correct

answer to TOEFL question when the correct candidate word has the

smallest  cosine  distance  to  the  target  word  in  the  semantic  space

compared to the other three candidate words. One point is awarded for

that question in this case; zero points are given otherwise. When the

target  word  or  none  of  the  four  alternatives  were  present  in  the

semantic space, we assigned a score of 0.25 to the item to simulate

guessing. 

TOEFL - results

The  best  count  model  (UKWAC  corpus;  window  size  1)

obtained a score of 83.7% on the TOEFL test. Average performance of

the count models on this test was 61.2% (SD = 9.76%; see Figure 3.). 

The predict  model  with  the highest  score on TOEFL was a

CBOW model with 500 dimensions and window size 1, trained on the

concatenation  of  the  UKWAC  and  the  subtitle  corpora  (score  =

91.2%).  The top skip-gram model  was trained on the  same corpus

using the same window size but had a size of 300. On average the
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CBOW models achieved a score of 73.4% (SD = 10.9%) and the skip-

gram models a score of 69.0% (SD = 9.6%) 

As  shown  in  Figures  1-3,  models  trained  on  the  subtitle

corpora clearly performed worse on the TOEFL test than those trained

on the UKWAC corpus or on the concatenation of both corpora. Like

before, the count model showed a strong decrease in precision with

increasing window size.

With a score of 87.5%, the semantic space from Baroni et al.

(2014) surpassed the vast majority of our models.

DUTCH 

Text corpus 

We used  the  SONAR-500  text  corpus  (Oostdijk,  Reynaert,

Hoste, & van den Heuvel, 2013) and a corpus of movie subtitles to

train the distributional semantic models. 

The  SONAR-500  corpus  is  a  500  million  words  corpus  of

contemporary Dutch and includes a wide variety of text types. It is

aimed at  providing a  balanced sample  of  standard Dutch based on

textual materials  from traditional sources such as books, magazines

and  newspapers,  as  well  as  Internet  based  sources  (Wikipedia,

websites, etc.). 

Tokens from the SONAR-500 corpus were extracted using the

FoLIa toolkit12. We found that the corpus contained a small number of

duplicate documents. In order to remove them from the corpus we ran

the MinHash duplicate detection using duometer within each category

of texts in the corpus. The final version of the SONAR-500 corpus,

12 http://proycon.github.io/folia/
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after  duplicate  detection  and  applying  our  tokenization  procedure

included 406 million tokens (1.9 million documents). 

In order to compile the subtitle corpus, we downloaded 52,209

subtitle files. The corpus was cleaned in the same way as the English

subtitle  corpus.  The  final  Dutch  subtitle  corpus  contained  about

26,618 documents and 130 million tokens. 

Finally, we combined the SONAR-500 corpus and the subtitle

corpus. As the SONAR-500 corpus also includes movie subtitles, we

only included documents from the subtitle corpus that did not have a

duplicate  in  the  SONAR-500  corpus.  This  resulted  in  a  combined

corpus of 530 million tokens (1.926 million documents).

Model training 

We used the same procedure for training the semantic spaces

as the one used for the English corpora. For the Dutch material, we

only used the models with window sizes of 1, 2, 3, 5 and 10, because

our experience with the evaluation of the English semantic spaces had

shown that the results vary most between the initial values and the

general trend in performance is similar at higher window sizes.

When training the HAL-type model,  300,000 types with the

highest  frequency  were  used  as  word  and  contexts.  The  PPMI

weighting scheme was applied to the resulting co-occurrence matrix.

The  same  parameter  settings  as  for  English  were  applied  when

training the predict  models. However, we trained only models with

200 and 300 dimensions. 
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Evaluation Tasks 

Semantic priming - method

Because  there  is  no  large,  publicly  available  dataset  of

semantic priming in Dutch, our analysis was limited to two smaller

datasets.  The first  one was based on a  lexical  decision  experiment

conducted by Heyman, Van Rensbergen, Storms, Hutchison and De

Deyne (2015),  which included 120 target  words,  each preceded by

related  and  unrelated  words.  We  used  only  words  from  the  low

memory load condition  and for  each prime-target  pair  we used  an

average reaction time for the two SOAs (1200 and 200 ms) used in the

experiment. This resulted in a dataset of 240 prime-target pairs with

associated RTs. For 236 of these pairs both the prime and the target

were  present  in  our  semantic  spaces  and  were  included  in  further

analyses.

The  second  dataset  on  which  we  based  our  analysis  was

collected by Drieghe and Brysbaert (2002). This dataset includes 21

target words with one semantically related prime and two unrelated

primes (one that was homophonic to the related prime and one that

was completely unrelated). The small number of items in the second

Dutch  semantic  priming  dataset  enabled  only  a  very  simple

evaluation. In order to calculate how well each of the trained models

fit the dataset we computed the distances between the primes and the

targets for the related and the unrelated conditions, and we performed

t-tests to verify whether the distances in the unrelated conditions were

larger  than  in  the  related  condition,  as  is  the  case  for  the  human

reaction times.
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Semantic priming - results

In the dataset from Heyman et al. (2015) the baseline model

including log of word frequency and length for both the prime and the

target explained 4.82% of the variance in reaction times. An average

performance of the models including various semantic predictors is

presented in Table 2.

A conservative  comparison  of  the  baseline  model  with  the

model  including  relatedness  measures  derived  from  the  worst

performing semantic relatedness measure (count model based on the

subtitle  corpus  trained  with  window  size  10,  10.73%  of  variance

explained) showed a highly significant contribution of this semantic

predictor [F(1, 230) = 11.05, p = 0.001)].

On average,  the models  including the lexical  predictors  and

semantic relatedness derived from the count models explained 13.61%

of  the  variance  in  reaction  times.  The  models  including  semantic

relatedness derived from the skip-gram models explained 17.73% of

the variance and the semantic predictors based on CBOW explained

19.05% of the variance. The best performing count model explained

16.20%  of  the  variance  in  reaction  times,  and  was  trained  on  a

concatenation of the subtitle and SONAR corpora with window size 2.

The best  skip-gram model  explained 20.68% of  the  variance.  That

model had 200 dimensions and was trained on the concatenation of

the two corpora using window size 5. The best CBOW relatedness

measures, which explained 22.39% of the variance in RTs, had 200

dimensions and was trained on the concatenation of the two corpora

using window size 10.
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Table 2. The table shows the average results obtained from different classes of models for the words in different conditions in the two

Dutch semantic priming experiments (Heyman et al., 2015; Drieghe & Brysbaert, 2002).

Note. The first column lists corpora on which the models were trained. The second column shows the different types of models. The HAL models using window sizes smaller and

larger or equal to 5 are shown separately. Window sizes mattered less for the predict models so they are all reported together. The next column reports the percentage of variance

explained in the dataset from Heyman et al. (2015). The following three columns display average effect sizes of comparisons between various conditions in the dataset from

Drieghe & Brysbaert (2002). The last three columns report the mean and standard deviation between cues and targets in each of the conditions. All statistics are averaged over all

parameter settings used to train the models.

Drieghe et al.
Heyman et al. Cohen's d Average distance

Corpus Model R^2 Related Control 1 Control 2

SONAR-500

HAL w. < 5 .148 .92 .98 .16 .91 (SD=.05) .95 (SD=.02) .95 (SD=.02)
HAL w. >= 5 .119 .95 1 .15 .91 (SD=.05) .95 (SD=.02) .95 (SD=.02)
CBOW .191 .73 .73 -.03 .92 (SD=.06) .95 (SD=.01) .96 (SD=.01)
skip-gram .183 .56 .82 .45 .81 (SD=.09) .85 (SD=.05) .87 (SD=.04)
HAL w. < 5 .152 .55 .83 .48 .8 (SD=.1) .84 (SD=.05) .86 (SD=.04)
HAL w. >= 5 .125 .43 .62 .4 .84 (SD=.09) .87 (SD=.04) .89 (SD=.03)
CBOW .207 1.34 1.25 -.12 .63 (SD=.16) .85 (SD=.08) .84 (SD=.1)
skip-gram .194 1.44 1.38 -.08 .57 (SD=.15) .81 (SD=.08) .81 (SD=.1)

subtitle-nl

HAL w. < 5 .140 1.36 1.15 -.38 .47 (SD=.19) .77 (SD=.12) .72 (SD=.16)
HAL w. >= 5 .117 1.35 1.23 -.24 .48 (SD=.14) .68 (SD=.08) .66 (SD=.09)
CBOW .172 1.42 1.37 -.11 .38 (SD=.11) .58 (SD=.08) .57 (SD=.09)
skip-gram .153 1.34 1.09 -.34 .31 (SD=.13) .52 (SD=.11) .48 (SD=.14)

Related vs 
Control 1

Related vs 
Control 2

Control 1 vs 
Control 2

SONAR-500 + 
subtitle-nl
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For the Bayesian analysis we followed the same procedure as

in the case of the English data. We first identified the best model based

on lexical variables only. The analysis indicated that the best model

included the logarithm of prime and target word frequency, and was

strongly supported relative to a model including intercept only (BF10 =

29.01).  We used  this  model  as  the  reference  in  further  analyses.

Consideration of the subset of all models including lexical predictors

and  the  worst  performing  semantic  measure  provided  decisive

evidence in favor of the model including the relatedness measures (in

addition to log of prime word frequency; reference of the model based

on lexical predictors only BF10 = 109.70).

When we ran a Bayes factor regression including the lexical

predictors  and  the  best  performing  semantic  relatedness  measures

(CBOW model with 200 dimensions trained on the concatenation of

the SONAR-500 and the subtitle corpora using window size 10), we

found that the best model, overwhelmingly supported relative to the

model based on lexical variables only (BF10  = 197,283,867), included

the logarithm of prime and target word frequency in addition to the

semantic relatedness measure.

In  a  direct  comparison  of  the  relatedness  measures  derived

from each type of models (count, CBOW and skip-gram), the Bayes

factor analysis indicated a decisive advantage of the model including

relatedness measures derived from the best CBOW model, relative to

the  model  including  the  best  count  relatedness  measures  (BF10  =

1682.73) and substantial evidence in favor of the CBOW relatedness

measures relative to those derived from the skip-gram model (BF10  =

8.44). The best skip-gram relatedness measures were also decisively

better than the best count relatedness measures (BF10 = 199.28).
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The dataset from Drieghe and Brysbaert (2002) contained a set

of  target  words  with  one  related  prime  and  two  unrelated  primes.

Because the dataset was too small to run analyses at the item level, we

limited ourselves to t-tests. Table 2 gives the average similarity scores

for the various models. It clearly shows that the semantic relatedness

was larger in the related condition than in the unrelated condition for

all  predict  models.  The situation was less convincing for the count

models.

All predict models correctly simulated the expected pattern of

results and showed that there was a significant difference between the

related and the first unrelated condition (average t-test value = -6.08,

df = 20,  SD = 0.82; average d = 1.38,  SD = 0.11; for all models p <

0.001 and effect sizes of d > 1) and between the related and the second

unrelated condition (average t-test value = -5.16, SD = 1.10; average d

= 1.25, SD = 0.17; for all models p < 0.01 and d > 0.8). Furthermore,

there  was  no  significant  difference  between  the  two  unrelated

conditions (average t-test value = 0.68; SD = 0.58; average d = 0.21,

SD = 0.18; for all models p > 0.1 and d < 0.5).

For the count models the differences between conditions were

much smaller. Using a significance level  of p < 0.05,  we obtained

significance for only 11 out of 15 models between the related and the

first  unrelated  condition  (average  t-test  value  =  -2.53,  SD  = 0.82;

average d = 0.73, SD = 0.22), and for only 14 out of 15 between the

related  and  the  second  unrelated  condition  (average  t-test  value  =

-2.97; SD = 1.10; average d = 0.84, SD = 0.14). All the count models

correctly showed no difference between the two unrelated conditions

(average t-test value = -0.76; SD = 0.58; average d = 0.23, SD = 0.24;

for all models p > 0.10). As could be expected on the basis of Figure
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1, the count models with small  window sizes did better  than those

with large window sizes.

Association norms - method

We used  word  association  data  from de  Deyne  and  Storms

(2008),  who reported the associates most frequently given to 1,424

cue words. Like in the evaluation of the English data, we computed

the average relative entropy between the probability distributions of

the associates produced by our models and the human data.

Association norms - results

For the 1,424 cue words from de Deyne and Storms (2008), the

baseline  relative  entropy  score  based  on  10  randomly  generated

semantic vectors was 0.86 (SD = 0.0005; lower is better).

The average relative entropy for the count models was 0.78

(SD = 0.01). The best performing count model had a window size of 3

(trained on the SONAR-500 corpus), resulting in a relative entropy of

0.76. 

The average relative entropy for the CBOW models was 0.79

(SD=0.03). The best performing model (relative entropy = 0.74) was

trained on the combined SONAR-500 and subtitle corpus,  had 200

dimensions and a window of size 10. 

The average  relative  entropy for  the  skip-gram models  was

0.80  (SD  =  0.02)  and  the  best  performing  model  had  the  same

parameters as the best performing CBOW model (relative entropy =

0.75).
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INFLUENCE OF THE WINDOW SIZE

Our analyses indicated that the size of the window used to train

the count models is an extremely important parameter when training

these models. At the same time, it has to be acknowledged that the

count  and  the  predict  models  use  the  window  size  parameter

differently during training. While the typical count models consider

full window size for each target word, the predict models randomly

choose a number between 1 and the requested window size and use

that  randomly  chosen  number  for  each  single  training  case.  This

allows these models to utilize information about distant words but at

the same time an average window size is reduced by half in such a

procedure.  To  verify  whether  this  aspect  of  the  training  can  be

responsible for the sharp drop in the performance of the count models

that was not observed for the predict models we decided to train an

additional set of count models using window sizes 1, 2, 3, 5, 7 and 10,

on the English subtitle corpus and its concatenation with the UKWAC

corpus. However, for this analysis we applied an analogous procedure

of randomly choosing window size in each training step as it is the

case for the predict models. As could be expected, we observed that

using  a  randomized  window  size  for  training  the  count  spaces

decreased the speed at which performance of the spaces drops with

increasing window size. Nevertheless, the performance was still best

at window size 3, even when randomized window size was used. The

improvement  of  using  reduced  window  sizes  was  largest  for  the

largest window sizes – for window size 10 the amount of explained

variance increased by 0.7% (subtitle corpus) and 0.6% (concatenation

of the text corpora) in LDT and by 0.1% (both subtitle corpus and the
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concatenation  of  the  two  corpora)  for  naming.  In  naming,  these

improvements were comparable for window size 5 and 7, as well as

window  size  3  for  the  models  trained  on  a  concatenation  of  the

corpora. In LDT, the improvement over the default models dropped by

about 0.05% for window size 7 and then by another 0.2% for window

size 5. In both tasks the changes for smaller window sizes were less

than 0.1%. 

This  analysis  indicates  that  the  random  reduction  of  the

window  size  attenuates  the  decreasing  performance  of  the  count

models, making them more comparable to the predict models even for

larger  window  sizes.  However,  the  general  trend  of  optimal

performance with a window size of about 3 can still be observed.

DISCUSSION 

In this  article  we compared the performance of the recently

proposed  predict  models  of  semantic  similarity  to  the  methods

currently used in psycholinguistics by looking at how much variance

the estimates explain in human performance data. In all cases, we saw

an outcome that was at least equal to the existing measures and that

was often superior to them. This was even true when we compared the

measures based on semantic spaces to measures produced by human

participants  (e.g.,  word  association  norms  or  semantic  features

generated by participants), showing that the semantic vectors should

be included in psycholinguistic research.

In line with previous  findings  (Baroni  et  al.,  2014;  Levy &

Goldberg,  2014),  the predict  models were generally superior  to the

count models, although the best count models tended to come quite

close to the predict models (and in a few cases even exceeded them).
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The most important variable for the count models was window size, as

shown by Bullinaria and Levy (2007, 2012). A problem in this respect,

unfortunately, is that the optimal window size seems to depend on the

task.  It  equals  3  for  semantic  priming,  1  for  semantic  relatedness

judgments,  and  2  for  the  prediction  of  word  associations.  The

performance rapidly drops for non-optimal window sizes, as shown in

Figure  1.  At  the  same  time,  our  additional  analysis  indicated  that

applying the same procedure of randomly selecting window sizes, as

done  in  the  predict  models,  is  a  way  to  attenuate  the  decrease  in

performance for larger window sizes.

In contrast, the predict models are less influenced by window

size. In addition, their performance generally increases with window

size (certainly up to 5). Of these models, the CBOW models typically

outperformed the skip-gram models and there are no indications in the

data we looked at to prefer the latter over the former. In general, there

was little gain when the dimensions of the CBOW model exceeded

300  (sometimes  performance  even  started  to  decrease;  this  was

particularly true for semantic priming and word associations).

Given the superior  performance of the CBOW models,  it  is

important  to  understand  the  mechanisms  underlying  them.  As  a

practical example of the CBOW model, we discuss the model that had

the best average performance for English and that we also recommend

for general use in psycholingusitic research (see also the section on

availability below). This model is trained on the combined UKWAC

and  subtitle  corpus,  has  a  window  size  of  6,  and  contains  300

dimensions. There are input and output nodes for each word form in

the corpus that is encountered at least 5 times, leading to about 904

thousand input and output nodes. The dimensionality of the model is
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equal to the number of hidden nodes, which in this case is 300. The

training of the model consists of the activation of the input nodes of

the 6 words before the target word and the 6 words after the target

word and predicting the activation of the output node corresponding to

the  target  node.  Over  successive  runs,  the  weights  are  adapted  to

improve performance. The semantic vector for a word consists of the

300 weights between the input node of a word and the hidden nodes

after learning.

As shown in Figure 1, the CBOW model learns to predict the

relationship between the target word and all words in the surrounding

window simultaneously. In the HAL-type count model and in the skip-

gram model, the relationship between the target word and each word

in the window is trained individually. As a metaphor, consider a paper

with a long set of co-authors of which one has been removed. The task

is to predict the missing author. The HAL-type count model and the

skip-gram model  can only predict  the missing author  based on the

individual co-occurrence between each known co-author and their past

co-authors,  which  could  result  in  the  predicted  co-author  being

completely unrelated to the other co-authors on the paper. The CBOW

model, on the other hand, would predict the missing author based on

the simultaneous consideration of all other co-authors on the paper.

The model  would be more likely to  predict  a  co-author  who often

writes together with all or part of the co-authors than someone who

frequently co-authors with only one of them.

In light of the current findings, it is important to understand the

differences between the discussed models in Marr's (1982) terms. The

count  model  specifies  a  computational  problem  for  the  cognitive

system (learning to associate semantically related words) and provides
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an  abstract  computational  method  for  solving  it  using  weighting

schemes and dimensionality reduction.  It  has been argued (Levy &

Goldberg, 2014) that the results of the skip-gram model can also be

achieved by a certain type of a count model (PMI weighting shifted by

a constant and dimensionality reduction steps) making the skip-gram

model  computationally  equivalent  to  a  count  model.  However,

because the skip-gram model can be specified using prediction-based

incremental  learning  principles  in  a  neural  network,  it  solves  the

computational problem posed by the count models in a way that is to a

large extent psychologically plausible.  Finally, although the CBOW

model  shares  this  algorithmic-level  plausibility  with  the  skip-gram

model,  CBOW cannot  be  reduced  to  a  count  model  (Levy  et  al.,

2015).  Since  the  CBOW  model  compares  favorably  to  the  other

investigated models it is an important task for future research to better

understand this model at the computational level.

In  this  paper, we gave  considerable attention  to  the  type of

corpus used to train a model. In computational linguistics, models are

often  found  to  perform  best  when  trained  on  very  large  corpora

(Banko & Brill, 2001) and this implies that register is second to size.

Our data show that the large corpora typically used in computational

linguistics are good for vocabulary tests, such as TOEFL but perform

less well for psycholinguistic benchmarks such as semantic priming or

word associate generation. On these tasks, corpora based on subtitles

of films and television series perform better. When we consider what

the TOEFL test requires, it is not surprising that training on very large

corpora containing a large amount of specialist material is beneficial.

Because TOEFL includes a large number of uncommon words, models

trained on subtitle corpora can be expected to perform worse on this
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test. Indeed, we would expect a person reading the material included

in the very large corpus to score quite highly on the TOEFL and we

would  be  equally  unsurprised  if  a  person watching only  films  and

television  series  would  perform  worse.  In  contrast,  the  impressive

performance  of  the  relatively  small  corpora  of  subtitles  on  the

semantic  priming  and  word  association  tasks  is  surprising.  This

implies  that  when it  comes to accounting for  human behavior  it  is

important to train models on a corpus that has a register closer to what

humans experience. Recall that the TOEFL benchmark is not about

predicting  how  well  humans  do,  but  about  scoring  as  highly  as

possible. Associations in the larger corpus better reflect the semantic

system for someone who scores very well  on the TOEFL, whereas

associations  based  on  the  subtitle  corpus  reflect  more  of  a  central

tendency:  As  an  example,  our  reference  CBOW  model  based  on

subtitles, for elephant generates giraffe, tusk, zoo, and hippo as nearest

semantic  neighbors;  on  the other  hand,  the  model  trained  on  the

combined UKWAC and subtitles  corpus  generates  howdah,  tusked,

rhinoceros,  and  mahout. The first  and second authors of this  paper

confess  that  they  did  not  know what  to  make of  two of  the  latter

associations until they learned that a howdah is a seat for riding on the

back of an elephant and that a mahout is a professional elephant rider.

The example clearly illustrates how the models based on the larger

corpora score higher on the TOEFL. Future research could investigate

whether the advantage of the larger corpora is still maintained when

the actual human responses are the benchmark instead of the highest

score.

On  the  basis  of  the  current  study,  conclusions  about  the

relation between corpus register and size and human performance are
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risky because these variables were not independent of each other. Still,

it seems possible to conclude that given that the subtitle corpora are

smaller  and  in  many  cases  perform  better  on  predicting  semantic

priming,  the  register  of  the  subtitles  better  represents  the  input  of

human  participants.  On the  other  hand,  the  question  remains  what

precisely in the bigger corpora accounts for the worse performance.

Even adding subtitle material to the large corpora does not result in

models that predict semantic priming as well as the subtitle corpora do

alone.  An answer may be that the smaller subtitle corpora result in

close  semantic  relationships  that  are  shared  by  many  participants,

while  the  large  corpora  result  in  more  specialized  semantic

relationships  that  are  known  by  only  a  few  participants.  This

additionally suggest that increasing the size of a subtitle corpus further

may  not  necessarily  result  in  better  performance  on  a  semantic

priming task because more specialized semantic relationships could be

developed at the expense of more universally shared ones. This point

is  given further  weight  by taking into  account  that  corpora  over  a

certain size stop being ecologically realistic.13 

Given the current set of results, we can unequivocally assert

that  distributional  semantics  can  successfully  explain  semantic

priming data, dispelling earlier claims (Hutchison et al., 2008). While

Günther et  al.  (2015) found small  effects  for German, we obtain a

strong and robust increase in the predictive power when the regression

analysis  includes  semantic  information  derived  from  distributional

semantics models. According to our analyses the predictions based on

13Assuming a maximum reading rate of 300 words per minute (Carver, 1989; Lewandowski,

Codding, Kleinmann, & Tucker, 2003), a person who has read 16 hours per day for 18 years,

has come across 300*60*16*365.25*18 = 1.89 billion words at most.
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the semantic space models can match or exceed the ones based on

human  association  datasets  or  feature  norms.  This  is  fortunate,

because semantic similarity measures based on semantic spaces are

available for many more words than human similarity or relatedness

ratings and can be collected more easily for languages that do not yet

have  human ratings.  In  this  regard,  we should  also point  to  recent

advances in human data collection. For instance, collecting more than

one response for each cue word in a word association task may lead to

a more refined semantic network than the one we tested (De Deyne,

Verheyen,  Storms,  2015).  It  will  be  interesting  to  see  how such  a

dataset compares to the semantic vectors we calculated.

Finally, it is of practical importance to mention that, at least for

the  semantic  priming  data,  the  pioneering  LSA  space  available

through a web-interface at the University of Colorado Boulder (1997)

does  not  perform better  than  the reference  semantic  spaces  we are

releasing with the current paper. At the same time, it is surprising that

the difference in performance is so small if we consider the size of the

corpus (11 million words)  on which the  venerable LSA space  was

based. The relative success of LSA based on the small TASA corpus

suggests that books used in schools are another interesting source of

input (arguably because it is a common denominator. These books and

subjects are read by most students).

AVAILABILITY 

A  big  obstacle  to  the  widespread  use  of  distributional

semantics in psycholinguistics has been the gap between the producers

and potential  consumers of such spaces. Although several packages

have been published that allow users to train various kinds of semantic
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spaces  (e.g.  S-Space,  Jurgens  &  Stevens,  2010;  DISSECT,  Dinu,

Pham, & Baroni,  2013;  LMOSS, Recchia & Jones,  2009;  HIDEX,

Shaoul  &  Westburry,  2006),  the  large  corpora  and  computational

infrastructure as well  as the technical  know-how regarding training

and  evaluating  semantic  spaces  is  not  available  to  many

psycholinguists.  Therefore,  in  order to encourage the exchange and

use of semantic spaces trained by various research groups, we release

a simple interface that can be used to measure relatedness between

words on the basis of semantic spaces. Importantly, it can be used both

as a standalone program and as a web-server that makes the semantic

spaces  available  over  the  Internet.  We believe  that  such  an  open-

source  contribution  complements  the  existing  ecosystem  allowing

researchers  to  train  and  explore  semantic  spaces  (e.g.  LSAfun;

Günther, Dudschig, & Kaup, 2014). We encourage contribution from

other researchers to the code base for our interface, which is hosted on

a platform for sharing and collaborative development of programming

projects.14

To make it  as  easy  as  possible  for  the  authors  of  semantic

spaces to work with our interface, two simple formats are used: the

Character  Separated  Values  (CSV)  format  and  the  matrix  market

format15 that supports efficient representations of sparse matrices such

as those created when training count models without dimensionality

reduction. 

We release a series of predict and count spaces for Dutch and

English  that  were  found  to  be  consistently  well  performing  in  the

14 The code is available at the address: http://crr.ugent.be/snaut/ 

15 For more information about the matrix market format see: 

http://math.nist.gov/MatrixMarket/
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present  evaluations.  Each  of  the  spaces  is  released  in  a  format

compatible with our interface.  The predict  spaces can be also used

with the LSAfun (Günther et al., 2014) interface. 

In addition to the full semantic spaces for English and Dutch

used for the present study we also make available smaller subspaces

which may be very useful  in  many cases,  as they can be explored

using  very  limited  computational  resources.  The  smaller  semantic

spaces are based on two subset tokens from full space:

1. a subset of the 150,000 most frequent words in each of the

spaces 

2. a subset based on the lemmas found in the corpora

Information  about  how  well  each  of  the  released  semantic

spaces performed on our evaluation tasks is shown in Tables 3 (for

English) and 4 (for Dutch).

As  semantic  spaces  can  always  be  improved  by  finding

superior methods or parameter settings, we know that the spaces that

we  trained  can  and  will  be  outperformed  by  other  spaces.  Our

interface fully encourages such developments.
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Table 3. The performance of the released English semantic spaces on the evaluation tasks.

Semantic priming project

Lexical decision Naming Simlex-999 TOEFL

subset model N R^2 baseline R^2 model R^2 baseline R^2 model N r N r N r score

lemmas subtitle, CBOW, dim. 300, window 6 5311 .399 .465 .319 .337 .696 999 -.414 236 -.672 196 -.765 .559

top 150000 subtitle, CBOW, dim. 300, window 6 5738 .389 .455 .312 .331 .698 998 -.412 238 -.671 196 -.765 .663

full subtitle, CBOW, dim. 300, window 6 5738 .389 .455 .312 .331 .698 999 -.414 238 -.671 196 -.765 .663

lemmas subtitle, count,  window 3 5311 .399 .471 .319 .339 .696 999 -.106 236 -.382 196 -.581 .494

top 150000 subtitle, count, window 3 5738 .389 .457 .312 .332 .699 998 -.104 238 -.378 196 -.581 .663

top 300000 subtitle, count, window 3 5738 .389 .457 .312 .332 .699 999 -.106 238 -.378 196 -.581 .659

lemmas UKWAC + subtitle, CBOW, dim. 300, window 6 5311 .399 .454 .319 .338 .633 999 -.301 236 -.673 196 -.776 .666

top 150000 UKWAC + subtitle, CBOW, dim. 300, window 6 5738 .389 .445 .312 .331 .636 998 -.3 238 -.676 196 -.776 .834

full UKWAC + subtitle, CBOW, dim. 300, window 6 5738 .389 .445 .312 .331 .636 999 -.301 238 -.676 196 -.776 .853

lemmas UKWAC + subtitle, count, window 1 5311 .399 .458 .319 .336 .708 998 -.289 236 -.54 196 -.71 .628

top 150000 UKWAC + subtitle, count, window 1 5738 .389 .448 .312 .330 .712 998 -.289 238 -.54 196 -.71 .809

top 300000 UKWAC + subtitle, count, window 1 5738 .389 .448 .312 .330 .712 998 -.289 238 -.54 196 -.71 .828

Associations 
relative entropy

Wordsim-353 
relatedness

Wordsim-353 
similarity
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Table 4. The performance of the released Dutch semantic spaces on the evaluation tasks. For the evaluation based on data from

Heyman et al. (2015) all datasets included 236 prime-target pairs and the baseline model based on lexical predictors explained 6.44%

of the variance in RTs. The only exception were models based on the 150,000 most frequent words which included 264 prime-target

pairs (baseline model explained variance: 6.22%). All models based on Drieghe et al. 2015 included 63 pairs of words.

Drieghe et al.

Heyman et al. Cohen's d Average distance

subset model R^2 Related Control 1 Control 2

lemmas SONAR-500, count, window 3 .143 .832 .976 .334 .883 (SD=.062) .925 (SD=.027) .934 (SD=.024) .766

top 150000 SONAR-500, count, window 3 .143 .832 .976 .334 .883 (SD=.062) .925 (SD=.027) .934 (SD=.024) .764

top 300000 SONAR-500, count, window 3 .143 .832 .976 .334 .883 (SD=.062) .925 (SD=.027) .934 (SD=.024) .765

lemmas SONAR-500 + subtitle, count, window 2 .162 .991 1.03 .156 .905 (SD=.050) .947 (SD=.017) .950 (SD=.020) .774

top 150000 SONAR-500 + subtitle, count, window 2 .162 .991 1.03 .156 .905 (SD=.050) .947 (SD=.017) .950 (SD=.020) .772

top 300000 SONAR-500 + subtitle, count, window 2 .162 .991 1.03 .156 .905 (SD=.050) .947 (SD=.017) .950 (SD=.020) .773

lemmas SONAR-500 + subtitle, CBOW, dim. 200, window 10 .224 1.532 1.542 .044 .633 (SD=.149) .904 (SD=.069) .907 (SD=.068) .745

top 150000 SONAR-500 + subtitle, CBOW, dim. 200, window 10 .222 1.532 1.542 .044 .633 (SD=.149) .904 (SD=.069) .907 (SD=.068) .739

full SONAR-500 + subtitle, CBOW, dim. 200, window 10 .224 1.532 1.542 .044 .633 (SD=.149) .904 (SD=.069) .907 (SD=.068) .743

Associations 
relative entropy

Related vs 
Control 1

Related vs 
Control 2

Control 1 vs 
Control 2
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Chapter 6. How useful are corpus-based methods for

extrapolating psycholinguistic variables?1

ABSTRACT

Subjective  ratings  for  age  of  acquisition,  concreteness,

affective valence, and many other variables are an important element

of  psycholinguistic  research.  However,  even  for  well-studied

languages, ratings usually cover just a small part of the vocabulary. A

possible solution involves using corpora to build a semantic similarity

space and to apply machine learning techniques to extrapolate existing

ratings  to  previously  unrated  words.  We  conduct  a  systematic

comparison  of  two  extrapolation  techniques:  k-nearest  neighbours,

and random forest, in combination with semantic spaces built using

latent  semantic  analysis,  topic  model,  a  hyperspace  analogue  to

language (HAL)-like model, and a skip-gram model. A variant of the

k-nearest neighbours method used with skip-gram word vectors gives

the most accurate predictions but the random forest  method has an

advantage of being able to easily incorporate additional predictors. We

evaluate the usefulness of the methods by exploring how much of the

human performance in  a  lexical  decision task  can be explained by

extrapolated ratings for age of acquisition and how precisely we can

assign words to discrete categories based on extrapolated ratings. We

find that  at  least  some of the extrapolation methods may introduce

artefacts to the data and produce results that could lead to different

conclusions that would be reached based on the human ratings. From a
1 This chapter was published as Mandera,  P.,  Keuleers, E., & Brysbaert,  M. (2015).  How

useful  are  corpus-based  methods  for  extrapolating  psycholinguistic  variables?  Quarterly

Journal of Experimental Psychology, 68(8), 1623-1642.



234 CHAPTER 6

practical point of view, the usefulness of ratings extrapolated with the

described methods may be limited.
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INTRODUCTION

Human ratings for variables such as age of acquisition (AoA),

imageability, concreteness,  or  affective  ratings  are  an indispensable

element  of  psycholinguistic  research.  They  are  also  notoriously

difficult  to  collect.  Even  though  it  is  now  possible  to  obtain

measurements  for  tens  of  thousands  of  words  more  efficiently  by

using  crowdsourcing  platforms  (Brysbaert,  Warriner,  &  Kuperman,

2014; Kuperman, Stadthagen-Gonzalez, & Brysbaert, 2012; Warriner,

Kuperman, & Brysbaert, 2013), collecting human ratings for all words

in all languages for all variables is a daunting task.

Potentially, this problem could be alleviated by supplementing

traditionally collected ratings with extrapolated ratings. However, to

make  this  possible,  we  need  to  identify  methods  for  extrapolating

rating data and find sources of information on which the predictions

could  be  based.  Some  psycholinguistic  variables  have  evident

predictors. For instance, the strong correlation of word frequency with

AoA (for a review see Brysbaert & Ghyselinck, 2006) makes word

frequency one clear  candidate  predictor  for this  variable.  However,

frequency does not predict AoA completely, and as for other variables

such as imageability, concreteness, or affective ratings it appears that

predictors should also include semantic word properties. For instance,

it  would be much easier to predict  the valence rating for the word

“birthday”  if  we  knew  ratings  for  the  words  “cake”  and  “party”,

assuming that the three words are semantically closely related. Even

in the case of AoA, an inspection of available ratings suggests that

semantics may bring substantial information to the prediction of this

variable  because,  at  least  to  some extent,  words  related  to  similar
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topics  are  more  likely  to  be  acquired  around  the  same  age.  For

example,  words  related  to  family  or  food are  often  acquired  early

while words related to violent crime and disease are acquired later.

The idea of using semantic information to extrapolate ratings is

not  new.  Sources  of  such  information—for  example,  WordNets,

databases in which lexemes are grouped into sets of synonyms and

linked  based  on  semantic  and  lexical  relations—or  co-occurrence

models  derived  from  text  corpora  have  already  been  used  to

accomplish this task. For instance, Bestgen (2002) and Bestgen and

Vincze (2012) proposed an extrapolation method based on semantic

similarity of a target word to a number of rated words in a semantic

space  created  using  latent  semantic  analysis  (LSA;  Landauer  &

Dumais, 1997), taking their averaged rating as an extrapolated rating

of the target word. The authors based their  analyses on the ANEW

(affective norms for English words) norms (Bradley & Lang, 1999)

for valence, arousal, and dominance as well as on concreteness and

imagery ratings collected by Gilhooly and Logie (1980). Their method

turned out to produce high correlations for this set of norms. Along the

same lines, Feng, Cai, Crossley, and McNamara (2011) proposed that

semantic  information  obtained  from  WordNet  (Miller,  Beckwith,

Fellbaum, Gross, & Miller, 1990) and from LSA can be used together

with data about other lexical properties to train a regression model and

to  predict  human  ratings  of  concreteness  for  3521 nouns  from the

Medical  Research  Council  (MRC) database  (Coltheart,  1981).  In  a

similar fashion, word co-occurrence information derived from a text

corpus  with  High  Dimensional  Explorer  (HiDEx)  (Shaoul  &

Westbury, 2006, 2010) was used to estimate imageability (Westbury et

al.,  2013)  and  subjective  familiarity  (Westbury,  2013)  ratings.  In
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addition, Recchia and Louwerse (2015) used Google Ngrams to train a

hyperspace analogue to language (HAL)-like model and used them to

predict  affective  ratings.  They  obtained  even  higher  correlations

between  the  original  ratings  and  the  reconstructed  ratings  when  a

linear model was used to combine the extrapolated ratings based on

the semantic space and other psycholinguistic variables.

CURRENT STUDY

Although  the  results  of  previous  studies  show  that  word

similarities derived from textual materials are an important source of

information for extrapolating psycholinguistic ratings,  details  of the

extrapolation procedures in these studies were too heterogeneous to

allow for direct comparison of their efficiency; they used different sets

of  predictors,  information  derived  from different  corpora,  different

kinds  of  models,  and  different  validation  procedures.  In  addition,

ratings are often used by researchers to split stimuli into groups rather

than  used  as  fully  continuous  variables.  Therefore  measuring  the

correlation with original ratings may be insufficient to fully evaluate

the  usefulness  of  the  proposed  methods  for  practical  research

purposes. Moreover, because correlations consider only standardized

variables, they do not tell us anything about whether the extrapolation

procedure preserves the scale that was used for measuring the original

ratings  and  how  close  the  extrapolated  ratings  are  to  the  original

ratings if the original scale were used. Finally, we have to ensure that

the extrapolated variables are not contaminated by artefacts that may

arise when the extrapolation methods are applied.

In the current paper we systematically evaluate and compare

different  extrapolation  methods.  We  use  very  large  datasets  of
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subjective ratings for English words, which allow us to evaluate how

well extrapolation techniques work for tens of thousands of words. We

investigate  the  quality  of  the  predictions  made  by  two  different

methods (k-nearest neighbours and a random forest) on the basis of

four different models from which word similarities can be extracted:

LSA, a method based on the HAL (Lund & Burgess, 1996), a topic

model (Blei et al., 2003), and a recent skip-gram approach (Mikolov,

Chen, Corrado, & Dean, 2013).

In addition to considering the correlations between the original

and  extrapolated  ratings,  we  evaluate  how  useful  the  extrapolated

ratings are for explaining human performance in a behavioural task. In

order to evaluate whether the extrapolated variables can be used as a

replacement of the original variables, we need to ensure that they have

the  same  properties  as  the  original  ratings.  We also  evaluate  the

performance of ratings extrapolated with different methods compared

to  that  of  the  original  ratings  when  dichotomization  and  binning

procedures are applied.

Unlike  word  association  norms  or  WordNets,  all  predictors

used in our analyses can be automatically derived from a text corpus.

Such  a  choice  of  predictors  is  optimal  if  the  primary  goal  of  the

applied methods is to make it possible to obtain predictions of ratings

for different variables for words in many languages in which resources

such as association norms or WordNets may not exist yet. Our primary

analyses are also based on extrapolations with relatively small training

sets to better simulate a situation in which only a limited set of rated

words is available in a given language.
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Representing similarity between words

LSA,  topic  models,  HAL,  and  the  skip-gram  model  are

methods that make use of patterns of word co-occurrence in textual

materials to reconstruct some of the semantic structure of a language.

They are  typically  trained on large  text  corpora,  and,  although the

details  of  the  training  procedures  are  fundamentally  different,  their

results  can  be  interpreted  as  vector  representations  of  words  in  a

continuous multidimensional space.

LSA (Landauer & Dumais, 1997) starts with a matrix with n

rows representing words and k columns representing documents.  A

number in each cell of the matrix represents the count of occurrences

of a particular word in a particular document. In the next step, singular

value decomposition (SVD), a matrix decomposition technique from

linear algebra, is applied to the matrix, reducing its dimensionality to a

much smaller number m. If we think of each word as a point in a

multidimensional  space,  the  goal  of  applying  this  technique  is  to

reduce the representation of a word from a point in a k-dimensional

space to a point in an m-dimensional space while preserving most of

the similarity structure between words. In other words, by applying

this mathematical method one obtains a more compact representation

than the full word by document matrix. A limitation of this method is

that  after  the  transformation  the  obtained  dimensions  do  not

correspond to interpretable topics.

Topic models  are  a  set  of  probabilistic  methods to  discover

thematic  structure  in  a  collection  of  documents.  Latent  Dirichlet

allocation (LDA; Blei et al., 2003) is perhaps the most popular method

based on this approach. For LDA each document in a text corpus is a

mixture of topics, which,  in turn,  represent probability distributions
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over  words.  LDA  assumes  that  a  text  corpus  is  a  product  of  a

generative process, according to which each word in a document is

generated  by sampling  a  topic  from a probability  distribution  over

topics and then by sampling a word from the probability distribution

of the words in the selected topic. In order to reverse this process and

infer  a  probability  distribution  from a  text  corpus,  one  can  apply

methods  such  as  Gibbs  sampling  (Geman  &  Geman,  1984)  or

variational inference (Jordan, Ghahramani, Jaakkola, & Saul, 1999).

Describing the details of these methods is beyond the scope of this

paper. What is important for our goals is that, based on LDA, one can

obtain  probability  distributions  of  topics  for  each  document  and  a

probability distribution of words for each of the topics. In each topic a

group of  semantically  related words  obtains  high  probabilities.  For

instance,  the method may discover a topic in which words such as

birthday, happy, cake,  party, day, gift,  surprise,  and love have high

probabilities but semantically unrelated words have low probabilities.

A second topic may include gun, shoot, kill, bullet, shot, fire, weapon

with high probabilities, and so on. Although the default interpretation

of  LDA  is  expressed  in  probabilistic  terms,  it  can  also  have  a

geometric interpretation (Steyvers & Griffiths, 2007), which is similar

to that described in the case of LSA. The important difference between

LSA and topic models is that the probability distributions produced by

the latter method can be interpreted as corresponding to meaningful

thematic  groups.  Because one of  the  results  produced by the  topic

model  is  an assignment  of all  words in a  text  corpus to  individual

topics, in the current study we used vectors with the number of such

assignments,  normalized  with  word  frequency,  as  a  topic  model

representation of words.
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Yet another  approach to  reconstructing semantic  space from

word  co-occurrence  is  taken  by  the  HAL  model  (Lund  &

Burgess,1996). In this approach the co-occurrences are collected by

moving a window through the corpus. The window includes a certain

number of words,  and the number of times each pair  of words co-

occurs  in  a  window  is  counted.  By  default,  no  dimensionality

reduction  technique  is  applied  to  the  co-occurrence  matrix,  so

resulting word vectors  store many more values  than in  the case of

LSA or topic models. This can be a problem if the resulting matrix is

used as a basis for further processing. In this paper we use a HAL-like

model  in  which  co-occurrence counts  are  weighted  with a  positive

pointwise  mutual  information  (PMI;  e.g.,  Recchia  &  Jones,  2009)

scheme. In this approach the raw co-occurrence counts are substituted

by a measure rooted in information theory, which can be computed

according to the following formula:

PMI ( x , y)=log2

p (x , y )

p(x ) p( y)

Where p(x,y) can be calculated as the ratio between number of

co-occurrences of two words divided by the total number of words in

the corpus, while p(x) and p(y) are the frequencies of each of the two

words divided by the total number of words in the corpus. In the next

step  all  negative  values  are  removed from the  matrix  (Manning &

Schütze, 1999).

It is important to note the difference between the bag-of-words

approach used in LSA and topic models, and the approach taken by

HAL:  The  former  methods  consider  global,  document-level  co-

occurrence  patterns  whereas  HAL  is  based  on  local  word  co-

occurrences within a relatively narrow window.
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The fourth approach to modelling semantics that we consider

was  recently  developed  by  Mikolov,  Chen,  et  al.  (2013),  who

proposed that word vectors can be efficiently computed by using skip-

grams  combined  with  a  simple  two-layer  neural  network.  In  this

approach, a network is trained by presenting words from a corpus and

trying to predict each of the words in a small window surrounding that

word. The network uses a stochastic gradient descent computed using

a  back-propagation  rule  (Rumelhart,  Hinton,  & Williams,  1986)  to

learn  from errors  that  it  makes  in  its  predictions  and  by adjusting

weights in the network accordingly. When the training is finished, the

weights of the connections in such a network are extracted and used as

vector representations of words. Because similar words tend to occur

in similar contexts, they tend to have similar vectors. Baroni, Dinu,

and  Kruszewski  (2014)  evaluated  different  types  of  models  in  a

comprehensive set of tasks and found that models using methods that

are based on predicting the context, as is the case for the skip-gram

model, rather than on counting word co-occurrences tend to produce

word  vectors  that  better  capture  word  similarities.  Moreover,

prediction-based approaches turned out to be more robust to different

parameter choices.

Similarly to HAL, the skip-gram method is based on word co-

occurrences in a narrow window rather than bag-of-words as is the

case for LSA and topic models. An interesting contrast between bag-

of-words models and models based on narrow windows is  that the

former  are  usually  considered  to  be  better  at  modelling  thematic

information and to outperform window-based methods in tasks such

as predicting human associations, while window-based methods seem
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to  be  better  at  modelling  taxonomical  relations,  synonymy,  or

grammatical relationships (Sahlgren, 2006).

Since  all  four  discussed  semantic  space  models  represent

words  as  multidimensional  vectors  we can use them to extrapolate

ratings in a very similar way.

Extrapolation methods

In this section, we describe the different extrapolation methods

used in the current study. Specific parameter settings are reported in

the Method section.

K-nearest neighbours

Bestgen and Vincze (2012) proposed that a variant of the k-

nearest  neighbours  method  (Fix  &  Hodges,  1951)  can  be  used  to

extrapolate human ratings. According to this approach, for each word

in  the  test  set  we  identify  the  set  of  the  most  similar  words  (as

measured with cosine distance) in the training set and assign the mean

rating of these words to the target word as the extrapolated rating. The

number of words that are considered in the averaging is a parameter of

the model. For instance, according to the skip-gram model trained on

our  corpus,  the  five  most  similar  words  to  gun  are  pistol,  rifle,

weapon,  revolver,  and  shoot  with  corresponding  arousal  scores  of

5.79,  6.14,  6.27,  6.29,  and  6.00  in  a  set  of  norms  published  by

Warriner  et  al.  (2013).  Assuming  that  the  number  of  considered

neighbours would be set to 5 and that all these words would be found

in the training set, the model would predict that the arousal value for

gun should be equal to the mean of the arousal values for these words

(6.09).
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Bestgen  and  Vincze  (2012)  investigated  the  optimal

neighbourhood size that should be considered when predicting ratings

and  found  that  the  accuracy  of  the  method  increased  with

neighbourhood size up to a value of 30.

Random forest

Random forest (Breiman, 2001) is a general-purpose machine-

learning  technique  based  on  an  ensemble  of  randomized  decision

trees. It builds a set of decision trees where each tree is based on a

slightly  different  sample  of  the  full  dataset,  reducing  the  risk  of

overfitting  the  model.  Each  decision  tree  is  created  by  recursively

splitting the dataset  into smaller  and smaller  subsets  in a  way that

maximizes information about the predicted variable. For instance, the

method could potentially decide that a split  at  a certain value of a

particular  predictor  (for  instance,  a  topic  with  high  probability  of

words such as birthday, happy, cake, party, day, gift, surprise, love)

allows  the  full  dataset  to  be  divided  into  two  subsets  with  more

homogeneous valence in each of the two subsets than in the case of

other splits. It would then try to further break each of the two subsets

into smaller and smaller subsets, finally creating a decision tree, where

at each step the decision about which branch to follow is made based

on the value of a particular predictor. Then, in order to make a global

prediction,  the  predictions  of  the  individual  trees  contained  in  the

model are averaged (in the case of a regression problem) or votes for

different  classifications  are  counted  (in  the  case  of  a  classification

problem). The method has been shown to give accurate predictions in

many different applications. Since the default parameter settings for

random forests work well in a wide range of applications, the method

can be considered as effectively nonparametric. The method is also



245

resistant to overfitting, even if a very large number of predictors is

included in the model, making it well suited for our purpose. It allows

us  to  use  the  values  assigned  to  each  word  on  all  the  individual

dimensions of a word vector as separate predictors. Moreover, this set

of  predictors  can  be extended to  include  additional  variables  (both

continuous  and  categorical).  The  drawback  of  the  random  forest

method is that it makes it difficult to examine the exact relationship

between the predictors and a predicted value.2

METHOD

MATERIALS

Ratings

To train and test the extrapolation methods, we used large sets

of  norms  for  multiple  variables:  AoA  ratings  for  30,121  words

(Kuperman  et  al.,  2012),  concreteness  ratings  for  37,058  words

(Brysbaert  et  al.,  2014),  and  affective  ratings  (arousal,  dominance,

valence) for 13,915 words (Warriner et al., 2013).

The reliability of the ratings can be considered the upper bound

for  the  performance of  the  extrapolation  procedures.  The split-half

reliabilities, as reported in the respective publication, were equal to .

915  for  AoA (Kuperman  et  al.,  2012),  .914  for  valence,  .689  for

arousal, and .770 for dominance (Warriner et al., 2013). Concreteness

ratings  correlated  .92  with  the  ratings  in  the  MRC  database,

suggesting a high reliability for the dataset as well (Brysbaert et al.,

2013).

2 For random forest the function that describes the relationship does not have to be linear or

even continuous.
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Text corpus

Because  subtitle  corpora  were  shown  to  be  particularly

adequate for conducting psycholinguistic research (e.g., Brysbaert &

New, 2009; Keuleers, Brysbaert, & New, 2010) and because subtitle

corpora can be easily collected for many languages for which we may

want to extrapolate ratings, the semantic spaces and word frequencies

that were used in the current study were based on an English subtitle

corpus including about 385 million words. To compile the corpus we

downloaded  204,408  documents  containing  film  and  television

subtitles  flagged  as  English  by  the  contributors  of  Open  Subtitles

website (http://opensubtitles.org) and removed all subtitle-specific text

formatting before further processing. In order to remove documents

containing large fragments of text in languages other than English, we

calculated preliminary word frequencies and excluded all documents

in cases where the 30 most frequent words did not cover at least 10%

of  the  total  number  of  tokens  in  that  document.  Because  many

documents  are  available  in  multiple  versions,  it  was  necessary  to

remove  duplicates  from  the  corpus.  To do  so,  we  used  a  custom

method based on clustering documents with similar thematic structure

derived from a topic model trained on all the files. If any pair of files

within a cluster had an overlap of at least 10% unique word trigrams,

we removed one of the files from the corpus. The resulting dataset

contained 69,382 documents.3

Based on that corpus we calculated word frequencies for all

word forms. We also lemmatized the corpus with the Stanford tagger

(Toutanova, Klein, Manning, & Singer, 2003; Toutanova & Manning,

3 We later  compared  the  result  of  this  procedure  with  a  standard  MinHash  approach  to

removing near-duplicates (Broder, 1997). The resulting sets of files overlapped in 98.5%.
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2000).  Because  the  resulting  set  of  part  of  speech  tags  was  too

complex  for  our  purposes,  we  used  a  simplified  set  of  tags  (see

Supplemental Material).

General approach

To  systematically  study  the  performance  of  the  different

prediction  methods  using  word  vectors  obtained  from  models

implementing different approaches to distributional semantics, we ran

10 iterations of the following cross-validation procedure for each of

the variables:

1. We split the whole set of rated words into a test set and a training

set.  The  results  reported  first  are  based  on  a  split  of  the  full

datasets into training and test sets with 25% of the data in the

training set and 75% of the data in the test set. Later in the paper,

we also examine the influence of the size of the training set on

the prediction accuracy.

2. Using the data from each of the word vector models, we trained a

k-nearest neighbours and a random forest model using data in the

training set and then extrapolated the ratings for the words in the

test set. The only exception was the HAL-like model, for which,

because the large number of dimensions made the problem too

computationally demanding for the random forest, we were able

to train only the k-nearest neighbours model. As a baseline, we

also  trained  three  linear  models  with  the  following  sets  of

predictors: (a) log10 of word frequency as the only predictor, (b)

log10 of word frequency, word length (number of letters), and a

measure of orthographic neighbourhood density (OLD20; Balota

et al.,  2007), and (c) a model including the same predictors as

those  in  the  second  model  plus  a  measure  of  semantic
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neighbourhood  density  (inverse  N  count;  Shaoul  &  Westbury,

2006,  2010).  The  baseline  linear  models  did  not  include

information obtained from the semantic spaces.

3. We evaluated the performance of the method by correlating the

predicted ratings with the original ratings in the test set.

We decided  to  use  this  approach  as  it  clearly  indicates  the

predictive accuracy of the models and allows us to draw conclusions

that avoid the risk of being based on overfitting. The results of the 10

iterations  can  be  compared to  those  for  baseline  models,  based  on

identical sets of words in the training and test sets.

Semantic spaces

Because the  norms that  were  used  to  train  and validate  the

extrapolation procedure were mostly ratings of lemmas, we also used

a lemmatized text corpus (with base forms in place of inflected forms)

to train the semantic models.

Following  a  common  practice,  in  the  case  of  bag-of-words

models (LSA and a topic model) we removed very frequent and very

rare words from the corpus before training. The lemmas in the high-

frequency stop-list included about 500 common English words. As in

the procedure applied by Bestgen and Vincze (2012), words occurring

in the corpus fewer than 10 times were removed as well.

When  creating  the  LSA  model,  prior  to  submitting  the

document-term matrix  to  SVD,  we applied  a  term-frequency times

inverse  document-frequency  transformation,  which  is  a  common

weighting  scheme  used  in  information  retrieval  (e.g.,  Manning,

Raghavan, & Schütze, 2008).
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To  preserve  the  same  dimensionality  for  all  the  methods

involving  some  form  of  dimensionality  reduction,  we  used  600

eigenvectors corresponding to the highest singular values in the LSA

model,  600 topics in the LDA topic model,  and a 600 dimensional

skip-gram model.

The  LDA topic  model  was  trained  in  1000  iterations  with

parameter alpha set to 50.0 and parameter beta to 0.01. The vectors

corresponding to the words were normalized by dividing each value

by the total frequency of the word.

A  custom  implementation  was  used  to  calculate  HAL-like

word vectors. We used a symmetric, flat window including 5 words on

each side; then we applied a positive pointwise mutual information

transformation to the resulting co-occurrence matrix; finally all words

with frequency lower than 5 were removed from the corpus before

training.

We trained a skip-gram model using a set  of fairly standard

settings: a window of 5 words and a starting learning rate of 0.025.

The  downsampling  parameter  was  set  to  1e-3,  and  hierarchical

softmax was used when training the model. As in the case of the HAL

model, all words with a frequency lower than 5 were discarded when

training the model.

Only  words  that  were  simultaneously  included  in  all  three

word  vector  models,  in  the  rating  sets,  and  in  the  norms  for

orthographic  (Balota  et  al.,  2007)  and  semantic  density  measures

(Shaoul  &  Westbury,  2010)  were  used  during  the  extrapolation

procedure. This resulted in datasets containing 20,265 words for AoA,

20,994 for concreteness, and 12,531 words for affective ratings.
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Extrapolation methods

To predict  ratings using the k-nearest  neighbours model,  for

each word in the test set we identified the 30 most similar (measured

with cosine distance) words in the training set. This parameter (k = 30)   

was set to a value found by Bestgen and Vincze (2013) to be optimal

in their extrapolations. The mean rating of these words was assigned

to the target word as an extrapolated rating.

The  random forest  model  was  trained  with  100  estimators.

Taking  advantage  of  the  flexibility  of  this  method  with  respect  to

number of predictors used, we also trained random forest models with

additional predictors: log10 of word frequency and dominant part of

speech. In the case of semantic vectors, the score obtained on each of

the dimensions was used as a separate predictor.

RESULTS

General results

To measure the prediction accuracy of the different models, we

first  examined  the  correlations  between  the  reconstructed  and  the

original ratings (see Table 1), averaged across the 10 iterations.
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Table 1. Correlations between the original ratings and the ratings extrapolated with different models trained on 25% of the full dataset

(average of ten iterations).

Note: LM = linear model, KNN = k-nearest neighbours, wf = log10 of word frequency, lsa = Latent Semantic Analysis, tm = topic model, sg = skip-gram. Due to the large number

of observations differences in correlations as small as .015 are statistically significant.

Variable

Method Word vectors Additional predictors AoA Conc Arousal Domin Valence

LM wf .621 .165 .054 .157 .174

wf, len, old20 .635 .37 .143 .164 .178

wf, len, old20, inc .641 .371 .183 .195 .21

KNN lsa .540 .525 .299 .342 .412

tm .545 .647 .358 .370 .443

hal .737 .758 .44 .568 .661

sg .715 .796 .478 .595 .694

Random forest lsa .711 .609 .317 .395 .448

tm .695 .672 .374 .421 .500

sg .688 .723 .406 .543 .615

lsa wf .730 .611 .315 .395 .454

tm .733 .681 .376 .422 .507

sg .730 .724 .407 .544 .618

lsa wf + pos .731 .711 .318 .397 .453

tm .734 .746 .379 .422 .507

sg .730 .781 .406 .543 .616
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The baseline models with different combinations of predictors

that did not include word vectors managed to predict the ratings to a

limited  extent  compared to  the  models  using  semantic  spaces.  The

ratings  predicted  by  the  model  including  only  word  frequencies

correlated  .621  with  original  AoA  ratings  but  predictions  of  the

simplest baseline model were much less successful for other variables

and did not reach the level of .2 correlation for any other variable.

Including information about orthographic properties of a word (length

and  neighbourhood  density)  more  than  doubled  the  correlation

between the extrapolated and the original ratings for concreteness but

affected accuracy of the extrapolation for the other variables to a much

lesser extent. Adding a measure of semantic neighbourhood density

increased the correlations most strongly for the affective ratings, but

the accuracy of the extrapolation for these variables remained very

low.

For  all  variables,  we  obtained  higher  correlations  with  the

original  ratings  when  the  extrapolation  methods  took  into  account

semantic information from the word vectors.

For all variables, the correlations obtained with the k-nearest

neighbours outperformed those based on the random forest  models.

When the k-nearest neighbours method was used, HAL and skip-gram

gave  higher  correlations  than  LSA and  topic  models.  The  highest

correlation  obtained  was  .737  for  AoA (k-nearest  neighbours  with

HAL word vectors), .796 for concreteness, .478 for arousal, .595 for

dominance, and .694 for valence (k-nearest neighbours with the skip-

gram word vectors).

In the case of AoA and concreteness, the ratings extrapolated

with random forest were close to those extrapolated with the k-nearest
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neighbours  when  word  frequency  and  part  of  speech  (POS)

information were included as additional predictors. Extrapolation of

AoA with random forest  improved most when word frequency was

added to the  model  based on word vectors  only. For  concreteness,

including POS information  increased  the  correlations  most.  For  all

affective ratings, including word frequency or POS among the random

forest predictors had little effect on the accuracy of the predictions.

Usefulness of extrapolated AoA ratings

Variance explained in lexical decision task reaction times

Because the lexical  decision  task (LDT) is  one of  the most

popular  tasks  in  psycholinguistics,  we looked at  how much  of  the

variance  in  reaction  times  (RTs)  collected  in  the  British  Lexicon

Project (BLP; Keuleers, Lacey, Rastle, & Brysbaert, 2011) and in the

English Lexicon Project (ELP; Balota et al., 2007) is accounted for by

reconstructed ratings in comparison to the variance explained by the

original human ratings for these variables.

In our analysis we jointly entered extrapolated ratings from the

test  sets  of  all  extrapolation  iterations  for  words  that  were  also

included in the BLP and ELP. The resulting dataset included 10,471

unique words  for  AoA (about  7.5 extrapolations  per  word),  10,828

unique words for concreteness (about 7.26 extrapolations per word),

and  7507  unique  words  for  the  affective  variables  (about  7.5

extrapolations per word). First, we created a baseline to which models

including extrapolated ratings should be compared by fitting a model

containing only log10 of word frequency as a predictor to the reaction

times.  Second,  we  created  a  model  containing  both  log10 of  word

frequency and the original ratings as predictors.
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Next,  we  fitted  regression  models  including  log10 of  word

frequency and the ratings predicted with different methods. The results

of these analyses are shown in Table 2.

In general, we observed a consistent pattern for the different

methods  across  ELP  and  BLP.  However,  the  pattern  of  variance

explained by the extrapolated ratings did not strictly follow the pattern

of  absolute  correlations  between  the  extrapolated  and  the  original

ratings. As could be expected,  log10 of  word frequency explained a

large  fraction  (over  42%)  of  the  total  variance  in  RTs.  When  the

original AoA ratings were included in the model, the percentage of

variance accounted for increased by 3.21% for BLP and 3.37% for

ELP. When we added the original concreteness ratings to the model,

the percentage of explained variance increased by 0.38% for BLP and

0.35% for  ELP. The  effects  of  adding  the  affective  variables  were

small and did not exceed 0.5% in any case.



255

Table 2. Percentage of variance explained by linear models with different sets of predictors.

Note. The first row shows how much of the variance in reaction times taken from British Lexicon Project (BLP) and English Lexicon Project (ELP) is explained by a linear model

with log10 of word frequency as the only predictor. The following rows show additional variance explained when original and extrapolated ratings for age of acquisition (AoA),

concreteness (conc), and affective ratings were added to the model. Column 1 specifies the extrapolation method, column 2 shows the type of word vectors used with the method

(lsa = latent semantic analysis; tm = topic model; hal = hyperspace analogue to language; sg = skip-gram), column 3 lists the additional predictors used when extrapolating the

variable (wf = log10 of word frequency; len = word length, i.e., number of letters; old20 = orthographic Levenshtein distance 20; inc = inverse N count; pos = part of speech).

Additional variance explained [%]

AoA Conc Arousal Dominance Valence

Method Word vectors Additional predictors BLP ELP BLP ELP BLP ELP BLP ELP BLP ELP

(baseline model) 47.97 43.05 48.12 42.01 45.40 37.97 45.18 37.72 45.15 38.18

(baseline + original ratings) 3.21 3.37 0.38 0.35 0.00 0.11 0.34 0.43 0.28 0.32

LM wf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

wf,  len, old20 0.11 0.93 0.03 0.04 0.28 1.45 0.38 0.42 0.28 1.13

wf, len, old20, inc 0.01 0.17 0.07 0.01 0.89 2.18 1.02 1.39 0.37 0.33

KNN lsa 0.01 0.01 0.10 0.14 0.14 0.15 0.22 0.20 0.33 0.29

tm 0.28 0.32 0.14 0.28 0.24 0.41 0.43 0.46 0.55 0.63

hal 1.20 1.02 0.14 0.15 0.48 0.63 0.73 0.59 0.67 0.48

sg 0.40 0.26 0.25 0.31 0.31 0.52 0.28 0.27 0.32 0.32

Random forest lsa 1.05 0.96 0.00 0.07 0.06 0.10 0.70 0.48 0.65 0.42

tm 1.38 1.49 0.01 0.07 0.10 0.23 0.65 0.68 0.48 0.48

sg 0.39 0.26 0.07 0.12 0.16 0.31 0.14 0.13 0.19 0.21

lsa wf 0.74 0.67 0.00 0.07 0.04 0.10 0.68 0.45 0.59 0.43

tm 1.13 1.20 0.01 0.07 0.08 0.20 0.60 0.68 0.36 0.36

sg 0.81 0.59 0.07 0.13 0.14 0.31 0.14 0.15 0.19 0.22

lsa wf, pos 0.74 0.66 0.01 0.04 0.05 0.10 0.68 0.42 0.60 0.43

tm 1.16 1.19 0.00 0.04 0.08 0.20 0.61 0.67 0.35 0.35

sg 0.82 0.58 0.04 0.13 0.16 0.31 0.11 0.13 0.17 0.21
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In the case of concreteness, the extrapolated ratings that had

the highest correlation with original ratings were the ones that also

explained  most  of  the  variance  in  RTs (0.25% above  the  baseline

model  for  BLP and  0.31% for  ELP).  For  AoA a  different  pattern

emerged.  For  this  variable  the  ratings  extrapolated  with  a  random

forest combined with topic models without including any additional

predictors  gave  the  largest  improvement  compared  to  the  baseline

model (1.38% for BLP and 1.49% for ELP). Interestingly, this was not

the  extrapolation  method  that  correlated  most  strongly  with  the

original  ratings,  and,  although  the  ratings  extrapolated  with  the  k-

nearest  neighbours  combined  with  HAL-like  word  vectors  also

predicted a large fraction of the variance (1.20% for BLP and 1.02%

for ELP), in general the pattern of explained variance in RTs did not

strictly follow the pattern observed in absolute correlations with the

original ratings. For example, although ratings extrapolated with skip-

gram word vectors and k-nearest neighbours correlated more strongly

with the original ratings than those based on random forest and topic

models, the former explained 3.5 times less variance in RTs for BLP

and 5.7 times less for ELP than the latter.

Surprisingly, for the affective ratings we found that many of

the extrapolated variables explained more additional variance in the

RTs than the original ratings when added to the linear model including

word frequencies. Moreover, predicted ratings that had some of the

weakest correlations with the original ratings seemed to explain the

largest  fraction  of  the  variance  in  the  RTs.  For  arousal,  the  linear

model  including  information  about  word  frequency,  length,  and

orthographic  and  semantic  neighbourhood  density  predicted  ratings

that correlated only 0.183 with the original ratings but,  when these
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ratings were used to predict RTs, they improved explained variance by

0.89% for BLP and 2.18% for ELP, while the original arousal ratings

made hardly any difference in the explained variance. For dominance,

the same model gave predictions that correlated .195 with the original

ratings but improved the explained variance by 1.02% for BLP and

1.39%  for  ELP,  while  the  original  ratings  explained  only  0.34%

additional  variance  for  BLP  and  0.43%  for  ELP.  In  the  case  of

valence, variance in RTs taken from BLP was best accounted for by

the  ratings  extrapolated  with  the  k-nearest  neighbours  and  word

vectors  obtained  with  HAL-like  method  (0.67%  extra  explained

variance), and variance in RTs taken from ELP was best explained by

the  ratings  extrapolated with  the linear  model  including only word

frequency, word length, and OLD20 as predictors (1.13% of additional

explained variance). At the same time, the original ratings for valence

explained only  0.28% extra  variance  for  BLP and 0.32% for  ELP.

Improvements of the explained variance above the level explained by

the original affective ratings were strongest in the case of the simple

linear models but the k-nearest neighbours and random forest methods

also produced ratings that explained more variance in lexical decision

RTs than the original ratings.

In order to explain the surprising effects regarding explained

variance in lexical decision RTs, we conducted an additional analysis

in which we investigated whether the extrapolation procedures could

introduce  artefacts  to  the  data  that  could  easily  be  identified  with

effects of some of the well-known psycholinguistic variables. In order

to do that, we looked at the correlation structure of the original and

reconstructed ratings with variables known to influence performance

in psycholinguistic tasks: length, OLD20, word frequency, semantic
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neighbourhood  density  (inverse  N  count),  and  ratings  for  all  the

variables that we were extrapolating in the current study. We reasoned

that,  in  order  to  represent  the  same  theoretical  construct,  the

extrapolated  ratings  should  not  only  correlate  with  the  original

variables  as  strongly  as  possible  but  also  have  similar  correlations

with other variables as the original ratings. When looking at effects as

small as the effects of affective variables on lexical decision RTs, even

small  artefacts  could  distort  the  conclusion  that  would  be  reached

based  on  a  particular  analysis.  We  indeed  observed  that  the

extrapolated  ratings  had  a  different  correlation  structure  than  the

original ratings.

As  could  be  expected  based  on  the  patterns  of  explained

variance in lexical  decision RTs,  the most  striking discrepancies  in

correlation  structure  were  observed  for  the  affective  variables.  For

arousal, the extrapolated ratings that explained the largest fraction of

the variance in RTs (linear model with log10 of word frequency, length,

and  orthographic  and  semantic  neighbourhood  density  measures)

correlated  .5  with  OLD20  and  .51  with  word  length.  These

correlations  were  much  higher  than  the  correlation  of  .1  for  both

OLD20 and  length  in  the  case  of  original  ratings.  We observed  a

similar pattern when we looked at the dominance ratings extrapolated

with this method. In this case, although the differences in correlations

were smaller: −.18 for length (−.04 for the original ratings) and −.34

for  OLD20  (−.07  for  the  original  ratings),  the  differences  for

correlations  with word frequencies  (.78 for  the extrapolated ratings

and .16 for the original  ratings) and inverse N count  (−.91 for the

extrapolated ratings and −.18 for the original ratings) were very high.

In  the  case  of  valence,  the  ratings  extrapolated  with  a  model  that
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explained the largest fraction of the variance in RTs from ELP (linear

model with log10 of word frequency, length, and OLD20 as predictors)

had much higher correlations than the original ratings with log10 of

word frequencies (.97,  .17 in the original ratings),  inverse N count

(−.58, −.20 in the original ratings), and AoA ratings (−.50, −.22 in the

original  ratings).  Although  such  discrepancies  were  strongest  for

ratings  extrapolated  with  the  linear  models,  we  observed  similar

tendencies  in  the  ratings  extrapolated  using  semantic  vectors.  For

instance,  for  the  valence  ratings  extrapolated  using  k-nearest

neighbours  and HAL-like word vectors,  the correlation with length

was −.15 (−.02 for the original ratings), with OLD20 −.16 (−.03 for

the  original  ratings),  with  word frequency .35 (.17 for  the  original

ratings), with inverse N count −.32 (−.20 for the original ratings), and

with AoA −.33 (−.22 for the original ratings).

Although these results suggest that some artefacts are present

in  the  extrapolated  ratings,  it  is  possible  that  there  are  further

confounds that can not be easily identified with one of the variables

that we considered in our analysis of the correlation structure. Because

of that, we decided to conduct one more analysis: We decorrelated the

extrapolated ratings with the original ratings by fitting linear models

in which we predicted the extrapolated ratings based on the original

ratings and considered residuals of such a model as a representation of

what the ratings capture in addition to the variance that they share

with the original ratings. Next, we checked whether the residuals of

the  extrapolated  ratings  can  still  predict  a  meaningful  amount  of

variance in behavioural data when they are added to a linear model in

which  we  entered  BLP  RTs  as  a  dependent  variable  and  word

frequency as an independent  variable.  If  that  would be the case,  it
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would indicate that variance that is present in the extrapolated ratings

but that cannot be identified with the original ratings can be predictive

of behavioural variables.  In such a case,  if  the extrapolated ratings

would be used in a hypothetical analysis, we could reach conclusions

other than we would reach based on the original ratings because of

such a confound.

For all variables we found that the residuals of the extrapolated

ratings still explain a meaningful amount of variance above what can

be explained by word frequencies alone. This was the case not only

for the ratings extrapolated using the linear models but also for some

of  the  ratings  that  were  extrapolated  using  semantic  spaces.  For

instance, the residuals of the ratings extrapolated with the k-nearest

neighbours  method  and  HAL-like  word  vectors  explained  0.21%

additional  variance  in  RTs in  the  case of  AoA, 0.56% for  arousal,

0.32%  for  dominance,  and  0.30%  for  valence,  and  the  ratings

extrapolated  with  random  forest  and  topic  model  word  vectors

explained 0.16% extra variance in the case of concreteness, 0.10% in

the case of arousal, 0.36% in the case of dominance, and 0.24% in the

case of valence.

Categorizetion of the extrapolated variables

In psycholinguistic research, variables that can be measured on

a continuous scale are  often dichotomized or binned. Therefore we

compared how binning based on extrapolated AoA ratings compared

to binning using the original ratings. To conduct this analysis we again

used the full set of words extrapolated in all 10 iterations. In order to

obtain  a  benchmark  for  the  performance  of  the  extrapolation
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procedures,  we  used  two  random  splits  of  the  data  collected  by

Kuperman et al. (2012).4

Applying a dichotomization or binning procedure to the ratings

is  equivalent  to  reformulating  the  evaluation  from  a  regression

problem where the variables are considered on a continuous scale to a

classification problem where the outcomes take discrete values. We

decided to test the quality of the classification based on extrapolated

ratings by using two procedures:

1. Dichotomization of the set  of words by splitting it  at  different

points  across  the  entire  range  of  the  original  ratings.  This  is

equivalent to asking how precise our predictions would be if we

used extrapolated  ratings  to  predict  which words  were  already

acquired before a certain age. In order to answer this question, we

split  the full  dataset in bins corresponding to each year of life

(from 1 to 24). All words with an original AoA rating below that

age were considered as positive cases (already-acquired words)

and the remaining words as negative cases (words that were not

yet acquired). All  the words that should have been acquired at

that age according to the extrapolated ratings were considered to

be classified as already-acquired words, and all remaining words

as words that were not yet acquired.

2. Splitting  the  full  dataset  into  bins  corresponding  to  deciles  of

AoA, which is equivalent to asking how precisely we can predict

that a given set of words will be the next 10% of words acquired
4 We used a dataset obtained from the authors of the original study (Kuperman et al., 2012).

The dataset did not correspond perfectly to the one on which the published ratings were based

and which was used to train the models but had a very high correlation  (r = .96) with that

dataset. A total of 705 words that were not included in the dataset were excluded from the

analysis.
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after  a  given  percentage  of  words  was  already  acquired.  For

example, evaluating how precisely we can predict words in the

third decile corresponds to the precision of making a prediction

about a set of words that will be acquired after 20% of all words

were already acquired but before the remaining 70% of words. In

order to conduct this analysis, we binned the words based on the

deciles in the original set of AoA ratings and, separately, in the

extrapolated  ratings.  Next,  we  evaluated  the  classification

performance for each of the bins. All words acquired in that bin

according  to  the  original  ratings  were  considered  as  positive

cases,  and  all  remaining  words  as  negative  cases.  All  words

included in a corresponding bin of the extrapolated ratings were

considered to be positive cases, and the remaining words were

considered to be negative cases.

The  two  evaluation  procedures  can  be  seen  as  binary

classification problems. The overall result of the classification can be

represented in a 2 × 2 matrix, which includes: true positives (correctly   

classified  positive  cases;  TP),  true  negatives  (correctly  classified

negative  cases;  TN),  false  positives  (negative  cases  incorrectly

labelled  as  positive;  FP),  and  false  negatives  (positive  cases

incorrectly  labelled  as  negative;  FN).  Based on these  classification

results,  we  calculated  a  set  of  metrics  that  are  commonly  used  to

measure performance of classification methods:

Accuracy

Accuracy represents the fraction of correctly classified positive

and negative examples.
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accuracy=
TP+TN

TP+TN +FP+FN

Note that this metric is insufficient if there is a difference in

the size of TP and TN classes. For example, if only 5% of the cases in

the original dataset would be the positive cases, a method that labels

all  cases as negative,  irrespective of the input,  would achieve 95%

accuracy.  To  correct  for  this  possibility,  we  calculated  a  set  of

additional metrics.

Sensitivity and precision

Precision represents the fraction of cases that were classified as

positive and were also positive in the original dataset.

precision=
TP

TP+FP

Sensitivity represents the fraction of all positive cases in the

original dataset that were correctly classified as positive.

sensitivity=
TP

TP+TN

F1-score

F1=2∗(
precision∗sensitivity
precision+sensitivity

)

F1-score (Rijsbergen, 1979) is a harmonic mean of precision

and sensitivity. It simultaneously takes into account both how many of

the relevant cases were correctly identified by the method and how

many  nonrelevant  cases  were  mistakenly  labelled  as  positive.

Figure 1 shows the metrics calculated for the first classification
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procedure in which the dataset was split  in two groups at  different

points of the range of the original ratings.

Figure 1.  Performance  metrics  representing  the  quality  of  the  classification

when splits into two groups were made at different age of acquisition values.

Each row represents a different performance metric. The leftmost column shows

the metrics calculated for the ratings based on two splits of the human ratings

dataset. The remaining columns show the classification performance metrics for

the different extrapolation methods. The different lines in the figure represent

different  sets  of  predictors  that  were  used  to  make  the  extrapolation.  The

extrapolations  in  which  the  random forest  method was  used  with  additional

predictors  were  removed  from  the  plot  because  they  followed  very  similar

patterns  to  the  extrapolations  shown.  lm  =  linear  model;  k-nn  =  k-nearest

neighbours; lsa = latent semantic analysis; tm = topic model; hal = hyperspace

analogue to language; sg = skip-gram; wf = log10  of word frequency; len =

word length; old20 = orthographic Levenshtein distance 20; inc = inverse N

count.

As can be seen on the figure, the closer to the boundaries of the

range,  the higher  the accuracy. This  probably reflects  the fact  that,
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when all words are taken into account, it is easier to make accurate

predictions  close  to  the  boundaries  of  a  scale.  As  such,  it  can  be

considered  an  artefact  of  different  prior  probabilities  for  different

classes. For precision we can observe that ratings extrapolated with k-

nearest neighbours and with the random forest method stay at a rather

high  level  for  most  half-splits  across  the  entire  range  of  the  AoA

ratings. At the same time, sensitivity starts at a very low level and

rapidly increases until the age of 15. This pattern of sensitivity and

precision  metrics  probably  reflects  the  distortion  of  the  scale  that

happens when the extrapolation procedures are applied. For example,

when applying the k-nearest neighbours method, on average words are

shifted towards the mean age. As a result, the extrapolation method

has a tendency to overestimate AoA for early-acquired words. Because

of  that,  the precision is  high:  Few words  that  are  not  yet  acquired

according to the original ratings are classified as already acquired. At

the same time, the method fails to identify words that are acquired at

an early age according to the original ratings. The F1-score shows the

overall performance of the extrapolation methods with different splits.

Because it involves a product of precision and sensitivity, this metric

stays at a low level due to low sensitivity despite high precision. This

pattern can be contrasted with the high precision and sensitivity across

the entire range for the two sets of ratings calculated based on half-

splits of the full ratings dataset. This result shows that the usefulness

of extrapolated ratings may be limited when accurate identification of

early-acquired as opposed to late-acquired words is necessary unless

the split is made at a relatively high age.

As  shown  in  Figure  2,  splitting  the  dataset  by  AoA decile

produced a much more regular pattern across all the metrics. Because
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binning into different deciles depends on ranks of words and not on

the absolute AoA values assigned to different words, this classification

procedure is not affected by the distorted scale. All metrics show that

the quality of binning is better for the extreme deciles. Most probably,

this is caused by the fact that the extreme deciles contain all the words

with potentially unbounded range at one of the sides, which increases

the accuracy by allowing methods to assign a word to the correct bin

even if the prediction is inaccurate in terms of an absolute value. All

metrics  stayed  at  a  rather  low  value  for  most  of  the  nonextreme

deciles. This result shows that the extrapolation methods may not be

accurate enough to be used for assigning words to classes spanning a

limited range.

Figure 2. Values for different performance metrics representing quality of the

classification  into  individual  bins.  The  different  lines  in  the  figure represent

different sets of predictors that were used to make the extrapolation. lm = linear

model; k-nn = k-nearest neighbours; lsa = latent semantic analysis; tm = topic

model; hal = hyperspace analogue to language; sg = skip-gram; wf = log10 of
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word frequency; len = word length; old20 = orthographic Levenshtein distance

20; inc = inverse N count.

Trainingset size and prediction accuracy

In addition to the analyses reported so far, we investigated how

prediction accuracy depends on the size of the training set. We ran 10

iterations of the extrapolation procedures, with splits  of 10%, 25%,

50%, 75%, and 90% of the data in the training set and, respectively,

the remaining 90%, 75%, 50%, 25%, and 10% in the test set.

The results of this analysis are shown in Figure 3. In general,

we observed a steady increase in the accuracy of predicted ratings up

to a training set size of 10,000 in the case of the methods that made

use  of  the  semantic  vectors.  As  could  be  expected,  the  larger  the

training  set  the  smaller  further  increases  in  the  accuracy  of  the

predictions.

Figure 3. Correlations between original ratings and ratings extrapolated on the

basis of different numbers of words included in the training set (average of 10

iterations).  The  different  lines  in  the  figure  represent  different  extrapolated

variables. lm = linear model; k-nn = k-nearest neighbours; rf = random forest;
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lsa = latent semantic analysis; tm = topic model; hal = hyperspace analogue to

language; sg = skip-gram; wf = log10 of word frequency; len = word length;

old20 = orthographic Levenshtein distance 20; inc = inverse N count; aoa =

age of acquisition.

DISCUSSION

We conducted a systematic  comparison of two extrapolation

methods  using  different  vector  representations  of  words  to  predict

ratings of psycholinguistic variables.

Our analyses showed that the k-nearest neighbours used with

word vectors from the skip-gram and HAL-like model give the most

accurate predictions.  This is  true especially  for variables where the

semantic component plays a primary role. On the other hand, when

other  predictors  can  bring  important  information  to  the  model,  the

random forest method is the most convenient to use. Because both k-

nearest  neighbours  and random forests  have their  own strengths,  it

would be interesting to find a way to create a hybrid technique that is

able to make use of the strengths of each of the methods.

At the same time, we have shown that the usefulness of ratings

extrapolated  with  currently  available  methods  may  be  limited.  In

particular,  the  result  of  our  analysis  in  which  we predicted  lexical

decision  RTs  using  the  extrapolated  ratings  gave  some  surprising

results. It also seems problematic to rely on extrapolated ratings when

dichotomizing or binning words. Although we conducted the analysis

in which we categorized otherwise continuous data only for AoA it

may  be  expected  that  the  result  would  be  even  worse  for  other

variables  such as  affective  ratings,  since  AoA was the variable  for
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which the extrapolation methods produced relatively high correlations

with the original ratings.

Our  analyses  clearly  show  that  reporting  the  correlation

between the original and the extrapolated variables is not sufficient to

evaluate  their  usefulness.  Even if  extrapolated ratings share a  large

fraction of the variance with the original ratings there is still a part of

the variance that does not reflect the original ratings, and we cannot

assume  that  this  variance  is  just  random,  unsystematic  noise.  In

contrast to the half-splits of human data, in which case we can safely

assume that in both splits the uncorrelated part of the variance have

similar statistical structure, we cannot make such an assumption in the

case  of  comparing  the  product  of  statistical  models  (extrapolated

ratings) with human ratings.

It is easy to understand how the artefacts can arise in the case

of extrapolations based on linear models.  Due to the nature of this

method, the predictions are always proportional to the values of the

predictors. As a result, the predictors can “leak” into the extrapolated

variables.

For  instance,  let  us  consider  a  hypothetical  case  where  we

would train a linear model that would predict ratings as a combination

of word frequency and OLD20 with respective coefficients of .5 and .

4.  In  this  case,  if  we extrapolated ratings  for  two words  that  have

equal frequency, the word with higher OLD20 would always obtain a

higher rating. Because the predictions are usually imperfect, there is

always some error in the predictions, and, because the variance that

does not reflect the original ratings is not just random noise, but rather

is strongly correlated with OLD20, the error would be also correlated

with OLD20. Although it is more difficult to explain how such effects
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can arise  in  the  case  of  the  k-nearest  neighbours  methods  and  the

random forest methods, it has already been demonstrated that some

properties of the semantic space may be associated with well-known

psycholinguistic variables. For example, it has been shown that some

of  the  semantic  neighbourhood  density  measures  can  strongly

correlate  with  word  frequencies  even  if  the  frequencies  are  not

explicitly encoded in the semantic space (Shaoul & Westbury, 2006).

Similarly,  implicit  properties  of  the  semantic  spaces  can  lead  to

introducing artefacts to the extrapolated ratings.

Of course,  the  higher  the  correlation of  extrapolated ratings

with  the  original  ratings,  the  less  room  for  artefacts;  we  indeed

observed  that  the  artefacts  were  generally  smaller  in  the  case  of

extrapolated  ratings  that  correlated  more  strongly  with  the  original

ratings.  At  the  same  time,  it  seems  important  that  in  the  case  of

extrapolated ratings we are not looking at the original phenomenon

but rather at the output of a statistical model. In such case it may be

impossible  to  disentangle  patterns  in  the  data  that  arise  due  to

properties of the phenomenon from those that arise due to properties

of the model itself. This aspect of the extrapolated ratings can make it

problematic to use them interchangeably with the human ratings or

draw strong conclusions based on such ratings.

Despite these limitations, the extrapolated variables still seem

to have some important applications. For instance, the extent to which

different  extrapolation  methods  with  different  predictors  are

successful in  predicting ratings can potentially inform us about  the

psycholinguistic  variables.  For  instance,  the fact  that  co-occurrence

similarity between words explains a nontrivial part of variance in AoA

ratings  could  suggest  that  semantically  related  words  are  acquired
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around  the  same age.  The  same logic  can  be  applied  to  the  other

variables, although, as was already reported by Bestgen and Vincze

(2012),  co-occurrence  models  often  model  antonyms  as  close

neighbours in a vector space. It would be interesting to look at how

this  problem  can  affect  extrapolation  of  different  variables.  For

example,  love  and hate  are  obviously  on  the  opposite  sides  of  the

valence continuum, so modelling them as close semantic neighbours

may be a problem for extrapolating valence, but this problem should

affect to a smaller extent variables such as AoA or concreteness, as

there is no reason why there would be a strong tendency to acquire

antonymous words at very different age or why one of the words in

the antonym pair would be more concrete than the other.

In  addition,  the  accuracy  of  extrapolation  procedures  using

different  word  vector  representations  can  be  informative  about  the

word  vector  representations  themselves.  Although  we  used  models

based  on  statistical  distributions  of  words  in  a  language  as

approximate  representations  of  semantics,  different  models  may

capture its different aspects. For instance, apparently in our study the

word vectors based on narrow windows (HAL-like model and skip-

gram  model)  performed  better  than  the  bag-of-words  models  and

perhaps such vectors allow us to model semantic similarity in a way

that better corresponds to that reflected in psycholinguistic variables.

It also seems plausible that the high correlations obtained using the

skip-gram  model  can  be  simply  explained  by  it  being  better  at

estimating word similarities (Baroni et al., 2014).

We have shown that increasing the size of the training set gives

diminishing improvements to prediction accuracy as the training set

gets larger. This means that, at least to some extent, extrapolation of
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variables  can  be  already  applied  even  if  the  sets  of  seed  ratings

currently available are relatively small.  On the other hand, together

with  rather  disappointing  results  of  the  evaluation  of  the  practical

usefulness  of  extrapolated  variables,  it  shows  that  further

developments are necessary to allow for radically improved accuracy

of the extrapolation procedures.

Because in the current study we used large sets of ratings, our

results should generalize well across the entire lexicon. Despite that,

the  fact  that  the  extrapolation  methods  as  well  as  word  vector

representations require parameters to be specified during training may

hamper the generalizability of our conclusions. Because the methods

are computationally demanding, it seems implausible to try to cover

the entire parameter space of all the methods. At the same time, there

is no guarantee that what is found with one parameter setting would be

true for  another  parameter  setting.  Especially  there is  no guarantee

that  we  did  not  choose  a  more  optimal  set  of  parameters  for  one

method than for the other methods.  The result  also depends on the

corpus that was used to train the models and the way in which it was

preprocessed. There is a possibility that the subtitle corpus we used

may be suboptimal for the purposes of distributional semantics, which

may  have  reduced  the  performance  of  the  extrapolation  methods.

Indeed,  some  of  the  correlations  reported  in  the  literature  (e.g.,

Recchia  & Louwerse,  2014)  were  higher  than  the  ones  we found.

However, it is difficult to make direct comparisons across studies as

the sets of ratings, their sizes, proportions of the training and test sets,

and approaches to cross-validation vary across studies. Moreover, the

differences  in  the  correlations  reported  across  studies  are  not  large

enough  to  expect  that  using  a  different  corpus  would  lead  to



273

qualitatively  different  conclusions  from the  ones  we  reached  here.

Also there is no reason to believe that the overall pattern of relative

efficacy  between  the  different  methods  of  extrapolation  and  the

techniques  of  constructing  word  vectors  would  be  different.

Nevertheless, it would be interesting to look at the corpus effects in

future studies of this type.

An interesting problem to address in future research is how we

can optimize our data collection process to collect ratings, so that they

become maximally informative for the extrapolation methods.  If an

optimal  set  of  seed  words  would  increase  the  accuracy  of  the

extrapolation methods, it would be good to know this.

Finally,  given  recent  developments  in  computational

linguistics, it would be interesting to explore the possibilities of cross-

language extrapolation of psycholinguistic variables. It was recently

shown that  it  is  possible  to  learn a  linear  mapping between vector

spaces  of  two  languages  (Mikolov,  Le,  &  Sutskever,  2013).  This

means that,  in addition to word properties in a given language,  we

could  use  information  from  other  languages  when  extrapolating

ratings (e.g., use sets of ratings that were already collected for English

to predict ratings for other languages).

SUPPLEMENTAL MATERIAL

Supplemental content (part of speech tags) is available via the

“Supplemental”  tab  on  the  article's  online  page

(http://dx.doi.org/10.1080/17470218.2014.988735).
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Chapter 7. General discussion

The goal of this dissertation was to make use of the increased

availability of digital materials to develop new resources for use in

psycholinguistic  research,  to  improve  the  methodology  of  creating

such  resources,  and  to  exploit  these  resources  to  advance

psycholinguistic theory.

The first empirical chapter of this dissertation presented a new

set of word frequency norms for British English and demonstrated that

the  rapidly  increasing  availability  of  textual  materials  makes  it

possible to compile specialized text corpora that better approximate

variants of language used by sub-populations of language speakers.

Word frequency norms focused on British and American English were

found to better predict human behavior recorded in datasets collected

in the corresponding countries.

In chapter  3,  I  presented a  set  of  new frequency norms for

Polish. I proposed a more efficient procedure of evaluating frequency

norms than the one based on megastudy data but found that the results

of  the  evaluation  may  differ  depending  on  the  stimulus  selection

procedure.  I also used a method of evaluating the frequency norms

using web-based experimental data collection.

In  chapter  4,  I  described  an  experiment  in  which  data  was

collected from a demographically diverse group of participants and I

showed  how  such  datasets  can  be  used  to   explain  patterns  of

individual variability in the word frequency effect. In that chapter, I

combined well-known properties of the word frequency distribution

with  basic  principles  of  human  learning  to  explain  the  observed

patterns  of  changes  associated  with  increased  language  exposure.
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Moreover, I demonstrated that web-based experiments can be used to

collect chronometric data from demographic groups that are difficult

to recruit for participation in laboratory-based experiments.

In the last two empirical chapters of the thesis I extended the

approach of combining megastudies with text-based measures to the

semantic  domain.  In  chapter  5,  I  discussed  the  different  types  of

distributional semantics models as well as the relationships between

these models and theories of learning such as the Rescorla-Wagner

model (Rescorla & Wagner, 1972; Baayen, Milin, Filipovic Durdevic,

Hendrix, & Marelli, 2011). Next, I demonstrated that they can indeed

predict human behavior in psycholinguistically relevant tasks. As an

important  part  of  the  analyses,  I  used  a  large  dataset  of  semantic

priming, extending the rationale used to evaluate the quality of word

frequency norms to the evaluation of models of semantic relatedness.

Contrary  to  earlier  claims  (Hutchison,  Balota,  Cortese,  &  Watson,

2008),  I  found  that  distributional  semantics  models  can  predict  a

significant percentage of the variance in semantic priming response

times.

In chapter 6, I extended and carefully validated an approach to

estimating  human  ratings  based  on  semantic  relatedness  that  was

previously proposed in the literature (e.g., Bestgen & Vincze, 2012).

Although  the  investigated  extrapolation  methods  achieved  high-

correlations with human ratings, I found that this may be insufficient

to use them as a replacement for the original ratings.

Overall, the studies included in my dissertation revealed that

even for well-studied phenomena, such as the word frequency effect,

the  underlying  processes  are  often  more  complex  than  what  is

typically revealed by small-scale studies. By using large datasets with
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an  increased  number  of  stimuli  and  significant  demographic

variability,  we  can  obtain  a  much  more  detailed  view  of

psycholinguistic  phenomena.  As a  first  example,  compiling  a  more

specialized corpus of word frequencies confirmed that available word

frequency norms are not equally predictive of behavioral data in all

variants of English. Secondly, by simultaneously considering different

corpus sizes and different populations of participants, I demonstrated

that, if we consider a full spectrum of word frequencies, there is no

definite  answer  to  the  question  what  the  minimal size  of  a  corpus

should  be  to  derive  “good”  word  frequencies  for  psycholinguistic

research.  One  reason  is  that  increasing  the  size  of  the  corpus

invariably benefits how well word frequencies will predict behavioral

data in the low frequency range, even though the size of the corpus is

much less important for the high frequency words. Moreover, the part

of the frequency range in which the word frequency effect is situated

seems to shift with increased exposure to language. The situation is

also  complicated  in  the  case  of  distributional  semantics  models

because using different models trained on different text corpora works

best for predicting performance in different tasks. Finally, I brought

important  nuances  to  using  predictive  methods  to  estimate  human

ratings.  I  showed that  these  methods  produce  ratings  that  strongly

correlate with the ones collected from human participants but that they

introduce statistical artifacts to the data and thus may not be a viable

substitute for the human ratings.
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IMPLICATIONS FOR THE USE OF TEXT CORPORA IN

PSYCHOLINGUISTICS

The results  presented in this  dissertation show that  both qualitative

and  quantitative  aspects  of  text  corpora  are  important  for

psycholinguistic  research.  Luckily,  it  is  now  easier  than  ever  to

compile corpora that are sufficiently large to be used for research and

that, at the same time, more accurately reflect linguistic experience of

language speakers.

The results of chapter 4 of the dissertation demonstrated that

the  size  of  the  corpus  matters  much  more  for  low-  than  for  high-

frequency  words.  In  combination  with  the  influence  that  increased

exposure to language has on the word frequency effect, this implies

that the size of the corpus is increasingly important for modeling the

word  frequency  effect  as  participants  become  more  linguistically

experienced. This finding also offers a new perspective on somewhat

puzzling effects reported in the third chapter. In our analysis of the

Polish  data  we  observed  that  word  frequencies  based  on  a  corpus

consisting of predominantly written materials predicted more of the

variance in reaction times in the low-frequency range than did word

frequencies based on corpus of film subtitles. If we consider that the

subtitle corpus was the smaller one in this comparison, the fact that

the size of the corpus is more important for the low frequency words

naturally explains this result. Moreover, it also explains why we did

not observe the same pattern when we conducted a similar analysis

using the British Lexicon Project megastudy data (Keuleers, Lacey,

Rastle,  & Brysbaert,  2011).  In this case the subtitle corpus used to

derive measures  was larger  than the written text  corpus (BNC), so
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frequencies derived from this corpus would have stronger correlations

with behavioral data for both the high- and the low-frequency words.

This shows that, in addition to issues of corpus register, corpus size

may be an important methodological consideration in psycholinguistic

research,  even  when  dealing  with  corpora  of  one  hundred  million

words or more.

The results of the analyses conducted in chapter 4 show that it

may be dangerous to follow the logic of factorial experiments and try

to categorize words into high- and low- frequency groups. At least in

terms of the reaction times in the lexical decision task, the boundary

between  these  two  categories  would  have  to  shift  with  increased

linguistic  experience  of  a  participant.  In  other  words,  the  word

frequency  effects  shifts  towards  the  lower-end  of  the  frequency

spectrum  with  increased  experience.  What  is  a  high-  and  low-

frequency word is impossible to define in absolute terms, but depends

on who are the participants in the experiment. At the same time, the

observation that for participants typically taking part in psychological

experiments, the word frequency effect is situated in the much lower

part of the continuum than was often assumed, is still valid (chapter

2).

On the other hand, the qualitative aspects of the text corpora

are  also  important.  It  does  not  matter  how  precise  the  frequency

estimates are if they are based on a sample from a non-representative

frequency distribution. With respect to such qualitative aspects of text

corpora,  our  results  confirm the advantage  of  the frequency norms

based  on  movie  subtitles  as  compared  to  those  based  on  other

materials,  providing  that  the  subtitle  corpus  is  sufficiently  large.

Moreover, in chapter 3 we have shown that it may be worthwhile to
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try  to  approximate  the  variant  of  the  language that  is  used by the

participants more closely. We demonstrated that point for British and

American  English,  but  substantial  within-language  variability  is

present  in  many  languages,  so  this  result  has  implications  beyond

research conducted in English.

Keeping this  in  mind,  it  may be an interesting  question  for

future research to investigate whether the variant of a language that

the  person experiences  on  a  daily  basis  can  be approximated  even

better.  This  would  allow  us  to  answer  the  question  how  much

linguistic experience varies across different individuals and to what

extent is it reflected in how we process language. This question may

be especially interesting from a point of view of what we know about

the  statistics  of  language.  It  is  known  that  content  words  are  not

distributed uniformly in text corpora but rather occur in bursts (Katz,

1996). Similarly, human linguistic experience is specialized and what

is a low-frequency word for one person may actually be very frequent

in the experience of another person (as it is likely the case with the

word  corpus for  the  readers  of  this  dissertation).  Given  that  we

consume  an  increasing  amount  of  text  on-line  and  that  Internet

companies already track our Web-browsing habits to carefully analyze

the content of the Web-pages to optimize their advertising campaigns,

performing such analyses could become possible if researchers were

able to gain access to such datasets or collect them on their own.

Outside of the domain of word frequencies, we looked at the

effects associated with using different text corpora in the context of

distributional semantics. Interestingly, we found that the tasks used to

evaluate  the  models  seem  to  determine  which  corpus  is  the  most

adequate  for  training.  In  the  case  of  distributional  semantics  the
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qualitative aspects  of the data  also tend to  be important  enough to

outweigh even large differences in sizes of the corpora used to train

the models. Importantly, in semantic priming the models trained on

subtitle  corpora  predicted  behavioral  data  better  than  much  larger

corpora not based on subtitles, showing that the subtitle corpora may

also be useful in domains other than estimating word frequencies.

IMPLICATIONS FOR DATA ACQUISITION METHODS

One of the goals of this thesis was to extend the megastudy

approach by proposing new methods of collecting behavioral data. We

approached this problem from two different angles. We investigated

how we can make the data collection easier and less time and resource

consuming by (a) conducting experiments in a web browser (chapter 3

and 4) running on a wide range of devices, (b) collecting the data in a

smarter  way  by  choosing  the  optimal  set  of  stimuli  to  evaluate

frequency norms (chapter 3), or (c) collecting ratings only for a small

number of words and use information from distributional semantics

models to estimate the ratings for the remaining words in a language

(chapter 6). 

Collecting more data using Web-based experiments generally

proved to be good and more robust compared to the optimized data

collection  (chapter 3) or extrapolation (chapter 6) methods discussed

in this thesis. The strategy of selecting the maximally differentiating

sets  of  stimuli  between  text  corpora  to  facilitate  their  evaluation

indeed produced large differences in the performance of the compared

frequency norms, but our study also made it very clear that the results

of the evaluation may differ dramatically depending on which sets of

stimuli are used. Therefore, it is safer to use more neutral methods of
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selecting  stimuli  for  such  studies.  In  the  fifth  chapter  of  the

dissertation  the  estimated  ratings  proved  to  have  high  correlations

with the original ratings. However, the structure of the noise differed

relative to the original ratings, which is problematic for using such

ratings in psycholinguistic research. Still, the method may be useful

for other applications, for instance in more engineering oriented tasks,

such as sentiment analysis.

On-line data collection techniques worked very well  for our

purposes,  both on a small  (chapter  2) and a very large (chapter 4)

scale.  Even  if  the  chronometric  measurements  collected  in  on-line

studies are more noisy than those from carefully controlled laboratory-

based experiments, there are two reasons to be optimistic about the

possibility of obtaining reliable data. The first is a set of findings that

show that the variability in human responses generally outweighs the

variability  because  of  timing  inaccuracies  (Damian,  2010),  the

precision  of  measurements  in  Web-browsers  is  high  (Reimers  &

Stewart,  2014)  and that  many  paradigms can  be  replicated  in  web

browsers,  even  in  relatively  uncontrolled  conditions  (Crump,

McDonnell,  &  Gureckis,  2013).  In  our  case,  variance  in  response

times  was  also  compensated  by  a  dramatically  larger  number  of

observations, which resulted in reliable aggregated reaction times. It

has  been  suggested  that  it  may  be  useful  to  conduct  coordinated

experiments for a large number of languages and that the Web-based

methodology may be ideal for such purposes (Myers, submitted). The

two largely compatible datasets of vocabulary knowledge for English

and Dutch, that we collected, may be a good start of such a lexical

decision meta-megastudy. Two more datasets, compatible with those
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discussed in chapter 4, for Spanish and Basque, are being currently

collected according to this methodology.

In the future, we should consider whether there are ways to

optimize data collection in on-line experiments. Studies of this kind

differ from experiments conducted in laboratory settings because, in

the first case, data can be collected for long periods of time and there

does  not  have  to  be  a  well-defined  ending  to  the  data-collection

process. On the other hand, when people volunteer to participate, it is

also very difficult  to  predict  how many participants  will  take part.

Therefore,  presenting  items  randomly may be suboptimal  for  some

Web-based experiments and we may need to change the number of

stimuli for which we can realistically collect data depending on the

rate  at  which  data  is  being  collected.  Optimization  is  particularly

interesting  if  only  one  aspect  of  the  data  is  of  primary  focus.  For

instance, if the goal is to obtain accurate average response times,  it

may be useful  to  adjust  the  number  of  presentations  of  a  stimulus

depending on whether it has reached statistical goals set forward by

research objectives. The number of presentations of stimuli may also

depend on the demographic characteristics of a subject. For instance,

for members of groups what are difficult to recruit, items which are

most probable to have different response characteristics in that group

compared to other groups may be presented more often. However, it

remains  to  be investigated  to  what  extent  such optimization would

affect usability of the data for other purposes. For example, the quality

of the accuracy data could suffer because of the optimization for the

collection of the reaction times.
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COMPUTATION, ANALYSIS, AND MODELING USING LARGE

DATASETS

It has been suggested that the increasing usage of large datasets

in  psychology  will  encourage  an  application  of  more  sophisticated

analytical  and computational  techniques and that  psychoinformatics

will emerge as a new sub-discipline of psychology (Yarkoni, 2012).

We indeed experienced that working with such datasets encourages or

even enforces usage of advanced computational methods. This is true

with respect to collection, cleaning, and analysis of text corpora, as it

requires programming web crawlers and near duplicate detection tools

as well as implementing distributional semantics methods. Making the

data  available  for  other  researchers  often  means  developing a  web

interface  that  allows  access  to  the  dataset.  Collecting  on-line

megastudy data requires programming the web based experiments as

well  as  operating  servers,  often  under  a  heavy-load.  Finally,  the

analysis  of  large  datasets  inspires  creativity  and the  application  of

machine learning techniques.

Even more importantly, the availability of the large datasets

can  also  facilitate  the  development  of  computational  models.  In

chapter  5,  I  discussed  how  connectionist  models  of  distributional

semantics  (Mikolov,  Chen,  Corrado,  &  Dean,  2013) share  many

properties  with  well-established  models  of  learning.  This  is  an

interesting situation as connectionist models such as these blend state-

of-the art computational techniques with implementational principles

that  could form a good basis  for  cognitive modeling.  This  is  even

more important as the availability of large amounts of data and the

increase in available computational power has led to a renaissance of

connectionist modeling under the alias of  deep learning (see LeCun,
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Bengio, & Hinton, 2015 for a review) that often provide cutting-edge

performance in artificial intelligence tasks. Of course, basing a model

on connectionist ideas does not automatically make it plausible as a

cognitive model. However, many of the deep learning techniques are

biologically inspired, making it worthwhile to consider them as a good

basis for computational models in psychology.

An example of a field in psycholinguistics that could benefit

from  incorporating  deep  learning  in  combination  with  large  text

corpora is the modeling of orthographic representations. It is known

that the visual cortex is organized into a hierarchy of feature detectors

that are sensitive to progressively complex patterns in the visual input

(Hubel & Wiesel, 1962) and it has been suggested that, in addition to

normal reading, such an organization explains our ability to read a text

with scrambled letters with relative ease, and transposed letter priming

(Dehaene, Cohen, Sigman, & Vinckier, 2005).  Convolutional neural

networks,  which are structured in  a way that  closely resembles the

organization  of  the  visual  cortex,  have  recently  proved  to  excel  at

various engineering tasks and technical frameworks have been created

that could allow to implement and train such networks on large text

corpora.  A  comprehensive  evaluation  of  such  models  should  be

relatively  easy  using  datasets  such  as  orthographic  priming

megastudies  (Adelman  et  al.,  2014).  As  a  result,  distributed

representations  of  the  orthographic  code  based  on  biologically

plausible principles, could be developed in a similar way to what was

discussed in chapter 5 in the context of distributional semantics. 
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Nederlandse samenvatting

PSYCHOLINGUÏSTIEK OP GROTE SCHAAL: DE COMBINATIE

VAN TEKSTCORPORA, MEGASTUDIES, EN GEDISTRIBUEERDE

SEMANTIEK IN HET ONDERZOEK NAAR MENSELIJKE

TAALVERWERKING

Het  doel  van  dit  proefschrift  is  om,  op  basis  van  de

toegenomen  beschikbaarheid  van  digitale  materialen  en  de  online

toegang  tot  grote  populaties  van  deelnemers,  nieuwe

psycholinguïstische middelen te ontwikkelen,  de methodologie voor

het creëren van dergelijke middelen te verbeteren en om deze nieuwe

ontwikkelingen  te  gebruiken  om  psycholinguïstische  theorie  te

bevorderen.

Hoofdstuk 2 stel een nieuwe lijst van woordfrequenties voor

op basis van ondertitels van Brits Engelse tv-programma's. De nieuwe

woordfrequenties  verklaren  meer  variantie  in  de  lexicale

beslissingstijden  van  het  British  Lexicon  Project  dan  bestaande

woordfrequenties  op  basis  van  het  British  National  Corpus  en  dan

bestaande  woordfrequenties  die  voornamelijk  gebaseerd  zijn  op

ondertitels uit Amerikaanse films. Naast frequenties van woordvormen

bevatten  de  ontwikkelde  gegevens  ook  part-of-speech-specifieke

woordfrequenties, frequentie van lemmata, specifieke frequenties voor

kinderprogramma's,  en  frequenties  van  woordbigrammen.

Onderzoekers  die  in  een  Brits  Engelse  context  werken,  krijgen  zo

toegang tot een ruim scala aan frequenties. Het hoofdstuk beschrijft

ook  een  nieuwe schaal  voor   woordfrequentie,  de  Zipf  schaal,  die
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sommige  misverstanden  over  het  woordfrequentie-effect  kan

voorkomen.

In  het  tweede  empirische  hoofdstuk  ontwikkel  ik

woordfrequenties op basis  van filmondertitels  in het Pools. In twee

lexicale beslissingsexperimenten vergelijk ik de nieuwe normen met

woordfrequenties  die  afgeleid  zijn  van  een  Pools  corpus  dat

voornamelijk geschreven materiaal bevat. Daarnaast onderzoek ik of

de  evaluatie  van  frequentienormen  efficiënter  kan  gemaakt  worden

door (1) een optimale keuze van de stimuli in het experiment en (2)

door  een  webgebaseerde  manier  om  experimentele  gegevens  te

verzamelen. De resultaten geven aan dat de woordfrequenties uit beide

corpora  een  verschillend  potentieel  hebben  voor  het  verklaren  van

menselijke gedrag in verschillende frequentiebereiken en dat corpora

op basis van schriftelijke materiaal frequenties van formele woorden

ernstig  overschatten.  Een  aantal  van  deze  bevindingen  hebben

implicaties voor toekomstig onderzoek waarin frequentieschattingen

worden vergeleken. Naast frequenties voor woordvormen bevatten de

nieuwe  normen  ook  de  contextuele  diversiteit  van  woordvormen,

part-of-speech-specifieke woordfrequenties, frequenties van lemmata,

en frequenties van woordbigrammen.

In hoofdstuk 4 richt ik me ook op het woordfrequentie-effect,

maar maak ik gebruik van een online methode voor het verzamelen

van  gedragsgegevens  op  een  veel  grotere  schaal.  Hoewel

woordfrequentielijsten  meestal  op  logaritmische  schaal  gebruikt

worden,  is  de  relatie  tussen  log-getransformeerde  frequenties  en

gedragsgegevens  niet  volledig  lineair,  maar  vlakt  ze  af  voor

hoogfrequente woorden (e.g.,  Keuleers, Lacey, Rastle, & Brysbaert,

2012; Keuleers, Diependaele, & Brysbaert, 2010). Het is ook bekend
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dat  de  grootte  van  het  frequentie-effect  afhankelijk  is  van  de

vaardigheid van de lezer (Diependaele, Lemhöfer & Brysbaert, 2012).

In hoofdstuk 4 onderzoek ik of de voorgaande bevindingen kunnen

verklaard  worden  door  een  combinatie  van  de  statistische

eigenschappen van woordfrequentiedistributies (gekenmerkt door een

extreme verdeling en onderspecificatie van lage frequenties) met het

door een power-functie beschreven leereffect (Newell & Rosenbloom,

1981). Op basis van simulaties met tekstcorpora en gedragsgegevens

uit twee zeer grote experimenten in het Engels en in het Nederlands

-meer dan anderhalf miljoen deelnemers met een ruime spreiding in

demografische  karakteristieken-,  toon  ik  aan  dat  deze  theoretische

benadering  meerdere  verschijnselen  in  het  onderzoek  naar

woordherkenning verklaart. 

In de laatste twee empirische hoofdstukken, richt ik me op de

vraag hoe informatie die uit tekstcorpora kan afgeleid worden door

distributionele semantische technieken (e.g., Jones & Mewhort, 2007;

Landauer  &  Dumais,  1997;  Lund  &  Burgess,  1996)  kan  ingezet

worden in psycholinguïstisch onderzoek. Recente ontwikkelingen op

het  gebied  van  distributionele  semantiek  (Mikolov  et  al.,  2013)

hebben geleid tot  een nieuwe klasse van modellen die  semantische

gelijkenis  tussen  woorden  uitdrukken  aan  de  hand  van  een

voorspellingsgebaseerde architectuur. In hoofdstuk 5 bespreek ik de

relevantie van deze modellen voor psycholinguïstische theorieën en

vergelijk  ik ze met de meer traditionele  distributionele semantische

modellen  zoals  HAL.  Daarna  vergelijk  ik  de  prestaties  van  de

modellen op een grote dataset van semantische priming (Hutchison et

al., 2013) en op een aantal andere semantische verwerkingstaken en

besluit  ik  dat  de  voorspellingsgebaseerde  modellen  de  gedragsdata
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doorgaans  beter  verklaren.  Op  theoretisch  vlak  stel  ik  dat  deze

modellen  de  kloof  dichten  tussen  de  traditionele  benaderingen  van

distributionele  semantiek  en  psychologisch  plausibele  leerprincipes.

Als  hulpmiddel  voor  onderzoekers,  stel  ik  voor  een  reeks  van

verschillende modellen semantische vectoren ter beschikking voor het

Engels  en  voor  het  Nederlands  en  ontwikkel  ik  een

gebruiksvriendelijke  interface  waarmee  verschillende  maten  van

semantische gelijkenis kunnen berekend worden.

In het laatste empirische hoofdstuk van dit proefschrift richt ik

me  op  subjectieve  waarderingen  (ratings)  voor  variabelen  zoals

verwervingsleeftijd, concreetheid, en affectieve valentie. Subjectieve

waarderingen  zijn  een  belangrijk  onderdeel  van  psycholinguïstisch

onderzoek maar dekken, zelfs voor goed bestudeerde talen, vaak een

klein  deel  van de  woordenschat.  Een mogelijke  oplossing  hiervoor

omvat het gebruik van corpora om een semantische gelijkenisruimte te

bouwen en vervolgens de toepassing van machine learning technieken

om,  op  basis  van  bestaande  data,  ratings  voor  nieuwe woorden  te

extrapoleren. In hoofdstuk 6 voer ik een systematische vergelijking uit

van  twee  extrapolatie  technieken:  k-nearest  neighbors en  random

forest in combinatie met semantische ruimtes op basis van van latente

semantische analyse (Landauer & Dumais, 1997), topic models (Blei,

Ng, Jordanië, 2003), een versie van hyperspace analoge of language

(HAL, Lund & Burgess, 1996), en een skip-gram model (Mikolov et

al., 2013). Een variant van de k-nearest-neighbors methode met skip-

gram  vectoren  doet  de  meest  accurate  voorspellingen,  maar  de

random  forest methode  heeft  het  voordeel  dat  ze  eenvoudig  extra

predictoren kan opnemen. Ik evalueer het nut van de methoden door

na  te  gaan  hoe  goed  menselijke  prestaties  in  een  lexicale
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beslissingstaak kunnen worden verklaard door geëxtrapoleerde ratings

voor  verwervingsleeftijd  en  hoe  precies  woorden  op  basis  van

geëxtrapoleerde  ratings  kunnen  toegewezen  worden  aan  discrete

categorieën.  Ik  merk  op  dat  extrapolatiemethoden  tot  statistische

artefacten kunnen leiden en dat in experimenten die gebruik maken

van geëxtrapoleerde ratings andere conclusies bereikt kunnen worden

dan in experimenten waar menselijke ratings worden gebruikt. Vanuit

praktisch  oogpunt  is  het  nut  van  de  met  de  beschreven  methodes

geëxtrapoleerde ratings daarom beperkt.

In  het  laatste  hoofdstuk  bespreek  ik  de  praktische,

methodologische  en theoretische  implicaties  van  dit  proefschrift  en

doe ik een aantal suggesties voor toekomstig onderzoek.
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% Data Storage Fact Sheet 

% Name/identifier study: BBC word frequency measures

% Author: Paweł Mandera 

% Date: 2016-02-29 

1. Contact details 

=========================================================== 

1a. Main researcher 

----------------------------------------------------------- 

- name: Paweł Mandera 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Ghent, Belgium 

- e-mail: pawel.mandera@ugent.be, pawel@pawelmandera.com 

1b. Responsible Staff Member (ZAP) 

----------------------------------------------------------- 

- name: Marc Brysbaert 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Gent, Belgium 

- e-mail: marc.brysbaert@ugent.be 

If a response is not received when using the above contact details, please send 

an email to data.pp@ugent.be or contact Data Management, Faculty of Psychology 

and Educational Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium. 

2. Information about the datasets to which this sheet applies 

=========================================================== 

* Reference of the publication in which the datasets are reported: 

Van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert, M. (2014). 

SUBTLEX-UK: A new and improved word frequency database for British 

English. Quarterly Journal of Experimental Psychology, 67(6), 1176-1190.

(chapter 2)

* Which datasets in that publication does this sheet apply to?: 

the corpus used to calculate frequency statistics, word frequencies

3. Information about the files that have been stored 

=========================================================== 

3a. Raw data 

----------------------------------------------------------- 

* Have the raw data been stored by the main researcher? [ ] YES / [X] NO 
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If NO, please justify: 

 

To respect the intellectual property rights of the British Broadcasting 
Corporation (BBC) the full textual content of the relevant subtitles was not 
stored or  reproduced for the purpose of this research. For more information see
Van Heuven, Mandera, Keuleers, & Brysbaert (2014), page 3.

* On which platform are the raw data stored? 

  - [ ] researcher PC 

  - [ ] research group file server 

  - [ ] other (specify): ... 

* Who has direct access to the raw data (i.e., without intervention of another 

  person)? 

  - [ ] main researcher 

  - [ ] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ... 

   

3b. Other files 

----------------------------------------------------------- 

* Which other files have been stored? 

  - [ ] file(s) describing the transition from raw data to reported results. 

    Specify: ... 

  - [X] file(s) containing processed data. Specify: word frequencies derived 

    from the subtitles are publicly available at 
http://crr.ugent.be/archives/1423 

  - [ ] file(s) containing analyses. Specify: ... 

  - [ ] files(s) containing information about informed consent 

  - [ ] a file specifying legal and ethical provisions 

  - [ ] file(s) that describe the content of the stored files and how this 

    content should be interpreted. Specify: ... 

  - [ ] other files. Specify: ... 

    

* On which platform are these other files stored? 

  - [X] individual PC 

  - [X] research group file server 

  - [ ] other: ...    

* Who has direct access to these other files (i.e., without intervention of 

  another person)? 

  - [X] main researcher 

  - [X] responsible ZAP 

  - [X] all members of the research group 

  - [X] all members of UGent 

  - [X] other (specify): dataset is publicly available 

4. Reproduction 

=========================================================== 
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* Have the results been reproduced independently?: [ ] YES / [X] NO 

 

* If yes, by whom (add if multiple): 

   - name: 

   - address: 

   - affiliation: 

   - e-mail: 

   

v0.2 
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% Data Storage Fact Sheet 

% Name/identifier study: Raw corpus of Polish movie subtitles 

% Author: Paweł Mandera 

% Date: 2016-02-29 

1. Contact details 

=========================================================== 

1a. Main researcher 

----------------------------------------------------------- 

- name: Paweł Mandera 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Gent, Belgium 

- e-mail: pawel.mandera@ugent.be, pawel@pawelmandera.com 

1b. Responsible Staff Member (ZAP) 

----------------------------------------------------------- 

- name: Marc Brysbaert 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Ghent, Belgium 

- e-mail: marc.brysbaert@ugent.be 

If a response is not received when using the above contact details, please send 

an email to data.pp@ugent.be or contact Data Management, Faculty of Psychology 

and Educational Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium. 

2. Information about the datasets to which this sheet applies 

=========================================================== 

* Reference of the publication in which the datasets are reported: 

Mandera, P., Keuleers, E., Wodniecka, Z., & Brysbaert, M. (2015).  SUBTLEX-PL: 

Subtitle-based word frequency estimates for Polish. Behavior Research Methods, 

47(2), 471-483. (chapter 3) 

* Which datasets in that publication does this sheet apply to?: 

the corpus of movie subtitles used in the paper

3. Information about the files that have been stored 

=========================================================== 

3a. Raw data 

----------------------------------------------------------- 

* Have the raw data been stored by the main researcher? [X] YES / [ ] NO 

If NO, please justify: 
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* On which platform are the raw data stored? 

  - [X] researcher PC 

  - [X] research group file server 

  - [ ] other (specify): ... 

* Who has direct access to the raw data (i.e., without intervention of another 

  person)? 

  - [X] main researcher 

  - [X] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ... 

   

3b. Other files 

----------------------------------------------------------- 

* Which other files have been stored? 

  - [X] file(s) describing the transition from raw data to reported results. 

    Specify: scripts used to clean the corpus 

  - [X] file(s) containing processed data. Specify: word frequencies derived 

    from this corpus are publicly available at 

    http://crr.ugent.be/programs-data/subtitle-frequencies/subtlex-pl, tagged 

    version of the corpus 

  - [ ] file(s) containing analyses. Specify: ... 

  - [ ] files(s) containing information about informed consent 

  - [ ] a file specifying legal and ethical provisions 

  - [ ] file(s) that describe the content of the stored files and how this 

    content should be interpreted. Specify: ... 

  - [ ] other files. Specify: ... 

    

* On which platform are these other files stored? 

  - [X] individual PC 

  - [ ] research group file server 

  - [ ] other: ...    

* Who has direct access to these other files (i.e., without intervention of 

  another person)? 

  - [X] main researcher 

  - [ ] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ...    

4. Reproduction 

=========================================================== 

* Have the results been reproduced independently?: [ ] YES / [X] NO 

* If yes, by whom (add if multiple): 

   - name: 

   - address: 
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   - affiliation: 

   - e-mail: 

   

v0.2 
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% Data Storage Fact Sheet 

% Name/identifier study: Subtlex-pl validation data 

% Author: Paweł Mandera 

% Date: 2016-02-29 

1. Contact details 

=========================================================== 

1a. Main researcher 

----------------------------------------------------------- 

- name: Paweł Mandera 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Gent, Belgium 

- e-mail: pawel.mandera@ugent.be, pawel@pawelmandera.com 

1b. Responsible Staff Member (ZAP) 

----------------------------------------------------------- 

- name: Marc Brysbaert 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Ghent, Belgium 

- e-mail: marc.brysbaert@ugent.be 

If a response is not received when using the above contact details, please send 

an email to data.pp@ugent.be or contact Data Management, Faculty of Psychology 

and Educational Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium. 

2. Information about the datasets to which this sheet applies 

=========================================================== 

* Reference of the publication in which the datasets are reported: 

  Mandera, P., Keuleers, E., Wodniecka, Z., & Brysbaert, M. (2014). Subtlex-pl: 

  subtitle-based word frequency estimates for Polish. Behavior Research 

  Methods, 67(6), 1176-1190. http://doi.org/10.3758/s13428-014-0489-4

  (chapter 3)

* Which datasets in that publication does this sheet apply to?: 

  Behavioral data used to validate the frequency norms in experiment 1 and 2. 

3. Information about the files that have been stored 

=========================================================== 

3a. Raw data 

----------------------------------------------------------- 

* Have the raw data been stored by the main researcher? [X] YES / [ ] NO 

If NO, please justify: 
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* On which platform are the raw data stored? 

  - [X] researcher PC 

  - [X] research group file server 

  - [ ] other (specify): ... 

* Who has direct access to the raw data (i.e., without intervention of another 

  person)? 

  - [X] main researcher 

  - [X] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ... 

   

3b. Other files 

----------------------------------------------------------- 

* Which other files have been stored? 

  - [X] file(s) describing the transition from raw data to reported results. 

    Specify: cleaning of the behavioral data, regression analyses in study 1 and
2 

  - [ ] file(s) containing processed data. Specify: ... 

  - [ ] file(s) containing analyses. Specify: ... 

  - [ ] files(s) containing information about informed consent 

  - [ ] a file specifying legal and ethical provisions 

  - [ ] file(s) that describe the content of the stored files and how this 

    content should be interpreted. Specify: ... 

  - [ ] other files. Specify: ... 

    

* On which platform are these other files stored? 

  - [X] individual PC 

  - [ ] research group file server 

  - [ ] other: ...    

* Who has direct access to these other files (i.e., without intervention of 

  another person)? 

  - [X] main researcher 

  - [ ] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ...    

4. Reproduction 

=========================================================== 

* Have the results been reproduced independently?: [ ] YES / [X] NO 

* If yes, by whom (add if multiple): 

   - name: 

   - address: 

   - affiliation: 

   - e-mail: 
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v0.2 
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% Data Storage Fact Sheet 

% Name/identifier study: Raw corpus of English movie subtitles 

% Author: Paweł Mandera 

% Date: 2016-02-29 

1. Contact details 

=========================================================== 

1a. Main researcher 

----------------------------------------------------------- 

- name: Paweł Mandera 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Ghent, Belgium 

- e-mail: pawel.mandera@ugent.be, pawel@pawelmandera.com 

1b. Responsible Staff Member (ZAP) 

----------------------------------------------------------- 

- name: Marc Brysbaert 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Gent, Belgium 

- e-mail: marc.brysbaert@ugent.be 

If a response is not received when using the above contact details, please send 

an email to data.pp@ugent.be or contact Data Management, Faculty of Psychology 

and Educational Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium. 

2. Information about the datasets to which this sheet applies 

=========================================================== 

* Reference of the publication in which the datasets are reported: 

Mandera, P., Keuleers, E., & Brysbaert, M. An exposure-based account of the 

changes in the word frequency effect. (chapter 4) 

Mandera, P., Keuleers, E., & Brysbaert, M. (in press). Explaining human 

performance in psycholinguistic tasks with models of semantic similarity based 

on prediction and counting: A review and empirical validation.  Journal of 

Memory and Language. (chapter 5) 

Mandera, P., Keuleers, E., & Brysbaert, M. (2015). How useful are corpus-based 

methods for extrapolating psycholinguistic variables?  Quarterly Journal of 

Experimental Psychology, 68(8), 1623-1642. (chapter 6) 

* Which datasets in that publication does this sheet apply to?: 

the text corpora used to calculate word frequencies for English in chapter 4 and
to train distributional semantics models in chapter 5 and 6 

3. Information about the files that have been stored 

=========================================================== 
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3a. Raw data 

----------------------------------------------------------- 

* Have the raw data been stored by the main researcher? [X] YES / [ ] NO 

If NO, please justify: 

* On which platform are the raw data stored? 

  - [X] researcher PC 

  - [X] research group file server 

  - [ ] other (specify): ... 

* Who has direct access to the raw data (i.e., without intervention of another 

  person)? 

  - [X] main researcher 

  - [X] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ... 

   

3b. Other files 

----------------------------------------------------------- 

* Which other files have been stored? 

  - [X] file(s) describing the transition from raw data to reported results. 

    Specify: scripts used to clean the corpus, to calculate word frequencies 

    and to train distributional semantics models in chapter 5 

  - [ ] file(s) containing processed data. Specify: ... 

  - [ ] file(s) containing analyses. Specify: ... 

  - [ ] files(s) containing information about informed consent 

  - [ ] a file specifying legal and ethical provisions 

  - [ ] file(s) that describe the content of the stored files and how this 

    content should be interpreted. Specify: ... 

  - [ ] other files. Specify: ... 

    

* On which platform are these other files stored? 

  - [X] individual PC 

  - [ ] research group file server 

  - [X] other: the semantic spaces trained using the text corpus are publicly 
available at http://crr.ugent.be/snaut/ 

* Who has direct access to these other files (i.e., without intervention of 

  another person)? 

  - [X] main researcher 

  - [ ] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ...    

4. Reproduction 

=========================================================== 
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* Have the results been reproduced independently?: [ ] YES / [X] NO 

* If yes, by whom (add if multiple): 

   - name: 

   - address: 

   - affiliation: 

   - e-mail: 

   

v0.2 
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% Data Storage Fact Sheet 

% Name/identifier study: Raw corpus of Dutch movie subtitles 

% Author: Paweł Mandera 

% Date: 2016-02-29 

1. Contact details 

=========================================================== 

1a. Main researcher 

----------------------------------------------------------- 

- name: Paweł Mandera 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Ghent, Belgium 

- e-mail: pawel.mandera@ugent.be, pawel@pawelmandera.com 

1b. Responsible Staff Member (ZAP) 

----------------------------------------------------------- 

- name: Marc Brysbaert 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Gent, Belgium 

- e-mail: marc.brysbaert@ugent.be 

If a response is not received when using the above contact details, please send 

an email to data.pp@ugent.be or contact Data Management, Faculty of Psychology 

and Educational Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium. 

2. Information about the datasets to which this sheet applies 

=========================================================== 

* Reference of the publication in which the datasets are reported: 

Mandera, P., Keuleers, E., & Brysbaert, M. An exposure-based account of the 

changes in the word frequency effect. (chapter 4) 

Mandera, P., Keuleers, E., & Brysbaert, M. (in press). Explaining human 

performance in psycholinguistic tasks with models of semantic similarity based 

on prediction and counting: A review and empirical validation.  Journal of 

Memory and Language. (chapter 5) 

* Which datasets in that publication does this sheet apply to?: 

the text corpora used to calculate word frequencies for Dutch in chapter 4 and 
to train distributional semantics models in chapter 5 

3. Information about the files that have been stored 

=========================================================== 

3a. Raw data 

----------------------------------------------------------- 
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* Have the raw data been stored by the main researcher? [X] YES / [ ] NO 

If NO, please justify: 

* On which platform are the raw data stored? 

  - [X] researcher PC 

  - [X] research group file server 

  - [ ] other (specify): ... 

* Who has direct access to the raw data (i.e., without intervention of another 

  person)? 

  - [X] main researcher 

  - [X] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ... 

   

3b. Other files 

----------------------------------------------------------- 

* Which other files have been stored? 

  - [X] file(s) describing the transition from raw data to reported results. 

    Specify: scripts used to clean the corpus, to calculate word frequencies 

    and to train distributional semantics models 

  - [X] file(s) containing processed data. Specify: derived word frequencies, 
distributional semantics models

  - [ ] file(s) containing analyses. Specify: ... 

  - [ ] files(s) containing information about informed consent 

  - [ ] a file specifying legal and ethical provisions 

  - [ ] file(s) that describe the content of the stored files and how this 

    content should be interpreted. Specify: ... 

  - [ ] other files. Specify: ... 

    

* On which platform are these other files stored? 

  - [X] individual PC 

  - [ ] research group file server 

  - [X] other: the semantic spaces trained using the text corpus are publicly 
available at http://crr.ugent.be/snaut/

* Who has direct access to these other files (i.e., without intervention of 

  another person)? 

  - [X] main researcher 

  - [ ] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ...    

4. Reproduction 

=========================================================== 

* Have the results been reproduced independently?: [ ] YES / [X] NO 
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* If yes, by whom (add if multiple): 

   - name: 

   - address: 

   - affiliation: 

   - e-mail: 

   

v0.2 
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% Data Storage Fact Sheet 

% Name/identifier study: An exposure-based account of the changes in the word 

frequency effect -- vocabulary tests data 

% Author: Paweł Mandera 

% Date: 2016-02-29 

1. Contact details 

=========================================================== 

1a. Main researcher 

----------------------------------------------------------- 

- name: Paweł Mandera 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Gent, Belgium 

- e-mail: pawel.mandera@ugent.be, pawel@pawelmandera.com 

1b. Responsible Staff Member (ZAP) 

----------------------------------------------------------- 

- name: Marc Brysbaert 

- address: Department of Experimental Psychology, Henri Dunantlaan 2, 9000 

  Gent, Belgium 

- e-mail: marc.brysbaert@ugent.be 

If a response is not received when using the above contact details, please send 

an email to data.pp@ugent.be or contact Data Management, Faculty of Psychology 

and Educational Sciences, Henri Dunantlaan 2, 9000 Ghent, Belgium. 

2. Information about the datasets to which this sheet applies 

=========================================================== 

* Reference of the publication in which the datasets are reported: 

Mandera, P., Keuleers, E., & Brysbaert, M. An exposure-based account of the 

changes in the word frequency effect. (chapter 3)

* Which datasets in that publication does this sheet apply to?: 

All vocabulary test data used in the analyses in chapter 4. 

3. Information about the files that have been stored 

=========================================================== 

3a. Raw data 

----------------------------------------------------------- 

* Have the raw data been stored by the main researcher? [X] YES / [ ] NO 

If NO, please justify: 
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* On which platform are the raw data stored? 

  - [X] researcher PC 

  - [X] research group file server 

  - [ ] other (specify): ... 

* Who has direct access to the raw data (i.e., without intervention of another 

  person)? 

  - [X] main researcher 

  - [X] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ... 

   

3b. Other files 

----------------------------------------------------------- 

* Which other files have been stored? 

  - [X] file(s) describing the transition from raw data to reported results. 

    Specify: sql files merging of database tables (optimized for data 

    collection) into processed data files (optimized for analyses), cleanining 

    of the datasets 

  - [X] file(s) containing processed data. Specify: merged and cleaned 

    datasets, results of sampling and aggregation 

  - [X] file(s) containing analyses. Specify: sampling and model fitting files 

  - [ ] files(s) containing information about informed consent 

  - [ ] a file specifying legal and ethical provisions 

  - [ ] file(s) that describe the content of the stored files and how this 

    content should be interpreted. Specify: ... 

  - [ ] other files. Specify: ... 

    

* On which platform are these other files stored? 

  - [X] individual PC 

  - [ ] research group file server 

  - [ ] other: ...    

* Who has direct access to these other files (i.e., without intervention of 

  another person)? 

  - [X] main researcher 

  - [ ] responsible ZAP 

  - [ ] all members of the research group 

  - [ ] all members of UGent 

  - [ ] other (specify): ...    

4. Reproduction 

=========================================================== 

* Have the results been reproduced independently?: [ ] YES / [X] NO 

* If yes, by whom (add if multiple): 

   - name: 
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   - address: 

   - affiliation: 

   - e-mail: 

   

v0.2 
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