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Dankwoord

Het is ondertussen bijna 7 jaar geleden dat ik de kans kreeg om te beginnen
werken aan dit doctoraat waarvan deze thesis het resultaat is. Na mijn master-
proef in toegepaste wiskunde leek het mij een heerlijke uitdaging om van start
te gaan binnen de onderzoeksgroep Numerical Analysis and Mathematical
Modeling van de vakgroep Wiskundige Analyse. Zeker omdat dit kon als
assistent aan de vakgroep. In mijn laatste masterjaar maakte ik namelijk mijn
lerarenopleiding af met op dat moment als doel ooit in het onderwijs terecht te
komen. Wat uiteindelijk ook het doel was waarmee ik mijn opleiding Wiskunde
startte. En daar komen mijn ouders ter sprake, die ik dan ook als eerste wil
bedanken. De interesse voor het onderwijs, naast die voor onderzoek, kwam
blijkbaar mee met de genen. Ze gaven mij ook altijd de kans om vrij mijn eigen
leven uit te stippelen. Toen iedereen mij aanraadde om Latijn te gaan studeren
in het middelbaar, lieten zij mij de keuze om dat niet te doen, wat resulteerde
in een studierichting in het 5de jaar waar ik ten volle in geïnteresseerd was
(Wetenschappen-Wiskunde). Mijn passie voor die 2 domeinen was toen al
groot, zo groot dat ik niet kon kiezen wat ik daarna zou gaan doen. Mama en
papa schuimden met mij alle opendeurdagen van alle mogelijke studies af, en
hielpen mij om door het bos de bomen te blijven zien, wat, alle inspanningen
ten spijt, grandioos mislukte. Tot papa opperde dat ik misschien "gewoon"
wiskunde kon gaan studeren. Dat was toch mijn lievelingsvak? Een keuze
die ik zeker opnieuw zou maken! Ook toen ik afstudeerde kwamen ze met
suggesties aandraven, altijd stonden ze dus klaar voor mij met vrijblijvende
ideeën en onvoorwaardelijke steun. Ze leerden mij om er ten volle voor te gaan
en altijd mijn eigen doelen te blijven nastreven.
De keuze viel toen dus op de start als assistent gecombineerd met een docto-
raatsonderzoek, met dank aan mijn toenmalige promotor Prof. Dr. em. Roger
Van Keer.
Om deze thesis tot stand te brengen, mag ik zeker niet vergeten om mijn hui-
dige promotor en co-promotoren te bedanken, Prof. Dr. Denis Constales voor
de uitermate informatieve, interessante, en bij momenten overdonderende in-
zichten, en Dr. Benny Malengier voor de professionele begeleiding, debuggen
van mijn programmeerblunders, het samen ontdekken van de Marokkaanse
Medina in Rabat en de administratieve en wetenschappelijke ondersteuning
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bij het NO BUG project tijdens de eerste vier jaar van mijn doctoraat.
Daarnaast wil ik ook al mijn collega’s bedanken voor de leuke tijd samen, Hilde,
Lander, Michael, Tim, Marijke, Karel en in het bijzonder Rob, mijn bureauge-
noot en tevens co-promotor. De carnavalsmuziek van Ajoin Music, de quotes
uit Het Eiland aan de muur, vrij associëren tijdens de lunch, gevolgd door een
heerlijke koffie, espresso natuurlijk, waren welkome ontspanningsmomenten.
Mijn vrienden mag ik zeker ook niet vergeten bedanken voor de boeiende,
swingende, prettig gestoorde feestjes en langgerekte avonden op de Vlasmarkt
en hun steun en de babbels tussendoor. Ook mijn ontspannende vrijdagavon-
den horen in dit lijstje, met dank aan iedereen van Harmonie Con Animo, waar
ik er steeds in slaag mijn week met culturele schoonheid (of toch alleszins een
poging tot...) af te sluiten.
En last but not least, wil ik een heel grote dankjewel zeggen aan mijn steun en
toeverlaat, Sven, die een medaille voor moed en zelfopoffering verdient voor
zijn eeuwige geduld en luisterend oor. Om altijd een schitterende papa te zijn
voor onze twee kleine schatten, en klaar te staan voor mij, zowel als man als
als vriend. Om mij met mijn voetjes op de grond te houden. Om mij altijd, ja,
echt altijd, te kunnen doen lachen. Ik draag dit werk dan ook graag op aan
hem en onze twee kaboutertjes, Kobe en Nina, die mijn leven compleet maken
en het met trots en plezier vullen.

Tineke
Gent, 1 januari 2016
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English Summary

Protective measures against mosquito born diseases constitute an important
market, not only for application in tropical areas where diseases like malaria
and dengue are frequent, but also in Europe where mosquitoes are considered
irritating beggars. This research is focusing in particular on treated mosquito
bed nets, but can also be used for textile garments.

The first part of the research in this thesis is part of the ’Novel release
system and bio-based utilities for insect repellent textiles and garments’ (NO
BUG)-project, a European consortium consisting of various research partners,
universities and textile companies. The mathematical engineering part of this
research consists of the mathematical modeling of these garments and simu-
lating the life time of the modeled treated textile. A computer toolbox, named
STICK, or Sophisticated Textile Information Computing Kit, was developed
that incorporates all possible setups of the textile and the chemical treatment of
the bed net and calculates the efficiency of the garment. It was built using the
programming language Python and utilizes the finite volume method which
has been implemented with the FiPy package.
Therefore a new three scale approach for mathematical textile models is sug-
gested including three levels of the textile garment. A textile fabric is built up
out of little fibers, which are twisted and knotted to make a yarn or thread.
These yarns are then woven or knitted into a piece of fabric. Each of these three
levels of a textile cloth is studied as a level in the mathematical model. The first
level is the micro-level describing diffusion of a chemical substance, the active
ingredient (AI) in void space between the fibers. The second level is that of the
yarn, i.e. the meso-level, which is included because for loose textile substrates
the saturation vapor pressure of the AI will influence the release rate from the
fibers, and its value will vary over the yarn cross section. The third and final
model is the macro-level that describes the diffusion of the AI out of the yarns
to the total fabric and its environment.

In this work we present two upscaling techniques for the three step multi-
scale model. The active component is tracked in the fiber, the yarn, and finally

xvii



at the fabric level. At the fiber level a one-dimensional reduction to a non-linear
diffusion equation (with concentration dependent diffusion coefficient) is per-
formed and solved using the method of lines. The outcome is upscaled via the
volume averaging method and used as an input for the yarn level. At this level a
one-dimensional model can be applied to calculate the concentration of the AI,
which on its turn is upscaled using overlapping domain decomposition as input
for the fabric level model.

It was decided to concentrate only on multilayer finishes of open structures,
e.g. lattices like nets and simple fabrics. Hence, there is a full coupling between
three levels of modeling. This approach gives the possibility to optimize for
fiber-yarn layouts, to obtain a better understanding of the life cycle of the textile
and eventually the ability to consider some additional mechanisms to provide
toxicity/repellency: micro-capsules or bio-repellents. It was decided not to
consider the effects of water and heat, as these don’t play a major role in the
use-scenario’s of the finished fabrics.

Next to the one-dimensional yarn model it is also possible to use a two
dimensional model and solve this with the finite element method. To be able
to model the meso-level in two dimensions a layout construction algorithm is
presented to provide for a realistic representation of the yarn cross section. The
developed extended virtual location method exhibits less regularity than existing
methods and can handle blends of different types of fibers in one fabric piece.

In collaboration with the Department of Organic Chemistry of Ghent Uni-
versity some experimental tests were performed in order to be able to validate
the developed mathematical model and corresponding toolbox. This resulted
in a bioassay on the effectiveness of a textile slow release system for mosquito
control. As a conclusion of this analysis we found excellent correspondence
between the model and the known results of the AI DEET. The mathematical
modeling can help in identifying optimal use conditions. In field test however
the slow-release system bed nets performed better than the model predicted.
This was assumed to be caused by a lack of knowledge about the type of textile
together with its specific properties used in the field testing. Also in future
work the room’s geometry could be altered and the effect of air movement
should be analysed further.

The second part of this research consists of a more purely mathematical
view of the problem setting of the NO BUG-project. The textile model is further
analyzed at equilibrium points, where concentration is moving from one level
to the next and the model is in a equilibrium state, i.e. the characteristic times of
the system. These are studied for both upscaling techniques used in the first
part of the research as presented in the latest three A1 articles included in this
work.
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Outline

This dissertation comprises a summary of the research of the author, together
with the peer reviewed articles, published/accepted for publication to this
date.

Chapter 1 gives the reader a brief introduction on the purpose of this research,
the diffusion model, the literature which this research is based upon, some
chemical background about one of the used volatile active ingredients DEET
and the theory of two upscaling methods, volume averaging method and
overlapping domain decomposition technique.

Chapter 2 gives the three scale model that is used in this research, explaining
each of the three levels in the model and how the calculations and simulations
were made using the STICK-toolbox. This chapter contains the elaboration
of the article ‘A Volume averaging and overlapping domain decomposition
technique to model mass transfer in textiles’, published in Journal of Com-
putational an Applied Mathematics, by Elsevier in 2014. Furthermore, the
theory of the extended virtual location method to create a suitable and realistic
representation of the yarn cross-section is given.

Chapter 3 contains the calculation of the needed input variables for the model
under consideration in Chapter 2 and the matching of these variables with
experimental values. In this chapter one can also find the exact reproduction
of the article ‘Model based determination of the influence of textile fabric on
bioassay analysis and the effectiveness of a textile slow release system of DEET
in mosquito control’, published in Pest Management Science, by John Wiley &
Sons, Ltd. in 2015.

Chapter 4 comprises the theory of characteristic times followed by the exact
reproduction of three articles:

1. ‘Characteristic times for multiscale diffusion of active ingredients in
coated textiles’, published in Journal of Computational an Applied Math-
ematics, by Elsevier in 2015.

2. ‘Characteristic times and inverse problems for diffusion in coated textiles’,
published in Applied Mathematics and Information Sciences, by NSP in
2015.
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3. ‘Characteristic times in a three scale model with overlapping domain
decomposition’, accepted for publication in Journal of Computational an
Applied Mathematics, by Elsevier in 2016.
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Nederlandstalige Samenvatting

Beschermende maatregelen tegen ziektes overgebracht door muggen vormen
een belangrijke markt, niet alleen voor toepassing in tropische gebieden waar
ziektes als malaria en dengue frequent voorkomen, maar ook in Europa, waar
de muggen als uitermate irritant worden beschouwd. Dit onderzoek richt
zich in het bijzonder op behandelde muskietennetten, maar kan ook gebruikt
worden voor kledingstukken.

Het eerste deel van het onderzoek in dit proefschrift is onderdeel van het
’Novel release system and bio-based utilities for insect repellent textiles and
garments’ (NO BUG) -project, een Europees consortium bestaande uit diverse
onderzoekspartners, universiteiten en bedrijven in de textielindustrie.

Het ingenieurs-technische deel van dit onderzoek bestaat uit de wiskundige
modellering van deze kledingstukken en het simuleren van de levensduur van
het gemodelleerde behandelde textiel. Er werd een computer toolbox, genaamd
STICK, of Sophisticated Textile Information Computing Kit, ontwikkeld die alle
mogelijke samenstellingen van het textiel en de chemische behandeling van het
bed net gebruikt als input en de efficiëntie van het kledingstuk berekent. Deze
toolbox werd geïmplementeerd met behulp van de programmeertaal Python
en maakt gebruik van de eindige volume methode via het FiPy pakket.
Er wordt een nieuwe aanpak voor wiskundige textielmodellen, gebruik ma-
kend van drie schalen, voorgesteld overeenkomstig met de drie niveaus van
een textiel product. Een textielweefsel is opgebouwd uit kleine vezels, die
gedraaid en geknoopt worden om een garen of draad te maken. Deze garens
worden vervolgens geweven of gebreid in een stuk stof. Elk van deze drie
niveaus van een stuk stof wordt bestudeerd als een niveau in het wiskundig
model. Het eerste niveau is het microniveau en beschrijft diffusie van een
chemische substantie, de werkzame stof (WS), in de lege ruimten tussen de
vezels. Het tweede niveau is dat van het garen, ook het meso-niveau genoemd,
dat eveneens in dit onderzoek werd opgenomen. Dit omdat voor los geweven
stoffen de verzadigde dampdruk van de WS een invloed zal hebben op de
snelheid waarmee deze WS wordt afgegeven door de vezels en de waarde
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ervan zal variëren over de doorsnede van de draad. Het derde en laatste model
is dat voor het macroniveau dat de verspreiding van de WS beschrijft van de
garens naar het totale materiaal en zijn omgeving.

In dit werk presenteren we twee upscaling technieken voor het drieschalen-
model. De actieve component wordt gevolgd in de vezel, het garen, en tenslotte
op stofniveau. Op het vezelniveau wordt een ééndimensionale reductie tot
een niet-lineaire diffusievergelijking uitgevoerd en opgelost met behulp van de
lijnmethode. Het resultaat wordt herschaald via de volume-uitmiddelingsmethode
en gebruikt als input voor het garenniveau. Op dit niveau kan een ééndimensi-
onaal model worden toegepast om de concentratie van de WS te berekenen,
die dan opnieuw herschaald wordt via overlapping domain-decompositie en als
input voor het stofniveau dient.

Er werd beslist om ons specifiek te concentreren op meerlagige afwerkingen
van open structuren, bv. netten met een roosterstructuur en eenvoudige stoffen.
Voor deze structuren zijn de drie gemodelleerde niveaus volledig aan elkaar
gekoppeld. Deze aanpak maakt het mogelijk om de layout van de vezel-draad-
structuur te optimaliseren, om een beter inzicht te krijgen in de levensduur
van het textiel en uiteindelijk ook in de staat te zijn om andere mechanismen
te beschouwen die een stof giftig of afstotelijk maken voor muggen: micro-
capsules of afweermiddelen van biologische afkomst.

Naast het ééndimensionale model voor het draadniveau is het ook moge-
lijk om gebruik te maken van een tweedimensionaal model dat kan worden
opgelost met de eindige elementenmethode. Om dit meso-niveau te kunnen
modelleren in twee dimensies wordt een constructie algoritme voorgesteld
dat een realistische voorstelling van een draaddoorsnede verschaft. De ont-
wikkelde extended virtual location methode vertoont minder regelmaat dan de
bestaande methodes en is in staat om een representatie te geven van een stof
bestaande uit een mix van verschillende types van vezels.

In samenwerking met de vakgroep Organische Chemie van de Universi-
teit Gent werden experimenten uitgevoerd om het wiskundige model en de
bijhorende toolbox te valideren. Dit resulteerde in een bio-analyse van de
effectiviteit van een slow release-systeem voor muggenbestrijding. Als conclusie
van deze analyse werd een uitstekende overeenkomst tussen het model en de
gekende resultaten van de WS DEET gevonden. Bij veldtesten presteerden de
slow release-bednetten echter beter dan het model voorspelde. We veronder-
stellen dat de oorzaak hiervoor ligt bij een gebrek aan kennis over het gebruikte
type textiel en zijn specifieke eigenschappen. Daarnaast zou de geometrie van
de kamer verder uitgewerkt moeten worden en het effect van de luchtstroming
in acht moeten genomen worden bij toekomstig onderzoek.

Het tweede gedeelte van dit proefschrift bestaat uit een meer zuiver wis-
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kundige kijk op de probleemstelling van het NO BUG-project. Het textielmodel
wordt verder geanalyseerd in die punten waar het model in evenwicht blijkt
te zijn, daar waar de concentratie van de WS van het ene naar het volgende
niveau overgaat, i.e. de karakteristieke tijden van het systeem. Deze worden
bestudeerd voor beide upscaling technieken uit het eerste gedeelte van dit
onderzoek en voorgesteld aan de hand van de drie laatst gepubliceerde A1
artikels, eveneens opgenomen in dit werk.

Overzicht

Deze verhandeling beslaat een samenvatting van het onderzoek van de au-
teur, samen met de peer reviewed artikels, gepubliceerd/geaccepteerd voor
publicatie tot op heden.

Hoofdstuk 1 geeft de lezer een korte inleiding over het doel van dit on-
derzoek, het diffusiemodel, de literatuur waar deze studie op gebaseerd
werd, chemische achtergrondinformatie over de gebruikte vluchtige werk-
zame stof DEET en de theorie achter de twee upscaling methoden, de volume-
uitmiddelingsmethode en de overlapping domain-decompositie.

Hoofdstuk 2 omschrijft het drieschalen model dat gebruikt wordt in dit
onderzoek met een verdere uitdieping omtrent elk van de drie niveaus en de
berekeningen en simulaties die met de STICK-toolbox werden gemaakt. Dit
hoofdstuk bevat de verder uitwerking van het artikel ‘A Volume averaging
and overlapping domain decomposition technique to model mass transfer in
textiles’, gepubliceerd in Journal of Computational an Applied Mathematics,
door Elsevier in 2014. Tenslotte wordt de theorie van de extended virtual
location methode gepresenteerd om een passende en realistische voorstelling
van een draaddoorsnede te maken.

Hoofdstuk 3 bevat de berekening van de benodigde input-variabelen voor
het model uit Hoofdstuk 2 en de validatie van deze variabelen aan de hand
van experimentele waarden. In dit hoofdstuk kan men eveneens de exacte
reproductie vinden van het artikel ‘Model based determination of the influence
of textile fabric on bioassay analysis and the effectiveness of a textile slow
release system of DEET in mosquito control’, gepubliceerd in Pest Management
Science, door John Wiley & Sons, Ltd. in 2015.

Hoofdstuk 4 omvat de theorie van de karakteristieke tijden gevolgd door de
exacte weergave van de drie artikels:
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1. ‘Characteristic times for multiscale diffusion of active ingredients in
coated textiles’, gepubliceerd in Journal of Computational an Applied
Mathematics, door Elsevier in 2015.

2. ‘Characteristic times and inverse problems for diffusion in coated textiles’,
gepubliceerd in Applied Mathematics and Information Sciences, door
NSP in 2015.

3. ‘Characteristic times in a three scale model with overlapping domain de-
composition’, geaccepteerd voor publicatie in Journal of Computational
an Applied Mathematics, door Elsevier in 2016.
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Diffusion background information, Two
scale modeling and Literature study

1.1 Motivation of the research

Imagine. It is midnight, you are sleeping. A nice slender female of the Anophe-
les gambiae mosquito comes merrily floating around your ears. After dodging
your hand sweeping around to end the annoying buzz, she seeks a part of
bare ankle that comes out from under the sheets. Then she throws her greedy
stiletto’s, two sharp serrated daggers, in the attack. The result can be a little red
itchy bump, but for an estimated 250 million people per year the outcome is
much worse. For one million of them this nightmare ends up even fatal. Every
30 seconds one person dies due to malaria.

Protective measures against this insect constitute therefore an important
market, not only for application in tropical areas where diseases like malaria
and dengue are frequent, but also in Europe where mosquitoes are considered
irritating beggars. Two of these protective measures belong to the research
field of intelligent textiles. The first is the protective clothing for professional
volunteers, researchers in the field, missionaries, traveling business people, and
so on. The second protective measure one can take is using a treated mosquito
bed nets. This research will focus on the second one in particular.

However, these protective garments are subject to two major problems. The
first issue has to do with the currently used chemical constituents. If used
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incorrectly they can be harmful for a person’s health. This issue was already
mentioned several times in both scientific articles and popular media. When
applying the chemical constituents, permethrin and DEET, to the textile a
protective mask should always be used, which isn’t always available. Secondly
wastewater of the treating process must be purified the correct way so the
chemicals are prohibited to enter the eco system. Additionally, mosquitoes
become increasingly resistant to the chemical components nowadays still used
in the protective garments. The second problem is the life time of the treated
fabric. After a standard number of washes a treated T-shirt or bednet must be
still repelling enough to avert mosquitoes, so no additional costs should be
made to replace or retreat the existing mosquito protection.

The first part of the research in this thesis is part of the ’Novel release
system and bio-based utilities for insect repellent textiles and garments’ (NO
BUG) -project, a European consortium consisting of various research partners,
universities and textile companies.
The two main goals of this project in the framework of the European Commis-
sion program FP7, consist of scientifically bypassing the aforementioned prob-
lems. In particular these goals were the improvement of the treated garments
and the construction of garments with natural, biological and biodegradable
repellents which are not harmful for a person’s health and the environment.
The improvement should be realized by developing new slow-release systems
resulting in a more sustainable textile garment that can be washed without
losing its effect and can be used throughout the whole mosquito season.
The mathematical/engineering part of this research consists of the mathemat-
ical modeling of these garments and simulating the life time of the modeled
treated textile. The production of expensive, both in time as money, prototypes
can be avoided by constructing a computer toolbox that incorporates all possi-
ble compositions of the textile and its chemical treatment and calculates the
efficiency of the garment. An estimation can be made of the life time and the
concentration of the active ingredient in the air surrounding the textile and
the inverse problem of which factors should be changed and have the most
influence, to improve the protective textile, can be solved.

We focus on the mathematical modeling of multi-layer textile garments, in
particular the emphasis is on the diffusion of a substance to the outer boundary
of textiles that are coated with a polymer solution of an active ingredient (AI),
e.g. a insect repellent, a perfume or a healing substance. This substance can
easily be replaced by other volatiles which have a repellent effect or other
substances under consideration. Based on the results of this study an inverse
problem is encountered and once solved it can answer the question of how
much of the AI has to be present on the textile fiber, so the concentration at the
outer boundary of the textile stays high enough for as long as possible to be
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effective (e.g. repel or even kill mosquitoes, have a noticeable odor for humans,
a healing effect, etc. ).

NO BUG results could play an important role in reducing the number of
deadly malaria and dengue fever cases in health workers and the general
population. Furthermore, bio-repellents offer an eco-friendly alternative to
currently used hazardous chemicals.

The second part of this research consists of a more purely mathematical
view of the problem setting of the NO BUG project.
The textile model is analyzed further at equilibrium points, where concentration
is moving from one level to the next and the model is in a equilibrium state, i.e.
the characteristic times of the system.

The model itself is based upon the diffusion equation. It is build up out
of three governing equations describing the three levels of a textile fabric, the
fiber level, the yarn level and the total fabric itself. The concentration is tracked
from fiber to the air surrounding the fabric using upscaling from one level to
another.

1.2 Diffusion of moisture in textiles

Diffusion is the process by witch matter is transported from one part of a system
to another as a result of random molecular motions from a region of high
concentration to a region of low concentration, [5, 56].

It differs from a fluid’s bulk flow or bulk motion, where a pressure gradient or,
as a result, the movement of the fluid itself is responsible for the motion of the
molecules. A fluid mechanism due to bulk motion is advection, where a fluid
transports some conserved quantity or material mathematically described by
a vector field. One easily visualized example of advection is the transport of
ink dumped into a river. As the river flows, ink will move downstream via
advection, as the water’s movement itself transports the ink. If added to a lake
without significant bulk water flow, the ink would simply disperse outwards
from its source in a diffusive manner, which is not advection. Note that as it
moves downstream, the "pulse" of ink will also spread via diffusion. The sum
of these processes is called convection.

There are two ways to introduce the notion of diffusion: either a phe-
nomenological approach starting with Fick’s laws of diffusion and their math-
ematical consequences, or a physical and atomistic one, by considering the
random walk of the diffusing particles.
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In the phenomenological approach, diffusion is the net movement of a sub-
stance from a region of high concentration to a region of lower concentration
without bulk motion. This is also referred to as the movement of a substance
down a concentration gradient. According to Fick’s laws, the diffusion flux, i.e.
the rate of transfer of a diffusion substance through a unit area of a section is
proportional to the negative gradient of concentrations measured normal to
the section. Some various generalizations of Fick’s laws were developed in the
frame of thermodynamics and non-equilibrium thermodynamics.
Diffusion results in mixing of the substance in a fluid or mass transport of this
substance, without requiring bulk motion (bulk flow). Thus, as mentioned
above, diffusion should not be confused with convection, or advection, which
are other transport phenomena that utilize bulk motion to move particles from
one place to another.

From the atomistic point of view, diffusion is considered as a result of the
random walk of the diffusing particles, i.e. molecules or atoms of a substance.
In molecular diffusion, the moving molecules are self-propelled by thermal
energy. Random walk of small particles in suspension in a fluid was discovered
in 1827 by Robert Brown and further developed by Rayleigh in 1880, who
solved a more general form of this problem in the context of sound waves in
heterogeneous materials, and Bachelier in 1900, who further developed the con-
nection between discrete random walks and the continuous diffusion or heat
equation. The theory of the Brownian motion and the atomistic backgrounds of
diffusion were analyzed further by Albert Einstein. This concept of diffusion is
typically applied to any subject matter involving random walks in ensembles
of individuals, [56, 30].

In this research the first approach will be used for the first, more physical,
part of this thesis (Chapters 2, 3 and 4) corresponding to Fick’s first law of
Diffusion. In the second, somewhat more mathematical, part of this thesis
(Chapter 5) the atomistic point of view will be used to be able to calculate the
characteristic times of the system when diffusion flux is considered as being
the probability density function of all possible moments in time when a particle
passes a certain point in space. Further notice on this topic will be given in
Chapter 5.

Fick’s first law of diffusion is described as

F = −D∂C
∂x

, (1.1)

with F the rate of transfer per unit area of section, C the concentration of the
diffusing substance, x the space coordinate measured normal to the section,
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and D the diffusion coefficient. This diffusion coefficient can be a constant,
but also can vary with concentration or time. The unit of D is area per unit
time, e.g. cm2 / s, depending on the unit of F and C, which should be the same.
The negative sign in eq. (1.1) arises because diffusion occurs in the direction
opposite to that of increasing concentration. It is important to notice that the
latter equation is only valid for an isotropic medium, whose structure and
diffusion properties in the neighborhood of any point are the same relative to
all directions, meaning that there is a symmetry resulting in a flow at any point
along the normal to the surface of constant concentration through the point.

To derive the partial differential equation of diffusion in an isotropic medium
(i.e. a medium without directional preference) we use the procedure of [5]. Con-
sider a rectangular parallelepiped with sides parallel to the axes of coordinates
and of lengths 2 dx, 2 dy and 2 dz. Let the centre of the element be at P (x,y,z)

where the concentration of the diffusing substance is C, and Fx is the rate of
transfer through a unit area of the plane perpendicular to the axis of x through
P . Let ABCD and A′B′C ′D′ be the faces perpendicular to the axis of x. Then

2dx

2dy

2dz

D

A A′

D′

C

B B′

C′

P

z

y

x

Figure 1.1: Rectangular parallelepiped

the rate at which the substance enters the parallelepiped through face ABCD
with area AABCD in the plane at x− dx is given by

AABCDFx−dx = 4 dy dzFx−dx = 4 dy dz

(
Fx −

∂Fx
∂x

dx

)
.

Similarly the rate of loss of the diffusing substance through face A′B′C ′D′ is

4 dy dz

(
Fx +

∂Fx
∂x

dx

)
.

From these two faces we achieve the contribution to the rate of increase of
diffusing substance in the element along the x axis

4 dy dz

(
Fx −

∂Fx
∂x

dx

)
− 4 dy dz

(
Fx +

∂Fx
∂x

dx

)
= −8 dx dy dz

∂Fx
∂x

.

5



From the other faces we obtain in an analogous way

−8 dx dy dz
∂Fy
∂y

and − 8 dxdy dz
∂Fz
∂z

.

At the same time we can write the rate at which the amount of diffusing
substance in the element increases as the volume V of the element times the
change in concentration per time or

V
∂C

∂t
= 8 dxdy dz

∂C

∂t
,

hence we have mass conservation

∂C

∂t
+
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

= 0.

From Fick’s first law of diffusion (1.1) we get the parabolic partial differential
equation

∂C

∂t
= D

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
, (1.2)

or
∂C

∂t
=

∂

∂x

(
D
∂C

∂x

)
+

∂

∂y

(
D
∂C

∂y

)
+

∂

∂z

(
D
∂C

∂z

)
,

in the case where D varies from point to point and may be a function of x, y, z
and C. This equation is reduced to

∂C

∂t
=

∂

∂x

(
D
∂C

∂x

)
,

in the one-dimensional case.
Also, D can be time-dependent. In this case we can write D = f(t), introduce
the time-scale variable dτ = f(t) dt and write eq. (1.2) as

∂C

∂τ
=

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
.

In this research we will need a cylindrical diffusion model. To derive the
corresponding differential equation we will transform our coordinate system
to a cylindrical one by putting{

x = r cos(θ)

y = r sin(θ)
.
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We obtain the cylindrical diffusion equation

∂C

∂t
=

1

r

[
∂

∂r

(
rD

∂C

∂r

)
+

∂

∂θ

(
D

r

∂C

∂θ

)
+

∂

∂z

(
rD

∂C

∂z

)]
.

Also other coordinate systems are possible, but they all can be summarized
using the following diffusion equation using vector analysis

∂C

∂t
= ∇ · (D∇C) .

1.3 Two scale model of heat and moisture transfer
in textiles

1.3.1 Setting

This entire research was based upon some existing models for transfer of heat
and moisture in textile substrates. These all take into account a particular
setting, and several assumptions for this setting. Here, we will summarize
the most important ones that also will be taken on for the work in this study.
The following section can be seen as background information and is based on
[53, 59, 12, 33].

We assume a piece of textile fabric assembled of thin fabrics/films with
an inner and outer surface. The inner side is close to the human skin and the
outer surface is directed to the external environment. We have a porous textile
material with internal structure composed of capillaries that are made up of
interconnected pores between the fibers of the fabric, see Fig. 1.2.
The distribution of the liquid phase and the gaseous phase (consisting of
water vapor and air) in any tiny element inside the fabric is described by the
following relationship between the respective volumetric fractions of liquid
water εl, the gaseous phase consisting of water vapor and air εg and the fibers
in the particular element εf :

εl + εg + εf = 1.

In case of liquid content the porosity of the fabric is defined by

ε = 1− εl − εf = εg.

If there is no liquid content, εl = 0, and εg becomes bigger, namely ε′g, so we
write

ε′ = 1− εf = ε′g,
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x = 0 x = L

x

Textile fabric

Inner fabric layer

Outer fabric layer

Human skin Environment

(a) Piece of fabric consisting of thin fabrics/films

(b) Microscopic view of a piece of
fabric with a certain thickness and
visible fibers, [52]

(c) Microscopic reproduction of a piece of woven fabric with visible
pores, [52]

Figure 1.2: The piece of textile under consideration for
modeling
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x = 0

x = L

x Capillaries

Liquid water

Figure 1.3: Schematic reproduction of the intersection
of a textile slab showing the capillaries formed by fibers
(gray), filled with liquid water

for the porosity.
Let x = 0 and x = L represent the inner and outer surfaces of the porous

fabric respectively. Porous textiles are composed of capillaries made up of
interconnected pores formed by fibers, see Fig. 1.3. The liquid is propelled
by surface tension force from regions of higher liquid content to drier regions.
During this action, evaporation and sorption take place.

In what follows also heat transfer will be taken into consideration, neverthe-
less we will not include this in our research and this part will just be mentioned
for informative purposes. The existing models all consist of only two levels
of diffusion of moisture, the fabric level represented by the fibers composing
it and the air level, the gaseous phase of moisture. Because we work with an
open non-dense structure, like a woven net, it will be necessary to include an
extra level. This will be an intermediate, so called meso-level, represented by
the yarns of the fabric. To construct the governing equation for this level we
will extend the existing models with an extra equation of similar form.

1.3.2 Assumptions

1. The textile fabric is isotropic in terms of structure and thermal properties.

2. Local thermal equilibrium exists among all phases due to the relatively
low velocities considered and the small dimensions of the constituting
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fibers.

3. The angular distribution of radiant intensity is approximately constant,
and scattering of radiation by fibers can be ignored.

4. Equilibrium is reached instantly between the moisture content at fiber
surface and that of the surrounding air.

5. The air-vapor mixture reaches saturation instantly in the presence of
liquid.

6. Swelling of the fibers due to absorption of moisture is neglected.

7. The inertial force is ignored due to the relatively low velocities for liquid
transfer.

8. Forced convection such as the effect of wind penetration is neglected.

1.3.3 The two scale model

1.3.3.1 Governing Equations for Moisture and Heat Diffusion on fabric
level

We now write down the four equations governing the mathematical model
under assumptions 1.3.2, summarizing the results of the previous mentioned
articles into one system of equations. They consist of the conservation of mass
for vapor, air and liquid, and the conservation of energy for the mixture of gas,
liquid and solid matrix.

• Equation 1: Mass conservation of water vapor:

∂(Cvεg)

∂t
= −∂(ugCvεg)

∂x
+

∂

∂x

(
Dg

τg
C
∂

∂x

(
Cvεg
C

))
− εfξ1Γf − Γlg

• Equation 2: Mass conservation of air:

∂(Caεg)

∂t
= −∂(ugCaεg)

∂x
+

∂

∂x

(
Dg

τg
C
∂

∂x

(
Caεg
C

))
• Equation 3: Mass conservation of liquid water:

∂(ρlεl)

∂t
=
∂(ρf (1− ε′)Ws)

∂t
=

∂

∂x

(
Dl(εl)

τl

∂(ρlεl)

∂x

)
− εfξ2Γf + Γlg

• Equation 4: Energy conservation:

cν
∂T

∂t
=− ∂(εgugcνaT )

∂x
+

∂

∂x

(
Kmix(x)

∂T

∂x

)
+
∂FR
∂x
− ∂FL

∂x

+ εfΓf (ξ1λν + ξ2λl)− λlgΓlg
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Table 1.1: Quantities and their units in the model for
moisture and heat diffusion in a fabric

Dg Diffusion coefficient of water vapor in the air of the fabric m2 · s−1

ug Velocity of water vapor m · s−1

τg Effective tortuosity of the fabric for water vapor and air
diffusion

ξn Proportions of moisture sorption at fiber surface covered
by air and water vapor (n=1) and liquid water (n=2)

Γf Effective sorption rate of moisture of the fibers kg ·m−3 · s−1

Γlg Evaporation/condensation rate of liquid/vapor kg ·m−3 · s−1

Ca Air concentration in the inter-fiber void space kg ·m−3

Cv Water vapor concentration in the air filling the inter-fiber
void space

kg ·m−3

C Total concentration of air and water vapor in the inter-fiber
void space

mol ·m3

ρl Density of the liquid water kg ·m−3

ρf Density of the textile fiber kg ·m−3

Ws Liquid water content on the fiber surface %

Dl(εl) Diffusion coefficient of liquid water in the fabric m2 · s−1

τl Effective tortuosity of the fabric for liquid water diffusion
cν Dynamic volumetric specific heat of the fabric J ·m−3

T Temperature of the fabric ◦C
cνa Volumetric heat capacity of the air kJ .m−3 ·K−1

Kmix Effective thermal conductivity of the fabric W .m−1 ·K−1

FR Total thermal radiation incident inside the clothing
traveling to the right W .m−2

FL Total thermal radiation incident inside the clothing
traveling to the left W .m−2

λν Heat of sorption or desorption of vapor by fibers kJ · kg−1

λl Heat of sorption or desorption of liquid water by fibers kJ · kg−1

λlg Heat of evaporation/condensation of liquid/vapor kJ · kg−1

where Cv and Ca are vapor concentration en air concentration in the inter-fiber
void spaces, ρl is the liquid density, T stands for temperature in degrees Celsius.
An overview of the used quantities and their units can be found in the Table 1.1.
The quantities Ca, Cv, T , and all the other quantities, except those for which
the dependency is separately stated, are dependent on x and t, where x stands
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for the distance to the inner surface of the fiber, and t stands for time.
Here the generalized Fick’s law has been used for the binary multi-component
gas mixture (vapor and air). The concentration C is the total molar concen-
tration of vapor and air, so C = CMa + CMv with the concentrations of air and
vapor converted to molar concentrations, whereby [C] = mol

m3 . This unit is
according to the rule

Mass concentration
[

kg
m3

]
= Molar concentration

[
mol
m3

]
×Molar mass

[
kg
mol

]
.

The molar mass is given by the atomic mass found in the Mendeleev’s Table,
multiplied with the molar mass constant, Mu = 10−3 kg

mol .
The proportions of moisture sorption at fiber surface, ξ1 for water vapor and ξ2
for liquid water, can be defined as follows

ξ1 = εg/ε
′,

ξ2 = εl/ε
′.

Here, ξ1 + ξ2 = 1.
The gas porosity εg, which is the porosity with liquid water content ε, and
without liquid water content, ε′ are related by introducing the relative free
liquid water content on the fiber surface Ws defined by

(1− ε′)Ws =
ρlεl
ρf

,

thus
ε = εg = ε′ − ρf

ρl
(1− ε′)Ws.

The total volumetric water content W (%) is the sum of this free water content
on the fiber surface and the water content absorbed within the fiber Wf :

W = Ws +Wf ,

where we can define this total water content in function of the total rate of
phase change, i.e. (de)sorption, condensation and/or evaporation of water
Γ(x,t) as

W =
1

ρf (1− ε′)

∫ t

0

Γ(x,t) dt.

For this rate of phase change we have that

Γ(x,t) = Γlg(x,t)− Γf (x,t),

i.e. it is the sum of the rate of evaporation/condensation and the negative
sorption rate by the fibers. This last sorption rate can also be written as

Γf =
∂Cf
∂t

.
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The water content inside the fibers can be described in function of the mean
amount of water absorbed by the fibers Cf

Wf =
CfM

ρf
.

with M the molecular weight of water. This in mind the term ρf (1− ε′)Ws in
equation 3 can also be written as

ρf (1− ε′)(W −Wf ) = ρf (1− ε′)W − CfM

ρf
(1− ε′)ρf

=

∫ t

0

(Γlg − εfξ2Γf ) dt − CfMεf ,

where the sorption rate Γf is scaled by the volumetric fraction of fibers and the
proportion of moisture sorption covered by liquid water. Equation 3 then also
can be written as

∂(ρlεl)

∂t
=
∂(CfMεf )

∂t
− εfξ2Γf (x,t) + Γlg(x,t)

=
∂

∂x

(
Dl(εl)

τl

∂(CfMεf )

∂x

)
− εfξ2Γf (t) + Γlg.

The volumetric specific heat of the fabric is defined as

cν = εlcνl + εfcνf + εgcνa,

where cνl is the volumetric heat capacity of the liquid water and cνf that of the
fiber.
The diffusion coefficient of liquid water Dl(εl) is derived from the physical
mechanics of capillary theory and Darcy’s law for liquid transfer through
porous media as follows

Dl(εl) =
γ cos(θ) sin2(α)dcε

1/3
l

20ηε1/3
.

Here γ is the fiber surface energy, θ is the contact angle of the liquid water
on the fiber surface, α is the effective angle of capillaries in the fabric, dc the
capillary pore distribution, η is the dynamic viscosity of the liquid water.

The situation of whether evaporation or condensation occurs is determined
by the difference between the water vapor concentration surrounding the fibers
Cv and the saturated water vapor concentration at the local temperature C?(T ):

• when Cv > C?(T ), condensation occurs at the fiber surface,
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• when Cv < C?(T ) and the local liquid volume εl is beyond the critical
value for evaporation εl0, i.e. εl > εl0, evaporation occurs from the fiber
surface.

This saturated water vapor concentration can be calculated from the saturated
water vapor pressure at temperature T by use of the standard absolute vapor
pressure Pa of 1 atm or 760 mmHg

Cv[ppm] =
Pv(T )[mmHg]

Pa[mmHg]
,

and converting this concentration in parts per million to the SI-unit of mg /m3

using

Cv[mg /m3] = Cv[ppm] ·M [g /mol] · 0.04156

[
mg /m3

ppm · g /mol

]
.

Here the coefficient 0.04156 is the inverse of the ideal gas volume at 1 atm.
The saturation vapor pressure (in kPa) is obtained from temperature by the
following relationship:

P ?(T ) =

{
1013.25e13.3185−1.976s2−0.6445s3−0.1299s4 T ≤ 273.16

1010.5380997−2663.91/T T > 273.16
, (1.3)

where s = T − 273.16 and T in Kelvin, [13].
Another way of calculating the saturation vapor pressure (in Pa) is by the
empirical expression know as the Tetens’ formula

P ?(T ) = 0.6108 exp

(
17.2694 T

T + 237.3

)
,

where T is in degrees Celsius and above freezing point.
The saturation water vapor concentration can also be deduced from the ideal
gas law as, [13],

C?(T ) =
P ?(T )

Rwv · T
,

where Rwv is the individual gas constant of water vapor equaling 461.5 J
kg K .

Typical values can be found in literature, e.g. [7, 54] and in table 1.2.
The evaporation/condensation rate can be expressed as

Γlg = S′νhlg(C
?(T )− Cv(x,t)),

with hlg the mass transfer coefficient for evaporation and condensation which
is zero if Cv < C?(T ) and εl ≤ εl0, S′ν the effective area of condensation and
evaporation

S′ν =
εg
ε′
εfSν = ξ1εfSν ,
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Table 1.2: Saturation vapor concentration of water in
air

T [◦C] 0 10 20 30 40
C?(T ) [mol /m3] 0.269 0.521 0.959 1.684 2.834

where Sν is the surface/volume ratio of the fiber

Sν =
2πRf l

πR2
f l

=
2

Rf
,

with l the fiber length and Rf the fiber radius.
The radiation flux inside a textile fabric, i.e. the change of the total thermal
radiation incident on a tiny volume element inside the fabric traveling to the
right and left direction, FR and FL can be described using the absorption
constant β of the fabric

∂FR
∂x

= −βFR + βσT 4,

∂FL
∂x

= βFL − βσT 4,

β =
1− ε′

Rf
εr,

with σ the Stefan-Boltzmann constant of 5.67 · 10−8 W ·m−2 ·K−4 and εr the
thermal emissivity of the fiber, i.e. εr < 1. The duller and blacker a material is,
the closer its emissivity is to 1. The more reflective a material is, the lower its
emissivity.

Kmix, the effective thermal conductivity for the gas-fiber-liquid mixture is a
volumetric average calculated by

Kmix = εgKg + (1− εg)Kfab,

where Kfab is the dynamic thermal conductivity of the wetted fabric, and can
be obtained from experiments or empirical equations, see [59]. Kg is that of the
gas mixture.

To get a numerical solution for this problem, the initial and boundary
conditions have to be considered, depending on two possible situations. In
the first case direct contact with liquid at the inner side of the fabric (the skin
side) is allowed, in the second situation this is prohibited. It is assumed that a
porous textile fabric is initially, at t = 0, equilibrated to a given surrounding:

• skin surface condition (T (0,0),Cv(0,0)) = (Tsk0,Csk0),
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• atmosphere condition (T (L,0), C(L,0)) = (Tenv0,Cenv0),

in terms of temperature and vapor concentration, (we assume Ca constant),
with linear distribution across the thickness of the fabric. We assume the liquid
water content to be initially zero:

Ws(x,0) = 0.

1. At the position (x = 0) there are two different boundary conditions
depending on the situation:

(a) direct contact with liquid water

Cv(0,t) = C?(T )

εl(0,t) = 1− εf

Kmix
∂T

∂x

∣∣∣∣
x=0

= hc0(T − Tsk)

FR(0,t) = (1− ε0)FL(0,t) + ε0σT
4(0,t)

,

(b) non-direct contact with liquid water

Da
∂(Cv(0,t)εg)

∂x

∣∣∣∣
x=0

= hm0(Cv − Csk)

εl(0,t) = 0

Kmix
∂T

∂x

∣∣∣∣
x=0

= hc0(T − Tsk)

FR(0,t) = (1− ε0)FL(0,t) + ε0σT
4(0,t)

.

2. At (x = L) the boundary conditions are described as follows with consid-
ering the convective nature of the boundary air layers:

Da
∂(Cv(0,t)εg)

∂x

∣∣∣∣
x=L

= −ξ1hm1(Cv − Cenv)

Kmix
∂T

∂x

∣∣∣∣
x=L

= hc1(T − Tenv)− ξ2λhlg(C?(T )− Cenv)

Dlρl
∂εl
∂x

∣∣∣∣
x=L

= ξ2hlg(C
?(T )− Cenv)FL(L,t)

= (1− ε1)FR(0,t) + ε1σT
4(L,t)

,

with hcn the convective heat transfer coefficient at the clothing surface, hmn
the convective vapor transfer coefficient at the clothing surface and εn the
emissivity of the clothing at the clothing surface (n = 0, inner surface; n = 1,
outer surface).
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1.3.3.2 Governing Equations for Moisture Diffusion on fiber level

If we choose to work with a cylindrical coordinate system then we can describe
the moisture sorption rate of the fibers as

Γf (x,t) =
∂Cf
∂t

,

with

Cf (x,t) =
2

R2
f

∫ Rf

0

C ′f (x,r,t)rdr, (1.4)

the average amount of water absorbed by a fiber at position x in the fabric with
radius Rf . Here C ′f satisfies he cylindrical diffusion equation

∂C ′f
∂t

=
1

r

∂

∂r

(
rDf

∂C ′f
∂r

)
, 0 ≤ r ≤ Rf , (1.5)

where the water concentration in the fibers of the fabric C ′f is a function of the
position x of the fiber in the fabric, time t and distance r from the middle of
the cylindrical fiber [59]. Df is the diffusion coefficient of moisture in a fiber,
which is a function of the water content of the fibers, Wf (x,t), which on its turn
depends on the time of sorption and the location of the fiber [32].
The boundary condition for eq. (1.5) for a fiber at position (x,t) can be de-
termined by assuming that the moisture concentration at the fiber surface
C ′f (x,Rf ,t) is instantaneously in equilibrium with the surrounding air. Con-
sequently C ′f (x,Rf ,t) is a known function of the relative humidity of the sur-
rounding air RH(x,t) and its temperature, i.e.

C ′fs = C ′f (x,Rf ,t) = ρff(RH(x,t),T (x,t)),

where RH is the relative humidity of the air surrounding a fiber at x, and ρf
is the density of the fibers. This known function f depends on the kind of
textile used and is a non-linear function of RH en T , that can be obtained from
experiments for different fibers with different hygroscopicity, or can be found
in data in textile textbooks, [58]. The RH-value for a given x and t can be
calculated as the ratio of the actual vapor pressure of water vapor in air and
the saturation vapor pressure at the same temperature

RH(x,t) =
Pv(T )

P ?(T )
× 100% =

Rwv · T (x,t) · Cv(x,t)·
P ?(T (x,t))

× 100%

=
T (x,t) · Cv(x,t) · 106

216.5 · P ?(T (x,t))
× 100%,

where Rwv is the individual gas constant of water vapor and the saturation
vapor pressure (in kPa) is obtained from temperature by equation (1.3).
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In equation (1.4) the volume average has been used. Depending on the
distribution of water concentration inside the fibers at the direction of the fiber
radius this average water concentration inside the fiber can also be obtained by
taking the averaged C̄f at any space-time position. This average water vapor
concentration can be obtained from

C̄f (x,t) = χ[C ′f (x,r,t)],

where χ[.] is a averaging operator. The water content of the fiber then can be
calculated as follows:

Wf (x,t) =
C̄f
ρf
,

which gives a percentage of the moisture in a fiber on the basis of its dry
weight, i.e. the fiber moisture regain. It can be defined as the amount of water
a completely dry fiber will absorb from the air at a certain condition of this
surrounding air. Table 1.3 gives the regain of different fibers at a standard
condition of 21.1◦C and a RH of 100% (expressed as a percentage of the dry
fiber weight), [25]. Fig. 1.4 shows the relation between the moisture regain and
the RH for wool, cotton, nylon and polyester.

Table 1.3: Saturation moisture regain for
different fibers at T = 21.1◦C and RH = 100%

[percentage of dry fiber weight]

wool 35

cotton 24

polyamide 7

polyester 1

polyolefin .05

polyarylonitrile 7

aramide 6.5

1.3.4 Numerical solution

In [53, 33, 31] the finite volume method is used to develop a numerical compu-
tational scheme to solve the model consisting of the given governing equations.
These schemes can be made consistent to the adjustments made to the govern-
ing equations and their initial and boundary conditions in Equations 1 to 4.
Therefor along the direction of thickness L, the fabric is divided into (N + 1)
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Figure 1.4: Fiber regain against relative humidity for
different fibers, from [36]

control cells with equal interval size ∆x. Each control cell is regarded as com-
posed of different volumetric fractions of liquid water εl and water vapor εg .

For the computations we use the central finite difference equations for the
space derivatives at a reference point in space yj , j = 1 . . . n,

∂y

∂x
=
yj+1 − yj−1

2∆x
,

∂2y

∂x2
=
yj+1 − 2yj + yj−1

(∆x)2
.

Also the time interval under consideration will be divided into smaller
intervals and a backward finite difference scheme at the reference point in
time tn+1 is used which will lead to a fully implicit scheme for the diffusion
equations. This backward difference for the time derivative in the reference
point (xj ,tn+1) is defined as

∂y

∂t
=
yn+1
j − ynj

∆t
.

Here we used y(xj ,tn) = ynj .
For further solutions of this numerical scheme, the author would like to

refer to [53, 33, 31].
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1.4 Method of lines

The method of lines (MOL) is a technique for solving parabolic partial differ-
ential equations in which all but one dimension is discretized. MOL allows
standard, general-purpose methods and software, developed for the numerical
integration of ordinary differential equations and differential-algebraic equa-
tions, to be used. A large number of integration routines have been developed
over the years in many different programming languages, and some have been
published as open source resources.
The method of lines refers to the construction or analysis of numerical methods
for parabolic partial differential equations that proceeds by first discretizing
the spatial derivatives only and leaving the time variable continuous. For
this purpose finite differences are used which leads to a system of ordinary
differential equations to which a numerical method for initial value ordinary
equations can be applied, e.g. Runge-Kutta methods.

As an example we could use the two-dimensional diffusion equation, the
standard example of a two-dimensional parabolic PDE,

∂u

∂t
= D

(
∂2u

∂x2
+
∂2u

∂y2

)
.

We discretize the space by dividing both the x and y spaces into smaller inter-
vals and thereby creating points (xi,yj) where xi = i · h and yj = j · h with h
the size of an interval in both x and y spaces, i = 0, . . . , N , j = 0, . . . ,M .
In each of the points of the created grid we use a central finite difference for
the second order derivative in the equation

∂2u

∂x2
(t,xi,yj) =

u(t,xi−1,yj)− 2u(t,xi,yj) + u(t,xi+1,yj)

h2
,

∂2u

∂y2
(t,xi,yj) =

u(t,xi,yj−1)− 2u(t,xi,yj) + u(t,xi,yj+1)

h2
,

leading to the discretized equation

∂ui,j
∂t

= D
ui−1,j + ui,j−1 + ui+1,j + ui,j+1 − 4ui,j

h2
,

with ui,j = u(t,xi,yj).
For every grid point (xi,yj) this last equation is an ordinary differential equa-
tion which is coupled to four adjacent grid points, where again in each of them
an ordinary differential equation is valid. Next to the initial and boundary
condition there arises a system of (N − 1) × (M − 1) coupled ODE’s, which
can be solved with the existing methods for ODE’s.
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1.5 Literature Study on DEET

The start of this research was given by the “Novel release system and bio-based
utilities for insect repellent textiles and garments” (NO BUG) project, a project
financed by the European Union.
In several applications of professional textiles and clothes mosquito repellency
is an important issue. Two major problems arise:

• repellents currently in use are harmful, resistance to conventional repel-
lents increases,

• the lifetime of release systems is too short.

Solving these two problems were the main goals of the No Bug project. Novel
biorepellents were considered and evaluated as well as two release systems
(multilayer coating and textile bioaggregates) in order to repel mosquitoes
causing malaria or dengue. Novel release concepts are multilayer coatings and
in situ release of the active compounds. Targeted prototypes are textiles for
health workers and bed nets (mosquitoes). The project has studied what are
the best conditions of use of the biorepellents and how to integrate them in the
textile products.

A European consortium has developed novel mosquito bio-repellents to be
incorporated into clothing and mosquito nets for health care workers and the
public. With NO BUG project, scientists hoped to bypass the aforementioned
problems.

They investigated a range of novel bio-repellents and selected the most
promising to incorporate into various slow-release systems. Their focus was
mainly on multi-layer textiles, but they also investigated microcapsules for
improved repellent delivery.

New materials incorporating these release systems were produced and
evaluated. These were used to create prototype mosquito nets and protective
clothing for health workers.

NO BUG results could play an important role in reducing the number of
deadly malaria and dengue fever cases in health workers and the general
population. Furthermore, bio-repellents offer an eco-friendly alternative to
currently used hazardous chemicals.

The idea was to start with the modeling of the release per time-unit of the
widely used chemical compound N,N-Diethyl-m-toluamide (DEET) on a bed
net, because these nets already existed and made testing possible for experi-
mental validation. Therefore additional info on DEET, textiles and mosquitoes
was needed to answer questions like what are the properties of DEET, what
attracts mosquitoes to human beings, what repels them, how come DEET repels
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mosquitoes,... In a next step this repellent could be replaced by other volatile
products once the mathematical model was finished to achieve an overview of
the factors influencing the lifetime and efficiency of the textile end product.

We start with an overview of the physical and chemical properties of DEET
in table 1.4.

Table 1.4: Physical-Chemical Properties of DEET

Property Information

Physical State colorless to faintly yellow liquid
Odor aromatic
Taste bitter
Boiling Point 160◦C @ 19 mmHg

Melting Point −45◦C
Density 0.996 g/ml (20◦C/4◦C)
Solubility in water < 0.1 g /100 ml @ 20◦C
Other solubilities Soluble in ethanol, benzene, ether

Sparingly soluble in petroleum ether
Miscible with 2-propanol, cottonseed oil,
propylene glycol

Vapor Density 6.7 (air=1)
Vapor Pressure 1 mmHg @ 111◦C
Flash Point 155◦C
Evaporation Rate (butyl
acetate=1)

< 1

Refractive Index 1.5212 @ 20◦C
Molecular weight 191.27 g/mol

DEET is used primarily by dermal application as an insect repellent against
mosquitoes, ticks, fleas, leeches, and black-flies.
DEET is available in 4% to 100% concentrations in insect repellent formula-
tions, including solutions, lotions, creams, gels, aerosols, pump sprays, and
impregnated towelettes, usually with an ethyl or isopropyl base.
In the atmosphere, it exists in the vapor phase and is degraded by reaction
with photochemically produced hydroxy radicals; its atmospheric half-life is
approximately 15 hours. DEET has moderate mobility and is not expected to
volatilize in moist or dry soil or to biodegrade under either aerobic or anaerobic
conditions. A minimum evaporation flux of 5 µg

cm2 h (0.03 µmol
cm2 h ) for DEET over

22



5-15 minutes was determined for human skin. DEET acts as a volatile agent to
repel mosquitoes at distances of at least 38 cm from their host, [50].

DEET was nominated by the National Institute of Environmental Health
Sciences (NIEHS) for toxicity and carcinogenicity testing based on its high
U.S. production volume and wide spread consumer use in commercial insect
repellents. Exposure to DEET can occur via ingestion, inhalation, or dermal
contact. In humans, reported symptoms of overexposure include seizures,
coma, hypotension, bradycardia, confusion, acute psychosis, abdominal pain,
nausea and vomiting, skin irritation, and urticaria or contact rash. The role of
DEET in Gulf War Syndrome continues to be investigated. Veterans who used
DEET-containing insect repellents showed signs of arthro-myo-neuropathy, a
neurotoxic syndrome with symptoms including joint and muscle pain, fatigue
after exertion, and tingling or numbing of the hands, arms, feet, and legs.

A 1980 EPA (Environmental Protection Agency) report estimated that ap-
proximately 38% of Americans are exposed to DEET each year and that 200
million people are exposed annually worldwide.

A next question was what attracts mosquitoes to human beings and what
the relationship of it is with DEET.
A little litterature study learned that the attraction of moqsuitos to human hosts
is largely odor-mediated, with human body emanations such as CO2, lactic
acid and 1-octen-3-ol, emitted in human breath and sweat, as strong mosquito
attractants. DEET blocks the behavioral attraction of mosquitoes to lactic acid,
a component of human sweat, as it mediates a decrease in the amounts of the
major compounds released from the skin. This is called the masking effect of
DEET.

In relation to this, we can ask ourselves the question what repels mosquitoes
in DEET. Two major ideas were publicated in the spring of 2008. The first one
[9] stated that DEET inhibits the 1-octen-3-ol-evoked responses by inhibiting
the activity of the olfactory receptory neurons (ORN’s) on the antennae of the
mosquito. In the second study [47] provided convincing evidence suggesting
that repellency of the mosquito is a matter of direct detection of DEET in the
vapor phase an avoidance of the smell of DEET. The researchers found a DEET-
sensitive ORN and pointed out a false positive in the previous research due to
trapping of odorants in the Pasteur pipes when a DEET-laden filter paper is
added to the cartridge. This means the moqsuitos couldn’t smell DEET due to
this fact and not due to inhibition of the olfactory system.
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1.6 Upscaling methods

The mathematical multiscale model described in the previous sections needs
an upscaling of the solution from the fiber level to the fabric level. This can
be done in numerous ways, but we used two methods well illustrated in
literature which we adjusted for the purpose of the problem in mind. These are
the volume averaging technique and the overlapping domain decomposition
method.

1.6.1 Volume Averaging

The volume averaging method was derived by Whitaker and is used for trans-
port of fluids in a multiphase problem. This method provides a foundation for
the analysis of these systems and is based on classical continuum physics and
can be used for predicting the effective transport coefficients that appear in
those equations. It therefor uses a spatially smoothed equation which can be
illustrated with the standard diffusion problem as in [55]. Volume averaging
shows how two levels of equations, i.e. of each phase, are related and makes it
possible to calculate the concentration on a macroscopic level related to that of
the microscopic one. Spatial smoothing, or upscaling, of a physical property
belonging to the micro scale model leads to the governing equation for the
macro scale volume averaged concentration, or vice versa.

To explain the volume averaging method we will use the first example in
[55] where a two phase system is assumed. Phase κ represents a rigid solid
in contact with a fluid phase identified as the γ-phase. The γ/κ-interface is a
catalytic surface at which chemical reactions can take place and both phases
are continuous. The governing equation for the concentration of a species A is
a diffusion equation in the γ-phase. Furthermore there is a jump condition for
A at the γ/κ-interface. We are interested in the entrances and exits of species
A at the γ-phase boundary. Because the point concentration in the system
is unknown we will use the average concentration and the average rate of
reaction for upscaling from the γ-phase to the β-phase of the system. Therefore
it is necessary to define the averaging volume Vassociated with these averages.
We will first define the position vector rγ to locate any point in the γ-phase, the
position vector x for the location of the centroid of Vand the relative position
vector yγ for the location of superficial a point in the γ-phase relative to the
centroid. For the upscaling we need to associate an averaging volume to every
point in space which is invariant of time and space

V= Vγ(x) + Vκ(x),
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where Vγ(x) represents the volume of phase γ with volume fraction, e.g. the
porosity, given by

εγ =
Vγ(x)

V
.

For Vκ(x) an analogous definition exists. Next we define the superficial average
concentration

〈CAγ〉|x =
1

V

∫
Vγ(x)

CAγ |x+yγ
dV.

This average is easy to calculate but not the preferred variable because it is not
a good representation of the concentration in the γ-phase. E.g. if CAγ were a
constant cA, the superficial average concentration would not be equal to cA.
The preferred variable is the intrinsic average concentration defined as

〈CAγ〉γ |x =
1

Vγ(x)

∫
Vγ(x)

CAγ |x+yγ
dV.

The relation between the superficial and the intrinsic average concentration is
given by

〈CAγ〉 = εγ〈CAγ〉γ .

Although we want an equation for the intrinsic average concentration, it is
convenient to start the spatial smoothing using the superficial average, by
integrating the governing equation over Vγ and dividing by V. Afterwards we
use the general transport theorem (Whitaker, 1981) to get

1

V

∫
Vγ(x)

∂CAγ
∂t

∣∣∣∣
x+yγ

dV =
d

dt

[
1

V

∫
Vγ(x)

CAγ |x+yγ
dV

]
=

d

dt
〈CAγ〉|x

=
1

V

∫
Vγ(x)

∇ · (Dγ∇CAγ) dV. (1.6)

The superficial average concentration is associated to the fixed centroid x so
we can write the derivative as a partial derivative and express equation (1.6) as

∂

∂t
〈CAγ〉

∣∣∣∣
x

= 〈∇ · (Dγ∇CAγ)〉|x .

Because the porosity is independent of time this leads to the equation for the
accumulation of species A in terms of the preferred dependent variable, the
intrinsic average concentration

εγ
∂

∂t
〈CAγ〉γ

∣∣∣∣
x

= 〈∇ · (Dγ∇CAγ)〉|x .

The term on the right hand side of this expression can be rewritten using the
spatial averaging theorem in order to express the diffusive flux in terms of
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the intrinsic average concentration. This theorem gives a three-dimensional
Leibniz rule for interchanging differentiation and integration for some quantity
Ψ corresponding with the γ-phase in a γ/κ-system:

〈∇Ψ〉 = ∇〈Ψ〉+
1

V

∫
Aγκ

nγκΨ dA,

where Aγκ is the area of the γ/κ-interface. This theorem yields

εγ
∂

∂t
〈CAγ〉γ

∣∣∣∣
x

=∇ ·

[
(Dγ

(
εγ∇〈CAγ)〉γ + 〈CAγ〉γ∇εγ +

1

V

∫
Aγκ

nγκCAγ dA

)]
− avk〈CAγ〉γκ, (1.7)

where av is the surface area per unit volume, Aγκ
V

k is the conductivity and the
area averaged concentration is defined by

〈CAγ〉γκ =
1

Aγκ

∫
Aγκ

CAγ dA.

However equation (1.7) still contains the point concentration this can be over-
come by using spatial decomposition, see [55] for further information.

1.6.2 Overlapping Domain Decomposition

A special class of numerical methods for solving partial differential equations
(PDEs) is that of the domain decomposition (DD) methods. The methods of
concern are based on a physical decomposition of a global solution domain.
The global solution to a PDE is then sought by solving the smaller subdomain
problems collaboratively and “patching together” the subdomain solutions.
There are two kinds of DD methods, overlapping methods, where the subdo-
mains are physically overlapping and non-overlapping methods, where they
only share an adjacent boundary. These methods have multiple advantages
compared with many other numerical methods, such as superior efficiency,
applicability for parallel computing, easy handling of solution domains of irreg-
ular shape and the possibility to use different numerical methods in different
subdomains for e.g. special treatment of singularities, [2].

Since in the stated physical problem the fiber is entirely lying in the room
domain, the overlapping domain decomposition method can be used for up-
scaling the solution in the subdomain of the fiber scale to solution in the
subdomain of the fabric scale. The concentration of an active ingredient can be
tracked in the global domain consisting of both the fabric and the air surround-
ing it, which can be decomposed into two domains, one on each level. This

26



overlapping DD method has a simple algorithmic structure and is an iterative
procedure, where the PDE is alternately solved within each subdomain. For
each iteration the solution of the other subdomain(s) is used as an artificial
internal boundary condition and is provided by the solution of the previous
step in the algorithm, where the PDE is solved on the other subdomain(s).
Each iteration step has to be done in a certain order to achieve convergence,
because convergence of the solution on the internal subdomains ensures the
convergence of the solution in the global solution domain, and this subdomain
convergence depends on the artificial internal boundary condition used.

The method that will be used here is based upon the classical alternating
Schwarz method. This method was developed to solve a Poisson equation in
a domain Ω = Ω1 ∪ Ω2, where subdomain Ω1 is a circle overlapping with the
rectangular subdomain Ω2, see Fig. 1.5. The boundary-value problem under

Ω1

Γ1

Γ2

Ω2

Figure 1.5: Domain decomposition for the classical al-
ternating Schwarz method

consideration is

Lu = f in Ω,

u = g on ∂Ω,

where operator L can be −∇2 for example. The part of the boundary of
subdomain Ωi which is not part of the global physical boundary ∂Ω is the
artificial internal boundary Γi. Schwarz proposed an iterative algorithm to
find an estimation of the solution to this problem by starting from an initial
guess u0 in each subdomain. Denote the approximate solution in subdomain
Ωi in the nth iteration by uni , and the restriction of f to Ωi by fi, then we will
first solve the Poisson problem restricted to the circle Ω1 using the solution of
the previous iteration for the restriction to the rectangle Ω2, i.e. un−1

2 , as the
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artificial internal boundary condition:

Lun1 = f1 in Ω1,

un1 = g on ∂Ω1 \ Γ1,

un1 = un−1
2 |Γ1 on Γ1.

Afterwards, we will solve the problem within the second subdomain Ω2, using
the latest solution of this iteration of subdomain Ω1, i.e. un1 on the artificial
boundary Γ2:

Lun2 = f2 in Ω2,

un2 = g on ∂Ω1 \ Γ2,

un2 = un1 |Γ2
on Γ2.

This means that the solution of the problem changes on both subdomains
from iteration to iteration, while converging to the true solution by updat-
ing the Dirichlet boundary conditions on Γ1 en Γ2 by exchanging data from
one domain to another. This Schwarz alternating method is an additive and
sequential method, which means that the iterations must be carried out in a
predetermined sequence, first in Ω1, then in Ω2, for convergence.

Next to this basic additive overlapping domain decomposition technique,
there exist several other techniques such as the multiplicative Schwarz method
and non-overlapping techniques. For further information on these topics we
refer to [49, 43]. An overview of the method especially for parabolic equations
like the diffusion equation under consideration can be found in [35].
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The Three Scale Model

2.1 Three Scale modeling and Introduction to the
Application

The diffusion of substances in and through polymers is studied in a large
variety of engineering applications. It is found in settings where controlled
release plays an important role such as drug delivery and their encapsulation
in the medical context, polymer melts and the inflation of elastic membranes
for the construction of plastic materials, architecture and building, transfer of
particles through polymer coated materials such as textiles and many others.
In the latter textile context polymer coating and encapsulation of substances
for application on fibers creates functional materials such as dyes, fragrances,
phase change materials, smart polymers and nanomaterials found in sports,
defense, health care, environmental pollution control, space, and even everyday
use products like rain coats or floor mats. Our interest is the development of
protective clothing.

Health-workers, soldiers, and other people who are frequently exposed
to vector-borne diseases during missions in hot and tropical conditions, are
recommended to use a combination of repellent-based creme on exposed body
parts and treated garments to protect themselves against mosquitoes infected
with malaria and other life threatening diseases. Current solutions have some
deficits because they are not used in a proper way, application is too complex or
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people don’t want to use them because of a certain degree of toxicity mentioned
in the press. Next to product failure, the limited lifetime of effectiveness
is a matter of concern. Therefore the NO BUG project, in the framework
of the European Commission program FP7, focuses on the improvement of
treated garments, and the future construction of garments with natural and
bio-repellents.

We focus on the mathematical modeling of these garments, in particular the
emphasis is on the diffusion of a substance to the outer boundary of textiles
that are coated with a polymer solution of an active ingredient (AI), e.g. a
perfume or a healing substance. This substance can easily be replaced by other
volatiles which have a repellent effect or other substances under consideration.
Based on the results of this study an inverse problem is encountered and once
solved it can answer the question of how much of the AI has to be present
on the textile fiber, so the concentration at the outer boundary of the textile
stays high enough for as long as possible to be effective (e.g. repel or even kill
mosquitoes, have a noticeable odor for humans, a healing effect ...).

Existing models for mass transfer in textiles only consist of two levels, a
fiber and fabric level, with no level in between, [60, 59, 29, 13, 38, 22, 24]. Most
of them are concentrating on the transfer of water through textiles, whereas
the use of an AI hasn’t been studied yet. It has been proved that neglecting
the yarn-scale usually works very well in the simulation for a dense fabric.
But neglecting the yarn scale has several drawbacks. It introduces an error
in the simulations, because upscaling techniques based on volume averaging
are difficult to construct due to the specific geometry of a fabric. It is difficult
to perform optimization of textile properties related to the yarn structure
(e.g. a blend of different kinds of fibers). Also, modeling the yarn allows to
investigate the influence of the placement of the different fibers in the yarn.
These existing models and algorithms for standard multilayer systems were
extended to the needs that have arisen during the research on the polymer
finishes. The application in mind has the purpose to track the diffusion of
an active component released by the fibers of a scrim, e.g. a gauze bandage.
For textile substrates with an open structure like these scrims the previous
approach is no longer suitable. This is because a scrim consists of loosely
woven yarns so the release of the active component from the scrim actually
equals the release of the component from the yarns. Furthermore the number of
fibers and the configuration of these fibers in the yarn plays a role. Finally, the
vapor pressure of the active component in the gaps of the yarn will influence
the release rate from the fibers and varies over the yarn cross-section. As a
conclusion we could say that a meso-level model that describes the release of
the active component in the yarn cross-section is needed. Because of this extra
level in the model, we need a method to upscale the results from one level to
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another.
It was decided to concentrate only on multilayer finishes of open structures,

e.g. lattices like nets and simple fabrics. Hence, with ‘multilayer structures’ we
indicate the full coupling between three levels of modeling, the micro-level
which in practice could be the fibers, a meso-level corresponding to the yarns,
and the macro-level, or thus the level of the total fabric. This approach gives the
possibility to optimize for fiber-yarn layouts, to obtain a better understanding of
the life cycle of the textile and eventually the ability to consider some additional
mechanisms to provide toxicity/repellency: micro-capsules or bio-repellents.
It was decided not to consider the effects of water and heat, as these don’t play
a major role in the use-scenario’s of the finished fabrics at the moment.

The models have been developed and solved using the programming lan-
guage Python in a toolbox called STICK (Sophisticated Textile Information
Computation Kit), see section 2.8. It uses the finite volume method which has
been implemented with the FiPy package [21]. A full coupling between the
three scales is present and the effect of different micro and meso-level layouts
can be determined. The mathematical model under consideration is a complete
multilayer model for volatiles with three levels, the fiber, yarn and net level,
where upscaling is done by volume averaging and the overlapping domain
decomposition method, respectively.

In this section we use the general moisture and heat transfer model and
use the upscaling methods given in Chapter 1 for a novel application. As
stated, this application consists of modeling a bednet or textile fabric which
is impregnated with one or more substances. In this case we consider two
chemical substances, namely DEET and permethrin. Another possibility is
the use of natural products such as bio repellents (products from plants or
µ-organisms).

Permethrin is a common synthetic chemical, widely used as an insecticide,
acaricide, and insect repellent. It belongs to the family of synthetic chemicals
called pyrethroids and functions as a neurotoxin, affecting neuron membranes
by prolonging sodium channel activation. Mosquito nets used to cover beds
may be treated with a solution of permethrin. This increases the effectiveness
of the bed net by killing parasitic insects before they are able to find gaps or
holes in the net.

N,N-Diethyl-meta-toluamide, abbreviated DEET, is a slightly yellow oil. It
is the most common active ingredient in insect repellents. It is intended to be
applied to the skin or to clothing, and is primarily used to repel mosquitoes.
In particular, DEET protects against tick bites, preventing several rickettsioses,
tick-borne meningoencephalitis and other tick-borne diseases such as Lyme
disease. It also protects against mosquito bites which can transmit dengue fever,
West Nile virus, eastern equine encephalitis, and malaria. Recent evidence
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shows that DEET serves as a true repellent in that mosquitoes intensely dislike
the smell of the chemical repellent.

To model a bednet we make a distinction on three levels of the textile ma-
terial, namely the fiber, yarn and fabric level respectively. First we model the
fiber with a coating consisting of different layers of active ingredients DEET
and permithrin. To this end the fiber will be seen as a cylindric object. The
boundary conditions depend on the chosen textile and the void space charac-
teristics. Secondly we model the yarn, a porous structure built out of fibers,
upscaling the outcome of the fiber model using an volume averaging technique.
The yarn level can be developed in two ways, a two-dimensional model and
a one-dimensional cylindric model. The third model represents the net or
fabric itself, i.e. the total fabric, with its environment, again using an upscaling
method to calculate the overall properties of the fabric using the resulting yarn
properties.

2.2 Scale of the Fibers

To construct a model on the scale of fibers we started with a Representative
Elementary Volume (REV) in a cylindric coated fiber of infinite length. The
fiber is a cylinder with radius R. On this cylindric fiber there are κ coatings
of different chemical substances with thickness di, i = 1..κ. These coatings
consist of a binder that contains a chemical substance, the active ingredient (AI).
The binder makes a firm bond between the fiber and the chemical substance
or between the underlaying coating and the substance. The concentration of
chemical substance in the binder is expressed as a percentage, e.g. there can be
a coating with 4% of DEET on top of a coating with 2% of permethrine.

Based on the model prescribed above in section 1.3.3.2, we choose to work
with cylindrical coordinates (ρ,θ,z), in which diffusion is everywhere radial.
The governing model for diffusion of the AI in the fiber is then generally
described by

∂Cf
∂t

=
1

ρ

{
∂

∂ρ

(
ρDf

∂Cf
∂ρ

)
+

∂

∂θ

(
Df

ρ

∂Cf
∂θ

)
+

∂

∂z

(
ρDf

∂Cf
∂z

)}
,

where Cf is the concentration of the AI in the fiber and Df is the diffusion
coefficient of the AI in the fiber, which can be concentration dependent. Ac-
cording to a radial symmetric diffusion in a long cylinder [5] concentration is a
function of the radial position ρ and time t only, so azimuth θ and height z can
be ignored and the diffusion equation becomes

∂Cf (ρ,t)

∂t
=

1

ρ

∂

∂ρ

(
ρDf

∂Cf (ρ,t)

∂ρ

)
, 0 ≤ ρ ≤ Rf ,
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with boundary conditions
∇Cf (R,t) = 0,

at the fiber radius R, where it is assumed that the AI is not absorbed by the
fiber itself, and

∇Cf (Rf ,t) = α (Cf (Rf ,t)− Cfs(t)) · H (Cf (Rf ,t)− Cb, C∗(T )− Cfs(t)) .

at the coated fiber radius Rf . Here, α is a proportionality constant, C∗(T )

is the equilibrium or saturation concentration at temperature T , Cfs is the
concentration of the volatile at the outside-surface of the fiber which will be
determined from the meso-level or yarn model, Cb is the concentration bound
to the fiber that cannot be released and H(x,y) is defined as the Heaviside
function H(x) if y > 0, otherwise it is the identity, extending the BC in [33, 61].
This models evaporation of AI (C∗ > Cfs ) and condensation (C∗ ≤ Cfs ).

Because we study diffusion through a polymer the diffusion coefficientDf is
taken to be concentration dependent, i.e. of the formDf (Cf ) = Df0 exp (−cCf ),
with Df0 and c known constants.

This model has been solved using both a finite differences approach and
the method of lines (MOL) based on a finite volume approach (FVM), [18].

We will first model the flux in a cylindrical fiber which is coated with
one layer of polymer with the AI of thickness d. Then an extension is made
using several coating layers. Based on this model it is possible to describe the
concentration release for other chemical coatings by adjusting the diffusion
coefficients and mass transfer coefficients to these of the AI in question.

2.2.1 Initial and boundary conditions for a one layer coating

1. The prescribed concentration on the surface at starting time,

C0
fs = Cf (R+ ρ,0), with 0 ≤ ρ ≤ d. (2.1)

2. The outer flux is determined by the evaporation rate Γlg, that is defined
as

Γlg = hlg (C?(T )− Cfs)Sf ,

wherein C? is the equilibrium concentration in the void space, hlg is the
mass transfer coefficient, [hlg] = m · s−1, that can be derived from the
Churchill-Bernstein equation for mass transfer, [57], [3]. It is a relation of
the form Sh = f(Re ,Sc) =

hlgL
D where Sh is the Sherwood number, Re is

the Reynolds number and Sc is the Schmidt number, L is the length and
D is the diffusivity. Sf is the surface/volume ratio of the fiber and equals
2/Rf .
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For the evaporation process it is important to make the assumption that
the equilibrium is reached instantly between the moisture content at fiber
surface and that of the surrounding air. This means that the surface of
the fiber is assumed to reach equilibrium with the outside atmosphere
instantaneously when evaporation begins, i.e. if the atmosphere is free
of vapor the concentration at the surface falls immediately to zero; if the
vapor pressure in the atmosphere is p, the surface of the fiber immediately
reaches the concentration which is in equilibrium with p.

This gives the BC on the surface

−Dfs
∂Cf
∂ρ

∣∣∣∣
ρ=R+d

= Γlg = hlg (Cfs − C?(T ))Sf , (2.2)

where the diffusion coefficient Dfs is the value corresponding to the
actual concentration on the surface Cfs .

3. If we use a polyester fiber the inner flux is zero due to the impermeable
surface, so

∂Cf
∂ρ

∣∣∣∣
ρ=R

= 0. (2.3)

For a cotton fiber or a blend of several fibers water and thus also other liq-
uid chemicals could enter the inner fiber. To adjust for this the right-hand
side of this above flux equation becomes a constant depending on the
kind of fiber, or it is necessary to use a polymer that meets the assumption
of no absorption by the fiber itself by creating an impermeable coating
under-need the AI coating.

4. We assume radial diffusion only,

∂Cf
∂z

=
∂Cf
∂θ

= 0. (2.4)

5. For the REV, the left and right flux should be the same

DL∂ρC
+
f = DR∂ρC

−
f , (2.5)

where C+
f is the concentration that diffuses into the REV from the left and

C−f the concentration that diffuses out of the REV tot the right. These two
concentrations are assumed to be known since they are at the boundary
of the REV.
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2.2.2 Initial and boundary conditions for a coating consisting
of multiple layers

If we have multiple coating layers, say κ, the model and its IC and BC are
similar,

∂Cf i
∂t

(ρ,t) =
1

ρ

∂

∂ρ

(
ρDi

∂Cf i
∂ρ

(ρ,t)

)
, i = 1, . . . ,κ,

with Cf i the concentration of the component from coating layer i and Di the
corresponding diffusion coefficient that again can be concentration dependent.

Lets focus on the example where we have three coatings of thickness di
respectively. All layers satisfy BC (2.4) and (2.5). Furthermore, for the inner
coating we only have IC (2.1) and BC (2.3), because the evaporation doesn’t
occur since this coating is covered with another coating. The outer coating
satisfies IC (2.1) and BC (2.2). For the middle layer we only have the initial
condition. Formally we can describe the IC’s and BC’s as

1. The prescribed concentration on the surface(
C0
fs

)
i

= Cf i(R+ di−1 + ρ,0), with 0 ≤ ρ ≤ di, d0 = 0, i = 1, . . . , 3.

2. The outer flux for the outer coating

(Dfs)3

∂Cf 3

∂r

∣∣∣∣
ρ=R+d

= −Γlg = −hlg
(
(Cfs − C?(T ))3

)
Sf , d = d1+d2+d3,

where (Dfs)3 is the diffusion coefficient for the active ingredient in layer
3 corresponding to the actual concentration on the surface (Cfs)3 .

3. The impermeable surface flux on the left

∂Cf i
∂r

∣∣∣∣
ρ=R

= 0.

4. If the coatings cannot diffuse into each other we have a similar no-flux
condition for each layer:

∂Cf i
∂r

∣∣∣∣
ρ=R+di

= 0, i = 1,2,

5. We assume radial diffusion only,

∂Cf i
∂z

=
∂Cf i
∂θ

= 0.

35



6. For the REV, the left and right flux should be the same

DL∂ρCf
+
i = DR∂ρCf

−
i ,

where Cf+
i is the concentration of substance i that diffuses into the REV

from the left and Cf−i the concentration that diffuses out of the REV tot
the right. These two concentrations are assumed to be known since they
are at the boundary of the REV.

2.2.3 Active ingredient in a polymer binder coating

In the above sections we considered a fiber coated with one or more layer(s) of
an AI. In practice these AI’s are bound to the fiber using a polymer coating in
which the AI is dissolved. The thickness of the fiber is approximately 12 µm.
In our case the polymer binder contains or DEET, or permethrin.
Mostly 2 to 5 layers with a thickness of 1 to 3 µm are deposited. The aim is to
find the optimal coating in order to achieve a sufficiently high concentration of
DEET around the fiber and permethrin on the fiber surface to repel mosquitoes
and kill when landing.

We consider a domain (0,Rf ) with Rf = R +
∑
j=1,...,nc

Rj , where Rj is
the thickness of coating j, and nc is the number of coatings. We use u1 for the
concentration of DEET, and u2 for permethrin.

In the simplest model, the diffusion coefficient of up, (p = 1, 2) in the poly-
mer layer is constant: Dp is small, and the two components do not influence
each other, thus they can be considered independent. At the binder-air bound-
ary atRf , DEET evaporates with a speed α(u1(Rf ,t)−u?1(T )), with α a constant
of proportionality and u?1(T ) the equilibrium concentration of DEET remote
from the surface at temperature T . Considering the fact that DEET will not
accumulate in the surrounding air, we can ignore the part u?1 in the evaporation
equation and only consider the flux in the direction of ρ as αu(Rf ,t). Due to the
form of the polymer binding, the diffusion coefficient will however decrease
as the concentration of the components decreases. Hence, a concentration
dependent diffusion coefficient is needed, instead of a constant diffusion. We
consider:

Dp,q(up) = D0,q exp (cpup),

for AI p in polymer layer q, whereD0,q is the diffusion coefficient at the limiting
concentration up → 0 and cp is a constant to determine further-on.

Hence, the full direct model for two coating layers, one for each AI, is given
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by:



∂tup = 1
ρ∂ρ (ρDp,q(up)∂ρup) , ρ ∈ (R,Rf )

u1(ρ,0) =

{
u1,0 ρ ∈ (R,R+R1)

0 ρ ∈ (R+R1, Rf )

u2(ρ,0) =

{
0 ρ ∈ (R,R+R1)

u2,0 ρ ∈ (R+R1, Rf )

∂ρu1(R,t) = 0

∂ρu2(R,t) = 0

∂ρu1(Rf ,t) = αu1(Rf ,t)

∂ρu2(Rf ,t) = 0

∂zu1(ρ,t) = ∂θu1(ρ,t) = 0 ρ ∈ (0, Rf )

∂zu2(ρ,t) = ∂θu2(ρ,t) = 0 ρ ∈ (0, Rf )

.

Here u1,0 and u2,0 are the original piecewise constant concentration profiles
after creating the coatings. So in a coating layer with DEET, u2,0 is zero, and
vice-versa. Further we have,

α =
hm

D1,1(u1)
Sf ,

with hm the mass transfer coefficient and Sf the surface/volume ratio, so α is
a dimensionless constant.

More precisely we consider 2 layers: the first consisting of the polymer
polyacrylate and the active ingredient DEET, the second consisting of silicone
elastomer and the active ingredient permethrin. We assume the above stated
concentration dependent diffusion coefficientDp,q(up) for AI p trough the layer
of polymer q, where p = 1 for DEET and p = 2 for permethrin, q = 1 for
polyacrylate and q = 2 for silicone elastomer. The initial conditions of DEET
u1,0 and of permithrin u2,0 are taken to be 1500 mg /m3.

The above direct problem is a BVP with Dirichlet initial conditions for t
and Neumann boundary condition for ρ and is solved using a forward finite
difference scheme and with a standard method in Maple.
Therefor we construct a mesh of (N + 1)× (M + 1) dividing the interval [R,Rf ]

in N equal intervals [ρi,ρi+1], i = 0, . . . ,n− 1 and choosing an interval [0,T ] for
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t that is divided into M equal intervals

h =
Rf −R
N

,

k =
T − 0

M
,

ρi = R+ ih, i = 0,1, . . . ,N,

tj = 0 + jk, j = 0,1, . . . ,M,

u1i,j = u1(ρi,tj), i = 0,1, . . . ,N and j = 0,1, . . . ,M,

u2i,j = u2(ρi,tj), i = 0,1, . . . ,N and j = 0,1, . . . ,M.

We denote ui,j for upi,j , p = 1,2.

The finite difference that are used are

∂tu(ρi,tj) =
ui,j+1 − ui,j

k
,

∂ru(ρi,tj) =
ui+1,j − ui−1,j

2h
,

∂2
ρu(ρi,tj) =

ui+1,j − 2ui,j + ui−1,j

h2
.

To be able to differentiate the functionDp,q(up) we first define the smoothed
step function

S(ρ, a, b, c, d) = a+
b− a

1 + exp (−c(ρ− d))
,

visible in Fig. 2.1.
Using this function we define

c(ρ) = S(ρ,c1,c2,100,R+R1),

d(ρ) = S(ρ,D0,1,D0,2,100,R+R1),

f(ρ,t) = d(ρ) exp(c(ρ) · u(ρ,t)),

fi,j = f(ρi,tj),

f ′i,j =
∂f

∂ρ
(ρi,tj)

= d′(ρi) · exp(c(ρi) · ui,j) + fi,j ·
(
c′(ρi) · ui,j + c(ρi)

∂u

∂ρ
(ρi,tj)

)
= d′(ρi) · exp(c(ρi) · ui,j) + fi,j ·

(
c′(ρi) · ui,j + c(ρi)

ui+1,j − ui−1,j

2h

)
.
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Figure 2.1: The smoothed step function S for different
values of c

In point (ρi,tj) the model becomes , i = 1, . . . ,N and j = 1, . . . ,M :

ui,j+1 = ui,j + kfi,j
ui+1,j − ui−1,j

2ρih
+ kf ′i,j

ui+1,j − ui−1,j

2h

+kfi,j
ui+1,j − 2ui,j + ui−1,j

h2

u1(ρ,0) =

{
1500 mg /m3 ρ ∈ (R,R+R1)

0 ρ ∈ (R+R1, Rf )

u2(ρ,0) =

{
0 ρ ∈ (R,R+R1)

1500 mg /m3 ρ ∈ (R+R1, Rf )

u11,j
−u1−1,j

2h = 0

u21,j
−u2−1,j

2h = 0

u1N+1,j
−u1N−1,j

2h = αu1N,j

u2N+1,j
−u2N−1,j

2h = 0

.

Solving this model in Maple gives the solution in Fig. 2.2 for DEET using the
above constructed finite difference method and the solution for both AI’s in
Fig. 2.3 using the standard built-in Maple method.
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(a) Pointplot of solution for DEET (b) Fitted surface through pointsolution for
DEET

Figure 2.2: Solution for DEET using the above con-
structed finite difference method

(a) Solution for DEET (b) Solution for permethrine

Figure 2.3: Solution for DEET, permethrin and both
using the standard built in finite difference method in
Maple

Instead of using finite differences and Maple we can also solve the model

∂Cf (ρ,t)

∂t
=

1

ρ

∂

∂ρ

(
ρDf

∂Cf (ρ,t)

∂ρ

)
, 0 ≤ ρ ≤ Rf ,
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with boundary conditions
∇Cf (R,t) = 0,

at the fiber radius R and

∇Cf = α (Cf (Rf ,t)− Cfs(t)) · H (Cf (Rf ,t)− Cb, C∗(T )− Cfs(t)) . (2.6)

at the coated fiber radius Rf , using the method of lines (MOL). This has been
implemented in Python code. Two possible derivations can be made. An error
analysis is made to pick the best method. The set-up is given in Fig. 2.4.

ri−1 ri ri+1

Ωi−1

u−i

Ωi

u+i

ui

(∆r)−i (∆r)+i

0

Ω0

r1

Ω1

r2 rn−2

Ωn−2

rn−1

Ωn−1

Rf

. . . . . .

Figure 2.4: Domain for MOL

We will use

(∆ρ)
+
i = ρi − ρi−1,

(∆ρ)
−
i = ρi+1 − ρi,

ρ+
i = ρi+ 1

2
= ρi +

(∆ρ)
+
i

2
,

ρ−i = ρi− 1
2

= ρi −
(∆ρ)

−
i

2
.

Derivation 1

Denote w = uρ. Then

∂tw = ∂ρ

(
ρD∂ρ

w

ρ

)
,

where
D = D0e

−cwρ .

If we integrate over the domain Ω = [L,R] we get∫
Ω

∂tw dρ =

[
ρD∂ρ

w

ρ

]R
L

.

If we divide the domain into n cells we can write this for every cell Ωi =

[ρi,ρi+1], denoting the scaled concentration on time t on space location ρi as
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wi(t). The scaled concentration in de centers of the adjacent cells are denoted
by w−i and w+

i in Ωi−1 and Ωi respectively. Doing so we calculate the flux on
the edge ρi as∫

Ωi

∂twi(t) dρ = ∂tw
+
i

∫
Ωi

dρ =

[
ρD∂ρ

w

ρ

]ρi+1

ρi

= ρi+1Di+1∂ρ
w

ρ

∣∣∣∣
ρi+1

− ρiDi∂ρ
w

ρ

∣∣∣∣
ρi

.

The first term on the right hand side is the flux along edge ρi+1, the second
term is the flux along edge ρi.
For the flux along edge ρi we have

fluxedgei = ρiDi

(
∂ρ
w

ρ

)∣∣∣∣
ρi

= ρi

D+
0,i exp

(
−cw

+
i

ρ+
i

)
+D−0,i exp

(
−cw

−
i

ρ−i

)
2


 w+

i

ρ+
i

− w−i
ρ−i

(∆ρ)+
i +(∆ρ)−i

2

 ,

where we have taken the average diffusion coefficient of the adjacent cell
centers.
According to the above derivation we get

∂tw
+
i =

(
fluxedgei+1

− fluxedgei

) 1

(∆ρ)+
i

.

Derivation 2

We do not make the substitution to the scaled concentration w = uρ and
work with the original concentration u. We then get for every cell Ωi∫

Ωi

∂tui(t)ρdρ = ∂tu
+
i

∫
Ωi

ρdρ = [Dρ∂ρu]
ρi+1

ρi
.

Like in derivation 1 we write

fluxedgei = ρiDi (∂ρu)|ρi

= ρi

(
D+

0,i exp
(
−cu+

i

)
+D−0,i exp

(
−cu−i

)
2

) u+
i − u

−
i

(∆ρ)+
i +(∆ρ)−i

2

 .

For the flux we get

∂tu
+
i =

(
fluxedgei+1

− fluxedgei

) 2

2ρi(∆ρ)+
i +

(
(∆ρ)+

i

)2 . (2.7)
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This last result is the same as in derivation 1 where we do the inverse transfor-
mation from the scaled to the original concentration usingw+

i = u+
i

(
ρi +

(∆ρ)+
i

2

)
.

The difference is the number of calculations. Considering the fact that more
calculations induce more rounding errors and slower computation time, the
preference is given to derivation 2.

Results for the diffusion model of the AI in time using MOL where the AI
is directly at the fiber surface and taken to be 961 mg /m3 at t = 0 are shown
in Fig. 2.5. Here the cvode-package is used to solve the ODE’s. This is a
subpackage of python’s Sundials-packages that uses backward differential
formulas (BDF) or the Adams-Moulton method to solve the system of ODE’s.
In the example BDF was used.

2.3 Scale of the Yarn

On the yarn level we only model the concentration of an evaporating AI, such
as DEET.

Based on the model prescribed in [59], we choose to work with cylindrical
coordinates (r,θ,z). By assuming we can neglect diffusion in the θ and z

direction and diffusion is everywhere radial and symmetrical we can work in
only one dimension. The governing model for the concentration of the AI on
the yarn level then is, according to the radial diffusion equation in a cylinder,

ε
∂Cy(r,t)

∂t
=

1

r

∂

∂r

(
εr
Dy

τy

∂Cy(r,t)

∂r

)
+ Γin(r,t), (2.8)

with as BC’s a diffusive flux to the outside

−Dy
∂Cy
∂r

(Ry,t) = − 1

dout
(Cy(Ry,t)− Cout(t)) ,

a no-flux condition on the left boundary

∂Cy
∂r

(0,t) = 0,

and initially a zero concentration

Cy(r,0) = 0,

where Dy is the diffusion coefficient of the AI in the yarn air gaps, ε is the
porosity depending on position and τy is the tortuosity of the yarn. In the BC
Cout(t) is the concentration of AI in the air surrounding the yarn at a prescribed
distance dout to the yarn.
The term Γin(r,t) in the equation above is a source term that describes the
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(a) AI concentration in the fiber after 0.09s (b) AI concentration in the fiber after 0.59s

(c) AI concentration in the fiber after 1.09s (d) AI concentration in the fiber after 2.59s

Figure 2.5: The diffusion of the AI in time using MOL
where the AI is directly at the fiber surface and taken to
be 961 mg /m3 at t = 0

amount of AI coming out of a cross-section of the fibers into the yarn air space.
It is calculated by upscaling the boundary condition at the fiber level (2.6),
representing the flux of AI over the boundary, using the volume averaging
technique [55].
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r

ri ri+1 Ry

∆r

Figure 2.6: Yarn discretization in cylindrical coordinates

In order to solve this model we divide the radial space [0,Ry] in N intervals
Ωi = [ri,ri + ∆r] = [ri,ri+1] with length ∆r =

Ry
N , where Ry is the yarn radius.

If afterwards we also consider the θ-coordinate we get concentric circles for
each space interval, Fig. 2.6. In each of these shells we consider n fibers. N is
chosen in such way that in each interval we can describe one fiber model, with
the same initial conditions and boundary conditions. Considering the fact that
the area of such a shell between [ri,ri+1] is

Vshell =

∫ 2π

0

dθ

∫ ri+1

ri

r dr = π(r2
i+1 − r2

i ) = π∆(r2)i

and the area of a coated fiber intersection with radius Rf is πR2
f , we have

εf =
nR2

f

∆(r2)i
.

On the other hand, the area of a yarn intersection with radius Ry is πR2
y. So if

we have m fibers per yarn cross section, the fiber volumetric fraction also can
be expressed as

εf =
mR2

f

R2
y

.

This means we can calculate the number of fibers in a shell [ri,ri+1] as

n =
m(r2

i+1 − r2
i )

R2
y

.

45



In every time step tj and space interval [ri,ri+1] we solve one fiber model,
assuming all n fibers in the same shell satisfy the same evaporation boundary
condition

−Df

∂Ci,jf
∂ρ

(Rf ) = Sfhb→f

(
Ci,j−1
f (Rf )− Ci+,j−1

y

)
· H
(
Ci,j−1
f (Rf )− Cb,C∗(T)− Ci+,j−1

y

)
,

where Ci+,j−1
y = Cy(r+

i ,tj−1) is the concentration in the middle of the space
interval Ωi, i.e. r+

i = ri + ∆r
2 , of the previous time step, and Ci,j−1

f (Rf ) =

Cf (Rf ,ri,tj−1) is the concentration on the fiber surface of a fiber in Ωi of the
previous time step. Furthermore, Sf is the effective area of evaporation ε 2

Rf
,

hb→f is the mass transfer coefficient for the AI from bounded to free material
andH is the adjusted Heaviside function as defined earlier, [33, 53]. Therefore
we can calculate the resulting averaged fiber mass from the intrinsic averaged
fiber concentration times the averaging volume of the fiber void space Vf ε, using
the volume average technique to calculate the, [55],

M i,j
f =

(
1

Vf

∫ 2π

0

dθ

∫ Rf

R

Ci,jf (ρ) ρdρ

)
Vf ε

= 2πε

∫ Rf

R

Ci,jf (ρ) ρdρ

= 2πε

N−1∑
k=0

∫ ρk+1

ρk

Cf (ρ)ρdρ

= 2πε

N−1∑
k=0

Cf (ρ+
k )

∫ ρk+1

ρk

ρ dρ

= 2πε

N−1∑
k=0

Cf (ρ+
k )
ρ2
k+1 − ρ2

k

2

= πε

N−1∑
k=0

Cf (ρ+
k )(ρ2

k+1 − ρ2
k),

for fibers at [ri,ri+1] at time tj and then take the difference between this fiber
mass and the mass at the previous time step M i,j−1

f . Here Vf is the averaging
volume of the fiber coating. The difference ∆M i,j

f = (M i,j
f −M

i,j−1
f ) gives the

amount removed from the fibers at yarn interval [ri,ri+1] during that time step.
Next we find the source term Γin for a shell at [ri,ri+1] representing the amount

46



coming from all n fibers in the shell per timestep,

Γin(r+
i ,tj) = n

∆M i,j
f

εVshell∆t
.

If in (2.8) we denote rCy by u the equation becomes

ε
∂u

∂t
=

∂

∂r

(
εr
Dy

τ

∂

∂r

(u
r

))
+ rΓin(r,t).

Using MOL in Ωi = [ri,ri+1] we get

ε

∫ ri+1

ri

∂u

∂t
dr = ε

Dy

τ

∫ ri+1

ri

∂

∂r

(
r
∂

∂r

(u
r

))
dr +

∫ ri+1

ri

Γin(r,t)r dr,

which becomes

ε
∂u(r+

i ,t)

∂t
∆r+

i = ε
Dy

τ

[
r
∂

∂r

(u
r

)]ri+1

ri

+ Γin(r+
i ,t)

(∆r2)i
2

.

This means we need to implement the partial derivative of u+
i = u(r+

i ,t) =

r+
i Cy(t) as

∂u+
i

∂t
=

1

∆r+
i

(
Dy

τy

[
fluxedgei+1

− fluxedgei

]
+ n

∆Mf (ri,t)

2ε2Vshell∆t
(∆r2)i

)
, (2.9)

with

fluxedgei =

(
r
∂

∂r

(u
r

))∣∣∣∣
ri

= ri

u+
i

r+
i

− u−i
r−i

∆r
,

where r−i = ri − ∆r
2 = ri−1 + ∆r

2 = r+
i−1 and u−i = u(r−i ,t).

The equation (2.9) has been implemented in Python-code next to the previously
derived equation for the fiber (2.7) in order to be able to solve the system
of equations of the complete three scale model. The last step in finding the
solution of the complete system of equations is implementing the equation of
the room model and upscaling the solution for one yarn model to the amount
of AI coming into the room from all yarns together.

Another way of solving this problem is using a 2D diffusion model of the
2D yarn cross section containing fibers. Then only the z direction is neglected,
and we can write in (x,y) coordinates

∂Cy(x,y,t)

∂t
= ∇ · (Dy∇Cy(x,y,t)) ,

where the tortuosity τy needed in the 1D model is no longer necessary. This
model takes as a domain the circle circumscribing the yarn intersection with
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the fiber intersection circles cut out. On each boundary that arises like this a a
certain concentration of the AI is introduced through a flux boundary condition
for the fiber model which in this case also is also a 2D model

∂Cf (x,y,t)

∂t
= ∇ · (Df∇Cf (x,y,t)) ,

with BC

∇Cfs = α(Cfs − Cy(x,y,t))H(Cfs − Cb, C∗(T )− Cy(x,y,t)),

where the subscript s stands for surface and H, Cb and C∗(T ) are defined as
before.

This 2D model can be solved using a finite element method or a finite
volume method. For this purpose it is necessary that we can create a suitable
representation of the yarn cross-section. We have to focus on the creation
of a realistic grid for the yarn cross-section, which is suitable for mass and
heat transfer models. Therefor we extended and adapted the virtual location
method (VLM) which allows the quick creation of a range of 2D yarn-fiber
layouts. We overcame two of its main disadvantages: the presence of too much
regularity, and the inability to produce yarn-fiber layouts when blends of fibers
with different sizes are present. Our method is based on the standard ring
configuration VLM, creating two sets of virtual locations per fiber type, which
causes some overlap of the fibers. The overlap is removed with an iteration
scheme based on induced movement. The final result is a realistic 2D cross-
section of a yarn. A reference implementation is available, and it is shown how
the layout can be used to create a grid.

2.4 The Extended Virtual Location Method

We present an improved yarn-fiber layout construction algorithm, which forms
the first step in a multiscale simulation: domain construction of the different
scales. For porous materials there are several packing algorithms available, see
e.g. Software Package for the Assessment of Compositional Evolution (SPACE)
and other methods [46], but these are oriented towards ground structures and
large-scale repetition, and are therefore ill-suited to construct the specific fiber
layout found in textiles. A thorough analysis of this fiber layout for single
fiber materials was done in [19]. In the same article a VLM was introduced to
generate computer-generated yarn cross-sections mimicking the experimental
fiber layout.

There are some drawbacks to the VLM proposed in [19]. These are also
present in the extension to elliptical virtual locations to account for yarn-twist
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given in [45]. Firstly, the results show more regularity than what is commonly
found in the experimental results. Secondly, the method is only valid for yarns
consisting of a single type of fiber. Although fibers of different size can be
generated in the virtual location, the virtual location itself is based upon a
single size. We adapted the method to obtain a final result with less regularity,
also we are capable of handling blends of fibers with very different sizes. To
validate the approach, we compared the results with yarn cross-sections of a
polyester-cotton blend obtained by optical microscopy.

In multiscale modeling one specific yarn realization can give qualitative
insights into the physical processes. However, over an entire fabric, some
averaging should be performed when upscaling is done to the fabric level. This
can be done using some volume averaging or via a Monte-Carlo approach
or via overlapping domain decomposition. For all methods it is important to
verify that a given yarn cross-section realization satisfies the structure of the
yarn one wanted to generate in the first place. We also provided the statistical
tests needed to verify this.

The method presented is only valid for a cross-section of a yarn. From this,
one can construct 3D yarns as done in [45] for the standard virtual location
method. For the application we have in mind (heat and tracer transfer), a 3D
yarn is not required. Hence, we only present how a 2D grid can be constructed
from the generated cross-sections. All algorithms presented are available in
the STICK-toolkit1.

2.4.1 Conventional approach

The standard algorithm used to create a 2D yarn structure is the “virtual
location method” (VLM). It has been developed by [19], and has been applied
to generate the structure of the yarn cross-section [20, 44, 42]. “Virtual Location”
(VL) stands for a cell in a yarn cross-section which might be occupied by a
fiber. In this method, VLs are generated first, then fibers are assigned a VL.
In this way the optimal packing is determined first via VLs, next the actual
yarn-fiber layout is determined. Usually, for simplification, it is assumed that
the diameter DVL of each VL remains constant and equal to DVL = Dav

f + σf ,
where Dav

f is the average diameter of the fibers and σf the mean deviation of
the fiber diameter. The total number of VLs equals at least the number of fibers.
The location of a fiber within a VL is random. Often, it is assumed that the
shape of the fibers in the cross-section, and hence in the VL, is elliptical. How
many VLs contain fibers, depends on the fiber-distribution probability p(r) or
p(r, θ), with r the radius of each ring zone from the center of the yarn and θ

the angle of each location in polar coordinates. Three types of models that use

1See http://gitorious.org/stickproject
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VLs are considered: “one fiber-one location“, “one fiber-several locations” and
“ring configuration model”. In general, only the last one is used, as it gives the
best results.

(a) (b)

Figure 2.7: (a) normal (“non-shifted”) ring configuration
as used in VLM; (b)“shifted” ring configuration where
the central zone has ’shifting’ value ∆dshift = Rf/2

In this ring configuration model, the yarn cross-section is divided into
several ring zones, see Fig. 2.7(a), [19, 20]. All of them have the same width
h = DVL and the outer radii Rj of these zones are

Rj = h/2 + jh; j = 0,1, . . . , nz,

where nz is chosen so that Rnz is near the imposed yarn radius Ry .
Each ring zone is filled up with VLs. The number of virtual locations within

any jth zone does not depend on the diameter of the VLs and is calculated as

M0 = 1, Mj = b2πjc, 1 ≤ j ≤ nz,

where bxc is the greatest integer less than or equal to x.
To generate a yarn-fiber layout according to this conventional approach,

the following input data is required:

1. fiber-dimension parameters, namely, Rmax
f , Rmin

f , Rav
f and σf : the maxi-

mum, minimum and average radius of the fibers, and mean deviation of
the fiber diameter, respectively;

2. Ry , the yarn radius;

3. Nf ,the total number of fibers in the cross-section;
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4. pVL(r, θ), the VL fiber-distribution probability over the yarn cross-section
in polar coordinates.

Here, pVL(r, θ) is the probability that a VL at position (r, θ) contains a fiber.
This probability can indirectly be obtained from measurements. The general
algorithm then consists of the following steps:

1. divide the yarn domain (a disc) in ring zones;

2. construct VLs in every ring zone;

3. determine those VL that are occupied by fibers in accordance with the
VL fiber-distribution probability pVL(r,θ) or pVL(r). For example, in [44],
the following distribution is used

pVL(r) = (1− ε)
{

exp(1)− exp(r/Ry)

exp(1)− 1

}β
+ ε, r ∈ (0,Ry), (2.10)

where β and ε are parameters that are fitted to experimental data; and

4. for every occupied VL in the yarn cross-section, define the dimensions of
the occupying fiber and locate them randomly within the VL.

See Fig. 2.8 for the typical result of such a computation. The advantage of
this algorithm is that by using VLs, one can quickly create fiber-yarn layouts
with the typical ring structure that satisfy the obtained virtual-location fiber-
distribution, pVL(r,θ) or pVL(r). Other methods have difficulty with this, and
several trials are needed to achieve a correct realization.

2.4.2 New approach: Extended VLM

The conventional approach has some shortcomings. To start with, there is the
regularity seen in Fig. 2.8, which does not match experimentally retrieved data
of yarn cross-sections. Secondly, many applications deal with blended yarns,
containing for example both cotton and polyester fibers. Therefore a method
that is able to generate yarn-fiber layouts with different fiber types, is needed.
To resolve both issues, we present an extension to the VLM.

Area fraction. The first important change is that we drop the requirement
of a VL fiber-distribution probability. Instead, we use the more natural area
fraction, fA(r,θ). This function expresses how much area at position (r,θ) will
be fiber area. For every type of fiber present in a yarn cross-section the fraction
can be determined as follows. One obtains several images of cross-sections of
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Figure 2.8: Fiber distribution in virtual locations con-
structed with the standard algorithm

the yarn under consideration. The images are divided in zones, and per zone
the fraction of fiber area is determined by

f iAj =
Aij,f
Aj

. (2.11)

Here, Aij,f indicates the average over the images of the area of fibers of type i in
the jth zone; Aj is the total area of the jth zone. We call f iAj the area fraction of
fibers of type i in the jth zone. Then, the discrete values of f iAj are interpolated
to obtain a continuous function f iA(r, θ). Note that∫ 2π

0

∫ Ry

0

f iA(r,θ) rdrdθ = Aif ≈ N i
fπR

i
f

2
,

with Aif the total fiber area for fiber type i, and N i
f the total number of fibers of

type i, which have average radius Rif .
The above construction of the area fraction from images can be automatized

using image recognition software. The area fraction is useful as it contains all
information of the production method used to create the yarn. The processes
of yarn twist, fiber movement, yarn deformation, etc. would need to be con-
sidered if one would like to determine the area fraction from first principles.
Using images of the final resulting yarn, this information is not needed. We
now show an example of typical area fractions.
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Example. Consider two types of yarns as also given in [44]: filament yarn
and ring spun yarn. Note that there is a single fiber type, and that the fibers are
circular. Here, we haveRy = 0.83mm,Rf = 0.0295mm and as number of fibers
N f
f = 262 for the filament and N rs

f = 193 for the ring spun yarn. Analyzing the
images of these yarns, we can determine the area fraction function. We obtain

f f
A (u) = 5.88u4 − 12.97u3 + 8.23u2 − 1.74u+ 0.60,

f rs
A (u) = 1.05u4 − 2.24u3 + 0.87u2 − 0.11u+ 0.42,

with u = r
Ry

, u ∈ (0,1), and f f
A (u), f rs

A (u) being the area fraction functions for

a filament and a ring spun yarn. We have indeed that 2πR2
y

∫ 1

0
ffA(u)udu =

(a) (b)

(c) (d)

Figure 2.9: (a) Typical cross-section for a filament yarn
with 262 fibers; (b) Typical cross-section for a ring spun
yarn with 193 fibers; (c) The area fraction function for
fibers in the filament yarn; (d) The area fraction function
for fibers in the ring spun yarn

1.027Ry ≈ N̄ f
fπR

2
f . We have |N f

f − N̄ f
f | < 0.02 and |N rs

f − N̄ rs
f | < 0.02. Typical
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fiber-yarn layouts for these yarns are given in Fig. 2.9(a) & 2.9(b), with the
area fraction function given in Fig. 2.9(c) & 2.9(d). It is clear that the different
mechanical processes to create the yarns give rise to qualitatively different fiber
area fractions.

Here, and in the following, we use circular fibers. This is for simplicity
reason, only. The extension to elliptical fibers (as they arise also due to twisting)
can be done similarly as [44] did for the standard VLM.

Combining layouts. The second important change is to combine several
standard VL setups. This will allow blends instead of only single fiber setups.
With this technique, we will also be able to generate more realistic yarn cross-
sections for yarns with a single fiber type (less regularity as compared to the
VLM).

In our approach, we use a VL size which is based on the fiber size of the
fiber under consideration in the blend. We consider blends with Nt fiber types.
Thus, for instance, a cotton-polyester blend has Nt = 2. When necessary a
super index is used to indicate the fiber type, e.g. f1

A(r,θ) for the area fraction
of fiber type 1. VLs are used to generate a good start structure satisfying the
area fraction fA. For each fiber type, the cross-section of the yarn is divided
into several ring zones containing VLs, see Fig. 2.7(a). This process is repeated
as many times as the number of fiber types in the blend. The VLs of a specific
fiber type have constant radius

RiVL = (1 + β)Rif , i = 1, . . . ,Nt,

whereRif is the mean radius of each fiber type and β is a small non-touch factor
which prevents most fibers touching each other (it allows some extra freedom
to place the actual fiber in the VL).

The amount of VLs that are filled with fibers in each ring zone k, viz N i
f,k,

is determined by the area fraction f iA(r,θ). Fibers are added from the center to
the yarn radius. For example, for a radially dependent fraction, the number of
fibers in the previous ring zones is

∑j−1
k=0N

i
f,k = N i

f,0→j−1. Therefore, in ring
zone j

Aif,j =

∫ 2π

0

∫ Rj

0

f iA(r,θ)r drdθ −N i
f,0→j−1π(Rif )2, N i

f,j =

⌊
Aif,j
π(Rif )2

⌋
,

(2.12)
whereRif is the mean value of the radius of the fiber of type i, andRj , as before,
is the outer radius of the virtual zone. The integral in (2.12) is computed with
the trapezium rule (as fA itself is determined numerically from experiments).

Once we determined how many fibers are in each ring zone, the fibers for
each ring zone are distributed to the VLs in the ring zone by using a uniform
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distribution function. Apart from the fact that this procedure uses an area
fraction, the result per fiber type will be the same as the standard VLM, so a
high regularity is obtained.

To avoid this typical regularity resulting from the conventional VLM, we
also construct a shifted VL configuration for every fiber type, and repeat the
procedure to determine the occupied VLs. The shifted configuration only
differs from the normal one in that the central ring zone for each kind of fiber
is shifted ∆dshift = γRif , 0 < γ < 1, where ∆dshift is the shifting value, and γ

the shifting coefficient. For our computations we use γ = 1/2. As a result, both
the ring zones and the VLs in the domain have new positions, see Fig. 2.7(b).
Consequently, for each fiber type, there is the normal VL configuration and the
shifted one, Fig. 2.7.

The construction of a shifted version of the VLM is a crucial step to allow for
fast generation of yarn-fiber layouts that satisfy the given area fraction f iA. The
two configurations have 2N i

f fibers per fiber type i. The two VLM realizations
are merged so that the final result still satisfies f iA and has N i

f fibers in the
domain: we randomly take N i

f,j/2 from each jth ring zone of the “non-shifted“
and “shifted“ configurations.

Having the correct amount of fibers per fiber type, we merge the different
fiber type configurations to a single layout. In the case of several fiber types
(blends), but also as a consequence of the shifted ring zone, several fibers will
overlap. To remove this overlap, an iteration scheme based on an induced
movement is used. This induced movement is explained in details in Section
2.4.3. It’s main characteristic is that it leaves the area fraction function largely
unchanged. The result of this step is the final yarn-fiber layout. In Section
2.4.5 it is shown that after removing the overlap, the layout indeed satisfies the
original fiber area fraction function. As we can verify that a generated layout
satisfies the area fraction within preset margins, it is straightforward to reject a
layout that does not satisfy this requirement, and start again. In our experience,
this is seldom needed.

This extended VLM requires as input data:

1. The number of fiber types Nt, the fiber-dimension parameters, and the
number of fibers N i

f in the yarn cross-section per fiber type i, with total
number of fibers Nf =

∑Nt
i N i

f and blend percentage P if = N i
f/Nf ;

2. Ry , the yarn radius;

3. The fiber area fraction f iA(r,θ) per fiber type i in polar coordinates;

4. The shifting coefficient γ.

The Extended VLM consists of the following steps:
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1. Divide the yarn domain (a disk) per fiber type in ring zones for normal
VLs and shifted VLs.

2. Construct VLs in every constructed ring zone (a configuration).

3. Determine per configuration those VLs that are occupied by fibers in
accordance with the fiber area fraction function f iA(r,θ).

4. Merge the normal and shifted VL in accordance with the fiber fraction
f iA(r,θ) by making the sum of fibers’ area from the normal and shifted
VL up to the jth ring zone equal to Aif,j from (2.12).

5. For every selected occupied VL, define the dimensions of the occupying
fiber and locate them randomly within the VL.

6. Merge all the different configurations to one single yarn-fiber layout.
Thus, we end up with Nf fibers in a blended yarn cross-section.

7. Remove all the overlappings between the fibers in the domain using the
induced movement.

8. Calculate the resulting area fraction. If this is in agreement with the given
f iA(r,θ), retain the final result, otherwise reject it.

We now present the scheme to remove the overlap and show that this scheme
is a valid approach leading to acceptable fiber-yarn layouts.

2.4.3 Removing Overlap

Merging configurations generates overlap. There is no overlap in the real
structure of a yarn, so all the overlap in the cross-section domain must be
removed. During this step VLs are of no importance since we are working with
representations of real fibers. For the sake of clarity, we consider here circular
fibers, that resemble the VLs in which they are placed. In case of non circular
fibers, it is best to use a circular representation (or another geometrical shape
that is easy to calculate overlap with) of the fiber for this step, and only at the
end move back to the actual form of the fibers: ellipsoid fibers, or triangular
ones, ...

Let there be Nf circular fibers with radii Rnf , n = 1, . . . ,Nf . We set the
origin of the XY -axes at the center of the yarn. The center of the n-th fiber is
denoted by the vector un = (xn,yn). Given two fibers n and m, the Eudiclean
distance between them is denoted by

Dmn = ‖un − um‖. (2.13)
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Figure 2.10: Three possible positions between fibers in
the yarn domain

Three situations may occur: Dmn = 0, i.e. total overlap; 0 < Dmn < Rmf +Rnf ,
i.e. partial overlap; and Dmn ≥ Rmf +Rnf , i.e. no overlap, see Fig. 2.10.

To determine whether the fibers overlap, a minimum distance between two
fibers, denoted as Dreq

mn, is defined by

Dreq
mn = Rnf +Rmf .

At the same time the condition

Ry ≥ Rmf +Dm
c ,

guarantees that all fibers are inside the yarn domain, hereDm
c being the distance

between the center of fiber m and the center of the yarn. As the center of the
yarn is the origin, Dm

c = ‖um‖.
The algorithm to remove the overlap consists of a loop with the following

steps:

1. All the distances Dmn, m,n = 1, . . . ,Nf , are computed using (2.13). One
determines which fibers overlap. This can be done efficiently by a vector-
ized computation (or even parallelized as they are independent computa-
tions).

2. The required movement, needed to have the situation of no overlap, is
computed as

∆Dmn = Dreq
mn −Dmn > 0,

and the vector, along which the movement should occur, is umn = un −
um. Hence, the needed movement required is

∆umn = ∆Dmn
umn
‖umn‖

. (2.14)
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3. It is necessary to divide (2.14) over the two fibers. We write the induced
movement of fiber m under fiber n as ∆unm. Hence,

∆umn = ∆umn −∆unm.

The minus sign is needed because the two fibers should move in opposite
directions. As we consider different fiber types with different radii, it
makes sense to move the smaller fiber more then the larger one. This is
a consequence of the fact that if we move the larger fiber, there is more
chance of creating new overlap with other fibers, Fig. 2.11. Therefore, we
impose the relationship

Rmf ∆unm = −Rnf∆umn . (2.15)

This shows the correct limiting behavior that, for an infinitely small
fiber, all movement would be assigned to this fiber. From (2.15) we can
eliminate one of the movements as,

∆umn = α∆unm, α = −
Rmf
Rnf

. (2.16)

From (2.14)-(2.16) we can calculate the movement value for the mth fiber,

∆unm =
Dmn −D

req
mn

Rmf +Rnf
Rnf

umn
‖umn‖.

4. The previous step is done for all overlapping fiber pairs. At the end, a
new location u

′
m for every fiber is calculated from the original location by

u
′
m = um + (1 + ε)

Nov∑
k=1

∆ukm,

where Nov indicates the indexes of the overlapping fibers. The parameter
ε is a random value, which is added to avoid repetitive oscillations in the
movement. We take ε ∈ (0.0, 0.01).

5. If the location of the fiber moves outside of the yarn domain, it needs to
be moved back inside. This is achieved as follows, see Fig. 2.12. Define
the distance between the yarn boundary and the outermost boundary of
the mth fiber by

∆Dm
y/f = (Rmf +Dm

c )−Ry,

If ∆Dm
y/f > 0, the fiber is outside of the domain. If this is the case, the

fiber should be moved by

∆uym = (−∆Dm
y/f )

um
Dm
c

.
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Figure 2.11: From overlap to non-overlap

Figure 2.12: Move a fiber back into the domain of the
yarn

Hence the new position is

u′m = um + (1 + ε)∆uym.

6. The induced movement is stopped when no fibers overlap anymore and
no fibers are outside of the yarn domain, or when the number of iterations
in this step exceeds a preset maximum value.

In Section 2.4.5, the advantage of the above procedure is discussed. We
show that the movement is localized around the original fiber position, and
does not perturb the area fraction. Hence, the realization of a yarn layout
still satisfies the preset area fraction after the induced movement, and the
computational time is reasonable. The preset maximum number of iterations
is normally only reached when wrong initial data is given, for example more
fibers than what can fit in the radius domain. As an alternative to stopping the
iterations, one can continue the iteration but without the step that limits the
positions to the inside of the yarn radius.
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2.4.4 Results

The main result we want to verify is that the generated fiber-yarn layouts
satisfy the originally computed area fraction we started with. We do this
mathematically by determining the area fraction for a generated layout and
by computing the difference with the original one. We can also define an error
in terms of the difference with the original area fraction. A low error then
indicates a correct fiber-yarn construction.

Figure 2.13: Original area fraction for a yarn with one
fiber type (dashed line) and the area fraction as box plots
from layouts generated with the Extended VLM (dots
indicate the mean values)

2.4.5 Satisfying a given area fraction

Satisfying the area fraction function of yarn with a single fiber type

We consider a yarn with one fiber type. The result of the yarn-fiber layout
should satisfy a given fiber area fraction. We consider the fiber-distribution
probability, Eq. (2.10), used in the standard VLM. Though this is not directly
related to the area fraction, an area fraction function can be fitted to the obtained
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layout. We consider a yarn with Ry = 0.196mm, Nt = 1, R1
f = 0.014mm, and

Figure 2.14: The irregular fiber-yarn layout obtained
with the Extended VLM

with the number of fibers being Nf = N1
f = 144. We obtain

f1
A(r) = 32.91r5 − 77.29r4 + 59.14r3 − 16.24r2 + 0.73r + 0.75.

The Extended VLM is applied and the results are depicted in Fig. 2.13 and
Fig. 2.14. To compare the generated layout with the given area fraction, we
divided the yarn in 5 ring zones Am, and computed the discrete fiber area
fraction, f̄Am , in that zone with 10 realizations, according to equation (2.11).
This gives 5 computed points and box plots, which are shown in Fig. 2.13
together with the area fraction.

The result of the Extended VLM matches the area fraction function of the
yarn layout. The Extended VLM can generate the fiber-yarn layout satisfying
the fiber distribution and nevertheless has the irregularity of the layout, as seen
from experiments, Fig. 2.14.

Satisfying the area fraction function of a blend

To test a blended fiber-yarn layout, a polyester-cotton blend is used. We re-
trieved the cross-section of a yarn by means of a microtome. To this end a fabric
was embedded in a resin. A typical result can be seen in Figs. 2.15(a), 2.15(b).
Based on these images, the parameters of the yarn have been determined, see
Table 2.1.
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(a)

(b) (c)

(d) (e)

Figure 2.15: Comparison between the real yarn cross-
section and three different realizations generated from
our simulations
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Table 2.1: Data of a cotton-polyester blend yarn

Parameters Value

Yarn diameter 0.0273 cm

Number of polyester fibers N1
f 74

Number of cotton fibers N2
f 70

Mean radius polyester R1
f 0.00517 mm

Mean radius cotton R2
f 0.00551 mm

Standard deviation polyester radius 0.00074 mm

Standard deviation cotton radius 0.00120 mm

The cotton is approximated as circles. As this is a blend with two fiber
types, two area fraction functions have been computed based upon the images
of the cross sections:

f1
A(r) = −7.03r4 + 13.22r3 − 8.34r2 + 2.16r + 0.004,

f2
A(r) = 1.13r4 − 4.14r3 + 4.39r2 − 1.91r + 0.53.

Based on this, we generate yarn-fiber layouts using the Extended VLM .
The results are given in Fig. 2.16, where the area fraction function is given as a
dashed line, and the points represent again numerically computed values for
the area fraction, obtained by dividing the generated layouts in 5 ring zones.
They are the mean values computed from 10 realizations. Each box plot shows
the median and standard deviation of the area fraction from 10 realizations.
It can be seen that for this blend the area fractions from the simulated layout
match well the given area fraction function for each kind of fiber. The examples
which keep the area fraction characteristics and the natural irregularity of
the yarn layout, corresponding to the microtome experiment Fig. 2.15(b), are
shown in Figs. 2.15(c), 2.15(d) and 2.15(e).

Although the results above demonstrate that the Extended VLM works very
well for this specific blend, the mean radii of the two kinds of fibers are close.
Other cases are considered for further testing. First, we increase the difference
between the fibers’ radii, so that R1

f = 3R2
f , see Fig. 2.17. The comparison of

the original and obtained area fraction function is given in Fig. 2.18. We can
conclude that again the generated yarn layouts satisfy the given area fraction.

As a third test, we generate a very dense yarn layout. The resulting layout
satisfies the original area function, and is given in Fig. 2.19. There is no difficulty
for the Extended VLM to obtain this layout, while at the same time the highly
regular result of the standard VLM is not visible.
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(a)

(b)

Figure 2.16: Comparison between the original (dashed
line) and via the Extended VLM obtained area fraction
functions for fiber type 1 and 2 (box plots, dots)

2.4.6 Validation of induced movement

From Section 2.4.5 it is clear that the presented induced movement algorithm
removes the overlap, and does not disturb the area fraction function of the final
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Figure 2.17: A yarn layout for fiber type radii that satisfy
Rmf /R

n
f = 3.

Table 2.2: The number of iterations for different
α values (Two fiber types)

α value Minimum Maximum Average

α = − 1
2 112 171 144

α = −1 55 71 62

α = −Rmf /Rnf 130 247 194

result. We now show that other movement schemes do disturb this function.
In Fig. 2.20 we present a typical result of the algorithm. The start layout is
given in Fig. 2.20(a), with apparent overlap. The final configuration is given in
Fig. 2.20(b), which retains the qualitative features of the original, but without
the overlap, resulting in a realistic layout.

The distribution of the induced movement over the two fibers, (2.15-2.16),
is very important to obtain the correct layout. In Table 2.2 the different number
of iterations, needed for different values of α, are given. We test the Extended
VLM with

1. α = −R
m
f

Rnf
. Each of the two fibers do a proportional movement, which

depends on the radii ratio;

2. α = − 1
2 . Each of the two fibers do half of the required movement;

3. α = −1 . Both fibers do the full movement.
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(a)

(b)

Figure 2.18: Comparison between the original area frac-
tion functions (dashed line) and the (from the Extended
VLM) obtained numerical area fraction for a blend with
fiber type radii that satisfy R1

f/R
2
f = 3 (points)

Note that in the second case the overlap is over-corrected. We consider a
yarn with two types of fibers, Nt = 2. The other parameters are as in Table 2.1.
We repeat the layout generation 10 times, and notice the number of iterations
needed to remove the overlap, see Table 2.2. From Table 2.2, it is obvious that
α = −1 requires the least number of iterations, followed by α = − 1

2 . This

would suggest that the proposed choice of α = −R
m
f

Rnf
is the worst. However,

one also has to determine whether the obtained layouts satisfy the given area
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Figure 2.19: Example of a very dense fiber-yarn layout

(a) (b)

Figure 2.20: (a) Fiber distribution with overlap created
with Extended VLM; (b) Result after removing the over-
lap

fraction function. As expected, α = −R
m
f

Rnf
has the smallest relative error value,

see Fig. 2.21 for both fiber types. The double movement obtained with α = −1

gives the worst result. Here, the relative error is defined as:

εnAm =

∣∣∣∣∣ f̄nAm − fnA(Rm)

fnA(Rm)

∣∣∣∣∣
2

,

where n is the fiber type and m indicates a ring zone in the yarn domain. So
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we compare the discrete values according to equation (2.11) with the values of
the area fraction function at the radii of the mth ring, Rm. We conclude that, to
maintain the original area fraction, our method should be chosen to remove
the overlap between fibers, although it requires a higher number of iterations.

(a)

Figure 2.21: Analysis of the average relative error for
α = −R

m
f

Rnf
, α = − 1

2 and α = −1.0 in Eq. 2.16 (a) for
cotton and (b) polyester

2.4.7 Conclusion

We presented an extension of the VLM that can produce realistic fiber-yarn
layouts, showing the irregularity observed in experiments. The method is fast,
since it does not use a packing algorithm. Instead it uses merged results of
the standard VLM (using it twice per fiber type), and a step to remove the
overlap, without disturbing the fiber area fraction. The numerical experiments
presented confirm the validity of the approach. The resulting 2D fiber-yarn lay-
outs, can be used to construct 3D yarns, or to perform a deformation procedure,
or to construct a realistic grid for the yarn scale of a multiscale mass transfer
model. This last result is what is used in our python code to solve the yarn level
model using a finite element method. A irregular mesh is constructed using
the extended VLM for a blend of cotton and polyester. A colleague introduced
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(b)

Figure 2.21: Analysis of the average relative error for
α = −R

m
f

Rnf
, α = − 1

2 and α = −1.0 in Eq. 2.16 (a) for
cotton and (b) polyester (continued)

the aforementioned elliptic fibers in the python code giving Fig. 2.22(a) as
an example and an example of a finite element mesh in Fig. 2.22(b). As an

(a) Extended VLM generation of fiber-
yarn layout

(b) Constructed mesh for a fiber-
yarn layout

Figure 2.22: Construction of a suitable mesh for the
finite element method
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example we close this section with Fig. 2.23, where an example is shown of the
calculations for the diffusion problem in a 2D yarn domain consisting of only
circular fibers using the STICK toolbox, see section 2.8

Figure 2.23: Solution of the diffusion problem for a 2D
yarn domain with circular fibers using the constructed
mesh corresponding to the extended VLM

2.5 Upscaling to the macro level

To upscale to the macro-level model of the total fabric the volume averaging
technique can be used. Another way of upscaling is the overlapping domain
decomposition technique. Therefor the original domain [0,Ry] is extended with
an overlapping zone Ωo to the new domain [Ry, Ry + Ωo] where the PDE (2.8)
is slightly adapted with an extra sink term to

ε
∂Cy(r,t)

∂t
=

1

r

∂

∂r

(
εr
Dy

τy

∂Cy(r,t)

∂r

)
+ Γin(r,t)− Γout(t,Ωo), (2.17)

where the diffusive flux to the outside is replaced with a homogeneous Neu-
mann BC

∂Cy
∂r

(Ry + Ωo) = 0.

The sink term Γout(t,Ωo) is the amount of AI that is removed from the meso-
scale due to diffusion to the macro-level, see section 2.6.
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2.6 Scale of the Net

2.6.1 Practical application within the NOBUG project

For the purpose of the NOBUG project we let us inspire by section 1.3.3 where
only two levels were considered, a fiber level and a fabric level. For a densely
woven or knitted fabric, e.g. a impregnated T-shirt, these two levels are appro-
priate. If we assume two coating layers on the fibers, one with DEET as AI, and
one with permethrin as AI the governing equations for a textile fabric are

∂(CD(εg + εl))

∂t
= −∂(ugCDεg)

∂x
+
∂

∂x

(
D?
D

τD

∂(CD(εg + εl))

∂x

)
−Γlg,D+εfξ2Γf,D,

∂(Cpεl)

∂t
=

∂

∂x

(
Dpεl
τp

∂(Cpεl)

∂x

)
+ ξ2Γf,p,

where
D?
D = εgD

g
D + εlD

l
D,

with Dg
D and Dl

D are the diffusion coefficients in gas and liquid, respectively.
Γlg,D is the evaporation rate of DEET from the fabric. Γf,D and Γf,p are the
sorption rates of respectively DEET and permethrin of the fibers covered by
liquid water. These last two terms only exist if liquid is present, for example
during washing. Considering what is valid for water and the sorption rate
Γf in the governing equations of section 1.3.3 (where the volume averaging
method of Whitaker) is used, we came to the following reasoning to find the
sorption rates of DEET and permethrin.

We first solve an equation on fiber level for both AI’s

∂C ′f
∂t

=
1

ρ

∂

∂ρ

(
ρDf

∂C ′f
∂ρ

)
, Rf ≤ ρ ≤ R.

After that we get a solution C ′f (ρ,t) and use the volume averaging method
to get the overall concentration, only depending on time, by integrating out
the independent variable ρ.

Cf (t) =
1

V

∫ R

Rf

C ′f (ρ,t)ρ dρ,

where

V =

∫ R

Rf

ρ dρ =
1

2
(R2 −R2

f ).

Once we know this Cf (t) we can differentiate to get

Γf (t) =
∂Cf (t)

∂t
.
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If we take under consideration the number of fibers in the fabric we now
can calculate the total sorption rate of the fabric as εfξ2Γf (t).

In the above reasoning the x-dependence was left out, because of the sim-
plification assumption that DEET and permethrin are evenly distributed on
the fabric. Another assumption could be that there is an x-dependence because
of the method used to construct the treated fabric. The active ingredient (AI)
is applied on the fabric by soaking the total fabric in a bath. For multilayer
coating this is done in several steps. The first bath is filled with water, the first
AI to apply on the fabric and the polymer binder of this first AI. This can for
example be DEET and polyacrylate. Then the fabric is squeezed, so most of
the water is extruded. Next a heat treatment follows to remove the remaining
water. Subsequently the fabric gets a next bath filled with water, the second
AI and the polymer binder for this AI. For example the AI of the second layer
can be permethrin and its polymer binder silicone elastomer. Then the fabric is
again squeezed. A extra layer of just polymer without an AI can be applied
for strength. Afterwards the fabric is dried. The water evaporates completely
and only the separate layers with polymer binders and the AI’s remain. In
the drying process a crosslinking between the polymers develops, which gives
extra strength to the fabric.
It is also possible to treat the yarns on a bobbin instead of the whole fabric, but
the waste water cannot be disposed as easily as in the other process.
By treating the fabric it is possible that not all fibers are treated evenly. In
the average coating however the measured concentration of permethrin is
1500 mg /m2 of AI. This way there would be an x-dependence, the starting
concentration could be higher on the outer sides of the fabric and lower on the
inside of the fabric.

For DEET we can also consider the evaporation rate Γlg from the fabric. We
can compute this rate using the Hertz-Knudsen equation [59, 55] for condensa-
tion and evaporation (molar rate),

Γlg,D = − E

Rf

√
(1− ε)εf
2πR̄M

(
P ? − Pv√

Ts

)
,

where E is the evaporation coefficient, R̄ is the universal gas constant and Ts is
the surface temperature. P ? is the saturation pressure, depending on time and
can be determined from experimental measurements. The vapor pressure Pv is
given by

Pv = R̄CvT.

If we know what the evaporative flux of DEET is for one fiber, we might be
able to calculate the total evaporation rate Γf of the fabric as

Γlg,D = εf∂ru1(R,t) = εfαu1(R,t),
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where u1 is defined as in section 2.2.3.
The inverse problem to solve here is what should be the initial concentration

in a fabric coating on the level of the fiber so that on the level of the fabric we
have the threshold concentration of 4 mg /m2 needed to repel moquitoes. Each
of the AI’s used here can be substituted by any other chemical once we know
the physical and chemical properties of the substance used.

If we concentrate on an open net structured fabric rather than a densely
woven fabric an intermediate level is needed in the model. The yarn level
is inserted the way mentioned in the previous section. The final model then
consists of three levels with on each level a diffusion model to be solved that is
coupled to the other two levels and where an upscaling technique is used to
update the concentration of the AI from one level to another.

2.6.2 Analytical solution: Cauchy problem

For a scrim like structure, e.g. a treated bednet we can consider a model using
the assumption that the yarns are infinitely long and the scrim is infinitely big
for an observer close enough. The scrim can be visualized as a rectangular grid
in 2D, with holes of width dW and height dH . In 3D space we thus consider an
infinite scrim in the Y Z plane, with an observer in (x0,0,0), see Fig. 2.24 and
the Cauchy problem for −∞ < x,y,z < +∞,

In 3D space we consider the Cauchy problem for −∞ < x,y,z < +∞,

∂C

∂t
(x,y,z,t) = Dg∆C + Φ(x,y,z,t)

= Dg

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
+ Φ(x,y,z,t), (2.18)

with initial condition
C = f(x,y,z) at t = 0.

Here the source term Φ(x,y,z,t) is the amount of AI coming out of the yarn at
position (x,y,z) at time t.

Due to symmetry, we can consider the XY plane for the vertical yarns, and
the XZ plane for the horizontal yarn. Doing so one derivative becomes zero
each time and the problem can be solved in 2D instead of 3D, i.e. separately for
vertical and horizontal yarns.

For a vertical yarn at position y = yv the amount of AI at t = 0 is taken to
be the delta function scaled with the flux coming out of a yarn cross section,
denoted by Fyv (0). Using the symmetry we know that Czz = 0. We then arrive
at a 2D Cauchy problem of the form

∂C

∂t
(x,y,t) = Dg

(
∂2C

∂x2
+
∂2C

∂y2

)
+ Φ(x,y,t), −∞ < x,y < +∞,
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Y

Z

X

Figure 2.24: The observer at distance x0 from the scrim

subject to
C(x,y,0) = Fyv (0)δ(x)δ(y − yv),

where Dg is the diffusion coefficient of the compound in air and we assume a
source at (0,yv). The source term is

Φ(x,y,t) = Fyv (t)δ(x)δ(y − yv),

where Fyv (t) is the amount of AI coming from a cross section of the yarn at
y = yv at time t.

For a horizontal yarn at position z = zh a similar problem and initial
condition holds

∂C

∂t
(x,z,t) = Dg

(
∂2C

∂x2
+
∂2C

∂z2

)
+ Φ(x,z,t), −∞ < x,z < +∞,

subject to
C(x,z,0) = Fzh(0)δ(x)δ(z − zh),

assuming a point source at (0,zh) and source term

Φ(x,z,t) = Fzh(t)δ(x)δ(z − zh).
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The solution of the general Cauchy problem for a vertical yarn is [40]

Cv(x,y,t) =

∫ +∞

−∞

∫ +∞

−∞
Fyv (0)δ(ξ)δ(η − yv)G(x,y,ξ,η,t) dξ dη

+

∫ t

0

∫ +∞

−∞

∫ +∞

−∞
Φ(ξ,η,τ)G(x,y,ξ,η,t− τ) dξ dη dτ ,

where the Green’s function is

G(x,y,ξ,η,t) =
1

4πDgt
exp

[
− (x− ξ)2 + (y − η)2

4Dgt

]
.

Further calculations lead to

Cv(x,y,t) =
Fyv (0)

4πDgt
exp

[
−x

2 + (y − yv)2

4Dgt

]
+

∫ t

0

Fyv (τ)

4πDg(t− τ)
exp

[
−x

2 + (y − yv)2

4Dg(t− τ)

]
dτ .

By discretizing the past time period [0,t] into N timesteps of length ∆t:
[0,1∆t, 2∆t, . . . ,

(k−1)∆t, k∆t, . . . , (N−1)∆t, t], we can calculate the last integral of the solution
(with integrandum I(τ)) as a sum∫ ∆t

0

I(τ) dτ +

∫ 2∆t

∆t

I(τ) dτ + · · ·+
∫ k∆t

(k−1)∆t

I(τ) dτ + · · ·+
∫ t

(N−1)∆t

I(τ) dτ .

We use the following estimation in each time interval for a given function g(t)∫ k∆t

(k−1)∆t

g(τ)Fyv (τ) dτ ≈ Fyv (k∆t)

∫ k∆t

(k−1)∆t

g(τ)dτ
not.
= Fyv,k∆t

∫ k∆t

(k−1)∆t

g(τ)dτ,

so we obtain∫ k∆t

(k−1)∆t

I(τ) dτ ≈ Fyv,k∆t

∫ k∆t

(k−1)∆t

1

4πDg(t− τ)
exp

[
−x

2 + (y − yv)2

4Dg(t− τ)

]
dτ

= −Fyv,k∆t

4πDg

[
E1

(
−x

2 + (y − yv)2

4Dg(τ − t)

)]k∆t

(k−1)∆t

,

where E1(·) is the exponential integral function defined by

E1(z) =

∫ +∞

z

e−t

t
dt.

75



The total solution for one vertical yarn at y = yv then is

Cv(x,y,t) =
Fyv (0)

4πDgt
exp

[
−x

2 + (y − yv)2

4Dgt

]
+

N∑
k=1

Fyv,k∆t

4πDg

[
E1

(
− x2 + (y − yv)2

4Dg((k − 1)∆t− t)

)
− E1

(
−x

2 + (y − yv)2

4Dg(k∆t− t)

)]
.

The solution of the general Cauchy problem for a horizontal yarn is [40]

C(x,z,t) =

∫ +∞

−∞

∫ +∞

−∞
Fyv (0)δ(ξ)δ(η − zh)G(x,y,ξ,η,t) dξ dη

+

∫ t

0

∫ +∞

−∞

∫ +∞

−∞
Φ(ξ,η,τ)G(x,z,ξ,η,t− τ) dξ dη dτ ,

where

G(x,z,ξ,η,t) =
1

4πDgt
exp

[
− (x− ξ)2 + (z − η)2

4Dgt

]
,

and Φ(x,z,t) as given above.

Following similar calculations as for the vertical yarn we find for a horizon-
tal yarn at z = zh

Ch(x,z,t) =
Fzh(0)

4πDgt
exp

[
−x

2 + (z − zh)2

4Dgt

]
+

N∑
k=1

Fzh,k∆t

4πDg

[
E1

(
− x2 + (z − zh)2

4Dg((k − 1)∆t− t)

)
− E1

(
−x

2 + (z − zh)2

4Dg(k∆t− t)

)]
.

We suppose that the yarns are on such distance from one another that they
do not influence each other. By doing so we can take the total solution of
problem (2.18) to be a superposition of the seperate solutuions for all vertical
and horizontal yarns. If we take the number of vertical and horizontal yarns
to be n and m respectively we get, with ynv the n’th vertical yarn, i.e. the yarn
with Cartesian equation y = ndW and zmh the m’th horizontal yarn, i.e. with
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Cartesian equation z = mdH ,

C(x,y,z,t)

=

∑
n

Cv(x,y,t) +

∑
m

Ch(x,z,t)

=

∑
n

{
Fynv (0)

4πDgt
exp

(
−x

2 + (y − ynv )2

4Dgt

)

+

N∑
k=1

Fynv ,k∆t

4πDg

[
E1

(
− x2 + (y − ynv )2

4Dg((k − 1)∆t− t)

)
− E1

(
−x

2 + (y − ynv )2

4Dg(k∆t− t)

)]}

+

∑
m

{
Fzmh (0)

4πDgt
exp

(
−x

2 + (z − zmh )2

4Dgt

)

+

N∑
k=1

Fzmh ,k∆t

4πDg

[
E1

(
− x2 + (z − zmh )2

4Dg((k − 1)∆t− t)

)
− E1

(
−x

2 + (z − zmh )2

4Dg(k∆t− t)

)]}
.

For an observer at position (x0,0,0) the amount of observed AI coming out
of the scrim will be, with V and H the set of all vertical and horizontal yarns,
resp.,

C(x0,0,0,t)

=
1

4πDg

+∞∑
n=−∞

{
FndW (0)

t
exp

(
−
r2
v,n

4Dgt

)

+

N∑
k=1

FndW ,k∆t

[
E1

(
−

r2
v,n

4Dg((k − 1)∆t− t)

)
− E1

(
−

r2
v,n

4Dg(k∆t− t)

)]}

+
1

4πDg

+∞∑
m=−∞

{
FmdH (0)

t
exp

(
−
r2
h,m

4Dgt

)

+

N∑
k=1

FmdH ,k∆t

[
E1

(
−

r2
h,m

4Dg((k − 1)∆t− t)

)
− E1

(
−

r2
h,m

4Dg(k∆t− t)

)]}
,
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which leads to

C(x0,0,0,t) =
1

4πDg

+∞∑
n=−∞

FndW (0)

t
exp

(
−
r2
v,n

4Dgt

)

+

N∑
k=1

FndW ,k∆t

∫ r2v,n
4Dg(k∆t−t)

r2v,n
4Dg((k−1)∆t−t)

e−u

u
du


+

1

4πDg

+∞∑
m=−∞

FmdH (0)

t
exp

(
−
r2
h,m

4Dgt

)

+

N∑
k=1

FmdH ,k∆t

∫ r2h,m
4Dg(k∆t−t)

r2
h,m

4Dg((k−1)∆t−t)

e−u

u
du

 ,

where r2
v,n = x2

0 + n2d2
W and r2

h,m = x2
0 + m2d2

H are the shortest distances to
the yarn in question, and where we used ynv = ndW and zmh = mdH .

If the horizontal en vertical yarns are of the same type this further simplifies
to

C(x0,0,0,t) =
1

4πDg

+∞∑
n=−∞

Fy(0)

t
exp

(
−
r2
v,n

4Dgt

)

+

N∑
k=1

Fy,k∆t

∫ r2v,n
4Dg(k∆t−t)

r2v,n
4Dg((k−1)∆t−t)

e−u

u
du


+

1

4πDg

+∞∑
m=−∞

Fy(0)

t
exp

(
−
r2
h,m

4Dgt

)

+

N∑
k=1

Fy,k∆t

∫ r2h,m
4Dg(k∆t−t)

r2
h,m

4Dg((k−1)∆t−t)

e−u

u
du

 ,

since the amount coming from a yarn is the same in each direction and at each
position.
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2.6.3 Numerical solution: Domain decomposition method

In the previous approach an analytical solution was given for the macro-level
model based on solving a Cauchy problem. Implementing these analytical
solutions though was unstable due to the need to cut-off the infinite series
arising in them. So a numerical analysis was asserted. This numerical method
is the overlapping domain decomposition method. As indicated in section 2.5,
we use an overlap zone to upscale from the meso-level to the fabric level.

L

W

H

(a) 3D room with scrim hanging in the middle

L
2

W

H

2Ry

(b) Scrim and overlap zone, half of
the 3D room

L
2

2Ry

Ry

Overlap zone

(c) 1D domain for fabric modeling

Figure 2.25: Simplification from a 3D room to a 1D
domain for fabric modeling via ODD

Here a room with dimensions L×W ×H is modelled with a net hanging
in the middle of the room, so at L2 , see Fig. 2.25. This can be reduced to a 1D
model. The domain under consideration is the interval [0,L2 ]. The yarn in the
net is modelled as a 1D cylindrical object over an extended domain [0,2Ry]

with two no flux-BC’s ∂rCy(0,t) = 0 and ∂rCy(2Ry,t) = 0, the way mentioned
in section 2.5. The mass coming from the yarn is going to the surrounding
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air of the yarn into the overlap zone [Ry, 2Ry]. The room model on its turn
runs over [Ry,

L
2 ], again with no flux-BC’s ∂xC (Ry,t) = 0 and ∂xC

(
L
2 ,t
)

= 0,
because no AI is leaving the room. The calculations made only serve for one
side of the net, but due to symmetry the other site behaves in the same way, so
we can predict the outcome for the whole room domain [0,L].

The room 1D diffusion equation is

∂tC = ∂x(D∂xC) + Γs(x,t),

with D the diffusion of the AI in air and Γs(x,t) the concentration per time unit
added/removed at x. To solve this differential equation the domain [0,L2 ] is
divided into smaller intervals of length ∆x and integrating over one cell gives

∂tCi =
fluxedgei+1

− fluxedgei

∆xi
+ Γs(∆xi),

where Γs(∆xi) is the concentration per time unit added to or removed from
the interval [xi,xi+1] and the fluxes are obtained via MOL.

We situate the overlap zone in the first cell for integration so there the source
term is corresponding to the amount of AI coming out of the yarns.

Now the yarn and fabric models will be solved alternately per time step,
using the outcome of one model as the source term for the other model.

Per time step tj the overlapping domain decomposition method exists of
three steps:

1. We solve the 1D yarn model, calculate the mass coming out of one yarn
using the above meso-level model with the sink term Γout(tj−1,Ωo) of
the previous time step and calculate the corresponding concentration by
dividing by the volume of a yarn cross-section πR2

y .

2. We solve the room model to obtain a new concentration value near a yarn.
For this model we use the mass released by one yarn to the overlap zone
in the first step which needs to be upscaled to a concentration source
per second per mm3 for all yarns in the scrim. To upscale we need to
calculate how many yarns are present in the scrim. Because we model
only half the room eventually everything should be multiplied by 2.

3. For the next time step, due to domain overlap, the BC is now homoge-
neous Neumann always. Then, we need to set a correct Γout(tj ,Ωo) on the
yarn level, so we need to downscale the mass calculated from the room
model in this time step to keep mass balance. The sink term Γout(tj ,Ωo)

for the yarn model is what was present in the overlap zone, so being
the mass removed from the yarns, approximated from the concentration
given by the solved room model, downscaled to one yarn and again
using a factor 2 as we model only half the room.
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2.7 The total three step model and discussion

On each time step one complete three step model is solved. Beginning with the
fiber level with all initial conditions and boundary concentrations set to zero.
Afterwards a yarn model is solved over a domain [0,2Ry], including an overlap
zone, with an upscaled source term Γin calculated via volume averaging of the
fiber results, a sink term Γout(t,Ωo) = 0 and with a homogeneous Neumann
BC. Next a fabric model is solved over a domain [Ry,

L
2 ] using a source term Γs

calculated from the upscaled yarn results in the overlap zone. In the next time
step we again begin by solving a fiber model, but now with adjusted initial
conditions en boundary concentrations, afterwards a yarn level model and a
fabric level model, and so on.

For the numerical scheme of the algorithm we make the distinction between
the radial coordinate of the fiber level, ρi, 1 ≤ i ≤ I and that of the yarn level,
rk, 1 ≤ k ≤ K.

In time step t1 we use the initial conditions and first solve the fiber system:


∂tCf (ρ,r,t)|ρ=ρi,r=rk,t=t1 = 1

ρi
∂ρ (ρDf∂ρCf (ρ,r,t))|ρ=ρi,r=rk,t=t1

Cf (ρi,rk,t0) = Cinit(rk)

Df∂ρCf (R,rk,t1) = 0

Df∂ρCf (Rf ,rk,t1) = −Sfhb→fCf (Rf ,rk,t0)

,

where per rk index i runs from 1 to l, to get Cf (ρi,rk,t1), 1 ≤ i ≤ I , and
1 ≤ k ≤ K. Cinit is the initial concentration of AI applied in the fiber coating
during fabrication.

Then we solve the yarn system:


ε ∂tCy(r,t)|r=rk,t=t1 = 1

rk
∂r′
(
εr
Dy
τy
∂rCy(r,t)

)∣∣∣
r=rk,t=t1

+ Γin(rk,t1)

Cy(rk,t0) = 0

∂rCy(0,t1) = 0

∂rCy(Ry,t1) = 0

,

to get Cy(rk,t1), for 1 ≤ k ≤ K.

Then we solve the fabric system:
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

∂tC(x,t)|x=xl,t=t1
= ∂x (D∂xC(x,t))|x=xl,t=t1

+ Γs(∆xl,t1)

C(xl,t0) = 0

∂xC(Ry,t1) = 0

∂xC
(
L
2 ,t1

)
= 0

Γs(∆x1,t1) = upscaled change in Cy(t1,Ωo)

,

to get C(xl,t1) for 1 ≤ l ≤ L.

For the next time steps tj , 2 ≤ j ≤ J the three systems are per time step:


∂tCf (ρ,r,t)|ρ=ρi,r=rk,t=tj = 1

ρi
∂ρ (ρDf∂ρCf (ρ,r,t))|ρ=ρi,r=rk,t=tj

Df∂ρCf (R,rk,tj) = 0

Df∂ρCf (Rf ,rk,tj) = −Sfhb→f (Cf (Rf ,rk,tj−1)− Cy(rk,tj−1))

·H (Cf (Rf ,rk,tj−1)− Cb,C∗(T )− Cy(rk,tj−1))

,

where per rk index i runs from 1 to l, to get Cf (ρi,rk,tj), 1 ≤ i ≤ I , and
1 ≤ k ≤ K.



ε ∂tCy(r,t)|r=rk,t=tj = 1
rk
∂r

(
εr
Dy
τy
∂rCy(r,t)

)∣∣∣
r=rk,t=tj

+Γin(rk,tj)− Γout(tj−1),

∂rCy(0,tj) = 0

∂rCy(2Ry,tj) = 0

Γout(tj−1) = downscaled change in C(tj−1,Ωo)

,

to get Cy(rk,tj), for 1 ≤ k ≤ K.


∂tC(x,t)|x=xl,t=tj

= ∂x (D∂xC(x,t))|x=xl,t=tj
+ Γs(∆xl,tj)

∂xC(Ry,tj) = 0

∂xC(L2 ,tj) = 0

Γs(∆x1,tj) = upscaled change in Cy(tj ,Ωo)

,

to get C(xl,tj) for 1 ≤ l ≤ L.

If we know C(xl,tj) for all 0 ≤ l ≤ L and 0 ≤ j ≤ J we can study the
concentration of AI in the air at a certain distance from the scrim.
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(a) Mass of the AI in the bed net

(b) Mass of the AI in the room

Figure 2.26: Mass of DEET diffusing to the outside from
a polymer coating on a fiber in a room with standard
dimensions

When simulating a closed room of length 5 m, width 3 m and height 2.1 m

for 100000 s and starting from an initial concentration of 0.9 · 103 µg
mm3 for the AI

DEET captured in one polymer coating on a cotton scrim placed in the middle
of the room we get the following results, presented in Figs. 2.26 and 2.27.
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(a) Concentration of AI at 5mm from the scrim

(b) Concentration of AI at 5mm from the scrim in the first 1000 seconds

Figure 2.27: Concentration of DEET diffusing to the
outside from a polymer coating on a fiber in a room
with standard dimensions at 5 mm and 500 mm from
the scrim
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(c) Concentration of AI at 500mm from the scrim

(d) Concentration of AI at 500mm from the scrim in the first 5000 seconds

Figure 2.27: Concentration of DEET diffusing to the
outside from a polymer coating on a fiber in a room
with standard dimensions at 5 mm and 500 mm from
the scrim (continued)
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Figure 2.28: The concentration and mass in the room
stays constant after the AI in the fiber coating is depleted

The mass of the AI in the scrim is dropping down, in the room it is increasing.
First the AI is diffusing to the surface of the polymer coating around the
fibers. Once the concentration in this coating is depleted the AI is diffusing
to the surrounding air until no mass is coming from the fibers any longer.
Since no ventilation is allowed concentration should go to a constant value or
the saturation concentration should be reached after a certain time. For the
application in mind the concentration is not yet depleted after 100000 s. For
illustrative purposes we have used a much smaller initial concentration and a
higher evaporation coefficient (which is not in accordance with the application)

86



to visualise this effect in Fig. 2.28.
By construction of our algorithm, the total mass remains constant during

simulation. The concentration at the given different positions (5mm, 500mm)
in the room increases and exceeds the threshold concentration for repellency
represented by the lower dashed line quickly enough to satisfy required stan-
dards. The higher dashed line represents the saturation concentration for the
AI used in the simulation.

2.8 STICK-toolbox

The three scale model of the previous section was implemented in python code.
The toolbox was named STICK, Sophisticated Textile Information Computing Kit
and is available at https://github.com/tinegoessens/stickproject.
To be able to run the stick.py code the following must be installed:

1. a terminal from which the code is run;

2. the latest Python distribution available at https://www.python.org/;

3. the mathematical packages:

(a) Numpy: a fundamental package for scientific computing with Python.
It contains, among other things, a powerful n-dimensional array
object, sophisticated (broadcasting) functions, tools for integrating
C/C++ and Fortran code, useful linear algebra, Fourier transform,
and random number capabilities;

(b) Scipy: a library that contains modules for optimization, linear al-
gebra, integration, interpolation, special functions, FFT, signal and
image processing, ODE solvers and other tasks common in science
and engineering;

(c) Fipy: an object oriented, PDE solver, written in python, based on a
standard finite volume approach;

(d) Pysparse: a fast sparse matrix library for Python. It provides several
sparse matrix storage formats and conversion methods. It also
implements a number of iterative solvers, preconditioners, and
interfaces to efficient factorization packages;

(e) scikits.odes: a module with ordinary differential equation and dif-
ferential algebraic equation solvers that can be found on https:

//github.com/bmcage/odes;

4. a plotting environment, e.g. matplotlib.
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To run the STICK code one needs to make initial files (inifile) containing
all information on the textile under consideration. An inifile should be made
for each level of the model, one for the fiber, one for the yarn and one with
the external room conditions where the textile product is present. For the fiber
the inifile contains the characteristics of the fiber used, e.g. Fig. 2.29. The yarn
inifiles contains the characteristics of the yarn in question and points to the
fiber inifile(s) of the fibers building up the yarn. The fabric inifile contains the
fabric’s and the room’s characteristics and points to the yarn inifile of the yarns
building up the total fabric.

In each of the inifiles a choice can be made for the used numerical method.
For the fiber model it is possible to choose from the FVM, including the Finite
Volume Method both with or without substitution of ur = w as mentioned in
section 2.2 making it possible to compare both in cpu-time and efficiency, with
the built-in FVM solver of Fipy or with the method of lines solver cvode. Next
it is possible to choose for the option SIMPLE, made possible for testing the
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Figure 2.29: Initial fiber file containing all fiber charac-
teristic as input for the STICK toolbox

code using a simple constant mass approximation.
If different time periods are given in each of the inifiles the time-period is set to
that of the fabric. For the yarn model it is possible to make a blend consisting of
more than one type of fiber by pointing to each of the inifiles of the fibers in the
blend. In fact every part registers the defaults for it’s settings by inheriting a
custom written ConfigManager, see Fig. 2.32. A configuration file hence acts as
a datastore of the user settings which is accessible everywhere via a singleton
type implementation: e.g. config.get(’fiber.radius_pure_fiber’).
The code is run through a terminal (no user interface was made, due to time

restraints and little programming skills) using the inifiles as input: e.g.
python stick.py fiber1d -i ∼/defaultfiber.ini,
python stick.py yarn2d -i ∼/defaultyarn.ini,
python stick.py room -i ∼/defaultfabric.ini.

The model one wants to run can be passed on the command line after calling
the stick.py program. One of the possibilities is fiber1d modeling the fiber
as in section 2.2. Using yarn1d or yarn2d depending on the requirement, a
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Figure 2.30: Initial yarn file containing all fiber and yarn
characteristic as input for the STICK toolbox

yarn can be modelled as a one-dimensional radial model as in section 2.3, or a
two-dimensional model with a specific yarn-fiber layout as in 2.4. Furthermore
there are the options fiberfabric where the mesolevel is neglected, and
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Figure 2.31: Initial fabric file containing all fabric, yarn
and fiber characteristic as input for the STICK toolbox

bednet modeling a room containing a complete fabric with a open structure
and exhibiting some environmental conditions as in 2.6.
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Figure 2.32: Part of the ConfigManager for the fiber
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Validation of the model with experimental
data and field testing

3.1 Validation of the model with experimental data

In collaboration with the Department of Organic Chemistry of Ghent University
some experimental test were done on the coated fabrics delivered by one of the
textile companies. A headspace analysis and a liquid extraction was carried
out to determine the release rate of DEET from the fabric, the saturated DEET
concentration in the air and the amount of AI on the fabric. These tests can be
used to estimate the real life values needed in the models discussed above and
a simulation of the release can be done and compared with the test results to
check for the correct behavior of the models. Firstly we will itemize some facts
about the textile substrate under consideration in the NOBUG project.

3.1.1 Textile properties, fact sheets

To make clear which product we are mathematical modeling we will first
summarize some properties of the used treated textile as provided by Utexbel
N.V., one of the research partners in the NO BUG Consortium and the Organic
Chemistry and Textile Department of Ghent University.

• Cotton
Cotton is a vegetable fiber obtained from the cotton plant. In one seed of
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the plant there have developed an average of 4000 fibers. For manufac-
turing yarns and fabrics, 7/8′′ − 11/4′′ or 2.22− 3.18 cm is the standard
fiber length. Cotton fibers are spun then woven or knitted into fabrics
such as velvet, corduroy, chambray, velour, jersey and flannel.
The cotton fiber has a weight of 1.67 decitex, that is 0.167 tex, where 1 tex
is 1 mg /m. This means that 1 meter of cotton fiber weighs 0.167 mg.
The radius of a cotton fiber is estimated at 11 à 15 µm. Optical measure-
ments of samples were carried out by the lab of the Textile Department
of Ghent University leading to the result of 11.7µm.
For a spun yarn we assume it to be perfectly even, i.e. we need two
conditions, see Fig. 3.1:

1. The constituent fibers are uniform in thickness;

2. The yarn has the same number of fibers in all cross sections along
its length.

Figure 3.1: perfectly even yarn build out of fibers

Since we know the weight of 1 m of both the fiber and yarn, we are able
to calculate the number of fibers in a yarn cross section

Number of fibers/yarn cross section = N =
weight 1 m yarn
weight 1 m fiber

=
30 mg

0.167 mg
= 179.6.

The porosity is defined as the fraction of void space in a porous medium.
Once we know the diameter of a yarn, see table 3.1, we can calculate the
porosity of a cotton yarn from the diameter of a fiber and the number of
fibers per yarn as

Porosity = 1−
dyarn

N · dfiber
= 0,9584,

where we’ve used the mean diameter.

The cotton fiber and the cotton yarn are not cylindrical but look like a
twisted noodle.
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Cotton absorbs water. The regain of cotton at 65% relative humidity (RH)
at 20◦C is 6 to 7%, and It can absorb approximately 20 percent of its own
weight of water at 100% RH 1.

Table 3.1: Cotton fact sheet

Structure Parameter Estimation Unit

Fiber weight 1.67 dtex

radius 18.3 (long axis) µm

9.8 (short axis)
length 2.2− 3.2 cm

density 1.55 mg /mm3

Yarn weight 30 tex

diameter 210 µm

• Polyester
Polyester is a synthetic fiber derived from coal, air, water, and petroleum.
Developed in a 20th-century laboratory, polyester fibers are formed from
a chemical reaction between an acid and alcohol. In this reaction, two or
more molecules combine to make a large molecule whose structure re-
peats throughout its length. Polyester fibers can form very long molecules
that are very stable and strong.
The polyester fiber has a weight of 1.5 decitex. The weight of a polyester
yarn is approximately 20 tex. Once we know the number of fibers per
yarn and the diameter of a yarn and a fiber, we can calculate the porosity
of a polyester yarn in a similar way as for the cotton yarn

Porosity = 1−
dyarn

N · dfiber
= 1−

dyarn

133.3 · dfiber
= 0,9213 á 0,9314.

Polyester does not absorb water and it is perfectly cylindrical.

• Blend fabric
The combination cotton/polyester yarn is made by Utexbel in different
percentages of both types, with every time the same weight of 30 tex. If
you have for example a 50%/50% sample you have 15 tex of polyester
and 15 tex of cotton. This means you need more polyester fibers in the
yarn because of the lower weight of polyester to get the same weight of

1FYI: Viscose can absorb to 30 % of its own weight.
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Table 3.2: Polyester fact sheet

Structure Parameter Estimation Unit

Fiber weight 1.5 dtex

radius 12.2− 14 µm

density 1.38 mg /mm3

Yarn weight 20 tex

diameter 256 µm

15 tex as compared to the cotton fibers. A consequence of this is that the
diameter of the yarn wil be bigger compared to a sample of cotton yarn
of 30 tex. The two most common blends are 65% of cotton combined with
35% of polyester fiber for a normal wearable fabric and 47,3% of cotton
and 52,7% of polyester for a net structure.
The combination yarn also absorbs water.

The blended fabric for the net is constructed out of yarns in a twisted/single
configuration (see Fig. 3.2):

– 2 “superyarns" (see Fig. 3.2(b)), each consisting of the 2 twisted yarns
in one direction (the weft);

– 1 superyarn, in the weft direction;

– again 2 superyarns in the weft direction;

– etc.

– 2 superyarns in the other direction (the warp);

– 1 superyarnin the warp direction;

– again 2 superyarns in the warp direction;

– etc.

A twisted yarn contains 2 yarns (one of each kind) of each 15 tex for a
total weight of 30 tex.
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(a) The net configuration (b) A superyarn consisting of 2
twisted yarns

Figure 3.2: Twisted/single configuration of the net

This twisted-single configuration is used because otherwise the holes
in a net would be that big that the yarns would move. The detail of an
intersection looks like Fig. 3.3.

Figure 3.3: Intersection detail

• Impregnated fabric
The active ingredient (AI) is applied on the fabric by soaking the total
fabric in a bath. The used polymer is different for both AI’s. For DEET
polyacrylate is used, whereas silicone elastomer is used for permethrin.
To secure the DEET layer it is also possible to add an extra layer of
polymer binder without an AI, e.g. polyacrylate. DEET attacks plastic, so
we can assume it also invades polyester. Permethrin does not. Both AI’s
probably infiltrate cotton together with the absorbed water.
We will assume that by soaking the fabric every fiber will be impregnated,
as it would be the case if the fiber is impregnated and the fabric is woven
or knitted afterwards. The thickness of the resulting AI-layers is a fraction
of the diameter of the fiber. Impregnating the fiber is impossible for the
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moment due to environmental restrictions for the produced waste water.
By drying the fabric all water has disappeared out of the fibers, but it is
assumed the polymers are still in rubbery state. If they were in the glassy
state the fabric should break and be uncomfortable to wear. This makes
sure we can use a normal Fickian diffusion model, whereas diffusion
through polymers in glassy state needs a non-Fickian diffusion model.

Tests with living mosquitoes performed by the University of Wageningen
(The Netherlands), have pointed out that 4 mg /m2 of DEET on the fabric
is enough to have a repellent effect on mosquitoes. This repellent effect is
caused by the evaporation of the AI and makes sure that the insects do
not approach the wearer of the fabric or the net and are repelled by the
AI. The evaporation rate of DEET will be determined further, together
with the delay time corresponding to the model where DEET is applied
under other coating layers of AI or pure polymer layers.

A concentration of at least 200 mg /m2 of permethrin is necessary to get
the hot-feet effect. This effect is established by a non-evaporating AI.
When the insects do land on the textile, the AI is transported to the ends
of the insects nerves, the insects clearly feel the influence of the agent,
which causes them to move away - they are literally getting hot feet. It
is imported to know how fast this hot-feet effect is diminishing after
washing the fabric. Test have pointed out that after approximately 5
washes the fabric looses 40% of its starting permethrin concentration of
1500 mg /m2, after that the rate of concentration loss is slower. After 100
washes the permethrin concentration is still 200 mg /m2, which is still
above the threshold concentration.

If mosquitoes are on the fabric for a certain amount of time, ignoring the
repelent and hot-feet effect, the insecticide has a knock-down effect/kill-
effect: due to absorption of AI in the system of the insects, they are
immobilized and sometime later they will be killed.

The concentration of AI on the fabric was measured with a HPLC (High
Performance Liquid Chromotography) which is calibrated for permethrin
and DEET separately.

3.1.2 Headspace Analysis and Liquid Extraction

In practice the set up looks like in Fig. 3.4. A piece of textile with dimensions
4× 0.5 cm is put into a 20 ml vial. After weight determination, the vial is closed
and kept at at 30 ◦C. After a predetermined time, the vial is shaken and 1 mL
of the gas is taken from the vial using a Hamilton Gastight syringe. To keep
de volume in the vial constant, 1 mL of nitrogen is added to the vial with the
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Figure 3.4: Test set up headspace analysis

Gastight syringe. Next a gas chromatography/mass spectrometry (GC/MS) is
carried out to determine the peak area of the AI. The instrumental conditions of
the GC/MS were reported by the Department of Organic Chemistry of Ghent
University as produced by a HP6890 series GC system coupled to a HP5973 MS
system, with a HP-5MS column of 30 m×0.25 mm (length × inner diameter),
0.25µm df (df stands for film thickness). The gas flow in the GC-oven was
taken to be 1 ml /min He, splitless mode, with an inlet temperature of 250◦C.
The temperature program was set to 40◦C increasing with 10◦C every minute
to a temperature of 300◦C. The MS-temperature was 300◦C and the solvent
delay was 6 min.

In GC/MS, the sample is injected into a gas chromatograph which volatilizes
the sample, then separates the various components of the sample based on
size and/or polarity. The separated components then go into a mass selec-
tive detector. The resulting mass spectrum allows for the identification of the
components using standard reference libraries. If identification is not the goal,
like in our case, measuring the area of the peak resulting from the GC/MS is
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useful to calculate the concentration of the volatile in the air above the sample
(headspace). Before we can quantitate our analyte, we must know the rela-
tionship between peak area and concentration. The simplest method is to
determine a response factor and a calibration curve. The response factor (RF)
is the proportionality constant for the analyte. Each analyte will have a unique
RF under given instrumental conditions. We know that the RF is simply the
concentration (C) divided by the area (A),

RF =
C

A
.

If we prepare a sample of a known concentration (called a standard) and
evaluate it, we can measure the peak area and determine the RF. This process
is referred to as the calibration. The user will repeat this several times at
different concentrations, the data points are then plotted and a line is fitted
through these points to get a calibration curve, where concentration is plotted
along the x-axis and area is plotted along the y-axis. If we now get a peak
area out of the GC/MS analysis we can calculate the concentration out of the
calibration curve. The calibration curve of DEET is given in Fig. 3.5.
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(b) Second calibration one week later

Figure 3.5: Calibration curves of DEET

Using the experimental values in table 3.3 we can calculate the concentration
from the calibration curve y = 1416.6x.

Asuming that after 1615 minutes saturation has been reached a saturated
concentration of 673.20 ng /ml DEET can be considered.

Next to the headspace analysis the Department of Organic Chemistry of
Ghent University carried out two liquid extractions of the samples. For the
first extraction a piece of textile of 4× 0.5 cm was inserted in a 4 ml vial. The
weight of this piece was determined earlier. 3 ml of methyl-tert-butyl-ether
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Table 3.3: Experimental data for DEET and the
calculated concentration according to the calibration

curve y = 1416.6x

Time in oven [min] Peak Area Concentration [ng/ml]

10 31648 22.34081604

20 141540 99.91529013

30 287440 202.9083722

40 197025 139.0830157

50 239792 169.272907

1440 714855 504.6272766

1615 953652 673.1977975

(MTBE) was added to the vial. This vial is put into an ultrasonic bath during 30

minutes. In a 2 ml vial, 10 ml of this solution and 990 ml ofn MTBE are added
giving a dilution factor of 100. For the second extraction the MTBE is removed
from the vial which is put into an oven at 60◦C for 15 minutes. Then, 2 ml of
MTBE is added to the vial which is again put into the ultrasonic bath during 30

minutes. In a 2 ml vial, we have put 1 ml of this solution (no dilution). On the
resulting liquid extraction vials a GC/MS analysis is carried out with the same
instrumental conditions as mentioned for the headspace analysis. The results
are given in Tables 3.4, 3.5 and 3.6. In these tables each sample received a code
(A5, C5, C6, A3, C3). These codes stand for the production process used to
achieve each specific textile piece. There are two different ways of drying the
fabric, coded with A or C, and different orders of coating layers, indicated by
the used numbers (only 3, 5 and 6 are in the experiments because these coatings
were assumed to give the best results for repellency based upon experience
from the textile company, together with the abilities of the production process).
These codes are of particular interest for the textile company producing the
samples, but will be used for notation purpose only in this work.

3.1.3 Saturation concentration

We can compute the equilibrium concentration of DEET using vapor pressure,
Pv , values from literature. We know vapor pressure increases with temperature,
so we can calculate the corresponding saturation concentrations for different
temperatures.

To convert a vapor pressure to a concentration in the air at standard absolute
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pressure, Pa of 101.325 kPa, 1 atm or 760 mmHg we use, [51, 4]

Cv[ppm] =
Pv(T )[mmHg]

Pa[mmHg]
,

and converting this concentration in parts per million to the SI-unit of mg /m3

using

Cv

[mg

m3

]
= Cv[ppm] ·M

[ g

mol

]
· 0.04156

[
mg /m3

ppm · g /mol

]
.

Here the quantity M stands for the molecular weight of the chemical substance.
The molecular weight of DEET is 191.27 g /mol. The factor 0.04156 is the in-
verse of the ideal gas volume at 1 atm which is 24.06 l at 20◦C for 1 mole of
ideal gas.

We use the vapor pressures given in literature for 20◦C, 30◦C, 111◦C and
160◦C:

• 20◦C :

Pv
Pa

=
5.6 · 10−3 mmHg

760 mmHg
= 7.37 · 10−6 = 7.37 ppm ,

Cv

[mg

m3

]
= 7.37 · 191.27 · 0.04156 = 58.59

mg

m3
= 58.59

ng

ml
.

• 30◦C :

Pv
Pa

=
7.69 · 10−3 mmHg

760 mmHg
= 10.12 · 10−6 = 10.12 ppm ,

Cv = 10.12 · 191.27 · 0.04156 = 80.47667303
mg

m3
= 80.47667303

ng

ml
.

• 111◦C : Pv = 1 mmHg which leads to Cv = 10459.44895 ng
ml .

• 160◦C : Pv = 19 mmHg which leads to Cv = 1.987295300 · 105 ng
ml .

The oven in the experiments was set at 30◦C so we must have found a
saturation concentration of 80.47667303 ng /ml instead of the above given
673.20 ng /ml. Therefore we assume the oven was set to high in the exper-
iments or something else went wrong. We ask for feedback at the Department
of Organic Chemistry of Ghent University but could not find any other cause.

3.1.4 Diffusion coefficient in air

According to [10] the diffusion of a chemical in air can be calculated as

Dg = 0.0067 T 1.5(0.034 +M−1)0.5 M−0.17

[(
M

2.5d

)0.33

+ 1.81

]−2

,
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where

T = temperature, in K,

M = molecular weight of chemical, in g /mol ,

d = density of liquid chemical, in g / cm3,

and Dg is in cm2 / s.
For DEET we know the density is 0.998 g / cm3 and the molecular weight is

191.27 g /mol so we derive that the needed diffusion coefficient is

Dg,DEET = 0.07778168884 cm2 / s .

3.1.5 Evaporation rate

Another unknown coefficient in the model is the evaporation rate Γevap.The
evaporation flux is defined by

Γevap = −Dfs

∂Cf
∂r

∣∣∣∣
r=R

= kevap(C?(T)− Cfs),

withC?(T) the saturated concentration. We thus can estimate Γevap by kevapC
?(T)

based upon the experiments using the amount of DEET measured in the first
liquid extraction compared to those from the second test or use the known
effective evaporation rate out of literature.

To repel mosquitoes a minimum effective evaporation rate of
1.2±0.3µg /(cm2 ·h) = 3.3 ·10−6 µg /(mm2 · s) should be achieved, [26]. Using
this value and the previously estimated saturation concentration of 8.047 ·
10−5 µg /mm3 we get

kevap = 0.0414193
mm

s
.

A concentration of 2µg / l air of DEET is needed for repellancy, [23] . In research
of Bonn University, it was found that a polymer layer technique needs≥ 4g/m2

of DEET for a bed net to be repellent. If we assume this is released over 6
months (15552000s), a sample of 10 cm2 was used, and 100s buildup is needed
for repellency, then we have

4 g /104 cm2

15552000s
· 100 s ·10 cm2 = 2.5720 · 10−2 µg ,

around the sample. Estimating the volume around it as 1 cm high, we arrive
for this experiment at

2.5720 · 10−2 µg

1 · 10−2 l
= 2.57µg / l ,
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of DEET in the air around the sample which indicates the technique would
work. The release can be slower (eg effective over 3 years (0.0714µg / l)), or
buildup in a larger volume above the textile.

For a polymer layer on the textile consisting of DEET, the calculation above
for 4 g /m2 active over 6 months gives a release rate estimate of

Γevap = 2.57 · 10−7 µg

mm2 s
.

This leads to
kevap = 3.194 · 10−3 mm

s
.

In [41] an evaporation coefficient for a DEET layer on skin is given as

kevap =
k̃evapρ

C?
=

2.6 · 10−5 cm
h · 0.998 g

cm3

8.0477 · 10−5 µg
mm3

=
7.22 · 10−8 mm

s · 0.998 g
cm3

8.0477 · 10−5 µg
mm3

= 0.89535
mm

s
,

with evaporation rate of pure DEET from skin given by Γevap = k̃evapρ =

7.206 · 10−5 µg
mm2 s , where pure DEET has density ρ = 0.998 g / cm3.

We can also estimate the evaporation rate from the experimental values
given by the Department of Organic Chemistry of Ghent University. They mea-
sured twice the amount of DEET present at the textile using liquid extraction
on a piece of textile of 2 cm2. Measurements were 91 days or 7.862 · 106 s apart
from each other and can be found in Tables 3.4 and 3.5.

Table 3.4: First liquid extraction sample A5

Sample weight Estimation DEET Estimation of DEET
[g] [µg / g] on sample [µg]

0.045 643 28.935

0.048 559 26.664

0.048 500 24.000

Mean 26.533

Over 3 months 23.461µg per sample was released. The size of a sample is
2 cm2 so this gives a release rate of

Γevap =
23.461µg

7.862 · 106 s ·2 cm2
= 1.492 · 10−8 µg

mm2 s
,
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Table 3.5: Second liquid extraction sample A5

Sample weight Estimation DEET Estimation of DEET
[g] [µg / g] on sample [µg]

0.0476 68 3.237

0.0529 53 2.804

0.0515 60 3.090

0.0554 57 3.158

Mean 3.072

with

kevap = 1.854 · 10−4 mm

s
.

A complete overview of experimental values for the different samples can be
found in Table 3.6.

Table 3.6: Experimental average values for liquid
extraction (LE)

Sample Average
estimation

Average
estimation

Differ-
ence

Γevap kevap

of DEET first
LE [µg]

of DEET second
LE [µg]

[µg] [10−8 µg
mm2 s ] [10−4 mm

s ]

A5 26.533 3.072 23.461 1.492 1.854

C5 2.179 3.879 −1.700 - -
C6 120.607 10.521 110.086 7.001 8.700

A3 30.661 1.893 28.768 1.830 2.274

C3 24.188 3.435 20.754 1.320 1.640

Because in the experiments a closed fabric was considered instead of an
open net the fiber surface is larger than the fabric surface and the evaporation
rate can be smaller than this value. To know how much smaller we need to
calculate the ratio of the total fiber surface per fabric surface:

Sfib

Sfab
=

(nvertyarns · Svertfib + nhoryarns · Shorfib) · n
W ·H

,
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with

Sfib = total fiber surface,

Sfab = fabric surface,

nvertyarns = number of vertical yarns in the fabric,

nhoryarns = number of horizontal yarns in the fabric,

Svertfib = surface of a vertical fiber,

Shorfib = surface of a horizontal fiber,

n = number of fibers in a yarn cross section,

W = width of the fabric,

H = height of the fabric.

We know that

nvertyarns =
W

∆x
,

nhoryarns =
H

∆y
,

Svertfib = 2πHR,

Shorfib = 2πWR,

where

∆x = space in between yarns in horizontal direction,

∆y = space in between yarns in vertical direction.

For the sample of the bed net fabric we have an open net structure with room
dimensions of 3 m by 2.1 m, made of very fine fibers with radius 0.0052 mm,
coated with two polymer layers of thickness 0.0085 mm, we have:

nvertyarns =
3000 mm

1.21 mm
,

nhoryarns =
2100 mm

2.21 mm
,

Svertfib = 2π · 2100 mm(0.0052 mm +2 · 0.0085 mm) = 292.922 mm2 ,

Shorfib = 2π · 3000 mm(0.0052 mm +2 · 0.0085 mm) = 418.460 mm2 ,

n = 100,

W = 3000 mm ,

H = 2100 mm,
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with ∆x = 1.21 mm and ∆y = 2.21 mm and 100 fibers per yarn cross-section.
This leads to

Sfib =

(
3000

1.21
· 292.922 mm2 +

2100

2.21
· 418.460 mm2

)
· 100

= 72625313.807 mm2 +39763180.863 mm2

= 112388494.669 mm2,

for the total fiber surface and

Sfab = 3000 mm ·2100 mm = 6300000 mm2 ,

for the fabric surface. The ratio then is

Sfib

Sfab
=

112388494.669 mm2

6300000 mm2

= 17.839.

Considering this factor the estimated kevap is

kevap =
1.854 · 10−4 mm / s

17.839
= 1.0393 · 10−5 mm

s
.

In case of the closed fabric as in sample A5 this value become much larger.
We then have a blended fabric with 65% of cotton and 35% of polyester. The
radius of a polyester fiber in this sample is estimated at 0.0122. The cotton
fiber has an elliptical cross section with long axis 0.0183 and short axis 0.0098.
The area of this cross section is the same if we take a circular fiber with radius
0.01339. Per cm in the warp direction of the fabric there are 43 yarns, in the
weft direction it has 27 yarns per cm. In a yarn cross-section the number of
fibers is estimated at 190 fibers. For a piece of fabric of dimensions 4× 0.5 cm

this gives

nvertyarns = 27 · 4 = 108,

nhoryarns = 43 · 0.5 = 21.5,

Svertfib = 2π · 5 mm[65%(0.01339 mm +2 · 0.0085 mm) + 35%(0.0122 + 2 · 0.0085)]

= 0.94165 mm2 ,

Shorfib = 2π · 40 mm[65%(0.01339 mm +2 · 0.0085 mm) + 35%(0.0122 + 2 · 0.0085)]

= 7.53316 mm2 ,

n = 190,

W = 40 mm ,

H = 5 mm,
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which leads to

Sfib =
(
108 · 0.9417 mm2 +21.5 · 7.5332 mm2

)
· 190

= 50095.6166 mm2,

for the total fiber surface and

Sfab = 40 mm ·5 mm = 200 mm2 ,

for the fabric surface. The ratio then is
Sfib

Sfab
=

50095.6166 mm2

200 mm2

= 250.4781.

Considering this factor the estimated kevap is

kevap =
1.854 · 10−4 mm / s

250.4781
= 7.402 · 10−7 mm

s
.

For pure DEET which is not captured in a polymer layer we can use a known
formula for the evaporation flux/rate:

Φevap =
kevapNA(Pv − Ph)√

2πMRT
,

[
mol

cm2 s

]
,

where

kevap = coefficient of evaporation(0 < kevap < 1),

NA = Avagadro’s constant = (6.02214129± 0.00000027) · 1023 mol−1 ,

Pv = vapor pressure (in Torr or mmHg),

Ph = ambient pressure (in Torr or mmHg),

M = molecular weight (g /mol),

R = universal gas constant,

T = temperature at which the corresponding Pv is met.

To have a more convenient unit we can multiply the evaporation flux with the
molecular weight of the chemical to get the evaporation rate

Γevap = 5.84 · 10−2

√
M

T
Pv,

[ g

cm2 s

]
.

For DEET we then get

Γevap = 5.84 · 10−2

√
191.27 g /mol

20◦C
7.69 · 10−3

g

cm2 s

= 13.888
µg

mm2 s
,

with an corresponding kevap = 172574.188mm
s .
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3.1.6 Initial concentration of DEET per fiber in the coating

The cross sectional area of a fiber is given by

A = πR2
f =

π∅2
f

4
.

The volume of a fiber with length ` then is

V =
π∅2

f

4
`.

The linear density of a fiber is

ρf =
m

`
,with m the mass given by m = ρV,

where ρ is the density of the material. From this we end up with the relation

ρf =
ρπ∅2

f

4
.

For polyester fibers the linear density is 1.5 dtex or 1.5 g /10000 m, for cotton
fibers it is 1.67 dtex. The material density of polyester is 1.38 g / cm3 and of
cotton 1.55 g / cm3 .

From the derivation above we can calculate the diameter of the fibers ∅f in
the fabric from the known linear density and fabric density as

∅f =

√
4 · 10−6 · ρf

ρπ
,

where the diameter is in cm, the linear density in dtex and the density of the
material is in g / cm3. The estimated diameter of a cotton fiber is 0.01171 mm,
that of a polyester fiber is 0.01176 mm. Using the above values we can estimate
the amount of DEET per fiber coating as follows.

• Weight of a piece of fabric of 2 cm2:

G =
0.045 g

2 cm2
= 0.0225

g

cm2
;

• Volume of the fibers per cm2 of fabric:

V =
G

ρ

[
mm3

cm2

]
;

• Volume of one fiber:

Vf = πR2
f `

[
mm3

]
;
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• Number of fibers per cm2 of fabric:

N =
V

Vf
=

G

ρVf
;

• Mass of DEET on a piece of fabric of 1 g:

A = ±600
µg

g
;

• Mass of DEET per fiber:

M =
A ·G

N
=
A[µg / g] ·G[g / cm2] · ρ[g /mm3] · Vf [mm3]

G[g / cm2]

= 600 · 1.38 · 10−3

(
0.01176

2

)2

π` [µg] for polyester,

and

= 600 · 1.67 · 10−3

(
0.01171

2

)2

π` [µg] for cotton;

• Volume of coating Vc with thickness ∆c:

Vc = ((Rf + ∆c)2 − R2
f )π`;

• Concentration of DEET in coating per fiber:

M

Vc
=
A ·G
G
· ρ · Vf
π((Rf + ∆c)2 −R2

f )`

=
A · ρ · Vf

[2Rf∆c+ (∆c)2]π`

=
600 · 1.38 · 10−3

(
0.01176

2

)2
π`

[2
(

0.01176
2

)
0.00085 + (0.00085)2]π`

[ µg

mm3

]
= 1.809754604

[ µg

mm3

]
for polyester,

and

=
600 · 1.67 · 10−3

(
0.01171

2

)2
π`

[2
(

0.01171
2

)
0.00085 + (0.00085)2]π`

[ µg

mm3

]
= 2.177331836

[ µg

mm3

]
for cotton.
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3.1.7 Tests

For adjusting the end product a few suggestions can be made to the textile
companies:

• more layers;

• thicker layers (this results in lesser fibers per yarn, or a thicker yarn);

• a higher initial concentration of the active ingredient;

• other fabric choice, polyester/cotton in other blend percentage;

• bigger/smaller holes in the net;

In the next section we will give the exact reproduction of the article ‘Model
based determination of the influence of textile fabric on bioassay analysis and
the effectiveness of a textile slow release system of DEET in mosquito control’
as published in Pest Management Science, by John Wiley & Sons, Ltd in 2015,
as it summarizes the previous sections and consequently is the end-product of
the more physical part of these thesis.
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3.2 Model based determination of the influence of
textile fabric on bioassay analysis and the ef-
fectiveness of a textile slow release system of
DEET in mosquito control.

Benny Malengier, Tineke Goessens, Flora F. Mafo, Mike De
Vrieze, Lieva Van Langenhove, Samuel Wanji, Frederic Lynen 1

published by John Wiley & Sons, Ltd in Pest Management Science, 2015.
[doi:10.1002/ps.3902]

Abstract
BACKGROUND: : Determining the effectiveness of a product in repelling mosquitoes
or other flying insects is a difficult task. One approach is to use a bioassay with
textile fabric. We investigated the role of the textile substrate in a bioassay with a
numerical model, and compared the outcome with known results for DEET. The model
was then used to determine the effectiveness of textile slow-release formulations based
on coatings, and results were compared with those of a field study in the Cameroon.
Slow-release formulations are difficult to evaluate with standard tests, as the compound
needs a build-up time not present in these tests.
RESULTS: We found excellent correspondence between the model and the known
DEET results without matching parameters. Slow-release approaches are deemed
possible but have several drawbacks. Modeling can help in identifying optimal use
conditions. The field test with a slow-release system performed better than the model
anticipated with initially more than 90% repellency. DEET-coated textile was consid-
ered not marketable however.
CONCLUSION: We advise that bioassays also characterize in more detail the type
of textile fabric used so as to allow conclusions to be drawn by textile modeling. As
regards coated textile slow-release systems, more research is needed. We nevertheless
advise usage mainly at entry points, e.g. as scrims.

Keywords: Anopheles, DEET, slow-release, spatial repellent, textile modeling

3.2.1 Introduction

Mosquitoes transmit several pathogens that cause serious illnesses: malaria,
yellow fever, dengue, and many more diseases. As a consequence, much

1 We wish to acknowledge the support from European Union project: NMP2-2009-228639, FP7,
NOBUG project.
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research is done to determine new insecticides and mosquito repellents. Our
work focuses on repellents, which have the ability to disrupt the host-seeking
abilities of the mosquitoes and induce movement away from the repellent.
Once a product is determined to be a repellent, the next step is to determine
the effective dosage needed for optimal repellence of mosquitoes, and how this
dosage can be best provided.

Different testing setups exist to determine the spatial repellency of products.
A common test is the arm-in-cage, in which a product is applied to an open
section of a human arm and introduced into a cage with up to 500 mosquitoes,
see eg. [34]. The difficulty with this test is the variability in attractiveness of
the humans used, and the personnel cost. However, given that the final aim of
any spatial repellent is to repel mosquitoes from humans, an in vivo test like
the arm-in-cage is a necessity.

Alternative in vitro tests have been developed. For example, cup designs
like the Klun & Debboun (K&D) test module, [27, 28]. In these a bait is used that
mimics the human. Over this bait there is a cup, and mosquitoes are released
into this cup. A distinction must be made here between a feeding deterrent,
that is, a chemical that inhibits feeding when present in a place where the
insects feed in its absence, [8], a spatial repellent, which is a chemical that causes
mosquitoes to make a movement away from its source, and attraction inhibitors,
which mask the presence of an attractant and hence prevent mosquitoes taking
flight in the presence of an attractant and causing them to have difficulty
locating the attractant. In cup tests the mosquito typically has no possibility of
leaving the cup, so the compound is tested like a feeding deterrent or attraction
inhibitor. However, results are often used in the sense of a spatial repellent.

Depending on the tests, different textiles are used, or no textile at all. For
example, in [28, 1] nylon organdy cloths are used in some biting bioassays,
while others use muslin cloth for the repellency bioassay, [1]. The nylon cloth
typically only serves as a delivery mechanism on top of the human skin or bait.
The compound normally will remain as a layer on the nylon fibers, applied
in such a way as not to touch the human skin, and allowing mosquitoes still
to bite the arm or bait underneath. Muslin cloth on the other hand consists of
cotton fibers, which will absorb the compound. This offers the possibility of
testing different concentrations of a compound.

In this study we use a model to investigate the influence of the textile
used. In essence, for a repellent, the important aspect is the concentration
in the air, which is almost never determined. Instead, different compounds
and concentrations are applied to textile, which is the delivery system of the
compound into the air. With a model, this delivery system can be investigated.
Several problems can occur with the textile that are of importance: the com-
pound could bind with the textile aggregate, causing an incorrect negative
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result; different research groups may use different textiles, making the results
not comparable; different ventilation set-ups might be used, resulting in very
different air concentrations. With a model, the gradient of the compound in a
domain (a cup or a room) can also be determined. This can help in determining
whether a feeding deterrent test might be valid as a repellent result: if a strong
gradient is present in the environment of the mosquito, it stands to reason that
the mosquito can move towards the lowest concentration, even if it cannot
actually move away.

We will concentrate on DEET (N,N-diethyl-3-methylbenzamide) in this
study, given the large amount of information available on this successful insect
repellent. DEET is an attraction inhibitor, [6, 11], that requires a bait to function
as a repellent. Commercial products based on DEET give a mean time of
protection of around 4 h in academic studies, [34]. Using known data, we can
simulate the release of DEET and its hypothetical effect on mosquitoes.

Taking the results into account, we carried out tests to create a slow-release
system for DEET based on the technology of the Belgian company Utexbel,
enabling an extension of the protection offered by DEET. We evaluated the
binding capacity of this system, its theoretical performance over time and the
results of a field test.

3.2.2 Simulation

3.2.2.1 Simulation Code

Details about the simulation code can be found in an earlier article, [16]. The
code is freely available at https://gitorious.org/stickproject. The components
of the code are:

1. A fiber model that implements the fiber as a layered cylindrical structure,
with an evaporation law at the boundary.

2. A fiber-yarn multiscale coupling via an overlap zone in the fiber and yarn
model. This makes it possible to convert the system of a yarn consisting
of hundreds of fibers into a single yarn model and 4Ð10 representative
fiber models, interacting via a designated overlap zone. The fiber result
in the overlap zone (corresponding to void space in the yarn model) is
upscaled to the yarn overlap zone via a source/sink term, while the yarn
result in the yarn overlap zone is likewise downscaled to the fiber model
in the next time step.

3. A yarn model that implements the yarn as a cylindrical structure consist-
ing of radial zones with a specific fiber composition. Every zone interacts
with its own representative fiber model.

115



4. A yarn-fabric/environment multiscale coupling via an overlap zone in
the yarn and fabric/environment models. This makes it possible to re-
duce the problem of a fabric consisting of thousands of yarn threads to a
fabric model interacting with some representative yarn models via a des-
ignated overlap zone. Now, the yarn overlap zone (corresponding to the
volume outside the yarn) is upscaled to the fabric, and the fabric overlap
zone (corresponding to the volume closest to the fabric) is downscaled to
the yarn in the next time step.

5. A fabric/environment model with basic ventilation. All test set-ups
considered have a simple geometry allowing reduction to a 1D model.

The simulation code allows many different textile optimizations: changes
in fibers, different blend proportions, weaving changes, etc.

Important in the model is how evaporation is handled. In [41] the evapora-
tive flux Fevap from skin is given as

Fevap(t) = k̃evap
ρ

C∗m
CB(t), (3.1)

where k̃evap is the evaporation coefficient, C∗m is the saturation concentration
in the medium (e.g. skin), ρ is the density of the component, and CB(t) is the
concentration at the boundary. For a pure DEET layer, C∗ = CB(t), and the
equation reduces to

Fevap(t) = k̃evapρ.

One can interpret the ρ
C∗m

factor as a membrane partition coefficient. It effec-
tively works like a porosity of the medium considered.

Equation (3.1) can be improved. We do this by considering a water liquid-
vapor term, [59, 24]:

Fevap(t) = Shlg(C
∗
a − Ca,B)H(CB , C

∗
a − Ca,B), (3.2)

where S is the effective area fraction, hlg is the mass transfer coefficient from
liquid to gas (unit mm/s), C∗a is the saturated concentration in air, Ca,B is
the concentration of the component in the air at the boundary, CB(t) is the
concentration at the boundary, andH is a Heaviside type function defined as:

H(v, c) =


1, c ≤ 0

0, c > 0 & v < 0

1, c > 0 & v > 0

,

which indicates that condensation occurs if the control c is less than 0, otherwise
evaporation is governed by the presence of the component at the boundary. If
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we assume Ca,B ≈ 0, and that the entire surface is available for evaporation
(S = 1), the equation reduces to

Fevap(t) = hlgC
∗
a ,

which makes it possible to obtain the approximate relationship

k̃evap = hlgC
∗
a/ρ.

Further, S is proportional to CB(t)/C∗m, which shows that the improved equa-
tion (3.2) is indeed analogous to (3.1).

3.2.2.2 DEET

We concentrate on DEET, as a great deal of information is known about this
compound. Important for mosquito repellency is the air concentration needed
for DEET to behave like a repellent. DEET is used primarily by dermal ap-
plication as an insect repellent against mosquitoes, ticks, fleas, leeches and
black-flies. DEET is available in 4% to almost 100% concentrations in insect re-
pellent formulations, including solutions, lotions, creams, gels, aerosols, pump
sprays, and impregnated towelettes, usually with an ethyl or isopropyl base.

In the atmosphere it exists in the vapor phase and is degraded by reaction
with photochemically produced hydroxy radicals; its atmospheric half-life is
approximately 15 hours. DEET has moderate mobility and is not expected to
volatilize in moist or dry soil or to biodegrade under either aerobic or anaerobic
conditions.

A minimum evaporation rate of 5µg/(cm2 h) (0.03µmol/(cm2 h)) for DEET
over 5-15 minutes was determined for human skin. DEET then acts as a volatile
agent to repel mosquitoes at distances of at least 38 cm from their host, [48].

The question on how DEET repels mosquitoes has been investigated in
different studies. One such study, [9] stated that DEET inhibits the 1-octen-3-ol-
evoked responses by inhibiting the activity of the olfactory receptory neurons
(ORN’s) on the antennae of the mosquito. Another study, [47] provided con-
vincing evidence suggesting that repellency of the mosquito is a matter of
direct detection of DEET in the vapor phase and avoidance of the smell of
DEET. The researchers found a DEET-sensitive ORN and pointed out a false
positive in the previous research on account of trapping of odorants in the
Pasteur pipes when a DEET-laden filter paper is added to the cartridge. It was
because of this that the mosquitoes could not smell DEET, and not because of
inhibition of the olfactory system.

We estimate the diffusion coefficient of DEET in air according to the meth-
ods used by the Emission Standards Division [10], which gives Dg,DEET =

0.07778 cm2/s.
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From [41] we can estimate an evaporative flux of DEET around 7.2·10−3 µg/(cm2 s).
This translates into a build-up of several micrograms of DEET after some min-
utes. The different evaporative laws (3.1)-(3.2) have corresponding coefficients
k̃evap = 7.2 · 10−8 mm/s and hlg = 0.897 mm/s.

Pure DEET evaporates more rapidly than needed to repel mosquitoes, so
a slow-release system would be beneficial. It has been determined in [23]
that a DEET concentration of 2 µg/l air is needed for repellency. In [26] an
encapsulation technique was used to slow down the release. They determined
that, to repel mosquitoes, a minimum effective evaporation rate of 3.3± 0.8 ·
10−4 µg/(cm2 s) should be achieved. The different evaporative laws (3.1)-
(3.2) then have corresponding coefficients k̃evap = 3.3 · 10−9 mm/s and hlg =

0.041 mm/s, indicating the evaporation can be reduced 22-fold and still give
rise to repellency.

3.2.2.3 Muslin cloth

The muslin cloth used in bioassays is normally not characterized. Therefor,
we consider some typical values. We will examine a fabric of 5 by 10 cm,
consisting of yarns that are 0.6 mm apart center to center in the vertical and
horizontal directions. A yarn has a radius of 0.105 mm and typically contains
160 cotton fibers. A cotton fiber has a typical radius of 0.0052 mm and density
of 1.55 g/cm2. The moisture regain (absorbed water expressed in percentages
of dry weight) of cotton at 65% relative humidity (RH) at 20◦C is 6 to 7%, and
20% at 100% RH, indicating that cotton can absorb water up to 20% of it’s own
weight in water. If we assume the muslin cloth used to be originally fully
dry, we can conclude that 20% regain is also possible for DEET, allowing a
maximum of 0.31 g/cm3 in the cotton, which translates to a porosity of DEET
in cotton of n = 0.31.

The total volume of cotton in the muslin cloth is Vc = 228.6 mm3, which
leads to a maximum absorbed DEET content of 0.071 g or 1.4 mg/cm2.

In a typical bioassay, a stock solution is diluted to produce test concen-
trations of 1.5, 0.75, 0.375, 0.187, 0.094, 0.047, 0.023, 0.011 and 0.006 mg/cm2,
which corresponds to a dose range of 7841 down to 31 nmol/cm2. We see that
these concentrations can be absorbed by the muslin cloth, except for the first,
which should result in a thin surface layer of unabsorbed DEET. Converting
this to the fraction nD of the porosity available used, we obtain 1.07, 0.54,
0.27, 0.13, 0.067, 0.033, 0.017, 0.008, 0.004. The comparison article also uses
25 nmol/cm2 or 0.0048 mg/cm2, which translates into a used fraction nD of
0.0034. These fractions allow us to set the initial conditions correctly for the
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numerical model. In equation (3.2) we set

S(t) = n
CB(t)

ρ
, (3.3)

and consider the initial DEET concentration in the fiber to be

C(0) = CB(0) = nDρ,

where nD is the fraction of the porosity used for the start concentration.

3.2.2.4 Numerical Experiments

As a first experiment, we compare with Fig. 4 of [1], which is a dose response
study for DEET at 25, 20, 15, 10, 5 nmol/cm2. In that study, 25 nmol/cm2 pro-
vided a repellency of 90%, 20 and 15 nmol/cm2 gave equal reduced repellency
of 70%, while 10 and 5 nmol/cm2 showed results similar to solvent control. In
the dose response, the fabrics are dried for 3 to 5 minutes, which we estimate
can remove a maximum of 1µg of DEET, which is sufficiently low. The patch is
attached to a human arm, which is then introduced into a screened cage with
mosquitoes exhibiting host-seeking behavior. The movement of the arm will
create an unknown amount of forced convection over the muslin cloth. The
arm is held in the cage for 1 min, after which the number of mosquitoes that
could feed is counted.

As we cannot know the influence of the forced convection, we simulate this
with a run of the simulation code over 2 min, starting with the initial known
concentration and no DEET present in the surrounding air. We then consider
the last minute of the simulation as meaningful for comparison with the results
of Fig. 4 of [1]. This because the forced convection will remove the surface
layers above the muslin cloth containing DEET, but not the DEET concentration
accumulated inside the cloth void spaces. The simulation results are shown in
Fig. 3.6.

The results nicely match the bioassay: 25 nmol/cm2 achieves the required
minimum amount of 2µg DEET per l air almost for the entire duration of the
last minute of simulation. However, the 10 and 5 nmol/cm2 remain under 2 µg

DEET per l air, and cannot offer protection against the mosquitoes.
We stress that no parameter matching was done - all parameters used in

the simulation were estimated on the basis of previous DEET studies. Hence,
this test could be used to estimate the required amount of DEET in the air for
repellency.

As a second experiment, we will consider the case of the application of
25 nmol/cm2 on the muslin cloth and a duration test. These results should be
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Figure 3.6: Concentration 1 mm from the cloth over 2
minutes as obtained with a dose-response simulation.
The dashed line is the required amount for good repel-
lency

compared with the results in Fig. 3 of [1]. The results there can be summarized
as the muslin cloth giving almost full protection for 2 h, after which there is
a linear decrease, with a repellency still of 70% (proportion not biting) at 6 h

and little difference from the positive control after 12 h. We simulate this by
considering a sample that evaporates in an open environment with an initial
concentration 25 nmol/cm2. At 0, 1, 3, 6, 12 and 24 h, the sample is moved for
testing to a cage. Hence, we consider the concentrations obtained at those time
points, and conduct tests as in our first numerical experiment with those values.

We obtain Fig. 3.7, the relevant data of which for comparison with the
reference [1] is given in Table 3.7. Comparing with the results in Fig. 3.6, we
see that a good correspondence with the experiment is obtained. In Fig. 3.8,
we show the protection over 1 day given by the muslin cloth if the cloth
remains fixed in position. The bottom dashed line in Fig. 3.8 corresponds to
the determined lower boundary of DEET concentration needed to have good
repellency.
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Table 3.7: Duration test concentration values
in the textile

Duration [h] Mass DEET [µg] Conc [nmol/cm2]

0 152.5 25

1 140.5 23

3 120.5 19.8

6 97.0 15.9

12 62.5 10.2

24 23.2 5.3

By moving the muslin cloth to the testing cage, the surface layer above the
fabric will be replaced by mostly fresh air (forced convection), and hence the
protection right after movement (Fig. 3.6) is considerably decreased from this
ideal consideration of an arm that remains fixed in position. By the movement
of the user, the result after 6 h is already much reduced owing to the slower
build-up of DEET at the lower concentrations, while not moving the muslin
cloth gives good protection even at 5 mm for the full 24 h. It is important to note
that forced convection over the muslin cloth would change this considerably.

Figure 3.7: Mass of DEET in the textile, starting with a
25 nmol/cm2 concentration, over 1 day

In the simulation, air diffusion and convection reduce the DEET concen-
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tration around the muslin cloth at a slow rate as the model mimics open cup
evaporation.

Figure 3.8: Concentration 5 mm from the cloth over 1
day as obtained with the simulation code. Top dashed
line is the saturation concentration, bottom dash re-
quired amount for repellency

Although the computational results match the experiment satisfactorily,
not everything was taken into account. The following processes will lead to
differences:

• The muslin cloth sample was soaked in a DEET solution in a closed cup
and allowed to dry for 3 to 5 minutes after extraction from the cup. The
closed cup will see a high DEET concentration, lowering the actual DEET
concentration present in the muslin cloth. We estimate this can reduce
the total DEET mass by a maximum of 1µg. As 5 nmol/cm2 corresponds
to 30µg, this is a small error lowering the actual effectiveness.

• We assume in the model that all DEET is absorbed in the cotton fibers. In
reality, some will remain attached to the surface, where it can evaporate
rapidly at the beginning. This also reduces the amount of DEET present
when the experiment starts. As the saturation concentration for DEET
can be easily obtained close to the fiber in both cases for the absorbed
concentrations considered, we estimate this effect to be negligible.

• The muslin cloth used in the original paper is not given, but can have
some influence on the results. For the simulation we consider yarns that
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are 0.6 mm apart (midline to midline), with a yarn radius of 0.105 mm,
consisting of 160 cotton fibers of 5.2µm radius, all values typical for
cotton cloth. Tests with the simulation code show the effect of changes to
be small within realistic variations.

• We consider a slow convection, driven by a boundary condition of 0

sufficiently far from the muslin cloth. Any actual forced convection, as
can be expected from time to time in an experimental environment, will
reduce the DEET concentration more rapidly than the model considers.
This can be assumed to have a large influence. We take it into account by
setting the outside concentration to 0 when movement occurs (moving
the hand in a test cage), and add a minute of simulation time to determine
a new initial outside concentration to work with.

• We give the DEET concentration at 1 or 5 mm away from the target in
Figs 3.6 and 3.8 as values to determine whether repellency is working or
not. It could be that concentrations farther away from the muslin cloth
must be considered for effective repellency (as the host attraction might
overrule the DEET present at these distances). As DEET is considered to
repel mosquitoes effectively, taking the value at 1 mm should be a good
assumption for the cage test, while for static conditions 5 mm seems a
good sampling position.

We conclude that these assumptions yield the same results as an actual
bioassay using the known characteristics of DEET as the only input, and that,
if not previously known, the minimum required concentration for repellency
of a new product could, it appears, be determined by this method.

3.2.3 Slow-release

3.2.3.1 Lab tests

The results obtained show that there is room to develop a slow-release adapta-
tion. Such an application might require some time to achieve repellency, but
would not be depleted as rapidly. Utexbel, a Belgian textile company, provided
us with textile samples where DEET was embedded in a polymer coating. In
this paper we do not concern ourselves with the actual polymer coating, which
is an internal Utexbel product, but instead characterize it’s effect. The coating
process used was analogous to the one Utexbel has available for permethrin
in their BuzzX (http://www.buzzx.info/) range of products. We wanted to
investigate whether a slow-release system for DEET could be obtained like this,
as permethrin has very low vapor pressure and is not considered to be volatile.
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Different slow-release systems based on encapsulation have been tested
before, [26, 37] with varying results. Depending on the encapsulation used, the
release of DEET can be spread over 1week to several months. Encapsulation is
an interesting technique, but obtaining the optimal release rate of repellent is
not straightforward. It requires a step to create the capsules, and another step to
bind the capsules to the fabric. A polymer coating technique has the advantage
that it is a coating technique, comparable with other textile finishes. Which
technique is preferred will depend on production considerations. The modeling
presented can be adapted to simulate release by microcapsules, provided a
model is available for how rapidly the capsules release DEET.

The samples received from Utexbel had to be characterized in terms of
DEET content. Conducting mass balance experiments to determine the evap-
oration rate proved troublesome, as the polymer layer and textile will only
slowly come to equilibrium when exposed to a different relative humidity. A
test showed that, in a climate chamber, several hours were needed to reach
equilibrium, during which the sample increased in weight. As a weight test
would need to run longer than the time for which we could reserve the climate
chamber, a chemical approach using GC-MS was chosen instead. The actual
initial amount of DEET can be obtained in this way also. Hence, the samples
were tested on arrival, and after 91 days. In between, the samples were kept
under a fume hood. GC-MS was used to determine the DEET and permethrin
contents. A HP6890 series GC system coupled to a HP5973 MS system was
used, with an injection volume of 1µ l for liquids. SPME stayed in the inlet for
the whole run. The column used was HP-5MS, 30 m×0.25 mm I.D., 0.25µm

df, with as temperature program of 40◦C to 300◦C at 10◦C/min. The liquid
extractor analysis was done on strips of 4 by 0.5 cm obtained from the samples.
They were extracted with 3 ml methyl-tert-butyl-ether (MTBE) in a 4 ml vial.
Sonication for 30 min provided > 85% recovery for the DEET and permethrin.
Calibration was done with pure DEET and a stock solution of permethrin.

For permethrin, no reduction in concentration was found after 91 days, as
expected, because permethrin is not volatile. The results for DEET can be found
in Table 3.8, where from the given measurements the long term evaporative
flux Fevap is estimated, and also long-term values for k̃evap and hlg. Note that,
for this, the fiber surface is used, and not the muslin cloth surface of 2 cm2. To
obtain this fiber surface, we took into account that the samples were a blended
fabric with 65% cotton and 35% polyester. The cotton fiber has an elliptical
shape with average long axis of 0.0183 mm and short axis of 0.01339 mm. The
polyester fiber has average radius of 0.00551 mm. There are 190 fibers in a
yarn, and 27 yarns per cm in the vertical direction, and 43 yarns per cm in the
horizontal direction. As a consequence, we estimate the fiber surface where
evaporation occurs to be 29 times the fabric surface.
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Table 3.8: Experimental average values for liquid
extraction and deduced parameters

Sample Avg.
DEET

Avg.
DEET

Diff. Fevap k̃evap hlg

start 91 days [µg] [10−8 µg
mm2 s ] [10−13 mm

s ] [10−4 mm
s ]

[nmol / cm2] [nmol / cm2]

A5 61.5 8 23.46 1.492 5.1 0.064

C6 315 27.5 110.09 7.001 24 0.299

A3 80 5 28.77 1.830 6.2 0.077

C3 63 9 20.75 1.320 4.5 0.056

The polymer treatment reduced the release of DEET enormously, with
hlg dropping from 0.897 mm/s in pure form to a value of 0.06 · 10−4 and
−0.3 ·10−4 mm/s, or a reduction of 29900 to 149500. However, in the deduction,
we have assumed that the entire area of the fiber surface coating was available
for evaporation, so S = 1. Previously, for the 25 nmol/cm2 dilution on cotton,
we had, see (3.3), S = 0.001, so this cotton sample, which had good repellent
properties, also had a reduction in evaporation compared to pure DEET of
1000. We conclude that a further reduction of 29.9 to 149.5 in evaporation
speed was obtained after polymer coating. In other words, where Fig. 3.7
shows that the 25 nmol/cm2 sample was almost depleted after 24 h, for the
polymer coated version with the same concentration this would be around
24 × 29.9 h, or after 30 days. Compared with the required evaporation rate
given in [26] of Fevap = 3.3±0.8 ·10−6 µg/(mm2 s), the determined Fevap of our
textile slow-release system seems to be 35 to 58-fold too low. Note, however,
that the fiber surface of the textile is typically 25-30 times larger than the textile
surface, so this discrepancy can be overcome by selection of the fabric used to
construct the repellent textiles.

The estimates done are rough, but nevertheless give an idea of the order of
magnitudes to work with. We are specifically lacking in knowledge about the
polymer: how does DEET diffuse in the polymer, and how is the evaporation
process working? We can deduce from Table 3.8 that evaporation of DEET
will be higher at higher concentrations in the polymer. We have, however, too
few data points to characterize the evaporation behavior fully. If we consider
a least-squares fit through the points formed by the midpoint concentration
(Cstart + C91 days)/2, and the long-term computed hlg in Table 3.8 , we obtain

hlg = 10−7(4.9 + 2C), (3.4)
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where C is the concentration on this textile (nmol/cm2).
For the modeling, we will make the following assumptions:

• We assume that the evaporation is not diffusion limited; that is, diffusion
in the polymer is more rapid than evaporation, and no specific knowledge
about the diffusion process is needed apart from the fact it is sufficiently
rapid.

• Through lack of knowledge about the specific binding of DEET in the
polymer, we will set S = 1 in equation (3.2), and use hlg from equation
(3.4).

• The derivation of equation (3.4) is for the textiles tested. Other textiles
can use the same formula provided their fiber surface area is compara-
ble; that is, the evaporation rate depends on the DEET concentration
in the polymer layer, not on the measured fabric surface concentration
expressed in nmol/cm2.

As evaporation is now a slow-release process, this modeling will be ade-
quate to obtain qualitative results. Having S = 1 and hlg fixed on the basis of
equation (3.4) will make it possible to see the effectiveness of a textile over a
typically night. We will consider a bed net that has a total fiber surface area
comparable with that of the tested textiles, and consider an initial concentra-
tions of 400, 200, 100 and 50 nmol/cm2. With S = 1, this corresponds to mass
transfer coefficients hlg of 8 · 10−5, 6 · 10−5, 4 · 10−5, 2 · 10−5, and 10−5. A re-
duction from 400 to 50 nmol/cm2 will occur over 3 to 4 months, or, if carefully
stored in a plastic bag and only used for 8 h a day, over a year. We do not
simulate values above 400 nmol/cm2 although that is theoretically possible.
This is because, based on Table 3.8, we cannot assume that equation (3.4) is still
valid at higher concentrations.

The results of the simulation are shown in Fig. 3.9. Here, we see the effect
of a sheet or curtain of the bed net textile put in the middle of a rectangular
room. To interpret this figure, we need to consider that an actual bed net will
consist of a sheet to the right and left of the bed, so the concentrations observed
will be at least double that of a single sheet. As we are far from the saturation
concentration of DEET, we can indeed approximate the effect of the bed net by
doubling the simulation result, which is indicated with dashed lines in Fig. 3.9.
The simulation uses a 1D representation of the room, so it is currently not
possible to take the actual geometry of a testing hut (e.g. window traps) into
account. As we indicated, the build-up of DEET around the bed net is slow.
Considering the double action of a net, we reach protection against mosquitoes
at 1 mm after 70 min for the 400 nmol/cm2 bed net. Further away from the bed
net, more time is needed. Forced convection would spread the results faster
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Figure 3.9: Concentration of DEET due to a single sheet
of bed net material, at 1 mm and 1000mm from the
curtain. The straight dashed line is the required amount
for repellency. The dashed curves are the double of full
lines to indicate the effect of a real bed net

over the room, which would have a positive effect. The actual ventilation of
the room would have to be taken into account to match the experimental setup
fully. This could lead to higher or lower values depending on whether the
ventilation is lower or higher than considered in the model. The model uses a
fixed boundary condition of 0 DEET at 2.5 m to simulate the ventilation.

Qualitatively, we can deduce from the simulation that

1. A slow-release system does not give adequate protection for the first
hour. In reality however, the product would be stored in a bag, which
would create a build-up of DEET in the bag and in the void zones of the
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textile. As a consequence, in reality, full protection might be present from
the start, depending on when and where the bag is opened, if the forced
convection is sufficiently low.

2. Over time, provided sufficient initial concentration is present, the bed
net will provide full protection from mosquitoes present in the room. It
therefore offers effective protection from entry via cuts or holes in the
bed net.

3. To avoid entry of mosquitoes into the sleeping chamber, the slow-release
system still needs more time. At 200 nmol/cm2, even after 8 h, there is
insufficient DEET at the entry points to prevent entry. As real rooms will
have varying size, using a DEET-treated bed net commercially to avoid
mosquitoes in the room does not seem feasible.

As a consequence, the following recommendation can be made:

1. To maximize the effective duration of the treated textiles, they would
better be used only at the points of entry of the mosquitoes, e.g. as a
curtain or scrim (light gauzy material).

2. It is useful to add DEET to bed nets so as to avoid biting through holes in
the bed net or by body parts touching the bed net. However, the initial
hours need to be overcome to achieve full protection. This could be done
in other ways, e.g. by using a spray before going to bed.

3. In practical use, a consumer would need to be made well aware that a
repellent textile has a limited durability, governed by the dose initially
applied. Our modeled bed net with 400 nmol/cm2, corresponds to a use
of only 76µg DEET per cm2, which is a very modest use of repellent. If
higher amounts can be added to a slow-release coating, a long adequate
extra protection could be offered by comparison with current pyrethroid-
only bed nets.

3.2.3.2 Field tests

Based on knowledge gained, two types of bed nets (Utexbel types Y412 and
Y335) were coated for field testing in the Cameroon. Field testing should
realistically evaluate the efficacy of the slow-release system, as the technique
will require an accumulation of active component, making a short arm-in-
cage test in a small cage not indicative. At the same time, a field test can be
considered as the gold standard for testing.

A total of five different coatings were prepared: DEET with and without
washing binder, DEET combined with permethrin with and without washing
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binder, and permethrin without washing binder. The washing binder should
have no influence on the performance, it is needed for textile treated with
permethrin to keep the permethrin stable and to avoid the polymer layer being
removed by washing.

The DEET content was maximized as much as possible. As a consequence,
the bed nets had an oily feel. A typical DEET odor could also be distinguished.
For these reasons, the nets would probably not be marketable. As the fabrics
used in GC-MS did not have this, we can conclude that the concentration is
considerably higher than 400 nmol/cm2 obtained as maximum in those tests.
Furthermore, the production process was manual. The upscaling of DEET
application to an industrial finishing process involves some challenging issues,
such as:

• environmental specifications concerning the volatile concentration in the
ambient air and preventing operators from coming into contact with
vapors;

• minimizing contamination of the process equipment;

• managing cleaning procedures;

• managing recycling issues;

• dealing with the aggressivity of DEET towards plastic parts, including
end-user packaging.

Testing was done at the research institute REFOTDE Research Institute in
Cameroon. The textiles where cut and knitted into usable bed nets. Three
experimental huts in Meanja were used. At this location, the testing huts are
between a breeding place and a small community. The testing schedule was
based on a Latin square design, with a positive control present during all tests
in a fixed hut, and one net in the other huts used for 4 days. The nets were
mounted each evening, remaining exposed for 12 h (from 6 p.m. to 6 a.m.),
dismounted the next morning, kept in plastic bags and mounted again the next
evening (12 h a day for 4 days).

A hut functionality test showed that 18.4% of mosquitoes were captured
inside the huts. An average number of 4.5 mosquitoes per hut per night was
found in this test. The dominant species was Anopheles (50%), followed by
Mansonia (48%) and Aedes (1%). A schematic of the sleeping hut is given in
Fig. 3.10.

The results with the different nets are given in Table 3.9. Here, repellency is
defined as the reduction in entry rate into a hut, while feeding inhibition is the
reduction in feeding (control number - test number)/control number (%). In
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Figure 3.10: Top view schematic of the sleeping huts

the control, in which an untreated net was used, it is possible also to have no
mosquitoes feeding over the 4 days of testing.

From Table 3.9, we can see that the bed nets with DEET performed bet-
ter than anticipated by the model: the DEET-treated bed nets could prevent
mosquitoes from entering the hut (percentage repellency column), and in two
cases even provided 100% prevention. For the products with DEET, not a single
fed mosquito was recorded. In the case of a traditional permethrin-treated
net, we can see that the repellency dropped to 66 à 77%, but the mosquitoes
that entered were also prevented from feeding by the permethrin coating. The
DEET-treated nets also caused all mosquitoes to be found on the veranda.

To substantiate that the products can survive storage, the nets were stored
for 12 months in plastic bags, and the best-performing nets were retested. The
results of this retesting are in Table 3.10. Note that one product had a seriously
reduced functionality, with the repellency dropping to 66%. The other three
products, however, performed only slightly less well than in the original test.

3.2.4 Discussion and conclusion

We can conclude from the results that a slow-release system for DEET can be
developed, and that the effect of DEET is discernible in field testing, giving the
best possible protection. The slow-release is optimized in such a way that no
excessive amount of DEET is used, maximizing the time to depletion.

We attribute the better performance than obtained by the model to a higher
initial concentration than the 400 nmol/cm2, and to the preparation time before
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Table 3.9: Bed net hut testing, showing the repellency
and the feeding inhibition of the products. The amount

of mosquitoes found in the control hut, and the
amount of mosquitoes that fed in the control hut is also

given

Product %
Repel

%
feeding

#
mosq.

# mosq.
fed

inhibi-
tion

control control

DEET+ BINDER Y421 100 100 16 0

DEET+ BINDER Y335 97.5 100 16 0

PERM.+DEET Y421 100 100 22 5

PERM.+DEET Y335 97.5 100 22 5

PERM.+DEET+BINDER
Y421

95.2 100 13 2

PERM.+DEET+BINDER
Y335

95.2 100 13 2

DEET Y421 97.6 100 43 8

DEET Y335 97.6 100 43 8

PERM. Y421 77.7 100 18 7

PERM. Y335 66.6 100 18 7

the start of testing (6 p.m.), which reduced the time needed for building up an
initial concentration of DEET in the sleeping huts.

However, the sleepers complained that the DEET nets were sticky and had
an oily feel. The odor was also considered to be unpleasant overnight. As
indicated previously, the production process also cannot be upscaled. All this
indicates that further research should be carried out to bind a more pleasant
repellent in a slow-release product, or to adapt the production process with
DEET in a way that is feasible for industrial production. In this way, the high
repellency (mosquitoes not entering the sleeping huts) values found when
using DEET bed nets could become a reality for people around the world.

We have modeled repellent compounds being released from textile fabrics.
Comparison with known results for DEET bioassays shows that the observed
data, be it the active working duration of DEET or the dose response study, can
be explained via the study. This opens up the possibility of determining the
required effective air concentration of repellents by a coupling of the numerical
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model and a bioassay. Next, a slow-release model has been developed for
repellents applied to textile. In this model, the textile properties, specifically
the effective fiber surface, can be adapted in such a way as to interact optimally
with the reduced evaporation due to the polymer coating. A test was conducted
with bed nets in the Cameroon, showing that this approach is viable. Further
research should be done, however, to repeat this approach with a more pleasant
repellent, or to convert the DEET coating technique to allow higher dosage
in the textile fabric so as to achieve a longer durability. The modeling should
also be extended so as to allow a correct representation of the room used and a
correct inclusion of the effect of air movement on the repellent concentration
in and around the textile. Based on the model of a slow-release product, we
would nevertheless advise that slow-release products be considered mainly at
the entry points, for example in the form of a scrim.

Table 3.10: Bed net hut retesting, showing the
repellency and the feeding inhibition of the products.
The amount of mosquitoes found in the control hut,
and the amount of mosquitoes that fed in the control

hut is also given

Product % Repel % feeding # mosq. # mosq. fed
inhibition control control

PERM.+DEET Y421 93.75 100 32 2

PERM.+DEET Y335 93.75 100 32 2

DEET Y421 98 100 66 2

DEET Y335 66.66 100 66 2

132



4
C

H
A

P
T

E
R

Characteristic Times

As the previous article was the end-product of the more physical part of this
thesis we now start the more mathematical part where the three scale diffusion
model is further analyzed and where it is investigated how the model interacts
on the different levels. Therefor it may be convenient to firstly explain the
notion of characteristic times. Afterwards the exact reproduction of three A1-
classified articles will be added where the analysis of these characteristic times
is carried out:

1. ‘Characteristic times for multiscale diffusion of active ingredients in
coated textiles’ as published in Journal of Computational and Applied
Mathematics, by Elsevier in 2015;

2. ‘Characteristic times and inverse problems for diffusion in coated textiles’
as published in Applied Mathematics and Information Sciences, by NSP
in 2015;

3. ‘Characteristic times in a three scale model with overlapping domain
decomposition’ as accepted for publication in Journal of Computational
and Applied Mathematics, by Elsevier in 2016.

The study of characteristic times for a partial differential equation represent-
ing a physical and/or chemical reaction of a system is key to understanding
the system and its scaled components, in our case the three levels of the textile
model and their interactions. At some particular moments in time the system
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reaches an equilibrium, where the different levels in the model tend to continue
the process cooperating as one level. Furthermore one of the characteristic
times provides the physical concept of the average time a particle passes a cer-
tain point in space, another shows the time needed for a particle to travel from
one position to some other position. To this end a C-language program was
written as a simplification of the more complex STICK-toolbox that provides a
visualization in a much shorter computation time, but still reaches satisfying
accuracy for the mathematical analysis of the problem.

The characteristic times can be deduced from the moment-generating func-
tion and the cumulant-generating function. Therefor the diffusion problem
should be seen from the earlier mentioned atomistic view of diffusion where
it is considered as a result of the random walk of the diffusing particles, i.e.
molecules or atoms of a substance. For a more elaborate explanation on random
walks, the author would like to cite [30].

The cumulative distribution function F (x) of a random variableX describes
the probability that the real-valued random variable X with a given probability
density function fX(x) will be found to have a value less than or equal to x and

F (x) =

∫ x

−∞
fX(u) du.

This probability distribution alternatively also can be expressed as a moment-
generating function MX(t) instead of the cumulative distribution F (X), de-
fined as the expected value of the exponential values of the random variable X
multiplied with a real-valued variable t

MX(t) = E[etX ] =

∫ +∞

−∞
etxfX(x) dx,

wherever this expectation exists. The nth moment of a distribution about a
value c is defined as

mn = E[(x− c)n] =

∫ +∞

−∞
(x− c)nfX(x) dx.

The zeroth moment about 0 is the total probability, the first moment about 0

is the mean µ of the distribution. For the second and higher moments, the
central moments i.e. moments about the mean, are usually used rather than
the moments about zero, because they provide clearer information about the
distribution’s shape. The second central moment is the variance, σ and the
third central (normalized) moment is the skewness. Moments are normalized
(or standardized) as

ms
n =

mn

σn
.
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The moment-generating function MX(x) can be used to define each moment in
a straightforward way because the Taylor expansion of the exponential function
reads

etX = 1 + tX +
(tX)2

2
+

(tX)3

3!
+ · · ·+ (tX)n

n!
+ · · · ,

hence

MX(t) = 1 + tE[X] + t2
E[X]2

2
+ t3

E[X]3

3!
+ · · ·+ tn

E[X]n

n!
+ · · ·

= 1 + tm1 +
t2

2
m2 +

t3

3!
m3 + · · ·+ tn

n!
mn + · · · ,

where mn is the nth moment about 0. As a consequence each moment can be
derived from MX as

mn =
∂iMX(t)

∂ti

∣∣∣∣
t=0

.

The cumulant-generating function is defined by

CX(t) = log(MX(t)) = log(E[etX ]),

and generates the cumulants of the distribution

cn =
∂iCX(t)

∂ti

∣∣∣∣
t=0

,

which like the moments describe the shape of and information about the
distribution.

If we now interpret the diffusive flux FT (x) as the probability distribution
function of all possible moments in time T when a particle passes a certain
point in space x we can derive the moments of the distrubution of the random
walk of particles in the diffusion problem. This can give information on how
the system works, how the different levels interact and which characteristics
of the textile are of high influence. The moment-generating function then is
evaluated in −s

MT (−s) = ET [e−sT ] =

∫ +∞

−∞
e−stFT (t) dt = L[FT (t)](s),

where L is the two-sided Laplace transform and s is in the Laplace domain.
If we now take the logarithm of this moment-generating function in −s we

have the cumulant-generating function over the Laplace domain

CT (−s) = log(L[FT (t)](s)) = c0 − sc1 +
s2

2
c2 − · · · ,
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generating the first cumulant, i.e. the residence time,

c1 = − ∂

∂s
CT (−s)

∣∣∣∣
s=0

= − ∂

∂s
logMT (−s)

∣∣∣∣
s=0

= − ∂

∂s
log(L[FT (t)](s))

∣∣∣∣
s=0

= − 1

L[FT (t)](s)
· ∂
∂s

(L[FT (t)](s))

∣∣∣∣
s=0

= − 1(
m0 − sm1 + s2

2 m2 − · · ·
) · (−m1 +m2s− · · · )

∣∣∣∣∣
s=0

=
m1

m0
,

which equals the first moment if the zero’th moment equals one, and can be
interpreted as the mean moment in time where a particle passes a certain point.
The second cumulant, i.e. the variance of the distribution of possible moments in
time is also an important characteristic time and is also related to the moments
about zero:

c2 = − ∂2

∂s2
CT (−s)

∣∣∣∣
s=0

= − ∂2

∂s2
logMT (−s)

∣∣∣∣
s=0

=
∂

∂s

[
− 1

L[FT (t)](s)
· ∂
∂s

(L[FT (t)](s))

]∣∣∣∣
s=0

= − (−m1 +m2s− · · · )2(
m0 − sm1 + s2

2 m2 − · · ·
)2
∣∣∣∣∣
s=0

+
(m2 − sm3 + · · · )(

m0 − sm1 + s2

2 m2 − · · ·
) ∣∣∣∣∣
s=0

=
m2

m0
− m2

1

m2
0

.

If m0 equals 1, this second cumulant equals the second moment about the
mean. For the third cumulant a analogous derivation can be made and it can
be shown that it equals the third moment about the mean, E[(T −m1)3]. Also
higher-order cumulants have a similar relation to the moments, although they
are not longer equaling the moments about the mean. Each of these moments
and cumulants are of importance as they are the characteristic times of the
diffusion model as described in the following 3 sections.
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4.1 Characteristic times for multiscale diffusion of
active ingredients in coated textiles

T. Goessens, R.H. De Staelen and D. Constales

published by Elsevier in Journal of Computational and Applied Mathema-
tics, 2015.
[doi:10.1016/j.cam.2014.10.015]

Abstract A three-scale approach for textile models was given in [16]: a one-
dimensional fiber model and a room model, with a meso-level in between, which
is the yarn scale. To analyze and simplify the model, its characteristic times are
investigated here. At these times the fiber and yarn model, and the yarn and room model,
respectively, tend to reach a partial equilibrium concentration. The identification of
these characteristic times is key in reducing the model to its variously scaled components
when simplifying it.

4.1.1 Introduction

We focus on the diffusion of a substance to the outer boundary of textiles.
The fibers used to construct this fabric are coated with a polymer solution
of an active ingredient (AI), e.g. an insect repellent, a perfume or a healing
substance. This substance can easily be replaced by other volatiles. The goal
is to investigate how much of the AI has to be present on the textile fiber and
which polymer substance to use to coat the fiber so that the concentration at
the outer boundary of the textile stays high enough for as long as required to
be effective (e.g. repel or even kill mosquitoes, spread a noticeable odor for
humans, have a healing effect ...).

The application in mind has the purpose to track the diffusion of an active
component released by the fibers of an open textile structure, like a woven
scrim, e.g. a gauze bandage. Models and algorithms for this application were
based on [53, 59, 12, 33] and discussed in [16, 18, 17] where a meso-level model
that describes the release of the active component in the yarn cross-section is
included in between the standard fiber model and the room model. Upscaling
from one level to another is done by volume averaging or overlapping domain
decomposition (future work). Implementation was done in C language using
lsoda, [39].
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4.1.2 Characteristic times for the three-level diffusion

The governing system of equations of the complete three-level model is

∂Cf (ρ,t)

∂t
=

1

ρ

∂

∂ρ

(
ρDf

∂Cf (ρ,t)

∂ρ

)
, ρ ∈ [ρmin,ρmax](4.1a)

∂Cy(r,t)

∂t
=

1

r

∂

∂r

(
r
Dy

τy

∂Cy(r,t)

∂r

)
+

1

ε
Γin(r,t), r ∈ [0,Ry] (4.1b)

∂Cr(x,t)

∂x
=

∂

∂x

(
D
∂Cr(x,t)

∂x

)
, x ∈ [0, L] (4.1c)

with a homogeneous Neumann BC at the left boundaries and an evaporation
flux at the right boundaries for the fiber and yarn model (4.1a) and (4.1b):

∂Cf
∂ρ

(0,t) = 0, −Df
∂Cf
∂ρ

(ρmax,t) = vf (Cf (ρmax,t)− Cy(r,t)),

∂Cy
∂r

(0,t) = 0, −Dy
∂Cy
∂r

(Ry,t) = vy(Cy(Ry,t)− Cr(0,t)).

For the room model (4.1c) a homogeneous Neumann BC is present at the right
boundary and at the left boundary there exists an evaporation flux coming
from the concentration in the yarn evaporating to the room:

D
∂Cr
∂x

(0,t) = αyrvx(Cr(0,t)− Cy(Ry,t)),
∂Cr
∂x

(L,t) = 0.

In the above system of equations (4.1) the subscript f, y and r stand for a
quantity in the fiber, yarn and room respectively, C represents the concentration
of the AI, D is the diffusion coefficient, v is the evaporation speed and αyr is a
constant of proportion for the evaporation from yarn to room. The constants τ
and ε are the tortuosity and porosity of the textile used. The term Γin in (4.1b)
is the volume averaged condensation/evaporation rate and is calculated as
αfyvf (Cf (ρmax)− Cy(r)) with αfy the surface/volume ratio of the fiber.

At certain points in time equilibrium is essentially reached between the
three models. Plotting the logarithmic concentration against the logarithmic
time scale (Fig. 4.1) shows that, for standard parameters, after a rather short
time (approximately 5 s) the yarn and room concentrations coincide, the fiber
and yarn concentrations coincide at 100 s and after approximately 1× 106 s all
concentrations reach the same value.

As an upscaling method volume averaging is used, the averaged outcome
of one model serves as boundary conditions for the other.

These moments in time where equilibria are reached correspond with the
systems characteristic times. These are the time scales τ for a particle to travel
over a distance x and on average these are given by τd ≈ x2/D for diffusion
and τe = x/v for evaporation.
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As a first estimation of these times one may calculate them by this rule of
thumb for each of the levels as

τdf = (∆ρ)2

Df
, τef = ∆ρ

vfiya
,

τdy = (∆r)2

Dy
, τey = ∆r

vyaro
,

where vfiya is the evaporation speed for the AI from the fiber surface to the
yarn gaps, vyaro is the evaporation speed for the AI from the yarn surface to the
room, ∆ρ and ∆r are the thickness of the fiber and yarn cross-section, and Df

and Dy are the respective diffusion coefficients of the first two levels.
A more precise way to calculate these characteristic times uses the Laplace

transform of the flux. At interesting points of the system we interpret the
diffusive flux F(x,t) as the probability distribution function of the times T
when a particle passes by position x. The moment-generating function is then
related to the Laplace transform of the flux:

Mx(−s) = Ex(e−sT ) =

∫ +∞

0

e−stF(x,t)dt = L[F(x,t)](s),

and the cumulant-generating function g(−s) is the logarithm of the Laplace
transform of the flux, where s is in the Laplace domain.

Doing so, we are particularly interested in the first and second cumulants.
The first cumulant is

c1 = − ∂

∂s
g(s)

∣∣∣∣
s=0

= − ∂

∂s
[log(L[F(x,t)](s))]

∣∣∣∣
s=0

,

which is the mean of the probability distribution, i.e. the residence time of the
diffusion equation or the average time it takes a particle to pass a certain point.

Also the second cumulant or the second derivative of the logarithm of the
Laplace transform of the flux in s = 0, i.e. the variance of the flux, is useful for
interpreting the system.

4.1.3 Calculation of the characteristic times

All of the characteristic values can be exactly calculated in function of the
parameters in the above equations and will help to understand the diffusion in
open textile structures. To calculate the exact characteristic times the Laplace
transform of each of the three governing equations is taken.

The PDE for the fiber equation then is

sLf (ρ,s)− Cf (ρ,0) = Df
∂2

∂ρ2
Lf (ρ,s) +

1

ρ
Df

∂

∂ρ
Lf (ρ,s),
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with

ρmin ≤ ρ ≤ ρmax, s ∈ C, <(s) > γ0

and Laplace transformed BC’s(
∂

∂ρ
Lf
)

(ρmin,s) = 0, −Df

(
∂

∂ρ
Lf
)

(ρmax,s) = vf (Lf (ρmax,s)− Ly(r,s)),

where Lf = L[Cf (ρ,t)](s) and Ly = L[Cy(r,t)](s).
Solving for Lf (s) gives

Lf (ρ,s) =
Cf (ρ,0)

s
+ C1I0

( √
s√
D
ρ

)
+ C2K0

( √
s√
D
ρ

)
,

where Ii and Ki are the modified Bessel functions of the first and second kind,
respectively, of order i. We define the characteristic time and the Peclet number
of the equation as

tf = ρ2
max/Df , pf = vfρmax/Df .

The Laplace transformed BC on the right boundary of the fiber is rewritten
in function of the initial concentration Cf (ρ,0) because Cf (ρmax,t) is not yet
known. One can notice that when the initial concentration equals the concen-
tration in the immediate neighborhood of the fiber, i.e. Cy(r), their is no longer
any flux. This can be expressed in a way following naturally from the Laplace
transformed PDE itself:

s

(
Lf (ρ,s)− Cf (ρ,0)

s

)
= Df

∂2

∂ρ2
Lf (ρ,s) +

1

ρ
Df

∂

∂ρ
Lf (ρ,s),

so we can instead of taking the flux of L[Cf (ρ,t)] take the flux of L[Cf (ρ,t)−

Cf (ρ,0)]
not.
= Lf −

C0

s
at the right boundary and express it in terms that are

known or are possible to be calculated, namely the difference between the
initial concentration and the concentration in the immediate neighborhood of
the fiber’s right end. The BC on the right of the fiber domain then becomes

Df

vf

∂

∂ρ

(
Lf −

C0

s

)
= X

(
Ly −

C0

s

)
,

where Ly and X (a dimensionless constant) will be determined further on.
Using the BC on the left of the fiber domain and the new BC on the right
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we can determine C1 and C2 as

C1 =
pf√
stf

X

(
Ly(r,s)− C0

s

)
I1

(√
stf

ρmin

ρmax

)
 I1(

√
stf )

I1

(√
stf

ρmin

ρmax

) − K1(
√
stf )

K1

(√
stf

ρmin

ρmax

)

−1

,

C2 =
pf√
stf

X

(
Ly(r,s)− C0

s

)
K1

(√
stf

ρmin

ρmax

)
 I1(

√
stf )

I1

(√
stf

ρmin

ρmax

) − K1(
√
stf )

K1

(√
stf

ρmin

ρmax

)

−1

.

These choices for the constant make sure the BC’s are satisfied because

∂

∂x
I0(x) = I1(x) and

∂

∂x
K0(x) = −K1(x),

and

(Lf (ρmax,s)− Ly(r,s)) = X

(
Cf (ρ,0)

s
− Ly(r,s)

)
,

with the dimensionless X defined as

X =


1 +

pf√
stf

I0(
√
stf )

I1

(√
stf

ρmin

ρmax

) +
K0(
√
stf )

K1

(
√
stf

ρmin

ρmax

)
I1(
√
stf )

I1

(
√
stf

ρmin

ρmax

) − K1(
√
stf )

K1

(
√
stf

ρmin

ρmax

)



−1

=
tf

2pf

(
1− ρ2

min

ρ2
max

)
s+ · · · .

It is straightforward to prove that the function Lf with these constants is a
solution of the given fiber equation and complies to the constraints.

For the yarn model the Laplace transformed equation is given by

sLy(r,s) = Dy
∂2

∂r2
Ly(r,s) +

1

r
Dy

∂

∂r
Ly(r,s) +

S2

s
− S1Ly(r,s), 0 ≤ r ≤ Ry,

where the volume averaged condensation/evaporation rate Γin is calculated as

αfyvf (Cf (ρmax)− Cy(r)) with αfy the surface/volume ratio
2

ρmax
and using
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the above equality to get Γin =
2vfX

ρmax
(C0,f − Cy(r)). This leads to

S1 = 2
pf
tf
X =

2vfX

ρmax
,

S2 = 2
pf
tf
XC0 =

2vfXC0

ρmax
.

The BC’s are(
∂

∂r
Ly
)

(0,s) = 0, −Dy

(
∂

∂r
Ly
)

(Ry,s) = vy(Ly(Ry,s)− Lr(0,s)),

with Lr(x,s) = L[Cr(x,t)](s).
Solving for Ly gives

Ly(r,s) =
S2

s(s+ s1)
+ C1I0

(√
s+ S1

Dy
r

)
+ C2K0

(√
s+ S1

Dy
r

)
.

Since K1(0) is not defined the left BC immediately gives C2 = 0. We again
rewrite the BC on the right of the yarn in function of the initial concentration
value inspired by the Laplace transformed PDE

sLy(r,s)− S2

s
+ S1Ly(r,s) = Dy

∂2

∂r2
Ly(r,s) +

1

r
Dy

∂

∂r
Ly(r,s),

or

(s+ S1)

(
Ly(r,s)− S2

s(s+ S1)

)
= Dy

∂2

∂r2
Ly(r,s) +

1

r
Dy

∂

∂r
Ly(r,s).

This means we can look at the difference in concentration in the yarn and the
surrounding air and introduce a new dimensionless parameter Y such that

Ly(Ry,s)− Lr(0,s) = Y

(
S2

s(s+ S1)
− Lr(0,s)

)
,

leading to the BC at r = Ry ,

Dy

vy

∂

∂r

(
Ly(r,s)− S2

s(s+ S1)

)
= Y

(
Lr(0,s)−

S2

s(s+ S1)

)
.

Here S1 and S2 are defined as above, we use the characteristic time and Peclet
number for the yarn equation defined as

ty = R2
y/Dy, py = vyRy/Dy,
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and

Y =

1 +
I0

(√
(s+ S1)ty

)
I1

(√
(s+ S1)ty

) py√
(s+ S1)ty

−1

=
1

2

ty
py

(
2− ρ2

min

ρ2
max

)
s+ · · · .

This Y makes sure the BC can be expressed in terms of the initial concentration
and the concentration on a higher level Lr which can be calculated from the
Laplace transformed room PDE. This new BC leads to

C1 =

Y

(
Lr(0,s)−

S2

s(s+ S1)

)
I1

(√
(s+ S1)ty

) py√
(s+ S1)ty

=

(
Lr(0,s)−

S2

s(s+ S1)

)
I0

(√
(s+ S1)ty

)
+ I1

(√
(s+ S1)ty

) √(s+ S1)ty
py

.

Doing so we find

Ly(s) =
S2

s(s+ s1)
+

(
Lr(0,s)−

S2

s(s+ S1)

)
I0

(√
(s+ S1)ty
Ry

r

)

I0

(√
(s+ S1)ty

)
+ I1

(√
(s+ S1)ty

) √(s+ S1)ty
py

.

Again, it is not hard to prove that this Ly is a solution of the above yarn
equation that satisfies the given BC’s.

To be able to find the constants in Lf and Ly on the fiber and yarn level
we search for a solution on the room level. For the room PDE the Laplace
transform gives

sL[Cr(x,t)](s) = D
∂2

∂x2
L[Cr(x,t)](s), 0 ≤ x ≤ L,

with BC’s

D

(
∂Lr
∂x

)
(0,s) = αyrvx (L[Cr(0,t)](s)− L[Cy(Ry,t)](s)) ,(

∂Lr
∂x

)
(L,s) = 0,

with αyr the ratio of active yarn surface to the surface of the left wall of the
room. Solving for Lr(x,s) gives

Lr(x,s) = C1 exp

(√
s

D
x

)
+ C2 exp

(
−
√

s

D
x

)
.
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Using the BC in x = L gives

C1 =
C2

√
s
D exp

(
−
√

s
DL
)√

s
D exp

(√
s
DL
) ,

which leads to

Lr(x,s) =
2C2 cosh

(√
s
DL
)

cosh
(√

s
Dx
)
− 2C2 sinh

(√
s
DL
)

sinh
(√

s
Dx
)

cosh
(√

s
DL
)

+ sinh
(√

s
DL
) .

Using the flux of the first BC in x = 0 and defining

tx =
L2

D
, px =

vxL

D
,

we find the correct C2 and

Lr(x,s) =
px cosh

(√
stx
(
1− x

L

))
Y
(

S2

s(s+S1) − Lr(0,s)
)

sinh
(√
stx
)√

stx
, (4.2)

where Lr(0,s) can be calculated by putting x = 0 in (4.2). Using this and
the previously found expression for Y we arrive at a solution for the Laplace
transformed room PDE

Lr(x,s) =
S2

s(s+ S1)

cosh((1− x/L)
√
stx)

cosh
√
stx

·

[
1 +

(
1 +

py√
(s+ S1)ty

I0(
√

(s+ S1)ty)

I1(
√

(s+ S1)ty)

) √
stx sinh

√
stx

px cosh
√
stx

]−1

.

This Lr is a solution of the room PDE satisfying the BC’s. Because on the right
of the room domain a zero flux is imposed it is possible to calculate X and Y
and as a consequence the constants in the PDE solutions on the yarn and fiber
level respectively.

To calculate the characteristic times, i.e. the first and second moment, and
the residence time of diffusion and the variance of the flux, i.e. the first and
second cumulant of the system, we look at the flux of the above found solutions

−Df
∂Lf
∂ρ

, −Dy
∂Ly
∂r

and −D∂Lr
∂x

.

For the first and second moments we write the fluxes to their series expan-
sion and look for the constant term and the coefficient of −s.

M0,f =
Df

2

tf
(
ρ2 − ρmin

2
)

(px ty + 2 py tx )C0

(2 px ρmax
2ty − px ρmin

2ty + 2 py ρmax
2tx ) ρ

,
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M0,y = Dy

ty r
(
ρmax

2 − ρmin
2
)
C0 py tx

Ry
2 (2 px ρmax

2ty − px ρmin
2ty + 2 tx py ρmax

2)
,

M0,r = D
tx (L− x)

(
ρmax

2 − ρmin
2
)
C0 px ty

(2 px ρmax
2ty − px ρmin

2ty + 2 tx py ρmax
2)L2

,

M1,f = Df
∂

∂s

(
∂Lf
∂ρ

(s)

)∣∣∣∣
s=0

, M2,f = Df
∂2

∂s2

(
∂Lf
∂ρ

(s)

)∣∣∣∣
s=0

,

M1,y = Dy
∂

∂s

(
∂Ly
∂r

(s)

)∣∣∣∣
s=0

, M2,y = Dy
∂2

∂s2

(
∂Ly
∂r

(s)

)∣∣∣∣
s=0

,

M1,r = D
∂

∂s

(
∂Lr
∂x

(s)

)∣∣∣∣
s=0

, M2,r = D
∂2

∂s2

(
∂Lr
∂x

(s)

)∣∣∣∣
s=0

.

The cumulants c1 and c2 can be found from the chain rule for

c1,f = − ∂

∂s

[
log

(
∂Lf
∂ρ

(s)

)]∣∣∣∣
s=0

=
M1,f

M0,f
,

c2,f =
∂2

∂s2

[
log

(
∂Lf
∂ρ

(s)

)]∣∣∣∣
s=0

=
M2,f

M0,f
−
(
M1,f

M0,f

)2

,

and analogously for the other cumulants.

4.1.4 Application

As a illustration of the theory above we now take some fixed values for the
quantities in the found equations. The data we will work with is

αfy = 1 m−1 ,

αyr = 1,

ρmin = 0.0000 m ,

ρmax = 0.0001 m ,

Ry = 0.001 m ,

L = 5 m ,

C0 = 1 mg /m3,

vf = 1 m / s ,

vy = 1 m / s ,

vx = 1 m / s ,

Df = 1× 10−10 m2 / s ,

Dy = 1× 10−6 m2 / s ,

D = 1× 10−5 m2 / s,

(4.3)

and we will run the code using ∆t = 1× 10−8 as the initial time step for the
yarn and room model, ∆tf = 1.01 for the scale factor used to get the geometric
sequence of time values for calculations and plotting, nf = 20 , ny = 20 and
nr = 40 for the number of cells in the respective models.
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Figure 4.1: Log-log plot of the concentrations in function
of time for the data (4.3)

For this example we find for the middle of the room, fiber and yarn, i.e.
x = 2.5, ρ = 0.00005, r = 0.0005, the residence times (mean of the flux) and
variances of the flux in Table 4.1.

Table 4.1: Cumulants for the middle of the fiber, yarn
and room

Cumulant Fiber Yarn Room

c1 105.37010 s 179.57059 s 3.12679× 105 s
√
c2 5271.88198 s 7454.84040 s 2.55264× 105 s
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Figure 4.2: Log-log plot of the concentrations in function
of time for the data (4.3), but with diminished diffusion
coefficients to 1× 10−12 m2 / s

These values are also visible in the plot of the logarithmic concentration
vs. the logarithmic time scale. They correspond to the times where the con-
centration of the fiber in the middle of the yarn cross-section and that in the
middle of the room coincide, and the moment where the latter concentration
reaches equilibrium with the room concentration. This means the plot sup-
ports the calculated values of the residence times. By enlarging or diminishing
some parameters, for example the diffusion coefficients, the plots also suggests
the residence times have to shift to the left or right, see Fig. 4.2. This is in
accordance with calculated values.

4.1.5 Conclusion and future work

A three-scale model consisting of a micro-, meso- and macrolevel was im-
plemented in C language. Upscaling was done by volume averaging for the
concentration calculated from the smaller level to serve as a source term and
BC for the larger level. This can be adapted to the previously used overlapping
domain decomposition method. Characteristic times were confirmed using the
Laplace transform of the flux.
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4.2 Characteristic times and inverse problems for
diffusion in coated textiles

T. Goessens, R.H. De Staelen and D. Constales

published by NSP in Applied Mathematics and Information Sciences, 2015.
[doi:10.12785/amis/092L09]

Abstract We study diffusion of active ingredients in coated textiles by a three-scale
model. These scales consist of a fiber level representing the fiber with its polymer
coating containing an active ingredient, a yarn level, and the level of the room holding
the textile. An analysis of the model is carried out using the characteristic times of the
different levels. We investigate the influence of the parameters in the model by solving
several inverse problems.

4.2.1 Introduction

We study the diffusion of a volatile trapped in a polymer coating on textiles
fibers. These fibers are used to construct an intelligent textile. The coating
consists of a polymer solution of an active ingredient (AI), e.g. an insect repel-
lent, a perfume or a healing substance. This substance can easily be replaced
by other volatiles. The goal is to slow down the release of the AI in order to
increase the active lifetime of the textile. We want to investigate how much of
the AI has to be present on the textile fiber and which polymer substance to use,
to coat the fiber so that the concentration at the outer boundary of the textile
stays high enough for as long as required to be effective (e.g. repel or even
kill mosquitoes, spread a noticeable odor for humans, have a healing effect ...).
Therefore a forward problem is implemented in C-language and an inverse
problem is solved using the Levenberg-Marquardt method. The forward model
consists of a three-scale approach based upon [53, 59, 12, 33] . The model is
given in [16]: a one-dimensional cylindrical diffusion equation on the fiber and
yarn levels and a one-dimensional diffusion model for the room. To analyse
and simplify the model, its characteristic times are further investigated in this
paper. At these times the fiber and yarn model, and the yarn and room model,
respectively, tend to reach an equilibrium concentration. The identification of
these characteristic times is key in reducing the model to its variously scaled
components when simplifying it.

The characteristic times are calculated using Laplace transformation based
on [15] and compared to generated outcomes of the model. Implementation of
both the forward as the inverse problem was done in C-language using lsoda
[39] and the fit command in Gnuplot.
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4.2.2 Characteristic times for the three-level diffusion

The governing system of equations of the complete three-level model [16] is

∂Cf (ρ,t)

∂t
=

1

ρ

∂

∂ρ

(
ρDf

∂Cf (ρ,t)

∂ρ

)
,

ε
∂Cy(r,t)

∂t
=

1

r

∂

∂r

(
εrDy

∂Cy(r,t)

∂r

)
+ Γin(Ω,t),

∂Cr(x,t)

∂x
=

∂

∂x

(
D
∂Cr(x,t)

∂x

)
,

with ρ ∈ [Rf ,2Rf ], r ∈ [0,2Ry] and x ∈ [Ry, L]. There is an evaporation flux
at the right boundaries for the fiber and yarn model, and a homogeneous
Neumann BC at their left boundaries. For the room model a homogeneous
Neumann BC is present at the right boundary and an evaporation flux at the
left boundary coming from the concentration in the yarn evaporating to the
room.

The concentration of the AI is tracked starting in the fiber coating. Once
the outer boundary of the coating is reached the AI is evaporating to the yarn
air gaps, and further on to the outside of the textile into the room. Plotting
the logarithmic concentration against the logarithmic time scale shows that,
for standard parameters, after a rather short time (approximately 100 s) the
fiber and yarn concentrations coincide and after approximately 10× 106 s those
concentrations coincide with the concentration in the middle of the room, see
Fig. 4.3. We will further investigate these moments in time where equilibrium
is reached between the different levels to have a better understanding of the
interactions in the model and to be able to predict when the concentration of the
AI reaches a certain position in the textile and in the room. As a consequence it
becomes possible to adjust the textile product to the standards needed.

A way to calculate these characteristic times uses the Laplace transform
of the flux. At interesting points of the system we interpret the diffusive flux
FT (x) as the probability distribution function of the times T when a particle
passes a certain position x. The moment-generating function is then related to
the Laplace transform of the flux:

MT (−s) = ET (e−sT ) =

∫ +∞

0

e−stFT (t)dt = L[FT (t)](s).

A series expansion of this function

L[FT (t)](s) = M0 −M1s+M2
s2

2!
−M3

s3

3!
+ ...,
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Figure 4.3: Logarithmic concentration vs logarithmic
time with Df = 1× 10−10 mm2

s , Dy = 1× 10−6 mm2

s and
D = 1× 10−5 mm2

s

gives the respective moments of the probability distribution function, e.g.
the mean M0 and variance M1. We also look at the series expansion of the
cumulant-generating function g(−s), i.e. the logarithm of the Laplace transform
of the flux, where s is in the Laplace domain. The cumulants are given by

cn =
∂n

∂sn
g(−s)

∣∣∣∣
s=0

.

We are particularly interested in the first and second cumulant. The first
cumulant is

c1 =
∂

∂s
[log(L[FT (t)](s))]

∣∣∣∣
s=0

,

which is the mean of the probability distribution, i.e. the residence time of
the diffusion equation or the average time it takes a particle to pass a certain
point. Also the second cumulant or the second derivative of the logarithm of
the Laplace transform of the flux in s = 0, i.e. the variance of the logarithmic
flux, is useful for interpreting the system. All of the characteristic values can
be exactly calculated in function of the parameters in the above equations and
will help to understand the diffusion in open textile structures.

4.2.3 Calculation of the characteristic times

To calculate the exact characteristic times the Laplace transformation of each of
the three governing equations is taken. More details can be found in [15].
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We use the notationLf = L[Cf (ρ,t)](s),Ly = L[Cy(r,t)](s) andLr = L[Cr(x,t)](s)

and introduce the function

Bn(x,y) =
In(
√
s tf x)

I1(
√
s tf y)

+ (−1)n
Kn(
√
s tf x)

K1(
√
s tf y)

,

which is a combination of modified Bessel functions of first and second kind,
where tf =

ρ2
max

Df
is the diffusion time.

For the fiber equation we define

X =

[
1 +

pf√
s tf

B0(1, ρmin

ρmax
)

B1(1, ρmin

ρmax
)

]−1

=
tf

2pf

(
1− ρ2

min

ρ2
max

)
s+ · · · ,

where pf =
tf
tff

is the Peclet number for the fiber level and tff = ρmax

vf
is the

transport time.
This dimensionless X makes sure the BC on the right can be written in the

form
Df

vf

∂

∂ρ

(
Lf −

C0

s

)
= X

(
Ly −

C0

s

)
,

which we can use to calculate Lf once we have Ly as

Lf (ρ,r,s) =
C0

s
+

(
Ly(r,s)− C0

s

)
·

B0( ρ
ρmax

, ρmin

ρmax
)

B0(1, ρmin

ρmax
) +

√
s tf

pf
B1(1, ρmin

ρmax
)
.

For the yarn level the same strategy is followed taking the Laplace transformed
equation and solving it for Ly(r,s), with

S1 = 2
pf
tf
X =

2vfX

ρmax
, S2 = 2

pf
tf
XC0 =

2vfXC0

ρmax
,

and

Y =

1 +
I0

(√
(s+ S1)ty

)
I1

(√
(s+ S1)ty

) py√
(s+ S1)ty

−1

=
1

2

ty
py

(
2− ρ2

min

ρ2
max

)
s+ · · · ,

where we use the diffusion time, the Peclet number for the yarn level and the
transport time for the yarn equation defined as

ty = r2
max/Dy, py = vyrmax/Dy = ty/tfy, tfy = r2

max/vy.

The BC on the right can again be written as

Ly(Ry,s)− Lr(0,s) = Y

(
S2

s(s+ S1)
− Lr(0,s)

)
,
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which allows to solve for Ly in function of Lr(0,s). This last term will be
calculated by taking the Laplace transformation of the room PDE, which leads
to

Lr(x,s) =
px cosh

(√
stx
(
1− x

L

))
Y
(

S2

s(s+S1) − Lr(0,s)
)

sinh
(√
stx
)√

stx
, (4.4)

with S1, S2 and Y as above and the diffusion time tx = L2

D , transport time
tfx = L

vx
and the Peclet number for the room level px = tx

tfx
= vxL

D . By setting
x = 0 in (4.4), we arrive at a linear, thus solvable, equation in Lr(0,s). Mind
that we first need the solution for Lr to be able to calculate Ly, which, on its
turn, is needed for Lf .

To calculate the characteristic times, i.e. the first and second moment, and
the residence time of diffusion and the variance of the flux (the first and second
cumulant of the system), we look at the fluxes of the solutions found above
∂Lf
∂ρ

,
∂Ly
∂r

and
∂Lr
∂x

.

For the zeroth, first and second moments we write the fluxes in their series
expansion and look for the constant term, the coefficient of −s and the coeffi-
cient of s2 by differentiating and setting s equal to zero. We will do this for the
most interesting interfaces in the model, that is the transition from one level to
another.

When we look at concentration passing from the fiber level to the yarn level,
ρ = ρmax, we can calculate the zero’th moment,

M0,f =
1

4

(
(2tfx + tfy)C0

tfx + tfy

)
ρmax.

For the yarn and room similar results are achieved. The transition from
yarn to room, thus taking r = Ry and x = 0 leads to

M0,y =
1

2

(
tfxC0

tfx + tfy

)
Ry,

where now in the numerator only the transport time in the room appears.
For the room flux, which gives an idea of how the particles in the room are
distributed, the zero’th moment is

M0,r =
1

2

(
tfyC0

tfx + tfy

)
L,

where in the nominator the dependence of the flux on the evaporation rate in
the air gaps of the yarn becomes clear. Also for the first and second moments
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the same dependencies appear, but now in a quadratic relation, since a variance
has been calculated. For example, for the flux in the room the first moment is

M1,r = − ∂

∂s

(
∂Lr
∂x

(−s)
)∣∣∣∣

s=0

=
1

2

(
tfyC0

(tfx + tfy)2

)
L

[
(2tfx + tfy)

16
tf +

tfx
4
ty

+
tfy
3
tx +

(2tfx + tfy)

4
tff + 2tfxtfy

]
.

Analogous results are found for the second moments on fiber and yarn level,

M1,f = − ∂

∂s

(
∂Lf
∂ρ

(−s)
)∣∣∣∣

s=0

,

M1,y = − ∂

∂s

(
∂Ly
∂r

(−s)
)∣∣∣∣

s=0

,

where we need to stress that for the interesting transition from yarn to room
(at r = Ry and x = 0) these last two moments can be found in two ways
resulting twice in the same expression. We can look at the series expansion
of the derivatives of the fluxes Ly and Lr and calculate them for the position
r = Ry and x = 0, or we can look at the derivatives of the difference (Ly −Lr),
once representing the flux at the right boundary of the yarn (r = Ry) and once
representing the flux at the left boundary of the room (x = 0).
In each of these first moments there is an expected dependence on the initial
concentration and the denominator each time has the same structure, depend-
ing on the distance that should be travelled by the particle.

Even more interesting to look at are the cumulants, which represent the
several times were the actual transition from one level to another happens.
The cumulants c1 (the mean of the flux, or thus the mean position in time
where a particle passes at a certain position) and c2 (the variance of the flux)
can be found from the above calculated moments, using the chain rule for the
cumulant-generating function:

c1,∗ = − ∂

∂s

(
log

∂L∗
∂•

)∣∣∣∣
s=0

=
M1,∗

M0,∗
,

c2,∗ =
1

2

∂2

∂s2

(
log

∂L∗
∂•

)∣∣∣∣
s=0

=

(
M2,∗

M0,∗

)
−
(
M1,∗

M0,∗

)2

,

where ∗ stands for f , y or r and • for ρ, r or x, respectively.
For the fiber the first cumulant at ρ = ρmax, i.e. the residence time at the

position where the AI leaves the fiber coating and evaporates to the yarn air
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gaps, is

c1,f =
tf
16

(
2tfx + tfy
tfx + tfy

)
− ty

4

(
tfx
(
2r2(tfx + tfy)−R2

y(2tfx + tfy)
)

R2
y(tfx + tfy)(2tfx + tfy)

)

+
tx
3

(
tfxtfy

(tfx + tfy)(2tfx + tfy)

)
+
tff
4

(
2tfx + tfy
tfx + tfy

)
+

t2fxtfy

(tfx + tfy)(2tfx + tfy)
.

We get an expected dependence between the residence time and the fiber’s dif-
fusion time, or the time for a particle to travel over distance ρmax via diffusion
with diffusion coefficient Df . In the coefficient of tf the transport times tfx and
tfy (the times it takes a particle to travel via evaporation in the room and yarn
air gaps) are also likely to appear, since movement out of the fiber is controlled
by the evaporation rate. It is also worth mentioning that the transport time of
the room seems to be twice as sensitive as the transport time in the yarn air
gaps. This is because of the dimension of the system (d = 2), which plays an
important role in all coefficients, e.g. the 1

16 in the first term. The coefficient of
tfx is always equal to d.
Also a dependence on ty and tx is present. The respective coefficients again
show the same linear combination (2tfx + tfy) multiplied with the quadratic
distance to travel which is present in all the terms. The coefficient of ty has a
factor tfy which is logical when we bear in mind that this is the transport time
for a particle to get from the coating to the air gaps by evaporation. The sign is
negative because the concentration of AI present in the yarn air gaps inhibits
this evaporation and the 1

4 again comes from the system’s dimensions. For the
coefficient of tx we only get both the transport times to travel inside of the yarn
and in the room.
There is also a term in tff , the transport time in the fiber, with the same coeffi-
cient as tf , the diffusion time, but four times as large.

The residence time at the transition point from yarn to room level, at r = Ry
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and x = 0 is

c1,y = c1,r =
tf
16

(
2tfx + tfy
tfx + tfy

)
+
ty
4

(
tfx

tfx + tfy

)
+
tx
3

(
tfy

tfx + tfy

)
+
tff
4

(
2tfx + tfy
tfx + tfy

)
+

tfxtfy
tfx + tfy

.

Again the same coefficients are present, i.e. 1
16 for the term in tf , 1

4 for the terms
in ty and tff and 1

3 for the term in ty . The coefficient of tff again is four times
as large as the one of tf . Every term has a positive sign since there can only be
a positive effect from each of the underlying levels. The recurring denominator
is the combined effect of the transport times in the yarn and the room.

The second cumulants both are of the same form and represent quadratic
times since they stand for variances of the flux distribution,

c2,∗ =
1

(tfx + tfy)2

[
tf
16

(
1

48
a1 +

1

2
a2ty +

1

2
a3tff + 2a4

)
+
ty
4

(
1

12
a5ty +

1

2
a6tff + 2a7

)
+
tx
3

(
1

15
a8tx +

1

8
a9tf +

1

2
a10ty +

1

2
a11tff + 2a12

)
+
tff
4

(
1

4
a13 + 2a14

)
tff + t2fxt

2
fy

]
.

The coefficients of the respective terms are completely similar as for the resi-
dence times and again can be attributed to the system’s dimensions.

For a general pair dimension d the residence time for the room is

c1,r =
tf
a

dtfx + tfy
btfx + ctfy

+
ty
e

tfx
btfx + ctfy

+
ctx
3

tfy
btfx + ctfy

+
tff
e

dtfx + tfy
btfx + ctfy

+ c
tfxtfy

btfx + ctfy
,

with coefficients a, b, c, and e

a = 4(d+ 2), b =
d2

4
, c =

d+ 2

4
, e = 4.

if d is not divisible by 4, and if d is divisible by 4 the coefficients are twice as
large. These coefficients are also present in the other cumulants.
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At these residence times the system reaches an equilibrium. In [15] the
theoretical values were compared with these numerical solutions of the model.
These numerical values are visible in the plot of the logarithmic concentration
vs. the logarithmic time scale, Fig. 4.3. The symbolic form calculated above
now makes it possible to explain even further the accordance between both.

4.2.4 Inverse problem

With the programming code utilized it is possible to use Gnuplot’s fit command
to calculate some inverse problems. Starting from an estimated initial value for
the unknown parameter, the model will be fitted to experimental values of the
forward problem using nonlinear least squares regression.
In practice measurements of the concentration of the AI in a room can be done,
and the model could be fitted to these values. That way the right polymer may
be chosen depending on the required diffusion coefficient in the coating and the
initial concentration could be determined. It becomes possible to decide on the
right composition of the textile, answering the questions of how many fibers
are needed to get to the right surface/volume ratio, on its turn determining the
needed evaporation rate. The inverse problem is using the same C-code of the
3 level diffusion system as the forward model. Although this does not work for
all parameters due to high complexity of some of them and the dependencies
between them, it is possible to estimate those of high impact.

For example it is possible to fit the initial concentration C0 and the diffusion
coefficient in the room D starting for C0 at an initial guess of 1.1 and for D at
1.1× 10−5. As data points we use the values optioned by the forward model
with C0 = 1.234 and D = 2.345× 10−5 and a uniform error in [− 3

2 ; 3
2 ]× 10−5

is superimposed. We want to trace back the values for C0 and D after fitting
the inverse problem.
This is the case after 5 iterations with a root-mean-square of residuals (RMS)
of 8.635 × 10−6. The calculated set of parameters is C0 = 1.23401 with an
asymptotic SE of ±0.002 or 0.179% and D = 2.33142 × 10−5 with an SE of
±0.016 or 0.682%. The data fitting of this problem is shown in Fig. 4.4(a).

However if we start from a very bad initial guess for D at 0.001× 10−5 the
inverse problem does not converge because a singular matrix is encountered,
resulting in an estimation of 8388.17 for D. Using the least squares method of
Gnuplot thus requires some a priori knowledge about the parameters, but our
earlier analysis of characteristic times helps in selecting these. The model plot
corresponding to this problem is found in Fig. 4.4(b). If for example we try to
estimate Df and D from data fitting, the inverse problem does not converge to
the correct values. This is because the time frame wherein the AI’s particles
are moving through the fiber is much smaller than the time these particles
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(a) Initial guess of 1.1 for both parameters

(b) Initial guess of 1.1 for C0 and 0.001 for D

Figure 4.4: Inverse problem for determining initial
concentration C0 and diffusion coefficient in the room
model D

are moving through the room. As a consequence we have too little data to be
able to trace back the diffusion coefficient in the fiber. The diffusion coefficient
in the room is however traceable and the models fit is not too bad after all.
After 5 iterations the fit converged with an RMS of 8.816 × 10−6. The fitted
D was 2.34951×10−5 with an asymptotic SE of ±0.0145 or 0.616%. Parameter
Df however was fitted as 127.905 with asymptotic SE of ±1994 or 1559%. The
correlation between these parameters is −0.048, so it is not responsible for the
bad fit. The data fitting can be seen in Fig. 4.5. Fitting can also be done for
more than two parameters at a time. For example, it is possible to estimate the
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Figure 4.5: Inverse problem for determining diffusion
coefficient in the fiber model Df and diffusion coeffi-
cient in the room model D

three parameters C0, vf and D. In the forward problem the values used were
1.234, 1 and 3.456 × 10−5, respectively. Starting from 1.1, 0.5 and 1.1 × 10−5

it was possible to trace back these values after 5 iterations with an RMS of
9.243 × 10−6. The estimated model solving the inverse problem is shown in
Fig. 4.6.

Figure 4.6: Inverse problem with three parameters for
determining the initial concentration C0, the evapora-
tion speed vf and the diffusion coefficient in the room
model D
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4.2.5 Conclusion and future work

The characteristic times for the three level diffusion model were calculated
and symbolically analyzed. The present coefficients show the dependence
between the several diffusion and transport times and we were able to explain
them in a physical way. This gives a proof for the correspondence between the
calculated values and the visible transition times on the plot of the logarithmic
concentration in function of the logarithmic time in [15].
Several inverse problems were solved using the Levenberg-Marquardt algo-
rithm giving a first approach to use the developed model in practice. Based
upon these results we have more knowledge of which parameters can be
estimated at the same time, and which rather should be tested via chemical ex-
periments. Especially the fiber diffusion coefficient is hard to estimate because
of the small time scale where the AI is present in the fiber only. Experimental
values now could be used to answer the question of which textile, coating and
AI should be used to give the best practical results.

160



4.3 Characteristic times in a three scale model with
overlapping domain decomposition

T. Goessens and D. Constales

accepted for publication in Elsevier’s Journal of Computational and Ap-
plied Mathematics.

Abstract A three-scale diffusion model for textiles was given in [16]: consisting
of a fiber, yarn and room model. To analyze and simplify the model, its characteristic
times were investigated in [15, 14]. At these times the fiber and yarn model, and the
yarn and room model, respectively, tend to reach a partial equilibrium concentration.
Here an addition will be made to the model based upon the previous work. An overlap
zone is considered between the yarn and room level. Then the overlapping domain
decomposition technique is used to calculate the exchange of active ingredient from one
level to another in this zone. The mass balance for the system with the overlap zone is
calculated and tested in C-language.

4.3.1 Introduction

We consider textiles wherein the fibers are coated with a polymer solution of an
active ingredient (AI), e.g. an insect repellent, a perfume or a healing substance.
This substance can easily be replaced by other volatiles that first diffuse to the
outer boundary of the textile and from there on evaporate to the surrounding
air.
The application in mind has the purpose to track the diffusion of an active
component released by the fibers of an open textile structure, like a woven
scrim, e.g. a gauze bandage. Models and algorithms for this application were
based on [53, 59, 12, 33] and discussed in [16, 18, 17]. The model consists of
three levels, starting from the micro level of the fibers. Next the AI is diffusing
to the yarn meso-level, considering the concentration build up in a cross-section
of a yarn made out of fibers. Afterwards the AI is moving further to the outer
boundary of the textile and to the surrounding air represented by the room
level. Upscaling from one level to another can be done using volume averaging
and/or the overlapping domain decomposition technique.
In [15, 14] the characteristic times were calculated for a model where only
volume averaging was used for upscaling. Now an addition is made using an
overlap zone where the exchange of AI from one level to another is happening.
Solving the standard diffusion equations we know which concentration is
coming into this overlap zone at the left boundary, and we want to know how
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much is going to the next level after upscaling in the overlap zone. Therefore
we will investigate the relation between the Laplacian of both the concentration
and the flux at the left and right boundary of the overlap zone. That way we
can express the characteristic times, i.e. the moments and cumulants of the
system in the overlap zone where concentration is averaged out in one level
in function of the other level. This gives an idea of how a perfect exchange of
AI would look, or which properties of the textile can influence this movement
of substances to go faster or slower. Also it will be possible to implement
the relation between the left and right boundary of the overlap zone in the
already existing C-code, which is using lsoda to solve the system. The original
C-code will be extended with the possibility of using domain decomposition
for upscaling. For test purposes the conservation of mass is recalculated for
the new setting.

We will calculate the relation between the left concentration and flux in
function of the concentration and flux at the right boundary. First we will do
this for the simple one-dimensional case, afterwards for general dimensions
d1 and d2 of the two levels. Furthermore we will calculate these relations for a
specific concentration function.

Based upon this, it becomes possible for future research to investigate what
will happen if the setting is changing, e.g. a different positioning of the levels
and consequently the overlap zone, and what changes if we use the actual
concentration instead of the volume average in the overlapping zone equations.

4.3.2 One-dimensional overlap zone

The governing system of equations of the complete three-level model is

∂Cf (ρ,r,t)

∂t
=

1

ρ

∂

∂ρ

(
ρDf

∂Cf (ρ,r,t)

∂ρ

)
, ρ ∈ [ρmin,ρmax] (4.5a)

∂Cy(r,t)

∂t
=

1

r

∂

∂r

(
r
Dy

τy

∂Cy(r,t)

∂r

)
+ Γin(r,t), r ∈ [0,Ry] (4.5b)

∂Cr(x,t)

∂x
=

∂

∂x

(
D
∂Cr(x,t)

∂x

)
, x ∈ [0, L] (4.5c)

with a homogeneous Neumann BC at the left boundaries and an evaporation
flux at the right boundaries for the fiber and yarn model (4.5a) and (4.5b):

∂Cf
∂ρ

(0,r,t) = 0, −Df
∂Cf
∂ρ

(ρmax,r,t) = vf (Cf (ρmax,r,t)− Cy(r,t)),

∂Cy
∂r

(0,t) = 0, −Dy
∂Cy
∂r

(Ry,t) = vy(Cy(Ry,t)− Cr(0,t)).

For the room model (4.5c) a homogeneous Neumann BC is present at the right
boundary and at the left boundary there exists an evaporation flux coming
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from the concentration in the yarn evaporating to the room:

D
∂Cr
∂x

(0,t) = αyrvx(Cr(0,t)− Cy(Ry,t)),
∂Cr
∂x

(L,t) = 0.

In the above system of equations (4.5) the subscripts f, y and r stand for a quan-
tity in the fiber, yarn and room respectively, C represents the concentration
of the AI, Df , Dy and D are the respective diffusion coefficients, which are
assumed to be constant, vf and vy are the evaporation speeds from fiber to yarn
and from yarn to room level resp. αyr is a constant of proportion for the evapo-
ration from yarn to room level. The constant τ is the tortuosity of the textile
used. The term Γin in (4.5b) is the volume averaged condensation/evaporation
rate and is calculated as αfyvf (Cf (ρmax)−Cy(r)) with αfy the surface/volume
ratio of the fiber.

As an upscaling method from fiber level to yarn level, volume averaging is
used, the averaged outcome of one model serves as boundary conditions for
the other.

As described in [16] we will extend the domain of the yarn model with
an overlap zone Ωo, i.e. a part of the domain of the yarn will coincide with
the domain of room model. There the PDE above is adapted with an extra
sink-term Γout(t,Ωo) which stands for the amount of AI that is removed from
the meso-level due to diffusion to the macro-level. Also the BC at the right
boundary is changed to a homogeneous Neumann BC.
We are interested in the exchange of AI in this overlap zone, particularly the
relation between the AI at the left boundary of Ωo and that at its outer right
boundary: (

LC1

LF1

)
R1`

=

(
a b

c d

)
︸ ︷︷ ︸

A

(
LC2

LF2

)
R2r

,

where we used the Laplace transforms of the concentration of the AI in level
1 and 2, C1 and C2, and the Laplace transformed flux of these concentrations,
F1 and F2. We denote the left and right boundary of the overlap zone in the
domain of level i byRi` andRir. We will work with the Laplace transformation
of the quantities to be able to calculate the characteristic times of the model as
explained in [14, 15].

For illustrative purpose we will explain the method used in the following
sections with the one-dimensional diffusion in one level from R = 0 to R = L.
The relation between the left and right concentration and flux is then given by(

LC
LF

)
R=0

=

 cosh(
√

L2s
D ) 1√

sD
sinh(

√
L2s
D )

√
sD sinh(

√
L2s
D ) cosh(

√
L2s
D )

(LC
LF

)
R=L

,
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Figure 4.7: Overlap zone of two levels in the model

according to the PDE

∂C

∂t
(x,t) = D

∂2C

∂x2
(x,t), x ∈ [0,L].

To get to this matrix the equation is Laplace transformed

sLC(x,s) = D
∂2LC(x,s)

∂x2
,

and solved

LC(x,s) = A cosh

(√
sx2

D

)
+B sinh

(√
sx2

D

)
.

Substituting x = 0 and x = L in this solution and its derivative with respect
to x for the flux gives 4 equations, and 6 unknowns. Solving this system to
LC(0,s) and LF (0,s) in function of LC(L,s) and LF (L,s) gives the above ma-
trix. For the more complex systems of equations this exchange matrix A will
need further simplification using both Maple and calculations by hand.

We will now introduce the overlap zone equations for two overlapping
levels in one dimension as

∂C1

∂t
= D

∂2C1

∂x2
+ k

(
C̄2 − C1

)
,

∂C2

∂t
= D

∂2C2

∂x2
+ k

(
C̄1 − C2

)
,

where C̄1 and C̄2 stand for the mean concentration of AI in domain 1 and 2,
resp., k is a constant of proportionality corresponding to the rate of exchange
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between both levels.
The boundary conditions are

F1|R1r
= 0, F2|R2l

= 0.

Taking the Laplace transform of these equations and solving for LC1 and LC2

gives
LC1 = A cosh

(
x

√
(s+ k)

D

)
+B sinh

(
x

√
(s+ k)

D

)
+

k

s+ k
LC̄2,

LC2 = Ã cosh

(
x

√
(s+ k)

D

)
+ B̃ sinh

(
x

√
(s+ k)

D

)
+

k

s+ k
LC̄1,

and makes it possible to look at the left and right boundaries of both domains.
We will denote LCi and LFi at the left boundary of domain i as LCi` and LFi`.
This leads to ten equations each giving an expression for the ten unknowns
LC1`, LF1`, LC2`, LF2`, LC1r, LF1r, LC2r, LF2r, LC̄1 and LC̄2. However accor-
ding to the BC’s we put LF1r = LF2` = 0. Furthermore we have the unknowns
A,B, Ã and B̃. In total we end up with 10 equations for 12 unknowns, which
leads to a solution with two degrees of freedom. Solving this system for all
unknowns except for LC2r and LF2r leads to a solution in function of the latter
two. In particular we are interested in the solutions for LC1` and LF1`, in order
to be able to calculate the matrix of interest A,

A =


(2k + s)s

k(k + s)
T +

k

k + s

(2k + s)s

Lk(k + s)2
T 2 +

2k

L(k + s)2
T − k

L(k + s)2

(2k + s)sL

k

(2k + s)s

k(k + s)
T +

k

k + s

 ,

where T = coth

(√
k + s L√
D

)√
k + s L√
D

. The diagonal entries are equal which

means both concentration and flux of the AI at the left boundary of domain 1
have the same dependence on concentration and flux respectively at the right
boundary of domain 2. If there was a perfect exchange between the two overlap
zones this matrix becomes (limk→∞)

A =

 1 0

2Ls 1

 ,

where we see that the Laplace transformed concentration in both levels is the
same at both boundaries and the flux changes linearly with this concentration.
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The system thus acts as if there was only one level with double length. If we
should want to calculate the first moment of the system i.e. the mean position
in time when a particle passes a certain position in space, we are interested in
the above matrix with s equal to zero

A =

1 2T (0)−1
kL

0 1

 ,

where we notice that the first moment and consequently also the residence
time of the first level is the same as that of the second system.

In a more general setting the diffusion coefficients of the two levels are not
equal, and the exchange rate decreases with the length of the overlap zone,
which also doesn’t need to be equal in a more general case,


∂C1

∂t
= D1

∂2C1

∂x2
+

k

L1

(
C̄2 − C1

)
,

∂C2

∂t
= D2

∂2C2

∂x2
+

k

L2

(
C̄1 − C2

)
.

Following the same technique as above the needed matrix then becomes

A =



(L1(k+L2s)+L2k)s
(k+L1s)k

T1 +
k

k + L1s
(L1(k+L2s)+L2k)s
(k+L1s)(k+L2s)k

T1T2

+ k
(k+L1s)(k+L2s)

(T1 + T2 − 1)

(L1(k + L2s) + L2k) s

k
(L1(k+L2s)+L2k)s

(k+L2s)k
T2 +

k

k + L2s


.

Here Di and Li are the diffusion coefficient and length of the overlap zone in

the domain of level i and Ti = coth

(√
Lis+ k√
Di

√
Li

)√
Lis+ k√
Di

√
Li.

4.3.3 Two-dimensional cylindrical and one-dimensional carte-
sian diffusion

The application in mind is described using three levels of diffusion, eq. (1). The
overlap zone is situated between the last two levels, i.e. the yarn level which is
described by a two-dimensional cylindrical equation and the room level which
is described by a one-dimensional cartesian equation. In this overlap zone the
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governing equations of eq. (1) are adapted to
∂C1

∂t
=
D1

r

∂

∂r

(
r
∂C1

∂r

)
+

q

π (R2
2 −R2

1)h

(
C̄2 − C1

)
,

∂C2

∂t
= D2

∂2C2

∂x2
+

q

AL

(
C̄1 − C2

)
,

where R1 and R2 are the outer left and outer right boundary of the overlap
zone of the yarn cylinder, h is the height of a yarn cylinder, A is the area of the
room’s wall perpendicular to the dimension, L is the length of the overlap zone
of the room in the direction of the dimension, D1 and the D2 are the respective
diffusion coefficients. The proportionality constant q stands for the discharge
of the concentration in m3

s . The Laplace transformed system reads
−
(
s+

q

π (R2
2 −R2

1)h

)
LC1 +

D1

r

∂

∂r

(
r
∂LC1

∂r

)
= − q

π (R2
2 −R2

1)h
LC̄2,

−
(
s+

q

AL

)
LC2 +D2

∂2

∂x2
(LC2) = − q

AL
LC̄1,

with its solution
L1(r) = A1 I0

(√
V1s+ q

V1D1
r

)
+B1 K0

(√
V1s+ q

V1D1
r

)
+

q

V1s+ q
L2m,

L2(x) = A2 cosh

(√
ALs+ q

ALD2
x

)
+B2 sinh

(√
ALs+ q

ALD2
x

)
+

q

ALs+ q
L1m,

where V1 = π
(
R2

2 −R2
1

)
h, Li denotes LCi and Lim stands for LC̄i, i = 1,2, I0

and K0 are the modified Bessel functions of the first and second kind of order
zero.

Using the boundary conditions for the flux−D1
∂L1

∂r

∣∣
r=R2

= 0 and−D2
∂L2

∂x

∣∣
x=0

=

0 we are able to rewrite these solutions and eliminate two unknowns:
L1(r) = Ã1B0,1(r,R2,

V1s+ q

V1D1
) +

q

V1s+ q
L2m,

L2(x) = A2 cosh

(√
ALs+ q

ALD2
x

)
+

q

ALs+ q
L1m,

with

Bn,m(r1,r2,C) = (−1)|n−m|+1
In
(√

Cr1

)
Im
(√

Cr2

) +
Kn
(√

Cr1

)
Km

(√
Cr2

) ,
a combination of In and Kn, i.e. the modified Bessel functions of first and
second kind of order n.
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Then for s = 0 the aimed matrix is

A =


1

√
AL√
D2q

1

tanh
(√

qL
AD2

) − A

q

+ A
√
V1√

qD1R1h

B0,1(R1,R2,
q

V1D1
)

B1,1(R1,R2,
q

V1D1
)

s (ALV1s+ALq + V1q)

hR1q

∣∣∣∣
s=0

= 0
A

hR1


.

It is clear that the law of conservation of mass is satisfied since we get that
hR1LF1` = ALF2r.
For the limit q to infinity, i.e. the perfect exchange of material as if there were
no two separate levels, the matrix is

A =

 1 0

s (AL+ V1)

hR1

A

hR1

 .

4.3.4 Multidimensional diffusion in both levels

We now will investigate the most general setting possible, where both the
yarn and room level have different given dimensions d1 and d2 and different
diffusion coefficients D1 and D2. We suppose that both overlap zones are
oriented as in Fig. 4.7.
The governing equations for the two overlapping levels are


∂C1

∂t
=

D1

rd1−1

∂

∂r

(
rd1−1 ∂C1

∂r

)
+

q

Vd1Wd1(∆rd1)

(
C̄2 − C1

)
,

∂C2

∂t
=

D2

rd2−1

∂

∂r

(
rd2−1 ∂C2

∂r

)
+

q

Vd2Wd2(∆rd2)

(
C̄1 − C2

)
,

where Vdi is the volume of the overlap zone, Wdi is the codimension such that
the total volume is that of the unit ball, q is the exchange rate of AI from one
level to another. In this setting the volume averages are calculated as

C̄i =
di

∆rdi

∫ Rmax

Rmin

Cir
di−1 dr, i = 1, 2, 3.
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This system of equations is Laplace transformed and solved as

L1(r,s) =
A1

r
d1
2 −1

I d1
2 −1

(√
s+ q1

D1
r

)
+

B1

r
d1
2 −1

K d1
2 −1

(√
s+ q1

D1
r

)
+

q1

s+ q1
L2m(s),

L2(r,s) =
A2

r
d2
2 −1

I d2
2 −1

(√
s+ q2

D2
r

)
+

B2

r
d2
2 −1

K d2
2 −1

(√
s+ q2

D2
r

)
+

q2

s+ q2
L1m(s),

where qi =
q

VdiWdi(∆r
di)

, Li denotes LCi and Lim stands for LC̄i, Ri` < r <

Rir, the functions I di
2 −1

and K di
2 −1

are the Bessel functions of first and second

kind of order di
2 − 1, i = 1,2. The matrix A again uses the combination of Bessel

functions Bn,m for s = 0,

A =



1
R
d2−1
2r

R
d1−1

1`

d2

d1q2

√
q1√
D1

(∆rd1)
(∆rd2)

B d1
2

+1,
d1
2

(R1`,R1r,
q1
D1

)

B d1
2
,
d1
2

(R1`,R1r,
q1
D1

)

+ d2

q2R2r

(
1 +

(
R1r

R1`

)d1 R
d2
2r

(∆rd2)

)
− 1√

q2D2

B d2
2

+1,
d2
2

(R2r,R2`,
q2
D2

)

B d2
2
,
d2
2

(R2r,R2`,
q2
D2

)

0
Vd2Wd2d2R

d2−1
2r

Vd1
Wd1

d1R
d1−1
1`


.

The limit situation for perfect exchange of the active ingredient corresponds to
the matrix

A =


1 0

sR1`

d1

(
(∆rd2)Vd2

Wd2

R1`Vd1
Wd1

+
(
R1r

R1l

)d1

− 1

)
Vd2

Wd2
d2R

d2−1
2r

Vd1Wd1d1R
d1−1
1`

 .

Both mentioned matrices for general dimensions are according with the above
results for more specific dimensions.

4.3.5 Application

With the above matrices it is possible to calculate the exchange of concentration
of the active ingredient for specific fluxes and functions at the left boundary
of the overlap zone of one of the domains. For example if we take the Dirac-
function for the concentration or the flux at one of the boundaries, respectively
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we can easily calculate the unknown concentration and/or flux at the other
boundary, see Table 4.2. Each of these values can be helpful in the determination
of the characteristic times of the system. We are particularly interested in the
Area Under Curve (AUC), i.e. the concentration at s = 0, the first moment, i.e.
the mean flux and the first cumulant, i.e. the residence time.

Table 4.2: Dirac-concentration or Dirac-flux at one of
the boundaries

Case Setting Result

1 C1` = δ, F2r = 0 LC2r =
1

A11
LF1` =

A21

A11

2 F1` = δ, C2r = 0 LF2r =
1

A22
LC1` =

A12

A22

3 C2r = δ, F1` = 0 LC1` =
1

A−1
11

LF2r = −A21

A22

4 F2r = δ, C1` = 0 LF1` =
1

A−1
22

LC2r = −A12

A11

For the first setting s = 0 in 1
A11

gives the Laplace transform of the con-
centration at the right boundary of the second domain, i.e. the AUC for this
domain, which is the Dirac-function itself. Since at the left boundary of the
first domain there is a peak of concentration and the system is isolated at the
right boundary of the second domain, a concentration build up happens until
everything stabilizes to the equilibrium concentration at the right boundary,
equaling the initial concentration C1`. The second case lets us calculate the
mean flux and the residence time if the concentration of AI is taken away
immediately at the right boundary of the second domain. The mean flux, i.e.

the first moment, equals Vd1
Wd1

d1R
d1−1

1`

Vd2
Wd2

d2R
d2−1
2r

, the residence time is

q1 + q2

q1q2

((
R2`

R2r

)d2

− R2r

d2

√
q2

D2

B d2
2 +1,

d2
2

(R2r,R2`,
q2
D2

)

B d2
2 ,

d2
2

(R2r,R2`,
q2
D2

)

[(
R2`

R2r

)d2

− 1

])
− 1

q1
.

The third case gives the AUC for the first domain. This again is equal to the
Dirac-function. The fourth case also can be used to calculate the first moment
and cumulant of the system with a similar result as above but with indices 1

and 2 interchanged. Once the dimensions and other parameters of the system
are known, we can numerically calculate the characteristic times using these
formulas.
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4.3.6 Adaptation of C-code and mass balance in time domain

The system of equations (4.5) was programmed in C code and solved using
lsoda and fortran77. Using the input of Table 4.3 for the variables the plot
in Fig. 4.8 was generated.

Table 4.3: Input variables

t0 1.0× 10−8 αfy 1000

∆t 1.01 αyr 100 or 0.0131111

tmax 1.0× 1010 vf 1

nf 20 vy 1

ny 60 Df 1× 10−10

nr 40 Dy 1× 10−6

nyo 2 Dr 1× 10−5

nro 2 rel tol 1× 10−6

ρmin 0 abs tol 1× 10−13

ρmax 0.0001 hmax 10000

Ry 0.001 h 2.0

L 5 A 10.0

Cf (ρ, r, 0) 1 k 1 or 10000

To solve this system numerically the ρ-domain was divided into nf inter-
vals, the r-domain into ny intervals and the x-domain into nr intervals. The
time domain was divided in varying intervals using δt as default value, but
these intervals are adjusted during calculations by the lsoda-solver according
to the given relative and absolute tolerances. The variable hmax is the maximal
stepsize for this solver. The mass balance was calculated as an extra control
system on the solution and is displayed as the constant orange line. Also the
average fiber, yarn and room concentration are displayed. First the fiber and
yarn concentration coincide to an equilibrium concentration at approximately
102 s, afterwards at approximately 106 s that concentration reaches the equilib-
rium concentration. In this case no overlap zone is used, but volume averaging
is used as an upscaling method assuming perfectly smooth exchange between
the different levels.

The complete model with overlapping domain decomposition is the ad-
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Figure 4.8: Solution without overlapping domain de-
composition, but with volume averaging as upscaling
between the three levels

justed version of (4.5) in the overlap zone:

∂Cf (ρ,r,t)

∂t
=

1

ρ

∂

∂ρ

(
ρDf

∂Cf (ρ,r,t)

∂ρ

)
, ρ ∈ [ρmin,ρmax] (4.6a)

∂Cy(r,t)

∂t
=

1

r

∂

∂r

(
r
Dy

τy

∂Cy(r,t)

∂r

)
+ αfyvf (Cf (ρmax,r,t)− Cy(r,t))

+k
(
Cr − Cy(r,t)

)
, r ∈ [Ryo,Ry] (4.6b)

∂Cr(x,t)

∂x
=

∂

∂x

(
D
∂Cr(x,t)

∂x

)
+kαyr

(
Cy − Cr(x,t)

)
, x ∈ [0, Lo] (4.6c)

and (4.5) in the rest of the domain. The boundary conditions of (4.5) are
changed to

∂Cf
∂ρ

(0,r,t) = 0, −Df
∂Cf
∂ρ

(ρmax,r,t) = vf (Cf (ρmax,t)− Cy(r,t)),

∂Cy
∂r

(0,t) = 0,
∂Cy
∂r

(Ry,t) = 0,

∂Cr
∂x

(0,t) = 0,
∂Cr
∂x

(L,t) = 0,
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where Cy and Cr denote the average concentrations in the overlap zone of the
yarn and room level and Ryo is the radius in the yarn corresponding to the

beginning of the overlap zone. The factor k is the factor
q

π(R2
y −Ryo

2)h
we

used previously for mass balance purposes. Since it is easier for programming
and notation we also used this k in the room model, adjusted with the constant
of proportion αyr which as a result slightly changes in physical meaning and
thus in size. That is also the reason why there is a second number for αyr in
Table 4.3. With the second number the same mass balance concentration is
reached and the physical behavior is mimicked. There is also a second number
in Tabel 4.3 for the constant k where it becomes relatively big. With this large k
it is possible to mimic the kinetical behavior of the problem as seen in the case
of only volume averaging as an upscaling method. In the above derivation
of the exchange matrix A it became clear that for big k or q a perfect smooth
exchange is seen and the exchange matrix can be simplified as if there was no
overlap zone. This is also visible in Fig. 4.10.
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Figure 4.9: Solution with overlapping domain decom-
position as upscaling between the yarn and room level

The original code was adjusted with using a part of the r-domain as the
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Figure 4.10: Solution with overlapping domain decom-
position as upscaling between the yarn and room level,
with big k, mimicking the kinetical behavior as seen in
Fig. 4.8

overlap zone of the yarn, and a part of the x-domain for the room overlap zone,
each divided in smaller intervals, nyo and nro resp., for numerical calculation
purposes. The fluxes were adapted and the extra source and sink terms were
added to the concentration array in each space interval. The adjusted number
of equations was calculated in order to be able to allocate the memory needed
by the band matrix produced by the solver. The solution is visible in Fig. 4.9.
Here the equilibrium concentration where the fiber and yarn level solution
coincide also seems to be reached at approximately 102 s which is according
with what one would expect, since the upscaling method between the fiber
and yarn level has not been adapted. The concentration is, however, getting
in to the room at a later time but at a higher pace. Before the fiber and yarn
concentration are getting to there equilibrium concentration there is a build-up
in the yarn concentration which is still behaving separately from the room
concentration. This can be explained by the used proportionality constant αyr
which regulates how quick the concentration of AI is getting into the room,
and is obviously acting as an inhibitor in this system.
Again the mass balance is calculated and displayed as the constant yellow line.
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For this mass conservation the three averages of each level, which are each
displayed in the solution plot, are calculated as

Cf =

∫ Ry

0

r dr

∫ ρmax

ρmin

Cfρ dρ∫ Ry

0

r dr

∫ ρmax

ρmin

ρdρ

,

Cy =

∫ Ry

0

Cyr dr∫ Ry

0

r dr

, Cr =

∫ L

0

Cr dx∫ L

0

dx

.

Taking the correct integrals of equations (4.6) gives the change in time of
the averages over the complete domain Ci, i = f,y,r, which should sum up
to zero for mass conservation. Using the BC’s and carrying out some basic
calculations leads to the mass balance equation:

Cr +
Lo
L

1

1−
(
Ryo
Ry

)2αyr

(
Cy +

αfy
ρmax

ρ2
max − ρ2

min

2
Cf

)
= C,

where C is the mass balance constant visible in Fig. 4.9 and 4.10.

4.3.7 Conclusion and future work

A three-scale diffusion model for textiles consisting of a fiber, yarn and room
model was further analyzed. Its characteristic times, the first moment and
cumulant, were calculated symbolically in an overlap zone. Between the
different levels this overlap zone is considered in an overlapping domain
decomposition technique for upscaling the exchanged concentration of AI. The
original C-code was adjusted, results were interpreted and the mass balance
was calculated. Later on we will investigate what will happen if the setting
is changing, e.g. a different positioning of the levels and consequently the
overlap zone, and what changes if we use the actual concentration instead of
the volume average in the overlapping zone equations.
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