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–Summary in Dutch–

De laatste jaren kent de auto-industrie een snelle toename op vlak

van variaties in modellen en maatwerk. Nieuwe modellen, die vooral

worden gëıntroduceerd als reactie op de vraag van de klant, hebben

uitgebreide keuzemogelijkheden voor verschillende varianten (motor-

type, comfort, kleurenpalet, enz.) en opties (entertainmentsysteem,

start/stop-functie, enz.). Deze grote variabiliteit vergroot de com-

plexiteit van fabrieksprocessen en werkstations, en heeft daardoor een

rechtstreekse invloed op de complexiteit van het productiesysteem als

geheel. De verschuiving van massaproductie naar massale productie

op maat is een trend die zich lijkt voort te zetten in de nabije toekomst,

gedreven door de concurrentiestrijd tussen autofabrikanten om in hun

traditionele markten marktaandeel te behouden en om marktaandeel

te winnen in nieuwe, snelgroeiende markten. Om te voldoen aan de

toenemende maatwerkopties, moet er met eenzelfde mixed-model as-

semblagelijn een grote verscheidenheid aan modellen gebouwd kunnen

worden.

Mixed-model assemblagelijnen zijn gestroomlijnde productiesys-

temen die typisch worden geconfronteerd met het lijnbalancerings-

probleem (ALBP, assembly line balancing problem), een combina-

torisch optimaliseringsprobleem voor de optimale verdeling van het

assemblagewerk over de werkstations, met een bepaalde doelstelling

voor ogen. Het oplossen van mixed-model lijnbalanceringsproblemen
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(MMALBPs) is veel complexer dan voor een enkel model, omdat de

werkdruk gelijkmatig verdeeld moet worden over alle werkstations

voor alle modellen, om overbelasting of inactiviteit te voorkomen.

Ondanks de recente aandacht voor productiecomplexiteit en de

uitgebreide studie van het ALBP, is er weinig onderzoek verricht naar

hoe complexiteit kan toegepast worden om lijnefficiëntie te verhogen.

De complexiteit van het productieproces is de afgelopen jaren een be-

langrijk aandachtspunt geweest van vele onderzoekers en fabrikanten,

maar tot nog toe werd complexiteit niet in overweging genomen bij het

balanceren van assemblagelijnen. Het analyseren, meten en toepas-

sen van complexiteit bij het balanceren is nieuw en onbekend terrein,

vooral binnen praktische industriële scenario’s. Het ontwikkelen van

methoden voor het balanceren van mixed-model assemblagelijnen, die

van complexiteit gebruik maken, blijft dus één van de belangrijkste

uitdagingen voor hedendaagse productiesystemen. In dit proefschrift

voeren we een grondige analyse uit van productiecomplexiteit en di-

verse balanceermethoden voor mixed-model assemblagelijnen. Het

uitgevoerde onderzoek is gebaseerd op een studie van complexiteit van

echte werkstations en de relatie met hun lijnbalancering. Onze bena-

dering van het MMALBP streeft bijgevolg naar het balanceren van de

werkbelasting over de werkstations, met minimalisatie van overbelas-

ting en complexiteit van werkstations. Dit doctoraatsonderzoek stelt

de eerste toepassing voor van lijnbalanceringsoplossingen die rekening

houden met de empirische complexiteitsanalyse en -metingen.

In hoofdstuk 2 verkennen we de bestaande wetenschappelijke lite-

ratuur over mixed-model lijnbalanceringsproblemen en productiecom-

plexiteit. We bescrhijven hoe complexiteit van werkstations via twee

benaderingen: het analyseren van empirische gegevens en het meten

van het onzekerheidsniveau middels entropie.

Hoofdstuk 3 richt zich op de definitie en de analyse van complexi-

teit op basis van empirische gegevens. Eerst wordt de complexiteit van

werkstations gedefinieerd, gevolgd door een identificatie van drijfveren
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van complexiteit. Vervolgens worden drie lineaire en twee statistische

modellen ontwikkeld om werkstations te categoriseren als zijnde met

hoge of lage complexiteit.

Het doel van de studie in hoofdstuk 4 is om complexiteit te benut-

ten om tot een optimale taakverdeling te komen waarbij geen overbe-

lasting wordt geregistreerd bij de werkstations, en dit voor eender welk

model dat samengesteld wordt. Om dit te bereiken wordt eerst een

gemengd geheeltallig lineair programmeringsmodel (MILP) ontwik-

keld. Daarna worden twee heuristische algoritmes ontworpen, waarbij

de eerder ontwikkelde complexiteitsmeting wordt gëıntegreerd: de al-

gemene oplossing maakt gebruik van één van deze heuristieken om

een eerste oplossing te genereren, terwijl de andere wordt gebruikt als

verbeteringsprocedure. Het eerste algoritme bestaat uit een hybride

constructie-heuristiek voor het genereren van een initiële lijnbalan-

cering, en combineert verschillende algoritmen voor het in rekening

nemen van de volgorde van de taaktoewijzing, de doelfunctie en de

variabiliteit van de uitvoeringstijden van de taak. Bij de uitvoering er-

van, waarbij mogelijke initiële oplossingen aan het licht komen, wordt

de gemeten complexiteit ComplexityAJk en werkbelasting Loadk van

werkstations dynamisch berekend tijdens de interacties van het algo-

ritme. De resulterende gecombineerde meting wordt vervolgens ge-

bruikt in de volgende taaktoewijzing. Het tweede algoritme is een

verbeteringsheuristiek waarbij een bepaalde herbalanceringsprocedure

gebruikt wordt om de eerste oplossing verder te verbeteren en dus de

resterende overbelasting van het werkstation te verminderen. Tijdens

dit proces worden de taken van werkstations met de hoogste gecombi-

neerde metingen gepermuteerd naar die met de laagste, en wordt dus

de overbelasting voor elk werkstation en model verminderd.

In hoofdstuk 5 worden de rekenkundige resultaten van de prak-

tische toepassing van de ontwikkelde benaderingen binnen een indu-

striële context uiteengezet. Deel 5.1. beschrijft de strategie gebruikt

voor gegevensanalyse. Uitgaande van de door de fabrikanten ver-
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strekte gegevens wordt hier een samenvatting gegeven van hoe de gege-

vens werden opgehaald, gestructureerd en gebruikt. Om de resultaten

te genereren, passen we onze modellen toe op de empirische dataset.

We beoordelen eerst hoe goed elk van de vijf modellen in staat is om

de complexiteit van werkstations als hoog of laag te karakteriseren; de

meest accurate classificatie wordt bereikt door het CALC SAMPLE

model. Dit is een lineair model op basis van de vier variabelen van

het LOGIT SAMPLE model, waarbij de gewichten dezelfde zijn als

bepaald door het statistisch model. Ten tweede presenteren we de re-

sultaten bekomen door toepassing van het MILP-model. Dit model is

in staat om een optimale oplossing voor het probleem te leveren, maar

het neemt niet alle beperkingen in overweging. Ten derde bespreken

we de resultaten gegenereerd door het gebruik van heuristische op-

lossingsmethoden. De belangrijkste conclusie van deze studie is dat

overbelasting aanzienlijk kan worden verminderd wanneer rekening

wordt gehouden met complexiteit van werkstations. Tot slot maken

we een algemene vergelijking van alle resultaten, inclusief de karak-

terisering van de complexiteit van werkstations, entropie gebaseerde

complexiteit en overbelasting.

Hoofdstuk 6 presenteert een aantal conclusies en voorstellen in het

teken van toekomstig onderzoek.



English Summary

In recent years, the automotive industry has witnessed a rapid in-

crease in model variety and customization. New models, which are

mainly being introduced in response to consumers demand, feature

long lists of choices in terms of variants (engine model, comfort level,

colour palette, etc.) and options (entertainment system, start/stop

functionality, etc.). This high variability increases the complexity of

factory processes and workstations and thus impacts directly upon

the complexity of the manufacturing system as a whole. The shift

from mass production to mass customized production is a trend that

looks likely to continue in the foreseeable future, driven by automotive

manufacturers’ struggle to maintain market share in their traditional

markets and seize market share in new, fast-growing markets. To

cope with this intensified customization, automotive assembly plat-

forms are designed to be capable of assembling a large range of rela-

tively different models. That is they become mixed-model assembly

lines. This implies that a high variety of tasks are to be performed at

each workstation. As a consequence, the manufacturing complexity

at these workstations increases.

Mixed-model assembly lines are flow-line production systems that

typically encounter the assembly line balancing problem (ALBP), a

combinatorial optimization problem involving the optimal partition-

ing of assembly work among the workstations with a particular ob-

jective in mind. Subsequently, solving mixed-model assembly line

balancing problems (MMALBPs) is much more complex than single-
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model cases, as workload must be smoothed for all workstations and

all models in order to avoid overload or idle time.

Despite the recent focus on manufacturing complexity and the ex-

tensive study of the ALBP, little research has explored how complexity

can be applied to optimize line efficiency. Manufacturing complexity

has been a key concern of many researchers and manufacturers in re-

cent years, however, practical procedures to level complexity have not

yet been considered and investigated when balancing the assembly

lines. Analysing, measuring and monitoring complexity while creat-

ing line balancing solutions is a new and unexplored topic, especially

when using real industry scenarios. In this dissertation, we propose

an approach that can be used to monitor manufacturing complexity

at each workstation while balancing the mixed-model assembly lines.

The research carried out relies on an investigation of real MMAL’s

aiming to develop a deep analysis of complexity. The goal is to un-

derstand what and how complexity is generated, in order to cope and

reduce the high complexity and its impacts in the line. During sev-

eral visits and workshops carried out in collaboration with manufac-

tures, we could observe that work load distribution is directly related

with models variety, as tasks’ time might differ from model to model.

We first explored the existing scientific literature on the mixed-model

assembly line balancing problem and manufacturing complexity in

Chapter 2. Then, manufacturing complexity is investigated using two

approaches: (1) an empirical analysis approach based on data col-

lected in the Field and (2) a quantitative analysis approach measuring

the level of uncertainty by means of entropy.

In order to investigate the impact of complexity on the production

performance, one must first delineate the concept and then identify as

unambiguously as possible highly complex workstations. In chapter

3, first a clear definition of production complexity is proposed and its

main drivers and their impacts are determined. Then, causal rela-

tionships between drivers of complexity are modelled. Finally, using
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data from several plants, three linear and two statistical models are

derived to empirically classify workstations as having either high or

low complexity.

In Chapter 4, first a quantitative complexity measure based on en-

tropy and task times’ variations is developed. This measure is used to

evaluate the level of manufacturing complexity at each workstation.

A mixed-line balancing heuristic procedure is then developed that

integrates this monitoring procedure to achieve a workload balance

which induces a levelled manufacturing complexity at each worksta-

tion. The goal is to level complexity and generate an optimal task

assignment where no workstation overload is registered for any of the

models being assembled. In order to achieve this goal, a mixed integer

linear programming (MILP) model is first constructed. Secondly, two

heuristic algorithms are designed, integrating the previously devel-

oped complexity measurement: the general solution uses a heuristic

to generate an initial solution, while the other is then used as an opti-

mization procedure. The first algorithm consists of a hybrid construc-

tive heuristic for monitoring complexity and generating a balancing

solution. During its execution, which results in possible initial solu-

tions, workstations’ complexity ComplexityAJk and workload Loadk

measurements are calculated dynamically during the algorithms’ it-

erations. The resulting combined measurement is subsequently taken

into account during the next task assignment. The second algorithm

is an improvement heuristic involving of a rebalancing procedure that

uses the a local search approach to optimize the initial solution and

thus reduce remaining workstation work overload. During this pro-

cess, tasks are permuted from workstations with the highest combined

measurements to those with the lowest, thus reducing workstation

work overload and levelling complexity for each station and model.

In Chapter 5, we discuss the computational results obtained from

the real-life application of the approaches we developed for an indus-

trial case. Section 5.1. describes the data analysis strategy; starting
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from the information supplied by manufacturers, it summarizes how

the data was retrieved, structured and used. In order to generate re-

sults, we apply our solutions to the empirical dataset. We first assess

how well each of the five models is able to characterize workstation

complexity as high or low, finding that the most accurate classifica-

tion is obtained by the CALC SAMPLE model. This is a linear model

based on the four variables of the LOGIT SAMPLE model, whose

weights are also those determined by the statistical model. Secondly,

we present the results obtained by the MILP model. This model is

capable of providing an optimal solution to the problem but does

not take all constraints into account. Thirdly, we discuss the results

generated by the use of heuristic solutions. Finally, we make a gen-

eral comparison among all results, including workstation complexity

characterization, complexity levelling and work overload. This study

provides an extensive investigation of manufacturing complexity; and

subsequent identification of workstation complexity drivers, worksta-

tion complexity characterization and measurement, complexity level-

ling and mixed-model assembly line balancing.

Chapter 6 presents a number of concluding remarks and provides

some suggestions for future research.



Notation

K is the set of workstations, index k
J is the set of tasks, index j
O is the set of operators, index o
M is the set of models, index m
KQualj is the set of qualified workstations k for a task j,

index kqualj
OQualj is the set of qualified operators o for a task j, index

oqualj
Pred(j) is the set of direct predecessors, index of task pred(j)
maxOp(k) is the maximum number of assigned operators as-

signed to workstation k
AJk is the set of assigned tasks to workstation k
c represents the cycletime
tjm is the processing time of task j for model m
bm is the demand of model m in the model-mix
ComplexityAJk is the complexity measurement of workstation k

when the set of tasks AJk is assigned to k
Loadk is the work load of workstation k
Overloadkm represents overload at workstation k for model m





List of Acronyms

ALBP Assembly Line Balancing Problem
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SALBP Simple Assembly Line Balancing Problem





1
Introduction

Over the past three decades, the customization rate in the automo-
tive and vehicle industry has reached its highest level ever. This high
level of customization is mainly the result of the industry’s efforts to
respond to the current highly diversified market demand. As a result,
the number of new model introductions per year has grown steadily
over time. While these new introductions have helped the industry
remain at the forefront of customer satisfaction and new technology,
this large variety of models has increased the overall manufacturing
complexity of assembly platforms. The shift from mass production
to mass customized production inevitably entails a larger number of
tools, machines, parts, assembly tasks and processes at workstations.
Therefore, mixed-model assembly lines, which are required to manu-
facture this large variety of different models, have become extremely
complex. This is clearly illustrated in Figures 1.1 and 1.2, which offer
typical examples of how operators are flooded with information and
options in real workstations.

This manufacturing complexity that workers face has received var-
ious definitions in the literature. In this dissertation, it is regarded as
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all the aspects and factors that make an operator’s set of tasks men-
tally difficult, error-prone and stress-inducing because a high degree
of alertness is required. With this definition of complexity, we aim to
reflect the opinions, judgements and experiences of people who work
under different circumstances on the production floor – operators,
production engineers, quality controllers and line managers. Need-
less to say , quantifying manufacturing complexity is a rather difficult
process.

Figure 1.1: Mixed-Model Assembly Line – Border of Line

Small Parts

Tooling

Assembly 
Instructions

Figure 1.2: Mixed-Model Assembly Line – Workstation
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Manufacturing complexity has increased substantially due to a
higher degree of uncertainty related to the assembly mix and a larger
amount of information that needs to be processed during the assem-
bly process, which in turn results from a greater number of available
choices. This high variability and stress make it very difficult for
workers to complete all their tasks during each cycle time.
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Of course, high model variability also has a direct impact on how
the workload is divided across the line, as operating times inevitably
differ and workstation loads vary. Spreading workloads across work-
stations while avoiding operating inefficiencies, such as work overload,
is more difficult to achieve in a mixed-model context than in single-
model one. Thus, obtaining an efficient line balance in which work-
station load stays within the cycle time for all models, and in which
complexity is also levelled, is an extremely challenging problem. In
this dissertation, we propose a first attempt to solve this challenging
issue.

Mixed-model assembly lines consist of a conveyor system moving
at a constant speed; different customized models are assembled on
the same line (i.e. platform). Along the assembly line, operators
at workstations do not move beyond specified boundaries (i.e. cross
regions). This configuration is clearly shown in 1.3.

Figure 1.3: Mixed-Model Assembly Line Overview
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Work overload refers to the amount of assembly work that re-
mains incomplete when an operator reaches a workstation boundary
(Matanachai and Yano, 2001). In other words, the operators are not
able to finish the work within the cycle time. When work overload
occurs, the following counter measures may take place: (i) the oper-
ator and their supervisor rush to finish the work, (ii) the remaining
work is completed at an intermediate repair station or at the end of
the line, (iii) the line is stopped for the operator to finish the work,
or (iv) a utility worker is assigned to finish the work. In all four
cases, work overload adversely affects cost and quality. A reduction
in work overload does not only improve efficiency, but also product
quality. This, in turn, has a long-term impact on market share and
profitability. If complexity is also levelled, a mixed-model assembly
line can become close to ideal. As a consequence, there is a growing
interest in the study of complexity in mixed-model assembly lines. In
this dissertation, we will focus on manufacturing complexity as in-
duced by assembling a large number of models and model variants on
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a mixed-model assembly line.

In the following section, we begin by defining workstation com-
plexity and identifying the drivers of complexity. Based on these
drivers, we propose statistical models to characterize workstations as
‘high’ or ‘low’. Subsequently, we propose a complexity measurement,
with which we may offer solutions for the generation and optimization
of the MMALBP (Mixed-Model Assembly Line Balancing Problem).
Our approach aims to balance workload while levelling manufacturing
complexity.

1.1 The Assembly Line Balancing Problem

The research carried out was developed in collaboration with the au-
tomotive industry and their suppliers. The production units under
study are responsible for the production of vehicles and original equip-
ment. In this section, we will describe the Mixed-Model Assembly
Line (MMAL) model which is used to balance the MMALBP. The
following parameters are used:

Notations:

The objective function considered in balancing the line aims to
minimize workstation overload and is represented by Eq. 1.1. The
main goal is to generate task assignments in which workstation over-
load and complexity are kept to a minimum.

Minimize
∑
k∈K

∑
m∈M

Overloadkm (1.1)

Where:
Overloadkm represents overload at workstation k for model m and is
given by:

Overloadkm = max (0,
∑

j∈AJk

tjm − c) (1.2)

MMALBP can be formally described as: (i) given a set M of
different models, a set K of workstations, a set O of operators, a
set J of tasks; (ii) each task j needs to be assigned to a workstation
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M the set of models, index m
K the set of workstations, index k
O the set of operators, index o
J the set of tasks, index j
KQualj the set of qualified workstations k for a task j, index

kqualj
OQualj the set of qualified operators o for a task j, index

oqualj
maxOp(k) the maximum number of operators in the workstation

k
jk the assigned task j to workstation k
ok the assigned operator o to workstation k
c cycle time
tjm the processing time of task j for model m
Pred(j) the set of direct predecessors, index of task pred(j)
bm the demand of model m in the model-mix, with∑

m∈M bm = 1
AJk the set of tasks j assigned to workstation k

k respecting the restrictions of (iii) precedence relationships among
tasks, (iv) workstations and (v) operators qualified to execute the
task concerned.

Tasks can be assigned and executed only at a set of qualified work-
stations KQual by a set of qualified operators OQual. Each model m
requires the execution of a subset of tasks (also called assembly oper-
ations). Each task j has a processing time tjm (also called ‘task time’
or ‘operation time’), depending on the model m. Each workstation k
also has a maximum number of assigned operators maxOp(k) and a
subset of assigned tasks AJk.

We consider the MMALBP on the basis of the following assump-
tions:

• Precedence relationships between tasks are represented by a sin-
gle diagram in all models. Different models may require distinct
subsets of tasks. Each task is executed for at least one model
and its duration is known; when a specific task is not executed,
its task duration is defined as 0.

• A workstation is considered to be qualified when it is correctly
equipped with the required tools, parts, fixtures and instructions
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for performing the task concerned.

• The task assignment to workstations is identical for all models,
and similar tasks are executed at one particular workstation.

• Models may vary in demand. This demand is expressed as a
percentage and represents the product mix.

• Operators are considered qualified when they are able to carry
out the assigned task, i.e. when they have the appropriate train-
ing and experience and are physically and psychologically able.

• The number of operators per station is fixed and known. Op-
erators’ walking distances are limited to specified workstation
boundaries; they cannot move beyond these boundaries.

• ‘Cycle time’ refers to the constant speed of the line and there
are no buffers between workstations.

1.2 Complexity in Manufacturing Systems

The introduction of new models has increased the complexity of fac-
tory processes, workstations and manufacturing systems. This is espe-
cially true in the automotive industry, where customization is rapidly
growing. New models are regularly introduced in response to con-
sumer needs. These feature long lists of choices, both in terms of
variants (e.g. engine model, comfort level, colour palette) and op-
tions (e.g. entertainment system, start/stop functionality). This high
variability directly impacts the complexity of manufacturing systems.

This trend is likely to continue in the foreseeable future, driven
by automotive manufacturers’ struggles to maintain market share in
their traditional markets and seize market share in new, fast-growing
markets. It will increase the pressure on all automotive assembly
plants to boost productivity and lower engineering change-over times.

Currently, relatively little is known about how manufacturing com-
plexity relates to production performance. In this dissertation, we
will investigate complexity in relation to workstations on mixed-model
lines. First, we will address three main questions: (1) What causes
complexity?, (2) How can complexity be defined?, and (3) What is
its impact? Subsequently, we will explore possibilities to measure
complexity and improve line balance.
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1.3 Contribution

Numerous studies have already investigated manufacturing complex-
ity and the ALBP in particular. Various studies have been conducted
which associate manufacturing complexity to specific products, pro-
cess structures and human operators. However, it should be empha-
sized that while ALBPs have been studied intensively, the relation-
ship between complexity and mixed-model assembly line balancing
has been neglected.

The research carried out as part of this dissertation has three
main objectives. The first is to investigate manufacturing complexity,
aiming to define and characterize workstation complexity within this
broader context. The second objective is to propose a quantitative
complexity measurement for workstations related to tasks assignment.
Finally, as a third objective we intend to propose and implement a
novel solution to mixed-model assembly line balancing by taking the
complexity measurement into account. Our ultimate goal is to balance
workstation workload and level its complexity at the same time.

Having presented the principal objectives of this dissertation, we
now define the contributions of this work by summarizing the ap-
proach we developed through a set of research questions. The main
research questions through which we intend to meet this goal are in-
troduced below.

General Research Question:

How can manufacturing complexity be evaluated and man-
aged in mixed-model assembly lines?

In our research, we have focused on realistic scenarios in which
MMALs and manufacturing complexity are common. We offer exten-
sive insights into how complexity impacts automotive manufacturing
production and provide new knowledge by introducing innovative ap-
proaches to exploring complexity and balancing mixed-model assem-
bly lines.

This general research question can be broken down into three sub-
questions, which will provide a more detailed overview of the relevance
of this PhD thesis.
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Research Question 1:

What are the drivers that determine manufacturing complexity
in mixed-model assembly lines, and how can these drivers be used to
classify workstations as being ‘high’ or ‘low’ in complexity?

In order to improve the efficiency of complex assembly lines, it is
first necessary to understand the concept of complexity itself. There-
fore, an extensive analysis will be conducted to arrive at a suitable
definition that identifies the drivers behind complexity. With these
drivers, workstations can then be characterized and divided into dif-
ferent models based on their complexity.

Research Question 2:

How can manufacturing complexity be levelled in mixed-model as-
sembly lines workstations while balancing workload (minimizing work
overload)?

Continuing from the previous research question, an objective, quan-
titative measurement for workstation complexity can be proposed and
integrated into optimization approaches. To provide a solution for
mixed-model complex assembly line balancing, a set of algorithms can
be developed and implemented based on the available knowledge of
complexity. This approach should generate a satisfactory solution to
MMALBP while minimizing workstation overload and levelling com-
plexity.

Research Question 3:

What are the results and shortcomings of both approaches when
applied to a real world mixed-model assembly line? Analysis of an
industry study case.

In order to provide an analysis of the solutions developed, com-
putational tests should be performed on an empirical dataset, thus
requiring a case study from the industry.

This research provides an important contribution to the scientific
body of knowledge as well as the industry (see Figure 1.4). To level
manufacturing complexity and improve line balancing for highly cus-
tomized MMALs, we initially focused on workstation complexity using
two primary methods: (1) empirical analysis based approach and (2)
entropic measurement based approach. Empirical analysis was used
to identify workstation complexity and provide in-depth knowledge
of manufacturing complexity, while entropic measurement quantified
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workstation complexity based on task assignments. After this ini-
tial stage, we concentrated on proposing a solution for the MMALBP
by integrating our complexity measurements into heuristic solutions.
These heuristics rely on a hybrid heuristic and a greedy algorithm and
will be further explained in the course of this dissertation.

Figure 1.4: Research Global Overview
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1.4 Outline

The remainder of this dissertation is organized as follows. In Chapter
2, we provide a literature review and include an extensive investigation
of ALBPs and manufacturing complexity. First, the ALBP will be
reviewed and various factors will be explored, such as characterization,
related problems and solution methodologies. Subsequently, we will
provide an overview of complexity in manufacturing systems. This
overview includes diverse aspects of complexity, such as its definition,
classification and measurement. Finally, we will also demonstrate how
the present study contributes to the scientific body of knowledge.

Chapter 3 presents a definition and analysis of production com-
plexity, first relying on a subjective working definition of complexity.
Next, we will detail the causal model of complexity drivers, before
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describing the methodology developed to distinguish ‘high’ or ‘low’
complex workstations. Finally, a number of statistical models will be
described which were developed using real production data and can
be used to classify complex workstations.

In Chapter 4, evolving from a subjective definition of complexity
based on judgement, we propose an approach that can be used to
monitor manufacturing complexity at each workstation while balanc-
ing the MMALs. First, a quantitative complexity measure based on
entropy and task time variations is developed. This measure is used to
evaluate the level of manufacturing complexity at each workstation.
A mixed-line balancing heuristic procedure integrating this monitor-
ing procedure is then created to achieve a workload balance which
induces a levelled manufacturing complexity at each workstation.

Chapter 5 describes the computational results of the solutions
developed when applied to an industry study case. In Section 5.1. we
explore the data utilized, and in section 5.2. complex workstations
are characterized. Section 5.3. demonstrates the performance of the
model and heuristics in solving the balancing problem, while section
5.4. presents an overview and comparison of the results obtained.

Chapter 6 concludes this dissertation and offers some recommen-
dations for future research.



2
Literature Review

Mass production customization in the automotive industry is becom-
ing a fast-growing research area. In recent years, many researchers,
such as Wiendahl and Scholtissek (1994) and MacDuffie et al. (1996),
have begun to study the manufacturing complexity resulting from
this mass production customization. Meanwhile, the ALBP, and its
variants have been intensively studied for more than seven decades,
starting with the work of Salveson (1955) and Jackson (1956), and
continue to be the focus of numerous studies today.

In this chapter, we provide an extensive overview of the literature
on assembly line balancing and manufacturing complexity in MMALs.
In section 2.1 important concepts are first defined. Next, section 2.2
details the existing literature regarding assembly line balancing, while
section 2.3 zooms in on manufacturing complexity. Finally, section
2.4 concludes this chapter with a detailed overview of how the present
study will contribute to the existing body of knowledge.
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2.1 Definitions

This section describes important terms related to MMALs. In order
to characterize the system and enable a clear understanding of the
problem and the approaches used, we will first provide a set of def-
initions, which rely on the work of Scholl (1999), Becker and Scholl
(2006), and Battäıa and Dolgui (2013).

Assembly is the process of collecting and organizing various ele-
ments to create a finished product. It is characterized by the elements
used and the work necessary to combine them. Relationships among
elements, material flows, and operations are typically visualized using
assembly charts.

A task or operation is a portion of the total work content in an
assembly process. The time needed to complete a task is called task
time or processing time. Relationships between tasks are commonly
represented by precedence constraints.

A workstation is a segment of an assembly line at which a certain
number of tasks are performed. It is mainly characterized by the
elements necessary to execute the assigned tasks, such as machinery,
equipment and operators. Workstation load is the total work content
assigned to a station and is represented by the sum of all processing
time needed to complete all tasks.

Precedence constraints occur as a result of technological de-
mands on line and product structures. These constraints involve the
order in which tasks must be undertaken. This order is often illus-
trated by precedence diagrams (i.e. graphs) in which nodes represent
tasks and arcs represent the order of connected tasks.

Cycle time is the maximum amount of time dedicated to a work-
piece per workstation during assembly. It consists of the time avail-
able at each station to perform the assigned tasks. Consequently,
cycle time cannot be shorter than the longest task time.

Idle time is the positive difference between cycle time and work-
station load. It consists of the remaining time available at the work-
station after all assigned tasks have been performed (i.e. all the work
on a workpiece has been completed) and before the next workpiece
arrives at the workstation. When only one model is being produced,
idle time is constant. When several models are being assembled, how-
ever, idle times differ and depend on the sequence in which the models
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are assembled.

Overload is the negative difference between cycle time and work-
station load. It represents the extra time necessary to execute all
tasks. Work overload may be compensated for by the temporary em-
ployment of utility workers, by stopping the line or by another sanc-
tion. Whichever ‘solution’ is selected, work overload is inefficient and
expensive and should be kept to a minimum.

2.2 Assembly line balancing

In this section, we focus on assembly lines and their related problems.
Assembly lines are typical flow-oriented production systems and are
important building blocks in many manufacturing systems, (Becker
and Scholl, 2006). According to Scholl (1999), the ALBP consists
of achieving an optimal balanced division of assembly work between
workstations with respect to a specific goal. This process involves
assigning tasks to workstations as effectively as possible, while satis-
fying a number of constraints, such as precedence constraints, cycle
time, or operator qualifications.

As assembly lines are used for a wide range of production systems,
balancing problems can be classified according to various aspects. Ud-
din and Lastra (2011) extensively study the classification of ALBPs
and discuss previous work done by Baybars (1986), Scholl (1999), and
Becker and Scholl (2006). ALBPs are either classified by the objective
function to be measured and optimized or the problem structure, as
summarized in Figure 2.1.

Typical ALBP types are Type F problems, for which the cycle
time and number of workstations are given and a feasible line balance
needs to be obtained with respect to these two parameters. For Type
1 problems, the number of workstations need to be minimized for a
given fixed cycle time, whereas the reverse holds for Type 3 problems
(i.e. the cycle time needs to be minimized for a given number of
workstations). Type E, on the other hand, requires a reduction in
both the number of workstations and cycle time, thus maximizing
line efficiency. Types 3, 4 and 5 are described by Kim et al. (1996)
and involve a maximization of workload smoothness, a maximization
of work relatedness and a combination of both, respectively.
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Figure 2.1: Assembly Line Balancing Problems Classification
(Uddin and Lastra, 2011)

Becker and Scholl (2006) classified ALBPs based on the problem
structure and the model variety assembled on the line. Thus, prob-
lems can occur on (1) single-model assembly lines (SMALB), which
manufacture one homogeneous product, (2) on multi-model assem-
bly lines (MuMALB), which manufacture several products on one or
more lines, or (3) on mixed-model assembly lines (MMALB), which
manufacture several models of the same basic product.

Traditionally, it was the simple assembly line balancing prob-
lem (SALBP) that was most commonly investigated. Recently, how-
ever, significant research efforts have been made to model and solve
more realistic problems related to generalized assembly line balancing
problems (GALBPs). Baybars (1986) details the difference between
SALBPs and GALBPs: the former consider a single, straight assem-
bly line used for only one type of product with a limited set of con-
straints, while the latter involve additional decisions, constraints and
optimization objectives.

A complementary classification for MMAL problems was intro-
duced by Merengo et al. (1999), distinguishing between horizontal
and vertical balancing concepts. Horizontal balancing considers the
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workload allocated to each workstation for each model and attempts
to smooth out its varying workloads caused by the distinct task times
of the model. Vertical balancing, on the other hand, considers the
average load of each workstation and aims to align all workstation
times for each model separately.

ALBPs are typical combinatorial optimization problems in which
an optimal solution is to be found from a finite, and usually very
large, set of feasible solutions. Generally, the methods used to solve
these problems are classified as either exact or approximate (Battäıa
and Dolgui, 2013). Exact methods can find the optimal solution to
a problem but are time-consuming and machine-intensive due to the
NP -hardness nature of ALBPs. Approximate methods, on the other
hand, might not generate optimal solutions; however, they can (in
most cases) produce quicker and more feasible solutions within an
acceptable computational timeframe. They commonly involve differ-
ent approaches such as bounded exact methods, simple heuristics and
metaheuristics. They are also used to delineate possible solutions that
reflect the characteristics of real-world complex assembly lines, as ad-
ditional constraints can be added. Thus, instead of exact procedures
that find optimal solutions to simplified problems, heuristic proce-
dures are used to find solutions to more complex problems (Simaria,
2006).

Many researchers focused on solving balancing problems by using
metaheuristic techniques such as genetic algorithms (Simaria, 2006;
Haq et al., 2006; Sivasankaran and Shahabudeen, 2014), simulated an-
nealing (Kirkpatrick et al., 1983; McMullen and Frazier, 1998; Özcan
et al., 2010; Erel et al., 2001) and ant colony optimization (Simaria
and Vilarinho, 2009; Akpınar et al., 2013; McMullen and Tarasewich,
2003). The first metaheuristic technique, genetic algorithms, involves
iterative search procedures based on the biological process of natural
selection and genetic inheritance. The second technique, simulated
annealing, is a typical neighbourhood method analogous to simulat-
ing the physical annealing of solids. Finally, the third technique are
ant colony algorithms, which are based on the behaviour of insect
societies (Simaria, 2006). Applying metaheuristics to general prob-
lems is quite common. However, since the mixed-model assembly line
balancing problem involves specific characteristics and restrictions,
heuristics may be more suitable than metaheuristics because of the
possibilities afforded by flexible implementation.
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In most cases where heuristics are applied to obtain an assembly
line balance, priority rules are used to determine task assignment. The
most commonly employed priority rules are based on task attributes
such as task time or the number of preceding tasks (Battäıa and
Dolgui, 2013). Various solutions have been proposed by researchers,
among which Helgeson and Birnie (1961), Hoffmann (1963) and Boc-
tor (1995) are the most notable ones.

Helgeson and Birnie (1961) proposed a well-known heuristic called
Ranked Positional Weight (RPW), in which tasks are ranked in de-
scending order according to positional weight. This weight is the
result of the sum of the task time and the processing times of all suc-
cessive tasks. Gonçalves and De Almeida (2002) classified heuristic
priority-based procedures for constructing a set of candidate oper-
ations as workstation-oriented and operation-oriented. When a task
assignment is workstation-oriented (Talbot et al., 1986), it starts with
the first workstation and then considers the other workstations succes-
sively. When a task assignment is operation-oriented (Hackman et al.,
1989), the operation/task with the highest priority is first chosen from
all the available operations and is assigned to the first possible work-
station.

Local algorithms are also used to generate assembly line balanc-
ing solutions (McGovern and Gupta, 2003), especially when combined
with priority-based rules or specific problem constraints. Improve-
ment heuristics starts from an existing solution and aims to optimize
it using different procedures. It is broadly based on the use of a local
search as this method traditionally focuses on combinatorial optimiza-
tion problems. Reiter and Sherman (1965) proposed local search to
solve the travelling salesman problem, which has since been extended
and applied to many different areas, such as artificial intelligence,
operations research and engineering. T he classical methods of ar-
tificial intelligence can be exploited and applied to optimize ALBPs
as the assignment of tasks can be characterized as a combinational
optimization problem with restrictions.

Thomopoulos (1970) proposed a heuristic procedure based on two
objectives. The primary objective is to solve a Type 1 assembly prob-
lem complemented by a lower bound on workstation times in the ag-
gregate model. The secondary objective is to level workstation uti-
lization by minimizing the sum of absolute differences between total
workstation time and average total workstation time for all models
and workstations. Another heuristic procedure involving two objec-
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tives was developed by Merengo et al. (1999), which involved weighted
differences between the maximum workstation time and the worksta-
tion times of all other models.

Later, Bukchin et al. (2002) suggested a three-stage solution ap-
proach to Type 1 problems. The authors developed a heuristic that
minimized the number of stations by initially solving SMALBP-1 for
the average (combined) model and that determined the number of
stations and assigning tasks common to all models at particular sta-
tions. Then, by reassigning the tasks for each model which are specific
to the model concerned, this heuristic preserves the previously-made
fixed assignments and optimizes the horizontal balancing objective.
Finally, by using a local search procedure, it changes the assignment
of common tasks and applies the previous stage to complete the so-
lution by assigning specific tasks as described above. As mentioned
before, the high flexibility of heuristic procedures means that they can
be used to find solutions to more complex problems. They can also
be used to produce an upper bound for an exact method (Battäıa and
Dolgui, 2012) or generate intermediate solutions (Essafi et al., 2012).

2.3 Complexity in manufacturing processes and

systems

In this section, we will first introduce a definition of complexity and
the existing taxonomy before presenting an in-depth discussion of
complexity measurement. Two groups of approaches can be iden-
tified: (i) approaches based on empirical analysis, and (ii) those that
explore uncertainty through entropy.

2.3.1 Complexity definition and taxonomy

A number of researchers have formulated definitions of complexity by
attempting to define, model and develop valid and useful complex-
ity measures for manufacturing systems. Frizelle (1996), for example,
suggested that a useful complexity measure would need to be sepa-
rable and additive, as its computation would then be simplified for
easy analysis by managers. Later, Deshmukh et al. (1998) provided
a clear definition of static and dynamic complexity. He stated that
static complexity is related to the structure of the system, variety
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of components and products and number of processes and machines,
while dynamic complexity measures unpredictability or uncertainty
in the behaviour of the system over a given time period.

In addition to static and dynamic complexity, two more forms
can be distinguished: objective and subjective complexity (Gullander
et al., 2011). According to this classification, objective complexity
focuses on the measurable parameters of the system, whereas subjec-
tive complexity acknowledges that the same production system may
be perceived in different ways, depending on certain factors.

This work was followed by many other studies which attempted
to understand the impact of complexity on MMALs. Kim (1999),
ElMaraghy and Urbanic (2003)(2004) proposed a methodology for
systematically assessing product and process complexity and their in-
terrelations. In these studies , a matrix methodology and an objective
measure of complexity have been suggested to assess the three levels
of manufacturing complexity: product complexity, process complexity
and operational complexity.

Schuh et al. (2008) identified the main drivers of complexity (i.e.
uncertainty, dynamics, multiplicity, variety, interactions, and interde-
pendencies) and stated that a system’s complexity is determined by
the combination of these properties. Very recently, ElMaraghy et al.
(2012) has published a comprehensive overview of complexity models
in design and manufacturing. These authors state that the design
of systems with reduced complexity is an important issue for further
research. They also present a generic map of how manufacturing com-
plexity cascades down from product design to the individual operator,
in terms of both cognitive and physical effort.

2.3.2 Complexity measurement

Measuring manufacturing complexity has been a major challenge for
years. Researchers have developed a number of different approaches
and methodologies in their attempts to find an efficient means of mea-
surement. These approaches are primarily based on empirical analysis
and the use of entropy, which will both be discussed below.

Empirical Analysis

MacDuffie et al. (1996) investigated the effects of product vari-
ety manufacturing performance, defined as total labour productivity
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and consumer-perceived product quality. In their article, they anal-
ysed complexity measures that capture different aspects of product
mixes in assembly plants: model mix complexity, parts complexity
and option content. The first, model mix complexity, is based on the
number of different platforms, body styles and models and is scaled
by the number of different body shops and assembly lines in each
plant. Secondly, parts complexity is partially driven by consumer
choice and reflects the impact of a larger variety on product design
and the supply system. Finally, option content involves the overall
level of installed options and is expressed as the percentage of vehi-
cles built with multiple options, as aggregated across all models in
a plant. A statistical analysis carried out on data from 70 assembly
plants worldwide (gathered as part of the International Motor Ve-
hicle Programme at MIT) revealed significant negative correlations
between these complexity measures and manufacturing performance.

Deshmukh et al. (1998) offered a measure grounded in the part/mix
ratio of various models and aimed to measure static complexity re-
garding the number of parts, machines and operators required to pro-
cess the part mix. This measurement is based on the information
available from production orders and process plans. Later on, Ur-
banic and ElMaraghy (2006) also considered information flow and
concentrated specifically on the quantity, diversity and content of this
information. They developed a model to determine process complex-
ity and evaluate alternatives and risk areas regarding product, process
and operation tasks in the design stage .

Entirely different approaches were introduced by Meyer and Cur-
ley (1995), and Falck et al. (2012). Meyer and Curley (1995) analysed
the impact of subjective complexity during the software development
process, while Falck et al. (2012) examined the significance of com-
plexity and the relationships between ergonomics, assembly complex-
ity and quality by investigating manual assembly tasks. The aim of
these researchers was to support product preparation by increasing
productivity and decreasing costs.

As far as perceived complexity is concerned, Mattsson et al. (2014)
have recently suggested a method to measure operators’ perception of
subjective complexity. Their method makes use of a questionnaire to
find problem areas at the workstation level.
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Entropic Measurement

The variability of mixed-model assembly lines generates a high
level of uncertainty, resulting from the large number of available choices.
To deal with such uncertainty, researchers have often used the infor-
mation theory entropy approach to quantify complexity. First defined
by Shannon (1948), this approach measures the unpredictability of an
event using particular information. The amount of information and
degree of choice available in the system are directly related to its
complexity level. For example, Frizelle and Woodcock (1995) used an
entropy measure for static and dynamic complexity and focused on
different states of production obtained by a combination of processes,
workstations and parts. Their main goal was to measure the rate of
variety to determine the probability of a state’s occurrence according
to different time measurements.

Fujimoto and Ahmed (2001) put forward a complexity index cen-
tred on the ease of assembling a product. The index took the form
of entropy to evaluate the ‘assemblability’ of a product, defined as
the uncertainty of gripping, positioning and inserting parts during
the assembly process. More recently, researchers have begun to anal-
yse information flows to measure complexity. Sivadasan et al. (2006)
presented an entropic measurement which focused on monitoring and
mapping information flows. This provides a measure of complexity
based on the amount of information required to describe a state,
according to flow variations, products, reasons and variation states.
Briefly, they proposed an operational complexity of supplier-customer
systems that can be interpreted as the uncertainty associated with
managing the system, given the level of control and detail of monitor-
ing.

Abad and Jin (2011) defined a set of complexity metrics which
used entropy and aimed to quantify a system’s capability of han-
dling the complexity induced by model variety. They concentrated
on measuring the diversity between demand and complexity in deliv-
ered products, considering production processes. Recently, Zhu et al.
(2008) and Hu et al. (2008) have proposed a measurement of man-
ufacturing complexity caused by product variety and the modelling
of its propagation through the assembly system. This measurement
uses entropy to quantify human performance in making choices; that
is, the uncertainty faced by the operator when making choices at an
assembly station, such as selecting parts, tools, fixtures and assembly
procedures.



Literature Review 21
T
a
b
le

2
.1
:

C
o
m

p
le

xi
ty

M
ea

su
re

m
en

ts
-

L
it

er
a
tu

re
R

ev
ie

w

T
o

m
ea

su
re

co
m

p
le

x
it

y
o
f:

A
im

E
A

E
M

M
a
cD

u
ffi

e
et

a
l.

(1
9
9
6
)

P
ro

d
u
ct

va
ri

et
y

o
n

p
ro

d
u
ct

iv
it

y
a
n
d

q
u
a
li
ty

.
T

o
te

st
th

e
im

p
a
ct

o
f

co
m

p
le

x
it

y
in

m
a
n
u
fa

ct
u
ri

n
g

p
er

fo
rm

a
n
ce

(
to

ta
l

la
b

o
u
r

p
ro

d
u
ct

iv
it

y
+

p
ro

d
u
ct

q
u
a
li
ty

).

x
-

D
es

h
m

u
k
h

et
a
l.

(1
9
9
8
)

P
ro

ce
ss

in
g

re
q
u
ir

em
en

ts
o
f

p
a
rt

s
to

b
e

p
ro

d
u
ce

d
a
n
d

m
a
ch

in
e

ca
p
a
b
il
it

ie
s.

P
re

se
n
t

re
la

ti
o
n
sh

ip
s

b
et

w
ee

n
co

m
p
le

x
it

y
m

ea
su

re
a
n
d

sy
st

em
p

er
fo

rm
a
n
ce

(w
a
it

in
g

ti
m

e)
x

-

U
rb

a
n
ic

a
n
d

E
lM

a
ra

g
h
y

(2
0
0
6
)

P
ro

ce
ss

.
T

o
ev

a
lu

a
te

ri
sk

s
a
n
d

a
lt

er
n
a
ti

v
es

in
a

d
es

ig
n

st
a
g
e.

x
-

M
ey

er
a
n
d

C
u
rl

ey
(1

9
9
5
)

K
n
ow

le
d
g
e

a
n
d

te
ch

n
o
lo

g
y

o
n

in
fo

rm
a
ti

o
n

sy
st

em
s.

T
o

m
a
n
a
g
e

so
ft

w
a
re

d
ev

el
o
p
m

en
t

x
-

F
a
lc

k
et

a
l.

(2
0
1
2
))

M
a
n
u
a
l

a
ss

em
b
ly

w
o
rk

,
er

g
o
n
o
m

ic
s

a
n
d

a
ss

em
b
ly

q
u
a
li
ty

.
T

o
su

p
p

o
rt

in
cr

ea
se

o
f

p
ro

d
u
ct

io
n

a
n
d

d
ec

re
a
se

o
f

co
st

s.
x

-

M
a
tt

ss
o
n

et
a
l.

(2
0
1
4
)

W
o
rk

st
a
ti

o
n

ex
p

er
ie

n
ce

d
b
y

o
p

er
a
to

rs
.

T
o

fi
n
d

p
ro

b
le

m
a
re

a
s

a
t

a
w

o
rk

st
a
ti

o
n

le
v
el

.
x

-

F
ri

ze
ll
e

a
n
d

W
o
o
d
co

ck
(1

9
9
5
)

V
a
ri

et
y
’s

ra
te

M
ea

su
re

th
e

p
ro

b
a
b
il
it

y
o
f

a
st

ra
te

to
o
cc

u
r

b
a
se

d
to

d
iff

er
en

t
ti

m
es

.
-

x

F
u
ji

m
o
to

a
n
d

A
h
m

ed
(2

0
0
1
)

P
ro

d
u
ct

A
ss

em
b
la

b
il
it

y
T

o
d
efi

n
e

th
e

u
n
ce

rt
a
in

ty
o
f

g
ri

p
p
in

g
,

p
o
si

ti
o
n
in

g
a
n
d

in
se

rt
in

g
p
a
rt

s
d
u
ri

n
g

th
e

a
ss

em
b
ly

p
ro

ce
ss

.
-

x

S
iv

a
d
a
sa

n
et

a
l.

(2
0
0
6
)

S
u
p
p
li
er

-c
u
st

o
m

er
sy

st
em

s.
T

o
m

o
n
it

o
r

a
n
d

m
a
n
a
g
e

in
fo

rm
a
ti

o
n

a
n
d

m
a
te

ri
a
l

fl
ow

s.
-

x

A
b
a
d

a
n
d

J
in

(2
0
1
1
)

T
o

m
ea

su
re

th
e

co
m

p
le

x
it

y
in

d
u
ce

d
b
y

th
e

in
p
u
t

d
em

a
n
d

m
ix

ra
ti

o
.

T
o

a
ss

es
s

th
e

p
ro

b
a
b
il
it

y
o
f

p
ro

d
u
ct

io
n

o
u
tp

u
t

m
ee

ts
th

e
va

ri
et

y
o
f

th
e

in
p
u
t.

-
x

Z
h
u

et
a
l.

(2
0
0
8
)

O
p

er
a
to

r
ch

o
ic

e
a
n
d

a
ss

em
b
ly

li
n
e.

T
o

fi
n
d

ca
u
se

s,
p
la

n
a
ss

em
b
ly

se
q
u
en

ce
s

a
n
d

d
es

ig
n

m
ix

ed
-m

o
d
el

a
ss

em
b
ly

li
n
es

.
-

x

∗
E
A

re
fe

rs
to

E
m
p
ir
ic
a
l
A
n
a
ly
si
s

a
n
d
E
M

to
E
n
tr
o
p
ic

M
ea
su
re
m
en

t



22 Chapter 2

Table 2.1 summarizes all the previously mentioned approaches,
with complexity measurements focusing on empirical analysis or en-
tropic measurement.

2.4 Conclusion

In this chapter, we explored the scientific literature on the MMALBP
and manufacturing complexity. While a large number of studies have
dealt with both topics in detail, few researchers have analysed the
relationship between complexity and assembly line balancing. Most
researchers simply concentrate on different objectives and applications
while measuring complexity, and complexity knowledge and measure-
ments are rarely applied to the improvement of production efficiency.
To the best of our knowledge, no approaches exist that tackle the com-
plexity of MMALs while quantifying complexity and applying this to
the improvement of line balance.

The objective of this dissertation is to put forward new methods to
characterize and quantify complexity based on both empirical anal-
ysis and entropic approaches. First, we will examine real scenarios
to extract knowledge via practical information and interactions with
manufacturers, allowing us to develop classification models for work-
station complexity. Then, we will explore the concept of entropy to
quantify the uncertainty generated by the high variety of MMALs. We
propose a complexity measurement, based on entropy and task time
variations, to be integrated into a optimization MMALBP solution
for Type 3 problems. The outcome of this study is a novel approach
that monitors and levels complexity while balancing workload.



3
Analysing Manufacturing Complexity

in Mixed-Model Assembly Lines

In an effort to maintain or increase their market share while prevent-
ing costs from escalating, manufacturing organizations are increas-
ingly using their current manufacturing systems to produce custom
outputs. This greater variety of products significantly increases the
complexity of manufacturing systems. This is especially true in the au-
tomotive industry, where customization is rapidly growing. To counter
the ensuing loss of productivity, manufacturers require a more funda-
mental approach to dealing with this complexity in their processes.
To investigate the impact of complexity on production performance,
we must first delineate the core concept and identify highly-complex
workstations as unambiguously as possible.

In this chapter, we will define manufacturing complexity and in-
troduce a classification methodology for characterizing mixed-model
assembly workstations. In Section 3.2, we will present a definition
of complexity and describe the research methodology that was used.
Section 3.2 suggests a number of statistical models, based on data
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from several leading automotive companies, which distinguish between
workstations that are low or high in complexity. Finally, we will de-
scribe the results that were obtained from these models. This chapter
is an adaptation and extension of Zeltzer et al. (2013).

3.1 Production complexity definition and re-

search methodology

The research on complexity analysis presented in this dissertation was
carried out in collaboration with the automotive industry. The focus
is on driven assembly lines, where manual assembly work is carried
out on various models in a mixed-model fashion. Different types of
assembly lines were investigated, including two for car models, two
for engine models, one for a truck model and several subassembly
lines with suppliers. First, Section 3.1.1 offers a working definition
of complexity. Then, in section 3.1.2, we describe our collaborations
with automotive companies. Finally, Section 3.1.3, presents a causal
model of the drivers and impacts of complexity.

3.1.1 Complexity definition

A good definition of complexity should be generic enough to be appli-
cable to various manufacturing systems, while at the same time being
specific enough to classify a system as complex or not. Although the
literature review provided useful insights into manufacturing complex-
ity (Gullander et al., 2011; Mattsson et al., 2014), most approaches
were relatively specific. In our view, there is still a need for a clear,
simple and generic definition of complexity. After extensive discus-
sions with manufacturers and a systematic analysis of real systems,
the following definition was found (Zeltzer et al., 2013):

The complexity of a workstation is the sum of all technical and
ergonomic factors that make the set of tasks to be performed at it
cognitively challenging, error-prone and stressful because a high degree
of alertness is required of the operator.

This definition recognizes the fact that the inherent complexity of
a task is largely determined by the operator who executes it, hence the
term ‘subjective complexity’. This means, according to our findings,
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that different operators, production engineers, quality controllers and
line managers may perceive a set of tasks differently under different
circumstances. This makes the issue of quantifying complexity unam-
biguously – known as ‘objective complexity’ – a real challenge. One
immediate consequence is that measuring the magnitude of subjective
complexity involves behavioural and psychological aspects which are
difficult to quantify (Rasmussen, 1983). Secondly, since complexity is
a multi-faceted concept, it is almost impossible to measure it directly
as no meaningful scale exists. Therefore, we have focused on mea-
suring complexity in an objective, repeatable manner using some of
its direct drivers, which are easily and unambiguously observable and
quantifiable.

3.1.2 Model building workshops

To gain more insight into manufacturing complexity and identify its
drivers, we organized a series of workshops in collaboration with a
group of vehicle manufacturers. We identified the components of
complexity, classified them as drivers or impacts – consequences –
and used them to build a causal model. To gather as much useful
information as possible, we selected participants who all encounter
complexity in their daily activities, including shop floor employees,
production engineers, quality controllers and line managers.

All workshops were organized in a similar way. The objectives of
the project were first explained to all participants, after which they
were asked to identify two workstations that were low in complexity
and two that were high in complexity. They were then asked to use
these workstations as a mental reference when describing elements of
complexity, drivers or causes of complexity and the impact or conse-
quences of complexity. They were given three sets of questions, each
focusing on a relevant aspect of complexity:

Elements of Complexity
How do you experience complexity?
What characteristics make a workstation complex?

Causes/Drivers of Complexity
What elements have changed in recent years, and has complexity in-
creased or decreased?
What elements are under your domain/decision?
What elements can be measured and how/where can this be achieved?
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Impact/Consequences of Complexity
How is your work influenced by complexity?
How does it influence your team?
How is your area affected?
Indicate the largest problems.

All participants wrote down their individual answers on separate
sticky notes, which were then clustered into three separate sets. Figure
3.1 shows part of a workshop.

Figure 3.1: Model building workshops

While the first set of questions focused on characterizing complex-
ity, the second concentrated on revealing the consequences of complex-
ity – areas that are affected by complexity and the influence complex-
ity has on manufacturing work and teams. The third set detected
the direct drivers of complexity, i.e. the variables that are directly
linked to complexity elements as causal factors. In each round, we
put relevant notes made by the participants up on a wall and clus-
tered them according to similarity. Finally, we held a brainstorming
session during which this list of ideas was discussed and finalized. The
results were extensively discussed with our industrial partners; they
were found to be both insightful and useful.

We finalized our interactions with different manufactures with a
visit to their assembly lines. During these visits, they gave us a general
overview of the line and provided us with more information about the
two workstations identified during the workshops. As a result, we
were able to observe and analyse the complexities explained by our
workshop participants.
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3.1.3 Causal model of complexity

As a next step, the causal links between the elements identified during
the workshops were combined into a graphical network structure to
obtain a generic complexity model for assembly workstations. This
model consisted of three clusters of variables related to complex-
ity drivers, complexity characterization and complexity impacts, as
shown in figure 3.2. As the fully detailed model is too large and com-
plex to be summarized in one clear figure, we have divided the network
structure across different figures.

Figure 3.2: Causal model structure overview

Complexity Drivers

Complexity Impact

Complexity

To identify the network elements, we conducted a statistical anal-
ysis of the answers given during the workshops in combination with
the manufacturers’ feedback. This analysis revealed several complex-
ity drivers . Figure 3.3 represents the percentage of each driver based
on the workshop participants’ feedback. The direct drivers are ex-
ternal factors, time pressure, number of context switches, range of
impact, and disturbances.

Figure 3.3: Complexity direct drivers’distribution
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22%
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# Context Switches
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Disturbances
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The number of context switches is a cluster of: number of tools,
variants, flows, assembly variants, variants of the same model and
car models. Evolving from this analysis, eleven direct drivers of com-
plexity were selected for complexity measurement. These drivers are
explained in more detail in Table 3.1. The first cluster of variables
is represented in 3.6 and 3.7. Complexity drivers are grouped into
different layers, with general drivers being identified in top layers and
clustered in specific direct drivers. Direct drivers are then linked to
complexity.

Complexity characterization cluster elements are mainly divided
into two main groups: objective complexity and perceived complexity.
The main difference, as already cited in Chapter 2, is that objective
complexity can be analysed under a quantitative approach, while per-
ceived complexity consists of a subjective approach. Approximately
54% of complexity is objective and 46% is perceived. We identified
four important elements: high workload, number of variant choices,
operator tasks, and line/workstation organization, as shown in Fig-
ure 3.4. Complexity characterization was extremely important for
proposing a definition of complexity (Section 3.1.1).

Figure 3.4: Complexity characterization

54%

46%
Objective Complexity

Perceived Complexity

16%

38%19%

27%
High workload

# Variants choices

Operator Tasks

Line/Workstation

Orgnanization

Complexity impacts are derived from objective and perceived com-
plexity. However, the drivers show that approximately 50% (Figure
3.4) of the elements can be categorized in each complexity category;
32% of the consequences are derived from perceived complexity and
68% from objective complexity (Figure 3.5). Figures 3.8 and 3.9
demonstrate the structure of the complexity results. We grouped
these elements into different layers: general impacts are identified
in top layers and clustered in specific impacts’ variables. We iden-
tified four direct main elements: capacity loss, indirect man hours,
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direct man hours and investments. In Figure 3.5, the percentage of
each main consequence is shown based on our workshop participants’
feedback. It is important to refer that capacity loss variable clusters:
numbers of planned balance loss, work instructions, missing parts and
operations, quality decrease and errors.

Figure 3.5: Complexity impacts

24%

14%

48%

14%
Capacity Loss
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Manhours
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68%

32%
Objective Complexity

Perceived Complexity

From the complete analysis, we used the first cluster of the causal
model, complexity drivers, to build classification models for worksta-
tions (Section 3.2). We took the middle cluster, complexity character-
ization, to create a definition of complexity (Section 3.1.1). The last
cluster, complexity impact, provided an overview of possible future
actions to cope with complexity.

3.1.4 Empirical Dataset

We set out to test whether the drivers we identified during the work-
shops could be used to characterize highly complex workstations, and
provide an objective means of quantifying complexity. We wanted to
determine what the smallest possible subset of drivers was to gener-
ate meaningful results (to minimize the effort required for gathering
data). It was immediately clear to us that the range of values is very
large, which makes modelling quite difficult. To gain more control
over scaling, we set up a Likert scale for each variable; we divided
the data range across four levels on this scale. For some variables, we
added a zero level. These results are shown in Table 3.2.
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Table 3.2: Likert Scale for the variables data-set.

Complexity-driving variables Likert scale coding rules

Picking technology F S C M
1 2 3 4

Bulk/sequence kit F S K B
1 2 3

# Packaging types 0 1 2-4 5-8 >8
0 1 2 3 4

# Tools per workstation 0-1 2-4 5-8 >8
1 2 3 4

# Machines per workstation 0 1 2 >2
0 1 2 3

# Work methods 0-2 3-5 , 6-8 >8
1 2 3 4

Distance to parts 0-1 1,1-2 2 1-4 >4
1 2 3 4

# Variants same model 1 2-3 4-5 >5
1 2 3 4

# Variants in this workstation 1 2-4 5-10 >10
1 2 3 4

# Different parts in workstation 0 1-4 5-10 11-20 >20
1 2 3 4

# Assembly directions 1 2-3 4-5 >5
1 2 3 4

Since no accurate information was available regarding the real
inherent complexity of these workstations, we asked operators and
supervisors to point out the most and least complex workstations in
their areas together. These subjective labels served as benchmarks
throughout the study. We provided each of our industrial partners
with quantitative information about the driving factors linked to these
designated workstations.

Table 3.3: Values of categorical variables as measured over 76 workstations

Values Fixed Signal Comparing Manual
Picking technology 10 17 4 45

Values Bulk Kit Sequenced kit
Parts delivery 65 1 10

In this way, we obtained datasets on 76 workstations in five differ-
ent manufacturing locations (i.e. four in Belgium and one in Sweden),
41 of which we deemed to be ’LOW’ in complexity and 35 ’HIGH’ in
complexity. The variables for this data are listed and explained in
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Table 3.1, the categorical variables are shown in Table 3.3, and data
on numerical variables can be found in Table 3.4.

Table 3.4: Range of numerical values as measured over 76 workstations.

Variable Min Max Average SD

# Packaging types 0 14 3.76 2.44
# Tools per workstation 0 12 3.99 2.94

# Machines per workstation 0 1 0.25 0.44
# Work methods 1 192 17.39 31.84
Distance to parts 0.8 25 4.78 4.11

# Variants same model 1 192 10.29 23.28
# Variants in this workstation 1 217 22.47 40.44

# Different parts in workstation 0 264 24.07 41.36
# Assembly directions 1 38 4.43 4.75

3.2 Classification models for workstation com-

plexity

Five different approaches were explored in order to obtain useful sta-
tistical models for characterizing the complexity of assembly line work-
stations. The objective of these models is to identify and classify
workstations as high or low in complexity. In this section, we will
discuss the computational tests used and the results obtained. The
five approaches we explored were the following:

1. BASE: a simple linear model which calculated a weighted com-
bination of the Likert scores of all 11 variables to yield a single
complexity number. All weights were equal to 1 (Section 3.2.1).

2. LOGIT ALL: a statistical model based on data from all 76 work-
stations (Section 3.2.2).

3. CALC ALL (Calculated - all cases): a simple linear model based
on the variables of the LOGIT ALL model. The weights used
were derived from the LOGIT ALL statistical model (see Sec-
tion 3.2.3).

4. LOGIT SAMPLE: a statistical model based on a stratified sub-
set of 53 cases which scored extremely HIGH or LOW in the
BASE model (Section 3.2.2).
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5. CALC SAMPLE (Calculated sampled cases): a model similar
to the previous one, but based on the LOGIT SAMPLE model
results(Section 3.2.3).

3.2.1 The initial model BASE

We first calculated an overall complexity level score as a weighted sum
of all variables. This calculation was performed in two parts: first,
we calculated a basic score as an average weighted sum of the Likert
scores of the variables for each workstation, and then this score was
converted into a normalized number between 0 and 10, based on the
maximum and minimum values a workstation could score for each
item.

Basicscore =

∑
ItemsWeight(item)× Score(Item)∑

ItemsWeight(item)
(3.1)

Adjusted score =
(Basic score−min score)
(Maxscore−min score)

× 10 (3.2)

where:
Weight(item) = weight attributed to the variable;
Score(item) = likert scale score of the workstation on this variable;
Minscore = basic score with all items at their minimum possible
Likert value (Table 3.2);
Maxscore = basic score with all items at their maximum possible
Likert value.

For workstation 1 (Table 3.5), which had a ‘low’ subjective score,
the Complexity Basic score amounted to 1.73 which was normalized
to 3.44 (/10). This example calculation fits both interpretations if
we assume LOW scores are below 5/10 and HIGH scores are 5/10 or
above. At this stage, we did not have any information regarding the
relative impact of each of the variables on complexity. We defined all
weights as equal to one; the Basic score then amounted to a simple
average of the item scores.
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Table 3.5: Example calculation for LOW complexity workstation.

Item Raw data Score (item) Weights

Picking technology M 4 1
Bulk/sequence kit B 3 1
# Packaging types 1 1 1

# Tools per workstation 1 1 1
# Machines per workstation 0 0 1

# Work methods 2 1 1
Distance to parts 2 2 1

# Variants same model 2 2 1
# Variants in this workstation 2 2 1

# Different parts in workstation 6 2 1
# Assembly directions 1 1 1

Total of column 19 11

We subsequently plotted out the resulting Adjusted Scores for all
76 workstations (Figure 3.10). We also indicated the subjective com-
plexity labels and sequenced the workstations from LOW to HIGH
(and by company). From our results in Figure 3.10, we observed an
extensive fluctuation in Adjusted Score values. Based on the standard
t-test, we found that the average score for LOW stations (i.e. 4.8 with
an SD of 1.7), differs significantly from the average of the HIGH sta-
tions (i.e. 7.2 with an SD of 1.2). We concluded that this calculated
score can be used to distinguish workstations that are HIGH in com-
plexity from those that are LOW and that the variables it is based on
relate to the levels of subjective complexity.

The wide fluctuations in the scores indicates that not all variables
have the same explanatory power, or may even contradict each other;
regardless of the explanatory power of the Adjusted Score, the BASE
model value of some workstations contradicts their subjective classifi-
cations. The two workstations that score below 5 in the HIGH section
(nos. 50 and 56) are a good illustration of this. The LOW section
contains 10 outliers of this kind. If these outliers persist after further
tuning of the model, we should check the basis of the subjective score
with the workstation operators.

The next logical course of action was to either adjust the weights
of the variables or reduce the number of variables (which is an extreme
version of the first option, with weights set to zero). To achieve this,
we turned to statistics.
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Figure 3.10: BASE model score compared to subjective complexity for all
workstations.

3.2.2 Fitting statistical Logit models LOGIT ALL and

LOGIT SAMPLE

We needed a statistical model to find the correlation between (a subset
of) our variables and their true levels of complexity. At this stage of
our research, we had no true measure of this complexity, only the
subjective scores provided by the operators. We therefore tried to
find a statistically valid model independent of the calculated score
which would allow us to compare the two.

Since we were working with only two dependent values (HIGH and
LOW), it was not appropriate to perform a linear regression on the 11
independent variables. However, by means of a model called ‘Logistic
Regression’ or ‘Logit’, we could calculate (from a linear combination of
variable values (A+BX) the probability that a resulting workstation
score was either HIGH or LOW in complexity. Note that the values
0 and 1 can be assigned either way: HIGH = 1 and LOW= 0, or
vice versa. The actual calculations were performed with HIGH = 0
and LOW= 1. For clarity’s sake, we include the basic formulas here,



40 Chapter 3

although they can be found in many statistics textbooks.

The distribution in Figure 3.11 is calculated as a ratio of exponen-
tial functions (representing the odds of LOW over HIGH) as follows:

P [Y = LOW ] =
e
a+

n∑
i=1

biXi

1 + e
a+

n∑
i=1

biXi

(3.3)

where a +
n∑

i=1
biXi is a linear combination of (a subset of) the com-

plexity variables Xi with weights bi and a scaling constant a.

Figure 3.11: Cumulative distribution of logistic regression model.
Comparing the LP and Logit Models

Y=0 

Y=1 

Linear Probability Model 

Y 

x 

Logistic Regression Model 

Figure 3.11 shows that this model has a sharply rising transition
zone; it therefore appeared suitable for the classification task we en-
visaged. This approach was inspired by Braaksma et al. (2012), who
used it to classify machines based on whether or not they required
maintenance. This exponential model was converted into a linear re-
gression model to fit the variables. For input variables, we could use
the raw values of the variables as measured, the Likert Scale scores,
or a combination of the two. The statistical software SPSS 19 (rfrom
IBM) was used to find the best set of weights bi and constant a for
the subjective scores.
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Despite testing various subsets of these variables, we were un-
able to find a valid Logit model that included all 11 variables and
all 76 cases for which we had data. Using all 76 cases, we identified
four variables that provided a correct classification in 84.2% of cases
(and 88.6% of workstations HIGH in complexity). We called this the
LOGIT ALL model. Table 3.6 displays these numerical results as
SPSS outputs.

Table 3.6: Statistical fit results for LOGIT ALL model.

Predicted
HIGHLOW

Observed High Low
Percentage

correct

Classification Table a

Step 1a HIGHLOW High 31 4 88.6
Low 8 33 88.5

Overall percentage 84.2

B SE Wald df

Variables in the equation
Step 1a #Packaging types -1.127 0.592 3.622 1

Assembly directions -0.874 0.348 1.591 1
# Different parts in work sta-
tions

-0.243 0.193 6.300 1

# Work methods -0.058 0.028 4.491 1
Constant 6.676 1.837 13.200 1

aThe cut value is 0.500.

Since we assigned the value 1 to LOW , this model starts with
a probability of 1 for LOW through the constant (when all variables
equal zero). The positive values of the variables then reduce this
probability because the weights bi are negative. Thus, the higher
the number of packaging types, the lower the probability that this
workstation is LOW in complexity (and, of course, the higher the
probability that it is HIGH in complexity ). The higher the absolute
value of coefficient bi, the larger the impact of this variable i.

The LOGIT ALL model was formulated as follows:

PLOGIT ALL(LOW ) =
e6676−1127PTL−0874PWL−0243ADR−0058WMR

1 + e6676−1127PTL−0874PWL−0243ADR−0058WMR
(3.4)
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Where PTL is the number of packaging types on Likert scale, PWL
are the different parts in the workstation on a Likert scale, ADR is
the number of assembly directions as measured directly (raw score),
and WMR is the number of work methods as measured directly (raw
score). In this model, we used the recoded Likert scale values for two
of its four variables and the direct values as measured for the other
two.

We also attempted to construct a model that provided a better
fit based on a filtered subset of 53 extreme cases (following equation),
by removing all workstations with outlier values for Adjusted Score
as calculated with the BASE model. This result, ‘LOGIT SAMPLE’,
is shown in Table 3.7. This model succeeded in correctly classifying
cases 98.1% of the time (only one case was classified incorrectly).
When we applied this model to all 76 cases and used a cut-off level
of 0.8 (i.e. the 0.5 used in the model identification), 62 cases (81.6%)
were classified correctly. Thus, while the LOGIT SAMPLE model is
stronger as a classification model, the cases do not fit quite as well
(although the difference is marginal).

PLOGIT SAMPLE(LOW ) =
e18.164−3173PWL−2326PTL−2182ADL−0.344TEL

1 + e18.164−3173PWL−2326PTL−2182ADL−0.344TEL

(3.5)

where PWL are the different parts of a workstation on the Likert
scale, PTL is the number of packaging types on the Likert scale, ADL
is the number of assembly directions on the Likert scale, and TWL is
the number of tools used in a workstation on the Likert scale.

In this model, we only used Likert scale values. In addition, the
factor TW had only a marginal effect, so removing it yielded the same
98% correct classification of the test set. However, it did perform
better on the full set of workstations. We can compare the behaviours
of these models using the Receiver Operating Characteristics (ROC)
theory (Fawcett, 2006), as shown in Table 3.8.
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Table 3.7: Statistical fit results for LOGIT SAMPLE model.

Predicted
HIGHLOW

Observed High Low
Percentage

correct

Classification Table a

Step 1a HIGHLOW High 33 0 100
Low 1 19 95

Overall percentage 98.1

B SE Wald df

Variables in the equation
Step 1a #Assembly directions -2.182 1.657 1.734 1

#Packaging types -2.326 2.195 1.123 1
# Different parts in work sta-
tions

-3.173 1.113 8.125 1

# Work methods -0.344 0.855 0.162 1
Constant 18.164 7.328 6.145 1

aThe cut value is 0.500.

Table 3.8: Comparison of LOGIT models using ROC metrics.

ROC Metric Definition
LOGIT ALL

on all 76
cases(%)

LOGIT
SAMPLE on
53 cases(%)

LOGIT
SAMPLE on
76 cases(%)

Precision
TP \ (TP +

FP )
88.6 100 74.4

Accuracy
(TP + TN) \
(TP + FP )

84.2 98.1 81.6

FP rate FP \N 10.8 0 26.8
TP rate TP \ P 79.5 97.1 91.4

Specificity 1− (FP \N) 89.2 100 73.2

TP (FP), number of true (false)positives; TN (FN), number of true
(false)negatives; N, number of negatives; P, number of positives.
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By differentiating the cut-off level between 0 and 1, we can gen-
erate ROC curves for both models. Figure 3.12 clearly shows that
the two models are of comparable quality and equally strong. The
larger the surface between the ROC curve and the 45◦line (indicating
the expected performance of a random filter), the more discriminat-
ing this model is in detecting the condition of the workstation (i.e. its
complexity level) in this case.

Figure 3.12: ROC curve of LOGIT ∗ models.

Next, we wanted to establish which of the two models performed
better in practice, and what this could tell us about our linearly-
calculated complexity scores. In Figure 3.13, we show the probability
of a workstation being HIGH inn complexity (derived as a complement
from the above models) for both LOGIT models. We coded each data
point a Diamond (green) if its subjective label was LOW and as a
Triangle (red) if it was labelled HIGH.

We can make a number of interesting observations based on this
graph. The ‘LOGIT SAMPLE’ model is steeper (cf. the left curve),
and thus more discriminating than the ‘LOGIT ALL’ model. With
only 12 workstations, it has the smallest intermediate zone. The 40
HIGH workstations (i.e. those with a probability above 85%) receive
correct HIGH subjective scores in 30 cases, suggesting a classification
that is correct in 75% of the cases. From another point of view, it can
also be concluded that there are 10 cases with a questionable subjec-
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Figure 3.13: Distribution of workstation probabilities according to
LOGIT ALL and LOGIT SAMPLE.

tive labelling. The LOW workstations (i.e. those with a probability
below 15%) are correctly labelled in 23 out of 24 cases, indicating a
96% success rate: only one is labelled incorrectly, which strongly sug-
gests that the subjective label of that case is inaccurate. We chose
these cut-off probabilities based on the tails of the cumulative distri-
bution, which are clearly distinguishable in Figure 3.13.

The ‘LOGIT ALL’ model rises much more gradually, with a large
intermediate zone. While we could assign a HIGH label as soon as
the probability exceeds 50%, only 15 extremely HIGH workstations
emerge (i.e. with a probability higher than 85%). There are two
incorrect subjective labels among these, which means that we have a
success rate of 84%. The LOW zone contains 32 workstations, two of
which were incorrectly labelled. It can be concluded that this model
classifies extreme workstations correctly 94% of the time.

In both models, three of the determining variables are identical,
albeit in different numerical formats. This is a strong indication that
the numbers of packaging types, assembly directions and different
parts in the workstation are good predictors (and sources) of work-
station complexity. These three variables belong to the domains of
logistics, assembly methods and design for manufacturing, which we
also intuitively found to be acceptable.
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These two models have both strengths and weaknesses. Overall,
the ‘all cases’ model is the best predictor. It is useful if we are in-
terested in a gradual scale and could be used immediately. In other
words, the calculated BASE score is no longer needed since we can
obtain a useful measure from the Logit model (the probability of scor-
ing as ‘highly complex’). Of course, the formula is much less intuitive
than the weighted sum of the Adjusted score, but it is statistically
more significant. It could be said that the ‘LOGIT ALL’ model curve
indicates the likelihood of a workstation being rated ‘highly-complex’
when multiple people are asked or multiple variables are used.

The ‘LOGIT SAMPLE’ model provides a relatively sharp distinc-
tion that is ultimately more correct for extreme cases of HIGH and
LOW complexity. Thus, this model is more appropriate if we are in-
terested in classifying workstations into only two groups, HIGH and
LOW (for whatever reason). It is also more suitable for filtering out
extreme workstations from a large set, for example to use them for fur-
ther research. Since most automotive plants have hundreds of work-
stations, an automated filtering algorithm to apply to a corporate en-
gineering database is very practical indeed. Its probability value for
a workstation is less useful as a direct complexity indicator, however,
because it should be combined with the calculated score.

3.2.3 Improved calculated score models CALC ALL and

CALC SAMPLE

The insights gathered from the Logit models allowed us to redefine
the linear score calculation so it included only the significant variables
identified above. Since we had two Logit models, we were also able
to identify two different calculations. The weights in each CALC ∗
model were manually adjusted to reflect the relative importance of the
variables, as determined by the B weights in the exponential formula
of the Logit model (see Table 3.9). Table 3.9 shows the final values
of the CALC ∗ model weights, including the weights from the Logit
models from which they were derived.

Finally, we compared the complexity scores produced by all of the
models. Figure 3.14 contains the values for all workstations, ordered
by increasing LOGIT SAMPLE score. This model was the most dis-
criminating with regard to subjective labels. On the basis of this
figure, we have made a number of observations. The values of the
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Table 3.9: Final values of weights used in the linear models.

Variable LOGIT
ALL

CALC
ALL

LOGIT
SAMPLE

CALC
SAMPLE

#Packaging types 1.27 11 2.182 2
#Assembly directions 0.243 7 2.326 3
#Different parts in
workstation

0.874 13 3.173 5

#Work methods 0.058 1
#Tools per workstation 0.344 1

LOGIT ALL model exhibit a high variability in the higher regions;
however, they align very well with the LOGIT SAMPLE model in
the lower regions. A higher number of cases would probably yield
somewhat better results (i.e. smoother scoring curves).

Figure 3.14: Comparison of complexity scores between all models.

Based on a linear combination of the variables, the values of the
three calculated models do coincide to some extent. The CALC SAMP
LE model yields the smoothest scoring curve. This is clear when
we draw a trend line through it: it achieves a R2 = 0955, which is
quite high. If we construct the same graph in the LOGIT ALL se-
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quence of values, we obtain less smooth results, and a lower R2. The
CALC SAMPLE curve therefore appears to be the best alternative to
the Logit models – if simplicity is required.

Although all models seem to serve this purpose in one way or
another, we suggest the following quality ratings: LOGIT SAMPLE
has the highest discriminatory power and should be used when work-
stations are classified as COMPLEX or NOT. CALC SAMPLE and
CALC ALL both exhibit smooth behaviour across the full range of
complexity scores and can be used to attach a numerical measure of
complexity (from 1 and 10) to a workstation.

3.3 Conclusion

In this chapter, we started by proposing a definition of production
complexity comprehensive enough to characterize various manufac-
turing systems but also specific enough to define whether a system is
of high or low in complexity. To achieve this, a set of direct complex-
ity drivers were extracted from real production data and information
provided by manufacturers.

From field research in several automotive companies, we were able
to create a structured causal model of the elements and consequences
of complexity. With this model, we identified 11 workstation and
product line characteristics that determine complexity. We then con-
structed five different classification models, three of which were calcu-
lated as linear combinations of these characteristics and two of which
were statistically derived logistic models. All of these models were
compared to the subjective labels of HIGH or LOW complexity which
we obtained from the operators working at these stations.

We concluded that two models are of particular importance. The
first is a logistic model that classifies the complexity of workstations
as HIGH or LOW (LOGIT SAMPLE), as obtained from a sample of
54 stations with extreme scores. This model is suitable for extracting
highly complex workstations from engineering databases when only
four variables are used as input data. The second is a calculated
linear model (CALC SAMPLE) with weights derived from the Logit
model we mentioned above. It yields a good gradual scale for work-
station complexity between 0 and 10. These two models provided
better results since they were implemented based on real-world situa-
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tions. By excluding the outliers, we could obtain useful and relevant
information.

The second Logit model (LOGIT ALL), based on all 76 worksta-
tion data points, also yields a gradual scale for the probability that
a workstation of HIGH in complexity. This model is somewhat less
intuitive, however, as it is based on a ratio of exponential functions.

The complexity analysis we carried out provides a clear insight
into the ways complexity is experienced in MMALs. In this chapter,
we presented an approach to classifying complex workstations. In
the next chapter, we will propose new solutions to cope with this
complexity we have detected.





4
Workload Balancing and

Manufacturing Complexity Levelling in

Mixed-Model Assembly Lines

In Chapter 3, we introduced a subjective definition of complexity
based on judgement and presented a classification model to charac-
terize workstation complexity as ‘high’ or ‘low’. This classification
allows us to identify complex workstations and give an overview of
the overall complexity of an entire line. However, it is also necessary
to delineate ways to reduce and even out complexity.

Manufacturing complexity is usually high in mixed-model lines
and has reached new levels with the recent increase in model variabil-
ity. Coping with highly complex lines is a key challenge for manufac-
turing systems, especially for operators who deal with a wide range
of choices and are challenged to complete their operations on time.
Complexity therefore goes hand in hand with workload distribution.
One way to cope with this problem is to design one line for each model;
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however, this is not efficient, realistic or optimal. Another approach
is to first develop a means to quantify complexity and then level it.
Continuing from our previous classification of the complexity of work-
stations, in this chapter we will first propose a method to objectively
measure the overall complexity, on the one hand, and complexity at
each workstation in the assembly line, on the other hand. Then,
this measurement will be integrated into a procedure that balances
workload in MMALs, in order to monitor and level manufacturing
complexity.

We begin this chapter in Section 4.1 by introducing a quantitative
measurement of manufacturing complexity at workstations. Then, in
Section 4.2, we present a mathematical model for MMALs and pro-
pose a feasible balancing solution for minimizing workstation overload.
Finally, in Section 4.3, we describe our proposed mixed-model assem-
bly line balancing procedure to reduce work overload while levelling
manufacturing complexity across assembly lines. In Section 4.4, we
demonstrate some computational results for applying this approach
to datasets. The parameters used are the same described in Section
1.1.

4.1 Quantitative Manufacturing Complexity

Measurement

Considering MMALs, the objective is to level manufacturing com-
plexity while still balancing the line. To achieve these two objectives,
quantifying manufacturing complexity is a necessary first step. Shan-
non (1948) introduced entropy as a measure and a means of quanti-
fying complexity in information systems. Typically, system complex-
ity increases along with growing levels of disorder and uncertainty.
Therefore, a higher complexity system requires a larger amount of
information to describe its state.

Measurements based on entropy have since been used and devel-
oped by researchers to quantify complexity in manufacturing. Some
examples involve product assemblability (Fujimoto and Ahmed, 2001),
supplier-customer systems (Sivadasan et al., 2006), input demand va-
riety (Abad and Jin, 2011) and operator number of choices (Zhu et al.,
2008). This situation is also encountered in MMALs and is especially
experienced by operators in different workstations who are flooded by
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operations information.

The complexity measurement proposed relies on the use of the
concept of entropy in combination with assembly task time variation.
It is defined as ComplexityAJk and quantifies workstation complexity.
As previously stated, task time may vary from model to model as a re-
sult of different model requirements. Consequently, the same task can
entail different execution times. ComplexityAJk can be represented
as follows:

ComplexityAJk = H(AJk) +
∑

j∈AJk

σj (4.1)

Where:

H(AJk) = −
∑

j∈AJk

pj log pj (4.2)

σj =

√√√√ 1

|M | − 1

M∑
1

(tjm − µj)2 (4.3)

AJk is the subset of tasks assigned to workstation k;

pj is the occurrence probability of task j;

tjm is the task time of task j for model m;

µj is the mean value of all models’ task times for task j, and

σj is the standard deviation value of task j.

H(AJk) can be used to assess workstation complexity during as-
sembly. Here, pj is the probability of task j being required given the
set of models in M . We added the task time variation values result-
ing from the various models. This variation is quantified by σj and is
added to the classical entropy measurement for complexity.

4.2 Initial MILP Model

To solve the MMALBP, we first developed an optimization Mixed-
Integer Linear Programming (MILP) model. This model can provide
an optimal solution to the MMALBP but is extremely time-consuming
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and computationally intensive. Although this MILP model requires
high machine performance, it is useful to perform efficiency evalua-
tions of heuristic solutions. The proposed model is represented as
follows:

Variables:

Overloadkm ≥ 0 represents overload at workstation k for model
m,

Xkj ∈ 0, 1 is 1 if task j is assigned to workstation k, otherwise 0,

Yk ∈ 0, 1 is 1 if workstation k is open, otherwise 0,

Opk ∈ Z+ is the number of operators assigned to workstation k if
open, otherwise 0.

The objective function represented in Equation 4.4 minimizes the
overload of each workstation k for each model m. It also takes into
account the demand bm for each model m.

Mathematical Model Formulation:

Min
∑
k∈K

∑
m∈M

Overloadkm × bm (4.4)

subject to: ∑
k∈KQualj

Xkj = 1, ∀j (4.5)

∑
k∈K

kXkj ≤
∑
k∈K

kXki, ∀i and∀j ∈ Pred(i) (4.6)

Xkj − Yk ≤ 0,∀k, j

Yk − Yk−1 ≤ 0, ∀k ≥ 1
(4.7)

∑
j∈J
×Xkj ≤ Overlkm + c×Op(k), ∀m, k

Opk −maxOp(k)Yk ≤ 0, ∀k
(4.8)
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Set of Constraints:

Eq. 4.5 ensures that each task j is assigned to one workstation k;
Eq. 4.6 means that a task j is only assigned as soon as all tasks in
Pred(j) have been assigned. Eq. 4.7 determines the order in which
workstations k are defined as ‘open’. Finally, the most important
restriction is defined in Eq. 4.8, which guarantees that the load of
workstation k for model m is as low as possible, i.e. that the sum
of all tasks assigned to workstation k is below the cycle time c. It
also considers the number of operators Opk at the workstation k and
guarantees that this number does not exceed the maximum number
of operators maxOp(k) that can be assigned to that workstation.

While the MILP model presented generates a solution to the
MMALBP, it does not take into account the existing complexity of
a system. Although the maximum number of operators is one of the
parameters of this model, it does not consider an important constraint
of the problem regarding qualified operators. The results generated
with this model provide a useful first approach to the problem and
can also be used in other improvement approaches. Since our aim is
to explore workstation complexity, we will next focus on integrating
complexity into a solution approach.

4.3 Line Balancing and Complexity Levelling

Solution Approach

In this section, we propose our solution for balancing and levelling
the MMALBP. First, we introduce the concept of the ‘super model’
(as described below). Then, we detail a solution that is primarily
based on two procedures: a hybrid heuristic algorithm for building
a balancing solution and a local search algorithm for optimizing the
existing balance – thus providing a rebalanced solution.

4.3.1 Defining a Super Model

Since this study focuses on MMALs, we considered model variation
and corresponding task time variability. The assembly time of task
j may differ from model to model; this task variability is taken into
account with our concept of ‘super model’ (sm). A sm is an effective
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representation of all models regarding task time variation when con-
sidering task j. As a result, the task time of a sm is calculated using
all possible operation times for task j. This variability is characterized
by the following equation:

tjsm =

M∑
m=1

tjm × bm + α× (tmax
j −

M∑
m=1

tjm ∗ bm) (4.9)

Where:
tjsm is the task time of task j for super model sm,
tjm is the task time of task j for model m,
bm is the demand of each model m,
α is a variant value between 0 and 1, and
tmax
j is the maximum task time of task j.

To generate tjsm, we took into account the demand bm for each
model m and the maximum task time tmax

j of task j. α is a calibration
parameter that assumes five different values from 0 to 1 at intervals of
0.25. By applying this variation, different values of tjm are considered
and a set of five solutions can be produced . The definition of the super
model (sm) is clearly described by the following small example.

Three models (m1, m2 and m3) are produced simultaneously in
the same MMAL. The demands for each model are 25%, 25% and
50%, respectively. The possible values for tjsm and tjm are shown for
the task times of three tasks in Table 4.1:

Table 4.1: Range of numerical values as measured over 76 workstations.

m1 m2 m3 sm sm sm sm sm
demand 0.25 0.25 0.5 α=0 α=0.25 α=0.5 α=0.75 α=1

t1 1 1 3 2 2.25 2.5 2.75 3
t2 3 4 2 2.75 3.06 3.38 3.69 4
t3 2 1 1 1.25 1.44 1.63 1.81 2

A set of five different tjsm were calculated for each task j, which
all vary according to different values of α. These values were used
during the execution of the solution developed . It is therefore clear
that the use of different task times for super models facilitates the
generation of efficient solutions to the problem.

It should be emphasized that when a super model is used to gen-
erate solutions for mixed-model problems, different results may be
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produced for each model. Even when an optimal task assignment is
obtained for the super model, the assignment might not be optimal
when applied to each individual model. This is a result of the task
time variability among models.

4.3.2 Solution Approach

Due to the combinatorial nature of balancing problems, which are
known as NP-hard (non-deterministic polynomial-time hard) prob-
lems, it is difficult to obtain solutions for adopting mathematical and
exact methods within adequate computational timeframes. As a re-
sult, we developed a set of procedures to address this problem. Figure
4.1 depicts the outline of our solution approach.

Figure 4.1: Heuristics to Minimize Workstation Work Overload Based on
Complexity
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These procedures start with the initialization of all parameters
based on real assembly data from manufactures. Then, an initial bal-
ancing solution is generated using a hybrid heuristic algorithm; this
solution relies on the use of super models. After a feasible solution has
been defined, the results are evaluated, if they are not satisfactory, an
improvement heuristic is applied for optimization. While the balanc-
ing solution considers the super model, the rebalancing solution relies
on the work overload of all models. In the following subsections, this
outline will be detailed.

4.3.2.1 Hybrid Heuristic Algorithm for Workload Balanc-

ing and Complexity Levelling in Mixed-Model As-

sembly Lines

To generate a feasible assembly line balancing solution while levelling
workstation complexity, a procedure consisting of a hybrid heuristic
algorithm is developed. This procedure relies on defining an optimal
task and an operator assignment by taking into account workstation
overload and complexity. This hybrid solution combines a number of
different algorithms to address the order of task assignment, objective
functions and task time variability. It is described in the following
steps:

Step 1. Defining task time

sm task times are populated based on all tjm. Initially α assumes
a value of 0.

Step 2. Multi-criterion task prioritization

First, task assignment order is determined. We considered two
prioritization criteria:

I . The precedence relationship between tasks: task j can only be
assigned if all preceding tasks have already been assigned.

II . Ranked by assignment position weight (RPW (j)), as proposed
by Helgeson and Birnie (1961). After the precedence relation-
ship diagram has been defined, task weight is calculated based
on the longest path between the first and last tasks in the net-
work.
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Step 3. Assigning tasks to workstations

After we have established which task j is to be assigned, a work-
station k is selected. This selection relies on the following factors:

I . Workstation k load LoadAJk: tasks are assigned to the work-
station with the highest idle time or lowest overload.

II . Workstation k complexity ComplexityAJk : tasks are assigned
to the workstation with the lowest complexity level.

The workstation is selected by combining these two values. As
both values are relevant, they carry equal weights of 50%. The entropy
of each station is taken into account during the assignment of tasks.
Tasks are assigned addressing the entropy levels of all workstations,
aiming to obtain an equalized distribution of complexity.

In this step, two constraints must be respected: workstation k
belongs to KQualj and operator o belongs OQualj .

Step 4. Addressing task operation time variety

The steps outlined above are repeated for α = 0.25, α = 0.50,
α = 0.75 and α = 1.00. The solutions obtained are stored in a set.

Step 5. Solution evaluation

Based on the workstation’s work overload, the best solution is
selected from among the previous five interactions. This solution may
involve two possible situations : i) no work overload is registered, or
ii) some work overload is registered.

If no work overload is registered, this means that an optimal so-
lution has been found in terms of workstation load. Whereas work-
station complexity is used during the constructive phase to determine
which workstation should be selected for task assignment, it is not
used to determine the best balancing solution. In that case, worksta-
tion load takes priority. The algorithm proposed is depicted in the
following diagram (Figure 4.2).

As a result of this heuristic, a feasible solution can be obtained
which may be either optimal or satisfactory. Since our approach relies
on real scenarios, a satisfactory solution would be based on a limited
parameterization performed by the user and/or an expert. M axi-
mum values for complexity and work overload can thus be defined
in advance so acceptable values for workstation complexity and work
overload reflect realistic scenarios during production.
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Figure 4.2: Hybrid Heuristic Algorithm to Balance Mixed-Model Assembly
Lines to Minimize Work Overload and Complexity
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In real situations, work overload might occur as a result of tasks
being assigned to specific workstations, when certain operations need
to be executed exclusively by qualified operators at qualified worksta-
tions.
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4.3.2.2 Local Search Optimization Algorithm for Rebalanc-

ing and Reducing Work Overload

To optimize existing solutions, reduce further workstation work over-
load and equalize complexity workstation levels, we developed a re-
balancing procedure. This improvement heuristic relies on a local
search algorithm that considers task permutations between worksta-
tions (based on workstation load and entropy) to generate the best
assignment solution possible. It can be described as follows:

Step 1. Importing an existing solution

The first step consists in specifying an initial solution based on
one model of the MMALBP. This solution is delimited as input and
may be the result of a manual balance, an exact method or the hybrid
heuristics we described in the previous section. The user must also
define how many times this procedure should be executed.

Step 2. Calculating total work overload per workstation

In this step, the balancing solution specified in Step 1 is applied to
each model. The total work overload is calculated for each workstation
based on all models. This value is represented by Equation 4.10:

TotalOverload(k) =
∑
m∈M

Overloadkm (4.10)

Where TotalOverload(k) is the sum of the work overload for each
model at workstation k.

Step 3. Task permutation

The tasks assigned to workstations with registered work overload
are then permuted to other workstations. This permutation is based
on a number of factors:

I . Tasks to be permuted are selected in descending assignment
order. As a result of precedence relationship constraints (and
to keep permutations to a minimum) the last tasks assigned are
the first to be permuted.

II . Task selection is based on a local search. The ‘task neighbour-
hood’ search explores possible solutions based on workstation
workload.
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III . The workstation from which the tasks will be permuted is se-
lected according to the highest overload.

IV . The workstation to which the tasks will be permuted is selected
according to the lowest workload and lowest complexity level.

V . The permutation is based first and foremost on the tasks as-
signed to one workstation. Tasks are permuted only if the en-
tropy level of the workstation is reduced. When no improvement
is found, the next workstation with registered overload is consid-
ered. Workstations are handled in descending order according
to work overload and complexity level.

Step 4. Solution evaluation

After each task permutation, total work overload per worksta-
tion is again computed. As a result of the local search procedure,
the current solution in each interaction is analysed by taking a set of
candidate tasks for permutation into account. The aim is to find a
global optimal solution through permutations based on a local search;
in other words, tasks are permuted to minimize work overload and
level complexity. Each solution is considered only if an improvement
is made. While the complexity level of a workstation is used to de-
termine which workstations tasks are permuted, the best solution is
ultimately defined by workstation overload.

This rebalancing procedure is repeated until one of the three stop
conditions is reached: (i) the optimal solution is found; (ii) the solu-
tion meets the workstation load bound desired; or (iii) the number of
interactions defined by the user is reached. The algorithm proposed
is depicted in the following diagram (Figure 4.3).
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Figure 4.3: Local Algorithm for Rebalancing Mixed-Model Assembly Lines
for Solution Optimization
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4.4 Computational Results

This section presents a number of computational results used to verify
the proposed complexity measurement and the mixed-model assem-
bly line balancing solutions. We describe and compare the results
obtained for the MMABP in the heuristic procedures described in
sections 4.3.2.1 and 4.3.2.2.

Our proposed approach has been tested on three datasets of dif-
ferent sizes (Rosenberg and Ziegler, 1993; Wee and Magazine, 1981;
Scholl, 1993). The number of tasks varies between a minimum of 25
and a maximum of 297. Moreover, two product mixes were considered:
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two models and four models . We also took the five different alphas
into account to obtain task time variability and a suitable rebalancing
solution.

We developed tests for solutions with and without the use of com-
plexity measurements. Taking all of these aspects into account, we
obtained a total number of 72 cases. We extracted the datasets from
Tiacci (2015b), in which the precedence diagrams of the problem are
also represented. The demand for the two-model datasets was equally
distributed, with 50% for each model; the demand for the four-model
datasets was distributed as 50%, 20%, 10% and 10%.

To generate these datasets, Tiacci (2015a) used the original datasets
for SALPB developed by Scholl (2007). With a single-model problem
data, he proposed mixed-model data by varying the task times for
both the two- and the four-model instances by means of a variation
coefficient of 0.3. During our experiments, we used the proposed cycle
time, number of workstations and tasks used by Scholl (2007) for the
SALPB. This information is shown in table 4.2.

Table 4.2: Computational Tests - Cycletime and Number of Workstations

Dataset CycleTime #Workstations #Tasks

Rosenberg and Ziegler (1993) 21 6 25
Wee and Magazine (1981) 43 50 75

Scholl (1993) 1515 46 297

The implementation of the procedures previously described (in
Section 4.3) was split into two parts: the constructive balancing heuris-
tic and the improvement heuristic. The results obtained for each solu-
tion were generated based on the various alphas. The algorithms were
coded in the programming language C++ and tested on an Intel Core
i5-4210U with a 1.70GHz/2.40GHz CPU and 8 GB RAM memory.

During the execution of the hybrid heuristic intended to define a
preliminary solution, the calculation of ComplexityAJk (workstation
complexity) and LoadAJk (workstation workload) measurements were
dynamically performed during the interactions of the algorithms . The
resulting combined measurement was afterwards used in the next task
assignment.



Workload Balancing and Manufacturing Complexity Levelling

in Mixed-Model Assembly Lines 65

T
a
b
le

4
.3
:

C
o
m

p
u

ta
ti

o
n

a
l

T
es

ts
-

A
ve

ra
ge

O
ve

rl
oa

d
(%

)
pe

r
w

o
rk

st
a
ti

o
n

P
ro

b
le

m
M

S
iz

e
U

C
α

=
0

α
=

0
.2

5
α

=
0
.5

α
=

0
.7

5
α

=
1

R
C

P
U

ti
m

e
(s

)

R
o
sz

ie
g

2
2
5

n
5
.5

7
%

2
.3

8
%

3
.9

5
%

3
.9

5
%

7
.9

5
%

2
.3

8
%

0
.5

1
y

5
.5

7
%

2
.3

8
%

3
.9

5
%

3
.9

5
%

7
.9

5
%

2
.3

8
%

1
.1

9

R
o
sz

ie
g

4
2
5

n
4
.3

8
%

3
.9

5
%

4
.5

7
%

7
.5

2
%

8
.9

5
%

3
.9

5
%

0
.7

4
y

5
.7

6
%

3
.3

8
%

4
.7

6
%

6
.3

8
%

6
.3

8
%

3
.3

8
%

1
.7

0

W
ee

-m
a
g

2
7
5

n
1
.1

4
%

1
.2

3
%

1
.0

2
%

1
.1

6
%

1
.1

9
%

0
.8

1
%

9
.0

5
y

1
.2

3
%

1
.4

4
%

1
.0

9
%

1
.2

6
%

1
.4

2
%

1
.0

9
%

1
0
.6

2

W
ee

-m
a
g

4
7
5

n
1
.1

9
%

1
.1

4
%

0
.9

8
%

1
.0

5
%

0
.9

8
%

0
.8

6
%

1
2
.7

8
y

1
.2

8
%

1
.3

3
%

1
.0

9
%

1
.1

4
%

1
.2

1
%

1
.0

9
%

1
2
.9

8

S
ch

o
ll

2
2
9
7

n
3
.8

5
%

4
.5

5
%

4
.2

3
%

4
.5

5
%

6
.3

2
%

2
.3

4
%

6
0
.2

4
y

4
.5

9
%

4
.8

2
%

3
.8

4
%

3
.8

5
%

5
.1

1
%

3
.8

4
%

6
8
.4

9

S
ch

o
ll

4
2
9
7

n
4
.1

1
%

5
.2

2
%

5
.1

5
%

6
.1

0
%

6
.9

6
%

2
.5

7
%

6
5
.9

8
y

4
.5

5
%

4
.0

7
%

4
.2

7
%

5
.9

6
%

5
.6

2
%

4
.0

7
%

7
0
.9

6

∗
M

re
fe

rs
to

th
e
n
u
m
be
r
o
f
m
od
el
s

U
C

to
th

e
U
se

o
f
C
o
m
p
le
xi
ty

m
ea
su
re
m
en

t
n

to
th

e
n
o

a
n
d
y

to
th

e
ye
s

R
to

R
eb
a
la
n
ci
n
g



66 Chapter 4

Tasks were assigned to workstations with the lowest combined
value, on the assumption that both ComplexityAJk and LoadAJk car-
ried an equal weight of 50%. During the optimization rebalancing
process, tasks are permuted from workstations with the highest to
the lowest combined value while reducing workstation work overload
for each station and each model, Overloadmk.

The total complexity of the workstations is the same for all so-
lutions, but there is a difference in the way in which this complexity
is spread across workstations. The sum of all workstation complexi-
ties remains constant as it is based on tasks times. The implemented
framework is used to test the proposed approach in an industrial case.
In Table 4.3, we show the results for all datasets and display the av-
erage overload per workstation per solution (in %), considering cycle
time. CPU times vary from 0.51 of a second to 70.96 seconds. The
number of tasks has a high impact on the processing time, because
the assignment and permutation of tasks are the core of the problem.

The figures below (Figures 4.4, 4.5 and 4.6) give an overview of
the results we obtained for these datasets. Our heuristics were able to
generate feasible solutions for the 4 datasets. Workstation overload
(in most cases) was below 5% of cycle time. As the values presented
consist of average overload per workstation and per solution, cases
in which overload is registered for specific models are not displayed
but instead shown as an average. Some specific models have a much
higher assembling time, generating workload peaks along the line.
This is taken into account by our complexity measurement, which
combines the uncertainties of the required tasks and their task time
variations.

From these tests, we revealed three aspects that needed to be ad-
dressed: (i) the number of models, (ii) the number of assembly tasks,
and (iii) the use of the complexity measurement. These three aspects
all impact on the overload results. On e of the key advantages of using
heuristics over exact methods is their computational time. Heuristics
can be applied to larger datasets to solve real-world scenarios, their
computational time is relatively low, and the approximated solutions
they produce are satisfactory. They also offer more flexibility when
dealing with very complex problems.
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Figure 4.4: Rosenberg and Ziegler (1993)
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Figure 4.5: Wee and Magazine (1981)
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Figure 4.7 demonstrates the complete results of all datasets when
complexity measurement is not considered and workstation complex-
ity is levelled. These datasets also take complexity into account.
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Figure 4.6: Scholl (1993)
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Figure 4.7: Overall Results
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We can expect an increase in overload as both workload and com-
plexity levels are considered. However, due to the nature of the heuris-
tics and their flexibility, this may not occur. In some cases, we ob-
served (considering the levelling of complexity ) a reduced overload,
while in other cases, we did not. This is also a result of the task time
variability for the different models.

The datasets and solutions available in the literature do not con-
tain the same parameterization as the problem investigated in this
dissertation. Typically, data files only represent information regard-
ing the number of tasks, the number of models, the task times and
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the precedence relationships. This study reflects real-world assembly
lines and therefore also considers other parameters and restrictions,
such as demand, qualified operators and workstations. We were able
to use these datasets by adapting and generating values randomly.
Another crucial aspect is the use of manufacturing complexity. As
the problems have a distinct characterization, it is not possible to
compare our results with the results available.

4.5 Conclusion

In this chapter, we developed a workstation complexity measurement
which correlates the entropy of a system with task assignments. Sub-
sequently, a set of heuristic procedures was implemented to solve
MMALBPS. The solutions were mainly based on a hybrid algorithm
to generate line balance and a local search algorithm to rebalance
the line. Our main goal was to level manufacturing complexity while
minimizing workstation work overload. The effectiveness of our ap-
proach in balancing and levelling complexity was demonstrated on
some datasets available in the literature. It could be concluded that
the heuristics implemented were able to generate solutions in which
the majority of workstations were well-balanced.





5
Industrial Case Study

In this chapter, we will focus on an industrial case study involving the
conceptualizations described in the previous chapters. The computa-
tional results that were obtained from this real-life application will be
reported in detail. First, we will outline our data-analysis strategy.
Second, we will apply our methods to identify complexity and classify
complex workstations, as proposed in Chapter 3. Third, by means
of the solution presented in Chapter 4, we will exploit complexity to
level out the manufacturing complexity of MMALs. Finally, several
conclusions will be drawn about the results obtained.

5.1 Data Analysis

The industrial case study in question was a Belgian supplier of assem-
bled automotive components. This supplier produces parts for the
main car manufacturer in the region. The relationship between the
supplier and the car manufacturer is interactive: the two companies
are semi-synchronized because of their proximity to one another. The
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demand imposed on this mixed-model car line is met by the prompt
communication of requests and delivery information between the sup-
plier and the producer. Many options can be selected and assembled,
and parts are customized according to various model requirements.
This study was conducted in two phases, both of which examining
the same part of this assembly line. In the first phase, we focused on
analysing complexity and classifying complex workstations; in the sec-
ond, we worked on levelling complexity. We drew the dataset we used
from a real-world assembly line consisting of 109 tasks, nine models,
nine workstations and nine operators with a cycle time of 44.2s. This
dataset is a subset of the dataset used in Chapter 3.

In the first phase, we gathered data based on real scenarios pre-
sented during workshops with the manufacturer (Section 3.1). This
data was identified as complexity drivers and was restructured as 11
variables. Our aim was to analyse workstation complexity and identify
workstations that are high or low in complexity. After determining
the 11 variables, we requested specific information for each variable
from the workshop participants. The information that we obtained for
our case study can be found in table 5.1 and was later used as input
for our methods (Section 3.2) for classifying workstation complexity.

Table 5.1: Values of Complexity Driver Variables

Variable k1 k2 k3 k4 k5 k6 k7 k8 k9

Picking technology F C C C C C C C C
Bulk/Sequence Kit B B B B B B B B B
# Packaging types 2 4 2 3 6 4 2 0 0

# Tools per workstation 2 3 1 2 3 1 1 2 2
# Machines per workstation 1 0 0 0 0 0 0 0 0

# Work methods 3 1 1 6 9 9 7 9 9
Distance to parts 2 2 2 2 2 2 2 2 2

# Variants same model 4 4 4 4 4 4 4 4 4
# Variants in this workstation 4 4 4 4 4 4 4 4 4

# Different parts in workstation 2 8 6 5 9 8 7 0 0
# Assembly directions 5 7 3 13 17 7 5 10 10

Complexity Level (H/L) 0 1 0 0 1 1 1 0 0

k stands for workstation

In the second phase, through regular visits to the plants and close
collaboration with the manufacturer, we conducted a thorough inves-
tigation of workstation balance. Our aim was to ascertain how com-
plexity affects workload distribution among workstations and how it
can be used to improve line balancing. We also gathered informa-
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tion on task assignment, task processing times, precedence relation-
ships between tasks, workstation and operator qualifications, cycle
time boundaries, and model variants. Our data could be divided into
four parts:

– General information regarding exact cycle times and the num-
bers of models, tasks, workstations and operators;

– Specific information regarding tasks with preceding tasks, qual-
ified operators and workstations;

– The maximum number of operators per workstation;

– Task time per model.

This information was then collected into an input data file with
a fixed format. Our goal was to represent the production data that
would be used by the exact and approximate solutions developed.

5.2 Classifying Complex Workstations

We first analysed workstation complexity with the variables and char-
acterizations presented in Chapter 3. The five statistical models that
were previously developed were applied to classifying workstations as
being low or high in complexity. These five models, named BASE,
CALC ALL, CALC SAMPLE, LOGIT ALL and LOGIT SAMPLE,
produced the results provided in Figures 5.1 and 5.2.

According to the subjective complexity classifications provided by
the manufacturer, four workstations were classified as being high in
complexity and five as low in complexity. This information is shown
by the green and red markers in the above figures.

Table 5.2 is based on our initial subjective classification and pro-
vides an overview of the results we obtained. All models correctly
identified Workstations 1 and 3 as being highly complex. The least
accurate classification was generated by the LOGIT ALL model; only
22% of the workstations were classified correctly.

The CALC SAMPLE model presented the most accurate clas-
sification. This is a linear model based on the four variables of the
LOGIT SAMPLE model, the weights used were also those determined
by the statistical model (Section 4.3).
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Figure 5.1: Workstation Complexity Analysis
Logit Models
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Figure 5.2: Workstation Complexity Analysis
Linear Models
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Table 5.2: Workstations’ classification

Variable k1 k2 k3 k4 k5 k6 k7 k8 k9 Total

Subjective L H L L H H H L L
BASE L H L H H H H H H 67%

CALC ALL L L L H H H H L L 67%
CALC SAMPLE L H L H H H L L L 78%

LOGIT ALL L L L L L L L H H 22%
LOGIT SAMPLE L L L L L H H H H 67%

k stands for workstation
H stands for high complex workstation
L stands for low complex workstation

Most automotive companies have large engineering databases con-
taining technical and operational data on all tasks (i.e. work elements)
executed at their workstations. Currently, assigning tasks to worksta-
tions in an effort to balance the line is often the responsibility of
operators, team leaders and engineers. Naturally, their experience
and personal judgement are determining factors in this process. W
e developed the classification models reported in Chapter 3 after in-
teracting with our industry partners and observing real cases. The
models may facilitate the extraction of more meaningful information
from engineering databases and thus assist in task assignment. They
help to pinpoint interesting workstations, and suggest variables that
could be causing balance loss by identifying complexity drivers that
can generate a correct classification.

5.3 Workload Balancing and Manufacturing

Complexity Levelling

After exploring manufacturing complexity and identifying worksta-
tions that are high or low in complexity, we developed tests by means
of the modelling and heuristic approaches. Complexity drivers and
workstation classifications provide a broader and substantial view of
manufacturing complexity (Chapter 3), which is extremely relevant
to identify different related aspects of complexity. However , measur-
ing and monitoring complexity attempting to achieve workload bal-
ance leads to a levelled manufacturing complexity at each workstation
(Chapter 4). The results obtained are presented below.
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5.3.1 Modelling Approach

With the MMALBP as our starting point, we first developed an op-
timization MILP model. With this model, we were able to provide
an optimal solution to the problem but we were unable to take an
important constraint into account, namely qualified operators. Al-
though the maximum number of operators is one of the parameters
of the model, we did not consider which operators were qualified to
execute certain tasks. These results are shown in Figure 5.3.

Figure 5.3: Balancing Mixed-Model to Minimize Work Overload
MILP Model – Workstations Load
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Since one of the main constraints was excluded from this model, we
expected the results to be better than a complete approach. However,
it was interesting to observe how workstation loads still varied from
model to model. For example, at Workstation 9, the load was much
lower for Model 2 than for the other models. This is a typical means of
recognizing the complexity generated by product variability on a line.
T he next section presents the complete approach, which considers all
constraints and integrates complexity into its solution.
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5.3.2 Solution Approach

Using the same dataset from the previous sections, we tested the solu-
tion approach we had developed. We evaluated the results obtained by
means of various alphas (section 4.3.1, α = 0.00, α = 0.25, α = 0.50,
α = 0.75 and α = 1.00) and rebalancing solutions. We also compared
the results before and after levelling workstation complexity during
the task assignment process. In addition, we considered the results of
our improvement rebalancing heuristic, which are shown below and
are grouped by three aspects: the variability of complexity levels,
the average work overload per workstation when complexity is not
levelled, and the impact of complexity.

Table 5.3 displays the values of workstation complexity levels,
ComplexityAJk . The real balance was provided by the manufacturer,
and the initial complexity measurement of each workstation is shown
in the second column. We can observe a large discrepancy between
complexity levels, and notice an especially high level of complexity at
Workstation 6 and a particularly low level at Workstations 1, 2 and 3.
T he complexity levels produced by our heuristic solution demonstrate
a tendency to equalize complexity levels .

Table 5.3: Workstation Complexity Levels

Real Balance α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1 R

k1 3.99 34.79 10.68 23.53 31.98 26.81 31.98
k2 1.19 13.90 24.49 30.48 20.37 28.03 20.37
k3 1.55 17.15 9.07 23.90 27.41 33.10 27.41
k4 50.52 31.63 16.65 33.71 32.11 19.00 32.11
k5 1.65 37.93 29.46 10.08 24.52 31.34 24.52
k6 102.33 85.61 12.54 30.43 18.78 38.66 18.78
k7 84.48 56.33 33.35 35.37 37.23 21.74 37.23
k8 26.07 0.00 82.48 40.55 46.10 48.26 46.10
k9 5.56 0.00 58.62 49.30 38.83 30.41 38.83

k refers to workstation

R to rebalancing

Figure 5.4 clearly represents how complexity is levelled through
the solutions obtained, starting from very high and low peaks of com-
plexity and evolving toward a more balanced solution. The optimal
workstation complexity level is represented by an equal amount of
complexity for all workstations. As the total amount of complexity in
the system is 277, each workstation needs to have an equal complexity
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measurement of 31 (red line) for the situation to be ideal.

Figure 5.4: Workstations Complexity Levels
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Table 5.4 displays the total work overload at all workstations per
alpha after balancing and rebalancing. We obtained these results
without levelling complexity. Since rebalancing is an optimization
procedure for improving previous balancing solutions, it comes as no
surprise that there is an improvement in the total overload. The
highest work overload situation occurred when α was 0. In this case,
we did not consider the task time variation for a single task in different
models.

The results show how model variability influences line balance and
the total average overload per workstation when complexity is con-
sidered . We have demonstrated that, even though both complexity
and workload are taken into account, work overload is occasionally
minimized. Figure 5.5 also summarizes these results and displays the
total average overload per workstation per solution.
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Table 5.4: Workstations Overload (with/without) Levelling Complexity

α = 0 α = 0.25 α = 0.5
n y n y n y

k1 8.43 8.43 1.81 3.19 0.45 2.36
k2 3.14 3.14 1.77 2.03 2.3 3.28
k3 5.28 5.28 2.93 2.93 1.94 3.94
k4 5.95 5.95 0.63 0.63 0.92 0.33
k5 5.1 5.1 3.92 4.72 2.16 27.62
k6 13.13 13.13 1.45 2.25 2.54 0.8
k7 0.16 0.16 12.03 12.83 3.43 0
k8 0 0 0.82 0 13.9 0
k9 0 0 0 0 0

Total Average 41.2 41.2 25.36 28.58 27.65 38.33

α = 0.75 α = 1 R
n y n y n y

k1 1.63 0.5 2.94 1.76 1.63 1.76
k2 1.13 1.89 0.6 13.58 1.13 0.45
k3 2.3 0.57 2.07 3.46 2.3 3.46
k4 11.8 0 1.44 2.9 0 2.9
k5 0.76 22.02 5.05 0.59 0.76 0.59
k6 2.06 5.37 0 0.8 2.06 0.8
k7 0.11 0.44 22.85 3.32 9.83 3.32
k8 0.41 0 0 0.54 0.41 11.34
k9 1.68 0.09 0.16 0.97 1.68 0.97

Total Average 21.87 30.87 35.12 27.92 19.8 25.59

Figure 5.5: Mixed-Model Assembly Line Balancing Solutions
Total Work Overload per Workstation
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The complexity of workstations and variability of work overload
are shown for all solutions in Figure 5.6. Green represents the best
solution and is defined by a workstation work overload of zero and a
complexity level of 31. It is important to mention that some tasks are
assigned to fixed workstations as part of the initial set of constraints
and these assignments cannot be changed by the line balancing so-
lutions . Thus, from time to time, work overload is registered but
cannot be optimized.

Figure 5.6: Workstations’ complexity variability and work overload

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00 5.00 10.00 15.00 20.00 25.00

W
o

rk
st

at
io

n
 C

o
m

p
le

xi
ty

 L
ev

e
l 

Workstation Overload 

Complexity Optimal Level Complexity/Overload

Optimal Solution

An overview of both levelling and balancing results is given in
Figure 5.7, which shows the complexity levels (i.e. entropy measure-
ment) of the original balance, the result obtained for α = 0.5, and
the rebalancing procedure. The work overload for each station is also
provided.
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Figure 5.7: Workstations’ complexity variability and work overload
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While the initial balance contains workstations that are very low
in complexity (such as Workstations 1, 2 and 3) as well as workstations
that are very high in complexity (such as Workstations 6 and 7), com-
plexity levels are more levelled after the proposed solution has been
applied. It can be concluded that levelling complexity with worksta-
tion entropic measurements improves both the complexity smoothness
of each workstation and the overall complexity of the manufacturing
system.

5.4 Comparison

As we investigated manufacturing complexity in several distinct ways,
the results of these different studies will be compared in this section.
First, a general overview of the complexity results will be presented,
followed by a comparison of the load results of the levelling/balancing
heuristics and the MILP model.
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Figure 5.8 demonstrates the results obtained regarding complex-
ity. The red and green markers represent the initial subjective work-
station classifications provided by the manufacturers; workstations
high in complexity are represented as 1 and those low in complexity
as 0. This figure also shows the characterizations generated by the
linear models (BASE, CALC ALL and CALC SAMPLE). The work-
station complexity measurements (i.e. entropy ) are provided for the
original balance, for the best balancing (when α = 0.5) and for the
rebalancing solutions. To facilitate our analysis, we normalized the
scores for each workstation on a scale from 0 to 10.

Figure 5.8: Mixed-Model Assembly Line Balancing Solutions
Complexity Measurement and Classification per Workstation
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We are able to observe the relation between the subjective classi-
fication of the workstations and the original entropy levels. For exam-
ple, workstations 1 and 3 are both classified as low in complexity, and
both originally contain a low level of complexity. The opposite occurs
in workstations 6 and 7, which are simultaneously classified as high
in complexity and with a high level of complexity. When analysing
the classification models, we can observe the same tendency with the
probability of workstation classification and the levels of complexity.
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As mentioned previously (Section 5.3.1), an optimal solution is
obtained by means of the MILP model. This approach is only valid
for the MMALBP as it does not consider the constraints of numer-
ous problems and in particular disregards manufacturing complexity.
However, it might be used as lower bound for the optimization prob-
lem.

Table 5.5 shows the gap between the heuristics and the MILP
results for the load of each workstation and each model. Workstations
5, 6 and 7 have a higher load for almost all models. This is the result
of the complexity of these workstations.

Table 5.5: Heuristics and MILP – Results: Gap difference
Workstation’s load

m1 m2 m3 m4 m5 m6 m7 m8 m9 Average

k1 -17.37 -5.21 15.49 -0.27 -10.35 -11.07 -22.32 -9.99 -20.97 -9.12
k2 -4.16 -6.86 0.16 -4.16 11.6 -6.86 6.82 3.85 -5.96 -0.62
k3 0.60 -3.00 8.7 8.88 -1.74 9.78 -11.37 -3.72 1.32 1.05
k4 -2.94 -1.82 -1.82 -18.70 -4.84 -5.56 -4.84 -4.84 27.54 -1.98
k5 11.96 7.66 0.64 1.22 4.04 16.84 4.04 5.39 9.98 6.86
k6 1.80 -1.80 1.98 5.58 3.24 16.66 -1.80 1.98 -5.40 2.47
k7 14.03 26.37 23.79 1.67 10.01 31.77 10.01 7.43 37.43 18.06
k8 -9.39 -36.67 -27.19 4.03 -10.41 -36.13 -20.31 -10.83 -17.87 -18.31
k9 5.47 21.33 -17.07 1.75 -1.55 -15.39 39.77 10.73 -26.07 2.11

k refers to workstation

m refers to model

5.5 Conclusion

In this chapter, we discussed an industry study case and used various
approaches to exploit complexity and generate results. We completed
our experiments with a set of nine workstations, nine models, and 109
tasks. Initially, we characterized workstation complexity using the
models we described in Chapter 3. We obtained our best results on
subjective classification and automatic complexity classification with
the CALC SAMPLE model.
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Next, we generated results by means of the MILP model to ob-
tain a solution to the MMALBP and minimize work overload. With
this approach, we produced an optimal solution; however, we did not
consider all of the constraints of the problem.

Finally, we focused on the heuristics developed. We discovered an
evolution in our results generated by our mixed-line balancing heuris-
tics when we concentrated on workstation overload and complexity
levelling. We also provided a general overview of the initial complex-
ity of the workstations and the results we obtained by our approaches.



6
Conclusion and Further Research

Producing a large number of models (and model variants) on an
MMAL involves a high level of manufacturing complexity. We ob-
served that this complexity is experienced differently in different phases
of the production process. In the literature on manufacturing com-
plexity and MMALBPs, we found that researchers have developed
various approaches to both define and measure complexity and solve
balancing problems. Nevertheless, the analysis, measurement and ap-
plication of complexity in MMALs remains a new and challenging
problem – especially when real datasets from the industry are taken
into account.

This dissertation presents the first attempt to provide an empir-
ical complexity analysis and classify workstations according to their
complexity . It also proposes an entropic complexity measurement for
balancing workloads and levelling complexity. However, manufactur-
ing complexity is an extremely broad and complex problem. Although
we have investigated complexity and delineated many important fac-
tors, it is still a subject that should be vigorously studied by future
research teams.
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6.1 Some concluding remarks

This section reviews the research questions presented in Chapter 1
and how they have been answered.

Research Question 1:

What are the drivers that determine manufacturing complexity
in mixed-model assembly lines, and how can these drivers be used to
classify workstations as being ‘high’ or ‘low’ in complexity?

To answer the first research question, we first conducted a litera-
ture review of manufacturing complexity. In Chapter 2, we presented
a summary of the existing research on the definition and measure-
ment of complexity. This led us to identify two key approaches to
complexity characterization: one based on empirical analysis and an-
other based on entropic measurement. To engage with and research
real-life scenarios, we visited automotive plants and investigated real
assembly lines. During these visits, information was gathered via our
own observations, as well as through workshops with operators, team
leaders and engineers. Chapter 3 describes how this information was
retrieved and structured.

To classify workstations as high or low in complexity, an empirical
analysis was conducted to extract a set of direct complexity drivers
from real production lines. Five different models were constructed, as
detailed in Chapter 3. Three of these were calculated as linear com-
binations of these variables and two as statistically-derived logistic
models. We concluded that two models are of particular importance.
The first is a logistic model that classifies workstations as high or
low (LOGIT SAMPLE), obtained from a sample of 54 stations with
scores at the extremes of classification. This model is suitable to iden-
tify workstations that are high in complexity in engineering databases
with only four variables as input data. The second interesting model
is a calculated linear model (CALC SAMPLE), with weights derived
from the logit model mentioned above, which yields a good gradual
scale of workstation complexity (between 0 and 10). In Chapter 4,
these models are applied to a case study from the industry. The em-
pirical analysis of complexity was extremely useful in our definition of
a correlated entropic complexity measurement, which identified what
makes workstations complex.
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Research Question 2:

How can manufacturing complexity be levelled in mixed-model as-
sembly lines workstations while balancing workload (minimizing work
overload)?

A mixed integer linear programming model was developed to as-
sign tasks to workstations. The objective was to optimize mixed-
model assembly line balancing by minimizing workstation work over-
load. The mathematical model and its constraints are described
in Chapter 4. While the MILP model generates a solution to the
MMALBP, it does not take into account the existing complexity of
the system. The results generated by our model provided a useful
first step to solving this problem.

Drawing on this empirical complexity analysis, we developed a
workstation complexity measurement that correlates the uncertainty
of the system with the assignment of tasks. Subsequently, we im-
plemented a set of heuristic procedures (cf. Chapter 4) to solve
MMALBPs. These solutions were mainly based on a hybrid algorithm
for generating line balance and a local search algorithm for rebalanc-
ing the line. Our main goal was to level manufacturing complexity
while balancing workload.

Research Question 3:

What are the results and shortcomings of both approaches when
applied to a real world mixed-model assembly line? Analysis of an
industry study case.

In Chapter 5, we reported on our application of our proposed so-
lutions to an industry case study. The mixed-line balancing heuristics
generated a solution in which the majority of the workstations were
well balanced. A general overview was provided of the initial com-
plexity measurements of the workstations and the results obtained
with our approaches. A number of different solutions were effective
but our rebalancing solution ultimately produced the best output.
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General Research Question:

How can manufacturing complexity be evaluated and managed in
mixed-model assembly lines?

The research provided deep insight into manufacturing complex-
ity, especially with regard to real-world workstations on MM- ALs.
We identified various aspects of complexity and developed an empiri-
cal analysis and an entropic measurement. Drawing on these charac-
terizations, we exploited system complexity and introduced statistical
models that were able to classify workstations as high or low in com-
plexity. We also proposed a solution to level manufacturing complex-
ity. Using typical artificial intelligence methodologies, we developed
heuristics that combined algorithms to generate an initial solution to
the MMALBP – and a local algorithm that provided a rebalancing
solution.

6.2 Future Research

Our research has contributed to the relevant literature in this field by
exploiting manufacturing complexity. However, the optimization of
manufacturing complexity is a very comprehensive topic, so a num-
ber of issues remain unexplored and require further research. In this
section, an overview will be given of potential research avenues.

With regard to the causal model that characterizes manufacturing
complexity, future researchers should look into the impact of existing
complexity on direct and indirect costs, the subjective interpretations
of complexity by workstation operators, the quality and number of
errors generated by complexity, and overall sales. Since complexity is
driven by a number of different variables, it can impact on multiple
areas of manufacturing.

MMALBPs should be further analysed in different ways. Whe-
reas our objective was to minimize workstation overload, other possi-
ble objectives include minimizing workstation complexity level, min-
imizing simultaneous work overload and complexity, and/or limiting
one of these variables. In this respect, other datasets should also be
used in the computational tests.
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Another issue closely related to MMALBPs is the sequencing of
models on a line. According to Boysen et al. (2009), Assembly Line Se-
quencing Problems (ALSPs) involve the sequencing of different models
to avoid work workstation overload. There are two main approaches
to ALSPs: (i) minimizing inefficient line stoppage, and (ii) developing
procedures to avoid overload. Various factors can be investigated and
optimized, such as workstation length, task time, cycle time, human
factor policies Celano et al. (2004) and many others.

Since assembly line sequencing problems are directly related to
MMALBPs, future researchers should focus on exploiting worksta-
tion complexity by analysing the differences between models to effi-
ciently sequence products. Because model sequencing requires a de-
tailed manufacturing schedule, it is of vital importance that any over-
loads are minimized that might occur after balance has been achieved.
Measurements of manufacturing complexity can therefore be taken
into account not only to improve mixed-model assembly line balanc-
ing but also to facilitate sequencing.

Future researchers should also focus on designing and developing
a robust Decision Support System (DSS) for assembly line balanc-
ing. A DSS is an information system that supports the decision-
making (Keen (1980)) process. As the MMALBP involves both large
amounts of manufacturing data and practical subjective knowledge,
the DSS could be both data- and knowledge-driven. Techniques such
as data mining and predictive analytics could be used to extend the
solutions presented in this dissertation and extract more useful infor-
mation from the data retrieved from our manufacturer collaborators.
In the next phase of research, new heuristics and known metaheuris-
tics could be added and combined to generate accurate solutions to
real problems.

In short, the application of operations research to information sys-
tems is a wide, challenging topic in need of much further exploration.
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Zeltzer, L., Limère, V., Aghezzaf, E-H., Van Landeghem, H., 2012.
7th International Multi-Conference on Computing in the Global In-
formation Technology. Venice, Italy.

De Bruyn, W., Borodin, D., Zeltzer, L.,, Van Vreckem, B., 2010.
Key performance indicators : linking with ISA-95 and moving to-
ward KPI-driven factory. 11th International scientific and practical
conference : innovations, ICT technologies and their application in
education. 2010, Borisoglebsk, Russia.

Meeting abstracts, presented at national conference

Zeltzer, L., Limère, V., Aghezzaf, E-H., Van Landeghem,H., 2013.
Measuring complexity in mixed-model assembly workstations. 27th
annual conference of the Belgian Operations Research Society (Orbel
27). Kortrijk, Belgium.

Poster

Shorten New Product Development and Introduction in Bio
(pharmaceutical) Industries
Zeltzer, L., Caluwaerts, P., Borodin, D., Van Vreckem, B., De Bruyn,
W., 2010. Shorten New Product Development and Introduction in
Bio (pharmaceutical) Industries. FlandersBio, Knowledge for Growth
Convention. Ghent, Belgium.






	titlepg_recto_verso_De Lima Gabriel Zeltzer
	franse_pg_recto_De Lima Gabriel Zeltzer.pdf
	franse_pg_verso_De Lima Gabriel Zeltzer.pdf

	ZELTZER_Luiza_PhDThesis

