
Human and Vehicle Trajectory Analysis

Trajectanalyse van mensen en voertuigen

Xingzhe Xie

Promotoren: prof. dr. ir. H. Aghajan, prof. dr. ir. W. Philips
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Telecommunicatie en Informatieverwerking
Voorzitter: prof. dr. ir. H. Bruneel
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2015 - 2016

ISBN 978-90-8578-904-8
NUR 958, 943
Wettelijk depot: D/2016/10.500/36

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Telecommunicatie en Informatieverwerking

Promotoren: Prof. Dr. Ir. Hamid Aghajan
Prof. Dr. Ir. Wilfried Philips

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Telecommunicatie en Informatieverwerking
Sint-Pietersnieuwstraat 41, B-9000 Gent, België

Tel.: +32-9-264.79.66
Fax.: +32-9-264.42.95

Voorzitter: Prof. Dr. Ir. Herwig Bruneel

Dit werk kwam tot stand in het kader van een specialisatiebeurs van het CSC
(China Scholarship Council) en BOFcofunding-CSC (Special Research Fund -
Cofunding for Chinese candidates holding a CSC-grant).

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Academiejaar 2015 - 2016

Members of the jury

Prof. Dr. Ir. Wilfried Philips (Ghent University, supervisor)
Prof. Dr. Ir. Hamid Aghajan (Ghent University, supervisor)
Prof. Dr. Ir. Peter Veelaert (Ghent University)
Prof. Dr. Ir. Sidharta Gautama (Ghent University, secretary)
Prof. Dr. Ir. Nico Van de Weghe (Ghent University)
Prof. Dr. Ir. Tinne Tuytelaars (University of Leuven)
Prof. Dr. Ir. Rik Van de Walle (Ghent University, chairman)

Affiliations

Research Group for Image Processing and Interpretation (IPI)
Independent Research Institute IMinds
Department of Telecommunications and Information Processing (TELIN)
Faculty of Engineering and Architecture
Ghent University

Sint-Pietersnieuwstraat 41
B-9000 Ghent
Belgium

EN G IN EE RING

A
R C H IT E C T U R

E

Acknowledgements

This dissertation would never have been accomplished without the guidance,
help and support of many kind people. Especially I would like to express my
gratitude to the following people:

Foremost, I would like to thank my advisors, Prof. Dr. Ir. Hamid Aghajan
and Prof. Dr. Ir. Wilfried Philips, for giving the opportunity to conduct my
doctoral research at Image Processing and Interpretation (IPI) group, Ghent
University, and to spend 6 months doing my research at Ambient Intelligence
Research (AIR) Lab, Stanford University. I would also like to thank them
for numerous inspiring discussions, and specially for allowing me to work on
trajectory analysis, which is more data mining than image processing. I also
appreciate the help from Prof. Peter Veelaert for the very instructive dis-
cussions. Further, I am thankful to the China Scholarship Council (CSC) and
BOF cofunding-CSC (Special Research Fund-Cofunding for Chinese candidates
holding a CSC grant) for their fundings in this research.

My sincere gratitudes also go to all my colleagues and ex-colleagues at
TELIN-IPI-IMINDS, Ghent University and AIR Lab, Stanford University for
creating such a pleasant working atmosphere. Specially, I am very thankful to
Filip Rooms for translating the summary into Dutch.

I am infinitely grateful to both of my Chinese and Italian families for their
trust, love and support. Finally I would like to thank Riccardo Stara for his
love, comfort and support.

Ghent, February, 2016.
Xingzhe Xie

Samenvatting

De laatste jaren worden meer en meer volgsystemen gebruikt om mensen bij te
staan in hun dagelijkse leven maar ook professioneel in domeinen als beveiliging
en bewaking, bejaardenzorg, verkeersmonitoring, routeplanning en navigatie.

Eerst enkele definities: een verplaatsing van een object wordt voorgesteld
door een pad, dat alle posities omvat die door het object ingenomen werden
tijdens de verplaatsing. Het traject van het object bevat naast het afgelegde
pad ook de tijdsinformatie wanneer het object zich waar op het pad bevond.

Dit genereert gigantische hoeveelheden data van trajecten van heel wat
soorten bewegende objecten in allerlei soorten omgevingen, zoals bejaarden
in bejaardenhuizen, passagiers in treinstations, arbeiders in een fabriek, voet-
gangers, fietsers en voertuigbestuurders in het verkeer, ...

Daarom is het nodig om met deze enorme hoeveelheden data om te kunnen
gaan, en dit stimuleerde de ontwikkeling van trajectanalyse in data mining,
machine learning en knowledge discovery.

Onderzoeksdomeinen rond trajectanalyse omvatten typisch (1) similariteits-
maten tussen verschillende trajecten, (2) trajectclustering en detectie van afwi-
jkingen, en (3) trajectuitmiddeling. Deze drie topics worden hieronder verder
beschreven.

• Similariteitsmaten tussen verschillende trajecten: Spatiale sim-
ilariteit van twee trajecten geeft aan hoe gelijkaardig in de ruimte de
paden waren van twee objecten tijdens twee verschillende verplaatsingen,
en houdt geen rekening hoe snel of hoe traag de trajecten werden door-
lopen. Temporele similariteit geeft aan hoe gelijkaardig de snelheden van
objecten zijn langs het traject, met andere woorden hoe ze verschillen in
snelheid langs het pad dat in de ruimte wel gelijkaardig is.

• Trajectclustering en afwijkingsdetectie: Zelfs in zeer grote datasets
hebben veel trajecten de neiging gelijkaardig te zijn doordat een zelfde
route werd gevolgd, en ze zelfs een gelijk snelheidsprofiel langs de gevolgde
route vertonen.

Trajectclustering streeft ernaar om gelijkaardige trajecten te groeperen
in een klein aantal clusters, waarbinnen de trajecten ruimtelijk of zowel
in ruimte als tijd zeer gelijkaardig zijn. Afwijkingsdetectie richt zich er
dan op om trajecten te vinden die atypisch zijn en tot geen enkele cluster
behoren.

vi

• Trajectuitmiddeling: Trajectuitmiddeling bepaalt een representatief
traject uit een verzameling trajecten, zoals een wandelroute uit een verza-
meling voetgangerstrajecten, of een weg uit een verzameling trajecten van
voertuigen.

In deze thesis hebben we enkele technieken ontwikkeld binnen alle hierboven
beschreven domeinen.

We stellen voor om spatiale en temporele similariteiten tussen paarsgewi-
jze trajecten apart te meten gebruik makend van verschillende vormen van
tijdsalignering.

Spatiale similariteit wordt berekend door middel van alignering op basis van
Euclidische afstanden tussen de fysieke posities van punten langs de trajecten.
Temporele similariteit wordt gemeten door middel van alignering op basis van
de snelheidsverschillen voor spatiaal gelijkaardige posities.

We stellen ook een eigen nieuwe aanpak voor om een verzameling trajecten
te clusteren die gebruik maakt van deze similariteitsmaten.

Dit afzonderlijk meten van de spatiale en temporele similariteiten is niet
alleen nuttig om spatiale clusters te bepalen van bewegende objecten die geli-
jkaardige paden hebben gevolgd, maar helpt ook bij het detecteren van zowel
spatiale als temporele afwijkingen. We hebben onze methode vergeleken met
andere methoden om de similariteitsmaat te berekenen om trajecten van fab-
rieksarbeiders te clusteren, waarbij onze methode betere resultaten qua clus-
ternauwkeurigheid oplevert dan de andere methoden.

De twee voorgestelde methoden voor gezamenlijke alignering van een grote
aantal trajecten zoeken naar overeenkomsten tussen punten langs de verschil-
lende trajecten, wat ons ook helpt om trajecten op een zinvolle manier uit te
middelen. Dit uitmiddelen is niet triviaal want het gemiddelde van twee ver-
schillende trajecten is niet eenduidig te definiëren. In onze aanpak middelen we
punten uit die in de ruimte dicht bij elkaar liggen, en dit op een computation-
eel efficiënte manier. De eerste methode is gebaseerd op iteratieve paarsgewijze
alignering gebruik makend van Dynamic Time warping (DTW). De andere
methode is een zogenaamde greedy methode die erin slaagt om een deel van de
complexiteit van DTW te vermijden door optimaal gebruik te maken van de
statistieken van de data.

De resulterende uitgemiddelde trajecten zijn van hoge kwaliteit wanneer we
ze vergelijken met de resultaten van andere bestaande methoden. Ze laten toe
om eenvoudig maar toch nauwkeurig snelheidsvariaties langs een gemiddeld
traject te kwantificeren.

De eerste methode zoekt naar één-op-één overeenkomsten tussen punten van
de trajecten. Een “stretch and then compress” strategie wordt toegepast om
de trajecten één na één te aligneren in volgorde van toenemende gemiddelde
afwijking.

Tijdens paarsgewijze alignering van twee trajecten zal DTW lokaal de
trajecten uitrekken (stretch) waar nodig om een optimale overeenkomst te
bekomen. Dit uitrekken is niet altijd wenselijk, maar geeft zijn naam aan
de eerste stap van de methode (stretch stap). De compress operatie verwijdert

vii

de herhaalde punten uit de gerekte trajecten, waarbij we twee gecomprimeerde
trajecten met één-op-één overeenkomsten tussen de punten bekomen.

Het laatste gecomprimeerde traject bepaalt de lengte van alle gewarpte
trajecten. De één-op-één overeenkomsten worden dan gebruikt om voor alle
andere trajecten de punten te bepalen die overeenkomen met de punten van de
laatste comprimeerde trajecten.

De tweede methode zoekt naar veel-op-één overeenkomsten tussen punten
van de verschillende trajecten en rekt de trajecten dus niet uit. In plaats van
per paar trajecten te werken, worden alle trajecten samen gealigneerd langs de
tijdsas. Om rekentijd te sparen stellen we een “greedy” procedure voor die direct
alle punten van het gemiddelde traject één na één iteratief berekent. Daarvoor
moeten we de punten lokaal clusteren, de best passende cluster selecteren en
dan de punten in die cluster uitmiddelen om ruis uit te middelen. Terwijl onze
eerste methode gebruik maakt van dynamic programming om op een optimale
manier met ruis om te gaan, past de tweede methode uitmiddelen van veel
trajectpunten toe om hetzelfde doel te bereiken.

Experimentele resultaten geven aan dat we er met onze beide nieuwe metho-
den in slagen om overeenkomsten tussen de punten van alle trajecten te vinden,
waarbij gewarpte trajecten worden bekomen met de overeenkomstige punten
voor dezelfde tijdindices langs de trajecten.

In deze thesis gebruiken we onze voorgestelde methoden voornamelijk voor
twee toepassingen: optimalisatie van de werkcyclus uit de trajecten van fab-
rieksarbeiders en bepalen van een wegennetwerk uit GPS trajecten.

In onze toepassing voor werkcyclus optimalisatie, clusteren we de trajecten
in verschillende soorten uitgevoerde werkcycli en bepalen daarbij de abnormale
trajecten die niet horen bij de typische trajecten van arbeiders. Door de tra-
jecten gezamenlijk te aligneren, kunnen we ze uitmiddelen tot een typerende
route die hoort bij elke uitgevoerde werkcyclus, en houden daarbij typerende
snelheid en doorlooptijd bij langs elke route. Deze resultaten kunnen dan wor-
den gebruikt om de fabrieksarbeiders te helpen hun werkcycli efficiënter uit te
voeren.

Bij onze toepassing om een wegennetwerk te bepalen, gebruiken we de drie
voornaamste onderdelen van wegen: kruispunten, hoe de kruispunten verbon-
den zijn en geometrische voorstelling van elk wegsegment.

We stellen twee methoden voor om kruispunten te detecteren: de eerste is
gebaseerd op het detecteren de lokaties waar weggebruikers hun beweegrichting
verandert; de tweede is gebaseerd op het detecteren waar drie of meer wegseg-
menten samenkomen.

We onderzochten hoe de kruispunten met elkaar waren verbonden door na
te gaan of weggebruikers ooit reizen van een kruispunt naar een tweede zonder
een van de andere kruispunten te passeren. GPS tracks worden dan opgesplitst
in stukken wegsegment door deze direct verbonden kruispunten.

Voor elk wegsegment worden spatiaal abnormale tracks gedetecteerd door
de tracks te clusteren volgens de spatiale dissimilariteitsmaat. Normale tracks
worden gealigneerd gebruik makend van de voorgestelde gezamenlijke aligner-

viii

ingsmethode, waarbij we gewarpte tracks bekomen. Deze gewarpte tracks wor-
den dan uitgemiddeld om zo tot de geometrische voorstelling van ons wegseg-
ment te komen.

We hebben onze methoden getest op twee datasets: de Chicago dataset met
889 GPS trajecten, en de Berlijn dataset met 26831 GPS trajecten. Experi-
mentele resultaten tonen een grote nauwkeurigheid aan bij detectie van kruis-
punten, en een betere geografische nauwkeurigheid van de gevonden wegseg-
menten in vergelijking met andere algoritmes.

Tenslotte beschrijven we in deze thesis nog een neventoepassing van tra-
jectanalyse: het bepalen hoe een (vergader)ruimte is ingedeeld op basis van
trajecten van mensen. In plaats van objecten te detecteren op basis van hun
kenmerken in een beeld (zoals vorm, kleur en textuur), stellen we een indirecte
manier voor om de aanwezigheid van stoelen, tafels en vrije wandelruimte af te
leiden uit de trajecten van mensen in die ruimte. Bij deze toepassing gebruiken
we geen van de hierboven voorgestelde methoden, maar maken gebruik van
waarschijnlijkheidsrekening.

Eerst halen we de hoogte- en snelheidsinformatie uit de trajecten, en geven
die als invoer van een SVM classifier, om zo verschillende klasses van de
ogenblikkelijke activiteiten van mensen te bepalen. Deze klasses worden op
een hoger niveau samengevoegd voor elk tijdstip. We berekenen dan twee
bezettingsmappen, de ene voor waar personen zitten op elk tijdstip en de an-
dere waar personen wandelen op elk tijdstip. De zitmap wordt bijgewerkt met
de zitactiviteiten van de personen op elk moment, en de wandelmap wordt
bijgewerkt met de wandelactiviteiten van de personen. Tenslotte wordt de
aanwezigheid van de stoelen afgeleid uit de zitmap en die van de tafel uit de
wandelmap. Experimentele resultaten tonen aan dat tafels en stoelen met suc-
ces worden gedetecteerd.

We vatten hier de belangrijkste bijdragen van deze thesis samen:

• een nieuwe methode voor trajectclustering die gebruik maken van zowel
spatiale en temporele similariteitsmaten om paarsgewijs trajecten te
vergelijken.

• twee nieuwe methoden voor gezamenlijke alignering van een groot aan-
tal trajecten. De ene is gebaseerd op één-op-één overeenkomsten tussen
punten, en de andere legt veel-op-één overeenkomsten tussen punten.

• twee nieuwe methoden om kruispunten te detecteren. De eerste is
gebaseerd op het vinden van plaatsen waar de beweegrichting van wegge-
bruikers verandert, en de tweede op het vinden van plaatsen waar min-
stens drie wegsegmenten samenkomen.

• een eerste toepassing van trajectanalyse: het optimaliseren van werkcycli,
waarbij representatieve paden, snelheden en looptijden langs elk pad voor
fabrieksarbeiders worden bepaald, om zo hun werkefficiëntie te verhogen.

ix

• een tweede toepassing van trajectanalyse: bepaling van een wegen-
netwerk, gericht op het vinden van kruispunten, hoe deze kruispunten
verbonden zijn en een geometrische voorstelling van elk wegsegment.

• de derde toepassing van trajectanalyse: bepalen hoe een ruimte is
ingedeeld, gericht op het herkennen van stoelen, tafels en vrije wandel-
ruimte in een slimme vergaderzaal.

In totaal resulteerde het onderzoek tijdens dit doctoraat in vijf publicaties in
internationale peer-gereviewde journals: twee zijn reeds gepubliceerd [Xie 15b,
Bo 14], en drie zijn nog in review [Xie 16d,Xie 16a,Xie 16b]. Verder hebben
we ook elf artikels gepubliceerd in proceedings van internationale conferenties
[Xie 12,Grünwedel 12,Xie 13b,Xie 14c,Xie 14a,Xie 14b,Bo 14,Eldib 14,Xie 15a,
Eldib 15,Xie 16c].

x

Summary

In recent years, tracking systems have become widely used to assist people’s
daily life and work in areas such as security and surveillance, elderly care, traffic
monitoring and path planning and navigation. They generates massive trajec-
tory data from a variety of moving objects in all kinds of environments, such as
tracks of elderly people in care homes, passengers in train station, workers in
the factory, pedestrians, cyclists, vehicles on the roads. . . . Automated process-
ing of this data by trajectory analysis forms the basis of many other processing
techniques, such as data mining, machine learning and knowledge discovery.

Research topics related to trajectory analysis typically include the definition
of application-relevant trajectory similarity measures, techniques for trajectory
clustering and/or for abnormality detection, techniques for computing repre-
sentative trajectories and techniques for statistical analysis not only of the
trajectories as a whole but also of local parameters of the trajectory. This PhD
focuses on the following topics:

• Trajectory similarity measures: Spatial similarity between two tra-
jectories is a measure of how similar the routes of the moving objects are
in the two journeys irrespective of haw fast or slow the trajectories are
traversed. Temporal similarity measures how similar the moving objects’
speed profiles are in two trajectories, i.e., how differently they traverse
trajectories which are otherwise spatially similar.

• Trajectory clustering and abnormality detection: Even in very
large datasets, many trajectories tend to be similar, because they follow
more or less the same route, perhaps even the same speed profile.

Trajectory clustering aims to group similar trajectories into a small num-
ber of clusters, in which the trajectories are spatially or spatiotemporally
very similar. Abnormality detection aims to find those trajectories which
are not typical at all and do not belong to a specific cluster.

• Trajectory averaging: Trajectory averaging aims to extract a repre-
sentative trajectory from a number of trajectories, such as a walking route
from pedestrians trajectories or the road network from vehicle trajecto-
ries.

In this thesis, we deploy techniques to address all the above mentioned
topics. We propose to measure spatial and temporal similarity between pair-
wise trajectories separately, using different forms of time alignment. Spatial

xii

similarity is calculated as the residual error after aligning physical points on
trajectories to minimize their Euclidean distance. Temporal similarity is cal-
culated similarly, but this time after aligning the trajectories to minimize the
velocity difference between corresponding spatial locations.

In this thesis, we also present a novel approach to jointly cluster many tra-
jectories based on the similarity measures. Measuring the spatial and temporal
similarities separately is not only helpful to find spatial clusters in which the
moving objects follow similar routes, but beneficial to detect both spatial and
temporal abnormalities. We compare our method with other methods and sim-
ilarity measures in the problem of clustering factory worker trajectories. The
results show that our method outperforms other methods and achieves higher
clustering accuracy.

The two proposed methods for joint alignment of many trajectories estab-
lish point correspondences between trajectories, which also helps to average
trajectories in meaningful ways. This problem is not trivial as the average of
many distinct trajectories is not well and uniquely defined. In our approach
we average points which are spatially close, and we do so in a computation-
ally efficient way. One method is based on iterative pairwise alignment using
dynamic time warping. The other one is a greedy method which manages to
avoid some of the complexity of dynamic time warping by making optimal use
of the data statistics.

The resulting average trajectories are high quality compared to those pro-
duced by existing methods. They allow to easily and accurately quantify ve-
locity variance along the average trajectory.

The first method, i.e., the one based on DTW, first establishes one-to-one
correspondences among the points of the trajectories. A “stretch and then com-
press” strategy is then applied to align the trajectories one by one in ascend-
ing order of average dissimilarity. During the pairwise alignment, the DTW
locally stretches the trajectories where needed to achieve an optimal match.
This stretching is not always desired, but lends its name to the first step of
the method, the stretch step. A compress operation removes the repeated
points from the stretched trajectories, producing two compressed trajectories
with one-to-one correspondences between the points. The last compressed
trajectory decides the length of all warped trajectories. The one-to-one corre-
spondences are used to locate the points on every other trajectory, which are
associated to the points of the last compressed trajectories.

The second method establishes many-to-one correspondences among the
points of the trajectories, and so does not stretch trajectories. Instead of in
a pairwise fashion, all of the trajectories are aligned simultaneously along the
time dimension. In order to reduce the computational cost, we propose a
“greedy” procedure which directly computes each point of the “average” trajec-
tory iteratively, one at a a time. This involves local clustering of points and
selection of the best matching cluster, followed by averaging of the points in
a cluster to smooth out any noise. While the first method counts on dynamic
programming to optimally handle the effects of noise, the second method relies

xiii

on the averaging of many trajectory points to achieve the same goal.
The experimental results in the thesis indicate that we successfully establish

point correspondences among all of the trajectories using both proposed meth-
ods, producing warped trajectories with associated points at the same time
index.

In this thesis, we deploy these proposed methods mainly in two applications:
work cycle optimization using factory worker trajectories and road network
inference using GPS trajectories. In our application of work cycle optimization,
we cluster the trajectories into different types of executed work cycles and
detect the abnormal trajectories which are unfit to any of the prototypical
itineraries. Through joint trajectory alignment, we average the trajectories
as a prototypical route for each type of executed work cycle, and build the
prototypical velocity and dwell time along each route. These will be used to
guide the factory workers to execute their work cycles more efficiently.

In the road network inference application, we detect the three main compo-
nents of the road network: intersections, their connectivity and the geometric
representation of the connecting road segments. We propose two methods to
detect the intersections. One depends on detecting the turning points where
the road users change their moving directions, the other one on detecting the
connecting points where three road segments meet. The intersection connec-
tivity is explored by examining whether the road users ever travel through
every two intersections consecutively without passing by any other intersec-
tion. GPS traces are segmented to track pieces for individual road segments by
the directly-connected intersections. For each road segment, spatially abnormal
tracks are detected by clustering the tracks using the spatial dissimilarity mea-
sure. Normal tracks are aligned using the proposed joint alignment methods,
producing warped tracks. The warped tracks are averaged as the geometric
representation of the road segment.

We test our methods on two datasets: Chicago dataset with 889 GPS traces,
and Berlin dataset with 26, 831 GPS traces. Experimental results show a high
accuracy of intersection detection, and a better geographical accuracy of the
extracted road segments, compared to other algorithms.

This thesis also presents a side application of trajectory analysis: room
layout exploration from people trajectories. Instead of detecting the objects
directly using their image features, such as color, shape and texture, we propose
to recognize the presence of chairs, tables and walking areas in a smart meeting
room indirectly from people’s trajectories. In this application, we do not deploy
any of the methods proposed above, but apply probability analysis. We first
extract speed and height information from the trajectories, and input them to
a SVM classifier, so as to categorize people’s instantaneous activities. We then
merge the instantaneous activities into higher-level activity at each time period.
We build two occupancy maps, one is for sitting space, and the other one for
walking space. The sitting map is updated using people’s sitting activities
at each time period, and the walking map is updated using people’s walking
activities. At last, chairs are inferred from the sitting map, and the table from

xiv

the walking map. Experimental results show that the table and chairs are
successfully detected.

To summarize, the main contributions of this thesis are:

• a novel trajectory clustering method using both spatial and temporal
similarity measures between pairwise trajectories.

• two novel methods for joint alignment of many trajectories. One builds
one-to-one point correspondences, and the other one establishes many-
to-one point correspondences.

• two novel methods for intersection detection. One is based on finding
locations where road users change their moving directions, the other one
on finding locations which connect three road segments.

• one application of trajectory analysis: work cycle optimization, focusing
on extracting prototypical routes, and prototypical velocity and dwell
time along each route for factory workers, to improve their work efficiency.

• another application of trajectory analysis: road network inference, focus-
ing on extracting intersections, intersection connectivity and geometric
representation of each road segment.

• the third application of trajectory analysis: room layout exploration,
focusing on recognizing the presence of chairs, tables and walking areas
in a smart meeting room.

In total, the research during this PhD resulted in five submitted publica-
tions in international peer-reviewed journals, two of which have already been
published [Xie 15b,Bo 14], and three articles are under review [Xie 16d,Xie 16a,
Xie 16b]. Furthermore eleven papers have been published in the proceedings
of international conferences [Xie 12, Grünwedel 12, Xie 13b, Xie 14c, Xie 14a,
Xie 14b,Bo 14,Eldib 14,Xie 15a,Eldib 15,Xie 16c].

Contents

Acknowledgements iii

Samenvatting v

Summary xi

List of Abbreviations xix

1 Introduction 1
1.1 Problem statement . 3
1.2 Contributions and Publications 5
1.3 Outline . 7

2 Trajectory Clustering 9
2.1 Related Work . 11

2.1.1 Clustering Algorithms 11
2.1.2 Dissimilarity Measure 13

2.2 Dynamic Time Warping . 14
2.3 Dissimilarity Measure . 16

2.3.1 Spatial Dissimilarity . 17
2.3.2 Temporal Dissimilarity 18

2.4 Trajectory Clustering . 22
2.5 Results . 23

2.5.1 Our Results . 24
2.5.1.1 Results of Factory Worker Trajectories 24
2.5.1.2 Results of Vehicle Trajectories 27

2.5.2 Comparison with other similarity methods 27
2.6 Conclusions . 30

3 Joint Alignment of Many Trajectories 33
3.1 Related Work . 36
3.2 Problem Statement . 38
3.3 Stretch and Compress Trajectory Alignment 40

3.3.1 “Stretch and then compress” Strategy 40
3.3.2 Details of the Alignment Procedure 41

3.3.2.1 Phase 1: Iterative Stretch and Compress . . . 41
3.3.2.2 Phase 2: Final Alignment 44

xvi CONTENTS

3.4 Successor Classification based Alignment 49
3.4.1 Algorithm Elaboration 51
3.4.2 Aligning Trajectories 55

3.5 Difference between the Proposed Methods 60
3.6 Average Trajectory Extraction 61
3.7 Results . 62

3.7.1 Results of Factory Data Set 63
3.7.1.1 Stretch-and-then-Compress Method 63
3.7.1.2 Greedy Method based on Successor Classification 67
3.7.1.3 Average Trajectory Comparison 76
3.7.1.4 Computation time analysis 79

3.7.2 Results of Chicago Data Set 81
3.7.2.1 Stretch-and-then-Compress Method 81
3.7.2.2 Greedy Method based on Successor Classification 82
3.7.2.3 Average Trajectory Comparison 83

3.8 Conclusions . 85

4 Room Layout Exploration from Trajectories 87
4.1 Related Work . 88
4.2 Overview of the proposed approach 89
4.3 Activity Classification . 90
4.4 Object Recognition . 92

4.4.1 Occupancy map computation 92
4.4.2 Object recognition by analyzing occupancy maps 93

4.5 Experiments . 94
4.5.1 Activity classification 94
4.5.2 Objects recognition results 95

4.6 Conclusion . 98

5 Work Cycle Analysis 99
5.1 Related work . 102
5.2 Work cycle optimization . 103

5.2.1 Prototypical Route . 104
5.2.2 Prototypical Instantaneous Velocity 104
5.2.3 Prototypical Dwell Time 105

5.3 Results . 106
5.3.1 Results using the stretch-and-then-compress method . . 106
5.3.2 Results using the greedy method based on successor clas-

sification . 109
5.4 Comparison . 113
5.5 Conclusions . 114

CONTENTS xvii

6 Road Network Inference from GPS Traces 115
6.1 Related work . 118

6.1.1 Approaches for Road Network Inference 118
6.1.2 Approaches for Intersection Detection 120

6.2 Overview of our Proposed Approach 121
6.3 Intersection and Connectivity Detection 121

6.3.1 Intersection Detection based on Turning Points 122
6.3.1.1 Turning Point Detection 123
6.3.1.2 Intersection Extraction from Turning Points . 125

6.3.2 Intersection Detection based on Connecting Points . . . 127
6.3.2.1 Longest Common Subsequence Detection . . . 128
6.3.2.2 Connecting Points Collection 130
6.3.2.3 Intersection Extraction from Connecting Points 132

6.3.3 Connectivity Analysis and GPS Trace Segmentation . . 134
6.4 Aligning Tracks for a Road Segment 135
6.5 Performance Evaluation . 136

6.5.1 Topological accuracy calculation 136
6.5.2 Geographical accuracy evaluation 137

6.6 Results . 139
6.6.1 Results of Chicago Data Set 142

6.6.1.1 Results of Intersection Detection 142
6.6.1.2 Results of GPS Trace Segmentation 148
6.6.1.3 Results of Track Clustering 150
6.6.1.4 Results of Track Alignment 153
6.6.1.5 Results on Track Averaging 153
6.6.1.6 Comparison with Other Methods 162

6.6.2 Results of Berlin Data Set 165
6.6.2.1 Results of Intersection Detection 165
6.6.2.2 Results of GPS Trace Segmentation and Clus-

tering . 168
6.6.2.3 Results on Track Alignment and Averaging . . 168

6.7 Conclusions . 174

7 Conclusions 175
7.1 Summary of Achievements . 175

7.1.1 Similarity Measure Approaches 175
7.1.2 Joint Trajectory Alignment Approaches 176
7.1.3 Intersection Detection Approaches 177
7.1.4 Applications . 177

7.2 Future Research . 178

Bibliography 195

xviii CONTENTS

List of Abbreviations

2D 2-Dimensional
ALBP Assembly Line Balancing Problem
CRF Conditional Random Field
DTW Dynamic Time Warping
DBA DTW Barycenter Averaging
GIS Geographical Information Science
GPS Global Positioning System
HMM Hidden Markov Model
ICA Independent Component Analysis
KDE Kernel Density Estimation
LBS Location-Based Service
LCSS Longest Common Sub-Sequence
LIP Locality In-between Polylines
MLN Markov Logic Network
PCA Principle Component Analysis
PSA Prioritized Shape Averaging
RFID Radio-Frequency Identification
RSS Received Signal Strength
TDH Trajectory Directional Histograms
TRPS Trajectory Re-sampling Point Set
UWB Ultra-Wide Band

1
Introduction

The most exciting phrase to hear in science, the one that heralds new discoveries, is
not ’Eureka!’ but ’That’s funny...’

—Isaac Asimov

In recent years, decreasing cost and increasing performance of the tracking
systems, for instance, cameras, Radio Frequency Identification (RFID), Ultra-
Wide Band (UWB) and Global Positioning System (GPS), have lead to their
widespread use in smart environments [Patel 09, Naftel 06, Chang 10], such
as airports, railway stations, shopping malls, parking lots, banks, factories,
etc. With the help of tracking systems, the trajectories of the moving objects
can be easily recorded and then analyzed to find their motion patterns and
detect suspicious events [Basharat 08,Morris 08,Morris 11], for instance, exiting
the store without pausing at cash desks, running at the bank, driving in the
wrong direction, etc. Besides, the tracking systems have also been applied in
sport analysis, which provides technical support to the coaches by analyzing
the trajectories of the players on the filed [Chavoshi 15,Faude 12]. Moreover,
GPS has been popularly used in migration observation [Chapman 10,Shamoun-
Baranes 10]. The change of the migration routes and the intermediate stations
can be found from the trajectories of the animals and birds.

As the hand-held GPS units have been becoming popular in the last decade,
geographical data is much more easily obtainable from not only cars, taxis
and trucks, but also from cyclists and pedestrians. This abundance of GPS-
derived geospatial data has stimulated intensive research activities in Geo-
graphical Information Science (GIS). Road networks are generated and up-
dated from the trajectories of the road users, which are essential elements of
the route planning [Syberfeldt 09, Schultes 08, Niehoefer 09,Morris 04]. The
spatio-temporal patterns of urban traffic congestions have been unveiled to
assist urban planning, traffic control, and Location-Based Services (LBS) [Her-
rera 10,Wang 13b, Castro 12]. Researchers in both industrial and academic
fields have been analyzing the city mobility, so as to provide helpful informa-
tion for public transportation systems, such as the bicycle-sharing system and
the electric vehicle charing system [Semanjski 15,Lopez Aguirre 15,Zheng 08b].

A trajectory is a time-ordered sequence of data points representing how the

2 Introduction

physical locations of the moving object change over time. Current research on
trajectory analysis focuses on trajectory similarity measures, trajectory clus-
tering and abnormality detection, trajectory averaging, and so on:

• Trajectory similarity measure: Spatial similarity between two tra-
jectories indicates how similar the routes of the moving objects are in
two journeys. Researchers have proposed measures for spatial similarity
using a variety of methods, such Dynamic Time Warping (DTW) [Ni-
ennattrakul 09], Longest Common Sub-Sequence (LCSS) [Smith 81],
Principle Components Analysis (PCA) [Bashir 07], Distance measures
[Atev 06, Zhou 07], etc. Temporal similarity measures have not been
analyzed much; they describe how similar the moving objects’ speeds
and time duration are in two trajectories when they follow the same
route [UETA 00,Pelekis 07, Zheng 10], or they find whether two trajec-
tories intersect or not by checking their time instances [Hodgson 06].

• Trajectory clustering and abnormality detection: Trajectory clus-
tering aims to find similar motion patterns of moving objects. In ab-
normality detection, one single typical motion pattern is expected and
trajectories which do not conform to this pattern are considered as ab-
normal. Depending on how trajectories are processed, clustering methods
can be broadly classified into feature-based methods and direct meth-
ods [Atev 10]. Feature-based methods first compute a feature vector
for each of the trajectories. They then cluster or classify these vec-
tors using techniques from pattern recognition. Their main downside
is their sensitivity to feature selection [Li 06,Anjum 10,Zheng 10]. Direct
methods operate on the data points of the trajectories directly. These
methods compute a spatial similarity measure between pairwise trajec-
tories by associating their data points optimally [Niennattrakul 09,Vla-
chos 02,Zhang 06]. These methods outperform the feature-based methods
due to the accurate spatial similarity measure but their computational
cost is expensive. Moreover, given the lack of temporal similarity mea-
sures in existing research, temporal abnormalities can not be detected
easily with these methods.

• Trajectory averaging: “Trajectory averaging” is somewhat of a mis-
nomer as it refers to the computation of a representative trajectory which
is somehow “typical” for a set of trajectories, where “typical” means that
most trajectories are either spatially or spatiotemporally similar to the se-
lected representative trajectory. Through trajectory averaging, e.g., walk-
ing routes can be found from pedestrian trajectories, or the geometric rep-
resentation of a road segment can be extracted from vehicle trajectories.
Researchers have applied a variety of techniques to average trajectories,
ranging from image processing to trajectory alignment [Junejo 08,Petit-
jean 11]. However none of them has established point associations among
the trajectories, which is not only helpful to trajectory averaging, but
also beneficial to statistical analysis. The associated points at the same

1.1 Problem statement 3

(a) Work station

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c
m
)

(b) Trajectories

Figure 1.1: Work station and factory worker trajectories. In (a), a factory worker
stands at the work station assembling parts of a product. There is a storage rack
behind him, where the tools and parts are kept. (b) shows 124 trajectories of factory
workers in different colors, and the arrows indicate the directions of the trajectories.
The location of the storage rack is shown as a black rectangle near the top of the
figure; the dashed lines at the bottom show the location of the conveyor belt.

indexes can be directly averaged to form an average trajectory. The lo-
cation and velocity variation along the average trajectory can be easily
calculated using the associated points.

This thesis is related to all of the above topics, and addresses the unsolved
problems: trajectory clustering using both spatial and temporal similarity mea-
sures and joint aligning more than two trajectories. Specifically, we will apply
our methods in two applications: work cycle optimization using factory worker
trajectories and road network inference from vehicle trajectories.

1.1 Problem statement

In the application of work cycle optimization, as shown in Fig. 1.1, the factory
workers follow an assembly work cycle which involves going to the storage rack,
picking up tools and objects in front of the storage rack, and coming back to
the assembly platform along the conveyor belt. Although this work cycle is
scheduled for the workers, how they execute it is different, which may lead to
work inefficiencies. For instance, walking too much back and forth between the
assembly platform and part storage racks, dwelling on the way to the storage
rack or back to the assembly line, and strolling in front of the storage rack too
slowly. The overall aim of this research is to analyze the factors leading to work
efficiency and improve the work efficiency by building prototypical routes, and
statistically analyzing prototypical velocity and dwell time along each route.

In the other application of road network inference, as shown in Fig. 1.2,
we aim to extracting the road network from Global Positioning System (GPS)

4 Introduction

−87.68 −87.67 −87.66 −87.65 −87.64

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Trajectories

−87.68 −87.67 −87.66 −87.65 −87.64

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a

ti
tu

d
e

 (
o
)

(b) Road map

Figure 1.2: Road map and vehicle trajectories. (b) shows 889 GPS trajectories of
campus shuttles. (a) shows the road map of this area covered by the GPS trajectories.
We aim to extract a road map from the trajectories.

trajectories. This road network extracted will allow mapping unexplored ge-
ographic regions (e.g., in developing countries), updating existing maps and
planning traveling routes. As hand-held GPS devices have been used ubiqui-

1.2 Contributions and Publications 5

tously in the last decade, geographical data can be obtained from a variety
of road users, such as cars, taxis, cyclists, pedestrians, etc. The geographical
locations recorded could be inaccurate because of GPS error, which is caused
by inaccurate time-keeping by the receiver’s clock, reflections from buildings
and other large, solid objects, atmospheric disturbances, etc. GPS trajectories
with high-error samples will result in spurious edges and inaccurate geometric
representation for the road segment.

No matter whether extracting prototypical routes from the factory worker
trajectories, or extracting road segments from vehicle trajectories, clustering
techniques are needed to categorize the trajectories and remove outlier trajec-
tories; trajectory averaging of the normal trajectories is needed as well in all
cases, to extract the prototypical routes and their geometric representation.
In this thesis, we measure both spatial and temporal dissimilarities between
pairwise trajectories, and use them to cluster the trajectories and detect both
spatial and temporal abnormalities.

As an important step in similarity measure computation and clustering, a
large part of this dissertation focuses on establishing point correspondences.
We propose two approaches to align many trajectories. The first method es-
tablishes one-to-one correspondences among the points of the trajectories, and
the second method builds many-to-one point correspondences. The point cor-
respondences are used to compute “average” trajectories and to statistically
analyze the trajectories, e.g., regarding average speed at specific spatial posi-
tions.

In the road network inference application, we deal with GPS track pieces for
each road segment, instead of the whole GPS traces which covers several road
segments. Therefore, we first need to detect the intersections from GPS traces,
then segment the GPS traces into track pieces corresponding to individual road
segments, and finally align the track pieces. We detect intersections in two
different (complementary) ways: one is by analyzing the connection pattern of
road segments, and the other by analyzing changes in moving direction.

Moreover, we address the problem of inferring room layout of smart indoor
environments from people’s trajectories, in the context of a smart meeting
room. For this purpose, we first detect people’s instantaneous activities using
their trajectories, fuse the instantaneous activities into higher-level activities
over a period of time, and utilize them to update the occupancy maps. The
occupancy maps are used to find the location of furniture, e.g., table and chairs.

1.2 Contributions and Publications
The main contributions presented in this thesis are as follows:

• We propose a novel trajectory clustering method based on a pairwise tra-
jectory dissimilarity measure. Spatial dissimilarity between two trajecto-
ries is defined in terms of the residual Euclidean distance between trajec-
tory points after optimally aligning the traversal order of both trajecto-
ries. Similarly, temporal dissimilarity is defined in terms of the residual

6 Introduction

velocity difference between trajectory points. We apply a greedy method
to group the trajectories directly based on a similarity criterion. This re-
search has been published in the proceedings of International Conference
on Distributed Cameras [Xie 14b,Xie 15a].

• We propose two novel methods to jointly align many trajectories. In the
first method, we apply a “stretch and then compress” strategy based on
the DTW algorithm to align the trajectories one by one in ascending
order of average dissimilarity. This method produces one-to-one corre-
spondences among the points of the warped trajectories, which contain
fewer points than any of the original trajectories. One point in one of the
warped trajectory corresponds to exactly one point in every other warped
trajectory at the same time index.

In the second proposed method, a greedy procedure directly locates a
good warp path, by jointly traversing all trajectories in a way which
keeps the “current” points on the trajectories close to each other. Con-
cretely, this involves an iterative procedure to cluster successor points on
the trajectories. This method does not use DTW, but rather relies on
the statistics of many trajectories to compute a faithful association. This
avoids the need for the back-tracking approach DTW, which becomes
computationally intractable as the number of trajectories increases. The
second method producesmany-to-one point correspondences between tra-
jectories.

This research resulted in one publication in the International Journal
of Geo-Information [Xie 15b], and several papers in the proceedings of
international conferences [Xie 14a], [Xie 14c]. Furthermore, three journal
publications have been submitted to the “Journal of Ambient Intelligence
and Humanized Computing and another publication” , “Transportation
Research Part C: Emerging Technologies” and “IEEE Transactions on
Intelligent Transportation Systems.”

• We propose two novel approaches to detect intersections from GPS traces.
In the first method, intersections are defined as locations where the road
users change moving direction. We first calculate the moving direction
at each GPS point using the next point ahead located at least a minimal
distance from it, and detect turning points, i.e., points where the mov-
ing directions changes. The turning points are grouped into intersection
candidates depending on their distance. Finally, we remove simple road
bends where road users always change their moving directions in the same
way.

In the second method, intersections are defined as junctions which con-
nect at least three road segments. Common sub-tracks between each pair
of GPS traces are found using Longest Common Sub-Sequence (LCSS).
Their starting and ending points are collected as connecting points. Using
Kernel Density Estimation (KDE), we then model the statistical distribu-

1.3 Outline 7

tion of these connecting points. The local maximums of this distribution
are considered intersections.

This research resulted in one paper in the proceedings of the IEEE Intelli-
gent Transportation Systems Conference [Xie 14c]. Furthermore, a paper
has been accepted by 2016 IEEE International Geo-science and Remote
Sensing Symposium (IGARSS 2016) [Xie 16c].

• We propose an approach to infer room layout in a meeting environment
from people’s trajectories in the room. We first extract speed and height
information from the trajectories, and input them to a SVM classifier,
so as to categorize people’s instantaneous activities. We then merge the
instantaneous activities into higher-lever activity at each time period.
We build two occupancy maps, one for sitting space, and one for walking
space. The sitting map is updated using people’s sitting activities at
each time period, and the walking map is updated using people’s walking
activities. Finally, the locations of chairs are inferred from the sitting
map, and the locations of table from the walking map. This work has
been published in the proceeding of 2012 International Conference on
Distributed Smart Cameras (ICDSC) [Xie 12].

In total, the research during this PhD resulted in five publications in in-
ternational peer-reviewed journals: two published [Xie 15b,Bo 14], and three
articles under review [Xie 16d,Xie 16a,Xie 16b]. Furthermore ten papers have
been published in the proceedings of international conferences [Xie 12,Grün-
wedel 12,Xie 13b,Xie 14c,Xie 14a,Xie 14b,Xie 13a,Eldib 14,Xie 15a,Eldib 15].
One paper is accepted by 2016 IEEE International Geo-science and Remote
Sensing Symposium [Xie 16c].

1.3 Outline

The outline of the thesis is as follows:
Chapter 2 focuses on trajectory clustering using trajectory dissimilarity

measures. Spatial and temporal dissimilarity are measured separately using
two different trajectory alignments. The trajectories are first clustered based
on the spatial dissimilarity, resulting in spatial clusters of normal trajectories,
and outliers (abnormal trajectories) in which people follow very unusual routes.
For every spatial cluster, temporal dissimilarity is used to recognize unusual
speed profiles. We evaluate our method on the trajectories of factory workers,
and compare with other dissimilarity measures.

Chapter 3 addresses the problem of jointly aligning many trajectories. Two
methods are proposed to establish the point correspondences among the trajec-
tories. The first method builds one-to-one correspondences based on pairwise
trajectory alignment with a “stretch and then compress” strategy. The sec-
ond method builds many-to-one correspondences by finding the a warp path
through the local dissimilarity tensor using a ”greedy” approach. We evaluate

8 Introduction

the performance of our methods on both factory worker trajectories and vehicle
trajectories. Moreover, we also compare the quality of the extracted average
trajectories using the proposed alignments to those obtained with state-of-
the-arts methods. Furthermore, we show how to utilize the established point
correspondences in our two applications, work cycle optimization in Chapter 5
and road network inference in Chapter 6.

Chapter 4 presents a methodology to infer the presence and location of
objects in the meeting environment from people’s trajectories, such as chairs
and table. We build two occupancy maps separately for sitting space and
walking space using people’s activities. Chairs are recognized from the sitting
map, and a table from the walking map. We evaluate the performance of our
method on several meeting experiments.

Chapter 5 details our first application: work cycle optimization, which aims
to optimize the work cycle for the factory workers using their trajectories, and
guide them to execute their work cycle efficiently. Using the trajectory align-
ment proposed in Chapter 3, we build a prototypical route and prototypical
velocity and dwell time along the route for each spatial cluster detected in
Chapter 2, so as to describe how the workers should execute each type of work
cycle both spatially and temporally. Moreover, we also analyze the trajecto-
ries statistically with the help of the point correspondences established, such
as location and velocity variance along the prototypical routes. We demon-
strate that performance of trajectory alignment on averaging trajectories and
statistically analyzing trajectories.

Chapter 6 focuses on the other application: road network inference, which
aims to infer the road network from GPS trajectories. The road network in our
work includes three elements, which are all automatically extracted: intersec-
tions, intersection connectivity and road segments. We propose two methods
to detect intersections from GPS trajectories. One is based on detecting turn-
ing points where the road users change their moving directions. The other one
is based on detecting connecting points where three road segments intersect.
GPS traces are segmented into track pieces by the directly-connected intersec-
tions. The track pieces for each road segment are aligned using the methods
presented in Chapter 3, so as to build the geometric representation of the road
segment. We provide both qualitative and quantitative results on a GPS tra-
jectory dataset and compare our approaches to state-of-the-art methods.

Chapter 7 presents the general conclusions of this dissertation.

2
Trajectory Clustering

In the last decades, the use of visual sensors has grown substantially in a wide
variety of applications [Zhou 07,Wang 13a]: sport games analysis, parking lot
surveillance, smart home and other intelligent environments. It is possible to
collect trajectories of moving objects over sufficient time using tracking tech-
niques. During the last ten years, hand-held Global Positioning System (GPS)
devices have become popular [Bellens 11, Lee 13], and GPS trajectories with
geographical data are much more easily obtainable from cars, taxis and trucks
but also from cyclists and pedestrians.

A trajectory is an itinerary that an object follows through space as a func-
tion of time. Moving objects following the same itinerary behave similarly, and
their behavior patterns can be deduced by analyzing their trajectories [Mor-
ris 08]. A trajectory produced by following an unusual itinerary indicates ab-
normal behaviors. Therefore, it is possible to learn the behavior patterns and
detect the abnormalities through trajectory clustering.

Trajectory clustering is a general machine learning technique to identify
structure in unlabeled trajectory data [Zhang 06]. Trajectory clustering aims to
group the trajectories into similar categories, where the trajectory dissimilarity
within the same cluster is minimized, and the trajectory dissimilarity between
different clusters is maximized. A fundamental issue in trajectory clustering is
to measure the (dis)similarity between the trajectories.

In literature, Euclidean distance between coordinates of the corresponding
points in the trajectories is the most common method to measure their dissim-
ilarity. The corresponding points can be found by simply matching the data
points at the same time instance on each raw trajectory [Fu 05], by match-
ing points within a time window [Piciarelli 06], or by aligning the trajectories
point by point using Dynamic Time Warping (DTW) [Niennattrakul 09] or
Longest Common SubSequence (LCSS) [Vlachos 02]. Some other researchers
calculate the Euclidean distance between trajectories in a Principle Component
Analysis (PCA) subspace to indicate their dissimilarity [Bashir 07]. Besides,
Hausdorff distance and Edit distance are also used to measure the dissimilar-
ity [Zhou 07,Atev 06].

Most of the methods aforementioned actually calculate the spatial dissimi-

10 Trajectory Clustering

larity using the coordinates on the trajectories. Using the spatial dissimilarity,
trajectories of mobile objects following the same itinerary are clustered into the
same group. Trajectories, which are produced by the mobile objects following
unusual itineraries, are detected as abnormalities.

In our application of road network inference from GPS trajectories, trajec-
tory clustering using spatial dissimilarity can be applied to detect the abnormal
trajectories, which deviate from the main roads. Only the normal trajectories
spatially similar to each other will be used to infer the road’s geometric rep-
resentation. Removing the spatially abnormal trajectories from road network
inference can improve the accuracy of the road’s geometric representation.

In the other application of work cycle optimization for the factory workers,
we aim to discover the factors leading to work inefficiency and optimize the
work cycle using the trajectories produced during the work cycle execution.
The work cycle is scheduled for the factory workers as: picking up required
tools and parts from the storage rack and then assembling the parts using the
tools at the work station next to the assembly line. However, the executed
work cycles are different depending on how the workers explore the area in
front of the storage rack. We can cluster the executed work cycles and detect
abnormalities using the spatial dissimilarity between the trajectories. The spa-
tial factors of work inefficiency can be inferred from these abnormality, such
as: following an unusual itinerary and wandering in front of the storage rack.
However, trajectory clustering using spatial dissimilarity is not able to discover
the temporal factors leading to work inefficiency, for instance, following the
same itinerary but at a very slow speed, dwelling somewhere on the way to
or back from the storage rack, etc. Therefore, it is necessary to analyze the
temporal dissimilarity between the trajectories as well.

In this chapter, we propose to measure trajectory dissimilarity both spatially
and temporally using DTW. In DTW, the trajectories are first warped along
the time index by finding the best match between the physical locations along
the trajectories; only then, spatial dissimilarity is calculated – on these warped
trajectories. Along the warp path, the associated data points are spatially close
to each other, but their velocities may be very different. In our application of
the work cycle optimization, the places in front of the storage rack, where the
workers dwell to pick up tools and parts, are slightly different at different work
cycle execution. The best location match makes the velocities mismatched
at these places, producing inaccurate temporal dissimilarity. Therefore we
propose to find the best velocity match between the trajectories and calculate
the temporal dissimilarity on the newly warped trajectories. In this work, we
first cluster trajectories according to spatial similarity. For each spatial cluster,
we then detect temporal abnormalities by computing the temporal dissimilarity.

Our main contribution is twofold: 1) We calculate the temporal dissimilar-
ity between trajectories using a best velocity match. 2) We propose a greedy
clustering method using the dissimilarity measure to find patterns of the tra-
jectories. The results show that the trajectories are clustered into different
patterns successfully, and abnormalities are detected both spatial unfit to the

2.1 Related Work 11

prototypical routes and temporally different from other trajectories in the same
spatial cluster.

The remainder of this chapter is organized as follows. In Section 2.1, we
introduce the related work. In Section 2.2, we detail the procedure of Dy-
namic Time Warping. Section 2.3 elaborates how to calculate the spatial and
temporal dissimilarity separately. In Section 2.4, we explain our trajectory
clustering approach based on the dissimilarity measurement. Section 2.5 shows
our experimental results. Finally, we conclude this chapter in Section 2.6.

2.1 Related Work

In this section, we provide an overview of state-of-the-art algorithms for tra-
jectory clustering and techniques for measuring the dissimilarity of the trajec-
tories.

2.1.1 Clustering Algorithms

Various algorithms have been developed to cluster unlabeled trajectories data
[Atev 10]. Depending on how the trajectories are processed, the approaches
can be broadly classified into two groups:
Feature-based methods. These methods first extract features from the tra-
jectories, e.g., average speed and directional histogram, and use these features
to group the trajectories into similar categories.

Li et al. extract two kinds of features after smoothing the trajectories:
Trajectory Re-sampling Point Sets (TRPSs) and Trajectory Directional His-
tograms (TDHs) [Li 06]. They interpolate all smoothed trajectories at the same
space interval, producing a set of re-sampling points for each trajectory, which
is called TRPS in their work. All TRPSs contain the same number of data
points. For each re-sampled trajectory, they calculate the moving direction
at each point, and create a N -bins of histogram from the moving directions
of all points, which rang from −π to π. The histogram describes statistical
moving directional characteristics of the trajectory, which is called TDH con-
sequently. TDHs are used to obtain coarse trajectory clusters, in which the
trajectories share a similar directional distribution. Subsequently, trajectories
in each coarse cluster are grouped into fine clusters using TRPS.

Anjum and Cavallaro extract features like average speed and “directional
distance,” and utilized these features to cluster trajectories using the Mean-
shift algorithm [Anjum 10].

The accuracy of feature-based methods depends on the feature selection.
Methods using average speed as a feature are sensitive to changes in speed over
time within each trajectory. For instance, they cluster two trajectories with the
same average speed into the same category even when the two speed profiles
are very different. In our application of work cycle optimization, the workers’
work cycle is scheduled as: walk to the storage rack, and then dwell in front of
the storage rack to pick up tools and parts, finally walk to the work station to

12 Trajectory Clustering

assemble the parts. During the journey, the moving speed of the workers goes
high (walk), then low (dwell), then back to high (walk). Methods using average
speed as a feature are not able to distinguish the executed work cycles in which
the workers walk to the storage rack at a lower speed and then rush back to
the work station without picking up any tools or parts, if their average speed
is the same as that in the scheduled work cycle. Although some features do
contain the shape of the trajectory, such as TDH [Li 06], they do not capture
the fine details of the timing. Also, TDH does not cope with the object staying
stationary. In our application, the factory workers dwell in front of the storage
rack to pick up tools and parts. No matter how long the workers dwell there,
their trajectories will be clustered into the same group using TDH as a feature,
as far as their moving directional distributions are the same. Therefore feature-
based methods are not suitable to our application of work cycle optimization,
which need fine timing information.
Direct methods. These methods operate on the data points of the tra-
jectories directly, without first converting them into feature sets. They first
measure the dissimilarity between two time series of data point using a vari-
ety of approaches [Niennattrakul 09,Vlachos 02, Zhang 06], such as Dynamic
Time Warping (DTW), Longest Common Sub-Sequence (LCSS), etc. Then
they group the trajectories, which are highly similar to each other, into the
same category. In literature, two types of trajectory clustering methods using
dissimilarity measurement are popular: agglomerative hierarchical clustering
and spectral clustering.

Agglomerative hierarchical clustering is a bottom-up clustering method
which starts by placing each trajectory in its own cluster, and then merge pairs
of newly-formed clusters into larger clusters until a hierarchical tree is formed.
The resulting tree can be analyzed at different levels to group trajectories over
a variety of scales. Fashandi and Moghaddam define a dissimilarity measure
based on LCSS and apply agglomerative hierarchical clustering to group vehicle
trajectories into different behaviors, such as overtaking, zigzag, lane changing,
returning, turning and circling [Fashandi 05]. They apply a stopping criterion
for the clustering procedure: when the number of clusters is equal to the specific
number of behavior types. Biliotti et al. apply Independent Component Anal-
ysis (ICA) to create trajectory representations [Biliotti 05,Antonini 06]. They
use the Hausdorff distance between the estimated independent components to
measure trajectory dissimilarity, and agglomerative hierarchical clustering to
group the trajectories. Their stopping criterion is when the distance between
two clusters exceeds the predefined threshold.

Spectral clustering operates on the matrix of pairwise similarity. It relies
on eigenvalue decomposition of the similarity matrix. The K largest eigenvec-
tors are used to cluster the trajectories into K groups. Fu et al. use aver-
age Euclidean distance between two vehicle trajectories as their dissimilarity
measure, and spectral clustering to classify the trajectories into motion pat-
terns [Fu 05]. Atev et al. apply modified Hausdorff Distance to measure the
trajectory dissimilarity, and spectral clustering to learn the traffic patterns at

2.1 Related Work 13

the intersections from vehicle trajectories [Atev 06]. Spectral clustering has
become popular recently because of its efficient computation and good clus-
tering results. However, spectral clustering may be sensitive to the choice of
parameters for dissimilarity measure. Besides, it requires to specify the number
of clusters K in advance. But this information is usually unknown, and extra
effort is needed to determine the optimal choice of K.

We apply a greedy clustering method similar to agglomerative hierarchi-
cal clustering. Instead of merging pairwise similar clusters hierarchically, we
group the trajectories directly based on a similarity criterion. Without merg-
ing sub-clusters at lower layers to clusters at higher layers as the agglomerative
hierarchical clustering does, our method is more computationally efficient.

2.1.2 Dissimilarity Measure
In the past decades, there has been much progress on detecting patterns of
the moving objects by measuring their trajectory similarity. The main diffi-
culty of similarity measure is the unequal duration of the trajectories: Objects
may move at different speeds, leading to differences in number of samples for
spatially similar trajectories and difficulties in finding corresponding points on
trajectories. A related problem is that different types of recording devices may
lead to various sampling rates as well. Some researchers simply select the first
N points in both trajectories, and calculate the average Euclidean distance
between them to measure the dissimilarity [Fu 05]. This measure may be very
inaccurate considering their differences in sampling rate. In literature, some
techniques have been proposed to measure the (dis)similarity between two tra-
jectories with differing sampling.

Niennattrakul and Ratanamahatana compute the similarity between pairs of
trajectories using DTW [Niennattrakul 09]. The trajectories are warped along
the time axis by finding the optimal match between the physical locations along
the trajectories with certain restrictions. The warped trajectories contain the
same number of data points, and the data points at the same time index in the
warped trajectories are matched to each other. The overall Euclidean distance
between the matched points is used as the representation of their dissimilarity.
DTW allows comparing trajectories with differing numbers of samples.

Vlachos et al. propose an alignment tool based on finding the longest com-
mon sub-sequence between trajectories recorded by Globe Positioning System
(GPS) equipments [Vlachos 02]. A trajectory subsequence is a sequence of data
points that appears in the same relative order within the original trajectory,
but not necessarily occupies consecutive positions. A common subsequence of
two trajectories is a subsequence present in both of them. A longest common
subsequence is a common subsequence of maximal “length”. The “length” here
refers to the number of data points in the subsequence. Using LCSS, the trajec-
tories are aligned only at the data points in their longest common subsequence.
The other data points in each trajectory, which not appear in the longest com-
mon subsequence, are called unmatched points. The ratio of the length of the
longest common subsequence to the minimal length of two trajectories is used

14 Trajectory Clustering

to measure their dissimilarity. Different from DTW, LCSS does not associate
all of the points on the trajectories, but allows some points unmatched, making
the dissimilarity measurement more robust to noise.

Piciarelli and Foresti design a dissimilarity measurement between a trajec-
tory and a given cluster of trajectories [Piciarelli 06]. The given cluster is
represented as a list of vectors, including position data and temporal informa-
tion. The distance of a trajectory from a given cluster is calculated as mean
Euclidean distance of every point of the trajectory to its nearest point in the
cluster. The nearest point of one point is found by searching its neighbor points
whose time indexes are within a temporal window. The distance calculation
starts from the first point of the trajectory, and ends at the last point. As the
time instance of the point grows, the size of the temporal window increases
as well. The given cluster indicates the temporal information that the objects
arrive at a specific position. In the trajectories to be clustered, the object may
move at a different speed, leading to arrival at the same position at a very dif-
ferent time from the scheduled time in the given cluster. The time difference if
exists will accumulate as the time instance of the point grows in the trajectory.
Therefore they apply a temporal window with increasing size to deal with the
temporal difference.

Bashir et al. use Principle Components Analysis (PCA) to transform the
coordinates of the trajectories into a lower-dimension subspace and calculate
Euclidean distance between the PCA coefficients to express the dissimilar-
ity [Bashir 07]. Benefit from the reduced dimension, it is more computation-
ally efficient to measure the dissimilarity using the first K coefficients. But
PCA-based dissimilarity measure can not distinguish the speed variation in
the trajectories.

Pelekis et al. propose the Locality In-between Polylines (LIP) distance
function upon the (projected on the Cartesian plane) routes of the trajecto-
ries [Pelekis 07]. LIP calculates the area of the shape formed by two 2D poly-
lines; it is used by authors for measuring the spatial similarity of vehicle GPS
trajectories. They also extend LIP to spatiotemporal LIP using a weighting
function, which is dependent on the local temporal distance, so as to measure
the spatiotemporal similarity between two trajectories. Modified Hausdorff dis-
tance and Edit distance are also used in trajectory similarity measurement by
some researchers [Atev 06,Zhou 07].

Zhang [Zhang 06] and Morris [Morris 09] evaluated the methods above using
different datasets. We will compare our dissimilarity measure with some of the
methods above by applying the same clustering method on these measurements.

2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm for finding the optimal align-
ment of two time series by warping them non-linearly in the time dimension.
DTW was originally developed for speech recognition [Sakoe 78], to estimate
similarities in acoustic features between pairs of words irrespective of speed

2.2 Dynamic Time Warping 15

variations, and later has been employed in other various fields, such as data
mining [Keogh 05], and behavior analysis [Suzuki 07]. In these applications,
the elements of the time series thus vary from acoustic features, over locations,
velocities, behavior features, to financial data, etc. In our application of work
cycle optimization, a time series is a trajectory belonging to a factory worker,
which consists a sequence of data points. In our application of road network
inference, a time series is a trajectory belonging to a road user, which consists
of a sequence of GPS data points.

We adopt the following notations. Suppose we have two trajectories r1(t1),
t = 1 . . . T1 and r2(t2), t2 = 1, . . . T2. The numbers of samples T1 and T2 of the
two trajectories need not be the same. DTWminimizes the overall dissimilarity
between the two trajectories, i.e. the sum of the local dissimilarity between
two individual points r1(w1(k)) and r2(w2(k)), which are associated by the
warp path (w1(k), w2(k), k = 1, . . .K. Not all such associations are allowed.
Specifically we consider only warp paths which belong to a subset Γ of all
possible associations.

DΓ (r1, r2)
4
= min

(w1,w2)∈Γ

1

K

K∑
k=1

√
(r1(w1(k))− r2(w2(k)))2 (2.1)

where w1(k) and w2(k) associate corresponding time instances t1 of the
first trajectory and t2 of the second trajectory, and Euclidean distance,√

(r1(w1(k))− r2(w2(k)))2, is used to measure the dissimilarity between the
two associated points.

The associations are typically subject to the following constraints:

• Boundary The warp path must start at the beginning of the two tra-
jectories, and end at the ending of the two trajectories: (w1(1), w2(1)) =
(1, 1) and (w1(K), w2(K)) = (T1, T2).

• Monotonicity The warp path must be monotonically nondecreasing
along both time axes: w1(k − 1) ≤ w1(k) and w2(k − 1) ≤ w2(k). This
constraint guarantees that the warp path will not roll back on itself.

• Continuity The warp path does not jump in either of the time indexes:
(w1(k), w2(k))− (w1(k − 1), w2(k − 1)) ∈ {(0, 1), (1, 0), (1, 1)}. This con-
straint guarantees the alignment does not omit any point of either tra-
jectory.

There are a large number of warp paths that satisfy all of the above con-
straints. The most naive approach to find the optimal warp path would be
to enumerate all possible paths, and select the path that gives the smallest
overall dissimilarities between the two trajectories. This will result in enor-
mous computational cost. To overcome this challenge, Dynamic Programming
is employed to find the path efficiently.

Dynamic Programming is a method for solving a complex problem by break-
ing it down into a collection of simpler subproblems, solving each of those

16 Trajectory Clustering

subproblems firstly, and then using them to find the solution to the complex
problem. In our case, rather than finding the warp path, along which the
overall dissimilarity between two whole trajectories is minimized, we first find
the sub-path, along which the overall dissimilarity between two smaller sub-
trajectories are minimized, and use them to find the optimal warp path for
the larger sub-trajectories, until we find an optimal warp path for the whole
trajectories.

The first stage of implementing Dynamic Programming is to create a two-
dimensional T1 × T2 local dissimilarity matrix C1. The value at each cell,
C1(t1, t2), is the Euclidean distance between point r1(t1) of the first trajectory
and point r2(t2) of the second trajectory. In the second stage, we build a
two-dimensional T1 × T2 overall dissimilarity matrix C2. The value at each
cell, C2(t1, t2), is the minimal overall dissimilarity between two sub-trajectories
r1(i), i = 1, . . . t1 and r2(j), j = 1, . . . t2. C2 is recursively calculated from (1, 1)
to (T1, T2) as:

C2(t1, t2)
4
= C1(t1, t2) + min

 C2(t1 − 1, t2)
C2(t1, t2 − 1)

C2(t1 − 1, t2 − 1)

 (2.2)

where t1 ∈ [1, T1] and t2 ∈ [1, T2].
Once the overall dissimilarity matrix C2 is built, the optimal warp path

(w1(k), w2(k)), k = 1, . . .K can be found using a “backtrack” procedure of
searching adjacent cells from (T1, T2) to (1, 1) through C2, as described by
Algorithm 1. Given the kth element of the warp path (w1(k), w2(k)) = (t1, t2),
one of its adjacent cells {(t1 − 1, t2), (t1, t2 − 1), (t1 − 1, t2 − 1)}, whose value
is the smallest, is selected as the next element (w1(k− 1), w2(k− 1)). Because
(w1(k), w2(k)) − (w1(k − 1), w2(k − 1)) ∈ {(1, 0), (0, 1), (1, 1)}, the warp path
satisfies the Continuity and Monotonicity constraints.

Fig. 2.1 shows an example of aligning two GPS trajectory pieces for the
same road. The two trajectories are spatially similar to each other. Therefore
DTW establishes only three two-to-one correspondences between the points,
warps the trajectories to 20 points.

Fig. 2.2 shows another example of aligning factory worker trajectories. The
trajectories have been obtained with a multi-camera system. For clarity, the
figure only shows small pieces of the trajectories. In this example, the worker
dwells at different locations in the two trajectories. This results in many-to-one
correspondences between the two trajectories, and warped trajectories with 54
points.

2.3 Dissimilarity Measure

The dissimilarity measure between pairwise trajectories can be used to cluster
a set of trajectories into groups, so as to analyze the objects’ moving patterns.
DTW warps two trajectories for optimal point associations, which minimize the

2.3 Dissimilarity Measure 17

Algorithm 1 FindPath
Input: C2

Output: (w1(k), w2(k)),k = 1, . . .K
Initialization (w1(1), w2(1))← (T1, T2), k ← 2

2: while t1 + t2 > 2 do
if t1 = 1 then

4: t2 ← t2 − 1
else if t2 = 1 then

6: t1 ← t1 − 1
else

8: switch min(C2(t1 − 1, t2), C2(t1, t2 − 1), C2(t1 − 1, t2 − 1))
case C2(t1 − 1, t2)

10: t1 ← t1 − 1,
case C2(t1, t2 − 1)

12: t2 ← t2 − 1

case C2(t1 − 1, t2 − 1)
14: t1 ← t1 − 1, t2 ← t2 − 1

end if
16: (w1(k), w2(k))← (t1, t2)

k ← k + 1
18: end while

(w1(k), w2(k))← (1, 1), K ← k
20: w1 =reverse(w1), w2 =reverse(w2)

overall dissimilarity between individual points of the trajectories. By associat-
ing the points using their physical locations, the spatial dissimilarity between
the two trajectories will be measured. By associating the points using their
velocities, the temporal dissimilarity will be measured.

2.3.1 Spatial Dissimilarity

DTW takes two trajectories (sequences of points), r1(t1), t1 = 1, . . . T1 and
r2(t2), t2 = 1, . . . T2, and uses the physical locations of the points r1(t1) =
(x1(t1), y1(t1)) and r2(t2) = (x2(t2), y2(t2)) as its inputs. The local dissim-
ilarity between two individual points r1(t1) and r2(t2), is calculated as the
Euclidean distance between their physical locations:

C1(t1, t2) =
√

(x1(t1)− x2(t2))2 + (y1(t1)− y2(t2))2 (2.3)

where t1 ∈ [1, T1] and t2 ∈ [1, T2].
Using Euclidean distance between physical locations as local dissimilarity,

the overall location dissimilarity matrix C2 is calculated as shown in Equation
2.2. The warp path, (w1(k), w2(k)), k = 1, . . .K is produced by “backtracking”
the minimal overall dissimilarity through C2 from cell (T1, T2) to cell (1, 1), as

18 Trajectory Clustering

−87.66690 −87.66685 −87.66680 −87.66675
41.874

41.875

41.876

41.877

41.878

41.879

Longitude (o)

L
a
ti
tu

d
e
 (

o
)

Trajectory :18

Trajectory :19

(a) Point associations

1 4 7 10 13 16

1

4

7

10

13

16

(b) Warp path

Figure 2.1: Example 1 of trajectory alignment. In (a), the associated points are
connected using black dashed lines. The arrows represent the moving directions of
the road users in each trajectory, respectively. (b) shows the optimal warp path
through the overall dissimilarity matrix.

described in Algorithm 1. We now define the spatial dissimilarity Ds(r1, r2)
between two trajectories as follows:

Ds(r1, r2)
4
=

1

K

K∑
k=1

√
(x1(w1(k))− x2(w2(k)))2 + (y1(w1(k))− y2(w2(k)))2

(2.4)
In other words: this is mean Euclidean distance between the physical lo-

cations of the points in the trajectories after optimally warping them in the
time dimension to minimize their overall location dissimilarity. The spatial dis-
similarity between two trajectories which traverse the same or similar spatial
locations will be low, even if the traversal is at very different speed. Therefore
the spatial dissimilarity is useful to cluster the trajectories into groups in which
the moving objects follow different paths, and detect the abnormal trajectories
caused by unusual paths or inaccurate data. However it is not an adequate
measure to distinguish the trajectories in which the moving object travels at
an unusual speed.

2.3.2 Temporal Dissimilarity
The spatially-similar trajectories may be different temporally. For instance,
the object follows the same path at different speeds. We use the instantaneous
velocity of the trajectories to measure their dissimilarity temporally. The in-
stantaneous velocity is defined as d r/dt and can be estimated using various
numerical techniques, the simplest one being d r

dt ≈ (r(t+ 1)− r(t− 1)) /2.
However, some temporal smoothing can provide temporal robustness against

2.3 Dissimilarity Measure 19

120 130 140 150 160
130

135

140

145

Trajectory :38

Trajectory :33

150

155

(a) Point associations

1 6 11 16 21 26 31 36

1

6

11

16

21

26

31

(b) Warp path

Figure 2.2: Example 2 of trajectory alignment. In (a), the associated points are
connected using black dashed lines. The arrows indicate the direction of the motion
along these trajectories separately. (b) shows the optimal warp path through the
overall dissimilarity matrix.

20 Trajectory Clustering

data noises. In the following we will focus primarily on the magnitude |d rdt | of
the velocity, but omit objects’ moving directions because they are similar in
two spatially-similar trajectories.

The instantaneous velocities v1(t1), t1 = 1, . . . T1 and v2(t2), t2 = 1, . . . T2 of
two trajectories are input to DTW procedure to align the two trajectories opti-
mally. The local dissimilarity between two individual points r1(t1) and r2(t2),
is calculated as the absolute difference between their instantaneous velocities:

C1(t1, t2) = |v1(t1)− v2(t2)| (2.5)

where t1 ∈ [1, T1] and t2 ∈ [1, T2].
Using absolute differential velocity as local dissimilarity, the overall velocity

dissimilarity matrix C2 is calculated as:

C2(t1, t2)
4
= λ(t1, t2) ∗ C1(t1, t2) + min

 C2(t1 − 1, t2)
C2(t1, t2 − 1)

C2(t1 − 1, t2 − 1)

 (2.6)

where λ(t1, t2) is a weighting function, which is dependent on
the local distance between the physical locations of the points√

(x1(t1)− x2(t2))2 + (y1(t1)− y2(t2))2. This guarantees that one point
will not be matched to another point too distant from it [Jeong 11].

The warp path, (w′1(k), w′2(k)), k = 1, . . .K ′, is found by “backtracking”
the minimal overall dissimilarity through C2 from cell (T1, T2) to cell (1, 1), as
described in Algorithm 1. We now define the temporal dissimilarity Dt(r1, r2)
between two trajectories as the mean difference between the velocities of the
points on the trajectories, after optimally warping them in the time dimension
to minimize the overall velocity dissimilarity.

Dt(r1, r2)
4
=

∑K′

k=1 |v1(w′1(k))− v2(w′2(k))|∑K′

k=1 λ(w′1(k), w′2(k))
(2.7)

Although we already get the optimal alignment of the trajectories using
the physical locations of their points in Section 2.3.1, they are not suitable to
measure the temporal dissimilarity because they are based on minimizing the
overall Euclidean distance between the physical locations of the points, rather
than the velocities at the points. The point of one trajectory is matched to the
point of the other trajectory with the smallest distance, as shown in Fig. 2.2a.
The velocities at these matched points may be very different. Temporal dissim-
ilarity aims to describe how differently the moving object changes its velocity
in spatially similar trajectories, rather than how far one trajectory deviates
from another spatially.

Fig. 2.3 shows an example of aligning two trajectory pieces using the the
velocities of their data points. In these two pieces, the factory worker stays in
front of the storage rack to pick up tools and parts. Part of the storage rack
is shown as a rectangle. Although he or she stays at the right corner in both

2.3 Dissimilarity Measure 21

120 130 140 150 160
130

135

140

145

150

x(cm)

y
(c

m
)

7 cm/s

14 cm/s

21 cm/s

28 cm/s

35 cm/s

42 cm/s

49 cm/s

56 cm/s

63 cm/s

70 cm/s
155

(a) Point associations

1 6 11 16 21 26 31 36

1

6

11

16

21

26

31

(b) Warp path

Figure 2.3: Example 3 of trajectory alignment. The same trajectories as shown in
Fig. 2.2 are now aligned using DTW based on their point velocities. (a) shows the
associated points and their velocities. (b) shows the new warp path.

22 Trajectory Clustering

0 10 20 30 40 50
0

20

40

60

80

warp step 1

v
e

lo
c
it
y
 (

c
m

/s
)

(a) Velocities along warp path 1

0 10 20 30 40 50
0

20

40

60

80

warp step 2

v
e
lo

c
it
y
 (

c
m

/s
)

(b) Velocities along warp path 2

Figure 2.4: Point velocities along different warp paths. (a) depicts the velocity
of the data points on the trajectories along the optimal warp path (w1(k), w2(k)),
k = 1, . . .K, which are produced using physical locations of the points as inputs to
DTW, while (b) shows the velocity along another optimal warp path, (w′

1(k), w
′
2(k)),

k = 1, . . .K′, produced based on velocity difference.

Algorithm 2 Cluster trajectories

Input: {rn, n = 1, . . . V }
Output: {Gi : i = 1, . . . I}
1: Initialization Gun ← {rn, n = 1, . . . V } i← 1
2: for each r ∈ Gun do
3: G

(1)
i ← {r}, k ← 1

4: for each r′ 6= r ∈ Gun do
5: if 1

|G(k)
i |

∑
r′′∈G(k)

i

Ds(r
′, r′′) ≤ dthre then

6: G
(k+1)
i ← G

(k)
i ∪ {r′}

7: k ← k + 1
8: end if
9: end for

10: Gun ← Gun \G(k)
i

11: end for

trajectories, the staying places are slightly different. In Fig. 2.3a, the points of
two trajectories at the staying places are associated.

The velocity of data points along different warp paths are shown in Fig. 2.4.
The alignment produced using the point velocities as inputs, indeed minimize
the velocity dissimilarity of the trajectories much better than the spatial align-
ment produced using the physical locations.

2.4 Trajectory Clustering

The spatial dissimilarity is calculated as explained in Section 2.3.1 and then
used to cluster the trajectories as shown in Algorithm 2.

An initial cluster G(1)
i is grown from a single seed trajectory r

(1)
i by itera-

tively adding trajectories to the cluster Gi if they are spatially similar to all the
trajectories in Gi. The most recently tested trajectory is added to the cluster

2.5 Results 23

(a) Work station

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c
m
)

(b) Trajectories

Figure 2.5: Work station and the trajectories. In (a), a factory worker stands at the
work station assembling the parts. There is a storage rack behind him, where the
tools and parts are kept. (b) shows 124 trajectories of factory workers in different
colors. The location of the storage rack is shown as a black rectangle near the top of
the figure; the dashed lines at the bottom show the location of the conveyor belt.

G
(k+1)
i ← G

(k)
i ∪ {r′} and used with other trajectories in this cluster to test

whether a new trajectory belongs to this cluster or not. This procedure is then
repeated on the trajectories which have not yet been clustered. The outputs
of this step are I spatial clusters, Gi = {c(n)

i , n = 1, . . . |Gi|}, i = 1, . . . I, with
|Gi| the number of turning trajectories per cluster. Clusters with small number
of trajectories are considered as spatial abnormalities.

Although the trajectories in each cluster Gi are spatially similar to each
other, the velocities of the trajectories may be different. To distinguish the
trajectory in which the moving object travels at an unusual speed, we group
the trajectories in each spatial cluster Gi using Algorithm 2, but with measur-
ing the temporal dissimilarity Dt(r

′, r′′) between pairwise trajectories, instead
of the spatial dissimilarity Ds(r

′, r′′). The outputs of this step are sub-clusters
for each spatial cluster Gi. The sub-cluster with the largest number of trajecto-
ries is considered as temporal normalities, and other sub-clusters are temporal
abnormalities.

2.5 Results

In order to evaluate the accuracy of the presented dissimilarity measures, we
evaluate them on a data set of factory worker trajectories at an assembly line
(Factory dataset). In this data set, the worker repeats his or her work by going
to the storage rack, picking up tools, coming back to the assembly platform
and doing his operation, which we call an executed work cycle. We recorded
two workers repeating the procedure separately at a work station of 3× 2 m2

as shown in Fig. 2.5a, and obtained 124 trajectories in total from our multi-

24 Trajectory Clustering

Longitude (0)

L
a
ti
tu

d
e
 (

0
) 41.876

41.874

-87.670 -87.660 -87.650

Figure 2.6: Trajectories on one road segment 80 trajectories (black lines) connect
the left intersection to the right intersection (black circle). The arrow indicates the
direction of the motion along these trajectories separately.

camera vision system. Fig. 2.5b shows all of the trajectories in different colors.
The storage rack is shown in a rectangle at the top, and the conveyor belt in
dashed lines at the bottom.

Besides the Factory dataset, our algorithm is also tested on detecting spatial
abnormalities of vehicle trajectories for road network inference. We will show
the clustering results for trajectories of one road segment, as shown in Fig. 2.6.
The results of the full data set will be shown in Section 6.6 after the road
segmentation.

2.5.1 Our Results
2.5.1.1 Results of Factory Worker Trajectories

By manually checking the videos of the Factory dataset, we find the workers
mainly execute the work cycle in three types of ways by visiting different area
of the storage rack: visiting the left and then the right corner of the storage
rack; visiting just the left corner; and visiting just the right corner. This results
in three spatial clusters of trajectories. Occasionally the workers pick up the
tools and parts in a very different way, for instance, visiting other area of the
work station, visiting the storage rack from the right to the left corner, etc.
This unusual executed work cycles lead to spatially abnormal trajectories. By
clustering the trajectories, we can find the workers’ moving patterns and their
abnormalities of visiting the storage rack, so as to analyze the factors leading
to work inefficiency, and eventually build a prototypical work cycle for them to
follow.

Our algorithm groups the 124 trajectories into 10 clusters based on their
spatial dissimilarity. As shown in Fig. 2.7a, there are 100 trajectories in the
first cluster, in which the workers pick up tools and parts by walking from right
to left through the whole area in front of storage rack. In the second cluster
with 13 trajectories depicted in Fig. 2.7b, the workers walk to the right corner
of the storage rack and back to the operation place directly, while only the left
corner of the storage rack is visited in the third cluster with 4 trajectories in
Fig. 2.7c. The three types of executed work cycles are detected successfully

2.5 Results 25

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Cluster 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Cluster 2

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Cluster 3

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(d) Spatial abnormalities

Figure 2.7: Trajectory clustering based spatial dissimilarity. 124 trajectories, shown
in different colors, are clustered into three work cycle clusters corresponding with 100,
13 and 4 trajectories separately, and 7 abnormalities. The main difference between
these three types of executed work cycle is how factory workers traverse the area in
front of the storage rack. The abnormalities includes trajectories in which factory
workers follow unusual paths.

using our algorithm. Because there is only one trajectory in each of other 7
clusters, these executed work cycles are considered as abnormalities.

As shown in Fig. 2.7d, the workers follow very different paths to pick up the
tools and parts in these 7 trajectories. The worker once makes a big detour on
his or her way back to the operation place. This trajectory is shown as a red
line. In another trajectory shown in yellow, he or she walks through the whole
area in front of the storage rack, but from left to right and back to left. These
unnecessary detours will leave inadequate time to do the assembly operations.
Most other abnormalities are caused by the flexuous manner of walking through
the area in front of the storage rack, which is different from that the worker
walks directly from the right to the left corner of the storage rack in the first
type of executed work cycle.

Because the conveyor belt moves at a fixed speed, it gives the workers a fixed
time duration to finish their journey of picking up tools and parts. If the journey

26 Trajectory Clustering

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Normal trajectories in Cluster 1.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

(b) Abnormal trajectories in Cluster 1.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Normal trajectories in Cluster 2.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(d) Abnormal trajectories in Cluster 2.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(e) Normal trajectories in Cluster 3.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(f) Abnormal trajectories in Cluster 3.

Figure 2.8: Normal and abnormal trajectories detected using temporal dissimilarity.
18 of 100 trajectories in Cluster 1, 1 of 13 trajectories in Cluster 2, and 2 of 4
trajectories in Cluster 3 are detected as abnormalities based on temporal dissimilarity
measure.

2.5 Results 27

is finished too slow, the workers will miss the next assembly operation. If too
fast, the workers will have to wait for the next assembly operation. In either
way, the workers’ trajectories are considered as temporal abnormalities. We
use temporal dissimilarity between pairwise trajectories to find the temporal
abnormalities for each spatial cluster in Fig. 2.7, and analyze the factors leading
to the temporal abnormalities.

Fig. 2.8 shows the temporal abnormalities for each cluster. Most of these
abnormalities in the first cluster are caused by the the worker dwelling in front
of the storage rack in an unusual manner, such as staying too long at the left
corner of the storage rack, strolling in front of the storage rack etc. He or she
once walks to the right corner and continues to the left corner immediately
without taking any parts. Our algorithm successfully detects these abnormali-
ties, as shown in Fig. 2.8b. In the second cluster, the worker once makes a “S”
detour at a very slow speed before he reaches the storage rack. Our algorithm
successfully detects this abnormal trajectory, indicated in blue line as shown
in Fig. 2.8d. Two trajectories in the third cluster are successfully detected as
abnormalities because the worker does not go back to the storage rack directly,
but stays in the middle of his or her way to pick up tools.

We conclude that there are mainly three factors leading to temporal abnor-
malities: unusual walking speed during the journey, unusual dwelling time at
the left corner of the storage rack, and unnecessary dwell at other places except
the two corners of the storage rack.

2.5.1.2 Results of Vehicle Trajectories

As shown in Fig. 2.6, there are 80 trajectories recorded on this road segment
from the left intersection to the right intersection. One of them is detected as an
spatial abnormality, as shown in Fig. 2.9b, because it is at a lower latitude than
other trajectories. GPS trajectories are used to generate the road network in
Chapter 6. 79 normal trajectories which are spatially similar to each other, as
shown in Fig. 2.9a, will be aligned together to infer the geometric representation
of the road segment. Without removing this abnormal trajectory, the inferred
geometric representation will be inaccurately dragged down to a lower latitude
by it.

2.5.2 Comparison with other similarity methods

We check the recorded videos of the Factory dataset and find three types of
executed work cycles. In each of them, the workers follows a different path
to pick up tools and parts. We manually group the trajectories into clusters
and abnormalities, depending on the path that the workers follow. We also
manually count the time that the worker spends on his or her journey to pick
up tools and parts for each trajectory in each of the three clusters, and divide
the trajectories into normalities and abnormalities, depending on the time the
worker spends on the journey. At last, 124 trajectories are manually grouped

28 Trajectory Clustering

Longitude (0)

L
a
ti
tu

d
e
 (

0
) 41.876

41.874

-87.670 -87.660 -87.650

(a) Normal trajectories

Longitude (0)

L
a
ti
tu

d
e
 (

0
) 41.876

41.874

-87.670 -87.660 -87.650

(b) Abnormal trajectory

Figure 2.9: GPS trajectory clustering. 1 of 80 GPS trajectories in Fig. 2.6 is detected
as an abnormality based on spatial dissimilarity measurement.

into three clusters. There are 89, 12 and 2 trajectories in each cluster sep-
arately and 21 abnormal trajectories. We will use this as ground truth to
test the performance of different similarity measures on trajectory clustering.
The accuracy of clustering results is calculated as the ratio of the number of
trajectories correctly-clustered and the total number of the trajectories.

Vlachos et al. defined the dissimilarity between two trajectories as the ratio
of the length of the longest common subsequences and the smaller length of two
trajectories. Using this measure, 124 trajectories are grouped into 4 clusters.
As shown in Fig. 2.10, there are 85, 10 and 5 trajectories separately in each
cluster. During the journey, the workers spend more time on staying stationery
so as to pick up tools and parts from the storage rack, than walking to and back
from the storage rack. Therefore, the clustering results using this dissimilarity
measure are sensitive to the behavior of staying stationery. For instance, two
of the cyan trajectories in cluster 3, as shown in Fig. 2.10c, actually belong to
the first cluster because the workers also visit the right corner of the storage
rack. However, because they spend more time staying stationery at the left
corner, and come back to the assembly line in a similar route as the other two
trajectories, the ratio of the number of their common points and their whole
length is very high, leading to a wrong classification. For the same reason,
there are as much as 24 abnormal trajectories, as shown in Fig. 2.10d.

Fig. 2.11 shows the clustering results using a trajectory dissimilarity mea-
sure base on calculating Euclidean distance between PCA coefficients of the

2.5 Results 29

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Cluster 1.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Cluster 2.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Cluster 3.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(d) Abnormalities

Figure 2.10: Trajectory clustering based on LCSS. 124 trajectories, depicted us-
ing different colors, are clustered into three types of work cycle with 85, 10 and 5
trajectories separately, and 24 abnormalities.

trajectories. The trajectories are successfully grouped into three work cycles.
Only three abnormalities are detected, as shown in Fig. 2.11d. But there are
21 abnormalities in our ground truth. This measure is not able to distinguish
the temporal abnormalities, such as dwelling unnecessarily on his or her way
to the storage rack, strolling in front of the storage rack, etc.

As shown in Table 2.1, the dissimilarity measure based on PCA + Euclidean
distance shows the lowest clustering accuracy, compared to other methods.
The dissimilarity measure based on LCSS works slightly better than on LCSS,
but not as good as our proposed spatial dissimilarity measure based on phys-
ical location alignment, and temporal dissimilarity measure based on velocity
alignment.

30 Trajectory Clustering

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Cluster 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Cluster 2

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Cluster 3

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(d) Abnormalities

Figure 2.11: Trajectory clustering based on PCA + Euclidean distance. 124 tra-
jectories are clustered into three types of work cycle with 105, 13 and 3 trajectories
separately, and 3 abnormalities.

2.6 Conclusions

In this chapter, we presented new methods for measuring the spatial and tem-
poral dissimilarity of pairwise trajectories using different forms of time align-
ment. Spatial dissimilarity is calculated using alignment based on Euclidean
distance between the physical locations of the points. Temporal dissimilarity
is measured using the alignment based on velocity difference. We also pre-
sented a greedy approach to efficiently cluster a set of trajectories using these
dissimilarity measures.

We evaluated our proposed methods using a data set of 124 factory workers’
trajectories. The experimental results showed a higher accuracy of trajectory
clustering based on our dissimilarity measures than for other methods.

Although, the trajectory with the same dissimilarity measure to two clusters
is always grouped into the first cluster found. Future work could on focus on
discovering this kind of trajectories and assigning them with considering all of
the clusters.

2.6 Conclusions 31

Accuracy
LCSS 0.83
PCA+Euclidean distance 0.84
The proposed measure 0.94

Table 2.1: Clustering results using different dissimilarity measures. Our proposed
spatial and temporal dissimilarity measure outperforms other dissimilarity measures
in trajectory clustering.

This research resulted in two papers in the proceedings of International
Conference on Distributed Cameras [Xie 14b] and [Xie 15a].

32 Trajectory Clustering

3
Joint Alignment of Many

Trajectories

Chapter 2 treated the problem of aligning trajectories two at a time. This
allowed defining a spatial and temporal similarity measure between trajectories
which could be used to cluster the trajectories. This approach has the following
limitations:

1. Pairwise trajectory alignment is not able to solve the problem of averaging
the psychical locations ofmany trajectories. In our application of the road
network inference, we need to average the GPS trajectories with differ-
ent number of data points to obtain the road’s geometric representation.
In the other application of work cycle optimization, the factory workers’
trajectories need to be averaged to extract the prototypical routes, so as
to improve their work efficiency. When computing the spatial similarity
measure in Chapter 2, every two trajectories are aligned temporally by
finding the optimal match between the physical locations along these two
trajectories. The optimal matches differ for different pairs of trajectories.
Therefore, one trajectory will be warped to new trajectories with differ-
ent number of data points when it is paired and aligned with different
other trajectories. Therefore, the newly warped trajectories can not be
averaged directly.

2. Pairwise trajectory alignment is not very suitable for statistical analysis,
e.g., analyzing speed variance at a specific location, or timing variances
of objects arriving at a specific location. In Chapter 2, only pairwise
trajectory alignments are produced, whereas statistical analysis requires
joint associations between all trajectories. Some researchers may argue
that one trajectory can be chosen as a center trajectory, and align it with
every other trajectory. Statistical analysis of trajectories can be done
using the data points on in this center trajectory and their associated
points on other trajectories. However, DTW creates many-to-one corre-
spondences during the alignment. Each point in this center trajectory
may be associated with several points on other trajectories. Pairwise

34 Joint Alignment of Many Trajectories

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
) .8746

.8744

.8742

Trajectory

Trajectory

Trajectory

Figure 3.1: Pairwise trajectory alignment. Trajectory r1(t1), t1 = 1, . . . T1 is aligned
with trajectory r2(t2), t2 = 1, . . . T2. Trajectory r2(t2), t2 = 1, . . . T2 is aligned with
trajectory r3(t3), t3 = 1, . . . T3. The coordinates are relative to (-87,41). The users
move from the lower-longitude area to higher-longitude area in all of these three
trajectories.

trajectory alignment gives no knowledge about how to select the asso-
ciated points from all trajectories. However, aligning many trajectories
together produces warped trajectories with associated points at the same
time index. Another drawback of this argument is that the statistical
results rely very much on the choice of this center trajectory. Therefore,
pairwise trajectory alignment is useful for similarity measure, but it is
not capable of averaging many trajectories, neither analyzing many tra-
jectories statistically. In order to solve these problems, we propose the
idea of aligning more than two trajectories.

In this chapter, we aim to align many trajectories by building their point
associations and warp all of the trajectories into new trajectories of the same
length using the point associations. The data points at the same position of
the newly warped trajectories are associated to each other, i.e. spatially close
to each other. The associated points can be averaged easily to create geometric
representation for road network inference and prototypical routes for work cycle
optimization. The location variance and speed variance at a specific location
can be analyzed directly using the associated points there.

In literature, there have been some effort on averaging many trajectories
based on pairwise trajectory alignment using DTW [Junejo 07, Junejo 08,Ni-
ennattrakul 09,Petitjean 11]. In their work, they have been concentrating on
averaging many trajectories using some strategies based on DTW, such as aver-
aging the two boundaries of all trajectories, averaging two trajectories with the
largest similarity hierarchically until only one trajectory is left, etc. However,
they have not established the point correspondences among all trajectories.
Therefore, these strategies are only useful to trajectory averaging, but not to
statical analysis of the trajectories.

35

A naive DTW-based method to align more than two trajectories starts
by first sorting trajectories in some well defined order, according to a suitable
chosen criterion, e.g. an order depending on the similarity of the trajectories, or
in random order. Then trajectory r1(t1), t1 = 1, . . . T1 is aligned with trajectory
r2(t2), t2 = 1, . . . T2 using DTW; Next trajectory r2(t2), t2 = 1, . . . T2 is aligned
with trajectory r3(t3), t3 = 1, . . . T3 and so on. However, the trajectories
will get longer and longer when aligning more and more trajectories, which
increases the computational cost, especially for the big data set. Using this
naive method, every two adjacent trajectories are aligned, for instance, r1(t1),
t1 = 1, . . . T1 with r2(t2), t2 = 1, . . . T2, creating point associations between
them. However, point correspondences between non-adjacent trajectories are
not established, e.g., between trajectories r1(t1), t1 = 1, . . . T1 and r3(t3), t3 =
1, . . . T3. Without point associations between all of the trajectories, it is difficult
to analyze them statistically.

Fig. 3.1 shows an example of three GPS trajectories aligned using pair-
wise trajectory alignment. Trajectory r1(t1), t1 = 1, . . . T1 is aligned with
trajectory r2(t2), t2 = 1, . . . T2, producing point associated indicated in blue
lines. The green lines are for the point associations between trajectories r2(t2),
t2 = 1, . . . T2, and r3(t3), t3 = 1, . . . T3. Because of the many-to-one point
correspondences built by DTW, the first three points of the first trajectory,
r1(t1), t1 = 1, 2, 3, are associated to the first two points of the third trajectory,
r3(1) and r3(2), indirectly, through the first point of the second trajectory,
r2(1). This three-to-two correspondence complicates the statistical analysis
which needs collect one associated point from each trajectory, and analyze
the speed and location variance of these associated points, because there is no
knowledge about how to choose the associated point in the first trajectory from
its first three points, and the associated point in the third trajectory from its
first two points, given the first point of the second trajectory.

In this chapter we propose two new methods to extend the DTW for estab-
lishing the point correspondences among many trajectories, instead of pairwise
trajectories. In our first method, we aim to find one-to-one correspondences
among the physical locations along the trajectories. We apply a “stretch and
then compress” strategy based on the DTW algorithm to align the trajectories
one by one in ascending order of average dissimilarity.

Firstly, the first two trajectories are aligned using DTW in the stretch op-
eration, producing two stretched trajectories. The compress operation then
removes repeated points from the stretched trajectories, producing two com-
pressed trajectories with one-to-one correspondences between the points. Es-
tablishing the one-to-one correspondences is beneficial to easily locate corre-
sponding points in the nonadjacent trajectories. The third trajectory is then
aligned with the second compressed trajectory using the “stretch and then
compress” strategy again. The procedure is repeated until the last trajectory
is processed.

Secondly, the points on other trajectories associated to the point on the
last compressed trajectory are located through the one-to-one correspondences

36 Joint Alignment of Many Trajectories

between pairwise adjacent trajectories, creating warped trajectories of the same
number of points.

In the second proposed method, all of the trajectories are aligned simul-
taneously along the time dimension, instead of in a pairwise fashion. Instead
of using the “backtrack” procedure through the overall dissimilarity tensor to
find the optimal warp path as DTW does, we propose a greedy procedure to
locates a good warp path, by jointly traversing all trajectories in a way which
keeps the points associated by the path element spatially close to each other.
This involves an iterative procedure to cluster successor points on the trajec-
tories. This method does not use DTW, but rather relies on the statistics of
many trajectories to compute a faithful association. This procedure produces
many-to-one point correspondences among the trajectories.

Experimental results indicate that we successfully establish the point cor-
respondences among all of the trajectories using both proposed methods, pro-
ducing warped trajectories with associated points at the same time index. The
average trajectory calculated based on the point correspondences is more rep-
resentative than using other algorithms in literature.

The chapter is structured as follows: In Section 3.3, we introduce the first
algorithm to align many trajectories one by one using a “stretch and then
compress” strategy. In Section 3.4, we explain the trajectory alignment using
the greedy method based on successor classification. We show the experimental
results in Section 3.7. Finally, we conclude this chapter in Section 3.8.

3.1 Related Work

Chapter 2 concentrates on point association between pairwise trajectories for
similarity measure. In this chapter, we establish the point correspondences
among all trajectories, so as to provide a tool for trajectory averaging and
statistical analysis along the averaged trajectory.

In literature, some researchers have proposed some strategies to average the
trajectories directly using pairwise trajectory alignment [Junejo 07,Junejo 08,
Niennattrakul 09,Petitjean 11]. Without associating the points among all tra-
jectories, their strategies can not be used to analyze the trajectories statistically.

Junejo and Foroosh simply align the boundaries of pedestrians’ trajectories
using DTW, and take the mid-points of the lines joining the matched corre-
sponding points in the warped trajectories as the common path [Junejo 07,
Junejo 08]. A boundary trajectory is a sequence of points along one edge of
the pedestrian road. This method is very efficient and the computational cost is
very low since only two boundary trajectories are warped and averaged. How-
ever, the common path is irrelevant to the spatial distribution of the points of
all trajectories [Sester 12], because the points of the boundary trajectory are
selected only from the trajectories at the edge of the road surface, and the tra-
jectories in the middle of the road surface are ignored. Therefore the common
path does not show the preference of the pedestrians on the road, for instance,
which side of the road the pedestrians walk on more frequently. This common

3.1 Related Work 37

path is also not very suitable as the prototypical route for the workers in our
application of work cycle optimization. Simply averaging two boundary tra-
jectories but ignoring the trajectories between these two boundary trajectories
leads to the prototypical route not representative. Besides, the common path
does not give any information about the dwell time of the factory workers when
they pick up parts and tools from the storage rack, because the points of the
boundary trajectories are unrepeated.

Niennattrakul and Ratanamahatana propose a bottom-up hierarchical clus-
tering approach called Prioritized Shape Averaging (PSA) based on DTW [Ni-
ennattrakul 09]. This method first computes the similarity between all pairs of
trajectories. In the first phase of the algorithm, the two most similar trajec-
tories are averaged after warping and then removed from the set of available
trajectories, whereas the newly created average trajectory is added to this set.
In the second phase, from this new set the two most similar trajectories are
selected and averaged once more. This procedure is repeated until a single
“overall average” trajectory is left in the set. At each phase of the algorithm,
a weight is assigned to each of the two most similar trajectories, depending on
whether it is an original trajectory (weight: 1), or an averaged trajectory from
the previous phase (weight: the number of trajectories that the averaged tra-
jectory is formed from). This ensures that each original trajectory play equally
in creating the “overall average” trajectory. This method is slow due to the
need of computing a similarity measure between pairwise trajectories at each
phase of the algorithm.

Petitjean et al. propose a DTW-based global averaging method, called
DTW Barycenter Averaging (DBA) [Petitjean 11]. The DBA algorithm starts
by picking one trajectory and using it as the initial estimate of the prototypical
trajectory. The time association between each individual trajectory and the
prototypical trajectory is found using DTW. The prototypical trajectory is
refined based on the computed time association. Each point of the prototypical
trajectory is then replaced by the mean of the points associated to it on all of
the trajectories. The procedure is repeated until the association between each
individual trajectory and the prototypical trajectory no longer changes. This
method takes all of the trajectories into account jointly and is efficient, but it
is sensitive to the initialization of the prototypical trajectory. Specifically, this
initialization fixes the length of the final prototypical trajectory, which cannot
change during the algorithm. As a result this length may not be optimal.

The above mentioned DTW-related methods aim to average multiple tra-
jectories using different strategies and do not focus on establishing time cor-
respondences between the “average” trajectory and each individual trajectory,
neither on building point associations among all trajectories. Obtaining these
correspondences would require additional DTW alignment computations. In-
stead of building the point correspondences after averaging many trajectories,
in our methods we first establish the point correspondences during the proce-
dure of aligning many trajectories, and then utilize them to average the original
trajectories and statistically analyze the variance along the averaged trajectory.

38 Joint Alignment of Many Trajectories

It is time-consuming to align trajectories in pairs for very big data set repet-
itively using DTW procedure. In Petitjean’s work, DTW is used many times
in the Barycenter Averaging: during each iteration, the association of each in-
dividual trajectory to the current average trajectory is computed using DTW.
Therefore, the DTW procedure is repeated N × I times, given N trajectories
and I iterations. In Niennattrakul’s work, the two trajectories with the biggest
similarity are aligned using DTW at each of N − 1 phases of the algorithm.
In order to find the two trajectories most similar to each other, DTW is used
to calculate the distance between each pair of trajectories as the description of
similarity. In total,

∑N−1
n=2 n(n+ 1)/2 DTW computations are needed.

In our first method, N trajectories are aligned one by one in a specific
order, so pairwise trajectories are aligned using DTW N − 1 times. With
this reduced computational complexity, our method is much faster than the
methods mentioned above.

Our second method does not use DTW, but a greedy procedure to locate a
good warp path through the local dissimilarity tensor, in a way which keeps the
points associated by each element of the warp path spatially close to each other.
This involves an iterative procedure to cluster successor points on the trajecto-
ries. Although it takes time to cluster the successors, avoiding the back-tracking
procedure for optimal alignment reduces the computational cost enormously.
Therefore, our method is faster than the methods mentioned above, including
our first proposed method.

In Section 3.7, we will show the results of our proposed methods. We
successfully establish the point correspondences among all trajectories, and
produce warped trajectories of the same length. The points of each warped
trajectory appear in the same relative order within the original trajectory. The
points at the same time index of the warped trajectories are spatially close to
each other. The associations among the points of all trajectories can be used
to extract the average trajectory, and analyze the trajectories along the aver-
age trajectory statistically. Since no such correspondences are established in
other DTW-related methods mentioned above, we cannot compare our method
with other methods on this point. These methods aim to compute average
trajectories, and we will compare our methods with them on this point.

3.2 Problem Statement

In this chapter, we aim to align many trajectories through establishing the
associations among the physical locations on all the trajectories. The point as-
sociations will be used to create an average trajectory and analyze the location
and speed variance along the average trajectory in our applications.

DTW is a good method to optimally align two trajectories by minimizing
the physical distance between corresponding points on the trajectories. Dur-
ing the implementation phase, a two-dimensional local dissimilarity matrix is
calculated, and then a two-dimensional overall dissimilarity matrix is calcu-
lated based on the local dissimilarity matrix. As elaborated in Section 2.2, the

3.2 Problem Statement 39

optimal warp path through the overall dissimilarity matrix, which represents
the optimal alignment between two trajectories, is found by backtracking the
minimal overall dissimilarity.

Theoretically DTW can be extended to find the globally optimal alignment
of many trajectories directly by minimizing an overall distance criterion which
measures the overall similarity between more than two associated locations.
Given N trajectories rn(tn), tn = 1, . . . Tn, n = 1, . . . N , a N-dimensional local
dissimilarity tensor C1 and a N-dimensional overall dissimilarity tensor C2 need
to be calculated, where the subscript 1 and 2 refers to local dissimilarity and
overall dissimilarity, respectively. Once C2 is calculated, the optimal warp
path through tensor C2 can be found by backtracking the minimal overall
dissimilarity from the last cell (T1, . . . Tn) to the first cell (1, . . . 1). However it
is prohibitively computationally expensive to calculate the overall dissimilarity
tensor C2 and to backtrack the overall dissimilarity through tensor C2.

Both local dissimilarity tensor C1 and overall dissimilarity tensor C2 con-
tains

∏N
n=1 Tn elements. The value at each element of C2 needs to be calculated

recursively using the local dissimilarity at this cell and the values at its 2N − 1
adjacent cells, as shown in Equation 3.1.

C1(t1, . . . tN)
4
=

√√√√ 1

N

N∑
n=1

(rn(tn)− 1

N

N∑
n=1

rn(tn))2,

C2(t1, . . . tN)
4
= C1(t1, . . . tN) + min

jn∈[0,1]
∑N
n=1 jn 6=0

C2(t1 − j1, . . . tN − jN),

(3.1)

where C1(t1, . . . tN) is the local dissimilarity at cell (t1, . . . tN), which is mea-
sured using the standard deviation of its corresponding points rn(tn), n =
1, . . . N .

The computational cost of calculating C2 is strongly dependent on the tra-
jectory lengths Tn, n = 1, . . . N , and also increases exponentially with increas-
ing N , which is the number of the trajectories. For instance, the value at
each element of C2 will be calculated using the values of its 220 − 1 = 1048575
adjacent cells, suppose that N = 20 trajectories need to be aligned.

During the procedure of backtracking the minimum overall dissimilarity
through C2, assume the current element of the warp path is cell (t1, . . . tN) of
C2, one of its 2N−1 adjacent cells, (t1−j1, . . . tN−jN), jn ∈ [0, 1],

∑N
n=1 jn 6= 0,

whose value is the smallest, will be selected as the next element of the warp
path. The computational cost of identifying the optimal warp path through
C2 also highly dependent on the trajectory lengths Tn, n = 1, . . . N and the
number of the trajectories.

Therefore it is impractical to find the globally optimal alignment of many
trajectories using DTW. Rather than the optimal alignment, we aim to find a
good alignment in this chapter, which has the following properties:

1. It produces warped trajectories with the same number of points.

40 Joint Alignment of Many Trajectories

2. The points at the same index of the warped trajectories are associated to
each other, i.e. spatially close to each other.

3. The points of each warped trajectory appear in the same relative order
in the original trajectory.

We propose two methods to identify such good alignments. In the first
method, we utilize pairwise alignments with a “stretch and then compress”
strategy to establish the one-to-one point correspondences among all trajec-
tories, as described in Section 3.3. Instead of pairwise alignment, all of the
trajectories are aligned at once in the second method, as elaborated in Sec-
tion 3.4. We build the many-to-one correspondences among the points of all
trajectories by forward-tracking the relative minimum local dissimilarity.

3.3 Stretch and Compress Trajectory Alignment

For a data set of many trajectories, the optimal matches are diverse for differ-
ent pairs of trajectories, producing different warped trajectories with different
lengths. This can not be directly used to obtain an average trajectory, neither
analyze all trajectories statistically. We propose a “stretch and then compress”
strategy to establish the one-to-one correspondences among the points of all
trajectories through pairwise trajectory alignments, and create warped trajec-
tories of the same length. DTW is used to perform pairwise alignment of two
trajectories.

3.3.1 “Stretch and then compress” Strategy

This strategy is composed of two different operations: a stretch operation fol-
lowed by a compress operation as described below.

1) Stretch. Trajectories r1(t1), t1 = 1, . . . T1 and r2(t2), t2 = 1, . . . T2

are aligned using DTW, creating new trajectories r
(s)
1 (j1,2) and r

(s)
2 (j1,2),

j1,2 = 1, . . . J1,2, where the superscript (s) means “once-stretched” and j1,2
as the joint index in the two warped trajectories. The original time in-
dexes of the points in the two warped trajectories are denoted w(s)

1 (j1,2) and
w

(s)
2 (j1,2), j1,2 = 1, . . . J1,2. In other words: r

(s)
1 (j1,2) = r1(w

(s)
1 (j1,2)) and

r
(s)
2 (j1,2) = r2(w

(s)
2 (j1,2)), for all indexes j1,2 = 1, . . . J1,2. This Stretch oper-

ation involves a DTW operation, to align two trajectories using their physical
locations as shown in Section 2.3.1. The new trajectories can contain more
data points than either of the original trajectories, i.e., J1,2 > T1 and J1,2 > T2.
Therefore this operation is called stretch, even though the stretching is actually
an undesired side effect: the true goal is to align the trajectories. In any case,
the new trajectories are called stretched trajectories, to differentiate them from
the trajectories resulting from the next operation compress. It is possible that

3.3 Stretch and Compress Trajectory Alignment 41

one point on one trajectory is matched with multiple points on the other tra-
jectory. These many-to-one correspondences create difficulties in associating
the data points between nonadjacent trajectories.

2) Compress. The many-to-one correspondences can be simplified by keep-
ing only one of the many-to-one correspondences per pair. Specifically we keep
only the correspondence pair with the shortest distance between points. In this
way, the stretched trajectories r(s)

1 (j1,2) and r
(s)
2 (j1,2), j1,2 = 1, . . . J1,2 with J1,2

points are shortened to trajectories r
(c)
1 (k1,2) and r

(c)
2 (k1,2), k1,2 = 1, . . .K1,2

with K1,2 points, where the superscript (c) means “once-compressed.” Sim-
ilarly, w(c)

1 and w
(c)
2 denote the original time indexes of the points of the

new, compressed trajectories, i.e. r
(c)
1 (k1,2) = r1(w

(c)
1 (k1,2)) and r

(c)
2 (k1,2) =

r2(w
(c)
2 (k1,2)), for all indexes k1,2 = 1, . . .K1,2. Because the new trajectories

can contain fewer points than either of the original trajectories, i.e., K1,2 6 T1

and K1,2 6 T2, this operation is called compress and the new trajectories are
called compressed trajectories. One point in one of the compressed trajec-
tory r

(c)
1 (k1,2) now corresponds to exactly one point in the other compressed

trajectory, and this point r
(c)
2 (k1,2) has the same new time index k1,2, which

is called one-to-one correspondence. With the one-to-one correspondences be-
tween points of pairwise compressed trajectories, the point associations between
nonadjacent trajectories can be easily established.

3.3.2 Details of the Alignment Procedure

We align many trajectories in an ascending order of average dissimilarity. The
average dissimilarity of each trajectory is calculated as the mean of the dis-
similarities between this trajectory and every other trajectory. We first apply
the “stretch and then compress” strategy to process all the trajectories pairwise
from the first two trajectories to the last two trajectories sequentially. Phase
1 in Fig. 3.2 illustrates the procedure presented below:

3.3.2.1 Phase 1: Iterative Stretch and Compress

The “stretch and then compress” operation is applied to trajectory r1(t1),
t1 = 1, . . . T1 and trajectory r2(t2), t2 = 1, . . . T2. This results in the once-
compressed trajectories r(c)

1 (k1,2) and r
(c)
2 (k1,2), k1,2 = 1, . . .K1,2 and the asso-

ciated indexes w(c)
1 (k1,2) and w(c)

2 (k1,2), k1,2 = 1, . . .K1,2, where the superscript
(c) means once-compressed here.

The once-compressed trajectory r
(c)
2 (k1,2), k1,2 = 1, . . .K1,2 and a new

input trajectory r3(t3), t3 = 1, . . . T3 are input to the “stretch and then
compress” module, resulting in a twice-compressed trajectory r

(2c)
2 (k2,3) and

a once-compressed trajectory r
(c)
3 (k2,3), k2,3 = 1, . . .K2,3, where the super-

script (2c) means twice-compressed. The associated indexes are w(2c)
2 (k2,3)

42 Joint Alignment of Many Trajectories

S
tretch

 an
d

 th
en

 C
o

m
p

ress

S
tretch and then C

om
press

S
tretch an

d then C
om

press

...

P
hase 1

Phase 2

S
tretch

 an
d

 th
en

 C
o

m
p

ress

...

A
ssociate points

la
y
e
r 1

la
y
e
r 2

la
y
e
r N

-2

la
y
e
r N

-1

A
ssociate points

A
ssociate points

A
ssociate points

F
igu

re
3.2:

A
ligning

m
any

trajectories.
In

P
h
ase

1,the
trajectories

are
aligned

pairw
ise

using
a
“stretch

and
then

com
press”

strategy
in

an
ascending

order
of

average
dissim

ilarity.
P

h
ase

2
produces

w
arped

trajectories
g
n
(k
),

k
=

1
,...K

,
n

=
1
,...N

w
ith

the
sam

e
num

ber
of

points
and

w
ith

all
points

associated
to

a
single

tim
e
index

k.
T
he

functions
w

n
(k
)
indicates

the
original

tim
e
index

of
the

point
in

trajectory
n
corresponding

to
tim

e
index

k.

3.3 Stretch and Compress Trajectory Alignment 43

of the points of the twice-compressed trajectory r
(2c)
2 (k2,3), k2,3 = 1, . . .K2,3

in the once-compressed trajectory r
(c)
2 (k1,2), k1,2 = 1, . . .K1,2, and w

(c)
3 (k2,3)

for time indexes of the points of the once-compressed trajectory r
(c)
3 (k2,3),

k2,3 = 1, . . .K2,3 in the original trajectory r3(t3), t3 = 1, . . . T3.
This process is repeated for n > 2. Each time, a once-compressed trajectory

r
(c)
n (kn−1,n), kn−1,n = 1, . . .Kn−1,n and a new trajectory rn+1(tn+1), tn+1 =

1, . . . Tn+1 are input to the “stretch and then compress” module, until the last
trajectory rN (tN), tN = 1, . . . TN , is processed.

The outputs of Phase 1 are:

• the once-compressed trajectories r(c)
n (kn−1,n), n = 2, . . . N , with Kn−1,n

points, and r
(c)
1 (k1,2) with K1,2 points;

• the twice-compressed trajectories r
(2c)
n (kn,n+1), n = 2, . . . N − 1, with

Kn,n+1 points;

• the time indexes w
(c)
1 (k1,2) and w

(c)
n (kn−1,n), n = 2, . . . N , of the

points of the once-compressed trajectories in the original trajectories,
i.e. r(c)

n (kn−1,n) = rn(w
(c)
n (kn−1,n));

• the time indexes w(2c)
n (kn,n+1), n = 2, . . . N − 1, of the points of the

twice-compressed trajectories in the once-compressed trajectories: these
satisfy r

(2c)
n (kn,n+1) = r

(c)
n (w

(2c)
n (kn,n+1)).

Each of the “stretch and then compress” blocks outputs two trajectories
with the same number of points: a twice compressed trajectory r

(2c)
n (kn,n+1)

and a once-compressed trajectory r
(c)
n+1(kn,n+1), kn,n+1 = 1, . . .Kn,n+1. Each

point of one output trajectory corresponds to one single point of the other
output trajectory, and both points have the same time index kn,n+1. Because
of the compress operation, the output trajectories of the module are shorter
than either of the input trajectories, i.e. Kn,n+1 6 Kn−1,n and Kn,n+1 6 Tn+1,
where n = 2 . . . N − 1.

The main advantage of the compression steps in Phase 1, is that they
ensure there is only one point in every other trajectory, which is associated
to each point in the last once-compressed trajectory r

(c)
N (kN−1,N), kN−1,N =

1, . . .KN−1,N . Without the compression step, there would be many-to-one
point correspondences instead between the adjacent trajectories, and many-to-
many correspondences between the nonadjacent trajectories. It is difficult to
utilize them to obtain an alignment of all trajectories, which produces warped
trajectories of the same length, and associates the points at the same position
of the warped trajectories. Also the stretched trajectories will get longer and
longer, leading to an increased computational cost.

44 Joint Alignment of Many Trajectories

Algorithm 3 AssociatePoints

Input: w
(c)
1 (k1,2), k1,2 = 1, . . .K1,2

w
(c)
n (kn−1,n), kn−1,n = 1, . . .Kn−1,n, n = 2, . . . N

w
(2c)
n (kn,n+1), kn,n+1 = 1, . . .Kn,n+1, n = 2, . . . N − 1

Output: wn(k), k = 1, . . .KN−1,N , n = 1, . . . N

1: wN (k)← w
(c)
N (k), k = 1, . . .KN−1,N

2: w
(i)
N−1(k)← w

(2c)
N−1(k), k = 1, . . .KN−1,N

3: wN−1(k)← w
(c)
N−1(w

(i)
N−1(k)), k = 1, . . .KN−1,N

4: for n = N − 2 to 2 do
5: w

(i)
n (k)← w

(2c)
n (w

(i)
n+1(k)), k = 1, . . .KN−1,N

6: wn(k)← w
(c)
n (w

(i)
n (k)), k = 1, . . .KN−1,N

7: end for
8: w1(k)← w

(c)
1 (w

(i)
2 (k)), k = 1, . . .KN−1,N

3.3.2.2 Phase 2: Final Alignment

Phase 2 associates the points of all trajectories to those of the last once-
compressed trajectory r

(c)
N (kN−1,N), kN−1,N = 1, . . .KN−1,N with KN−1,N

points. This not only mutually aligns all of the trajectories but also produces
warped trajectories with the same number of points, and with corresponding
points having the same time index. We adopt the notation gn(k), k = 1, . . .K,
for the warped trajectory, and wn(k), k = 1, . . .K, for the time indexes of the
points of the warped trajectory on the original trajectory, where n = 1, . . . N .

The number of the points on output trajectories of Phase 1 is differ-
ent. There are Kn−1,n points in the once-compressed trajectories r(c)

n (kn−1,n),
n = 2 . . . N , and K1,2 data points on the first once-compressed trajectory
r

(c)
1 (k1,2). There areKn,n+1 data points on the once twice-compressed trajecto-
ries r(2c)

n (kn,n+1), n = 2 . . . N−1. Among all of the once-compressed and twice-
compressed trajectories, the last once-compressed trajectory r

(c)
N (kN−1,N) is the

shortest one. Therefore, it is considered as the warped trajectory for the last
trajectory, i.e. gN (k) = r

(c)
N (k), wN (k) = w

(c)
N (k), k = 1, . . .KN−1,N . In each

of other trajectories, there is a unique point associated to every point of this
warped trajectory gN (k) = r

(c)
N (k). The length of all warped trajectories is

determined as K = KN−1,N . If any of other longer compressed trajectory is
taken as the warped trajectory, it is possible that no associated points can
be found in the shorter compressed trajectories. For each point in the last
warped trajectory gN (k), a unique associated point in each of other trajecto-
ries can be located using a bottom-up strategy through the associated indexes
w

(c)
n (kn,n+1), n = 1, . . . N − 1, and w(2c)

n (kn,n+1), n = 2, . . . N − 1.
To clarify the procedure of Phase 2, which computes the final warping, we

introduce the notation w(i)
n (k), k = 1, . . .KN−1,N , for the time indexes of data

points of the warped trajectory in the once-compressed trajectory, where (i)

3.3 Stretch and Compress Trajectory Alignment 45

means intermediate time indexes, and n = 1, . . . N − 1.
As shown in Fig. 3.2, Phase 2 starts from the bottom block. The points

of trajectory rN−1(tN−1), tN−1 = 1, . . . TN−1, which are associated to the
points of gN (k), k = 1, . . .KN−1,N , are computed by pairwise alignment. This
corresponds to the bottom block of Phase 1. Both of output trajectories of the
“stretch and then compress” module at the bottom block, i.e., r(2c)

N−1(kN−1,N)

and r
(c)
N (kN−1,N), kN−1,N = 1, . . .KN−1,N , contain the same number KN−1,N

of points, and are already associated with the same time index. Since one
of the output trajectory r

(c)
N (kN−1,N), kN−1,N = 1, . . .KN−1,N is the warped

trajectory for the last trajectory, gN (k), k = 1, . . .KN−1,N , the other output
trajectory r

(2c)
N−1(kN−1,N), kN−1,N = 1, . . .KN−1,N is the warped trajectory for

the second last trajectory, gN−1(k), k = 1, . . .KN−1,N . w(2c)
N−1(k) indicates the

time indexes of the points of the second last warped trajectory gN−1(k), k =

1, . . .KN−1,N in the second last once-compressed trajectory r
(c)
N−1(kN−2,N−1),

kN−2,N = 1, . . .KN−2,N−1, which is one of the input trajectories to the bottom
block of Phase 1.

The “associate points” module at the bottom block of Phase 2 outputs two
warped trajectories gN−1(k) and gN (k), the time indexes of the points of the
last warped trajectory in the last original trajectory, wN (k), the time indexes
of the points of the second last warped trajectory in the second last once-
compressed trajectory, w(i)

N−1(k) = w
(2c)
N−1(k). They satisfy gN (k) = rN (wN (k))

and gN−1(k) = r
(c)
N−1(w

(i)
N−1(k)),k = 1, . . .KN−1,N . w(i)

N−1(k) will be used to
locate the associated points in trajectory rN−2(tN−2), tN−2 = 1, . . . TN−2.

Through the pairwise alignment of rN−1(tN−1) and r
(c)
N−2(kN−3,N−2) at the

second block from the bottom of Phase 1, and the intermediate time indexes of
the points of gN−1(k) in r

(c)
N−1(kN−2,N−1), w(i)

N−1(k), which are obtained from
the last block of Phase 2, the warped trajectory for the third last trajectory is
computed as gN−2(k) = r

(2c)
N−2(w

(i)
N−1(k)), k = 1, . . .KN−1,N .The time indexes

of the points of gN−2(k), k = 1, . . .KN−1,N in the once-compressed trajectory
r

(c)
N−2(kN−3,N−2), kN−3,N−2 = 1, . . .KN−3,N−2 are indicated by w

(i)
N−2(k) =

w
(2c)
N−2(w

(i)
N−1(k)).

At each block of Phase 2, a warped trajectory is computed through the
pairwise alignment of Phase 1 at the same layer, and the intermediate time
indexes from a lower block of Phase 2. Algorithm 3 explains how to compute
the time indexes wn(k), n = 1, . . . N of the points of the warped trajectories
gn(k), n = 1, . . . N in the original trajectories rn(tn), n = 1, . . . Tn, through the
intermediate time indexes w(i)

n (k), n = 2, . . . N − 1 in Phase 2. They satisfy
gn(k) = rn(wn(k)), k = 1, . . .KN−1,N , n = 1, . . . N .

Fig. 3.3 illustrates this procedure with an example of aligning four GPS
trajectories on one road segment. Each trajectory is shown in different markers:
squares for r1(t1), stars for r2(t2), circles for r3(t3), and crosses for r4(t4). The
markers indicate the location of the points on the trajectories. The trajectories
have 16, 13, 14 and 10 points, respectively.

46 Joint Alignment of Many Trajectories

Trajectory :13

Trajectory :16

Trajectory :10

Trajectory :15

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

Figure 3.3: Four GPS trajectories one one road segment. Each trajectory is shown in
different markers; the markers indicate the location of the points on the trajectories.
The coordinates are relative to (-87,41).

Fig. 3.4, 3.5 and 3.6 illustrate successive steps of the “stretch and then com-
press” alignment strategy. If a point is removed from the trajectory by the
compress operation, it is indicated using a gray marker, instead of a colored
marker. In Fig. 3.4a, r1(t1) with 16 points and r2(t2) with 13 points are aligned
using DTW. The matched points are connected using black dashed lines. In
Fig. 3.4b, many-to-one correspondences are transformed to one-to-one corre-
spondences by keeping the pair of points with the shortest distance. The re-
moved points are shown in gray markers. 4 of 16 points are removed from r1(t1)
and 1 of 13 points is removed from r2(t2), resulting in the once-compressed tra-
jectories r(c)

1 (k1,2) and r
(c)
2 (k1,2), k1,2 = 1, . . . 12. The once-compressed trajec-

tory r
(c)
2 (k1,2) with 12 points and a new non-aligned trajectory r3(t3) with 14

points are input to the “stretch and then compress” module at the second step,
as shown in Fig. 3.5, resulting in a twice-compressed trajectory r

(2c)
2 (k2,3) and

a once-compressed trajectory r
(c)
3 (k2,3), k2,3 = 1, . . . 10. 2 of 12 points are re-

moved from r
(c)
2 (k1,2), and 4 of 14 points from r3(t3). At the last step, r(c)

3 (k2,3)
with 10 points and r4(t4) with 10 points are stretched and then compressed,
producing a twice-compressed trajectory r

(2c)
3 (k3,4) and a once-compressed tra-

jectory r
(c)
4 (k3,4), k3,4 = 1, . . . 9. The first point of r4(t4) and the last point of

r
(c)
3 (k2,3) are removed.
The warped trajectories for the last two trajectories are g4(k) = r

(c)
4 (k) and

g3(k) = r
(2c)
3 (k), k = 1, . . . 9, which are indicated using crosses and circles in

Fig. 3.7. The points of the other two warped trajectories, g2(k) and g1(k),
k = 1, . . . 9, can be located through the pairwise trajectory alignment using

3.3 Stretch and Compress Trajectory Alignment 47

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

(a) Stretch

Trajectory :12

Trajectory :12

Trajectory :10

Trajectory :14

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

(b) Compress

Figure 3.4: Four-trajectory alignment, Step 1: r1(t1) with 16 points and r2(t2)
with 13 points are stretched (depicted in (a)) and then compressed (depicted in (b)),
resulting in r

(c)
1 (k1,2) and r

(c)
2 (k1,2) with 12 points associated at the same time index.

4 points in r1(t1) and 1 point in r2(t2) are removed by the compress operation. The
coordinates are relative to (-87,41).

a bottom-top strategy. By following the arrows in Fig. 3.7, 9 of 10 points in
r

(2c)
2 (k2,3) are associated to the points of g3(k). The last point of r(2c)

2 (k2,3),
which is indicated using a black star but without arrow to it, is removed because
there is no point in g3(k) matched to it. 3 of 12 points in r

(c)
1 (k1,2) are removed

for the same reason, producing the warped trajectory g1(k) with 9 points.
Fig. 3.8 depicts the geographical locations of these four warped trajectories in
different black markers.

48 Joint Alignment of Many Trajectories

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

(a) Stretch

Trajectory :10

Trajectory :12

Trajectory :10

Trajectory :10

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

(b) Compress

Figure 3.5: Four-trajectory alignment, Step 2: r
(c)
2 (k1,2) with 12 points and r3(t3)

with 14 points are stretched and compressed, resulting in r
(2c)
2 (k2,3) and r

(c)
3 (k2,3)

with 10 points associated at the same time index. 2 points in r
(c)
2 (k1,2) and 4 points

in r3(t3) are removed by the compress operation.

Table 3.1 shows the time indexes of the points of the warped trajectories
in the original trajectories. The points at the same index k of the warped
trajectories are associated to each other. Each warped trajectory contains 9
points respectively.

3.4 Successor Classification based Alignment 49

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

(a) Stretch

Trajectory :10

Trajectory :12

Trajectory :9

Trajectory :9

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

(b) Compress

Figure 3.6: Four-trajectory alignment, Step 3: r
(c)
3 (k2,3) with 10 points and r4(t4)

with 10 points are stretched and compressed, resulting in r
(2c)
3 (k3,4) and r

(c)
4 (k3,4)

with 9 points associated at the same time index. 1 point in r
(c)
3 (k2,3) and 2 point in

r4(t4) are removed by the compress operation.

3.4 Successor Classification based Alignment

Different from the pairwise alignment in Section 3.3, we propose a greedy pro-
cedure to align many trajectories at once through finding a good warp path
through the local dissimilarity tensor in a way which keeps the points associ-
ated by each path element spatially close to each other. To reduce the compu-
tational cost, we propose to limit the candidate cells in the local dissimilarity
tensor for each path element by classifying its successors. We will elaborate the

50 Joint Alignment of Many Trajectories

Trajectory :10

Trajectory :12

Trajectory :9

Trajectory :9

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

Figure 3.7: Four-trajectory alignment, point association: The points in other tra-
jectories, which are associated to the points of g4(k) = r

(c)
4 (k), k = 1, . . . 9, are found

by following the arrows from the bottom trajectory to the top trajectory.

Longitude(o)

0.667 0.666 0.665 0.664 0.663 0.662

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738

Trajectory :9

Trajectory :9

Trajectory :9

Trajectory :9

Figure 3.8: Four-trajectory alignment, final result: There are 9 data points left in
each warped trajectory, which are connected using dashed lines. The removed points
are indicated using gray markers.

3.4 Successor Classification based Alignment 51

Table 3.1: Time indexes wn(k)

k w1(k) w2(k) w3(k) w4(k)

1 3 1 3 2
2 4 2 4 3
3 5 3 5 4
4 7 4 6 5
5 9 5 8 6
6 10 6 9 7
7 11 7 10 8
8 13 9 11 9
9 14 10 12 10

algorithm in Section 3.4.1, and detail the procedure of finding the warp path
using the proposed algorithm in Section 3.4.2.

3.4.1 Algorithm Elaboration

Because the computational cost of identifying the optimal alignment of many
trajectories using DTW is prohibitively expensive, we try to find a close to
optimal alignment in this section. Instead of finding the optimal warp path
by back-tracking the overall dissimilarity, we propose to find a good warp path
by forward-tracking the local dissimilarity. Although the alignment defined by
this warp path is not optimal, it is acceptable as far as it satisfies properties
of a good alignment described in Section 3.2. Without calculating the overall
dissimilarity tensor, the computational cost is reduced extraordinarily.

Given N trajectories rn(tn), tn = 1, . . . Tn, n = 1, . . . N , we adopt the
notation (w1(k), . . . wN (k)) for the warp path, where k = 1, . . .K, and gn(k),
k = 1, . . .K for the warped trajectory, where n = 1, . . . N . Each element of
the warp path (w1(k), . . . wN (k)) corresponds to the alignment of the points
rn(wn(k)),n = 1, . . . N . wn(k), k = 1, . . .K denote the time indexes of the
points of the warped trajectory in the original trajectory, gn(k) = rn(wn(k)),
k = 1, . . .K, n = 1, . . . N .

The forward-tracking procedure starts at cell (1, . . . 1) of the local dis-
similarity tensor C1, and ends at cell (T1, . . . TN) according to the Bound-
ary constraint, i.e. (w1(1), . . . wN (1)) = (1, . . . 1) and (w1(K), . . . wN (K)) =
(T1, . . . TN). Given the current element of the warp path: cell
(w1(k), . . . wN (k)), the next element (w1(k + 1), . . . wN (k + 1)) is determined
from the adjacent cells of the current path element in tensor C1, depending on
the local dissimilarities stored at these cells, i.e. the spatial dissimilarities of
the corresponding points.

In a straightforward extension, we would consider all 2N − 1 adjacent cells
which satisfy the Monotonicity and Continuity constraints as descried in Sec-
tion 2.2.

52 Joint Alignment of Many Trajectories

(w1(k + 1), . . . wN (k + 1))
4
= (w1(k), . . . wN (k)) + (j1(k), . . . jN (k))

= (w1(k), . . . wN (k)) + arg min
(j1(k),...jN (k))

jn∈[0,1]∑N
n=1 jn 6=0

C1(w1(k) + j1, . . . wN (k) + jN)

(3.2)

where C1 is the local dissimilarity tensor calculated by Equation 3.1. The
0-or-1 steps jn(k), n = 1, . . . N , jn(k) ∈ [0, 1] describe how the time indexes
of the points of the trajectories increase along the warp path: for jn(k) = 0
the path does not advance in the nth dimension of tensor C1, whereas for
jn(k) = 1 it advances by one time unit. This corresponds, respectively to
wn(k+1) = wn(k) and wn(k+1) = wn(k)+1 or to rn(wn(k+1)) = rn(wn(k))
and rn(wn(k + 1)) = rn(wn(k) + 1).

However, it is still computationally expensive to calculate the dissimilarity
of the corresponding points for all 2N − 1 adjacent cells.

There are 2N points involved in finding the next path element: N points
corresponding to the current path element rn(wn(k)), n = 1, . . . N and its N
successors. The current points are associated by the current path element,
which means they are spatially close to each other. Depending on the speeds of
the moving objects, the successorsmay be close to the current points, or distant
from them. On the trajectories with similar moving velocities, the successors
tends to appear at similar locations. Fig. 3.9 shows three examples of current
points and their successors.

For clarity, the figure only shows small pieces of the trajectories in gray
lines with circles. Fig. 3.9a and Fig. 3.9b show 10 pieces of factory worker
trajectories, respectively. The points associated by the current path element
are shown in circles, and the successors of the current path element are depicted
in squares. The associated points are spatially close to each other. In the
trajectory pieces shown in Fig. 3.9a, the factory workers move in the same
direction at two different speeds, thus the successors gather at two different
locations: one is around 5 cm to the current points, and the other one is around
10 cm away in y-direction. In Fig. 3.9b, the factory workers arrive at the right
corner of the the storage rack. In 3 of the trajectory pieces, the workers stay
stationary to pick up tools and parts from the storage rack, leading to that
the successors are very close to the current points. In the other trajectory
pieces, the factory workers are moving at two different speeds, the successors
therefore are of different distances away from the current points. Fig. 3.9c show
10 pieces of vehicle trajectories with similar moving speeds. The trajectory
sampling interval varies from 2 second to 10 seconds. The distance between
the successor and the current point in each trajectory piece is very different.
On the trajectory pieces with the same sampling interval, the successors are
spatially close to each other.

In this section, we propose to classify the successors of the current path el-
ement, rn(wn(k) + 1), n = 1, . . . N for extending the trajectory into M groups,

3.4 Successor Classification based Alignment 53

140 150 160 170
100

105

110

115

120

125

130

135

140 successor
current point

x(cm)

y
(c

m
)

(a)

110
150 160 170 180

115

120

125

130

135

140

145

150

x(cm)

y
(c

m
)

successor
current point

(b)
successor
current point41.8695

41.8685

41.8690

-87.684 -87.682 -87.680 -87.678

(c)

Figure 3.9: Points corresponding to the current path element and its successors. (a)
and (b) show pieces of factory worker trajectories. (c) depicts pieces of vehicle tra-
jectories. Given the points corresponding to the current path element, the successors
gather at different locations depending on the speeds of the moving objects.

and enforce a Continuity constraint on the time indexes of each group of trajec-
tories. This limits the number of candidate cells to 2M − 1. The corresponding
points of these candidates cells have low dissimilarity, because they include the
successors in the same class, which are similar to each other. One of the 2M −1
candidate cells with low dissimilarities, whose corresponding points have the
lowest dissimilarity, is taken as the next element of the warp path.

Because the current points rn(wn(k)), n = 1, . . . N are not involved in
limiting the candidates cells from 2N − 1 to 2M − 1, but only in finding the
next path element from the 2M − 1 candidate cells, the next path element we
find may be not be locally optimal, leading to lower alignment quality. It is

54 Joint Alignment of Many Trajectories

Table 3.2: Allowable time index increases. The successors of each path element
rn(wn(k) + 1), n = 1, . . . N are grouped into M clusters using K-means algorithm.
When the warp path advances to the next element in the local dissimilarity tensor
C1, the time indexes of the points of the trajectories in the same group increase in the
same way along the warp path. Under the Continuity constraint, the time indexes
of the points can only increase by one or zero, am ∈ [0, 1], m = 1, . . .M , resulting
in 2M = 1 allowable types of time index increases bi, i = 1, . . . 2M − 1, i.e. 2M = 1
candidate cells for the next path element.

aM . . . a3 a2 a1

b1 0 . . . 0 0 1
b2 0 . . . 0 1 0
b3 0 . . . 0 1 1
b4 0 . . . 1 0 0
b5 0 . . . 1 0 1
b6 0 . . . 1 1 0
b7 0 . . . 1 1 1
.

b2M−1 1 . . . 1 1 1

possible that one of the other cells, rather than any of the 2M − 1 cells, has
the lowest dissimilarity among all 2N − 1 adjacent cells. However, we have to
compromise the alignment quality in order to reduce the computational cost.

We apply K-means algorithm to cluster the physical locations of the suc-
cessors of the current path element rn(wn(k) + 1), n = 1, . . . N , as shown in
Algorithm 5. First, M successors are randomly chosen from N successors as
initial cluster centroids. Second, each successor is assigned to the cluster whose
centroid is closet to it. Third, the centroid of each cluster is recalculated using
successors assigned to it. This procedure is repeated until the cluster centroids
do not change any more. This results in the cluster label for each successor,
l(n, k), l(n, k) ∈ [1, . . .M], n = 1, . . . N , where n refers to the nth trajectory
and k refers to the kth element of the warp path. The successors of each path
element are different.

Given the current path element (w1(k), . . . wN (k)) and the cluster labels
of its successors l(n, k), n = 1, . . . N , the joint move (j1(k), . . . jN (k)), which
decides the next path element as shown in Equation 3.2, is restricted to 1 out
of 2M − 1 possible moves:

(j1(k), . . . jN (k)) = arg min
(al(1,k),...al(N,k))

al(n,k)∈[0,1]

l(n,k)∈[1,M]∑N
n=1 al(n,k) 6=0

C1(w1(k)+al(1,k), . . . wN (k)+al(N,k)) (3.3)

where C1 is the local dissimilarity tensor, which is calculated using Equation
3.1. The 0-or-1 steps al(n,k), n = 1, . . . N , al(n,k) ∈ [0, 1], l(n, k) ∈ [1,M]

3.4 Successor Classification based Alignment 55

Algorithm 4 AlignTrajectories

Input: {rn(tn), tn = 1, . . . Tn, n = 1, . . . N}; bi, i = 1, . . . 2M − 1
Output: (w1(k), . . . wN (k)), k = 1, . . .K
1: Initialization k ← 2, (w1(1), . . . wN (1))← (1, . . . 1)
2: while (w1(k), . . . wN (k)) 6= (T1, . . . TN) do
3: (l(1, k), . . . l(N, k)) ← ClusterData(rn(wn(k) + 1), n = 1, . . . N) Algo-

rithm 5
4: for i = 1 to 2M − 1 do
5: for n = 1 to N do
6: j

(i)
n ←

{
bi(ln(k)) if wn(k) < Tn
0 if wn(k) = Tn

7: end for
8: µi ← 1

N

∑N
n=1 rn(wn(k) + j

(i)
n)

9: σi ←
√

1
N

∑N
n=1(rn(wn(k) + j

(i)
n)− µi)2

10: end for
11: i0 ← arg min

i∈[1,7]
(σi)

12: (w1(k + 1), . . . wN (k + 1))← (w1(k), . . . wN (k)) + (j
(i0)
1 , ...j

(i0)
N)

13: k ← k + 1
14: end while

describe how the time indexes of the points of the trajectories increase along
the warp path: for am = 0 the time indexes of the points of all trajectories
{n : l(n, k) = m,n ∈ [1, N]}, whose successors are in the same cluster m, stay
the same, whereas for am = 1 they increase by one. This guarantees the time
indexes of the points of the trajectories in the same group increase in the same
way when the warp path advances to the next cell. Table 3.2 shows the 2M −1
possible time index increases, bi, i = 1, . . . 2M − 1.

By classifying the successors of each path element, the number of the can-
didate cells for the next path element is limited from 2N − 1 to 2M − 1, where
N is the number of the trajectories, and M is the number of the categories of
the successors. During the procedure of forward-tracking the local dissimilarity
through C1, we just need calculate the values of the 2M −1 adjacent cells in C1

for each path element, to determine the next path element. The computational
cost is reduced enormously. Although the successor classification takes some
time, it is considerably less than calculating the values of all 2N − 1 adjacent
cells, especially for very big data set. Thus this trajectory alignment algorithm
can be executed in a reasonable amount of time.

3.4.2 Aligning Trajectories

As shown in Algorithm 4, the warp path can be deduced as followed, given N
trajectories rn(tn), tn = 1, . . . Tn, n = 1, . . . N :

The warp path starts at cell (1, . . . 1) of the local dissimilarity tensor C1,

56 Joint Alignment of Many Trajectories

Algorithm 5 ClusterData

Input: rn(wn(k) + 1), n = 1, . . . N
Output: (l(1, k), . . . l(N, k))
1: Initialize M cluster centroids µm, m = 1, . . .M randomly from the input
2: while there are still changes in the centroids do
3: for n← 1, N doUpdate cluster assignments
4: l(n, k)← arg min

m∈[1,M]
‖rn(wn(k) + 1)− µm‖2

5: end for
6: for m← 1,M doUpdate cluster centroids
7: µm ←

∑N
n=1 1{l(n,k)=m}rn(wn(k)+1)∑N

n=1 1{l(n,k)=m}
8: end for
9: end while

i.e. (w1(1), . . . wN (1)) = (1, . . . 1). The successors of the first path ele-
ment (w1(1), . . . wN (1)), rn(wn(1) + 1) = rn(2), n = 1, . . . N , are grouped
into M clusters using K-means algorithm, resulting in the group labels for
the successors l(n, 1), n = 1, . . . N . According to Table 3.2, there are
2M − 1 candidate cells for the second path element, (w1(1), . . . wN (1)) +
(bi(l(1, 1)), . . . bi(l(N, 1))), i = 1, . . . 2M − 1. One of the candidate cells with
the lowest dissimilarity is chosen as the second element of the warp path
(w1(2), . . . wN (2)).

This process is repeated until the warp path ends at cell (T1, . . . TN). Each
time, one of the 2M − 1 candidate cells, which is chosen from 2N − 1 adjacent
cells of the current path element by classifying its successors rn(wn(k) + 1),
n = 1, . . . N , is determined as the next path element (w1(k+ 1), . . . wN (k+ 1)),
if its corresponding points have the lowest dissimilarity.

The outputs of the procedure are: a warp path through the local dissimi-
larity matrix C1, (w1(k), . . . wN (k)), k = 1, . . .K, and the warped trajectories
along the warp path gn(k) = rn(wn(k)), k = 1, . . .K, n = 1, . . . N with points
associated at the same time index.

The same four GPS trajectories shown in Fig. 3.3 are aligned using the
greedy method based on classifying the successors into three groups as an
example. The warp path starts at the first cell of the local dissimilarity matrix
C1, i.e. (w1(1), w2(1), w3(1), w4(1)) = (1, 1, 1, 1), which associates the first
point of each trajectory. The associated points are connected using blue dashed
line in Fig. 3.10a. The successors, r1(1 + 1), r2(1 + 1), r3(1 + 1), and r4(1 +
1), which are indicated using blue markers, are classified into three groups
using Algorithm 5, resulting in group labels (l(1, 1), l(2, 1), l(3, 1), l(4, 1)) =
(1, 2, 3, 3). Because the successors in the third and fourth trajectories belong
to the same group, the time indexes of the points of these two trajectories
increase in the same way when the warp path advances to its second element.

3.4 Successor Classification based Alignment 57

−87.667 −87.666 −87.665 −87.664 −87.663 −87.662
41.8738

41.8742

41.8746

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Trajectory :16
Trajectory :13 Trajectory :10

Trajectory :14

(a) Step 1

−87.667 −87.666 −87.665 −87.664 −87.663 −87.662
41.8738

41.8742

41.8746

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Step 2

−87.667 −87.666 −87.665 −87.664 −87.663 −87.662
41.8738

41.8742

41.8746

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(c) Step 3

Figure 3.10: Example of four-trajectory alignment. In (a), the warp path starts at
cell (1, 1, 1, 1) of the local dissimilarity tensor C1, i.e. (w1(1), w2(1), w3(1), w4(1)) =
(1, 1, 1, 1). The points associated by the first path element are connected using
blue dashed lines, and the successors are indicated using blue markers. The suc-
cessors are classified into three groups, creating 7 candidate cells in C1 for the second
path element. The candidate cell with the lowest dissimilarity, whose correspond-
ing points are connected using red dashed lines as shown in (b), is chosen as the
second path element, (w1(2), w2(2), w3(2), w4(2)) = (1, 1, 2, 2). Its successors are in-
dicated using red markers. (c) shows the points associated by the third path element
(w1(3), w2(3), w3(3), w4(3)) = (2, 1, 2, 2) using green dashed lines, and its successors
in green markers.

58 Joint Alignment of Many Trajectories

7 candidate cells for the second path element are listed:

candidate 1 (1, 1, 1, 1) + (0, 0, 1, 1) = (1, 1, 2, 2)
candidate 2 (1, 1, 1, 1) + (0, 1, 0, 0) = (1, 2, 1, 1)
candidate 3 (1, 1, 1, 1) + (0, 1, 1, 1) = (1, 2, 2, 2)
candidate 4 (1, 1, 1, 1) + (1, 0, 0, 0) = (2, 1, 1, 1)
candidate 5 (1, 1, 1, 1) + (1, 0, 1, 1) = (2, 1, 2, 2)
candidate 6 (1, 1, 1, 1) + (1, 1, 0, 0) = (2, 2, 1, 1)
candidate 7 (1, 1, 1, 1) + (1, 1, 1, 1) = (2, 2, 2, 2)

Because the corresponding points of the first candidate cell have the low-
est dissimilarity, this cell is chosen as the second element of the warp path,
(w1(2), w2(2), w3(2), w4(2)) = (1, 1, 2, 2).

As shown in Fig. 3.10b, the associated points by the second path element
are connected using red dashed line, and the successors, r1(1 + 1), r2(1 + 1),
r3(2 + 1), and r4(2 + 1), are indicated using red markers. Using Algorithm
5, these successors are classed into three groups, resulting in group labels
(l(1, 2), l(2, 2), l(3, 2), l(4, 2)) = (1, 2, 3, 2). According to the group labels and
the possible time index increases in Table 3.2, 7 candidate cells for the third
element of the warp path are listed:

candidate 1 (1, 1, 2, 2) + (0, 0, 1, 0) = (1, 1, 3, 2)
candidate 2 (1, 1, 2, 2) + (0, 1, 0, 1) = (1, 2, 2, 3)
candidate 3 (1, 1, 2, 2) + (0, 1, 1, 1) = (1, 2, 3, 3)
candidate 4 (1, 1, 2, 2) + (1, 0, 0, 0) = (2, 1, 2, 2)
candidate 5 (1, 1, 2, 2) + (1, 0, 1, 0) = (2, 1, 3, 2)
candidate 6 (1, 1, 2, 2) + (1, 1, 0, 1) = (2, 2, 2, 3)
candidate 7 (1, 1, 2, 2) + (1, 1, 1, 1) = (2, 2, 3, 3)

The fourth candidate cell is chosen as the third path element, i.e.
(w1(3), w2(3), w3(3), w4(3)) = (2, 1, 2, 2), because its corresponding points
have the lowest dissimilarity. Its associated points are connected using green
dashed lines and its successors are indicated using green markers, as shown in
Fig. 3.10c.

Fig. 3.11 shows the point associations along the full warp path. The data
points associated by each element of the warp path are connected using dashed
lines with the same color. Table 3.3 shows the time indexes of the points of the
warped trajectories in the original trajectories. The points at the same index k
of the warped trajectories are associated to each other. Along the warp path,
each trajectory is warped to 19 points respectively.

Although the warped trajectories are longer than the original trajectories,
the trajectory alignment does not create any new point, but establishes many-
to-one correspondences among the points of the original trajectories. Therefore,
there is no positional difference between the points of the warped trajectories
and the original trajectories.

3.4 Successor Classification based Alignment 59

Longitude(o)

L
a
ti
tu

d
e
(o
)

.8746

.8742

.8738
0.667 0.666 0.665 0.664 0.663 0.662

Trajectory :19

Trajectory :19

Trajectory :19

Trajectory :19

Figure 3.11: Point associations. The full warp path contains 19 elements. Each
element of the warp path associates 4 points, each of which is from an individual
trajectory. The associated points are connected using dashed lines of the same color.
The coordinates are relative to (-87,41).

Table 3.3: Time indexes wn(k)

k w1(k) w2(k) w3(k) w4(k)

1 1 1 1 1
2 1 1 2 2
3 2 1 2 2
4 3 1 2 2
5 4 2 3 3
6 5 3 4 3
7 6 4 5 4
8 7 4 6 5
9 8 5 7 6
10 9 5 8 6
11 10 6 9 7
12 11 7 10 8
13 12 8 10 8
14 13 9 11 9
15 14 10 12 10
16 15 11 13 10
17 15 12 14 10
18 16 12 14 10
19 16 13 14 10

60 Joint Alignment of Many Trajectories

3.5 Difference between the Proposed Methods
In the following, to distinguish the warped trajectories produced by each
method, we add superscripts to their notations, g

(1)
n (k), k = 1, . . .K(1),

n = 1, . . . N , where the superscript (1) refers to the stretch-and-then-compress
method, g(2)

n (k), k = 1, . . .K(2), n = 1, . . . N , where the superscript (2) refers
to the greedy method based on successor classification. The differences between
the proposed methods are summarized as:

• Point correspondence. The stretch-and-then-compress method builds
one-to-one correspondences among the points of the trajectories. The
greedy method based on successor classification establishes many-to-one
point correspondences during the alignment.
Fig. 3.8 shows the point associations of four GPS trajectories built using
the stretch-and-then-compress method. Given any point in one warped
trajectory, it can only be associated to a single point in each of other
warped trajectories by following the connecting lines. Fig. 3.11 shows
the many-to-one point correspondences of the same four GPS trajectories
established using the greedy method based on successor classification. For
instance, the first three points of the first trajectory r1(t1), t1 = 1, 2, 3
are associated to the same point of the second trajectory r2(1).

• The length of the warped trajectories. Another difference between
the proposed methods lies in the number of points on the warped trajecto-
ries. The stretch-and-then-compress method compresses the trajectories
by keeping pairs of points which are more close to each other position-
ally. The warped trajectories g

(1)
n (k), k = 1, . . .K(1), n = 1, . . . N , are

shorter than the original trajectories rn(tn), tn = 1, . . . Tn, n = 1, . . . N ,
i.e. K(1) ≤ Tn, n = 1, . . . N .
In contrast, the greedy method based on successor classification aligns
the trajectories by allowing many points of one trajectory matching to
the same point of the other trajectories. Therefore the warped trajecto-
ries produced, g(2)

n (k), k = 1, . . .K(2), n = 1, . . . N , are longer than the
original trajectories, i.e. K(2) ≥ Tn, n = 1, . . . N .
As shown in Fig. 3.3, there are 16, 13, 14 and 10 points in each GPS tra-
jectory, respectively. Fig. 3.8 shows that each warped trajectory produced
using the stretch-and-then-compress method contains 9 points, which is
shorter than any of the original trajectories. However there are 19 points
in the warped trajectories produced by the greedy method based on suc-
cessor classification. as shown in Fig. 3.11. They are longer than any of
the original trajectories.

• The influence of aligning order. The stretch-and-then-compress
method aligns the trajectories in an ascending order of average dissimilar-
ity. The stretch-and-then-compress module only processes two trajecto-
ries at a time, including a once-compressed trajectory and an unaligned

3.6 Average Trajectory Extraction 61

trajectory. The last once-compressed trajectory decides the length of
all warped trajectories. The points in the other trajectories, which are
associated to the points of the last once-compressed trajectory, are lo-
cated through the outputs of the stretch-and-then-compress modules in
a reverse order from the second last trajectory to the first trajectory.
Therefore the trajectory input to the module later has more influence
on the alignment. The greedy method based on successor classification
processes all of the trajectories at once. The aligning order is irrelevant
in this method.
As shown in Fig. 3.8, the last points of the first two trajectories, r1(16)
and r2(13), are associated to each other, which are connected using
dashed lines. However, both of them are removed because there are no
points in the last trajectory matched to them, indicating more influence
of the last trajectory on the result.
As shown in Fig. 3.8, the seventh point of the first trajectory, r1(7), the
fourth point of the second trajectory, r2(4), the sixth point of the third
trajectory, r3(6), and the fifth point of the fourth trajectory, r4(5), are
associated to each other using the stretch-and-then-compress method.
This association is obtained by following the arrows from the last to
the first trajectory in Fig. 3.7. As shown in Table 3.3 for the greedy
method based on successor classification, the same association is found
at the eighth element of the warp path, (w1(8), w2(8), w3(8), w4(8)) =
(7, 4, 6, 5), This association is established by calculating the dissimilarity
of the corresponding points of the 7 candidate cells for the eighth path
element, which are selected from the adjacent cells of the seventh path
element by classifying its successors rn(wn(7) + 1), n = 1, . . . 4. There is
no aligning order involved in determining the eighth path element from
its 7 candidate cells.

3.6 Average Trajectory Extraction
Using the point associations built during the trajectory alignment, the average
trajectory can be easily extracted. Given the warped trajectories, gn(k), k =
1, . . .K, n = 1, . . . N , the average trajectory with K points is calculated as:

g0(k) =
1

N

N∑
n=1

gn(k), (3.4)

where k = 1, . . .K.
In the application of work cycle optimization, the average trajectory acts

as a prototypical route for the factory workers to execute the work cycle. In
the other application of road network inference, the average trajectory is the
geometric representation for each road segment.

The variance of the physical locations of trajectory points along each point
of the average trajectory is calculated as:

62 Joint Alignment of Many Trajectories

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Trajectories for work cycle 1.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Trajectories for work cycle 2.

Figure 3.12: Factory worker trajectories. There are 82 and 12 trajectories in each
type of executed work cycle, respectively.

σg(k) =
1

N

N∑
n=1

(gn(k)− g0(k))2, (3.5)

where k = 1, . . .K.
The mean variance of the physical locations of trajectory points along the

average trajectory is calculated as:

σ =
1

K

K∑
k=1

σg(k), (3.6)

where σg(k) is the variance of the physical locations of trajectory points
along the kth point of the average trajectory. σ is used to measure the per-
formance of the alignment algorithm. The smaller σ is, the more similar the
associated points are. Higher similarity of the points associated by warp path
elements better satisfy the properties of good trajectory alignment.

3.7 Results
We test both of presented methods using two data sets: factory worker trajec-
tories which are obtained from a multi-camera tracking system (Factory data
set), and vehicle trajectories which are recorded using GPS devices (Chicago
data set and Berlin data set).

For the Factory data set, there are 124 trajectories in total, as shown in
Fig. 2.5b. In this data set, the worker repeats the procedure of going to the
storage rack, picking up tools and parts, coming back to the assembly plat-
form and doing his operation. In Chapter 2, we have identified two types of
executed work cycles with many trajectories. As show in Fig. 3.12a, there are
82 trajectories recorded for one type of work cycle, in which the workers walk

3.7 Results 63

−87.668 −87.666 −87.664 −87.662 −87.66 −87.658 −87.656
41.8735

41.874

41.8745

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Figure 3.13: GPS trajectories on one road segment. GPS trajectories are shown in
black lines with points, and the intersections in red circles. 77 GPS trajectories are
recorded for this road segment directed from the left intersection to the right one.

through the whole area in front of the storage rack to pick up tools and parts.
In the other type of work cycle, the workers only visit the right corner of the
storage rack and come back to the assembly platform directly. Fig. 3.12b shows
12 trajectories recorded for it. We apply both proposed methods to align the
trajectories, and show the results of the trajectory alignment for each type of
executed work cycle separately. We also compare our extracted average trajec-
tories with the results of other DTW-related methods for trajectory averaging.

For vehicle trajectories, we show the results of GPS trajectory alignment
for one road segment in Chicago data set as an example. The alignment for the
whole data set will be discussed in Section 6.6 after the intersection detection.
As shown in Fig. 3.13, the road segment directly connects two intersections,
which are indicated using red circles. There are 77 trajectories associated to
this road segment, shown in black lines with points indicating the locations of
GPS recordings. The arrow indicates the direction of these trajectories, which
is from the left intersection to the right one.

In this section, we will show the results of alignment for factory worker
trajectories and vehicle trajectories, established using each of the proposed
methods separately. Experimental results show that our method successfully
aligned the trajectories by associating the points together, which are spatially
close to each other.

3.7.1 Results of Factory Data Set

In this section, we show the trajectory alignment results for the Factory data
set. We will first show the results using the stretch-and-then-compress method
in Section 3.7.1.1, then the results using the greedy method based on successor
classification in Section 3.7.1.2.

3.7.1.1 Stretch-and-then-Compress Method

Fig. 3.14 depicts the warped trajectories for each type of executed work cycle,
respectively. The location of the storage rack is shown as a black rectangle

64 Joint Alignment of Many Trajectories

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Trajectories for work cycle 1.

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c
m
)

(b) Warped trajectories for work cycle 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Trajectories for work cycle 2.

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c
m
)

(d) Warped trajectories for work cycle 2

Figure 3.14: Warped trajectories of factory workers using the stretch-and-then-
compress Method. (a) and (b) show the original trajectories and the warped tra-
jectories separately for the first type of executed work cycle. (c) and (d) are for the
second type of executed work cycle. Because the compress operation keeps pairs of
points which are more close to each other positionally, the warped trajectories are
shorter than the original trajectories.

near the top of the figure, and the dashed lines at the bottom show the lo-
cation of the conveyor belt. The stretch-and-then-compress method produces
warped trajectories of the same length. Compared to the original trajectories
in Fig. 3.14a and 3.14c, the warped trajectories produced do not contain all
points of the original trajectories. The number of the points in the original
trajectories varies from 163 to 616 (average: 259) for work cycle 1, and from
80 to 150 (average: 104) for work cycle 2. Each of the warped trajectories in
Fig. 3.14b contains 39 points, which is shorter than any of the original trajec-
tory in Fig. 3.14a. Fig. 3.14d shows the warped trajectories of the same length
with 52 points for work cycle 2. They are also shorter than any trajectory in
Fig. 3.14c.

As shown in Fig. 3.14, the trajectory points recorded on the way to the stor-
age rack overlap with points on the way back to the assembly platform. Thus

3.7 Results 65

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Part 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Part 2

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Part 3

Figure 3.15: Point associations of the trajectories for work cycle 1 using the stretch-
and-then-compress method. The associated points at the same index k of the warped
trajectories, gn(k), n = 1, . . . N , are indicated using dots of the same color.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

(a) Part 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Part 2

Figure 3.16: Point associations of the trajectories for work cycle 2 using the stretch-
and-then-compress Method. The points of the same color are associated to each other.

it is difficult to depict the association of the points in one single picture. To
show the point associations more clearly, we partition the warped trajectories

66 Joint Alignment of Many Trajectories

into several parts, and picture the associations for each part separately.
Fig. 3.15 shows the point associations for the trajectories for work cycle 1 in

three parts: Part 1 in Fig. 3.15a for the journey that the workers walk from the
assembly platform to the right corner of the storage rack; Part 2 in Fig. 3.15b
for that the workers walk from the right to the left corner of the storage rack;
Part 3 in Fig. 3.15c for that the workers walk from the left corner of the storage
rack back to the assembly line. In Fig. 3.15, the points at the same time index
of the warped trajectories, gn(k), n = 1, . . . N , are indicated using dots of the
same color. Red, blue, magenta, cyan, green and yellow are used iteratively to
show the point associations.

Fig. 3.16 shows point associations for the trajectories for work cycle 2 in
two parts: Part 1 in Fig. 3.16a the workers walk from the assembly platform
to the right corner of the storage rack; Part 2 in Fig. 3.16b the workers walk
from the right corner back to the assembly platform. The points at the same
time index of the warped trajectories, are also indicated using dots of the same
color.

For a good trajectory alignment, the associated points, i.e. the points at the
same time index of the warped trajectories, should be spatially close to each
other. In Fig. 3.15 and Fig. 3.16, the associated points are indicated using dots
of the same color. If the physical locations of the points are close to other points
of the same color, but non-overlapped with other points of different colors, the
point associations will lead to a good trajectory alignment.

In Fig. 3.15, the points in different colors mix together, and the associated
points can not be identified from their colors easily. In Fig. 3.16, the asso-
ciated points can be identified easily by their colors. We can clearly see the
iterative uses of the seven colors in indicating associated points. It means that
the stretch-and-then-compress method works better in aligning the 12 trajec-
tories for work cycle 2 with high similarity. The 82 trajectories for work cycle 1
are more diverse. The stretch-and-then-compress method is based on pairwise
trajectory alignment. Although the associated points in non-adjacent trajec-
tories can be located through the alignment between adjacent trajectories, the
points may be not optimally associated, and the distance between associated
points will be amplified as the associations are established through more adja-
cent trajectory alignments. In the future, we will try to associate the points
in non-adjacent trajectories in a better way, through utilizing the many-to-one
correspondences established by the stretch operation, instead of purely using
one-to-one point correspondences built by the compress operation.

Fig. 3.17 depicts the average trajectory g0(k), k = 1, . . .K and the variance
of the physical locations along the average trajectory, σg(k), k = 1, . . .K, for
each type of executed work cycle respectively. The average trajectory is shown
in red lines with dots. The location variance of the trajectory points is indicated
using a gray band along the average trajectory. The wider the band is, the more
dissimilar the associated points are and vice versa. From Fig. 3.17, we can see
the factory workers execute the first type of work cycle more variously than the
second one. The mean variance of the physical locations of the trajectory points

3.7 Results 67

(a) Work cycle 1 (b) Work cycle 2

Figure 3.17: Physical location variance along the average trajectory extracted using
the stretch-and-then-compress method. (a) depicts the average trajectory in red lines
with dots indicating the physical locations of the points on the average trajectory for
work cycle 1. The width of the gray band along the average trajectory indicates the
variance of the physical locations of the trajectory points. (b) is for work cycle 2.

is 21.932 cm for work cycle 1, and 7.602 cm for work cycle 2. It also proves
the better performance of the stretch-and-then-compress method in aligning
trajectories with high similarity for the second type of executed work cycle.

3.7.1.2 Greedy Method based on Successor Classification

Using this greedy method, the successors of the current path element are classi-
fied intoM groups at each step of the warp path, resulting in 2M −1 candidate
cells for the next path element. To analyze the influence of the category num-
ber of the successors on the average trajectory extraction, we test our greedy
method on both factory worker trajectories and vehicles trajectories.

We first test our greedy method on the 82 trajectories of factory workers
for the first type of executed work cycle, with M from 3 to 8. Factory worker
trajectories are recorded using a multi-camera system at the same frame rate
of 20 fps. Because the workers do not execute the work cycle in exactly the
same way, the recorded trajectories contain different number of data points,
from 163 to 616 (average: 260). These trajectories are aligned using the greedy
method, and the points associations established are used to extract the average
trajectory. Fig. 3.18 shows the average trajectories using red lines with dots.
We can see that the physical locations of the points of the average trajectory
do not change much as M increases.

We also test our method on 113 GPS trajectories with different sampling
rates from every 1 second to every 10 seconds. The number of data points in
the GPS trajectories ranges from 11 to 92 (average: 33). The trajectories are
averaged through jointly trajectory alignment using our greedy method as well.
As shown in Fig. 3.19, the average trajectory does not change much spatially
as M increases from 3 to 8.

68 Joint Alignment of Many Trajectories

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) M = 3

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

(b) M = 4

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

(c) M = 5

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

(d) M = 6

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

(e) M = 7

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(f) M = 8

Figure 3.18: Average factory worker trajectories with different M . The physical
locations of the points of the average trajectory do not change much as the number
of successor classes increases from 3 to 8.

Although the physical locations do not change significantly, the computa-
tional cost gets higher, and more points are produced in the warped trajectories,
as the category number of the successors gets bigger. As shown in Fig. 3.20, it
takes 16.22 seconds to align the worker trajectories in Matlab 8.3 on a 2.0 Ghz

3.7 Results 69

−87.688 −87.684 −87.68 −87.676
41.868

41.87

41.872

41.874

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) M = 3

−87.688 −87.684 −87.68 −87.676
41.868

41.87

41.872

41.874

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) M = 4

−87.688 −87.684 −87.68 −87.676
41.868

41.87

41.872

41.874

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(c) M = 5

−87.688 −87.684 −87.68 −87.676
41.868

41.87

41.872

41.874

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(d) M = 6

−87.688 −87.684 −87.68 −87.676
41.868

41.87

41.872

41.874

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(e) M = 7

−87.688 −87.684 −87.68 −87.676
41.868

41.87

41.872

41.874

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(f) M = 8

Figure 3.19: Average GPS trajectories with different M . 113 GPS trajectories
are aligned using the greedy method with M from 3 to 8, producing the average
trajectories as indicated using red lines with markers.

machine with 4 GB RAM, producing an average trajectory of 1250 points, if
the successors are classified into 3 groups. However, the computational time
rapidly increases to 852.01 seconds, and the length of the average trajectory
increases to 4492 points, for classifying the successors to 8 groups. Fig. 3.21

70 Joint Alignment of Many Trajectories

M

P
o
in

t
n
u
m

b
e
r

3 4 5 6 7 8
1000

2000

3000

4000

5000

(a) The length of the warped trajectories.

3 4 5 6 7 8
0

200

400

600

800

M

T
im
e
(s
e
c
o
n
d
)

(b) Computational time.

Figure 3.20: Length of the warped worker trajectories and computation time with
different M . As classifying the successors of the current path element into more
groups, more points are produced in the warped trajectories, and the computational
time increases enormously.

3 4 5 6 7 8
90

95

100

105

110

115

120

M

P
o
in

t
n
u
m

b
e
r

(a) The length of the warped trajectories.

3 4 5 6 7 8
0

50

100

150

200

M

T
im

e
(s

e
c
o
n
d
s
)

(b) Computational time.

Figure 3.21: Length of the warped GPS trajectories and computation time with
different M . The computational time and length of the average trajectory increase
as M gets larger.

shows the results for the GPS trajectories. Both the number of the points in
the average trajectory and the time spent on computing the average trajectory
increases as M gets larger.

Since increasing the category number of the successors M does not change
the physical locations in the average trajectory but only causes a rise in the
computational time, we choose M as 3 in this work, which forms a good align-
ment with low computational cost.

Fig. 3.22b and Fig. 3.22d depict the warped trajectories produced using
the greedy method based on successor classification, for each type of executed
work cycle separately. Compared to the original trajectories in Fig. 3.22a and

3.7 Results 71

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Trajectories for work cycle 1.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Warped trajectories for work cycle 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Trajectories for work cycle 2.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(d) Warped trajectories for work cycle 2

Figure 3.22: Warped trajectories of factory workers using the greedy method based
on successor classification. (a) and (b) show the original trajectories and the warped
trajectories separately for the first type of executed work cycle. (c) and (d) are for
for the second type of executed work cycle. Because the greedy method based on suc-
cessor classification only builds many-to-one point correspondences without creating
any new points, there are no positional difference between the physical locations of
the warped trajectories and those of the original trajectories.

3.22c, there are more points in the warped trajectories due to the many-to-
one point correspondences. Each of the warped trajectories for work cycle 1,
as shown in Fig. 3.22b, contains 1250 points. There are 312 points in each
of warped trajectories for work cycle 2, as shown in Fig. 3.22d. Although
the warped trajectories are longer than the original trajectories, the positional
appearance does not change because this method does not create any new point,
but duplicates points at the same position along the warp path.

Fig. 3.23 depicts the point associations of the trajectories for work cycle
1 in three parts, as in did in Fig. 3.23 using the stretch-and-then-compress
method. The points at the same time index of the warped trajectory, gn(k),
n = 1, . . . N , are associated to each other. Fig. 3.23 shows the associated points
using dots of the same color. Red, blue, magenta, cyan, green and yellow are

72 Joint Alignment of Many Trajectories

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Part 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

(b) Part 2

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(c) Part 3

Figure 3.23: Point associations of the trajectories for work cycle 1 using the greedy
method based on successor classification. The associated points at the same index k
of the warped trajectories, gn(k), n = 1, . . . N are indicated using dots of the same
color. Only part of the point associations are shown for clarity.

used iteratively to show the point associations along the warp path.
Because of the many-to-one correspondences, the adjacent points in the

warped trajectories may share the same physical location. It is impossible
to depict the points associated by every element of the warp path clearly.
Fig. 3.23 shows the associated points at some of the time indexes k of the
warped trajectories. In Fig. 3.23a for Part 1 of work cycle 1, we show one
out of every 15 points in each warped trajectory, gn(k), n = 1, . . . N , k =
1, 16, . . . bK15c. We show the associated points of the warped trajectories at
time indexes k = 1, 31, . . . bK30c in Fig. 3.23b for Part 2 of work cycle 1, and the
associated points at time indexes k = 1, 16, . . . bK15c in Fig. 3.23b for Part 3 of
work cycle 1.

Fig. 3.24 shows the point associations of the trajectories for work cycle 2 in
two parts, as did in the Fig. 3.16 using the Stretch-and-then-compress method.
For visual clarity of the point associations, we show one out of every 5 points
in each warped trajectory, gn(k), n = 1, . . . N , k = 1, 6, . . . bK5 c. The points at

3.7 Results 73

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

(a) Part 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Part 2

Figure 3.24: Point associations of the trajectories for work cycle 2 using the greedy
method based on successor classification. The points of the same color are associated
to each other. Only part of the associations are shown for clarity.

the same time index of the warped trajectories, are also indicated using dots
of the same color.

Adjacent points in one warped trajectory are depicted as dots in different
colors. However the adjacent points in the warped trajectory may be duplicated
from the same point in the original trajectory because of the many-to-one
correspondences. In Fig. 3.23 and 3.24, the color of the dot is renewed by
the point of the same location at higher time index in the warp trajectory.
Therefore, the dots in different colors may mix together, especially at the left
and right corners of the storage rack where the workers stay statistic to pick
up tools and parts.

Compared to the point associations in Fig. 3.15, which is established using
the Stretch-and-then-compress method, the associated points can be identified
by their colors easier in Fig. 3.16, which indicates better point associations
built by the greedy method based on successor classification.

In Fig. 3.24, we can clearly see the iterative uses of the seven colors in
indicating associated points, as we do in Fig. 3.16. It indicates that both
proposed methods have good performance of aligning the trajectories with high
similarity for work cycle 2.

Fig. 3.25 depicts the average trajectory g0(k), k = 1, . . .K and the physi-
cal location variance σg(k), k = 1, . . .K along the average trajectory for each
type of executed work cycle, respectively. The width of the band indicates the
intensity of the physical location variance. The wider the band is, the less sim-
ilarity the associated points and vice versa. The mean variance of the physical
locations σg is 13.222 cm for work cycle 1 using the greedy method based on
successor classification, which is one thirds lower than mean variance 21.932

cm using the stretch-and-then-compress method. The band in Fig. 3.25a is
thinner than that in Fig. 3.17a for the same trajectories, which means that
the associated points are more similar to each other. It proves the robust-

74 Joint Alignment of Many Trajectories

(a) Work cycle 1 (b) Work cycle 2

Figure 3.25: Physical location variance along the average trajectory extracted using
the greedy method based on successor classification. (a) and (b) depict the average
trajectory in red lines with dots, and the physical location variance using a gray band
along the average trajectory for each type of executed work cycle, respectively.

ness of the greedy method based on successor classification in aligning highly
dissimilar trajectories. For work cycle 1, the mean variance is 6.792 cm in
Fig. 3.25b, which is also lower than the mean variance 7.602 cm obtained from
the stretch-and-then-compress alignment. It proves that the greedy method
based on successor classification establishes better point associations than the
stretch-and-then-compress method.

However, the greedy method based on successor classification produces
warped trajectories longer than necessary. There are 1250 points in each
of the warped trajectories for work cycle 1, and 312 points for work cycle
2. Along some adjacent elements of the warp path (w1(k), . . . wN (k)) and
(w1(k+1), . . . wN (k+1)), only a few trajectories increase time index jn(k) = 1,
leading to a lot of points duplicated at the k and k + 1 step of the warp path.
As a result, two adjacent points in the average trajectory may locate at very
similar locations. In the future, we will try to increase time index in more
trajectories if the dissimilarity measure does not change much, when the warp
path advances to the next cell.

This greedy method proceeds the warp path at each step purely based on
the current cell and its successors. One abnormal step with very dissimilar
corresponding points could result in big errors at all of the following steps.
However, there is no error found during the trajectory alignment for any type
of work cycles, because the abnormal trajectories have been already removed
through trajectory clustering, and are not aligned with the normal trajectories.
To analyze the shortcomings of the greedy method, we manually select five
normal trajectories and one abnormal trajectory for work cycle 1, as show in
Fig. 3.26. This abnormal trajectory is generated by the users walking from the
right corner to the left corner of the storage rack, revisiting the right corner,
and walking to the left corner again. These six trajectories are aligned using

3.7 Results 75

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Average track

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Point correspondences

Figure 3.26: Dissimilar trajectory alignment using the greedy method based on suc-
cessor classification. (a) shows 5 of the normal trajectories for work cycle 1 in Fig. 2.7a
using black lines with dots, 1 of abnormal trajectories in Fig. 2.7d using blue lines
with dots, and the average trajectory extracted from these six trajectories using red
lines with dots. (b) shows the point correspondences between the abnormal trajectory
and the average trajectory.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Average track

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Point correspondences

Figure 3.27: Dissimilar trajectory alignment using the stretch-and-then-compress
method. (a) shows the extracted average trajectory using red lines with dots. (b)
shows the point correspondences between the abnormal trajectory and the average
trajectory.

the greedy method, and the warped trajectories produced are averaged directly.
Fig. 3.26a shows the average trajectory using red lines with dots. We can see

that the average trajectory is noisy on the worker’s way back to the assembly
platform. Because it is difficult to visually show the point correspondences
of all 6 trajectories at the part with big errors, we only illustrate the point
correspondences between th abnormal trajectory and the average trajectory in
Fig. 3.26b. The matched points are linked using dashed lines. In the normal
trajectories, the worker only walks through the area in front of the storage

76 Joint Alignment of Many Trajectories

rack once from the right corner to the left corner. However, the worker walks
through this area three times from right to left, left to right, and right back
to left again in the abnormal trajectory. The points generated by the worker
walking in front of the storage rack in the normal trajectories are matched
to the points produced by the worker walking from the right corner to the left
corner for the first time in the abnormal trajectory. Because the greedy method
keeps the points of each warped trajectories in the same relative order within
the original trajectory, the points generated by the worker revisiting the right
corner and walking back to the left corner again in the abnormal trajectory
are matched to the points generated on the worker’s way back to the assembly
platform in the normal trajectories, producing a windy average trajectory.

We also test our stretch-and-then-compress method on the same six tra-
jectories, and show the results in Fig. 3.27. Because the compress operation
keeps pairs of points with the smallest dissimilarity, the points generated by
the worker revisiting the right corner and walking back to the left corner again
are removed, and not used to produce the average trajectory. Therefore the
extracted average trajectory is more smooth than the one in Fig. 3.26. It proves
that the stretch-and-then-compress method is more robust to the special case
that the trajectory is generated by the user going back to the location he or
she visits earlier during the journey.

3.7.1.3 Average Trajectory Comparison

Considering other DTW-related methods mentioned in Section 3.1 are designed
to average the trajectories without building such point associations, we will
compare our proposed methods with them on this point on both factory worker
trajectories and vehicle trajectories.

Fig. 3.28 shows average trajectories for the first type of executed work cycle
using the methods mentioned in Section 3.1, and both of our proposed methods.
Fig. 3.29 is for the second type of executed work cycle. The original trajectories
are depicted using black lines with dots The average trajectories are indicated
using red lines with dots. The dots indicate the locations of the points on the
trajectories.

In our application of work cycle optimization, the average trajectories are
extracted as prototypical routes, which can be used to guide the workers to
execute their work cycles efficiently. A prototypical route for each type of work
cycle is defined as a route representing how the workers spatially travel to the
storage rack, pick up tools and parts and travel back to the assembly platform,
with considering all of their trajectories.

Junejo extracts the average trajectories from the inner and outer boundaries
of the trajectories [Junejo 07], as shown in Fig. 3.28a and 3.29a. The executed
average trajectory is unrelated to the spatial distribution of the points of the
trajectories. Ignoring the trajectory points between these two boundaries leads
to the average trajectories not representative. Therefore they are not suitable
to be used as prototypical routes for the workers.

3.7 Results 77

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Junejo

−50 0 50 100 150 200 250
0

40

80

120

160

x(cm)

y
(c
m
)

(b) Petitjean

−50 0 50 100 150 200 250
0

40

80

120

160

x(cm)

y
(c
m
)

(c) Niennattrakul

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(d) Stretch-and-then-compress method

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(e) Greedy method based on successor
classification

Figure 3.28: Results of average trajectory extraction for work cycle 1.

78 Joint Alignment of Many Trajectories

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Junejo

−50 0 50 100 150 200 250
0

40

80

120

160

x(cm)

y
(c
m
)

(b) Petitjean

−50 0 50 100 150 200 250
0

40

80

120

160

x(cm)

y
(c
m
)

(c) Niennattrakul

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(d) Stretch-and-then-compress method

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(e) Greedy method based on successor
classification

Figure 3.29: Results of average trajectory extraction for work cycle 2.

3.7 Results 79

The average trajectories extracted using Petitjean’s DBA method [Petit-
jean 11] are very noisy and jumpy, as shown in Fig. 3.28b and 3.29b. In reality,
they cannot be used as prototypical routes because the workers will spend more
time on the windy routes, and miss the next part to be assembled on the assem-
bly line. The smoothness of route is important in path planning [Kanayama 89]
and the windy routes will make the worker less efficient.

As shown in Fig. 3.28c and 3.29c, Niennattrakul’s method based on shape
averaging extracts more representative and smooth average trajectories, which
can be used as prototypical routes to guide the workers for their journey of
picking up tools and parts. The main downside of this method is that compu-
tational cost gets higher very quickly as aligning more trajectories.

Fig. 3.28d and 3.29d show the average trajectories extracted by aligning
the trajectories using our stretch-and-then-compress method, for each type of
work cycle respectively. The compress operation keeps only pairs of points
which are more similar to each other, therefore some information is lost during
the trajectory alignment, especially at the area where the physical locations of
the points are more diverse, for instance, the left and right corners of the storage
rack in Fig. 3.28d. The workers will not reach the left and right corners of the
storage rack if the average trajectory in Fig. 3.28d is used as the prototypical
route. The trajectories for work cycle 2 are more similar to each other, thus
the compress operation does not remove many points. The average trajectory
extracted for work cycle 2 is more representative, as shown in Fig. 3.29d.

Fig. 3.28e and 3.29e depict the average trajectories produced by joint align-
ing the trajectories using our greedy method based on successor classification.
The average trajectories extracted for both types of work cycles are smooth
and representative. Different from the stretch-and-then-compress method, the
greedy method establishes many-to-one point correspondences without remov-
ing any points. There is no information lost in the warped trajectories. The
average trajectories are calculated using full information of the original trajec-
tories, they are therefore more representative than those extracted using the
stretch-and-then-compress method.

Establishing the time correspondences among the points of the trajectories
using our proposed methods not only benefits calculating the average trajec-
tory with a better spatial representation of the trajectories, but also help to
calculate the average speed, speed variance and location variance along the
average trajectory. The location variances for each method have been shown
in Fig. 3.17 and 3.25. The average speed and speed variance will be discussed
in Chapter 5 for work cycle optimization. The other methods mentioned in
Section 3.1 are only designed to extract the average trajectory, providing no
support for statistical analysis.

3.7.1.4 Computation time analysis

We implemented and tested our algorithm in MATLAB 8.3 on a 2.0 Ghz ma-
chine with 4 GB RAM. Fig. 3.30 shows the computation time in seconds and
the length of the average trajectory (the number of the data points in the av-

80 Joint Alignment of Many Trajectories

0

20

40

60

80

100

0 20 40 60 80
Number of trajectories

C
o
m

p
u

ta
ti
o
n
a
l
ti
m

e
 (

s
e
c
o
n
d
s
)

Petitjean

Niennattrakul

The stretch-and-then-compress method

The successor-classification-based method

(a) Computational time

0 20 40 60 80
0

500

1000

1500

2000

2500

Number of trajectories
L
e
n
g
th

 o
f
th

e
 a

v
e
ra

g
e
 t
ra

je
c
to

ry

(b) Length of the average trajectory

Figure 3.30: Computational time with different number of trajectories. As aligning
more trajectories, the computational time increases for all methods, and the length
of the average trajectory increases using Petitjean’s method and our greedy method.

erage trajectory), as aligning more trajectories for work cycle 1 as shown in
Fig. 3.14a.

The results using Petitjean’s method [Petitjean 11], Niennattrakul’s method
[Niennattrakul 09], and each of our proposed methods are depicted in red star,
green circle, blue cross and black square separately. As shown in Fig. 3.30a, the
computational time increases for all of the aforementioned methods as aligning
more trajectories. But the computation time using our greedy method based on
successor classification does not increase extraordinarily as other methods do.
It takes 20.61 seconds using the greedy method based on successor classification,
43.55 seconds using the stretch-and-then-compress method, 56.33 seconds using
Petitjean’s method and 82.66 seconds using Niennattrakul’s method to align
80 trajectories. This shows that our greedy method is more scalable on larger
dataset than other methods.

Fig. 3.30b shows the length of the average trajectory. Using Petitjean’s
method, the number of data points in the average trajectory stays the same as
245, no matter how many trajectories are aligned. As aligning more trajecto-
ries, the number of the data points in the average trajectory increases gradually
using both Niennattrakul’s method and our greedy method based on succes-
sor classification, but decreases using our stretch-and-then-compress method
because of the compression operation.

Factory worker trajectories in our work are very different from those used
in Junejo’s work. Junejo applied image processing technique to get the bound-
aries from all of the tracks, so as to extract the road path from the boundaries.
However our trajectories are recorded during the work cycles of the factory
workers going forth and back between the assembly platform and the storage
rack. As aligning more trajectories, it is more difficult to find the inner bound-

3.7 Results 81

−87.668 −87.666 −87.664 −87.662 −87.66 −87.658 −87.656 −87.654
41.8735

41.874

41.8745

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Figure 3.31: Point associations of the warped GPS trajectories on one road segment
using the stretch-and-then-compress method. The associated points at the same index
k of the warped trajectories, gn(k), n = 1, . . . N , are indicated using dots of the same
color.

ary automatically using image processing because the trajectories of going to
the storage rack and coming back from there are overlapped. In order to apply
their algorithm on factory worker trajectories, the inner boundary obtained
needs to be corrected manually. Therefore, their computation time in terms of
the number of trajectories is not shown in Fig. 3.30.

3.7.2 Results of Chicago Data Set

In this section, we show the trajectory alignment results for one road segment of
the Chicago data set. We will first show the results using the stretch-and-then-
compress method in Section 3.7.2.1, then the results using the greedy method
based on successor classification in Section 3.7.2.2.

3.7.2.1 Stretch-and-then-Compress Method

Fig. 3.31 depicts the point associations of the warped GPS trajectories on
one road segment, which are produced using the stretch-and-then-compress
method. The road segment is directed from the left to the right intersection,
as shown in red circles. The associated points, i.e. the points at the same
time index k of the warped trajectories, gn(k), n = 1, . . . N , k = 1, . . .K,
are indicated using dots of the same color. Red, blue, magenta, cyan, green
and yellow are used iteratively to show the point associations at time indexes
k = 1, . . .K.

From Fig. 3.31, we can identify the associated points easily by their colors,
although a few points in different colors mix together. We can clearly see
iterative use of the seven colors in indicating associated points. This indicates
the stretch-and-then-compress method has a a good performance in aligning
many GPS trajectories.

The original trajectories shown in Fig. 3.13 contain between 27 to 32 points
(30 on average). The warped trajectories produced using the stretch-and-then-
compress method contain 22 points, respectively. The points at the same time
index of the warped trajectories are averaged to create a geometric represen-

82 Joint Alignment of Many Trajectories

Figure 3.32: Location variance along the average trajectory extracted using the
stretch-and-then-compress method. The average trajectory is shown in red lines with
dots indicating the locations of the points of the average trajectory. The width of the
gray brand along the average trajectory indicates the location variance.

−87.668 −87.666 −87.664 −87.662 −87.66 −87.658 −87.656 −87.654
41.8735

41.874

41.8745

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Figure 3.33: Point associations of the warped GPS trajectories on one road segment
using the greedy method based on successor classification. The associated points at
the same index k of the warped trajectories, gn(k), n = 1, . . . N , are indicated using
dots of the same color.

tation of the road segment, g0(k), k = 1, . . . 22, as shown in Fig. 3.32. The
average trajectory extracted using this alignment method locates in the middle
of the physical locations of the warped trajectories, along the road direction
from the left to the right intersection. The location variance of the GPS points
of the trajectories is shown using a gray band along the average trajectory. The
width of the band indicates the intensity of the location variance. The mean
variance of the physical locations of the points in the warped trajectories along
the average trajectory is (2.35×10−4)2 degrees in longitude, and (6.29×10−5)2

degrees in latitude. Compared to the longitude range of 0.01 degrees and the
latitude range of 0.001 degrees, the mean variances are very small, which shows
a good geometric representation for the road segment.

3.7.2.2 Greedy Method based on Successor Classification

Fig. 3.33 depicts the point assignations for the same GPS trajectories as shown
in Fig. 3.13, which is produced using the greedy method based on successor
classification. The points at the same time index k of the warped trajectories
gn(k), n = 1, . . . N , k = 1, . . .K are associated to each other, i.e. spatially
close to each other. The associated points are indicated using dots of the same

3.7 Results 83

Figure 3.34: Location variance along the average trajectory extracted using the
greedy method based on successor classification. The average trajectory is shown
in red lines with dots, and the location variance in a gray brand along the average
trajectory.

color. Red, blue, magenta, cyan, green and yellow are used iteratively to show
the point associations along the warp path. The associated points can be easily
identified by their colors in Fig. 3.33. Points of the same color gather at similar
physical locations, which proves good point associations.

Along the warp path, all of the trajectories are warped to 38 points. Al-
though the warped trajectories are longer than any of the original trajectories,
there is no positional difference between the warped trajectories and the origi-
nal trajectories, since the greedy method only duplicates points of the original
trajectories rather than creating new points. A geometric of representation of
the directed road segment g0(k), k = 1, . . . 38 is extracted by averaging the
points of the warped trajectories at the same time index, as shown in Fig. 3.34.
The width of the gray band along the average trajectory indicates the loca-
tion variance of the GPS points of the trajectories. The mean variance of
the point locations of the warped trajectories along the average trajectory is
(1.69 × 10−4)2 degrees in longitude, and (6.02 × 10−5)2 degrees in latitude,
which are slightly smaller than the mean variance of the point locations of
the warped trajectories produced by the stretch-and-then-compress method.
It shows that our greedy method also builds a good alignment for many GPS
trajectories.

3.7.2.3 Average Trajectory Comparison

We extract the average trajectory from 79 GPS trajectories using other DTW-
related methods mentioned in Section 3.1, and both of our proposed methods.
Fig. 3.35 shows the average trajectories in red lines with dots. The dots in-
dicates the locations of the points of the average trajectories. The original
trajectories are shown in black lines with dots. In all of 79 GPS trajectories,
the road users keep moving at a speed of around 35 km/h. None of the adjacent
points share the same location.

The original trajectories contain between 27 to 32 points (30 on average).
The average trajectories extracted using Junejo’s, Petitjean’s and Niennat-
trakul’s methods contain 34, 38 and 47 points, respectively. There are 22

84 Joint Alignment of Many Trajectories

−87.668 −87.666 −87.664 −87.662 −87.66 −87.658 −87.656 −87.654
41.8735

41.874

41.8745

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Junejo

−87.668 −87.666 −87.664 −87.662 −87.66 −87.658 −87.656 −87.654
41.8735

41.874

41.8745

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Petitjean

−87.668 −87.666 −87.664 −87.662 −87.66 −87.658 −87.656 −87.654
41.8735

41.874

41.8745

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(c) Niennattrakul

−87.668 −87.666 −87.664 −87.662 −87.66 −87.658 −87.656 −87.654
41.8735

41.874

41.8745

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(d) Stretch-and-then-compress method

−87.668 −87.666 −87.664 −87.662 −87.66 −87.658 −87.656 −87.654
41.8735

41.874

41.8745

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(e) Greedy method based on successor classification

Figure 3.35: Results of average trajectory extraction for 79 GPS trajectories.

3.8 Conclusions 85

and 38 points in the average trajectories produced using our stretch-and-then-
compress method and our greedy method based on successor classification, re-
spectively. All of the methods show good performance on averaging the highly
similar GPS trajectories.

3.8 Conclusions
In this chapter, we presented two novel approaches to align many trajectories.
We apply DTW with a “stretch and then compress” strategy to align the tra-
jectories pairs in the first method. The trajectories are aligned once together
using the greedy method based on successor classification. The stretch-and-
then-compress method produces one-to-one correspondences among the points
of the warped trajectories, which are shorter than any of the original tra-
jectories. However, the warped trajectories produced by the greedy method
are longer than any of the original trajectories, because of the many-to-one
point correspondences. By comparing the variance of the physical locations of
the associated points in the warped trajectories, the greedy method based on
successor classification established better point associations than the stretch-
and-then-compress method did.

We extracted the average trajectory using the point associations built by our
proposed methods, and compared with other DTW-related methods trajectory
averaging on both factory worker and vehicle trajectories. Experimental results
show good performance of our alignment methods on averaging trajectories,
and the robustness of our greedy method on aligning diverse trajectories.

The joint trajectory alignment not only allows route estimation by averaging
the warped trajectories, but also a deeper statistical analysis, such as location
variance and speed variance. For Factory data set, the prototypical route and
the prototypical speed and dwell time along the route will be inferred using
the trajectory alignment in Chapter 5. For Chicago data set, the road network
will be generated using the trajectory alignment in Chapter 6.

This research resulted in one publication in International Journal of Geo-
Information [Xie 15b]. Furthermore, several papers have been published in the
proceedings of the international conferences [Xie 14a], [Xie 14c].

86 Joint Alignment of Many Trajectories

4
Room Layout Exploration

from Trajectories

Object recognition has always been one of the important topics in computer
vision. However it has not been widely used in ambient intelligence which deals
with human behavior analysis and analysis of human interactions with the
environment [Peursum 05a]. Typically, researchers encode useful information
about the smart environment, such as the size, type and and location of objects
of interest and the ground plan of the room manually. Automatically detecting
the objects will not only relieve them from this tedious job, but is also an
important step to develop real applications: time consuming calibration and
configuration is an important cost factor in those applications.

Researchers traditionally employ image features such as color, shape, and
texture to classify objects. However, methods based on such features are sensi-
tive to illumination changes, as well as to the view point from which an object
is seen and occlusions [Mel 97]. Moreover, these methods need cameras with a
high resolution to extract detailed features of objects, also making them com-
putationally expensive [Mel 97,Torralba 10]. This is uneconomic for home and
office-based applications.

In this chapter we propose a new method to recognize the presence of ob-
jects in a meeting room, such as chairs, table and walking areas, indirectly
from low-precision trajectories of people. Rather than relying on detailed im-
age information, our method relies on the long-term integration of trajectory
data to learn about the room layout and also tolerates imprecise data. Thus,
the presence of objects is inferred from contextual knowledge about the rela-
tionship between the objects, room areas and human activities. The resulting
information about the objects is useful as statistical prior information for other
computer vision tasks (e.g. as feedback about possible walking and sitting ar-
eas to a tracking system). It can also enhance the existing direct recognition
methods by providing indirect evidence of a very different nature.

A trajectory includes the ground location of all meeting participants and
their head height as a function of time. This head height changes as people
perform different activities, specifically it gets lower when sitting down. Es-

88 Room Layout Exploration from Trajectories

timating the trajectories is not the topic of this thesis, but such trajectories
can be created from low resolution images [Gruenwedel 11a] and moreover in
many applications they are computed anyway [Wang 06]. The trajectories
used in this chapter are obtained from a multi-camera system developed or the
project ‘iCocoon” (Immersive COmmunication by means of COmputer visiON)
by Image Processing and Interpretation (IPI) research group, in cooperation
with the Vision Systems (VIS) research group. The project aims to dramati-
cally change the way people communicate remotely by creating third-generation
video conferencing applications. The multi-camera system focuses on real-time,
low-latency and scalable tracking of multiple people. More information about
the setup, the tracking algorithm and other applications of our system can be
found in our earlier papers [Gruenwedel 11b,Jelaca 11,Gruenwedel 12].

We propose to categorize people’s instantaneous activities using the speed
and height information extracted from the trajectories, and merge these instan-
taneous activities into higher-level activities spanning longer periods of time.
From this higher level activity information we build two occupancy maps, one
for sitting space and the other for walking space. Positions of chairs are esti-
mated using the sitting space map. The table is inferred based on the walking
space map and chairs positions.

The remainder of this chapter is structured as follows: In the next section,
we briefly introduce related work on object recognition. Section 4.2 gives an
overview of our approach, and Section 4.3 discusses activity classification. Sec-
tion 4.4 describes how to build and update the occupancy maps and recognize
the objects from the maps. In Section 4.5, we present experiments Section 4.6
concludes the chapter.

4.1 Related Work

In the past decades, there has been much progress on functional object recog-
nition through analyzing human activities in the environment. Several re-
searchers have exploited context knowledge and human interaction with the
environment as important means to classify objects [Peursum 05a,Veloso 05,
Veloso 06,Wu 09,Wu 11,Kjellström 11].

Peursum et al. employ a Bayesian network to classify image region patches
with object labels by segmenting and recognizing human actions in an office
room [Peursum 05b, Peursum 05a]. They firstly generate the skeleton of the
single person in the office room by extracting the person’s silhouette from
video using background segmentation. They then extract ten features from the
skeleton, such as leg lenth, torso length and torso angle, and use these features
to train Hidden Markov Models (HMMs). Actions are recognized using HMMs.
The recognized actions are then used to label specific image patches using the
tags “floor,” “chair,” “keyboard,” “printer” and “paper.” Although this object
recognition method is independent on the object shape, a fine skeleton is needed
to get the features of the moving person for action classification.

Veloso et al. develop an object recognition algorithm to classify chairs

4.2 Overview of the proposed approach 89

through both their function and visual features [Veloso 05, Veloso 06]. The
color of the chairs is simply chosen as the visual feature. The function of
the chairs is defined by how people use them: sitting down on them. They
first detect people in the video stream by face recognition, and input the face
positions to HMMs to identify people’s activities, such as sit still, stand still
and fidget right. Chairs are recognized from people’s activities and the color
feature. Because the activity recognition in this work is highly dependent on
the face recognition, which is limited by the face orientation, they are not able
to detect all of the chairs in the room.

Wu et al. define the relationships between human activities and objects
in a knowledge base constructed by Markov Logic Network (MLN) [Wu 09,
Wu 11]. They first detect some features related to the user, such as position,
height, gaze direction and hand motion. A Conditional Random Field (CRF)
model is trained and then used to recognize the following three activities from
image features: lying, seated and walking. Finally objects in both living room
and kitchen, such as chair, sofa and TV, are recognized from these activities.
This work requires high-resolution images to extract some of the features, for
instance, gaze direction and gaze area.

In the above mentioned research, image features are needed to recognize
activities. However, our approach is purely based on trajectory data, which
describes a person’s position over time and the persons’ current head height.
Trajectory data of all people in the room is processed rather than the video
itself. Therefore, by “piggy-backing” on person tracking, which is needed for
other purposes in smart meeting rooms, our approach is computationally very
efficient.

4.2 Overview of the proposed approach

Fig. 4.1 shows the flowchart of our algorithm. First, instantaneous speeds are
computed from people’s trajectories. Instantaneous speed and head height are
the features input to the SVMs to categorize instantaneous activity, resulting
in the instantaneous activity state of each person zk(t), t = 1 . . . T , k = 1, . . .K
as a function of time t. The instantaneous sitting activities of all people are
used as observations to estimate the probability of each cell on the ground
plane being sit using Bayesian theory, so as to create an occupancy map for
the sitting space, and the instantaneous walking activities are used to create
an occupancy map for the walking space .

Regions with high probability in the sitting space map are recognized as
candidate chairs, and false detections of chairs due to a very short period of
sitting activity will be removed. We are not able to distinguish between real
chairs and other objects on which people can sit (like tables), because a chair
(in the wide sense, i.e. including couches) is defined rather by its function
than its color or shape. We aim to detect areas where people perform “sitting”
activities, no matter whether there are real chairs at these areas or not.

Our approach to detect tables is based on three key assumptions:

90 Room Layout Exploration from Trajectories

trajectories

speed

height

activity

states

K persons' trajectories

instantaneous activities

at each frame

activites at each second

chair locations

table location

Feature

extraction

SVM

classification

Instantaneous

activity recognition

Instantaneous

activity fusion

Object

recognition

Occupancy map

building

Connected

component

analysis

sitting

map

chair

candidates

chairs table

walking

map

Sitting time

check

Region

growing

Figure 4.1: Flowchart of the proposed method.

• A table is always considered as a rectangular in shape.

• A table is located in the interior of a walking band and bounded by the
surrounding chairs.

• A table cannot be walked through or over by people.

With these assumptions, the largest rectangle surrounded by walking space and
chairs is considered as the table, and it is adjusted according to the locations
of the chairs. But these assumptions lead to some possible limitations. The
shape of a table is not within consideration, and empty space surrounded by
chairs will be recognized as a table.

4.3 Activity Classification

We define three kinds of human activities: sitting, standing, and walking. De-
tecting sitting allows us to detect the location of chairs in the room, assuming
that the chairs are the objects people usually sit on. Next, based on walking
activity and the detected chairs, a table is indirectly recognized. Although
standing is not directly used to identify the location of chairs, tables or other
objects, it still needs to be detected in order to distinguish this from walking.
For instance, standing is typically the last “activity” just before sitting.

These three activities can be distinguished from each other by the person’s
height and moving speed. When a person sits, his or her speed and height
tends to be very low. High height and speed indicates walking activity, and
high height and low speed are for standing activity. We employ a SVM classifier

4.3 Activity Classification 91

0 5 10 15 20 25 30 40 5035 45

(frame)

(second)

walking sitting standing

0 100 200 300 500 600 700 800 1000400 900

Figure 4.2: An example of aggregating the instantaneous activities. Instantaneous
activities over 20 frames (frame rate: 20 fps) are merged to form one higher-level
activity at each second, so as to reduce the errors in the instantaneous activity de-
tection.

to classify instantaneous human activities using person’s height and speed as
features.

Given K trajectories for K persons, rk(t), t = 1, . . . T , k = 1, . . .K,
where rk(t) = (xk(t), yk(t)) is the physical location of the person k at
time t, their instantaneous speed is defined as d rk

dt , and simply estimated as
d rk
dt =≈ (rk(t+ 1)− rk(t− 1)) × F/2, where F is the frame rate. A recursive
smoothing over time technique is used to remove the noise in the speed data.
Together with the height information as inputs to a SVM classifier, we obtain
the instantaneous activity states for each person zk(t), t = 1, . . . T , k = 1, . . .K.
There are three possible states for each person at each time, zk(t) ∈ [1, 2, 3],
where 1 is for sitting activity, 2 is for walking and 3 is for standing.

Because of the occlusion by the furniture and other people in the meeting
room the height information from our multi-camera system is not very accurate.
This may cause the instantaneous activities classified wrongly. This is evident
from experimental results, which show that some activities only last for a split
second, which is not realistic because of physiological limits. Activities typically
last for at least short period of time, e.g., one second. Therefore, instead
of updating the occupancy maps using the instantaneous activities at each
time t, we first aggregate the instantaneous activities over short time periods
into a higher-level activity state for each person at each time period i, z′k(i);
specifically this data is aggregated over a fixed number of frames, zk(t), t =
(i−1) ·L+1, . . . i ·L, where L is the number of frames in this time period. The
instantaneous activity state, which is detected most frequently during the time
period, is taken as the state of this time period. The average of L instantaneous
locations during this period is taken as the location of the person at time period
i, r′k(i) = 1

L

∑i·L
t=(i−1)·L+1 rk(t).

92 Room Layout Exploration from Trajectories

An example is shown in Fig. 4.2. There are 1000 points in one 50-seconds
trajectory. Using the SVM classifier, we get one instantaneous activity at each
frame, from the person’s height and velocity at this frame. In total, there are
1000 instantaneous activities. Every 20 consecutive instantaneous activities are
merged to one higher-level activity at each second, which are used to update
the occupancy maps. Because some body movements can still be detected
when the person is standing, his instantaneous activity can be recognized as
walking mistakenly at some frames, as shown in the upper figure. These errors
are reduced in the higher-level activities at each second, as shown in the lower
figure.

4.4 Object Recognition

Occupancy grid map is a popular tool for representing the surrounding envi-
ronments of the moving objects. They represent environments by fine-grained
grids of variables that reflect the occupancy of the environment. Occupancy
map updated using a specific type of activities shows the probability of the
environment occupied by the moving objects with such activities. Objects cor-
responding to this specific type of activities can be inferred from the areas with
high probability on the map. For instance, chairs tends to appear at areas with
high probability on the occupancy map for sitting space.

In this section, we build an occupancy map for the sitting space, and use
the observations of sitting to update the map. The presence and location of
chairs will then be inferred from the sitting map. Similarly, an occupancy map
for the walking space is built and updated according to observations of walking.
Finally a table is recognized by the walking space in the neighborhood of the
chair locations.

4.4.1 Occupancy map computation

In this section, we build 2D occupancy map for sitting space and walking
space using sitting and walking activities, respectively. The ground plane is
discretized into a fine grid of cells. Each cell in the sitting map stores the
probability of people sitting in that cell, while the value of a cell in the walking
map is the probability of people walking in that cell. The area of each cell, c×c
cm2, is chosen smaller than the size of objects in the environment. Otherwise,
we can not differentiate spatially close objects that occupy the same cell.

Considering the sitting map with M × N cells as an example, the initial
probability of all cells is 0.5, i.e. p(sm,n(1)) = 0.5, m = 1, . . .M , n = 1, . . . N ,
which means that we have no knowledge about whether this cell is occupied or
not. Given the higher-level activity state for each person at time period i, z′k(i),
the probability of one cell being sit depends on depends on both the likelihood
of this new observations and the occupancy probability of this cell at the prior
time period i. We use Bayesian theory [Elfes 89], as shown in Eq. (4.1), to
update the sitting map if a sitting activity is detected, i.e. z′k(i) = 1. If no

4.4 Object Recognition 93

sitting activity is detected from any person, we do not update the sitting map.
Otherwise, if a person leaves his or her chair in the middle of the meeting,
the probability of the cell being sit will get low as the meeting goes on. After
updating the occupancy map using all of the trajectories, the probability of the
cell will be too low that no chair can be detected.

p(sm,n(i))|z′k(i)) =
p(z′k(i)|sm,n(i))p(sm,n(i− 1))

p(z′k(i))
(4.1)

Because the size of a chair is bigger than one cell, we update not only one
single cell occupied by person k, (uk, vk) = (dx

′
k(i)
c e, d

y′k(i)
c e), whose activity

state is sitting, z′k(i) = 1, but also its surrounding cells within 25 cm (The size
of a chair is normally 50 × 50 cm). The probability of the other cells at time
period i stays the same as the previous time period i− 1. In the region around
the cell (uk, vk), the closer other cells are to this cell, the more likely they are
occupied by a chair. So we use a 2D Gaussian distribution to calculate the
likelihood of these surrounding cells in this region:

p(z′k(i)|sm,n(i)) = 0.5 + 0.5e
−(

(m−uk)2

2σ2m
+

(n−vk)2

2σ2n
)
, (4.2)

where u0 − 25
c < m < u0 + 25

c , and v0 − 25
c < n < v0 + 25

c .
The occupancy map for the walking space is initialized and updated in a

similar way as the sitting map, but only using the higher-level walking activity
at each time period.

4.4.2 Object recognition by analyzing occupancy maps

Chairs are areas with high probability on the occupancy map for sitting space.
We binarize the sitting map and apply connected-component analysis on it
to extract the sitting areas [Di Stefano 99]. In the binary sitting map, the
connected cells with value 1 are labeled for the same chair candidate. In total
we get J chair candidates whose covering areas are indicated using a M × N
label map. If the label value at cell (m,n) is j, this cell belongs to the jth chair.
Because of the imprecise trajectory data due to the camera’s viewing direction
or illumination problems, activities could be misclassified. Therefore not all of
the connected components are real chairs.

Whether one detected sitting area is a real chair or not depends on how
long people have been sitting on this area. During the meeting, people may
change chairs. It is possible that people take the same chair at different time.
Therefore, instead of accumulating the sitting time duration for each person, we
first count the sitting time duration for each person at each sitting area, and
accumulate the sitting time duration of different people at the same sitting
area. Given the sitting activity for each person at each time period i, we
count the time period of each cell being sit during the whole meeting, and
accumulate the time duration of the cells with the same label, i.e. the same
chair candidate. Finally we find all of all of candidate chairs in the meeting

94 Room Layout Exploration from Trajectories

room with durations of being sitting, and remove the chairs on which people
perform sitting behaviors for a very short time.

To detect the table, we proceed as follows. First we calculate the central
position of the locations of people performing sitting activity on all cells be-
longing to each chair, as the chair center. Because a table is surrounded by the
detects chairs. The mean of the locations of all chair is on the table. We choose
the chairs’ mean location as the seed, and employ a region-growing algorithm
to segment the area which is inside the closed banding of walking space. The
largest rectangle in this area is segmented as the table.

When a person walks around the table, his or her position may not be
tracked accurately because of the occlusion by the table. Instead of besides the
table, the person could be detected at one location on the table area. This leads
to walking area expanding to the table. A smaller table is eventually detected
by region growing within the walking band. During the meeting, more sitting
activities are detected than walking activities, so that the chairs detected from
the sitting activities are more accurate. We scale and stretch the rectangle
detected so that the border of the table is next to the chairs.

4.5 Experiments

Our meeting room lab is 880 × 500 cm, observed by two top-view and four
side-view cameras at 20 FPS. To evaluate the strength of our algorithm, we
recorded 9 meeting sequences over 75 minutes in total. There is only one table
in all of these sequences, but the numbers of chairs and people are not fixed:
three to eight chairs and three to five people. The ground plane is divided into
cells of 5× 5 cm2 to make sure the objects will not fall within one cell.

4.5.1 Activity classification

Activity classification results are shown in Fig. 4.3. We define the ground
truth by segmenting and labeling sequence 1 manually. Although it is not
very precise, ground truth is still able to evaluate the classification results.
Sometimes our algorithm cannot distinguish standing from walking activity
because there are many body and hand movements even when people stand
and present. For instance, person 2 stands in front of a white board and gives
a presentation during the meeting, but sometimes his activities are mistakenly
recognized as walking. When a person gets up from a chair and moves to
another location close to his chair to shake hands with others, it is hard to
accurately label the standing and walking activities even when defining the
ground truth in this case. However, the SVM classifier successfully detects the
standing activity before and after the user sits on a chair successfully (the green
sitting period is between two blue standing periods).

Compared to the ground truth, all sitting activities are successfully detected
for both person 1 and 2. There are four sitting periods for each of them. Person
3 only takes chairs to sit twice during the meeting, but we detect it four times.

4.5 Experiments 95

0

person 3

person 2

person 1

Time (frame)
5000 10000

walking sitting standing

Test results

Ground truth

Test results

Ground truth

Test results

Ground truth

Figure 4.3: Instantaneous activity classification results. Person 1’s activities are
classified more accurately than the other people. For person 2, his or her standing
activities during his presentation are mistakenly recognized as walking because of
the body and hand movements. For person 3, his or her activities are mistakenly
recognized as sitting twice because of the inaccurate height information.

These two mis-detected sitting periods are indicated using black dashed lines.
Both of these mis-detected periods happen when person 3 stands up and shakes
hands with others. Our tracker detects his height much lower than the actual
value. Therefore his activity is categorized mistakenly as sitting, resulting in
wrong sitting area detection. We will remove these false detections in the next
step.

4.5.2 Objects recognition results

Fig. 4.4 shows the chairs and table recognition results for sequence 1. In this
sequence, 3 people are participating in a meeting. There are 3 chairs and 1
table in the meeting room. People never change chairs during the meeting.
The range of the probability in Fig. 4.4c and Fig. 4.4d is from 0 (black) to
1 (white). The table in Fig. 4.4d is represented by a blue rectangle, and the
chairs are blue stars near the blue rectangle (the table). Fig. 4.5 shows the
results for sequence 2 in the same way, while there are 3 participants and 8
chairs. People sit at different places to ensure that all of chairs have been used.

For sequence 1, these sitting areas are categorized into 4 candidate chairs.
Table 4.1 shows their estimated positions, the time length of the chair being sit
during the meeting (in seconds), and the distance between the chair center and
the table edge. The third chair candidate, which is indicated using a red star
in Fig. 4.4, is a false detection, because the sitting activities there have only
lasted for 2 seconds. Although some standing activities is mistakenly detected

96 Room Layout Exploration from Trajectories

(a) Picture captured from sequence 1

0 100 200 300 400 500 600 700

0

100

200

300

400

500

x(cm)

y
(c

m
)

Trajectory 1

Trajectory 2

Trajectory 3

(b) People’s trajectories

0 100 200 300 400 500 600 700

0

100

200

300

400

500

(c) The probability map of sitting space

0 100 200 300 400 500 600 700

0

100

200

300

400

500

(d) The probability map of walking space

Figure 4.4: Detected chairs and table in sequence 1. 4 chair candidates are detected
using the sitting activities, and one of them is removed because of the short sitting
time period. The table is represented by a blue rectangle inside the enclosed banding
of walking space. (b) shows the area where people enter and exit the meeting room
using a rectangle at the left-bottom corner.

as sitting activities for person 3, as shown in the dashed lines in Fig. 4.3, no
other chairs are falsely detected from the occupancy map for the sitting space,
because person 3 stands at the location of his or her chair when his or her
standing activities are mistakenly detected as sitting activities.

Although chairs may not stay in a fixed position in the meeting room as
they are used, they do not move too far from the table and usually also not
from their original position. The size of the chairs in this paper is 50 × 50
cm. We set the range of the distance between chairs’ center and table as
(−25cm,+50cm), where −25 cm means that the chair is totally under the
table as shown in Fig. 4.5a, and + means that user pulls his chair far away
from the table and the largest distance between chairs’ center and table is 50
cm. As shown in Table 4.1, the distance for every chair is within the predefined
range, illustrating the good performance of chair detection.

4.5 Experiments 97

(a) Picture captured from sequence 1

0 100 200 300 400 500 600 700

0

100

200

300

400

500

x(cm)

y
(c

m
)

Trajectory 1

Trajectory 2

Trajectory 3

(b) People’s trajectories

0 100 200 300 400 500 600 700

0

100

200

300

400

500

(c) The probability map of sitting space

0 100 200 300 400 500 600 700

0

100

200

300

400

500

(d) The probability map of walking space

Figure 4.5: Detected chairs and table in sequence 2. 8 Chairs are detected, as
indicated using blue stars. The table is represented by the blue rectangle.

Table 4.1: Candidate chairs in sequence 1.
Candidate

chair
Estimated

position(cm)
Time duration of
being sit (second)

Distance to the
table (cm)

1 (497.9, 199.4) 188 -4.1
2 (354.7, 204.9) 85 10.3
3 (356.9, 112.2) 2
4 (391.2, 335.4) 155 30.4

Table 4.2 shows the parameters of the top-left and bottom-right corners
of the rectangle which represents the table, and their localization error. The
ground truth is obtained through calibrating the environment. All of the errors
are below 20 cm. The results of the second sequence with more tracks are more
accurate than that of the first sequence.

98 Room Layout Exploration from Trajectories

Table 4.2: The difference between the position of detected table and ground truth.
Top-left corner(cm) Bottom-right

corner(cm)
error(cm)

Seq. 1 (375.0, 150.0) (505.0, 305.0) 15.96
Seq. 2 (365.0, 160.0) (510.0, 310.0) 9.47
Ground
truth

(362.0, 160.4) (502.0, 320.4)

4.6 Conclusion
In this chapter, we presented a method to recognize objects in a meeting envi-
ronment using people’s trajectories. We extract the speed and height of people
as inputs into SVM classifier to categorize people’s instantaneous activities,
and merge the instantaneous activities to higher-level activities at every time
period, We build occupancy maps for sitting and walking spaces separately,
and utilize the higher-level activities to update the maps using Bayesian the-
ory. Finally, we infer the chairs from the sitting map, and the table from the
walking map.

Compared to the other methods presented in the other chapters of the PhD,
the work in this chapter is only a proof of principle. In the future we would
like to extend this work by improving the probability models and classification
techniques. The proposed method to detect tables may not work when there
are more than one table present in the room, or the table is close to the wall or
locates at one corner of the room. In the future, future work could also focus
on solving these issues.

This research resulted in one paper in the proceeding of 2012 International
Conference on Distributed Smart Cameras (ICDSC) [Xie 12].

5
Work Cycle Analysis

Assembly lines form the core of flow-line production systems in the industrial
production of high quantity standardized commodities [Gebus 09,Becker 06],
such as automobiles and electronic goods. Each assembly line consists of sev-
eral work stations arranged along a mechanical transportation system, e.g. a
conveyor belt. The speed of this belt, i.e., the production rate, is mainly deter-
mined by the speed of factory workers assembling various components [Hart-
mann 09]. If the speed is too high, workers may experience physical and psy-
chological stress and may start making more mistakes, reducing the quality of
the produced goods, or even leading to injuries.

Researchers have made a lot efforts to optimize the efficiency of the work
cycle performed by each worker by carefully planning and scheduling the el-
ementary operations of the work cycle and by designing the work stations.
The former is called the Assembly Line Balancing Problem (ALBP) [Mc-
Cormick 89,Boysen 07]. These optimizations are crucial to improve work effi-
ciency for long-term productions.

However, it is practical to design new assembly line and allocate the op-
erations among the work stations for each new product since the production
just runs for a short time. In this case, the work cycle needs to be changed
frequently to cope with different and new products. It is more economic to
apply the same assembly line for all of the short-term productions, but try
to optimize the work cycle itself. In this chapter, we address the particularly
challenging use case of work cycle optimization for manufacturing strategies
with short production runs.

Specifically, we focus on analyzing the tracks of factory workers around the
work station of an assembly line, as shown in Fig. 5.1. The factory worker
at each work station performs his or her task repeatedly, which consists of
certain operations, regarding the desired cycle time. Although this work cycle
is scheduled for the workers, how they execute it is different, which may lead
to work inefficiencies. Examples of inefficiencies which can be detected this
way are workers having to walk too much back and forth between the conveyor
belt and part storage racks, or workers being idle at the part storage racks
because they suddenly forget what parts to pick up, or workers walking back

100 Work Cycle Analysis

(a) Simulated work station in 3D (b) Real work station

Figure 5.1: Work station and storage rack. (a) shows the storage rack in white, the
work station in grey and the worker in blue. (b), the factory worker stands at the
work station assembling the parts. There is a storage rack behind him, where the
tools and parts are kept.

and forth from one side to the other side of the storage racks too much, or
having to hurry during certain executed work cycle phases. Fast and low-
cost work cycle optimization depends on efficiently measuring the time spent
on individual operations of scheduled work cycle and on analyzing variances
between executed work cycles statistically to detect inefficiencies or to discover
factors which may induce errors. On the other hand, this analysis also uncovers
irregularities in executed work cycles e.g. due to a temporarily exhausted
supply of components. The results of this analysis can also be used as feedback
to the workers to help them improve their efficiency.

In indoor environments, worker trajectories can be recorded using various
sensing systems. Radio-Frequency Identification (RFID) works well but sam-
ples the trajectories only at specific positions. As such it provides limited spa-
tial resolutions. Measuring the Received Signal Strength (RSS) of RF signals
and B1uetooth devices suffers from the same problems [Al Nuaimi 11, Ijaz 13].
In our own work “Multi-camera human behavior monitoring and unusual event
detection” [Bo 14], we have experimented with Ultra-wide band (UWB) based
positioning systems, which can yield an accuracy of about 3 cm. However, this
equipment is too bulky for practical use.

In our work the trajectories of the workers are measured using a multi-
camera vision system. We opted for such a system, rather than for other
measuring devices, because video analysis provides very accurate data and is
quite flexible and avoids the need to wear portable devices. Moreover, it allows
the analysis of body posture and gestures as well as trajectories, which will allow
us to refine the analysis in future work. The video analysis uses sophisticated

101

methods based on the visual hull concept and occlusion modeling to extract
three-dimension (3D) silhouettes of factory workers [Slembrouck 14]. In this
chapter, we do not focus on the video analysis but on the trajectory analysis.

In the factory environment, when factory workers move to the storage rack
to pick parts, they may stay at different locations in front of the storage rack
if they need pick up more tools and objects, or they may head to a specific
location in front of the storage rack, pick the required parts and then head
back to the assembly platform directly. While the executed work cycles will
display small variances, the tracks will tend to be similar, both spatially and
temporally. However, sometimes the tracks will differ significantly from the
typical executed track. Temporal deviations may occur if the worker is waiting
for the conveyor belt, or if the worker needs to hurry or slows down. Spatial
deviations can also occur, e.g. when the worker leaves the work station for
some reason, needs to replenish a storage rack or takes a shorter or less regular
route due to increasing or decreasing time pressure. Track analysis relies on
breaking down the scheduled work cycle in its components and on comparing
individual instances of executed work cycles to each other and to the scheduled
work cycle, both spatially (which areas does the trajectory move through?)
and temporally (how fast does the worker move at each point of the cycle?).

Trajectories analysis of moving objects provide crucial clues for behavior
analysis especially in surveillance applications. To a certain extent, the tra-
jectories of the objects tend to be similar when they perform the same or
similar behavior. Behavioral pattern analysis in factories therefore focuses on
this repetitive behavior, and deviations from it. Typical parameters of interest
relate to speed and space coverage. In literature, spatial-temporal trajectory
data have been used to understand and characterize the behaviors of mov-
ing objects and also to detect their abnormal behaviors [Morris 08]. Nguyen
et al. modeled inherent hierarchy and shared structures of human behaviors
through defining primitive behaviors using sub-trajectories between the fur-
nitures [Nguyen 05]. Behavioral pattern recognition through clustering the
trajectories has been studied throughly (Piciarelli et al. [Piciarelli 06], Naftel
et al. [Naftel 06], Kalnis et al. [Kalnis 05], Yang et al. [Yang 12] etc.).

In this chapter we propose to segment the trajectories obtained from our
multi-camera system into tracks regarding work cycle, and analyze the spatial
and temporal difference of the executed work cycles. We first cluster executed
work cycle tracks according to spatial similarity based on a spatial similarity
measure between tracks. The result is a set of clusters, each containing tracks
with high spatial similarity, but possibly low temporal similarity. In the second
step of the analysis, we temporally align all tracks of the same spatial cluster,
to establish the point correspondences among all tracks. The third step of
the analysis creates a prototypical route for each cluster, and an associated
(time-varying) speed along the prototypical route.

The prototypical route created using the tracks of the executed work cycle
provides information on the average work cycle. The prototypical velocity and
dwell time are the most frequency velocity and dwell time in which the workers

102 Work Cycle Analysis

travel along the prototypical route. This is useful for training new workers, and
for analyzing and optimizing the work cycle both spatially and temporally. For
instance, an analysis of the speed in each part of the work cycle may indicate
bottle necks and idle points. The results show that it is more accurate to build
the prototypical route using the proposed track alignment method, than by
averaging non-aligned tracks in other DTW-based methods.

The remainder of the paper is structured as follows. Related work is listed in
the next section. Section 5.2 describes how to extract the spatially prototypical
route with prototypical velocity and dwell time along the route using the track
alignment. Section 5.3 shows our experimental results. Section 5.5 concludes
this chapter.

5.1 Related work

In literature engineers have proposed to document the work in the factory
using films and evaluate the workers’ performance. Stork et al. use a video
camera to record the worker’s hands movements, and study three different
instruction modes with their influence on the hands movements during manual
assembly [Stork 08]. Stoessel et al. depict a workbench with motion sensors
and cameras as the implementation platform for the worker assistance system
[Stoessel 08]. It will be helpful to understand the entirety of human mental
functions dedicated to information processing, such as perception, attention
and action, leading to a more efficient manual assembly performance.

Different from their work, we focus on studying how the workers execute
the work cycle. The time of the worker spending on assembling tasks in each
cycle relates directly to the overall productivity of the worker in the work cycle.
Therefore, analyzing the work cycle can help redesigning the work cells based
on the actual productivity and to improve workers’ performance by analyzing
the factors leading to inefficiencies in the work cycle.

Elnekave and Gilad use a single video camera and by visually inspecting the
video they measure the distance between points of interest and – using a stop-
watch – the time interval between events of interest. This way they estimate
real work time, idle time and the time for tasks unnecessarily productive [El-
nekave* 06].

In earlier work [Bauters 14], we use a multi-camera system to locate the
factory worker’s position at second intervals. The estimated locations are then
clustered using the K-Means algorithm and the dwell time at each location is
then estimated. Cycle time analysis is not included in this paper.

In this chaptor, we aim to analyze the work cycle using the workers’ trajec-
tories around the work station. Since the workers take various routes to pick
up the parts to be assembled, we need to cluster the tracks regarding to the
work cycles. For each type of executed work cycle, the tracks will be aligned
together using the methods described in Chapter 3. The point associations
produced during the alignment will be used to average the tracks, so as to
extract a prototypical route and the prototypical velocity along it.

5.2 Work cycle optimization 103

Researchers have proposed some methods related to Dynamic Time Warp-
ing (DTW) to average the tracks by aligning them, as introduced in Sec-
tion 3.1. Junejo and Foroosh propose to average the boundary trajectories
of the “spatial envelope”, which are created from all the pedestrian trajecto-
ries [Junejo 07,Junejo 08]. Niennattrakul and Ratanamahatana propose a hier-
archical clustering approach called Prioritized Shape Averaging (PSA) based on
DTW to average all of the trajectories [Niennattrakul 09] . Petitjean et al. pro-
pose a global averaging method for DTW, called DTW Barycenter Averaging
(DBA) [Petitjean 11].

The DTW-related methods mentioned above can average multiple trajecto-
ries using different strategies but not establish the time correspondences among
the trajectories, which are used to analyze the location and speed fluctuations
in our work. We will compare our methods of track alignment on extracting
the prototypical route, i.e. the average track, with other methods on factory
worker trajectories.

5.2 Work cycle optimization

In our case, depending on how the factory workers traverse the area in front
of the storage rack so as to pick up tools and parts, the created tracks can
be grouped into different work cycles. Therefore, we first cluster the tracks
for different work cycles depending on their dissimilarity, which is described in
Chapter 2. We optimize the work cycle by analyzing the corresponding tracks,
creating a prototypical route and prototypical velocity and dwell time along the
route. Prototypical route provides information for the workers about how they
should execute the work cycle spatially. Prototypical velocity provides guiding
speed for the workers to follow. Prototypical dwell time gives time information
of how long the workers need to pick up tools and parts in front of the storage
rack. We utilize the track alignment, elaborated in Chapter 3, to calculate the
three key information for each type of work cycle.

During the work cycle, sometimes workers spend more time than necessary
on their way to pick up the tools and objects, leaving too little time left to
later assemble the parts at the assembly platform. At other times workers
may hurrying needlessly leading to idle time at the assembly platform. Both
spatial and temporal issues can lead to the worker arriving at the assembly
platform later or earlier than he should do. These include unnecessary detours,
unusual routes, abnormally fast or slow movement, unnecessary stops, needless
dwelling.

In this chapter, we compute a prototypical route for each type of work
cycle, represented using a series of data points. This route is accompanied with
specifics velocity at each point on the route, and with dwell times thus forming
a prototypical work cycle. The prototypical route is computed by averaging
the warped tracks along the warping paths. And the prototypical velocity is
computed as the mode velocity which maximize its probability function, so as
the prototypical dwell time.

104 Work Cycle Analysis

5.2.1 Prototypical Route

Given N tracks for one work cycle, rn(tn), tn = 1, . . . Tn, we utilize the methods
of trajectory alignment, which are elaborated in Chapter 3, to establish the
point associations among the tracks, resulting in warped tracks gn(k), k =
1, . . .K, n = 1, . . . N , and the time indexes of the points of the warped tracks
in the original tracks wn(k), k = 1, . . .K, n = 1, . . . N . The warped tracks
all have the same length and for specific values of k, the track points gn(k),
n = 1, . . . N are spatially close. This allows them to be averaged directly,
whereas averaging of non-warped tracks would fail in most cases.

As shown in Equation 3.4, the warped tracks are averaged at the same time
index to form a prototypical route for the work cycle, g0(k), k = 1, . . .K. The
variance of the physical locations of track points along the prototypical route,
σg(k), k = 1, . . .K, is calculated as shown in Equation 3.5:

5.2.2 Prototypical Instantaneous Velocity

The instantaneous velocity of trajectory rn(tn) is defined as d rn
dtn

and can be
estimated using various numerical techniques, the simplest one being d rn

dtn
≈

(rn(tn + 1)− rn(tn − 1)) /2. However, some temporal smoothing can provide
temporal robustness. In the following we will focus primarily on the magnitude
|d rndtn
| of the velocity.

We could similarly define the instantaneous velocity of the prototypical
route as d g0

dk , but the problem with this approach is that k does not have a
direct relationship with time. Therefore, we proceed differently: with each k
there corresponds a specific spatial location g0(k), and for each track a specific
time wn(k) at which this point is reached. Given the velocity magnitudes of
the original tracks sn(tn), tn = 1, . . . Tn, n = 1, . . . N , and the time indexes
of the points of warped tracks in the original tracks wn(k), k = 1, . . .K, n =
1, . . . N , the instantaneous velocity along each warped track is expressed as
vn(k) = sn(wn(k)), k = 1, . . .K, n = 1, . . . N . We then define the prototypical
instantaneous velocity, v0(k), k = 1, . . .K, as the average velocity along the
prototypical route when it reaches the location g0(k).

There are three types of average in statistics: arithmetic mean, median and
mode. In this paper, we calculate the mode, instead of arithmetic mean to
indicate prototypical instantaneous velocity. Given the velocity of each track
at the location g0(k), vn(k), n = 1, . . . N , the value which maximizes its proba-
bility function is taken as the mode velocity, i.e. the prototypical instantaneous
velocity v0(k).

Kernel density estimation (KDE) is used to estimate the probability density
function (pdf) of the velocities along the prototypical route, the prototypical
instantaneous velocity v0(k) is calculated as v0(k) = arg max

v
f̂(v;h).

f̂(v;h) =
1

Nh

N−1∑
n=0

K

(
v − vn(k)

h

)
, (5.1)

5.2 Work cycle optimization 105

0 20 40 60 80 100 120

0.005

0.01

0.015

0.02

0.025

0.03

0.035

velocity (cm/s)

d
e

n
s
it
y

(a) Velocity

0 2 4 6 8 10

0.05

0.1

0.15

0.2

dwell time (s)

d
e
n
s
it
y

(b) Dwell time

Figure 5.2: velocity and dwell time density. (a) is the density of velocity at one step
of the warp path, and (b) is for the dwell time.

where K is the kernel function, h is its bandwidth. In this work we use the
normal kernel K(x) = e−x

2/2/
√

2π [Minnotte 93] and choose the bandwidth h
equal to 10 centimeter per second (cm/s).

The velocity variance of the track points along the prototypical route, σv(k),
k = 1, . . .K, is calculated as:

σv(k) =
1

N

N∑
n=1

(vn(k)− v0(k))2 (5.2)

where k = 1, . . .K.

5.2.3 Prototypical Dwell Time

In some locations, the instantaneous velocity will be very low, e.g. near picking
places, or other places where the worker remains stationary for a while. In those
locations, dwell time is a much more useful measure of the work cycle. For a
given track rn(tn), tn = 1, . . . Tn, and time t when the worker keeps stationary,
let t(1)

n (t) and t
(2)
n (t) be the first time before and after t separately when the

worker’s velocity is lower than then given threshold, e.g. 20cm/s. Then we
define the dwell time Dn(t) as Dn(t)

4
= t

(2)
n (t) − t

(1)
n (t). The prototypical

dwell time, D0(k), k = 1, . . .K and probability density functions of dwell time
can then be defined in terms of the track dwell times, in a similar way as for
velocities.

Fig. 5.2 shows the velocity and dwell time density at a specific location of
the prototypical route. There the factory workers stay stationary to pick up
tools and parts. According to the density of the velocity and dwell time, 7
cm/s is chosen as the prototypical instantaneous velocity, 3.5 s is chosen as the
prototypical dwell time at that location. The mean velocity and dwell time are

106 Work Cycle Analysis

20 cm/s and 2.0 s respectively. 7 cm/s fits to the factory workers’ behavior of
being stationary better.

We proposed two methods to align many trajectories in Chapter 3. Based on
the point assignations established by different methods, the prototypical work
cycles deduced are also different. Therefore we use the superscripts to distin-
guish them. g(1)

0 (k), v(1)
0 (k) and D(1)

0 (k), k = 1, . . .K(1) are prototypical route,
prototypical instantaneous velocity and prototypical dwell time extracted us-
ing the stretch-and-then-compress method, and g

(2)
0 (k), v(2)

0 (k) and D
(2)
0 (k),

k = 1, . . .K(2) are extracted using the greedy method based on successor clas-
sification.

5.3 Results
Using different track alignments, the work cycle can be optimized in different
ways. We first show the results obtained using the stretch-and-then-compress
method presented in Chapter 3.3. In Section 5.3.2, we will show the results
using the greedy method based on successor classification, which is elaborated
in Section 3.4. The results include the prototypical route, the prototypical
velocity and dwell time along the prototypical route, and location variance and
velocity variance along the prototypical route.

5.3.1 Results using the stretch-and-then-compress
method

In this section, we show the results of work cycle optimization based on the
point associations produced using the stretch-and-then-compress method, in-
cluding the prototypical routes and prototypical velocity along the routes. We
also show the statistical analysis results of the spatial variance and velocity
variance.

The average tracks in Fig. 5.3a and 5.3b act as prototypical routes for each
work cycle, respectively. There are 82 tracks for the first type of executed work
cycle, which are more dissimilar to each other than the 12 tracks for work cycle
2. The inferred prototypical route with 52 points for work cycle 2 represents
how the workers execute it better, as shown in Fig. 3.29d. The prototypical
route with 39 points for work cycle 1 is less representative, because the compress
operation removes too many points. For instance, the workers will not be able
to visit the left corner of the storage rack by following this route.

Fig. 5.4 shows the variance of physical locations of the track points, σ(1)(k),
k = 1, . . .K(1), along the prototypical route for each type of executed work
cycle. The prototypical routes are indicated using red lines with dots. The
width of the band along the prototypical route indicates the intensity of the
location variance. The wider the band is, the more dissimilar the associated
points are and vice versa. From Fig. 5.4, we can see the factory workers execute
the first type of work cycle more variously than the second one. And for the
first type of work cycle shown in Fig. 5.4a, the variance of the locations where

5.3 Results 107

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Work cycle 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Work cycle 2

Figure 5.3: Prototypical routes calculated using the stretch-and-then-compress
method. The arrows indicate the moving directions of workers in the trajectories.

(a) Work cycle 1 (b) Work cycle 2

Figure 5.4: Location variance. (a) shows the variance of physical locations of the
track points along the prototypical route for work cycle 1. (b) is for work cycle 2.
The arrows indicate the moving directions of workers in the average trajectories.

the factory workers go to the storage rack is smaller than that on their way
back to the assembly line, indicating that the factory workers go to the storage
rack in a more similar way than back from there.

The mean and prototypical velocity along the prototypical route for each
work cycle are shown in Fig. 5.5. Fig. 5.5a and 5.5c are mean and prototypical
velocity for first type of work cycle respectively, and Fig. 5.5b and 5.5d are for
work cycle 2. The velocity is color coded. At the right and left corners of the
storage racks, the factory workers stay stationary to pick up tools and parts.
Their velocity there should be very low. Both Fig. 5.5b and 5.5d show low
velocity in red at the right corner of the storage rack for the second type of
work cycle. In Fig. 5.5a, the mean velocity at both of the corners are indicated
in green (around 60 cm/s). The prototypical velocity at the right corner of

108 Work Cycle Analysis

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(a) Mean velocity for work cycle 1

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(b) Mean velocity for work cycle 2

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(c) Prototypical velocity for work cycle 1

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(d) Prototypical velocity for work cycle 2

Figure 5.5: Mean and prototypical velocities along the prototypical routes. (a) and
(b) show the mean velocity along the prototypical routes for each type of work cycle
respectively. (c) and (d) are for the prototypical velocity.

the storage rack, shown in Fig. 5.5a, is around 40 cm/s. It proves that the
prototypical velocity (mode of the velocity distribution) can guide the factory
workers better. However, the stretch-and-then-compress method does not align
the tracks for work cycle 1 well because the compress operation removes too
many points. Therefore the prototypical velocity along the prototypical route
for the first type of work cycle is not as accurate as the second one.

Fig. 5.6 shows the velocity variance along the prototypical routes. Wider
band means higher variance. The prototypical routes are indicated in red
lines with dots, and the color indicates the prototypical velocity. Using the
point associations established by the stretch-and-then-compress method, the
velocities of the associated points for work cycle 1 at the right corner of the
storage rack are very different from each other, producing wider band there.

The mean and prototypical dwell time along the prototypical route for each
work cycle are shown in Fig. 5.7. The instantaneous dwell time is color coded.
At the right and left corners of the storage racks, the factory workers stay
stationary to pick up tools and parts. Their dwell time there should be longer

5.3 Results 109

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(a) Work cycle 1

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(b) Work cycle 2

Figure 5.6: Velocity variance along the prototypical routes. The width of the band
indicates the variance in local velocity, whereas the color indicates the prototypical
velocity itself.

than that at other places. Both Fig. 5.7b and 5.7d show that the dwell time at
the right corner of the storage rack is around 2.5 seconds for work cycle 2. Both
Fig. 5.7a and 5.7c show that the workers dwell at the right corner of the storage
rack for around 1.5 seconds when they execute Work cycle 1. Fig. 5.7a shows
they dwell at the left corner of the storage rack for around 2.5 seconds averagely,
and the mod of the dwell time distribution there is around 1.5 seconds. Actually
by checking the video footage, we find that the workers mostly stay at the left
corner for 3 to 6 seconds. Using the point associations established by the first
alignment method, the compress operation removes some points with longer
dwell time at the left corner of the storage rack. Therefore, neither the average
dwell time nor prototypical dwell time is correct for work cycle 1.

5.3.2 Results using the greedy method based on successor
classification

In this section, we will show the results of the work cycle optimization using
the point associations established by the the greedy method based on successor
classification, as elaborated in Section 3.4.

The average tracks in Fig. 3.28e and 3.29e act as prototypical routes for
each work cycle, respectively. For work cycle 1, the point associations shown in
Fig. 3.23 are used to calculate the prototypical route shown in Fig. 3.28e. There
are 1250 points in the prototypical route representing this work cycle. Fig. 3.29e
shows the prototypical route with 312 points for work cycle 2, through point
associations shown in Fig. 3.24.

For work cycle 2, the stretch-and-then-compress method described in Sec-
tion 3.3 creates a prototypical route with 52 data points, whereas there are 312
data points representing the prototypical route created by the greedy method
based on successor classification in Section 3.4. These two prototypical routes,
as shown in Fig. 3.29d and 3.29e, are spatially similar to each other. Both of

110 Work Cycle Analysis

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

4.5 s

4.0 s

3.5 s

3.0 s

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0 s

(a) Mean dwell time for work cycle 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

4.5 s

4.0 s

3.5 s

3.0 s

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0 s

(b) Mean dwell time for work cycle 2

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

4.5 s

4.0 s

3.5 s

3.0 s

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0 s

(c) Prototypical dwell time for work cycle
1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

4.5 s

4.0 s

3.5 s

3.0 s

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0 s

(d) Prototypical dwell time for work cycle
2

Figure 5.7: Mean and prototypical dwell time along routes. (a) and (b) show the
mean dwell time along the prototypical routes for each type of work cycle respectively.
(c) and (d) are for the prototypical dwell time.

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(a) Work cycle 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c
m
)

(b) Work cycle 2

Figure 5.8: Prototypical routes calculated using the greedy method based on successor
classification.

5.3 Results 111

(a) Work cycle 1 (b) Work cycle 2

Figure 5.9: Location variance. (a) shows the variance of the physical locations of
the track points along the prototypical route for work cycle 1. (b) is for work cycle 2.

them can be used to guide the factory workers to execute the second type of
work cycle, in which they go to the right corners of the storage rack to pick up
tools and parts.

For work cycle 1, there are only 39 data points representing the prototypical
route created using the stretch-and-then-compress method, but as many as
1250 data points using the greedy method based on successor classification.
Although it is redundant to represent the prototypical route using 1250 data
points because some of them are very spatially close to each other, all detailed
information is kept in this route. As shown in Fig. 3.28e, the factory workers
will visit both of the corners of the storage rack to pick up tools and parts by
following this prototypical route. But the prototypical route created using the
stretch-and-then-compress method, as shown in 3.28d, does not reach the left
corner of the storage rack because the data points there are removed by the
compress operation during the track alignment. Therefore, this prototypical
route in Fig. 3.28e can guide the factory workers better to finish pickup job.

Fig. 5.9 shows the variance of the physical locations of the points at the
same indexes of the warped tracks along the prototypical route for each work
cycle. The same as from Fig. 5.4, we conclude from Fig. 5.9 that the factory
workers execute the first type of work cycle more variously than the second
one because the band along the prototypical route in Fig. 5.9b, i.e. location
variance is wider generally than that in Fig. 5.9a. We also conclude about work
cycle 1 from Fig. 5.9a that the factory workers go to go to the storage rack in
a more similar way than back from there.

Fig. 5.10 shows the mean and prototypical velocity along the prototypical
route for each type of work cycle. Fig. 5.5a and 5.5c show mean and prototypical
velocity for first type of work cycle respectively, and Fig. 5.5b and 5.5d are for
work cycle 2. The instantaneous velocity is color coded. Both Fig. 5.10b and
5.10d show low velocity in red at the right corner of the storage rack. Both
Fig. 5.10a and 5.10c show low velocity at both of the picking up places (the

112 Work Cycle Analysis

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(a) Mean velocity for Work cycle 1

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(b) Mean velocity for work cycle 2

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(c) Prototypical velocity for work cycle 1

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(d) Prototypical velocity for work cycle 2

Figure 5.10: Mean and prototypical velocity along routes. (a) and (b) show the
mean velocity along the prototypical routes for each type of work cycle respectively.
(c) and (d) are for the prototypical velocity.

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(a) Work cycle 1

−50 0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

x(cm)

y
(c

m
)

130 cm/s

116 cm/s

102 cm/s

87 cm/s

72 cm/s

58 cm/s

44 cm/s

29 cm/s

14 cm/s

0 cm/s

(b) Work cycle 2

Figure 5.11: Velocity variance along the prototypical routes. The width of the band
indicates the variance in local velocity, whereas the color indicates the prototypical
velocity itself.

5.4 Comparison 113

left and right corner of the storage rack). In Fig. 5.5c the prototypical velocity,
which is calculated using the stretch-and-then-compress method, is as high as
around 60 cm/s. This does not agree to the behavior of the factory workers
there: standing still and picking up tools and parts. It proves that the greedy
method based on successor classification aligns the tracks in a better way,
creating more representative prototypical route and velocity.

Fig. 5.10a shows the value of the mean velocity at the right corner of the
storage rack reaching 35 cm/s. But from Fig. 5.10c, we can see the prototyp-
ical velocity there dropping to 20 cm/s. Obviously, the prototypical velocity
provides the clearest picture there and its value is lower, which better agrees
with the observations that workers actually stop near these locations so as to
pick up tools and objects.

Fig. 5.11 shows the velocity variance along the prototypical routes. For work
cycle 1, the band along part of the prototypical route that factory workers go
to the storage rack is wider than the other part of the band that they come
back from the storage rack to the assembly line. It indicates that the factory
workers keep their velocities more stably on their way to the storage rack than
back to the assembly line.

Fig. 5.12 shows the mean and prototypical dwell time along the prototypical
route for each type of work cycle. The instantaneous dwell time is color coded.
Both Fig. 5.12b and 5.12d show that the dwell time at the right corner of the
storage rack is around 2.5 seconds for work cycle 2, the same as Fig. 5.7b and
5.7d. Fig. 5.12a shows that the average dwell time is around 2.0 seconds at the
right corner of the storage rack, and around 2.5 seconds at the left corner. From
Fig. 5.12c, we can see that the factory workers stays for 1.5 seconds at the right
corner and for 3.5 seconds at the left corner prototypically. The prototypical
dwell time at the left corner of the storage rack agrees with the actual dwell time
there. Therefore, the prototypical dwell time, which is obtained by aligning the
tracks using the greedy method based on successor classification, can guide the
workers better to pick up the tools and parts than that calculated using the
stretch-and-then-compress method.

5.4 Comparison

Researchers have proposed some methods to average many tracks, as elabo-
rated in Section 3.1. We apply these methods on the factory worker trajectory
to exact the average track as the prototypical route, as shown in Fig. 3.28 and
3.28. Junejo only considers the boundaries of the points of the tracks along the
route, but ignores the spatial distribution of the points between the boundaries.
Therefore, the average track extracted is representative for work cycle execu-
tion. Petitjean produces a very flexuous track, which is not suitable to guide
the workers to execute their work cycles, and the average track extracted using
Niennattrakul’s method is more representative and smooth than the other two
methods, but the computational cost is quite high. Compared to these meth-
ods, both of our methods are not only able to average many tracks, but also

114 Work Cycle Analysis

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

4.5 s

4.0 s

3.5 s

3.0 s

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0 s

(a) Mean dwell for work cycle 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

4.5 s

4.0 s

3.5 s

3.0 s

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0 s

(b) Mean dwell time for work cycle 2

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

4.5 s

4.0 s

3.5 s

3.0 s

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0 s

(c) Prototypical dwell time for work cy-
cle 1

−50 0 50 100 150 200 250
0

50

100

150

x(cm)

y
(c

m
)

4.5 s

4.0 s

3.5 s

3.0 s

2.5 s

2.0 s

1.5 s

1.0 s

0.5 s

0 s

(d) Prototypical dwell time for work cy-
cle 2

Figure 5.12: Mean and prototypical dwell time along routes. (a) and (b) show the
mean dwell time along the prototypical routes for each type of work cycle respectively.
(c) and (d) are for the prototypical dwell time.

benefit the statistical analysis. Using the point associations established during
the track alignment, we calculate the prototypical velocity and dwell time along
the prototypical route, while other methods mentioned are designed to average
the tracks without considering the point correspondences among all tracks.

5.5 Conclusions
In this chapter, we proposed to extract the prototypical route and prototypical
velocity and dwell time along the route using the track alignment as elaborated
in Chapter 3. The track alignment enables us to average the warped tracks to
form a prototypical route from the tracks, which describes how the workers
execute the work cycle spatially. It is also beneficial to analyze the tracks sta-
tistically, such as location and velocity variance along the prototypical routes.

This research resulted in on several papers in the proceedings of the inter-
national conferences [Xie 14b,Xie 15a,Xie 15b].

6
Road Network Inference

from GPS Traces

Automatic road map inference is an important tool in the field of Intelli-
gent Transportation Systems (ITS): it allows unexplored geographic regions
(e.g., in developing countries) to be mapped quickly [Biagioni 12b,Schroedl 04,
Davics 06,Cao 09], it can update the existing maps [Shi 09,Sato 06], and it also
provides information on the density of traffic [Vlahogianni 05], which can be
used in navigation [Syberfeldt 09] and for urban planning [Schultes 08,Niehoe-
fer 09,Morris 04].

Road maps were previously constructed through labor intensive geographic
surveying using telescopes, sextants and other devices. Today, these methods
have been replaced by mobile mapping vehicles, which can map whole cities
with high accuracy [Kukko 07]. However, mobile mapping campaigns are ex-
pensive, and as a result, the data is updated relatively infrequently. Moreover,
mobile mapping does not provide traffic related info, such as the traffic density
as a function of time, the preferred routes of travelers, and the delays due to
traffic jams.

Thanks to the ubiquitous use of Global Positioning System (GPS) de-
vices, digital road maps can now be derived from GPS traces of various road
users [Bellens 11, Lee 13]. As hand-held GPS devices have become increas-
ingly popular in the last decade, geographical data is more easily obtainable
from not only cars, taxis and trucks, but also from cyclists and pedestrians.
This abundance of GPS derived geospatial data has stimulated the develop-
ment of both crowd-sourced mapping projects [Haklay 08,Haklay 10], as well
as commercial products. The research on GPS trajectory analysis has fo-
cused on building road maps [Biagioni 12a] and learning people’s mobility
modes [Zheng 08a]. Other research focuses on calculating the best path be-
tween two locations [Edelkamp 03, Schultes 08, You 14] or finding the most
efficient route for a garbage truck [Syberfeldt 09].

Road networks are a critical aspect of both path optimization and route
planning. In literature, a variety of techniques are used to generate the
road network from GPS traces, from image processing to network topology

116 Road Network Inference from GPS Traces

[Davics 06,Biagioni 12b,Shi 09,Chen 08,Edelkamp 03,Schroedl 04]. Most ex-
isting algorithms generate the digital map as a whole directly from GPS traces,
but most omit one important component of the road network: intersections. A
few researchers address the problem of intersection detection after the map gen-
eration [Edelkamp 03,Schroedl 04,Cao 09]. The accuracy of the extracted roads
depends on quality of the GPS traces. It is difficult to remove the abnormal
GPS traces during the road network generation because different GPS traces
may cover different road segments. If the intersections are detected in advance,
the road network structure can be then inferred conveniently by discovering the
intersection connectivity. By segmenting the GPS traces into track pieces for
individual road segments, the abnormal tracks can be easily detected for each
road segment using similarity measure. This will improve the accuracy of the
generated road representation. Therefore in this chapter we will first detect the
intersections from GPS traces, then calculate the geometric representation for
each road segment using the GPS track pieces belonging to this road segment.

The main elements of a more general transportation network include inter-
sections, roads, railways, highways, motor vehicular lanes, bicycles and pedes-
trians lanes. However we will only explore a subset of these elements in the
form of a road network, which is a system that represents the interconnecting
roads located in a given area. In order to clarify the scope of our work, we
present the three elements that define a road network below.

• Intersections: Road intersections are represented by their geographic
position q = (ϕ, λ)T , where ϕ and λ are coordinates in latitude and
longitude. We give two intersection definitions: 1) An intersection is
defined as a location where road users can change directions in multiple
ways, regardless of the number of road segments meeting at a particular
intersection. 2) An intersection is defined as a junction where at least
three road segments converge.

• Connectivity graph: Road connectivity graphs encode which intersec-
tions are directly connected by road segments containing no other in-
tersections. These graphs are typically represented by a binary M ×M
connectivity matrix D, with M the number of intersections. By defi-
nition, D(i, j) = 1 if intersections i and j are directly connected by a
single road segment. In our paper, D is asymmetric, i.e. D(i, j) can
differ from D(j, i) due to one-way traffic. Moreover, we assume that the
main diagonal elements of C are 0, i.e., an intersection is not connected
to itself.

• Road segments: The directed road segments R, connect pairs of in-
tersections. The geometry of each road segment is represented using a
sequence of geographical locations. The average velocity and velocity
variance along each road segment will be analyzed using the alignment
of tracks belonging to it. However, the type of the road, and the number
of lanes on the road will not be analyzed.

117

−87.656 −87.654 −87.652 −87.65 −87.648 −87.646

41.867

41.868

41.869

41.87

41.871

41.872

41.873

41.874

41.875

Longitude (
o
)

L
a

ti
tu

d
e

 (
o
)

(a) GPS traces

−87.656 −87.654 −87.652 −87.65 −87.648 −87.646

41.867

41.868

41.869

41.87

41.871

41.872

41.873

41.874

41.875

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

q1

q2

q3

q4

q5

q8

q7

q6

(b) Inferred road network

Figure 6.1: An example of a road network inferred from GPS traces. 8 intersections
and 19 directed road segments are inferred from GPS traces.

Fig. 6.1 shows an example of a road network. As shown in Fig. 6.1b, 8
intersections are indicated using red circles. 9 pairs of intersections are directly
connected to each other in both directions. The road between q2 and q3 is
one-way. In total there are 9 × 2 + 1 = 19 directed road segments in this
road network. The geometric representation of each road segment is a series of
locations indicated in dots.

In this chapter, we propose two methods to identify the intersections using
their two definitions, respectively. In our first method, intersection candidates
are detected by clustering turning points of traces, i.e., places where the road
users change direction. It is possible to falsely detect bends as intersections on
a single windy road. At the bend, the road users always change their direction
in the same way. By checking the entering and exiting directions of the road
users, the bends are removed from the intersection candidates. In the second
method, we detect the intersections through finding the Longest Common Sub-
Sequence (LCSS) between pairwise GPS traces. The starting and ending points
of the sub-tracks, which are common to both traces, are collected as connecting
points, and the local maximums of their Kernel Density Estimation (KDE) are
recognized as intersections.

The connectivity between each pair of intersection is then deduced from the
GPS traces, which are segmented into tracks corresponding to road segments
between each pair of directly-connected intersections. For clarity, a trace is
defined as a trajectory of a single moving vehicle over a certain time period
recorded by a single GPS device. A track is defined as a small piece of tra-
jectory for one road segment, segmented from the traces by directly-connected
intersections. The tracks for each road segment are aligned using the trajectory
alignment algorithms we proposed in Chapter 3. The warped tracks produced

118 Road Network Inference from GPS Traces

are used to extract an an average track to act as the geometric representation
of the road segment. In addition, the average velocity and velocity variance
along each road segment are analyzed based on the track alignment.

Biagioni comparatively evaluated some of the existing methods for road
network inference [Biagioni 12a] on a middle-size data set: Chicago dataset
with 889 GPS traces. Furthermore, Ahmed et al. tested some methods on a
large-size data set: Berlin dataset with 27189 GPS traces [Ahmed 14]. We will
compare our methods with their work on both datasets. Our results show better
performance with eliminating many spurious roads as well as more accurate
geographical locations for our detected roads.

The rest of the chapter is structured as follows: In Section 6.1, we dis-
cuss the related work. In Section 6.3, two methods are proposed to detect
the intersections from GPS traces: one is based on turning points detection;
the other one on connecting points detection. In Section 6.4, we utilize the
alignment methods proposed in Chapter 3 to align the tracks together for each
road segment and estimate the geometric representation of the road segment
using the warped tracks produced during the track alignment. In Section 6.6,
we detail how to evaluate the topological accuracy and geographical accuracy
of the extracted road network. In Section 6.6, we experimentally test our pro-
posed algorithms and compare them with other existing methods. Section 6.7
concludes this chapter.

6.1 Related work

6.1.1 Approaches for Road Network Inference

The goal of road network inference is to automatically generate a directed
graph from raw GPS traces, representing the topology and geometry of the
road network. Depending on how the GPS traces are processed, the approaches
for road network inference can be broadly classified into two groups:

Methods operating on a binary image created from GPS traces.
These methods first divide the the geographical area covered by GPS traces
into a two-dimensional grid of cells and estimate the Kernel Densities (KD) of
the tracking data points for each cell [Davics 06,Biagioni 12b,Shi 09,Chen 08].
A binary representation of all tracks is then produced by applying a threshold
on the KD Estimation (KDE). These methods differ in how the road centerlines
are extracted from the resulting binary image. Davies et al. apply a contour
follower to the binary image to extract a set of closed polygons which describe
the road regions’ outline, and then compute the road centerlines by producing
a Voronoi graph of the contours describing the road edges [Davics 06]. Chen
et al. use an image-processing approach to extract the road map from the
binary image [Chen 08]. First, a morphological dilation and closing operations
are used to merge the discrete data points of GPS traces. A thinning oper-
ation is then used to produce the skeleton along the road centerlines. Shi et

6.1 Related work 119

al. propose a very similar method to Chen’s approach [Chen 08], but they try
to extract the crossings of the roads from the road network skeleton [Shi 09].
Biagioni and Eriksson do not produce binary map image by applying a simple
threshold to the KDE, because a single threshold cannot achieve both high
accuracy and high coverage of road map. To solve this problem, they apply a
gray-scale skeletonization technique to extract a threshold-free skeleton from
the KDE [Biagioni 12a].

Methods based on KDE suffer from the limitations of thresholding: a too
low threshold will produce spurious edges but a too high threshold will lead
to interrupted tracks in sparse areas, leading to unsuccessful detection of the
roads that are not traversed frequently. Although the geometry of the road
network is built using the geographical locations along the road centerlines, the
topology of the road network, formed by the interconnections between roads,
is not analyzed thoroughly in this type of binary image based road analysis.
Nevertheless, accurate road network topology information is essential to path
optimization and route planning. In our work, we operate on the traces (spatial
positions as a function of time) directly in order to extract road intersections
and analyze their connectivity using GPS traces.

Methods operating on the data points of GPS traces Given a set
of track pieces, a variety of approaches, ranging from curve fitting to graph
segmentation, have been proposed for extracting a representative road segment
from its corresponding track pieces. These approaches can be divided into three
categories by their algorithmic foundations.

• Curve fitting methods. Edelkamp and Schroedl employ a K-means al-
gorithm to cluster the data points of raw GPS traces based on the Eu-
clidean distance measure. The cluster seeds are merged to road seg-
ments, and the precise centerline for each segment is generated from the
GPS data points corresponding to it using a weighted least squares fit-
ting [Edelkamp 03,Schroedl 04]. Worrall and Nebot cluster the GPS data
points into regions of similar position with similar headings, and apply
non-linear least squares fitting to exact arcs and lines from the cluster
data [Worrall 07].

• Topological methods Morris et al. [Morris 04] build a topological graph
to represent the physical network of the GPS traces. An initial graph
is generated from the GPS points and connection lines between adjacent
GPS points in all GPS traces. Those connection lines are reduced to
extract a single representation for each road segment using graph algo-
rithms such as parallel reduction, face reduction, serial reduction and
edge contraction. A parallel reduction takes two parallel edges in the
graph and reduces them to a single edge. Faces of a graph are regions
bounded by the edges of the graph. Any face in the graph is reduced if all
of its components are sufficiently close, which is called face reduction. A
serial reduction eliminates a vertex with only two outgoing edges. Edge
contraction deletes spurious edges under some criteria.

120 Road Network Inference from GPS Traces

• Trace merging methods. Cao and Krumm [Cao 09] propose to reduce
the effects of GPS noise using simulations of physical forces among the
traces, and merge the cleaned GPS traces greedily into a graph. Edges
from each raw GPS trace are added to the graph, unless an edge with
similar location and bearing already exists in the graph under construc-
tion. Intersections are then detected from the generated graph. A very
similar method is used by Niehoefer et al., which merges each new trace
to an existing map and updates the position of existing roads [Niehoe-
fer 09]. Ahmed and Wenk develop an incremental method that employs
the FrÃľchet distance to match partial trajectories to a graph [Ahmed 12].

All of the methods mentioned above suffer from producing spurious road
edges at areas that contain relatively tall buildings and significant GPS error.
Our proposed methods infer the topology of the road network through intersec-
tion identification, and proceed to extract the geometric representation of each
road segment through track alignment. They outperform the existing methods
in producing much less spurious road edges and a better geographical accuracy
of the inferred road segments.

6.1.2 Approaches for Intersection Detection

Detecting intersections before road map generation benefits to build the topol-
ogy of the road network through analyzing the intersection connectivity.

Fathi and Krumm design a localized shape descriptor to represent the dis-
tribution of GPS traces around a point [Fathi 10]. A classifier is trained over
the shape descriptors on ground truth data, and used to discriminate intersec-
tion points from non-intersection points. Their method requests ground-truth
training samples, and high-sampling-rate traces.

Karagiorgou and Pfoser use a speed threshold in combination with a change
in direction to detect the turn samples from GPS traces [Karagiorgou 12]. The
vector from the current point to its next adjacent point is used to describe the
moving direction at this point. The turn samples are clustered into intersection
nodes using an agglomerative hierarchical clustering method and a distance
threshold. At last, GPS traces between intersection nodes are linked to create
road edges.

Wu et al. first find turning points from coarse-gained GPS traces using the
moving direction provided by the GPS devices [Wu 13]. The intersecting points,
where the turning points converge, are gathered to improve the concentration
of the turning points. They cluster the converging points into intersections
using X-means algorithm [Pelleg 00], which is similar to K-means but does not
require a pre-specified K. The turning points are detected simply by thresh-
olding the change of moving direction. Fluctuations of moving direction are
not distinguished from the turning points in their results.

Wang et al. first detect conflict points, which are points where two or more
traces cross, converge or diverge. The conflict points are used to compute
spatial position and an uncertainty bound for each intersection [Wang 15].

6.2 Overview of our Proposed Approach 121

In our first proposed method, intersections are defined as the locations where
the road users change their moving directions, as in [Karagiorgou 12,Wu 13].
Turning points are collected and clustered into intersections. However, the
moving direction at each GPS point is calculated using the point at a fixed
distance ahead of it, instead of the adjacent point. Mis-detected bends are
removed from the intersections by checking the turn types the road users make
at the turning points.

In the second method we proposed, intersections are defined as junctions
which connect different road segments. The starting and ending points of the
sub-tracks , which are common to each pair of traces are detected as connecting
points, and used to detect intersections based on their KDE. The connecting
points connect three road segments in different directions. Therefore bends
which only connect two road segments, will not be recognized as intersections.
The method also overcomes the limitation of the thresholding methods for
turning point detection.

6.2 Overview of our Proposed Approach

Fig. 6.2 presents an overview of our approach. First, we detect intersections
from GPS traces. Two methods are proposed to identify the intersections. In
the first method, we detect turning points from the traces according to the
moving direction of the road users, and cluster the turning points into inter-
section candidates. Bends are distinguished from the intersections by checking
their turn patterns. The second method we proposed defines intersections as
junctions which connect at least three road segments. LCSS is used to detect
common sub-tracks between pairwise GPS traces, whose starting and ending
points are gathered as connecting points, and used to detect intersections based
on their KDE.

Second, we analyze the connectivity of the intersections, and segment the
GPS traces into track pieces directly connecting two intersections. GPS device
users often follow different routes to the same destination, creating different
GPS traces with varying velocities and locations. However, the traces share
common sub-tracks corresponding to individual road segments.

Third, the tracks for each road segment are clustered based on their spatial
similarity. Only normal tracks, which are spatially similar to each other, will
be used to infer the geometric representation of the road segment.

cluster the tracks using their spatial similarity and align the normal tracks
Third, we jointly align the normal tracks for each road segment using the tra-

jectory alignment algorithms presented in Chapter 3. The points associations
established are used to average the tracks to form a geometric representation
for the road segment, and analyze the tracks statistically.

Lastly, we evaluate the topological and geographical accuracy of the inferred
road network.

122 Road Network Inference from GPS Traces

Connectivity

analysis

GPS trace

segmentation &

GPS traces

Intersections

Connectivity matrix ,

Tracks for each road segment

Intersection

extraction

Warped tracks

for each road segment

Track alignment

for each road segment

Averaging warped tracks

for each road segment

Normal tracks

for each road segment

Track clustering

for each road segment

Geometric representation

Evaluating the accuracy

of the inferred road network

Figure 6.2: Overview of the proposed approach.

6.3 Intersection and Connectivity Detection

Intersection detection is crucial to build the topology of the road network. In
this section, we propose two methods to identify the intersections from GPS
traces: one is based on turning points detection; the other one on analyzing
common sub-sequences to identify connecting points, then detect intersections
from the connecting points.

6.3 Intersection and Connectivity Detection 123

Figure 6.3: An example of a turn A part of a GPS trace around one intersection is
represented by a black line with dots indicating the positions of data recordings, and
arrows indicating the moving direction at each point.

6.3.1 Intersection Detection based on Turning Points
We first calculate the moving direction at each GPS sample by locating the
first future sample which is approximately a fixed distance from it, as will
be explained in sect. 6.3.1.1. Turning points are detected as locations where
the road users change their moving directions. We group the turning points
into intersection candidates. Bends are distinguished from real intersections by
analyzing turning patterns.

6.3.1.1 Turning Point Detection

The rationale of our turning point detection is that while some road users may
travel straight through intersections, at least some of them will turn onto other
roads at intersections. This turning behavior is not unique to intersections,
as road users may also appear to make turns at bends in roads which are not
intersections. Therefore, when we detect spatial locations where many tracks
show turning points, we also perform additional analysis to distinguish bends
in roads from true cross roads, which is described in Section 6.3.1.2.

Fig. 6.3 shows an example of a vehicle making a right turn at an intersection.
The moving directions of the turning points are shown with colored arrows,
where red indicates the first turning point, blue indicates the last turning point,
and green for other turning points. The moving directions of other points
without a direction change are shown as black arrows. The example shows
that the moving direction of the road user keeps changing during the turn.

124 Road Network Inference from GPS Traces

Therefore, the intersection can be detected by checking the direction change of
the road users. If the road users always make the same type of turn by changing
their moving direction from north to east, or following the same route but in
the opposite direction, this is a bend, rather than an intersection. In this case,
their entering directions will always be the same as the red arrow, or be the
opposite of the blue arrow. The exiting directions will always be the same as
the blue arrow, or be the opposite of the red arrow. The mis-detected bends
can thus be removed by examining the entering and exiting directions.

When road users make turns at intersections, the change in their moving
direction over a fixed amount of time is different depending on their speed. Thus
it is difficult to detect turns by thresholding instantaneous direction change.
Instead, to make the method robust against speed differences, we calculate the
change in the moving direction over a fixed distance. If the fixed distance is too
small, the direction change at the intersections cannot be distinguished from
minor fluctuations in moving direction, e.g., due to changing lanes or to small
bends in the road.

Based on our experience, direction change over a distance of at least 2
meters at the intersection can be adequately distinguished from other changes.
However, depending on the sampling rate of the GPS units and the speed of the
road users, it is possible that the distance between two adjacent GPS points is
larger than 2 meters. Therefore, the moving direction of the user at (ϕa, λa) is
computed as follows:

Given a point on a GPS trace, (ϕa, λa), we select a second point, (ϕb, λb),
that is 2 meters ahead on the same trace, if the next point is further than 2
meters away, we select the next point.

The moving direction of the user at (ϕa, λa) is computed as

θa =



arctan λb−λa
ϕb−ϕa ϕb > ϕa

arctan λb−λa
ϕb−ϕa + π λb ≥ λa, ϕb < ϕa

arctan λb−λa
ϕb−ϕa − π λb < λa, ϕb < ϕa

−π2 λb > λa, ϕb = ϕa
+π

2 λb < λa, ϕb = ϕa

, (6.1)

where θa ∈ [−π, π] (−π is west, radians counter-clockwise).
The moving direction of the user, θb, at the point, (ϕb, λb), is calculated

similarly using the the next point on the GPS trace that is a fixed distance
away. If the direction change ∆θb = θb − θa between the points (ϕa, λa) and
(ϕb, λb) exceeds a predefined threshold, then it is considered as a turning point.

Since intersections are typically much larger than our 2 meter turn detection
distance threshold, many GPS points with direction changes can be detected
inside the same intersection. We consider all of the neighboring data points
with direction changes detected from GPS traces as turning points. We keep
track of the first and last point in a sequence of moving direction changes,
which can represent the user entering and exiting the intersection respectively,
which will be later used to distinguish bends in roads from true intersections.

6.3 Intersection and Connectivity Detection 125

Algorithm 6 Cluster Turning Points

Input: {pk, k = 1 . . .K}
Output: {Pi : |Pi| > Tmin i = 1 . . . I}
1: Initialization Pun ← {pk, k = 1 . . .K} i← 1
2: for each p ∈ Pun do
3: Pi = {p}
4: for each p′ 6= p ∈ Pun do
5: if 1

|Pi|
∑

p′′∈Pi
d (p′,p′′) ≤ dthre then dthre is the predefined

threshold for the average Euclidean distance.
6: Pi ← Pi ∪ {p′}
7: end if
8: end for
9: Pun = Pun \ Pi

10: end for

The output of this step is a collection of turning points {pk, k = 1, . . .K},
along with binary indicators of whether the user enters the intersection
{e(1)
k , k = 1, . . .K} or exits the intersection {e(2)

k , k = 1, . . .K} at a partic-
ular turning point, where e(1)

k ∈ [0, 1] and e(2)
k ∈ [0, 1]. e(1)

k = 1 indicates that
the user enters an intersection at the turning point pk, and 0 indicates not en-
tering. We describe how these turning points will be clustered into intersections
in next section.

6.3.1.2 Intersection Extraction from Turning Points

In our work, we propose a clustering technique to group the collection of turning
points P into intersections based on Euclidean distance. As shown in Algorithm
6, an initial cluster is grown from a seed point by iteratively adding points to
the cluster if their average distance to the current points in the cluster is small
enough. This procedure is then repeated on the points which have not yet been
clustered. The output of this step is a set of clusters Pi = {p(i)

n , n = 1 . . . |Pi|},
with |Pi| as the number of turning points per cluster. As a post processing
step we also discard clusters which contain too few turning points; these may
be caused by GPS noise, or by an insufficient sampling of an intersection.

To remove road bends mis-detected as intersections from the clusters, we
need to check for the type of turns for each cluster using the entering (with
e

(1)
k = 1) and exiting turning points (with e

(2)
k = 1) as described in previous

step. For each intersection candidate, we select its entering and exiting turning
points and cluster their directions separately, as shown in Fig. 6.4. If all entering
points are grouped into one cluster and all exiting points into one cluster, this
intersection candidate is a bend on a one-way road segment, At this bend,
the road users can only make the same type of turn in one direction. If the
entering points are grouped into two clusters, as well as the exiting points, and

126 Road Network Inference from GPS Traces

A
 tu

rn
in

g
 p

o
in

t c
lu

s
te

r

A
v
e
ra

g
e
 e

n
te

rin
g
 d

ire
c
tio

n
C

lu
s
te

r th
e

ir

e
n

te
rin

g
 d

ire
c
tio

n
s

S
e

le
c
t th

e

e
n

te
rin

g
 p

o
in

ts

S
e

le
c
t th

e

e
x
itin

g
 p

o
in

ts

C
lu

s
te

r th
e

ir

e
x
itin

g
 d

ire
c
tio

n
s

A
v
e
ra

g
e
 e

x
itin

g
 d

ire
c
tio

n
s

Y

Y

N
N

is
 a

 b
e

n
d

o
n

 a
n

 o
n

e
-w

a
y
 ro

a
d

 s
e

g
m

e
n

t

is
 a

 b
e

n
d

o
n

 a

-w
a

y
 ro

a
d

 s
e

g
m

e
n

t
tw

o

N

Y

is
 a

n
 in

te
rs

e
c
tio

n

o
r

F
igu

re
6.4:

B
end

detection
B
ends

are
detected

by
checking

the
entering

and
exiting

directions.

6.3 Intersection and Connectivity Detection 127

the average entering directions are opposite to the average exiting directions,
this intersection candidate is a bend on a two-way road segment. At this bend
the road users can only make one type of turn in two directions. These mis-
detected bends will be removed from the intersections.

Finally the spatial locations of the clusters are obtained by averaging the
turning points in each cluster. The result is the set of intersections Q(1) =

{q(1)
i , i = 1, . . . I(1)}. The superscript (1) refers to the algorithm of intersection

detection through moving direction analysis. In the next section, we introduce
the second method to detect the intersections.

6.3.2 Intersection Detection based on Connecting Points

In this section, intersections are detected using their direct definition of con-
necting road segments, instead of indirectly analyzing the turning patterns of
the road users. The road users often travel through a sequence of road seg-
ments to arrive at their destination. They may travel through the same road
segments on their journeys. As a result, the generated GPS traces may merge
from different road segments onto the same road segment, or diverge from the
same road segment onto different road segments. The converging and diverg-
ing points in the GPS traces are located on the intersections, if they are not
the starting and ending points of the GPS traces. Therefore, we can detect
the intersections from converging and diverging points by finding the common
sub-tracks of the GPS traces. A common sub-track is a sequence of points that
appears in the same relative order and occupies consecutive positions in both
original traces. Each common sub-track corresponds to a shared road segment.
One end of the common sub-track is the diverging point, and the other end is
converging point.

Fig. 6.5 shows an example of two GPS traces diverging at one intersection
and then converging at another intersection. The first trace, which contains 16
points, is shown using blue lines with blue dots indicating the point locations.
There are 12 points in the second trace, shown in red lines with green dots.
The arrows show that the road users move from higher-latitude area to lower-
latitude area in both trajectories. During these two journeys, both of the road
users travel through three road segments. The first road segments they travel
through are the same. They separate onto different road segments at the first
intersection indicated using a black star. At the second intersection indicated
using a black triangle, they come to their third road segments, which are the
same on the map. The generated GPS traces diverge at the first intersection
and converge at the second intersection.

In this section, we aim to find the common sub-tracks of these two GPS
traces, which correspond to shared road segments, and identify intersections
from the starting and ending points of these sub-tracks.

128 Road Network Inference from GPS Traces

50.8826

50.8822

50.8818o
)

L
a
ti
tu

d
e
 (

o
)Longitude (

50.8814

50.8810

50.8806
4.6997 4.7005 4.7013 4.7021 4.7029

Trace :16

Trace :12

Figure 6.5: An example of two GPS traces sharing roads Two GPS traces diverge
from one common road segment to different road segments at the first intersection,
which is indicated using a black star, and then converge to another common road
segment at the second intersection indicated using a black triangle.

6.3.2.1 Longest Common Subsequence Detection

Given two GPS traces r1(t1), t1 = 1 . . . T1 and r2(t2), t2 = 1 . . . T2, we aim
to find the alignment between these two traces that maximize the number of
the points in common subsequence [Hirschberg 77, Smith 81] using Longest
Common Subsequence (LCSS) algorithm.

A trace subsequence is a sequence of data points which appear in the same
relative order within the original trace, but not necessarily occupies consec-
utive positions as a sub-track does. A common subsequence of two traces is
a subsequence present in both of them. A longest common subsequence is a
common subsequence of maximal length. The “length” in this research means
the number of points of the trace, or trace subsequence. The most naive ap-
proach to find the longest subsequence would be to enumerate all subsequences
common to both traces, and select the one with the most points. However, it is
extraordinarily time-consuming to apply this naive approach. To overcome this
challenge, Dynamic Programming is employed to find the longest subsequence
efficiently, which is similar to the implementation of DTW in Section 2.2.

The first stage of implementing Dynamic Programming in the LCSS prob-
lem is to create a two-dimensional (2D) length matrix L, instead of a overall
dissimilarity matrix in DTW. The value at each cell, L(t1, t2), represents the
length of the LCSS between the prefixes of the given GPS traces, i.e. r1(i),
i = 1 . . . t1 and r2(j), j = 1 . . . t2. As shown in Equation 6.2, the value of
L(t1, t2) depends on the similarity of the current points r1(t1) and r2(t2), and
the value of its adjacent cells {L(t1, t2 − 1), L(t1 − 1, t2), L(t1 − 1, t2 − 1)}:

6.3 Intersection and Connectivity Detection 129

Algorithm 7 FindPath
Input: L, B
Output: g1(k), g2(k), w2(k), w2(k), k = 1 . . .K

Initialization t1 ← T1, t2 ← T2, k ← 1
2: while t1 + t2 > 2 do

if t1 = 1 then
4: t2 ← t2 − 1

else if t2 = 1 then
6: t1 ← t1 − 1

else
8: switch B(t1, t2)

case “↖′′
10: g1(k) = r1(t1), g2(k) = r2(t2)

w1(k) = t1,w2(k) = t2
12: k ← k + 1

t1 ← t2 − 1, t2 ← t2 − 1

14: case “ ↑′′
t1 ← t1 − 1

16: case “←′′
t2 ← t2 − 1

18: end if

20: end while
if L(1, 1) = L(t1, t2)− 1 then

22: g1(k) = r1(1), g2(k) = r2(1)
w1(k) = 1,w2(k) = 1

24: end if
g1 ← reverse(g1), g2 ← reverse(g2)

26: w1 ← reverse(w1), w2 ← reverse(w2)

L(t1, t2)
4
=


0, if t1 = 0 or t2 = 0

L(t1 − 1, t2 − 1) + 1, if t1, t2 > 0 and d(r1(t1), r2(t2)) ≤ dthre

max

(
L(t1, t2 − 1),
L(t1 − 1, t2)

)
, if t1, t2 > 0 and d(r1(t1), r2(t2)) > dthre,

(6.2)
where t1 ∈ [0, T1] and t2 ∈ [0, T2], and d(r1(t1), r2(t2)) is the distance between
r1(t1) and r2(t2).

We also create a two-dimensional (2D) arrow matrix B. The arrow B(t1, t2)
at a cell points to the adjacent cell L(t1, t2) it is calculated from.

130 Road Network Inference from GPS Traces

B(t1, t2)
4
=


↑, if L(t1, t2) = L(t1 − 1, t2) and L(t1 − 1, t2) > L(t1, t2 − 1)

←, if L(t1, t2) = L(t1, t2 − 1) and L(t1 − 1, t2) < L(t1, t2 − 1)

↖, if L(t1, t2) = L(t1 − 1, t2 − 1) + 1,
(6.3)

where t1 ∈ [1, T1] and t2 ∈ [1, T2].
Once the length matrix L and direction matrix B are built, the LCSSs are

deduced in a “backtrack” procedure that follows the arrows backwards through
matrix. The procedure starts at the last cell at (T1, T2), as described by Al-
gorithm 7. If the length at the cell (t1, t2) decreases, point r1(t1) in the first
trace is similar, i.e. spatially close, to point r2(t2). These data points are
added to the longest subsequence, g1 and g2, for each GPS trace respectively,
and their time indexes in the original traces are added to w1 and w2, i.e. i.e.
g1(k) = r1(w1(k)) and g2(k) = r2(w2(k)). The procedure ends until it reaches
the first cell (1, 1).

Fig. 6.6 illustrates the procedure of finding the LCSSs between two GPS
traces. Fig. 6.6a depicts the LCSS for each GPS trace using blue lines with
black dots, and red lines with black dots, respectively. In total, there are 9
points in the LCSS for each trace. The LCSS for the first trace is expressed as
r1(t1), t1 = 1, 2, 3, 4, 5, 13, 14, 15, 16, and r2(t2), t2 = 1, 2, 3, 4, 5, 9, 10, 11, 12 is
for the second one.

Fig. 6.6b depicts the length matrix L and arrow matrix B in grids. The
“backtrack” procedure starts at cell (16, 12), follows the direction of the arrows
to first cell at (1, 1). The path through the matrix is indicated using cells with
gray background. Only the corresponding points to the cells with decreasing
length are saved for the LCSS, indicated by green numbers.

6.3.2.2 Connecting Points Collection

A subsequence is a sequence of points that appear in the same relative order
and do not have to occupy consecutive positions in the original trace. The
longest common subsequence may correspond to more than one road segment.
However, we are more interested in the common sub-tracks to both GPS traces,
whose points do occupy consecutive positions in the original traces. Each com-
mon sub-track corresponds to one road segment that the road users traverse in
both traces. Therefore the starting and ending points of the sub-track corre-
sponding to the two ends of the road segment, i.e. intersections. The common
sub-tracks between two GPS traces can be obtained by partitioning the longest
common subsequences.

We first check the consecutiveness of the points of the longest common
subsequences. Given the kth points of the LCSSs for both traces, g1(k) and
g2(k), and their time indexes in the original traces w1(k) and w2(k), they are
nonconsecutive points if the next points g1(k + 1) and g2(k + 1), are recorded
much later than them in the original traces, i.e. w1(k + 1) − w1(k) > ξ and
w2(k+ 1)−w2(k) > ξ, where ξ is a predefined threshold. The longest common

6.3 Intersection and Connectivity Detection 131

50.8826

50.8822

50.8818o
)

L
a

ti
tu

d
e

 (

o
)Longitude (

Trace :16

Trace :12

50.8814

50.8810

50.8806
4.6997 4.7005 4.7013 4.7021 4.7029

(a) GPS traces

3 6 9 12

3

6

9

12

15

2

21 4 5 7 8 10 11

1

2

4

5

7

8

10

11

13

14

16 9

8

0

0

1

0 0 0 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 2 2 2 2 2 2 2 2 2 2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3 3 3 3 3 3 3 3 3 3

3

3

3

3

3

3

3

3

3

3

3

3

3

4 4 4 4 4 4 4 4 4

4

4

4

4

4

4

4

4

4

4

4

4

5 5 5 5 5 5 5 5

5

5

5

5

5

5

5

5

5

5

5

5 5 5 5 5 5 5

5 5 5 5 5 5 5

5 5 5 5 5 5 5

5 5 5 5 5 5 5

5 5 5 5 5 5 5

5 5 5 5 5 5 5

5 5 5 5 5 5 5

5

5

5

5

5

5

5

5

6

6

6

6

6 6 6 6

7

7

7

7 7 7

8

8 8

9

(b) Warp path

Figure 6.6: LCSS problem of two GPS traces. (a) The LCSSs between Trace r1(t1)
and r2(t2) using black dots. 9 black dots connected using blue lines are for Trace
r1(t1), and 9 black dots with red lines for Trace r2(t2). (b) The “backtrack” procedure
of finding the LCSSs between these two traces by following the arrows. The LCSSs
are indicated using cells with green numbers.

132 Road Network Inference from GPS Traces

−87.675 −87.665

41.87

41.875

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Figure 6.7: GPS traces in opposite directions. Red and blue traces are in the same
direction on the road segment between the intersections indicated by red circles, and
black traces in the opposite direction.

subsequence is segmented by these nonconsecutive points into common sub-
tracks. If all points of the LCSSs are consecutive, we directly take the starting
and ending points of the LCSSs as connecting points if they are not the starting
and ending points of these two GPS traces.

As shown in Fig. 6.6, the fifth points of the LCSSs are not consecutive in
the original traces. For trace r1(t1), the sixth point of its LCSS occupies the
thirteenth position in r1(t1). The fifth and six points of the LCSS are separated
by seven blue dots. For trace r2(t2), the sixth point of its LCSS occupies the
eighth position in r2(t2). The fifth and six points of the LCSS are separated
by two red dots. Therefore, each LCSS is partitioned to two sub-tracks by
the fifth point: the first sub-track containing 5 points, and the second one
containing 4 points. For the first trace, the detected common sub-tracks are
r1(t1), t1 = 1, 2, 3, 4, 5 and r1(t1), t1 = 13, 14, 15, 16. The common sub-tracks
for the second trace are r2(t2), t2 = 1, 2, 3, 4, 5 and r2(t2), t2 = 8, 9, 10, 11. The
ending points of the first common sub-track for each trace, r1(5) and r2(5), are
connecting points, and the starting points of the second sub-track for each trace,
r1(13) and r2(8), are also connecting points. The starting points of the first
common sub-track for each trace, r1(1) and r2(1), are not connecting points
because they are also the starting points of the GPS traces. The ending points
of the second sub-track for each trace, r1(16) and r2(11), are not connecting
points because r1(16) is the ending point of trace r1(t1).

The procedure of detecting the LCSSs processes two GPS traces direction-
ally, which start from the beginning of both traces and end at the ending of
both traces. If the road users traverse the same road segment in two traces,
but in the opposite directions, no common sub-tracks will be found between
them. As shown in Fig. 6.7, all of the GPS traces share the same road segment
between two intersections, which are indicated by red circles. On this road
segment, the road users travel from left to right in the blue traces, but from
right to lefts in the black traces. No common subsequences will found between

6.3 Intersection and Connectivity Detection 133

the blue and black traces, although they do share the same road segment. This
can be solved by reversing the data points of the black traces.

Given a data set of N GPS traces, we first find the common sub-tracks
between each pair of GPS traces as elaborated above, and collect the starting
and ending points of the common sub-tracks as connecting points, if they are
not the starting and ending points of these two GPS traces. We then reverse
one trace in the each pair of the GPS traces and repeat the procedure again to
find more connecting points.

6.3.2.3 Intersection Extraction from Connecting Points

The same connecting point may be found in one GPS trace when it is aligned
with different other GPS traces using LCSS algorithm. Therefore there are a
lot more connecting points detected than turning points. At the areas with
tall buildings and high-error GPS traces, the connecting points for two close
intersections may mix together on the road between the two intersections. It
is difficult to apply Algorithm 6 to distinguish these two intersections.

Instead of Algorithm 6, we detect the intersections by estimating the den-
sity of the connecting points in this section. The map is first discretized into a
fine grid of cells. The number of connecting points in each cell is then counted,
producing a 2-Dimensional (2-D) histogram [Biagioni 12a]. Because of GPS
errors, connecting points may be detected on the road segment, rather than at
the intersections. Therefore, the 2-D histogram is convolved with a Gaussian
smoothing function N(0, σ2) to produce a density map. If the cell size is small
enough, the density map produced is a close approximation of the Kernel Den-
sity Estimation (KDE). The choice of σ of the Gaussian function should be
made depending on the expected GPS error and the intersection size.

The local maxima in the density map, whose values are greater than those of
their neighbors in a 3×3 neighborhood, are detected as intersection candidates.
The outputs of this step are the geographical locations of the intersections, and
the connecting points which belong to each intersection.

The connecting points are detected from pairwise GPS trace alignment using
the LCSS algorithm. One single trace meeting with a lot of other similar GPS
traces at the same location can produce a large number of connecting points,
leading to a local maximum on the density map. However, this GPS trace can
be an abnormal trace which deviates from the road because of GPS errors. An
example is shown in Fig. 6.8. This will lead to an intersection falsely detected.
Therefore, we need to check the patterns of the GPS traces meeting at one
intersection, and remove this kind of mis-detected intersections, so as to make
our algorithm more robust to GPS errors.

Given an intersection candidate q, the connecting points belonging to this
intersection are expressed as p

(1)
m and p

(2)
m , m = 1, . . .M . Each pair of con-

necting points are produced through finding the common sub-tracks of two
traces ri(m) and rj(m), m = 1, . . .M : p(1)

m is from ri(m) and p
(2)
m is from rj(m),

where i(m) ∈ [1, N] and j(m) ∈ [1, N]. Let Kn be the number of connecting
points which are detected by aligning trace rn with other traces using LCSS,

134 Road Network Inference from GPS Traces

-87.688 -87.686 -87.684 -87.682
41.872

41.873

41.874

41.875

41.876

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

GPS trace

Connecting point

Intersection

Figure 6.8: A false positive intersection. One intersection candidate in red circle is
detected from the connecting points in green dots. It is false positive because all of
the connecting points are produced from 152 traces interconnecting with one single
trace. The black arrow indicates the moving directions of road users in the 152 traces
shown in black lines with dots, and the blue arrow is for the single trace shown in
blue lines with dots.

Kn =
∑M
m=1 1{i(m) = n} +

∑M
m=1 1{j(m) = n}. If all connecting points are

detected from aligning trace rn with every of other traces, half of the connecting
points will be from trace rn, i.e. Kn = M . In this case, an intersection will be
falsely detected from these connecting points if trace rn is an abnormal trace.
For each GPS trace, we calculate pn, n = 1, . . . N , and remove this intersection
candidate if any of pn equals M .

As shown in Fig. 6.8, the intersection candidate shown in red circle is re-
moved from the true intersections because all of its connecting points shown
in green dots are detected from aligning the GPS trace, indicated using blue
lines with dots, with every of other 152 GPS traces shown in black lines with
dots. We admit that we will also remove true intersections connecting three
road segments, in which the road users traverse two of the road segments very
frequently, but through the third road segment only once. This detected inter-
section candidate will be removed until we have more GPS traces to confirm
the existence of this third road segment.

The result is a set of intersections Q(2) = {q(2)
i , i = 1, . . . I(2)}. The su-

perscript (2) refers to the algorithm of intersection detection from connecting
points, different from the intersections Q(1) = {q(1)

i , i = 1, . . . I(1)} which are
detected using the turning points.

6.3 Intersection and Connectivity Detection 135

−87.67 −87.66 −87.65

41.87

41.875

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Figure 6.9: Intersection connectivity. Because of GPS error, q2 is missed in a trace
indicated by black dots, leading to q1 and q3 falsely connected.

6.3.3 Connectivity Analysis and GPS Trace Segmenta-
tion

The connectivity of intersections is analyzed by determining if there are GPS
traces that travel directly from one intersection to another. We first determine
if a given GPS trace contains any intersections by computing the distance
between each point in the trace with the location of our detected intersections.
If the distance between any point in the trace and an intersection is within a
predetermined threshold, we conclude that the GPS trace travels through this
intersection.

Ideally, two intersections are directly connected if there is a trace that trav-
els directly through both intersections without encountering a third. However,
GPS errors can contribute to false positive intersection connections if an inter-
section is not detected along a trace. For example, a road user travels through
three intersections sequentially in one trace, as shown in Fig. 6.9. However,
only the first and the last intersection are detected using our distance thresh-
olding, the second one q2 is missed because its distance to any point of the trace
exceeds the threshold. This would lead to that q1 and q3 are falsely detected
directly-connected. We count the number of traces in which the road users
travel through two intersections continuously and use them to decide whether
they are directly connected. If two intersections are consecutively traveled
through only once or twice, they are considered as unconnected.

After the connectivity is determined, we partition all GPS traces into track
segments between each pair of directly connected intersections. Because of
GPS errors, some of the tracks may drift away from the road segment. We
apply the clustering algorithm using spatial similarity in Section 2.4 to group
the tracks. The cluster with the most tracks is identified as the the cluster of
true tracks, and the tracks in other clusters as outliers. Only the “true” tracks
are used to generate the geometric representation of the road segment.

The output of this step is the connectivity matrix D and the track segments
associated with each road segment. We will use the following notations: For one
road segment R, there are N normal tracks rn(tn), tn = 1 . . . Tn, n = 1, . . . N}.
Specifically, rn(tn) = (xn(tn), yn(tn)) is composed of the latitude and longitude

136 Road Network Inference from GPS Traces

of the point rn(tn).

6.4 Aligning Tracks for a Road Segment

We proposed two methods based on DTW to alignmany trajectories in Chapter
3. In this chapter, we apply these methods to associate the data points of the
tracks for each road segment, resulting in the warped tracks with the same
length, and the time indexes of the points of the warped tracks in the original
tracks. Given N tracks for one road segment rn(tn), tn = 1, . . . Tn, n = 1, . . . N ,
the outputs of the track alignment using the stretch-and-then-compress method
are expressed as: the warped tracks g(1)

n (k), k = 1, . . .K(1), n = 1, . . . N and the
time indexes of their points in the original tracks w(1)

n (k), k = 1 . . .K(1), n =
1, . . . N . The outputs for the greedy method based on successor classification
are the warped tracks g(2)

n (k), k = 1, . . .K(2), n = 1, . . . N and the time indexes
of their points in the original tracks w(2)

n (k), k = 1 . . .K(2), n = 1, . . . N .
Using the point associations established during the track alignment, we

calculate the average of the warped tracks as the geometric representation of
road segment, as shown in Equation 3.4. Given the velocity magnitudes of the
original tracks sn(tn), tn = 1, . . . Tn, n = 1, . . . N , and the time indexes of the
points of warped tracks in the original tracks wn(k), k = 1, . . .K, n = 1, . . . N ,
the average velocity and velocity variance along the average track are calculated
as below:

µs(k) =
1

N

N∑
n=1

sn(wn(k)), (6.4)

σs(k) =
1

N

N∑
n=1

(sn(wn(k))− µs(k))2, (6.5)

where k = 1 . . .K.
For the stretch-and-then-compress method, the average track extracted is

expressed as g
(1)
0 (k), k = 1 . . .K(1), and the average velocity and velocity

variance along it are expressed as µ(1)
s (k), σ(1)

s (k), k = 1, . . .K(1). For the
greedy method based on successor classification, µ(2)

s (k), σ(2)
s (k), k = 1, . . .K(2)

are average velocity and velocity variance along the average track g
(2)
0 (k), k =

1, . . .K(2).
Chapter 3 shows good performance of our proposed alignment methods on

aligning the tracks with high sampling rate for one road segment. In this
section, we will process the whole data sets which contain hundreds or even
thousands of GPS traces over a large area, instead of just one single road. We
will also discuss the influence of varying sampling rates on the road generation
for each of the proposed method.

6.5 Performance Evaluation 137

6.5 Performance Evaluation
In order to evaluate the performance of our proposed methods, we calculate
the accuracy of the generated road network, which consists of intersections and
road segments. The generated road network has to be accurate both topologi-
cally and geometrically, with respect to a ground truth map. The topological
accuracy of the road network describes how many intersections are extracted
correctly. The geometric accuracy refers to how accurate are the geographic
locations contained in the road network compared to the ground truth map.
Both the geographic locations of the intersections and the sequences of data
points representing the roads segments need to be evaluated.

6.5.1 Topological accuracy calculation
Our intersections are extracted from GPS traces. Due to the limited accuracy
and outliers in the GPS traces, we may detect false intersections which do
not exist on the ground truth map and we may also fail to detect some true
intersections (i.e., which exist in the ground truth map). The accuracy of the
intersections depends on three primary aspects: the number of detected true
intersections , the number of detected false intersections, and the number of
the missing true intersection we fail to detect.

We use two parameters to quantify the reliability of intersection detection:
is the proportion of falsely detected intersections, and im the proportion of
missing true intersections [Biagioni 12a]. They are defined as:

is = Is
Is+Ic

im = Im
Im+Ic

,
(6.6)

where Is is the number of falsely detected intersections, Ic the number of cor-
rectly detected intersections and Im the number missing true intersections.

The well-known F -score, based on a combination of precision and recall, is
used as an overall quality score:

Fi = 2 (1−is)(1−im)
(1−is)+(1−im) (6.7)

Higher values of Fi-score indicate that the intersection detection is more reliable
[Liu 07].

6.5.2 Geographical accuracy evaluation
Measuring the accuracy of the generated roads compared to the ground truth
map is related to the topic of map matching. As a first step, this requires
matching road segments from the experimental results with those in the ground
truth map. A variety of algorithms can be applied to solve this problem [Green-
feld 02], for example, Kalman filtering, fuzzy logic, and many others. In our
case, the road segment can be identified easily by finding the corresponding

138 Road Network Inference from GPS Traces

−87.674 −87.673 −87.672 −87.671
41.869

41.8692

41.8694

Ground truth

Generated road

(a) Generated road segment and its
ground truth

−87.674 −87.673 −87.672 −87.671
41.869

41.8692

41.8694

(b) Interpolated generated road segment
and its ground truth

Figure 6.10: Inferred road segment and its ground truth. (a) shows the geometric
representation of one road segment and its ground truth . In (b), both of them are
interpolated so as to reduce the error of their distance caused by uneven distribution
of the data points.

intersections through checking the distance between the data points on the
ground truth map and the inferred intersections, since at most one directed
road segment exists between each pair of intersections.

To judge the difference between an inferred road segment and the corre-
sponding road segment in the ground truth map, we could naively compute a
measure based on the distance between points in both road segments. How-
ever, this poses some complications, as the road segments extracted by our
method are represented as a sequence of data points (the average of points of
the warped tracks). The available ground truth road segments are also repre-
sented as a time series of data points. However, both the total number of points
per road segment and its distribution over time can vary considerably between
the inferred and ground truth data, and from one road segment to another.
Therefore, quality measures based on distances between points in ground truth
and computed road segments are affected by this variability.

A partial solution would be to apply DTW to align the two point series
and warp them to new series of the same length, and then compute the quality
measure on those warped track segments. However, this does not fully solve
the problem, as the warped series can only contain repeated points, but can
never “fill in” missing data. Therefore, large time gaps in the ground truth
or inferred data could lead to large spatial distances between ground truth
and inferred data, even if the track segments are otherwise very similar. For
instance, the first and second points of the generated road in Fig. 6.10a are
matched to the first point on the ground truth using DTW because no closer
points are found on the ground truth. The distance between these paired points
are actually larger than the real distance between the generated road segment
and its ground truth [Calcagno 08].

We address this problem by linearly interpolating the data points of both
the inferred and ground truth road segments. The interpolation limits the
spatial distance between successive points on the same road segment to be a
approximately fixed distance d1. Through interpolation, the data points are

6.6 Results 139

more dense and distributed more evenly, as shown in Fig. 6.10, reducing the
error of the distance measure.

The number of the points interpolated between every two successive points
on the generated road segment depends on their distance. Given the generated
geometric representation for one road segment, (ϕ(k), λ(k)), k = 1, . . .K, there
are N(k) points (ϕ′(n, k), λ′(n, k)), n = 1, . . . N(k), where N(k) = bd2d1 c − 1
interpolated between two successive points (ϕ(k), λ(k)) and (ϕ(k+1), λ(k+1))
depends on the their distance d2.

ϕ′(n, k) = ϕ(k) + n
ϕ(k + 1)− ϕ(k)

N(k) + 1
(6.8)

λ′(n, k) = ϕ(k) + n
λ(k + 1)− λ(k)

N(k) + 1
(6.9)

where n = 1, . . . N(k). (ϕ′(0, k), λ′(0, k)) and (ϕ′(N(k) + 1, k), λ′(N(k) + 1, k))
are the successive points (ϕ(k), λ(k)) and (ϕ(k + 1), λ(k + 1)), respectively.

By interpolating data points between every two successive points in the
generated road representation, a denser road representation is obtained:
(ϕ′(n, k), λ′(n, k)), n = 0, . . . N(k + 1), k = 1, . . .K − 1. The ground truth
data is interpolated in the same way. We apply DTW to align the interpo-
lated road representation and its ground truth. The average distance between
the paired interpolated data points is calculated as shown in Equation 2.4, to
measure the geographical accuracy of the generated road.

Given the correctly detected intersections qi = (ϕi, λi), i = 1, . . . Ic, where
ϕi and λi are coordinates in latitude and longitude, and their ground truths
pi = (ϕ′i, λ

′
i), i = 1, . . . Ic, the geographical accuracy of the detected intersec-

tions are measured using their average distance to the ground truth using the
spherical law of cosines formula.

d =
1

Ic

Ic∑
i=1

arccos (sinϕi sinϕ′i + cosϕi cosϕ′i cos (λi − λ′i))R (6.10)

6.6 Results
We test our methods on two datasets: Chicago dataset and Berlin dataset.
Chicago dataset is gathered by campus shuttle drivers. Each shuttle driver
carries an iPhone running the BITS Laboratory’s tracking application [Labo-
ratory 11]. In total, this dataset contains 889 GPS traces covering an area of
7× 4.5 km2, as shown in Fig. 6.11a. The participating shuttles travel through
both the areas with low-rise buildings and other areas with significant GPS
error because of the tall buildings. The traces range from 100 to 363 samples,
with a sampling rate of 1 seconds to 29 seconds (average: 3.61 seconds and
standard deviation: 3.67 seconds). The Chicago dataset has a geographic co-
ordinate system, which uses latitude and longitude to describe locations on the

140 Road Network Inference from GPS Traces

−87.68 −87.67 −87.66 −87.65 −87.64

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Chicago dataset

(b) Berlin dataset

Figure 6.11: Raw traces. (a) shows 889 GPS traces of Chicago dataset in black
lines with dots which indicate the positions of GPS recordings. (b) shows 27189 GPS
traces in black lines for Berlin dataset.

6.6 Results 141

Earth’s surface. Berlin dataset consists of 27189 GPS traces obtained from a
taxi fleet [Portal 14]. It covers an area of 6×6 km2, as shown in Fig. 6.11b. The
tracks are composed of from 22 up to 58 position samples, with a sampling rate
of 15 seconds to 127 seconds (average: 41.98 seconds and standard deviation:
38.70 seconds). The Berlin dataset has a projected coordinate system, which
projects maps of the earth’s spherical surface onto a two-dimensional Cartesian
coordinate plane and uses x and y to describe locations.

To measure the accuracy of the road network generated from the shuttle
traces, we use OpenStreetMap for a ground truth map. Although the positional
error of GPS traces on OpenStreetMap is approximately 10-20 meters, it is
still popularly used as ground truth for research in road network generation,
because of its open source access and large coverage. For Chicago dataset, we
download the ground truth data from OpenStreetMap website directly. The
ground truth data consists both nodes and ways. A node represents a specific
point on the Earth’s surface, and a way is an ordered list of nodes that define
a road segment. By comparing the directly-connected pairwise intersections
with the starting and ending nodes on the ways, we extract the ground truth
road segments. In total there are 33 true intersections, as shown in blue circles
in Fig. 6.12a. There are 57 road segments shown in black lines with dots on
the ground truth map: 35 of them are one-way, and 22 are two-way. Using the
ground truth data, we will evaluate our proposed methods both qualitatively
and quantitatively. For Berlin data set, the dataset owner gives a collection of
road edges as ground truth. Fig. 6.12b shows the ground truth map with black
lines for road edges and black dots for nodes. The ground truth map covers
all of the streets in the whole area, including streets not traversed by the taxi
fleet. Each edge on the ground truth map is composed of two nodes. A road
edge in the ground truth data is different from a road segment defined in our
work. A road segment may be comprised of several road edges. It is difficult
to directly utilize the ground truth data for quantitative evaluation. Therefore
only we only evaluate the performance of our algorithms on Berlin data set
qualitatively.

6.6.1 Results of Chicago Data Set

In this section, we present the results of Chicago data set. We first show the
intersections detected using both of the proposed methods in Section 6.6.1.1.
The tracks segmented from the GPS traces by the intersections and their clus-
tering results are shown in Section 6.6.1.2 and 6.6.1.3. We give the results of
the track alignment in Section 6.6.1.4, and lastly the track averaging results in
Section 6.6.1.5.

6.6.1.1 Results of Intersection Detection

In this section, we show the intersections detected using both of the proposed
methods. We first show the intersections from the turning point detection

142 Road Network Inference from GPS Traces

−87.68 −87.67 −87.66 −87.65 −87.64

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a

ti
tu

d
e

 (
o
)

(a) Chicago

(b) Berlin

Figure 6.12: Ground truth map. (a) shows 33 intersections in blue circles and road
segments in black lines with dots for Chicago dataset. There are 35 one-way road
segments and 22 two-way road segments. (b) shows the road edges in black lines as
ground truth for Berlin dataset.

6.6 Results 143

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Figure 6.13: Intersections before bend removal. 44 intersection candidates in red
markers are detected from the turning points depicted in green dots, including both
intersections and bends.

method, and then the results for the connecting point methods. At last, we
give the results of accuracy evaluation of the detected intersections.

Results based on Turning Point Detection Fig. 6.13 shows the turning
points extracted from the 889 GPS traces as green dots. The locations where
many turning points cluster are recognized as intersection candidates shown in
red markers. Sometimes isolated turning points are detected because of GPS
errors or insufficient coverage by shuttle tracks. These isolated turning points
are not considered as intersections by our algorithm. In total, 44 intersection
candidates are detected using the turning points.

Fig. 6.14 shows the intersections detected after removing the bends by check-
ing the entering and exiting directions of the connecting points at the intersec-
tion candidates. 8 bends are removed from the intersection candidates, leaving
36 intersections, shown in red markers. For instance, the two bends at the left
edge of the map are removed from the intersection candidates. But not all of
the bends are removed because of GPS noise, for instance, q(1)

25 , q
(1)
27 and q

(1)
34 .

29 of 36 intersections are true intersections, shown as red circles, and 7 of them
in red crosses are spurious intersections which do not exist on the ground truth
map. Besides, there are 5 missed intersections which are undetected, depicted
in blue circles.

An intersection apparently exists between q
(1)
14 and q

(1)
15 in Fig. 6.14 . How-

ever, no intersection is detected there using this method because only a few

144 Road Network Inference from GPS Traces

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Figure 6.14: Intersections after bend removal. 36 of 44 intersection candidates are
identified as intersections after removing 8 bends, including 29 true intersections in
red circles and 7 spurious intersections in red crosses. 5 intersections on the ground
truth map are undetected, which are indicated by blue circles.

isolated turning points exist. At this location, the shuttles always go straight
without changing their moving directions, possibly because of the presence of
a bridge.

Moreover, there are two intersections on the ground truth map around the
location of the extracted intersection q

(1)
26 . We found that the turning points

are clustered to the same group q
(1)
26 , because they are too close to each other.

On the ground truth map, each intersection is localized at the center of
the junction between road segments, but the intersections detected using our
method sometimes deviate from the center, depending on the type of turns
the shuttles make at a particular junction. For instance, the intersection q

(1)
22

connects 4 road segments, but the shuttle only visited 3 of them. The shuttle
only made one type of turn there: coming from q

(1)
18 , turning right at q

(1)
22 to

q
(1)
24 . More turning points are detected along this type of turn, resulting in the

location of q(1)
22 deviating from the center of the crossroad. The average distance

between the correctly detected intersections in Fig. 6.14 and their ground truth
in Fig. 6.12 is 22.69 meters.

Results based on Connecting Point Detection Fig. 6.15 shows the con-
necting points in green dots. Most of the connecting points gather at the
intersections. At the top-right corner of the map, only a few connecting points

6.6 Results 145

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

−87.685 −87.675 −87.665 −87.655 −87.645

Figure 6.15: Connecting points. The connecting points are shown in green dots.

are detected because of high-error and low-coverage GPS traces. Some of con-
necting points are detected on the road segments instead of at the intersections
because of GPS errors. An example is shown in the red rectangle. One GPS
trace deviates from the main road. Common sub-tracks between this GPS trace
and other traces end in the middle of the road segment, rather than at the end
of the road segment, resulting in false positive connecting points.

Fig. 6.16 shows the kernel density estimation of the connecting points. The
map shown is discretized into 1 × 1 square meters cells. 2-D histogram is
produced from the connecting points, and convolved with a normal distribution
function N(0, σ2). We chose σ = 15 meters depending on the size of the
intersections and the minimum distance between two adjacent intersections.
The density estimate shows clear peaks at the intersections on the map.

Fig. 6.17 shows 41 intersection candidates in red circles, which are local
maximas on the density map. At some of the intersection candidates, the
road user turns to a different direction in only one of the traces, for instance,
the location at (41.8768◦,−87.667◦). The method based on moving direction
change only detects a few turning points from one of the GPS passing by this
location; this is not enough to detect an intersection there. The method based
on connecting point detection detects a common sub-track between this trace
with direction change and each of the other traces, producing a lot of connecting
points for intersection detection.

Fig. 6.18 shows the true intersections after checking the patterns of trace
meeting at the intersection candidates. If all of the connecting points around
one intersection candidate are obtained by one GPS trace intersecting with a

146 Road Network Inference from GPS Traces

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

Figure 6.16: KDE of the connecting points. Peaks of the KDE locate at the inter-
sections.

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

−87.685 −87.675 −87.665 −87.655 −87.645

Figure 6.17: Intersection candidates. The intersection candidates are extracted
from the connecting points by finding local maximums on the density map. In total,
41 candidates are detected.

6.6 Results 147

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

−87.685 −87.675 −87.665 −87.655 −87.645

Figure 6.18: Intersections. By checking the patterns of the traces meeting at the
intersections 13 intersection candidates are removed, resulting in 28 intersections in
red circles.

number of other traces, it is removed because the existence of a road segment
should be confirmed by more traces. In total, 28 intersections are kept after
removing 13 candidates, including 27 true intersections in red circles and 1

spurious intersection q
(2)
25 , indicated by a red cross, which is not matched to

any intersection on the ground truth map. The blue circles are for intersections
we fail to detect. The average distance between the detected intersections in
Fig. 6.18 and their ground truth in Fig. 6.12 is 14.90 meters, much smaller than
that between the detected intersections using moving direction change and the
ground truth, which is 22.69 meters.

As shown in Fig. 6.14, some bends are mistakenly detected as intersections
by the first method even after checking the entering and exiting directions.
These bends only connect two road segments. The second method based on
connecting points is designed to detect the locations which connect three road
segments. Therefore, no bends are mis-detected as intersections in Fig. 6.18.

Discussion Fig. 6.19 shows the topological accuracy of the intersections. The
matching threshold is defined as the allowable distance between the intersec-
tions and their positions on the ground truth map. An intersection will be
considered as falsely detected if there is no ground truth intersection within
the allowable distance. We can see that with the lowest 5-meters matching
threshold shown in Fig. 6.19, all of the intersections we detected are classified
as false intersections, and all of the intersections on the ground truth map as

148 Road Network Inference from GPS Traces

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Matching threshold (m)

F
-s

c
o
re

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Matching threshold (m)

F
-s

c
o
re

(b)

Figure 6.19: Intersections accuracy analysis. (a) shows accuracy of the intersections
detected from turning points. (b) is for the other method based on connecting point
detection. The bigger the F-score is, the more accurate it is.

missing intersections. As the matching threshold gets bigger, more detected in-
tersections are correctly detected, which means that there are intersections on
the ground truth map spatial close to them. Therefore, the fraction of missing
intersections i(1)

m and i(2)
m gets lower and the number of spurious intersections

i
(1)
s and i(2)

s drop as well, resulting in higher F-score F (1)
i and F (2)

i .
Because the shuttle drivers visit the top-right area on the map too little,

as shown in Fig. 6.11a, there are not enough traces to detect the intersections
there. Therefore, the F-score will not achieve 1 using either of our methods. We
give an threshold of 0.8 to the F-score. If it is higher than 0.8, the intersection
detection is successful. With a matching threshold of 30 meters, F-score of
the connecting point method achieves 0.85, and F-score of the turning point
method is only 0.6. F-score of the turning-point-based method reaches around
0.8 with a matching threshold of 40 meters. It demonstrates that intersections
detected from the connecting points are more accurate.

As shown in Fig. 6.14 and 6.18, both methods almost detect the same
number of intersections correctly: 29 for the turning point method and 28
for the connecting point method. Both methods fail to detect 5 intersections
(the blue circles), so that i(1)

m in Fig. 6.19a is similar to i(2)
m in Fig. 6.19b. Some

bends are detected as intersections using the turning point method, resulting in
higher i(1)

s but lower F (1)
i in Fig. 6.19a compared to i(2)

s and F (2)
i in Fig. 6.19b.

For the turning point method, we need to calculate the moving directions
for each GPS point and find the points with moving direction change in each of
N GPS traces. For the connecting point method, we need to find the common
sub-tracks between each of the (N−1)N

2 pairs of GPS traces. Besides, it is more
complex to calculate the length and direction matrix for each pair of GPS traces
than the moving directions at each GPS point. We implemented and tested
our algorithm in MATLAB 8.3 on a 2.0 Ghz machine with 4 GB RAM. The

6.6 Results 149

computation time is around 36 minutes using the connecting point method,
and 5 minutes using the turning point method. This means that the turning
point method is more scalable onto bigger data set than the connecting point
method.

We detect the intersections in two different methods at this step, and the
results of one method will be used to partition the GPS traces for individual
road segments at the next step. Since more intersections are detected at the
top-right corner of the map using the turning point method, we will choose them
to segment the GPS traces. Although some road segments are split into smaller
pieces because of falsely detected intersections, more directed road segments
will not affect the track alignment on each road segment.

6.6.1.2 Results of GPS Trace Segmentation

With 50 meters as the matching thresholds for the intersections, there are 77
non-zero elements in the connectivity matrix, indicating 77 pairs of intersections
directly connected to each other. According to the connectivity matrix, the
GPS traces shown in Fig. 6.11a are segmented, resulting in Fig. 6.20. Fig. 6.20a
depicts the tracks in black lines, for 38 road segments which start from lower-
index intersections and end at higher-index intersections. While the tracks
shown in Fig. 6.20b are for the 39 road segments from higher-index intersections
to lower-index intersections.

Our method also detects that some of the roads are one-directional, for in-
stance, the road segment between the first and third intersection in Fig. 6.20.
The shuttles always travel from q

(1)
3 to q

(1)
1 , and never take the opposite di-

rection. In another case, the shuttles travel between the intersection q
(1)
22 and

q
(1)
29 in both directions according to their GPS traces. However, there are no

tracks for the road segment existing between them on the ground truth map
as shown in Fig. 6.12. This could be caused by temporary road construction.
The Chicago data set was recorded in April, 2011, but OpenStreetMap was
downloaded on August 2014. By checking this road segment under Google
street view on dates closest to the access dates, we find that the road segment
between intersection q

(1)
22 and q

(1)
29 was passable in May, 2011, but was blocked

in October, 2014, because of road construction.

6.6.1.3 Results of Track Clustering

The directed tracks in Fig. 6.20 are clustered using the algorithm based on
similarity measure in Section 2.4. Only the normal tracks with high similarity
to each other are aligned and used to extract the geometric representation of
each road segment and analyze the velocity variance along each road segment.
Fig. 6.21a and 6.21b show the normalities and abnormalities of the tracks in
Fig. 6.20a. The tracks in Fig. 6.20b are grouped into normal tracks in Fig. 6.22a
and abnormal tracks in Fig. 6.22b.

From Fig. 6.21b and 6.22b, we can see that most of the abnormal tracks
are located at the same area, i.e., the one with tall buildings. In Fig. 6.20b,

150 Road Network Inference from GPS Traces

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Tracks 1

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Tracks 2

Figure 6.20: Directed GPS tracks. (a) shows the tracks for directed road segments
from higher-index intersections to lower-index intersections. (b) shows the tracks for
directed road segments from lower-index intersections to higher-index intersections.

6.6 Results 151

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Normal tracks 1

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Abnormal tracks 1

Figure 6.21: Track clustering 1. Tracks in Fig. 6.20a, which start from the higher-
index intersections and end at the lower-index intersections, are clustered into normal
tracks in (a) and abnormal tracks in (b).

152 Road Network Inference from GPS Traces

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Normal tracks 2

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Abnormal tracks 2

Figure 6.22: Track clustering 2. (a) and (b) are the normal and abnormal tracks of
Fig. 6.20b, respectively. The tracks start from the lower-index intersections and end
at the higher-index intersections.

6.6 Results 153

there is one track from Intersection q
(1)
15 to q

(1)
17 , which is above other tracks

between these two intersections. Our algorithm successfully detects it as abnor-
mal track, as shown in Fig. 6.22b. Without removing this track, the geometric
representation, which is averaged from the warped tracks, will be inaccurate.

The ground truth map in Fig. 6.12 shows two intersections around the
location of the extracted intersection q

(1)
26 . Our algorithm merged them together

because the turning points are too close to each other. From Intersection q
(1)
23

to q
(1)
26 , two types of tracks are detected: one is directly from Intersection

q
(1)
23 to q

(1)
26 ; the other one is from Intersection q

(1)
23 to q

(1)
26 , and to q

(1)
26 again

through a small loop. The first type of tracks are detected as the normal ones
in Fig. 6.22a and the second type of tracks as the outliers in Fig. 6.22b, because
one intersection is not connected to itself by our connectivity definition.. Only
the normal tracks from Intersection q

(1)
23 to q

(1)
26 in Fig. 6.22a are aligned in the

next step.

6.6.1.4 Results of Track Alignment

The normal tracks in Fig. 6.21 and 6.22 are aligned separately using the stretch-
and-then-compress method and using the greedy method based on successor
classification, resulting in Fig. 6.23 and 6.24. Fig. 6.23a shows the point associa-
tions of part of tracks, shown in Fig. 6.21a, using the stretch-and-then-compress
method, and Fig. 6.23b is for point associations of the same tracks using the
greedy method based on successor classification. Fig. 6.24a and 6.24b show the
point associations of the other part of tracks, shown in Fig. 6.22a, separately
using each alignment method. The associated points are indicated in the same
color.

Because the compress operation keeps only one pair of points with the
largest similarity among the many-to-one correspondence, the stretch-and-
then-compress method produces the warped tracks shown in Fig. 6.23a and
6.24a, which have fewer points than the original normal tracks shown in
Fig. 6.21a. Due to the many-to-one correspondence produced by the greedy
method based on successor classification, there are more data points in the
warped tracks than the original tracks, as shown in Fig. 6.23b and 6.24b. Al-
though the warped tracks produced using the greedy method based on successor
classification have more points than the original tracks, the physical locations
of the points do not change because the greedy method only duplicates data
points at the same position along the warp paths.

The alignment of the tracks in Fig. 6.23b and 6.24b is more smooth than
that in Fig. 6.23a and 6.24a. For instance, the compress operation of the
stretch-and-then-compress method removes some data points of the tracks on
the road segment from Intersection q

(1)
3 to q

(1)
1 , but the greedy method based

on successor classification keeps all of the data points, as shown in the black
boxes. Therefore the greedy method produces better and denser representation
of the road segment.

154 Road Network Inference from GPS Traces

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Stretch-and-then-compress method

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Greedy method based on successor classification

Figure 6.23: Track alignment 1. (a) depicts the point associations of the tracks in
Fig. 6.21a using the pairwise alignments with a “stretch and then compress” strategy,
and (b) shows the point associations of the same tracks using the greedy method
based on successor classification. The associated points are indicated in the same
color.

6.6 Results 155

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Stretch-and-then-compress method

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Greedy method based on successor classification

Figure 6.24: Track alignment 2. The tracks in Fig. 6.22a are aligned using two
methods respectively, resulting in the point associations, as shown in (a) and in (b).

156 Road Network Inference from GPS Traces

6.6.1.5 Results on Track Averaging

We first show the average tracks as the geometric representations of the directed
road segments, then depict the relation between the aligning order of the tracks
and the average distance between the average tracks inferred using the stretch-
and-then-compress method and their ground truth. At the end, we present the
average velocity and the velocity variance along the average track for each road
segment, extracted using two proposed alignment methods respectively.

Geometric accuracy The tracks in Fig. 6.21a are averaged using the
point associations established by the stretch-and-then-compress method and
the greedy method based on successor classification separately, resulting in
Fig. 6.25a and Fig. 6.25b, repetitively. Fig. 6.25a and Fig. 6.25b are the ge-
ometric average tracks for the tracks in Fig. 6.21a. The arrows indicate the
direction of the roads, and the black dots are for the data points representing
the road segments. Fig. 6.26a and Fig. 6.26a show the geometric representation
of the directed roads which are averaged from the tracks in Fig. 6.22a using
the alignments produced by two methods respectively.

As shown in Fig. 6.25 and 6.26, the greedy method based on successor
classification produces more points for the directed roads than the stretch-and-
then-compress method. For instance, the stretch-and-then-compress method
keeps only 4 points as the geometric representation of the road segment from
Intersection q

(1)
3 to q

(1)
2 , as shown in Fig. 6.25a. The greedy method based

on successor classification produces 91 data points to represent the same road
segment. This proves that the greedy method is able to produce a geometric
representation of the road segment in more details than the other method,
but sometimes the details are superfluous because the adjacent points in the
average track are too close to each other.

To analyze the influence of the various sampling rates on the road generation
for each of the proposed method, we re-sampled the tracks for road segment
from q

(1)
3 to q

(1)
1 at from 1/2 to 1/10 times the original sampling rate. The

number of data points in the original tracks ranges from 80 to 96 (average: 89).
After re-sampling, it ranges from 11 to 92 (average: 33). We applied both of
the alignment methods on the re-sampled tracks separately, and obtained the
road representation as shown in Fig. 6.27. The re-sampled tracks are depicted
in black lines with stars indicating the data points of the tracks. The gener-
ated road representation is shown in blue lines with dots. 10 points are kept
using the stretch-and-then-compress method, with information lost at the two
“bends.” The greedy method based on successor classification, represent the
road segment with 93 points. Although the distribution the points is uneven,
the road shape is not changed in the generated geometric representation. It
proves that the greedy method based on successor classification outperforms the
stretch-and-then-compress method in producing good geometric representation
for tracks with various sampling rates.

The average distance between all of the generated road segments and their
ground truth is used as a measure geographical accuracy of the generated road

6.6 Results 157

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Stretch-and-then-compress method

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Greedy method based on successor classification

Figure 6.25: Geometric representation 1. The tracks in Fig. 6.21a, which start from
the higher-index intersections and end at the lower-index intersections, are averaged
to form the geometric “average tracks” using two alignment methods, resulting in (a)
and (b) respectively.

158 Road Network Inference from GPS Traces

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Stretch-and-then-compress method

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Greedy method based on successor classification

Figure 6.26: Geometric representation 2. The tracks in Fig. 6.22a, which start from
the lower-index intersections and end at the higher-index intersections, are averaged
to form the geometric “average tracks” using two methods separately, resulting in (a)
and (b).

6.6 Results 159

−87.688 −87.684 −87.68 −87.676
41.868

41.87

41.872

41.874

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a) Stretch-and-then-compress
method

−87.688 −87.684 −87.68 −87.676
41.868

41.87

41.872

41.874

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(b) Greedy method based on successor
classification

Figure 6.27: Generated road using tracks with various sampling rate. The geomet-
ric representation of the road segment from q

(1)
3 to q

(1)
1 is extracted from re-sampled

tracks using our two alignment methods respectively. (a) depicts the road represen-
tation with 10 points using the old alignment method. The new method produces 93
points in (b).

network. We align all of the tracks together simultaneously using the greedy
method based on successor classification, producing a fixed average distance of
6.87 meters. For the stretch-and-then-compress method, it is different if the
tracks are aligned in a different order.

The results shown in Fig. 6.25a and 6.26a are extracted using a specific
order based on their similarity score to other tracks, which is calculated as
the sum of their similarity score to every other track. To evaluate the influence
quantitatively, we also averaged the tracks by aligning them in 50 other random
orders. The average distance between the generated road segment and its
ground truth with 50 different orders is calculated and shown in Fig. 6.28.
The horizontal and vertical axis indicate the index of aligning order and the
average distance, respectively. No matter which order is selected to align the
tracks, the distance between the generated road segments and the ground truth
is always around 7.38 meters with maximum value 7.85 meters and minimum
value 6.81 meters, which means the aligning order has no significant influence
on averaging the highly similar tracks.

Considering that the precision of the OpenStreetMap is around 10-20 me-
ters, both proposed methods show excellent performance in terms of geograph-
ical accuracy, which is 6.87 meters for the greedy method based on succes-
sor classification, and around 7.38 meters for the stretch-and-then-compress
method.

Average Velocity and Velocity variance For each road segment, the av-
erage velocity and the velocity variance along the data points of the average
track are calculated as explained in Section 6.4. Fig. 6.29 and 6.30 show the re-

160 Road Network Inference from GPS Traces

0 10 20 30 40 50
5

6

7

8

9

10

A
v
e
ra

g
e
 d

is
ta

n
c
e
 (

m
)

The index of aligning order

Figure 6.28: Influence of the aligning order using Method 1. No matter in which
order the tracks are aligned, the average distance between all of the generated road
segments and their ground truth is around 7.37 meters stably, which means the align-
ing order does not affect the track alignment significantly.

sults. Fig. 6.29 is for the tracks on the directed road segments which start
from higher-index the intersections and end at lower-index ones, as shown
in Fig. 6.21a. Fig. 6.29a depicts the results which are calculated using the
point assignations in Fig. 6.23a produced using the stretch-and-then-compress
method. Fig. 6.29b shows the results of the same tracks using the point assig-
nations in Fig. 6.23b produced using the greedy method based on successor
classification. The color of the points represents the strengths of the velocity,
and the width of the band around the average track indicates the variance of
the velocity. The wider the band is, the more variation in velocity.

The two sub-figures in Fig. 6.30 show the average velocity and the velocity
variance of the other part of the tracks on the directed road segments, which
connect higher-index intersections to lower-index intersections. Fig. 6.30a and
6.30b are for different alignment methods respectively.

Because more data points are kept to represent the geometry of the road
segments using the greedy method based on successor classification than the
stretch-and-then-compress method, the average velocity and velocity variance
are more smoothly in Fig. 6.23b and 6.24b. Because the average velocities cal-
culated are only slightly different, and the velocity variances along the average
tracks are also similar, both of the proposed methods can be used to do the
statistical analysis.

From Fig. 6.29 and 6.30, we can see that the road users mostly drive at a
speed between 25 to 35 kilometers per hour. Sometimes the speed is as high as
40 km/h on some roads, for instance, on the directed road segments between
Intersection q

(1)
17 and q

(1)
15 in both directions. The velocity of the shuttles on the

road segment from Intersection q
(1)
28 to q

(1)
13 varies widely, resulting in uneven

bands around the average track.

6.6 Results 161

5 km/h

10 km/h

15 km/h

20 km/h

25 km/h

30 km/h

35 km/h

40 km/h

45 km/h

50 km/h

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a

tit
u

d
e

 (
o
)

(a) Stretch-and-then-compress method

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

5 km/h

10 km/h

15 km/h

20 km/h

25 km/h

30 km/h

35 km/h

40 km/h

45 km/h

50 km/h

Longitude (
o
)

L
a

tit
u

d
e

 (
o
)

(b) Greedy method based on successor classification

Figure 6.29: Average velocity and its variance 1. The average velocity of the tracks
in Fig. 6.21a is calculated using the point assignations in Fig. 6.23a produced through
pairwise alignments using a “Stretch and then Compress” strategy, resulting in (a).
(b) shows the average velocity of the same tracks using the greedy method based on
successor classification, as shown in Fig. b.

162 Road Network Inference from GPS Traces

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

Longitude (
o
)

L
a

tit
u

d
e

 (
o
)

5 km/h

10 km/h

15 km/h

20 km/h

25 km/h

30 km/h

35 km/h

40 km/h

45 km/h

50 km/h

(a) Stretch-and-then-compress method

−87.685 −87.675 −87.665 −87.655 −87.645

41.865

41.87

41.875

41.88

5 km/h

10 km/h

15 km/h

20 km/h

25 km/h

30 km/h

35 km/h

40 km/h

45 km/h

50 km/h

Longitude (
o
)

L
a
tit

u
d
e
 (

o
)

(b) Greedy method based on successor classification

Figure 6.30: Average velocity and its variance 2. The average velocity of the tracks
in Fig. 6.22a is calculated using the point assignations in Fig. 6.24a produced by the
stretch-and-then-compress method, resulting in (a). (b) shows the average velocity
of the same tracks using the point assignations in Fig. 6.24b produced by the greedy
method based on successor classification.

6.6 Results 163

6.6.1.6 Comparison with Other Methods

Our results are compared to the following existing methods: the curve fitting
method proposed by Schroedl [Schroedl 04], the KDE-based method by Davies
[Davics 06] and also the trace-merging method proposed by Cao [Cao 09]. Since
qualitative and quantitative evaluations of these three existing algorithms have
been made by Biagioni and Eriksson in [Biagioni 12a] on the same Chicago
campus shuttle dataset as us, we can compare the results of their algorithms
directly with ours.

Fig. 6.31 shows our results for the same two examples that Biagioni used
in his paper [Biagioni 12a], one example at the area of tall-rise buildings with
high-error GPS traces, while the other one at the area of low-rise buildings
with low-error GPS traces. The directed roads are depicted in different colors
depending on their directions. Magenta is for the directed roads from the
low-index intersections to high-index intersections, and blue is for the directed
roads from the high-index intersections to low-index intersections. As shown
in Fig. 6.31, both of our alignment algorithms produce clean directed roads
without spurious edges. Because of the compress operation of the stretch-
and-then-compress method, the inferred geometric representation of the road
segments contain less data points. Although the detected intersection q(1)

does not locate at the center of the crossroad, the road segments it connects
intersecting at the center. In the future, we will refine the intersection locations
after extracting the geometric representations of the road segments.

Fig. 6.31 shows the results of three other methods with the same two ex-
amples as Biagioni and Eriksson presented in his paper [Biagioni 12a]. All of
the methods work well in areas with low GPS noise, as shown in Fig. 6.32b,
6.32d and 6.32f. Although Cao and Krumm apply a clarification preprocessing
to reduce the effects of GPS noise, they are not able to merge the spatially
dispersed traces into one graph. Therefore a large amount of spurious edges
are produced at the area of high GPS noise using their method, as shown in
Fig. 6.32a. Edelkamp and Schroedl cluster the raw data points, merge the clus-
ter seeds to road segment, and apply a curve fitting methods to generate the
geometric representation for each road segment. Because this cluster-merging
method is easily led astray by GPS noise, spurious roads are also produced at
the area of high GPS noise, as shown in Fig. 6.32e. Our algorithms, based on
intersection detection, extract the road topology successfully without adding
any extraneous edges. Although Davies also produces clean roads, our methods
still outperform his, because our generated roads are directed, while he only
extracted undirected roads.

6.6.2 Results of Berlin Data Set

In this section, we present the results of Berlin data set. We first show the
intersections detected using both of the proposed methods elaborated in Section
6.6.2.1. The results of GPS trace segmentation and clustering are illustrated in
Section 6.6.2.2. At last, we give the track averaging results in Section 6.6.2.3.

164 Road Network Inference from GPS Traces

−87.674 −87.672 −87.67 −87.668
41.869

41.87

41.871

Longitude (
o
)

L
a
ti
tu

d
e
 (

o
)

(a)

Longitude (
o
)

L
a

ti
tu

d
e

 (
o
)

41.875

41.874

41.873

41.872

41.871

-87.652 -87.65 -87.648 -87.646

(b)

−87.674 −87.672 −87.67 −87.668
41.869

41.87

41.871

Longitude (
o
)

L
a

ti
tu

d
e

 (
o
)

(c)

Longitude (
o
)

L
a

ti
tu

d
e

 (
o
)

41.875

41.874

41.873

41.872

41.871

-87.652 -87.65 -87.648 -87.646

(d)

−87.674 −87.672 −87.67 −87.668
41.869

41.87

41.871

Longitude (
o
)

L
a

ti
tu

d
e

 (
o
)

(e)

41.875

41.874

41.873

41.872

41.871

-87.652 -87.65 -87.648 -87.646
Longitude (

o
)

L
a

ti
tu

d
e

 (
o
)

(f)

Figure 6.31: Results using our proposed methods in areas with high and low GPS
error respectively. (a) shows an area with high-error GPS tracks, which are used to
produce the directed roads in (c) using the stretch-and-then-compress method and
(e) using the greedy method based on successor classification. The low-error GPS
tracks shown in (b) are used to extract the directed roads in (d) and (f) using our
two proposed alignment methods respectively.

6.6 Results 165

(a) (b)

(c) (d)

(e) (f)

Figure 6.32: Results of 3 other algorithms in areas with high and low GPS error
respectively. (a) and (b) show the results of high-error and low-error sample respec-
tively using Cao’s algorithm. (c) and (d) are for Davies’ algorithm, and (e) and (f)
for Edelkamp’s algorithm.

166 Road Network Inference from GPS Traces

6.6.2.1 Results of Intersection Detection

Fig. 6.33 and 6.34 show the intersection detected from turning points and
connecting points, respectively. By checking the moving direction on the GPS
traces, 41, 974 turning points are detected. Due to low sampling rate and high
GPS error, we detect turning points both at the location of the intersections
and also on the road segments for this large-scaled area with very dense road
network, as shown in Fig. 6.33a. The clustering method in Section 6.3.1.2 is
no longer suitable for identifying intersections from turning points. For Berlin
dataset, we apply the KDE on the turning points and find local maximas as
intersections, the same as we do for intersection detection from connecting
points. In total, there are 252 intersection detected, as shown in Fig. 6.33b.

By finding the common sub-tracks between pairwise GPS traces, we de-
tect 711, 830 connecting points, as shown in Fig. 6.34a. From the connecting
points, 240 intersections are identified, as shown in Fig. 6.34b. A lot of con-
necting points are detected at locations where abnormal traces deviate from
the roads, therefore more spurious intersections are detected, compared to the
turning point method. Sometimes the inaccurate GPS traces diverge on the
road segment rather than at the intersection, leading to that the connecting
points detected at somewhere close to the intersection. Thus several inter-
sections could be detected around a true intersection, on the roads the true
intersection connects.

At the middle-left area of the map, GPS traces on different roads mix to-
gether because of GPS error. It is difficult to separate them for different road
segments, therefore neither of our methods work well at this area.

6.6.2.2 Results of GPS Trace Segmentation and Clustering

Because the intersections detected from turning points show higher accuracy
than that from connecting points, the intersections in Fig. 6.34b are used to seg-
ment GPS traces. With 150 meters as the matching threshold, the GPS traces
shown in Fig. 6.11b are segmented into tracks shown in Fig. 6.35. Fig. 6.35a
and 6.35b shows the tracks in different directions, respectively.

Using the algorithm based on similarity measure presented in Section 2.4,
the directed tracks in Fig. 6.35a are clustered into normal tracks shown in
Fig. 6.36a and abnormal tracks shown in Fig. 6.36b. The tracks in Fig. 6.35b
are grouped into normalities and abnormalities as shown in Fig. 6.37a and
Fig. 6.37b respectively. The normal tracks show the road network more clearly.
Removing the abnormal tracks for track averaging helps to improve the accu-
racy of the generated geometric representation.

6.6.2.3 Results on Track Alignment and Averaging

Most methods of road map generation in literature could not cope with big
data set. The methods we used to process Chicago data set for comparison fail
to align the tracks in Berlin data set, as well as our stretch-and-then-compress
method. Therefore for Berlin data set, we will only show the results of the

6.6 Results 167

(a) Turning points

(b) Intersections

Figure 6.33: Intersections detected from turning points. (a) shows 41, 974 turning
points using green dots. (b) shows 240 intersections in red circles, which are detected
from the turning points.

168 Road Network Inference from GPS Traces

(a) Connecting points

(b) Intersections

Figure 6.34: Intersections detected from connecting points. (a) shows 711, 830 turn-
ing points using green dots. (b) shows 252 intersections in red circles, which are
detected from the connecting points.

6.6 Results 169

(a) Tracks 1

(b) Tracks 2

Figure 6.35: Directed GPS tracks. (a) and (b) shows the tracks segmented from the
GPS traces by intersections in different directions, respectively.

170 Road Network Inference from GPS Traces

(a) Normal tracks 1

(b) Normal tracks 1

Figure 6.36: Track clustering 1. Tracks in Fig. 6.35a are clustered into normal
tracks in (a) and abnormal tracks in (b).

6.6 Results 171

(a) Normal tracks 2

(b) Normal tracks 2

Figure 6.37: Track clustering 2. Tracks in Fig. 6.35b are clustered into normal
tracks in (a) and abnormal tracks in (b).

172 Road Network Inference from GPS Traces

(a) Average tracks 1

(b) Average tracks 2

Figure 6.38: Geometric representation. Tracks in Fig. 6.36a are aligned to form the
average tracks in (a), and (b) is from the tracks Fig. 6.37a.

6.6 Results 173

(a) Ahmed

(b) Karagiorgou

Figure 6.39: Comparison. (a) shows the results of Ahmed’s trace-merging method,
and (b) is for the results of Karagiorgou’s intersection-linking method.

174 Road Network Inference from GPS Traces

greedy method based on successor classification, and compare with other two
methods: the trace-merging method proposed by Ahmed [Ahmed 12] and the
intersection-linking method by Karagiorgou [Karagiorgou 12]. Since Ahmed et
al. have evaluated both her and Karagiorgou’s method on Berlin dataset in her
later work [Ahmed 14]. we can compare our greedy method with their methods
directly.

The normal tracks with high similarity to each other, as shown in Fig. 6.36a
and 6.37a, are aligned, producing warped tracks with associated points at the
same time index. The associated points are averaged to form the geometric
representation of the road segment, resulting in the average tracks shown in
Fig. 6.38. The average tracks are shown in black lines, and the ground truth in
grey lines. Because of the low accuracy of intersection detection at the middle-
left area of the map, we detect spurious road segments from falsely connected
intersections. At the top-right corner, the road users keep moving straight,
resulting in few turning points detection. Thus no intersection is detected,
leading to no road segment extracted.

Fig. 6.39 shows the results of Ahmed’s and Karagiorgou’s method on Berlin
dataset [Ahmed 14]. As shown in Fig. 6.39a, Ahmed et al. extracted the most
road segments from the dataset, but with low geographical accuracy. Especially
a lot of spurious road segments can be found around the intersections. In
Fig. 6.39b, Karagiorgou et al. produced highly accurate intersection nodes,
resulting in a clean road network. However, they also suffered from producing
spurious road segments around the intersections covered with deviating traces,
as we do.

6.7 Conclusions

In this chapter, we presented two methods to detect intersections from GPS
traces: one method analyzes the turning patterns of the road users; the other
one utilizes connected road segments. Then we segmented the GPS traces
and aligned the tracks for each road segment using our proposed alignment
methods in Chapter 3. Based on the point assignations, we extracted the
geometric representation of each road segment and analyzed the velocity of the
road users along the road segment.

We tested our methods on two datasets: Chicago dataset with 889 GPS
traces, and Berlin dataset with 26, 831 GPS traces. Experimental results
showed a higher accuracy of intersection detection, and a better geographi-
cal accuracy of the extracted road segments, compared to other algorithms.

The limitation of the stretch-and-then-compress method lies mainly in the
sensitivity of the variety of data density. For various-sampling-rate GPS traces,
this method produces average track with less data points than the GPS trace
with the lowest sampling rate.

Future work will focus on inferring the existence and coverage of intersec-
tions and road segments statistically using a probabilistic method, instead of
the two-valued logic in our current methods. Besides, we also intend to test

6.7 Conclusions 175

our algorithm in areas with more complicated road features, such as overpasses,
non-orthogonal road segments and roundabouts.

This research resulted in three publications in international peer-reviewed
journals: one published in International Journal of Geo-Information [Xie 15b],
two under revision [Xie 16a, Xie 16b]. Furthermore one paper is published
in the proceedings of the IEEE Intelligent Transportation Systems Confer-
ence [Xie 14c], and one submitted to 2016 IEEE International Geo-science and
Remote Sensing Symposium [Xie 16c].

176 Road Network Inference from GPS Traces

7
Conclusions

Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better.
—Samuel Beckett

In this thesis, we presented different techniques to analyze trajectories thor-
oughly, such as temporal dissimilarity measure, trajectory clustering based on
dissimilarity measure, aligning many trajectories, etc. Specifically we applied
these techniques in several applications: mainly work cycle optimization and
road network inference.

7.1 Summary of Achievements

We have made contributions in similarity measure, joint trajectory alignment,
and their applications.

7.1.1 Similarity Measure Approaches

Certain methods in machine learning and pattern recognition have been applied
in trajectory clustering, such as K-means and Mean-shift algorithm [Li 06,An-
jum 10]. The accuracy of the results using these clustering methods depends
on the feature selection. Usually, overall distance, average speed and mov-
ing direction are selected as features to cluster the trajectories. These coarse
features may lead to inaccurate trajectory clustering. For instance, two tra-
jectories with the same average speed may be grouped into the same category
even if their speed profiles are very different. Researchers then adapt other
methods, such as agglomerative hierarchical clustering and spectral clustering,
to categorize the trajectories using similarity measure, instead of coarse fea-
tures. Using these methods, the clustering results depend on accuracy of the
similarity measure between pairwise trajectories.

A variety of techniques, which are commonly used in other fields, have been
applied to measure the spatial similarity between trajectories [Bashir 07,Nien-
nattrakul 09,Vlachos 02,Zhang 06], such as DTW, LCSS, PCA and Euclidean
distance. Although, the temporal similarity has not been well studied yet,

178 Conclusions

which describes whether the velocity difference between the points of the tra-
jectories when moving objects follow the same route.

In Chapter 2, we proposed to measure trajectory (dis)similarity both spa-
tially and temporally using DTW. The spatial dissimilarity was calculated
through warping the trajectories along the time instance by finding the best
match between the physical locations along the trajectories. The temporal
dissimilarity was measured using the optimal warp path which minimizes the
overall dissimilarity between the point velocities along the trajectories.

Using the spatial dissimilarity between pairwise trajectories, we presented a
greedy clustering method to categorize the trajectories into different patterns,
in which the objects followed different routes, and spatial abnormalities unfit
to any of the routes. The same method was used to categorize the trajectories
in each spatial cluster using temporal dissimilarity between pairwise trajecto-
ries. The cluster with the most trajectories was considered as the prototypical
itinerary, and the trajectories in other clusters as temporal abnormalities, which
were unfit to the speed profile of the prototypical itinerary.

We evaluated our proposed methods using a data set of 124 factory workers’
trajectories, and compared our results with the results of two start-of-the-art
similarity measures on the same data set. The experimental results showed a
higher accuracy of trajectory clustering based on our similarity measures than
on other similarity measures

7.1.2 Joint Trajectory Alignment Approaches

In literature, some strategies have been proposed to average the trajectories
directly using pairwise trajectory alignment [Junejo 07, Junejo 08, Niennat-
trakul 09, Petitjean 11], such as aligning boundary trajectories, hierarchically
aligning the two most similar trajectories, and globally updating a selected pro-
totypical trajectory using other trajectories. Researchers aim to average many
trajectories using these strategies. The point associations among all trajecto-
ries have not been established, which is not only helpful to trajectory averaging,
but also beneficial to statistical analysis of the trajectories.

In Chapter 3, we proposed two methods to jointly align many trajectories.
In our first method, we applied a “stretch and then compress” strategy based
on DTW algorithm to align the trajectories one by one in ascending order of
their average dissimilarity. Firstly, the first two trajectories were aligned using
DTW in the stretch operation, producing two stretched trajectories. Secondly,
the repeated points were removed from the stretched trajectories in the com-
press operation, producing two compressed trajectories with one-to-one corre-
spondences between the points. A third trajectory was then aligned with the
second compressed trajectory using the “stretch and then compress” strategy
again. The procedure was repeated until the last trajectory is processed. The
last compressed trajectory was taken as the warped trajectory, and the points
in other trajectories, which were associated the points of last compressed tra-
jectory, were induced through the intermediate warp paths between pairwise

7.1 Summary of Achievements 179

adjacent trajectories, establishing one-to-one point correspondences among the
warped trajectories of the same length.

In the second proposed method, we applied a greedy procedure to locate a
good warp path through the local dissimilarity tensor in a way which keeps the
points associated by each path element spatially close to each other. The suc-
cessors of the current path element were classified to limit the candidate cells
for the next path element. This reduced the prohibitively expensive computa-
tional cost of back-tracking the minimal overall dissimilarity for DTW. In this
method, all of the trajectories were aligned simultaneously along the time di-
mension, instead of in a pairwise fashion. Many-to-one point correspondences
among all trajectories were established.

We evaluated the proposed methods on both factory worker trajectories
and vehicle trajectories. Results showed that the point correspondences were
built successfully. The second method was proved to build better point corre-
spondences. Compared to exiting methods, our proposed methods using the
trajectory alignment showed better performance on averaging trajectories.

7.1.3 Intersection Detection Approaches

In literature, most researchers utilize the road users’ moving direction change
to detect intersections from the GPS trajectories [Karagiorgou 12, Wu 13,
Wang 15]. In Chapter 6, we proposed two methods to identify intersections
by defining them in two different ways.

In the first method, intersections were defined as the locations where the
road users change their moving directions very often, as other researchers did
in their work. Turning points with moving direction change were collected and
clustered into intersection candidates. By checking the turn types the road
users make at the intersection candidates, mis-detected bends were removed
from the true intersections.

In the second method, intersections were defined as junctions which connect
at least three road segments. The starting and ending points of the common
sub-tracks between pairwise traces were detected as connecting points. The
local maximas of the KDE of the connecting points were detected as intersec-
tions. Because the connecting points connect at least three road segments in
different directions, the bends, which only connect two road segments, were not
recognized as intersections.

We evaluated our proposed methods two datasets. Experimental results
showed a high accuracy of intersection detection compared to the ground truth.

7.1.4 Applications

We applied the proposed techniques mentioned above in two of our applica-
tions. In the application of work cycle optimization in Chapter 5, a data set
of 124 trajectories is used to analyze the work cycle of the factory workers.
We clustered the trajectories into different types of executed work cycles and
detected the abnormal trajectories which are unfit to any of the prototypical

180 Conclusions

itineraries. Through joint trajectory alignment, we averaged the trajectories
as a prototypical route for each type of executed work cycle, and built the
prototypical velocity and dwell time along each route. These would be used
to guide the factory workers to execute their work cycles more efficiently. By
analyzing the spatial and temporal abnormalities, we concluded the factors
leading to work efficiency as: visiting other area of the work station unneces-
sarily, dwelling on his or her way to the storage rack or back to the assembly
line, strolling in front of the storage rack too slowly, walking back and forth
too many times in front of the storage rack, etc.

In the second application of the road network inference in Chapter 6, a
data set of 889 GPS trajectories was used to extract the elements of the road
network: intersections, intersection connectivity and geometric representation
of each road segment. Intersections were detected from turning points and
connecting points separately as mentioned above. Whether one intersection
was directionally connected to another intersection was determined by check-
ing whether the road users ever traveled through them consecutively without
passing by any other intersections. GPS traces were segmented to track pieces
for each road segment by the directly connected intersections. For each road
segment, spatially abnormal tracks were detected by clustering the tracks using
the spatial dissimilarity between pairwise tracks. Normal tracks were aligned
using the proposed joint alignment methods, producing warped tracks. The
warped tracks were averaged as the geometric representation of the road seg-
ment. Experimental results showed a higher geographical accuracy of road
segments, compared to other algorithms.

Chapter 4 is another application of the trajectory analysis: room layout
exploration. Inferring the objects in the environment, such as chairs, tables
and walking areas, is beneficial to analyze the people’s interaction with the en-
vironment. Instead of detecting the objects directly using their image features,
such as color, shape and texture, we proposed to recognize the presence of
chairs, tables and walking areas in a smart meeting room indirectly from peo-
ple’s trajectories. We first categorized people’s instantaneous activities using
their speed and height information, then fused the instantaneous activities into
higher-level activities at each time period to improve their accuracy. We built
the occupancy maps for the sitting space and walking space separately. The
sitting activities were used to update the sitting map, and walking activities
were used to update the walking map. Finally, we inferred the chairs from the
sitting map, and the table from the walking map. We provided qualitative and
quantitative results on two experiments. Experimental results showed that the
table and chairs were successfully detected.

7.2 Future Research

In this thesis, we focused on the joint alignment of many trajectories. The
first proposed method with a “stretch and then compress” strategy removes too
many data points to form the one-to-one point correspondences, especially if

7.2 Future Research 181

the trajectories are very different from each other. This may lead to too few
points left in the warped trajectories, so the average of the warped trajectories
may not be representative enough. The second proposed method, which uses
a greedy procedure to find a good warp path through the local dissimilarity
tensor, warps the trajectories to too many points. Therefore we need to design
new alignment methods, or improve the current methods. For instance, we can
calculate the dissimilarity of the corresponding points to each of these 2M − 1
cells, and choose the cell with a smaller dissimilarity and more successors,
instead of the cell with the smallest dissimilarity. In this way, the warp path
can travel through the N-dimensional local cost matrix faster, producing less
redundant warped trajectories.

In our application of road network inference, the road map is generated
from historical GPS traces. In the future, we will develop algorithms to update
the current map and perform real time traffic analysis and collision prediction.
Researchers have been using OpenStreetMap as ground truth map to measure
the accuracy of inferred road segments. However, the positional error of GPS
traces on OpenStreetMap data is as high as 10 to 20 meters. In the future, we
plan to extract the ground truth map from high-resolution orthophotos using
image processing techniques, and reevaluate all of the algorithms in the field
of road network inference.

We apply LCSS algorithm to find the common sub-tracks between pairwise
GPS traces, and detect the intersections from the connecting points which are
the ends of the common sub-tracks. Although the warp path produced by
LCSS optimally associates the points of the traces, the associated points may
be not locally optimal. The poor local association may lead to larger local
distance, and thus producing unmatched points skipped by the path-finding
procedure. In this case, one common sub-tracks may be segmented into two
or more sub-tracks, therefore some connecting points may be detected on the
road segments, instead of at the intersections. In the future, local dissimilarity
matrix will be used directly to detect the common sub-tracks, so as to remove
these falsely detected connecting points.

In this thesis, we have focused on three applications of trajectory analysis:
work cycle optimization, road network inference and room layout exploration.
In the future, we will work on other applications, such as sport analysis, urban
mobility analysis, etc. We will detect movement patterns of the players on
the field from their trajectories, so as to reveal tactical patterns in the game
and thus to provide technical support to the coaches. We will analyze people’s
moving patterns in the city, which is beneficial to build and improve the bike
sharing systems and public transportation system. We will also analyze the
impact of the weather and road construction on the moving patterns, providing
better guidance services for road users.

Furthermore, the algorithms will be tested on other moving objects, except
human beings and vehicles. For instance, multiple trajectory alignment can be
used to analyze the location and dwelling time variation of the animals at the
intermediate stations during their migration.

182 Conclusions

Bibliography

[Ahmed 12] Mahmuda Ahmed & Carola Wenk. Constructing street
networks from GPS trajectories. In Algorithms–ESA
2012, pages 60–71. Springer, 2012.

[Ahmed 14] Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser
& Carola Wenk. A comparison and evaluation of map
construction algorithms using vehicle tracking data.
GeoInformatica, pages 1–32, 2014.

[Al Nuaimi 11] Klaithem Al Nuaimi & Hesham Kamel. A survey of
indoor positioning systems and algorithms. In Innova-
tions in Information Technology (IIT), 2011 Interna-
tional Conference on, pages 185–190. IEEE, 2011.

[Anjum 10] Nadeem Anjum & Andrea Cavallaro. Trajectory clus-
tering for scene context learning and outlier detection.
In Video Search and Mining, pages 33–51. Springer,
2010.

[Antonini 06] Gianluca Antonini & Jean Philippe Thiran. Counting
pedestrians in video sequences using trajectory cluster-
ing. Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 16, no. 8, pages 1008–1020, 2006.

[Atev 06] Stefan Atev, Osama Masoud & Nikos Papanikolopou-
los. Learning Traffic Patterns at Intersections by Spec-
tral Clustering of Motion Trajectories. In Intelligent
Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 4851–4856. IEEE, 2006.

[Atev 10] Stefan Atev, Grant Miller & Nikolaos P Papanikolopou-
los. Clustering of vehicle trajectories. Intelligent Trans-
portation Systems, IEEE Transactions on, vol. 11,
no. 3, pages 647–657, 2010.

[Basharat 08] Arslan Basharat, Alexei Gritai & Mubarak Shah.
Learning object motion patterns for anomaly detection
and improved object detection. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8. IEEE, 2008.

184 BIBLIOGRAPHY

[Bashir 07] Faisal I Bashir, Ashfaq A Khokhar & Dan Schon-
feld. Real-time motion trajectory-based indexing and
retrieval of video sequences. Multimedia, IEEE Trans-
actions on, vol. 9, no. 1, pages 58–65, 2007.

[Bauters 14] Karel Bauters, Hendrik Van Landeghem, Maarten
Slembrouck, Dimitri Van Cauwelaert & Dirk
Van Haerenborgh. An automated work cycle clas-
sification and disturbance detection tool for assembly
line work stations. In International Conference on
Informatics in Control, Automation and Robotics
(ICINCO-2014), volume 2, 2014.

[Becker 06] Christian Becker & Armin Scholl. A survey on problems
and methods in generalized assembly line balancing. Eu-
ropean journal of operational research, vol. 168, no. 3,
pages 694–715, 2006.

[Bellens 11] Rik Bellens, Sven Vlassenroot & Sidharta Gautama.
Collection and analyses of crowd travel behaviour data
by using smartphones. In 5th Transport Research Day,
pages 536–544. BIVEC-GIBET, 2011.

[Biagioni 12a] James Biagioni & Jakob Eriksson. Inferring Road Maps
from Global Positioning System Traces. Transporta-
tion Research Record: Journal of the Transportation
Research Board, vol. 2291, no. 1, pages 61–71, 2012.

[Biagioni 12b] James Biagioni & Jakob Eriksson. Map inference in the
face of noise and disparity. In Proceedings of the 20th
International Conference on Advances in Geographic
Information Systems, pages 79–88. ACM, 2012.

[Biliotti 05] David Biliotti, Gianluca Antonini & Jean Philippe Thi-
ran. Multi-layer hierarchical clustering of pedestrian
trajectories for automatic counting of people in video
sequences. In Application of Computer Vision, 2005.
WACV/MOTIONS’05 Volume 1. Seventh IEEE Work-
shops on, volume 2, pages 50–57. IEEE, 2005.

[Bo 14] Nyan Bo Bo, Francis Deboeverie, Mohamed Eldib, Jun-
zhi Guan, Xingzhe Xie, Jorge Niño, Dirk Van Haeren-
borgh, Maarten Slembrouck, Samuel Van de Velde,
Heidi Steendamet al. Human mobility monitoring in
very low resolution visual sensor network. Sensors,
vol. 14, no. 11, pages 20800–20824, 2014.

[Boysen 07] Nils Boysen, Malte Fliedner & Armin Scholl. A classi-
fication of assembly line balancing problems. European

BIBLIOGRAPHY 185

Journal of Operational Research, vol. 183, no. 2, pages
674–693, 2007.

[Calcagno 08] Philippe Calcagno, Jean-Paul Chilès, Gabriel Cour-
rioux & Antonio Guillen. Geological modelling from
field data and geological knowledge: Part I. Modelling
method coupling 3D potential-field interpolation and ge-
ological rules. Physics of the Earth and Planetary In-
teriors, vol. 171, no. 1, pages 147–157, 2008.

[Cao 09] Lili Cao & John Krumm. From GPS traces to a routable
road map. In Proceedings of the 17th ACM SIGSPA-
TIAL International Conference on Advances in Geo-
graphic Information Systems, pages 3–12. ACM, 2009.

[Castro 12] Pablo Samuel Castro, Daqing Zhang & Shijian Li. Ur-
ban traffic modelling and prediction using large scale
taxi GPS traces. In Pervasive Computing, pages 57–72.
Springer, 2012.

[Chang 10] Ming-Ching Chang, Nils Krahnstoever, Sernam Lim &
Ting Yu. Group level activity recognition in crowded en-
vironments across multiple cameras. In Advanced Video
and Signal Based Surveillance (AVSS), 2010 Seventh
IEEE International Conference on, pages 56–63. IEEE,
2010.

[Chapman 10] Jason W Chapman, Rebecca L Nesbit, Laura E Burgin,
Don R Reynolds, Alan D Smith, Douglas R Middleton
& Jane K Hill. Flight orientation behaviors promote op-
timal migration trajectories in high-flying insects. Sci-
ence, vol. 327, no. 5966, pages 682–685, 2010.

[Chavoshi 15] Seyed Hossein Chavoshi, Bernard De Baets, Tijs
Neutens, Guy De Tré & Nico Van de Weghe. Exploring
dance movement data using sequence alignment meth-
ods. PLOS ONE, vol. 10, no. 7, page 25, 2015.

[Chen 08] Chen Chen & Yinhang Cheng. Roads digital map gener-
ation with multi-track gps data. In Education Technol-
ogy and Training, 2008. and 2008 International Work-
shop on Geoscience and Remote Sensing. ETT and
GRS 2008. International Workshop on, volume 1, pages
508–511. IEEE, 2008.

[Davics 06] JJ Davics, Alastair R Beresford & Andy Hopper. Scal-
able, distributed, real-time map generation. Pervasive
Computing, IEEE, vol. 5, no. 4, pages 47–54, 2006.

186 BIBLIOGRAPHY

[Di Stefano 99] Luigi Di Stefano & Andrea Bulgarelli. A simple and
efficient connected components labeling algorithm. In
Image Analysis and Processing, 1999. Proceedings. In-
ternational Conference on, pages 322–327. IEEE, 1999.

[Edelkamp 03] Stefan Edelkamp & Stefan Schrödl. Route planning and
map inference with global positioning traces. In Com-
puter Science in Perspective, pages 128–151. Springer,
2003.

[Eldib 14] Mohamed Eldib, Bo Bo Nyan, Francis Deboeverie,
Xingzhe Xie, Hamid Aghajan & Wilfried Philips.
Behavior analysis for aging-in-place using similarity
heatmaps. In 8th ACM/IEEE international conference
on Distributed Smart Cameras, Proceedings, page 6.
ACM/IEEE, 2014.

[Eldib 15] Mohamed Eldib, Francis Deboeverie, Bo Bo Nyan, Jun-
zhi Guan, Xingzhe Xie, Dirk Van Haerenborgh, Hamid
Aghajan & Wilfried Philips. A low-cost visual sensor
network for elderly care. In FallRisk en Little Sister
Slotsymposium, Abstracts, page 1, 2015.

[Elfes 89] A. Elfes. Occupancy grids: A probabilistic framework
for robot perception and navigation. 1989.

[Elnekave* 06] M Elnekave* & I Gilad. Rapid video-based analysis
system for advanced work measurement. International
journal of production research, vol. 44, no. 2, pages
271–290, 2006.

[Fashandi 05] H Fashandiet al. A new rotation invariant similar-
ity measure for trajectories. In Computational Intel-
ligence in Robotics and Automation, 2005. CIRA 2005.
Proceedings. 2005 IEEE International Symposium on,
pages 631–634. IEEE, 2005.

[Fathi 10] Alireza Fathi & John Krumm. Detecting road inter-
sections from gps traces. In Geographic Information
Science, pages 56–69. Springer, 2010.

[Faude 12] Oliver Faude, Thorsten Koch & Tim Meyer. Straight
sprinting is the most frequent action in goal situations
in professional football. Journal of sports sciences,
vol. 30, no. 7, pages 625–631, 2012.

[Fu 05] Zhouyu Fu, Weiming Hu & Tieniu Tan. Similarity based
vehicle trajectory clustering and anomaly detection. In
Image Processing, 2005. ICIP 2005. IEEE International
Conference on, volume 2, pages II–602. IEEE, 2005.

BIBLIOGRAPHY 187

[Gebus 09] Sébastien Gebus & Kauko Leiviskä. Knowledge acqui-
sition for decision support systems on an electronic as-
sembly line. Expert Systems with Applications, vol. 36,
no. 1, pages 93–101, 2009.

[Greenfeld 02] Joshua S Greenfeld. Matching GPS observations to lo-
cations on a digital map. In Transportation Research
Board 81st Annual Meeting, 2002.

[Gruenwedel 11a] S. Gruenwedel, V. Jelaca, P. Van Hese, R. Kleihorst
& W. Philips. PhD forum: Multi-view occupancy
maps using a network of low resolution visual sensors.
In Distributed Smart Cameras (ICDSC), 2011 Fifth
ACM/IEEE International Conference on, pages 1–2.
IEEE, 2011.

[Gruenwedel 11b] S. Gruenwedel, P. Van Hese & W. Philips. An edge-
based approach for robust foreground detection. Ad-
vances Concepts for Intelligent Vision Systems, pages
554–565, 2011.

[Gruenwedel 12] S. Gruenwedel, V. Jelaca, J.O. Niño-Castañeda,
P. Van Hese, D. Van Cauwelaert, P. Veelaert &
W. Philips. Decentralized tracking of humans using a
camera network. In Proceedings of SPIE, volume 8301,
page 83010D, 2012.

[Grünwedel 12] Sebastian Grünwedel, Xingzhe Xie, Wilfried Philips,
Chih-Wei Chen & Hamid Aghajan. A best view se-
lection in meetings through attention analysis using a
multi-camera network. In 2012 Sixth international con-
ference on distributed smart cameras (ICDSC), page 6.
IEEE, 2012.

[Haklay 08] Mordechai Haklay & Patrick Weber. Openstreetmap:
User-generated street maps. Pervasive Computing,
IEEE, vol. 7, no. 4, pages 12–18, 2008.

[Haklay 10] Mordechai Haklay. How good is volunteered geographical
information? A comparative study of OpenStreetMap
and Ordnance Survey datasets. Environment and plan-
ning. B, Planning & design, vol. 37, no. 4, page 682,
2010.

[Hartmann 09] Bastian Hartmann, Christoph Schauer & Norbert Link.
Worker behavior interpretation for flexible production.
World Academy of Science, Engineering and Technol-
ogy, pages 494–502, 2009.

188 BIBLIOGRAPHY

[Herrera 10] Juan C Herrera, Daniel B Work, Ryan Herring, Xue-
gang Jeff Ban, Quinn Jacobson & Alexandre M Bayen.
Evaluation of traffic data obtained via GPS-enabled
mobile phones: The Mobile Century field experiment.
Transportation Research Part C: Emerging Technolo-
gies, vol. 18, no. 4, pages 568–583, 2010.

[Hirschberg 77] Daniel S Hirschberg. Algorithms for the longest
common subsequence problem. Journal of the ACM
(JACM), vol. 24, no. 4, pages 664–675, 1977.

[Hodgson 06] Sayre Hodgson, Thomas P Quinn, Ray Hilborn,
Robert C Francis & Donald E Rogers. Marine and
freshwater climatic factors affecting interannual vari-
ation in the timing of return migration to fresh wa-
ter of sockeye salmon (Oncorhynchus nerka). Fisheries
Oceanography, vol. 15, no. 1, pages 1–24, 2006.

[Ijaz 13] Faheem Ijaz, Hee Kwon Yang, Arbab Waheed Ahmad
& Chankil Lee. Indoor positioning: A review of indoor
ultrasonic positioning systems. In Advanced Commu-
nication Technology (ICACT), 2013 15th International
Conference on, pages 1146–1150. IEEE, 2013.

[Jelaca 11] V. Jelaca, S. Griinwedel, J.O. Nino-Castaneda,
P. Van Hese, D. Van Cauwelaert, P. Veelaert &
W. Philips. Demo: Real-time indoors people tracking in
scalable camera networks. In Distributed Smart Cam-
eras (ICDSC), 2011 Fifth ACM/IEEE International
Conference on, pages 1–2. IEEE, 2011.

[Jeong 11] Young-Seon Jeong, Myong K Jeong & Olufemi A Omi-
taomu. Weighted dynamic time warping for time series
classification. Pattern Recognition, vol. 44, no. 9, pages
2231–2240, 2011.

[Junejo 07] Imran N Junejo & Hassan Foroosh. Trajectory rectifica-
tion and path modeling for video surveillance. In Com-
puter Vision (ICCV), 2007 IEEE 11th International
Conference on, pages 1–7. IEEE, 2007.

[Junejo 08] Imran N Junejo & Hassan Foroosh. Euclidean path
modeling for video surveillance. Image and Vision com-
puting, vol. 26, no. 4, pages 512–528, 2008.

[Kalnis 05] Panos Kalnis, Nikos Mamoulis & Spiridon Bakiras. On
discovering moving clusters in spatio-temporal data. In
Advances in spatial and temporal databases, pages 364–
381. Springer, 2005.

BIBLIOGRAPHY 189

[Kanayama 89] Yutaka Kanayama & Bruce I Hartman. Smooth local
path planning for autonomous vehicles. In Robotics and
Automation, 1989. Proceedings., 1989 IEEE Interna-
tional Conference on, pages 1265–1270. IEEE, 1989.

[Karagiorgou 12] Sophia Karagiorgou & Dieter Pfoser. On vehicle track-
ing data-based road network generation. In Proceedings
of the 20th International Conference on Advances in
Geographic Information Systems, pages 89–98. ACM,
2012.

[Keogh 05] Eamonn Keogh & Chotirat Ann Ratanamahatana. Ex-
act indexing of dynamic time warping. Knowledge and
information systems, vol. 7, no. 3, pages 358–386, 2005.

[Kjellström 11] H. Kjellström, J. Romero & D. Kragic. Visual object-
action recognition: Inferring object affordances from
human demonstration. Computer Vision and Image Un-
derstanding, vol. 115, no. 1, pages 81–90, 2011.

[Kukko 07] Antero Kukko, Constantin-Octavian Andrei, Veli-
Matti Salminen, Harri Kaartinen, Yuwei Chen, Petri
Rönnholm, Hannu Hyyppä, Juha Hyyppä, Ruizhi
Chen, Henrik Haggrénet al. Road environment map-
ping system of the Finnish Geodetic InstituteâĂŤFGI
Roamer. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci, vol. 36, pages 241–247, 2007.

[Laboratory 11] BITS Networked Systems Laboratory.
http://bits.cs.uic.edu/, 2011.

[Lee 13] Dongwook Lee & Minsoo Hahn. Bicycle Safety Map
System Based on Smartphone Aided Sensor Network.
Advanced Science and Technology Letters, vol. 42(Mo-
bile and Wireless 2013), pages 38–43, 2013.

[Li 06] Xi Li, Weiming Hu & Wei Hu. A coarse-to-fine strat-
egy for vehicle motion trajectory clustering. In Pattern
Recognition, 2006. ICPR 2006. 18th International Con-
ference on, volume 1, pages 591–594. IEEE, 2006.

[Liu 07] Bing Liu. Web data mining. Springer, 2007.

[Lopez Aguirre 15] Angel Javier Lopez Aguirre, Daniel Ochoa & Sidharta
Gautama. Detecting changes of transportation-mode by
using classification data. In 18th International Confer-
ence on Information Fusion, Proceedings, page 6. Inter-
national Society of Information Fusion (ISIF), 2015.

190 BIBLIOGRAPHY

[McCormick 89] S Thomas McCormick, Michael L Pinedo, Scott
Shenker & Barry Wolf. Sequencing in an assembly line
with blocking to minimize cycle time. Operations Re-
search, vol. 37, no. 6, pages 925–935, 1989.

[Mel 97] B.W. Mel. SEEMORE: combining color, shape, and
texture histogramming in a neurally inspired approach
to visual object recognition. Neural computation, vol. 9,
no. 4, pages 777–804, 1997.

[Minnotte 93] Michael C Minnotte & David W Scott. The mode tree:
A tool for visualization of nonparametric density fea-
tures. Journal of Computational and Graphical Statis-
tics, vol. 2, no. 1, pages 51–68, 1993.

[Morris 04] Scott Morris, Alan Morris & Kobus Barnard. Digital
trail libraries. In Proceedings of the 4th ACM/IEEE-
CS joint conference on Digital libraries, pages 63–71.
ACM, 2004.

[Morris 08] Brendan Tran Morris & Mohan Manubhai Trivedi. A
survey of vision-based trajectory learning and analysis
for surveillance. Circuits and Systems for Video Tech-
nology, IEEE Transactions on, vol. 18, no. 8, pages
1114–1127, 2008.

[Morris 09] Brendan Morris & Mohan Trivedi. Learning trajectory
patterns by clustering: Experimental studies and com-
parative evaluation. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 312–319. IEEE, 2009.

[Morris 11] Brendan Tran Morris & Mohan Manubhai Trivedi. Tra-
jectory learning for activity understanding: Unsuper-
vised, multilevel, and long-term adaptive approach. Pat-
tern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 33, no. 11, pages 2287–2301, 2011.

[Naftel 06] Andrew Naftel & Shehzad Khalid. Classifying spa-
tiotemporal object trajectories using unsupervised learn-
ing in the coefficient feature space. Multimedia Sys-
tems, vol. 12, no. 3, pages 227–238, 2006.

[Nguyen 05] Nam Thanh Nguyen, Dinh Q Phung, Svetha Venkatesh
& Hung Bui. Learning and detecting activities from
movement trajectories using the hierarchical hidden
Markov model. In Computer Vision and Pattern Recog-
nition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 2, pages 955–960. IEEE, 2005.

BIBLIOGRAPHY 191

[Niehoefer 09] Brian Niehoefer, Ralf Burda, Christian Wietfeld,
Franziskus Bauer & Oliver Lueert. GPS community
map generation for enhanced routing methods based
on trace-collection by mobile phones. In Advances in
Satellite and Space Communications, 2009. SPACOMM
2009. First International Conference on, pages 156–161.
IEEE, 2009.

[Niennattrakul 09] Vit Niennattrakul & Chotirat Ann Ratanamahatana.
Shape averaging under time warping. In Electrical En-
gineering/Electronics, Computer, Telecommunications
and Information Technology, 2009. ECTI-CON 2009.
6th International Conference on, volume 2, pages 626–
629. IEEE, 2009.

[Patel 09] Dhaval Patel, Chidansh Bhatt, Wynne Hsu, Mong Li
Lee & Mohan Kankanhalli. Analyzing abnormal
events from spatio-temporal trajectories. In Data Min-
ing Workshops, 2009. ICDMW’09. IEEE International
Conference on, pages 616–621. IEEE, 2009.

[Pelekis 07] Nikos Pelekis, Ioannis Kopanakis, Gerasimos Marketos,
Irene Ntoutsi, Gennady Andrienko & Yannis Theodor-
idis. Similarity search in trajectory databases. In
Temporal Representation and Reasoning, 14th Inter-
national Symposium on, pages 129–140. IEEE, 2007.

[Pelleg 00] Dan Pelleg, Andrew W Mooreet al. X-means: Extend-
ing K-means with Efficient Estimation of the Number
of Clusters. In ICML, pages 727–734, 2000.

[Petitjean 11] François Petitjean, Alain Ketterlin & Pierre Gançarski.
A global averaging method for dynamic time warping,
with applications to clustering. Pattern Recognition,
vol. 44, no. 3, pages 678–693, 2011.

[Peursum 05a] P. Peursum, G. West & S. Venkatesh. Combining image
regions and human activity for indirect object recogni-
tion in indoor wide-angle views. In Computer Vision,
2005. ICCV 2005. Tenth IEEE International Confer-
ence on, volume 1, pages 82–89. IEEE, 2005.

[Peursum 05b] Patrick Peursum, Hung H Bui, Svetha Venkatesh &
Geoff West. Robust recognition and segmentation of
human actions using HMMs with missing observa-
tions. EURASIP Journal on Applied Signal Processing,
vol. 2005, pages 2110–2126, 2005.

192 BIBLIOGRAPHY

[Piciarelli 06] Claudio Piciarelli & Gian Luca Foresti. On-line trajec-
tory clustering for anomalous events detection. Pattern
Recognition Letters, vol. 27, no. 15, pages 1835–1842,
2006.

[Portal 14] Map Construction Portal.
http://www.mapconstruction.org/, 2014.

[Sakoe 78] Hiroaki Sakoe & Seibi Chiba. Dynamic programming
algorithm optimization for spoken word recognition.
Acoustics, Speech and Signal Processing, IEEE Trans-
actions on, vol. 26, no. 1, pages 43–49, 1978.

[Sato 06] Junji Sato, Tomokazu Takahashi, Ichiro Ide & Hiroshi
Murase. Change detection in streetscapes from GPS co-
ordinated omni-directional image sequences. In Pattern
Recognition, 2006. ICPR 2006. 18th International Con-
ference on, volume 4, pages 935–938. IEEE, 2006.

[Schroedl 04] Stefan Schroedl, Kiri Wagstaff, Seth Rogers, Pat Lan-
gley & Christopher Wilson. Mining GPS traces for
map refinement. Data mining and knowledge Discovery,
vol. 9, no. 1, pages 59–87, 2004.

[Schultes 08] Dominik Schultes. Route Planning in Road Networks.
In Ausgezeichnete Informatikdissertationen, pages 271–
280, 2008.

[Semanjski 15] Ivana Semanjski & Sidharta Gautama. Smart city mo-
bility application: gradient boosting trees for mobility
prediction and analysis based on crowdsourced data.
SENSORS, vol. 15, no. 7, pages 15974–15987, 2015.

[Sester 12] Monika Sester, Udo Feuerhake, Colin Kuntzsch & Li-
juan Zhang. Revealing underlying structure and be-
haviour from movement data. KI-Künstliche Intelli-
genz, vol. 26, no. 3, pages 223–231, 2012.

[Shamoun-Baranes 10] Judy Shamoun-Baranes, Willem Bouten & E Emiel van
Loon. Integrating meteorology into research on migra-
tion. Integrative and Comparative Biology, page icq011,
2010.

[Shi 09] Wenhuan Shi, Shuhan Shen & Yuncai Liu. Automatic
generation of road network map from massive GPS,
vehicle trajectories. In Intelligent Transportation Sys-
tems, 2009. ITSC’09. 12th International IEEE Confer-
ence on, pages 1–6. IEEE, 2009.

BIBLIOGRAPHY 193

[Slembrouck 14] Maarten Slembrouck, Dimitri Van Cauwelaert, David
Van Hamme, Dirk Van Haerenborgh, Peter Van Hese,
Peter Veelaert & Wilfried Philips. Self-learning voxel-
based multi-camera occlusion maps for 3D reconstruc-
tion. In 9th International Joint Conference on Com-
puter Vision, Imaging and Computer Graphics The-
ory and Applications (VISAPP-2014). SCITEPRESS,
2014.

[Smith 81] Temple F Smith & Michael S Waterman. Identification
of common molecular subsequences. Journal of molec-
ular biology, vol. 147, no. 1, pages 195–197, 1981.

[Stoessel 08] Christian Stoessel, Mathey Wiesbeck, Sonja Stork,
Michael F Zaeh & Anna Schuboe. Towards optimal
worker assistance: investigating cognitive processes in
manual assembly. In Manufacturing Systems and Tech-
nologies for the New Frontier, pages 245–250. Springer,
2008.

[Stork 08] Sonja Stork, Christian Stößel & Anna Schubö. The
influence of instruction mode on reaching movements
during manual assembly. Springer, 2008.

[Suzuki 07] Naohiko Suzuki, Kosuke Hirasawa, Kenichi Tanaka,
Yoshinori Kobayashi, Yoichi Sato & Yozo Fujino.
Learning motion patterns and anomaly detection by hu-
man trajectory analysis. In Systems, Man and Cyber-
netics, 2007. ISIC. IEEE International Conference on,
pages 498–503. IEEE, 2007.

[Syberfeldt 09] Anna Syberfeldt & Lars Persson. Using Heuris-
tic Search for Initiating the Genetic Population in
Simulation-Based Optimization of Vehicle Routing
Problems. In Proceedings of Industrial Simulation Con-
ference. EUROSIS-ETI, 2009.

[Torralba 10] A. Torralba, K.P. Murphy & WT Freeman. Using the
forest to see the trees: exploiting context for visual ob-
ject detection and localization. Communications of the
ACM, vol. 53, no. 3, pages 107–114, 2010.

[UETA 00] MUTSUYUKI UETA, FUMIO SATO, HAJIME NAK-
AGAWA & NAGAHISA MITA. Migration routes and
differences of migration schedule between adult and
young Steller’s Sea Eagles Haliaeetus pelagicus. Ibis,
vol. 142, no. 1, pages 35–39, 2000.

194 BIBLIOGRAPHY

[Veloso 05] M. Veloso, F. Von Hundelshausen & P.E. Rybski.
Learning visual object definitions by observing human
activities. In Humanoid Robots, 2005 5th IEEE-RAS
International Conference on, pages 148–153. IEEE,
2005.

[Veloso 06] M.M. Veloso, P.E. Rybski & F. Von Hundelshausen. Fo-
cus: a generalized method for object discovery for robots
that observe and interact with humans. In Proceed-
ings of the 1st ACM SIGCHI/SIGART conference on
Human-robot interaction, pages 102–109. ACM, 2006.

[Vlachos 02] Michail Vlachos, George Kollios & Dimitrios Gunopu-
los. Discovering similar multidimensional trajectories.
In Data Engineering, 2002. Proceedings. 18th Interna-
tional Conference on, pages 673–684. IEEE, 2002.

[Vlahogianni 05] Eleni I Vlahogianni, Matthew G Karlaftis & John C
Golias. Optimized and meta-optimized neural networks
for short-term traffic flow prediction: A genetic ap-
proach. Transportation Research Part C: Emerging
Technologies, vol. 13, no. 3, pages 211–234, 2005.

[Wang 06] X. Wang, K. Tieu & E. Grimson. Learning semantic
scene models by trajectory analysis. Computer Vision–
ECCV 2006, pages 110–123, 2006.

[Wang 13a] Xiaogang Wang. Intelligent multi-camera video surveil-
lance: A review. Pattern recognition letters, vol. 34,
no. 1, pages 3–19, 2013.

[Wang 13b] Zuchao Wang, Min Lu, Xiaoru Yuan, Junping Zhang
& Huub Van De Wetering. Visual traffic jam analysis
based on trajectory data. Visualization and Computer
Graphics, IEEE Transactions on, vol. 19, no. 12, pages
2159–2168, 2013.

[Wang 15] Jing Wang, Xiaoping Rui, Xianfeng Song, Xiangshuang
Tan, Chaoliang Wang & Venkatesh Raghavan. A novel
approach for generating routable road maps from vehi-
cle GPS traces. International Journal of Geographical
Information Science, vol. 29, no. 1, pages 69–91, 2015.

[Worrall 07] Stewart Worrall & Eduardo Nebot. Automated process
for generating digitised maps through GPS data com-
pression. In Australasian Conference on Robotics and
Automation, 2007.

BIBLIOGRAPHY 195

[Wu 09] C. Wu & H. Aghajan. Using context with statisti-
cal relational models: object recognition from observing
user activity in home environment. In Proceedings of
the Workshop on Use of Context in Vision Processing,
page 5. ACM, 2009.

[Wu 11] C. Wu & H. Aghajan. User-centric environment dis-
covery with camera networks in smart homes. Systems,
Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol. 41, no. 2, pages 375–383,
2011.

[Wu 13] Junwei Wu, Yunlong Zhu, Tao Ku & Liang Wang.
Detecting Road Intersections from Coarse-gained GPS
Traces Based on Clustering. Journal of Computers,
vol. 8, no. 11, pages 2959–2965, 2013.

[Xie 12] Xingzhe Xie, Sebastian Gruenwedel, Vedran Jelaca,
Jorge Oswaldo Nino Castaneda, Dirk Van Haerenborgh,
Dimitri Van Cauwelaert, Peter Van Hese, Peter Vee-
laert, Wilfried Philips & Hamid Aghajan. Learning
about objects in the meeting rooms from people trajec-
tories. In Distributed Smart Cameras (ICDSC), 2012
Sixth International Conference on, pages 1–6. IEEE,
2012.

[Xie 13a] Xingzhe Xie, Kevin Wong, Hamid Aghajan & Wilfried
Philips. Analyzing cyclists’ behaviors and exploring the
environments from cycling tracks. In Cycling Data
Challenge (CDC) workshop (AGILE-2013), 2013.

[Xie 13b] Xingzhe Xie, Kevin Wong, Hamid Aghajan & Wilfried
Philips. Smart route recommendations based on his-
torical GPS trajectories and weather information. In
Mobile Ghent 2013, 2013.

[Xie 14a] Xingzhe Xie, Jonas De Vylder, Dimitri Van Cauwe-
laert, Peter Veelaert, Wilfried Philips & Hamid Agha-
jan. Average Track Estimation of Moving Objects Us-
ing RANSAC and DTW. In Proceedings of the 8th
ACM/IEEE International Conference on Distributed
Smart Cameras, pages 215–220. ACM/IEEE, 2014.

[Xie 14b] Xingzhe Xie, Francis Deboeverie, Mohamed Eldib, Wil-
fried Philips & Hamid Aghajan. PhD Forum: Analyz-
ing behaviors patterns of the elderly from low-precision
trajectories. In Proceedings of the International Con-
ference on Distributed Smart Cameras, page 47. ACM,
2014.

196 BIBLIOGRAPHY

[Xie 14c] Xingzhe Xie, Wilfried Philips, Peter Veelaert & Hamid
Aghajan. Road network inference from GPS traces us-
ing DTW algorithm. In Intelligent Transportation Sys-
tems (ITSC), 2014 IEEE 17th International Conference
on, pages 906–911. IEEE, 2014.

[Xie 15a] Xingzhe Xie, Dimitri Van Cauwelaert, Maarten
Slembrouck, Karel Bauters, Johannes Cottyn, Dirk
Van Haerenborgh, Hamid Aghajan, Peter Veelaert &
Wilfried Philips. Abnormal work cycle detection based
on dissimilarity measurement of trajectories. In Pro-
ceedings of the 9th International Conference on Dis-
tributed Smart Camera, pages 68–73. ACM, 2015.

[Xie 15b] Xingzhe Xie, Kevin Wong, Hamid Aghajan, Peter Vee-
laert & Wilfried Philips. Inferring Directed Road Net-
works from GPS Traces by Track Alignment. Interna-
tional Journal of Geo-Information, vol. 4, pages 2446–
2471, 2015.

[Xie 16a] Xingzhe Xie, Kevin Bing-Yung Wong, Hamid Aghajan,
Peter Veelaert & Wilfried Philips. Road network infer-
ence through multiple track alignment. Transportation
Research Part C: Emerging Technologies, 2016. (under
review).

[Xie 16b] Xingzhe Xie, Wenzhi Liao, Hamid Aghajan, Peter Vee-
laert & Wilfried Philips. Detecting Road Intersections
from GPS Traces using Longest Common Subsequence
Algorithm. IEEE Transactions on Intelligent Trans-
portation Systems, 2016. (under review).

[Xie 16c] Xingzhe Xie, Wenzhi Liao, Hamid Aghajan, Peter Vee-
laert & Wilfried Philips. A NOVEL APPROACH
FOR DETECTING INTERSECTIONS FROM GPS
TRACES. In Proceedings of the 2016 IEEE Inter-
national Geoscience and Remote Sensing Symposium
(IGARSS 2016). IEEE, 2016.

[Xie 16d] Xingzhe Xie, Dimitri Van Cauwelaert, Maarten Slem-
brouck, Dirk Van Haerenborgh, Mohamed Eldib, Karel
Bauters, Johannes Cottyn, Hamid Aghajan, Peter Vee-
laert & Wilfried Philips. Analysis of work cycle in as-
sembly lines through aligning the worker’s tracks. Jour-
nal of Ambient Intelligence and Humanized Computing,
2016. (under review).

BIBLIOGRAPHY 197

[Yang 12] Yuanfeng Yang, Zhiming Cui, Jian Wu, Guangming
Zhang & Xuefeng Xian. Trajectory analysis using spec-
tral clustering and sequence pattern mining. Journal
of Computational Information Systems, vol. 8, no. 6,
pages 2637–2645, 2012.

[You 14] Quanzeng You & John Krumm. Transit tomography us-
ing probabilistic time geography: planning routes with-
out a road map. Journal of Location Based Services,
vol. 8, no. 4, 2014.

[Zhang 06] Zhang Zhang, Kaiqi Huang & Tieniu Tan. Compari-
son of similarity measures for trajectory clustering in
outdoor surveillance scenes. In Pattern Recognition,
2006. ICPR 2006. 18th International Conference on,
volume 3, pages 1135–1138. IEEE, 2006.

[Zheng 08a] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie & Wei-
Ying Ma. Understanding mobility based on GPS data.
In Proceedings of the 10th international conference on
Ubiquitous computing, pages 312–321. ACM, 2008.

[Zheng 08b] Yu Zheng, Like Liu, Longhao Wang & Xing Xie. Learn-
ing transportation mode from raw gps data for geo-
graphic applications on the web. In Proceedings of
the 17th international conference on World Wide Web,
pages 247–256. ACM, 2008.

[Zheng 10] Yu Zheng, Yukun Chen, Quannan Li, Xing Xie & Wei-
Ying Ma. Understanding transportation modes based
on GPS data for web applications. ACM Transactions
on the Web (TWEB), vol. 4, no. 1, page 1, 2010.

[Zhou 07] Yue Zhou, Shuicheng Yan & Thomas S Huang. Detect-
ing anomaly in videos from trajectory similarity analy-
sis. In Multimedia and Expo, 2007 IEEE International
Conference on, pages 1087–1090. IEEE, 2007.

	Acknowledgements
	Samenvatting
	Summary
	List of Abbreviations
	Introduction
	Problem statement
	Contributions and Publications
	Outline

	Trajectory Clustering
	Related Work
	Clustering Algorithms
	Dissimilarity Measure

	Dynamic Time Warping
	Dissimilarity Measure
	Spatial Dissimilarity
	Temporal Dissimilarity

	Trajectory Clustering
	Results
	Our Results
	Results of Factory Worker Trajectories
	Results of Vehicle Trajectories

	Comparison with other similarity methods

	Conclusions

	Joint Alignment of Many Trajectories
	Related Work
	Problem Statement
	Stretch and Compress Trajectory Alignment
	``Stretch and then compress'' Strategy
	Details of the Alignment Procedure
	Phase 1: Iterative Stretch and Compress
	Phase 2: Final Alignment

	Successor Classification based Alignment
	Algorithm Elaboration
	Aligning Trajectories

	Difference between the Proposed Methods
	Average Trajectory Extraction
	Results
	Results of Factory Data Set
	Stretch-and-then-Compress Method
	Greedy Method based on Successor Classification
	Average Trajectory Comparison
	Computation time analysis

	Results of Chicago Data Set
	Stretch-and-then-Compress Method
	Greedy Method based on Successor Classification
	Average Trajectory Comparison

	Conclusions

	Room Layout Exploration from Trajectories
	Related Work
	Overview of the proposed approach
	Activity Classification
	Object Recognition
	Occupancy map computation
	Object recognition by analyzing occupancy maps

	Experiments
	Activity classification
	Objects recognition results

	Conclusion

	Work Cycle Analysis
	Related work
	Work cycle optimization
	Prototypical Route
	Prototypical Instantaneous Velocity
	Prototypical Dwell Time

	Results
	Results using the stretch-and-then-compress method
	Results using the greedy method based on successor classification

	Comparison
	Conclusions

	Road Network Inference from GPS Traces
	Related work
	Approaches for Road Network Inference
	Approaches for Intersection Detection

	Overview of our Proposed Approach
	Intersection and Connectivity Detection
	Intersection Detection based on Turning Points
	Turning Point Detection
	Intersection Extraction from Turning Points

	Intersection Detection based on Connecting Points
	Longest Common Subsequence Detection
	Connecting Points Collection
	Intersection Extraction from Connecting Points

	Connectivity Analysis and GPS Trace Segmentation

	Aligning Tracks for a Road Segment
	Performance Evaluation
	Topological accuracy calculation
	Geographical accuracy evaluation

	Results
	Results of Chicago Data Set
	Results of Intersection Detection
	Results of GPS Trace Segmentation
	Results of Track Clustering
	Results of Track Alignment
	Results on Track Averaging
	Comparison with Other Methods

	Results of Berlin Data Set
	Results of Intersection Detection
	Results of GPS Trace Segmentation and Clustering
	Results on Track Alignment and Averaging

	Conclusions

	Conclusions
	Summary of Achievements
	Similarity Measure Approaches
	Joint Trajectory Alignment Approaches
	Intersection Detection Approaches
	Applications

	Future Research

	Bibliography

