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Figure 9.2. In vitro metabolism studies with SR9009. The extracted ion LC-HRMS chromatograms of the 4 
h HLM incubation samples (right column) are presented in comparison with blank (without HLM) control 
samples (left column). 

Figure 9.3. In vitro metabolism studies with SR9011. The extracted ion LC-HRMS chromatograms of the 4 
h HLM incubation samples (right column) are presented in comparison with blank (without HLM) control 
samples (left column). 

Figure 9.4. Overview of in vitro metabolism studies with SR9009 and SR9011. The proposed metabolic 
modifications are also indicated. For the position of hydroxylations only one possible configuration is 
shown. 

Chapter 10: General discussion 

Figure 10.1. Overview of prostanozol metabolic pathways observed via in vitro and in vivo metabolism 
studies. The question marks indicate proposed positions for hydroxylations based on common AAS 
hydroxylation pathways described in literature. 

Figure 10.2. Overview of metabolic pathways observed for dimethazine, methasterone and 
methylstenbolone via in vitro and in vivo metabolism studies. 

Figure 10.3. Overview of metabolic pathways observed for estra-4,9-diene-3,17-dione via in vitro and in 

vivo metabolism studies. The proposed positions for hydroxylations are at C2, C6 or C16 (indicated with a 

*). 

Figure 10.4. Integrated approach for metabolism studies. 

Figure 10.5. Overview of metabolic pathways observed for LGD-4033 via in vitro metabolism studies. 

Figure 10.6. Overview of metabolic pathways observed for SR9009 and SR9011 via in vitro metabolism 
studies. The structures of A, B, C, D and F’ are indicated in Chapter 9 (Figure 9.1 and Table 9.4). 
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1  (Anti-)Doping and sport 

The word doping would etymologically be derived from ‘dope’, a spirit prepared from grape 

residues by Zulu warriors used as a stimulant during fights and religious procedures. In Afrikaans 

/ Dutch this was reportedly also called ‘doop’ [1, 2]. 

The use of substances or beverages to enhance performance is as old as competitive sport itself 

[2, 3]. Various plants, mushrooms and mixtures of wine and herbs were used by ancient Greek 

Olympic athletes and Roman gladiators for their stimulant effects (overcome fatigue), to 

improve their strength and to mask pain [3, 4]. The Indians and the Huns also consumed 

testicles to enforce virility [1]. Nowadays, factors as economic benefits, social and psychological 

pressure are still tempting athletes to use doping to enhance their performance in competitions 

[5]. In the beginning the use of doping was not considered as cheating, but rather as a tool to 

extend human capacities. Nor was there any attempt to discourage the use of these substances 

[3, 5]. It was only during the 1920s that opinions were raised that doping was unfair and that 

restrictions were needed, not only to protect the ethics of sport, but also the health of athletes 

[2, 4]. 

Several International Sports Federations (IFs) e.g. the International Association of Athletics 

Federations (IAAF) started banning doping in 1928 [1, 2]. Several national governments also 

prohibited doping. The first of these were France and Belgium in 1963 and 1965, respectively. 

However, the first doping tests were only introduced in 1966 by the Union Cycliste 

Internationale (UCI) and the Fédération Internationale de Football Association (FIFA) [1, 2]. In 

1967 a first list of prohibited substances (stimulants and narcotics) was set up by the medical 

commission of the International Olympic Committee (IOC). The first drug tests by the IOC were 

introduced at the Olympic Winter Games in Grenoble and at the Olympic Games in Mexico in 

1968 [1, 2]. By the 1970s most IFs followed by introducing drug testing of athlete samples [2]. 

Although indications of extensive use of anabolic androgenic steroids (AAS) existed, these 

compounds were not initially added to the list of prohibited substances of the IOC. This is 

probably due to a combination of the lack of detection methods and the prevalent medical 

opinion, at that time, which stated that the use of AAS had no advantage in athletic 

performance [6]. The first reliable test for anabolic agents was introduced in 1974 and two years 

later anabolic steroids were also added to the list of prohibited substances of the IOC [2]. 

However, these measures did not stop the use of AAS as demonstrated by several doping 

scandals over history, for example the misuse of stanozolol by Ben Johnson at the 1988 Olympic 

Games in Seoul [1, 2]. Other (well-organized) doping practices came out and indicated that the 

struggle against doping was not over [2]. Moreover, on top of the AAS there was also a focus to 

blood doping and erythropoiesis stimulating agents (ESAs) (such as erythropoietin (EPO)). Both 
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were banned by the IOC in 1986 and 1990 respectively. The first effective EPO detection test 

was implemented ten years after the ban of EPO at the Sydney Olympic Games [2]. 

In 1989 the first step was made towards an international harmonization in the fight against 

doping by the establishment of the Anti-Doping Convention of the Council of Europe. However, 

national legislation and rules of IFs still varied substantially. Spurred by the doping scandal at 

the 1998 Tour de France, where large amounts of performance enhancing substances were 

discovered, a World Conference on Doping in Sport was organized by the IOC in Lausanne in 

1999 seeking a partnership between governments and IFs in the fight against doping. This 

conference led to the foundation of the World Anti-Doping Agency (WADA), an international 

independent governing body [1, 2, 4]. 

2 World Anti-Doping Agency (WADA) 

WADA’s mission is to promote and coordinate the fight against doping in sport internationally. 

WADA wants to preserve the intrinsic value of sport, the so-called ‘spirit of the sport’. 

Therefore, WADA protects the athlete to participate in a doping-free, healthy sport and 

harmonizes the fight against doping by implementation of a universal anti-doping program with 

regards to detection, education and prevention of doping. The World Anti-Doping Code ensures 

a uniform application of the anti-doping regulations across all sports and all countries. WADA 

also stimulates scientific doping research worldwide and cooperation of IFs, National Anti-

Doping Organizations (NADOs) and Regional Anti-Doping Organizations (RADOs) [1, 2, 4, 7]. 

2.1 Definition of doping 

The extended definition of doping by WADA is: the occurrence of one or more of the anti-
doping rule violations in the Anti-doping Code [7]. 

These anti-doping rule violations include: 

1. Presence of a prohibited substance or its metabolites or markers in an athlete’s sample 
2. Use or attempted use by an athlete of a prohibited substance or a prohibited method 
3. Evading, refusing or failing to submit to sample collection 
4. Whereabouts failures 
5. Tampering or attempted tampering with any part of doping control 
6. Possession of a prohibited substance or a prohibited method 
7. Trafficking or attempted trafficking in any prohibited substance or prohibited method 
8. Administration or attempted administration of any prohibited substance or prohibited 

method to an athlete in- or out-of-competition 
9. Complicity in an anti-doping rule violation 
10. Prohibited association with sanctioned athlete support personnel 
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2.2 Prohibited List 

Since 2004, WADA publishes yearly a list of prohibited substances and methods [1]. These 

substances and methods are not only prohibited to warrant fair play and the spirit in sports but 

also to safeguard the health of athletes [7]. 

Prohibited substances of categories S0 till S5 and all prohibited methods (M1 till M3) are 

prohibited at all times, in- and out-of-competition (Table 1.1). Substances of categories S6 till S9 

are only prohibited in-competition. Substances of categories P1 and P2 are only prohibited in 

particular sports such as automobile and archery [8]. This list is not a nominative list and can be 

updated at any time. 

Table 1.1. Overview of prohibited substances and prohibited methods from the 2016 Prohibited List [8]. 

PROHIBITED SUBSTANCES 

Prohibited in- and out-of-competition 
S0. Non-approved substances 
S1. Anabolic agents 
S2. Peptide hormones, growth factors, related substances and mimetics 
S3. Beta-2 agonists 
S4. Hormone and metabolic modulators 
S5. Diuretics and masking agents 

Prohibited in-competition 

S6. Stimulants 
S7. Narcotics 
S8. Cannabinoids 
S9. Glucocorticoids 

SUBSTANCES PROHIBITED IN PARTICULAR SPORTS 
P1. Alcohol 
P2. Beta-blockers 

PROHIBITED METHODS 
M1. Manipulation of blood and blood components 
M2. Chemical and physical manipulation 
M3. Gene doping 

 

2.3 Athletes biological passport (ABP) 

In 2009 the ABP was introduced to enable indirect detection of doping misuse besides the direct 

detection of prohibited substances and methods [2]. Indirect markers can reveal modifications 

in biological parameters induced by a doping product e.g. increased hematocrit values can 

indicate use of ESAs and suppressed endogenous steroid profiles can indicate administration of 

exogenous steroids [9, 10]. 
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Initially, the ABP only consisted out of a hematological module including a longitudinal 

evaluation of blood parameters (e.g. hematocrit) of individual athletes, which may be indicative 

for blood doping. In 2014 the steroidal module was incorporated into the ABP to detect doping 

with synthetic analogues of endogenous steroids [2]. Further extension of the ABP with other 

modules (e.g. hormones and genetic profiling) is likely. 

Since the ABP is based on longitudinal follow up it has the advantage over the previous stand-

alone evaluation of results applied so far because individual reference ranges can be calculated 

for each parameter. The application of these individual ranges rather than population based 

thresholds facilitates the detection of abnormal values for every individual athlete [2, 9]. 

Indeed, the intra-individual variation for the monitored compounds is lower than the combined 

intra- and inter-individual variation. 

3 Doping control laboratories 

Currently there are 34 laboratories accredited by WADA to conduct human doping control 

samples. The International Standard for Laboratories (ISL) is mandatory for all accredited doping 

laboratories and implies application of International Standard Organization / International 

Electrotechnical Commission (ISO/IEC) 17025 [11] and compliance with WADA’s Technical 

documents, including the minimum required performance limits (MRPLs) [11]. Additionally, 

laboratories are expected to perform research which contributes to the development and 

implementation of an effective doping control. WADA accredited laboratories are subjected to 

an intensive proficiency testing scheme to maintain accreditation and need to report all results 

in a WADA controlled database, called ADAMS (Anti-Doping Administration and Management 

System). 

To harmonize the efforts of the doping control laboratories the World Association of Anti-

Doping Scientists (WAADS) was established. WAADS provides a forum to exchange knowledge 

and to enhance the contribution to clean and fair sports [1, 12]. 

The research for this doctoral dissertation was performed at the doping control laboratory of 

Ghent University (DoCoLab), the only WADA accredited laboratory in the Benelux. Since 1973 

DoCoLab analyzes human doping control samples (Figure 1.1). DoCoLab was first accredited by 

the IOC in 1992 and later on by WADA. The percentage of adverse analytical findings (AAFs) and 

atypical findings (ATF) ranged from 1.6 to 7.2 during the period of 1973 till 2015. It should 

however be noted that after 2014, the number of ATFs dropped significantly due to the 

implementation of the steroidal module of the ABP, thereby no longer automatically identifying 

samples with a testosterone-to-epitestosterone ratio (T/E) higher than 4 as an ATF. 
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DoCoLab also analyzes blood samples in support of the hematological module of the ABP. 

Moreover, DoCoLab holds a WADA approved Athlete Passport Management Unit (APMU) for 

both the hematological as the steroidal module of the ABP [2]. 

 

Figure 1.1. Evolution in the number of human (urine) samples analyzed per year by DoCoLab from 1973 until 
2015. 

4 Anabolic androgenic steroids (AAS) 

4.1 AAS as doping 

The use of AAS by consuming testicles was already reported in documents from ancient history. 

The ‘discovery’ of testosterone and its synthesis in the 1930s accelerated scientific 

investigations on the effects of testosterone administrations [3, 4, 13]. During the 1950s, the 

first misuse in sport of male steroid hormones to increase strength and power, namely by the 

Soviet Olympic team and bodybuilders (strength-intensive sports), was reported [3, 4, 13]. 

Nowadays, AAS continue to be the most detected class of prohibited substances in the testing 

statistics of WADA accredited doping control laboratories, as indicated in Table 1.2 [14]. 
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Table 1.2. Substances identified worldwide as AAFs in each drug class, for all sports, during 2014 (adapted 
from[14]). 

Substance group 
Number of 

findings 

% of all ADAMS 

reported findings 

S1. Anabolic agents 1479 48 

S6. Stimulants 474 15 

S5. Diuretics and other masking agents 389 13 

S9. Glucocorticosteroids 252 8 

S4. Hormone and metabolic modulators 145 5 

S3. Beta-2 agonists 122 4 

S2. Peptide hormones, growth factors and 

related substances 
91 3 

S8. Cannabinoids 73 2 

S7. Narcotics 26 0.8 

P2. Beta-blockers 25 0.8 

M2. Chemicals and physical manipulation 3 0.1 

P1. Alcohol 0 0 

M1. Enhancement of oxygen transfer 0 0 

 TOTAL: 3079 
 

4.2 Mechanism of action of AAS 

The inactive androgen receptor (AR) is located in the cytosol and is associated with molecular 

chaperones such as heat shock protein 90 (Hsp 90) (Figure 1.2). Interaction of suitable steroids 

leads to migration of the ligand-AR complex to the nucleus. The activated AR interacts as 

homodimer with a specific DNA sequence, the steroid response element (SRE). Attachment of 

this homodimer to the SRE triggers the formation of a transcription complex by recruitment of 

several coregulators or comodulators. These coregulators can mediate transcriptional regulation 

in either positive (co-activators) or negative (corepressors) way. Generally, liganded receptors 

recruit co-activators which results in transcription and translation of the gene and synthesis of 
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specific proteins [6, 13, 15, 16]. The activation of the estrogen receptor (ER*) by estrogenic 

compounds has a similar mechanism [17] (Figure 1.2). 

Ligand binding to the AR would induce specific conformational changes dependent on the 

particular structure of the ligand. These conformational changes would affect interactions with 

different coregulators in different tissues and would enable tissue-specific gene regulation [13, 

15, 18]. 

Steroids can also induce an anti-catabolic effect by interfering with the glucocorticoid receptor 

expression and establish non-genomic effects by induction of signaling pathways and changes in 

ion transport [15]. 

 

Figure 1.2. Mechanism of action of AAS and estrogens (extracted from [19]). 

4.3 General properties and effects of AAS 

Based on the capability of the body to produce these substances naturally or not, AAS are 

classified into two categories according to their origin: endogenous and exogenous steroids. 

Endogenous steroids are produced by the body, while exogenous steroids are not produced by 

the human body. A few steroids, although natural are currently not considered endogenous, 

meaning that production in the human has not been proven although they do appear in other 
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species. Exogenous steroids are purely synthetic, but endogenous steroids can also be 

manufactured synthetically. Both classes are prohibited in sports. Testosterone (T) and 5α-

dihydrotestosterone (DHT) are examples of endogenous steroids, whereas methandienone 

(Dianabol) and stanozolol (Winstrol) are examples of exogenous steroids. 

Both categories are characterized by the same perhydrocyclopentanophenantrene or sterane 

core structure. This carbon core structure is composed of four fused rings: three cyclohexane 

rings (A, B and C) and one cyclopentane ring (D) (Figure 1.3). 

 
Figure 1.3. Core structure of AAS with indication of the A, B, C and D rings and the numbering of the carbon 
atoms (left side) and chemical structure of testosterone (right side). 

As indicated in the name, AAS have both anabolic (increasing protein synthesis, muscle size and 

strength) and androgenic properties (increasing virilization and aggression) [6, 20, 21]. 

Administration of AAS leads to down-regulation of the endogenous steroid synthesis by a 

negative feedback loop of the hypothalamic-pituitary-gonadal axis. This negative feedback 

mechanism can also result in infertility, impotence, testicular atrophy and disturbances of 

menstrual cycles [6, 13, 15, 16].  

Other undesirable effects include acne, irreversible virilization of women, stunting of linear 

growth of adolescents, gynecomastia and enlargement of the prostate for males [6, 16]. In 

addition there is an increased cardiovascular risk by augmented low-density lipoprotein (LDL)- 

and decreased high-density lipoprotein (HDL)-cholesterol levels [6, 16, 18]. Chronic 

administration, especially of the orally active (17α-alkylated) steroids can lead to liver 

dysfunction or liver tumors [6, 16]. Moreover, some premature mortality has been described 

after AAS use, mostly by myocardial infarction or hepatic failure [6, 16]. 

Pharmaceutical companies started developing synthetic analogues of testosterone and DHT to 

improve the dissociation of the ‘beneficial anabolic’ effects from the unwanted androgenic 

effects (in particular the virilizing effects) [6, 22]. Therapeutic indications for these analogues 

were patients in ‘catabolic state’ e.g. after severe burning or associated with muscle wasting 

diseases such as cancer and HIV [6]. With the growing availability of licensed compounds, 

athletes began to experiment with these analogues to enhance the skeletal muscle performance 

and to balance the catabolic condition in the body to speed-up recovery from stress [6, 22]. 
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Although AAS can stimulate EPO synthesis, improvement of endurance performance by AAS has 

not been demonstrated [20]. 

The 17β-hydroxy and 3-keto groups are essential for the interaction of AAS with the AR and for 

their anabolic effects. However, it is assumed that the 3-keto group has a supportive role and 

can be replaced by a double bond at C2 [16]. As 5α-reduction of the A-ring of AAS is considered 

to be a typical feature of androgens, synthetic analogues with modifications to stabilize the A-

ring conformation are in general less androgenic. Besides several modifications in the A-ring of 

testosterone and DHT (e.g. attachment of a pyrazole ring (stanozolol) to the A-ring or 

methylgroup at C1) the improved anabolic/androgenic dissociation of synthetic AAS can also be 

achieved by removal of the C19 methyl group to obtain the so-called 19-nor steroids [6]. 

The aim of synthetizing analogues is to enhance the anabolic/androgenic dissociation and to 

improve the oral availability. Orally active AAS can be obtained by 17α-alkyl substituents, which 

protect the 17β-hydroxy group from first-pass hepatic metabolism by sterical hindrance, or by 

methylation at C1, as is the case for methenolone and mesterolone [6]. Other administration 

routes include transdermal application, intravenous administration and intramuscular injection 

of steroid esters, which results in prolonged release [6]. 

Estrogenic side effects, such as gynecomastia, are often observed after AAS use and are caused 

by aromatization of the AAS to estrogens. Therefore the self-(co)administration of compounds 

with anti-estrogenic effects like tamoxifen is often observed [16]. The following modifications 

can interfere with the conversion into estrogens: condensation of the A-ring (e.g. stanozolol), 

5α-reduction of the C4 double bond, methylene substitution in C2 (e.g. oxymetholone) or 

additional double bonds in A-ring (e.g. trenbolone, tetrahydrogestrinone (THG)) [16]. It should 

be noted that although 17α-alkylation is beneficial for the oral activity of compounds, this 

modification can lead to stronger estrogenic effects by preventing deactivation of the 17β-

estradiol to the (less potent) 17-keto or 17α-hydroxy estrogens [16]. 

4.4 Metabolism of AAS 

The disposition of xenobiotic compounds in the human body is generally divided into four, 

interrelated, phases: absorption, distribution, metabolism and excretion (ADME) (Figure 1.4). 

 
Figure 1.4. Relationships of the four steps in disposition of xenobiotic compounds within an organism. 
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Excretion is an important step for elimination of exogenous compounds from the organism after 

administration. For most compounds, such as AAS, urinary excretion is the main excretion route 

[6, 23]. Other routes are excretion in saliva or via the gastrointestinal tract [23]. A small fraction 

of AAS metabolites is excreted into the bile, in particular sulfate conjugates which can be 

reabsorbed as part of the enterohepatic circulation [13]. 

The main organ for metabolism of xenobiotic compounds is the liver. Extrahepatic sites for 

metabolism include skin, kidney, intestines and lungs [24]. 

In general, the metabolic reactions lead to transformation into a less active and more polar 

metabolite, which facilitates excretion and thus elimination [25]. However, as observed for the 

testosterone metabolite DHT, which has greater affinity for the androgen receptor than 

testosterone itself, metabolism can also increase the biological activity [13, 15]. As xenobiotic 

AAS have highly non-polar characteristics, these compounds are often extensively metabolized 

prior to their urinary excretion [6, 24]. 

The metabolism of AAS can be divided into phase I and phase II reactions. Phase I reactions are 

functionalization reactions (e.g. oxidation, reduction or hydrolysis) whereas phase II reactions 

are conjugation reactions (e.g. glucuronidation or sulfonation) [24-26]. Although phase I 

reactions can introduce additional functional groups, which can be conjugated in phase II, phase 

I and phase II should not necessarily occur together or in this order [25]. For example not all AAS 

are excreted as conjugated metabolites. Therefore, excreted AAS and their metabolites can be 

categorized as unconjugated (‘free’) and/or conjugated metabolites [26]. Sometimes there is 

also referred to phase III reactions, to indicate further biotransformation of phase II metabolic 

products [25]. 

In the following paragraphs the general phase I and phase II pathways will be described. The 

metabolic pathways of testosterone will be used as a representative example. 

4.4.1 Phase I 

4.4.1.1 Oxidation reactions 

The majority of the phase I oxidation reactions are catalyzed by cytochrome P450 (CYP450) 

enzymes. CYP450 is a collection of isoenzymes and the highest concentration of these enzymes 

can be found in the liver. These CYP enzymes are located in the endoplasmatic reticulum (ER) 

and can be isolated as the so-called microsomal fraction by cell fractionation [25]. 

These oxidation reactions require nicotinamide adenine dinucleotide phosphate (NADPH), 

magnesium and molecular oxygen. NADPH is the cofactor for the NADPH cytochrome 

oxidoreductase, which donates the electron to the CYP enzymes during the oxidation reactions 

[25, 27]. 
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The CYP450 mediated oxidation reactions include [25]: 

- hydroxylation reactions of several substrates such as C atoms of aliphatic and aromatic 

compounds 

- oxidation of a hydroxyl group to a keto function 

- dealkylation reactions of alkyl groups attached to N, O or S atoms, for which removal 

requires oxidation of the alkyl group and then rearrangement and loss as the respective 

aldehyde. 

Certain oxidation reactions are also catalyzed by other enzymes such as alcohol dehydrogenase, 

xanthine oxidase, microsomal amine oxidase, monoamine oxidase, diamine oxidase and 

peroxidases [25].  

4.4.1.2 Reduction reactions 

The phase I reduction reactions are catalyzed by either microsomal or cytosolic reductases. 

These reduction reactions include reductions of double bonds, nitro, azo, epoxides, aldehyde 

and keto groups [25]. 

4.4.1.3 Hydrolysis  

Esterases and amidases catalyze the hydrolysis of esters and amides respectively. These 

enzymes are usually located in the cytosol of cells in a variety of tissues but some are present in 

plasma. However, microsomal esterases have also been described [25]. 

4.4.1.4 Hydration 

The enzyme epoxide hydrolase, present in the microsomal fraction, can catalyze the hydration 
of epoxides which yields dihydrodiol products [25]. 

4.4.1.5 Example: phase I metabolic reactions of testosterone 

As all synthetic AAS follow similar metabolic pathways compared to endogenous steroids, the 

metabolism of testosterone will be discussed as example. In Table 1.3 common phase I 

reactions for AAS are indicated per ring [26]. 

The rate-limiting reaction of testosterone (3-keto-4-ene-steroid) degradation is reduction of the 

C4 double bond by 5α-/5β-reductases. The 5α-reductase is primarily located in the ER and the 

5β-reductase in the cytoplasm. The ratio of 5α-/5β-isomers depends on the structure of the 

steroid, for example 3-keto-androsta-1,4-dien steroids (e.g. methandienone) will only be 

converted into 5α-metabolites. Subsequent to this irreversible step, the 3-keto group of 5α-

steroids is rapidly reduced by 3α/3β-hydroxysteroid dehydrogenases. Mainly 3α-hydroxy 

isomers are produced and only small amounts of the 3β-hydroxy-5α metabolite. For 5β-steroids 

only 3α-hydroxy-reduction has been reported [26]. This reduction of the 3-keto group leads to 
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some loss of the biological activity [13]. For AAS with a secondary 17β-hydroxy group (e.g. 

testosterone) oxidation to a 17-keto AAS, catalyzed by 17β-hydroxysteroid dehydrogenase, is an 

important metabolic pathway [26]. This 17β-hydroxy oxidation results in a considerable loss of 

activity [13]. For orally active steroids this 17-oxidation step is sterically hindered by the 

presence of 17α-alkyl groups [6, 18, 26]. 17β-hydroxysteroid dehydrogenase can also reconvert 

the 17-keto group to a 17β-hydroxyl group [26]. 

AAS can be converted to estrogens by the steroid aromatase enzyme [13, 16]. A proposed 

mechanism of A-ring aromatization would involve oxidation (hydroxylation) of C19 with 

formation of a geminal diol, followed by dehydration and cleavage of the C19 methyl group and 

subsequent enolisation of the 3-keto group [13, 16].  

Besides the phase I reactions indicated in Table 1.3 hydroxylations can also occur at positions 

C18 and C19 [26]. The described oxidoreductive phase I reactions for AAS are catalyzed by CYP 

enzymes [13, 15]. However, it should be noted that the proposed mechanism of 17-epimer 

formation is via a sulfoconjugate (phase II) intermediate (Table 1.4). 

Table 1.3. Phase I metabolic reactions in the four rings of AAS. The chemical structure of testosterone with 
indication of the A, B, C and D rings and numbering of the carbon atoms is also presented. 

A-ring B-ring CC-ring D-ring 
- 5α-/5β-reduction - 6β-hydroxylation - 12-hydroxylation - 17-dehydrogenation 

(17β-hydroxy) 
- 3α-/3β-hydroxy-
reduction 

- 6,7-dehydrogenation 
(methandienone) 

 - 17β-/17α-hydroxy-
reduction (17-keto AAS) 

- 1,2-hydrogenation 

 

- 16α-/16β-hydroxylation 

- 1,2-dehydrogenation - 16-dehydrogenation 
(16α-/16β-hydroxy AAS) 

- aromatization - 17-epimerization 

- other metabolic 
reactions of AAS with 
modified A-ring e.g. 
4β-hydroxylation 
(stanozolol), 
oxidation to a 2β-
carboxylic acid 
metabolite 
(oxymetholone) 

- other metabolic 
reactions e.g.  
17β-hydroxylation (17α-
ethyl AAS) 

 

4.4.1.6 Genetic polymorphisms 

CYP450 consists of a family of isoenzymes, which are responsible for approximately sixty 

different types of reactions with a broad and overlapping substrate specificity. The families CYP 

1 until 4 are involved in the metabolism of xenobiotic compounds [25]. CYP3A4 is an important 
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isoenzyme and catalyzes the metabolism of the majority of all drugs (>50%) such as the 6β-

hydroxylation of testosterone [28, 29]. CYP19 is also known as the steroid aromatase [13]. 

CYP450 shows a number of genetic polymorphisms which may affect metabolic pathways and 

thus individual human ability to metabolize drugs and other chemicals. For example the genetic 

polymorphism of CYP2D6 is well-characterized and results in poor, extensive and ultrarapid 

metabolizers [25, 30]. Poor metabolizers are individuals who have reduced metabolic activity 

towards certain substrates and may therefore suffer from increased toxicity for some drugs 

such as penicillamine, which can result in skin rashes. This poor metabolizer phenotype occurs 

in approximately 5–10 % of the white Caucasian population. Genetic variations have also been 

observed for other enzymes involved in drug metabolism such as alcohol dehydrogenase and 

esterases [25]. 

4.4.2 Phase II 

4.4.2.1 Glucuronidation 

Glucuronidation is a major phase II metabolic pathway and involves conjugation with glucuronic 

acid. Glucuronic acid is a polar and water soluble carbohydrate molecule which may be attached 

to a wide variety of substrates containing hydroxyl groups, carboxylic acid groups, amino 

groups, thiols or single carbon (C-C) bonds [24, 25]. These glucuronidation reactions, yielding β-

glycosidic bonds, are catalyzed by uridine diphosphoglucuronosyl transferases (UGTs) and utilize 

uridine 5'-diphospho-glucuronic acid (UDPGA) as cofactor (Figure 1.5) [24, 25]. 

The UGTs are microsomal enzymes, but their active sites are in contrast to the CYP450 enzymes 

localized on the luminal side and not at the cytosolic side of the ER [27, 31].  

 
Figure 1.5. Glucuronide conjugation of testosterone by UGT. 

The main site of glucuronidation is the liver [24]. In general, the UGT enzymes which catalyze 

the glucuronidation reaction can be divided into two families: UGT1 and UGT2. The most 

important UGT enzymes involved in phase II glucuronidation of AAS are members of subfamilies 

UGT1A and UGT2B [24, 32, 33]. 
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4.4.2.2 Sulfonation 

The addition of a sulfo moiety (SO3) is also a major route of conjugation for xenobiotic 

compounds. Both aromatic and aliphatic hydroxyl groups as N-hydroxy groups and amino 

groups may be sulfonated. The sulfonated product is an ester which is very polar and water 

soluble. 

The sulfate conjugation reactions are catalyzed by cytosolic sulfotransferase (SULT) enzymes 

and utilize the coenzyme 3’-phosphoadenosine-5’-phosphosulfate (PAPS) (Figure 1.6) [25]. 

Unlike with UGTs, each SULT enzyme displays a more unique tissue distribution e.g. SULT1A1 is 

the main hepatic isoenzyme for catalyzing sulfonation reactions. The SULTs-1E1, 2A1, 2B1a and 

2B1b have been reported to be involved in the sulfonation of AAS, which are partially located in 

the liver [24]. 

 
Figure 1.6. Sulfate conjugation of testosterone by SULTs. 

4.4.2.3 Other conjugation reactions 

The most important phase II pathways of AAS consist of conjugation with glucuronic acid or 

sulfonation [26]. Other phase II reactions that were described for AAS include conjugation with 

cysteine and N-acetylcysteine [34, 35]. The postulated metabolic pathway, for (N-

acetyl)cysteine conjugates, would involve glutathione conjugation and subsequent (phase III) 

transformation to (N-acetyl)cysteine conjugates [25, 34]. 

Conjugation with glutathione, a tripeptide, plays a major protective role in the body as a 

scavenger for various reactive compounds. Glutathione may react, either chemically or enzyme-

catalyzed (glutathione transferases), with reactive compounds and electrophilic metabolites 

produced in phase I reactions. The glutathione transferases can be located in both the soluble 

fraction and the microsomal fraction of the cell [25].  

Methyltransferases may methylate hydroxyl, amino and thiol groups in molecules [25]. 

Methylation by catechol-O-methyltransferase (COMT) has been described for estrogens [36, 
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37]. Soluble COMT enzymes are located in the cytosol and membrane bound COMT enzymes 

can be found in the microsomal fraction [38]. Acetylation of aromatic amino compounds, 

sulfonamides, hydrazines and hydrazides may also occur by acetyltransferases. The latter 

enzymes are e.g. found in the cytosol of cells and utilize acetyl Coenzyme A as cofactor [25]. 

Although metabolic reactions have the aim to promote excretion, methylation and acetylation 

tend to decrease, rather than increase, water solubility [25]. 

4.4.2.4 Example: phase II metabolic reactions of testosterone 

For AAS glucuronidation and sulfonation are the major phase II metabolic reactions. The 

majority of androgen metabolites are excreted as glucuronide conjugates. However, 3β-

hydroxylated steroids, such as DHEA, are predominantly excreted as sulfate conjugates [13, 15, 

24, 26]. In Table 1.4 common phase II reactions for the A- and D-ring of AAS are indicated [26].  

For testosterone glucuronidation of 3α-hydroxy- and sulfonation of 3-β-hydroxymetabolites 

have also been described, regardless of 5α-/5β-configuration. However, the major phase II 

metabolite for testosterone, following 3α-hydroxy reduction, is a 3α-O-β-glucuronide [26]. In 

addition, both glucuronidation and sulfonation of the 17β-hydroxy group have been reported 

[26]. 

Table 1.4. Phase II metabolic reactions in the A- and D-rings of AAS. 

A-ring D-ring 
- sulfonation of 3β-hydroxy group - glucuronidation of secondary 17β-hydroxy group 

- glucuronidation of 3α-hydroxy group - glucuronidation of tertiary 17β-hydroxy group  

(17β-hydroxy-17α-methyl AAS) 

 - sulfonation of secondary 17β-hydroxy group 

 - sulfonation of tertiary 17β-hydroxy group and subsequent 

17-epimerization (17β-hydroxy-17α-methyl AAS) 

 

4.4.2.5 Genetic polymorphism 

The genetic deletion polymorphism of UGT2B17 (del/del genotype) leads to lower 

glucuronidation rates of testosterone, but would not affect epitestosterone glucuronides. The 

resulting del/del genotype affects the evaluation of the T/E ratio as marker for testosterone 

administration, as this ratio can remain below the threshold even after misuse of testosterone. 

This demonstrates the usefulness of the ABP which evaluates the individual steroid profiles 

longitudinally, and hence can exclude the effect of several genetic polymorphisms. The 

UGT2B17 del/del genotype is more common in Asian than in Caucasian populations [13, 24, 32].
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4.5 Detection of AAS 

The ISL of WADA focusses on urine and blood collection for the detection of prohibited 

substances and methods [11]. Urine is the biological fluid of choice for sample collection 

because it is less invasive than blood collection and many drugs and/or their metabolites are 

more concentrated in urine than in blood after administration [6]. This is also the case for AAS. 

Blood samples are collected for doping control purposes to determine blood parameters and to 

detect misuse of e.g. human growth hormone [6]. Currently, the use of less invasive blood 

collection techniques compared to the conventional techniques such as dried blood spots (DBS) 

are investigated for the detection of AAS [39, 40].  

Alternative specimens that are investigated for the detection of AAS are hair and oral fluid 

(‘saliva’) [40-43]. Advantages of these alternative specimens include their non-invasive nature 

and that these specimens can be collected under close supervision, which prevents adulteration 

and substitution of samples [44-46]. An additional advantage of hair testing is that it can 

prolong the detection times in comparison to urine or blood [44-47]. Drawbacks that are related 

to hair testing include potential external contamination, influence of cosmetic treatments (e.g. 

bleaching, dyeing) to the drug stability in hair, wash-out of drugs, and the necessity of athletes 

to have scalp hairs [6, 41, 44-47]. Moreover, the incorporation rate of prohibited substances 

into hair is affected by the melanin content of the hair, the hydrophilicity and the membrane 

permeability of the drug [6, 46, 48]. The use of oral fluid has the advantage that the plasma 

concentration can be estimated without requiring invasive blood sampling [44]. According to a 

study of Thieme et al. the use of oral fluid seems promising for the detection of transdermal 

testosterone gel application [41]. However, it should be taken into account that the drug 

concentration in oral fluid can be influenced by the sample collection procedure, leakage of 

blood into saliva, storage conditions and individual differences [44, 49]. Although hair and oral 

fluid are already successfully applied outside the field of doping controls more data is necessary 

to determine the potential of these alternative biological fluids for doping control purposes [44, 

47]. The WADA ISL clearly indicates that testing results from alternative biological matrices such 

as hair and oral fluid shall not be used to counter AAFs from urine and blood [11]. 

The detection windows of AAS depend on the route of administration, the type and 

concentration of the administered AAS. In general, detection windows of AAS observed in urine 

samples range from some hours-days for oral endogenous steroids, some days-weeks for oral 

exogenous steroids and until one year after administration for injectable long-acting steroid 

esters. Hair testing would allow a detection of AAS misuse for a period of six months till one 

year, depending on the length of hair shaft analyzed [44-46]. Oral fluid and blood are assumed 

to have the shortest detection windows [46]. 
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Due to the extensive metabolism of AAS there is often only a small percentage of (or even no) 

parent AAS excreted into the urine [6, 24]. Additionally, it has been shown that the excretion of 

metabolites often shows a pattern which shifts with time. Some metabolites are excreted 

rapidly, while other secondary metabolites might only be excreted at a later stage. Therefore it 

is important to identify metabolites for doping control purposes to improve the detection 

(windows) of AAS misuse. 

The still growing list of prohibited substances, both regarding number and kind, is challenging 

the doping control laboratories to develop detection methods with good sensitivity and 

selectivity to meet the MRPLs set by WADA. The improvements of detection strategies are 

based on sample preparation and detection techniques, which is related with instrumental 

innovations [47], but also with respect to elucidation of drug metabolism and identification of 

long-term metabolites [50]. 

Qualitative analyses are applied for non-threshold substances (e.g. exogenous steroids) since 

their presence in athlete urine samples leads directly to an AAF. However, for threshold 

substances a quantitative approach is required. This also holds true for endogenous steroids, 

since it is required to identify if their presence is related to an endogenous production or 

originates from administration of synthetic endogenous steroids [6]. To distinguish endogenous 

steroids from their synthetic analogue, Isotope Ratio Mass Spectrometry (IRMS) is applied by 

doping control laboratories [1, 6]. As IRMS is an expensive and time-consuming technique, IRMS 

analysis is only used as confirmation methodology. To identify suspicious samples, screening is 

performed by measuring several urinary concentrations and ratios of endogenous steroids [51]. 

The T/E ratio is an important biomarker for testosterone misuse [6, 51, 52]. Other markers were 

added to enable detection of misuse of other endogenous steroids, such as DHT, DHEA and 4-

androstenedione and form the so-called ‘traditional’ steroid profile [51]. These parameters 

include the urinary concentrations of testosterone, epitestosterone, DHT, DHEA and 4-

androstenedione, and their main urinary metabolites (androsterone, etiocholanolone, 5β-

androstane-3α,17β-diol and 5α-androstane-3α,17β-diol) [51]. This steroid profile is traditionally 

obtained by gas chromatography - mass spectrometry (GC-MS) analysis. In addition to the 

steroid profile several cofounding factors, including finasteride, ketoconazole and alcohol 

(ethanol) are screened for [51, 53]. The introduction of the ABP refined the evaluation of steroid 

profiles by enabling comparison with individual reference limits [53]. For the qualitative analysis 

of exogenous AAS both GC-MS and liquid chromatography - mass spectrometry (LC-MS) 

instruments are generally applied [47, 54]. 

4.5.1 Sample preparation 

As screening methods are based on the simultaneous detection of a wide range of substances 

with a single sample preparation procedure, generic protocols are applied to cover all 
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compounds with a reasonable recovery [24, 55]. In general, this sample preparation procedure 

(Figure 1.7) consists of hydrolysis of the urine samples and an extraction based on liquid-liquid 

extraction (LLE) or solid-phase extraction (SPE) [6, 55].  

 

Figure 1.7. Sample preparation procedure of urine samples. 

The hydrolysis step involves the hydrolysis of conjugated substances to enable their extraction 

from the urine sample (and detection by GC-MS) [6, 55]. In this step the main focus is on the 

glucuronide-conjugated fraction since the enzymatic hydrolysis is performed with β-

glucuronidase derived from Escherichia coli (E. coli). In some cases extracts from Helix pomatia 

(H. pomatia), which contain both β-glucuronidase and arylsulfatase, are used to include the 

sulfate conjugates. However, these sulfate conjugates are not efficiently enzymatically 

hydrolyzed [24, 56, 57] and problems associated with the production of artifacts [56, 57] and 

conversion between steroids [6, 57, 58] have been described for H. pomatia extracts, which 

makes the use of E. coli mandatory for endogenous steroids (steroid profiling). The alternative 

solvolysis (e.g. methanolysis), although more efficient, might lead to degradation of certain 

substances [24, 57]. 

Extraction of AAS from the urine matrix is generally performed by LLE with an apolar organic 

solvent such as diethylether or t-butylmethylether [6, 59]. The neutral AAS are favorably 

partitioned in this organic solvent [6]. After separation of the organic phase, the solvent is 

evaporated.  

The dried extracts are then reconstituted (in water/methanol or water/acetonitrile) in case LC-

MS analysis will be performed. For GC-MS analysis an extra derivatization step is needed to 

improve the chromatographic properties, volatility and thermostability of the substances [6, 

60]. A common applied derivatization is based on trimethylsilylation of AAS [6, 60]. To convert 

both hydroxyl and keto functions of AAS to their trimethylsilyl (TMS) ether and enol derivatives 

respectively a TMS derivatization mixture consisting of N-methyl-N-trimethylsilyl-

trifluoroacetamide (MSTFA), ethanethiol and ammonium iodide (NH4I) is used (Figure 1.8). 

Derivatization of hydroxyl functions can be performed by adding MSTFA. However, for the 

derivatization of the more stable keto functions a catalyst such as iodotrimethylsilane (TMSI) is 

required. Since NH4I is more stable than TMSI, TMSI is generated in-situ by the reaction of 

MSTFA with NH4I. To inhibit the formation of iodine an anti-oxidant such as ethanethiol is added 

to the derivatization mixture [6, 60]. This derivatization step requires anhydrous conditions to 

assure complete derivatization [6] since both the reagents and the formed derivatives are 
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sensitive towards water [60]. Therefore the extracts are evaporated to dryness and anhydrous 

sodium sulphate (Na2SO4) is added to ensure removal of all water [6]. 

 

Figure 1.8. TMS derivatization of testosterone. 

Recently, direct injection (dilute-and-shoot) methods combined with LC-MS analysis were 

developed in order to face the increasing number of samples and to minimize turnaround time 

and reagent cost [61-65]. This substantially reduced sample preparation is possible thanks to 

more improved detection instruments. 

4.5.2 Analysis of samples 

GC-MS and LC-MS are the technologies of choice for the detection of most prohibited 

substances, including AAS, in doping control laboratories [47, 54]. LC-MS offers in many cases 

the advantage over GC-MS that sample preparation can be reduced [10, 55, 60] (Table 1.5). 

Indeed, GC-MS often requires additional steps during sample preparation, including hydrolysis 

to detect conjugated metabolites and derivatization of compounds to improve their 

chromatographic properties [6]. Moreover, some compounds are thermolabile, non-volatile or 

have marginal GC chromatographic properties (e.g. THG and stanozolol), even after 

derivatization [47, 54, 66]. For these compounds LC-MS analysis can be applied, which does not 

require derivatization and enables the direct detection of conjugated compounds via dilute-and-

shoot methods, which circumvent problems related to hydrolysis [24, 55, 61, 66, 67]. However, 

GC-MS remains a valuable technique especially for saturated AAS (e.g. 5α-/5β-androstane-

3α,17β-diols), which represent ionization difficulties by LC-MS [55, 60, 68]. 

LC-MS and GC-MS instruments have a similar configuration consisting of a chromatograph, ion 

source and detector (MS). Chromatography is a separation technique in which the analytes are 

differently distributed or partitioned between a stationary phase (e.g. coated on a column) and 

a mobile phase. For GC the mobile phase is a gas (carrier gas) and for LC the mobile phase is a 

liquid. The separation of the analytes is performed due to differential interaction with the 

stationary phase and mobile phase, which leads to retention of the compounds. Therefore the 

compounds elute at different retention times [69]. For the GC and LC screening of AAS apolar 

columns are generally applied. These GC columns are capillary columns based on fused silica 

(such as dimethylpolysiloxane e.g. J&W Ultra 1 and HP-1MS). Since the GC column is located in 
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an oven a temperature program can be applied to optimize the separation of the compounds 

[47]. 

Table 1.5. Overview of GC-MS and LC-MS techniques and their (dis)advantages for the screening of AAS. 

Parameter GC-MS GC-MS/MS LC-MS/MS LC-HRMS 

Analytes Volatile, thermally stable, non-polar, 
small compounds 

+ Detection of saturated AAS feasible 
(e.g. androstanediols) 

- Improve GC properties: derivatization  

- Hydrolysis (deconjugation) needed 

Non-volatile, thermally unstable, polar, 
small/large compounds 

+ Direct detection of conjugated AAS 

+ Detection of AAS such as trenbolone, 
THG 

Sample 
preparation 

Hydrolysis & LLE/SPE & derivatization Hydrolysis & LLE/SPE 

+ Dilute-and-shoot possible 

Column Apolar Apolar 

Mobile phase Gas (He, H2, N2) Polar solvent (H2O, MeOH, acetonitrile) 

Ionization EI 

+ Fragmentation: 
additional 
structural 
information 
- Less abundant 
molecular ion 

EI 

(See GC-MS) 

CI 

+ More abundant 
molecular ion 

- Less structural 
information 

ESI 

+ Abundant molecular ion 

- Less structural information 
- Ionizable groups needed 
- More prone to matrix effects 

Screening AAS SIM 

+ More sensitive 
compared to full 
scan 

- Targeted 
detection 

MRM 

+ More sensitive 
compared to SIM 

- Targeted 
detection 

MRM 

+ More sensitive 
compared to SIM 

- Targeted 
detection 

Full scan 

+ Retrospective 
data analysis 
feasible 

Identification 
analytes 

RT, EI mass 
spectrum 

RT, MS/MS 
fragmentation 

RT, MS/MS 
fragmentation 

RT, exact mass, 
fragmentation 

Resolution 1 amu 1 amu 1 amu 0.001-0.0001 amu 

+ Reduced 
background 

Cost € €€ €€ €€€- €€€€ 

+ = advantage; - = disadvantage 

LC-MS/MS methods for the detection of AAS are based on apolar C18 or C8 columns and a 

mobile phase containing water and methanol (MeOH) or acetonitrile. The application of an 

apolar column with a polar solvent for the LC separation is called ‘reversed phase’ LC [47, 69].  

Several mobile phase modifiers can be added to the mobile phase (e.g. formic acid or acetic acid 

and ammonium formate or ammonium acetate) to optimize the chromatographic behavior and 

ionization [55]. Gradient elution (changing composition of mobile phase throughout the run) is 

applied to modify the separation of the compounds [69].  
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After the chromatographic separation of the analytes the compounds are ionized in the ion 

source. For GC-MS electron ionization (EI) and chemical ionization (CI) are often applied, 

whereas electrospray ionization (ESI) is commonly used for LC-MS instruments [47]. EI is a 

rather hard ionization technique, resulting in additional fragmentation of the compounds [47]. 

This has the advantage that additional structural information can be obtained in the 

corresponding EI mass spectrum. However, a disadvantage of this ‘destructive’ ionization 

technique is that less abundant molecular ions can be observed [47]. CI and ESI are soft 

ionization techniques which advantageously leads to less fragmentation and a more abundant 

molecular ion, but consequently provides less structural information [47]. A more abundant 

molecular ion is beneficial for the development of multiple reaction monitoring (MRM) as more 

diagnostic precursor ions (high mass to charge ratio (m/z) at relative high abundance) can be 

selected [70]. During ESI competitive ionization can occur, which makes the technique more 

prone to matrix effects (ion enhancement/suppression) [47, 55]. Therefore the determination of 

matrix effects is important in LC-MS/MS method validation and the use of stable isotope labeled 

internal standards is recommended for quantitative LC-MS/MS methods [47]. For the efficient 

ionization of AAS by ESI and thus LC-MS/MS analysis ionizable groups such as a conjugated 

carbonyl function or heteroatoms are required [68]. Consequently, the detection of saturated 

AAS such as 5α-/5β-androstane-3α,17β-diols is impeded by LC-MS/MS analysis. For the 

detection of these compounds GC-MS analysis is applied. 

The detector is a mass selective detector or mass spectrometer, which separates the ionized 

analytes into an electromagnetic field depending on their m/z [47]. There are several types of 

mass analyzers including (single/triple) quadrupoles, ion traps, time-of-flight (TOF) and orbitraps 

[47]. A brief description of the mass analyzers applied in this thesis (single/triple quadrupole and 

Orbitrap) is given below.  

The quadrupole analysator consists of four parallel rods. Each opposing rod pair is electrically 

connected and an oscillation radio frequency voltage (VRF) is applied between the pair of rods. 

In addition to this VRF a positive/negative direct current (VDC) is applied. Ions entering the 

quadrupole undergo oscillating movements between the rods due to these VRF and VDC electric 

fields. For a given ratio of voltages only ions with a particular m/z undergo stable oscillations 

and will reach the detector. Other ions will have unstable movements and will collide with the 

rods [47]. Triple quadrupole MS instruments consist of three quadrupoles (Q1, Q2 and Q3; 

figure 1.9). Q1 and Q3 are conventional quadrupoles, which can be operated in full scan or 

selected ion monitoring (SIM) mode [47]. Q2 act as a collision cell which enables fragmentation 

of selected precursor ions to product ions [47]. 

An Orbitrap is a special type of ion trap MS consisting of an outer barrel-like electrode and 

central spindle-like electrode. Ions are, due to their electrostatic attraction to the central 
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electrode, trapped in an orbital motion around the central electrode. The m/z value of the ions 

is related to the frequency of oscillation [47]. This Orbitrap technology is applied in LC-high 

resolution MS (HRMS) instruments (e.g. Exactive and Q-Exactive). A higher energy collision 

dissociation (HCD) cell enables all ion fragmentation. The advantage of the Q-Exactive is the 

presence of an additional quadrupole which allows performing fragmentation of selected ions in 

the HCD cell. 

In GC-(EI)MS full scan mass spectra of AAS the molecular ion and several fragment ions can be 

observed. It should be taken into account that for GC-MS the compounds are derivatized with 

TMS prior to the GC-MS analysis. For example if both the 3-keto and 17-hydroxy groups of 

testosterone are derivatized with TMS a molecular ion of m/z 432 (288+(2x72)) will be 

observed. Besides the molecular ion, the fragment ion m/z 73, which represents the 

trimethylsilyl radical, is commonly observed in the mass spectra of TMS derivatives [54]. Losses 

of methyl radicals ([M-15]+) and TMSOH ([M-90]+) groups are frequently observed in the GC-MS 

mass spectra of AAS [47, 70]. 

In the LC-MS full scan mass spectra of AAS protonated [M+H]+ and deprotonated [M-H]- 

molecules can be observed, depending on the ionization mode that is applied. For molecules 

exhibiting a high proton affinity (basic molecules) [M+H]+ will be the most abundant species 

while for molecules which can transfer a proton to the solvent (acidic molecules) [M-H]- will be 

more abundant. Other species that can be observed include sodium ([M+Na]+), potassium 

([M+K]+), ammonium ([M+NH4]+) and acetate adducts ([M+OAc]-) [68]. 

To fulfill the higher demands regarding sensitivity, selectivity and sample throughput there has 

been some evolution in MS techniques [1, 10, 47]. Initially by use of classical MS, full scan 

analyses evolved to the use of the more selective SIM mode. Subsequently detection limits were 

further improved by implementation of tandem MS (MS/MS) (Figure 1.9). This MS/MS analysis 

involves collision induced dissociation (CID) of compounds with an inert gas (e.g. nitrogen, 

helium and argon), which results in characteristic MS/MS spectra. With these MS/MS 

instruments product ion scan mass spectra (quadrupole linked to ion trap or time of flight (TOF) 

detector) or selected reaction monitoring (SRM)/ MRM (triple quadrupoles) can be applied [10]. 

Although these improved MS techniques lead to an efficient detection of a range of known 

compounds, a drawback from the high selectivity is that it does not allow the detection of non-

targeted or unknown compounds [10]. These target methods require information about 

compounds and their metabolites such as a selection of the most appropriate ions and its 

retention time. 
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Figure 1.9. Configuration of GC-MS and LC-MS triple quadrupole instruments and the different scan modes. 

The application of LC-HRMS instruments can lead to a reduction of background noise by 

measuring of specific ions with an accurate mass [10]. This in turn enables the detection of quite 

low levels of substances and requires less sample clean up [10]. Evaluation of HRMS data 

requires post-acquisition processing methods to select target substances. However, an 

advantage of the use of HRMS instruments is that they allow retrospective data analysis as data 

processing is a post-acquisition rather than pre-acquisition process. Eventually the full scan 

HRMS data can also be combined with fragmentation data to obtain more structural 

information of unknown compounds [10]. 

Taking into account the drawbacks related to targeted screening methods, other strategies 

were developed to enable the detection of unknown doping substances [1, 10]. These strategies 

were applied for AAS and include androgen bioassays, based on their androgenic activity [71] or 

interaction with the AR [72], and open screening strategies [10]. The open screening strategies 

are based on the finding that related steroids have similar MS/MS fragmentation patterns which 

give rise to common ion fragments [10, 73, 74]. Pozo et al. developed an approach for the 

detection and characterization of unknown AAS (Figure 1.10) [75]. 
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Figure 1.10. Approach for the detection and characterization of unknown compounds (adapted from [75]). 

5 New evolutions of performance enhancing substances 

Since illicit producers are regularly inspired by (pipeline) products of pharmaceutical companies, 

pharmaceutical innovations are often related to evolutions in black market products. The black 

market provides cheaper preparations of pharmacological products or products containing 

slightly modified substances [76-79]. These black market products are often distributed without 

sales permission or without safety or efficacy studies [10, 24]. Therefore, a wide range of 

performance enhancing substances is currently available over the internet. While in the 1990s 

and 2000s these substances were predominantly products containing AAS and designer 

steroids, nowadays new classes of performance enhancing substances are observed including 

peptides [77, 80-84], non-steroidal selective androgen receptor modulators (SARMs) [18, 76, 

85], REV-ERB (reverse – viral erythroblastosis oncogene product) agonists [86] and small 

molecule ESAs [87, 88]. 
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5.1 Designer steroids 

Synthetic AAS analogues were produced to improve the pharmacological profile of AAS by 

pharmaceutical companies. However, while knowledge was growing, so-called underground 

laboratories started to manufacture designer steroids, which structures closely resemble 

existing, known products but with sufficient chemical diversity to evade detection and 

legislation [10, 89]. The circumvention of legislation was based on misuse of gaps in legal 

regulations, which scope is based on defined compounds or structures [10, 89]. Moreover, 

attempts to hide the true identity of compounds are applied by incorrect, misspelled names or 

refusing to use the androstane nomenclature (e.g. alloetiocholane or perhydrophenanthrene 

derivatives) and reappearance of banned products under other trade names has been observed 

[10]. These gaps were recognized in the Prohibited List of WADA and were closed by widening 

the scope of prohibited compounds by e.g. adding the expression ‘and other substances with 

similar chemical structure or similar biological activity’ and changing the term anabolic steroids 

to anabolic agents [1]. 

Substances developed by pharmaceutical companies undergo full clinical studies to prove their 

efficacy and safety and their production is also strictly regulated. The designer steroids often 

marketed as so-called prohormones or ‘dietary supplements’ lack generally such defined 

toxicological profiles. The clandestine production process jeopardizes the purity of these 

products [10, 76, 90, 91] and labeling is often incorrect as products do sometimes either not 

contain any of the active ingredients indicated on the label or contain structural analogues [76, 

91]. Although athletes should be careful with using ‘dietary supplements’ to prevent a positive 

doping control, it should be noted that not all dietary supplements contain designer 

steroids/prohormones or are linked to contamination issues. Examples of these designer 

steroids are THG, prostanozol and dimethazine (DMZ) [10]. 
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5.2 SARMs 

To further improve the pharmacological properties of (synthetic) AAS non-steroidal SARMs were 

developed. SARMs selectively interact with the AR and allow a tissue-selective activation or 

inhibition of the AR [18, 22, 92-96]. Moreover, these compounds are not a substrate for 5α-

reductases and aromatases. Therefore administration of SARMs does not lead to undesirable 

effects resulting from amplification of androgenic and estrogenic effects [18]. A proposed 

mechanism for their tissue-selective activation of the AR would be related to specific 

conformational changes of the AR induced by SARMs, which affects the interactions with 

coregulators as described above (4.3 Mechanism of action of AAS) [13, 18]. SARMs allegedly 

exhibit improved oral bioavailability and represent more metabolically stable compounds with 

reduced liver toxicity [97, 98]. 

The chemical structures of SARMs are quite different from the steroid structures, as SARMs 

have chemical pharmacophore structures such as arylpropionamides, bicyclic hydantoins, 

quinolines, and tetrahydroquinolines [18, 22, 93, 94]. However, this diverse group is 

continuously expanding with new substances and other pharmacophores. For example, recently 

a new class of SARMs was introduced with a pyrrolidin-benzonitrile structure (LGD-4033) [99-

101]. 

Andarine and ostarine (also known as Enobosarm) are the first described SARMs. Other 

examples of SARMs include ACP-105 and LGD-4033 [79]. Clinical applications for SARMs include 

hypogonadism, sarcopenia, prevention and treatment of muscle wasting, osteoporosis, breast 

cancer and as hormone replacement therapy [18, 96, 102]. Although SARMs are currently still 

undergoing clinical trials the promising anabolic effects of SARMs result in a high potential of 

misuse by athletes [18]. Moreover, the misuse of non-approved substances has already been 

reported before and several SARMs are available in black market products over the internet [76, 

78]. Therefore in 2008 WADA added SARMs to the Prohibited List in the subcategory of S1-

Anabolic agents, S1-2 other anabolic agents. 

5.3 REV-ERB agonists 

In 2012 REV-ERB agonists SR9009 and SR9011 were described as promising drug candidates to 

treat several metabolic disorders [103-105]. SR9009 and SR9011 modulate the activity of the 

nuclear receptors REV-ERB-α and -β, which regulate the expression of core clock proteins of the 

mammalian circadian clock [103, 105-108]. The circadian rhythm organizes behavior and 

physiological processes, including activity/rest, feeding times, body temperature and 

metabolism, on a cycle of approximately 24 h [103, 109, 110]. 
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In Figure 1.11 the mammalian circadian clock with its major molecular components is 

presented. A central clock located in the suprachiasmatic nucleus (SCN) is responsible to 

coordinate independent peripheral clocks to obtain a coherent circadian rhythm [109]. The 

central clock is entrained by environmental influences such as light, which enables adjustment 

to the solar day and seasonal changes [106, 111, 112]. 

Heterodimeric complexes of the transcription factors BMAL 1 (brain and muscle aryl 

hydrocarbon receptor nuclear translocator-like protein 1) and CLOCK (circadian locomotor 

output cycles kaput) initiate the transcription of period (PER) and cryptochrome (CRY) genes 

[103, 105-110]. Transcriptional feedback loops result in a rhythmic expression of BMAL 1/CLOCK 

and PER/CRY.  

REV-ERB-α or Nuclear Receptor Subfamily 1 Group D, member 1 (NR1D1) and retinoic acid-

related orphan nuclear receptors α (RORα) regulate the expression of BMAL 1/CLOCK. REV-ERB-

α is a negative regulator, whereas RORα is a positive regulator [109, 110]. 

The peripheral clock receives signals from the central clock and is also adjusted by feeding and 

fasting [111, 113]. Many processes, including glucose and lipid metabolism, food absorption and 

insulin secretion, are regulated by the peripheral clocks located in several organs (e.g. liver, 

skeletal muscles, kidney and pancreas) [106, 111, 113]. 

 

 

Figure 1.11. Mammalian circadian clock. 
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Effects observed via in vitro and in vivo animal studies with REV-ERB agonists SR9009 and 

SR9011 included increased basal oxygen consumption, decreased lipogenesis in the liver, 

increased mitochondrial content, glucose and fatty acids oxidation in the skeletal muscle and 

decreased lipid storage in the white adipose tissue [103-108, 114].  

Their role in energy homeostasis and the observed increase in exercise capacity via in vivo 

animal studies, make these compounds attractive for doping purposes [104]. Moreover, soon 

these compounds were discussed as ‘exercise in a pill’ compounds [115-117] and SR9009 was 

marketed in black market products [86]. Although the effects of SR9009 and SR9011 in human 

still need to be investigated illicit use for doping purposes can be anticipated. These compounds 

are not explicitly mentioned on the list of prohibited substances but are prohibited under the 

category S0 which represents ‘non-approved substances’ such as drugs under clinical 

development or designer drugs [8]. SR9009 and SR9011 could potentially also be classified as 

metabolic modulators under category S4 [8]. 

6 Doping and research ethics 

The (extreme) pressure and desire to perform, drives athletes to win at all costs and might 

tempt them to short-sighted solutions like doping [4, 5]. The presence of a wide variety of 

performance enhancing substances over the internet makes these easily available for both elite 

athletes as for non-professional recreational sportsmen [4, 5, 10, 20]. These substances are 

provided as both pharmaceutical and non-pharmaceutical grade products [10]. The latter group 

of products is often made in clandestine ways containing substances sometimes designed with 

structural similarity to published compounds but with little or no knowledge about their 

potential toxic effects. Therefore, athletes are used as ‘guinea pigs’ without any ethical 

considerations to determine side effects and the potential for performance enhancement of 

these substances [10, 76]. In many cases these products are self-administered by recreational 

athletes with self-determined doses and sometimes in combination with several doping 

products without regular check-up by medical doctors. Side-effects and performance enhancing 

effects are often discussed on internet fora, like observed with some designer steroids [10, 20]. 

Moreover, as described for the designer steroids, these products have often poor purity, which 

raises considerable concerns for the safety of the consumers [10, 76, 90]. 

Education programs and effective detection methods to reveal misuse of performance 

enhancing substances are important for the fight against doping, not only to protect the ethics 

of sports but also the health of athletes [5]. Preventive anti-doping research can also be helpful 

to close the gap between doping control laboratories and the appearance of new doping agents 

[10]. Therefore, vigilance by doping control laboratories is recommended for early detection of 
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designer drugs and new evolutions of potential performance enhancing substances, both from 

the pharmaceutical industry as the black market [10, 76, 79]. 

To allow detection of substances with the longest retrospectivity, knowledge is required about 

the metabolic behavior and the detection of the parent compound and potential metabolites. 

Traditionally, elucidation of the metabolism is performed in excretion studies with human 

subjects. However, for pipeline products or compounds from illicit producers ethical constraints 

and safety aspects limit the use of human volunteers. To ensure a fast response and prompt 

implementation of new, non-pharmaceutical grade products, alternative models are needed for 

these metabolism studies [10, 24, 89]. These alternative models include animal models, tissue 

slices or crude enzyme preparations from animal or human origin [22, 24, 29, 118, 119]. 

7 Metabolism studies 

The purpose of metabolism studies for doping control and pharmacology are different. For the 

pharmacological activity of candidate compounds the metabolic reactions leading to 

active/toxic metabolites are of major interest. In contrast, the main interest for doping control 

purposes is to characterize (major) metabolites and their physicochemical properties to 

facilitate detection in routine screening [22].  

7.1 Alternative models 

For the metabolism of xenobiotic compounds, hepatic enzyme activity plays a significant role. 

Therefore alternative (in vitro) models for metabolism studies are predominantly based on the 

liver. Examples of such alternative models are supersomes [29, 120, 121], liver fractions [22, 24, 

29, 118, 122], hepatocyte cell cultures [123-125], mice with humanized livers [126-130] and 

primates [131, 132]. These in vivo and in vitro model systems all have advantages as well as 

disadvantages (Figure 1.12). For example hepatocytes can be used to study phase I and phase II 

reactions sequential or in parallel but they show a relative rapid decline in CYP450 activities 

[119]. Supersomes, microsomes derived from baculovirus transfected insect cells with human 

CYP and UGT enzymes, provide usually higher enzyme activity than human liver fractions [29]. 

The in vivo models have the advantage that metabolism studies are performed in an intact 

organism. Therefore a complete overview of the ADME processes can be obtained. Moreover, 

the normal architectural relationship is preserved in the in vivo models, which promotes the 

resemblance with the in vivo human situation. However, the use of animal models is related to 

interspecies differences which hamper extrapolation of the results to humans. The humanized 

mouse model offers the advantage that metabolism studies can be performed in an intact 

organism with reduced interspecies differences. 
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In vitro techniques do not serve as replacement for in vivo studies due to the difficult 

extrapolation to the in vivo situation arising from the lack of an intact biological system [133]. 

However, both techniques can complement each other since in vitro studies can be helpful to 

reduce and refine the number of animal experiments. The in vitro approach offers some 

additional advantages such as the production of cleaner and more concentrated extracts, which 

facilitates the characterization of metabolites and allows a fast response to potential new 

threats. Moreover, the in vitro models could be applied to biologically generate reference 

material for compounds for which no synthesized standard is available or that cannot be easily 

chemically synthesized [124, 133, 134]. Therefore in vitro samples could also be used as an 

alternative to in vivo post-administration urine samples for comparative purposes during 

routine screening procedures, in accordance with the 2009 ILAC-G7 guidelines [133, 135]. 

 

Figure 1.12. Overview of in vitro and in vivo models for metabolism studies. The advantages (+) and 
disadvantages (-) of the models are also indicated, including the positioning of the models in comparison with 
human excretion studies. 

The research for this doctoral dissertation focused on in vitro models based on liver fractions 

(human liver microsomes (HLM) and S9 fractions) and the in vivo mouse model with a 

humanized liver [136]. 
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7.1.1 Human liver microsomes (HLM) 

HLM are a subcellular fraction of the human liver, derived by differential centrifugation [27] 

(Figure 1.13). HLM consist predominantly of the membranes of the ER [25, 27] and provide 

therefore an enriched source of membrane bound drug metabolizing enzymes, such as CYP450, 

UGT and flavin monooxygenase (FMO) enzymes (Table 1.6) [28]. 

 

Figure 1.13. Isolation of HLM and S9 liver fractions. 

HLM can be applied to study phase I and phase II (UGT) metabolism studies, both separately 

and in parallel, by adding the appropriate cofactors. For the phase I experiments (e.g. CYP and 

FMO) these cofactors are NADPH and magnesium and for the phase II (UGT) experiments 

UDPGA should be added [27]. The UGT system is a ‘low affinity - high capacity pathway’, which 

requires a high substrate concentration [24]. 

The advantages of HLM compared to other in vitro models (including liver slices and 

hepatocytes) and in vivo animal models is that they are user-friendly and not that expensive. 

HLM can be stored at -80 °C for several years and they do not require a sterile environment. The 

metabolism studies can also be performed with a straightforward procedure. Moreover, there 

are less ethical constraints for metabolism studies with non-pharmaceutical grade substances 

compared to humans and primates [28, 29].  

Disadvantages of the HLM are that they cannot be applied for quantitative estimations of 

specific metabolic pathways as they consist of enriched CYP and UGT enzymes, which restricts 

competition for other enzymes. HLM do not take into account extrahepatic metabolism and the 

whole ADME process. Therefore, extrapolation to the real human in vivo situation is more 

difficult only based on the HLM results [29]. 

7.1.2 S9 liver fractions 

S9 liver fractions are obtained after a low speed centrifugation of homogenized human liver and 

contain both HLM and cytosolic fractions (Figure 1.13) [29]. Therefore, in addition to CYP and 

UGT enzymes the cytosolic SULTs are present in the S9 liver fractions (Table 1.6). In contrast to 

the UGT system, sulfonation is a ‘high affinity - low capacity’ pathway as the activity of SULTs is 
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restricted by product inhibition. Therefore, the sulfate conjugation should be performed at low 

substrate concentration [24]. The cofactor of the SULTs is PAPS [24]. 

The (dis)advantages related with the use of S9 liver fractions are similar to the HLM. However, 

S9 liver fractions offer a more complete representation of the metabolic profile by the presence 

of both microsomal and cytosolic enzymes (Table 1.5). The overall lower enzyme activity in the 

S9 fraction compared to microsomes or cytosol may be considered as an additional 

disadvantage, as this may leave some metabolites unnoticed [29]. 

Table 1.6. Overview of metabolic enzymes present in human liver fractions: S9, HLM and cytosol [25, 27, 137, 
138].  

Metabolic enzymes present in the human liver S9 HLM Cytosol 

CYP450 √ √ 
 

Flavin monooxygenase (FMO) √ √  

NADPH cytochrome oxidoreductase √ √  

Aldehyde oxidase √  √ 

Mono-amine oxidase (MAO) √  √ 

Epoxide hydrolase (EH) √ √ √ 

Esterases √ √ √ 

Amidases √  √ 

Peptidase  √ √ √ 

UGT √ √  

SULT √  √ 

Glutathione transferase (GST) √  √ 

N-acetyl transferase (NAT) √  √ 

Methyltransferase (COMT) √ √ √ 

Amino acid transferase √ √  

 

7.1.3 Chimeric mouse model 

The in vivo model used in this study is a humanized mouse model which was developed in 

cooperation with the Center for Vaccinology (CEVAC) of Ghent University Hospital. This model 
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involves the transplantation of primary human hepatocytes into uPA+/+-SCID mice within two 

weeks after birth, resulting in a chimeric animal [139]. Chimeric is defined as consisting of cells 

from two genetically different organisms (e.g. human and mouse) [140]. 

uPA stands for urokinase-type plasminogen activator and is also known as Plasminogen 

Activator, urokinase-type (PLAU). The uPA gene encodes for a protease, which converts inactive 

plasminogen into active plasmin. Plasmin is involved in degradation of extracellular matrix and 

fibrinolysis, a process which restores blood flow after thrombotic events by breaking down 

fibrin. Therefore, overexpression of the uPA gene results in cell damage and bleeding disorders 

by inhibition of blood coagulation. In this transgenic mouse model the uPA gene is linked to the 

albumin enhancer/promotor. Since albumin is produced in the liver, this leads to liver specific 

overexpression of the uPA gene. 

The resulting high plasma uPA levels cause severe and sometimes fatal intestinal and abdominal 

bleeding and extensive hepatocellular damage. This latter leads to chronic hepatic insufficiency 

and creates a supportive niche and growth advantage for liver regeneration by transplanted 

healthy hepatocytes. 

To by-pass the risk of graft rejection the human hepatocytes are transplanted to genetically 

immunodeficient (Severe Combined Immuno Deficiency (SCID)) mice (uPA+/+-SCID) [139, 141-

144]. Primary human hepatocytes are transplanted by injection into the mouse spleen, after 

which the hepatocytes migrate via the spleen and portal veins into the liver, where the cells 

diffusely spread into the hepatic sinusoids [145-147]. The transplanted primary human 

hepatocytes will repopulate the diseased liver and restore the normal liver function [139, 145]. 

To determine the success of human hepatocyte engraftment and therefore restoration of the 

normal liver function the human albumin concentration is measured in the mouse plasma. This 

human albumin concentration correlates to the percentage of liver replacement by the human 

hepatocytes [141, 145]. The functionality of the transplanted hepatocytes can be evaluated by 

using a proteomic approach, which involves the identification of other human proteins in the 

mouse plasma [139]. As no complete replacement of the mouse liver tissue by human 

hepatocytes can be obtained non-chimeric mice (uPA+/--SCID mice without transplantation) are 

also included as control group to check for interspecies differences [136]. 

The chimeric mouse model was already successfully applied for metabolism studies of steroids 

in our laboratory [136] and has proven to be a good alternative for human excretion studies 

[126-130]. In this project the chimeric mouse model was applied, predominantly to verify the 

metabolism studies performed by the in vitro (HLM/S9 liver fractions) models. In this way the 

use of the chimeric mouse model can be refined and the number of animal experiments can be 

reduced. 
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The advantage of performing metabolism studies in an intact biological system is that all 

pharmacokinetic processes (ADME) are included and the preservation of cellular architecture of 

the complete liver provides a better resemblance to the in vivo human situation. The in vivo 

model has the additional advantage that a wide range of phase I and phase II metabolic 

pathways can be studied. Similar to the liver fractions they are ethically more acceptable to use 

in comparison to human or primates. In contrast to the in vitro models the in vivo mouse model 

does not require addition of cofactors and the model can also be applied for consecutive 

administrations if a wash out period is respected. 

However, the mice are vulnerable for infections due to their immunodeficient (SCID) 

background. Other drawbacks of this chimeric mouse model include that the in vivo 

experiments are more labor-intensive, the well-fare of the animals must be ensured, only 

limited urine volumes can obtained (via specially designed metabolic cages) and the higher 

background in the concentrated urine samples. Moreover, the production of this chimeric 

mouse model is technically very challenging and the efficiency of repopulation is highly variable, 

leading to high overall production costs to obtain chimeric mice with high percentages of liver 

replacement by human hepatocytes [140, 145]. As no complete repopulation by the human 

hepatocytes can be obtained, specific human metabolites can remain unnoticed by the high 

metabolic rate typical for mouse hepatocytes. 

7.2 Protocols of the in vitro and in vivo metabolism studies 

The protocols for the in vitro and in vivo metabolism studies will be described in this section. 

Only differences to these protocols will be indicated in the materials and methods section of 

Chapters 3 till 9. 

7.2.1 Analysis of test compound 

Prior to the metabolism studies with the in vitro and in vivo models it is important to verify the 

content and purity of the solution of the test compounds, especially if black market products 

will be used. Therefore, analysis by both GC-MS and LC-(HR)MS techniques were applied for all 

tested compounds. If possible the content of the black market product was also compared with 

reference material of the test compounds. Product ion scans can also be helpful as they provide 

additional proof of the structure of the test compound. Ultimately, further evidence of the 

chemical structure can be obtained by Nuclear Magnetic Resonance (NMR) analysis. The 

solutions, containing the test compounds, prepared for in vitro and in vivo metabolism studies 

were verified by GC-MS and/or LC-MS analysis. 
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7.2.2 In vitro metabolism studies 

7.2.2.1 Materials and instrumentation 

- Human liver fractions:  

HLM and S9 liver fractions used for this doctoral research were commercially available 

and were purchased from BD-Gentest with a protein concentration of 20 mg/mL in 250 

mM sucrose. To take into account inter-individual variation related to genetic 

polymorphisms and to reduce lot-to-lot variability pooled HLM and S9 liver fractions 

derived from 20-30 male and female donors were used [27]. The HLM and S9 liver 

fractions are stored at -80 °C and are thawed on ice before use. To reduce the number of 

freeze thaw cycles aliquots were prepared. 

- Test compound: 

The test compounds were dissolved in ethanol (EtOH). To prevent inhibition of the 

metabolic enzymes, the final concentration of the solvent was kept at 1% EtOH [27, 28, 

118]. Therefore a solution of the test compound should be prepared at a concentration 

of 100 times the desired final concentration in the assay, since a volume of 2.5 µL is 

added to perform the incubation experiment (to obtain a total volume of 250 µL). In 

general reference material of the test compound was dissolved in EtOH at a 

concentration of 4 mg/mL. If only limited material of the test compound was available, 

100 µL of a 100 µg/mL solution of the test compound in MeOH was evaporated (to 

obtain a total volume of 250 µL). 

- Buffer and cofactors: 

Phase I: 0.1 M Phosphate buffer at pH 7.4; NADPH.  

For this study a NADPH regeneration system was applied. The regeneration of NADPH by 

glucose-6-phosphate dehydrogenase (G6PD) is shown in Figure 1.14. Both the phosphate 

buffer and the NADPH regeneration system (NADPH solutions A and B) were purchased 

from BD-Gentest. 

NADPH solution A (NADPH-A) contains: NADP+ (26 mM); glucose-6-phosphate (66 mM) 

and MgCl2 (66 mM). 

NADPH solution B (NADPH-B) contains: G6PD (40 U/mL) in sodium citrate (5 mM). 

 

 
Figure 1.14. NADPH regeneration by glucose-6-phosphate dehydrogenase (G6PD). 

Phase II: purified water (buffer (TrisHCl) is included in cofactor solutions); UDPGA 

For the UGT enzyme the cofactor UDPGA solutions A and B from BD-Gentest were used. 
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UDPGA Solution A (UDPGA-A) contains: UDPGA (25 mM). 

UDPGA Solution B (UDPGA-B) contains: Tris-HCl (250 mM); MgCl2 (40 mM); alamethicin 

(0.125 mg/mL). 

Since the UGT enzymes are located at the luminal side of the ER [31], the pore-forming 

peptide alamethicin was added to reduce latency of the phase II (UGT) reactions, this 

would not affect phase I enzymes located in the ER [27, 148]. The presence of Mg would 

be beneficial for the UGT conjugation rate [149]. 

- Stop solutions: 

To terminate the metabolic reactions the samples were transferred to an ice-bath and a 

stop solution was added, for example MeOH, acetonitrile or perchloric acid (4M). 

Besides inactivation of the enzymes, the stop solution also precipitates the proteins so 

they cannot interfere with the metabolite analysis [27]. 

- Incubation instrument: 

The in vitro samples were incubated at 37 °C (simulating body temperature and optimum 

temperature for the enzyme activity), while constant gently mixing (300 rpm) by an 

Eppendorf Thermomixer comfort (Eppendorf, Rotselaar, Belgium) (Figure 1.15). 

 

 

Figure 1.15. Eppendorf Thermomixer applied for the incubation of the in vitro metabolism studies. 

7.2.2.2 Protocol in vitro metabolism studies 

The protocol of the phase I and phase II assays is represented in Figure 1.16 and Table 1.7. The 

indicated volumes are for a total incubation volume of 250 µL in an Eppendorf thermomixer. 

In a first step the test compound and the appropriate cofactors are added in a tube and pre-

incubated during 5 min at 37 °C. The enzymatic reactions are initiated by adding the HLM or S9 

liver fractions. At the desired incubation time MeOH is added to terminate the enzymatic 

reactions. For the phase I samples incubation times of 2, 4, 6, 8 and 18 h were applied and the 

phase II samples were incubated for 2 h. Finally the enzymatic proteins are removed by 

centrifugation of the incubation samples and subsequent transfer of the supernatant to new 

tubes. 
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Figure 1.16. Protocol of the in vitro metabolism studies with HLM and S9 liver fractions. 

For the combined phase I and phase II (UGT) metabolism studies, both NADPH and UDPGA are 

needed as cofactor. However, first the phase I incubations were initiated and after 2 h the phase 

II glucuronide conjugation reactions were initiated, for another 2 h, by the addition of UDPGA-A. 

UDPGA-B is already added in the pre-incubation step as this contains the Tris-HCl buffer. 

Besides the in vitro incubation samples with the test compound control incubations (positive, 

negative and blank) were also performed to verify the enzymatic reactions. For the positive 

control samples the test compound was replaced by methandienone. The negative or system 

blank control samples did not contain any test compound and to the blank or substrate stability 

control samples no enzymatic proteins are added. These latter control samples were incubated 

to monitor non-enzymatic reactions and the stability of the test compound. To keep final 

volumes for all tubes identical, phosphate buffer was added to negative and blank control 

samples to adjust the volumes. 
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Table 1.7. Protocol for the in vitro metabolism studies. 

Step Phase I Phase II (UGT) Phase I + II (UGT) 

Pre-incubation: 
5 min at 37°C 

2.5 µL Test compound (4 mg/mL in EtOH) 

226 µL phosphate buffer 
(0.1 M; pH 7.4) 

171 µL purified water 156 µL purified 
water 

12.5 µL NADPH-A 20 µL UDPGA-A 12.5 µL NADPH-A 

2.5 µL NADPH-B 50 µL UDPGA-B 2.5 µL NADPH-B 

(final [NADPH] = 1.3 mM) (final [UDPGA] = 2 mM) 50 µL UDPGA-B 

Incubation: 
Phase I: 2-18 h 
Phase II and I+II: 2 h 

6.5 µL HLM/S9 (20 mg protein / mL) 

Phase I+II: + 2 h × × 20 µL UDPGA-A 

Stop 250 µL ice-cold MeOH; 15 min ice bath 

Removal of 
enzymatic proteins 

Centrifugation (5 min; 4°C; 12,000 g) and transfer into new tubes 

7.2.3 In vivo metabolism studies 

The in vivo metabolism studies were performed in cooperation with the CEVAC of Ghent 

University Hospital. The required ethical approval was obtained by the ethical committee for 

laboratory animal experiments of the Faculty of Medicine and Health Sciences of Ghent 

University (ECD 06/09). The protocol for the in vivo experiments with the chimeric mouse model 

was adapted from previous research performed with this model [136] (Figure 1.17).  

Measurement of the human albumin concentration in the mouse plasma was performed to 

evaluate the success of the human liver cell engraftment. Both chimeric and non-chimeric mice 

were applied for the in vivo metabolism studies. 

The test compounds were administered in a single dose to the mice by oral gavation. This forced 

oral administration route allows knowledge of the exact administered dose and was performed 

outside the cage to avoid direct contamination. The test compounds were dissolved in EtOH 

(10-20%) and further diluted in phosphate buffered saline (PBS). The mice were administered a 

maximum volume of 200 µL of this solution.  
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Figure 1.17. Administration protocol for the chimeric mouse model. 

The dose for oral administration was chosen based on pilot studies with non-chimeric mice to 

allow detection of parent compound and metabolites in the mouse urine. To collect mouse 

urine the administration studies were performed in metabolic cages from Tecniplast 

(Sommeren, the Netherlands) (Figure 1.18). These cages are specially designed to separate urine 

and faeces, which enables proper urine collection. Urine samples were collected every 24 h due 

to the low amount of urine produced per day by one mouse (< 1.5 mL). Before the 

administration of the test compound ‘blank’ urine samples were collected. After the 

administration, urine samples were collected daily for two days. 

The mice were kept in these metabolic cages for a maximum of three days and their welfare 

was daily monitored. During this period, the mice had free access to autoclaved water and 

powdered food. The mice were kept in type II filter top cages with nesting material, in the 

periods between the experiments (Figure 1.18). 

 

Figure 1.18. Metabolic cage (left side) and filter top cage (right side). 
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7.2.4 Sample preparation and analysis of in vitro and in vivo metabolism 

samples 

The general sample preparation scheme is presented in Figure 1.19.  

For the chimeric mouse urine samples hydrolysis and LLE were combined as both phase I and 

phase II metabolic pathways are performed in the in vivo model. The phase I in vitro incubation 

samples only underwent LLE. For GC-MS analysis an extra derivatization step is required, while 

for LC-MS analysis reconstitution of the samples in water/MeOH (50/50) is sufficient. Eventually 

direct injection of the (phase I/phase II) HLM incubation samples by LC-MS were performed. 

 

Figure 1.19. Sample preparation protocol for the in vitro and in vivo assays. 

GC-MS(/MS) and/or LC-MS (both low and high resolution) instruments were applied for the 

analysis of the samples. Metabolites were identified by comparison of incubation samples and 

(blank and negative) control samples for the in vitro experiments and pre- and post-

administration urine samples for the in vivo experiments. Both total ion chromatograms (TIC) 
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and extracted ion chromatograms (EIC) were compared. These extracted ions included (both 

single and combined) metabolic transformation such as reduction (+H2), oxidation (-H2; + OH), 

dealkylation (e.g. - CH2), deacetylation (-C2OH2) and hydrolysis. Besides the full scan analysis 

strategies for the detection of unknown (steroids) were also applied such as precursor ion and 

neutral loss scan. If no reference material was available, further structure elucidation of the 

detected metabolites was performed by GC-MS/MS and/or LC-(HR)MS product ion scans. 
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1 In vitro and in vivo models for metabolism studies 

Driven by pharmaceutical innovations, there is a fast evolution in the number and kind of 

performance enhancing substances which are available on the internet. These substances can 

be obtained as pharmaceutical preparations and black market products. Since the latter 

products are often produced by clandestine ‘underground’ laboratories, their purity is not 

guaranteed and toxicological profiles are often missing. Although this raises concerns about the 

safety of these products, both professional and amateur athletes might still be tempted to use 

these substances for doping purposes. Because of the deterrent effects, prompt 

implementation of markers for these substances into existing screening methods is 

recommended to warrant the ethics of sports and health of the athletes. Preventive anti-doping 

research plays therefore an important role to determine the metabolism of these compounds, 

which is essential to improve the detection (windows). For the non-approved substances ethical 

and safety aspects limit the use of human volunteers for metabolism studies. To overcome 

these constraints and to ensure a fast response to the evolutions of performance enhancing 

substances there is a quest for alternatives to human excretion studies to establish the 

metabolic profile of doping agents. 

DoCoLab has access to the uPA+/+-SCID chimeric mouse model with humanized liver for the 

study of the metabolism of drugs, thanks to the collaboration with CEVAC (Ghent University 

Hospital). The model has proven to be an excellent alternative for this kind of research [1-5]. 

The high-end model however has some practical limitations such as the limited volume of urine 

that is daily excreted (± 1 mL/day) and the low doses that can be applied. Furthermore, the 

production of the chimeric mouse model is technically very challenging and leads to the high 

cost of the model. Although there are less ethical constraints in comparison with the use of 

humans and primates, some ethical questions related to the use of animal models remain. 

Therefore, the aim of this study was to examine the use of in vitro techniques for metabolism 

studies. In this way the welfare of the animals can be improved respecting the 3R’s concept: 

refinement, replacement and reduction. The focus of this study was to develop an integrated 

approach, in which human liver microsomes (HLM) and/or S9 liver fractions support the 

chimeric mouse model. The use of HLM and S9 liver fractions is less expensive and more user-

friendly, because of the straightforward protocol and the cleaner extracts that can be obtained 

in comparison with the chimeric mouse model. However, the correlation with the real in vivo 

human situation must be investigated. 
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2 Metabolism studies of (designer) steroids 

Since the turn of the millennium (designer) steroids are marketed in so-called nutritional 

supplements to circumvent legislation and doping controls [6] and till today the anabolic 

androgenic steroids (AAS) are one of the most detected classes of prohibited substances [7]. 

Therefore, in Part 2 of this study the integrated in vitro and in vivo approach was applied to 

elucidate the metabolism of AAS and designer steroids. The exogenous AAS or designer steroids 

that were studied include prostanozol (Chapter 3), methylstenbolone (Chapter 4) and 

methasterone (Chapter 4 and 5), dimethazine (DMZ) (Chapter 5) and estradienedione (Chapter 

6) (Figure 2.1). 

 

Figure 2.1. Chemical structures of prostanozol, estradienedione, methylstenbolone, methasterone and 

dimethazine. 

Prior to the metabolism studies, black market products which declare to contain the designer 

steroids and are marketed as so-called supplements were purchased to verify their content. The 

confirmed presence of the labeled substances in the black market products highlights the 

potential risk for their misuse and the need for optimized screening methods. Therefore 

metabolism studies are essential to identify markers which allow detection of these substances 

with the longest retrospectivity. 
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For the metabolism studies, the in vitro models (phase I) always preceded the in vivo model. 

Both GC-MS(/MS) and LC-(HR)MS/MS analyses were applied to determine phase I and phase II 

metabolites in the in vitro and in vivo assays. To facilitate the comparison of GC and LC 

techniques, fractions were collected of the metabolism samples. Product ion scans were 

performed to further characterize the structure of the detected metabolites.  

Besides these phase I in vitro metabolism studies with (designer) steroids, the in vitro model 

was also applied for the synthesis of (non-commercially available) AAS glucuronides (Chapter 7). 

The in vitro synthetized phase II compounds were used as reference materials (via direct 

injection by LC-MS) and allowed to establish the metabolic nature and further characterization 

of the metabolites observed in excretion urine samples. HLM were used to simulate the phase II 

metabolism of following AAS: gestrinone, tetrahydrogestrinone, trenbolone, 4β-

hydroxystanozolol and 16β-hydroxystanozolol. 

3 Metabolism studies of other performance enhancing 

substances 

Nowadays an evolution from designer steroids to new performance enhancing substances such 

as SARMs [8-10], REV-ERB agonists [11] and peptides [12-17] is observed. To anticipate the 

potential misuse of these substances, the test compounds of the metabolism studies were 

extended from designer steroids to other classes of performance enhancing substances (Part 3). 

3.1 SARMs 

Andarine and ostarine were the first SARMs that were described and detected in ‘supplements’. 

Both have an aryl-propionamide structure [8, 18-20]. More recently a new SARM was 

introduced on the black market with a pyrrolidin-benzonitrile structure: LGD-4033 [21-23]. LGD-

4033 was invented by Ligand pharmaceuticals and is still under clinical investigation [24]. The 

chemical structure of the substance which is distributed as LGD-4033 in black market products is 

presented in Figure 2.2. However, it should be noted that the exact structure of LGD-4033 is still 

not confirmed by Ligand pharmaceuticals [21-23], but this structure was present on a patent 

application of Ligand pharmaceuticals for SARMs [23, 25]. 
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Figure 2.2. Chemical structure of SARM LGD-4033. 

This preventive anti-doping research was initiated by purchasing a black market product over 

the internet, which was advertised to contain LGD-4033 (Chapter 8). The presence of LGD-4033 

and the purity of the black market product was verified by LC-MS/MS (both low and high 

resolution), GC-MS(/MS) and GC-NPD. As no reference material is available for LGD-4033, also 

NMR analysis was performed. 

To anticipate misuse of LGD-4033, its metabolism was elucidated using in vitro models: HLM and 

S9 liver fractions. Phase I as well as combined phase I and II assays were studied. The in vitro 

incubation samples were analyzed by GC-MS and LC-HRMS. To characterize the structures of the 

detected metabolites high resolution product ion scans (LC-HRMS/MS) were performed. 

3.2 REV-ERB agonists 

In 2012 the REV-ERB agonists SR9009 and SR9011 (Figure 2.3) were described by the SCRIPPS 

Research institute as promising drug candidates to treat metabolic disorders [26]. Although 

these compounds are still undergoing clinical evaluation, the observed beneficial effects on 

energy homeostasis and increase in exercise capacity via in vivo animal studies make these 

compounds attractive for doping purposes [26-32]. Moreover, SR9009 is already advertised as 

‘exercise in a pill’ compound on the black market [11]. 
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Figure 2.3. Chemical structures of REV-ERB agonists SR9009 and SR9011. 

A black market product containing SR9009 was purchased over the internet. In addition also 

reference material for both SR9009 and SR9011 was obtained.  

The metabolism studies with SR9009 and SR9011 using HLM are described in Chapter 9. The in 

vitro incubation samples were analyzed by LC-HRMS (direct injection). LC-HRMS product ion 

scans were applied to elucidate the structures of the metabolites. Furthermore, an assay 

validation for the detection of SR9009 and SR9011 using a routine LC-HRMS screening method 

was performed. The presence of SR9009, SR9011 and their metabolites in routine doping 

control samples was verified by retrospective data analysis. 

4 Research objectives 

1. Can the in vitro model based on HLM and S9 liver fractions complement the chimeric 

mouse model to predict human steroid metabolism and therefore help to reduce the 

number of animal experiments? 

 

2. Can the in vitro model based on HLM and S9 liver fractions assist in the elucidation of the 

metabolism of designer steroids where ethical questions limit the use of human 

volunteers for metabolism studies? 

Can this in vitro model also be applied for the metabolic investigation of other classes of 

non-approved (doping) substances? 

 

3. Can the in vitro incubation samples be applied in screening methods for comparative 

purposes and to synthetize reference material? 



  Chapter 2 – Outline of the study 

61 
 

References 

1. Lootens L, Meuleman P, Leroux-Roels G, and Van Eenoo P (2011). Metabolic studies with 
promagnon, methylclostebol and methasterone in the uPA(+/+)-SCID chimeric mice. J. 
Steroid Biochem. Mol. Biol. 127, 374-381. 

2. Lootens L, Meuleman P, Pozo OJ, Van Eenoo P, Leroux-Roels G, and Delbeke FT (2009). 
uPA(+/+)-SCID Mouse with Humanized Liver as a Model for In Vivo Metabolism of 
Exogenous Steroids: Methandienone as a Case Study. Clin. Chem. 55, 1783-1793. 

3. Lootens L, Van Eenoo P, Meuleman P, Leroux-Roels G, and Delbeke FT (2009). The 
uPA(+/+)-SCID Mouse with Humanized Liver as a Model for in Vivo Metabolism of 4-
Androstene-3,17-dione. Drug Metab. Dispos. 37, 2367-2374. 

4. Pozo OJ, Lootens L, Van Eenoo P, Deventer K, Meuleman P, Leroux-Roels G, Parr MK, 
Schänzer W, and Delbeke FT (2009). Combination of liquid-chromatography tandem 
mass spectrometry in different scan modes with human and chimeric mouse urine for 
the study of steroid metabolism. Drug Test. Anal. 1, 554-567. 

5. Lootens L, Van Eenoo P, Meuleman P, Pozo OJ, Van Renterghem P, Leroux-Roels G, and 
Delbeke FT (2009). Steroid metabolism in chimeric mice with humanized liver. Drug Test. 
Anal. 1, 531-537. 

6. Kazlauskas R (2010). Designer steroids. In Handb Exp Pharmacol (Thieme, D., and 
Hemmersbach, P., Eds.) 195, 155-185. 

7. WADA. 2014 Anti-Doping Testing Figures - Laboratory report. Montreal (2015) 
https://wada-main-prod.s3.amazonaws.com/wada_2014_anti-doping-testing-
figures_full-report_en.pdf (access date 27/12/2015). 

8. Thevis M, and Schänzer W (2010). Synthetic anabolic agents: steroids and nonsteroidal 
selective androgen receptor modulators. In Handb Exp Pharmacol (Thieme D, and 
Hemmersbach P, Eds.) 195, 99-126, Heidelberg Germany. 

9. Kohler M, Thomas A, Geyer H, Petrou M, Schänzer W, and Thevis M (2010). Confiscated 
black market products and nutritional supplements with non-approved ingredients 
analyzed in the Cologne Doping Control Laboratory 2009. Drug Test. Anal. 2, 533-537. 

10. Thevis M, Thomas A, Kohler M, Beuck S, and Schänzer W (2009). Emerging drugs: 
mechanism of action, mass spectrometry and doping control analysis. J. Mass Spectrom. 
44, 442-460. 

11. Alibaba.com. http://www.alibaba.com/product-detail/SR9009-1379686-30-2-increase-
exercise_1684435259.html?spm=a2700.7724838.30.1.ZgphMt&s=p (access date 
10.07.2014). 

12. Thevis M, Kuuranne T, Geyer H, and Schänzer W (2013). Annual banned-substance 
review: analytical approaches in human sports drug testing. Drug Test. Anal. 5, 1-19. 

http://www.alibaba.com/product-detail/SR9009-1379686-30-2-increase-exercise_1684435259.html?spm=a2700.7724838.30.1.ZgphMt&s=p
http://www.alibaba.com/product-detail/SR9009-1379686-30-2-increase-exercise_1684435259.html?spm=a2700.7724838.30.1.ZgphMt&s=p


Chapter 2 – Outline of the study 

62 
 

13. Esposito S, Deventer K, Goeman J, Van der Eycken J, and Van Eenoo P (2012). Synthesis 
and characterization of the N-terminal acetylated 17-23 fragment of thymosin beta 4 
identified in TB-500, a product suspected to possess doping potential. Drug Test. Anal. 4, 
733-738. 

14. Esposito S, Deventer K, and Van Eenoo P (2012). Characterization and identification of a 
C-terminal amidated mechano growth factor (MGF) analogue in black market products. 
Rapid Commun. Mass Spectrom. 26, 686-692. 

15. Henninge J, Pepaj M, Hullstein I, and Hemmersbach P (2010). Identification of CJC-1295, 
a growth-hormone-releasing peptide, in an unknown pharmaceutical preparation. Drug 
Test. Anal. 2, 647-650. 

16. Kohler M, Thomas A, Walpurgis K, Terlouw K, Schänzer W, and Thevis M (2010). 
Detection of His-tagged Long-R-3-IGF-I in a black market product. Growth Horm. IGF Res. 
20, 386-390. 

17. Thomas A, Kohler M, Mester J, Geyer H, Schänzer W, Petrou M, and Thevis M (2010). 
Identification of the growth-hormone-releasing peptide-2 (GHRP-2) in a nutritional 
supplement. Drug Test. Anal. 2, 144-148. 

18. Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, and 
Georgakopoulos C (2009). Structural characteristics of anabolic androgenic steroids 
contributing to binding to the androgen receptor and to their anabolic and androgenic 
activities Applied modifications in the steroidal structure. Steroids 74, 172-197. 

19. Chen JY, Kim J, and Dalton JT (2005). Discovery and therapeutic promise of selective 
androgen receptor modulators. Mol. Interv. 5, 173-188. 

20. Kuuranne T, Leinonen A, Schänzer W, Kamber M, Kostiainen R, and Thevis M (2008). 
Aryl-propionamide-derived selective androgen receptor modulators: Liquid 
chromatography-tandem mass spectrometry characterization of the in vitro synthesized 
metabolites for doping control purposes. Drug Metab. Dispos. 36, 571-581. 

21. Krug O, Thomas A, Walpurgis K, Piper T, Sigmund G, Schänzer W, Laussmann T, and 
Thevis M (2014). Identification of black market products and potential doping agents in 
Germany 2010-2013. Eur. J. Clin. Pharmacol. 70, 1303-1311. 

22. Thevis M, and Schänzer W (2014). Analytical approaches for the detection of emerging 
therapeutics and non-approved drugs in human doping controls. J Pharm Biomed Anal 
101, 66-83. 

23. Thevis M, Lagojda A, Kuehne D, Thomas A, Dib J, Hansson A, Hedeland M, Bondesson U, 
Wigger T, Karst U, and Schänzer W (2015). Characterization of a non-approved selective 
androgen receptor modulator drug candidate sold via the Internet and identification of 
in vitro generated phase-I metabolites for human sports drug testing. Rapid Commun. 
Mass Spectrom. 29, 991-999. 

24. Basaria S, Collins L, Dillon EL, Orwoll K, Storer TW, Miciek R, Ulloor J, Zhang AQ, Eder R, 
Zientek H, Gordon G, Kazmi S, Sheffied-Moore M, and Bhasin S (2013). The Safety, 



  Chapter 2 – Outline of the study 

63 
 

Pharmacokinetics, and Effects of LGD-4033, a Novel Nonsteroidal Oral, Selective 
Androgen Receptor Modulator, in Healthy Young Men. J. Gerontol. Ser. A-Biol. Sci. Med. 
Sci. 68, 87-95. 

25. Zhi L (2012). Selective androgen receptor modulators (sarms) and uses thereof, Ligand 
Pharmaceuticals Incorporated. 

26. Solt LA, Wang YJ, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron 
MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, and Burris TP (2012). 
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 
485, 62-68. 

27. Bass J (2012). DRUG DISCOVERY Time in a bottle. Nature 485, 45-46. 

28. Shea SA (2012). Obesity and Pharmacologic Control of the Body Clock. N. Engl. J. Med. 
367, 175-178. 

29. Duez H, and Staels B (2008). Rev-erb alpha gives a time cue to metabolism. FEBS Lett. 
582, 19-25. 

30. Ramakrishnan SN, and Muscat GE (2006). The orphan Rev-erb nuclear receptors: a link 
between metabolism, circadian rhythm and inflammation? Nucl. Recept. Signal. 4, 1-5. 

31. Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MKC, Paquet C, 
Delhaye S, Shin YS, Kamenecka TM, Schaart G, Lefebvre P, Neviere R, Burris TP, 
Schrauwen P, Staels B, and Duez H (2013). Rev-erb-alpha modulates skeletal muscle 
oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat. Med. 19, 
1039-1046. 

32. Shin Y, Noel R, Banerjee S, Kojetin D, Song XY, He YJ, Lin L, Cameron MD, Burris TP, and 
Kamenecka TM (2012). Small molecule tertiary amines as agonists of the nuclear 
hormone receptor Rev-erb alpha. Bioorg. Med. Chem. Lett. 22, 4413-4417. 

 

 



 



PART 2 

Metabolism studies with 

(designer) steroids 



 



 

 

 
 

 
 
 
 

Chapter 3 
In vitro and in vivo metabolism studies of 
prostanozol 

 

 

 

 

Adapted from: 

Geldof L, Lootens L, Decroix L, Botrè F, Meuleman P, Leroux-Roels G, Deventer K and Van 

Eenoo P (2016). Metabolic studies of prostanozol with the uPA-SCID chimeric mouse model 

and human liver microsomes. Steroids 107, 139-148. 



Chapter 3 – Metabolism studies of prostanozol 

 

68 
 

Abstract 

Anabolic androgenic steroids are prohibited by the World Anti-Doping Agency because of their 

adverse health and performance enhancing effects. Effective control of their misuse by 

detection in urine requires knowledge about their metabolism. In case of designer steroids, 

ethical objections limit the use of human volunteers to perform excretion studies. Therefore the 

suitability of alternative models needs to be investigated. 

In this study pooled human liver microsomes (HLM) and an uPA+/+-SCID chimeric mouse model 

were used to examine the metabolism of the designer steroid prostanozol as a reference 

standard. Metabolites were detected by gas chromatography-mass spectrometry (GC-MS; full 

scan) and liquid chromatography-tandem mass spectrometry (LC-MS/MS; precursor ion scan). 

In total twenty-four prostanozol metabolites were detected with the in vitro and in vivo 

metabolism studies, which could be grouped into two broad classes, those with a 17-hydroxy- 

and those with a 17-keto-substituent. Major first phase metabolic sites were tentatively 

identified as C3’, C4 and C16. Moreover, 3’- and 16β-hydroxy-17-ketoprostanozol could be 

unequivocally identified, since authentic reference material was available, in both models. 

Comparison with published data from humans showed a good correlation, except for phase II 

metabolism. In contrast to the human studies, the metabolites detected in the chimeric mouse 

model were predominantly present in the unconjugated fraction. Two types of metabolites 

((di)hydroxylated prostanozol metabolites) that have not been described before could be 

confirmed in a real positive doping control sample. Hence, the results provide further evidence 

for the applicability of chimeric mice and HLM to perform metabolism studies of designer 

steroids. 
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1 Introduction 

Some athletes resort to the use of prohibited substances to achieve performance 

enhancement, regardless of health effects, values and ethics that are essential to sports. To 

warrant fair play and ethics in sports as well as to safeguard health of athletes, the World 

Anti-Doping Agency (WADA) publishes a list of prohibited substances yearly [1]. To enforce 

these regulations WADA accredited doping-control laboratories consequently analyze 

biological samples from athletes for the presence of these substances. Anabolic androgenic 

steroids (AAS) are the most frequently detected compounds [2]. 

In order to try to evade detection, designer steroids are developed. These steroids are 

manufactured to closely resemble existing known compounds, but with sufficient chemical 

diversity to circumvent doping controls and legislation [3]. 

Since 2002 new ‘designer’ steroids have been marketed as so-called ‘nutritional 

supplements’ [4, 5]. Prostanozol (Figure 3.1) is such a designer steroid and is a 17-

demethylated analogue of stanozolol (Winstrol®) [5] and is present as tetrahydropyranyl 

(THP) derivative ((17β-[(tetrahydropyran-2-yl)oxy]-1'H-pyrazolo[3,4:2,3]-5α-androstane) in 

the steroid product Orastan-E [6].  

 

Figure 3.1. Chemical structures of (A) prostanozol-THP, (B) prostanozol and (C) stanozolol and commercially 
available reference standards: (D) 4-hydroxy-17-ketoprostanozol, (E) 3’-hydroxy-17-ketoprostanozol and (F) 
16β-hydoxy-17-ketoprostanozol. 
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Designer steroids are often sold over the internet or on the black market, sometimes when 

these compounds are still in early or advanced clinical trials. These facts bear several 

dangers because they are offered without information about their toxicological effects or 

their metabolism [7]. Indeed, the use of prostanozol has been related to an adverse health 

effect (cerebral infarction) [8]. In 2012 prostanozol was also added as steroid to the 

Controlled Substances Act [9] and as such to the Prohibited List of WADA [1]. 

As AAS are often extensively metabolized, it is important to identify the metabolites which 

can facilitate the detection of the steroid misuse for a longer time period [10]. This requires 

knowledge of the steroid metabolism. The metabolism of AAS can, just like other drugs, be 

divided in phase I and phase II reactions. Phase I reactions are functionalization reactions 

(e.g. oxidation or reduction) whereas phase II reactions are conjugation reactions (e.g. 

glucuronidation or sulfonation) [11]. In case of designer steroids, the application of in vivo 

human excretion studies is restricted due to ethical constraints and safety aspects. To 

overcome this problem there is a quest for alternatives to human administration for 

metabolism studies. Examples of such alternatives are liver fractions [12-16], hepatocyte cell 

cultures [17, 18], chimeric mice with humanized livers [19-21] and primates [22, 23]. 

These in vivo and in vitro model systems all have advantages as well as disadvantages. For 

example hepatocytes can be used to study phase I and phase II reactions sequentially or in 

parallel but they show a relative rapid decline in cytochrome P450 (CYP450) activities [24]. 

When a difference between them arises, the in vivo results should always take precedence 

over in vitro findings [25]. The aim of this study is to use human liver microsomes (HLM) as in 

vitro model and the uPA+/+-SCID chimeric mouse as in vivo model to study the metabolism of 

the designer steroid prostanozol. In this way, two alternatives for human excretion studies 

are tested and the results of both models will be compared to provide a better overview on 

possible metabolic pathways. 

The liver is the principal site of drug metabolism, where the CYP450 superfamily of oxidative 

enzymes plays an important role. HLM are a subcellular fraction of the human liver; they are 

principally derived from the membranes of the endoplasmatic reticulum. HLM provide an 

enriched source of membrane bound drug metabolizing enzymes, such as CYP450, uridine 

glucuronosyl transferase and flavin monooxygenase enzymes [26]. The in vivo model used in 

this study is a chimeric mouse model with human hepatocytes, developed in cooperation 

with CEVAC (Ghent University Hospital). This model involves the transplantation of primary 

human hepatocytes into immunodeficient (SCID) mice, to by-pass the risk of graft rejection 

[27]. Besides, the mice suffer from a liver disease because of liver-specific overexpression of 

a ‘noxious’ protein, namely urokinase plasminogen activator (uPA). The transplanted primary 

human hepatocytes will repopulate the diseased liver and restore the normal liver function 

[27]. 

By our knowledge this is the first time prostanozol is studied with a combination of an in 

vitro model and an in vivo animal model. Therefore it is interesting to elucidate its 
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metabolism in order to discover possible new metabolites and to verify if these alternative 

models result in comparable metabolites as already described in human studies [6, 28, 29]. 

Kazlauskas et al. [6] and Rodchenkov et al. [29] reported results from human administration 

studies with a single volunteer in a condensed format in conference proceedings with 

limited distribution. For all these studies [6, 28, 29] metabolites were tentatively identified, 

although they were the stimulus for this work and organic synthesis of the detected 

metabolites by others. 

2 Materials and methods 

2.1 Chemicals and reagents 

The steroids needed for this study, prostanozol-tetrahydropyranyl (prostanozol-THP) (17β-

tetrahydropyranyl-5α-androst-2-eno(3,2-c)-pyrazole) and prostanozol (17β-hydroxy-5α-

androst-2-eno(3,2-c)-pyrazole), were purchased from ‘Toronto Research Chemicals’ (TRC, 

Toronto, Canada). The reference standards of methandienone and the following prostanozol 

metabolites: 3’-hydroxy-17-ketoprostanozol (3’-hydroxy-5α-androst-2-eno[3,2-c]pyrazol-17-

one), 16β-hydroxy-17-ketoprostanozol (16β-hydroxy-5α-androst-2-eno[3,2-c]pyrazol-17-

one), 4α- and 4β-hydroxy-17-ketoprostanozol (4α- and 4β-hydroxy-5α-androst-2-eno[3,2-

c]pyrazol-17-one) were obtained from the National Measurement Institute (NMI, North 

Ryde, Australia). The internal standard (IS) 17α-methyltestosterone was a gift from Organon 

(Oss, the Netherlands). 

Pooled HLM from 20-30 donors (HLM; 452161), the nicotinamide adenine dinucleotide 

phosphate (NADPH) regenerating system solutions A (451220) and B (451200) and 

phosphate buffer with pH 7.4 (451201) were purchased from BD Gentest (Erembodegem, 

Belgium). 

Perchloric acid came from Sigma Aldrich (Steinheim, Germany). Ethanol, LC grade water and 

ammonium acetate (NH4OAc) were purchased from Biosolve (Valkenswaard, the 

Netherlands). Diethyl ether and methanol (MeOH) were obtained from Fisher Scientific 

(Loughborough, UK). Sodium sulfate (Na2SO4), sodium hydrogen carbonate (NaHCO3), 

potassium carbonate (K2CO3), disodium hydrogen phosphate dihydrate (Na2HPO4.2H2O), 

sodium dihydrogen phosphate monohydrate (NaH2PO4.H2O), orthophosphoric acid, acetic 

acid (HOAc), ammonium iodide (NH4I), LC grade water and LC grade MeOH were from Merck 

(Darmstadt, Germany). The β-glucuronidase preparations from Escherichia coli (E. coli) K12 

and from Helix pomatia (H. pomatia) were purchased from Roche Diagnostics (Mannheim, 

Germany) and Sigma-Aldrich (Steinheim, Germany), respectively. N-methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA) was from Karl Bucher (Waldstetten, Germany). 

Ethanethiol was obtained from Acros (Geel, Belgium). Phosphate Buffered Saline (PBS) was 

from Invitrogen (Merelbeke, Belgium). The helium (He) and oxygen-free nitrogen (OFN) 

gasses were delivered by Air Liquide (Bornem, Belgium). 
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2.2 Instrumentation 

2.2.1 GC-MS 

An Agilent 6890 gas chromatograph (Agilent Technologies, Palo Alto, CA, USA) was 

interfaced to an Agilent 5973 mass spectrometer. 1 µL of sample was injected into the 

system using a 7683 series Autosampler with a splitless injector (Agilent). The GC separation 

was performed using a JW Ultra-1 (Agilent) capillary column (17 m x 200 µm i.d., 0.11 µm) 

and He as mobile phase at a flow rate of 0.6 mL/min at 10.15 psi (constant flow). The 

temperature program was as follows: initial temperature was 120 °C and increased at a rate 

of 70 °C/min until 180 °C is reached. Temperature was then further increased with 4 °C/min 

to 234 °C and finally the temperature raises with 30 °C/min to 300 °C. This final temperature 

was held during 2 min. The total run time was 18.76 min. The temperature of the source was 

set at 250 °C and for the electron impact ionization, electron energy of 70 eV was used. Full 

scan analysis was performed with the mass spectrometer (50-800 m/z, 2 cycles/sec). 

2.2.2 LC-MS/MS 

The precursor ion scan method was conducted using a Thermo Finnigan Surveyor 

Autosampler Plus, MS Pump Plus and TSQ Quantum Discovery MAX triple quadrupole mass 

spectrometer (all from Thermo Separation Products, Thermo, San Jose, USA). Electrospray 

ionization (ESI) was used for the ionization of the steroids. The mobile phase consisted of LC 

grade water (solvent A) and LC grade MeOH (solvent B) both with 1 mM NH4Ac and 0.001% 

HOAc. The LC separation was performed using a SunFire™ C18 column (50 mm × 2.1 mm i.d., 

3.5 μm) from Waters (AH Etten-Leur, the Netherlands). For comparison of the detected 

metabolites with the commercially available reference standards also a Zorbax RX C8 column 

(150 mm x 2.1 mm i.d., 5 µm) from Agilent Technologies (Palo Alto, CA, USA) was used. Both 

columns were applied at a flow rate of 250 µL/min. 20 µL of sample was injected into the 

instrument. A gradient program was applied, the percentage of solvent B changed as 

follows: 0 min, 30%; 1.5 min, 30%; 8 min, 55%; 15 min, 55%; 29.5 min, 95%; 30.5 min, 95%; 

31 min, 30%; 34 min, 30%. The other instrumental parameters were adopted from Pozo et 

al. [30]. The method has a total run time of 33 min. The ions with m/z 81, 97 and 145 were 

selected as product ions. The collision energy was 45 eV for m/z 81 and 97 and 30 eV for m/z 

145. 

2.3 In vitro studies with HLM 

The phase I metabolism studies of prostanozol were performed as described in Chapter 1 

(7.2.2.2 Protocol in vitro metabolism studies; Table 1.6). 

In short, reference standard of prostanozol (final concentration of 40 µg/mL) was incubated 

with HLM as test compound. Substrate stability samples (blank; without HLM) and system 

blank samples (without test compound) control samples were used to verify the enzymatic 
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reactions. Methandienone was used as test compound in the positive control samples. At 

the appropriate time (after 0, 1, 2, 3, 4, 5, 6 and 18 h) the enzymatic reactions were stopped 

by adding 25 µL 4 M perchloric acid. 

2.4 Excretion studies with uPA+/+-SCID chimeric mice 

The protocol of the in vivo administration studies was applied as described in Chapter 1 

(7.2.3 In vivo metabolism studies). 

The chimeric mouse model was developed in cooperation with CEVAC of Ghent University 

Hospital [27]. The in vivo metabolism studies were approved by the Animal Ethical 

Committee of the Faculty of Medicine of Ghent University (ECD 06/09). 

Prostanozol was administered to one non-chimeric and four chimeric mice by oral gavage. 

100 µL of the reference standard of prostanozol (at a concentration of 10 mg/mL solved in 

PBS with 10% ethanol) was administered to the mice. This dose and route of administration 

was selected based on previous metabolism studies in the same model [19-21]. Before 

administration this solution was analyzed by GC-MS. 

2.5 Sample preparation 

2.5.1 Liquid-liquid extraction (LLE) 

For the in vitro metabolic incubations the samples are first centrifuged at 4 °C (12,000 g, 5 

min) then 200 µL was used for LLE. From the mouse urine 500 µL was used. 50 µL of the IS 

17α-methyltestosterone (2 µg/mL) was added to all samples.  

For the HLM incubation samples only the unconjugated fraction (free fraction) was studied. 

Therefore LLE was performed by adding 1 mL liquid carbonate buffer pH 9.5 (NaHCO3/K2CO3 

(2/1)) and 5 mL diethyl ether and rolling during 20 min. The samples were then centrifuged 

(1500 g, 5 min). After centrifugation the organic layer was separated and dried by adding ± 

100 mg Na2SO4. The organic layer was separated from the Na2SO4 and evaporated under 

OFN at 40 °C. To study the total fraction (conjugated and unconjugated steroids) in the 

mouse urine samples enzymatic hydrolysis was performed by adding 1 mL phosphate buffer 

(0.1 M, pH 7) and 50 µL β-glucuronidase from E. coli K12 (± 80 U/mg or 0.1 U/µL). The 

samples were hydrolyzed during 2.5 h at 56 ± 5 °C. After cooling to room temperature, 

extraction was performed as described above. 

To study phase II metabolism of prostanozol the free, glucuronidated and sulfated fractions 

were analyzed of a blank sample and a urine sample collected 24 h after administration. 

Therefore LLE without hydrolysis was first performed to study the free (unconjugated) 

fraction. After separation of the organic fraction LLE was performed on the same samples 

with hydrolysis with β-glucuronidase from E. coli (glucuronidated fraction). This was also 
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repeated with β-glucuronidase from H. pomatia (also arylsulfatase activity) and 1 mL acetate 

buffer (pH 5.2) instead of phosphate buffer. 

For GC-MS analysis the samples were derivatized by adding 100 µL derivatization solution 

containing MSTFA, NH4I and ethanethiol (500/4/2) and incubation during 1 h at 80 ± 5 °C. For 

LC-MS analysis samples were dissolved in 100 µL H2O/MeOH (70/30). 

3 Results and discussion 

3.1 Analysis of prostanozol 

The presence of prostanozol-THP and prostanozol in the steroid product Orastan-E was 

observed by Kazlauskas et al. [6]. Both in this study (results not shown here) and by 

Kazlauskas et al. it was also observed that the THP-derivative readily hydrolyses to 

prostanozol, even in MeOH [6]. Therefore the reference standard of prostanozol instead of 

prostanozol-THP was chosen to be administered to the mouse model and HLM. Moreover, 

according to Yum et al. [28] oral administration would lead to hydrolysis of prostanozol-THP 

to prostanozol by gastric acid. 

The mass spectrum of prostanozol after TMS-derivatization (MW 458; bis-TMS) is shown in 

Figure 3.2 and exhibits a characteristic ion at m/z 168, originating from fragmentation of the 

A- and N-ring [28]. 

3.2 In vitro metabolism studies of prostanozol with HLM 

3.2.1 Full scan GC-MS analysis of in vitro metabolism samples of prostanozol 

In order to eliminate inhibition of the microsomal enzymes, the final solvent concentration 

of prostanozol (reference standard) was limited to 1% [12, 26]. Methandienone was selected 

as steroid for positive control because the metabolism of methandienone has been 

thoroughly investigated in the past and undergoes metabolism via a wide variety of 

metabolic pathways [21]. 

After 4 h incubation of prostanozol the largest number of metabolites with the highest 

abundance could be detected (Figure 3.3 and Table 3.1). In total 19 metabolites (M1 and 

M5-M22), were found that were absent in the control samples (0 h, blank and negative 

samples). These HLM produced metabolites were grouped in seven categories (I-VII) based 

on their mass spectra (Table 3.2). The mass spectrum and tentative structures of each 

category are shown in Figure 3.2. Furthermore, also the parent compound and 17-

ketoprostanozol (M1) could be detected. 

Characteristic ions for the detection of prostanozol derivatives after trimethylsilylation are 

the ions m/z 254 and 168 (Figure 3.2). The ion m/z 254 is an indicator for 3’/4-

hydroxylmetabolites [6, 28, 29], while m/z 168 indicates metabolites having no 
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hydroxylation in the A- or pyrazole (N-) rings [28]. The proposed positions of the hydroxyl 

group, when m/z 168 is present, are C6, C12 or C16, according to known hydroxylation 

positions in literature [11], and are indicated with ‘x’. 

Two new categories, hydroxylated and dihydroxylated prostanozol metabolites (I and VII 

respectively), were found in the HLM incubation samples which have so far not been 

reported in human excretion studies [6, 28, 29]. Detection of metabolites of prostanozol in 

human urine is however hampered by the corticosteroid area of the chromatogram [6, 29]. 

An overview of reported prostanozol metabolites in literature is given in Table 3.2. 

Only one metabolite was detected for categories I (M8) and IV (M7), which are possibly 3’-

hydroxy- or 4-hydroxy-prostanozol derivatives. Comparison with a certified reference 

standard led to the identification of M7 as 3’-hydroxy-17-ketoprostanozol. 

Most metabolites were detected for categories II (M6, M10, M12, M14 and M16) and V (M5, 

M9, M11 and M15) with as characteristic ion m/z 168 indicating hydroxylations outside the 

A- and N-rings. M9 could be identified as 16β-hydroxy-17-ketoprostanozol by comparison 

with the corresponding reference standard. A comparable metabolite was described as the 

main prostanozol metabolite in the study of Rodchenkov et al. [29], in their study a 6- or 16-

hydroxy-17-ketoprostanozol structure was proposed. Our data clearly show it is 16β-

hydroxy-17-ketoprostanozol. 

Although both categories (II and V) correspond to metabolites with m/z 546 and 544 after 

trimethylsilylation respectively, metabolites M10/M11 and M14/M15 are difficult to 

distinguish as they are co-eluting. So, using GC-MS these metabolites could not be resolved. 

Metabolites of categories III (M18 and M20) and VII (M13, M17 and M22) with m/z 634 as 

molecular ion are definitely present. But as a result of the lower abundance of the peaks 

(S/N) of these metabolites it is more difficult to determine the abundance of the ions in the 

mass spectrum and to distinguish the ions m/z 168 and 254 in the full scan spectra. These 

metabolites are certainly not found in the blank and negative control samples. 

Two metabolites (M19 and M21) of category VI (m/z 632/168) were detected but no 

metabolites of category VI’, with as characteristic ions m/z 632 and 254 were found. So, the 

suggested positions of hydroxylations are outside the A- and N-rings for both metabolites. 

3.2.2 Precursor ion scan analysis of in vitro metabolism samples of 

prostanozol by LC-MS/MS 

To confirm the structures of the metabolites detected by GC-MS, the HLM incubation 

samples were also analyzed using LC-MS/MS (Figure 3.4). A precursor ion scan method was 

used, with m/z 81, 97 and 145 as selected product ions. The ion m/z 81 is an indicator for 

metabolites of stanozolol without any modifications in the A- and N-ring. Stanozolol 

derivatives with a hydroxyl group in the N-ring have ion m/z 97 as characteristic ion. Ion m/z 

145 is common for 4-hydroxy stanozolol derivatives [30-32]. Because of the structural 
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similarity between stanozolol and prostanozol in their A- and N-ring this method was used 

for the detection of prostanozol metabolites. Moreover, analysis of reference standards of 

prostanozol and hydroxylated (3’-/4α-/4β-/16β-)17-ketoprostanozol metabolites confirmed 

the applicability of this precursor ion scan method (results not shown here). Hence this 

precursor ion scan method can be applied to distinguish 3’-hydroxy from 4-hydroxy 

prostanozol metabolites. Possible metabolites of prostanozol that can be detected by ion 

m/z 81 are prostanozol itself and metabolites of categories II, V, VI and VII. Categories I, III 

and IV can be detected by ions m/z 97 and 145. 

Prostanozol ([M+H]+ = m/z 315) could be detected at a retention time (RT) of 18.08 min with 

ion m/z 81 as selected ion (Figure 3.4). All the categories of prostanozol metabolites (I-VII), 

except for category IV, could be confirmed by LC-MS/MS. By the precursor ion scan method 

only one metabolite of category I could be detected, with m/z 145 as most abundant ion 

which is indicative for a 4-hydroxy-prostanozol metabolite. As by GC-MS analysis also just 

one metabolite (M8) was detected for this category (I), a 4-hydroxylated prostanozol 

structure is suggested for this compound.  
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Figure 3.2. Mass spectra of prostanozol and the categories of prostanozol metabolites (I-VII; see Table 3.2 for 
the classification of the metabolites) detected in chimeric mice and/or HLM studies by GC-MS analysis and 
tentative structure presentation of the metabolites in correspondence with the molecular masses. 
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Table 3.1. Prostanozol metabolites detected in the in vitro and in vivo metabolism studies by full scan GC-MS 
analysis. The metabolites are ranked according to their RRT. 

Metabolite
a
 Category

b
 Tentative structures 

Characteristic 
ion(s) after TMS-
derivatization 

RRT HLM 
Chimeric 
mice 

Phase II
d
 

Prostanozol   458/443/168 1.15 √ √  

M1  17-ketoprostanozol 456/441/168 1.14 √ ×  

M2 I 3’/4-hydroxy-prostanozol 546/254 1.16 × √ free 

M3 I 3’/4-hydroxy-prostanozol 546/254 1.17 × √ free 

M4 I 3’/4-hydroxy-prostanozol 546/254 1.18 × √ free 

M5 V x-hydroxy-17-ketoprostanozol 544/529/168 1.18 √ ×  

M6 II x-hydroxy-prostanozol 546/531/168 1.18 √ ×  

M7
c
 IV 3’-hydroxy-17-ketoprostanozol 544/529/254 1.18 √ √ free, gluc 

M8 I 4-hydroxy-prostanozol 546/531/254 1.18 √ √ free 

M9
c
 

V 16β-hydroxy-17-
ketoprostanozol 

544/529/168 1.19 √ √ free 

M10 II x-hydroxy-prostanozol 546/531/168 1.20 √ √ free 

M11 V x-hydroxy-17-ketoprostanozol 544/529/168 1.20 √ ×  

M12 II x-hydroxy-prostanozol 546/531/168 1.21 √ √ free 

M13 VII x,x-dihydroxy-prostanozol 634/619/168 1.22 √ √ free, gluc, sulf 

M14 II x-hydroxy-prostanozol 546/531/168 1.22 √ ×  

M15 V x-hydroxy-17-ketoprostanozol 544/529/168 1.22 √ ×  

M16 II x-hydroxy-prostanozol 546/531/168 1.22 √ ×  

M17 VII x,x-dihydroxy-prostanozol 634/619/168 1.24 √ ×  

M18 III 4,x-dihydroxy-prostanozol 634/617/254 1.25 √ ×  

M19 
VI x,x-dihydroxy-17-

ketoprostanozol 
632/617/168 1.26 √ ×  

M20 III 4,x-dihydroxy-prostanozol 634/619/254 1.26 √ ×  

M21 
VI x,x-dihydroxy-17-

ketoprostanozol 
632/617/168 1.27 √ √ free, gluc, sulf 

M22 VII x,x-dihydroxy-prostanozol 634/619/168 1.28 √ √ free, gluc, sulf 

M23 III 3’/4,x-dihydroxy-prostanozol 634/254 1.29 × √ x 

M24 III 3’/4,x-dihydroxy-prostanozol 634/254 1.29 × √ x 

RRT = Relative Retention Time, RRT IS = 1; IS = 17α-methyltestosterone (RT IS: 14.07 min);  
√ = detected; × = not detected

 

a
 For tentative structures and mass spectra of the metabolites see Figure 3.2. 

b
 See Table 3.2 for the classification of the metabolites (I-VII). 

c
 Reference standards available. 

d
 Phase II metabolism studied by GC-MS analysis of chimeric mouse urine samples with and without hydrolysis 

(β-glucuronidase and β-glucuronidase/arylsulfatase) after LLE; gluc: glucuronidated and sulf: sulfate conjugate. 
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For category II one more metabolite could be found by the precursor ion scan method in 

comparison with the GC-MS analysis (6 versus 5 metabolites respectively). However, no 

extra information was obtained about the position of hydroxylation for these compounds.  

Only one metabolite was detected by LC-MS/MS for category III with ion m/z 145 as the 

most abundant ion, indicating a 4,x-dihydroxylated prostanozol structure for one of these 

metabolites previously detected by GC-MS (M18 and M20). For categories V (2 by LC versus 

4 by GC) and VI (1 by LC versus 2 by GC) also fewer metabolites were detected by the 

precursor ion scan method. No additional information was gained for the possible position 

of the hydroxylations. However, one metabolite of category V, at a retention time of 9.37 

min, could be identified as 16β-hydroxy-17-ketoprostanozol (M9) by comparison with the 

corresponding reference standard. 

For the first time a metabolite of category VI’ could be detected with characteristic ions m/z 

345 and 145, a potential 4,x-dihydroxy-17-ketoprostanozol metabolite. This category could 

not be detected by GC-MS as no metabolite with characteristic ions m/z 632 and 254 was 

found. The three metabolites of category VII detected by GC-MS in the HLM incubation 

samples could also be confirmed, but the structure could not be further elucidated. 

3.3 In vivo metabolism studies of prostanozol with chimeric mouse 
model 

3.3.1 Full scan GC-MS analysis of in vivo metabolism samples of prostanozol 

To complement the results obtained in the HLM incubation samples, prostanozol was also 

administered to the chimeric mouse model. In this way the suitability of HLM incubation 

studies as alternative for in vivo metabolism studies was investigated.  

Since prostanozol is not an endogenous steroid the pre-administration urine was used for 

comparative purposes with post-administration urines to discover possible metabolites of 

prostanozol. 

The administration of prostanozol was performed in four chimeric mice. Only the results of 

the ‘best’ chimeric mice, i.c. with highest human albumin levels, are presented (Figure 3.3 

and Table 3.1). The other mice gave similar results, however with less abundance. 

Administration of prostanozol to chimeric mice resulted in the detection of thirteen 

metabolites, eight in common with the in vitro samples, by full scan GC-MS analysis (Table 

3.1). These metabolites could also be divided in the seven categories (I-VII) presented in 

Table 3.2. 



Chapter 3 – Metabolism studies of prostanozol 

 

80 
 

 

Figure 3.3. Extracted ion chromatogram (EIC) of the ions with m/z (A) 168, 456 and 458; (B) 544; (C) 546 (D) 

632 and (E) 634 in a 4 h HLM sample and overlay with 4 h blank control sample (upper panel). EIC of m/z 254, 

458, 544, 546, 632 and 634 in chimeric mouse urine collected after prostanozol administration (lower panel). 

 



 

 

 
 

 

Figure 3.4. LC-MS/MS precursor ion scan chromatograms of (A) blank control sample and (B) HLM sample 4 h incubated with prostanozol. For legend of the categories I-

VII see Table 3.2. In (A) the proposed fragmentation pathways for the selected product ions are also shown. 
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In contrast to the human excretion study of Yum et al. [28] and the HLM studies described 

above, 17-ketoprostanozol (M1) was not detectable in chimeric mouse urine. However, 

several (di)hydroxylated 17-ketoprostanozol derivatives (categories IV, V and VI) were found. 

A possible explanation is that 17-ketoprostanozol is immediately hydroxylated because of 

the higher metabolic rate of mice, e.g. 48 h after administration no traces of prostanozol or 

metabolites of the parent were detected. 

For all categories, except for category III, at least one metabolite detected in the HLM 

incubation samples could be confirmed with the chimeric mice model. The metabolites M18 

and M20 were not detected for category III, but two new metabolites M23 and M24 were 

found in the chimeric mouse urine samples. More metabolites were detected with the 

chimeric mice model only for category I, in addition to M8 also metabolites M2-M4 were 

found. The presence of m/z 254 in the mass spectra of the category I and III metabolites 

indicates a hydroxylation in the A- or N-rings. However, no further information about 

possible positions of hydroxyl groups could be obtained. In these in vivo samples, the 

presence of m/z 168 in the mass spectra of metabolites M13 and M22 (category VII) 

suggests hydroxylation(s) outside the A- and N-rings, but the exact position could not be 

determined. 

Table 3.2. Overview of prostanozol metabolites detected in the in vitro and in vivo metabolism studies 
compared with reported metabolites in literature (human excretion studies). 

Metabolite Category 
Characteristic 
ions GC

b
 

Characteristic 
ions LC

c
 

Chimeric 
mice 

HLM 
Human 
[6, 28, 29] 

17-ketoprostanozol  456/168 313 × √ √ 

3’/4-hydroxy-prostanozol I 546/254 331/97 or 

331/145 

√ √ × 

x-hydroxy
a
-prostanozol II 546/168 331/81 √ √ √ 

3’/4,x-dihydroxy
a
-prostanozol III 634/254 347/97 or 

347/145 

√ √ √ 

3’/4-hydroxy-17-ketoprostanozol IV 544/254 329/97 or 

329/145 

√ √ √ 

x-hydroxy
a
-17-ketoprostanozol V 544/168 329/81 √ √ √ 

x,16-dihydroxy
a
-17-ketoprostanozol VI 632/168 345/81 √ √ √ 

3’/4,x-dihydroxy
a
-17-ketoprostanozol VI’ 632/254 345/97 or 

345/145 

× ±
d
 √ 

x,x-dihydroxy
a
-prostanozol VII 634/168 347/81 √ √ × 

√ = detected; × = not detected
 

a 
x-hydroxy and x,x-dihydroxy: x = C6, C12 or C16 

b
 after TMS-derivatization 

c 
in positive ionization mode 

d
 ±: only one metabolite of this category was detected by LC-MS/MS analysis (precursor ion scan), which could 

not be confirmed by GC-MS analysis. 
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Some metabolites were also found 24 h after prostanozol administration in the non-chimeric 

mouse urine. In comparison with the results in chimeric mouse urine, the abundance of the 

metabolites was lower and there were also fewer metabolites found (e.g. categories III and 

IV were not detected). Therefore, these latter categories (III and IV) can be considered as 

typical human metabolites. Both categories have indeed been described in human 

metabolism studies [6, 28, 29]. 

Monohydroxylated prostanozol (II; M10 and M12) and monohydroxylated 17-

ketoprostanozol (V; M9 and M15) metabolites have the highest abundance and can be 

considered as the most important prostanozol metabolites in both models. 

Both alternative models can confirm monohydroxylated and dihydroxylated prostanozol 

metabolites (categories II and III) which were also found by Yum et al. [28] in a human 

excretion study. 

The phase II reactions of prostanozol were also studied in chimeric mouse urine (Table 3.1) 

by comparison of hydrolyzed and non-hydrolyzed fractions after GC-MS analysis. 

All metabolites were excreted at least partially in the free fraction, but category III 

metabolites were not detected at all. Metabolites of categories VI, VII and a small fraction of 

category IV were glucuronidated. Conjugated derivatives of categories I, II and V were not 

present after enzymatic hydrolysis. These results are in contrast with the results of the study 

of Yum et al. where all metabolites formed glucuronic conjugates and just some metabolites 

were excreted without conjugation [28]. These contradictory results can eventually originate 

from differences between mice and humans or because of differences in genetic background 

(Asian versus Caucasian) [33, 34]. Only categories VI and VII were detected after hydrolysis 

with β-glucuronidase/arylsulfatase. In a previous human excretion study [28] metabolites 

with molecular ion m/z 632, like category VI were also excreted as sulfate conjugates. 

3.3.2 Precursor ion scan analysis of in vivo metabolism samples of 

prostanozol by LC-MS/MS 

The LC-MS/MS precursor ion scan method was also applied to the in vivo samples incubated 

with prostanozol (Figure 3.5). The parent compound was detected and all categories of 

metabolites that were detected by GC-MS (I-VII) could also be confirmed by LC-MS/MS 

analysis. 

Although only 4-hydroxyprostanozol metabolites were detected in the in vitro samples for 

categories I and III, both 3’- and 4-hydroxyprostanozol metabolites could be detected in the 

in vivo samples. For category IV metabolite M7 could be confirmed as 3’-hydroxy-17-

ketoprostanozol with selected product ion m/z 97. 

By this precursor ion scan method four metabolites of category II were detected, two more 

compared to GC-MS analysis, which indicates several possible positions for hydroxylation. 



 

 
 

 

Figure 3.5. LC-MS/MS precursor ion scan chromatograms of (A) chimeric mouse urine collected before prostanozol administration and (B) chimeric mouse urine 
collected after prostanozol administration. For legend of the categories I-VII see Table 3.2. In (B) a detail is shown of the extra metabolite of category V (m/z 329) 
detected with m/z 81 as product ion next to the metabolite of category II (m/z 331), when applying a Zorbax C8 column. This latter metabolite corresponds to 
metabolite M9 (16β-hydroxy-17-ketoprostanozol) detected by GC-MS. 
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Two metabolites were detected for category V, but when applying a Zorbax C8 column for 

comparison with commercial available reference standards an extra metabolite could be 

detected. This latter metabolite was identified as 16β-hydroxy-17-ketoprostanozol and 

confirmed the presence of M9 in the chimeric mouse urine samples (Figure 3.5). 

For each of the categories VI and VII two metabolites were detected, but no extra 

information about the hydroxylation position was obtained. In contrast to the in vitro 

results, no metabolites of category VI’ (Table 3.2) were detected by this precursor ion scan 

method in chimeric mouse urine. 

3.4 Application to a real doping control sample 

To verify the relevance of the detected metabolites for doping control purposes a previous 

positive human urine sample for prostanozol was reanalyzed. In this human urine all 

categories of prostanozol metabolites, including 17-ketoprostanozol, were detected. In the 

urine sample monohydroxylated 17-ketoprostanozol metabolites were, similar to the studies 

of Rodchenkov et al. and Kazlauskas et al. [6, 29], more abundant than the 

monohydroxylated prostanozol metabolites. 16β-, 3’- and 4-hydroxy-17-ketoprostanozol 

were identified by comparison with commercially available reference material.  

Based on the in vitro metabolism studies two new metabolites were detected which seem, 

based on their relative abundances, interesting for doping control purposes. These 

metabolites correspond to category II (RT 8.37 min) and V (RT 9.94 min) metabolites 

detected in the in vitro samples by LC-MS/MS. 

4 Conclusions 

In both the HLM and the chimeric mice model seven categories (I-VII) of prostanozol 

metabolites were detected by GC-MS. Only traces of category VI’ could be seen with the 

precursor ion scan by LC-MS/MS in the in vitro samples. Furthermore M1, with 17-

ketoprostanozol as proposed structure, was also detected in HLM. Both alternative models 

exhibited similar results like the human excretion studies already performed [6, 28, 29]. 

Moreover, some previously unreported metabolites have been identified, namely 

metabolites of categories I and VII which were confirmed in a human urine positive for 

prostanozol. 

Based on the relative abundances observed in these prostanozol metabolism studies it 

seems that metabolites of categories II and V (e.g. M9, M10 and M12) are most likely to be 

relevant for routine analysis. It is nevertheless not known if these metabolites may serve for 

long-term detection of prostanozol. It is difficult to determine the exact positions of the 

hydroxyl groups of the metabolites because of lack of reference standards to confirm the 

specific structures. However, with the available reference standards, M9 could be identified 

as 16β-hydroxy-17-ketoprostanozol and M7 as 3’-hydroxy-17-ketoprostanozol in both 
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models (Figure 3.1). As some differences were observed for phase II metabolism 

(glucuronidation) performed in mouse urine with earlier reported human data [28], further 

research will be needed to verify these conjugation reactions. 

The range of new unapproved drugs, available on the black market, is expanding rapidly. For 

these substances it is difficult to obtain ethical committee approval for administration to 

humans. Both the HLM and the chimeric mouse model offer the scientist an alternative. The 

advantage of the use of pooled HLM is that there are in general less ethical constraints and 

that both male and female HLM of different persons are combined in this pool. In this way a 

more complete profile of catalytic activities is represented and lot-to-lot variability is 

reduced. The uPA+/+-SCID mice model transplanted with human hepatocytes have the merit 

to represent the real in vivo human situation including, besides metabolism, absorption, 

distribution and excretion processes. Moreover, unlike the HLM, the phase I and phase II 

pathways are not controlled by adding the appropriate cofactors. By administering the drug 

to both chimeric and non-chimeric mice and comparison of the results, metabolic pathways 

exclusive from human hepatocytes can be identified. A limitation of the chimeric mouse 

model and the microsomes is that the liver as major organ for drug metabolism is 

emphasized and that both methodologies do not take into account the contribution of extra-

hepatic metabolism [24, 25]. In general this represents only a minor part of the urinary 

steroid metabolism. Hence, HLM and chimeric mice can be powerful tools for the study of 

steroid metabolism and both models can certainly be used as alternative for human 

excretion studies, when there are ethical restraints, e.g. for designer steroids or steroid 

products sold on the black market. 

Although one should be careful in extrapolating the results derived from HLM incubation 

experiments, and even from the chimeric mouse model, following considerations can be 

helpful to predict in vivo human metabolism. (Poly)hydroxylated derivatives of the parent 

compounds are commonly found in HLM incubation samples, but cautious extrapolation to 

the human situation should be performed, especially for a higher number of hydroxylations. 

Combination of hydroxylation and another modification of the parent compound (e.g. 

hydroxylated 17-ketoprostanozol) might be more easily interpreted as typical in vivo human 

metabolite. 
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Abstract 

Anti-doping laboratories need to be aware of evolutions on the steroid market and elucidate 

their metabolism to identify markers of misuse. Owing to ethical considerations, in vivo and in 

vitro models are preferred to human excretion for non-pharmaceutical grade substances. In this 

study the chimeric mouse model and human liver microsomes (HLM) were used to elucidate the 

phase I metabolism of a new steroid product containing, according to the label, 

methylstenbolone. Analysis revealed the presence of both methylstenbolone and 

methasterone, a structurally closely related steroid. 

Via high performance liquid chromatography (HPLC) fraction collection, methylstenbolone was 

isolated and studied with both models. Using HLM 10 mono-hydroxylated derivatives (U1-U10) 

and a still unidentified derivative of methylstenbolone (U13) were detected. In chimeric mouse 

urine only dihydroxylated metabolites (U11-U12) were identified. Although closely related, 

neither methasterone nor its metabolites were detected after administration of isolated 

methylstenbolone. 

Administration of the steroid product resulted mainly in the detection of methasterone 

metabolites, which were similar to those already described in the literature. Methylstenbolone 

metabolites previously described were not detected. 

A GC-MS/MS multiple reaction monitoring method was developed to detect methylstenbolone 

misuse. In one out of three samples, previously tested positive for methasterone, 

methylstenbolone and U13 were additionally detected, indicating the applicability of the 

method. 
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1 Introduction 

Over the last decade a wide range of new designer steroids were introduced to the market 

masquerading as supplements owing to the loose regulation of the industry. These compounds 

are challenging for the anti-doping laboratories to develop appropriate detection methods. The 

chemical structures of these designer substances are based on known compounds but with 

minor modifications to evade detection or to enable them to be marketed freely on the internet 

[1]. These designer steroids are often sold without defined toxicological profiles or when these 

products are still under clinical investigation. This raises ethical concerns to perform human 

administration studies, which are needed to identify specific metabolites for sensitive target 

analytical methods. To allow a fast incorporation of markers of new steroid compounds into 

routine screening methods, alternative in vivo and in vitro models should be used. In vitro 

techniques do not serve as a replacement for the more complex in vivo studies, which give a 

better correlation with the human metabolism [2]. However, these studies can help to identify 

new metabolites in a fast and efficient way. Moreover in vitro models produce cleaner extracts 

for analysis and they could also reduce and refine the number of animal experiments needed [3, 

4]. Data obtained from animal models cannot always be extrapolated to humans [2]. However, 

the chimeric mouse model has shown to be an excellent model to study human-based like 

steroid metabolism in vivo [5-9]. In this study the chimeric mouse model will be complemented 

with the use of human liver microsomes (HLM). Both models focus mainly on the liver, as this 

organ is the major site of drug metabolism [2]. 

The in vivo mouse model involves the transplantation of primary human hepatocytes into 

immunodeficient (SCID) mice. The mice also suffer from a severe liver disease which is induced 

by liver specific over-expression of the mouse urokinase plasminogen activator (uPA) gene. The 

transplantation of human hepatocytes is not rejected in the transgenic uPA+/+-SCID mice and so 

normal liver function can be restored [10]. This chimeric mouse model proved to be a good 

alternative for human excretion studies based on steroid research in the past [5-9]. HLM provide 

an enriched source of membrane bound drug metabolizing enzymes, such as the cytochrome 

P450 superfamily (CYP450) [11]. Application of pooled microsomes results in a representative 

enzyme activity and limits individual variations [12]. The major advantages with the use of HLM 

are the low cost, simplicity in use and less ethical objections [11, 12]. A disadvantage is however 

that they are unsuitable for quantitative measurements [12]. 

Recently, a new so-called ‘nutritional supplement’ was introduced on the market, named 

‘Ultradrol’, allegedly containing methylstenbolone. This designer steroid is an oral active variant 

of stenbolone, since the 17α-alkylation prevents the first-pass effect in the liver [13]. The human 

metabolism of stenbolone has been studied since 1991. Its typical structure with 1-ene double 



Chapter 4 – Metabolism studies of methylstenbolone 

94 
 

bond in combination with a 2-methyl group makes this steroid stable to reductive metabolism 

and major metabolites retain either the 1-ene-3-keto or 1-ene group [14, 15]. Limited 

information is available on the metabolism of methylstenbolone. Only recently, two 16-

hydroxylated metabolites were described [16]. The aim of this study was to further identify 

possible markers of misuse for this steroid product. For this purpose HLM (in vitro) as well as the 

in vivo chimeric mouse model were applied. 

2 Materials and methods 

2.1 Chemicals and reagents 

The steroid product named ‘Ultradrol’ from Antaeus Labs was purchased from the internet. The 

reference material of methasterone (2α,17α-dimethyl-17β-hydroxy-5α-androstan-3-one) was 

bought from Toronto Research Chemicals (TRC, Toronto, Canada). The internal standard (IS) 

17α-methyltestosterone was a gift from Organon (Oss, the Netherlands). Pooled HLM from 20-

30 donors (HLM; 452161), the nicotinamide adenine dinucleotide phosphate (NADPH) 

regenerating system solutions A (451220) and B (451200) and phosphate buffer pH 7.4 (451201) 

were purchased from BD Gentest (Erembodegem, Belgium). Ethanol (EtOH) and ammonium 

acetate (NH4OAc) were purchased from Biosolve (Valkenswaard, the Netherlands). Diethyl ether 

and methanol (MeOH) were obtained from Fisher Scientific (Loughborough, UK). Sodium sulfate 

(Na2SO4), sodium hydroxide (NaOH), sodium hydrogen carbonate (NaHCO3), potassium 

carbonate (K2CO3), disodium hydrogen phosphate dihydrate (Na2HPO4.2H2O), sodium 

dihydrogen phosphate monohydrate (NaH2PO4.H2O), ammonium iodide (NH4I), acetic acid 

(HOAc), LC grade water and LC grade MeOH were from Merck (Darmstadt, Germany). The β-

glucuronidase preparation from Escherichia coli (E. coli) K12 was purchased from Roche 

Diagnostics (Mannheim, Germany). N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA) was 

from Karl Bucher (Waldstetten, Germany). Ethanethiol was obtained from Acros (Geel, 

Belgium). Phosphate Buffered Saline (PBS) was from Invitrogen (Merelbeke, Belgium). The 

gasses helium (He), nitrogen (N2) and oxygen free nitrogen (OFN) were delivered by Air Liquide 

(Bornem, Belgium). 

2.2 Instrumentation 

2.2.1 HPLC 

High performance liquid chromatography (HPLC) fraction collection was performed on a Thermo 

Scientific Surveyor (Bremen, Germany) with an injection volume of 100 µL. Separation was 

achieved using a Phenomenex Gemini C18 (150 mm x 4.6 mm x 5 µm) column (Torrance, 

California, USA). For the HPLC fraction collection a MeOH/water mobile phase was used (solvent 
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A, 10/90 MeOH/H2O; solvent B, MeOH). The HPLC procedure started with 100% of solvent A 

until 1 min, then 40% of solvent A until 20 min, then 100% of solvent B till 25 min and finally 

100% of solvent A from 25 min and held until 30 min. Two fractions were automatically 

collected with a Gilson FC 204 (Gilson, Middleton, WI, USA): F1 (11.1-12.1 min) and F2 (12.2-13 

min). 

2.2.2 GC-MS 

An Agilent 6890 gas chromatograph was interfaced to an Agilent 5973 mass spectrometer 

(Agilent Technologies, Palo Alto, USA). 1 µL of sample was injected into the system using a 7683 

series Autosampler with a splitless injector (Agilent Technologies, Palo Alto, USA). The GC 

separation was performed using a JW Ultra-1 capillary column (17 m x 200 µm i.d., 0.11 µm; 

Agilent Technologies) and He as mobile phase at a flow rate of 0.6 mL/min at 10.15 psi (constant 

flow). The temperature program and other instrumental parameters were applied as described 

in Chapter 3 (2.2.1 GC-MS).  

2.2.3 GC-MS/MS 

An Agilent 7890 gas chromatograph coupled with an Agilent 7000 B triple quadrupole mass 

spectrometer (Palo Alto, USA) and an MPS2 autosampler and PTV-injector from Gerstel 

(Mülheim an der Ruhr, Germany) were used. A retention gap column (1.25 m × 0.2 mm and no 

film inside) was coupled in front of an HP-1MS (15 m × 320 µm with a film thickness of 0.25 µm) 

both from J&W Scientific (Agilent Technologies, Palo Alto, USA). The following oven 

temperature program was used: the initial temperature was 120 °C, increased at 50 °C/min to 

185 °C, then at 5 °C/min to 225 °C, next at 25 °C/min to 285 °C and finally increased at 75 °C/min 

to reach a final temperature of 320 °C (held for 1.8 min). The total run time was 13.97 min. The 

transfer line was set at 310 °C. He was used as a carrier gas with a pressure program to ensure a 

constant flow of 1.28 mL/min. In the QqQ collision cell He was used as quench gas at 2.25 

mL/min and N2 as a collision gas at 1.5 mL/min. 6 µL of sample was injected using the solvent 

vent mode of the PTV-injector. The vent flow was 15 mL/min at 5 psi until 0.01 min with an 

initial temperature of 80 °C and increased at 12 °C/s to 310 °C. A MRM method was developed 

for the detection of methylstenbolone misuse, see Table 4.1 for the ion transitions. 

2.2.4 LC-MS/MS 

All experiments were performed under the same LC conditions using a Thermo Finnigan 

Surveyor Autosampler Plus and a MS Pump Plus (Thermo Scientific, Bremen, Germany). 

Electrospray ionization (ESI) was used for the ionization of the steroids. The mobile phase 

consisted of LC grade water (solvent A) and LC grade MeOH (solvent B) both with 1 mM NH4OAc 

and 0.1% HOAc. 



Chapter 4 – Metabolism studies of methylstenbolone 

96 
 

The LC separation was performed using a SunFire™ C18 column (50 mm × 2.1 mm i.d., 3.5 μm) 

from Waters (AH Etten-Leur, the Netherlands), at a flow rate of 250 µL/min. 20 µL of sample 

was injected into the instrument. The gradient program was adopted from Pozo et al. [17], the 

percentage of solvent B was changed as follows: 0 min, 30%; 1.5 min, 30%; 8 min, 55%; 15 min, 

55%; 29.5 min, 95%; 30.5 min, 95%; 31 min, 30%, 34 min, 30%. The methods have a total run 

time of 34 min. 

For the low resolution methods a TSQ Quantum Discovery MAX triple quadrupole mass 

spectrometer (Thermo Scientific) was used. The other instrumental parameters were adopted 

from Pozo et al. [17]. A precursor ion scan method was used to search for (unknown) 

metabolites. For the precursor ions scan method the ions with m/z 77, 91 and 105 were 

selected as product ions. The collision energy (CE) was 45 eV for m/z 105 and 91 and 50 eV for 

m/z 77. For the structural investigation of metabolites product ion scans were performed for 

some selected ions and CE of 10, 20, 30 and 50 eV were applied. 

The HR-MS(/MS) were performed on an Exactive benchtop Orbitrap-based mass spectrometer 

(Thermo Scientific). The instrument operated in positive, full scan mode from m/z 100 to 2000 

at a resolving power of 50,000 with a data acquisition rate of 2 Hz. All ion fragmentation was 

performed by higher-collision dissociation (HCD), at a CE of 30 eV. 

2.2.5 Analysis and clean-up of the steroid product 

The methylstenbolone product was analyzed by GC-MS and LC-MS. Individual steroids, present 

in this steroid formulation were isolated by the following procedure: extraction of the steroids 

was performed by adding 12 mL of ethanol to 1200 mg of the product and rolling for 2 h. 

Subsequently centrifugation was performed (1500 g, 5 min) and 9.5 ml was transferred and 

evaporated under OFN and redissolved in 1.3 mL MeOH. This solution containing the extracted 

steroid product was distributed in vials (50 µL in each vial and addition of 50 µL 50/50 

MeOH/water) and used for the HPLC fraction collection. The two collected fractions (F1 and F2) 

were then dried under OFN and quantitatively transferred (3 x 1 mL ethanol) into separate vials 

and redissolved in 750 µL ethanol. 

2.2.6 HLM incubations 

Both the steroid product as well as the individual cleaned-up steroids were administered to 

HLM (final concentration of 40 µg/mL). Before administration, all solutions (reference standard, 

steroid product and cleaned-up product (F1 and F2)) were analyzed by GC-MS and LC-MS for 

purity verification. 

The in vitro HLM incubation studies were performed as described in Chapter 1 (7.2.2.2 Protocol 

in vitro metabolism studies; Table 1.6). Substrate stability samples (blank; without HLM) and 
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system blank samples (without test compound) control samples were also incubated to verify 

the enzymatic reactions. Methandienone was incubated as test compound in the positive 

control samples. At the appropriate time (after 2, 4, and 18 h) the enzymatic reactions were 

stopped by adding 250 µL ice-cold MeOH. 

In a second experiment with methylstenbolone, higher initial concentrations (2, 5 and 10 x 

higher) of the test compound were used to see the influence on the detected metabolites. With 

these experiments the final concentration of the solvent (EtOH) was also kept at 1%, to prevent 

inhibition of the microsomal enzymes. 

2.2.7 Excretion studies with the chimeric mouse model 

The protocol of the in vivo administration studies was applied as described in Chapter 1 (7.2.3 In 

vivo metabolism studies). 

The chimeric mouse model was developed in cooperation with CEVAC of Ghent University 

Hospital [10]. The in vivo metabolism studies were approved by the Animal Ethical Committee of 

the Faculty of Medicine of Ghent University (ECD 06/09). The dose and route of administration 

(oral gavation) were similar to previous metabolism studies with the same model [6, 7, 9]. The 

metabolism studies were performed by administration of 1 mg of the test compound (as 

supplement or as purified steroid, as indicated in the text) dissolved in ethanol/PBS (20/80) in a 

single dose to one chimeric and one non-chimeric mouse. 

2.3 Sample preparation for HLM and mouse urine 

2.3.1 Liquid-liquid extraction (LLE) 

For the in vitro metabolic assays the samples were first centrifuged at 4 °C (12,000 g, 5 min) 

followed by transfer of 400 µL into new tubes. All tubes were eventually stored in the 

refrigerator until all samples were collected. Transferred incubation samples were then 

evaporated, after which LLE was performed as described below. From the mouse urine 500 µL 

was used. 

A 50 µL aliquot of the IS 17α-methyltestosterone (2 µg/mL) was added to all samples. For the 

microsomal incubation samples (unconjugated fraction) LLE was performed as described in 

Chapter 3 (2.5.1 Liquid-liquid extraction (LLE)). To study the total fraction (conjugated and 

unconjugated steroids) in the chimeric mouse urine samples an enzymatic hydrolysis (β-

glucuronidase) was performed prior to the LLE as described in Chapter 3 (2.5.1 Liquid-liquid 

extraction (LLE)). 

After evaporation the residues were redissolved in 100 µL mobile phase (95/5 solvent A and B 

see 2.2.4 LC-MS/MS) for LC-MS analysis. For GC-MS analysis the evaporated samples were 
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derivatized by adding 100 µL derivatization solution containing MSTFA, NH4I and ethanethiol 

(500/4/2) and incubation during 1 h at 80 ± 5 °C. 

3 Results and discussion 

3.1 Analysis of the steroid product 

Analysis of the so-called ‘nutritional supplement’ ‘Ultradrol’ showed the presence of not only 

methylstenbolone, the steroid claimed on the label, but also methasterone (Figure 4.1). Such 

contamination is not unique [18, 19] and indicates lack of quality in production or 

manufacturing which can lead to additional health risks [20]. In 2006 the US Food and Drug 

Administration warned against the manufacture of unapproved steroids in dietary supplements, 

such as methasterone. In this way the general public was also made aware of the possible 

dangerous effects associated with these so-called dietary supplements. Indeed, toxic effects on 

liver and kidney were already demonstrated after use of ‘Superdrol’, which contains the steroid 

methasterone [21-23]. Methasterone is also explicitly mentioned on World Anti-Doping 

Agency’s prohibited list, while methylstenbolone will be prohibited since it has similar biological 

effects and a similar chemical structure [24]. Methasterone is the 17α-methylated derivative of 

drostanolone. The metabolism of methasterone has already been extensively investigated with 

both in vitro [25] and in vivo human [26-28] and chimeric mouse [8] studies. 

To further investigate the metabolism of methylstenbolone, the steroid product was 

fractionated by HPLC. Analysis of the fraction containing methylstenbolone (F1) by GC-MS after 

TMS-derivatization, showed a molecular ion with m/z 460 corresponding to double silylation. 

 

Figure 4.1. Chemical structures of (A) methasterone (marketed as ‘Superdrol’) and (B) methylstenbolone 
(marketed as ‘Ultradrol’). 

Additionally, three characteristic ions: m/z 193, 208 and 221 (Figure 4.2) were present in the 

structure. These ions were already described for stenbolone [15] and are characteristic for 

substances with a (2-methyl-1-en-3-one)-A-ring structure. Additional analysis of the fraction by 

LC-HRMS showed a characteristic [M+H]+ with a m/z of 317.2473. This represents a mass 
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deviation of 0.63 ppm from the theoretical mass of the protonated molecule. Higher energy 

collision dissociation (HCD) fragmentation of the steroid yielded product ions at m/z 145.1013 

and 201.1640. A product ion of m/z 145 (theoretical accurate mass of 145.1017) has also been 

described by Pozo et al. [29] as a typical ion for 1-ene-3-keto anabolic steroids and would 

originate from the B and C rings. In this study one abundant ion was also observed for the 1-

ene-3-keto steroids, which was related to a three ring structure including the B, C and D rings. 

For methylstenbolone 201.1640 was present as abundant ion, this ion is originating from the B, 

C and D rings as this ion was also observed for 17-methyl-1-testosterone, 201.1647 [29] and, 

both steroids have an identical structure at the B, C and D ring. As observed for other 1-ene-3-

keto steroids, methylstenbolone also showed consecutive losses of water related to the 

numbers of oxygen atoms in the molecule. Additionally, a loss of acetone (-58 Da) was 

observed, as was described by Pozo et al. [29] for the steroid 17-methyl-1-testosterone. 

To investigate the metabolism of methylstenbolone, this steroid was administered to both the 

HLM and chimeric mouse model. 

3.2 Metabolism of methylstenbolone 

3.2.1 HLM experiments 

For the isolated and purified methylstenbolone (fraction F1), eleven possible metabolites (U1-

U10 and U13) were detected by GC-MS after microsomal incubation (Table 4.1). These 

metabolites were identified by comparing chromatograms of pre- and post-incubation samples. 

Mass spectra of the metabolites are presented in Figure 4.2. As the metabolites detected in all 

microsomal incubation samples were very similar, only the results of the 4 h incubation sample 

are shown in the figures. 

The main detected metabolites are hydroxylated analogues of the parent compound, with an 

m/z 548 (U1-U4, U6-U8, and U10). The mass spectra show a typical, but non-informative, loss of 

a methylgroup by presence of m/z 533 after TMS-derivatization. 

To further elucidate and confirm the structures of metabolites U1-U10, detected by GC-MS, 

precursor ion scanning was performed on LC-MS/MS. The selected fragment ions were m/z 105, 

91 and 77 (Figure 4.3). These ions can be explained by the complete fragmentation of either the 

B or the C ring at high CE as described by Pozo et al. [17]. 
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Table 4.1. Overview of metabolites detected after incubation of isolated methylstenbolone and reference 
standard of methasterone to HLM and the chimeric mouse model by GC-MS. Ion transitions of selected 
compounds in the developed multiple reaction monitoring (MRM) method (GC-MS/MS) for the detection of 
methylstenbolone and methasterone misuse are listed. 

Steroida RTb 
Characteristic 
TMS-ions 

MRM 
transitions 

CEc 
(V) 

HLM 
Chimeric 
mouse 

Methylstenbolone 14.67 460 
445/370/355/ 
221/208/193/ 
143 

460->208 
460->220 
460->193 
460->143 

5 
5 
30 
30 

√ / 

ISd 14.82 446 
431/301/143 

446->301 
446->198 

15 
20 

√ √ 

U1 15.48 548 
533/458/445/ 
353/221/208/ 
193/143 

445->193 
445->149 
445->219 
445->245 

5 
5 
10 
10 

√ / 

U2 15.61 548 
533/458/445/ 
221/208/193 

  √ / 

U3 15.66 548 
533 

  √ / 

U4 15.75 548 
533/458/443 
/309/295/281/ 
143 

533->281 
533->149 
533->193 
533->109 

5 
5 
30 
5 

√ / 

U5 15.81 546 
531 

  √ / 

U6 16.10 548 
533/458/443/ 
256 

548->195 
548->353 
548->281 

20 
20 
20 

√ / 

U7 16.25 548 
533/309/295/ 
281/143 

533->281 
533->109 
533->149 

10 
20 
20 

√ / 

U8 16.33 548 
533 

  √ / 

U9 16.46 546 
531 

  √ / 

U10 16.56 548 
533/256 

  √ / 

U11 16.72 634 
544/529/454 

634->454 
634->529 
634->323 

10 
10 
10 

/ √ 

U12 16.81 636 
621/533 

636->546 
636->351 
636->441 

10 
10 
10 

/ √ 

U13 16.23 502 
 

502->208 
502->193 

10 
20 

√ / 
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Table 4.1. Continued. 

Steroida RTb Characteristic 
TMS-ions 

MRM 
transitions 

CEc 
(V) 

HLM Chimeric 
mouse 

U-Externale n.d. 550 
218/231 

550->143 
550->117 
550->141 

5 
15 
15 

/ / 

Methasterone 15.06 462 
447/419/157/ 
143 

462->143 
462->141 
462->419 
462->216 

15 
15 
15 
15 

√ √ 

S1 13.15 464 
449/374/359/ 
284/269/143 

449->269 
449->213 

10 
20 

√ / 

S2 15.67 552 
537/462/447/ 
420/332/157/ 
143 

537->283 
537->267 
537->357 
537->227 

10 
10 
10 
10 

√ / 

S3 16.22 550 
535/460/445/ 
433/420/143 

535->405 
535->203 
535->215 

10 
20 
20 

√ ±f 

a 
U = metabolites of methylstenbolone; S = metabolites of methasterone

 

b 
RT = Retention Time (when analyzing with the full scan GC-MS method)

 

c 
CE = Collision Energy

 

d 
IS = 17α-methyltestosterone 

e
 U-External = metabolite ‘S2’ detected in the study of Cavalcanti et al., with as proposed structure 2α,17α-

dimethyl-3α,16ξ,17β-trihydroxy-5α-androst-1-ene [16] 
f
 detection of an isomer of S3 in chimeric mouse urine [8] 

By LC-MS/MS analysis in total seven metabolites were detected. These metabolites could be 

divided into three classes of derivatives (I-III) as can be seen in Figure 4.3. 

Categories I and II correspond to metabolites with mass m/z 548 (U1-U4, U6-U8, and U10) and 

546 (U5 and U9) by GC-MS after TMS-derivatization, respectively. By GC-MS, three additional 

metabolites were detected for category I (8 versus 5) and one metabolite more for class II (2 

versus 1). The metabolite belonging to class III was not detected by GC-MS. 

The GC-MS mass spectra of U1 and U2 exhibit the characteristic ions m/z 193, 208 and 221 

(Figure 4.2). These three ions are formed by fragmentation of the intact A and B rings [15], 

similar to the parent compound. The ion at m/z 445 (loss of m/z 103) is characteristic for 

steroids bearing a hydroxymethyl group either at C18 or C19 positions and results from the loss 

of a CH2-OTMS ion from the molecular ion [14]. Hence, GC-MS indicated that these metabolites 

are 18-hydroxylated analogs (epimers) of methylstenbolone. Analysis of the microsomal 

incubation sample (4 h) with the product ion method in LC-MS, resulted in the detection of a 

metabolite, characterized by a loss of formaldehyde (M+H-H2O-H2CO), besides three losses of 
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water. As described previously, such a loss of formaldehyde is observed for steroids with a 

hydroxymethyl group [29]. Hence, this finding confirmed the presence of C18 

hydroxymethylated analogs of methylstenbolone. 

 
Figure 4.2. GC-MS mass spectra of the detected metabolites of methylstenbolone after HLM incubation or 
administration to the chimeric mouse model of the purified steroid product. 
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For metabolites U4 and U7 the ion at m/z 281 is abundantly present in the GC-MS mass 

spectrum, as well as ions at m/z 295 and 309. The simultaneous occurrence of these three ions 

is indicative for a hydroxylation of the A ring (C1 or C4) (Figure 4.2). Indeed, these three ions are 

formed via similar fragmentation patterns to m/z 193, 208 and 221 in the parent compound, but 

indicate that there is an additional hydroxylfunction in the A ring. 

For U3/U8 and U6/U10 similar GC-MS mass spectra were obtained with an apparent molecular 

weight (MW) of 548. For these monohydroxylated metabolites none of the characteristic ions of 

the parent compound were present, indicating alterations to the A ring. However, lack of 

characteristic fragmentation (Figure 4.2) prevented proper elucidation of the structure. 

Compatible metabolites were detected in class I by LC-MS. 

Additionally, minor metabolites formed by a combination of oxidation (dehydrogenation) and 

hydroxylation of the parent compound were observed (U5 and U9). These substances gave an 

apparent molecular ion at m/z 546. In LC-MS, this could be compatible with the metabolites 

belonging to class II. 

 

Figure 4.3. LC-MS/MS precursor ion scan chromatograms of (A) blank (substrate stability) sample and (B) 4 h 
microsomal incubation sample of isolated methylstenbolone (m/z 317). IS = 17α-methyltestosterone (m/z 303). 

Based upon the LC-MS/MS data, the metabolite belonging to class III could be a 

dehydrogenated metabolite of methylstenbolone. 

One additional and interesting marker, metabolite U13, was detected by GC-MS and not by LC-

MS. U13 has an apparent molecular ion of m/z 502 after TMS derivatization (Table 4.1). The 

characteristic ions at m/z 193, 208 and 221 are present in its mass spectrum (Figure 4.2). The 
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presence of these three ions indicates that no modifications occurred at the A or B ring of the 

parent compound. The detected mass (m/z 502) cannot be explained based on common 

modifications observed in phase I metabolic reactions (reduction, oxidation, hydroxylation, 

etc.). Indeed, the difference in mass of metabolite U13 and the parent compound is only m/z 

42. Loss of an OTMS-group (m/z 90) could not be detected in the mass spectrum. Therefore, the 

nature of the modification of this metabolite in the C/D ring is unclear. Moreover, this 

metabolite was not detected in the LC-MS method. Hence, it cannot be excluded that U13 is an 

artefact, formed through rearrangement of the C/D ring after derivatization, rather than a 

metabolite. 

3.2.2 Excretion studies with the chimeric mouse model 

In vivo studies with the chimeric mouse model were also performed to study the metabolism of 

methylstenbolone. Methylstenbolone, purified product (F1), was administered to both chimeric 

as non-chimeric mice to be able to control for interspecies differences. 

In the chimeric mouse urine metabolites U1-U10 and U13 could not be confirmed. Also the 

parent compound could not be detected. However, two other, additional, dihydroxylated 

metabolites (U11 and U12) were detected (Figure 4.2). These two compounds were also 

detected in the non-chimeric mouse. Because hydroxylation has been reported as a major 

metabolic pathway in mice [5-9], it cannot be excluded that these metabolites are murine 

rather than human. 

U11 is formed by a combination of a dehydrogenation and dihydroxylation of the parent 

compound. The positions of hydroxylations could not be identified for U11, as no informative 

ions are present in the mass spectrum of this metabolite. The presence of the ion with m/z 533 

(M-103) in the mass spectrum of U12 indicates a hydroxylation at the C18 or C19 position [14], 

as could also be seen in U1 and U2. At the same time m/z 295 is observed, which can indicate 6-

hydroxylation [30]. 

3.3 Comparison of methylstenbolone and methasterone metabolism 

In contrast to our findings for methylstenbolone, the article of Cavalcanti et al. [16] does not 

mention the presence of methasterone in ‘Ultradrol’. Two metabolites were detected in their 

studies, and the diagnostic ions m/z 218 and 231 in their mass spectra indicate 16-hydroxylated 

derivatives of methylstenbolone. The proposed structures for their metabolites are 2,17α-

dimethyl-16ξ,17β-dihydroxy-5α-androst-1-en-3-one and 2,17α-dimethyl-3α,16ξ,17β-trihydroxy-

5α-androst-1-ene [16]. These metabolites were not detected in our metabolism studies of 

methylstenbolone. Interestingly, however, the mass spectrum of the 3-keto reduced metabolite 

described by Cavalcanti et al. shows strong resemblance with the 16-hydroxylated metabolite of 
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methasterone, previously described by Gauthier et al. [25]. Taking into account the 

simultaneous presence of methasterone and methylstenbolone in the ‘Ultradrol’ in our study, it 

cannot be excluded that this metabolite originates from a contamination in the product. 

 

Figure 4.4. EIC (m/z 143) after 4 h incubation of steroid product containing methasterone and methylstenbolone 
and incubation of the reference standard of methasterone with HLM. Metabolites S1, S2 and S3 of methasterone 
are indicated. The mass spectrum of S3 is shown. 

However, based upon the similar structures of methasterone and methylstenbolone (Figure 

4.1), it cannot be excluded that both steroids share - to some extent - the same metabolites. 

Therefore the methasterone standard was incubated with HLM. Three abundant metabolites 

(S1-S3) were detected in the microsomal incubation sample. Further identification of these 

metabolites was based on the correlation of the mass spectra detected in the HLM studies with 

the metabolites already described in literature. Metabolites S1 and S2 are already described 

[25-28] as metabolites of methasterone (Figure 4.4). Metabolite S1 was identified in literature 

as 2α,17α-dimethyl-5α-androstane-3α,17β-diol and is the most important metabolite of 

methasterone in human excretion studies [26-28]. In the studies of Bylina et al. [28] and 

Gauthier et al. [25] metabolite S2 was also detected, with as proposed structure 2α,17α-

dimethyl-5α-androstane-2β,3α,17β-triol [25]. S3, a hydroxylated metabolite of methasterone, 

has not yet been described. The presence of m/z 143 in the mass spectrum of S3 excludes 

hydroxylation in the D ring. Informative ions for an extra hydroxylation in the A ring like m/z 420 

and 421 are present, however the ion m/z 332 was not present [25]. 
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The methasterone metabolism after administration to the chimeric mouse model has already 

been studied by our laboratory [8]. Unlike with the microsomal incubation samples, metabolites 

S1 and S2 were not found in the chimeric mouse urine. Dihydroxylated derivatives of 

methasterone previously reported in the chimeric mouse model could be confirmed with the 

microsomes (results not shown here). 

The results in both models indicate that methasterone does not yield detectable metabolites of 

methylstenbolone. 

 

Figure 4.5. Developed MRM method to detect misuse of methylstenbolone via parent compound, U1, U4, U6, 
U7, U11, U12 and U13. This method was applied to a mix of microsomal incubation samples and chimeric mouse 
urine after administration of isolated methylstenbolone. 
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Administration of the raw steroid product, containing both steroids methylstenbolone and 

methasterone, to HLM (Figure 4.1) and the chimeric mouse model resulted mainly in the 

detection of methasterone metabolites. The same metabolites were detected as those 

described above after administration of methasterone standard to both models. 

Goudreault et al. [15] indicated that stenbolone is relatively stable to reductive metabolism 

because of the methyl group at C2 and the double bond in C1. Similarly, this could also explain 

why methylstenbolone compound is not converted to methasterone. 

In case of stenbolone the major metabolites retained the 1-ene-3-keto or the 1-ene group and 

hydroxylation of C16 was promoted [15]. This type of metabolites was not confirmed in our 

study but could be detected in a human excretion study of Cavalcanti et al. [16]. In our study 18-

hydroxyderivatives of methylstenbolone were detected, which was found to be typical for 

steroids with C1 or C2 methylgroups [14, 31]. Such metabolites have also been described as 

metabolites for stenbolone in human urine samples [14]. 

3.4 Application to real samples 

Based upon the results, a multiple reaction monitoring (MRM) detection method on GC-triple 

quadrupole MS for the misuse of methylstenbolone was developed. This method screens for the 

parent compound of methylstenbolone and metabolites U1, U4, U6, U7, U11, U12 and U13; 

since these were selected as most specific markers (Table 4.1). 

The method was also applied to a mix of HLM incubation samples and chimeric mouse urine 

after administration of methylstenbolone. All eight compounds could be detected with this 

highly specific and sensitive method (Figure 4.5). One of the metabolites found in the study of 

Cavalcanti et al. [16], 2,17α-dimethyl-3α,16ξ,17β-trihydroxy-5α-androst-1-ene (proposed 

structure) here named as U-External, was added to the MRM method (Table 4.1). As the 

product contains both methylstenbolone and methasterone, the parent compound of 

methasterone and its metabolites (S1-S3) were also included into the developed method (Table 

4.1). 

Three doping control samples that had previously shown the presence of methasterone were 

reanalyzed using this method. In all these samples the parent compound of methasterone and 

its metabolite S1 could be detected (results not shown here). One sample showed the presence 

of methylstenbolone (parent) and metabolite U13 and was therefore considered as a sample 

that did not exclusively contain methasterone and its metabolites (Figure 4.6). The significance 

of the other discovered methylstenbolone metabolites U1-U12 is unclear, as at first sight they 

were not detected in the studied human urine sample. The metabolite U-External was also not 

detected in this human urine sample.  
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These results however do illustrate the applicability of the developed method in this study to 

adequately detect misuse of methylstenbolone as well as the necessity to screen for the parent 

drug and not only for the previously identified metabolites [16]. Moreover, metabolite U13 

seems to be a useful marker for methylstenbolone misuse in human urine. Unfortunately, the 

structure of this compound could not be unequivocally determined. 
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Figure 4.6. GC-MS/MS chromatograms obtained in the application of the developed MRM method to (A) 
negative human urine sample and (B) human urine sample declared positive for methasterone. 
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4 Conclusions 

HLM and a chimeric mouse model were used to investigate the metabolism of the substance 

marketed as ‘the nutritional supplement’ ‘Ultradrol’. According to the label this product 

contains methylstenbolone. However, when analyzing the product a non-declared steroid, 

methasterone, was also detected. This proves that labels are not always reliable but also shows 

the dangers for the consumers of these so-called supplements, as use of methasterone has 

already been associated with some serious adverse health effects [21-23] and no clear 

information is available on the potential toxicity and adverse effects of the co-administration of 

methylstenbolone and methasterone. 

Incubation of this steroid product containing both steroids methylstenbolone and methasterone 

with HLM gives rise predominantly to methasterone metabolites; the same could be seen in the 

chimeric mouse urine. Neither of the metabolites previously described in Cavalcanti et al. were 

detected in the HLM or chimeric mouse experiments. 

Further experiments were performed to elucidate the metabolism of methylstenbolone. These 

experiments, with purified steroid product, showed that methylstenbolone is neither converted 

into methasterone nor metabolites of this compound. Both models studied indicated that 

methylstenbolone is metabolized by hydroxylation and/or dehydrogenation. In the HLM 

incubation samples mainly monohydroxylated compounds were detected, whereas in the 

chimeric mouse urine only dihydroxylated compounds were found. Metabolites U1 and U2 were 

18-hydroxy metabolites of methylstenbolone and the hydroxyl group of U4 and U7 is proposed 

to be located in the A ring. 

The 16-hydroxylated metabolites previously described by Cavalcanti et al. were not detected, 

neither in the two models nor in the analyzed urine samples. However, an excellent correlation 

with previous human administration studies was found for the metabolism of methasterone. 

Based upon the current results, it is suggested that, for the effective control of the misuse of the 

steroid product (methasterone and methylstenbolone), a detection method should at least 

contain transitions for methasterone, S1 and methylstenbolone. Metabolite U13 could also be a 

useful marker for methylstenbolone misuse. However, the structure of this metabolite could not 

be unequivocally established. The relevance of the hydroxylated derivatives of 

methylstenbolone should also be further investigated. 
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Abstract 

The use of anabolic steroids is prohibited in sports. Effective control is done by monitoring their 

metabolites in urine samples collected from athletes. Ethical objections however restrict the use 

of designer steroids in human administration studies. To overcome these problems alternative 

in vitro and in vivo models were developed to identify metabolites and to assure a fast response 

by anti-doping laboratories to evolutions on the steroid market. 

In this study human liver microsomes and an uPA+/+-SCID chimeric mouse model were used to 

elucidate the metabolism of a steroid product called ‘Xtreme DMZ’. This product contains the 

designer steroid dimethazine (DMZ), which consists of two methasterone molecules linked by 

an azine group. In the performed stability study, degradation from DMZ to methasterone was 

observed. 

By a combination of liquid chromatography-high resolution mass spectrometry (LC-HRMS) and 

gas chromatography-(tandem) mass spectrometry (GC-MS(/MS)) analysis methasterone and six 

other DMZ metabolites (M1-M6), which are all methasterone metabolites, could be detected 

besides the parent compound in both models. The phase II metabolism of DMZ was also 

investigated in the mouse urine samples. Only metabolites M1 and M2 were exclusively 

detected in the glucuro-conjugated fraction, all other compounds were also found in the free 

fraction. For an effective control of DMZ misuse in doping control samples the screening for 

methasterone and methasterone metabolites should be sufficient. 
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1 Introduction 

Since the turn of the millennium designer steroids have appeared on the market to circumvent 

legal and sport ethical prohibitions, leading to the sales of these steroids in so-called dietary 

supplements via the internet. Methasterone was such a steroid and was added to the ‘Designer 

anabolic steroid control act of 2012’ of the United States government [1]. To circumvent the 

prohibition of the sales of anabolic steroids included in the law, ‘supplement’ companies tend to 

be creative, as shown with the designer steroid dimethazine (DMZ), which consists of two 

methasterone molecules linked by an azine group (Figure 5.1).  

 

Figure 5.1. Chemical structures of dimethazine (A), methasterone (B), M1 (S1) and tentative structures for 
metabolites M2 till M6.  

In animal experiments a good anabolic-androgenic dissociation was observed [2], therefore 

therapeutic indications for DMZ were to stimulate weight gain and protein anabolism [3]. DMZ 
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or mebolazine is no longer sold as prescribed drug (Roxilon) [3], but is still available on the 

black market (e.g. Dymethazine, Xtreme DMZ, Powerdrol-10, etc.). 

The metabolism of methasterone has already been extensively investigated with both in vitro 

[4-6] and in vivo human [7-9] and chimeric mouse [10] models. Owing to the structural 

relationship between DMZ and methasterone and the reported toxic effects on liver and kidney 

after administration of methasterone [11-13] the use of human excretion studies is ethically 

limited. Moreover, a case of liver injury was linked to combined administration of DMZ and 

methylstenbolone [14]. Therefore, the aim of this study was to elucidate the metabolism of 

DMZ with human liver microsomes (HLM) and an uPA+/+-SCID chimeric mouse model to target 

the best DMZ metabolites for doping control purposes. 

2 Materials and methods 

2.1 Chemicals and reagents 

Reference materials of DMZ (17β-hydroxy-2α,17α-dimethyl-5α-androstan-3-one-(3,3’)-azine) 

and methasterone (17β-hydroxy-2α,17α-dimethyl-5α-androstan-3-one) were purchased from 

Toronto Research Chemicals (TRC, North York, Canada). 2α,17α-dimethyl-5α-androstane-

3α,17β-diol (S1) was acquired from WAADS. ‘Xtreme DMZ’ from Anabolic Technologies was 

purchased over the internet. Hydrochloric acid was from Merck (Darmstadt, Germany). The 

internal standard (IS) 17α-methyltestosterone was purchased from Organon (Oss, the 

Netherlands). Pooled HLM from 20-30 donors, phosphate buffer pH 7.4, the NADPH 

regenerating system solutions A and B were purchased from BD Gentest (Erembodegem, 

Belgium). Ethanol (EtOH) was purchased from Biosolve (Valkenswaard, the Netherlands). Diethyl 

ether and methanol (MeOH) were obtained from Fisher Scientific (Loughborough, UK). Na2SO4, 

NaOH, NaHCO3, K2CO3, Na2HPO4.2H2O, NaH2PO4.H2O, NH4I, LC grade water and LC grade MeOH 

were from Merck (Darmstadt, Germany). The β-glucuronidase preparation from Escherichia coli 

(E. coli) K12 was purchased from Roche Diagnostics (Mannheim, Germany). MSTFA was from 

Karl Bucher (Waldstetten, Germany). Ethanethiol was obtained from Acros (Geel, Belgium). 

Phosphate Buffered Saline (PBS) was from Invitrogen (Merelbeke, Belgium). The gasses helium 

(He) and oxygen free nitrogen (OFN) were delivered by Air Liquide (Bornem, Belgium).  

2.2 Instrumentation 

2.2.1 GC-MS(/MS) 

The GC-MS analyses were performed with an Agilent 6890 gas chromatograph interfaced to an 

Agilent 5973 mass spectrometer and for the GC-MS/MS analysis with an Agilent 7890 gas 
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chromatograph coupled with an Agilent 7000 B triple quadrupole mass (all from Agilent 

Technologies, Palo Alto, USA). 

Full scan GC-MS analysis was performed at a mass range of m/z 50–800 and 2 cycles/s. A 1 μL 

aliquot of sample was injected into the GC-MS system using a 7683 series autosampler with a 

splitless injector (Agilent Technologies). The GC separation was performed using a JW Ultra-1 

capillary column (17 m× 200 μm i.d., 0.11 μm; Agilent Technologies) and He as mobile phase at a 

flow rate of 0.6 mL/min at 10.15 psi (constant flow). The temperature program and other 

instrumental parameters were applied as described in Chapter 3 (2.2.1 GC-MS). The GC-triple 

quadrupole MS MRM method for the detection of methasterone and its metabolites (S1, S2 and 

S3) was applied as described previously [6] (Chapter 4). 

2.2.2 LC-MS/MS 

All experiments (low and high resolution) were performed under the same LC conditions as 

described below. A Finnigan Surveyor Autosampler Plus and a MS Pump Plus (Thermo Scientific, 

Bremen, Germany) were used for the low resolution experiments. For the high resolution (HR) 

experiments an Accela autosampler and 1250 pump (Thermo Scientific, Bremen, Germany) 

were used. The LC separation was performed using a Varian Omnispher C18 column (100 mm×2 

mm I.D., 3 µm) (Varian, Sint-Katelijne-Waver, Belgium) at a flow rate of 250 µL/min. 25 µL of 

sample was injected into the instrument. The mobile phase consisted of LC grade water and 

MeOH both with 1 mM NH4COOH and 0.001% HCOOH. In the used gradient program the 

percentage of the methanolic mobile phase changed as follows: 0 min, 45%; 0.5 min, 45%; 3 

min, 75%; 3.5 min 75%; 3.6 min, 85%; 5 min, 85%; 5.1 min, 95%; 10.0 min, 95%; 10.10 min, 

100%; 10.5 min, 100%; 10.6 min, 45% and 15 min, 45%. 

The LC-HRMS instrument (Exactive from Thermo Scientific) operated in full scan (both positive 

and negative ionization) mode from m/z 100-2000 at a resolving power of 50,000 and 

acquisition rate of 2 Hz. Additionally, a precursor ion scan method, with selected product ions 

m/z 77, 91 and 105 was applied to search for (unknown) metabolites [15] (Chapter 4 – 2.2.4 LC-

MS/MS) by a (low resolution) TSQ Quantum Discovery MAX triple quadrupole mass 

spectrometer MS (Thermo Scientific). Product ion scans with [M+H]+ or [M+NH4]+  as selected 

precursor ion were also performed by a LC-HRMS instrument (Q-Exactive from Thermo 

Scientific) with collision energies (CE) of 25, 35, 45 and 55 eV at a resolving power of 70,000. 

Using this method also five fractions (Fr1: 2.0-3.5 min; Fr2: 3.5-4.2 min; Fr3: 4.2-4.7 min; Fr4: 

5.2-5.8 min and Fr5: 5.8-7.5 min) were collected by switching the valve from the detector to the 

‘waste’ to collect these fractions into separate tubes. 
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Relative abundances of the detected metabolites were calculated from the basis of the absolute 

peak height from an extracted ion chromatogram, of the most abundant ions, of the 

metabolites relative to the absolute peak height of the IS in the samples. 

2.3 Extraction of the steroid from the steroid product 

The steroid was isolated from the steroid product by adding 5 mL of EtOH to the content of 3 

capsules (each containing according to the label 16 mg DMZ) and homogenization by rolling for 

2 h and followed by centrifugation (1500 g, 5 min). 100 µL of the upper layer, after a tenfold 

dilution, was then used for LC-HRMS analysis. 

2.4 Stability study of dimethazine 

DMZ was spiked at 20 µg/mL in 7.5 mL of three different storage solutions: two aqueous 

(acetate buffer pH 5.2 and hydrochloric acid 0.1 N pH 0.5) and MeOH. The spiked samples were 

incubated at 37 °C during 8 h. 100 µL aliquots were taken in triplicate at 0 min and every 30 min, 

after which these were stored at -20 °C until analysis. For the stability test in 0.1 N HCl, the t = 0 

min was taken first, before adding HCl. Before analysis the samples (aqueous solutions) were 

diluted with 100 µL of MeOH/(25% NH3 in H2O) (95/5) or 100 µL H2O (for the methanolic 

solution) and 20 ng of the IS (17α-methyltestosterone) was added to all samples. A reference 

standard of DMZ (20 µg/mL) was also analyzed in triplicate. 

Linear curves were fitted through the logarithmic areas according to log(At) = log(At0) - 0,43 k*t. 

The half-life (t1/2) was also calculated and provides a measure of the degradation reaction rate. 

2.5 In vitro and in vivo metabolism studies 

The in vitro HLM incubation studies were performed as described in Chapter 1 (7.2.2.2 Protocol 

in vitro metabolism studies; Table 1.6). In short, the reference standard of DMZ (final 

concentration of 40 µg/mL) was incubated with HLM as test compound. Substrate stability 

samples (blank; without HLM) and system blank samples (without test compound) control 

samples were used to verify the enzymatic reactions. Methasterone was used as test compound 

in the positive control samples. At the appropriate time (after 2, 4, and 18 h) the enzymatic 

reactions were stopped by adding 250 µL ice-cold MeOH. 

The in vivo metabolism studies were performed as described in Chapter 1 (7.2.3 In vivo 

metabolism studies). The project was approved by the Animal Ethics Committee of the Faculty 

of Medicine of Ghent University (ECD 06/09). 200 µL of a 20 mg/mL solution (4 mg) of the DMZ 

reference standard dissolved in ethanol/PBS (20/80) was administered by oral gavation to two 

non-chimeric and four chimeric mice. 
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2.6 Sample preparation for in vitro and in vivo samples 

The sample preparation procedure, for 400 µL of the in vitro and 500 µL of in vivo samples, has 

been described in Chapter 3 (2.5.1 Liquid-liquid extraction (LLE)). In short, a 50 μL aliquot of the 

IS 17α-methyltestosterone (2 μg/mL) was added to all samples. For the in vitro samples 

(unconjugated fraction) LLE was performed at pH 9.5 (carbonate buffer) with diethylether. To 

study the total (unconjugated and glucuro-conjugated) fraction in the in vivo samples an 

enzymatic hydrolysis (β-glucuronidase) was performed prior to the LLE as described in Chapter 3 

(2.5.1 Liquid-liquid extraction (LLE)). 

To study the phase II metabolism of DMZ (in vivo) the separated free and glucuro-conjugated 

fractions were also investigated of a blank sample and a urine sample collected 24 h after 

administration. Therefore the free fraction of the in vivo samples was first studied in these 

samples by performing LLE without hydrolysis. After separation of the organic fraction 

hydrolysis with β-glucuronidase from E. coli and subsequent LLE (glucuronidated fraction) was 

performed on the same samples. 

Finally, the residues of the dried organic layers were dissolved in 200 µL MeOH/H2O (50/50) for 

LC-MS analysis or TMS-derivatized for GC-MS analysis by adding 100 μL derivatization solution 

containing MSTFA, NH4I and ethanethiol (500/4/2) and incubation for 1 h at 80 ± 5 °C. 

3 Results and discussion 

3.1 Analysis of the steroid product 

In the ‘supplement’ both DMZ and methasterone (31.5% relative to DMZ in the total ion 

chromatogram) were detected by LC-HRMS, with mass deviations of <2 ppm ([M+H]+ 

experimental masses were 633.5357 (0.51 ppm) and 319.2634 (0.90 ppm) respectively). The 

presence of methasterone could be due to instability of DMZ as methasterone was also 

detected as trace amounts (1.8% relative to DMZ) in the methanolic solution of the DMZ 

reference standard. Therefore a small stability study was performed. 

3.2 Stability study of dimethazine 

The stability of DMZ was tested in two aqueous conditions and in MeOH (results not shown 

here). In the methanolic solution of the DMZ reference standard, methasterone was observed, 

but the stability study showed that DMZ is relatively stable in MeOH (half-life of 24.8 h at 37 °C). 

In both aqueous conditions a decrease of DMZ was observed, which was accelerated at the 

lower pH (t1/2 of 223 min at pH 5.2 versus t1/2 of 23.7 min at pH 0.5). The hydrolysis of 
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hydrazones at acidic conditions has also been described before [16]. The high degradation 

speed at low pH indicates that after ingestion of the product, conversion in the stomach of DMZ 

into methasterone will be substantial. The exact in vivo conversion rate is however difficult to 

predict based upon the performed experiments as the pH in vivo will range between the two 

tested conditions (pH 0.5 and 5.2). The decreasing DMZ is correlated with the formation of 

methasterone. No other DMZ degradation products were observed by LC-HRMS and GC-MS 

analysis. 

3.3 In vitro and in vivo metabolism studies 

The reference standard of DMZ was used for all the in vitro and in vivo metabolism studies, as 

this standard did only contain trace amounts of methasterone (1.8% relative to DMZ) as an 

impurity in comparison with the amount of methasterone detected in the steroid product. 

3.3.1 HLM incubations 

The HLM incubation samples were analyzed with a full scan HRMS acquisition method. Based 

upon general steroid metabolic pathways, exact masses for the parent and possible metabolites 

were extracted from the chromatograms with a mass window of 10 ppm. If a signal for a 

theoretical metabolite was detected, the metabolic nature was established by comparing the 

extracted chromatogram of the samples with those in negative (without DMZ) and blank 

(without HLM) control samples. The metabolites detected in all microsomal incubation samples 

were very similar, independent of incubation time. The results of the 4 h incubation sample are 

shown in Figure 5.2. In all samples incubated with DMZ, methasterone and six previously 

reported metabolites of methasterone [4-10] were detected (Table 5.1). These compounds 

were also detected in the positive control sample (methasterone incubation) but not in blank 

and negative control samples. The main metabolic pathway observed in the microsomal 

incubation samples was the hydrolysis of the azine group leading to methasterone, followed by 

hydroxylation (mono- (M2), di- (M3a/b) and trihydroxylations (M4)) and combination of a 

reduction and dihydroxylation (M6a/b) of methasterone. Metabolites M1 and M5 could not be 

detected by LC-HRMS analysis, as the proposed structure of these metabolites presents 

ionization difficulties in LC-MS. In these cases GC-MS(/MS) analysis was used to identify these 

substances. For metabolite M6 two isomers were detected of which only the sodium and 

ammonium adducts could be observed. For the other metabolites (M2, M3 and M4) also the 

protonated molecules could be detected. It is postulated that the additional hydroxyl group(s) 

of M6 (dihydroxylated 3-keto reduced methasterone metabolite) in comparison to saturated 

metabolites M1 and M5 could possibly lead to a better stabilization of sodium and ammonium 

adducts as was observed for other polyhydroxylated steroids, i.e. 9-fluoro-17a-methyl-androst-

4-ene-3a,6b,11b,17b-tetrol [17, 18].  
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In addition to the target processing method (based upon theoretical metabolic pathways), an 

untargeted precursor ion scan method was also used [15], which did not lead to the detection 

of additional metabolites. 

To obtain more structural information, the samples were also analyzed by GC-MS(/MS). 

Therefore, five LC-MS fractions (Fr1-Fr5) were collected from a 4 h HLM sample and a negative 

control. Methasterone was collected in Fr5 and used as a control compound. The other fractions 

were collected in such way that they only contained some selected metabolites (Fr1: M4 and 

M6a; Fr2: M6b and M3a; Fr3: M3b; Fr4: M2). 

Analysis of the collected fractions by GC-MS(/MS) confirmed the presence of methasterone in 

Fr5. However, no metabolites were observed in the first three fractions (Fr1-Fr3). It is assumed 

that the concentration of the metabolites in these first three fractions was too low for GC-MS 

detection. This assumption is supported by the fact that the collected metabolites in these 

fractions were di- or trihydroxylated methasterone metabolites and as observed in previous in 

vitro experiments by our research group these have in general lower abundance than 

monohydroxylated metabolites. In Fr4 a monohydroxylated methasterone metabolite was 

detected. Comparison with data from previous HLM incubations with methasterone shows that 

M2 corresponds to the previously described metabolite S3 (Table 5.1) [6]. 

The previously developed MRM method [6] (Chapter 4) for the detection of methasterone and 

its metabolites (S1, S2 and S3) was also applied to the microsomal incubation samples. All 

previously described metabolites (S1, S2 and S3) [6] could be detected after incubation of DMZ. 

M1 corresponds to S1, the main methasterone metabolite in human excretion studies [7-9], and 

M5 to S2 (Table 5.1). In the case of M1, the structure was unequivocally confirmed since its 

reference standard is commercially available. As no reference material is available for 

metabolite M5 structural characterization was based on correlation of the mass spectrum with a 

methasterone metabolite earlier described by Gauthier et al. and Geldof et al. [4, 6] (Chapter 4). 

The same characteristic fragment ions m/z 143, 130, 157, 332, 420 and 421 were observed in 

the GC-MS mass spectrum after TMS derivatization of M5. Gauthier et al. identified this 

metabolite as 2α,17α-dimethyl-5α-androstane-2β,3α,17β-triol by direct comparison with a 

synthetized compound [4]. 

3.3.2 Administration to the chimeric mouse model 

The in vivo results after administration of a single oral dose of 4 mg DMZ are mentioned in Table 

5.1. The in vivo results were consistent within each type of mouse (chimeric and non-chimeric) 

used in this DMZ administration study. With this dose, the parent drug could be detected in the 

chimeric and non-chimeric mouse urine however, methasterone was only detectable in the 

chimeric mouse urine (until 24 h after administration of DMZ). In both non-chimeric and 
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chimeric mouse urine the same four types of metabolites (M2, M3, M4 and M6) were detected 

as in the HLM incubation samples by full scan LC-HRMS analysis (Table 5.1). These metabolites 

were previously described as methasterone metabolites in chimeric mice administration studies 

with methasterone [10].  

Using the previously developed MRM method [6] metabolites M1 and M2 could be detected in 

the chimeric mouse urine samples after administration of DMZ, M5 was not detected. This is in 

accordance with previously performed in vivo methasterone administration studies [6, 10], in 

which M5 was also not found. M1 was only detected in the chimeric mouse urine indicating an 

exclusive human origin of this metabolite, whereas metabolite M2 was detected in both the 

non- and the chimeric mouse urine samples. 

Full scan GC-MS analysis of the mouse urine samples after derivatization led to the detection of 

two isomeric M3 and M6 metabolites (M3c and M6c, Table 5.1). The presence of fragment ions 

m/z 218 and 231 in their GC mass spectra indicate 16-hydroxylated methasterone metabolites. 

Based on their mass spectra these 16-hydroxylated methasterone metabolites could be linked 

to methasterone metabolites S2 (M6c) and S4 (M3c) reported by Lootens et al. [10]. M6c was 

also described as 2,16-dihydroxy and 3-keto reduced metabolite (5H) in the in vitro metabolism 

studies with methasterone by Gauthier et al. [4]. Typical ions for 16-hydroxylation (m/z 218 and 

231) and small fragment ions specific for 2-hydroxylation (m/z 508, 420 and 157) are present in 

the GC mass spectrum of M6c. 

To verify the presence of these metabolites in the in vitro samples full scan GC-MS analysis after 

TMS-derivatization was also applied. The fragment ions indicating 16-hydroxylation (m/z 218 

and 231) were not found in the GC-MS mass spectra of the in vitro produced metabolites (both 

after incubation of DMZ and methasterone (positive control)). These results are in agreement 

with the previous metabolism studies of methasterone by Geldof et al., where also no 16-

hydroxylated methasterone derivatives were found in the in vitro samples [6]. 

In addition to M3a/b and M6a/b isomeric M3 and M6 metabolites were also detected in the in 

vivo samples by LC-HRMS. These isomeric metabolites were not detected in the in vitro samples. 

Although no unequivocal link of GC and LC metabolites was established, it is postulated that 

these isomeric metabolites (LC) correspond to the 16-hydroxylated metabolites M3c and M6c 

detected by GC-MS. Metabolites M3c and M6c were previously reported as typical human 

metabolites [10]. The results from the current study however indicate that these metabolites 

can be both human and murine. The absence of M3c and M6c in the non-chimeric mouse 

samples in the previous study might be due to the fact that in the previous study both dose (0.8 

mg versus 4 mg) and volume of urine (100 µl versus 500 µl) were considerably lower [10]. 
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The relative abundances of the in vivo detected metabolites are reported in Table 5.1. All 

detected metabolites (M2, M3, M4 and M6) have higher relative abundances than DMZ and 

methasterone in the in vivo samples. In both the non-chimeric as well as in the chimeric mouse 

urine samples dihydroxylated metabolites (M3b and M6c) have the highest relative abundances 

by LC-MS. Based on these relative abundances DMZ metabolites M3b, M6 (a/b/c) and M2 might 

be incorporated into existing screening methods to anticipate DMZ misuse. However, 

extrapolation of these chimeric mouse results to the human situation is difficult. Therefore, the 

relevance of these described metabolites in real doping control samples should also be 

determined. Nevertheless, monitoring methasterone and its metabolites seems sufficient to 

screen for DMZ misuse. 

The chimeric mouse model was also used to investigate the phase II metabolism 

(glucuronidation) of DMZ (Table 5.1). Therefore the free and glucuro-conjugated fractions were 

compared after enzymatic hydrolysis (β-glucuronidase, E. coli K12) of the conjugated fraction. 

M1 and M2 were only detected in the glucuronidated fraction, whereas methasterone and all 

other metabolites could be detected in both fractions. The lower concentration of metabolites 

in the previously described study can explain why methasterone was then only detected in the 

glucuronidated fraction and metabolite M6c (S2) only in the free fraction [10]. 

3.4 Structure elucidation by performing LC-HRMS product ion scans 

To obtain more structural information of the metabolites M2, M3, M4 and M6 product ion scans 

were performed by LC-HRMS. Therefore product ion scans of DMZ and methasterone reference 

standards were also performed. All described product ions below were detected with <5 ppm 

mass deviation. 

The most abundant ion in the product ion scan mass spectrum of DMZ (m/z 318.2789) could be 

linked to the chemical formula C21H36ON with a mass deviation of 0.21 ppm (Figure 5.3). 

Although this fragment was formed in the product ion scan experiments it was not detected as 

degradation product and no DMZ metabolites with this fragment as core structure could be 

detected. In addition to the precursor ion (m/z 319.2631) also two losses of water were 

observed in the product ion scan mass spectrum of methasterone: m/z 301.2520 and 283.2415 

(Figure 5.3). Similar to what was observed for unconjugated-3-keto-anabolic steroids by Pozo et 

al. [19] the number of losses of water is identical to the number of oxygens in the molecule. 
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Figure 5.2. Extracted ion LC-HRMS chromatograms of methasterone and metabolites M2, M3, M4 and M6 in a 
negative control sample (without DMZ) (A), a blank control sample (without HLM) (B) and a 4 h HLM incubation 
sample of DMZ (C). 
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Additionally, a loss of 58 Da (acetone) was also observed for methasterone (m/z 243.2103 (-

H2O-58)), which would originate from the A-ring according to Pozo et al. [19]. Moreover, the B/C 

ring ions m/z 121.1013 and 107.0858, corresponding to C9H13 and C8H11 respectively, indicated 

in the paper of Pozo et al. for unconjugated 3-keto steroids were also detected. 

 

Figure 5.3. Product ion scan mass spectra (LC-HRMS) of DMZ (A) and methasterone (B) obtained from their 
reference standard with as selected precursor ion m/z 633.5354 (CE of 55eV) and 319.2632 (CE of 25eV) 
respectively. 

Similar to methasterone the number of water losses for metabolite M2 was identical to the 

number of oxygen atoms present in the molecule. As metabolite M2 is a hydroxylated 

methasterone derivative three losses of water were observed: m/z 317.2473, 299.2368 and 

281.2262 (Figure 5.4). The typical loss of acetone was also observed at m/z 259.2054 (-H2O-58) 

and 241.1945 (-2H2O-58). For M2 typical B/C ring fragments were also observed: m/z 133.1012 

(C10H13), 121.1013 (C9H13), 109.1015 (C8H13) and 107.0859 (C8H11). In addition a fragment ion 

m/z 191.1428 (C13H19O) was observed, which indicates a hydroxylation of the ion m/z 175.1478 

(C13H19) detected for methasterone. These fragments could originate from the A/B/C rings. The 

GC-MS mass spectrum of M2 also excludes hydroxylation in the D-ring by the presence of m/z 

143. However, the exact position of hydroxylation could not be determined by both techniques 

(LC-MS and GC-MS). The number of water losses for metabolite M3a/b/c (Figure 5.4) was also 

identical to the number of oxygen atoms present in the molecule, four losses of water were 

observed: m/z 333.2419, 315.2315, 297.2209 and 279.2105. The typical loss of acetone was also 

observed (m/z 257.1896 (-2H2O-58)). Besides the above described ions, some B/C-rings 

fragments were found: m/z 161.1323, 135.1167, 121.1014, 109.1014, 107.0858 (for M3a/b/c). 

These fragment ions correspond to C12H17, C10H15, C9H13, C8H13, C8H11 respectively. This data 

could indicate that no modifications occurred in the B/C-rings for M3 (a/b/c). 



 

 
 

Table 5.1. Overview of dimethazine metabolites detected in metabolism studies with HLM and the chimeric mouse model by LC-HRMS. See Figure 5.1 for 
tentative structures of the metabolites. 

Metabolites 
Metabolic 
reaction 

Chemical 
Formula 

Ion 
species 

Experimental 
m/z 

(Δ ppm) 

HLM  
RRT

c
 

Non-
chimeric 
mouse 

Chimeric 
mouse 
RRT

c
 

Relative 
abundance 

(%)
d
 

Fraction (in 
chimeric mouse 

urine)
e
 

Reference 

Dimethazine parent compound C42H68N2O2 [M+H]
+
 633.5327 (4.25) 1.84 √ √ 0.46 free + gluc / 

Methasterone  cleavage of the 
azine bound 

C21H34O2 [M+H]
+ 

319.2622 (3.13) 1.23 × √ 0.73 free + gluc [6-8] 

IS 17α-methyl- 
testosterone 

C20H30O2 [M+H]
+
 303.2305 (4.48) 1 √ √ 100 × / 

M1 (S1)
a
 reduction

 
C21H36O2 × × √ (GC) × √ / gluc [4-9] 

M2 (S3)
a
 hydroxylation C21H34O3 [M+H]

+
 335.2565 (4.57) 1.04 √ √ 39.75 gluc [4, 6, 10] 

M3 (a/b) dihydroxylation C21H34O4 [M+H]
+
 351.2514 (4.59) 0.76/0.82 √/√ √/√ 35.09/59.01 free + gluc [10] 

M3c
b
 dihydroxylation C21H34O4 [M+H]

+
 351.2520 (2.69) × √ (GC) 0.52 √ (GC) 13.47 free + gluc [10] 

M4 trihydroxylation C21H34O5 [M+H]
+
 367.2462 (4.76) 0.65 √ √ 6.61 free + gluc [10] 

M5 (S2)
a
 3-keto reduction + 

hydroxylation 
C21H36O3 × × √ (GC) × × × × [4-6, 9] 

M6 (a/b) 3-keto reduction + 
dihydroxylation 

C21H36O4 [M+NH4]
+
 370.2936 (4.28) 0.61/0.78 √/√ √/√ 40.75/43.45 free + gluc [4, 5, 10] 

M6c
b
 3-keto reduction + 

dihydroxylation 
C21H36O4 [M+NH4]

+
 370.2949 (0.30) × √ (GC) 0.40 √ (GC) 98.87 × [9, 10] 

a
 S1-S3 refer to metabolites described in [6] 

M1 (S1) = 2α,17α-dimethyl-5α-androstane-3α,17β-diol; 
proposed structure of M5 (S2): 2α,17α-dimethyl-5α-androstane-2β,3α,17β-triol [4, 6, 9], 
b 

Isomeric M3 and M6 metabolites were detected in the chimeric mouse model by both LC-MS and GC-MS. The ions m/z 218 and 231 in their GC-MS mass spectrum after TMS-
derivatization indicate 16-hydroxylated metabolites.

 

c 
RRT= relative retention time (to IS, 5.21 min) 

d
 relative abundances for each peak were calculated, relative to the IS, in chimeric mouse urine samples 

e
 study of glucuro-conjugation in chimeric mouse urine samples: free or gluc= glucuronidated fraction 

×: not detected; √: detected ; √ (GC) detected by GC-MS(/MS) analysis. 
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M3c was described as x,16-dihydroxylated methasterone metabolite by Lootens et al. [10]. In 

analogy with M5 and M6c also fragment ion m/z 157 was detected by GC-MS, indicating a 

second hydroxylation at C2. Therefore, the proposed tentative structure of M3c is 2,16-

dihydroxylated methasterone. However, in contrast to the GC-MS mass spectra, no diagnostic 

fragment ions indicating 16-hydroxylation were found in the obtained LC-HRMS product ion 

scan mass spectrum of M3c. 

 

Figure 5.4 Product ion scan mass spectra (LC-HRMS) of metabolites M2, M3 (b) and M6 (a) obtained from in vitro 
samples and M4 from in vivo sample at a CE of 25eV (M2, M3 (b) and M4) or 35 eV (M6 (a)). 

In the product ion scan mass spectrum of M4 four losses of water were observed (m/z 

349.2375, 331.2268, 313.2160 and 295.2056) and three fragment ions indicating loss of acetone 

(m/z 291.1952 (-H2O-58), 273.1847 (-2H2O-58) and 255.1741 (-3H2O-58)) (Figure 5.4). Although, 

five oxygen atoms are present in M4 no fifth loss of water was observed. However, this could be 

related to the lower abundance of this metabolite (Table 5.1) and therefore lower abundances 

of the fragment ions. In contrast to what was observed for methasterone and other metabolites 

no typical B/C ring fragment ions were found in the M4 product ion scan data. On the other 

hand fragment ions m/z 141.0546 and 169.0495 were detected which could be linked to C7H9O3 



Chapter 5 – Metabolism studies of dimethazine 

130 
 

and C8H9O4 respectively. These fragment ions probably originate from the A/B/C rings and 

indicates modifications in these rings rather than in the D-ring. The exact position of the three 

hydroxylations could not be determined for M4. 

For metabolite M6 the number of losses of water is also identical to the number of oxygens 

present in the molecule (Figure 5.4). As it is a dihydroxylated methasterone metabolite, four 

losses of water were observed: m/z 335.2573, 317.2470, 299.2365 and 281.2258. In contrast to 

methasterone and M3, the loss of acetone typical for unconjugated 3-keto steroids was not 

found for metabolite M6. This observation might be due to the 3-keto reduced structure of M6. 

Similar to methasterone and M3, some B/C-ring fragments were found comparable to those 

described by Pozo et al. [19] m/z 161.1322 (C12H17), 119.0856 (C9H11), 109.1014 (C8H13), 

107.0858 (C8H11). Additionally the ions with m/z 175.1478 and m/z 137.0959 could be linked to 

C13H19 and C9H13O respectively. This latter ion indicates a hydroxylation of the B/C fragment 

C9H13 (121.1013) observed for methasterone, which suggests a hydroxylation in the B/C-ring. 

Based on common hydroxylation positions described in literature, a 6-hydroxylation is 

suggested for metabolite M6. No definitive answer for the positon of the second hydroxylation 

could be derived from the product ion scan data. The position of the second hydroxyl-group 

could therefore for example be C2 or C12. M6c was identified as 2,16-hydroxylated 3-keto 

reduced methasterone structure, based on its GC-MS mass spectrum [4, 10]. Similar to M3c no 

diagnostic fragment ions indicating 16-hydroxylation were found in the LC product ion scan 

mass spectrum of M6c. 

4 Conclusions 

The metabolism of the steroid product ‘Xtreme DMZ’ containing the anabolic agent dimethazine 

was studied for the first time using in vitro (HLM) and in vivo (chimeric mouse) models. In the 

metabolism studies of both models methasterone and methasterone metabolites (M1-M6) 

were detected. These metabolites are in good agreement with earlier reported methasterone 

metabolism studies [4-10]. A stability study of DMZ shows that this compound degrades to 

methasterone at pH 0.5 (t1/2 of 23.7 min). Therefore an oral administration of DMZ would 

probably lead to a substantial degradation of DMZ to methasterone in the stomach. 

Hence, screening for methasterone and its metabolites is adequate for detection of DMZ misuse 

by GC-MS/MS and LC-HRMS. 
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Abstract 

Ethical and safety aspects limit the use of human volunteers to perform metabolism studies for 

doping control purposes, especially in the case of designer steroids. To ensure effective 

detection of non-pharmaceutical grade substances there is a quest for alternative models for 

these human excretion studies. 

In this study human liver microsomes and the chimeric mouse model were applied for 

metabolism studies with the steroid product ‘Tren X’ which contains estra-4,9-diene-3,17-dione. 

Analysis of the in vitro and in vivo samples was performed by LC-MS/MS (precursor ion scan), 

LC-HRMS and GC-MS. In the in vitro incubation samples four estra-4,9-diene-3,17-dione 

metabolites (M1-M4) were found by LC-MS and two of these metabolites could be confirmed 

(M1 and M2) by GC-MS. From these in vitro metabolites, three metabolites (M1, M2 and M3) 

were also detected in the chimeric mouse urine samples. 

M2 was the main metabolite in both models and was unequivocally identified as 17β-

hydroxyestra-4,9-diene-3-one. This metabolite has also been reported in literature as major 

human metabolite of estra-4,9-diene-3,17-dione. These results indicate that both the in vitro 

and the in vivo model are valuable alternatives for human metabolism studies with designer 

steroids. Moreover, human liver microsomes can be useful to reduce the number of in vivo 

excretion studies. 
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1 Introduction 

In vitro models are increasingly used for metabolism studies as alternative for human 

administration studies since in vitro studies have several advantages. In vitro studies are 

associated with less ethical objections in comparison to human excretion studies. This is 

particularly true in case of designer compounds or non-approved pharmaceutical drugs without 

predefined toxicological profiles. Application of in vitro models can also reduce the number of 

animal experiments needed. Moreover, these in vitro metabolism studies can accelerate the 

determination of metabolic profiles, since more concentrated and cleaner extracts for analysis 

can be obtained and the time needed for planning and execution of the in vitro studies is much 

shorter than for administration studies to humans. In this way a short response time to new 

threats in the doping field can be assured [1]. In vitro studies can therefore be useful for anti-

doping laboratories to anticipate new evolutions on the steroid market, such as the appearance 

of new designer steroids. These compounds are often sold as so-called dietary supplements, 

sometimes with no or only limited knowledge about their side effects [2]. Furthermore, due to 

the illicit production process the purity of these products is not guaranteed and labelling is often 

incorrect [2-5]. Therefore safety and ethical concerns limit the use of human volunteers. 

The steroid product TREN-X was purchased over the internet. This product is marketed as so-

called ‘supplement’ to increase muscle size and strength with the anabolic steroid estra-4,9-

diene-3,17-dione as active ingredient. Estra-4,9-diene-3,17-dione, or in short dienedione, is the 

precursor of dienolone (17β-hydroxy-estra-4,9-diene-3-one) and is sometimes mistakenly sold 

as prohormone of trenbolone (17β-hydroxy-estra-4,9,11-triene-3-one) because of the structural 

similarity (Figure 6.1) [6]. Although estra-4,9-diene-3,17-dione is not explicitly mentioned on 

WADA’s prohibited list, its misuse will be prohibited since it is structurally related to trenbolone, 

19-norandrostenedione (estra-4-ene-3,17-dione) and methyldienolone (17β-hydroxy-17α-

methylestra-4,9-diene-3-one) and similar biological, anabolic, effects might be expected [7]. 

 

Figure 6.1. Chemical structures of (A) estradienedione, (B) dienolone and (C) trenbolone. 

In the current study the metabolism of estra-4,9-diene-3,17-dione was investigated by human 

liver microsomes (HLM) and the uPA+/+-SCID chimeric mouse model. Both models are based on 
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the liver, as this is the principal organ for steroid metabolism. HLM are derived from liver tissue 

by differential centrifugation steps and provide an enriched source of membrane-bound drug 

metabolizing enzymes, such as the CYP450 superfamily [8]. For the mouse model a 

transplantation of primary human hepatocytes is required to restore the normal liver function 

of the mice, which are suffering from a liver disease induced by a liver specific over-expression 

of the mouse urokinase plasminogen activator (uPA) gene. Graft rejection is limited in these 

immunodeficient (SCID: severe combined immunodeficient disorder) mice. This mouse model 

with humanized liver has already proven to be a good alternative for human excretion studies 

based on steroid research in the past [9-13]. 

The metabolism of estra-4,9-diene-3,17-dione has been studied before in a human excretion 

study [14] and equine, canine and human in vitro studies using S9 liver fractions [6]. To verify if 

HLM incubations can also be a valuable tool as alternative for human administration studies, the 

in vitro generated metabolites will be compared with those obtained in the chimeric mouse 

model and the human metabolites described in literature. 

2 Materials and methods 

2.1 Chemicals and reagents 

A steroid product called Tren-X was purchased over the internet. The reference material of 

estra-4,9-diene-3,17-dione and dienolone (17β-hydroxy-estra-4,9-diene-3-one) was bought 

from Toronto Research Chemicals (TRC, Toronto, Canada). Methandienone was obtained from 

the National Measurement Institute (NMI, North Ryde, Australia). The internal standard 17α-

methyltestosterone was a gift from Organon (Oss, the Netherlands). 

Pooled HLM from 20-30 donors (HLM; 452161), the nicotinamide adenine dinucleotide 

phosphate (NADPH) regenerating system solutions A (451220) and B (451200) and phosphate 

buffer pH 7.4 (451201) were purchased from BD Gentest (Erembodegem, Belgium). 

Ethanol and ammonium acetate (NH4OAc) were purchased from Biosolve (Valkenswaard, the 

Netherlands). Diethyl ether and methanol (MeOH) were obtained from Fisher Scientific 

(Loughborough, UK). Sodium sulfate (Na2SO4), sodium hydroxide (NaOH), sodium hydrogen 

carbonate (NaHCO3), potassium carbonate (K2CO3), disodium hydrogen phosphate dihydrate 

(Na2HPO4.2H2O), sodium dihydrogen phosphate monohydrate (NaH2PO4.H2O), and ammonium 

iodide (NH4I), acetic acid (HOAc), LC grade water and LC grade MeOH were from Merck 

(Darmstadt, Germany). The β-glucuronidase preparation from Escherichia coli (E. coli) K12 was 

purchased from Roche Diagnostics (Mannheim, Germany). N-methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA) was from Karl Bucher (Waldstetten, Germany). 
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Ethanethiol was obtained from Acros (Geel, Belgium). Phosphate Buffered Saline (PBS) was from 

Invitrogen (Merelbeke, Belgium). The gasses helium (He) and oxygen free nitrogen (OFN) were 

delivered by Air Liquide (Bornem, Belgium). 

2.2 Instrumentation 

2.2.1 GC-MS 

An Agilent 6890 gas chromatograph was interfaced to an Agilent 5973 mass spectrometer 

(Agilent Technologies, Palo Alto, USA). 1 µL of sample was injected into the system using a 7683 

series Autosampler with a splitless injector (Agilent Technologies, Palo Alto, USA). The GC 

separation was performed using a JW Ultra-1 capillary column (17 m x 200 µm i.d., 0.11 µm; 

Agilent Technologies) and He as mobile phase at a flow rate of 0.6 mL/min at 10.15 psi (constant 

flow). The temperature program and other instrumental parameters were applied as described 

in Chapter 3 (2.2.1 GC-MS). 

2.2.2 LC-MS/MS 

All experiments were performed under the same LC conditions using a Thermo Finnigan 

Surveyor Autosampler Plus and a MS Pump Plus (Thermo Scientific, Bremen, Germany). 

Electrospray ionization (ESI) was used for the ionization of the steroids. The mobile phase 

consisted of LC grade water (solvent A) and LC grade MeOH (solvent B) both with 1 mM NH4OAc 

and 0.1% HOAc. The LC separation was performed using a SunFire™ C18 column (50 mm × 2.1 

mm i.d., 3.5 μm) from Waters (AH Etten-Leur, the Netherlands), at a flow rate of 250 µL/min. 20 

µL of sample was injected into the instrument. In the gradient program the percentage of the 

methanolic mobile phase changed as follows: 0 min, 5%; 1.5 min, 5%; 29.5 min, 95%; 30.5 min 

95%; 31 min, 5%; 35 min, 5%. 

For the low resolution methods a TSQ Quantum Discovery MAX triple quadrupole mass 

spectrometer (Thermo Scientific) was used. The other instrumental parameters were adopted 

from Pozo et al. [15]. A precursor ion scan method was used to search for (unknown) 

metabolites. For the precursor ion scan method the ions m/z 77, 91 and 105 were selected as 

product ions. The collision energy (CE) was 45 eV for m/z 105 and 91 and 50 eV for m/z 77. For 

the structural investigation of metabolites, product ions scans were performed for some 

selected ions and CE of 15, 25, 35 and 50 eV were applied. 

The high resolution (HR) analyses were performed on an Exactive benchtop Orbitrap-based 

mass spectrometer (Thermo Scientific). The instrument operated in positive, full scan mode 

from m/z 100 to 2000 at a resolving power of 50,000 with a data acquisition rate of 2 Hz. All ion 

fragmentation was performed by higher-collision dissociation (HCD), at a CE of 30 eV. 
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2.3 Extraction of the steroid from the steroid product 

Estra-4,9-diene-3,17-dione was first isolated from the Tren-X steroid product for purity 

verification. Therefore an extraction step was performed by adding 5 mL of ethanol to the 

content of 3 homogenized capsules and rolling during 2 h. Then a centrifugation step was 

performed (1500 g, 5 min). 100 µL of the upper layer was then used for both LC-HRMS and GC-

MS analyses. 

2.4 In vitro metabolism studies 

Before administration, all solutions (reference standard and steroid product) were analyzed by 

GC-MS and LC-(HR)MS for purity verification. Finally, the reference standard of estra-4,9-diene-

3,17-dione was administered to HLM and the chimeric mouse model. 

The in vitro HLM incubation assays were performed as described in Chapter 1 (7.2.2.2 Protocol 

in vitro metabolism studies; Table 1.6). Briefly, HLM incubations with estra-4,9-diene-3,17-dione 

at a final concentration of 40 µg/mL were performed. Substrate stability (blank; without HLM) 

and system blank (without test compound) control samples were used to verify the enzymatic 

reactions. Methandienone was incubated as test compound in the positive control samples. At 

the appropriate time (after 2, 4 and 18 h) the enzymatic reactions were stopped by adding 250 

µL of ice-cold MeOH. 

2.5 In vivo metabolism studies 

The protocol of the in vivo administration studies was applied as described in Chapter 1 (7.2.3 In 

vivo metabolism studies). The chimeric mouse model was developed in cooperation with CEVAC 

of Ghent University Hospital [16]. The in vivo metabolism studies were approved by the Animal 

Ethical Committee of the Faculty of Medicine of Ghent University (ECD 06/09). 

The dose and route of administration were similar to previous metabolism studies with the 

same model [10, 11, 13]. Before administration of the test compound to the chimeric mice, dose 

testing was performed with the non-chimeric mice with a test dose of 0.5 mg. The final 

administration dose for the in vivo metabolism studies was 1 mg of the test compound dissolved 

in 200 µL ethanol–PBS (20:80). The test compound (extracted from the Tren-X steroid product) 

was administered in a single dose to one chimeric and one non-chimeric mouse by oral gavage. 

2.6 Sample preparation for in vitro and in vivo samples 

For the in vitro metabolic assays the samples were first centrifuged at 4 °C (12,000 g, 5 min) 

followed by transfer of 400 μL into new tubes. All tubes were eventually stored in the 
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refrigerator until all samples were collected to enable sample preparation and analysis at the 

same time. Transferred incubation samples were then evaporated after which liquid–liquid 

extraction (LLE) was performed as described below. From the mouse urine 500 μL was used. 

A 50 μL aliquot of the internal standard (IS) 17α-methyltestosterone (2 μg/mL) was added to all 

samples. For the microsomal incubation samples (unconjugated fraction) LLE was performed as 

described in Chapter 3 (2.5.1 Liquid-liquid extraction (LLE)). To study the total fraction 

(conjugated and unconjugated steroids) in the chimeric mouse urine an enzymatic hydrolysis (β-

glucuronidase) was performed prior to the LLE as described in Chapter 3 (2.5.1 Liquid-liquid 

extraction (LLE)). 

After evaporation the residues were reconstituted in 100 μL mobile phase (95/5 solvent A and 

B) for LC-MS analysis. For GC-MS analysis the evaporated samples were derivatized by adding 

100 μL derivatization solution containing MSTFA, NH4I and ethanethiol (500/4/2) and incubation 

for 1 h at 80 ± 5°C. 

3 Results and discussion 

3.1 Analysis of the steroid product 

Analysis of the Tren-X steroid product by GC-MS and LC-MS/MS and comparison with the 

reference standard confirmed the presence of estra-4,9-diene-3,17-dione (estimated amount of 

20 mg per g steroid product). No other steroid compounds were detected in the steroid 

product. However, two peaks (m/z 414 and 412) could be detected by GC-MS analysis after 

TMS-derivatization. This was also observed by Parr et al. [14] for estra-4,9-diene-3,17-dione and 

has been described for trenbolone [17, 18]. This can be explained by artefact formation after 

derivatization of the parent compound (m/z 414), due to the formation of enol derivatives at 

the C3-position in several tautomeric forms which are not stable and can lose two (m/z 412) or 

four (m/z 410) hydrogens [17, 19].  

The presence of the conjugated double bond system results in good proton affinities for ESI LC-

MS analysis. In this way also the artefact formation can be circumvented. Analysis of estra-4,9-

diene-3,17-dione in the steroid product by LC-HRMS (Figure 6.2) showed a characteristic 

protonated molecule ([M+H]+) at m/z 271.1693. This represents a mass deviation of only 0.18 

ppm from the theoretical mass of the protonated molecule. 
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Figure 6.2. LC-HRMS extracted ion chromatogram of estra-4,9-diene-3,17-dione in the steroid product (A) and LC-
MS/MS product ion scan mass spectrum at 25 eV (B). 

3.2 In vitro metabolism studies 

The HLM incubation samples with estra-4,9-diene-3,17-dione were first analyzed by a LC-

MS/MS precursor ion scan method with as selected product ions m/z 77, 91 and 105. The 

application of the precursor ion scan method led to the detection of two metabolites (M1 and 

M2). Two additional metabolites (M3 and M4) were detected in the in vitro metabolism samples 

by LC-HRMS (Figure 6.3). The results of the 4 h incubation sample are presented in Figure 6.3, 

however similar results were obtained in the other incubations samples (2 and 18 h). 

The proposed metabolic modifications, based on the observed m/z difference in comparison 

with the parent compound, are indicated in Table 6.1 and could be linked to the metabolites 

with less than 2 ppm mass deviation by LC-HRMS. 

Product ion scans were performed to obtain more structural information of the metabolites. 

Therefore, fragmentation patterns of the parent compound were studied first to identify 

characteristic fragment ions (Figure 6.2). The fragmentation behavior of estra-4,9-diene-3,17-

dione was similar to that of trenbolone [20]. As for trenbolone, only one loss of water (m/z 253) 

was observed for estra-4,9-diene-3,17-dione, despite the presence of two oxygen atoms. In 

addition, a typical fragment ion m/z 175 derived from the A-, B- and C-rings was detected 

(Figure 6.2). This fragment ion was also described by Scarth et al. [6]. 
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Figure 6.3. Extracted LC-HRMS ion chromatograms of the parent compound and metabolites M1-M4 in a (A) 
negative control sample and a (B) 4 h HLM incubation sample of estra-4,9-diene-3,17-dione. 

In the product ion scan mass spectrum of M1 (a/b) fragment ions related to the loss of water, 

m/z 269 (-H2O) and m/z 251 (-2H2O), were observed (Figure 6.4). The lack of fragment ion m/z 

175 for M1 (a/b) suggests that a hydroxylation occurred in the A-, B-, or C-ring [6]. The ion m/z 

141 indicates a hydroxylation in the A- or B-ring rather than the C-ring. A similar metabolite was 

detected by Scarth et al. [6], for which a hydroxylation was proposed at C6. However, the exact 

position of the hydroxylation could not be established unequivocally. As suggested by Fragkaki 

et al. for other steroids with conjugated double bonds (Δ4,9 or Δ4,9,11) a hydroxylation at 

position 2 would also be feasible [21]. 

The product ion scan mass spectrum of metabolite M2 is identical to the mass spectrum of the 

metabolite described by Scarth et al. with as suggested structure 17β-hydroxy-estra-4,9-diene-

3-one [6]. In contrast to Scarth et al., this metabolite could be confirmed unequivocally in our 

study by comparison with reference material. This metabolite was also described as main 

metabolite in a human excretion study with estra-4,9-diene-3,17-dione [14]. Although 3-keto 

reduced and 3,17-keto reduced metabolites were also described in that study, these 

metabolites were not detected in ours and in the in vitro (human S9 liver fractions) metabolism 

studies performed by Scarth et al. [6]. Moreover, for closely related steroids, e.g. trenbolone, it 

was observed that the presence of the conjugated double bond system inhibits reductive 

metabolism of the A-ring [6]. Therefore it might also be expected that reduction at position 17 

would be more significant [6]. However, the double reduced metabolite was also described as 

minor equine pathway [6].  

For metabolite M3 (a/b) two losses of water molecules were observed (m/z 271 and 253) but no 

additional information could be obtained for the positions of reduction and hydroxylation from 

the product ion scan data. 
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No further information was obtained for the positions of hydroxylations for the dihydroxylated 

metabolite M4. 

 

Figure 6.4. Product ion scan mass spectrum of (A) M1a (m/z 287) at 15 eV and (B) M2 (m/z 273) at 25eV and 
proposed fragmentation pathways. 

To allow a proper detection of compounds with lower proton affinities GC-MS analysis was also 

performed. However, due to the conjugated double bond systems in the structure some 

problems were observed for the detection of the derivatized compounds and only metabolites 

M1 and M2 could be detected in the in vitro metabolism samples by full scan GC-MS analysis.  

3.3 In vivo metabolism studies 

The metabolism of estra-4,6-diene-3,17-dione was also studied in both non-chimeric and 

chimeric mice, which allows determination of interspecies differences. The relative abundances 

of the metabolites relative to M2 observed in the chimeric mouse urine samples are indicated in 

Table 6.1. 



 
 

 
 

Table 6.1. Overview of estra-4,9-diene-3,17-dione metabolites detected in metabolism studies with HLM and the chimeric mouse model by LC-HRMS and 
GC-MS. 

Compound 
Metabolic 
reaction

a
 

Chemical 
Formula 

Experimental 
m/z [M+H]

+
 

Δ 
ppm 

HLM RRT
b
 Chimeric mice 

LC  GC LC 
Relative 

abundance (%)
d
 

Estra-4,9-diene-3,17-dione Parent compound C18H22O2 271.1693 0.19 0.83 0.87 √ 3.82 

IS
c
 17α-methyl-

testosterone 
C21H30O2 303.2319 0.23 1.00 1.00 √ 4.45 

M1 (a/b) Hydroxylation C18H22O3 287.1640 0.70 0.61/0.63 0.98 √/√ 12.62/18.17 

M2 Reduction C18H24O2 273.1849 0.11 0.89 0.90 √ 100 

M3 (a/b) Reduction + 
hydroxylation 

C18H24O3 289.1798 0.07 0.60/0.64 / √/√ 52.40/9.01 

M4 Dihydroxylation C18H22O4 303.1590 0.20 0.54 / / / 

a
 metabolic reaction to the parent compound

 

b
 RRT= relative retention time, relative to retention time of the IS (LC RT:21.06 min; GC RT:8.20 min) 

c 
IS = 17α-methyltestosterone 

d
 Relative abundances were calculated in the chimeric mouse urine samples, relative to the most abundant metabolite (M2). 
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Metabolites M1, M2 and M3 were detected in the murine urine samples by LC-MS (Table 6.1). 

Similar to what was observed in the HLM assays and was reported before, metabolite M2 was 

the main metabolite of estra-4,9-diene-3,17-dione in the chimeric mouse model. The 

dihydroxylated metabolite M4 was only detected in the non-chimeric mouse urine samples. As 

M4 is not detected in the chimeric mouse urine samples, this rather indicates a production by 

mouse hepatocytes and suggests M4 is not a typical human metabolite. 

4 Conclusions 

Human liver microsomes and a chimeric uPA+/+-SCID mouse model were applied to investigate 

the metabolism of the steroid product ‘Tren-X’ containing the steroid estra-4,9-diene-3,17-

dione. 

In both models metabolite M2 could be detected as main metabolite. M2 was unequivocally 

identified with commercially available reference material as 17β-hydroxy-estra-4,9-diene-3-one. 

M2 has previously been described as major human metabolite of estra-4,9-diene-3,17-dione, 

confirming our results [14]. In addition hydroxylated (M1 a/b) and hydroxylated 17-keto 

reduced (M3 a/b) metabolites were detected in our study via both the in vitro and the in vivo 

model. 

In the in vitro incubation and non-chimeric mouse urine samples also a dihydroxylated 

metabolite (M4) could be detected. As metabolite M4 has never been reported before, the 

relevance as marker for human administration of estra-4,9-diene-3,17-dione is unknown. 

However, the presence of this metabolite could also be related to the higher hydroxylation rates 

generally observed in the HLM model. 

The results obtained in the HLM model are similar to the chimeric mouse model. Moreover, the 

metabolites observed in this study are confirmed by previously reported studies [6, 14]. 

Therefore, these results indicate that HLM metabolism studies can be a valuable alternative for 

in vivo excretion studies with designer steroids. In the future this offers a lot of opportunities to 

improve screening methods in the framework of doping control worldwide. 
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Abstract 

Anabolic androgenic steroids (AAS) are an important class of doping agents. The metabolism 

of these substances is generally very extensive and includes phase I and phase II pathways. 

In this work a comprehensive detection of these metabolites is described using a 2-fold 

dilution of urine and subsequent analysis by liquid chromatography - high resolution mass 

spectrometry (LC-HRMS). The method was applied to study 32 different metabolites, 

excreted free or conjugated (glucuronide or sulfate), which permit the detection of misuse 

of at least 21 anabolic steroids. The method has been fully validated for 21 target 

compounds (8 glucuronide, 1 sulfate and 12 free steroids) and 18 out of 21 compounds had 

detection limits in the range of 1-10 ng/mL in urine. For the conjugated compounds for 

which no reference standards are available, metabolites were synthesized in vitro or 

excretion studies were investigated. The detection limits for these compounds ranged 

between 0.5 and 18 ng/mL in urine. 

The simple and straightforward methodology complements the traditional methods based 

on hydrolysis, liquid-liquid extraction, derivatization and analysis by gas chromatography-

mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). 
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1 Introduction 

Anabolic-androgenic steroids (AAS) are an important group of synthetic compounds derived 

from testosterone and are commonly used by athletes and non-athletes to enhance physical 

performance. The effects and the side effects of these compounds are well known [1], for 

these reasons they are classified as prohibited substances by the World Anti-Doping Agency 

(WADA) [2]. The category of AAS represents the most detected banned compounds by 

WADA accredited laboratories [3], and therefore investigations on development of 

analytical methods for anabolic steroids is still of great importance in doping control. 

AAS are transformed within the human body following both phase I and phase II metabolic 

pathways facilitating their elimination. Phase I reactions include i.a. oxidation and reduction, 

whereas phase II transformations imply the conjugation of the compound with glucuronic 

acid, sulfate, acyl or methyl groups, amino acids or glutathione. Among these phase II 

reactions, the most common reactions in humans are the formation of the corresponding 

glucuronide or sulfate [4].  

In general, analytical methods to detect AAS include hydrolysis, extraction and detection by 

liquid chromatography-mass spectrometry (LC-MS) [5] or by gas chromatography-mass 

spectrometry (GC-MS) (after a derivatization step) [6, 7]. Both GC-MS and LC-MS present 

advantages and disadvantages for some steroids and currently, a combination of both needs 

to be applied in anti-doping laboratories to successfully detect all prohibited steroids. The 

detection of the intact conjugated anabolic steroid presents the advantage of simplified 

sample preparation, as the hydrolysis is not mandatory. Additionally, problems in relation 

with enzymatic hydrolysis have been reported. For example, the enzymatic hydrolysis can 

be incomplete due to a complex urinary matrix [8] or due to the presence of certain drugs in 

the urine [9]. Furthermore, the detection can be hampered due to elevated background or 

by interferences [10]. Normally, for the cleavage of both glucuronide and sulfate conjugates 

hydrolysis using digestive juice of Helix pomatia (Hp) which contains both β-glucuronidase 

and arylsulfatase activities, is useful. However, problems associated with the production of 

artifacts [11] and conversion between steroids [12] have also been described.  

It has been reported that in some situations the detection of the corresponding conjugate 

can present advantages compared to the aglycone. For example, the detection of stanozolol 

misuse improves when 3’-hydroxystanozolol glucuronide is monitored instead of the 

corresponding aglycone [13]. Furthermore, the detection of glucuronide metabolites of 

stanozolol gives the opportunity to discriminate between metabolites which differ in the 

location of the glucuronide moiety improving the knowledge on the metabolism [14]. 

Moreover, several steroidal structures are currently difficult to detect by LC-MS due to lack 

of an ionizable moiety [15]. In such cases, it should be investigated if the conjugated steroid 
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might offer better ionization properties. Indeed, some anabolic steroids, like 5α- and 5β-

methyltestosterone metabolites, typically monitored by GC-MS, have been detected as 

glucuronide by LC-MS highlighting the importance of this approach [16]. 

Normally the analysis of glucuronidated AAS from biological matrices like urine starts with 

an extraction based on liquid-liquid [17-19] or solid phase extraction [14, 16, 18, 20-22] 

followed by LC-MS [8, 17-19, 21-24] or GC-MS [20]. LC-MS is a more suitable technique as 

no derivatization is required and the ionization in both positive and negative mode for the 

detection of glucuronidated AAS is possible. On the other hand, because faster screening 

methods are highly desirable in order to face the increasing number of doping-control 

samples and to decrease reporting times, minimization of sample preparation is of high 

interest. In this sense application of dilute-and-shoot liquid chromatography mass 

spectrometry (DS-LC-MS) in urine can reduce significantly turnaround time and reagent 

costs. Hence, this approach has been successfully applied for other classes of prohibited 

substances [25]. Only a few examples with selected glucuronidated anabolic steroids have 

been reported using this technique [14, 19]. 

Therefore the aim of this paper was to investigate and evaluate the applicability of DS-LC-

MS approach in routine doping control analysis, for the direct detection of AAS. More than 

thirty compounds excreted as conjugates (glucuronides and sulfates) and as free steroids in 

diluted urine were tested. It should be noted that throughout this manuscript 

concentrations of conjugated steroids are expressed as aglycone equivalents to allow a 

direct interpretation of the MRPL criteria with the one described by WADA [26]. 

2 Materials and Methods 

2.1 Chemical and Reagents 

9α-fluoro-17α-methyl-4-androsten-3α,6β,11β,17β-tetrol (FLUm1), 9α-fluoro-17,17-

dimethyl-18-norandrosta-4,13-dien-11β-ol-3-one (FLUm2), 4-chloro-methandienone (CMD), 

6β-hydroxy-4-chloro-methandienone (CMDm), 6β-hydroxymethandienone (MEDm1), 

epioxandrolone (OXAm), 2-hydroxymethyl-17α-methyl-androstan-1,4-dien-11α,17β-diol-3-

one (FMBm1), 17α-epimethandienone (MEDm2), Boldenone glucuronide (BOLDG; 

potassium salt), Boldenone sulfate (BOLDS; triethylamine salt), 5β-androst-1-en-17β-ol-3-

one glucuronide (BOLDmG), 2α-methyl-5α-androstan-3α-ol-17-one glucuronide (DROmG; 

sodium salt), 1α-methyl-5α-androstan-3α-ol-17-one glucuronide (MESm1G; sodium salt), 

1α-methyl-5α-androstan-3α,17β-diol glucuronide (MESm2G), 1-methylene-5α-androstan-

3α-ol-17-one glucuronide (MTNmG; sodium salt), 7β,17α-dimethyl-5β-androstane-3α,17β-

diol glucuronide (CALmG; sodium salt), 7α,17α-dimethyl-5β-androstane-3α,17β-diol 

glucuronide (BOLmG; sodium salt), 3’-hydroxy-stanozolol glucuronide (3STANG), 19-

Norandrosterone glucuronide (NANGm1; sodium salt), 19-Norethiocholanolone glucuronide 
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(NANGm2; sodium salt) and the internal standard d3-epitestosterone glucuronide (EGd3) 

were purchased from the National Measurement Institute (North Ryde, Australia). 17-

epimethyltestosterone (METm3) was obtained from TRC (Toronto, Canada). 17α-methyl-

11α,17β-diol-4-androsten-3-one (FMBm2) was purchased from Steraloids (Newport, R.I, 

U.S.A). Ethisterone (DANm) and oxandrolone (OXA) were kind gifts from Winthrop, 

Laboratório de Análises e Dopagem (Instituto doDesporto, Lisbon, Portugal) and Searle & Co 

(Chicago, Il, USA), respectively. 

LC grade methanol (MeOH) and LC grade water were purchased from Biosolve 

(Valkenswaard, Netherlands). Ammonium acetate (NH4OAc) was obtained from Sigma (St. 

Louis, MO, USA). Ammonium formate p.a. and formic acid Optima® LC-MS were purchased 

from Fischer Scientific (Loughborough, UK). Hydrochloric acid (HCl), ammonium hydroxide 

(NH4OH), acetic acid (HOAc) p.a., sodium acetate p.a., potassium carbonate (K2CO3), sodium 

hydrogencarbonate (NaHCO3) were of analytical grade and were purchased from Merck 

(Darmstadt, Germany). Stock solutions were prepared by dissolving the reference material 

in MeOH and stored at −15 °C. Working solutions were prepared by diluting adequate 

amounts of stock solutions in MeOH and stored at −15 °C.  

For the in vitro synthesis of glucuronide-conjugated anabolic steroids, pooled human liver 

microsomes (HLM) from 20-30 donors (452161) and uridine diphosphate-

glucuronosyltransferase (UGT) reaction mix solutions A (25 mM Uridine 5’-Diphospho-

Glucuronic Acid, UDPGA, in water; catalog number 451300) and B (250 mM Tris-HCl, 40 mM 

MgCl2, 0.125 mg/mL Alamethicin in water; catalog number 451320) were obtained from BD 

Gentest (Erembodegem, Belgium). The ethanol was purchased from Biosolve 

(Valkenswaard, the Netherlands).  

2.2 Instrumentation 

The liquid chromatographic system was an Accela LC (Thermo Scientific, Bremen, Germany) 

equipped with degasser, Accela 1250 pump, autosampler thermostated at 10 °C and a 

heated column compartment at 35 °C. The LC separation was performed on a Varian 

Omnispher C18 column (100mm×2mm I.D., 3 µm) (Varian, Sint-Katelijne-Waver, Belgium) at 

a flow rate of 250 µL/min using a ChromSep guard column (10mm×2mm I.D., 5 µm) (Varian, 

Sint-Katelijne-Waver, Belgium). The LC effluent was pumped to an Exactive benchtop 

Orbitrap-based high resolution mass spectrometer (Thermo Scientific, Bremen, Germany) 

operated in the positive–negative polarity switching modes and equipped with an 

electrospray ionization (ESI) source. Nitrogen sheath gas flow rate and auxiliary gas were set 

at 60 and 30 (arbitrary units), respectively. The capillary temperature was 250 °C, the spray 

voltage 4 kV or -4 kV and the capillary voltage 30 V in positive or negative ion modes. The 

instrument operated in full scan mode from m/z 100 to 2000 at 50,000 resolving power. The 
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automatic gain control (AGC) was 10e6. The Orbitrap performance in both positive and 

negative ionization modes was evaluated daily and external calibration of the mass 

spectrometer was done with Exactive Calibration Kit solutions (Sigma–Aldrich, St. Louis, USA 

and ABCR GmbH & Co. KG, Karlsruhe, Germany). A tolerance window of 5 ppm was applied 

to process the data. 

The aqueous and methanolic mobile phases consisted both of 1mM NH4OAc and 0.1% 

HOAc. The percentage of organic and aqueous solvent in the gradient is presented in Figure 

7.1. 

 

Figure 7.1. Optimized gradient. 

2.3 Sample preparation 

An aliquot of 200 µL of urine was transferred to an Eppendorf type vial, containing 200 µL of 

methanolic internal standard solution (IS, EGd3 40 ng/mL). After centrifugation of the 

samples (5 min at 14,000 × g) 25 µL of supernatant were injected into the chromatographic 

system. 

2.4 Assay Validation 

The qualitative detection of several exogenous anabolic steroids excreted as conjugates or 

free in human urine was validated regarding specificity, selectivity, limit of detection (LOD) 

and matrix effects in compliance with the WADA International Standards for Laboratories 

(ISL) [27] and according to Eurachem guidelines [28].  

Ten different blank human urine samples (five male and five female; pH-range from 5.6 to 

8.0; specific gravity between 1.003 and 1.026 g/L) were spiked at 1, 2, 5, 10, 20, 50 and 100 

ng/mL respectively with a standard solution containing all commercially available 



  Chapter 7 – In vitro synthesis of glucuro-conjugates 

 

153 

 

compounds (compounds present in Table 7.1). Blank urine samples and a distilled water 

sample, spiked only with the IS, were also included. The samples were analyzed according to 

the described protocol. The LOD was defined as the lowest level at which an analyte can be 

detected in all ten urine samples using one diagnostic ion (Table 7.1) with a signal to noise 

(S/N) ratio higher than 3 and a retention time difference no higher than 2% or ±0.1 min 

(whichever is smaller) compared with a reference material analyzed in the same analytical 

batch, as is described in the WADA technical document TD2010IDCR [29]. Only one 

diagnostic ion was used to monitor each compound (present in Table 7.1), which requires 

high selectivity and specificity of the ion. 

Specificity was tested during the validation procedure by probing for interfering peaks in the 

selected ion chromatograms at the expected retention times for the target compounds. 

Selectivity was tested by analyzing several other doping compounds and drugs, including a 

wide range of beta-blockers, beta-agonists, narcotics, corticosteroids, stimulants and 

NSAIDs, all of them as 1:1 MeOH-H2O solutions at 1 µg/mL. Matrix effects (M.E.) were 

studied only for compounds present in Table 7.1, according to Matuszewski et al. [30]. Ten 

urine samples and a water sample were spiked equally at 20 or 100 ng/mL (at 20 ng/mL for 

those compounds with limit of detection lower than or equal to 20 ng/mL and at 100 ng/mL 

for compounds with a LOD higher than 20 ng/mL), the areas (A) of each diagnostic ion were 

compared in both matrices and the mean value of the ten urines was calculated. The 

formula used was: M.E (%) = (𝐴 (𝑢𝑟𝑖𝑛𝑒)−𝐴 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛))

𝐴(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
𝑋100. 

2.5 In vitro synthesis 

For the synthesis of (non-commercially available) anabolic steroid glucuronides, the phase II 

metabolism was simulated using human liver microsomes (HLM). The phase II microsomal 

incubations were performed using 10 µg of the parent compound as described in Chapter 1 

(7.2.2.2 Protocol in vitro metabolism studies; Table 1.6). 

System blank samples, without the substrate, were also added to study the matrix 

background. The obtained supernatants, after removal of the HLM, were directly injected 

into the LC-HRMS system. In vitro synthesis was performed for gestrinone, 

tetrahydrogestrinone, trenbolone, 4β-hydroxystanozolol and 16β-hydroxystanozolol. 

2.6 Excretion samples/administration samples 

Positive samples from earlier approved excretion studies with human participants and 

quality assessment samples from WADA were used for the study of non-commercially 

available phase II metabolites of several AAS (compounds present in Table 7.2). These urine 

samples were analyzed by the current routine methods of our laboratory [7], using a 
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hydrolysis step. The concentration of the different metabolites was estimated by direct 

comparison to a quality control sample spiked at the minimum required performance limit 

(MRPL) of WADA. When necessary, the excretion urines were diluted with blank urine and 

re-quantified to match these MRPL-levels in order to study if the corresponding compounds 

can be detected at that concentration or not. 

3 Results and discussion 

3.1 Mass spectrometry 

The study of the full scan spectra of the reference standards of the selected conjugated 

anabolic steroids (glucuronides and sulfates present in Table 7.1) showed that all these 

compounds were ionizable in both polarities, which was not possible with all the steroid 

aglycones due to the lack of ionizable groups.  

In negative ion mode the deprotonated molecule ([M-H]-) presents the most abundant 

species due to the delocalization of the negative charge at the carboxylic acid or sulfate 

group [17, 19]. In positive ionization the protonated molecule ([M+H]+) constitutes the base 

peak for those compounds with high proton affinity groups like conjugated 3-keto function 

(boldenone metabolites, METm3) or a pyrazol group (stanozolol metabolites). For the other 

unconjugated anabolic steroids, the ammonium adduct ([M+NH4]+) constitutes the base 

peak in positive ionization [15, 18]. 

Due to the presence of the sulfate group in BOLDS it was expected that the negative ion 

mode would yield a more intense deprotonated molecule than the protonated molecule in 

positive ion mode. However, a comparable peak intensity was obtained in both polarities. 

In general terms, the deprotonated molecular ions in negative ionization were more 

abundant than the ions in positive ionization, except for the stanozolol metabolites. 

However the specificity in negative ionization is sometimes lower due to the increased 

incidence of endogenous interference [18]. Taking into account these parameters, the most 

abundant and specific ion selected for every compound is shown in Tables 7.1 and 7.2. 

Despite the importance of phase II metabolism for exogenous and endogenous anabolic 

steroids, some metabolites are nevertheless excreted unconjugated [4, 31]. Therefore the 

detection of metabolites of seven steroids which are excreted unconjugated, including 

fluoxymesterone, 4-chloro-methandienone, methyltestosterone, methandienone, danazol, 

oxandrolone and formebolone, were also included in the study. For all substances full scan 

mass spectra in both positive and negative ionization were studied. 

In positive mode, the observed ions were in agreement with previous works, e.g. the sodium 

adduct ([M+Na]+) and the protonated molecule ([M+H]+) [15]. In negative polarity the 
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ionization of unconjugated steroids is generally weak, due to the lack of suitable structures, 

but an abundant acetate adduct ([M+OAc]-) was found for FLUm1 and MEDm1. 

Heated Electrospray Ionization Source (HESI) at 250 °C was tested in order to improve the 

ionization of the target compounds. The abundance of ions like [M+H]+ or [M-H]- was 

comparable or higher when a HESI source was used. However, the abundance of adducts 

like [M+Na]+ or [M+OAc]- was significantly lower with HESI. For this reason, no HESI source 

was used in the final method. 
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Table 7.1. Structure, chemical formula, detected ion and theoretical mass, retention time and standard 

deviation (n=10) and matrix effects for the commercially available investigated compounds.  

Parent Compound 

Target 

Compound 

Structure 
Chemical 

Formula 
Adduct ions m/z 

RT ± std 

(min) 

Matrix 

Effects 

(%) 

Boldenone BOLDS 

 

C19H26O5S [M+Na]
+
 389.1393 4,43±0.01 -76 

BOLDG 

 

C25H34O8 [M+Na]
+
 485.2146 4,40±0.02  

BOLDmG 

 

C25H36O8 [M+Na]
+
 487.2302 5,90±0.02  

Bolasterone BOLmG 

 

C27H44O8 [M+NH4]
+
 514.3374 6,58±0.02 -38 

Calusterone CALmG 

 

C27H44O8 [M-H]
-
 495.2963 7,29±0.01 -26 

4-chloro-

methandienone 

CMD 

 

C20H27ClO2 [M+Na]
+
 357.1592 8,25±0.01 -6 

CMDm 

 

C20H27ClO3 [M+Na]
+
 373.1541 5,46±0.01 -70 

Danazol DANm 

 

C21H28O2 [M+H]
+
 313.2162 7,26±0.02 6 

Drostanolone DROmG 

 

C26H40O8 [M+NH4]
+
 498.3061 8,55±0.02 -20 
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Table 7.1 Continued. 

Parent Compound 

Target 

Compound 

Structure 
Chemical 

Formula 
Adduct ions m/z 

RT ± std 

(min) 

Matrix 

Effects 

(%) 

Fluoxymesterone FLUm1 

 

C20H31FO4 [M+OAc]
-
 413.2345 3,20±0.01 -77 

 FLUm2 

 

C20H27FO2 [M+H]
+
 319.2068 9,60±0.01 8 

Formebolone FMBm1 

 

C21H30O4 [M+Na]
+
 369.20363 4,72±0.02 -48 

 FMBm2 

 

C20H30O3 [M+Na]
+
 341.2087 5,52±0.01 -65 

Methandienone MEDm1 

 

C20H28O3 [M+OAc]
-
 375.2177 4,49±0.02 -50 

 MEDm2 

 

C20H28O2 [M+Na]
+
 323.1981 8,56±0.02 -3 

Mesterolone MESm1G 

 

C26H42O8 [M-H]
-
 479.2650 7,44±0.01 -8 

 MESm2G 

 

C26H40O8 [M+NH4]
+
 500.3218 6,52±0.02 -34 

Methenolone MTNmG 

 

C26H38O8 [M-H]
-
 477.2494 6,63±0.02 -29 

Methyltestosterone METm3 

 

C20H30O2 [M+H]
+
 303.2319 9,64±0.01 23 
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Table 7.1 Continued. 

Parent Compound 

Target 

Compound 

Structure 
Chemical 

Formula 
Adduct ions m/z 

RT ± std 

(min) 

Matrix 

Effects 

(%) 

Nandrolone NANm1G 

 

C24H36O8 [M-H]
- 

451.2337 6,35±0.02  

 NANm2G 

 

C24H36O8 [M-H]
-
 451.2337 6,03±0.01 -24 

Oxandrolone OXA 

 

C19H30O3 [M+Na]
+
 329.2087 6,52±0.01 -32 

 OXAm 

 

C19H30O3 [M+Na]
+ 

329.2087 8,51±0.02 -13 

Stanozolol 3STANG 

 

C27H40N2O8 [M-H]
-
 519.2712 5,97±0.01 -37 
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Table 7.2. Structure, chemical formula, detected ions, theoretical and experimental masses and retention 
time for the non-commercially available investigated compounds.  

Parent Compound 
Target 

Compound 
Structure and Chemical 

Formula 
Adduct 

ions 
Theoretical 

m/z 
Experimental 
m/z (Δ ppm) 

RT 
(min) 

Clostebol CLOSmG 

 

C25H35ClO8 

[M-H]- 

 

[M+NH4]
+ 

497.1948 

 

516.2359 

497.1945 

(0.60) 

516.2357 

(0.39) 

6.94 

4-chloro-methandienone CMDG 

 

C26H35ClO8 

[M-H]- 

 

[M+H]+ 

509.1948 

 

511.2093 

509.1955 

(1.40) 

511.2093 

(0.00) 

5.76 

Epi-CMD 

 

C20H27ClO2 

[M+H]+ 

 

[M+H-H2O]+ 

335.1772 

 

317.1667 

335.1775 

(0.90) 

317.1669 

(0.63) 

9.74 

Gestrinone GESG 

 

C27H32O8 

[M-H]- 

 

[M+H]+ 

483.2024 

 

485.2170 

483.2026 

(0.41) 

485.2157 

(2.70) 

4.49 

GESmG 

 

C27H32O9 

[M-H]- 

 

[M+H]+ 

499.1974 

 

501.2119 

499.1970 

(0.80) 

501.2123 

(0.80) 

3.85 

Oxymetholone/Methylte

stosterone 

METm1G 

 

C26H42O8 

[M-H]- 

 

[M+NH4]
+ 

481.2807 

 

500.3218 

481.2800 

(1.50) 

500.3207 

(2.20) 

6.37 

Methandriol/Methyltest

osterone 

METm2G 

 

C26H42O8 

[M-H]- 

 

[M+NH4]
+ 

481.2807 

 

500.3218 

481.2810 

(0.62) 

500.3208 

(2.00) 

6.30 



Chapter 7  – In vitro synthesis of glucuro-conjugates 

160 

 

Table 7.2. Continued. 

Parent Compound 
Target 

Compound 

Structure and Chemical 

Formula 

Adduct 

ions 

Theoretical 

m/z 

Experimental 

m/z (Δ ppm) 

RT 

(min) 

Stanozolol 4STANG 

 

C27H40N2O8 

[M-H]- 

 

[M+H]+ 

519.2712 

 

521.2857 

519.2711 

(0.19) 

521.2857 

(0.00) 

5.54 

 16STANG 

 

C27H40N2O8 

[M-H]- 

 

[M+H]+ 

519.2712 

 

521.2857 

519.2715 

(0.58) 

521.2846 

(2.10) 

4.94 

Tetrahydrogestrinone THGG 

 

C27H36O8 

[M-H]- 

 

[M+H]+ 

487.2337 

 

489.2483 

487.2332 

(1.00) 

489.2479 

(0.82) 

5.61 

Trenbolone TRENmG 

 

C24H30O8 

[M-H]- 

 

[M+H]+ 

445.1868 

 

447.2013 

445.1868 

(0.00) 

447.1999 

(1.30) 

4.60 

 

    

 

3.2 Chromatography 

An Omnisphere C18 column was selected according to previous research, exhibiting good 

retention and peak shape for steroid glucuronides [17]. 

Methanol was preferred as organic modifier, because better resolution for conjugated 

steroids can be achieved compared to acetonitrile [8]. Due to the acidic character of the 

glucuronides, acidic conditions were necessary in order to improve their chromatographic 

retention [17]. For these reasons, different percentages of HOAc were evaluated, i.e. 0.1%, 

0.01% and 0.001%.  
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The main difference observed, was that the retention of the anabolic steroid glucuronides 

increases with decreasing pH. The non-glucuronidated AAS and BOLDS were less affected, 

which is consistent with their differences in pKa values. Intensity of the signals was 

comparable independent from the amount of acid used. 

Finally attending to the retention of the glucuronidated compounds, the aqueous and 

methanolic mobile phases consisted both of 1mM ammonium acetate and 0.1% of HOAc. 

In order to analyze multiple compounds with great differences in polarity, like glucuronides 

and neutral compounds, it is important to optimize the gradient of the mobile phase. The 

two extreme compounds, early-eluting FLUm1 and highly retained FLUm2, were selected to 

adjust the gradient run. 

With the optimized gradient, all the isomeric compounds were baseline separated with a 

resolution higher than 2 except for NANm1G and NANm2G, which are not completely 

baseline separated (Rs = 1.3). The corresponding retention time for every compound is 

shown in Table 7.1. A simulated chromatogram of a spiked urine with all the anabolic 

steroids included in the method is presented in Figure 7.2, presenting the distribution of all 

compounds along the chromatogram in positive and negative ionization. 

3.3 Sample preparation  

Since a profound dilution (at least 10-fold) allows to reduce matrix effects [32, 33], a 10-fold 

dilution of urine with mobile phase was initially applied. Unfortunately pilot tests showed 

that this dilution did not allow to detect almost any substance at the corresponding MRPL 

[26]. For this reason, sample dilution was limited to a 2-fold dilution of urine with MeOH.  

Due to the limited volume of urine available to anti-doping laboratories, methods requiring 

small volumes of urine are preferred, especially for screening purposes, in order to leave 

enough urine if further experiments are necessary. Here, a volume of only 200 µL of urine 

was enough for the sample preparation.  

3.4 Method validation 

The determined LODs for every compound are shown in Table 7.3. All selected parent 

compounds were detected at concentrations equal or lower than the current MRPL [26] 

with the exception of boldenone and stanozolol. Previously described screening methods 

for selected anabolic steroids glucuronides after solid-phase extraction (SPE) [16] or liquid-

phase microextraction (LPME) [18] of the urinary samples, show LODs higher than those 

herein reported with the exception of 3STANG and MTNmG, where the described LOD were 

as low as 2 ng/mL instead of 5 ng/mL. 
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Figure 7.2. Simulated chromatogram of a spiked urine at 50 ng/mL with the compounds included in the DS-
LC-HRMS method in positive (A) and negative (B) ionization mode. (The scale was adjusted to visualize all 
compounds. LOD’s are presented in Table 7.3). 

BOLDG, BOLDS and BOLDmG co-elute with endogenous compounds, which complicates the 

detection of boldenone misuse. In the case of BOLDS the most abundant diagnostic ions 

[M+H]+ and [M-H]- co-elute with an unknown interference present in all the studied urines. 

However, the interference is not present in urine from children younger than three years 
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old, which present lower concentrations of endogenous steroids [34], indicating that the 

interference is probably an endogenous steroid. The sodium adduct ([M+Na]+) seems to be 

specific and no interferences were detected and can therefore be used to detect BOLDS 

without any interference. Unfortunately, its abundance is very small and therefore LOD for 

BOLDS was very high (100 ng/mL). 

For the detection of nandrolone misuse, the main metabolites NANm1G and NANm2G[35] 

were monitored. Small interferences were found for NANm1G in negative control urines. 

Therefore NANm1G could not be included in the validation. However, NANm2G can be used 

for the detection of nandrolone abuse and a limit of detection of 2 ng/mL is described. The 

origin of the interference could not be elucidated, but it should be noted that previous 

studies have indicated that NANm1 is also endogenous [36, 37]. 

In the case of 3STANG, the target compound was detected in 9 of the 10 urines used for the 

validation at 2 ng/mL. In one urine however, it was only detected at 5 ng/mL and therefore 

the LOD was set at this latter level. 

All the investigated compounds which are excreted non-conjugated could be detected by 

the parent compound and/or one metabolite at the corresponding MRPL. Some of the 

metabolites presented a LOD higher than the corresponding MRPL but at least one target 

metabolite per parent compound was detectable at the MRPL. Therefore compliance with 

WADA’s technical requirements for misuse of these compounds can still be guaranteed. 

Indeed, it has been described that the most appropriate way to detect fluoxymesterone 

misuse is monitoring FLUm2 [38]. In the case of formebolone, FMBm2 is excreted in higher 

concentration compared with FMBm1 [39] and both MEDm1 and MEDm2 constitute two of 

the most important metabolites for the detection of methandienone misuse [40]. The 

compounds FLUm2, CMD, METm3, MEDm2, DANm and OXAm could be detected at 1 ng/mL 

which constitutes the lowest studied level. For the detection of 4-chloro-methandienone 

misuse, the parent compound CMD and the main metabolite CMDm are monitored, 

however only CMD can be detected fulfilling MRPL criteria [26]. 

The retention times, shown in Table 7.1, seem to be very stable with standard deviations 

between 0.01 and 0.02 min.  

The method is selective when other doping products were analyzed with the described 

method. One interference was found for METm3, due to the presence in the solution of 

stenbolone which is an isomeric compound. In addition, analysis of ten blank urines did not 

result in the detection of interfering substances, demonstrating the specificity of the 

method. 
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Table 7.3. Obtained LOD (ng/mL) for the investigated compounds. 
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BOLDS 100                     
BOLmG  2                    
CALmG   2                   
CLOSmG    5                  
CMD     1                 
CMDG     *                 
CMDm     5                 
Epi-CMD     *                 
DANm      1                
DROmG       2               
FLUm1        50              
FLUm2        1              
FMBm1         20             
FMBm2         5             
GESG          1            
GESmG          *            
MEDm1           10           
MEDm2           1           
MESm1G            5          
MESm2G            2          
METm1G             5         
METm2G              2 2       
METm3               1       
MTNmG                5      
NANm2G                 2     
OXA                  2    
OXAm                  1    
3STANG                   5   
4STANG                   0.5   
16STANG                   18   
THGG                    1  
TRENmG                     4 

 
Excretion urines 

* The LOD could not be estimated due to the lack of reference material 

The matrix effects could only be identified in those cases where a certified reference 

material is available. The obtained results are shown in Table 7.1. Most of the compounds 

present small to moderate matrix effects, either ion enhancement or ion suppression. The 

matrix effects values range from +23% corresponding to METm3 to -77% of FLUMm1. It is 

important to note that those compounds with the highest values of ion suppression, like 

FLUm1 (77%) and BOLDS (76%), are the same compounds with the highest values of LOD, 50 

and 100 ng/mL, respectively. 
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3.5 Excretion urines and in vitro synthesis  

Only for a limited number of steroids, glucuronidated standards are commercially available 

(compounds present in Table 7.1). For this reason, several excretion urines were analyzed 

and exact masses for the parent and/or the main metabolites [31, 41] were extracted from 

the chromatograms with a mass window of 5 ppm. To verify the correct assignment of the 

metabolites without reference standard, multiple blank and excretion study urine samples 

were analyzed and two diagnostic ions were selected for monitoring of these target 

compounds. The obtained results are shown in Table 7.2. 

In order to estimate if these compounds can be detected at the corresponding MRPL [26], 

the excretion urines were analyzed using the current routine analysis methods [7] of our 

laboratory and diluted with negative urine to the corresponding MRPL. 

 

Figure 7.3. Detection of methyltestosterone: (A) Negative urine. (B) METm2G detected in a 
methyltestosterone excretion urine where only METm2 at 2 ng/mL was detected by GC-MS. 

For the isomeric compounds METm1G and METm2G co-elution was observed yielding only 

one peak. Different anabolic steroids yield at least one of these 2 metabolites 

(oxymetholone and mestanolone give only METm1G and, methandriol and methandienone 

give only METm2G) or both in the case of methyltestosterone [31, 41]. Hence, during 

confirmation analysis both substances should be chromatographically separated to 

determine which parent AAS was administered. These two metabolites are therefore among 

the most important metabolites to detect the misuse of a wide-range of compounds and 

present ionization difficulties in LC-MS, if analyzed as aglycone. In Figure 7.3, a 

representative chromatogram of METm2G at 2 ng/mL in an excretion urine of 

methyltestosterone is shown. In those cases, where only a limited number of excretion 

urines were available, e.g. tetrahydrogestrinone, gestrinone and trenbolone, additional in 

vitro experiments were performed to unequivocally establish the metabolic nature of the 

identified target peaks, whose mass spectrometric characteristics were compatible with the 
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expected metabolites. Therefore the corresponding glucuronide conjugates of the parent 

compound or the metabolites in the excretion urines were confirmed with the 

corresponding glucuronides synthesized by an earlier-described method by Kuuranne et al. 

[42].  

Studying excretion urines of stanozolol, two other isomeric peaks, alongside 3STANG, were 

observed in the chromatograms, considering two diagnostic ions: the protonated ([M+H]+) 

and the deprotonated ([M-H]-) molecules. These peaks were assigned to 4β-

hydroxystanozolol glucuronide (4STANG) and 16β-hydroxystanozolol glucuronide 

(16STANG). In order to associate every signal to the corresponding isomer, the respective 

hydroxystanozolol glucuronides were also synthesized in vitro and analyzed in the DS-LC-MS 

method. As described in the method validation section, 3STANG could not be detected at 

the current MRPL for stanozolol . However in an excretion sample, where the concentration 

of 3STAN, 4STAN and 16STAN were estimated at 0.3, 0.5 and 1 ng/mL, respectively, only 

4STANG was detectable with the DS-LC-MS method. Hence monitoring 4STANG metabolite 

allows for the control of stanozolol at MRPL-level.  

 

Figure 7.4. Detection of CMD misuse. (A) Negative urine. (B) Spiked urine with CMD (100 ng/mL). (C) CMD 
excretion urine. 

Despite the fact that CMD was compliant with the MRPL of 2 ng/mL, using spiked urines, the 

investigation of excretion urine samples not only yielded the detection of CMD in some 

urine samples but also an isomeric compound which was baseline separated and present at 

a higher abundance and increased retention (Figure 7.4). Furthermore, an abundant signal 

corresponding to a glucuronide conjugate of CMD or the isomeric compound was also 

detected (Figure 7.4). The collection of a fraction containing the glucuronide species and 

further hydrolysis revealed that this substance corresponds to the parent compound CMD. 

The presence of CMDG in human urine is also in agreement with one of the first 

investigations of the metabolism of CMD [43] but is in contrast with others where no parent 
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compound was detected [44, 45]. Product ion scan spectra of these two analytes showed 

similar fragments but in different relative abundances. This fact suggests that the isomeric 

compound is most probably the 17-epi-chloro-methandienone (epi-CMD) which is excreted 

unconjugated because it is formed through the corresponding 17β-sulfate conjugate [4]. 

This 17-epimer has been described as a minor metabolite by GC-MS [45], however the 

abundance observed by LC-HRMS is higher than the parent compound (Figure 7.4).  

Obviously, due to the lack of reference material, the validation of the method for 

compounds present in Table 7.2 was limited to establishing selectivity and specificity and an 

estimation of the LOD. No matrix effect however could be established. Therefore, they were 

not considered as fully validated although the method is clearly suited for their detection. 

4 Conclusions 

For the first time a validated DS-LC-HRMS method for the detection of 32 AAS in urine has 

been described (Figure 7.2). The method includes both conjugated and unconjugated 

substances. The direct detection of the intact phase II metabolites offers the possibility to 

detect by LC-MS several steroids which are not ionizable as aglycones.  

The lack of hydrolysis and extraction procedures allows very rapid analyses that have the 

required sensitivity and consumes only a small amount of urine. 

For 21 AAS reference standards were available and for these steroids the method could be 

fully validated. Fifteen steroids were fully compliant with WADA’s MRPL requirements and 

LODs were ranging between 1 and 20 ng/mL and the method seems to be specific and 

selective. For eleven steroids, another approach, using in vitro experiments and/or use of 

excretion urines needed to be developed. 

The use of excretion urines allowed for the identification of conjugated species which are 

not commercially available. Furthermore, the study of the metabolism and the detection of 

new species give the opportunity to improve the current method by monitoring other 

substances with higher sensitivity. Including the species detected in excretion urines, the 

developed method can be used for the detection of 32 compounds, which are baseline 

separated with the exception of the diastereoisomeric metabolites of methyltestosterone 

METm1 and METm2. The in vitro synthesis of different glucuronides allows the confirmation 

of the presence of these species in excretion urines.  

Because the mass spectrometer operates in full scan mode, a retrospective analysis of the 

samples can be applied and more compounds can be included without the need to modify 

the method. The open detection of compounds gives flexibility to the method with the 
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possibility to detect unknown steroids, improving the knowledge in the metabolism and 

improving the scope of the method as has been previously demonstrated [19]. 
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Abstract 

Anabolic agents are often used by athletes to enhance their performances. However, use of 

steroids leads to considerable side effects. Non-steroidal selective androgen receptor 

modulators (SARMs) are a novel class of substances that have not been approved so far but 

seem to have a more favorable anabolic/androgenic ratio than steroids and produce fewer side 

effects. Therefore the use of SARMs is prohibited since 2008 by the World Anti-Doping Agency. 

Several of these SARMs have been detected on the black market.  

Metabolism studies are essential to identify the best urinary markers to ensure effective control 

of emerging substances by doping control laboratories. As black market products often contain 

non-pharmaceutical grade substances, alternatives for human excretion studies are needed to 

elucidate the metabolism. 

A black market product labeled to contain the SARM LGD-4033 was purchased over the 

internet. Purity verification of the black market product led to the detection of LGD-4033, 

without other contaminants. Human liver microsomes and S9 liver fractions were used to 

perform phase I and phase II (glucuronidation) metabolism studies. The samples of the in vitro 

metabolism studies were analyzed by gas chromatography-(tandem) mass spectrometry (GC-

MS(/MS)) and liquid chromatography-(high resolution) tandem mass spectrometry (LC-

(HR)MS/MS). LC-HRMS product ion scans allowed to identify typical fragment ions for the 

parent compound and to further determine metabolite structures. 

In total five metabolites were detected, all modified in the pyrrolidine ring of LGD-4033. The 

metabolic modifications ranged from hydroxylation combined with keto-formation (M1) or 

cleavage of the pyrrolidine ring (M2), hydroxylation and methylation (M3/M4) and 

dihydroxylation (M5). The parent compound and M2 were also detected as glucuronide-

conjugates.
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1 Introduction 

A wide-range of potential performance enhancing substances is currently available over the 

internet. While in the 1990s and early 2000s, these products were almost exclusively anabolic 

androgenic steroids (AAS) and designer steroids, these days a diverse range of compounds is 

available, including peptides [1-6] and non-steroidal selective androgen receptor modulators 

(SARMs) [7-9].  

SARMs interact selectively with the androgen receptor, stimulating the anabolic effects with 

fewer androgenic side effects compared to AAS [7, 10-12]. Besides improving the 

anabolic/androgenic dissociation these SARMs exhibit better oral bioavailability and represent 

more metabolically stable compounds with reduced liver toxicity [13]. 

To discourage the use of potentially harmful substances and to protect fair play in sports the 

World Anti-Doping Agency (WADA) publishes each year the Prohibited List [14]. Since January 

2008 SARMs have also been included in this list under the class of anabolic agents [10]. 

SARMs have diverse chemical pharmacophore structures including arylpropionamides, bicyclic 

hydantoins, quinolines and tetrahydroquinolines [10-12]. However, this group is continuously 

expanding with new substances and other pharmacophores. LGD-4033 (4-(2-((S)-2,2,2-trifluoro-

1-hydroxyethyl)pyrrolidin-1-yl)-2-(trifluoromethyl)-benzonitrile) [15-17] for example is a new 

class of SARMs with a pyrrolidin-benzonitrile structure (Table 8.1). 

The therapeutic indications for SARMs are muscle wasting disorders, sarcopenia, osteoporosis, 

breast cancer and as hormone replacement therapy [7, 12, 18, 19]. Currently no SARMS are 

available as pharmaceutical preparations as they are all still undergoing clinical evaluation. Even 

though there is no clinical approval, LGD-4033 is already available as a performance-enhancing 

substance in black market products [15-17]. This bears considerable potential danger as 

knowledge of its toxicological profile is missing. Moreover, lack of quality control and often 

incorrect labeling of these black market products implies additional health risks [8, 15]. 

Since the promising anabolic effects of LGD-4033 [18] and its presence in black market products, 

sold over the internet [15-17], there is a potential risk for misuse by athletes. As observed by 

Grata et al. [20] absence of pharmaceutical grade products is not preventing misuse of SARMs. 

Furthermore, two cases of andarine misuse were reported in 2010 [20, 21] and in 2013 thirteen 

cases of SARMs misuse were reported during doping control sample analysis [22]. Therefore it is 

essential that misuse of LGD-4033 is screened for in doping control samples. To improve the 

detection window of prohibited substances, metabolism studies should be performed to 

identify the best target metabolites. As LGD-4033 is a non-approved pharmaceutical drug, 

ethical objections and safety aspects limit the use of human volunteers. 
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Table 8.1. Detected metabolites after HLM incubation with LGD-4033. Both LC-HRMS as GC-MS results are 
indicated. 

LC-HRMS 

Compound Metabolic 
transformation 

Ion species Exp.
a
 m/z 

(error (ppm)) 
RT

b 
 

(min) 
Glucuro-
conjugate

c
 

(Proposed) chemical structure
d
 

LGD-4033 
 
C14H12F6N2O 

parent 
compound 

[M-H]
-
 337.0771 (2.77) 19.26 √ 

 

[M+OAc]
-
 397.0999 (1.88) 

[M+H]
+
 339.0917 (3.81) 

M1 
 
C14H10F6N2O2 

hydroxylation 
and double 
bond 

[M-H]
-
 351.0573 (0.09) 9.55 × 

 

[M+ OAc]
-
 411.0783 (0.39) 

[M+H]
+
 353.0718 (0.24) 

M2 
 
C14H14F6N2O2 

hydroxylation 
and cleavage 
pyrrolidine ring 

[M-H]
-
 355.0887 (0.03) 10.44 √ 

 

[M+ OAc]
-
 415.1101 (0.60) 

[M+H]
+
 357.1031 (0.37) 

M3/M4 
C15H14F6N2O2 

hydroxylation 
and methylation 

[M-H]
-
 367.0884 (0.74) 17.22 

/ 
17.77 

× 

 

[M+ OAc]
-
 427.1091 (1.41) 

[M+H]
+
 369.1030 (0.60) 

M5 
 
C14H12F6N2O3 

dihydroxylation [M-H]
-
 369.0677 (0.66) 10.67 × 

 

[M+H]
+ 

371.0820 (1.40) 

GC-MS 

Compound Metabolic transformation Chemical formula Characteristic TMS-ions m/z RT
 a

 (min) 

LGD-4033 parent compound C14H12F6N2O 410 - 395 - 239 - 197 - 170 5.11 
M1 hydroxylation and double bond C14H10F6N2O2 253 - 197 - 170 5.34 

a 
Exp.: experimental 

b
 RT: Retention Time 

c 
√: detected; ×: not detected 

d
 Proposed structures are indicated for the LGD-4033 metabolites, only one possible configuration is shown. 
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For this purpose alternative in vitro models are often applied for metabolism studies of non-

pharmaceutical grade substances. Therefore a similar study was conducted by Thevis et al. [16] 

to elucidate the metabolism of LGD-4033. Our in vitro LGD-4033 metabolism study further 

investigates and complements their study [16]. As the hepatic enzyme activity plays an 

important role in the metabolism, pooled human liver microsomes (HLM) and S9 liver fractions 

were used in this study. A black market product advertised to contain the SARM LGD-4033 was 

purchased over the internet and analyzed. 

2 Materials and Methods 

2.1 Chemicals and reagents 

The black market product (powder) containing LGD-4033 was purchased over the internet. The 

internal standard (IS) 17α-methyltestosterone was a gift from Organon (Oss, the Netherlands). 

The reference standard of methandienone was obtained from ‘National Measurement Institute’ 

(NMI, North Ryde, Australia). Pooled HLM from 20–30 donors, S9 liver fractions, the 

nicotinamide adenine dinucleotide phosphate (NADPH) regenerating system solutions A and B, 

the UGT reaction mix solutions A and B and phosphate buffer pH 7.4 all from Gentest were 

purchased by Corning (Amsterdam, the Netherlands). Ethanol and ammonium acetate (NH4OAc) 

were purchased from Biosolve (Valkenswaard, the Netherlands). Diethyl ether and methanol 

(MeOH) were obtained from Fisher Scientific (Loughborough, UK). Sodium sulfate (Na2SO4), 

sodium hydrogen carbonate (NaHCO3), potassium carbonate (K2CO3), ammonium iodide (NH4I) 

and acetic acid (HOAc) were from Merck (Darmstadt, Germany). LC grade water and LC grade 

MeOH were purchased from J.T. Baker (Deventer, the Netherlands). N-Methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA) was from Karl Bucher (Waldstetten, Germany). 

Ethanethiol was obtained from Acros (Geel, Belgium). The gases helium, ammonia, hydrogen 

and oxygen-free nitrogen (OFN) were delivered by Air Liquide (Bornem, Belgium). 

2.2 Instrumentation 

2.2.1 GC-MS 

An Agilent 6890 gas chromatograph was interfaced to an Agilent 5973 mass spectrometer 

(Agilent Technologies, Palo Alto, USA). 1 µL of sample was injected into the system using a 7683 

series Autosampler with a splitless injector (Agilent Technologies, Palo Alto, USA). The GC 

separation was performed using a JW Ultra-1 capillary column (17 m x 200 µm i.d., 0.11 µm; 

Agilent Technologies) and helium as mobile phase at a flow rate of 0.6 mL/min at 10.15 psi 

(constant flow). The temperature program and other instrumental parameters were applied as 

described in Chapter 3 (2.2.1 GC-MS). 
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Also full scan (m/z 50-800) GC-chemical ionization (CI)-MS analysis was performed by an Agilent 

7890 gas chromatograph coupled with an Agilent 7000 B triple quadrupole mass spectrometer 

(Palo Alto, USA) and a MPS2 autosampler and PTV-injector from Gerstel (Mülheim an der Ruhr, 

Germany). 6 µL of sample was injected using the solvent vent mode of the PTV-injector. The 

vent flow was 15 mL/min at 5 psi until 0.01 min with an initial temperature of 80 °C and 

increased at 12 °C/s to 310 °C. A retention gap column (1.25 m × 0.2 mm and no film inside) was 

coupled in front of an HP-1MS (15 m × 320 µm with a film thickness of 0.25 µm) both from J&W 

Scientific (Agilent Technologies, Palo Alto, USA). Helium was used as a carrier gas with a 

pressure program to ensure a constant flow of 1.28 mL/min. The following oven temperature 

program was used: the initial temperature was 90 °C, increased at 70 °C/min to 125 °C, then at 

35 °C/min to 194 °C, next at 10 °C/min to 215 °C, at 20 °C/min to 250 °C, at 30 °C/min to 275 °C 

and finally increased at 75 °C/min to reach a final temperature of 320 °C (held for 1.3 min). The 

total run time was 9.35 min. The transfer line was set at 310 °C. For the ionization CI was 

applied using ammonia as reagent gas. 

2.2.2 Gas chromatography-nitrogen phosphorous detector (GC-NPD) 

2 µL of sample was injected into a 6890 gas chromatograph equipped with a NPD detector using 

a 7683 series Autosampler with a splitless injector (all from Agilent Technologies) at 250 °C. The 

GC separation was performed using a RTX5-amine column (15 m x 250 µm i.d., 1.0 µm; Restek, 

Middelburg, the Netherlands) and helium as mobile phase at a flow rate of 1.2 mL/min and 4 

psi. The temperature program was as follows: initial temperature was 70 °C and increased at a 

rate of 5 °C/min until 100 °C is reached. Temperature was then further increased with 10 °C/min 

to 140 °C, with 20 °C/min to 200 °C, 30 °C/min to 250 °C and finally the temperature raised with 

50 °C/min to 315 °C. This final temperature was held during 5 min. The total run time was 21.97 

min. The temperature of the NPD detector was set at 300 °C, a hydrogen flow of 2.0 mL/min 

and air flow of 60 mL/min were applied. 

2.2.3 Nuclear magnetic resonance spectroscopy (NMR) 

The NMR experiments were performed by dissolving the black market product into deuterated 

methanol (CD3OD) and transferring to the NMR probe. Both 1H NMR and diffusion ordered 

spectroscopy (DOSY) were performed by a 500 MHz Avance III ascend instrument (Bruker, 

Karlsruhe, Germany). 

2.2.4 LC-(HR)MS 

All experiments were performed under the same LC conditions using a Thermo Finnigan 

Surveyor Autosampler Plus and a MS Pump Plus (Thermo Scientific, Bremen, Germany). The 

mobile phase consisted of LC grade water and LC grade MeOH both with 1 mM NH4OAc and 

0.1% HOAc. 
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LC separation was performed using a SunFire™ C18 column (50 mm × 2.1 mm i.d., 3.5 μm) from 

Waters (AH Etten-Leur, the Netherlands), at a flow rate of 250 µL/min. 20 µL of sample was 

injected into the instrument. The applied gradient program is described in chapter 4 (2.2.4 LC-

MS/MS). The methods have a total run time of 35 min. 

For the low resolution methods a TSQ Quantum Discovery MAX triple quadrupole mass 

spectrometer (Thermo Scientific) was used. A full scan method was applied in a range of m/z 30-

1500 in both positive and negative mode. The other MS conditions were: interface: electrospray 

ionization (ESI), capillary voltage: 3.5 kV, source temperature: 350 °C, sheath gas pressure: 50 

(arbitrary units), auxiliary gas pressure: 20 (arbitrary units), tube lens offset: 100 V, scan time: 

0.5 s. 

Using the full scan method also eight fractions (Fr1: 7-8.5 min; Fr2: 8.5-9.8 min; Fr3: 9.8-11 min; 

Fr4: 11-14 min, Fr5: 14-15.3 min, Fr6: 15.3-17.2 min, Fr7: 17.2-19.5 and Fr8: 19.5-25 min) were 

collected into separate tubes in triplicate by switching the valve from the detector to the ‘waste’ 

to collect these fractions. 

The high resolution (HRMS) experiments were performed on an Exactive benchtop Orbitrap-

based mass spectrometer (Thermo Scientific). The instrument operated in both positive and 

negative full scan mode from m/z 100 to 2000 at a resolving power of 50,000 with a data 

acquisition rate of 2 Hz. For the structural investigation of metabolites LC-HRMS product ions 

scans were performed by a Q-Exactive benchtop Orbitrap-based mass spectrometer (Thermo 

Scientific) for the protonated and deprotonated molecules as selected ions with an isolation 

window of m/z 1.0 at a resolving power of 70,000 and CE of 15, 25, 35 and 55 eV. The other MS 

parameter settings for both LC-HRMS instruments were identical to the low resolution LC 

instruments except for spray voltage: 4 kV, source temperature of 250 °C and heated ESI (HESI) 

(probe heater at 300 °C). 

2.3 In vitro incubation studies 

Prior to the in vitro metabolism studies, the purity of the black market product containing LGD-

4033 was verified. The purity verification was performed by full scan GC-MS, GC-MS/MS(CI) and 

LC-MS (both low as high resolution) analysis. Additionally, the black market product was 

analyzed by GC-NPD (underivatized product) and by NMR. 

Phase I, phase II and combined phase I and phase II in vitro metabolism assays (HLM and S9 liver 

fractions) were applied as described in Chapter 1 (7.2.2.2 Protocol in vitro metabolism studies; 

Table 1.6). Substrate stability (blank; without HLM) and system blank (without test compound) 

control samples were used to verify the enzymatic reactions. Methandienone was used as test 

compound in the positive control samples. The phase I samples were incubated during 2, 4 or 18 
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h, the phase II samples during 2 h. The combined phase I and phase II samples were first 2 h 

incubated for the phase I and an additional 2 h for the phase II enzymatic reactions.  

2.4 Sample preparation 

The samples of the in vitro metabolic assays were first centrifuged at 4 °C (12,000 g, 5 min) 

followed by transferring 400 µL into new tubes. 50 µL of the internal standard (IS) 17α-

methyltestosterone (2 µg/mL) was added to all samples. The phase II (UGT) and combined 

phase I and II HLM incubation samples were analyzed by direct injection on LC-HRMS, after 

removal of the enzymatic proteins. For the phase I in vitro incubation samples (unconjugated 

fraction) liquid-liquid extraction (LLE), as described in Chapter 3 (2.5.1 Liquid-liquid extraction 

(LLE)), was performed after evaporation of the samples under oxygen free nitrogen (OFN). After 

evaporation the residues were dissolved in 100 µL H2O/MeOH (50/50) for LC-(HR)MS/MS 

analysis. For GC-MS analysis the evaporated samples were derivatized by adding 100 µL 

derivatization solution containing MSTFA, NH4I and ethanethiol (500:4:2) and incubation during 

1 h at 80 ± 5 °C. 

3 Results and Discussion 

3.1 Analysis of black market product 

Prior to the metabolism studies the presence of LGD-4033 in the black market product and its 

purity was verified. LC-HRMS analysis confirmed the presence of LGD-4033 with a mass 

deviation of 2.77 ppm in negative and 3.81 ppm in positive polarity mode (Figure 8.1). LGD-4033 

could also be detected in the black market product by GC-MS analysis (Figure 8.1). The 

molecular ion of LGD-4033 after TMS-derivatization m/z 410 and a typical loss of methyl (- m/z 

15) was observed in the GC-MS mass spectrum. However, the fragment ions with m/z 239, 197 

and 170 are more abundant. The proposed origin of these fragment ions is indicated in the 

structure of LGD-4033 in Figure 8.1. 
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Figure 8.1. LC-HRMS and GC-MS analysis of black market product containing LGD-4033. LC-HRMS: both the TIC 
and EIC are shown. GC-MS: EIC, electron ionization (EI) mass spectrum of LGD-4033 and proposed fragmentation 
pattern after TMS-derivatization is also presented. 

However, as no reference material is available additional 1H NMR analyzes were performed to 

further characterize the detected compound in the black market product. The obtained NMR 

data confirm 4-(2-((S)-2,2,2-trifluoro-1-hydroxyethyl)pyrrolidin-1-yl)-2-(trifluoromethyl)-benzonitrile 

as chemical structure for the detected compound in the black market product: 1H-NMR (500 

MHz,CD3OD) δ = 7.7 (1H, H-11), 7.2 (1H, H-8), 7.05 (1H-H-9), 4.8 (1H, H-15), 4.3 (1H, H-3), 4.0 

(1H, H-2), 3.6 (1H, H-6), 3.3 (1H, H-6), 2.2 (4H, H-4/H-5). 

So, in agreement with what was reported before [15, 17] the presence of this non-approved 

drug was observed in a black market product circulating over the internet. The investigated 

black market product seems to have a good quality as no major contaminants were detected by 

GC-MS(/MS), LC-(HR)MS, GC-NPD and DOSY analyzes. 
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3.2 In vitro metabolism studies 

Metabolites were searched for by comparing both total ion chromatograms (TIC) and extracted 

ion chromatograms (EIC) of incubated samples with control samples. The extracted ions were 

based on theoretically possible metabolic pathways including oxidations ((di)hydroxylations, -

H2) and reductions (+H2) and combinations of these metabolic pathways. 

LC-(HR)MS analysis of the in vitro metabolism studies of LGD-4033 led to the detection of five 

(M1-M5) metabolites (Figure 8.2 and Table 8.1). No additional metabolites were detected by 

incubation with S9 liver fractions compared to the HLM incubation samples. Therefore only the 

results of the HLM metabolism studies are presented in the figures below. 

The number of the in vitro produced LGD-4033 metabolites is comparatively low to what is 

observed for other SARMs [10, 23-29], which indicates that LGD-4033 is metabolically relatively 

stable. This is reasonable since the purpose for the development of new SARMs is not only to 

obtain a better anabolic/androgenic dissociation but also to improve pharmacokinetic 

properties. The presence of a cyano group in LGD-4033 instead of a nitro group in the phenyl 

group of other SARMs can lead to metabolically more stable compounds, which improves the 

half-life of the compound [24]. In addition, the presence of only one phenyl group in the 

structure of LGD-4033 could also decrease the clearance and consequently improve the half-life 

as described for nilutamide, for example [13, 30]. 

The possible metabolic transformations, based on the observed mass differences of the 

metabolites M1, M2 and M5 in comparison to the parent compound, are indicated in Table 8.1. 

A study of the LC-HRMS results confirmed these suggested modifications with less than 1 ppm 

mass deviation. The structures shown in Table 8.1 are proposals that fulfil the MS behaviour 

observed for the metabolites (both in positive and negative ionization modes) described below 

(3.3 Structure characterization of the detected metabolites by HRMS/MS). Metabolite M5 was 

also reported by Thevis et al. [16] and in a poster at a conference by Sobolevsky et al. [31]. 
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Figure 8.2. Phase I and phase II (UGT) LGD-4033 metabolism studies with HLM. The 4 h HLM incubation samples 
are presented in comparison with the blank control samples. 

Based on the relative abundances of the metabolites detected in the current study, metabolites 

M1 and M2 might be incorporated besides the parent compound into existing screening 

methods to anticipate LGD-4033 misuse. However, extrapolation of these in vitro results to the 

more complex in vivo human situation is difficult. Sobolevsky et al. [31] observed that screening 

for a dihydroxylated metabolite, comparable to M5, in positive ionization mode could prolong 

the detection window of LGD-4033 misuse in human urine samples. Sobolevsky et al. [31] only 

used the LC-MS in positive ionization mode, whereas only negative ionization mode was applied 

by Thevis et al. [16]. Because negative ionization mode generally gives less background than 

positive ionization mode and the target molecules yielded abundant acetate adducts these 

metabolites (M1-M4) were readily detectable in TIC in our study. While, in positive ionization 
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mode all metabolites were only detectable in EIC. Therefore, the relevance of these described 

metabolites for screening in real human doping control samples should also be determined (in 

negative ionization mode). 

For the isomeric metabolites M3 and M4 an elemental composition of C15H14F6N2O2 was 

determined by the LC-HRMS data with 0.74 ppm mass deviation in negative polarity mode. This 

indicates the addition of CH2O which could correlate to a hydroxylation in combination with a 

methylation, a rare metabolic pathway that has however been previously described for other 

compounds like estrogens [32]. Methylation of hydroxy-groups was also observed for SARMS as 

phase II metabolic pathway in rats [13]. 

GC-MS analysis was performed on LC-fractions of both the HLM incubation and control samples 

to obtain more structural information about the detected metabolites. Although reanalysis of 

the collected fractions by LC-MS proved the presence of the metabolites in their respective 

fractions only the parent compound and M1 could be detected by GC-MS (Table 8.1), both with 

and without TMS-derivatization. GC-MS/MS analysis did not lead to improved detection of 

metabolites, neither in EI nor in CI mode. 

Subsequent phase I and phase II (glucuronidation) metabolic reactions in a combined HLM 

incubation assay were also performed. Only the parent compound and metabolite M2 could be 

detected as glucuronidated derivatives (Figure 8.2). Similar results were also observed for the 

glucuronidated conjugates by Sobolevsky et al. [31]. 

3.3 Structure characterization of the detected metabolites by 
HRMS/MS 

To further characterize the structures of the metabolites detected by the full scan LC-HRMS and 

GC-MS analyses structure-specific product ions of the detected metabolites were monitored by 

LC-HRMS/MS (Table 8.2). The fragmentation patterns of the parent compound were studied 

first in both positive and negative ionization mode (Figure 8.3 and Table 8.2). In the LC-HRMS 

product ion scan of LGD-4033 fragment ion m/z 267 (Figure 8.3) was observed in negative 

ionization mode together with the typical fragment ions m/z 239 and 170 which were also 

found in the GC-MS mass spectrum. The fragment ions m/z 170 and 267 could be linked to the 

structure of the parent compound with less than 5 ppm mass deviation similar to Thevis et al. 

and Krug et al. [15-17]. However, for fragment ion m/z 239.0436 a mass deviation of 185 ppm 

was observed for the chemical formula C12H10F3N2 suggested by Krug et al. [15]. An alternative 

fragmentation pattern is proposed in Figure 8.3. In addition to the typical fragment ions (m/z 

240, 220, 213, and 199) derived from fragmentation of the pyrrolidine ring, also losses of water 
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(m/z 321) and hydrogen fluoride (HF; m/z 319) were observed for LGD-4033 in positive 

ionization mode. 

 

Figure 8.3. LC-HRMS/MS mass spectra of LGD-4033 are shown in both negative and positive ionization mode at a 
CE of 35 eV and 45 eV respectively. The tentative fragmentation patterns are also presented. 

The fragment ions m/z 170 and m/z 185, indicating an unmodified benzonitrile ring (Figure 8.3), 

could be detected for all the LGD-4033 metabolites (M1-M5) in negative ionization mode. This 

unmodified benzonitrile ring was confirmed in positive ionization mode by the detection of ions 

with m/z 199 or m/z 197 and eventually m/z 187 in the LGD-4033 metabolites (Table 8.2). These 

findings indicate that all metabolites are formed by modifications of the pyrrolidine ring of the 

parent compound. This is in contrast to the studies of Thevis et al. [16] and Sobolevsky et al. 

[31] where also hydroxylation into the benzonitrile ring was observed for some metabolites. The 

fragment ions m/z 253 (negative ionization mode) and 234 (positive ionization mode) detected 

in the LC-HRMS product scans of M1 also suggest a hydroxylation and subsequent oxidation to a 

carbonyl in the pyrrolidine ring (Table 8.1 and Table 8.2). In analogy to the LC-HRMS data typical 

fragment ions m/z 170 and m/z 253 were detected in the GC-MS mass spectrum (results not 

shown here). The presence of an unaltered benzonitrile ring was further supported by the 
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presence of the fragment ion at m/z 197 in the GC-MS mass spectrum of M1. This latter ion was 

also found in the GC-MS spectrum of the parent compound and is comparable to the ion m/z 

199 detected by LC-HRMS in positive ionization mode (Table 8.2). 

Table 8.2. Results derived from LC-HRMS/MS (ESI) product ion scans in negative and positive ionization mode of 
LGD-4033 and its metabolites. 

Compound 
Negative mode (deprotonated ions) Positive mode (protonated ions) 

Product 
ions 

Chemical 
formula  

Error 
(ppm) 

origin Product 
ions 

Chemical 
formula 

Error 
(ppm) 

origin 

LGD-4033 267.0752 C13H10F3N2O 0.48 -CHF3 321.0819 C14H11F6N2 0.61 -H2O 
239.0436 C11H6F3N2O 0.79 -CHF3-C2H4 319.0862 C14H12F5N2O 0.79 -HF 
185.0324 C8H4F3N2 4.36 -C6H7F3O 240.0866 C12H11F3N2 1.10 -CHOH-CF3 

170.0214 C8H3F3N 5.45 -C6H8F3NO 220.0805 C12H10F2N2 0.76 -CHOH-CF3-HF 
    213.0633 C10H8F3N2 0.42 -CHOH-CF3-C2H3 

    199.0476 C9H6F3N2 0.70 -CHOH-CF3-C3H5 

M1 281.0541 C13H8F3N2O
2 

0.80 -CHF3 335.0610 C14H9F6N2O 0.95 -H2O 

263.0436 C13H6F3N2O 0.84 -CHF3-H2O 333.0653 C14H10F5N2O2 1.25 -HF 
253.0227 C11H4F3N2O2 1.33 -CHF3-C2H4 317.0507 C14H7F6N2 0.42 -2H2O 
237.0640 C12H8F3N2 2.28 -CHF3-CO2 234.0598 C12H8F2N2O 0.73 -

•
CHOHCF3-HF 

185.0322 C8H4F3N2 5.43 -C6H5F3O2 199.0477 C9H6F3N2 0.60 -CHOHCF3-C3H3O 
170.0212 C8H3F3N 6.81 -C6H6F3NO2     

M2 285.0855 C13H12F3N2O2 0.44 -CHF3 339.0925 C14H13F6N2O 0.47 -H2O 
257.0905 C12H12F3N2O 0.94 -CHF3-CO 321.0819 C14H11F6N2 0.29 -2H2O 
239.0789 C12H10F3N2 1.60 -CHF3-CO-H2O 297.0455 C11H7F6N2O 0.60 -C3H7OH  
237.0641 C12H8F3N2 1.63 -CHF3-CHOH-H2O 279.0349 C11H5F6N2 0.95 -C3H7OH-H2O 
226.0354 C10H5 F3N2O 2.54 -

•
CH3CH2CHOH-

HCF3 
259.0289 C11H4F5N2 0.64 -C3H7OH-H2O-HF 

199.0480 C9H6F3N2 4.05 -C5H7F3O2 199.0476 C9H6F3N2 0.70 -CHOHCF3-
C3H6OH 

185.0323 C8H4F3N2 4.90 -C6H9F3O2 187.0476 C8H6F3N2 0.75 -CHOHCF3-
C4H6OH 

170.0212 C8H3F3N 6.10 -C6H10F3NO2 135.0416 C6H6F3 0.14 -C8H5F3N2-2H2O 
    115.0357 C6H5F2 2.75 -C8H5F3N2-2H2O-

HF 

M3/M4 297.0853 C14H12F3N2O2 1.03 -CHF3 349.0966 C15H14F5N2O2 1.25 -HF 
265.0591 C13H8F3N2O 0.83 -CHF3-CH3OH 337.0768 C14H11F6N2O 0.77 -CH3OH 
237.0640 C12H8F3N2 2.09 -COCHF3-CH3OH 319.0663 C14H9F6N2 0.51 -CH3OH-H2O 
185.0321 C8H4F3N2 5.76 -C7H9F3O2 299.0601 C14H8F5N2 0.32 -CH3OH-H2O-HF 
170.0212 C8H3F3N 6.81 -C7H10F3NO2  213.0632 C10H8F3N2 0.89 -CHOHCF3-C2H2-

CH2OH 
    197.0315 C9H4F3N2 0.66 -CHOHCF3-C3H6-

CH2OH 

M5 351.0570 C14H9F6N2O2 1.20 -H2O 353.0719 C14H11F6N2O2 0.32 -H2O 
299.0645 C13H10F3N2O3 1.51 -CHF3 351.0762 C14H12F5N2O3 0.17 -HF 
281.0539 C13H8F3N2O2 1.59 -H2O-CHF3 335.0613 C14H9F6N2O 0.06 -2H2O 
263.0434 C13H6F3N2O 1.41 -2H2O-CHF3 333.0657 C14H10F5N2O2 0.11 -H2O-HF 
255.0746 C12H10F3N2O 1.96 -CHF3-CO2 317.0508 C14H7F6N2 0.05 -3H2O 
253.0589 C12H8F3N2O 2.18 -CHOHCF3-H2O 234.0598 C12H8F2N2O 0.13 -CHOHCF3-H2O-HF 
253.0225 C11H4F3N2O2 2.04 -CHF3-C2H4-H2O 199.0477 C9H6F3N2 0.15 -CHOHCF3-C3H3-

H2O 
237.0638 C12H8F3N2 2.81 -CO2-CHF3-H2O 187.0476 C8H6F3N2 0.32  
185.0301 C8H4F3N2 6.46 -C6H7F3O2 167.0315 C6H6F3O2 0.06  
170.0211 C8H3F3N 0.88 -C6H8F3NO3 167.0414 C8H5F2N2 0.97 m/z 187-HF 
    139.0366 C5H6F3O 0.39  
    125.0211 C4H4F3O 1.74  
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Based on the LC-HRMS analysis hydroxylation and cleavage of the pyrrolidine ring was assumed 

as modification for M2 (Table 8.1). In negative ionization mode this modification was supported 

by the detection of ions m/z 257 and m/z 285, indicating modified ions at m/z 239 and m/z 267 

respectively (Table 8.2). A similar metabolite was observed by Sobolevsky et al. [31] but our 

product ion scan data suggest another structure for our detected metabolite.  

 

Figure 8.4. LC-HRMS/MS mass spectra of LGD-4033 metabolites M2 and M4 are shown in both negative and 
positive ionization mode at a CE of 35 eV and 45 eV respectively. The tentative fragmentation patterns are also 
presented. 

In negative ionization mode, the ions at m/z 170, m/z 185 and m/z 199 indicated that the 

phenyl ring was unaltered (m/z 170), with a nitrogen bonded (m/z 185) and with an alkylic C 

bonded to the nitrogen (m/z 199). Similar ions (m/z 199 and m/z 187) were observed in positive 

ionization mode. Other product ions suggested the proposed structure for M2 with a cleavage 

of the pyrrolidine ring at carbon C6 (Figure 8.4). The ion at m/z 226 can only be explained by the 

neutral loss of CHF3 and ·C3H7O suggesting the presence of a hydroxypropyl group in M2. The 

presence of the hydroxypropyl group was also supported by the ions at m/z 297, m/z 279 and 
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m/z 259 observed in positive ionization mode. All of these could be explained after the neutral 

loss of CH3CH2CH2OH (Table 8.2).  

 

Figure 8.5. Tentative fragmentation pathways of LGD-4033 metabolite M2 in both negative and positive 
ionization mode. Only one possible configuration of metabolite M2 is presented here. 
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Additionally, m/z 185 is shown in all compounds but is more important in M2 probably due to 

the opening of the ring supporting the assignation. The proposed fragmentation pathways 

leading to the detected fragment ions by LC-HRMS in negative and positive ionization mode are 

indicated in Figure 8.5. 

The earlier mentioned LC-HRMS data suggest a hydroxylation and methylation of LGD-4033 for 

M3 and M4, rather than hydroxylated M1 metabolites (Table 8.1). The LC-HRMS product ion 

scan experiments further underpinned this hypothesis (Figure 8.4 and Table 8.2). Whereas 

metabolites M1 and M2 exhibited an identical number of losses of water as the number of 

oxygen atoms present in the molecule, only one loss of water was observed in positive 

ionization mode for M3 and M4. Moreover, a loss of methanol was found for M3 and M4 in 

both positive and negative ionization mode. The presence of fragment ion m/z 213 in the LC-

HRMS/MS experiments in positive ionization mode of M3 and M4 indicate a hydroxylated 

methylgroup at carbon C4 in the pyrrolidine ring (Figure 8.4 and Table 8.2). In Figure 8.6 the 

proposed fragmentation pathways for M3/M4 are shown.  

The dihydroxylated LGD-4033 structure for M5 was also indicated by three losses of water 

molecules (Table 8.2). Similar to M1 and M2 the number of losses of water equals the number 

of oxygen atoms in the molecule. The observed fragment ions for M5 were identical to those for 

a metabolite described by Thevis et al. [16]. Thevis et al. were able to identify the structure of 

this metabolite by NMR and therefore this structure is also shown for M5 in Table 8.1. 
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Figure 8.6. Tentative fragmentation pathways of LGD-4033 metabolite M4 in both negative and positive 
ionization mode. Only one possible configuration of metabolite M4 is presented here. 
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4 Conclusions 

The SARM LGD-4033 is present as black market product and available via the internet to 

athletes. The metabolic fate of LGD-4033 was elucidated to improve its detection by doping 

control laboratories. 

LGD-4033 seems relatively stable as only five phase I metabolites were identified in this in vitro 

study. Negative ionization mode is preferred for screening of these metabolites. The in vitro 

observed metabolic modifications of LGD-4033 were hydroxylation combined with keto-

formation or cleavage of the pyrrolidine ring, dihydroxylation and hydroxylation combined with 

methylation. Identification of LGD-4033 metabolites was based on knowledge of fragmentation 

pathways of the parent compound. The LC-HRMS/MS product ion scans indicate that all above 

mentioned metabolic modifications are situated in the pyrrolidine ring of LGD-4033. Only for 

the parent compound and M2 glucuronide conjugates were detected. Even though further 

research is needed to determine the best target compounds in real human samples, 

implementing these metabolites could improve detection windows of LGD-4033. 
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Abstract 

SR9009 and SR9011 are promising drug candidates for several metabolic disorders due to their 

REV-ERB modulation activity. The nuclear REV-ERBα and REV-ERBβ receptors play an important 

role in maintaining circadian rhythm and energy homeostasis. The increase in exercise 

endurance observed in animal experiments makes these substances also attractive as 

performance enhancing substances. Although no pharmaceutical preparations are available yet, 

illicit use of SR9009 and SR9011 for doping purposes can be anticipated, especially since SR9009 

is marketed in illicit products. Therefore, methods need to be developed to effectively control 

the use of these substances. In vitro metabolism studies can assist preventive doping research 

leading to the incorporation of diagnostic metabolites into screening methods. 

In this study the presence of SR9009 could be demonstrated in a black market product 

purchased over the internet. The metabolic fate of SR9009 and SR9011 was studied using 

human liver microsomes. In total eight metabolites were detected for SR9009 and fourteen 

metabolites for SR9011 by LC-(HR)MS analysis. Structure elucidation was performed for all 

metabolites by LC-HRMS product ion scans in both positive and negative ionization mode. 

The research method used for the detection of the parent compounds and their metabolites 

was qualitatively validated. The limit of detection of the parent compounds was 2 ng/mL for 

SR9009 and 5 ng/mL for SR9011. Retrospective data analysis was applied to 1511 doping control 

samples previously analyzed by a full scan LC-HRMS screening method to verify the presence of 

SR9009, SR9011 and their metabolites. So far, the presence of neither the parent compound nor 

the metabolites could be detected in routine urine samples. 
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1 Introduction 

Physiological processes as metabolism and behavior e.g. activity/rest, are generally organized 

on a cycle of approximately 24 h driven by a circadian rhythm [1-3]. The nuclear receptors REV-

ERBα and REV-ERBβ regulate the expression of core clock proteins and therefore help to 

modulate the circadian rhythm [1, 2, 4, 5]. 

Modulation of the REV-ERB activity by synthetic agonists e.g. SR9009 and SR9011 (Figure 9.1) 

alters the expression of genes involved in lipid and glucose metabolism and plays therefore an 

important role in maintaining the energy homeostasis [1, 4, 6]. Effects of SR9009 and SR9011 

observed via in vitro and in vivo animal studies were increased basal oxygen consumption, 

decreased lipogenesis, cholesterol and bile acid synthesis in the liver, increased mitochondrial 

content, glucose and fatty acids oxidation in the skeletal muscle and decreased lipid storage in 

the white adipose tissue [1, 2, 4, 6, 7].  

 

Figure 9.1. Chemical structures of REV-ERBα agonists SR9009 (A) and SR9011 (B). The tentative fragmentation 
patterns are also indicated. 

The observed increase in energy expenditure and decrease in fat mass make the REV-ERB 

agonists SR9009 and SR9011 promising drug candidates for treatment of several metabolic 

disorders [3, 4, 6]. At the same time the increase in exercise capacity observed via in vivo animal 

studies [6, 8] makes these compounds also attractive for performance enhancement by 

athletes, although such use can be classified as doping. The potential interest as doping agents 

is clearly shown by their popularity in discussion fora on the internet, where they are mentioned 



Chapter 9 – Metabolism studies of SR9009 and SR9011 

200 

as the ultimate ‘exercise in a pill’ compounds [8-14]. Although these REV-ERB agonists are 

currently still undergoing clinical evaluation and are therefore not approved for therapeutic use, 

distribution in black market products might be expected as observed before for designer 

steroids [15-17], peptides [18-23], several SARMs [24-26] and GW501516 [26]. 

Even though not explicitly mentioned on the Prohibited List published by the World Anti-Doping 

Agency (WADA) they are indirectly prohibited as non-approved substances (Class S0), but could 

potentially also be classified as metabolic modulators (Class S4) [27]. 

As illicit use of SR9009 and SR9011 can be anticipated, monitoring of their presence on the 

market and use by doping control laboratories is recommended. These preventive investigations 

not only help to close the gap between anti-doping laboratories and the appearance of new 

doping agents but also contribute to deter the use of these compounds and therefore protect 

fair play and the health of athletes, as athletes are deterred from use when a substance is 

detectable.  

To allow a fast response to the appearance of new non-approved performance enhancing 

substances, in vitro metabolism studies are frequently applied. As the liver is the principal organ 

for drug metabolism in vitro models are often based on human liver fractions (e.g. human liver 

microsomes (HLM)) [28]. These in vitro studies not only circumvent the ethical objections 

related to the use of human volunteers for excretion studies, they are more affordable and can 

be applied rapidly. Moreover, analytically, the clean extracts improve the characterization of 

metabolites [29]. However, careful extrapolation of these in vitro studies to real human 

metabolism should be performed as some metabolic pathways may be over or under expressed 

[28]. Nevertheless, in vitro metabolism studies allow to incorporate metabolites into existing 

screening methods which could improve the detection window compared to the parent 

compound and they can provide reference material to improve identification of suspicious 

doping control samples [29]. 

In the current study, a black market product sold as performance enhancing product and 

labeled to contain SR9009 was purchased over the internet to verify its content. The analysis 

resulted in the identification of the mentioned compound. Consecutively, HLM were applied to 

perform metabolism studies of SR9009 and SR9011. 
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2 Materials and Methods 

2.1 Chemicals and reagents 

A black market gross sales product, claiming to contain SR9009, was purchased over the 

internet (to prevent athletes of purchasing this product, further details remain confidential). 

The internal standard (IS) 17α-methyltestosterone was obtained from Organon (Oss, the 

Netherlands). 4-hydroxytamoxifen-d5 was purchased from Toronto Research Chemicals (TRC, 

Toronto, Canada). The reference standard of methandienone was obtained from the ‘National 

Measurement Institute’ (NMI, North Ryde, Australia). Reference material of SR9009 and SR9011 

was purchased from Calbiochem (Merck Chemicals, Nottingham, UK) and Xcess Bio (San Diego, 

US), respectively. Pooled HLM from 20–30 donors, the nicotinamide adenine dinucleotide 

phosphate (NADPH) regenerating system solutions A and B and phosphate buffer pH 7.4 all 

from Gentest were purchased by Corning (Amsterdam, the Netherlands). Ethanol and 

ammonium acetate (NH4OAc) were purchased from Biosolve (Valkenswaard, the Netherlands). 

Diethyl ether and methanol (MeOH) were obtained from Fisher Scientific (Loughborough, UK). 

Sodium sulfate (Na2SO4), sodium hydrogen carbonate (NaHCO3), potassium carbonate (K2CO3), 

ammonium iodide (NH4I) and acetic acid (HOAc) were from Merck (Darmstadt, Germany). LC 

grade water and LC grade MeOH were purchased from J.T. Baker (Deventer, the Netherlands). 

Nitrogen (N2) and oxygen-free nitrogen (OFN) was delivered by Air Liquide (Bornem, Belgium). 

2.2 Instrumentation 

2.2.1 LC-(HR)MS 

All experiments were performed under the same LC conditions using a Thermo Finnigan 

Surveyor Autosampler Plus and a MS Pump Plus (Thermo Scientific, Bremen, Germany). The LC 

separation was performed using a SunFire™ C18 column (50 mm × 2.1 mm i.d., 3.5 μm) from 

Waters (AH Etten-Leur, the Netherlands), at a flow rate of 250 µL/min. The injection volume was 

25 µL in the no waste injection mode. The mobile phase consisted of LC grade water (solvent A) 

and LC grade MeOH (solvent B) both with 1 mM NH4OAc and 0.1% HOAc. The percentage of the 

organic solvent in the applied gradient program was linearly changed as follows: 0 min, 15%; 1 

min, 15%; 6.5 min, 70%; 14 min, 75%; 16.0 min, 100%; 16.9 min, 100%; 17 min, 15% and 20 min, 

15%. The methods have a total run time of 20 min. 

For the low resolution methods a TSQ Quantum Discovery MAX triple quadrupole mass 

spectrometer (Thermo Scientific) was used. Therefore a full scan method was applied in a range 

of m/z 100-500 in both positive and negative mode. The other MS conditions were interface: 

electrospray ionization (ESI), capillary voltage: 3.5 kV, source temperature: 350 °C, sheath gas 
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(N2) pressure: 50 (arbitrary units), auxiliary gas (N2) pressure: 20 (arbitrary units), tube lens 

offset: 100 V, scan time: 0.5 s. 

The HR-MS(/MS) experiments were performed on an Exactive mass spectrometer (Thermo 

Scientific). The instrument operated in both positive and negative full scan mode from m/z 100 

to 2000 at a resolving power of 50,000 with a data acquisition rate of 2 Hz. For the structural 

investigation of metabolites LC-HRMS product ions scans were performed by a Q-Exactive mass 

spectrometer (Thermo Scientific) for the protonated and deprotonated molecules as selected 

ions with an isolation window of 1.0 m/z at a resolving power of 70,000 at collision energies of 

15, 25, 35 and 45 eV. The other MS parameters for both LC-HRMS instruments were identical to 

the low resolution instruments except for spray voltage: 4 kV, source temperature of 250 °C and 

heated ESI (HESI) (probe heater at 300 °C). A LC-HRMS screening method as indicated in [30] 

was also applied for the assay validation. 

2.3 In vitro incubation studies 

Prior to the in vitro metabolism studies, the black market product containing SR9009 and 

available reference material of SR9011 and SR9009 were analyzed by LC-(HR)MS for purity 

verification. 

Phase I in vitro metabolic assays (HLM) were applied as described in Chapter 1 (7.2.2.2 Protocol 

in vitro metabolism studies; Table 1.6). The final concentration of SR9009 and SR9009 in the in 

vitro incubation samples was 40 µg/mL. Substrate stability samples (blank; without HLM) and 

system blank samples (without test compound) control samples were used to verify the 

enzymatic reactions. Methandienone was used as test compound in the positive control 

samples. At the appropriate time (after 2, 4 and 18 h) the enzymatic reactions were terminated 

by adding 250 µL of ice-cold MeOH. 

2.4 Assay validation 

The qualitative determination of SR9009 and SR9011 was validated in human urine regarding 

specificity, extraction recovery and limit of detection (LOD) according to the Eurachem 

guidelines [31] and in compliance with the WADA International Standards for Laboratories (ISL) 

[32]. 

Specificity was tested during the validation procedure by checking for possible interfering peaks 

in the extracted ion chromatograms (EIC) at the expected retention times for SR9009 and 

SR9011. 
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The LOD was defined as the lowest concentration that can be detected in ten human urine 

samples with a signal to noise ratio (S/N) higher than three. Ten different blank human urine 

samples (seven male and three female; pH-range from 4.72 to 6.89; specific gravity between 

1.006 and 1.035 g/L) were spiked at 2, 5, 10 and 20 ng/mL for SR9009 and at 5, 10, 20 and 50 

ng/mL for SR9011. For the assay validation 4-hydroxytamoxifen-d5 was used as internal 

standard. Blank urines and distilled water samples spiked only with this IS were also included. 

Sample preparation was performed as described in the following section (2.5 Sample 

preparation). The samples were analyzed according to an existing LC-HRMS screening method 

[30] providing the data necessary to determine the LOD. 

The extraction recovery of SR9009 and SR9011 during sample preparation was determined at 20 

ng/mL and at 50 ng/mL respectively. Recovery was calculated by comparison of the mean peak 

area of the analytes for urine samples spiked before and after sample preparation. Therefore, 

the results of the ten blank urines applied for determination of the LOD spiked with SR9009 and 

SR9011 before sample preparation were used. Another batch of the same blank urines was 

spiked with SR9009 and SR9011 after sample preparation. 

Additionally, matrix effects were studied at 20 ng/mL for SR9009 and at 50 ng/mL for SR9011. 

Matrix effects were measured by comparing the peak area (A) of the analytes spiked in 10 

extracted urines and in a neat standard solution following the formula:  

M.E (%) = (𝐴 (𝑢𝑟𝑖𝑛𝑒)−𝐴 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛))

𝐴(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
𝑋100. 

2.5 Sample preparation  

The samples of the in vitro metabolic assays were analyzed by direct injection on LC-HRMS, after 

removal of the enzymatic proteins. Therefore, the HLM incubation samples were first 

centrifuged at 4 °C (12,000 g, 5 min) followed by transferring 400 µL into new tubes. 50 µL of 

the internal standard (IS) 17α-methyltestosterone (2 µg/mL) was added to all samples. 

The samples for the assay validation were first enzymatically hydrolyzed by β-glucuronidase and 

then a liquid-liquid extraction (LLE) was performed as described in Chapter 3 (2.5.1 Liquid-liquid 

extraction (LLE)). The residues were dissolved in 100 µL H2O/MeOH (50/50) for LC-(HR)MS/MS 

analysis.
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3 Results and Discussion 

3.1 Analysis of black market product 

Reference standards of SR9009 and SR9011 were analyzed by both low resolution and high 

resolution LC-MS instruments. The presence of SR9009 in the black market product was also 

verified by comparison with commercially available reference material by LC-(HR)MS. Mass 

deviations smaller than 1 ppm were observed for SR9009 and SR9011 in the reference material 

and black market product (LC-HRMS). Identification criteria in chromatography and mass 

spectrometry, as stipulated in the WADA Technical Document [33] were also met for the black 

market product. LC-(HR)MS analysis did not result in the detection of major impurities (<5% 

total peak height in the total ion chromatogram) in the black market product. These results 

indicate that the use of SR9009 is no longer a potential threat, but a real doping threat. Shortly 

after the purchase of the substance from the gross sale internet market, the product also 

appeared for purchase in individual quantities from several internet suppliers of performance 

enhancing substances. This indicates that the substance has now become readily available to 

athletes and that detection methods need to be developed for the product. 

3.2 In vitro metabolism studies 

In the current study the metabolic fate of SR9009 and SR9011 was determined by HLM 

incubations with commercially available reference standards. The HLM incubation samples were 

analyzed by full scan LC-HRMS analysis in both positive and negative ionization mode. The 

search for potential metabolites was complemented with the extraction of specific exact mass 

ions for “expected” metabolites, based upon knowledge of HLM transformations and 

theoretically possible metabolic pathways including oxidations (e.g. hydroxylations, double 

bond formation), reductions (e.g. ring opening), cleavage of the structure and combinations of 

these pathways [34, 35]. 

Eight metabolites (SR09-1 till SR09-8) and fourteen metabolites (SR11-1 till SR11-14) were 

detected in the HLM incubation samples for SR9009 and SR9011, respectively (Figure 9.2 and 

Figure 9.3). All metabolites were detected with less than 5 ppm mass deviation from their 

proposed structures (Figure 9.4). To facilitate further discussion the different parts of the 

molecules of both parent compounds were assigned to a letter (Figure 9.1 and Table 9.1). 



 

Table 9.1. LC-HRMS product ion scans of SR9009 and SR9011. Common product ions of the parent compounds and metabolites are also indicated. 

Compound Fragment
a
 Chemical 

formula 
Polarity 
mode 

Theoretic 
mass 
(m/z) 

Δ 
ppm 

Detected in metabolites 

SR9009 / SR9011 A C5H3NO2S + 141.9957 2.58 SR09-: 1; 5-8 
SR11-: 1-4; 7a/b/c; 8a/b; 9-11; 14 

SR9009  B C8H11NO2 + 154.0863 0.94 SR09-: 1; 2; 6 
SR9011 B’ C11H20N2O + 197.1648 0.41 / 
SR9009 / SR9011 C C7H5Cl + 125.0153 3.96 SR09-: 1; 2; 3(a/b/c); 4(a/b); 5; 7; 8 

SR11-: 1-6; 9-13 
SR9009 -C C13H17N3O4S + 312.1013 1.78 SR09-1 

- 311.0945 1.30 / 
-C-NO2 C13H18N2O2S - 265.1016 1.25 / 

SR9011 -C C16H24N4O3S + 353.1642 1.99 SR11-: 1; 7 
-C-D’ C10H13N3OS - 239.0734 1.86 SR11-: 1; 3; 9 
-C-D’-NO2 C10H14N2S - 193.0805 4.83 SR11-: 1; 9 
-D’+2H C17H20N3O2ClS + 366.1038 2.18 SR11-: 1-4; 9 

SR9009 / SR9011 -E/E’ C18H18N3O3ClS + 392.0830 2.08 SR11-: 1-4 
SR9009 / SR9011 C+CNH4 C8H8NCl + 154.0418 1.06 SR09-: 3(b/c); 4b; 8 

SR11-: 1-6; 9-11; 13 
SR9009 B-CH2 C7H11NO2 + 142.0863 0.18 SR09-: 2; 3(b/c); 4b 

-B+CH2 C13H11N2O2ClS + 295.0303 0.96 SR09-: 1; 8 
SR11-: 10; 11 

-A C15H19N2O2Cl + 295.1208 0.72 SR09-: 1; 3a/b/c 
SR9011 B’-CH2 C10H18N2O + 183.1492 0.49 SR11-: 8b 
SR9009 / SR9011 -C-E/E’ C11H13N3O3S + 268.0750 0.12 SR11-: 1, 2; 4; 7a/b; 8a; 9; 14 

a
 See Figure 9.1 for structures of fragments A, B, B’, C, D, D’, E and E’; – symbolizes loss of the indicated fragment.
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The highest relative abundances in the HLM incubation samples with SR9009 were observed for 

metabolites SR09-1, SR09-2, SR09-4(a), SR09-5 and SR09-7. For SR9011 metabolites SR11-1, 

SR11-3, SR11-5 and SR11-9 have the highest relative abundances. Metabolite SR09-5 and similar 

metabolites as SR11-5, SR11-6 and SR11-13 were also described by Sobolevsky et al. as major 

human metabolites of SR9009 and SR9011, respectively [36]. 

 

Figure 9.2. In vitro metabolism studies with SR9009. The extracted ion LC-HRMS chromatograms of the 4 h HLM 
incubation samples (right column) are presented in comparison with blank (without HLM) control samples (left 
column). 

3.3 Structure characterization by LC-HRMS/MS 

Initially, the fragmentation patterns of the parent compounds were studied in both positive and 

negative ionization mode to identify diagnostic product ions (Figure 9.1 and Table 9.1). Similar 

fragmentation patterns were observed for SR9009 and SR9011 leading to diagnostic fragments 

A, B/B’ and C. As indicated in Figure 9.1 fragment B/B’ was further fragmented for both SR9009 

and SR9011, respectively. Structure elucidation of the SR9009 and SR9011 metabolites was 

based on the detection of structure-specific product ions by LC-HRMS (Table 9.2 and Table 9.3). 

3.3.1 SR9009 

For all hydroxylated SR9009 metabolites product ions related to a loss of water were observed 

(Table 9.2).  
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Figure 9.3. In vitro metabolism studies with SR9011. The extracted ion LC-HRMS chromatograms of the 4 h HLM 
incubation samples (right column) are presented in comparison with blank (without HLM) control samples (left 
column). 

In the product ion scan mass spectra of SR09-1 a base peak was observed at m/z 295.0298 in 

positive ionization mode. This ion was also found for SR9009 and could be linked to 

C13H12O2N2ClS by HRMS (Table 9.1). Fragments A, B and C were also observed for SR09-1 (Table 

9.1). In negative ionization mode ions m/z 327.0895 and 251.0494 indicate a hydroxylation of 

the parent compound outside C and F (Table 9.2). In positive ionization mode a fragment ion 

m/z 172.0965 was found, which indicates a hydroxylation in B (Table 9.2). 

The structure of metabolite SR09-2 corresponds to a loss of A of the parent compound. The 

product ion data were also consistent with this structure as only fragments B and C were 

observed (Table 9.1 and Table 9.2). For metabolites SR09-5 and SR09-7, with structures 

corresponding to loss of B and D respectively, only product ions related to A and C were 

observed (Table 9.1). 
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Metabolites SR09-3 and SR09-4 correspond to hydroxylated derivatives of SR09-2 after loss of A 

(Table 9.2). For all isomeric SR09-3 and SR09-4 metabolites fragment C was observed. In the 

product ion scan mass spectrum of SR09-3a m/z 158.0811 was observed, which indicates a 

hydroxylation in B (m/z 142.0863) as this fragment corresponds to C7H12NO3 with 0.63 ppm 

mass deviation (Table 9.2). In contrast to what was observed in the product ion scan mass 

spectra of all other metabolites, product ion m/z 154.0418 corresponding to C8H9NCl was more 

abundant than product ion m/z 125.0153 (fragment C) for SR09-3b. For SR09-3b m/z 141.0100 

was also observed which corresponds to C7H6OCl with 1.12 ppm mass deviation and is indicative 

for a hydroxylation at C of the parent compound. For metabolite SR09-3c and SR09-4a no 

indicative ions for the position of hydroxylation (and further oxidation (-H2)) were found. The 

ion m/z 170.0364 observed for SR09-4b would indicate a hydroxylation and subsequent keto-

formation in C of the parent compound, as this corresponds to C8H9NOCl with 1.75 ppm mass 

deviation (Table 9.2). 

The ion m/z 157.9904 in the product ion scan mass spectrum of SR09-6 indicates a 

hydroxylation in A (m/z 141.9957) for this metabolite (Table 9.2). 

Fragments A and C were observed in the product ion scan mass spectrum of SR09-8. Similar to 

metabolite SR09-1 an abundant fragment ion m/z 295.0299 was observed. Although no 

indicative ions for the position of hydroxylation were found, this base peak (m/z 295.0299) 

could also indicate a modification (hydroxylation and keto-formation) in B(-D) (Table 9.2). 

Similar metabolites for SR9009 were also described in the HLM incubation and human excretion 

urine samples by Sobolevsky et al. [36]. Metabolites SR09-1 and SR09-6 were not reported in 

their study. However, two additional metabolites were detected in their study; one metabolite 

characterized by a loss of D and hydroxylation and another by as loss of C [36]. This latter 

metabolite was also described as a major human metabolite [36]. Considering the structures of 

SR09-6 (-C+OH) and SR09-7 (-D), these metabolic modifications observed by Sobolevsky et al. 

seem possible in our in vitro incubation samples [36]. 



 

 

 
 

Table 9.2. Characterization of metabolites detected in HLM incubation samples with SR9009 by LC-HRMS analysis. 

Compound 
Metabolic 

modification
a
 

Chemical 
formula 

[M+H]
+ 

(∆ ppm) 
Product ion 

Polarity 
mode 

Exp m/z
b
 

Chemical 
formula 

∆ ppm Origin
a
 

SR09-1 +OH C20H24N3O5ClS 454.1192 (0.94) + 172.0965 C8H14NO3 1.68 B+H2O 
- 327.0895 C13H17N3O5S 0.31 -C+OH 

281.0476 C11H11N3O4S 0.09 -C-F+OH 
SR09-2 -A C15H21N2O2Cl 297.1361 (1.08) + 251.0942 C13H16N2OCl 1.42 -A-E 
SR09-3 a -A+OH C15H21N2O3Cl 313.1309 (1.36) + 251.0942 C13H16N2OCl 1.38 -A-E-H2O 

225.1150 C12H18N2Cl 1.30 -A-D-H2O 
158.0811 C7H12NO3 0.63 B+CH2+OH 

SR09-3 b 141.0100 C7H6OCl 1.12 C+OH 
SR09-3 c 267.0890 C13H16N2O2Cl 1.95 -A-F-H2O 
SR09-4 a -A+OH-H2 C15H19N2O3Cl 311.1148 (1.19) + 265.0731 C13H14N2O2Cl 0.85 -F-H2O 
SR09-4 b 293.1046 C15H18N2O2Cl 1.88 -H2O 

265.0734 C13H14N2O2Cl 1.78 -A-F-H2-H2O 
170.0364 C8H9NOCl 1.75 A+CH3NO 

SR09-5 -B C12H11N2O2SCl 283.0297 (1.88) + *    
SR09-6 -C+OH C13H19N3O5S 330.1112 (1.84) + 284.0694 C11H14N3O4S 2.05 -C-F-H2O 

157.9904 C5H4NO3S 1.33 A+OH 
SR09-7 -D  C17H20N3O2ClS 366.1031 (1.81) + *    
SR09-8 -D+OH-H2 C17H18N3O3ClS 380.0826 (1.15) + 362.07120 C17H17N3O2ClS 1.36 -H2O 
a
 The structures of A, B, C, D and F’ are indicated in Figure 9.1 and Table 9.1 ; – symbolizes loss of the indicated fragment 

b
 Exp m/z = experimental m/z 

*: see product ion scan data of the parent compounds presented in Table 9.1 for typical fragment ions of the compound(s).



 

 

Table 9.3. Characterization of metabolites detected in HLM incubation samples with SR9011 by LC-HRMS analysis. 

Compound 
Metabolic 

modification
a
 

Chemical 
formula 

[M+H]
+ 

(∆ ppm) 

Product ion 

Polarity 
mode 

Exp m/z
b
 Chemical formula 

∆ 
ppm 

Origin
a
 

SR11-1 +OH C23H31N4O4ClS 495.1818 (1.84) + 181.1333 C10H17N2O 1.49 B’-CH2-H2 
- 368.1523 C16H24N4O4S 0.34 -C+OH 

SR11-2 +2OH C23H31N4O5SCl 511.1771 (1.09) + 242.0954 C10H16N3O2S 1.67 -C-D’-2H2O 
215.1387 C10H19N2O3 1.53 B’-CH2-H2+2OH 

SR11-3 -H2+OH C23H29N4O4ClS 493.1665 (1.24) + 475.1562 C23H28N4O3ClS 0.62 -H2O 
- 366.1365 C16H22N4O4S 0.69 -C+OH-H2 

SR11-4 -H2+2OH C23H29N4O5ClS 509.1616 (0.80) + 409.1091 C18H22N4O3ClS 1.06 -F’-2H2O 
242.0952 C10H16N3O2S 2.33 -C-D’-2H2O 
227.1387 C11H19N2O3 1.45 B’+2OH-H2 
213.1230 C10H17N2O3 1.59 B’-CH2+2OH 

SR11-5 -A+OH C18H28N3O2Cl 354.1932 (3.11) + 225.1147 C12H18N2Cl 2.81 -A-D’-H2O 
197.1489 C11H19N2O 1.28 B’ 
144.1130 C6H14N3O 1.24 B’-F’ 

SR11-6 -A+OH–H2 C18H26N3O2Cl 352.1781 (1.59) + 225.1149 C12H18N2Cl 1.61 -A-D’-H2O 
211.1436 C11H19N2O2 2.29 B’+OH-H2 
197.1280 C10H17N2O2 2.20 B’-CH2+OH-H2 

SR11-7 a/b -C+OH C16H26N4O4S 371.1742 (1.52) + 242.0953 C10H16N3O2S 2.00 -C-D’-H2O 
199.1438 C10H19O2N2  1.63 B’-CH2+OH 

SR11-7 c 258.0903 C10H16N3O3S 1.51 -C-D’+OH 
229.1782 C11H23N3O2 1.30 B’+OH 

SR11-8 a -C+OH–H2 C16H24N4O4S 369.1587 (1.20) + 285.1011 C11H17N4O3S 1.47 -C-F’-H2O 
242.0953 C10H16N3O2S 1.67 -C-D’-H2O 

SR11-8 b 282.0538 C11H12N3O4S 1.89 -C-E’+OH 
256.0745 C10H14N3O3S 2.26 -C-D’+OH 

SR11-9 -F’ C18H21N4O3ClS 409.1088 (1.97) + 283.0853 C11H15N4O3S 2.15 -F’-C 
251.0940 C13H16N2OCl 2.90 -A-E’ 

SR11-10 -F’+OH C18H21N4O4ClS 425.1051 (1.39) + 364.0876 C17H18N3O2ClS 1.41 -D’-H2O 
237.0786 C12H14N2OCl 1.17 -A-D’+OH 
194.0729 C6H14N2O3S 4.92 A+CH2+OH 

 

 

 



 

 

 
 

Table 9.3. Continued. 

Compound 
Metabolic 

modification
a
 

Chemical 
formula 

[M+H]
+ 

(∆ ppm) 

Product ion
 

Polarity 
mode 

Exp m/z
b
 Chemical formula 

∆ 
ppm 

Origin
a
 

SR11-11 -F’–H2 C18H19N4O3ClS 407.0932 (1.83) + 266.0588 C11H12N3O3S 2.06 -C-E’-H2 
249.0784 C13H14N2OCl 2.20 -A-E’-H2 

SR11-12 -F’-H2+OH C18H19N4O4ClS 423.1621 (1.94) + 380.0823 C17H19N3O3ClS 1.86 -D’+OH 
282.0537 C11H12N3O4S 2.21 -C-E’+OH 
256.0746 C10H14N3O3S 2.03 -C-D’+OH 

SR11-13 -F’-A C13H18N3OCl 268.1205 (2.15) + 225.1149  C12H18N2Cl 1.66 -A-D’ 
SR11-14 -F’-C C11H16N4O3S 285.1011 (1.57) + *    
 

a
 The structures of A, B, C, D and F’ are indicated in Figure 9.1 and Table 9.1; – symbolizes loss of the indicated fragment 

b
 Exp m/z = experimental m/z 

*: see product ion scan data of the parent compounds presented in Table 9.1 for typical fragment ions of the compound. 
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3.3.2 SR9011 

For all SR9011 metabolites, except for SR11-12, the number of losses of water was identical to 

the proposed number of hydroxylations (Table 9.3). 

Typical product ions of fragment A, B’, C were observed for SR11-1 but no indicative ions for the 

position of hydroxylation were found in positive ionization mode (Table 9.1 and Table 9.3). 

However, in negative ionization mode ion m/z 368.1522 indicates a modification outside 

fragment C (Table 9.3). 

The presence of ion m/z 215.1387 in the product ion mass spectrum of metabolite SR11-2 could 

indicate a dihydroxylation at B’ (m/z 183.1492) (Table 9.1 and Table 9.3). 

For SR11-3 no diagnostic product ions for the position of hydroxylation were found in positive 

ionization mode. However, in negative ionization mode a product ion m/z 366.1365 was 

observed for SR11-3, which is similar to ion m/z 368.1522 found for SR11-1 (Table 9.3). This ion 

indicates a hydroxylation and subsequent keto-formation outside C. 

Two product ions (m/z 227.1387 and 213.1230) were found for SR11-4 which could be indicative 

for a dihydroxylation, and subsequent keto-formation of one of these hydroxylgroups, in B’.  

Besides a loss of water no diagnostic fragment ions indicating the site of hydroxylation were 

observed for SR11-5. 

Based on the presence of fragment ions m/z 211.1436 and 197.1280, the proposed site of 

hydroxylation and subsequent keto-formation of SR11-6 is B’ (Table 9.3). These product ions 

correspond to modified fragment ions m/z 197.1648 and 183.1492 respectively, which were 

observed for SR9011 (Table 9.1). 

Three isomeric compounds were detected for SR11-7(a/b/c). For both SR11-7a and SR11-7b a 

fragment ion m/z 199.1438 was detected, which is similar to the ion m/z 197.1280 observed for 

SR11-6, and indicates also a hydroxylation in B’. For SR11-7c fragment ions m/z 229.1782 and 

258.0903 indicate a hydroxylation in B’, outside D’.  

For SR11-8b fragment ions m/z 282.0538 and 256.0745 were observed. This first ion 

corresponds to a modified ion m/z 268.0750 which was observed for SR9011. For SR11-12 

similar fragment ions (m/z 282.0537 and 256.0746) and an additional fragment ion m/z 

380.0523 were observed. These fragment ions indicate a similar site of modification 

(hydroxylation and subsequent keto-formation) for SR-8b and SR11-12, in particular in A or B’ 

(outside D’). For SR11-8a no indicative ions for the site of hydroxylation could be identified. 
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The observed fragment ions for SR11-9, SR11-11, SR11-13 and SR11-14 were consistent with the 

proposed structure for these metabolites (Table 9.3). By comparing the product ion scan mass 

spectra of metabolites SR11-9 and SR11-11 two indicative ions (m/z 266.0588 and 249.4784) for 

the position of the additional modification of SR11-11 could be identified. These indicative ions 

correspond to fragment ions m/z 268.0744 and 251.0940 observed for SR11-09 (Table 9.1). 

Therefore the proposed site of double bond formation for SR11-11 is in B’-E’. 

The fragment ions m/z 237.0786 and 194.0729 observed in the product ion scan mass spectrum 

of SR11-10 in positive ionization mode indicate a hydroxylation at a carbon alpha (of B’ or C) to 

the central nitrogen. 

Similar metabolites for SR9011 were reported by Sobolevsky et al., but metabolites SR11-2, 

SR11-3 and SR11-12 were not reported in their study [36]. However, two additional metabolites 

were detected in their study, characterized by loss of C or A [36]. This latter was also described 

as major metabolite in the human excretion study [36]. Since hydroxylated metabolites (SR11-5 

and SR11-7), after loss of A or C, were detected, these metabolic modifications observed by 

Sobolevsky et al. seem also possible in our in vitro incubation samples [36]. 

3.4 Assay validation 

The LOD of SR9009 and SR9011 was determined by an existing screening method applied by our 

laboratory for doping control purposes [30] and was 2 ng/mL and 5 ng/mL respectively. The 

extraction recoveries were 63% for SR9009 and 56% for SR9011 using a non-optimized, regularly 

applied extraction protocol for initial testing of doping control samples [37]. The matrix effects 

were determined as ion enhancement of 21% and 20% for SR9009 and SR9011 respectively. 

3.5 Retrospective analysis 

As SR9009 was purchased via the internet from a gross sales company which sells to internet 

providers of performance enhancing drugs, it was clear that the substance may already have 

been misused by athletes in the period between its introduction on the gross sales market and 

the completion of our studies. To verify the presence of SR9009, SR9011 and their metabolites 

in routine doping control samples from that period, retrospective data analysis (data 

reprocessing) was performed for a three month period (June 2015 – September 2015). 

Furthermore, the presence of the parent compounds was monitored in our routine screening 

method for another three months (September 2015 - December 2015). For the retrospective 

data analysis 1511 samples previously analyzed by our routine full scan LC-HRMS screening 

method [30] were reprocessed. This retrospective data analysis of routine doping control 
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samples analyzed in our laboratory contained the parent compounds and metabolites of SR9009 

and SR9011 in these samples. Although misuse of SR9009 and SR9011 could not be 

demonstrated in our study, it is hoped that laboratories around the world will perform a similar 

retrospective analysis. 

 

Figure 9.4. Overview of in vitro metabolism studies with SR9009 and SR9011. The proposed metabolic 
modifications are also presented, the structures of A, B, C, D and F’ are indicated in Figure 9.1 and Table 9.1. For 
the position of hydroxylations only one possible configuration is shown.
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4 Conclusions 

The presence of SR9009 was demonstrated in a black market product obtained via the internet. 

This finding highlights the high threat for misuse of these potentially performance enhancing 

substances and the importance of doping control laboratories to anticipate illicit use of SR9009 

and SR9011. In this study HLM incubations led to the detection of eight metabolites for SR9009 

and fourteen metabolites for SR9011 by LC-(HR)MS analysis. Although modifications were 

observed in all fragments (A, B, B’ and C), most modifications occurred in the B/B’ fragment of 

the parent compounds. 

Incorporation of metabolites SR09-1, SR09-2, SR09-4(a), SR09-5, SR09-7 and SR11-1, SR11-3, 

SR11-5 and SR11-9 might improve screening for misuse of SR9009 and SR9011. However, it 

should be noted that this assumption is only based on the relative abundances of the 

metabolites detected in the HLM incubation samples and that extrapolation from these in vitro 

studies to the more complex human situation is difficult. Nevertheless, in the human excretion 

studies with SR9009 and SR9011 of Sobolevsky et al. metabolites SR09-5 and SR11-5 were 

indeed described as major metabolites of SR9009 and SR9011 respectively [36]. In addition also 

metabolites SR11-6 and SR11-13 were described as major human metabolites of SR9011 [36]. 

Therefore, HLM can be considered as a valuable ethically acceptable alternative for human 

metabolism studies of non-pharmaceutical grade substances. 

The LOD was 2 ng/mL for SR9009 and 5 ng/mL for SR9011. To circumvent the low extraction 

recoveries observed when applying a regularly used sample preparation procedure (hydrolysis 

and LLE at pH 7) combination with a dilute-and-shoot method is recommended. The presence of 

SR9009 and SR9011 and their metabolites was verified by retrospective data analysis in 1511 

doping control samples. Although misuse of SR9009 and SR9011 could not be demonstrated, 

incorporation of these substances into screening methods for doping control purposes can help 

discourage the use of these potentially harmful compounds by both amateur and professional 

athletes. 
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1 Metabolism studies of (designer) steroids 

Black market steroid products were purchased over the internet including Orastan-E, Ultradrol, 

Xtreme DMZ and Tren-X. In all of these steroid products the active ingredients indicated on their 

labels (prostanozol(-THP), methylstenbolone, dimethazine and estradienedione respectively) 

could be detected (Table 10.1). However, in the case of the steroid product Ultradrol that was 

supposed to contain only methylstenbolone, the structural analogue methasterone was also 

detected. Methasterone was also detected in the steroid product Xtreme DMZ, due to 

degradation of dimethazine. These findings emphasize the importance to verify the content of 

black market products. 

Table 10.1. Overview of black market products examined in this study. 

Steroid product Steroids indicated 
on label 

Detected steroids More information 
in paragraph 

 

Orastan-E Prostanozol-THP Prostanozol-THP 
Prostanozol 

1.1 

 

Ultradrol Methylstenbolone Methylstenbolone 
Methasterone 

1.2 

 

Xtreme DMZ Dimethazine Dimethazine 
Methasterone 

1.3 

 

Tren-X Estradienedione Estradienedione 1.4 

 

The presence of these (designer) steroids in the black market products available over the 

internet makes them easily accessible for both recreational and professional athletes and they 

can therefore be considered as real doping threats. This does not only endanger the ethics of 

sports but also the health of the athletes as toxicological profiles are often missing. Especially in 

the case of recreational athletes which tend to self-administer these products without any 
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medical supervision. Moreover, incorrect labeling and/or contamination issues as observed for 

Ultradrol bears additional health risks. 

Consequently, in vitro and in vivo metabolism studies were performed to allow efficient 

detection of these (designer) steroids, which has a deterrent effect on potential misuse. 

1.1 Prostanozol 

Both prostanozol-THP and prostanozol were detected in the steroid product (Table 10.1 and 

Chapter 3). Hydrolysis of prostanozol-THP to prostanozol was observed (Figure 10.1). The 

metabolism of prostanozol was studied in vitro (HLM) and in vivo (uPA+/+-SCID chimeric mouse 

model) (Chapter 3). Human administration and excretion studies with prostanozol have been 

previously performed and allow comparison with the obtained results from the in vitro and in 

vivo model.  

The prostanozol metabolic pathways described in the human urine samples were similar to 

those detected in both models (Figure 10.1). C16, C4 and C3’ are characteristic positions for 

hydroxylation of prostanozol in human administration studies, while hydroxylations at C6 and 

C12 (indicated with question marks in Figure 10.1) were proposed based on common 

hydroxylation positions of AAS reported in literature. 

Monohydroxylated prostanozol metabolites were more abundant than monohydroxylated 17-

ketoprostanozol metabolites in the in vitro and in vivo models, whereas these latter metabolites 

where more abundant in the human urine samples. However, both 3’-hydroxy- and 16β-

hydroxy-17-ketoprostanozol could be unequivocally identified in the in vitro and in vivo model 

by comparison with commercially available reference material. 4-hydroxy-17-ketoprostanozol 

could not be detected in both models. In the study of Rodchenkov et al. this metabolite was also 

not reported in human samples [1]. In the other human excretion studies [2, 3] and in our 

reanalyzed positive routine sample 16β-hydroxy- and 3’-hydroxy-17-ketoprostanozol 

metabolites were more abundant than 4-hydroxy-17-ketoprostanozol. 
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Figure 10.1. Overview of prostanozol metabolic pathways observed via in vitro and in vivo metabolism studies. 
The question marks indicate proposed positions for hydroxylations based on common AAS hydroxylation 
pathways described in literature.  

17-ketoprostanozol was described before in a human excretion study of prostanozol [3]. 17-

ketoprostanozol itself could only be detected in the in vitro model. The absence of this 

metabolite in the chimeric mouse model is probably due to the faster metabolic rate observed 

in mice, as several additional hydroxylated 17-ketoprostanozol metabolites could be detected. 

In both models several dihydroxylated prostanozol and 17-ketoprostanozol metabolites were 

detected. Some of these were also reported before in human excretion studies, but not as 

abundant as the mono-hydroxylated 17-ketoprostanozol metabolites. 

Comparison of chimeric and non-chimeric mouse urine samples allowed us to evaluate inter-

species differences. Therefore, 3’/4-hydroxy-17-keto prostanozol and 3’/4,x-dihydroxy-

prostanozol metabolites, which were not detected in the non-chimeric mouse urine samples, 

could be considered as typical human metabolites. Both categories of metabolites were indeed 

reported in human excretion studies [1-3]. Hence, the comparison between chimeric and non-

chimeric mouse urine samples can be helpful to identify typical human metabolites. This does, 

however, not exclude that metabolites detected in both models can be human. Indeed, careful 
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interpretation of the results is recommended. For example 16β-hydroxy-17-ketoprostanozol 

was detected in the non-chimeric mouse urine samples as well as in human urine samples [1-3]. 

This indicates that murine and human metabolites sometimes overlap. 

1.2 Methylstenbolone and methasterone 

In a black market product (Ultradrol) claiming to contain methylstenbolone however also the 

exogenous AAS methasterone or methyldrostanolone (or ‘Superdrol’) was detected (Chapter 4). 

This fact raises additional concerns about the potential adverse health effects of misuse of this 

steroid product. Indeed, administration of methasterone has been related to severe side effects 

[4-7]. In 2012 methasterone was also added to the ‘Designer anabolic steroid control act’ of the 

Government of the United States [8]. 

Since both methylstenbolone and methasterone were detected in the steroid product, in vitro 

and in vivo metabolism studies of the two substances (independently and together) were 

performed. For both substances human excretion studies are described in literature, allowing 

the verification of the human nature of the observed metabolites. However, further research 

also indicated that for the administration of methylstenbolone to the human volunteer in the 

published research, no purity verification had been performed. Later research showed that the 

ingested capsule was also contaminated with methyldrostanolone in this study. 

The observed metabolic pathways for methylstenbolone and methasterone are presented in 

Figure 10.2. In the in vitro and in vivo models no conversion of methylstenbolone to 

methasterone or vice versa was detected. Although structurally closely related, no common 

metabolites were found for both substances. 

1.2.1 Methylstenbolone 

For methylstenbolone the observed metabolic pathways were different for the in vitro and in 

vivo metabolism studies. Whereas only monohydroxylated methylstenbolone metabolites were 

detected in vitro, only dihydroxylated metabolites were detected in the chimeric mouse urine 

samples. The presence of the dihydroxylated metabolites in both the chimeric and non-chimeric 

mouse urine samples might indicate a murine origin of these metabolites. In both models 

however (mono/di)hydroxylated methylstenbolone metabolites with an additional oxidation (-

H2) were observed. The main proposed positions of hydroxylations of the in vitro metabolites 

are at the A-ring or C18. Hydroxylation at C18 was also proposed for an in vivo (mouse) 

metabolite and has also previously been reported for stenbolone in human urine samples [9]. 

This position of hydroxylation would be typical for steroids with C1 or C2 methylgroups [9, 10]. 

The typical structure of stenbolone (double bond at C1 and C2-methyl group) makes it relatively 

stable to reductive metabolism. Therefore, major stenbolone metabolites retain either the 1-
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ene-3-keto or 1-ene structure and hydroxylation at C16 is promoted [11]. In our metabolism 

studies with (17α-)methylstenbolone all metabolites retained the 1-ene-3-keto structure and 

16-hydroxylation was not observed. In the human excretion study of Cavalcanti et al. also 16-

hydroxylated and 3-keto reduced methylstenbolone metabolites were reported [12]. This stable 

A-ring structure could also explain why methylstenbolone is not converted to methasterone 

(Figure 10.2). 

In a routine urine sample positive for methylstenbolone (and methasterone) only the parent 

compound and an unfortunately still unidentified methylstenbolone metabolite could be 

detected with the developed MRM method. However, in these samples no relevant information 

(such as purity of the product, dose and time interval) is available. 

1.2.2 Methasterone 

In the HLM incubation samples the main metabolites for methasterone were 3-keto reduced 

(M1), hydroxylated (M2) and combined hydroxylated 3-keto reduced (M5) metabolites.  

The latter metabolite was not found in the chimeric mouse model. However, metabolites M1 

and M2 were also detected in the chimeric mouse urine samples. 

Metabolite M1 could be unequivocally identified as 3α-hydroxymethasterone by comparison to 

a reference standard. This metabolite was also observed as main methasterone metabolite in 

human excretion studies [1, 13, 14] and in a doping control urine samples positive for 

methasterone in our study. Identification of M5 as 2α,17α-dimethyl-5α-androstane-2β,3α,17β-

triol was based on correlation with the mass spectrum of an earlier reported methasterone 

metabolite by Gauthier et al. [15]. This metabolite was also a major methasterone metabolite in 

a human excretion study [14]. 

In both models several dihydroxylated metabolites and a trihydroxylated metabolite were 

observed. Only in the mouse model indications for 16-hydroxylated metabolites of 

methasterone were found. These were also reported in metabolism studies of methasterone in 

literature [14-16]. Other proposed positions for hydroxylation of methasterone are presented in 

Figure 10.2. 

1.3 Dimethazine (DMZ) or mebolazine 

The supplement Xtreme DMZ contained dimethazine (Chapter 5). The structure of dimethazine 

can be described as two methasterone molecules coupled by an azine group (Figure 10.2). As 

methasterone was detected in the steroid product Xtreme DMZ, while this was not mentioned 

on the label, a stability study was performed. It was observed that dimethazine degrades to 

methasterone, which could explain the presence of methasterone in the steroid product. Based 
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upon the structural relation, it was also expected that oral administration of DMZ might lead to 

a substantial conversion of DMZ to methasterone in the stomach. 

Not surprisingly, only methasterone and methasterone metabolites were detected in the in vitro 

and in vivo metabolism studies with DMZ (Figure 10.2 and 1.2.2 Methasterone). 

 

Figure 10.2. Overview of metabolic pathways observed for dimethazine, methasterone and methylstenbolone 
via in vitro and in vivo metabolism studies. 

1.4 Estra-4,9-diene-3,17-dione 

Estra-4,9-diene-3,17-dione was detected in the steroid product (Tren-X). Four metabolites were 

observed in the HLM incubation samples, of which three metabolites were also detected via the 

chimeric mouse model (Chapter 6). The main metabolite in both models was unequivocally 

identified as 17β-hydroxyestra-4,9-diene-3-one by comparison with commercially available 

reference material. This metabolite is also described as major human metabolite of estra-4,9-

diene-3,17-dione in literature. Other metabolic modifications included (mono/di)hydroxylation 

of the parent compound and additional hydroxylation of 17β-hydroxyestra-4,9-diene-3-one 

(Figure 10.3). The dihydroxylated metabolite was however only detected via in vitro and non-

chimeric mouse experiments, which implies careful extrapolation as human metabolite. In 

contrast to the other metabolic pathways, dihydroxylation was also not described in previously 

reported studies with estra-4,9-diene-3,17-dione [17, 18]. 
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Figure 10.3. Overview of metabolic pathways observed for estra-4,9-diene-3,17-dione via in vitro and in vivo 
metabolism studies. The proposed positions for hydroxylations are at C2, C6 or C16 (indicated with a *). 

1.5 General considerations about metabolism studies with (designer) 
steroids 

The in vitro and in vivo metabolism studies with (designer steroids) indicated that both models 

are valuable alternatives for human administration studies. The models can complement each 

other to obtain an extensive overview of phase I and phase II metabolic pathways of (designer) 

steroids to identify multiple markers for detection. Therefore, an integrated approach can be 

applied as alternative for metabolism studies of performance enhancing substances, for which 

ethical and safety aspects limit the use of human volunteers (Figure 10.4). 

In this approach preliminary metabolism studies can be performed using HLM and S9 liver 

fractions to obtain an initial overview of metabolic pathways. HLM and S9 liver fractions are fit 

for this purpose as they can be applied with a straightforward protocol and produce metabolites 

in a fast way. 

In a second step the in vitro metabolic pathways can be verified by administration to both 

chimeric and non-chimeric mice. The chimeric mouse model complements the in vitro 

experiments with a more complete overview of phase I and phase II metabolic pathways in an in 

vivo environment. The application of in vitro models in the initial metabolism studies can also 

help to refine the number of animal experiments for example by optimizing the detection 

methods. 
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Figure 10.4. Integrated approach for metabolism studies. 

The determination of typical human metabolites in both models can sometimes be difficult. 

(Poly)hydroxylated metabolites have in general the highest relative abundances in both models. 

However, cautious extrapolation of these metabolites, especially polyhydroxylated metabolites, 

to the more complex human situation is suggested. For example in human excretion studies 

hydroxylated 17-ketoprostanozol metabolites are more abundant than hydroxylated 

prostanozol metabolites, while in our models the opposite was observed. 

Therefore, the following consideration can be helpful to predict in vivo human metabolism. 

Combined metabolic modifications (e.g. hydroxylation and additional oxidation or reduction) 

might be more easily interpreted as typical human metabolites. Furthermore, knowledge of 

metabolism of structurally related AAS can assist in the determination of possible human 

metabolic pathways.  

For the chimeric mouse model comparison with results from non-chimeric mice facilitates the 

assessment of interspecies (mouse versus human) differences. However, careful interpretation 

of these observed differences is still recommended (cfr. above for prostanozol (1.1 

Prostanozol)). 
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The phase II metabolism of the designer steroids prostanozol and dimethazine was also studied 

in the chimeric mouse model. An indirect detection strategy was applied including LLE without 

and with hydrolysis. However, application of direct detection of intact glucuronide and sulfate 

conjugates by LC-MS in the future should facilitate the interpretation of the phase II metabolism 

studies [19, 20]. 

1.6 In vitro application: synthesis of glucuronide conjugates 

In chapter 7 in vitro (HLM) incubations were successfully applied to produce glucuronide 

conjugates of gestrinone, tetrahydrogestrinone, trenbolone, 4β-hydroxystanozolol and 16β-

hydroxystanozolol. Since commercially available reference standards of glucuronide conjugates 

of these substances are missing, the in vitro produced glucuronide conjugates were used for 

comparative purposes to establish the metabolic nature and to further characterize substances 

observed in excretion urine samples. 

Although the in vitro model was successfully applied for the production of glucuronide 

conjugates, a disadvantage of this in vitro production is the generally low yield of metabolites. 

This finding limits the use of in vitro techniques based on HLM or S9 liver fractions, to 

biologically synthesize metabolites as reference standards. However, this yield can be sufficient 

for comparative purposes to establish the metabolic nature of compounds.  

2 Metabolism studies of other performance enhancing 

substances 

2.1 SARMs: LGD-4033 

The presence of LGD-4033 could be detected in a black market product purchased over the 

internet (Chapter 8). Since no reference material is commercially available and no detailed 

structural information is present, NMR analysis was applied to confirm the structure of LGD-

4033 (Figure 10.5). 

Consecutively, this black market product was used for the phase I and phase II in vitro (HLM and 

S9 liver fractions) metabolism studies of LGD-4033. The observed metabolic pathways are 

indicated in Figure 10.5. 

The phase I metabolic pathways observed via in vitro (HLM) incubation studies by other 

research groups included (di)hydroxylations [21, 22] and ring opening combined with 

hydroxylation [21]. A common metabolite observed in all the in vitro metabolism studies is a 

dihydroxylated metabolite of LGD-4033. Furthermore, in the human excretion study of LGD-



  Chapter 10 – General discussion 

231 
 

4033 performed by Sobolevsky et al. the dihydroxylated LGD-4033 metabolite was a major 

human metabolite [21]. The human urine samples were, however, only analyzed in positive 

ionization mode. Based on our results, also re-evaluation of the relevance of observed 

metabolites for routine human urine samples in negative ionization mode is recommended. 

The combined phase I and phase II (UGT) metabolism studies led to similar glucuronide-

conjugates as observed by Sobolevsky et al. [21]. 

 

Figure 10.5. Overview of metabolic pathways observed for LGD-4033 via in vitro metabolism studies. 

2.2 REV-ERB agonists: SR9009 and SR9011 

SR9009 is available as black market product over the internet. Taking into account the similar 

structures and potential performance enhancing effects of SR9009 and SR9011 in vitro (HLM) 

metabolism studies of both substances were performed (Chapter 9). An overview of the 

metabolic pathways observed for SR9009 and SR9011 is shown in Figure 10.6. Besides 

hydroxylation of the parent compounds also losses of A, B, C, D and F’, as indicated in Figure 

10.6, were observed. The structures of A, B, C, D and F’ are described in Chapter 9 (Figure 9.1 

and Table 9.1). For the hydroxylations only one possible position of hydroxylation is indicated 

and also combinations of the presented pathways were observed. 

Similar metabolic pathways were observed in the metabolism studies with HLM and human 

subjects of SR9009 and SR9011 by another research group [23]. 

To verify the presence of SR9009, SR9011 and their metabolites in doping control samples 

retrospective data analysis (reprocessing) and monitoring in our routine screening method, for a 

six month period (June 2015 – December 2015), were performed. The misuse of SR9009 and 

SR9011, during this period, could not be demonstrated. However, to further discourage the use 
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of these potential harmful compounds by both amateur and professional athletes incorporation 

of these substances into screening methods is highly recommended. 

 

Figure 10.6. Overview of metabolic pathways observed for SR9009 and SR9011 via in vitro metabolism studies. 
The structures of A, B, C, D and F’ are indicated in Chapter 9 (Figure 9.1 and Table 9.4). 

2.3 Other applications: synthetic cannabinoids and peptides  

Furthermore, the range of test compounds for the metabolism studies was extended with other 

emerging performance enhancing substances including synthetic cannabinoids and small 

peptide hormones in order to update the doping control screening methods. 

The metabolism of the synthetic cannabinoids JWH-200 and JWH-122 was studied using HLM 

and the chimeric mouse model by De Brabanter et al. [19, 20]. Most of the in vitro detected 

metabolites were also confirmed in the chimeric mouse model. The in vivo mouse model also 

allowed to study the phase II metabolism of these synthetic cannabinoids [19, 20]. 

HLM incubations with synthetic cannabinoids were also performed to in vitro generate synthetic 

cannabinoid-metabolites as an alternative for excretion urines [24]. The metabolism of the 

following synthetic cannabinoids was studied: JWH-015, JWH-019, JWH-081, JWH-122, JWH-

210, AM-2201 and AM-2233. These in vitro incubation samples were successfully applied in the 

quality control samples of the LC-HRMS screening method by spiking to negative urine samples, 

as at least one metabolite could be detected for each substance. Therefore, HLM incubations 

could be a valuable tool to use as alternative for excretion urines if no metabolite standard is 

available. However, as described above, the yield of the produced metabolites is rather low. 
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The in vitro model was also applied to study the metabolism of small peptide hormones by 

Esposito et al. [25]. In general, liver fractions are applied for metabolism studies of non-peptidic 

molecules with prevalent hepatic metabolism. The in vitro metabolism of peptides is generally 

studied using human serum or recombinant amidase models [25]. In this study the application 

of HLM and S9 fractions for the metabolism of small peptides was reported for the first time.  

Therefore HLM and S9 (both liver and kidney) fractions were incubated (without cofactors) with 

peptides including desmopressin, TB-500 (Thymosin-β4), growth hormone-releasing peptide 

(GHRP)-2, GHRP-6, hexarelin, luteinizing hormone-releasing hormone (LHRH) and leuprolide. For 

each peptide several metabolites were detected after incubation with HLM and S9 fractions. 

The observed metabolites were similar to those after incubation with serum and indicated the 

presence of endopeptidase and exopeptidase activity. Deaminase activity was not 

demonstrated in the HLM, S9 fractions and serum. Hence, liver microsomes and S9 fractions can 

also be considered as a valuable tool to perform metabolism studies of small peptides. 

3 Detection and identification of metabolites 

A similar approach as suggested by Pozo et al. was applied for the detection and further 

characterization of metabolites (Chapter 1: Figure 1.9 and 7.2.4 Sample preparation and 

analysis of in vitro and in vivo metabolism samples). 

For the initial identification of metabolites full scan mass spectra were obtained by GC-MS (after 

TMS-derivatization) and/or LC-MS. From these mass spectra the molecular mass of the 

metabolites could be derived. The observed mass differences in comparison to the molecular 

mass of the parent compound can be indicative for possible metabolic modifications. This 

modification can be verified by HRMS analysis by determining the mass deviations of the 

proposed chemical formulas. 

Further structural characterization can be obtained by performing product ion scans of 

metabolites. Study of product ion scan mass spectra of parent compounds can also be helpful to 

determine typical, diagnostic fragment ions. Presence of these diagnostic or modified diagnostic 

fragment ions can indeed facilitate the identification of positions of the modifications. HRMS 

analysis can in this case also be useful to correlate observed product ions to structure specific 

fragments of the compounds. 

Authentic reference standards are needed to unequivocally identify the structures of detected 

metabolites. However, only for a limited number of compounds such standards are 

commercially available. Ultimately, NMR analysis can be applied to unequivocally identify 

structures of parent compound and metabolites. However, the higher amount (mg range) of 
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metabolites needed to perform NMR analysis restricted the use of this technique during our in 

vitro and in vivo metabolic studies. 
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1 Conclusions 

Several exogenous AAS or designer steroids, such as prostanozol, dimethazine and 

estradienedione, were detected in black market products purchased over the internet. As these 

products are available to athletes, both recreational as well as professional, the risk for misuse 

is high and realistic. Hence, preventive anti-doping research, and especially metabolism studies, 

is essential to develop efficient screening methods. By anticipating this potential misuse, the 

ethics of sports and the health of athletes can be safeguarded. In case of designer steroids 

ethical objections limit the use of human volunteers for these metabolism studies. Moreover, 

contamination issues and incorrect labeling, as observed for the steroid product labelled to 

contain only methylstenbolone, give rise to additional concerns about their safety. To ensure a 

fast response to evolutions of performance enhancing substances in black market products, 

alternative models for metabolism studies are required. 

In this study the use of in vitro (HLM / S9 liver fractions) and in vivo (chimeric mouse) models 

was examined as alternative for human administration studies of doping related compounds. 

HLM and S9 liver fractions showed to be valuable tools for metabolism studies with designer 

steroids. The uPA+/+-SCID chimeric mouse model has already proven its applicability for 

metabolism studies with steroids. In this study the chimeric mouse model was also a valid tool 

for metabolism studies with designer steroids. The observed metabolic pathways for the 

designer steroids in both models were similar to human administration studies reported in 

literature.  

Therefore, an integrated approach of both models can be applied as alternative for metabolism 

studies of performance enhancing substances, for which ethical and safety aspects limit the use 

of human volunteers. This approach has also the advantage that the number of animal 

experiments for the metabolism studies can be reduced. 

HLM were successfully applied to produce in vitro glucuronide conjugates as alternative for 

human excretion urine samples. These samples can be useful for comparative purposes (e.g. 

method development or to establish metabolic nature) when no reference standard is available. 

The yield however limits the use of this in vitro approach to produce high amounts of reference 

material. 

HLM and S9 liver fractions allow a fast response to new performance enhancing substances with 

even less ethical objections than the use of the chimeric mouse model. The test compounds for 

the in vitro metabolism studies were extended to other classes of performance enhancing 

substances including SARMs (e.g. LGD-4033) and REV-ERB agonists (SR9009 and SR9011). The 

observed metabolic pathways were also in accordance with reported metabolism studies in 
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human subjects. Therefore, the in vitro model based on HLM and S9 liver fractions is also a valid 

tool for these classes of substances. 

Retrospective data analysis can also help to close the gap between the appearance of new 

doping substances and the incorporation into screening methods by doping control 

laboratories. 

2 Future perspectives 

These in vitro (and in vivo) models are valuable and ethically acceptable alternatives for human 

metabolism studies of non-pharmaceutical grade substances. Although these alternative models 

allow a fast response to new doping threats, preventive anti-doping research requires also 

vigilance for evolutions of performance enhancing substances. Monitoring of black market 

products and cooperation with customs can be helpful for this early detection of new doping 

threats. As observed in this study for designer steroids, SARMs and REV-ERB agonists, new 

emerging performance enhancing substances, from both established and potential new classes, 

might be expected in the future. For example, recently, small molecule ESAs, i.e. hypoxia-

inducible factor (HIF) stabilizers, were introduced in black market products [1, 2]. Although still 

under clinical investigation, a first positive doping case of a HIF stabilizer was reported [3]. 

Therefore, application of the alternative metabolism models might also be helpful to improve 

detection windows of these substances.  

In this study the primary focus of the in vitro procedure were phase I and phase II (UGT) 

pathways. The in vitro protocol should also be optimized in the future to study sulfate 

conjugation (and potentially also epimerization reactions). Since SULTs are characterized by a 

‘high affinity - low capacity’ pathway and are susceptible for product inhibition, the production 

of sulfate conjugates by S9 liver fractions is complicated. To obtain a more complete study of 

the metabolic pathways, combined incubations with HLM and S9 liver fractions and eventually 

addition of NAD as cofactor should also be tested [4]. 

Homogenized horse livers were successfully applied for the generation of phase I and phase II 

metabolites as an alternative for horse liver microsomes by Wong et al. [5, 6]. This model has 

the advantage over the liver microsomes that a more simple preparation procedure can be 

applied and the addition of cofactors is not required. Homogenized human livers were also 

applied before [7, 8] for phase I metabolism studies. Although more ethical issues are related to 

the supply of human liver tissue, it would be interesting to investigate the use of homogenized 

human liver for phase I and II metabolism studies for doping control purposes. 

The low production rate of metabolites observed in the in vitro incubation samples limits the 

further characterization of the metabolites by NMR analysis and the application of these in vitro 
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models to biologically synthetize reference standards. Scaling up of the in vitro production can 

be helpful to overcome these low yields [9, 10]. Other scaling up strategies using recombinant 

expressed enzymes such as supersomes [11, 12] and chemical enzyme-induced animal tissues 

[13, 14] for phase I and phase II metabolites have been reported. Other approaches based on 

microbial (fungus) assays, for example Cunninghamella elegans, have also been described to 

produce higher amounts of metabolites [15]. The presence of CYP450 enzymes and phase II 

(UGT and SULT) enzymes in these fungus species enables to mimic mammalian drug 

biotransformations [15-20]. These fungus based models could therefore be applied for a large-

scale synthesis of potentially relevant human metabolites identified in other metabolism studies 

[15]. The application of in vitro models for the synthesis of metabolites has the advantage that 

no knowledge of the structure is needed in advance and stereospecific conjugation is performed 

[9, 13]. The produced metabolites can be separated by preparative high performance liquid 

chromatography (HPLC) fraction collection [9].  

For the synthesis of reference standards, alternative production processes (e.g. chemical 

synthesis) are recommended if higher amounts, than for comparative purposes, are needed. 
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Over the last years, doping control laboratories worldwide have put enormous efforts into 

preventive anti-doping research. This type of research is important for doping control purposes 

to anticipate new doping threats. Hence, these investigations can help to close the gap between 

doping control laboratories and doped athletes. Effective detection methods contribute to deter 

the use of performance enhancing substances. Therefore they are of great significance to 

warrant the ethics of sports and the health of athletes. Metabolism studies are essential for 

efficient screening methods for these substances, as metabolites can improve detection 

(windows). New performance enhancing substances can be available as pharmaceutical 

preparations or as black market products, often prior to their clinical approval. Therefore there 

is a quest for ethically acceptable alternatives for human metabolism studies of non-

pharmaceutical grade substances. 

In this study the use of alternative in vitro and in vivo models for metabolism studies was 

evaluated. The in vitro models included human liver microsomes (HLM) and S9 liver fractions. 

The in vivo model involved an uPA+/+-SCID mouse model transplanted with human hepatocytes. 

This chimeric mouse model has already proven to be a valuable tool for metabolism studies of 

anabolic androgenic steroids [1]. 

Several designer steroids including prostanozol, methylstenbolone, methasterone, dimethazine 

and estradienedione were detected in black market products purchased over the internet. An 

integrated approach of the in vitro and in vivo models was applied to elucidate the metabolism 

of these designer steroids (Part 2). The obtained results showed a good correlation with 

reported human excretion studies. Therefore, both models can be considered as valuable tools 

for designer steroids. The advantages of this integrated approach include that the initial 

application of in vitro models can refine the number of animal experiments and the chimeric 

mouse model complements the in vitro experiments with a more complete overview of phase I 

and phase II metabolic pathways in an intact organism. 

The applicability of the in vitro model to produce reference material of non-commercially 

available substances (glucuronide conjugates) was also examined (Part 2 - Chapter 7). 

Glucuronide conjugates were successfully produced in vitro for gestrinone, 

tetrahydrogestrinone, trenbolone, 4β-hydroxystanozolol and 16β-hydroxystanozolol. This in 

vitro production of reference material is useful for comparative purposes (e.g. to establish 

metabolic nature and for the development of detection methods), however due to the limited 

yield, production of high amounts of reference standards by these in vitro models is not 

efficient. 

Since the number and type of performance enhancing substances are continuously evolving, the 

test compounds were extended to other classes of potential performance enhancing substances 

(Part 3). In vitro (HLM and/or S9 liver fractions) incubations were applied to elucidate the 
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metabolism of selective androgen receptor modulators (SARMs; LGD-4033) and REV-ERB 

agonists (SR9009 and SR9011). These in vitro metabolism studies allow a fast response, with 

even less ethical constraints than the chimeric mouse model. Comparison with human excretion 

studies indicates that the in vitro model, based on HLM and S9 liver fractions, is also a valuable 

alternative for metabolism studies of these substances. 

In conclusion, both the in vitro model and the integrated approach can be considered as 

valuable tools for metabolism studies of compounds for which ethical and safety constraints 

limit the use of human volunteers. Therefore, the application of these models might also 

improve the response to new doping threats in the future. 
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Gedurende de voorbije jaren hebben dopingcontrolelaboratoria wereldwijd sterk geïnvesteerd 

in preventief anti-doping onderzoek. Dit type van onderzoek is immers belangrijk in het kader 

van dopingcontrole om adequaat te reageren op nieuwe dopingproducten. Deze onderzoeken 

kunnen dus helpen om de kloof te dichten van dopingcontrolelaboratoria ten opzichte van 

gedopeerde atleten. 

Het bestaan van effectieve detectiemethodes heeft een ontradend effect op het gebruik van 

prestatiebevorderende substanties zodat ze van groot belang zijn om de ethiek van de sport en 

de gezondheid van de atleten te beschermen. Voor het ontwikkelen van efficiënte screening 

methodes voor deze substanties zijn metabole studies essentieel aangezien metabolieten de 

detectie(tijden) kunnen verbeteren. Nieuwe prestatiebevorderende middelen kunnen zowel als 

farmaceutische preparaten als ‘zwarte markt’ producten, beschikbaar zijn, vaak vóór hun 

goedkeuring voor klinisch gebruik. Hierdoor wordt er gezocht naar ethisch aanvaardbare 

alternatieve modellen voor humane metabole studies met substanties waarvoor geen 

preparaten van farmaceutische kwaliteit voor handen zijn. 

In deze studie werd het gebruik van alternatieve in vitro en in vivo modellen voor metabole 

studies nagegaan. Het onderzochte in vitro model omvatte humane lever microsomen (HLM) en 

S9 lever fracties. Het in vivo model werd gebaseerd op een uPA+/+-SCID muismodel met 

getransplanteerde humane hepatocyten. Dit chimeer muismodel werd reeds als waardevol 

model beschouwd voor metabole studies met anabole androgene steroïden [1]. 

Verscheidene designer steroïden zoals prostanozol, methylstenbolone, methasterone, 

dimethazine en estradiendione werden gedetecteerd in ‘zwarte markt’ producten die 

aangekocht werden via het internet. Een integrale benadering met de in vitro en in vivo 

modellen werd toegepast om het metabolisme van deze designer steroïden op te helderen 

(Deel 2). De verkregen resultaten vertoonden een goede correlatie met humane excretiestudies 

gerapporteerd in de literatuur. Beide modellen kunnen bijgevolg als waardevolle hulpmiddelen 

voor metabole studies met designer steroïden beschouwd worden. De voordelen van deze 

integrale benadering is dat de initiële toepassing van in vitro modellen het aantal 

dierenexperimenten kan beperken en dat het chimeer muismodel de in vitro experimenten 

aanvult met een meer compleet overzicht van fase I en fase II metabole pathways in een intact 

organisme. 

De toepasbaarheid van het in vitro model om referentiemateriaal, van niet-commercieel 

beschikbare substanties (glucuronide conjugaten), te produceren, werd ook onderzocht (Deel 2 

- Hoofdstuk 7). Glucuronide conjugaten werden succesvol geproduceerd in vitro voor 

gestrinone, tetrahydrogestrinone, trenbolone, 4β-hydroxystanozolol en 16β-hydroxystanozolol. 

Het in vitro genereren van referentiemateriaal is zeker bruikbaar voor het toepassen van 

vergelijkende doeleinden (zoals het bepalen van de metabole aard en opstellen van methodes). 
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Het beperkte rendement zorgt er echter voor dat het gebruik van deze in vitro modellen voor 

het produceren van grote hoeveelheden referentiestandaarden niet zo efficiënt is. 

Aangezien het aantal en de aard van de prestatiebevorderende middelen blijft evolueren, 

werden de te onderzoeken substanties uitgebreid naar andere klassen van potentiële 

prestatiebevorderende middelen (Deel 3). In vitro (HLM en/of S9 lever fracties) incubaties 

werden toegepast om het metabolisme van selectieve androgeen receptor modulatoren 

(SARMs; LGD-4033) en REV-ERB agonisten (SR9009 and SR9011) op te helderen. Deze in vitro 

metabole studies laten immers een snelle respons toe, met zelfs minder ethische bezwaren dan 

het chimeer muis model. Vergelijking met humane excretiestudies gaf aan dat het in vitro 

model, gebaseerd op HLM en S9 leverfracties als een waardig alternatief kan beschouwd 

worden voor metabole studies met deze substanties. 

Tot besluit, zowel het in vitro model als de integrale strategie kunnen beschouwd worden als 

waardevolle hulpmiddelen voor het uitvoeren van metabole studies van substanties waarvoor 

ethische bezwaren en aspecten omtrent hun veiligheid de administratie aan humane 

vrijwilligers verhinderen. Het toepassen van deze modellen zou dan ook in de toekomst de 

reactie op nieuwe bedreigingen op vlak van doping kunnen verbeteren. 
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