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Summary 

 

Photonics is the name for the science that investigates all aspects of light. 

Light and technologies based on light are very important in our daily life: 

lighting, displays, solar panels, etc. But also a lot of less obvious 

technologies are based on light. A good example are the long distance 

telecommunication systems which are based on optical fiber communication. 

Nowadays photonics is becoming more and more important. In the European 

research plan, Horizon 2020, photonics is one of seven important 

technologies (Key Enabling Technologies) on which research efforts are 

focused. In a push to reduce global energy consumption, it is necessary to 

reduce the energy needed for optical devices. In addition, there are other 

important issues for optical devices such as fabrication cost and 

miniaturization. With this point of view, in this PhD work various optical 

devices based on liquid crystal (LC) and nanorods (NR) are investigated and 

fabricated.  

Nowadays, liquid crystals (LCs) are extensively used in electronic displays. 

Liquid crystal displays (LCDs) have been widely used in cell phones, car 

navigations, laptop computers, desktop monitors, projectors and TVs. Due to 

their unique optical properties LCs may play an important role in photonic 

applications such as tunable filters, tunable laser cavities, tunable focus 

lenses, spatial light modulators, and diffraction gratings for various 

applications such as laser beam steering, adaptive optics, lasers and optical 

communications. In addition, LC as an organic material is promising due to 

versatility in molecular design: relative ease of synthesis, characterization 

and processing. 

LC molecules are available in various types and phases. In this dissertation, 

nematic and chiral nematic LC (CLC) are both used. Another important 

classification for the LC materials used in this thesis is whether the LC 

molecules are reactive or non-reactive.  
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CLCs spontaneously arrange into a helical structure with periodicity of a few 

hundred nanometer up to several tens of micrometers. The periodic 

alignment also results in a modulation of the refractive index profile. CLCs 

have been widely used in bistable displays, flexible displays, reflectors etc. 

On the other hand, reactive liquid crystals are a unique class of materials that 

provide the possibility to ‘freeze’ the liquid crystal orientation. When the 

materials are illuminated with UV light (and using an appropriate 

photoinitiator) they chemically react and polymerize. The polymerizable 

functional groups in the molecular structure offer the possibility for 

crosslinking and forming a long chain network while maintaining the order. 

Recently the tendency towards miniaturization and portability in emerging 

LC-based applications brings forward new research interests in reactive LC. 

An interesting feature is that the polymeric films can be delaminated from 

the glass substrate so that they become free standing polymer films with 

sufficient mechanical strength and elastic flexibility.  

In this dissertation, fabrication of thin film polarizers and color filters based 

on photo-polymerization of reactive LC is demonstrated. The thin film 

polarizer is fabricated for applications which require very small thicknesses 

of the final device such as electro-active contact lenses. The thin film dye-

doped polarizer has a broad absorption band between 400 nm and 650 nm 

and has a contrast ratio of 9 for a film of only 12 µm. On the other hand I 

also developed a technique to make a mono domain CLC thin film color 

filter. The photonic band gap of the color filter is around 80 nm with high 

reflectivity. Both thin films can be detached from the substrate. These films 

have thermal stability and chemical resistivity and are suitable to be 

processed in optical device manufacturing as additional films or as in-cell 

optical components. 

The third fabricated device in this work is a widely tunable optical filter with 

microsecond switching time. A wavelength shift of the photonic band gap of 

141 nm is obtained by electric switching of a Partly Polymerized Chiral 

Liquid Crystal (PPCLC). The devices feature high reflectivity in the 

photonic band gap without any noticeable degradation or disruption when 

applying voltages. They exhibit response times of 50 µs and 20 µs for 

switching on and off. The device consists of a mixture of photo-

polymerizable liquid crystal, non-reactive nematic liquid crystal and a chiral 

dopant that has been polymerized with UV light. I investigate the influence 

of the amplitude of the applied voltage on the width and the depth of the 

reflection band. In addition, the influence of UV illumination on a partially 

polymerized chiral liquid crystal is investigated. A blue-wavelength shift of 
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the photonic band gap is obtained as a function of power, duration time of 

UV illumination and the thickness of the cells. Interestingly the width and 

the depth of the photonic band gap are unaffected by the change in UV 

curing conditions, which indicates that there is no degradation by the UV 

light.   

A microsecond-range optical shutter for unpolarized light is demonstrated as 

a forth application using reactive LCs. The device works independently of 

the polarization state of the incoming light beam. Modulation between 3% 

transmission and 60% transmission is obtained within a wavelength range of 

50 nm with a response time of 20 µs. The device consists of two PPCLC 

layers separated by a half wave plate. The shutter features high reflectivity in 

the photonic band gap. I investigate the influence of the amplitude of the 

applied voltage on the width and the depth of the reflection band. 

Another interesting material system that I focus on for optical applications is 

based on nanorods. Semiconductor NRs have anisotropic light absorption 

and light emission properties. When these NRs can be collectively aligned, 

they may be applied in polarized emitters, polarized fluorescent sheets or 

polarization-selective detectors. In this dissertation, I demonstrate full 

alignment of colloidal NRs in suspension by an electric field. By comparing 

optical transmission measurements with theoretical simulations, the 

permanent and induced dipole moments of the NRs are determined. The 

correlation between theory and experiment indicates that the orientation is 

driven by the permanent dipole moment of the NRs. The required electric 

field, the values of the permanent dipole moment, relaxation time, absorption 

anisotropy and critical frequency of the CdSe/CdS dots in rods are 

determined. In addition, I experimentally verify the anisotropic absorption of 

the CdSe NR core for a wavelength of 560 nm. 

The homogeneous deposition of aligned NRs on large substrates is 

interesting for large area applications such as solar cells and OLEDs. 

Moreover, semiconductor nanoparticles can be used to efficiently transform 

blue light from GaN-based LEDs into for example green and red light, which 

is needed for colour displays. The combination of blue, green and red light is 

desired for backlights in liquid crystal displays. As liquid crystal devices 

modulate the transmission of polarized light, it would be an advantage to 

start from a backlight that is able to emit polarized green and red light. In the 

rest of the dissertation, I present four methods for the homogeneous 

deposition and alignment of NRs from a colloidal suspension. The 

accumulation, orientation and polarized fluorescence of the NRs is verified 
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by AFM and polarized fluorescence microscopy. The 4 methods investigated 

in this work for aligning NRs from a solution into solid material are: 

1- Dip coating and evaporation in the presence of an electric field 

2- UV curable monomer in the presence of an applied electric field 

3- Reactive LC in the presence of an applied electric field. 

4- Electro spinning of aligned NRs in fiber. 

 

 



 

Samenvatting 

Fotonica is de naam die gegeven is aan de studie van licht. Licht en op licht 

gebaseerde technologieën zijn uitermate belangrijk in ons dagelijks leven. 

Denk maar aan verlichting, beeldschermen, zonnecellen en zoveel meer. Een 

goed voorbeeld is langeafstandscommunicatie door middel van optische 

glasvezelcommunicatie. Vandaag de dag wordt fotonica steeds belangrijker. 

In het Europees onderzoeksplan, Horizon 2020, is fotonica één van de zeven 

sleuteltechnologieën (Key Enabling Technologies) waarop 

onderzoeksinspanningen gefocust worden. In een poging om het 

wereldwijde energieverbruik te verminderen is het noodzakelijk dat ook de 

optische technologieën energie-efficiënter worden. Daarenboven zijn er nog 

andere belangrijke kwesties, zoals de constante miniaturisatie van optische 

componenten. In dit proefschrift kijk ik naar de fabricage en karakterisatie 

van een aantal optische componenten die gebaseerd zijn op vloeibare 

kristallen en nanorods. Momenteel worden vloeibare kristallen in veel 

toepassingen gebruikt. Men kan ze vinden in LCD beeldschermen, in 

mobiele telefoons, projectoren, GPS navigatie, laptops, computerschermen 

en TVs. Door hun unieke eigenschappen spelen ze een belangrijke rol in 

fotonische elementen zoals afstembare filters, afstembare lasercaviteiten, 

afstembare lenzen, ruimtelijke fasemodulatoren en diffractieve roosters voor 

een waaier aan componenten zoals  het sturen van licht, afstembare optische 

componenten, lasers en optische communicatie. Vloeibare kristallen zijn, 

doordat ze organisch zijn, eenvoudig te synthetiseren. Vloeibaar- 

kristalmoleculen zijn verkrijgbaar in verschillende variëteiten en fasen. In dit 

proefschrift worden zowel nematische als chirale nematische vloeibare 

kristallen gebruikt. Een andere manier van classificatie is het al dan niet 

reactief zijn van de vloeibare kristallen. Chirale vloeibare kristallen ordenen 

zich spontaan in een helix-structuur met een periodiciteit in de orde van 0.1 

tot 10 micrometer. De periodieke ordening resulteert ook in een modulatie 

van het brekingsindexprofiel. Cholesterische vloeibare kristallen worden 

reeds vaak gebruikt in bi-stabiele displays, flexibele displays, reflectoren, 

enz. Reactieve vloeibare kristallen zijn een klasse van materialen die de 
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mogelijkheid bieden om de vloeibaar-kristaloriëntatie te ‘bevriezen’. 

Wanneer deze materialen belicht worden met UV licht gebeurt er een 

chemische reactie die leidt tot polymerisatie. Polymeriseerbare functionele 

groepen in de moleculaire structuur bieden de mogelijkheid voor 

crosslinking en vorming van een kettingnetwerk met behoud van de 

ordening. De recente trend naar miniaturisatie en draagbaarheid in vloeibaar-

kristaltoepassingen wakkerde de interesse in deze reactieve vloeibare 

kristallen aan. Een uiterst interessante eigenschap van de gepolymeriseerde 

lagen is dat ze gedelamineerd kunnen van hun draagvlak en zo een 

vrijstaande polymeerlaag kunnen vormen met voldoende mechanische 

sterkte en flexibiliteit. 

In dit proefschrift wordt de fabricage van dunne polarisatoren en 

kleurenfilters met behulp van foto-polymerisatie van reactieve vloeibare 

kristallen gedemonstreerd. De polarisator werd gefabriceerd voor 

toepassingen met een beperkte totale dikte, zoals bijvoorbeeld een elektro-

actieve contactlens. De dunne polarisator heeft een brede absorptieband 

tussen 400 nm en 650 nm en heeft een contrastverhouding van 9 voor een 

film van slechts 12 µm. Ik ontwikkelde een techniek voor de fabricage van 

een mono-domein cholesterisch vloeibaar-kristalkleurfilter. De fotonische 

bandkloof voor dit kleurfilter is 80 nm breed en het filter heeft een hoge 

reflectiviteit. Beide lagen kunnen losgemaakt worden van het substraat. Deze 

films zijn thermisch stabiel en chemisch resistief en zijn zodoende 

toepasbaar voor integratie in optische componenten of voor integratie in 

optische componenten. 

Een derde component die gefabriceerd werd is een optisch filter die 

moduleerbeer is over een wijd bereik met een schakeltijd in de orde van 

enkele microseconden. 

Een golflengteverschuiving van de fotonische bandkloof van 141 nm werd 

gerealiseerd door middel van elektrisch schakelen van gedeeltelijk 

gepolymeriseerde chirale vloeibare kristallen. De componenten vertonen 

hoge reflectiviteit in de fotonische bandkloof zonder degradatie als gevolg 

van de aangelegde spanningen. Ze vertonen reactietijden van 50 µs en 20 µs 

voor aan- en afschakelen. De componenten bestaan uit een mengsel van 

polymeriseerbare vloeibare kristallen, niet-reactief nematisch vloeibaar 

kristal en een chirale dopant die gepolymeriseerd worden met UV belichting. 

Ik onderzoek de invloed van de amplitude van de aangelegd spanning op de 

breedte en de diepte van de reflectieve band. Ook werd de invloed van de 

UV belichting op gedeeltelijk gepolymeriseerde chirale vloeibare kristallen 

onderzocht. Een golflengteverschuiving van de fotonische bandkloof treedt 
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op in functie van de intensiteit en duur van de belichting en de dikte van de 

cellen. De UV belichting blijkt geen invloed te hebben op het eindresultaat 

waardoor ik kan concluderen dat er geen degradatie is door UV belichting. 

Een optische sluiter voor ongepolariseerd licht in het microsecondengebeide 

werd gedemonstreerd als een vierde toepassing van reactieve vloeibare 

kristallen. De component werkt onafhankelijk van de polarisatie van het 

binnenkomende licht. Een modulatie tussen 3 % en 60 % transmissie wordt 

gedemonstreerd binnen een golflengtebereik van 50 nm met een reactietijd 

van 20 µs. De component bestaat uit twee gedeeltelijk gepolymeriseerde 

chirale vloeibaar-kristallagen, gescheiden door een halve golflengteplaat. De 

sluiter vertoont hoge reflectiviteit in de fotonische bandkloof. Ik onderzocht 

de invloed van de amplitude van het aangelegd veld op de breedte en diepte 

van de optische bandkloof. 

Een ander interessant materiaalsysteem is gebaseerd op nanorods. 

Halfgeleidernanorods absorberen en emitteren licht op een anisotrope 

manier. Wanneer deze nanorods collectief gealigneerd worden kunnen ze 

gebruikt worden als gepolariseerde emitter, gepolariseerd fluorescent vlak of 

polarisatie-selectieve detector. 

In dit proefschrift demonstreer ik de volledige alignering van colloïdale 

nanorods door middel van een elektrisch veld. Door vergelijking van 

experimenteel opgemeten transmissie- en absorptiespectra met theoretische 

simulaties kan ik het permanent en geïnduceerd dipoolmoment van de 

nanorods achterhalen. De correlatie tussen theorie en experiment leert ons 

dat de oriëntatie gedreven is door het permanent dipoolmoment van de 

nanorods. Het nodige elektrisch veld, de waarde van het permanent 

dipoolmoment, de relaxatietijd, de anisotrope absorptie en de kritische 

frequentie van de CdSe/CdS dots in rods worden opgemeten. Ik verifieer ook 

experimenteel de anisotrope absorptie van de CdSe dots in de nanorods voor 

een golflengte van 560 nm. 

De homogene depositie van gealigneerde nanorods op grote substraten is 

interessant voor toepassingen zoals zonnecellen en OLEDs. Bovendien 

kunnen halfgeleidernanodeeltjes gebruikt worden voor de conversie van 

blauw licht van GaN gebaseerde LEDs naar bijvoorbeeld groen en rood 

licht. De combinatie van blauw, groen en rood licht met een smalle spectrale 

breedte is nodig voor een goed kleurenbereik van LCD schermen. Doordat 

vele vloeibaar-kristaltoepassingen enkel gepolariseerd licht moduleren zou 

het voordelig zijn om te kunnen starten van groen en rood licht dat reeds 

gepolariseerd is. Op die manier verliest men geen licht in de polarisator. In 
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de rest van het proefschrift stel ik vier methodes voor die kunnen gebruikt 

worden voor de depositie en alignering van nanorods, startend van een 

colloïdale oplossing van nanodeeltjes. 

De accumulatie, oriëntatie en gepolariseerde fluorescentie van de nanorods 

werd geverifieerd met AFM en gepolariseerde fluorescentiemicroscopie. De 

vier methodes, gebruikt voor alignering van nanorods vanuit een colloidale 

suspensie zijn: 

1. Dip-coating in de aanwezigheid van een elektrisch veld 

2. Het gebruik van een UV-hardend monomeer in de aanwezigheid van 

een elektrisch veld 

3. Het gebruik van reactieve vloeibare kristallen in de aanwezigheid van 

een elektrisch veld 

4. Electro-spinnen van gealigneerde nanorods in vezels.  
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Chapter 1 

 

Introduction 

 

In the 21st century, the rate at which new technologies are developed and 

brought to the market is higher than ever. Many scientists work hard to 

provide technologies that could bring a better life for the future. In 

particular, photonics technology is one of seven important technologies for 

future life according to the Horizon 2020 work program of the European 

Commission. On the other hand, due to the growing use of different 

technologies, the consumption of energy also increases. The increasing use 

of energy and the associated problems such as CO2 emission and climate 

change is one of the important issues for humanity. In a push to reduce 

global energy consumption, it is necessary to reduce the energy needed for 

optical devices as well. In addition, quite a lot other important factors are 

important when considering future photonic devices: fabrication cost, 

miniaturization, the use of scarce materials (such as Eu or In), toxicity of 

materials (e.g. the Cd in today’s most successful quantum dots), etc. With 

these issues in mind, in this work I try to investigate and fabricate various 

optical devices based on liquid crystal (LC) and nanorods (NR). 
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1.1 Liquid crystals 

Liquid crystal is a phase of matter apart from the conventional solid, liquid 

and gaseous phases. In the LC phase, the constituent molecules have some 

freedom to move around in the material just like in a liquid. But at the same 

time, the molecules are subjected to long range ordering in their orientation 

or position, just as in a solid. The fact that the properties of this phase lies in 

between solids and liquids has led to the term mesophase. The mix of 

properties on the microscopic scale leads to very interesting macroscopic 

properties, combining anisotropy with low viscosity.  

The type of mesophase of the liquid crystal is determined by the type of 

ordering (formation of layers, orientation, etc.). It is strongly influenced by 

the shape of the molecules. Common shapes of liquid crystal molecules are 

rod-like, disc-like or banana-shaped. When the appearance of different 

mesophases is temperature-dependent, it is called a thermotropic liquid 

crystal. If the molecules arrange themselves in ordered structures in a solvent 

and if the appearance of the mesophases is concentration dependent, then it 

is called a lyotropic liquid crystal.  

The LC molecules should be chemically stable and not bind with each other. 

Typically, the building blocks of liquid crystals are organic molecules with a 

size of a few nm. In thermotropic liquid crystals the interaction between the 

molecules is in competition with the thermal motion of the molecules. The 

material becomes an isotropic liquid at a sufficiently high temperature and a 

crystalline solid at a sufficiently low temperature. The liquid crystal phase 

was discovered because of the two different transitions (solid - liquid crystal 

and liquid crystal - liquid) occurring at different temperatures. Friederich 

Reinitzer noticed in 1888 that cholesteryl benzoate melts at 145°C into a 

cloudy fluid (the liquid crystal phase) and that a second transition into a clear 

liquid takes place at 178°C [1]. Nowadays, liquid crystal materials have been 

extensively used in both display and photonic devices. In our daily life, 

liquid crystal displays (LCDs) are currently widely used in cell phones, car 

navigations, laptop computers, desktop monitors, projectors and TVs (Figure 

1.1). For photonic applications, due to the unique optical properties, LC 

plays (or may play) an important role to realize tunable wavelength filters, 

tunable laser cavities, lenses with tunable focal distance, spatial light 

modulators and diffraction gratings for various applications such as laser 

beam steering, adaptive optics and optical communications. In addition, LC 

as an organic material is promising for photonics because it does not contain 
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any scarce materials and because of the versatility in molecular design: 

relative ease of synthesis, characterization and processing.  

 

Figure 1.1: Different applications using liquid crystal displays 

Depending on the molecular structure of the LC molecules and the 

composition of the LC mixture, different mesophases can be present. Not all 

LC materials possess all mesophases. In this work, the focus is on rod-like 

molecules. Figure 1.2 displays the thermotropic transition of a liquid crystal 

based on rod-like molecules from solid phase crystal to an isotropic liquid. 

In between these two extremes, different liquid crystal mesophases can be 

present. Three of the common mesophases are smectic C, smectic A and 

nematic. The first two exhibit also spatial ordering of the molecules as the 

molecules arrange themselves in planes, while the nematic phase only 

exhibits orientational ordering and no spatial ordering. I will not go into 

detail about the smectic C and smectic A phase because these phases are not 

used in this work. In the nematic phase, the formation of layers is lost. The 

order that still remains is that on average the molecules point into the same 

direction.  
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Figure 1.2:  Schematic presentation of the solid, liquid crystal and liquid 

phase. 

1.1.1 Nematic liquid crystal 

Nematic LC usually consist of organic molecules with a chain structure, 

containing one or more aromatic rings. Typically, there is a side chain, two 

phenyl rings connected by a linkage group and a terminal group on the other 

side. Figure 1.3 shows 5CB (pentylcyanobiphenyl) as one of the well-known 

molecules that exhibit a nematic LC phase. 5CB is an example of a single 

compound that can be used. In practice, all of the nematic liquid crystals 

used are mixtures of different components. E7 for example is a mixture of 

5CB and 7CB, 80CB and 5CT. 

 

 
 Figure 1.3: Chemical structure of 5CB (pentylcyanobiphenyl). An example of an 

organic molecule with a nematic phase. 

The physical properties (dielectric, magnetic, optical and mechanical) of the 

liquid crystals are determined by the different groups in these molecules. 

The electronic polarizability is usually large in the plane of the rings and 

smaller perpendicular to the rings due to the extended electron wave 

functions in the phenyl ring. Phenyl rings also tend to yield a larger 

polarizability than saturated rings (with two hydrogen atoms per carbon 

atom in the ring). Many nematic LCs have a permanent dipole moment p, 

due to groups with different electronegativity.  
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Nematic LCs can absorb light in the UV or visible range by making a 

transition from the ground state to some excited state of the electron wave 

function.  

In the isotropic phase, nematic LC molecules move around with random 

orientation as in a normal liquid and behave like an isotropic medium. There 

are local interactions between molecules, but there is no ordering on a 

macroscopic scale. If the temperature is decreased, the interaction between 

molecules increases in relative importance (compared to the thermal energy) 

and the local order increases. 

Nematic LCs are able to rotate, and switch head and tail. They are often 

represented by cylinders or prolate ellipsoids as shown in Figure 1.4. The 

average direction of the long axis is often represented by a vector, the 

director L . The nematic LC molecules are free to rotate around their long 

axis, so the phase has full rotational symmetry. This symmetry is compatible 

with uniaxiality, so all macroscopic properties will have the uniaxial 

symmetry. 

 

 Figure 1.4: Illustration of the director orientation with respect to the xyz axis and 

definition of the azimuth Ф and inclination angle θ. 

If the director of the liquid crystal is along the z-axis, the dielectric tensor of 

a uniaxial material becomes: 
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If θ is the angle between the director and the z-axis and Ф the azimuthal 

angle between the projection of the director on the xy plane and the x-axis, 

then the director L  has coordinates: 
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Using the tensor transformation in a similar way as for the polarizability of 

nematic LC, the dielectric tensor can be found: 
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The dielectric constants are temperature-dependent due to the temperature 

dependence of the order parameter. If the light is polarized along the 

director, the light experiences the extra-ordinary index: 
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If the light is polarized perpendicularly to the director, then the light 

experiences the ordinary refractive index: 
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For most nematic liquid crystals, the dielectric constants at optical 

frequencies and corresponding values for the refractive indices are in the 

range: 
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The dielectric constant at low frequencies is also very important, because it 

determines how the liquid crystal will respond to an applied electric field. 

Typical values are in the range: 
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Because of important contributions of orientation polarization, the dielectric 

constants at low frequencies are much larger. This is because most LC 

molecules have permanent dipole moments which partly align when a field 

is applied.  

In applications, the surfaces containing the liquid crystal material play an 

important role in determining the director orientation. For most materials, 

the LC prefers to orient the director parallel with the surface without any 

azimuthal preference. This is called planar alignment. For some materials 

with specific chemical properties, the LC director prefers to be perpendicular 

to the surface. This is called homeotropic alignment. Polymer layers like 

Nylon 66 prepared in a particular way, by rubbing the surface with a soft 

textile with appropriate pressure lead to a preferential azimuthal alignment, 

usually in combination with a small deviation from the horizontal orientation 

(pre-tilt) as shown in Figure 1.5. The preferential orientation can be due to 

structural or chemical modification of the surface. 

 

 
Figure 1.5: Illustration of the principle of an alignment layer based on a rubbed 

polymer layer: a) rubbing the polymer layer with a soft textile b) azimuthal 

alignment along the rubbing direction c) pre-tilt with the plane of the substrate. 
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If an electric field is applied to the liquid crystal, the electric torque 

experienced by a single LC is given by [1]: 

 sine localT pE 
 1.8 

With E the local field related to the macroscopic field. If the permanent 

dipole moment is parallel to the long axis, the resulting torque tries to orient 

the molecule along the electric field direction (positive or negative) as shown 

in Figure 1.6.   

 

Figure 1.6:  electrically controlled birefringence of LC medium  

1.1.2 Chiral nematic liquid crystal 

Chiral nematic Liquid Crystals (CLCs) arrange in a helical structure and 

form a regular and periodic structure. The refractive index is periodically 

modulated along the helical axis because of the particular arrangement of the 

director as shown in  

Figure 1.7a. The result is that the propagation of light is suppressed for a 

particular range of wavelengths. The wavelength region in which the light 

cannot propagate is the stop band. In this region, the light is selectively 

reflected due to the one-dimensional photonic band gap (PBG). Such 

colorful Bragg reflections can be observed from a CLC slab while the helix 

axis is perpendicular to the observation plane. Deviation from the 

perpendicular direction leads to a color shift in the reflection. 
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These materials are interesting because they exhibit self-ordering into 

periodic structures. Additionally, due to the soft matter nature of these 

materials and their response to external stimuli, it is possible to tune their 

behavior for wavelengths ranging from the near ultraviolet through the 

visible and up to the near infrared. The broad wavelength tuning range of 

CLC reflectors, coupled with their microscopic size could open up new 

possibilities for use in lab-on-a-chip devices, medical diagnostics, 

dermatology, spectrum analysis, laser arrays, displays [2-7], holography, 

optical rotators, notch filters, polarizers and reflectors [8].  

The theory explaining the optical properties of CLC will be handled in 

section 2.1. From that theory I find that the width of the photonic band gap is 

nP   with Δn = ne-no the LC birefringence and P the pitch, which is 

equal to the distance to reach 360° rotation of the director. The long-

wavelength band-edge, λL, and short- wavelength band-edge, λS are given by 

neP and noP, respectively. When an unpolarized light beam is incident on the 

planar CLC cell along the helical axis, the circularly polarized light of the 

same handedness as the chiral helix is reflected while the opposite 

handedness can propagate unhindered as shown in  

Figure 1.7a [9, 10]. Thus, a CLC cannot reflect more than 50% of normally 

incident unpolarized light. Most CLCs have a right handed helical structure 

like the scheme in  

Figure 1.7a. But there are also left handed helical CLCs in nature.  

Figure 1.7b shows photographs of beetles under right (R) and left (L) 

circular polarizers.  The beetle with a single helical structure reflects only 

left circularly polarized light due to left handed CLC [11].  

 

Figure 1.7: a) Configuration of the local director for chiral nematic LC. Circular 

polarized light with the same handedness is reflected. b) Photographs of a beetle 

which has a form of CLC on the outside. The reflection of  right and left circular 

polarized light gives a completely different image [11]. 
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1.1.3 Reactive liquid crystal 

Reactive liquid crystals are a unique class of LCs that provide the additional 

benefit that the LC structure can be ‘frozen’ by means of polymerization. 

After polymerization, their mechanical properties are similar to other 

polymers and the structure is thermally stable. The polymerizable functional 

groups in the molecular structure offer the possibility for crosslinking and 

forming a long chain network while maintaining the order. In this work the 

functional groups are based on acrylate end groups. A reactive mesogenic 

monomer can be polymerized under certain conditions by UV or electron 

beam irradiation or temperature treatment.  

Figure 1.8 shows a scheme of a planar LC network. Reactive LC can be 

coated onto flexible plastic substrates by a roll-to-roll coating process. 

A few typical applications of reactive LCs are quarter and half wave 

retarders in consumer electronics, selective polarizer in goggles for 3D TVs 

and anti-reflection circular-polarizers for OLED displays [12]. Reactive LC 

can be used inside the display to form in-cell optical elements such as 

retarder foils for viewing angle enhancement in LCDs [13].  

Polymeric films can be delaminated from the glass substrate so that they 

become free standing polymer films with sufficient mechanical strength and 

elastic flexibility [14]. Different types of reactive LC exist for various 

applications. In this project mono acrylate and di acrylate monomer are used 

including photo initiator and inhibitor. By UV irradiation, the photo initiator 

initiates a chain-addition polymerization of the reactive groups and the 

monomer orientation is frozen into a densely cross-linked network. 

 

Figure 1.8:  Scheme of planar LC polymer 
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1.2 Nanorods 

A nanorod is a nanocrystal (NC) consisting of several thousands of atoms 

that may exhibit size quantization effects. When the size of a material 

reduces to the nanoscale, the percentage of atoms at the surface becomes 

considerable to the total number of atoms. Hence, the material exhibits size-

dependent properties. Quantum confinement in semiconductors leads to 

discrete electron energies [15, 16] and superparamagnetism in magnetic 

crystals [17]. In some metallic crystals, the resulting effect is the appearance 

of a surface plasmon resonance [18, 19].  

When a semiconductor absorbs a photon, this creates an electron-hole pair 

(exciton) with a characteristic distance. However, creating an exciton in a 

nanocrystal that is smaller than the bulk exciton radius requires more energy 

compared to bulk material. This translates into an increase of the effective 

band gap, illustrating the size-dependent properties which differ from the 

bulk material as shown in Figure 1.9a. Due to these discrete energy levels 

and the size-dependent energy difference between the first levels of the 

conduction and valence band (band gap), these semiconductor NCs exhibit 

quantum confinement [20]. 
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Figure 1.9:  a) Semiconductor energy levels of bulk and nanocrystals b) 

Luminescence of CdSe particles with diameters between 2 and 6 nm under UV light, 

showing quantum confinement in action. Photo taken by I. Moreels, Physics and 

Chemistry of Nanostructures group, UGent. 

Semiconductor crystals in which the exciton is confined in all three 

dimensions are called quantum dots (QDs). Crystals with confinement in two 

or one dimensions are called quantum wires (nanorods) and quantum wells, 

respectively.  

A correct model for QDs must include the Coulomb attraction between 

electron and hole. In most cases, a sphere is a good approximation for the 
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particle shape. The Schrodinger equation for such a ‘particle in a sphere’ 

system was first solved by Louis E. Brus in 1986[21], leading to the Brus 

equation: 
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 Where ɛ is the dielectric constant, R the particle radius, ћ the reduced Planck 

constant and μex the effective mass of the exciton. This equation shows that 

the band gap energy Eg of a QD is larger (blue shifted) than the bulk band 

gap Eg,Bulk. Also the equation shows that by tuning the size of the QDs the 

bandgap can be engineered to have optical properties from UV to IR. Hence, 

size confinement is the basis of the exceptional optical properties in colloidal 

QDs. This is illustrated by the suspensions of luminescent colloidal CdSe 

particles in Figure 1.9b, where reducing the particle diameter from 6 to 2 nm 

results in a shift of the luminescence from red (6 nm particles) to blue (2 nm 

particles).  

Whereas size is the key parameter underlying quantization in semiconductor 

NCs [16], shape often adds unique possibilities to further adjust NCs 

properties [22]. In this respect, shapes such as nanorods and platelets stand 

out since their shape anisotropy results in an anisotropic interaction – 

absorption, emission or scattering – with light [23]. Metallic NRs, for 

example, exhibit a splitting of the localized surface plasmon resonance into a 

longitudinal and transversal mode that most strongly interacts with light 

polarized perpendicular or parallel to the long axis of the rod, respectively 

[18]. Rod-like colloidal semiconductor nanocrystals on the other hand, 

absorb more strongly and emit light polarized parallel to their long axis [24, 

25].  

Although use can be made of the anisotropic properties of single NRs [18, 

26, 27], applications such as polarized light emitting diodes [28], 

photovoltaic energy conversion, optical sensors or switches [29-32] require 

layers or volumes with large ensembles of aligned NRs.  

 In this work, CdSe/CdS dot-in-rod is used as a heterostructure system. It 

consists of a CdSe QD core encapsulated in a rod shaped CdS shell [33]. The 

quantum yield observed in these systems can be up to 75% which makes 

them attractive for applications such as LED, bio-imaging etc. Literature 

reveals that these systems exhibit highly polarized emission from the first 

exciton transition, which is an interesting attribute to this system [24]. These 

systems also exhibit polarized absorption at the first exciton transition. In 
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this work, the CdSe/CdS NRs with two different sizes are synthesized by Dr. 

Tangi Aubert at the ‘Physics and Chemistry of Nanostructures’ research 

group at Gent University under the supervision of professor Zeger Hens.  

Transmission electron microscopy (TEM) analysis is an indispensable tool 

for the characterization of nanocrystals. It gives valuable information on the 

size, morphology, crystal structure and chemical composition of the 

synthesized nanocrystals. Figure 1.10 shows a TEM image of the 

synthesized CdSe/CdS NRs. 

More detail about the synthesis of these NRs are in appendix A, paragraph 1.  

 

Figure 1.10:  TEM image of the CdSe/CdS dot-in-rods on a copper grid coated with 

a carbon film. 

1.3 Thesis overview 

The research in this dissertation mainly focuses on the fabrication of thin 

films for optical devices based on reactive and non-reactive LCs and NRs 

such as: thin film polarizers, thin film reflectors, microsecond tunable 

shutters and thin film polarized emitter. The lab process can be modified to 

roll to roll process for industrial application. QDs are commercially used in 

TVs by companies like Sony, Samsung and LG. The cost of the materials 
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will probably go down in the future. As the fabricated layers are thin, the 

industrial fabrication should not be expensive.  

The thesis is organized as follows:  

In chapter 2 the formula of light propagation in CLCs is given and 

simulations of the PBG are shown with varying parameters of the CLC film. 

The employed reactive LCs in this project are introduced in section 2.2. 

Then the fabrication of a thin film polarizer and color filter based on photo-

polymerization reactive LC is demonstrated. Thin film polarizers are 

fabricated for applications which require very small thicknesses of the final 

device. One example are electro-active contact lenses [34] [35].  

A technique to make a mono domain CLC thin film color filter is 

demonstrated in section 2.3.2. These films are suitable to be processed in 

optical device manufacturing as additional films or as in-cell optical 

components.  

In chapter 3, a tunable chiral nematic liquid crystal optical filter with 

microsecond switching time based on a mixture of reactive and non-reactive 

CLC is demonstrated. The blue shift of the PBG with applied voltage is 

demonstrated in section 3.2. The influence of the amplitude of the applied 

voltage on the location of the PBG is investigated in section 3.3.  Further 

analysis deals with the measurement of the Stokes parameters of the 

transmission of linearly polarized light as well as response time of the filter. 

UV curing conditions are investigated in section 3.5. A microsecond-range 

optical shutter for unpolarized light is demonstrated in section 3.6. 

In the rest of this dissertation I focus on techniques for aligning NRs. 

In chapter 4, the aim is to understand the electro optic behavior and the 

alignment of the colloidal CdSe/CdS NRs that are dispersed in a non-polar 

solvent by applying a sufficiently strong electric field.  I review and extend 

the theory for dynamic orientation of NRs. Important parameters in this 

theory are the viscosity of the liquid, the rotational diffusion, the torque due 

to the permanent dipole moment and the (induced) dielectric torque. The 

degree of alignment is monitored by measuring the transmission as a 

function of time during the application of a time-dependent voltage. By 

studying the voltage dependence of the alignment and comparing this with 

the theory, I am able to evaluate the magnitude of the permanent dipole 

moment of the NRs. From the measurements I can also estimate the 

absorption anisotropy, the threshold voltage and the critical frequencies for 

alignment of the NRs.  
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I propose four novel techniques to homogeneously align CdSe/CdS NRs and 

to obtain a thin film polarized emitter in chapter 5.  Aligning NRs with the 

dip coating method assisted by an electric field is demonstrated in section 

5.2. Moreover, the alignment of NRs in reactive LC and polymer is 

investigated. In section 5.5, I demonstrate aligned NR films made of aligned 

polyvinylpyrrolidone (PVP) nanofibers assisted by electrospinning. 

A conclusion and some final remarks are given in chapter 6, together with 

some suggestions for further development of the fabricated devices. 

The details of the synthesis of the NRs and Characterization techniques are 

explained in appendix A. The details of nanofiber fabrication are described 

in appendix B. Figure 1.11 illustrates a number of fabricated optical films 

based on the use of reactive & non-reactive LC and NRs. 

 

 
Figure 1.11:  An overview of the fabricated optical films based NRs and reactive 

and non-reactive LC. 



 

Chapter 2 

 

Thin film polarizer and 

color filter  

 

 

In this chapter, the formula of reflection near the PBG of CLC is given and 

simulated. In addition, I present a method to fabricate a thin film color filter 

and polarizer based on a mixture of photo-polymerizable liquid crystal. The 

thin film color filter is based on reflection and fabricated using chiral dopant. 

The thin film polarizer is based on absorption and developed by using a 

color-neutral (black/gray) dye. Main results of this chapter are already 

published in [7] and [9]. 
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2.1 Theory of light propagation in CLC and simulation 

The theory of light propagation in CLC can be found in different books [36]. 

A positive uniaxial liquid crystal material with no and ne is assumed. Also is 

assumed that the optical axis of the molecule in CLC remains in the x–y-

plane but its orientation depends on the z-position with a periodicity of the 

pitch P. For illustration, the case of normal incidence light with the same 

handedness as the CLC is investigated. 

 Eq. 2.1 gives the reflectance for a CLC layer with thickness d for normal 

incidence when absorption and partial reflections at the interface with the 

substrate can be neglected:   
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ne and no are the extra-ordinary and ordinary refractive indices of the liquid 

crystal and P is the pitch. The transmission is simply T = 1- R. At the center 

of the PBG, ∆k = 0 and the reflectance is maximum: 
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 2  R tanh d  2.6 

The typical shape of such reflectors is rectangular-like with so-called 

sidelobes. The reflected spectrum depends on material properties of the 

CLC: no and ne, thickness and pitch. The high reflectivity band starts at the 

wavelength λ=Pno and ends at λ=Pne. The bandwidth is defined as Δλ=P(ne-

no). Equation 2.6 reveals that high reflectivity can be obtained by increasing 

the anisotropy and the thickness of the CLC. Figure 2.1a shows the 

simulated transmission for samples with 4 µm thickness and different 

birefringence values. The difference between regular dielectric reflector and 

CLC are different forms of the Bragg condition and the value of the 

propagation constant κ. Figure 2.1b shows the simulated transmission of 

samples with ∆n=0.163 and different thicknesses. The bandwidth of the PBG 

increases with increasing the birefringence and decreases with increasing the 

thickness. The reflectivity within the PBG increases and the sides are more 

rectangular with increasing thickness or increasing birefringence. A fit of the 

measurement results with the theoretical curves reveals that the polymerized 

mixture has a birefringence of 0.16. 
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 Figure 2.1:  Simulated transmission spectra for right handed polarized light for a) 

cells with 4 µm thickness and 3 different values of the birefringence; b) cells with 

∆n=0.163 and different thicknesses (the dotted line is a measured transmission 

spectrum). 

2.3 Photo-polymerization of reactive liquid crystal 

Photo-polymerization of aligned liquid crystalline mono(di)acrylate 

monomers is an elegant and versatile method to form oriented and structured 

liquid crystal (LC) polymers. The liquid crystalline mono(di)acrylates can be 

aligned easily, similar to non-reactive nematic LCs. The photo-

polymerization process freezes the orientation of the liquid crystals and 

keeps the anisotropic optical properties of the films. Homogeneous and 
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birefringent optical films based on liquid crystalline mono(di)acrylate  

monomer can be applied to improve the performance and properties of 

optical devices such as displays, lasers, color filters, retarders and polarizers. 

The optical function can be optimized by tuning the anisotropic properties 

and by controlling the orientation and order of these compounds before 

photo-polymerization. The optimized optical functions are stabilized by the 

formation of a cross-linked network through photo-polymerization of these 

compounds.  

2.3.1 Thin film color filter 

The thin film color filter in our project is based on chiral nematic liquid 

crystals. I was able to make thin films of these color filters using the photo-

polymerization method and by adding appropriate chiral dopant to the liquid 

crystalline mono(di)acrylate monomers.  

2.3.2 Thin film polarizer  

A second possibility is to use non-chiral LC and instead of using reflection 

of light, absorb the light.  To achieve selective light absorption, absorbing 

dye molecules are mixed with the LC. The fabricated thin film polarizer 

absorbs light that is polarized parallel to the c axis of the LC.  

2.4 Device structure and fabrication 

The photo polymerizable mixture is prepared by mixing 30 wt% liquid 

crystalline monoacrylate monomers (RM105, Merck) and two liquid 

crystalline diacrylate monomers (RM257, 43 wt% and RM82, 20 

wt%,Merck). The physical properties of the liquid crystalline diacrylate 

monomer (RM257) given by the material supplier, indicate that the 

refractive indices for ordinary and extraordinary light are no = 1,508, ne = 

1,687 and the melting and clearing points are 66°C and 127°C, respectively. 

To increase the nematic range down to room temperature, other liquid 

crystalline monomers (RM82-RM105) are added to the mixture. The photo 

initiator (Irgacure 819, 3 wt%, BASF) is added to the mixture and an 

inhibitor (tert-Butylhydroquinone, 4 wt%, Sigma-Aldrich) is added to inhibit 

thermal polymerization reactions. To obtain color filter material, the right 

handed chiral dopant (BDH1305, Merck) is added to the mixture. The 

photonic band gap of the color filter is tunable by selecting the appropriate 

chiral dopant concentration. The chemical structure of the above materials is 



28 Chapter 2  

shown in Figure 2.2. For the thin film polarizer, a black dichroic dye is 

added to the mixture instead of chiral dopant.   

 

Figure 2.2:  Chemical structure of two liquid crystalline diacrylate monomers 

having side groups of different lengths (6-carbon spacers for RM82 and 3- carbon 

spacers for RM-257), liquid crystalline monoacrylate monomer (RM105), chiral 

dopant (BDH 1305), inhibitor (tert-Butylhydroquinone) and initiator (Irgacure 819). 

The mixture is mixed with a magnetic stirrer. The cells are fabricated with 

two glass substrates with a 30 nm thick conductive Indium-Tin-Oxide (ITO) 

electrode coating. The ITO layer is not necessary in the initial devices that 

are made but will be crucial for later devices. The substrates are coated with 

a layer of nylon 66 (thickness approximately 300 nm) and rubbed anti-

parallel in order to stabilize the CLC in the planar texture with the helical 
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axis perpendicular to the glass substrates. The gap in the empty cell is 

determined by spacers balls (Sekisui chemical) mixed inside the glue. In this 

work different spacers (4-12µm) are used. The composite mixtures are 

injected into the empty cells using the capillary effect in vacuum on a hot 

stage in the isotropic phase (92°C) of the polymerizable LC mixture. The 

cells are cooled down such that the liquid crystal can orient itself into a 

helical structure (planar structure in case of polarizer) as a uniform film 

without domains. The cooling rate is 0.3 °C/min and has an important role 

for the uniformity of the film. Figure 2.3 a,b show  images of a color filter 

which is not treated and Figure 2.3 c,d  show images of a  treated color filter.  

Figures a,c are with a smaller magnification than figures b,d.  These figures 

clearly indicate the significant role of the cooling rate treatment. The dye 

molecules also align to the direction of LCs in the cell. Then the cell is 

exposed to UV light (30 mW/cm) from a mercury lamp (with the main 

power at 365 nm and a blocking filter for short and long wavelengths) for 1 

minute to polymerize the CLC mixture and polarizer mixture. In order to 

have a stand free film, the top glass of the cell can be delaminated by using a 

cutter. In the second step, the thin film can be detached from substrate 

elegantly by a cutter or tape. 
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Figure 2.3: Photographs of the color filters a, b) without and c, d) with cooling rate 

treatment for two dimensions. 

2.5 Measurements and Results  

2.5.1 Dye doped thin film polarizer 

A 6 µm polarizer is formed with mono-domain uniform planar orientation of 

the LC. The structure of the dye-doped polarizer is schematically shown in 

Figure 2.4a.  The dye-doped polarizer is placed onto a conventional polarizer 

with the LC director either perpendicular (Figure 2.4b) or parallel (Figure 

2.4c) to the conventional polarizer direction. The micrograph in Figure 2.4d 

indicates mono-domain uniformity of the thin film polarizer. 
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Figure 2.4: a) Structure of a polymerized dye-doped polarizer. b) A photograph of a 

6 µm thin film dye-doped  polarizer with a 2×2 cm2 region placed on another 

polarizer with b) perpendicular and c) parallel orientation.d) micrograph of the 

texture with mono-domain uniformity.  

To quantify the optical properties of the dye-doped polarizer, the 

transmittance of the polarizer is measured by using a spectrophotometer 

(Perkin Elmer). The cell is placed in the photospectrometer such that the LC 

director is either parallel (T//) or perpendicular (T┴) to the incident polarized 

light. The resulting graphs are shown in Figure 2.5. The films show a broad 

absorption ranging from 400 nm to 650 nm. The contrast of the polarizer is 

defined as the ratio of T// and T┴. The maximum contrast of 9 is obtained at a 

wavelength of 550-600 nm. These results confirm the fact that the long axis 

of the dyes are oriented along the LC direction. Its anisotropic orientation is 

maintained after the photo-polymerization process. The contrast ratio is 

rather low compared to commercial film polarizers which easily reach 

contrasts of 5000. These commercial polarizers however are typically 

several tens or hundreds of micrometer thick. The application of such thin 

film polarizers can be interesting when very small thicknesses of the final 

device is required. One example are electro-active contact lenses [34] [35]. 

It is known that the nematic phase results in a rather low dichroic dye order 

parameter and a low dichroic ratio. Using smectic phases, the dichroic ratio 

and hence the contrast of the film can be improved drastically [37, 38].  
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Figure 2.5:  Optical properties of a 12 µm thin film dye-doped polarizer. T// (T┴) is 

the transmittance when the aligned LC direction is parallel (perpendicular) to the 

polarization of incident light.  

2.5.2 Thin film color filter  

A CLC polymer film is formed exhibiting selective reflection of right 

handed circularly polarized light. The color filter film is otherwise 

transparent without observable scattering. The schematic structure of the 

CLC polymerized color filter are demonstrated in Figure 2.6a. A number of 

CLC color filters are made by using mixtures with different chiral dopant 

concentrations. The photographs of the CLC polymerized color filters are 

depicted in Figure 2.6b. The color filters are placed on a black background 

on which the UGent logo is printed in white. The image clearly indicates that 

the cell does not scatter light thanks to the mono domain structure. Obtaining 

a monodomain CLC layer is technologically quite challenging. Controlling 

the cooling rate of the oven is crucial for a good CLC layer. If the cooling 

rate is too fast or too slow, the CLC layer would have a lot of domains. Also 

a uniform layer thickness is required. For this approach, spacers with 

uniform size distribution (coefficient of Variation, Cv < 7%）are used to 

ensure monodomain CLC layer. 
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Figure 2.6: a) Structure of a polymerized CLC color filter. b) Photographs of 8 µm 

thin film polymerized CLC color filters placed on a black background on which the 

UGent logo is printed in white to illustrate the lack of scattering. 

To investigate the quality of the photonic band gap, the transmission spectra 

of the cells for unpolarized light are measured by a spectrophotometer. The 

fabricated CLC films exhibit a broad PBG with a total bandwidth of 

approximately 80 nm and good reflectivity (almost 50%) in the PBG region 

as shown in Figure 2.7. The photonic band gap of the devices shifts to the 

blue by increasing the concentration of the chiral dopant. The reflected light 

shows strong color saturation because of the sharp band edges.  
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Figure 2.7:  Transmission spectra (for unpolarized light) for 8 µm thin color filters 

with various concentrations of chiral dopant. Almost 50% of the incident light is 

reflected in the photonic band gap. 

2.5.3 Features   

The thin film polarizer and color filter feature good resistance for polar 

protic solvents e.g. formic acid, isopropanol, ethanol and water and are 

thermally stable up to 100°C. The films can be detached from the substrate 

and applied inside a cell or they can be used in flexible optical devices such 

as flexible displays or electro-active contact lenses. It is also possible to 

photopattern the color filter and polarizer by using selective photo irradiation 

through a photomask, which is required for the realization of 3D displays. 

Compared to previously reported polymerized thin films [8, 39, 40], the new 

method provides a mono domain thin film. Hence the incident light does not 

scatter. 

2.6 Conclusion  

In this chapter I have explained the basic theory of reflection near the PBG 

of CLCs. The transmission of a CLC layer as a function of wavelength is 

simulated for various thicknesses and birefringences. I have demonstrated a 

CLC thin film color filter and dye-doped polarizer with photo-

polymerization of liquid crystalline mono(di)acrylate monomers. The PBG 
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of the color filter is around 80 nm with strong color saturation without 

absorption because of the sharp band edges. The thin color filter is 

interesting for polarizer-free reflective displays and smart switchable 

reflective windows to control solar light and heat.   

The thin film dye-doped polarizer has a broad absorption band between 400 

nm and 650 nm and has a contrast ratio of 9 for a film of only 12 µm thick. 

Both thin films feature excellent film characteristics without domains and 

can be detached from the substrate which is useful for e.g. flexible 

substrates. These films have thermal stability up to 100°C and chemical 

resistivity for polar protic solvent and are suitable to be processed in optical 

device manufacturing as additional films or as in-cell optical components. 
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-------------------------------------------------------------------------------------------- 

“Sitting with the intelligent is a sign of successfulness. A sign of a 

scholar is his self-criticism of his sayings and his acquaintance with 

the various hypotheses”. 

“The true stingy is that who refrains from greeting”. 

Hossein ibn Ali 

-------------------------------------------------------------------------------------------- 
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Chapter 3 

 

Widely tunable optical 

filter and shutter with    

microsecond switching 

time 

In the previous chapter I have fabricated devices which cannot be switched 

with an applied voltage because the liquid crystal mixture consists mostly of 

reactive components (except for the chiral dopant). In this chapter I will use 

a considerable amount of non-reactive liquid crystal in the mixture which 

will form small islands in the polymer film that can react to an applied 

electric field. Using this technique CLC layers are formed with very small 

droplets that react to the voltage and make it possible to change the optical 

properties of the CLC film. To make the difference clear with the films from 

the previous chapter I call the films developed in this chapter Partly 

Polymerized CLC (PPCLC). As already mentioned, this PPCLC film 

consists of a mixture of photo-polymerizable liquid crystal, non-reactive 

nematic liquid crystal and a chiral dopant that has been polymerized with 

UV light. In order to obtain films with high transmission and low scattering, 

it is necessary that the non-reactive LC forms very small droplets. The size 
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of these droplets should be much smaller than the wavelengths for which the 

device should operate. If I consider a wavelength of 500 nm, then ideally a 

factor 10 in size would require droplets of 50 nm or smaller. As will be 

shown in this chapter, the key factor to obtain such small droplet sizes is the 

concentration of non-reactive LC. Additionally, a blue-wavelength shift of 

the photonic band gap is obtained as a function of power, duration time of 

UV illumination and thickness of the cells. I investigate a number of other 

parameters such as the influence of the amplitude of the applied voltage on 

the width and the depth of the reflection band.  

Finally a fast electro-optic shutter is fabricated and demonstrated that works 

independently of the polarization state of the incoming light beam. This is 

exceptional because, most of the commercial and reported liquid crystal 

shutters only work for linearly polarized light [41, 42]. The device consists 

of two PPCLCs separated by a half wave plate. I will demonstrate further in 

this chapter that high contrast and high transmission in the bright state can be 

obtained with microsecond switching times. The transmission modulation is 

due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid 

crystal realized by applying an electric field over both PPCLCs. Main results 

of this chapter are already published in [5][7]  and [10]. 

3.1 Introduction 

Similar to a distributed Bragg reflector (DBR), as already introduced in 

section 2.1, the periodicity of a CLC acts as a 1D Photonic Band Gap. Direct 

control and tuning of the PBG are of crucial importance for several emerging 

applications: photonic information technology, lab-on-a-chip devices, and 

switchable optical devices such as sensors [43], reflectors, diffraction 

gratings, polarizers, shutters, notch- and band-pass filters, reflective displays, 

mirror-less and ultralow threshold tunable lasers and modulators [31, 44]. 

Significant efforts have been devoted to tuning of the PBG using external 

stimuli such as heat [45-48], light [49-51], elasticity [52] and electricity [44, 

53-63]. Up to this point, almost all CLC devices have relatively slow 

switching characteristics in the order of several ms or a small tuning range 

which encumbers the use in practical applications. The most common 

technique for tuning is changing the pitch P [43, 45-56]. Direct electronic 

control of the PBG is difficult because the periodic structure may deform 

non-uniformly and the Bragg reflection may be disrupted under the 

application of an electric field [9, 60, 63]. When an electric field is applied 

parallel to the helical axis, the CLC molecules (with positive dielectric 
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anisotropy) tend to align parallel to the direction of electric field and the 

homogeneity of the structure is distorted [64, 65]. Helfrich has shown that 

the orientation pattern of cholesteric liquid crystals can be unstable in 

electric and magnetic fields and proposed a model for the so-called Helfrich 

deformation [66, 67]. In addition there can be a deterioration of the helical 

structure due to the presence of electro-hydrodynamic instabilities (EHDIs) 

at low frequencies [10, 47, 68]. The so-called focal conic structure is highly 

scattering and is used in certain devices such as eReader LCDs from Kent 

Displays. Some researchers have used polymer-stabilized CLC to tune the 

PBG [58, 69-76]. Yet the deterioration of the structure has remained a 

significant problem. Choi et al. [56] controlled the PBG by using 

ferroelectric liquid crystal (FLC) in CLC with a relatively large tuning range 

of ~101 nm but a slow response time of ~280 s. A further limitation of this 

method is the fact that the liquid crystalline mixtures possess negative 

dielectric anisotropy and therefore have a small birefringence and narrow 

PBG. 

Choi et al.[57] have demonstrated wavelength tuning of the PBG from a 

hybrid structure consisting of an achiral nematic liquid crystal and a periodic 

polymer template. The resulting wavelength tuning is relatively fast and 

broadband with a response time of 43 µs and a bandgap of ~100 nm. 

However only the long wavelength photonic band edge shifts to the blue, 

while the short band edge is fixed. In this method there is a reduction of the 

reflectivity in the reflection band, which makes them less suitable for some 

applications such as liquid crystal lasers. Recently Inoue et al. [59] 

fabricated a CLC laser that can be tuned continuously with a response time 

of less than 1 ms with a 30 nm blue shift, based on the modulation of the 

refractive index to control the selective reflection band. It is desirable to 

have a switchable PBG with fast response to electrical addressing and tuning 

over a broad wavelength range with high reproducibility without 

deformation and degradation.  

In this work, a shift of the photonic band gap of up to 141 nm and response 

times of 50 µs (switching ON) and 20 µs (switching OFF) are reported. The 

resulting CLC layers are stable when applying high voltage. Additionally, 

the amount of reflection in the PBG remains at the same level when shifting 

the PBG.  
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3.2 Fabrication  

 Chiral liquid crystal mixtures are made by dissolving reactive LC monomers 

(different mono- and diacrylate compounds from Merck), non-reactive 

nematic LC (MDA-00-3536, Merck, further referred to as ‘MDA’), photo 

initiator (Irgacure 819, BASF), inhibitor (tert-Butylhydroquinone, Sigma-

Aldrich) and right-handed chiral dopant (BDH1305, Merck) in chloroform 

after stirring for 20 minutes. The relative ratio of reactive and non-reactive 

LC is varied and different mixtures are prepared with non-reactive LC 

ranging from 40 to 60 wt%. It is possible to make devices for different 

operation wavelengths by selecting the appropriate chiral dopant 

concentration.  

The clearing point is close to 102°C for all mixtures. The composite mixture 

is injected into an empty cell using the capillary effect in vacuum on a hot 

plate in the isotropic phase. The cell consists of two glass substrates with 30 

nm thick conductive Indium-Tin-Oxide (ITO) electrodes, coated with a 

nylon layer which is rubbed in an anti-parallel way. In this way the CLC is 

stabilized in the planar texture with the helical axis perpendicular to the glass 

substrates. The empty cell is sealed with different spacers of 4, 6.75 or 8 µm. 

The cell is cooled down to room temperature with a rate of 0.3 °C/min to 

form a homogeneous film without domains. Then the cell is exposed from 

one side to 30 mW/cm2 UV light (365 nm) from a mercury lamp with 

appropriate band pass filter for 1 minute to polymerize the CLC mixture.  

After polymerization, a chiral LC polymer is formed with selective reflection 

of right circularly polarized light. For the compositions and UV intensities I 

observed that the cell remains transparent without observable scattering. 

This indicates that the droplets of nonreactive LC that have formed in the 

cross-linked network are smaller than 50 nm. To control the behavior of the 

CLC films, the concentration of nematic LC and the UV dose for curing are 

controlled. 

3.3  Measurements 

To investigate the influence of the concentration of nonreactive LC inside 

the network,  mixtures with 40, 50 and 60 wt% of MDA concentration are 

used in cells with 4 µm thickness. After fabrication, the transmission spectra 

of the samples are measured by a photospectrometer (Perkin Elmer) while 

applying a sinusoidal voltage signal of 1 kHz with RMS electric field 

between 0 and 247 V/µm. The fabricated CLC films exhibit a broad PBG 

centered between 800 and 900 nm with a total bandwidth of approximately 
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100 nm.  The blue shifts of the PBG for devices with 40, 50 and 60 wt% 

MDA concentrations are shown in Figure 3.1a-c respectively. The devices 

with 40 wt% nematic LC show the strongest blue shift, equal to 141 nm. 

Unfortunately this mixture exhibits the highest threshold voltage (90 V/µm) 

and suffers from electric breakdown before saturation of the wavelength 

shift is observed. The sample with 50 wt% MDA shows a 114 nm blue shift, 

with a 65 V/µm threshold.  The cell with 60 wt% MDA shows a low 

threshold voltage of 35 V/µm but breakdown occurs after a 48 nm shift. 

Apparently the non-reactive LC exhibits a lower breakdown electric field 

than the polymerized components. In principle other liquid crystal materials 

with a higher breakdown voltage may be used, based on fluorinated 

compounds which typically exhibit a lower ionic content. In principle a 

higher concentration of nematic LC causes more and larger voids inside the 

polymer network which facilitates the reorientation of the nematic LC. This 

leads to the lower threshold in the device with 60 wt% MDA.  The shift of 

the long band edge wavelength of the PBG as a function of the applied 

electric field for devices with 40, 50 and 60 wt% MDA concentration is 

shown in Figure 3.1d. It illustrates that the shift is continuous and the degree 

of modulation of the device with 40 wt% MDA concentration is larger than 

the others. By decreasing the MDA concentration to 20 wt%, the threshold 

voltage increases and the blue shift is only a few nanometer.  Note that the 

IR absorption in Figure 3.1a and c is slightly higher due to thicker ITO 

electrodes (200 nm), compared to Figure 3.1b (30 nm ITO thickness). The 

concentration of photo initiator is a key factor to obtain small droplet sizes 

and to speed up the photo-polymerization process, such that the reactive and 

non-reactive LC do not get the time to separate. If the concentration of photo 

initiator is not high enough, the droplets of LC will be big and cause 

scattering. If the concentration of photo initiator is too high, it causes 

domains in the layer. Another crucial parameter is the concentration of 

inhibitor. If the concentration of inhibitor is not enough, the mixture starts to 

polymerization before UV curing due to uncontrollable stimuli such as 

thermal stimulation. Also if the concentration is too high, it causes domains 

in the layer.   
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Figure 3.1:  Transmission spectra for unpolarized light,  a) 40 wt%, b) 50 wt% and 

c) 60 wt% MDA concentration for different applied electrical fields. d) Shift of the 

long band edge position of the photonic band gap as a function of the applied 

electric field for mixtures with 40, 50 and 60 wt% MDA concentration.  

In order to rule out polarization dependencies of the spectrometer, the 

transmission measurements have been performed for right handed circularly 

polarized light, that is produced with a linear polarizer and a zero order 

quarter wave plate at 850 nm. The transmission spectra of 4 samples with 50 

wt% MDA and 4 µm thickness in Figure 3.2 illustrate the reproducibility of 

the procedure.   



3.3: Measurements 43 

 

Figure 3.2: Transmission spectra of 4 devices with 50 wt% MDA and 4 µm 

thickness, for right handed circularly polarized light.  

Obtaining high reflectivity and low transmittance in the bandgap is essential 

for an effective distributed Bragg reflector. To avoid electric breakdown for 

strong electric fields and to achieve low transmission in the reflection band 

(See section 2.1 for theoretical background), the thickness of the cells is 

increased to 6.75 and 8 µm. Figure 3.3 shows the transmission spectra for a 

thickness of 6.75 and 8 µm for right handed circularly polarized light. As a 

figure of merit I define the contrast ratio as the ratio between the 

transmission for zero Volt and for a high voltage for a certain wavelength. 

The contrast ratio is 16.5 and 21.5 respectively for 6.75 and 8 µm thick 

devices. This value is larger than the contrast ratio of 9 for the device with 4 

µm thickness.  
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 Figure 3.3: Transmission spectra for right handed polarized light for devices with 

50 wt% MDA and and a) 6.75 µm b) 8 µm thickness, for different applied electrical 

fields. 

The transmission in the center of the PBG is practically independent of the 

applied electric field and the width of the photonic band gap is only slightly 

reduced. This proves that the uniform helical order is maintained. The 

transmission in the PBG of samples with 8 µm thickness is reduced with 

respect to the 4 µm samples, but not as much as expected from the 

theoretical calculations shown in Figure 2.1b: the measured transmission in 

the middle of the PBG is 3.55 %, while the theoretical estimation is below 

0.01%. To understand this mismatch, the Stokes parameters of the 
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transmitted light for linearly polarized incident light (equal amounts of RH 

and LH polarization) are measured for a wavelength near the center of the 

bandgap [77]. The Stokes parameters for samples with 4 µm and 8 µm 

thicknesses are shown in 0Table 3.1. S0 represents the total intensity and is 

normalized to 1. The Stokes parameters S1, S2 and S3 are obtained using the 

method described by Xie et al. [77]. For this approach, an optical setup 

(Figure 3.4) is designed to characterize the optical properties of the 

transmitted light from the PPCLC cell. A linearly polarized beam propagates 

along the z direction. The zero order quarter wave plate ( for a wavelength of 

850 nm) with azimuth α and the linear polarizer with azimuth φ are parallel 

to the x-y plane with reference 0° parallel to the x axis, which is chosen to be 

parallel with the first linear polarizer. Two convex lenses are used to 

transform the transmitted beam of the PPCLC into a parallel beam and to 

focus the beam onto a photo-detector. The detector is connected to a 

calibrated power meter. 

 

Figure 3.4: Optical setup to measure the Stokes parameters light passing through 

the PPCLC cell. Q: quarter wave plate with azimuth α. P: linear polarizer with 

azimuth φ. 

 

The transmitted intensity P(α, φ) is measured for different values of the 

azimuth of the quarter wave plate (α) and the azimuth of the linear polarizer 

(φ). The Stokes parameter are obtained using the methods described in [78]:  
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Also S0 representing the total intensity is normalized to 1. The degree of 

polarization p follows from 2 2 2 2

1 2 3S S S  p . The ellipticity angle χ is 

determined from sin2χ = S3/p and the result is 33.2° and 42.9° for the 

samples with  4 µm and 8 µm thickness respectively. The transmitted light 

for the thinner (4 µm) sample has a high degree of polarization (0.988) but 

the ellipticity angle deviates strongly from 45º, indicating that there is also 

an important transmission of right handed circularly polarized light. This is 

in agreement with the experiments of Figure 3.2 and the simulation of Figure 

2.1b.   For the thicker sample (8 µm) the transmitted light is mainly 

circularly polarized (|S3|~p), but the degree of polarization is decreased to 

0.958 which means there is an important contribution from unpolarized 

scattered light.  

Table 3.1: Stokes parameters of the transmission of linearly polarized light with a 

wavelength near the band center. 

Thickness 4 µm 8 µm 

S0 1 1 

S1 0.194 0.035 

S2 -0.344 0.045 

S3 -0.906 -0.956 

p 0.988 0.958 

Ellipticity angle (χ) 33.2º 42.9º 

Transmission minimum 

(%) 

6.89 3.55 

 

Two CLC reflectors with an active region with band gap in the visible region 

are placed on a black sheet of paper with the word ‘Mohammad’ in white 

letters. Figure 3.5 shows the photographs of the devices with and without 

applied electric field which illustrates a blue shift of the devices. This shows 

that the field-tuning of the PBG  keeps a high transmission for white light 

without scattering  in the visible region which is usually not the case for 

polymer-CLC composites [58]. 
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 Figure 3.5: A macroscopic photograph of two CLC a) orange and b) green 

reflectors placed on a black sheet on which the word Mohammad is printed, without 

and c,d) with applied electric field.  

To explain the blue-shift of both the right and the left band edge one has to 

consider the fact that light at the right band edge is traveling through the 

medium with an electric field vector aligned along the director of the helix. 

Light with a wavelength at the left band edge is traveling with an electric 

field vector perpendicular to the director. This explains why the right and left 

band edges are located at neP and noP respectively. The blue shift means that 

the refractive indices ne and no both decrease with increasing applied voltage. 

Because I observe no scattering when applying voltage and because the 

structure is polymerized, I assume that the helix does not deform or tilt. The 

only possible explanation for a complete blue shift of the PBG without 

tilting of the helix is that the orientation of the nematic LC inside the voids is 

initially random as shown in Figure 3.6 a, contributing with the average 

refractive index navgLC to the ne and the no of the mixture. By applying an 

electric field, the nematic LC inside the voids becomes oriented and aligned 

parallel to the electric field due to the positive dielectric anisotropy of the 

material (Figure 3.6 b). In this case only the ordinary refractive index of the 

liquid crystal noLC contributes and both refractive indices of the mixture 

decrease. As the pitch is fixed by the polymer template, and the refractive 

index decreases, the photonic band edges both shift to the blue and the 
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reflected color changes. By removing the electric field, everything returns to 

the original state.  

 

Figure 3.6: Scheme of the pattern with a polymerized CLC network and dispersed 

nano droplets with nematic LC a) without b) with applying electric field. 

The response time of the device with 50 wt% MDA, 8 µm thickness and 

long band edge of 870 nm is measured with a microscope (Nikon, eclipse, 

E400 POL), 850 nm light emitting diodes for the illumination and a silicon 

photodiode for the detection. Figure 3.7 illustrates the switching of the liquid 

crystal under influence of an electric field. When the voltage is off, the 

transmission is low because the wavelength is inside the PBG. When 

applying a voltage, the nematic LC orients perpendicular to the substrates 

and the photonic band gap shifts to smaller wavelengths. The wavelength of 

850 nm is now above the PBG and right circularly polarized light is strongly 

reflected. The 10–90% response times are 50 µs and 20 µs for respectively 

turning on and off, when switching between zero Volt and a block wave 

voltage signal with amplitude 150 V/µm and frequency 1 kHz. These 

switching times are drastically shorter than in previously reported work [56, 

57, 59].  
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 Figure 3.7: Electrical response of the 50 wt% MDA device with 8 µm thickness for 

a block wave electric field with amplitude 150 V/µm and frequency 1 kHz. 

It should be noted that the device does not switch anymore for frequencies 

larger than 10 kHz. It is found that this is due to speed limitations of the 

voltage amplifier. The slew rate of the amplifier (Trek model 50/750) is 125 

V/µs which limits the driving frequency. The slew rate of the amplifier also 

explains the fact that the switching off time is shorter than the switching on 

time. Considering a slew rate of 125 V/µs and an amplitude of 150V/µm for 

a device with 8 µm thickness, the delay time due to the amplifier is around 

10 µs.  

3.4 Effect of UV curing conditions  

In this section I investigate the effects of UV illumination on the mixture that 

has been discussed in the previous sections. To investigate the influence of 

the UV power on the network structure and the photonic band gap, the 

mixture is infiltrated in cells with 8 µm thickness. Then the cells are exposed 

to various powers of UV light for 1 minute to polymerize the CLC mixture. 

The power of the UV light is measured by a photo detector with an active 

area of 1 cm2. Figure 3.8 shows a scheme of the structure of the nematic LC 

inside a polymerized CLC network.  
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 Figure 3.8:  Scheme of the structure of a polymerized CLC network with dispersed 

nematic LC droplets. 

After fabrication, the transmission spectra of the cells are measured by a 

photo spectrometer (Perkin Elmer). In order to rule out the polarization 

dependencies of the spectrometer, the transmission measurements have been 

performed for right-handed circularly-polarized light produced with a linear 

polarizer and a zeroth-order quarter-wave plate at 850 nm. The fabricated 

CLC films exhibit a broad PBG with a total bandwidth of approximately 100 

nm. The PBG of the devices shift to the blue by increasing the UV power as 

shown in Figure 3.9a for devices illuminated from one side. Various powers 

of UV light are used to illuminate the cells from both sides for a duration of 

1 minute. The blue shift of the PBG of the devices is shown in Figure 3.9b 

with increasing UV power. The strongest blue shift is 110 nm.  
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 Figure 3.9: Transmission spectra (for right-handed circularly-polarized light) for 

devices exposed to various powers of UV light (365 nm) from a) one side and b) two 

sides 

 To understand the reason for the shift, the refractive indices of the cells 

(without chiral dopant) are estimated for 2 powers of the UV light (11 and 

40 mW). The cells are illuminated from two sides for 1 minute. The spectra 

of the cells are measured by photo spectrometer while the c-axis of the LCs 

are parallel (ne) and perpendicular (no) to the linear polarizer. The refractive 

indices around 850 nm can be estimated by using the Fabry Perot 

interferometer equation: 
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Where d is the thickness of the cavity and λ1 and λ2   are the wavelengths of 

the transmission maxima close to 850 nm. 

The blue shift corresponds to a decrease of the refractive indices as shown in 

Figure 3.10.  

 

 Figure 3.10: Ordinary and extra-ordinary refractive indices of devices exposed to 

two powers of UV light. 

It is known that the use of photoresponsive chiral dopants results in a shift of 

the bandgap to longer wavelengths [3, 71]. This is due to the fact that the 

chiral dopant loses its chiral twisting power after absorption of UV light. In 

this work I use a chiral dopant which does not react to UV light. In this case 

the bandgap shifts to shorter wavelengths with increasing UV power, which 

is opposite to what would be expected from UV degradation of the chiral 

dopant. 

To investigate the effect of duration time of UV illumination on the network 

structure and photonic band gap, the cells with 8 µm thickness are exposed 

to UV light with a power of 30 mW for 1 and 2 minutes. Figure 3.11  shows 

the blue shift of the PBG by applying UV light for these two durations.  
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 Figure 3.11: Transmission spectra (right handed circularly polarized light) for 

devices which are cured with 30 mW/cm2 UV light (365 nm) during 1 and 2 

minutes. 

Finally I have investigated the influence of the device thickness on the 

network structure and photonic band gap by injecting the mixture into the 

cells with 4, 8 and 10 µm thicknesses. After being filled with the mixture, 

the cells are exposed to 30 mW/cm2 UV light for 1 minute.  The 

transmission spectra for these devices shown in Figure 3.12 demonstrate that 

the PBG shifts to the red in thicker devices, or equivalently that the pitch 

increases in thicker cells. The fact that the PBG shifts to the red with 

increasing thickness is most likely related to the fact that the average UV 

power over the thickness of the LC layer is smaller due to UV absorption. It 

is obvious that the transmission within the PBG decreases by increasing the 

thickness of the mixture [79]. 



54 Chapter 3  

 

 Figure 3.12: Transmission spectra (right-handed circularly-polarized light) for 

devices with various thicknesses which are illuminated by a 30 mW/cm2 UV light 

(365 nm) for 1 minute. 

3.5 Microsecond-range optical shutter for unpolarized light  

In 3.3 I have demonstrated wavelength-tuning of the PBG of a CLC layer 

using an applied voltage. For many applications however it is unacceptable 

that the device only reflects about half of the unpolarized light. It is desirable 

to have a switchable photonic band gap with fast response irrespective of the 

polarization state of the incoming light beam. 

In order to obtain switching from full reflection to full transmission in a 

certain wavelength range, I have used the method which is depicted in 

Figure 3.13. The set up includes two PPCLCs and one half wave plate. RCP 

light with wavelength in the PBG is reflected by PPCLC1 and the LCP light 

is transmitted. LCP light is converted to RCP by the zero order half wave 

plate centered at 850 nm.  Due to the fact that this is not a broadband half 

wave plate, LCP light at other wavelengths will be converted into slightly 

elliptically polarized light. The relative retardation error for 800 nm for 

example is about 6% when using a 850 nm zero order waveplate. Then the 

RCP light is reflected by PPCLC2. This reflected light travels through the 

first PPCLC as it is converted to LCP. The photonic band gap is tuned by 

applying the same voltage signal over both PPCLCs. 
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Figure 3.13: Schematic drawing of the device operation to modulate unpolarized 

incident light. 

Two PPCLCs with 4 µm thickness and a central wavelength λ0 of 850 nm 

are implemented separately in the setup of Figure 3.13. The cells are driven 

by a function generator and amplifier with a sine wave voltage (0 to 132 

V/µm, 1 kHz). By applying an electric field, the nematic LC inside the voids 

is oriented and aligned parallel to the electric field due to the positive 

dielectric anisotropy of the LC. As reported in 3.3 for a single PPCLC cell, 

the application of a voltage results in a blue shift of the PBG. The pitch is 

fixed by the CLC polymer template, which means that the average refractive 

index seen by RCP light decreases. 

The transmission spectra of the samples are measured by a dual-beam 

spectrophotometer (Perkin Elmer) as a function of the electric field.  To 

avoid problems with the polarization dependency of the spectrophotometer, 

the measurements are performed with a linear polarizer before the device 

under test. Measurements are performed for different orientations of the 

linear polarizer. No noticeable difference is measured in the transmission 

spectrum when varying the angle of the linear polarizer, which means that 

the device works for unpolarized light. The blue shift of the PBG is shown in 

Figure 3.14.  The device shows a blue shift of 50 nm. Instead of using the 

device as a wavelength tunable reflector, I believe that the most interesting 

application is a fast shutter for a particular wavelength. For this device I 

select the wavelength of 850 nm to switch between NIR and visible light and 

I obtain a contrast ratio (the ratio between the transmissions of a full 

PPCLC-λ/2-PPCLC device for zero and high electric field for specific 

wavelength) of 5.  
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 Figure 3.14: Transmission spectra for unpolarized light for a full PPCLC-λ/2-

PPCLC device with two 4 µm thick PPCLCs for eight applied electrical fields.  

      To reach higher contrasts it is essential to achieve high reflectivity and 

low transmittance in the PBG of the PPCLC. One option is to increase the 

thickness of the PPCLC layers to 8 µm. Figure 3.15 shows the transmission 

spectra of the thicker device for unpolarized light. The contrast ratio for 

λ=820  nm increases to 20 while the transmission in the center of the PBG is 

practically independent of the applied electric field and less than 3%. The 

transmission in the PBG of samples with 8 µm thickness is not zero which 

means that there is a contribution from scattered light (See 3.3). These 

measurements confirm that the field-tuning of the PBG keeps the uniform 

helical order which is usually not the case for polymer-based CLC 

switches[58]. The applied electric field can be generated by commercially 

available amplifiers. Due to the very limited current, the power consumption 

is low.  
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 Figure 3.15: Transmission spectra for unpolarized light for a full PPCLC-λ/2-

PPCLC device with two 8 µm thick PPCLCs for eight applied electrical fields. 

       The response time of the device with PPCLCs of 8 µm thickness and 

right band edge at 875 nm is measured with a set of light emitting diodes 

(850 nm wavelength, FWHM 35 nm) and a silicon photodiode for the 

detection. When the voltage is off, the wavelength of the light emitting 

diodes is inside the photonic band gap and the incident unpolarized light is 

strongly reflected by the device as shown in Figure 3.16. By applying an 

electric field, the PBG shifts to smaller wavelengths. In this state the 

wavelength of the light emitting diodes (850 nm) is above the PBG and the 

light can propagate through the device. The obtained response time is the 

same as for a single PPCLC. The 10–90% response time is 20 µs for 

switching between zero and a block wave electric field signal with amplitude 

150 V/µm and frequency 2 kHz. These switching times are much shorter 

than in previously reported work [56, 57, 59]. The fact that the switching off 

time is shorter than the switching on time is due to speed limitations of the 

voltage amplifier. The slew rate of the amplifier (Trek model 50/750) is 125 

V/µs which limits the driving frequency and response time.  
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Figure 3.16:  Switching of the transmission for light with 850 nm wavelength for a 

device with two PPCLCs of 8 µm thickness for a block wave electric field with 

amplitude 150 V/µm and frequency 2 kHz. 

Conclusion 

In this chapter I have demonstrated a wide and fast shift of the photonic band 

gap of a mixture of photo-polymerizable LC and nematic LC including a 

chiral dopant assisted by applying an alternating electric field. The 

wavelength tuning is shown to be maximum 141 nm with relatively high 

stability and reflectivity and without any noticeable degradation and 

disruption. The response time is 50 µs and 20 µs for turning on and off an 

electric field, respectively.  

Also I have demonstrated a wide shift of the photonic band gap for the 

mixture by changing the power and time duration of the UV illumination and 

the thickness of the cell. There is no degradation or deformation by the 

change in UV curing conditions. I can conclude that UV illumination plays 

an important role in controlling the photonic band gap of the CLC mixture. 

The shift is due to a decrease in the refractive indices, but the physical 

mechanism for this decrease is not yet clear. Further experiments are 

required to find out the underlying mechanism. 

Finally a fast polarization-independent optical shutter with a 50 nm shift of 

the photonic band gap has been demonstrated. The shutter consists of two 

partly polymerized chiral nematic liquid crystal layers and is driven by 

applying an electric field. The optical response time is 20 µs and the 

wavelength range of the switching is 50 nm. The device shows contrast 
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ratios up to 20. Due to the self-assembly of chiral liquid crystal with the 

pitch determined by the dopant concentration, the fabrication of the switch is 

inexpensive and the working wavelength can be chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 Chapter 3  

 

 

 

 

 

 

 

 

 

 

 

-------------------------------------------------------------------------------------------- 

“Value of a man depends upon his courage; his veracity depends 
upon his self-respect and his chastity depends upon his sense of 
honour. 
 
Generosity is to help a deserving person without his request, and if 
you help him after his request, then it is either out of self-respect or 
to avoid rebuke”. 

Ali ibn Abitalib 

-------------------------------------------------------------------------------------------- 
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Chapter 4 

 

Full Alignment of Dispersed 

Colloidal NRs by Alternating 

Electric Fields 

Semiconductor NRs exhibit anisotropic light absorption and light emission 

properties. When these NRs can be collectively aligned, they may be applied 

in polarized emitters, polarized fluorescent sheets or polarization-selective 

detectors. In this work, I demonstrate full alignment of colloidal NRs in 

suspension by an electric field. The absorption anisotropy of the CdSe/CdS 

NRs is determined for 470 nm. By comparing optical transmission 

measurements as a function of the electric field with theoretical simulations, 

the permanent and induced dipole moments of the NRs are determined. The 

values of the permanent dipole moment, relaxation time, absorption 

anisotropy and critical frequency of the CdSe/CdS dots in rods are 

determined. In addition, I show that the regime of full alignment enables the 

direct determination of the anisotropic absorption of CdSe/CdS QRs. I find 

that the anisotropy in absorption for the CdSe dot is similar to that of the 

CdS rod, which I attribute to the similarity in dielectric constant and electric 

field in both materials. 
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4.1 Introduction 

Over the last 30 years, colloidal nanocrystals have attracted wide scientific 

and technological interest since their opto-electronic properties can be tuned 

by means of their size and shape. In particular, rod-like colloidal 

semiconductor nanocrystals such as CdSe quantum rods or CdSe/CdS dot-in-

rods, more strongly absorb and emit light polarized parallel to their long axis 

[24, 25]. The ability to control the position and orientation of NRs in a 

device is important from scientific and technologic point of view [80-84] . 

Especially, as NRs exhibit anisotropic absorption, and spontaneous and 

stimulated emission [24, 85-87] aligning individual NRs to a preferred axis 

is attractive for applications in photovoltaic energy conversion, light-

emitting devices ( in particular back light of LCDs), optical sensors, 

switches, etc. [28-32] .  

Although use can be made of the anisotropic properties of single NRs [18, 

26, 27], applications such as polarized light emitting diodes [28], 

photovoltaic energy conversion, optical sensors or  switches [29-32] require 

layers or volumes with large ensembles of aligned NRs. In this context, 

various methods for the collective alignment of colloidal NRs have been 

explored. Focusing on colloidal quantum rods, these either exploit the 

tendency of NRs to self-assemble by aligning their long axes upon drying or 

dispersion destabilization or involve the use of external forces to impose rod 

alignment. Depending on the actual conditions, slow solvent evaporation on 

a solid substrate or a liquid subphase results in NR films aligned with their 

long axis parallel or perpendicular to the substrates [83, 88-92]. 

Alternatively, alignment by external forces has been demonstrated using 

mechanical rubbing of a pre-deposited film of randomly oriented quantum 

rods [93] or by means of electric fields applied either during solvent drying 

[94-96] or to achieve electrophoretic deposition [97].     

Besides the alignment of NRs during deposition, a number of studies have 

addressed the alignment of quantum rods in solution. Various reports 

describe the organization of NRs in two-dimensional sheets of a single layer 

of parallel quantum rods by depletion attraction [98], specific surface 

functionalization schemes [99] or a reduction of the dispersion stability [100, 

101]. Although it proved possible to orient such 2D sheets in solution by 

magnetic fields [102], the size of the sheets leads to considerable scattering 

of light and results in patchy deposits upon solvent drying. Opposite to this 

alignment-by-aggregation, the collective orientation or alignment of non-

aggregated NRs is possible by means of an electric field. Although electrical 
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alignment has mainly been used to characterize NR properties such as the 

dipole moment [103] or the absorption anisotropy [104], it can be regarded 

as a technical solution to produce functional solid films with strong 

anisotropy in optical absorption, emission or scattering. Depending on the 

electrode configuration the alignment can be homogenous or follow a 

pattern. Alignment by an electric field is also possible for low concentrations 

where interactions between NRs can be avoided.  

Despite the potential of in-situ alignment of NRs by electric fields, both its 

theoretical and experimental aspects have only been studied partially in the 

literature. Ruda et al. gave a theoretical description of the alignment of gold 

NRs based on the anisotropy of the induced dipole moment [105]. In the 

case of semiconductor NRs on the other hand, alignment by alternating 

electric fields is typically attributed to a permanent dipole along their long 

axis [94, 103, 104], although the presence of a permanent dipole could not 

be confirmed by electrostatic force microscopy [106]. More importantly 

however is that the regime of full rod alignment has not yet been reached. 

Using the available combination of applied fields and quantum rod dipoles, 

Kamal et al. only obtained partial orientation, as the electrostatic energy 

gained by orienting the rods was at best about equal to the thermal energy 

[104], while an even weaker orientation can be deduced from the figures 

provided by Li et al. [103].  

In this chapter, I demonstrate that colloidal CdSe/CdS NRs that are dispersed 

in a non-polar solvent can be quasi fully aligned by applying a sufficiently 

strong electric field.  The degree of alignment  is monitored by measuring 

the transmission [104] as a function of time during the application of a time-

dependent voltage. I review the theory for dynamic orientation of NRs, 

which is described by the viscosity of the liquid, the rotational diffusion, the 

torque due to the permanent dipole moment and the (induced) dielectric 

torque. In the past there have been several attempts to estimate the 

permanent dipole moment of CdSe NRs [103, 104]. By studying the voltage 

dependence of the alignment and comparing this with the theory, I am able 

to evaluate the magnitude of the permanent dipole moment of the NRs. From 

the measurements I can also estimate the absorption anisotropy, the 

threshold voltage and the critical frequency for alignment of the NRs.  
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4.2 Synthesis and experimental set up 

4.2.1 Synthesis of CdSe/CdS NRs  

The CdSe/CdS dot-in-rods have been synthesized by Tangi Aubert from the 

FCN group at Ghent University according to a procedure described in the 

literature (see Appendix A, paragraph 1 for synthesis details) [87].  

First, CdSe quantum dots (QDs) with a wurtzite structure and an average 

diameter of 2.3 nm are synthesized. On these core QDs, an anisotropic CdS 

shell is grown using phosphonic acids as the ligands to obtain CdSe/CdS 

dot-in-rods with an average diameter of 4.8 nm and an average length of 

51.5 nm. Finally the CdSe/CdS NRs are dispersed after purification in 

dodecane (1 and 10 µMolar). Figure 4.1a shows a transmission-electron-

microscopy (TEM) image of the used NRs and Figure 4.1b shows a sketch 

of the NR structure. These particular anisotropic structures are preferred to 

other types of quantum rods due to their high photoluminescence quantum 

yield which is reported to be up to 75% [87]. The absorption spectrum of the 

CdSe/CdS NRs (Figure 4.1c) is taken using a Perking Elmer Lambda 950 

spectrometer. Steady-state photoluminescence measurements are performed 

with an Edinburgh Instruments FLSP920 setup. The emission spectrum 

(Figure 4.1d) is recorded for an excitation wavelength of 365 nm and is 

corrected for the sensitivity of the detector (see Appendix A, paragraph 2 for 

Characterization techniques).   
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 Figure 4.1: a) TEM micrograph of the CdSe/CdS NRs b) Sketch of the CdSe/CdS 

NR structure c) Absorption spectrum of the CdSe/CdS (inset: magnification for the 

range 500 nm to 600 nm highlighting the absorption feature of the CdSe cores) d) 

Emission spectrum of the CdSe/CdS NRs (excitation wavelength of 365 nm). 

The optical constant (bulk value) of the CdS and CdSe with wurtzite 

structure at 300 K and the optical constant of the dodecane are listed in Table 

4.1.  
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Table 4.1: Optical constant of wurtzite CdS and CdSe at 300 K[107]. 

Wavelength 

Material 

Static value  470 nm  560 nm 

E ┴ c E ‖ c E ┴ c E ‖ c E ┴ c E ‖ c 

 

CdS 

n 

3 3.2 2.61 + 

0.37i 

2.70 + 

0.39i 

2.58 2.59 

ɛ 

8.99 10.21 6.69 + 

1.95i 

7.12 + 

2.18i 

6.66 6.72 

 

CdSe 

n 

3.05 3.19 2.72 + 

0.45i 

2.75 + 

0.48i 

2.74 + 

0.39i 

2.79 + 

0.39i 

ɛ 

9.29 10.16 7.20 + 

2.47i 

7.36 + 

2.64i 

7.38 + 

2.12i 

7.62 + 

2.20i 

 

Dodecane 

n 1.42 

ɛ 2.01 

4.2.2 Quantum rod alignment by electric fields 

Two glass substrates with 1 cm2 ITO electrodes are used to make cells with 

20 μm and 50 μm spacing d between the electrodes. The electric field in the 

gap can be approximated by assuming a homogeneous field E = V/d, with V 

the applied voltage. The NR suspension is filled inside the cell by capillary 

force. The sketch of the cell with random orientation of NRs in the off-state 

and aligned NRs along the electric field direction, is shown in Figure 4.2a 

and b respectively. The connection of the electrodes is illustrated in Figure 

4.2d. A function generator (TTi-TG315) and a voltage amplifier are used to 

apply a high AC voltage with a frequency between 50 Hz and 40 kHz on the 

electrodes, resulting in electric fields up to 40 V/µm. The transmission for 

blue light (470 nm) and green light (580 nm) from a single color LED is 

measured by a photo detector (FLC electronics-PIN20) which is mounted 
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onto the microscope (Nikon-eclipse E400). Figure 4.2e shows part of the 

setup including the cell and the blue LED (The cell is shown in Figure A.2, 

Appendix A, paragraph 3).   

 

 

Figure 4.2: Orientation of NRs in suspension in dodecane: a) without and b) with 

applied voltage. c) The electric field is perpendicular to the ITO electrodes and θ is 

the angle between the electric field and the NR long axis.  The components of the 

electric field parallel and perpendicular to the long axis la are called E║ and E┴ 

respectively. d) Schematic view of the device and e) image of the microscope 

transmission setup.  

4.3 Theoretical Background 

4.3.1 Orientation of spheroids in an electric field  

For the alignment of NRs dispersed in an apolar liquid in the presence of an 

electric field, the permanent and the induced (dielectric) dipole moments are 

considered. Semiconductor NRs have typically a higher dielectric constant 

than the apolar liquid and this results in an induced dipole moment that is 

proportional to the applied electric field. Moreover, NRs have a permanent 

dipole moment that is related to the non-centro-symmetric wurtzite crystal 

structure of semiconductors like CdSe/CdS. To derive the dynamic equation 

of motion for this alignment, I take into account dielectric and dipolar 
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torques, thermal fluctuations and rotational viscosity of the NRs suspended 

in the solvent. 

When a NR or a spheroidal particle is placed in a host medium with 

dielectric constant εh in which a homogeneous external field Eext is present, 

the induced dipole moment (with respect to the host medium) amounts to: 

 

 0 , 0 ,a ext a b ext bE E      p 1 1  4.1 

The unit vectors (1a, 1b, 1c) are mutually orthogonal with 1a along the long 

axis of the spheroid and 1c perpendicular to both 1a and the external field. 

The field components , E E are the projections on the unit vectors 1a and 1b 

as shown in Figure 4.2c. For an anisotropic spheroidal particle with 

dielectric constants , nr nr   , the polarizabilities along the long and short 

axis are given by [108]: 
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With V the volume of the particle and La and Lb  the depolarization factors 

for a spheroidal particle [109]: 
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With a and b the length of the corresponding semi-axes (see Figure 4.2c). 

The torque due to the excess polarization is given by: 

 

   21
02

sin 2dielectric ext a b ext cE       T p E 1  4.4 

With θ the angle between the long axis of the spheroid and the electric field.  
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If the NR has a permanent dipole moment p along the long axis of the NR, 

then the external electric field yields an additional dipolar torque: 

 

 sindipolar ext cpE   T p 1E  4.5 

Including the two torques into the dynamic equation of reorientation yields 

the following differential equation for the orientation angle θ: 

    
2

1/2 21
022

2 ( ) sin sin 2r B r a b
d d

I k T t pE E
dtdt

 
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The first term contains the moment of inertia I and is usually negligible for 

small spheroids, except for very high frequencies (MHz range). The second 

term represents the viscous torque and contains the rotational viscosity [105] 

r  for a spheroidal particle: 
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4.7 

with η the dynamic viscosity of the medium (unit: Pa.s) and a’ and b’ the 

semi-axes of the prolate ellipsoid NR, which include the length of the 

ligands (2 nm). The first term on the right hand side is the torque due to 

Brownian interaction [110], with kB the constant of Boltzmann. 

I can estimate the typical time τon to align a spheroid when switching on a 

sufficiently strong electric field, by neglecting the Brownian term in 

equation 4.6, replacing the derivative by the ratio on, and setting  = 

=𝜋/4: 
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The typical time for reorientation when switching off the voltage is called 

the relaxation time, which is usually longer than τon. This time and the 

relaxation frequency and can be estimated using the Debye-Perrin 

model[111] and equation 4.6:  
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The excess electrostatic energy of a spheroid in an electric field is given by:  

 

   2 2 21
0 0 02
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In the quasi-static case, when the frequency of the field is well below frelaxation 

(and also below fon), the probability P(θ) to find a spheroid in a given solid 

angle d  is determined by the Boltzmann distribution for the momentary 

electric field:  
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4.3.2 Absorbance of dispersed spheroidal particles 

When an absorbing spheroidal particle is dispersed in a non-absorbing 

solvent, the effective absorption coefficient for light depends on the 

orientation of the particle. Based on the depolarization factors parallel and 

perpendicular to the long axis of the spheroid, I can write down the intrinsic 

absorption coefficients based on the model in  [112] : 
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In this expression nh is the refractive index of the host solvent and εnr,R + i 

εnr,I is the NR complex dielectric constant for the considered wavelength. In 
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the typical situation for semiconductor NRs in an apolar solvent, εnrR is 

larger than εh. For a prolate spheroid La is smaller than Lb and the absorption 

coefficient for parallel orientation is larger. For a spheroid with inclination θ 

and azimuth φ as shown in Figure 4.2c the absorption coefficient is an 

average of the parallel and perpendicular components, weighted by the 

square of the projection of the electric field:  

 

 2 2 2 2( , ) cos sin (1 cos sin )            4.13 

For an ensemble of spheroids the absorption coefficient µ in equation 4.13 

has to be averaged over all orientations of the long axis of the NRs, weighted 

with the corresponding Boltzmann factor (4.11): 
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The absorbance A of a spheroid dispersion is given by the intrinsic 

absorption coefficient µ [23] multiplied with the volume fraction f  of the 

spheroids and the thickness of the dispersion, divided by the natural 

logarithm of 10: 

 

 
ln10

f d
A   4.15 

   

4.4 Results and discussion 

4.4.1 Full Alignment of Colloidal NRs by Electric Fields 

To explore the full alignment of dispersed colloidal NRs by electric fields, a 

dodecane-based dispersion of CdSe/CdS NRs is loaded in a cell as described 

in 4.2.2. As a fraction of NRs will carry an electric charge,[113] application 

of a DC field will make the NRs drift to the electrodes. To avoid artefacts 
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due to NR accumulation at the electrodes, I use AC fields with a period 

shorter than the cell transit time /r d uE    where u is the mobility of the 

NRs which is equal to the charge of the NR over the translational friction 

coefficient. If we consider one unit charge per NR, the mobility in dodecane 

is estimated as 5.8*10-10 m2/V.s. NRs in a 50 µm cell have a cell transit time 

of ≈ 5ms for fields of 17 V/µm. Therefore, I use frequencies higher than 200 

Hz to study NR alignment. 

A first measurement involves the optical transmission of a 50 µm cell filled 

with a 1 µM dispersion of NRs in dodecane at 470 nm in the presence of a 

sinusoidal AC electric field. An example is given in Figure 4.3, where it can 

be seen that the two extreme values of the electric field during a single 

period both correspond to a maximum increase of the transmission (more 

results are provided in the Appendix A, paragraph 4).  

 

Figure 4.3: Transmission measurements (blue dots) of a CdSe/CdS NR suspension 

for blue light (~470 nm) with and without the presence of an AC electric field with a 

frequency of 5 kHz and an amplitude of 17 V/µm (red line). 

From these transmission measurements, the absorbance A by the NR 

dispersion is calculated as: 
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Here, I0 is the light intensity passing through the cell loaded with dodecane 

only, while IT is the (possible time dependent) intensity transmitted through 

the NR-loaded cell. One readily sees that the increased transmission upon 

application of an electric field corresponds to a drop of the absorbance. This 

is in agreement with NRs aligning their long axes parallel to the AC electric 

field and perpendicular to the electric field of the incident light, where the 

absorbance drop is due to the higher depolarization factor for fields along the 

short axis of the CdSe/CdS NRs (Lb = 0.49 instead of La = 0.018).  

In order to eliminate the trivial influence of cell thickness and NR 

concentration from the measurements, I introduce the relative change of the 

absorbance ΔA/A0  (usually <0): 
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Here, A0 is the absorbance of the NR-loaded cell in the absence of an electric 

field. Figure 4.4 represents the variation of the minimum of ΔA/A0 as a 

function of the applied electric field.  

 

Figure 4.4:  Minimum value of the relative change of the absorbance of the 1 

µMolar NR dispersion in the presence of an AC electric field with a frequency of 1 

kHz as a function of peak value of the electric field. Measurements (green dots) and 

simulations assuming only dielectric torque (blue), only dipolar torque (red) and 

both dielectric and dipolar torques (green, almost identical to red).  
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One sees that while increasing the electric field initially leads to a more 

pronounced drop of the absorbance, ΔA/A0 levels off at ≈ -0.54 for fields 

exceeding 15 V/µm. This levelling-off is also apparent from the variation of 

ΔA/A0 over a single period of the AC field. When applying for example a 1 

kHz field with a maximum amplitude of 17 V/µm, i.e., close to the field 

strength for which the time-averaged absorption change saturates, Figure 4.5 

shows how ΔA/A0  hits a plateau each time the field is around its extreme 

values. I attribute this behaviour to the NRs being fully aligned along the 

direction of the electric field such that any additional increase of the field 

strength cannot further reduce the absorbance.  

 

Figure 4.5: Relative change of the measured (blue dots) and simulated (magenta) 

absorbance of the 1 µMolar NR dispersion for blue (~470 nm) light in the presence 

of an AC electric field with frequency 1 kHz and amplitude 17 V/µm (red). 

4.4.2 Dynamical Properties of Colloidal NR Alignment 

Next to the levelling off of the absorbance change, Figure 4.5 also makes 

clear that the change in absorbance is established without noticeable delay. 

This indicates that at the fields and frequencies used, the NRs readily flip 

from a θ=0° to a θ=180° orientation when the field changes direction (see 

Figure 4.2c for a definition of the angle θ). Hence, the NR reorientation 

occurs on a time scale much shorter than the 1 ms period of the AC field, an 

outcome in line with the dynamical properties of NR (re)orientation. Indeed, 
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using eqs 4.7 and 4.9, the rotational relaxation frequency frel in dodecane of 

the CdSe/CdS NRs used here can be estimated at 13 kHz. Hence, fields with 

a frequency well below 13 kHz, should give the NRs enough time to 

establish a quasi-equilibrium Boltzmann distribution that follows the 

variation of the electric field, thus bringing them from random orientation to 

full alignment. In line with this, increasing the AC frequency from 1 to 10 

kHz only changes the frequency at which the transmission changes, without 

affecting the limiting value corresponding to full alignment as shown in 

Figure 4.6. Hence, the only difference between a 1 and a 10 kHz field is that 

the latter makes the QRs flip faster between the θ=0° to a θ=180° 

orientation. At frequencies above frel, the distribution will not return to 

random alignment and the minimum in the transmission will not be as low as 

the zero-field transmission, whereas the NRs will stop reacting on the AC 

field once the frequency is higher than the turn on frequency fon, which is 

estimated at ≈100 kHz in this case.  

 

Figure 4.6:  Transmission of a cell (thickness 50 µm) with CdSe/CdS suspension 

when an AC electric field is applied with amplitude 17 V/µm and various 

frequencies. 

This description of the NR orientation dynamics is further confirmed by the 

response of the transmission to a single block pulse with an amplitude of 17  

V⁄μm. As shown in Figure 4.7, the regimes of full alignment and de-

alignment are reached within less than 50 μs. 
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Figure 4.7: Transmission versus time of a CdSe/CdS NR suspension in dodecane 

when a pulse with amplitude of 17 V/µm is applied. 

4.4.3 Permanent versus Induced Dipole Moments 

As the absorbance of the CdSe/CdS NRs at 470 nm will be dominated by the 

CdS rod (Figure 4.1c), the bulk optical constants of CdS can be used to 

estimate the dielectric function of the quantum rod in the expressions for the 

polarizability and the absorption coefficient of dielectric ellipsoids, i.e., eq 

4.2 and 4.14 respectively. The thus calculated polarizability and absorption 

coefficients at 470 nm have been summarized in Table 4.2. Using these 

figures, the degree of orientation and the concomitant relative absorbance 

change can be calculated if only the dielectric torque were present. The thus 

predicted dependence of ΔA⁄A0 on the electric field strength has been added 

to Figure 4.4, where it follows that fields of more than 40 V⁄μm would be 

needed to obtain an appreciable alignment of the NRs. I therefore conclude 

that the (full) alignment of the NRs is indeed due to the permanent dipole 

moment of the NRs.  

Considering the NR dipole moment p as an adjustable parameter, the field 

dependence of ΔA⁄A0 can again be predicted. Figure 4.4 shows that taking 

p=1500 D (5*10-27 C.m), a typical value for the CdSe/CdS NRs used here, 

makes the simulated field dependency of ΔA⁄A0 all but match the 

experimental data. I stress that this predicted trend depends on a single 

adjustable parameter, i.e., the dipole moment p, which mainly determines the 
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region of electric fields where the NRs change from random to full 

alignment. The high-field limit of ΔA⁄A0 on the other hand only depends on 

the difference in absorption coefficient of fully aligned (μ⊥) and randomly 

aligned (μ0) quantum rods: 
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Inserting the estimated absorption coefficients (see Table 4.2), a limit of -

0.54 is indeed obtained, in line with the experimental findings. 

A number of interesting values for NRs obtained from experimental and 

simulation results are listed in Table 4.2. 

Table 4.2: Obtained experimental results for CdSe/CdS NRs. 

Nanorod dimensions Ellipsoid with axes:  51.5 nm;  4.8 nm;  4.8 nm  

Depolarization factor L‖ = 0.018 L┴ = 0.49 

Field inside CdSe ( Eext = 20V/ µm) E (Eext ‖ c) = 18.16 

V/µm 

E (Eext ┴ c)   = 8.95 

V/µm 
Field inside CdS ( Eext = 20V/ µm) E (Eext ‖ c)  = 19.21 

V/µm 

E (Eext ┴ c)    = 9.44 

V/µm 
Dielectric polarizibity ‖ = 2.4*10-24 m3 ┴ = 0.8*10-24 m3 

Absorption coefficient for 470 nm µ‖  = 1.8*107 m-1 µ┴ = 0.4*107 m-1 

Relaxation time of NRs in dodecane 12 µs 

Relaxation frequency of NRs in dodecane 13 kHz 

Typical time to align (τon) 1.6 µs 

Turn on frequency (fon) 100 kHz 

Fitted permanent dipole moment 1500 Debye 

Estimated induced dipole moment   

at 17 V/µm 

100 Debye 
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4.4.4 Absorption Anisotropy at the Band-Edge Transition 

As indicated by eq 18, the regime of full alignment provides a way to 

directly determine the absorption anisotropy of colloidal NRs at a given 

wavelength. I therefore extended the analysis to the NR absorbance at the 

CdSe/CdS first exciton transition at around 560 nm (see Figure 4.1c), which 

is due to electronic transitions between quantized states in the CdSe core. To 

adjust for the absorbance difference at 470 and 560 nm of the CdSe/CdS 

NRs, I had to analyze QR dispersions with a concentration 10 times higher 

than used for the previous measurements. Hence, I now measure the 

transmission of green light (≈560 nm) through a 50 μm thick cell filled with 

a 10 μM QR dispersions in the presence of an AC electric field (17  V⁄μm, 1 

kHz). Figure 4.8 shows that the AC field leads to a similarly oscillating 

increased transmission – meaning a decrease in absorbance – as observed 

before at 470 nm. Hence, also the CdSe core transitions exhibit a marked 

absorption anisotropy. 

 

Figure 4.8: Transmission measurement (green dots) of a NR suspension for green 

(~560 nm) light in the presence of an AC electric field with frequency 1 kHz and 

amplitude 17 V/µm (red). 

An issue with the more concentrated dispersions used here is that a 

considerable fraction of the NRs form aggregates that are not oriented by the 

applied electric field. Figure 4.9 therefore compares the relative change of 

the absorbance determined at 560 nm with that determined at 470 nm for the 
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same dispersion under the same conditions of the applied field. Since this 

transmission change would reach -0.54 if all rods were aligned, the actual 

plateau value can be used to estimate the fraction of NRs that can be aligned 

and thus calibrate the transmission changes at 560 nm. Figure 4.9 shows that 

this calibration is actually quite straightforward since the high-field limit of 

ΔA⁄A0 at 560 nm due to CdSe core absorption is very similar to the one 

measured at 470 nm, which is due to absorption in the CdS rod. Hence, a 

quite similar corrected limiting value of ΔA⁄A0 in the ranged -0.5 to -0.55 is 

obtained at the band-gap transition as well.  

   

Figure 4.9: Relative change of the measured absorbance of the 10 µMolar NR 

dispersion for blue light (blue dots) and green light (green dots) in the presence of an 

AC electric field with frequency 1 kHz and amplitude 17 V/µm (red). 

This result may seem surprising since the core is a spherically symmetric 

object, yet it can be understood by realizing that the dielectric mismatch 

between the CdSe core and the CdS shell is small. Figure 4.10 shows the 

electric field distribution for a CdSe sphere inside a CdS ellipsoid in 

dodecane, obtained from a 3D finite element field calculation (Comsol), 

based on the real parts of the anisotropic bulk dielectric functions for these 

materials at 560 nm (see Table 4.1). The internal field in the CdSe core 

amounts to ≈ 95% of the field in the CdS host, independent from the fact that 

the applied field is parallel or perpendicular to the c-axis of the rod. The 

electric field in the rod (and the sphere) is almost identical to the external 
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electric field when the applied field is parallel to the c-axis of the rod. When 

the applied field is perpendicular to the c-axis of the rod, the field in the rod 

(and dot) is only about half of the applied external field. This is expected, 

because the depolarization factor in the perpendicular case is larger 

(L⊥=0.49).  

 

Figure 4.10: Simulation of the field distribution inside a dot in rod using the bulk 

dielectric function for incident light parallel and perpendicular to the c-axis of the 

rod at 560 nm (Inset: 3D structure shows the position of the NRs in the medium). 

The simulation illustrates that the CdSe core experiences the same enhanced 

or reduced screening of the field as the CdS rod for incident optical fields 

perpendicular to or parallel with the long axis of the NR. Hence the largely 

similar absorption anisotropy for the quantum dot band gap transition. 

 Note that the experimentally determined high-field limit of ΔA⁄A0  

corresponds to a polarization ratio of 60-65% for the emission [96], which is 

similar to the experimentally determined values of up to 75% as determined 

on single CdSe/CdS QRs [24].  
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4.5 Conclusion 

I have shown that colloidal CdSe/CdS NRs can be fully aligned in a colloidal 

dispersion by the application of AC electric fields with an appropriate field 

strength. The alignment is monitored by measuring the variation of the 

transmission concurring with the oscillation of the electric field at 

wavelengths where the CdS rod absorption dominates. For the rods used, 

complete alignment parallel with the electric field is obtained for field 

strengths exceeding 15 V⁄μm and switching back and forth to random 

orientation occurs within 50 μs. I develop a theoretical description of the 

relation between the electric field and the alignment of dielectric ellipsoidal 

nano-objects, considering both a permanent and an induced dipole moment. 

Doing so, it follows that the experimentally determined alignment as a 

function of field strength can be attributed to the interaction between the NR 

permanent dipole and the applied AC field.  

Since the transmission change in the regime of full alignment only depends 

on the difference between the NR absorption coefficient for optical fields 

parallel and perpendicular to the NR long axis, transmission measurements 

during AC driven full alignment provide an excellent method to measure 

anisotropic absorption by NRs. Excellent agreement between experiment and 

theory is obtained for the absorption anisotropy at 470 nm, i.e., wavelengths 

where the rod absorption dominates. Moreover, I find that band-edge 

transition exhibits a quite similar absorption anisotropy, a result we attribute 

to the small dielectric mismatch between the CdSe core and the CdS rod.    
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-------------------------------------------------------------------------------------------- 

“Spend properly and do not be the treasurer of others. If you cry over what 

has gone out of your hands then also cry for what has not at all come to 

you. Infer about what has not yet happened from what has already 

happened, because occurrences are ever similar”. 

Ali ibn Abitalib’s commandment for His Son 

-------------------------------------------------------------------------------------------- 
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Chapter 5 

 

Anisotropic light emitters 

based on aligned NRs 

 

Semiconductor NRs mainly absorb and emit light which is polarized with the 

electric field along the long axis of the rods, it is therefore important to 

collectively align the long axes of NRs along a preferred direction. In this 

chapter, I present four methods for the homogeneous deposition and 

alignment of NRs from a colloidal suspension. The deposition, orientation, 

and polarized fluorescence of the NRs is verified by AFM and polarized 

fluorescence microscopy. Main results of this chapter are already published 

in [6] and [8]. 
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5.1 Introduction 

The ability to control the position and orientation of NRs in a device is 

important from a scientific and technologic point of view [80-84]. The 

homogeneous deposition of aligned NRs on large substrates is interesting for 

large size applications such as solar cells and OLEDs. Moreover, 

semiconductor nanoparticles can be used to efficiently transform blue light 

from GaN-based LEDs into for example green or red light, which is also 

needed for color displays. The combination of blue, green and red light is 

desired for backlights in liquid crystal displays. Nowadays liquid crystal 

displays have a limited transmission, on the order of 10% [114]. This is 

mainly due to the absorbing polarizers and color filters. In a conventional 

backlight the emitted light is unpolarized because it originates from LEDs or 

phosphor materials. Because an LCD is designed to work with polarized 

light [114], the polarizer typically absorbs half of the light.  

Light emission is usually the result of a dipole transition in an atom, 

molecule or quantum dot. Recently the development of red and green 

quantum dots has improved the color saturation of LCDs [115]. Anisotropic 

emitters can have characteristics that are close to that of a dipole antenna. If 

the emitters are aligned parallel to the electric field of the light that is 

transmitted by the polarizer, most of the light that is emitted will pass the 

polarizer and contribute to the emission of the LCD display as shown in 

Figure 5.1. 

 

Figure 5.1: Scheme of polarized LC backlight 

As liquid crystal devices modulate the transmission of polarized light, it 

would be an advantage to start from a backlight that is able to emit polarized 

green and red light.  

Several techniques for aligning NRs have been explored such as: rod 

solubility in a binary solvent/non-solvent mixture [83], coffee stain 

evaporation dynamics [32, 89, 116], radial fluid flow with spin coating & 
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drying lyotropic phase [80, 117], slow solvent evaporation at a liquid-solid-

air interface [28, 81], Langmuir-Blodgett deposition [84], wet-chemical 

attachment of NRs & epitaxial growth [118], mechanical rubbing of rods[93] 

or external electric fields [119]. Among them, electric-field-driven 

deposition from colloidal suspensions has proven to be an efficient method 

for the controlled positioning and alignment of all kinds of anisotropic 

particles such as nanowires [120] carbon nanotubes [121], gold NRs [119, 

122] and semiconductor [30, 87, 123-127] NRs. In these papers, good 

alignment is obtained, but the methods are not compatible with cheap, 

reproducible and homogeneous deposition on large substrates as required for 

large size applications such as solar cells or OLEDs. 

In contrast to the previously cited works, I use an AC field with high 

amplitude in which the alignment is considerable. The theory, simulation 

and full alignment of NRs in apolar solvents has already been treated in 

chapter 4.  

Using such strong AC fields Ahmed et al. [122] already reported an effective 

alignment of gold NRs by drying a drop of a colloidal NRs suspension on a 

silicon wafer with platinum electrodes. Similarly, Hu et al. achieved 

effective CdSe and CdTe NR alignment on Si3N4 membranes with electrodes 

through slow drying in N2 atmosphere of a colloidal solution drop while 

applying a strong DC electric field, directly inside a small atomic force 

microscope chamber [124]. In these two papers good alignment is obtained, 

but the methods are based on the casting of single drops and subsequent 

drying of the solvent, which is not compatible with reproducible and 

homogeneous deposition on large substrates as required for large size 

applications such as solar cells or OLEDs. In this chapter, I propose four 

novel techniques to homogeneously deposit aligned CdSe/CdS NRs in a 

solid layer: 

1. Deposition of aligned NRs by dip-coating  

2. Aligned NRs in a reactive liquid crystal 

3. Aligned NRs in polymer 

4. Aligned NRs in polymeric nanofibers 
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5.2 Deposition of aligned NRs by dip-coating  

In this section, I present a novel technique for the homogeneous deposition 

and strong alignment of CdSe/CdS NRs on a glass substrate patterned with 

transparent indium tin oxide (ITO) interdigitated electrodes with a spacing of 

a few micrometers. This fast and versatile method is based on applying an 

electric field over the electrodes during the dip-coating procedure and is 

compatible with large-scale processing on cheap and transparent substrates. 

The accumulation, alignment, and polarized fluorescence of the NRs as a 

function of the electrical field are investigated. An alignment with order 

parameter of 0.92 and a polarization ratio of 0.60 is obtained with this 

method. 

5.2.1 Fabrication 

The CdSe/CdS NRs are synthesized according to a procedure described in 

Appendix A, paragraph 1. The CdSe/CdS NRs are dispersed in chloroform 

and the solution is filtered with a 0.2 µm PTFE syringe filter. Absorption 

and emission spectrum of the CdSe/CdS NRs are shown in Figure 4.1. 

Standard optical lithography is used to pattern a 30 nm thick ITO layer on a 

glass substrate. The ITO electrodes in different designs have an 

interdigitated finger pattern, with each line 2600 μm long and 6 μm wide, 

with a gap of 4 or 6 μm (see Figure 5.2b). For comparison, each substrate 

has a second electrode finger pattern which is not connected to the voltage 

source during deposition. The experimental setup and pattern are 

schematically shown in Figure 5.2a and b. 
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Figure 5.2: a) A sketch of the experimental setup: a glass substrate with 

interdigitated ITO electrodes is pulled out of a colloid suspension in the presence of 

an electric field. (b) The width of the ITO electrodes is 6 μm and the gap is 4 or 6 

μm (not to scale). (c) The electric field is perpendicular to the ITO lines, and θ is the 

angle between the electric field and the NR long axis.  

The electric field in the gap can be approximated by assuming a 

homogeneous field E = V/G, with V the applied voltage and G the size of the 

gap. Figure 5.3 shows the electric field distribution of the medium between 

the electrodes obtained from a 2D finite element field calculation (obtained 

with Comsol) based on the dielectric functions for chloroform. The electric 

field is almost homogeneous between the electrodes and is higher close to 

the corners of the electrodes. 

 

 



88 Chapter 5  

Figure 5.3: Simulation of the field distribution (V/µm) in the gap between the 

electrodes based on the dielectric functions. 

A function generator (TTi-TG315) and a voltage amplifier (FLC electronics-

A800X) are used to apply an AC voltage on electrodes with gaps of 6 µm or 

4 µm respectively, to 2×2.6 mm pixel, resulting in an electric field. The 

deposition is realized by immersing vertically the substrate in a 10 nM NRs 

solution. The AC voltage is applied and the substrate is then pulled out 

completely at a speed of 85.7 mm/minute. After the chloroform has dried (in 

a few seconds), the voltage is switched off. 

5.2.2 Results and discussion 

After deposition, the layer is imaged with a fluorescence microscope (Nikon-

eclipse Ti). The NRs are excited by the UV band (330-380 nm) of a Xenon 

lamp. The NR emission is detected by an Andor CCD camera after passing 

through a dichroic mirror, a long wavelength pass filter and a linear 

polarizer. The cut-off wavelength for the dichroic mirror is 400 nm and for 

the long pass filter is 420 nm. Figure 5.4 shows a scheme of the filter block 

and transmission spectra of the filters and mirror inside the block. 
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Figure 5.4: a) Ultraviolet Excitation Filter block consisting of an excitation filter, a 

dichroic mirror and emission filter. b) Transmission spectra of the dichroic mirror 

(yellow), excitation filter (red) and emission filter (white). The figure is from Nikon 

Company. 

 The fluorescence microscopy images in Figure 5.5 are for the substrate with 

ITO in absence (Figure 5.5a) and presence (Figure 5.5b) of an electric field 

of 17.7 V/µm, 50 kHz during dip coating. In Figure 5.5a there are 

(practically) no deposited NRs, the moderate brightness of the gap region is 

due to a weak fluorescence of the glass, whereas ITO absorbs UV light. 

Figure 5.5b shows that NRs are not deposited on the electrodes and that 

when the electric field is present, many NRs are deposited inside the gap. 

The comparison between Figure 5.5a and b indicates that the NRs are 

attracted by the strong electric field near the surface of the substrate between 

the electrodes, which is well known for high-dielectric particles in an electric 

field gradient. The distribution of the NRs inside the gap is also observed in 

atomic-force microscopy (AFM) (Figure 5.5c). Both techniques reveal a 

higher density of rods near the center of the gap.  
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Figure 5.5: Fluorescence microscopy images of a substrate (electrode gap of 4 µm 

indicated by white line) after dip-coating in absence (a) or presence (b) of an electric 

field, and AFM image of the same substrate in presence of an electric field (c).  

Based on the theoretical framework of the full alignment regime of the NRs 

in chapter 4, I can calculate the required electric field to align the NRs in 

chloroform. The orientation of the NRs for the substrate in presence of an 

electric field of 20 V/µm, 1 kHz during dip coating, is investigated in detail 

by AFM. Figure 5.6a shows a preferential horizontal alignment of the NRs. 

In order to analyze the orientation of NRs from the image in an objective 

way, the image data is analyzed by a computer program. In a first step, the 

image is subjected to a threshold to obtain a black and white image. In the 

second step, white regions that are surrounded by black pixels are identified. 

To avoid the analysis of NR clusters and small noise related regions a 

maximum and minimum area for the white regions is set. Only the white 

regions with an area within the defined interval are ascribed to individual 

NRs and are represented in Figure 5.6b. The white regions are then fitted to 

ellipses and the azimuth angles θ of the long axes are determined. Figure 5.6c 

finally show the histogram of the azimuth angles θ for the selected NRs. The 

angle of the NRs is mostly between -10° to 10°, evidencing a clear 

preferential horizontal alignment (i.e. perpendicularly to the electrodes). 
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Figure 5.6 : a) AFM image of aligned NRs between the electrodes deposited in the 

presence of an alternating electric field with frequency 1 kHz and amplitude 20 

V/µm. b) Processed images to identify individual NRs c) Histogram of the azimuth 

angles of the NRs in the image.  

To quantify the degree of NR alignment in the images, I use the orientation 

order parameter S, which is defined as: 

 2  2cos 1   S  5.1 

With θ the angle between the NR long axis of an individual NR and the 

average direction of the long axes of all NRs. This expression accounts for 

the two-dimensional nature of the NR alignment and yields S = 1 in the case 

of perfect alignment and S = 0 in the case of random orientation [122, 124]. 
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The obtained S is 0.92 for the NRs deposited in Figure 5.7. The orientation 

of the NRs depending on the deposition condition (11.8 V/µm or 17.7 V/µm) 

is investigated in detail by AFM (Figure 5.7). Both Figure 5.7 a and b show 

a preferential horizontal alignment of the NRs in the cases E = 11.8 V/µm 

and E = 17.7 V/µm. The individual NRs are represented in Figure 5.7 c and 

d and the corresponding histograms of the azimuth angles θ for the selected 

NRs are indicated in Figure 5.7 e and f. 

 

Figure 5.7 : AFM images of aligned NRs between the electrodes (a) deposited with 

an AC field of 11.8 V/µm (1 kHz) and (b) deposited with an AC field of 17.7 V/µm 

(50kHz). (c,d) Processed images to identify individual NRs. (e,f) Histograms of the 

azimuth angles of the NRs in images c and d.  

The obtained order parameter S is 0.67 for the NRs deposited in the stronger 

electric field at higher frequency (Figure 5.7 b) and 0.45 for the NRs 

deposited in the weaker field at lower frequency (Figure 5.7 a).  

To observe the anisotropic emission of the deposited NRs, the sample with 

the highest obtained order parameter is imaged with a fluorescence 

microscope. The fluorescence intensity is collected by an objective (60x), 

passes through a rotatable linear polarizer and is detected by an Andor CCD 

camera as shown in Figure 5.8a. One should note that in our experiments the 

excitation light is not polarized. This is preferred in order to avoid 

preferential absorption by the NRs that have the best alignment and allow for 

a better assessment of the true polarization ratio of the sample. 
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Figure 5.8b shows the emission of the NRs while the polarizer is oriented 

perpendicularly (left) or parallel (right) to the line electrodes. The strongest 

photoluminescence is observed when the polarizer is parallel to the 

alignment of the NRs (θ = 0). This is in agreement with earlier polarization 

measurements on individual NRs [85] and aligned NR arrays [24, 32, 87]. 

 

 

Figure 5.8: Fluorescence microscopy a) set up and b) images of a substrate 

(electrode width of 12 µm as indicated by a scale bar) after dip-coating while the 

polarizer is oriented perpendicular (left) and parallel (right) to the line electrodes. 

Figure 5.9a shows the fluorescence images of the NRs for different 

orientations of the polarizer. The average intensity I of the fluorescence is 

obtained by averaging the grey scale values over the pixels within a selected 

region in the image. Figure 5.9b shows the parameter I as a function of the 
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orientation of the polarizer which corresponds to a function 

  2
cosI I I    . The polarization ratio is expressed as [32]: 

 

    /r I I I I     5.2 

From Figure 5.9b I find that the polarization ratio is 0.6. One should keep in 

mind that the polarization ratio of a single CdSe/CdS NR with a spherical 

core is limited to 75%, so that a polarization ratio of 100% cannot be 

achieved [128-130]. The fact that I find a smaller may be attributed to 

several factors: a limited degree of alignment, loss of polarization due to 

scattering or unpolarized emission from aggregates. It may also be due to the 

fact that the transition dipole moment of the NRs considered here is not 

perfectly aligned with the NR long axis [96]. I verified that the fluorescence 

from regions with randomly oriented NRs yields a vanishing polarization 

ratio.  

 

Figure 5.9: a) Fluorescence microscopy images of the NRs located in the gap 

between two electrodes (dashed lines), for four azimuthal orientations of the 

polarizer. b) Variation of the integrated fluorescence intensity of the NRs in the 

same region as a function of the azimuth of the polarizer (θp).  

I can conclude the dip coating deposition method is fast, facile, and can be 

applied on relatively large substrates. In addition, I believe that this method 

can be extended to the deposition or printing of most of aligned anisotropic 

particles. An alignment with order parameter 0.92 and a polarization ratio of 

0.60 is obtained with this method. 
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5.3 Alignment of NRs suspension in liquid crystal 

5.3.1 Introduction 

In the previous section, I presented a novel technique for the homogeneous 

deposition and efficient alignment of CdSe/CdS NRs on a glass substrate 

which is based on applying an electric field over the electrodes during a dip-

coating procedure [96, 131]. But aligning the NRs with this method requires 

high electric fields up to 20 V/µm and this can be an issue for roll to roll 

fabrication.  

On the other hand, liquid crystals exhibit unique properties such as long-

range orientational order and anisotropic optical and electronic properties in 

a certain temperature range while keeping the fluidic properties. The self-

organizing nature of these liquid crystals has been demonstrated in different 

configurations [132, 133] and introduced in chapter 1. These self-organizing 

properties of anisotropic liquid crystals can aid in the alignment of 

anisotropic objects such as nanowires, nanotubes [134]  and both metal [135] 

and semiconductor NRs. Hybridization of two different material systems 

may lead to novel materials with interesting properties and resulting device 

applications. One of the technical challenges is to homogeneously disperse 

nanoparticles in anisotropic fluids without aggregation of the nanoparticles 

in the medium in sufficiently high concentrations to be useful for 

applications. The use of surfactant stabilization is a common method applied 

to reduce clustering as e.g. for the case of gold NRs in lyotropic LC [135-

137]. 

In this section, I propose a novel technique to homogeneously disperse and 

align CdSe/CdS NRs in a polymer film.  The fabrication uses a glass 

substrate with transparent interdigitated indium tin oxide electrodes. This 

method is based on doping the reactive nematic liquid crystal with NRs and 

consequently aligning the mixture by an electric field.  

In the next subsections, the electric field strength required to align the 

semiconductor NRs is determined experimentally. Application of high 

electric field yields a reduction of clustering NRs in LC medium. The 

relaxation times and critical frequencies of the semiconductor NRs are 

estimated by the experimental results. 
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5.3.2 Thin film aligned NRs in reactive LC  

5.3.2.1 Mixture of NR and LC Synthesis 

The CdSe/CdS NRs are synthesized according to a procedure described in 

Appendix A, paragraph 1. Absorption and emission spectra and TEM images 

of the CdSe/CdS NRs are already shown in section 5.24.2. After purification, 

the CdSe/CdS NRs are dispersed in chloroform and a mixture of reactive 

nematic liquid crystal. This mixture is prepared by mixing a photo initiator 

(Irgacure 819, BASF) with a blend of different reactive mono- and di-

acrylate mesogens (Merck) and a inhibitor (tert-Butylhydroquinone, Sigma-

Aldrich). A NR suspension in LC at a concentration of 1 w% is obtained by 

evaporating the chloroform.  

5.3.2.2 Fabrication 

Two glass substrates with interdigitated ITO electrodes are used to make a 

liquid crystal device with 10 μm spacing between the substrates. The 

thickness, length and width of the ITO electrodes are 30 nm, 2600 μm and 4 

μm respectively and the gap between two electrodes is 20 μm. The 

experimental setup and ITO pattern are schematically shown in Figure 5.10 a 

and b. A function generator (TTi-TG315) and a voltage amplifier (FLC 

electronics-A800X) are used to apply an AC electric field over the gaps 

between the electrodes. The deposition is realized by infiltrating a 1wt% NR 

suspension of the LC mixture into the device. An electric field (20 V/µm, 1 

kHz) is applied and after an interval of a few seconds, the device is 

illuminated with 30 mW/cm2 UV light during one minute in order to 

photopolymerize the reactive LC mixture. After polymerization, the voltage 

is switched off.  
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Figure 5.10: a) A sketch of the experimental setup: a device with two parallel glass 

substrates with interdigitated ITO electrodes on one of the substrates, is filled with a 

NR suspension in a reactive liquid crystal and illuminated by UV light in the 

presence of an electric field. b) The width of the ITO electrodes is 4 μm and the gap 

is 20 μm (not to scale). c) θ is defined as the angle between the electric field and the 

NR long axis. 

Finally, both two glass substrates can be removed and the free-standing 

polymer layer remains. Figure 5.11 shows a flexible thin film aligned NRs 

that is excited by UV lamp and emit polarized light. 

 

Figure 5.11: A photograph of a flexible thin film aligned NRs in a polymer LC. The 

NRs are excited by a UV lamp and emit polarized light. 
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In general, the absorption spectrum should not be affected in a dielectric 

host. The emission spectrum could be slightly red shifted if the concentration 

of the rods is very high and self-absorption start to play a significant role but 

usually we would consider this in dense film of NRs without a host. The 

volume fraction of rods in the LC is too low to have a significant effect to 

shift the emission and absorption spectrum of the NRs. 

5.3.2.3 Results 

The anisotropic emission of the deposited NRs is observed using a 

fluorescence microscope. The NRs are excited in the UV band (330-380 nm) 

using a Xenon lamp. The NR emission is detected by an Andor CCD camera 

after passing through a dichroic mirror and a rotatable linear polarizer as 

shown in Figure 5.8a. Fluorescence microscopy images of the NR layer are 

shown when the polarizer is oriented perpendicularly (Figure 5.12a) or 

parallel (Figure 5.12b) to the line electrodes. Figure 5.12c and d are similar 

measurement close to the edge of the electrodes with 100 times objective.   



5.3: Alignment of NRs suspension in liquid crystal 99 

Figure 5.12: Fluorescence microscopy images of a deposited layer of NRs in a 

polymer LC on ITO electrodes with the polarizer oriented (a, c) parallel and (b, d) 

perpendicular to the applied electric field. The images (c, d) show a zoom-in of an 

electrode tip. 

The lines with lower intensity are the regions of the ITO electrode lines, 

which illustrates that the NRs tend to move to regions between the electrodes 

where the electric field is stronger. The photoluminescence is stronger when 

the polarizer is parallel to the electric field, indicating that the NRs are 

aligned along the electric field and that they emit light polarized along their 

long axis.  The polarization ratio (equation 5.2) for regions with aligned NRs 

is about 0.6.  

The electric field required to align NRs in dodecane is about 17 V/µm [138]. 

When an electric field is applied to the mixture of NR and LC, the LCs 

orient along the electric field. Aligning the NRs in the same direction lowers 

not only the electrical energy of the NRs, but also the elastic deformation 
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energy of the LC around the NRs. Figure 5.13 shows fluorescence 

microscopy images of aligned NRs close to the edges of electrodes. The 

polarizer is oriented perpendicularly (Figure 5.13a) or parallel (Figure 5.13b) 

to the line electrodes. Between the electrodes, the NRs are aligned along the 

electric field, perpendicular to the electrode lines. Note that in the left part 

two electrodes are disconnected due to lithography issues. Near the end of 

the electrodes the NR alignment follows the field lines, pointing away from 

the electrode tips (Figure 5.13c, d), although the electric field is lower than 

20 V/µm. The curvature of the bright lines above the area with electrodes is 

due to a fluid flow, resulting from the applied voltage, and the transport of 

NRs from the regions between the electrodes where their concentration is 

higher.  

 

Figure 5.13: Fluorescence microscopy images of NRs close to the edge of the 

electrode area while the polarizer is oriented a) perpendicularly and b) parallel to the 

line electrodes, c), d) close-up near the edges of the electrodes in image a and b 

respectively. The applied voltage is 400 V, 1 kHz. 
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The orientation and the position of NRs in space can be controlled by the 

design of the electrode pattern that is interesting both from a scientific and a 

technological point of view. The fluorescence microscopy image in Figure 

5.14 shows the accumulation of aligned NRs between the circular in-plane 

electrodes with 3 µm width and 20 µm gap. The film is made with the same 

recipe as in Figure 5.13 with an applied AC voltage of 400 V, 1 kHz. Also 

here some of the electrodes are disconnected. 

          

Figure 5.14: Fluorescence microscopy image of LC film with NRs near a region 

with circular electrodes (3 µm width and 20 µm gap) and applied voltage of 400 V, 

1 kHz. 

In addition, I am able to make a thin film with homeotropic alignment of 

NRs for solar cell applications. Instead of finger pattern substrate, a one 

pixel substrate (Figure 4.2d) can be used for this application. 
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5.3.3 NR suspensions in nematic LC 

The previous results based on photopolymerized films indicate the potential 

for applications using polarized light emission. In this section I study the 

dynamic NRs alignment in (non-polymerizable) LC between two planar 

substrates covered with homogeneous electrodes. The test device has two 1 

cm2 ITO electrodes at a distance of d=30 μm. The electric field is 

approximately homogeneous and given by E = V/d. The NR suspension in 

chloroform is mixed with non-reactive LC (MDA-00-3536) and the solvent 

is evaporated to obtain a 1 wt% NR in LC suspension. The suspension is 

filled into the cell without alignment layers by capillary force. The LC 

director is mainly homeotropic near the ITO surface but with many defects 

in the bulk, while the NRs are not aligned and the fluorescence is 

unpolarized. When a voltage is applied both NRs and LCs align along the 

electric field, as shown in Figure 5.15a and b. A computer controlled DAQ 

and a 200 times voltage amplifier are used to apply AC fields up to 20 V/µm 

with frequency between 50 Hz and 40 kHz. The transmission of blue light 

(using a 470 nm LED array) is measured using a photodetector with 

response time of 0.7 µs which is mounted on the microscope and DAQ. The 

alignment of the NRs can be monitored at high speed by measuring the 

anisotropic absorption of the NRs. 

 

Figure 5.15:  NRs suspension in liquid crystal: a) without and b) with applied 

voltage. The applied electric field is perpendicular to the ITO electrodes. The 

transmission of light through the cell is measured to evaluate the orientation. 

The transmission is measured for a 1 wt% NR suspension in the presence of 

AC electric fields with different amplitudes. Figure 5.16a shows the increase 
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in transmission when an electric field is applied and the LC director and NRs 

align along the applied electric field, which is perpendicular to the 

polarization of the incident light. I represent the Relative Change in 

Transmission (RCT) as (T-T0)/T0 where T0 is the average transmission in the 

OFF state, and T is the average transmission in the presence of an electric 

field. The 30 µm thick cell filled with nematic LC exhibits considerable 

scattering due to defects. The scattering of the LC is reduced by applying a 

voltage, due to the more homogeneous alignment of the LC director in the 

bulk. The RCT of NRs suspension in pure LC is shown as a function of the 

electric field in Figure 5.16b. It shows a sharp raise for a field of 1 V/µm and 

saturates for a field of 2 V/µm, which are both considerably lower than the 

field required for alignment in dodecane (12 V/µm), see section 4.4) [138]. It 

means that the LC helps to align the NRs at a lower electric field. In 

addition, the alignment of the NRs remains for several milliseconds after 

switching off the voltage due to the relaxation time of the LCs.  
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Figure 5.16: a) Transmission measurements (dots) for a NR in LC suspension 

between homogeneous electrodes for blue light (~470 nm) in the presence of an ac 

electric field with frequency 1 kHz and various amplitudes b) RCT for NR in LC 

suspension (green dots) and pure LC (red dots) as a function of the electric field.  

In another experiment, a cell with 20 µm thick and interdigitated electrodes 

on one of the substrates (see Figure 5.10b) used to observe the orientation of 

the NRs by polarization fluorescence microscopy in the absence and 

presence of an electric field. Figure 5.17a shows bright clusters of NRs that 

emit unpolarized light. By applying an electric field of 1V/µm, the LC 

director aligns but the clusters of NRs remain visible (Figure 5.17b). By 

applying an AC electric field with higher amplitude (20 V/µm) the clusters 
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disappear. The emission for parallel (Figure 5.17c) and perpendicular 

(Figure 5.17d) orientation of the polarizer with respect to the line electrodes 

is different, indicating good alignment of the NRs. The fact that clustering 

disappears abruptly when the amplitude of the ac field is sufficiently high 

can be explained by the permanent dipole moment of the NRs that is 

typically oriented along the long axis. Due to their permanent dipole moment 

NRs tend to align head to tail (by two or in larger groups) to reduce the 

electrostatic energy. In an electric field with sufficient amplitude all NRs 

tend to align their dipole moment in the same direction, thereby breaking the 

attraction between NRs. 

 

Figure 5.17: Polarized fluorescence microscopy images of NRs suspended in LC, in 

cell with interdigitated electrodes. The electrode gap of 20 μm is indicated by green 

lines. The electric field is: a) absent, b) 1 V/µm, c) and d) 14 V/µm with the 

polarizer c) parallel and d) perpendicular to the applied electric field. 

The response of the transmission is shown in Figure 5.18 when a block pulse 

with amplitude 20 V/µm is applied over a dispersion of NRs in non-reactive 
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LC. Switching on occurs within 0.05 ms while the relaxation time is about 

0.5 ms.  

 

Figure 5.18: Transmission versus time of a CdSe/CdS NR suspension in LC when a 

pulse with amplitude of 20 V/µm is applied. 

In conclusion, a thin polarized light emitting film based on aligned NRs in a 

LC is realized by applying an electric field to align the NRs and 

simultaneously illuminating with UV to polymerize the reactive LC. An 

alignment with a polarization ratio of 0.60 has been obtained. The aligned 

NRs film emits polarized light when illuminated with unpolarized light of an 

appropriate wavelength. This method is compatible with large-scale 

processing on cheap, flexible and transparent substrates and also can be 

realized in a roll-to-roll process. The required electric field strength to align 

the semiconductor NRs and relaxation time of the NRs in LC are obtained 

experimentally. The reduction of NR clustering in liquid crystal is realized 

by applying a high electric field.  
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5.4  Aligned NRs in polymer 

In this section, I use UV curable glue (NO68) instead of reactive LC to 

homogeneously disperse and align CdSe/CdS NRs in a polymer film.  The 

fabrication uses a glass substrate with transparent interdigitated indium tin 

oxide electrodes. This method is based on doping glue with NRs and 

consequently aligning the mixture by an electric field. The alignment is fixed 

after the polymerization reaction. The solid film can be detached from the 

substrate. Fluorescence microscopy images of the NR layer are shown when 

the polarizer is oriented perpendicularly (Figure 5.19a) or parallel (Figure 

5.19b) to the line electrodes. The lines with lower intensity are the regions of 

the ITO electrode lines.  The polarization ratio (equation 5.2) for regions 

with aligned NRs is about 0.4. The resulting film emits polarized light when 

illuminated with unpolarized light of an appropriate wavelength.  This 

method is compatible with large-scale processing on cheap, flexible and 

transparent substrates. 

 

Figure 5.19: Fluorescence microscopy images of a deposited layer of NRs in a glue 

on ITO electrodes with the polarizer oriented (a) parallel and (b) perpendicular to the 

applied electric field. 
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5.5 Nanorods aligned in polymeric nanofibers 

In this section, I demonstrate another method to fabricate a thin film 

including aligned nanorods based on electrospinning of nanofibers. The 

electrospinning is performed by Ljiljana Palangetic from the Department of 

Chemical Engineering at KU Leuven. The NR mixtures are made in the 

Physics and Chemistry of Nanostructures group at Ghent University. I 

contributed to this work by integrating the aligned nanofibers in a liquid 

crystal cell where applying a voltage allows switching the emitted light on 

and off. I analyze and determine the fluorescence properties of the resulting 

films and devices. In this section I briefly explain the fabrication of the film 

and then I focus on my work. 

5.5.1 Fabrication  

5.5.1.1 CdSe/CdS dot-in-rods 

The CdSe/CdS NRs are synthesized according to a procedure described in 

the literature (see the Appendix B, paragraph 1 for the synthesis details) 

[139]. The synthesized CdSe/CdS NRs have an average diameter of 4.1 nm 

and an average length of 29.3 nm which is different from the NRs used in 

the previous section. Figure 5.20 shows a TEM image of the synthesized 

CdSe/CdS NRs.  
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Figure 5.20: TEM image of the CdSe/CdS dot-in-rods on a copper grid coated with 

a carbon film. 

The absorption and emission spectra of the CdSe/CdS NRs are measured in 

toluene and are revealed in Figure 5.21. The NRs have an emission around 

600 nm for an excitation wavelength of 365 nm.  

 

Figure 5.21: (a) Absorption spectrum (inset: focus on the absorption of the CdSe 

core) and (b) emission spectrum of the CdSe/CdS NRs in toluene for an excitation 

wavelength of 365 nm. 
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The CdSe/CdS NR suspension should be mixed with the polymer before 

electrospinning deposition. But apolar solvents such as chloroform or 

toluene which I already used in the dip coating method are not compatible 

with the polymer and NRs cannot be dispersed in polar solvent. To 

overcome this problem and to be able to disperse the NRs in ethanol, the 

NRs are first coated with silica (see the Appendix B, paragraph 2 for the 

complete coating details). 

The TEM image of the CdSe/CdS NRs coated with 6 nm of SiO2 is shown in 

Figure 5.22a. The aspect ratio is reduced to 2.4 while the initial CdSe/CdS 

NRs have an aspect ratio of 7.1. The coated NRs are mixed with PVP and 

deposited with the electrospinning method to produce a 1.5 cm2 film (The 

details of electrospinning of the nanofibers are explained in Appendix B 

paragraph 3). Figure 5.22b shows scanning electron microscopy (SEM) 

image of the collected nanofibers. This image shows that most of the fibers 

are deposited parallel to each other. The parallel fibers are collected between 

two Aluminum stripes as shown in  Figure 5.22c. The TEM image of a 

single nanofiber in Figure 5.22d indicates that most of the NRs are aligned 

along the axis of the nanofiber.  
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Figure 5.22:  (a) TEM image of the CdSe/CdS NRs coated with SiO2. (b) SEM 

image of the aligned nanofibers. (c) Photography of the aligned nanofibers film (red 

arrow indicates the alignment direction of the nanofibers). (d) TEM image of the 

nanofiber. 

5.5.2 Results and discussion  

The anisotropic emission of the deposited nanofibers is observed using a 

fluorescence microscope. In order to avoid emission from the LC which also 

absorbs in the UV range, the NRs are excited with a Xenon lamp in the 

green band (510-560 nm) which corresponds to absorption of the CdSe cores 

in the CdSe/CdS NRs (see Appendix B, Figure B.1 for their optical 

characterization). The NR emission is detected by an Andor CCD camera 

after passing through a dichroic mirror and a rotatable linear polarizer as 
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shown in Figure 5.8a. Fluorescence microscopy images of the NR layer are 

shown when the polarizer is oriented perpendicularly (Figure 5.23a) or 

parallel (Figure 5.23b) to the nanofibers long axis. The integrated intensity I 

as a function of the orientation of the polarizer is shown in Figure 5.23c 

which can be fitted to the function:   2
cosI I I    [96, 140, 141]. The 

obtained polarization ratio (defined by equation 5.2) for the nanofiber film is 

0.45. 

 

 

Figure 5.23: Fluorescence microscopy images of the aligned nanofibers when the 

polarizer is (a) parallel (0°) or (b) perpendicular (90°) to the axis of nanofibers. (c) 

Normalized integrated intensities as a function of the polarizer angle (black markers) 

fitted with a cos2 function (red line). 

A single nanofiber is also analyzed by fluorescence microscopy using a 100× 

objective. Figure 5.24a shows a bright nanofiber when the polarizer is 

oriented parallel to its long axis. The fiber loses brightness when the 

polarizer is oriented perpendicular to its long axis as shown in Figure 5.24b. 

This figure specifically indicates that most of the NRs are aligned along the 

axis of the nanofibers.  The best obtained polarization ratio for a single 

nanofiber is 0.55. This means that if the electrospinning deposition could be 

improved and all nanofibers align parallel to each other, the maximum 

polarization ratio could reach 0.55 with this method. 
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Figure 5.24: Fluorescence microscopy image of a single nanofiber (large horizontal 

one), when the polarizer is (a) parallel (0°) or (b) perpendicular (90°) to the axis of 

nanofibers. 

Additional measurements by fluorescence microscopy are performed on a 

film of aligned nanofibers using UV excitation (330-380 nm) which 

corresponds to the absorption of the CdS shell. The emission from PVP with 

such high molecular weight (1,300,000 g/mol) is negligible compared to the 

emission of the NRs. Figure 5.25 a, b show the fluorescence microscopy 

images of the NR layer when the polarizer is oriented perpendicular and 

parallel to the nanofiber’s long axis respectively. The obtained polarization 

ratio is 0.45 which is as same as the polarization ratio of the film with green 

excitation. It indicates that the CdSe core and the CdS shell have similar 

degree of linear polarization which is in line with previous reports indicating 

that the dipole moments are aligned along the same direction in the CdSe 

core and in the CdS shell [141]. 
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Figure 5.25: Fluorescence microscopy images under UV excitation (330-380 nm) of 

the aligned nanofibers when the polarizer is (a) parallel (0°) or (b) perpendicular 

(90°) to the axis of nanofibers. 

5.5.3   Integration in a liquid crystal cell 

The fabricated thin films in this dissertation can be used as a polarized 

emitter in different devices. In this section I integrate the nanofiber film in a 

LC cell. 

The cell as shown in Figure 5.26 consists of two glass substrates coated with 

30 nm thick indium-tin-oxide (ITO) electrodes. Nylon-66 is coated on the 

ITO side of one of the substrates with thickness of 300 nm and rubbed 

mechanically. The film of aligned nanofibers is placed onto the ITO side of 

the other substrate. The substrates are bound together with glue containing 

spacer beads of 10 µm (Sekisui Chemicals) while the direction of rubbed 

nylon and long axis of nanofiber are perpendicular. The LC (E7-Merck) is 

infiltrated into the cell in the nematic phase at room temperature. Because of 

the direction of the fibers and the direction of rubbing on the other substrate 

have an angle of 90°, the LC makes a twist of 90°between these two layers. 

It is expected that the LC aligns along the direction of the nanofibers. The 

experimental results further in this section will confirm this assumption. To 

ensure that the polarization of light follows the twisting of the LC, the 

conditions of the Maugain regime are verified. The condition for the 

Maugain regime is expressed as [142]: 
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2

1
ΔP n


 5.3 

Where λ is the wavelength of the light,Δn is the birefringence of the LC and 

P is the pitch of the twisted liquid crystal which is four times  the cell gap. 

The values for these parameters are λ ≈ 600 nm, P ≈ 4×10 µm and Δn  = 

0.215. This results in a value of 
2

0.14
ΔP n


 , which indicates that the 

Maugain regime is valid. 

To observe the polarized emission of the device, a same measurement has 

been done by fluorescence microscopy under green excitation with different 

experimental conditions. First, the azimuth of the polarizer is parallel to the 

long axis of the nanofiber as shown in Figure 5.26a. The microscope image 

is dark and indicates that the emission of the NRs is blocked. The initial 

polarization direction of the NR emission is following the twist of the LC 

director and rotates 90°. This direction is perpendicular to the azimuth of the 

polarizer and the light cannot pass. In the second condition, the polarizer is 

rotated 90° and the azimuth of the polarizer is perpendicular to the long axis 

of the nanofiber. In this case the emitted light can pass through the polarizer 

and is detected by detector. For this reason we call this the ON state as 

shown in Figure 5.26b. The polarization ratio of the device (the fluorescence 

microscopy images of Figure 5.26a and b) is measured to be 0.45 which is 

the same as the nanofiber film. This indicates that integrating the nanofiber 

film with LC does not affect the polarization ratio. In the third situation, a 

sine wave AC electric field (5V/µm, 1 kHz) is applied to the cell. The 

twisted LCs reorient along the applied electric field and consequently the 

polarization of the emitted light does not change due to the LC. It means that 

the polarization direction of the emitted light between the cell and the 

polarizer is parallel to the long axis of the nanofiber and perpendicular to the 

azimuth of the polarizer. As a result, the light is blocked and we call this the 

OFF state as indicated in Figure 5.26c. The polarization ratio between the 

ON and OFF state is obtained 0.43 which is close to the value of 0.45. This 

indicates a high efficiency of the electrical switching of the LC in this 

polarized light emitting device. Also to indicate that the device can switch in 

large scale, the device excited with a portable UV lamp and the images are 

taken corresponding to the conditions of Figure 5.26 b and c. The images are 

shown as the insets in Figure 5.26 b and c. 
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Figure 5.26: Sketch of the device with nanofibers and LC and polarizer in various 

conditions with the corresponding fluorescence microscopy images (a) Azimuth of 

the polarizer is parallel to the long axis of the nanofibers (0°), no applied electric 

field. (b) Azimuth of the polarizer is perpendicular to the long axis of the nanofibers 

(90°), no applied electric field (ON state). (c) Azimuth of the polarizer is 

perpendicular to the long axis of the nanofibers (90°), a sine wave 5V/µm, 1 kHz 

electric field is applied (OFF state). Insets of the fluorescence microscopy images in 

(b) and (c): corresponding photographs of the device using a portable UV lamp for 

the excitation. 

In the fourth condition, the azimuth of the polarizer is parallel to the long 

axis of the nanofibers and the electric field is still applied. In this case, the 

emitted light can pass through the polarizer and can be detected as shown in 

Figure 5.27b. The polarization ratio between the cases in Figure 5.27 (two 

azimuth angles in the presence of the 5 V/µm electric field) is 0.31 which is 

less than the polarization ratio of the original nanofiber film. By applying 5 

V/µm, the LC aligns along the direction of the electric field but the 

alignment is not perfectly vertical.  Due to this effect, the linear polarization 

state originating from the NRs is distorted and the light becomes slightly 

elliptical. This results in a reduction in contrast between the two polarization 

states. 
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Figure 5.27: Sketch of the device with the nanofibers and corresponding 

fluorescence microscopy images under a AC electric field (5 V/µm, 1 kHz) and with 

the azimuth of the polarizer (a) perpendicular (90°) and (b) parallel (0°) to the long 

axis of the nanofibers. 

In conclusion, a polarization ratio of 0.45 is obtained for a flexible thin film 

with large scale (1.5 cm2). The film is integrated with LC and it is 

demonstrated that it can be used as a polarized light emitter which can be 

switched on and off. The device is maintaining the polarization ratio to a 

large extent. 

5.6 Conclusion 

In this chapter I demonstrated four methods to control the position and 

orientation of semiconductor NRs and fabricate aligned NR film. As a 

comparison, the different methods to align CdSe/CdS NRs used in the 

literature and the methods presented in this chapter are listed in Table 5.1. 
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Table 5.1: Comparison of methods for aligning NRs 

Ref. 

Num 

Substra

te 

Deposition 

method 
Aligning method 

Order 

parameter 

Polarizat

ion ratio 

features 

[28] CBP 
Contact 

printing 

evaporation method 

at the liquid-solid-

air interface 

- 0.34 

 

[32] Glass Drop casting 
Coffee stain 

evaporation  
- -0.3 

 

[118] 
ZnS/Si

O2 

wet-chemical  
wet-chemical & 

epitaxial growth 
- 0.54 

 

[93] Glass Spin coating 
Mechanical 

Rubbing 
- 0.49 

-large scale 

[87] Si/SiO2 Drop casting DC field (25 V/µm) - 0.45  

[124] Si3N4 Drop casting DC field (28 V/µm) 0.73 -  

Our 

work 
Glass Dip coating AC field (20 V/µm) 0.92 0.6 

-Can be 

applied for 

large scale 

Our 

work 
Glass Fill in a cell AC field (20 V/µm) - 0.4 

-flexible  

-free-standing  

-large scale 

Our 

work 
Glass Fill in a cell 

AC field (20 

V/µm)-LC 
- 0.60 

-flexible  

-free-standing  

-large scale 

Our 

work 

Stand 

free 

Electro 

spinning 

Electrospinning-

fiber 
- 0.45 

-flexible  

-free-standing  

-large scale 

 

The dip coating deposition method is fast, facile and can be applied on 

relatively large substrates. NR alignment with an order parameter of 0.92 

and a polarization ratio of 0.60 is obtained with this method. A thin and 

flexible polarized light emitting film based on aligned NRs in a LC or 

polymer is realized. These methods are compatible with large-scale 

processing on cheap, flexible and transparent substrates and also can be 

realized in a roll-to-roll process. An alignment with a polarization ratio of 

0.60 has been obtained for LC methods. Finally I have demonstrated the 

integration of nanofibers and liquid crystal, to show an efficient way of 

electrically switching on and off polarized light over a large area. I believe 

that this four methods can be extended to the deposition or printing of most 

of aligned anisotropic particles. 
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Chapter 6                                   

Conclusions and outlook 

 

In this final chapter, I list the main conclusions of this work and make 

suggestions for future developments for the different devices that have been 

discussed.  
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6.1 Conclusions  

In this work I successfully demonstrated devices that are based on thin films 

of (polymerizable) liquid crystals and/or aligned nanorods. 

In chapter two, I demonstrate the fabrication of thin film polarizers and color 

filters based on photo-polymerization of liquid crystalline mono(di)acrylate 

monomers. The thin film dye-doped polarizer has a broad absorption band 

between 400 nm and 650 nm and has a contrast ratio of 9 for a film of only 

12 µm. The thin film polarizer is fabricated for applications which require 

small thicknesses of the final device such as electro-active contact lenses. I 

also demonstrate a technique to make a mono domain CLC thin film color 

filter with a color that can be chosen. The key parameter to have a mono 

domain CLC film is cooling rate. The photonic band gap of the color filter is 

around 80 nm with high reflectivity in the bandgap for one circular 

polarization. Both thin films have thermal stability up to 100 °C, chemical 

resistivity for polar protic solvent and can be detached from the substrate.  

A widely tunable optical CLC filter with microsecond switching time is 

demonstrated in chapter three. A wavelength shift of the photonic band gap 

of 141 nm is obtained by electric switching. The device consists of a mixture 

of photo-polymerizable liquid crystal, non-reactive nematic liquid crystal 

and a chiral dopant is polymerized with UV light. The devices feature high 

reflectivity in the photonic band gap without degradation or disruption when 

applying voltages. The response times are 50 µs and 20 µs for switching on 

and off respectively. The influence of the amplitude of the applied voltage 

on the width and the depth of the reflection band is investigated. I also 

investigated the influence of UV illumination on a partially polymerized 

chiral liquid crystal. A blue-wavelength shift of the photonic band gap is 

obtained for increasing power or duration time of UV illumination and for 

increasing thickness of the cells. The width and depth of the photonic band 

gap is unaffected by the change in UV curing conditions, which indicates 

that there is no degradation by the UV light.   

Based on the developed PPCLC devices that only work for circularly 

polarized light, I demonstrate that also a microsecond-range optical shutter 

for unpolarized light can be made. The device consists of two PPCLC layers 

separated by a half wave plate. The device works independently of the 

polarization state of the incoming light beam. Modulation between 3% 

transmission and 60% transmission is obtained within a wavelength range of 

50 nm with a response time of 20 µs. The shutter features high reflectivity in 
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the photonic band gap. The influence of the amplitude of the applied voltage 

on the width and the depth of the reflection band is investigated. 

In the second part of my work, the theory of alignment of semiconductor 

nanorods by an external electric field is described for simultaneously 

appearing permanent and dielectric dipole moments. A full alignment of 

colloidal NRs in suspension by an electric field is demonstrated. By 

comparing optical transmission measurements with theoretical simulations, 

the permanent and induced dipole moments of the NRs are determined. The 

required electric field, the values of the permanent dipole moment, 

relaxation time, absorption anisotropy and critical frequency of the 

CdSe/CdS dots in rods are determined. The correlation between theory and 

experiment indicates that the orientation is driven by the permanent dipole 

moment of the NRs. In addition, I experimentally verify the anisotropic 

absorption of the CdSe NRs core for a wavelength of 560 nm.  

Finally, four methods for the homogeneous deposition and alignment of NRs 

in solid films from a colloidal suspension are demonstrated. The 

accumulation, orientation and polarized fluorescence of the NRs is verified 

by AFM and polarized fluorescence microscopy. The four methods 

investigated in this work for aligning NRs are 

1- Dip coating and evaporation of a NR solution in presence of electric 

field 

2- Depositing and curing of UV curable monomer with NRs in the 

presence of an applied electric field 

3- Depositing and curing of reactive LC with NRs in the presence of an 

applied electric field. 

4- Electro spinning of NRs in a polymer fiber. 

An alignment with order parameter 0.92 and a polarization ratio of 0.60 is 

obtained with the dip coating method. 

I demonstrate a thin and flexible polarized light emitting film based on 

aligned NRs in a LC with polarization ratio of 0.6.  

Finally I demonstrated that combining aligned nanofibers and liquid crystal, 

constitutes an efficient way of electrically switching on and off polarized 

light while fully preserving the polarization ratio of 0.45 over a large area. 
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6.2 Future work 

6.2.1 LC devices 

 As the fabricated thin films can be detached from the substrate, these films 

are useful for e.g. transfer onto flexible substrates. These films are suitable to 

be processed in optical device manufacturing as additional films or as in-cell 

optical components. A broad range of thin film color filter can be made by 

our methods. The thin film color filter can be used as a mirrors for laser 

applications, for example in a QD laser.  

For the case of the polarizer, it is known that the nematic phase results in a 

relatively low dichroic dye order parameter and a low dichroic ratio. Using 

smectic phases, the dichroic ratio and hence the contrast of the film could 

still be improved drastically in the future. 

6.2.2 Aligned NR devices 

The homogeneous deposition of aligned NRs on large substrates is 

interesting for large area applications such as solar cells and OLEDs. 

Moreover, semiconductor nanoparticles can be used to efficiently transform 

blue light from GaN-based LEDs into for example green and red light, which 

is also needed for colour displays. The combination of blue, green and red 

light is desired for backlights in liquid crystal displays. As liquid crystal 

devices modulate the transmission of polarized light, it would be an 

advantage to start from a backlight that is able to emit polarized green and 

red light. These aligning methods are compatible with large-scale processing 

on cheap, flexible and transparent substrates and also (in case of aligned NR 

in LC) can be realized in a roll-to-roll process. Also these methods can be 

considered for other kinds of anisotropic semiconductor nanorods with 

various aspect ratios. In the case of nanofibers, the polarization ratio could 

be further manipulated, especially if one would be able to avoid the 

connection between NRs. 
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1. Synthesis of CdSe/CdS NRs (5*5*50nm) 

 The first step in synthesizing CdSe/CdS dot-in-rods is making CdSe core 

QDs[139]. They are prepared from a mixture of 0.12 g of CdO, 6 g of 

trioctylphosphine oxide (TOPO) and 0.56 g of octadecylphosphonic acid 

(ODPA) which is degassed under vacuum at 120 °C for 1 hour. Next, the 

mixture is heated to 350 °C under nitrogen atmosphere and a mixture of 

0.116 g of Se and 0.72 g of trioctylphosphine (TOP) is quickly injected. The 

reaction time is adjusted to obtain CdSe QDs with a diameter of 2.3 nm. The 

reaction is then quenched and the QDs are purified three times by 

centrifugation, using toluene and isopropanol as the solvent and the non-

solvent respectively. The size and concentration of the CdSe QDs are 

determined from UV-vis absorption measurements, using an already 

published sizing curve,[143] and extinction coefficient.[144] The CdSe/CdS 

dot-in-rods are prepared from a mixture of 0.057 g of CdO, 3 g of TOPO, 

0.25 g of ODPA and 0.08 g of hexylphosphonic acid (HPA) which is 

degassed under vacuum at 120 °C for 1 hour. Next, the mixture is heated to 

360 °C under nitrogen atmosphere and 1.9 ml of TOP is injected. 

Subsequently, at the same temperature 0.089 g of sulfur in 1.9 ml of TOP 

and 70 nmol of the above-mentioned CdSe QDs are injected in the reaction 

mixture. The reaction is quenched after 8 minutes and the dot-in-rods are 

purified three times by centrifugation, using toluene and isopropanol as the 

solvent and the non-solvent respectively. The NRs involved in this work 

have an average diameter of 4.8 nm and an average length of 51.5 nm as 

determined by TEM observation (Figure A.1). The concentration of the NRs 

suspension in toluene is estimated from the amount of CdSe seeds, 

considering that no particle was lost during the process.  
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Figure A.1: TEM image of the CdSe/CdS dot-in-rods on a cupper grid coated with a 

carbon film. 

2. Characterization techniques 

 Atomic force microscopy (AFM) images are recorded using a Molecular 

Imaging PicoPlus microscpoce working in alternative contact mode. The 

transmission electron microscopy (TEM) images are taken using a Cs 

corrected JEOL 2200 FS microscope. Absorption spectrum is taken using a 

Perking Elmer Lambda 950 spectrometer. Steady-state photoluminescence 

measurements are performed with an Edinburgh Instruments FLSP920 setup. 

The emission spectrum is recorded for an excitation wavelength of 365 nm 

and is corrected over the sensitivity of the detector.  

 

3. CdSe/CdS @ dodecane in cell 

 Two glass substrates with 1 cm2 ITO electrodes are used to make cells with 

50 μm spacing d between the electrodes. The NRs suspension is filled inside 

the cell by capillary force. The NRs dispersed in dodecane are infiltrated into 

the cells. Figure A.2 shows the NRs suspension in the 1 pixel cell. 
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Figure A.2: Photograph of the 50 µm thick cell filled with a 1 µM dispersion of 

NRs in dodecane. 

4. Transmission measurement of CdSe/CdS NR suspension in dodecane 

The transmission of a 50 µm thick cell filled with a 1 µM dispersion of NRs 

in dodecane at 470 nm is measured in the presence of a block wave AC 

electric field (17 V/µm, 5 kHz). Figure A.3 shows the variation in the 

transmission of the NR dispersion, together with the applied electric field. It 

demonstrates that the transmission of the dispersion switches within 100 µs. 
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Figure A.3: Transmission of a CdSe/CdS NR suspension (blue) for blue (~470 nm) 

light with and without the presence of a block AC electric field with a frequency of 

5 kHz and an amplitude of 17 V/µm (red). 
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-------------------------------------------------------------------------------------------- 

And your Lord has commanded that you shall not serve (any) but Him, and 

goodness to your parents. If either or both of them reach old age with you, 

say not to them (so much as) “Ugh” nor chide them, and speak to them a 

generous word. And make yourself submissively gentle to them with 

compassion, and say: O my Lord! Have compassion on them, as they 

brought me up (when I was) little. 

-------------------------------------------------------------------------------------------- ---------- 
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1. Synthesis of the CdSe/CdS NRs 

The first step in synthetizing CdSe/CdS dot-in-rods is making CdSe core 

QDs.[139] They were prepared from a mixture of 0.12 g of CdO, 6 g of 

trioctylphosphine oxide (TOPO) and 0.56 g of octadecylphosphonic acid 

(ODPA) which was degassed under vacuum at 120 °C for 1 hour. Next, the 

mixture was heated to 350 °C under nitrogen atmosphere and a mixture of 

0.116 g of Se and 0.72 g of trioctylphosphine (TOP) was quickly injected. 

The reaction time was adjusted to obtain CdSe QDs with a diameter of 3.3 

nm. The reaction was then quenched and the QDs were purified three times 

by centrifugation, using toluene and isopropanol as the solvent and the non-

solvent respectively. 

The size and concentration of the CdSe QDs were determined from UV-vis 

absorption measurement, using already published sizing curve,[143] and 

extinction coefficient.[144] 

The CdSe/CdS dot-in-rods were prepared from a mixture of 0.057 g of CdO, 

3 g of TOPO, 0.25 g of ODPA and 0.08 g of hexylphosphonic acid (HPA) 

which was degassed under vacuum at 120 °C for 1 hour. Next, the mixture 

was heated to 360 °C under nitrogen atmosphere and 1.9 ml of TOP were 

injected. Subsequently, at the same temperature 0.089 g of sulfur in 1.9 ml of 

TOP and 70 nmol of the above-mentioned CdSe QDs were injected in the 

reaction mixture. The reaction was quenched after 8 minutes and the dot-in-

rods were purified three times by centrifugation, using toluene and 

isopropanol as the solvent and the non-solvent respectively. The NRs 

involved in this work have an average diameter of 4.1 nm and an average 

length of 29.3 nm. The concentration of the NRs suspension in toluene was 

estimated from the absorbance at 300 nm and 350 nm, by considering that 

only CdS contributes to the absorption at these wavelengths, and using the 

intrinsic absorption coefficients (µ300 = 173021 cm-1 and µ350 = 124425 cm-1) 

calculated from the Maxwell–Garnett effective medium theory.[145]  

 

2. Silica encapsulation of the NRs 

This technique has already proven to be very efficient for the silica coating 

of initially hydrophobic nanocrystals, including CdSe/CdS dot-in-rods.[146] 

Here, 10 nmol of NRs is mixed with 100 mL of n-heptane (99%, VWR) and 

32 mL of polyoxyethylene (4) lauryl ether (Brij L4, formerly known as Brij 

30, Sigma-Aldrich). After 15 min under magnetic stirring, 5 mL of MilliQ 

H2O and 0.5 mL of NH4OH (28% in water, VWR) is slowly added to form 

the microemulsion. After 1 hour under stirring, 0.25 mL of tetraethyl 
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orthosilicate (TEOS, 98%, Sigma-Aldrich) is added to the microemulsion. 

The reaction is left stirring for two days to form the silica shell. The 

CdSe/CdS@SiO2 NRs are then further functionalized with polyethylene 

glycol (PEG) to provide them with enhanced colloidal stability in polar 

solvents and to prevent particle-to-particle aggregation. PEGylation of the 

CdSe/CdS@SiO2 NRs is done in a one-pot process, following the growth of 

the silica shell, by adding 120 mg of methoxy-PEG-silane (mPEG-silane, 

Mw ≈ 1000 g/mol, Gelest) to the microemulsion. After 3 additional days of 

stirring, the reaction is stopped by adding a large volume of ethanol, 

resulting in the destabilization of the microemulsion and precipitation of the 

particles which are collected by centrifugation. The PEGylated 

CdSe/CdS@SiO2 particles are further purified twice with n-heptane and 

redispersed in ethanol.  

 

3. Electrospinning of the nanofibers.  

The NRs are mixed with a polymer by adding 240 mg of 

polyvinylpyrrolidone (PVP, Mw = 1,300,000 g/mol, Sigma-Aldrich) to a 

solution containing 4.65 nmol of the CdSe/CdS@SiO2 NRs in 2.81 g of 

ethanol. Even though the NRs are coated with silica, I avoid using water 

since this is a rather harsh environment that tends to deteriorate the optical 

properties of the semiconductor NRs.[146] The relatively high molecular 

weight has  been chosen for the ease of nanofiber formation by 

electrospinning.[147] The nanofibers are made using a climate controlled 

electrospinning chamber (EC-CLI) from IME Technologies. The 

temperature and relative humidity are set to 25 °C and 30% respectively. The 

flow rate was 0.55 mL/h (controlled with a HARVARD syringe pump). The 

tip-to-collector distance was 15 cm, and the voltage was set to 14 kV. The 

nanofibers were electrospun from a needle with an inner diameter of 0.25 

mm and an outer diameter of 0.52 mm. In order to obtain aligned nanofibers, 

a parallel plate collector was used.[148] The collector consists of two 

aluminum stripes separated by a void gap of 1 cm wide and 1.5 cm long. The 

rest of the collector, where deposition of nanofibers is undesired, was 

covered with teflon. With this type of collector, the electrostatic forces 

generated by the two conductive stripes induce a uniaxial alignment of the 

charged spun nanofibers across the insulating gap.[149]  
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4. Photoluminescence of the PVP and the E7 liquid crystal 

Figure B1 demonstrates that under UV excitation, both the PVP (in ethanol 

solution) and the E7 liquid crystal emit in the visible range. Thus, without 

filtering the collected light their emission would interfere with our 

experiments. To avoid this spectral filtering, I therefore used green light to 

selectively excite the CdSe/CdS NRs. 

 

Figure B.1: Emission spectra of the PVP (in ethanol solution) and the E7 liquid 

crystal for excitation wavelengths of 300 nm and 350 nm respectively. 
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