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 Assisted reproductive technologies in the horse 1.
Up to the end of the nineteenth century, the vast majority of horses were bred by 

natural cover. The introduction of assisted reproductive techniques (ART) in equine 

reproduction started with the first reported pregnancy using artificial insemination (AI) [1]. 

Nowadays, the majority of mares are inseminated using fresh, cooled or frozen-thawed semen, 

enabling genetically valuable stallions to produce more offspring. The selection of genetically 

valuable mares can be accelerated by flushing the embryo from the uterus of a donor mare 

and subsequently transfer the embryo to a recipient mare which carries the foal to term. As 

such, multiple foals from the same donor mare can be produced in one season. The first 

successful embryo transfer (ET) in horses was performed in 1974 [2]. This technique is now a 

routine procedure in practice [3], e.g. >31000 in vivo derived equine embryos were worldwide 

transferred in 2012 [4]. With both techniques, early embryonic development occurs in the 

female reproductive tract, i.e. in vivo. 

More recently, ART in equine reproduction were developed to breed foals from sub- 

or even infertile horses as well as from recently deceased mares or stallions. During an ovum 

pick-up (OPU) session, oocytes are retrieved from living donor mares by flushing oocytes 

from follicles using a transvaginal or transabdominal approach [5-7]. Oocytes can also be 

collected post mortem by scraping the follicles of ovaries obtained from slaughtered mares [6-

8]. After oocyte maturation, the oocytes can be fertilized in vitro using intracytoplasmic 

sperm injection (ICSI) [9, 10] or in vivo by transferring the matured oocytes to the oviduct of 

an inseminated recipient mare (oocyte transfer) [11-13]. The first foal produced by the latter 

method was born in 1980 [11]. Later on, Carnevale and Ginther [12] reported success rates of 

92% (11 / 12) when oocytes were retrieved from young donor mares. Since 1990, oocyte 

transfer is available for clinical applications to treat infertile mares [14, 15]. The first ICSI 

foal was born in 1996 by transferring newly injected oocytes to the oviduct of a synchronized 

recipient mare as an efficient in vitro culture system was lacking [16]. Shortly after, the first 

ICSI foals were born from in vitro cultured blastocysts which were transferred to the uterus of 

a synchronized recipient mare [5, 17, 18]. The first ICSI foal in the Benelux, Smicsi, was born 

in 2009 [8]. Equine ICSI is now considered as a valuable tool to produce healthy foals from 

reproductive sub- and infertile horses. 
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 State of art: equine conventional in vitro fertilization  2.
The birth of Louise Brown in 1978 announced the first successful conventional in 

vitro fertilization (IVF) [19] and at present, this technique is a well-established ART in human. 

In domestic animals, conventional IVF gained popularity as well. In 2012, 9930 calves were 

produced in vitro, i.e. 6.8% of the cattle population [4]. Also in pigs and various laboratory 

animals, dozens of offspring are born by conventional IVF each year [20, 21]. In 1991, the 

birth of two foals produced after IVF of in vivo matured oocytes was reported [22, 23]. 

Unfortunately, this procedure could not be repeated in other laboratories [24]. Conventional 

IVF implies fertilization after incubation of mature oocytes with capacitated sperm (Figure 1). 

Despite the birth of two IVF foals born after in vitro fertilization of in vivo matured oocytes 

with Ca2+ ionophore treated sperm [22], no repeatable protocol for IVF in equine with clinical 

application is established yet [24-29]. For example, the use of Ca2+ ionophore A23187 and 

heparin did not yield significantly higher fertilization rates [27, 30]. ZP (zona pellucida) 

proteins, caffeine and lysophospholipids supported sperm capacitation but fertilization rates 

remained very low as well [31]. An overview of the different equine IVF studies is given in 

Table 1 indicating that in vitro fertilization rates are very low and vary between 0-31%. In 

2009, McPartlin et al. [32] showed that procaine treatment of stallion spermatozoa induced 

high fertilization rates, varying from 0 to 60%, by prompting hyperactivated motility [24, 26, 

32]. However, the method of evaluation of fertilization can be questioned (only two pronuclei 

were observed). This will be further investigated in Chapter 6. The procedure is also difficult 

to repeat, so, five years later, this technique has not been confirmed yet. ZP drilling and 

partial removal of the ZP is also a way to improve equine fertilization rates [25, 30, 33], but 

polyspermy complicated the success of these protocols. 
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Figure 1. Schematic presentation of the subsequent events occuring during mammalian fertilization. 
(1) Inside the female genital tract, spermatozoa are activated during a process called capacitation. (2) 
Capacitated sperm becomes hypermotile, passes through the cumulus cell layer and (3) binds to the ZP. 
(4) Subsequently the acrosome reaction is triggered. The released hydrolytic enzymes lyse the 
extracellular matrix of the cumulus and / or the ZP (5) as such enabling the hyperactive spermatozoon 
to enter the perivitelline space and to bind to the oolemma, (6) fuse with and become incorporated into 
the oocyte. (7) As soon the oocyte is fertilized, the cortical reaction occurs, i.e. the content of the 
secretory granules just underlying the oolemma is extruded and alters the structure of the ZP and the 
oolemma, as such preventing polyspermy. Subsequently, the fertilizing spermatozoon activates the 
oocyte. (8) The sperm head will swell and (9) the oocyte, arrested at metaphase of the second meiotic 
division (MII) with its chromosomes arranged along the metaphase plate (MP), progresses through 
meiosis and extrudes the second polar body (2 PB). (10) In the end, the female and male pronuclei (PN) 
are formed as the final prelude to syngamy (Image adapted from Gadella and Luna [34]).   
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Table 1: Overview of equine conventional IVF results 

Oocyte 

maturation 

N 

oocytes 
Sperm treatment 

N fertilized 

oocytes (2 PN) 

N cleaved 

oocytes 
Reference 

In vivo 113 Ca2+ Ionophore A23187 16 (14%) a,b [22] 

In vivo 173 Ca2+ Ionophore A23188 30 (17%) a 22 (13%) b [23] 

In vitro 57 
Caffeine /  

Ca2+ Ionophore A23187 
2 (4%) 

 
[25] 

In vitro 232 Heparin 41 (18%) 0 [33] 

In vitro 206 Heparin 18 (9%) 0 [26] 

In vitro 203 Heparin 14 (7%) 5 (2%) [24] 

In vitro 349 
Heparin /  

Ca2+ Ionophore A23187 
45 (13%) 

 
[27] 

In vitro 815 Ca2+ Ionophore A23187 38 (5%) [28] 

In vitro 89 
PVA / BSA / Brc-

AMP/Ionomycin 
28 (31%) 

 
[35] 

In vitro 370 Progesterone 0 (0%)  [36] 

In vitro 385 
Heparin/Ca2+ Ionophore 

A23187 / BSA 
26 (7%) 

 
[37] 

In vitro 994 Ca2+ Ionophore A23187 53 (5%) [29] 

In vitro 21 Caffeine        0 (0%) [33] 

In vitro 74 Procaine 47 (64%) c [27] 

  10% follicular fluid (19%) c [34] 

In vitro 154 Procaine  69 (54%)   [40] 

N= number 
a oocyte transfer 
b birth of 1 IVF foal [22] and 2 IVF foals [23] respectively from in vivo matured oocytes 
c sum of fertilized and cleaved oocytes 

 

 

Theoretically, the deficiencies in equine IVF can be attributed to either an inefficient 

sperm capacitation or an inadequate oocyte maturation. However, the inability of the 

spermatozoa to penetrate the ZP is most likely due to a deficient activation of spermatozoa 

(capacitation). Indeed, Tremoleda et al. [36] showed that equine IVF conditions supported the 

binding between stallion sperm and the ZP but did not induce the acrosome reaction. Indeed, 

IVF using in vivo matured oocytes is not successful [22] while in vitro matured oocytes 

transferred to the oviduct of an inseminated mare showed similar pregnancy rates compared to 
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AI outcomes [28]. The latter indicates that in vitro matured oocytes are capable of being 

fertilized normally. Furthermore, irreversible ZP hardening, seen with premature release of 

cortical granules, or other oviduct-mediated changes affecting the ZP permeability of matured 

oocytes probably do not play a role in the failure of equine IVF [28, 41]. Generally, it is 

assumed that high rates of fertilization in vivo are caused by a capacitating supportive oviduct 

environment. Therefore, we need to gain more knowledge on how spermatozoa become 

activated in the oviduct environment and achieve the ability to fertilize the mature oocyte. In 

this thesis, we have focussed on the events which the sperm cells in the oviduct must undergo 

in order to be able to fertilize the oocyte. These events include (1) sperm-oviduct binding 

(Chapter 3), (2) physiological changes of the sperm related to capacitation (Chapter 4 and 5) 

and (3) fertilization (Chapter 6). 

 

 The oviduct: morphology and ultrastructural features  3.
Each oviduct consists of an expansive infundibulum covering the ovary’s ovulation 

fossa, a highly tortuous ampulla which is about 6 mm in diameter and a less tortuous isthmus 

which is half the diameter of the ampulla (Figure 2). The isthmus terminates in a small uterine 

ostium at a papilla in the endometrium in the tip of each uterine horn. The circular muscle 

sphincter at the utero-tubal junction (UTJ) serves as a valve, preventing reflux of uterine 

contents to the oviduct. The uterine ostium of the tube is 2–3 mm in diameter while the 

abdominal ostium of the infundibulum is about 6 mm in diameter. When effacing the loops 

and removing the suspending mesosalpinx, the actual length of the equine oviducts can be 

determined, i.e. 20 to 30 cm long. Half of the oviduct consists of the ampulla. Irregular 

fimbriae are present along the margin of the funnel-shaped infundibulum. As some fimbriae 

are attached to the cranial pole of the ovary, the infundibulum also covers the ventral located 

ovulation fossa. The mucous membrane of the fimbriae is highly folded, especially in the 

ampulla where secondary and tertiary ridges branch from the longitudinal folds. The lining of 

the simple columnar epithelium is intermittently ciliated (pseudo stratified cilia epithelium). 

Ciliogenesis and ciliary motion toward the uterus are depending on the sexual cycle stage. A 

thin, well vascularized lamina propria supports the epithelium. Inner, circularly disposed 

smooth muscle fibers are covered by outer, longitudinally arranged fibers that continue into 

the mesosalpinx [42]. 
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Figure 2: Morphology and ultrastructural features of the mare’s oviduct: (a) uterus, (b) ovaries and (c) 
oviduct. The oviduct consist of (1) infundibulum, (2) ampulla, (2) ampullary-isthmic junction, (4) 
isthmus and (5) utero-tubal junction (UTJ). (A) and (B) represent ultrastructural images of the ampulla 
and (C) and (D) of the isthmus (Images kindly provided by Dr. Hilde Nelis; RBU, Ugent). 

 

 Journey of the sperm through the mare’s genital tract 4.
Freshly ejaculated spermatozoa have to undergo a maturation process in the female 

reproductive tract called “capacitation” in order to prepare the spermatozoa to fertilize the 

oocyte. In the end, only a small fraction of the total inseminated sperm population reaches the 

site of fertilization and undergoes capacitation. Based on in vitro studies, it is hypothesized 

that only these sperm cells with superior viability, morphology and motility reach the oviduct 

[43, 44]. Moreover, the capacitated state of this sperm population is very short-lived, e.g. 1-4 

h in vitro in men [45], due to the reactive oxygen species (ROS) generated by mammalian 

spermatozoa. Although the sperm cells are very sensitive to oxidative stress, low levels of 

ROS are essential to promote capacitation by redox regulation (see 1.5). Inseminated sperm 

cells not participating in fertilization are only shortly protected against oxidative stress as they 

have only a restricted amount of cytoplasm containing the limited stock of anti-oxidants. The 

over-capacitation of spermatozoa eventually results in a state of senescence and the activation 

of the intrinsic apoptotic cascade. As a consequence, once spermatozoa started capacitation 

they become very instable which reduces their life span severely [46, 47]. 
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Sperm capacitation is a strictly ordered process of sequential events in all mammals, 

including the horse [48]: (1) spermatozoa are ejaculated into the uterine body and transported 

to the UTJ; (2) a reservoir of non-capacitated spermatozoa is established at the UTJ and the 

caudal isthmus; (3) spermatozoa within the reservoir become capacitated near ovulation; (4) 

the capacitated spermatozoa acquire hyperactivated motility and are released from the sperm 

reservoir, (5) the released spermatozoa meet the mature oocyte at the ampullary-isthmic 

junction and bind to the ZP or to the intercellular matrix of the cumulus-oocyte complex [49, 

50], (6) the acrosome reaction is triggered allowing the sperm to penetrate the cumulus and 

ZP and enter the perivitelline space, after which (7) the fertilizing spermatozoon can bind and 

fuse with the oolemma. All these steps are initiated after the spermatozoa have made contact 

with the epithelial cells and the pre-ovulatory stage-mediated secretions of the oviduct. 

 

1. Migration through the uterine lumen 

After ejaculation or insemination, stallion spermatozoa are transported from the mare’s 

uterine body towards the oviduct mainly by uterine contractions (passive sperm transport) and 

less by active sperm motility [51]. The first spermatozoa are observed in the oviduct within 2 

h post-insemination while most spermatozoa reach the oviduct 4 h post-insemination [52, 53]. 

Only a small number of spermatozoa are able to enter the oviduct [54]. There are several 

mechanisms to clear the uterus and eliminate the redundant spermatozoa. Firstly, myometrial 

contractions will mechanically remove the sperm through the cervix [55, 56]. Secondly, 0.5 h 

post-insemination, an influx of polymorphonuclear neutrophils (PMNs) into the uterine lumen 

has been observed playing an important role in sperm phagocytosis [57-59]. This 

inflammation response is harmful for all the spermatozoa passing the uterine lumen. However, 

it has recently been demonstrated that only dead spermatozoa are very susceptible to this 

elimination cascade whereas viable spermatozoa are protected from binding to PMNs and 

phagocytosis. Seminal plasma factors play an important role in this mechanism. For example, 

lactoferrin enhances the cell-to-cell interaction between PMNs and spermatozoa (living and 

dead) in the uterus [60] while CRISP-3 causes a strong reduction in the binding between 

living spermatozoa and PMNs [61]. As such, the transport of living spermatozoa to the 

oviduct is allowed while PMNs phagocytize the dead sperm population in the uterus.  
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During sperm migration towards the oviduct, the onset of capacitation in living sperm 

needs to be inhibited. To prevent a premature capacitation response, spermatozoa contact 

decapacitation factors after ejaculation. Moreover, mammalian seminal plasma contains 

several extracellular vesicles such as prostasomes. Prostasomes are secreted by prostate 

epithelium and probably act as a decapacitation factor as they have a lipid content consisting 

of mainly saturated fatty acids and high concentrations of cholesterol and sphingomyelin [62-

64]. The high cholesterol content might inhibit the plasma membrane changes and acrosome 

reaction by stabilizing the sperm plasma membrane [65-67], as such preventing premature 

sperm capacitation. On the other hand, some studies have suggested that prostasomes actually 

promote capacitation-related events like the acrosome reaction [68, 69] and the Ca2+-induced 

onset of hyperactivated motility, a requirement for ZP penetration [70].  

 

2. Passing through the utero-tubal junction (UTJ) 

In the horse, the oviduct reservoir selects morphologically normal spermatozoa with 

superior progressive motility [54, 71, 72]. After migrating through the uterus, stallion 

spermatozoa need to pass the UTJ, a closed muscular structure which opens during the pre-

ovulatory period in order to allow spermatozoa to enter the oviduct. The key factors evoking 

the relaxation of the UTJ have not been elucidated yet but oestrogens might be a candidate 

factor. It is hypothesized that during oestrus the UTJ might open under the influence of 

oestrogens while it remains closed during the progesterone phase. The transport of the 

developing embryo from the ampullary-isthmic junction to the uterus 6-6.5 days after 

ovulation, i.e. during the progesterone phase, can provide additional insights in the regulation 

of the UTJ [73]. The late morula or early blastocyst passes the UTJ retrogradely to the uterus 

[74] under the influence of prostaglandin E2 produced by the equine conceptus [75]. 

Unfertilized eggs (UFOs) or parthenotes on the other hand are retained in the oviduct because 

of their inability to produce this signal. A similar mechanism of gamete / embryo-maternal 

communication or interaction can be hypothesized when considering the migration of sperm 

through the UTJ. 
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3. The oviduct as a microenvironment for capacitation / fertilization  

Interactions between gametes and the female reproductive tract include final stage 

maturation and transport of both male and female gametes, fertilization, early cleavage-stage 

embryonic development and transport of the embryo to the uterus. These events are regulated 

by the oviduct and its secretions which provide a proper environment to support all the critical 

events of early stage reproduction. In many species, conventional IVF is successful since 

events like sperm capacitation, fertilization and blastocyst development can occur in vitro in 

the absence of the epithelia of the female reproductive tract. In horses, however, cell-to-cell 

contact between gametes and these epithelia seems important as IVF is not successful so far. 

Theoretically, incubation of equine gametes with oviduct cells and secretions should result in 

an improved gamete selection and preparation to undergo fertilization and embryonic 

development [17]. 

The interaction between spermatozoa and oviduct environment has been well studied 

in many mammals. Considerably less data are available in the horse due to the lack of equine 

reproductive tissues being available to study this topic. Additionally, in vivo studies are quite 

problematic since invasive surgery or laparoscopy is required to reach the oviduct. Therefore, 

a representative in vitro model is necessary to study the early events in equine sperm 

capacitation and fertilization, and to mimic the equine in vivo circumstances near ovulation as 

close as possible. To this end, three oviduct cell models which have been used so far 

predominantly in bovine research will be discussed, i.e. oviduct monolayers, explants and 

apical plasma membranes (APM).  

 

3.1. Choice of equine oviduct model:monolayers, apical plasma membranes or 
explants? 

 

Considering both types of in vitro oviduct cell models, the explant model has several 

advantages to study sperm-oviduct binding interactions when compared to monolayers: (1) it 

has been demonstrated in cattle [76, 77] and horses [78, 79] that proliferating oviduct cells 

grown in monolayers dedifferentiate resulting in a reduced cell height, loss of cilia and loss of 

secretory granules and bulbous protrusions. Therefore, they reflect less accurately the in vivo 

situation [76, 77, 80]. (2) Explants of bovine [76, 81-83] and equine [84] oviduct epithelial 
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cells show constant vigorously beating cilia, an important marker of cell viability. Nelis et al. 

[84] showed that equine oviduct cell explants still contained healthy beating cilia and 

numerous microvilli after 20 days in culture as confirmed by transmission electron 

microscopy. Moreover, the epithelial cells bordering the explants maintained a highly 

differentiated morphology at the ultrastructural level as well, including numerous 

mitochondria and rough endoplasmic reticulum, which is highly similar to the oviduct 

epithelium ex vivo. (3) The in vitro secretion of IGF2 from bovine oviduct explants was also 

significantly higher compared to monolayers indicating a more optimal cell function [85]. (4) 

Moreover, explants can be used already within 6 to 12 hours after harvest whereas 

monolayers require several days of culture before use [83]. (5) Bull sperm heads bind 

preferentially to the cilia or in deeper regions of ciliated epithelial cells and not to the 

secretory epithelial cells [86, 87]. In addition, Baillie et al. [88] reported that human 

spermatozoa bind preferably to explants compared to monolayers. This was also confirmed by 

Sostaric et al. who demonstrated that the binding capacity of bull spermatozoa to oviduct 

explants was much higher compared to oviduct monolayers [89]. Although these arguments 

all favor the use of “in vivo-like” oviduct explants, it is difficult to reliably quantify the 

sperm-oviduct binding due to the invaginated and irregular surface of the oviduct explants. 

Therefore, sperm-binding studies are regularly performed using equine oviduct monolayers 

with a flattened surface [78, 79]. As the ultrastructural properties of the oviduct during in vitro 

culture are conserved, we preferred to use the oviduct explant model instead of a monolayer 

system in which the oviduct cells dedifferentiate in vitro (Chapter 3, 4 and 5). Moreover, to 

standardize the quantification of the sperm-binding more accurately, parallel experiments 

were performed using oviduct explants and nitrocellulose-coated oviduct apical plasma 

membranes (Chapter 3).  

 

3.2. Sperm oviduct binding: formation of a sperm reservoir 

 

GENERAL ASPECTS OF EQUINE SPERM-OVIDUCT BINDING 

After entering the oviduct, spermatozoa bind to the oviduct epithelium and form a 

sperm reservoir at the UTJ and caudal isthmus during the peri-ovulatory period [71]. 

Particularly in the mare, spermatozoa need to survive rather long considering the prolonged 

estrous period. They bind to the oviduct epithelium by means of species-specific carbohydrate 
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moieties (horse: [78, 90]; cow: [91, 92]; pig: [44]). The interaction between oviduct epithelial 

cells and spermatozoa serves different aims: (1) providing a suitable environment for sperm 

storage and survival until ovulation, (2) selecting a superior viable, morphological and motile 

sperm population, (3) preparing sperm to capacitation and achieving the capability to fertilize 

a mature oocyte and finally (4) preventing polyspermic fertilization [93]. 

In cattle and horses, only viable spermatozoa with intact acrosome and plasma 

membranes bind to the oviduct epithelium [89, 94-97]. Stallion spermatozoa bind to oviduct 

epithelial explants in vitro via the apical region of the sperm head [96]. In oviduct monolayers, 

sperm binding properties are not affected by cycle stage [98] while in equine oviduct explants, 

a higher sperm-oviduct binding capacity is observed during the pre- and post-ovulatory period 

when compared to the luteal stage [97]. The latter study also showed that the motility of 

spermatozoa bound to follicular stage oviduct explants is higher when compared to other 

cycle stage explants. Moreover, enhanced sperm-oviduct explant binding was demonstrated 

using isthmic oviduct explants compared to ampullar oviduct explants [97]. In contrast to 

these in vitro findings, no cycle dependence and no regional differences in sperm-oviduct 

binding was observed in vivo after flushing the oviduct of inseminated mares [52, 99]. 

However, probably not all the bound spermatozoa were collected after flushing. Moreover, 

stallion spermatozoa in co-culture with oviduct monolayers maintained superior motility in 

contrast to spermatozoa in conditions without oviduct cells [100-102]. Direct membrane 

contact between stallion spermatozoa and oviduct APM in vitro is also required to maintain 

low intracellular calcium [Ca2+] concentrations [103, 104], which causes delayed capacitation 

and prolongs the viability of the bound spermatozoa. Probably a similar scenario in the 

isthmic sperm reservoir allows in vivo a continuous competent sperm subpopulation to be 

functionally active at the time of fertilization.  

Near ovulation, stallion sperm bound to oviduct epithelium undergoes certain 

modifications related to capacitation. Co-culture of spermatozoa with oviduct monolayer cells 

induced capacitation of stallion spermatozoa, whereas capacitation did not occur in sperm 

suspensions cultured in the absence of oviduct cells. This sperm population had an increased 

affinity for the ZP as well [105]. At this stage, sperm has to be released from the oviduct 

epithelium. It has been demonstrated that the intracellular Ca2+ concentration is many times 

higher in released stallion spermatozoa compared to bound spermatozoa [103, 104]. Also in 

bovine, an increased intracellular Ca2+ concentration accompanies the oviduct epithelium 
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release of bull spermatozoa after induction of capacitation with heparin [106]. Additionally, 

after previous contact with capacitation triggers like Ca2+ ionophore and heparin, significantly 

fewer spermatozoa are able to bind to oviduct monolayers. Likewise in the horse, contact with 

oestradiol and heparin induced an increased sperm release from oviduct monolayers [107]. 

Altogether, these observations strongly suggest that sperm release is initiated by capacitation-

related events. 

BIOCHEMICAL KEY FACTORS OF SPERM-OVIDUCT BINDING 

In many species, sperm binding to somatic cells like sertoli cells or oviduct epithelium 

and to a glycoprotein layer like the ZP, is regulated by species-specific lectin interactions 

[108-111]. In the oviduct, carbohydrates and / or glycoproteins expressed on the surface of the 

oviduct plasma membrane recognize the proteins present on the sperm plasma membrane of 

non-capacitated spermatozoa [92, 93, 112].  

This mechanism was first demonstrated in the hamster in which sialic acid, a 

component of the glycoprotein fetuin, competitively inhibited sperm-oviduct binding. This 

sequence appears in terminal positions on the oligosaccharides attached to the protein core of 

fetuin. Colloid gold-labelled fetuin interacted with the acrosomal region of the sperm head 

and also bound to sperm plasma membrane proteins after Western blot extraction [113]. In 

pigs, it has been demonstrated that the formation of a sperm reservoir was regulated by high 

sperm affinity for oviduct epithelium with oligomannose N glycan expression [114, 115].  

In cattle, fucoidan and fucose competitively inhibited sperm-oviduct binding [92, 110]. 

A more effective inhibition of sperm-oviduct binding was demonstrated by the trisaccharide 

Lewis A (Lea; α1-4 fucose linked to N-acetylglucosamine) in contrast to any other linkage 

[116]. Additionally, fucose-binding lectins (Lotus tetragonolobus and Ulex europaeus) 

detected clearly the presence of fucose on the surface of the bovine oviduct epithelium [110]. 

Subsequently, pretreatment of oviduct epithelium with fucosidase reduced significantly sperm 

binding [110]. On bull sperm, the fucose-binding receptor was detected using fluorescent-

labelled fucose and Lea. These molecules labelled live sperm across the acrosomal region 

[116-118] and were identified as PDC 109, a major heparin-binding protein present in seminal 

plasma [118]. During ejaculation, this protein has been associated with the bull sperm plasma 

membrane [119]. The lectin-based sperm-oviduct binding appeared Ca2+-dependent. When 

Ca2+ was removed from the medium, bull sperm was not able to bind to the oviduct 
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epithelium [116]. Though, this effect was reversible and could be restored by supplementing 

Ca2+. In vitro, bull sperm has similar affinities for both the oviduct epithelium from the 

isthmus and the ampulla [110, 120] as the lectin affinity for fucose residues exists in both 

parts of the oviduct [110]. In vivo, however, the sperm reservoir is limited to the isthmus 

which can be explained by the fact that the isthmus is the first segment of the oviduct where 

the sperm initially contact their carbohydrate ligands in the narrow oviduct lumen filled with 

mucus. 

Using an equine oviduct monolayer model, asialofetuin blocked the in vitro sperm-

oviduct binding more effectively than fetuin. When sialic acid was removed from fetuin, the 

principal carbohydrate, D-galactose, was exposed at the end of the oligosaccharide chains 

[121]. Moreover, a competitive inhibitory effect of D-galactose was shown on in vitro sperm-

oviduct binding using the oviduct monolayer model [90, 121] while galactose-binding 

proteins were detected on the surface of stallion spermatozoa by Sabeur and Ball [122]. A 

similar galactosyl receptor was found in the human testis and spermatozoa. This receptor 

appeared to be a Ca2+-dependent lectin playing a role in the cell-cell interaction during 

spermiogenesis and sperm-zona binding [123]. It has been demonstrated that galactosyl 

residues were highly expressed in the isthmic part of the equine oviduct [124], suggesting 

their involvement as ligands for sperm adhesion. These residues were slightly less expressed 

in the ampulla while cycle-related differences were observed with a maximum galactosyl 

expression during oestrus [124]. These observations were supported by the study of Thomas 

et al. [97] in which a slight improved sperm-oviduct explant binding was demonstrated at the 

isthmic epithelium compared to the ampullar epithelium. Moreover, a similar sperm-oviduct 

binding density was observed during oestrus and the post-ovulatory stage. However, when 

considering the sperm motility, it has been demonstrated that the oestrous oviduct epithelium 

supported motility better than the oviduct epithelium from the post-ovulatory and diestrous 

stage [97]. On the other hand, horse seminal plasma protein-7 (HSP-7), one of the major 

seminal plasma proteins, may be involved in the sperm reservoir formation. This protein is the 

equine homologue of spermadhesin AWN in pigs [125] and is associated with the sperm 

plasma membrane during ejaculation. These HSP-7 proteins are interacting with the 

carbohydrates expressed on the oviduct epithelium. Additionally, SP-1 and SP-2 (previously 

HSP-1 and HSP-2), which are members of the Fibronectin-2 proteins, have also been 

identified in equine seminal plasma. They are also homologues of bovine seminal plasma 
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proteins which are involved in establishing the bovine sperm oviduct reservoir [126]. Still, the 

role of these proteins in equine sperm-oviduct binding needs to be elucidated further. In 

Chapter 3, the role of various carbohydrates, glycosaminoglycans and capacitation triggers in 

equine sperm-oviduct binding has been verified using the oviduct explant and apical 

membrane model instead of the monolayer model. 

 

3.3. Sperm-oviduct release 
 

At the late pre-ovulatory period, spermatozoa bound at the isthmic side are flooded by 

oviduct secretions released mainly from the ampulla site. A select group of bound 

spermatozoa must be released and migrate upstream to the fertilization site at the ampullary-

isthmic junction. Theoretically, following mechanisms of sperm release can be considered: (1) 

sperm binding sites on the oviduct might decrease, (2) the sperm plasma membrane may 

undergo capacitation-related changes, (3) competitive binding molecules may be secreted or 

released, (4) spermatozoa may acquire the hyperactivated motility state, (5) the spermatozoa 

may get in contact with disulphide-reductants, or (6) sperm release may be caused by a 

combination of these mechanisms. Current evidence suggests that a combination of 

capacitation-related events, induction of plasma membrane changes and acquiring 

hyperactivated motility, are regulating the sperm release from the oviduct epithelium since: 

(1) In cattle and horses, no decrease in sperm binding sites on oviduct epithelium was 

observed during the hormonal transition at the time of ovulation [97, 120, 127].  

 

(2) Bull spermatozoa are in vitro effectively capacitated by heparin [128]. After having 

contact with heparin, they show less affinity for the oviduct epithelium [91]. 

Analogously, a reduced affinity of heparin-capacitated bull spermatozoa was observed 

for fucosylated BSA [117]. These observations suggest that changes in the sperm head 

plasma membrane, which is part of the capacitation process, are responsible for the 

decreased oviduct epithelium affinity. This reduced oviduct affinity is due to a loss or 

modification of PDC-109, the major fucose / Lea-binding protein [118]. 
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(3)  Moreover, heparin is also a strong inhibitor of fucose binding to the sperm plasma 

membranes of non-capacitated bull spermatozoa, even at a very low concentration. 

Most likely, this is due to competitive binding of heparin to fucose-binding ligands on 

the sperm plasma membrane of non-capacitated spermatozoa. The binding 

competition between fucose and heparin is independent of sperm capacitation [92, 

116]. 

 

(4) In hamster, it has been reported that capacitated and hyperactivated spermatozoa lose 

their ability to bind to oviduct epithelium [129]. DeMott and Suarez [130] observed in 

mice that only hyperactivated spermatozoa were released from oviduct epithelium. 

Likewise, Pacey et al. [131] showed in human that hyperactivated motility was 

essential to release the sperm from in vitro cultured oviduct epithelium. Also in bull 

spermatozoa, heparin-induced capacitation induces the hyperactivated motility during 

sperm-oviduct release, as illustrated by the increase in flagellar-beat frequency in 

combination with a high linear motility [132]. Furthermore, these capacitated 

spermatozoa showed enhanced ZP binding and fertilization competence [133]. It is 

evident that, in cooperation with plasma membrane changes, hyperactivated motility 

participates in the sperm-oviduct release by generating an increased force to move the 

sperm away from the oviduct surface. 

 

(5) Disulphide-reductants are also present in the peri-ovulatory oviduct fluid and act in 

bovine as a release signal for the spermatozoa from the oviduct reservoir [134] as they 

reduce the S-S covalent bridges (disulphide; thiol interaction), between the sperm and 

oviduct-surface, to SH (sulphydryls). In vitro, bovine sperm could be reversibly 

released from oviduct monolayers by disulphide-reductants like penicillamine and 

reduced gluthatione [135, 136]. Recovery of adhesion was associated with reoxidation 

of the sperm-surface protein SH. 
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3.4. Role of oviduct fluid in sperm capacitation 

Each event in the mammalian oviduct needs to contribute to a cycle-dependent 

optimization of the microenvironment. In horses, only very few data are available on the 

oviduct paracrine factors which might modulate gamete preparation for fertilization. The 

successful clinical application of oocyte transfer (in vivo or in vitro matured) to the oviduct of 

an inseminated recipient mare emphasizes the importance of oviduct factors on gamete 

interaction [28]. Ovarian steroids i.e. oestrogens and progesterone regulate the composition of 

the oviduct fluid which is constituted by selective serum transudation and active biosynthesis 

and secretion from the oviduct secretory cells [137, 138]. Secretory activity of the oviduct 

cells is region-dependent: the ampulla exhibits the highest secretory activity while the 

infundibulum shows intermediate and the isthmus even a minimal secretory activity (sheep: 

[139]; pig: [140]; horse: [141]). The volume of oviduct fluid is also cycle-dependent with the 

largest volume measured during the follicular phase under estrogen influence (cattle: [142, 

143]; pig: [143]; mare: [144]). As such, a dilution effect is probably present in the oviduct 

fluid with the concentration of molecules lower in oestrus when compared to dioestrus (see 

Table 2; [144, 145]). 

The majority of the follicular fluid passes through the fimbriae into the peritoneal 

cavity after ovulation, though a very small amount of fluid enters the infundibulum of the 

oviduct [146]. This follicular fluid probably also influences the oviduct micro-environment to 

a certain extent as components of follicular fluid might contain important factors to activate or 

capacitate the oviduct entered sperm population, as was already demonstrated in human [147-

149], in cattle [92], in hamster [150] and in rabbit [151, 152]. As such, progesterone has been 

designated as a key factor for capacitation of human spermatozoa [153-156], while in cattle 

glycosaminoglycans were identified as the main capacitation activators [92]. In equine, the 

identity of capacitation factors in follicular fluid remains to be elucidated although 

progesterone might play a role as well [157-159].  

Up to now, only very few oviduct secreted factors have been studied. The most 

important factors are listed below: 
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(1) Oestrogen-dependent oviduct secretory glycoprotein (OSG) or oviductin is a unique 

oviduct protein conserved in many mammalian species. This protein enhances the 

sperm-oocyte binding and penetration through the ZP, and also plays a role in early 

embryonic development (cattle: [160]; sheep: [161]; pig: [162]). In the horse, however, 

Mugnier et al. [29] demonstrated that OSG is a pseudogene in the equine genome 

which implies that this protein is not expressed. Nevertheless, this finding can still be 

due to a not well annotated fault in the equine genome sequencing. 

 

(2) A second major protein synthesized and released by the oviduct is identified as tissue 

inhibitor metalloprotease 1 (TIMP-1) which is known as an specific inhibitor of matrix 

metalloproteinases like collagenases, stromelysins and gelatinases (pig: [163]). 

Several cell functions also have been attributed to TIMP-1 including cell growth [164], 

embryonic development [165] and maintenance and remodeling of extracellular matrix 

[166]. TIMP-1 regulates tissue remodeling and steroidogenesis in the oviduct while it 

exhibits growth activity in the ovary [167].  

 

(3) Plasminogen activator inhibitor-1 (PAI-1) is also commonly secreted by the oviduct. 

This serine protease is the primary inhibitor of urokinase plasminogen activator and 

tissue-type plasminogen activator. Both plasminogen activators initiate proteolytic 

cascades by converting plasminogen to plasmin. PAI-1 is involved in a number of 

activities such as remodeling extracellular matrix, fibrinolysis, cell migration, and 

tumor metastasis [168, 169]. Similar to TIMP-1, little is known about the specific 

actions of PAI-1 in the oviduct but it has probably similar functions.  

 

(4) Other factors identified in the oviduct of various mammals, include complement C3b, 

immunoglobulin A, prepro-collagen, clusterin [170], cytokines and growth factors 

[171, 172].  
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(5) Exclusively in the horse, osteopontin, atrial natriuretic peptide A (ANP A) and deleted 

in malignant brain tumor 1 (DMBT1) are identified as oviduct secretory proteins. 

When stallion sperm was capacitated with Ca2+ ionophore, co-incubation of mature

equine oocytes with either equine or porcine oviduct epithelial explants or monolayers 

increased equine IVF rates (0 versus 9%). Although there was no significant effect of 

osteopontin and ANP A on fertilization, osteopontin slightly increased the IVF rates 

[29]. Moreover, Ambruosi et al. [40] reported increased monospermic equine 

fertilization rates when mature oocytes were pre-incubated with DMBT1 and 

subsequently fertilized by procaine capacitated sperm. 

(6) Unidentified oviduct secreted proteins with affinity for the sperm plasma membrane or 

affecting the final maturation of the equine oocyte [173]. Little is known about their 

function in the equine oviduct [174].  

(7) Besides proteins, many other factors like electrolytes (Ca2+, HCO3
-,...), lipids

including steroids and carbohydrates contribute to the composition of the oviduct fluid 

to create optimal fertilization conditions. The current knowledge on the composition 

of equine oviduct fluid compared to blood serum is summarized in Table 2. 

Concentrations of electrolytes in the oviduct fluid of mares tend to be similar of those 

in serum, except for Mg2+. This concentration is 2-5 times higher in the oviduct of the

mare compared to serum concentrations [144]. 
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Table 2: Composition of the equine oviduct fluid compared to blood serum 

 Oviduct fluid Blood serum 
Electrolyts (mM) [144] [175, 176] 
Na+ 130 b 132 – 142 
Cl- ND 96 – 107 
K+ 7.9 b 3.0 – 5.9 
Total Ca 2.3 b 2.4 – 3.3 
Ca2+ ND 1.4 – 1.7 
Mg2+ 4.6 b 0.8 – 1.2 
P 0.4 b 0.8 – 1.8 
HCO3

- ND 20 – 28 
Energy substrates (mM) [144] [175, 176] 
Glucose 2.84-5.92 3.9 – 5.6 
Lactate ND 0.7 – 1.2 
Pyruvate ND ND 
Amino acids (μM / ml) [145] [145] 
Alanine 0.140 a,b 0.055* 
Arginine 0.031 0.010 
Aspartic acid 0.022 0.004 
Cystine 0.003 <0.001 
Glutamic acid 0.057 0.025 
Glycine 0.263 a,b 0.137 a 
Histidine 0.020 c 0.020 
Isoleucine 0.025 0.017 
Leucine 0.053 b 0.029 
Lysine 0.053 b 0.057 a 
Methionine 0.014 c 0.002 
Phenylalanine 0.026 0.016 
Tryptophan ND ND 
Proline 0.048 c 0.047 b 
Serine 0.051 c 0.137 a 
Threonine 0.038 0.026 
Tyrosine 0.041 0.018 
Valine 0.041 0.042 
Growth factors [177]  
Platelet derived growth factor 
(PDGF) present present 

a: most prevalent amino acids; cycle-dependent significant difference (b: oestrus < dioestrus; c: 
oestrus > dioestrus) probably due to dilution; the concentration amino acids in oviduct fluid 
was twice the amino acid concentration in blood serum; ND: not determined.  
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 Sperm capacitation-related events on cellular level 5.

1. Capacitation triggers 

In vivo, capacitation events are induced when sperm is exposed to the oviduct 

environment near ovulation while capacitation events are mimicked in vitro by a density 

gradient centrifugation (e.g. Percoll®) to separate sperm from seminal plasma, followed by 

the incubation in capacitating medium containing HCO3
-, Ca2+ and albumin. In mammalian 

species, these three capacitation factors are known to induce the physiological sperm changes 

required for acquiring fertilization potential. However, species-specific exceptions are known. 

In cattle, for example, heparin-like molecules like glycosaminoglycans are one of the central 

capacitation triggers [128]. Unfortunately, in the horse, the exact capacitation triggers are still 

unknown. So far, two different media are generally used in stallion capacitation studies. Non-

capacitating medium lacks any capacitation trigger and is used as control medium while 

capacitating medium theoretically contains triggers to induce capacitation / fertilization. 

Because in the horse, however, the exact triggers for full capacitation - resulting in a 

repeatable, working equine IVF system - are still unknown, the currently used equine 

capacitating media are based on capacitation triggers known in other species and as such, does 

not support full capacitation and needs further optimization [178]. In Table 3, an overview of 

the molecules frequently used as capacitation triggers are given. As the capacitation process 

of stallion sperm cells is still poorly understood, we screened various biological capacitation 

triggers in an oviduct explant model which induced tail-associated protein tyrosine 

phosphorylation and hyperactivated motility (Chapter 4 and 5). Finally, we assessed the 

ability of tail-associated protein tyrosine phosphorylated, hyperactivated sperm cells to 

fertilize the equine oocyte (Chapter 6). 
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Table 3: Overview of capacitation triggers and their in vitro capacitation effect in different 

mammalian species 

Capacitating trigger Capacitation effect Species Reference 
Ca2+ Membrane fluidity 

Protein tyrosine phosphorylation 
Hyperactivation 
Acrosome reaction 

Mice 
Men 
Pig 
Cattle 
Horse 

[179, 180] 
[181] 
[182] 
[183, 184] 
[178] 

HCO3
- Membrane fluidity 

Protein tyrosine phosphorylation 
Hyperactivation 
Acrosome reaction 

Mice 
Hamster 
Men 
Pig 
Cattle 
Horse 

[179, 180] 
[185] 
[181] 
[182, 183] 
[159] 
[178] 

Albumin Cholesterol extraction Mice 
Pig 
Horse 

[179, 180] 
[182, 184] 
[178] 

Methyl-β-cyclodextrin Cholesterol extraction Mice 
Pig 
Horse 

[186] 
[187] 
[188] 

Heparin Membrane fluidity 
Protein tyrosine phosphorylation 
Hyperactivation 
Acrosome reaction 

Cattle [106, 128, 
183] 
 

Progesterone Acrosome reaction 
 

Hypermotility  

Horse 
 

Men 

[157, 158]  
 
[155] 

Ca2+ ionophore A23187 Acrosome reaction Mice 
Men 
Pig 
Cattle 
Horse 

[189] 
[190, 191] 
[192] 
[193] 
[194] 

Lysophosphatidylcholine Acrosome reaction Horse [31] 
c-AMP and caffeine Protein tyrosine phosphorylation 

 
 

Hypermotility 

Cattle 
Horse 
 
Pig  

[183] 
[195] 
 
[196] 

ROS  Protein tyrosine phosphorylation Cattle 
Horse 

[183] 
[197] 

Alkaline medium pH Protein tyrosine phosphorylation 
 

Hypermotility 

Horse 
 
Cattle 

[198] 
 
[199] 

Procaine Hyperactivation  Guinea pig 
Horse 

[200] 
[32] 
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2. Capacitation events  

Since the first description of capacitation in 1951 [201, 202], the capacitation process 

is still not fully understood. It is known that capacitation involves a series of changes 

including (1) the removal of seminal plasma and surface-adhered decapacitation factors from 

the sperm plasma membrane, (2) reorganization of the sperm plasma membrane and (3) 

activation of intracellular capacitation pathways (Figure 3). 

Figure 3: Pathways involved in stallion sperm capacitation (ROS: reactive oxygen species; PTK: 
protein tyrosine kinase; ZP3: ZP protein 3; ZP3-receptor: ZP protein 3-receptor; +: activation; -: 
inhibition). 

After seminal plasma removal, rapid membrane changes (<10 minutes) are induced by 

an increasing intracellular HCO3
- concentration and the activation of second messenger 

systems, including a soluble adenylyl cyclase (sAC) and a rise in intracellular Ca2+ [159, 182, 

203]. The activation of sAC and the concomitant production of cAMP results in the depletion 

of cholesterol from the sperm plasma membrane by a cholesterol acceptor like albumin (>1 

hour), which is followed by a slower series of functional membrane changes whereby lipid 

ordered microdomains are aggregated at the apical ridge of the sperm head (>1 hour) [204]. 

These microdomains contain functional ZP binding protein complexes [205] and the soluble 
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NSF attachment protein receptor (SNARE) proteins, which play an important role in the 

induction of the acrosome reaction [206, 207]. Simultaneously, the production of cAMP 

enables the activation of protein kinase A (PKA) which is essential to phosphorylate the 

tyrosine residues on sperm proteins [159, 208, 209]. In various species, this cAMP-dependent 

protein tyrosine phosphorylation, especially in the sperm tail, has been related to the 

acquisition of hyperactivated sperm motility and is considered as a marker for some essential 

elements of the capacitation process [179, 180, 210-213].  

 

2.1. Plasma membrane changes 
 

Spermatozoa have a highly polarized morphology and their heterogenic surface is 

differentiated into at least four surface membrane domains: the apical ridge, the pre-equatorial, 

the equatorial and the post-equatorial surface area (Figure 4). The functional regions do not 

contain junctional barriers to maintain these regions [214]. When sperm is capacitating and 

some decapacitating factors are removed from the extracellular sperm coat, the lipid and 

protein ordering on the sperm plasma membrane will change dramatically [48, 215, 216]. 

Each of the sperm head surface regions play a specific role in fertilization: (1) the apical ridge 

facilitates the zona pellucida binding [217], (2) the apical ridge together with the pre-

equatorial surface area is involved in the acrosome reaction while (3) the equatorial surface 

area initiates the binding to the oolemma and the subsequent fertilization fusion. These events 

occur in the region of the sperm head where the sperm plasma membrane including the lipid 

rafts (microdomains) covers the acrosome which plays an essential role in the dynamics of 

sperm capacitation [203]. 
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Figure 4: Sperm surface involved in gamete interactions that lead to fertilization. Panel A: the surface 
of the sperm head, with (a) the apical ridge, (b) the pre-equatorial, (c) equatorial and (d) post-
equatorial area. Panel B: a surface view of the sperm head after the acrosome reaction. The numbers 
indicate the processes leading to fertilization: 1. zona binding, 2. the acrosome reaction, 3. sperm-zona 
penetration, 4. sperm-oolemma binding, 5. fertilization fusion and activation of the oocyte (Image 
adapted from Gadella [218]). 
 

COLLAPSE OF PLASMA MEMBRANE ASYMMETRY 

Phospholipid scrambling is the first lipid architectural change of the sperm plasma 

membrane during the capacitation process. Consequently, endogenous aminophospholipids 

are exposed at the surface of the sperm plasma membrane. More precisely, phosphatidylserine 

(PS) and phosphatidylethanolamine (PE) are pre-dominantly present in the inner leaflet of the 

membrane bilayer in non-capacitated spermatozoa, while glycolipids, phosphatidylcholine 

(PC) and sphingomyelin (SM) are present in the outer leaflet of the plasma membrane [219]. 

After HCO3
--induced in vitro capacitation, the sperm plasma membrane lipid asymmetry was 

clearly disrupted in stallion sperm [220]. A marked increase of PC and SM levels in the inner 

leaflet was observed while the normal inward movement of PE and PS was considerably 
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slowed down. A non-specific bidirectional phospholipid scramblase is playing a central role 

in these events which coincide with an increased membrane fluidity and cholesterol efflux 

[221].  

 

CHOLESTEROL EXTRACTION 

The redistribution of the surface phospholipid molecules in the sperm head is an 

essential step in the capacitation process to prepare the sperm to achieve the ability to fertilize. 

The increased HCO3
- / sAC / cAMP-mediated membrane fluidity causes the redistribution of 

cholesterol from the equatorial area to the apical part of the sperm plasma membrane while 

seminolipids on the other hand show a retrograde movement [222, 223]. Both molecules are 

considered as plasma membrane stabilizers preventing membrane fusions prior to capacitation. 

Finally, the HCO3
--mediated repacking of the sperm surface lipids is essential to allow the 

efflux of cholesterol. This cholesterol extraction is a major event which additionally increases 

the plasma membrane fluidity by the aggregation of lipid rafts, another essential step in the 

membrane reorganization. 

The extraction of cholesterol from the sperm plasma membrane occurs in vitro by (1) 

an active cholesterol transporter that provides free cholesterol to the hydrophobic pocket of 

albumin [221] and (2) the oxidation of membrane sterols [224]. Brouwers et al. [225] showed 

that the production of reactive oxygen species (ROS) is an essential step in oxysterol 

formation. The production of ROS at low levels during sperm capacitation was first 

demonstrated in 1993 indicating that sperm capacitation should be considered as an oxidative 

process which depends on the active generation of ROS [226]. The latter probably also has a 

regulating effect on protein tyrosine phosphorylation, another important capacitation marker, 

by increasing the cAMP production [47, 227] and suppressing the tyrosine phosphatase 

activity [228]. Furthermore, it was demonstrated that peroxynitrite played a central role in 

ROS- induced sperm capacitation [229, 230]. As oxysterols are more hydrophilic, they move 

freely through the plasma membrane and facilitate the binding of oxysterols to sterol acceptor 

molecules like albumin. Subsequently, cholesterol is extracted from the plasma membrane 

followed by an enhanced membrane fluidity which eventually results in sperm capacitation. 

Indeed, the presence of bovine serum albumin (BSA) in capacitating medium is essential 

considering its unique ability to scavenge hydrophilic oxidation products [231] and to 

facilitate the cholesterol extraction [159, 178]. An alternative macromolecule which is not of 
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animal origin (important in terms of risk for disease transmission), is methyl-β-cyclodextrin 

(mBCD). In contrast to albumin, which extracts 20% cholesterol from the non-raft sperm 

plasma membrane fraction, mBCD extracts 50% cholesterol from the complete sperm plasma 

membrane including the lipid rafts [187]. However, mBCD seems to have a sperm 

deteriorative effect, even in low concentrations. Recently, a deteriorative of mBCD effect on 

mouse oocytes was observed too [232]. 

Remarkably, it has been shown that standard capacitating conditions, including Ca2+, 

HCO3
- and BSA (individual or in combination), absolutely not facilitated the cholesterol 

removal from the sperm plasma membrane in stallion sperm. Though, HCO3
- induced an 

increase in ROS that was abolished by the addition of Ca2+ or BSA [233].  

 

AGGREGATION OF LIPID RAFTS 

Following the cholesterol depletion and the subsequent increased membrane fluidity, 

the lateral segregated molecules are redistributed by aggregation of lipid ordered 

microdomains at the apical ridge area of the sperm head, as demonstrated in pigs [231]. 

Subsequently, the proteins and lipids which are part of these microdomains also show a 

capacitation-dependent membrane distribution containing higher proportions of cholesterol, 

sphingomyelin, gangliosides, phospholipids with saturated long-chain acyl chains and lipid-

modified proteins such as GPI anchored proteins [204, 234]. Moreover, caveolin-1 and 

flotillin-1 were identified as lipid raft-specific markers [204]. Caveolin is a cholesterol 

interacting protein involved in clathrin-independent endocytosis [235, 236]. Although the 

function of flotillin is not completely understood yet, it has a prohibitin homology (PHB) 

domain that might interact with lipid rafts by constituting a primordial lipid recognition motif 

[237]. Beside caveolin-1 and flotillin-1, the microdomains also contain functional ZP binding 

protein complexes. In pigs, it was shown that isoforms of AQN-3 (spermadhesin), P47 

(porcine homologue of SED-1), fertilin β and peroxiredoxin 5 were indisputably identified as 

key proteins regulating the primary binding between capacitated spermatozoa and the ZP 

[205]. 
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2.2. Hyperactivated motility 
 

REGULATION OF SPERM MOTILITY IN GENERAL 

If a sperm cell wants to generate progressive motility, Ca2+ needs to interact with the 

phosphorylated dynein molecules along the microtubules of the axoneme (Figure 5). The 

axoneme of the sperm tail consists of nine microtubule doublets surrounding a central pair of 

single microtubules which are interconnected with radial spokes [238]. This central pair of 

microtubules regulate the shape and size of the flagellar bending as signals are transmitted to 

the outer microtubule doublets via these core structures (Figure 5) [239]. The outer 

microtubule doublets are interconnected by inner and outer dynein arms containing molecular 

dynein motor activities [240-242]. Symmetrical flagellar or progressive motion requires the 

activation of dynein ATPases which is initiated after protein phosphorylation on dynein arms 

and causes the sliding of adjacent outer axonemal doublet microtubules [243]. This sliding 

force is subsequently translated into a bend in the sperm tail when the doublets slide along 

one another [244, 245]. The normal flagellar waveform requires an asynchronous 

phosphorylation and dephosphorylation of the dynein arms along the complete axoneme 

length [239]. Dephosphorylation of dyneins is evoked by the calmodulin-dependent protein 

phosphatase calcineurin which completely opposites the effect on axoneme movement of 

phosphorylation of target proteins that supports sperm motility [246, 247] (Figure 5). 



Chapter 1 General introduction 

36 

 

 

Figure 5: Schematic ultrastructural representation of a mammalian spermatozoon. (a) Mammalian 
sperm are divided structurally in 4 areas: the connecting piece, the mid-piece, the principal piece and 
the end-piece. The end of the mid-piece and the start of the principal piece are demarcated by the 
annulus. (b) Schematic cross-section through a representative segment of the mid-piece showing the 
plasma membrane (PM) and mitochondrial sheath (MS) surrounding the nine outer dense fibers 
(ODFs). Within the ODFs are the components of the axoneme; the nine outer microtubule doublets of 
the axoneme (OMDA) with associated dynein arms (DA) and radial spokes (RS) and the central pair 
of microtubule doublets (CP). In an actual sperm, several projections are present on the CP, which are 
not shown in this figure. (c) Schematic cross-section through a representative segment of the principal 
piece showing the PM surrounding 7 ODFs. The ODFs 3 and 8 have been replaced by the longitudinal 
columns of the fibrous sheath (LC). The 2 LC are connected by transverse ribs (TR). The axonemal 
components are unchanged. (d) Schematic cross-section through a representative segment of the end-
piece. The ODFs and FS tapered at the termination of the principal piece and are no longer present in 
the end-piece, thus leaving only the PM to surround the axoneme (Image from Turner [248]). 
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In mammals, sperm motility is mostly initiated and maintained by Ca2+ and HCO3
--

driven cAMP-dependent phosphorylation of flagellar proteins [244, 249-253]. Like HCO3
-, 

Ca2+ also directly regulates sAC, which results in generating cAMP and activating PKA [248, 

254, 255]. An important downstream target of cAMP in the sperm flagel is serine / threonine 

kinase PKA [256]. The phosphorylation of serine / threonine activates PKA which results in 

the downstream phosphorylation of tyrosine kinases whose targets are primarily located in the 

sperm tail (human: [257]; mouse: [258]). So far, only a few target proteins of tyrosine 

phosphorylation in the sperm tail have been identified. For example, phosphorylation of one 

specific protein on the axonemal dynein seems essential to initiate sperm motility [245]. On 

the other hand, serine / threonine phosphatases are necessary to provide a balance for the 

cAMP-driven serine / threonine kinases in the sperm tail. The resulting net phosphorylation 

represents the sperm motility status very well [245, 247]. If serine / threonine phosphatase 

activity is dominant, spermatozoa are mainly immotile while serine / threonine kinase activity 

highly correlates with increased motility (men and rhesus monkeys: [259]; bull: [260]).  

 

CA2+ AS THE MAJOR TRIGGER FOR HYPERACTIVATED SPERM MOTILITY 

Sperm cells must acquire hyperactivated motility (1) to leave the oviduct reservoir and 

release the oviduct binding [130, 261], (2) to provide a powerful force to migrate through the 

viscous lumen of the oviduct [262, 263] and (3) to penetrate the cumulus matrix and ZP of the 

mature oocyte in order to fuse with the oolemma [264-266]. In many species, hyperactivated 

motility is characterized by a highly asymmetrical and high-amplitude flagellar beating 

pattern giving rise to a whip-like motion of the sperm tail which evokes circular, figure eight 

or zigzag swimming trajectories [48, 267]. The onset and maintenance of hyperactivated 

motility is associated with an influx of Ca2+ to the cytosol of the sperm tail [268, 269]. In vitro, 

Ca2+ ionophores such as A23187 or ionomycin can induce hyperactivation in mouse 

spermatozoa [250, 263]. Other pharmacological agents such as caffeine [270], procaine [271], 

thimerosal [270, 272] and thapsigargin [270, 273] also initiate asymmetrical beating by an 

intracellular Ca2+ rise. Ho et al. [253] showed in demembranated bull sperm that symmetrical, 

progressive sperm movement was maintained with an intracellular Ca2+ level of ~50 nM. 

When hyperactivated motility was initiated, the intracellular Ca2+ concentration increased 

until 400 nM. 
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In mammals such as human, cattle and mouse, CATSPER channels present on the 

principal piece of the sperm tail must be activated to induce hyperactivated motility. There are 

4 CATSPER genes coding for proteins which are structurally similar to subunits of 

conventional voltage-gated cation channels. When mice were knocked-out for a single 

CATSPER gene, they were infertile as spermatozoa were not able anymore to achieve 

hyperactivated motility [274, 275]. The general trigger of these CATSPER channels is 

alkaline depolarization evoked by a change in the ionic oviduct environment and resulting in 

an elevated pH of the oviduct fluid [276, 277]. Contact between the spermatozoa and the 

alkaline oviduct environment increases the intracellular pH and activates the CATSPER 

channels. A clear increase in the oviduct pH was observed in Rhesus monkeys near ovulation 

(7.1-7.3 to 7.5-7.8) [278]. In mouse, a Na+-dependent Cl- / HCO3
- exchange controls the 

intracellular pH of the sperm [279], while in human, an outflow of H+ is initiated by 

activating a voltage-gated proton channel [280]. To maximize the subsequent Ca2+ entry 

through the CATSPER channels, both a pH-sensitive efflux of K+ by KSPER [281] and the 

activation of Cl- channels by closing Na+ channels might support the sperm plasma membrane 

hyperpolarization (mouse: [282]). This hyperpolarization also plays a central role in the 

acrosome reaction and chemotaxis as well. In human sperm, it has been demonstrated that 

CATSPER channels are alternatively activated by progesterone and, to a lesser extent, 

prostaglandins. Interestingly, both factors potentiated CATSPER activation by another 

CATSPER binding site [155, 283]. Other Ca2+ channels identified in the mammalian sperm 

tail, include: (1) transient receptor potential, which may affect sperm motility and 

resequestration of Ca2+ into sperm stores [284], (2) cyclic-nucleotide-gated [285] and (3) 

voltage-gated [286-290] Ca2+ channels. However, it is still unclear if these channels are 

involved in the physiological activation of hyperactivated motility. 

Beside the extracellular Ca2+ influx through CATSPER channels, intracellular Ca2+ 

stores, being located at the base of the sperm tail and called redundant nuclear envelopes 

(RNE), also provide Ca2+ to the sperm cytoplasm [270, 273]. Inositol 1,4,5-triphosphate (IP3)-

gated channels on the membrane of the RNE stores trigger the release of Ca2+ to the sperm 

cytoplasm while calreticulin, a Ca2+ binding protein, sequesters Ca2+ in the RNE (bull: [270, 

273]; man: [291]). In mouse, it has been shown that ryanodine receptors on the RNE 

membrane also play a role in the intracellular Ca2+ release [292]. So, both Ca2+ sources, 

external Ca2+ influx via CATSPER channels and Ca2+ release from intracellular RNE stores, 
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contribute to initiate and maintain high Ca2+ levels during sperm hyperactivation [270, 273]. 

More specifically, the intracellular Ca2+ elevation due to CATSPER activation amplifies and 

propagates forward by Ca2+-induced Ca2+ release from the RNE [293-295]. Recently, it has 

been shown in mouse spermatozoa that the Ca2+ release from the RNE produces a reversed 

hyperactivation pattern [296]. Furthermore, the acrosome reaction is also supported by the 

cytoplasmic Ca2+ increase [297-299]. Activation of CATSPER and IP3-gated channels, which 

both initiate the intracellular Ca2+ rise, showed clearly an effect on the induction of the 

acrosome reaction [266, 298, 300, 301].  

To control the intracellular Ca2+ levels, spermatozoa contain several Ca2+ clearance 

mechanisms [302-304]. Although a constant Ca2+ leakage from the extracellular environment 

(Ca2+ levels in mM) through the sperm plasma membrane into the cytosol was demonstrated, 

spermatozoa were able to maintain the intracellular Ca2+ concentration in nM levels (hamster: 

[268]; bull: [253]; mouse: [305]). Important Ca2+ clearance mechanisms are plasma 

membrane H+ / Ca2+ ATPases and the Na+ / Ca2+ exchanger to remove Ca2+ out of the sperm 

cell or into the RNE (mouse: [302]). Considering the close connection between RNE and the 

mitochondrial sheet at the base of the flagellar midpiece (bull: [270, 306]), it is clear that 

mitochondria can also act as a Ca2+ buffer and clear the cytosol from Ca2+ [307].  

  

HCO3
- AND CA2+-DRIVEN PATHWAYS INDUCE HYPERMOTILITY 

So far, it is not completely known yet how the sperm cells modify the beat of their 

tails at the molecular level. It is clear that the Ca2+ rise and the subsequent onset of 

hyperactivated motility changes the sliding of the microtubules [308]. In sperm of primates, 

pigs and rodents, it has been demonstrated that hyperactivated motility is associated with a 

highly increased cAMP-dependent tyrosine phosphorylation of the flagellar proteins [212, 

309-315]. The generator of tyrosine phosphorylation events PKA is connected with the 

fibrous sheath of the sperm tail by A-kinase anchoring proteins (AKAPs). These proteins play 

very likely an important role in hyperactivated sperm motility (Hamster: [311]). Moreover, it 

has been suggested that AKAPs are tethering PKA to specific subcellular regions in close 

proximity of motility-related targets in the axonema [316-318]. It has been demonstrated that 

AKAP-3 and AKAP-4 play a central role in the onset of tyrosine kinases which cause 

extensive tyrosine phosphorylation of proteins in the sperm tail (hamster: [311]; human: 

[319]). This altered protein tyrosine phosphorylation status of the tail proteins is required to 
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obtain the hyperactivated sperm motility (hamster: [311]; human: [257]). Additionally, a 

testis-specific Ca2+-binding protein, CA-BYR, has been identified in the tyrosine 

phosphorylated proteins of the sperm tail during capacitation. It is known that CA-BYR 

interacts with the AKAPs on the sperm fibrous sheet though their role in sperm motility is still 

unclear [320, 321]. Nevertheless, changes in AKAP-mediated protein targeting surely play an 

essential role to induce hyperactivated sperm motility.  

Ca2+ is also involved in sperm motility regulating pathways independent of PKA. 

Calmodulin, located in the principal piece of the sperm tail [322], is an essential Ca2+ binding 

protein in the Ca2+-dependent modulation of mammalian sperm motility [306, 323-325]. It has 

been suggested that this pathway progresses parallel with cAMP / PKA activity although both 

are acting independently [322, 326, 327]. Binding of Ca2+ to calmodulin activates Ca2+ / 

calmodulin-dependent kinases [328] which phosphorylate a specific axonemal protein, 

resulting in hyperactivated motility [269]. Calmodulin kinases were identified in the flagella 

of bull [325] and men [328] sperm showing a relationship with hyperactivated motility. On 

the other hand, phosphatase activities were observed as well to reverse this effect by 

regulating dynein ATPase activities and thus these are directly involved in the axoneme 

function [329, 330] (Figure 6). Additionally, it has been shown that calmodulin kinases have 

also an effect on the acrosome reaction [329, 330]. 
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Figure 6: Schematic representation of signaling pathways involved in the regulation of mammalian 
sperm (hyper)motility. Progressive motility is regulated by low level activity of the sAC / cAMP / 
PKA pathway (green box) while hyperactivated motility is induced if the latter pathway acts on a 
much higher level in combination with the activation of the calmodulin kinase (CaMK) pathway (red 
box) (Image adapted from Turner [248]). 
 

IS HYPERACTIVATION LINKED TO PROTEIN TYROSINE PHOSPHORYLATION IN 

STALLION SPERM CAPACITATION? 

As discussed above, a clear relationship is suggested between hyperactivation and 

protein tyrosine phosphorylation in various mammalian species. On the other hand, it has 

been shown that hyperactivation and increased protein tyrosine phosphorylation can occur 

independently (mouse: [331]; bovine: [271]).  

In horse, type 10 sAC was observed to induce protein tyrosine phosphorylation in 

stallion sperm without the induction of hyperactivated motility [332]. Moreover, an increase 

in PKA activity and protein tyrosine phosphorylation without inducing hyperactivation was 

clearly observed after in vitro incubation of stallion spermatozoa with membrane soluble 

cAMP analogues and phosphodiesterase inhibitors (caffeine) [195, 333]. Also ROS [197] and 
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modified-Whittens capacitating medium with increased alkalinity (pH=7.8-8.0) [198, 334, 

335] only induce protein tyrosine phosphorylation. If stallion sperm is incubated in 

capacitating conditions at a physiological pH of 7.4, a Ca2+-mediated inhibitory effect on 

protein tyrosine phosphorylation has been demonstrated due to the formation of a Ca2+ / 

calmodulin complex which supports sperm phosphatase activity [198]. Under elevated pH 

capacitating conditions (pH=7.8-8.0), however, Ca2+ / Calmodulin-dependent kinases become 

dominant and play a downstream role in PKA-dependent protein tyrosine phosphorylation of 

stallion sperm. Subsequently, focal adhesion kinases act as activators of protein tyrosine 

phosphorylation in stallion spermatozoa downstream of PKA [334]. 

Both the Ca2+ / calmodulin-kinase and cAMP / PKA pathways must be activated to 

acquire functional (hyper)motility in stallion sperm [336]. Hyperactivation triggers for stallion 

sperm which do not support protein tyrosine phosphorylation in the sperm tail, are known as 

well. For example, incubating stallion sperm in 10% follicular fluid resulted in a decrease of 

three motility parameters (straight line velocity, straightness and linearity) which is indicative 

for acquiring hyperactivated motility [39]. Procaine was also reported to induce effective 

hyperactivated motility in stallion spermatozoa without protein tyrosine phosphorylation [32, 

337]. So hyperactivation can be induced in non-capacitated spermatozoa by increasing 

intracellular Ca2+ [32, 337, 338], even when external Ca2+ is lacking [337]. Surprisingly, the 

CATSPER channels did not participate in procaine-induced hyperactivation in stallion sperm 

[337]. In contrast to other mammals, ionomycin, progesterone and prostaglandin E1 did not 

show any association with an intracellular Ca2+ rise and subsequent hyperactived motility in 

stallion sperm [337]. These controversial observations can be explained as a consequence of a 

timing difference between hyperactivated motility and tail-associated protein tyrosine 

phosphorylation.  

Interestingly, a premature induction of protein tyrosine phosphorylation is observed 

after cryopreservation, commonly referred to as ‘cryocapacitation’ [339, 340]. The increased 

osmolarity associated with cryopreservation may induce the ROS-dependent increase of 

protein tyrosine phosphorylation in stallion sperm [341, 342]. Subsequent to cryopreservation, 

sperm cells have an increased intracellular Ca2+ concentration, an increased generation of 

ROS, and a reduced antioxidant capacity. This premature capacitation of sperm after 

cryopreservation may be responsible for the reduced longevity of sperm typically noted after 

freezing and thawing. 
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CHEMOTAXIS AND HYPERACTIVATED SPERM MOTILITY 

Sperm hyperactivation is initiated in the lower oviduct, far from the fertilization site. 

The flagellar beat pattern determines the swimming path that the sperm has to follow to reach 

the oocyte. Besides, the movement of the capacitated spermatozoa to the mature oocyte is also 

facilitated by smooth muscular contractions of the oviduct [343]. However, spermatozoa are 

additionally guided towards the oocyte by a chemical gradient, indicated as chemotaxis 

(Figure 7). The molecular triggers for chemotaxis in mammalian sperm are not completely 

understood yet. In various marine invertebrates, amino acids, peptides, lipids and sulfated 

steroids were identified as chemotactic key factors [344, 345] while in mammalian sperm, 

odorant-like factors seem potential candidate molecules to induce sperm chemotaxis. 

Receptors for these molecules were found at the base and the mid-piece of mature dog [346], 

mouse [347] and rat [348] spermatozoa. In human, it was demonstrated that sperm was 

chemotactically attracted by follicular fluid [349-351] or cumulus cell secretions [352]. A 

progesterone gradient around the cumulus-oocyte complex was considered as the active 

component [353, 354] as progesterone is the ligand that binds to the chemoreceptor on the 

CATSPER channels and subsequently initiates hyperactivated motility by inducing Ca2+ 

oscillations and increased bend amplitudes of the sperm tail [155, 156]. 
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Figure 7. Schematic representation of sperm transport and sperm retention at the fertilization site 
mediated by chemical guidance and oviduct movement. (A) The oviduct movement mechanically 
propels oviduct fluid droplets containing free-swimming capacitated spermatozoa towards the ovary. 
(B) The egg complex continuously secretes an attractant forming a gradient in the cumulus 
surroundings which may be expanded toward the isthmus by the cilia beating. This attractant gradient 
may chemically guide capacitated spermatozoa towards the egg. The attractant gradient disrupted 
during the oviduct contractions may be restored by the cilia beating during the quiescence period 
between contractions. These two mechanisms, the chemical guidance and the oviduct movement, 
would alternate as long as a viable egg complex is available in the oviduct (blue spermatozoa: 
capacitated; green spermatozoa: non-capacitated) (Image from Guidobaldi et al. [355]). 
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2.3. Acrosome reaction 
 

The Ca2+-dependent release of the acrosomal content is an essential step in 

mammalian fertilization as it facilitates the penetration through the acellular glycoprotein 

barrier of the oocyte. The sperm cell which passes through the ZP, will subsequently fuse with 

the oolemma of the mature oocyte [48] (Figure 1).  

The acrosome reaction physiologically occurs in the female genital tract at the site of 

fertilization. It is a multipoint membrane fusion event of the sperm plasma membrane and the 

outer acrosomal membrane [206, 357], which results in the generation of mixed vesicles 

containing plasma membrane and outer acrosomal membrane material. The remaining 

unfused acrosomal membranes, i.e. the equatorial area of the outer acrosome and the sperm 

plasma membrane connected to the inner acrosomal membrane covering the apical part of the 

nucleus, take over the surface function of the sperm plasma membrane [358, 359]. This newly 

designed sperm membrane contains a hairpin structure which binds to the oolemma resulting 

in gamete fusion and oocyte activation [48]. In boar sperm, it was demonstrated that SNARE 

interactions play a fundamental role in the interaction between the sperm plasma membrane 

and the outer plasma membrane. During capacitation these two membranes become docked 

by the formation of a trans ternary SNARE protein complex. Key factors involved in this 

process are syntaxin 1B and VAMP 3 from the plasma membrane and SNAP 23 from the 

outer acrosomal membrane [206]. However, an additional Ca2+ entry (in vitro by use of Ca2+ 

ionophores; in vivo after ZP binding) is required to facilitate the conversion to cis SNARE 

complexes which will result in acrosomal exocytosis. This event allows spermatozoa to 

penetrate the ZP [360-362]. SNARE complexes showed many interactions with different 

protein-like complexins [206, 363, 364], dynamins [365], synaptogamins [366], multi-PDZ 

domain protein MUPP1, calmodulin and calmodulin kinase IIα [367, 368], …. The specific 

role of these interactions is unknown but most likely they are involved in the stabilization of 

the trans SNARE complexes or in the Ca2+- mediated conversion to cis SNARE complexes. 

In mice, one of the main molecules triggering the acrosome reaction in capacitated 

spermatozoa is ZP glycoprotein 3 (ZP3) present on mature oocytes [369]. More recently, it 

was observed that just the contact with the intercellular matrix of the cumulus cell complex 

induced the acrosome reaction and mouse spermatozoa were able to pass through the ZP [49, 

50]. In many other mammals, including the horse, it is shown that capacitated, acrosome-
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intact spermatozoa initiate the ZP binding [48]. Nevertheless, stallion spermatozoa showed a 

low incidence of acrosome reaction after 1 h in vitro binding to the ZP [105, 370, 371]. 

Beside the ZP glycoproteins, other factors might be responsible for inducing the acrosome 

reaction in the horse. Cheng et al. [158] demonstrated that the acrosome reaction in stallion 

spermatozoa can be induced by progesterone, present in follicular fluid or cumulus cell 

secretions [39, 157, 372, 373], and is mediated by plasma membrane non-genomic 

progesterone receptors (Figure 3). Interestingly, the progesterone-induced acrosome reaction 

did not act in a PKA but in a PKC and PTK-dependent manner [159] which is very similar to 

ZP-mediated induction of the acrosome reaction. Indeed, Breitbart and Naor [210] showed 

that ZP3 activates a sperm PTK coupled to phospholipase C (PLC) which in turn stimulates 

PKC by generating diacylglycerol (DAG) from phosphatidylinositol-biphosphate (PIP2). How 

exactly the generation of DAG results in the onset of the acrosome reaction is not known yet. 

In contrast, if stallion sperm in vitro is incubated in HCO3
--enriched conditions, the acrosome 

reaction is mainly supported by the PKA pathway instead of in a PTK and PKC-dependent 

manner [159], indicating that progesterone and HCO3
- induce the acrosome reaction in a 

different way. There are various physiological inducers of the acrosome reaction, like ZP3 

and follicular fluid, but in vitro it can also be evoked by non-physiological inducers, like Ca2+ 

ionophore in combination with HCO3
- [220]. In vivo, a biological effective acrosome reaction 

will depend on both the presence and activity of physiological inducers as the ability of 

spermatozoa to respond to these inducers. Recently, McPartlin et al. [333] showed that the 

cAMP-driven activation of guanine-nucleotide exchange factors (RAPGEF3 / RAPGEF4) 

induced a sperm membrane depolarization in capacitated stallion spermatozoa. 

Depolarization-dependent Ca2+ influx subsequently initiated acrosomal exocytosis. However, 

the activation of these factors did not play any role in the activation of PKA and protein 

tyrosine phosphorylation (Figure 5). 
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 Conclusion 6.
So far, conventional IVF in the horse still does not work. Since more than 20 years, 

however, co-incubation of mature oocytes with capacitated sperm is the standard method to 

produce in vitro embryos in several species such as human, cattle, pigs and many laboratory 

animals (rats, mice,…). The development of a standardized equine conventional IVF system 

is important as this technique allows the production of foals from sub- and infertile horses 

with probably a greater efficiency when compared to ICSI. In vitro, stallion sperm is not able 

to penetrate the ZP of the mature oocyte. Theoretically, both sperm and oocytes can be 

responsible for this failure of fertilization. However, stallion sperm incubated in capacitating 

conditions is able to bind to the ZP while the acrosome reaction cannot be induced [36]. 

Moreover, in vivo-matured oocytes are not able to be fertilized in vitro while in vitro-matured 

oocytes can be fertilized in vivo after transfer to the oviduct of an inseminated mare [22, 28]. 

These findings strongly indicate that insufficient capacitation of stallion spermatozoa under in 

vitro conditions probably is the major obstacle why equine IVF does not work. We 

hypothesize that one or more oviduct-derived factor(s) is / are essential to allow an adequately 

capacitation-triggered stallion sperm cell to penetrate the oocyte. It is very likely that a sperm 

cell cannot fertilize the oocyte without adding this oviduct factor to equine IVF media. Since 

in vivo sperm capacitation takes place in the oviduct in the peri-ovulatory period, capacitation 

events in stallion sperm were studied in this thesis by means of an in vivo-like oviduct explant 

and an oviduct apical plasma membrane model. 



Chapter 1 General introduction 

48 

 

REFERENCES 

1. Heape W. On the artificial insemination of mares. Veterinarian 1898; 71:202-212. 
2. Oguri N, Tsutsumi Y. Non-surgical egg transfer in mares. J Reprod Fertil 1974; 

41:313-320. 
3. Scherzer J, Fayrer-Hosken RA, Ray L, Hurley DJ, Heusner GL. Advancements in 

large animal embryo transfer and related biotechnologies. Reprod Domest Anim 2008; 
43:371-376. 

4. Perry G. 2012 statistics of embryo collection and transfer in domestic farm animals 
Embryo Transfer Newsletter 2013; 31:1-67. 

5. Galli C, Colleoni S, Duchi R, Lagutina I, Lazzari G. Developmental competence of 
equine oocytes and embryos obtained by in vitro procedures ranging from in vitro 
maturation and ICSI to embryo culture, cryopreservation and somatic cell nuclear 
transfer. Animal Reproduction Science 2007; 98:39-55. 

6. Hinrichs K. In Vitro Production of Equine Embryos: State of the Art. Reproduction in 
Domestic Animals 2010; 45:3-8. 

7. Jacobson CC, Choi YH, Hayden SS, Hinrichs K. Recovery of mare oocytes on a fixed 
biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm 
injection. Theriogenology 2010; 73:1116-1126. 

8. Smits K, Govaere J, Hoogewijs M, De Schauwer C, Van Haesebrouck E, Van Poucke 
M, Peelman L, van den Berg M, Vullers T, Van Soom A. Birth of the first ICSI foal in 
the Benelux. Vlaams Diergeneeskundig Tijdschrift 2010; 79:134-138. 

9. Choi YH, Love CC, Love LB, Varner DD, Brinsko S, Hinrichs K. Developmental 
competence in vivo and in vitro of in vitro-matured equine oocytes fertilized by 
intracytoplasmic sperm injection with fresh or frozen-thawed spermatozoa. 
Reproduction 2002; 123:455-465. 

10. Smits K, Govaere J, Hoogewijs M, Piepers S, Van Soom A. A Pilot Comparison of 
Laser-Assisted vs Piezo Drill ICSI for the In Vitro Production of Horse Embryos. 
Reproduction in Domestic Animals 2012; 47:e1-e3. 

11. McKinnon AO, Squires EL, Carnevale EM, Hermenet MJ. Ovariectomized steroid-
treated mares as embryo transfer recipients and as a model to study the role of 
progestins in pregnancy maintenance. Theriogenology 1988; 29:1055-1063. 

12. Carnevale EM, Ginther OJ. Defective oocytes as a cause of subfertility in old mares. 
Biol. Reprod. Mono. 1995; 1:209-214. 

13. Choi YH, Roasa LM, Love CC, Varner DD, Brinsko S, Hinrichs K. Blastocyst 
formation rates in vivo and in vitro of in vitro-matured equine oocytes fertilized by 
intracytoplasmic sperm injection. Biology of Reproduction 2004; 70:1231-1238. 

14. Carnevale EM, Squires EL, Maclellan LJ, Alvarenga MA, Scott TJ. Use of oocyte 
transfer in a commercial breeding program for mares with reproductive abnormalities. 
J Am Vet Med Assoc 2001; 218:87-91, 37. 

15. Hinrichs K, Betschart RW, McCue PM, Squires EL. Effect of timing of follicle 
aspiration on pregnancy rate after oocyte transfer in mares. J Reprod Fertil Suppl 
2000:493-498. 

16. Squires EL, Wilson JM, Kato H, Blaszczyk A. A pregnancy after intracytoplasmic 
sperm injection into equine oocytes matured in vitro. Theriogenology 1996; 45:306. 

17. Li XH, Morris LHA, Allen WR. Influence of co-culture during maturation on the 
developmental potential of equine oocytes fertilized by intracytoplasmic sperm 
injection (ICSI). Reproduction 2001; 121:925-932. 

18. Hinrichs K, Choi YH. Assisted reproductive techniques in the horse. Clinical 
techniques in equine practice 2005; 4:210-218. 



Chapter 1 General introduction 

49 

 

19. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. The 
Lancet 1978; 312:366. 

20. Galli C, Duchi R, Crotti G, Turini P, Ponderato N, Colleoni S, Lagutina I, Lazzari G. 
Bovine embryo technologies. Theriogenology 2003; 59:599-616. 

21. Betteridge KJ. Farm animal embryo technologies: Achievements and perspectives. 
Theriogenology 2006; 65:905-913. 

22. Palmer E, Bezard J, Magistrini M, Duchamp G. In vitro fertilization in the horse. A 
retrospective study. J Reprod Fertil Suppl 1991; 44:375-384. 

23. Bézard J, Magistrini M, Battut I, Duchamp G, Palmer E. In vitro Fertilization in the 
Mare. Recueil De Medecine Veterinaire 1992; 168:993-1003. 

24. Dell'Aquila ME, Cho YS, Minoia P, Traina V, Lacalandra GM, Maritato F. Effects of 
follicular fluid supplementation of in-vitro maturation medium on the fertilization and 
development of equine oocytes after in-vitro fertilization or intracytoplasmic sperm 
injection. Human Reproduction 1997; 12:2766-2772. 

25. Choi YH, Okada Y, Hochi S, Braun J, Sato K, Oguri N. In-Vitro Fertilization Rate of 
Horse Oocytes with Partially Removed Zonae. Theriogenology 1994; 42:795-802. 

26. Dell'Aquila ME, Cho YS, Minoia P, Traina V, Fusco S, Lacalandra GM, Maritato F. 
Intracytoplasmic sperm injection (ICSI) versus conventional IVF on abottoir-derived 
and in vitro-matured equine oocytes. Theriogenology 1997; 47:1139-1156. 

27. Alm H, Torner H, Blottner S, Nurnberg G, Kanitz W. Effect of sperm 
cryopreservation and treatment with calcium ionophore or heparin on in vitro 
fertilization of horse oocytes. Theriogenology 2001; 56:817-829. 

28. Hinrichs K, Love CC, Brinsko SP, Choi YH, Varner DD. In vitro fertilization of in 
vitro-matured equine oocytes: Effect of maturation medium, duration of maturation, 
and sperm calcium ionophore treatment, and comparison with rates of fertilization in 
vivo after oviductal transfer. Biology of Reproduction 2002; 67:256-262. 

29. Mugnier S, Kervella M, Douet C, Canepa S, Pascal G, Deleuze S, Duchamp G, 
Monget P, Goudet G. The secretions of oviduct epithelial cells increase the equine in 
vitro fertilization rate: are osteopontin, atrial natriuretic peptide A and oviductin 
involved? Reproductive Biology and Endocrinology 2009; 7: 129. 

30. Li LY, Meintjes M, Graff KJ, Paul JB, Denniston RS, Godke RA. In vitro fertilization 
and development of in vitro-matured oocytes aspirated from pregnant mares. Biol. 
Reprod. Mono. 1995; 1:309-317. 

31. Graham JK. Methods for induction of capacitation and the acrosome reaction of 
stallion spermatozoa. Vet Clin North Am Equine Pract 1996; 12:111-117. 

32. McPartlin LA, Suarez SS, Czaya CA, Hinrichs K, Bedford-Guaus SJ. Hyperactivation 
of Stallion Sperm Is Required for Successful In Vitro Fertilization of Equine Oocytes. 
Biology of Reproduction 2009; 81:199-206. 

33. Dell'aquila ME, Fusco S, Lacalandra GM, Maritato F. In vitro maturation and 
fertilization of equine oocytes recovered during the breeding season. Theriogenology 
1996; 45:547-560. 

34. Gadella BM, Luna C. Cell biology and functional dynamics of the mammalian sperm 
surface. Theriogenology 2014; 81:74-84. 

35. Choi YH, Landim-Alvarenga FC, Seidel GE, Jr., Squires EL. Effect of capacitation of 
stallion sperm with polyvinylalcohol or bovine serum albumin on penetration of 
bovine zona-free or partially zona-removed equine oocytes. J Anim Sci 2003; 
81:2080-2087. 



Chapter 1 General introduction 

50 

 

36. Tremoleda JL, Gadella BM, Stout TAE, Colenbrander B, Bevers MM. Evaluation of 
sperm-oocyte interaction during in vitro fertilization in the horse.: Utrecht University; 
2003. Doctoral thesis. 

37. Roasa LM, Choi YH, Love CC, Romo S, Varner DD, Hinrichs K. Ejaculate and type 
of freezing extender affect rates of fertilization of horse oocytes in vitro. 
Theriogenology 2007; 68:560-566. 

38. Mugnier S, Dell'Aquila ME, Pelaez J, Douet C, Ambruosi B, De Santis T, Lacalandra 
GM, Lebos C, Sizaret PY, Delaleu B, Monget P, Mermillod P, et al. New insights into 
the mechanisms of fertilization: comparison of the fertilization steps, composition, and 
structure of the zona pellucida between horses and pigs. Biol Reprod 2009; 81:856-
870. 

39. Lange-Consiglio A, Cremonesi F. Hyperactivation of stallion sperm in follicular fluid 
for in vitro fertilization of equine oocytes. Reproduction, Fertility and Development 
2011; 24:193-194. 

40. Ambruosi B, Accogli G, Douet C, Canepa S, Pascal G, Monget P, Moros Nicolas C, 
Holmskov U, Mollenhauer J, Robbe-Masselot C, Vidal O, Desantis S, et al. Deleted in 
malignant brain tumor 1 is secreted in the oviduct and involved in the mechanism of 
fertilization in equine and porcine species. Reproduction 2013; 146:119-133. 

41. Dell'Aquila ME, De Felici M, Massari S, Maritato F, Minoia P. Effects of fetuin on 
zona pellucida hardening and fertilizability of equine oocytes matured in vitro. Biol 
Reprod 1999; 61:533-540. 

42. Kainer RA. Internal Reproductive Anatomy. In: Mckinnon AO, Squires EL, Vaala 
WE, Varner DD (eds.), Equine Reproduction, vol. 1, Second edition ed. West-Sussex, 
United Kingdom: Wiley-Blackwell; 2011: 1582-1597. 

43. Hunter RH, Flechon B, Flechon JE. Pre- and peri-ovulatory distribution of viable 
spermatozoa in the pig oviduct: a scanning electron microscope study. Tissue Cell 
1987; 19:423-436. 

44. Fazeli A, Duncan AE, Watson PF, Holt WV. Sperm-oviduct interaction: induction of 
capacitation and preferential binding of uncapacitated spermatozoa to oviductal 
epithelial cells in porcine species. Biol Reprod 1999; 60:879-886. 

45. Cohen-Dayag A, Tur-Kaspa I, Dor J, Mashiach S, Eisenbach M. Sperm capacitation in 
humans is transient and correlates with chemotactic responsiveness to follicular 
factors. Proc Natl Acad Sci U S A 1995; 92:11039-11043. 

46. Aitken RJ. The capacitation-apoptosis highway: oxysterols and mammalian sperm 
function. Biol Reprod 2011; 85:9-12. 

47. Aitken RJ, Baker MA. Oxidative stress and male reproductive biology. Reprod Fertil 
Dev 2004; 16:581-588. 

48. Yanagimachi R. Mammalian fertilization. In: Knobil E NJ (ed.) The Physiology of 
Reproduction, vol. 1. New York: Raven Press; 1994: 189-317. 

49. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. 
Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with 
the zona pellucida during in vitro fertilization. Proc Natl Acad Sci U S A 2011; 
108:4892-4896. 

50. Inoue N, Satouh Y, Ikawa M, Okabe M, Yanagimachi R. Acrosome-reacted mouse 
spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc Natl 
Acad Sci U S A 2011; 108:20008-20011. 

51. Katila T. Sperm-uterine interactions: a review. Anim Reprod Sci 2001; 68:267-272. 
52. Bader H. An investigation of sperm migration into the oviducts of the mare. J Reprod 

Fertil Suppl 1982; 32:59-64. 



Chapter 1 General introduction 

51 

 

53. Brinsko S, Varner D, Blanchard T. The effect of uterine lavage performed four hours 
post insemination on pregnancy rate in mares. Theriogenology 1991; 35:1111-1119. 

54. Scott M, Liu I, Overstreet J. Sperm transport to the oviducts: abnormalities and their 
clinical implications. In: Proceedings of the annual convention of the American 
association of equine practitioners 1995; vol. 41:1-2. 

55. Troedsson MH, Liu IK, Crabo BG. Sperm transport and survival in the mare: a review. 
Theriogenology 1998; 50:807-818. 

56. Katila T, Sankari S, Makela O. Transport of spermatozoa in the reproductive tracts of 
mares. J Reprod Fertil Suppl 2000:571-578. 

57. Kotilainen T, Huhtinen M, Katila T. Sperm-induced leukocytosis in the equine uterus. 
Theriogenology 1994; 41:629-636. 

58. Katila T. Onset and duration of uterine inflammatory response of mares after 
insemination with fresh semen. 1995. 

59. Troedsson M, Crabo B, Ibrahim N, Scott M. Mating-induced endometritis: 
mechanisms, clinical importance, and consequences. In: Proceedings of the annual 
convention of the American association of equine practitioners 1995; vol. 41:11-12. 

60. Troedsson M, Esteller-Vico A, Scoggin K, Woodward E, Squires E, Ball B, Maxwell 
H. Equine seminal plasma derived lactoferrin regulates binding of polymorphonuclear 
neutrophils (PMNs) to spermatozoa. Journal of Equine Veterinary Science 2014; 
34:49-49. 

61. Doty A, Buhi WC, Benson S, Scoggin KE, Pozor M, Macpherson M, Mutz M, 
Troedsson MH. Equine CRISP3 modulates interaction between spermatozoa and 
polymorphonuclear neutrophils. Biol Reprod 2011; 85:157-164. 

62. Arienti G, Carlini E, Polci A, Cosmi EV, Palmerini CA. Fatty acid pattern of human 
prostasome lipid. Arch Biochem Biophys 1998; 358:391-395. 

63. Arienti G, Carlini E, De Cosmo AM, Di Profio P, Palmerini CA. Prostasome-like 
particles in stallion semen. Biol Reprod 1998; 59:309-313. 

64. Carlini E, Palmerini CA, Cosmi EV, Arienti G. Fusion of sperm with prostasomes: 
effects on membrane fluidity. Arch Biochem Biophys 1997; 343:6-12. 

65. Cross NL, Mahasreshti P. Prostasome fraction of human seminal plasma prevents 
sperm from becoming acrosomally responsive to the agonist progesterone. Arch 
Androl 1997; 39:39-44. 

66. Sostaric E, Aalberts M, Gadella BM, Stout TA. The roles of the epididymis and 
prostasomes in the attainment of fertilizing capacity by stallion sperm. Anim Reprod 
Sci 2008; 107:237-248. 

67. Pons-Rejraji H, Artonne C, Sion B, Brugnon F, Canis M, Janny L, Grizard G. 
Prostasomes: inhibitors of capacitation and modulators of cellular signalling in human 
sperm. Int J Androl 2011; 34:568-580. 

68. Palmerini CA, Saccardi C, Carlini E, Fabiani R, Arienti G. Fusion of prostasomes to 
human spermatozoa stimulates the acrosome reaction. Fertil Steril 2003; 80:1181-
1184. 

69. Siciliano L, Marciano V, Carpino A. Prostasome-like vesicles stimulate acrosome 
reaction of pig spermatozoa. Reprod Biol Endocrinol 2008; 6:5. 

70. Park KH, Kim BJ, Kang J, Nam TS, Lim JM, Kim HT, Park JK, Kim YG, Chae SW, 
Kim UH. Ca2+ signaling tools acquired from prostasomes are required for 
progesterone-induced sperm motility. Sci Signal 2011; 4:31. 

71. Boyle MS, Cran DG, Allen WR, Hunter RH. Distribution of spermatozoa in the mare's 
oviduct. J Reprod Fertil Suppl 1987; 35:79-86. 



Chapter 1 General introduction 

52 

 

72. Scott MA, Liu IK, Overstreet JW, Enders AC. The structural morphology and 
epithelial association of spermatozoa at the uterotubal junction: a descriptive study of 
equine spermatozoa in situ using scanning electron microscopy. J Reprod Fertil Suppl 
2000:415-421. 

73. Weber J, Woods G, Aguilar J. Location of equine oviductal embryos on day 5 post 
ovulation and oviductal transport time of day 5 embryos autotransferred to the 
contralateral oviduct. Theriogenology 1996; 46:1477-1483. 

74. Battut I, Colchen S, Fieni F, Tainturier D, Bruyas JF. Success rates when attempting to 
nonsurgically collect equine embryos at 144, 156 or 168 hours after ovulation. Equine 
Veterinary Journal 1997; 29:60-62. 

75. Weber JA, Freeman DA, Vanderwall DK, Woods GL. Prostaglandin E2 hastens 
oviductal transport of equine embryos. Biology of reproduction 1991; 45:544-546. 

76.  Walter I. Culture of Bovine Oviduct Epithelial-Cells (Boec). Anatomical Record 1995; 
243:347-356. 

77. Thibodeaux JK, Myers MW, Goodeaux LL, Menezo Y, Roussel JD, Broussard JR, 
Godke RA. Evaluating an in vitro culture system of bovine uterine and oviduct 
epithelial cells for subsequent embryo co-culture. Reproduction, Fertility and 
Development 1992; 4:573-583. 

78. Dobrinski I, Jacob JR, Tennant BC, Ball BA. Generation of an equine oviductal 
epithelial cell line for the study of sperm-oviduct interactions. Theriogenology 1999; 
52:875-885. 

79. Thomas PGA, Ignotz GG, Ball BA, Miller PG, Brinsko SP, Currie B. Isolation, 
Culture, and Characterization of Equine Oviduct Epithelial-Cells in-Vitro. Molecular 
Reproduction and Development 1995; 41:468-478. 

80. Reischl J, Prelle K, Schol H, Neumuller C, Einspanier R, Sinowatz F, Wolf E. Factors 
affecting proliferation and dedifferentiation of primary bovine oviduct epithelial cells 
in vitro. Cell and Tissue Research 1999; 296:371-383. 

81. Harvey MB, Arcellanapanlilio MY, Zhang X, Schultz GA, Watson AJ. Expression of 
Genes Encoding Antioxidant Enzymes in Preimplantation Mouse and Cow Embryos 
and Primary Bovine Oviduct Cultures Employed for Embryo Coculture. Biology of 
Reproduction 1995; 53:532-540. 

82. De Pauw IM, Van Soom A, Laevens H, Verberckmoes S, de Kruif A. Sperm binding 
to epithelial oviduct explants in bulls with different nonreturn rates investigated with a 
new in vitro model. Biol Reprod 2002; 67:1073-1079. 

83. Rottmayer R, Ulbrich SE, Kolle S, Prelle K, Neumueller C, Sinowatz F, Meyer HHD, 
Wolf E, Hiendleder S. A bovine oviduct epithelial cell suspension culture system 
suitable for studying embryo-maternal interactions: morphological and functional 
characterization. Reproduction 2006; 132:637-648. 

84. Nelis H, D'Herde K, Goossens K, Vandenberghe L, Leemans B, Forier K, Smits K, 
Braeckmans K, Peelman L, Van Soom A. Equine oviduct explant culture: a basic 
model to decipher embryo-maternal communication. Reprod Fertil Dev 2014; 26:954-
966. 

85. Winger QA, delosRios P, Han VKM, Armstrong DT, Hill DJ, Watson AJ. Bovine 
oviductal and embryonic insulin-like growth factor binding proteins: Possible 
regulators of ''embryotrophic'' insulin-like growth factor circuits. Biology of 
Reproduction 1997; 56:1415-1423. 

86. Pollard JW, Plante C, King WA, Hansen PJ, Betteridge KJ, Suarez SS. Fertilizing-
Capacity of Bovine Sperm May Be Maintained by Binding to Oviductal Epithelial-
Cells. Biology of Reproduction 1991; 44:102-107. 



Chapter 1 General introduction 

53 

 

87. Petrunkina AM, Gehlhaar R, Drommer W, Waberski D, Topfer-Petersen E. Selective 
sperm binding to pig oviductal epithelium in vitro. Reproduction 2001; 121:889-896. 

88. Baillie HS, Pacey AA, Warren MA, Scudamore IW, Barratt CL. Greater numbers of 
human spermatozoa associate with endosalpingeal cells derived from the isthmus 
compared with those from the ampulla. Hum Reprod 1997; 12:1985-1992. 

89. Sostaric E, Dieleman SJ, van de Lest CH, Colenbrander B, Vos PL, Garcia-Gil N, 
Gadella BM. Sperm binding properties and secretory activity of the bovine oviduct 
immediately before and after ovulation. Mol Reprod Dev 2008; 75:60-74. 

90. Dobrinski I, Ignotz GG, Thomas PG, Ball BA. Role of carbohydrates in the 
attachment of equine spermatozoa to uterine tubal (oviductal) epithelial cells in vitro. 
Am J Vet Res 1996; 57:1635-1639. 

91. Lefebvre R, Suarez SS. Effect of capacitation on bull sperm binding to homologous 
oviductal epithelium. Biol Reprod 1996; 54:575-582. 

92. Sostaric E, van de Lest CH, Colenbrander B, Gadella BM. Dynamics of carbohydrate 
affinities at the cell surface of capacitating bovine sperm cells. Biol Reprod 2005; 
72:346-357. 

93. Suarez SS. Formation of a reservoir of sperm in the oviduct. Reprod Domest Anim 
2002; 37:140-143. 

94. Gualtieri R, Talevi R. In vitro-cultured bovine oviductal cells bind acrosome-intact 
sperm and retain this ability upon sperm release. Biol Reprod 2000; 62:1754-1762. 

95. Ellington JE, Varner DD, Burghardt RC, Meyers-Wallen VN, Barhoumi R, Brinsko 
SP, Ball BA. Cell-to-cell communication of equine uterine tube (oviduct) cells as 
determined by anchored cell analysis in culture. Animal Reproduction Science 1993; 
30:313-324. 

96. Thomas PG, Ball BA, Miller PG, Brinsko SP, Southwood L. A subpopulation of 
morphologically normal, motile spermatozoa attach to equine oviductal epithelial cell 
monolayers. Biol Reprod 1994; 51:303-309. 

97. Thomas PG, Ball BA, Brinsko SP. Interaction of equine spermatozoa with oviduct 
epithelial cell explants is affected by estrous cycle and anatomic origin of explant. 
Biol Reprod 1994; 51:222-228. 

98. Lefebvre R, Samper J. Interaction between stallion spermatozoa and oviductal 
epithelial cells in vitro. Equine Veterinary Journal 1993; 25:39-41. 

99. Parker WG, Sullivan J, First N. Sperm transport and distribution in the mare. Journal 
of reproduction and fertility. Supplement 1975:63-66. 

100. Ellington JE, Ignotz GG, Miller PG, Curie WB, Meyers-Wallen VN. Oviduct 
epithelial cell co-culture modifies stallion and bull sperm cell proteins. Biology of 
Reproduction Supplement 1993; 1(48):107. 

101. Ball BA, Brinsko SP, Thomas PGA, Miller PG, Ellington JE. Development to 
Blastocysts of One-Cell to 2-Cell Equine Embryos after Coculture with Uterine Tubal 
Epithelial-Cells. American Journal of Veterinary Research 1993; 54:1139-1144. 

102. Ellington JE, Samper J, Jones A, Oliver SA, Burnett K, Wright RW. Effects of bovine 
serum albumin on function of cryopreserved stallion spermatozoa during medium 
culture and uterine tube epithelial cell coculture. Am J Vet Res 1999; 60:363-367. 

103. Dobrinski I, Suarez SS, Ball BA. Intracellular calcium concentration in equine 
spermatozoa attached to oviductal epithelial cells in vitro. Biol Reprod 1996; 54:783-
788. 

104. Dobrinski I, Smith TT, Suarez SS, Ball BA. Membrane contact with oviductal 
epithelium modulates the intracellular calcium concentration of equine spermatozoa in 
vitro. Biol Reprod 1997; 56:861-869. 



Chapter 1 General introduction 

54 

 

105. Ellington JE, Ball BA, Yang X. Binding of stallion spermatozoa to the equine zona 
pellucida after coculture with oviductal epithelial cells. J Reprod Fertil 1993; 98:203-
208. 

106. Gualtieri R, Boni R, Tosti E, Zagami M, Talevi R. Intracellular calcium and protein 
tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian 
tube epithelium in vitro. Reproduction 2005; 129:51-60. 

107. Thomas P, Ball B, Brinsko S. Changes associated with induced capacitation influence 
the interaction between equine spermatozoa and oviduct epithelial cell monolayers. 
1995. 

108. Raychoudhury SS, Millette CF. Multiple fucosyltransferases and their carbohydrate 
ligands are involved in spermatogenic cell-Sertoli cell adhesion in vitro in rats. Biol 
Reprod 1997; 56:1268-1273. 

109. Geng JG, Raub TJ, Baker CA, Sawada GA, Ma L, Elhammer AP. Expression of a P-
selectin ligand in zona pellucida of porcine oocytes and P-selectin on acrosomal 
membrane of porcine sperm cells. Potential implications for their involvement in 
sperm-egg interactions. J Cell Biol 1997; 137:743-754. 

110. Lefebvre R, Lo MC, Suarez SS. Bovine sperm binding to oviductal epithelium 
involves fucose recognition. Biol Reprod 1997; 56:1198-1204. 

111. Tulsiani DR, Yoshida-Komiya H, Araki Y. Mammalian fertilization: a carbohydrate-
mediated event. Biol Reprod 1997; 57:487-494. 

112. Suarez SS. Carbohydrate-mediated formation of the oviductal sperm reservoir in 
mammals. Cells Tissues Organs 2001; 168:105-112. 

113. DeMott RP, Lefebvre R, Suarez SS. Carbohydrates mediate the adherence of hamster 
sperm to oviductal epithelium. Biol Reprod 1995; 52:1395-1403. 

114. Green CE, Bredl J, Holt WV, Watson PF, Fazeli A. Carbohydrate mediation of boar 
sperm binding to oviductal epithelial cells in vitro. Reproduction 2001; 122:305-315. 

115. Wagner A, Ekhlasi-Hundrieser M, Hettel C, Petrunkina A, Waberski D, Nimtz M, 
Topfer-Petersen E. Carbohydrate-based interactions of oviductal sperm reservoir 
formation-studies in the pig. Mol Reprod Dev 2002; 61:249-257. 

116. Suarez SS, Revah I, Lo M, Kolle S. Bull sperm binding to oviductal epithelium is 
mediated by a Ca2+-dependent lectin on sperm that recognizes Lewis-a trisaccharide. 
Biol Reprod 1998; 59:39-44. 

117. Revah I, Gadella BM, Flesch FM, Colenbrander B, Suarez SS. Physiological state of 
bull sperm affects fucose- and mannose-binding properties. Biol Reprod 2000; 
62:1010-1015. 

118. Ignotz GG, Lo MC, Perez CL, Gwathmey TM, Suarez SS. Characterization of a 
fucose-binding protein from bull sperm and seminal plasma that may be responsible 
for formation of the oviductal sperm reservoir. Biol Reprod 2001; 64:1806-1811. 

119. Calvete JJ, Raida M, Sanz L, Wempe F, Scheit KH, Romero A, Topfer-Petersen E. 
Localization and structural characterization of an oligosaccharide O-linked to bovine 
PDC-109. Quantitation of the glycoprotein in seminal plasma and on the surface of 
ejaculated and capacitated spermatozoa. FEBS Lett 1994; 350:203-206. 

120. Lefebvre R, Chenoweth PJ, Drost M, LeClear CT, MacCubbin M, Dutton JT, Suarez 
SS. Characterization of the oviductal sperm reservoir in cattle. Biol Reprod 1995; 
53:1066-1074. 

121. Lefebvre R, DeMott R, Suarez S, Samper J. Specific inhibition of equine sperm 
binding to oviductal epithelium. 1995. 

122. Sabeur K, Ball BA. Characterization of galactose-binding proteins in equine testis and 
spermatozoa. Anim Reprod Sci 2007; 101:74-84. 



Chapter 1 General introduction 

55 

 

123. Goluboff ET, Mertz JR, Tres LL, Kierszenbaum AL. Galactosyl receptor in human 
testis and sperm is antigenically related to the minor C-type (Ca(2+)-dependent) lectin 
variant of human and rat liver. Mol Reprod Dev 1995; 40:460-466. 

124. Ball BA, Dobrinski I, Fagnan MS, Thomas PG. Distribution of glycoconjugates in the 
uterine tube (oviduct) of horses. Am J Vet Res 1997; 58:816-822. 

125. Topfer-Petersen E, Ekhlasi-Hundrieser M, Kirchhoff C, Leeb T, Sieme H. The role of 
stallion seminal proteins in fertilisation. Anim Reprod Sci 2005; 89:159-170. 

126. Ekhlasi-Hundrieser M, Schafer B, Kirchhoff C, Hess O, Bellair S, Muller P, Topfer-
Petersen E. Structural and molecular characterization of equine sperm-binding 
fibronectin-II module proteins. Mol Reprod Dev 2005; 70:45-57. 

127. Suarez S, Redfern K, Raynor P, Martin F, Phillips DM. Attachment of boar sperm to 
mucosal explants of oviduct in vitro: possible role in formation of a sperm reservoir. 
Biol Reprod 1991; 44:998-1004. 

128. Parrish JJ, Susko-Parrish J, Winer MA, First NL. Capacitation of bovine sperm by 
heparin. Biol Reprod 1988; 38:1171-1180. 

129. Smith TT, Yanagimachi R. Attachment and release of spermatozoa from the caudal 
isthmus of the hamster oviduct. J Reprod Fertil 1991; 91:567-573. 

130. Demott RP, Suarez SS. Hyperactivated sperm progress in the mouse oviduct. Biol 
Reprod 1992; 46:779-785. 

131. Pacey AA, Davies N, Warren MA, Barratt CL, Cooke ID. Hyperactivation may assist 
human spermatozoa to detach from intimate association with the endosalpinx. Hum 
Reprod 1995; 10:2603-2609. 

132. Talevi R, Gualtieri R. Sulfated glycoconjugates are powerful modulators of bovine 
sperm adhesion and release from the oviductal epithelium in vitro. Biol Reprod 2001; 
64:491-498. 

133. Gualtieri R, Talevi R. Selection of highly fertilization-competent bovine spermatozoa 
through adhesion to the Fallopian tube epithelium in vitro. Reproduction 2003; 
125:251-258. 

134. Lapointe J, Bilodeau JF. Antioxidant defenses are modulated in the cow oviduct 
during the estrous cycle. Biol Reprod 2003; 68:1157-1164. 

135. Talevi R, Zagami M, Castaldo M, Gualtieri R. Redox regulation of sperm surface 
thiols modulates adhesion to the fallopian tube epithelium. Biol Reprod 2007; 76:728-
735. 

136. Gualtieri R, Mollo V, Duma G, Talevi R. Redox control of surface protein 
sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the 
oviductal epithelium and capacitation. Reproduction 2009; 138:33-43. 

137. Hunter RH, Nichol R. Capacitation potential of the fallopian tube: a study involving 
surgical insemination and the subsequent incidence of polyspermy. Gamete Res 1988; 
21:255-266. 

138. Leese HJ. The formation and function of oviduct fluid. J Reprod Fertil 1988; 82:843-
856. 

139. Buhi WC, Bazer FW, Alvarez IM, Mirando MA. In vitro synthesis of oviductal 
proteins associated with estrus and 17 beta-estradiol-treated ovariectomized ewes. 
Endocrinology 1991; 128:3086-3095. 

140. Buhi WC, Ashworth CJ, Bazer FW, Alvarez IM. In vitro synthesis of oviductal 
secretory proteins by estrogen-treated ovariectomized gilts. J Exp Zool 1992; 262:426-
435. 



Chapter 1 General introduction 

56 

 

141. McDowell KJ, Adams MH, Williams NM. Characterization of equine oviductal 
proteins synthesized and released at estrus and at day 4 after ovulation in bred and 
nonbred mares. J Exp Zool 1993; 267:217-224. 

142. Malayer JR, Hansen PJ, Buhi WC. Secretion of proteins by cultured bovine oviducts 
collected from estrus through early diestrus. J Exp Zool 1988; 248:345-353. 

143. Buhi WC, Vallet JL, Bazer FW. De novo synthesis and release of polypeptides from 
cyclic and early pregnant porcine oviductal tissue in explant culture. J Exp Zool 1989; 
252:79-88. 

144. Campbell DL, Douglas LW, Ramge JC. Cannulation of the equine oviduct and 
chemical analysis of oviduct fluid. Theriogenology 1979; 12:47-59. 

145. Engle C, Foley C, Plotka E, Witherspoon D. Free amino acids and protein 
concentrations in reproductive tract fluids of the mare. Theriogenology 1984; 21:919-
930. 

146. Ginther OJ, Gastal EL, Gastal MO, Beg MA. Dynamics of the Equine Preovulatory 
Follicle and Periovulatory Hormones: What's New? Journal of Equine Veterinary 
Science 2008; 28:454-460. 

147. Fetterolf PM, Jurisicova A, Tyson JE, Casper RF. Conditioned medium from human 
cumulus oophorus cells stimulates human sperm velocity. Biol Reprod 1994; 51:184-
192. 

148. Fetterolf PM, Sutherland CS, Josephy PD, Casper RF, Tyson JE. Preliminary 
characterization of a factor in human follicular fluid that stimulates human 
spermatozoa motion. Hum Reprod 1994; 9:1505-1511. 

149. Yao Y, Ho P, Yeung WS. Effects of human follicular fluid on the capacitation and 
motility of human spermatozoa. Fertil Steril 2000; 73:680-686. 

150. Yanagimachi R. In vitro capacitation of hamster spermatozoa by follicular fluid. J 
Reprod Fertil 1969; 18:275-286. 

151. Harper MJ. Relationship between sperm transport and penetration of eggs in the rabbit 
oviduct. Biol Reprod 1973; 8:441-450. 

152. Harper MJ. Stimulation of sperm movement from the isthmus to the site of 
fertilization in the rabbit oviduct. Biol Reprod 1973; 8:369-377. 

153. Harper CV, Barratt CL, Publicover SJ. Stimulation of human spermatozoa with 
progesterone gradients to simulate approach to the oocyte. Induction of [Ca(2+)](i) 
oscillations and cyclical transitions in flagellar beating. J Biol Chem 2004; 279:46315-
46325. 

154. Publicover S, Harper CV, Barratt C. [Ca2+]i signalling in sperm--making the most of 
what you've got. Nat Cell Biol 2007; 9:235-242. 

155. Lishko PV, Botchkina IL, Kirichok Y. Progesterone activates the principal Ca2+ 
channel of human sperm. Nature 2011; 471:387-391. 

156. Strunker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB. 
The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. 
Nature 2011; 471:382-386. 

157. Cheng FP, Fazeli AR, Voorhout WF, Tremoleda JL, Bevers MM, Colenbrander B. 
Progesterone in mare follicular fluid induces the acrosome reaction in stallion 
spermatozoa and enhances in vitro binding to the zona pellucida. Int J Androl 1998; 
21:57-66. 

158. Cheng FP, Gadella BM, Voorhout WF, Fazeli A, Bevers MM, Colenbrander B. 
Progesterone-induced acrosome reaction in stallion spermatozoa is mediated by a 
plasma membrane progesterone receptor. Biol Reprod 1998; 59:733-742. 



Chapter 1 General introduction 

57 

159. Rathi R, Colenbrander B, Stout TA, Bevers MM, Gadella BM. Progesterone induces 
acrosome reaction in stallion spermatozoa via a protein tyrosine kinase dependent 
pathway. Mol Reprod Dev 2003; 64:120-128. 

160. Boice ML, Geisert RD, Blair RM, Verhage HG. Identification and characterization of 
bovine oviductal glycoproteins synthesized at estrus. Biol Reprod 1990; 43:457-465. 

161. Murray MK. An estrogen-dependent glycoprotein is synthesized and released from the 
oviduct in a temporal- and region-specific manner during early pregnancy in the ewe. 
Biol Reprod 1993; 48:446-453. 

162. Kouba AJ, Abeydeera LR, Alvarez IM, Day BN, Buhi WC. Effects of the porcine 
oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic 
development in vitro. Biol Reprod 2000; 63:242-250. 

163. Werb Z, Sympson CJ, Alexander CM, Thomasset N, Lund LR, MacAuley A, 
Ashkenas J, Bissell MJ. Extracellular matrix remodeling and the regulation of 
epithelial-stromal interactions during differentiation and involution. Kidney 
international. Supplement 1996; 54:68. 

164. Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K. Growth-promoting 
activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. 
A possible new growth factor in serum. FEBS Lett 1992; 298:29-32. 

165. Nakanishi Y, Sugiura F, Kishi J, Hayakawa T. Collagenase inhibitor stimulates cleft 
formation during early morphogenesis of mouse salivary gland. Dev Biol 1986; 
113:201-206. 

166. Sato T, Ito A, Mori Y, Yamashita K, Hayakawa T, Nagase H. Hormonal regulation of 
collagenolysis in uterine cervical fibroblasts. Modulation of synthesis of 
procollagenase, prostromelysin and tissue inhibitor of metalloproteinases (TIMP) by 
progesterone and oestradiol-17 beta. Biochem J 1991; 275:645-650. 

167. Smith GW, Goetz TL, Anthony RV, Smith MF. Molecular cloning of an ovine ovarian 
tissue inhibitor of metalloproteinases: ontogeny of messenger ribonucleic acid 
expression and in situ localization within preovulatory follicles and luteal tissue. 
Endocrinology 1994; 134:344-352. 

168. Andreasen PA, Georg B, Lund LR, Riccio A, Stacey SN. Plasminogen activator 
inhibitors: hormonally regulated serpins. Mol Cell Endocrinol 1990; 68:1-19. 

169. Murphy G, Atkinson S, Ward R, Gavrilovic J, Reynolds JJ. The role of plasminogen 
activators in the regulation of connective tissue metalloproteinases. Ann N Y Acad Sci 
1992; 667:1-12. 

170. Buhi WC, Alvarez IM, Choi I, Cleaver BD, Simmen FA. Molecular cloning and 
characterization of an estrogen-dependent porcine oviductal secretory glycoprotein. 
Biol Reprod 1996; 55:1305-1314. 

171. Srivastava MD, Lippes J, Srivastava BI. Cytokines of the human reproductive tract. 
Am J Reprod Immunol 1996; 36:157-166. 

172. Kane MT, Morgan PM, Coonan C. Peptide growth factors and preimplantation 
development. Hum Reprod Update 1997; 3:137-157. 

173. Battut I, Palmer E, Driancourt M. Proteins synthesized and released by equine 
oviducts: characterization, variations, and interactions with spermatozoa. 1995. 

174. Goudet G. Fertilisation in the horse and paracrine signalling in the oviduct. Reprod 
Fertil Dev 2011; 23:941-951. 

175. Rose RJ, Hodgson DR. Manual of Equine Practice. Philadelphia 1999. 
176. Smith BP. Large Animal Internal Medicine: diseases of horses, cattle, sheep and goats. 

St Louis; 2002. 



Chapter 1 General introduction 

58 

 

177. Eriksen T, Terkelsen O, Grondal C, Bruck I. The equine oviduct - histology and 
PDGF localization. Theriogenology 1994; 41:191. 

178. McPartlin LA, Littell J, Mark E, Nelson JL, Travis AJ, Bedford-Guaus SJ. A defined 
medium supports changes consistent with capacitation in stallion sperm, as evidenced 
by increases in protein tyrosine phosphorylation and high rates of acrosomal 
exocytosis. Theriogenology 2008; 69:639-650. 

179. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of 
mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine 
phosphorylation. Development 1995; 121:1129-1137. 

180. Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, 
Kopf GS. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation 
and capacitation are regulated by a cAMP-dependent pathway. Development 1995; 
121:1139-1150. 

181. Osheroff JE, Visconti PE, Valenzuela JP, Travis AJ, Alvarez J, Kopf GS. Regulation 
of human sperm capacitation by a cholesterol efflux-stimulated signal transduction 
pathway leading to protein kinase A-mediated up-regulation of protein tyrosine 
phosphorylation. Mol Hum Reprod 1999; 5:1017-1026. 

182. Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the 
process of fertilization. Biochim Biophys Acta 2000; 1469:197-235. 

183. Breininger E, Cetica PD, Beconi MT. Capacitation inducers act through diverse 
intracellular mechanisms in cryopreserved bovine sperm. Theriogenology 2010; 
74:1036-1049. 

184. Byrd W. In vitro capacitation and the chemically induced acrosome reaction in bovine 
spermatozoa. J Exp Zool 1981; 215:35-46. 

185. Visconti PE, Stewart-Savage J, Blasco A, Battaglia L, Miranda P, Kopf GS, Tezon JG. 
Roles of bicarbonate, cAMP, and protein tyrosine phosphorylation on capacitation and 
the spontaneous acrosome reaction of hamster sperm. Biol Reprod 1999; 61:76-84. 

186. Visconti PE, Galantino-Homer H, Ning X, Moore GD, Valenzuela JP, Jorgez CJ, 
Alvarez JG, Kopf GS. Cholesterol efflux-mediated signal transduction in mammalian 
sperm. beta-cyclodextrins initiate transmembrane signaling leading to an increase in 
protein tyrosine phosphorylation and capacitation. J Biol Chem 1999; 274:3235-3242. 

187. van Gestel RA, Helms JB, Brouwers JF, Gadella BM. Effects of methyl-beta-
cyclodextrin-mediated cholesterol depletion in porcine sperm compared to somatic 
cells. Mol Reprod Dev 2005; 72:386-395. 

188. Bromfield EG, Aitken RJ, Gibb Z, Lambourne SR, Nixon B. Capacitation in the 
presence of methyl-beta-cyclodextrin results in enhanced zona pellucida-binding 
ability of stallion spermatozoa. Reproduction 2014; 147:153-166. 

189. Tateno H, Krapf D, Hino T, Sanchez-Cardenas C, Darszon A, Yanagimachi R, 
Visconti PE. Ca2+ ionophore A23187 can make mouse spermatozoa capable of 
fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. 
Proc Natl Acad Sci U S A 2013. 

190. Bielfeld P, Anderson RA, Mack SR, De Jonge CJ, Zaneveld LJ. Are capacitation or 
calcium ion influx required for the human sperm acrosome reaction? Fertil Steril 1994; 
62:1255-1261. 

191. Liu B, Wang P, Wang Z, Zhang W. The use of anti-VDAC2 antibody for the 
combined assessment of human sperm acrosome integrity and ionophore A23187-
induced acrosome reaction. PLoS One 2011; 6:e16985. 

192. Birck A, Labouriau R, Christensen P. Dynamics of the induced acrosome reaction in 
boar sperm evaluated by flow cytometry. Anim Reprod Sci 2009; 115:124-136. 



Chapter 1 General introduction 

59 

 

193. Fraser LR, Abeydeera LR, Niwa K. Ca(2+)-regulating mechanisms that modulate bull 
sperm capacitation and acrosomal exocytosis as determined by chlortetracycline 
analysis. Mol Reprod Dev 1995; 40:233-241. 

194. Balao da Silva CM, Spinaci M, Bucci D, Giaretta E, Pena FJ, Mari G, Galeati G. 
Effect of sex sorting on stallion spermatozoa: Heterologous oocyte binding, tyrosine 
phosphorylation and acrosome reaction assay. Anim Reprod Sci 2013; 141:68-74. 

195. Pommer AC, Rutllant J, Meyers SA. Phosphorylation of protein tyrosine residues in 
fresh and cryopreserved stallion spermatozoa under capacitating conditions. Biol 
Reprod 2003; 68:1208-1214. 

196. Funahashi H, Nagai T. Regulation of in vitro penetration of frozen-thawed boar 
spermatozoa by caffeine and adenosine. Mol Reprod Dev 2001; 58:424-431. 

197. Baumber J, Ball BA, Linfor JJ, Meyers SA. Reactive oxygen species and 
cryopreservation promote DNA fragmentation in equine spermatozoa. J Androl 2003; 
24:621-628. 

198. Gonzalez-Fernandez L, Macias-Garcia B, Velez IC, Varner DD, Hinrichs K. Calcium-
calmodulin and pH regulate protein tyrosine phosphorylation in stallion sperm. 
Reproduction 2012; 144:411-422. 

199. Marquez B, Suarez SS. Bovine sperm hyperactivation is promoted by alkaline-
stimulated Ca2+ influx. Biol Reprod 2007; 76:660-665. 

200. Mujica A, Neri-Bazan L, Tash JS, Uribe S. Mechanism for procaine-mediated 
hyperactivated motility in guinea pig spermatozoa. Mol Reprod Dev 1994; 38:285-292. 

201. Austin CR. The capacitation of the mammalian sperm. Nature 1952; 170:326. 
202. Chang MC. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. 

Nature 1951; 168:697-698. 
203. Gadella BM, Tsai PS, Boerke A, Brewis IA. Sperm head membrane reorganisation 

during capacitation. Int J Dev Biol 2008; 52:473-480. 
204. van Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JF, Gadella BM. 

Capacitation-dependent concentration of lipid rafts in the apical ridge head area of 
porcine sperm cells. Mol Hum Reprod 2005; 11:583-590. 

205. van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM. Multiple proteins 
present in purified porcine sperm apical plasma membranes interact with the zona 
pellucida of the oocyte. Mol Hum Reprod 2007; 13:445-454. 

206. Tsai PS, Garcia-Gil N, van Haeften T, Gadella BM. How pig sperm prepares to 
fertilize: stable acrosome docking to the plasma membrane. PLoS One 2010; 5:e11204. 

207. Tsai PS, Brewis IA, van Maaren J, Gadella BM. Involvement of complexin 2 in 
docking, locking and unlocking of different SNARE complexes during sperm 
capacitation and induced acrosomal exocytosis. PLoS One 2012; 7:e32603. 

208. Ijiri TW, Mahbub Hasan AK, Sato K. Protein-tyrosine kinase signaling in the 
biological functions associated with sperm. J Signal Transduct 2012; 2012:181560. 

209. Signorelli J, Diaz ES, Morales P. Kinases, phosphatases and proteases during sperm 
capacitation. Cell Tissue Res 2012; 349:765-782. 

210. Breitbart H, Naor Z. Protein kinases in mammalian sperm capacitation and the 
acrosome reaction. Rev Reprod 1999; 4:151-159. 

211. Flesch FM, Colenbrander B, van Golde LM, Gadella BM. Capacitation induces 
tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem 
Biophys Res Commun 1999; 262:787-792. 

212. Harayama H, Noda T, Ishikawa S, Shidara O. Relationship between cyclic AMP-
dependent protein tyrosine phosphorylation and extracellular calcium during 
hyperactivation of boar spermatozoa. Mol Reprod Dev 2012; 79:727-739. 



Chapter 1 General introduction 

60 

 

213. Ickowicz D, Finkelstein M, Breitbart H. Mechanism of sperm capacitation and the 
acrosome reaction: role of protein kinases. Asian J Androl 2012; 14:816-821. 

214. De Leeuw FE, Chen HC, Colenbrander B, Verkleij AJ. Cold-induced ultrastructural 
changes in bull and boar sperm plasma membranes. Cryobiology 1990; 27:171-183. 

215. Harrison RA, Ashworth PJ, Miller NG. Bicarbonate/CO2, an effector of capacitation, 
induces a rapid and reversible change in the lipid architecture of boar sperm plasma 
membranes. Mol Reprod Dev 1996; 45:378-391. 

216. Harrison RA, Gadella BM. Bicarbonate-induced membrane processing in sperm 
capacitation. Theriogenology 2005; 63:342-351. 

217. O'Rand MG, Fisher SJ. Localization of zona pellucida binding sites on rabbit 
spermatozoa and induction of the acrosome reaction by solubilized zonae. Dev Biol 
1987; 119:551-559. 

218. Gadella BM. The assembly of a zona pellucida binding protein complex in sperm. 
Reprod Domest Anim 2008; 43 Suppl 5:12-19. 

219. Devaux PF, Lopez-Montero I, Bryde S. Proteins involved in lipid translocation in 
eukaryotic cells. Chem Phys Lipids 2006; 141:119-132. 

220. Rathi R, Colenbrander B, Bevers MM, Gadella BM. Evaluation of in vitro 
capacitation of stallion spermatozoa. Biol Reprod 2001; 65:462-470. 

221. Flesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM, Colenbrander B, 
Gadella BM. Bicarbonate stimulated phospholipid scrambling induces cholesterol 
redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell 
Sci 2001; 114:3543-3555. 

222. Gadella BM, Gadella TW, Jr., Colenbrander B, van Golde LM, Lopes-Cardozo M. 
Visualization and quantification of glycolipid polarity dynamics in the plasma 
membrane of the mammalian spermatozoon. J Cell Sci 1994; 107 ( Pt 8):2151-2163. 

223. Gadella BM, Lopes-Cardozo M, van Golde LM, Colenbrander B, Gadella TW, Jr. 
Glycolipid migration from the apical to the equatorial subdomains of the sperm head 
plasma membrane precedes the acrosome reaction. Evidence for a primary 
capacitation event in boar spermatozoa. J Cell Sci 1995; 108:935-946. 

224. Boerke A, Brouwers JF, Olkkonen VM, van de Lest CH, Sostaric E, Schoevers EJ, 
Helms JB, Gadella BM. Involvement of bicarbonate-induced radical signaling in 
oxysterol formation and sterol depletion of capacitating mammalian sperm during in 
vitro fertilization. Biol Reprod 2013; 88:21. 

225. Brouwers JF, Boerke A, Silva PF, Garcia-Gil N, van Gestel RA, Helms JB, van de 
Lest CH, Gadella BM. Mass spectrometric detection of cholesterol oxidation in bovine 
sperm. Biol Reprod 2011; 85:128-136. 

226. de Lamirande E, Gagnon C. A positive role for the superoxide anion in triggering 
hyperactivation and capacitation of human spermatozoa. Int J Androl 1993; 16:21-25. 

227. Aitken RJ, Ryan AL, Baker MA, McLaughlin EA. Redox activity associated with the 
maturation and capacitation of mammalian spermatozoa. Free Radic Biol Med 2004; 
36:994-1010. 

228. Takakura K, Beckman JS, MacMillan-Crow LA, Crow JP. Rapid and irreversible 
inactivation of protein tyrosine phosphatases PTP1B, CD45, and LAR by peroxynitrite. 
Arch Biochem Biophys 1999; 369:197-207. 

229. Rodriguez PC, Beconi MT. Peroxynitrite participates in mechanisms involved in 
capacitation of cryopreserved cattle. Anim Reprod Sci 2009; 110:96-107. 

230. Rodriguez PC, Valdez LB, Zaobornyj T, Boveris A, Beconi MT. Nitric oxide and 
superoxide anion production during heparin-induced capacitation in cryopreserved 
bovine spermatozoa. Reprod Domest Anim 2011; 46:74-81. 



Chapter 1 General introduction 

61 

 

231. Boerke A, Tsai PS, Garcia-Gil N, Brewis IA, Gadella BM. Capacitation-dependent 
reorganization of microdomains in the apical sperm head plasma membrane: 
functional relationship with zona binding and the zona-induced acrosome reaction. 
Theriogenology 2008; 70:1188-1196. 

232. Buschiazzo J, Ialy-Radio C, Auer J, Wolf JP, Serres C, Lefevre B, Ziyyat A. 
Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization. 
PLoS One 2013; 8:e62919. 

233. Macias Garcia B, Gonzalez Fernandez L, Loux SC, Rocha A, Guimaraes T, Pena F, 
Varner DD, Hinrichs K. Effect of calcium, bicarbonate and albumin on capacitation-
related events in equine sperm. Reproduction 2014. 

234. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 
1:31-39. 

235. Elliott MH, Fliesler SJ, Ghalayini AJ. Cholesterol-dependent association of caveolin-1 
with the transducin alpha subunit in bovine photoreceptor rod outer segments: 
disruption by cyclodextrin and guanosine 5'-O-(3-thiotriphosphate). Biochemistry 
2003; 42:7892-7903. 

236. Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol 2003; 161:673-677. 
237. Morrow IC, Parton RG. Flotillins and the PHB domain protein family: rafts, worms 

and anaesthetics. Traffic 2005; 6:725-740. 
238. Fawcett DW. A comparative view of sperm ultrastructure. Biol Reprod 1970; 2:Suppl 

2:90-127. 
239. Wargo MJ, Smith EF. Asymmetry of the central apparatus defines the location of 

active microtubule sliding in Chlamydomonas flagella. Proc Natl Acad Sci U S A 
2003; 100:137-142. 

240. Milisav I. Dynein and dynein-related genes. Cell Motil Cytoskeleton 1998; 39:261-
272. 

241. Woolley DM, Vernon GG. Functional state of the axonemal dyneins during flagellar 
bend propagation. Biophys J 2002; 83:2162-2169. 

242. Turner RM. Tales from the tail: what do we really know about sperm motility? J 
Androl 2003; 24:790-803. 

243. Shingyoji C, Murakami A, Takahashi K. Local reactivation of Triton-extracted 
flagella by iontophoretic application of ATP. Nature 1977; 265:269-270. 

244. Tash JS, Means AR. Regulation of protein phosphorylation and motility of sperm by 
cyclic adenosine monophosphate and calcium. Biol Reprod 1982; 26:745-763. 

245. Tash JS. Protein phosphorylation: the second messenger signal transducer of flagellar 
motility. Cell Motil Cytoskeleton 1989; 14:332-339. 

246. Tash JS, Means AR. Ca2+ regulation of sperm axonemal motility. Methods Enzymol 
1987; 139:808-823. 

247. Tash JS, Bracho GE. Regulation of sperm motility: emerging evidence for a major role 
for protein phosphatases. J Androl 1994; 15:505-509. 

248. Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. 
Reprod Fertil Dev 2006; 18:25-38. 

249. Tash JS, Means AR. Cyclic adenosine 3',5' monophosphate, calcium and protein 
phosphorylation in flagellar motility. Biol Reprod 1983; 28:75-104. 

250. Suarez SS, Vincenti L, Ceglia MW. Hyperactivated motility induced in mouse sperm 
by calcium ionophore A23187 is reversible. J Exp Zool 1987; 244:331-336. 

251. White DR, Aitken RJ. Relationship between calcium, cyclic AMP, ATP, and 
intracellular pH and the capacity of hamster spermatozoa to express hyperactivated 
motility. Gamete Res 1989; 22:163-177. 



Chapter 1 General introduction 

62 

 

252. San Agustin JT, Witman GB. Role of cAMP in the reactivation of demembranated 
ram spermatozoa. Cell Motil Cytoskeleton 1994; 27:206-218. 

253. Ho HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at 
the axoneme by Ca2+ and not cAMP. Dev Biol 2002; 250:208-217. 

254. Liguori L, Rambotti MG, Bellezza I, Minelli A. Electron microscopic cytochemistry 
of adenylyl cyclase activity in mouse spermatozoa. J Histochem Cytochem 2004; 
52:833-836. 

255. Hess KC, Jones BH, Marquez B, Chen Y, Ord TS, Kamenetsky M, Miyamoto C, 
Zippin JH, Kopf GS, Suarez SS, Levin LR, Williams CJ, et al. The "soluble" adenylyl 
cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 
2005; 9:249-259. 

256. Visconti PE, Johnson LR, Oyaski M, Fornes M, Moss SB, Gerton GL, Kopf GS. 
Regulation, localization, and anchoring of protein kinase A subunits during mouse 
sperm capacitation. Dev Biol 1997; 192:351-363. 

257. Leclerc P, de Lamirande E, Gagnon C. Cyclic adenosine 3',5'monophosphate-
dependent regulation of protein tyrosine phosphorylation in relation to human sperm 
capacitation and motility. Biol Reprod 1996; 55:684-692. 

258. Si Y, Olds-Clarke P. Evidence for the involvement of calmodulin in mouse sperm 
capacitation. Biol Reprod 2000; 62:1231-1239. 

259. Smith GD, Wolf DP, Trautman KC, da Cruz e Silva EF, Greengard P, Vijayaraghavan 
S. Primate sperm contain protein phosphatase 1, a biochemical mediator of motility. 
Biol Reprod 1996; 54:719-727. 

260. Vijayaraghavan S, Stephens DT, Trautman K, Smith GD, Khatra B, da Cruz e Silva 
EF, Greengard P. Sperm motility development in the epididymis is associated with 
decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol Reprod 
1996; 54:709-718. 

261. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod 
Update 2006; 12:23-37. 

262. Suarez SS, Katz DF, Owen DH, Andrew JB, Powell RL. Evidence for the function of 
hyperactivated motility in sperm. Biol Reprod 1991; 44:375-381. 

263. Suarez SS, Dai X. Hyperactivation enhances mouse sperm capacity for penetrating 
viscoelastic media. Biol Reprod 1992; 46:686-691. 

264. Stauss CR, Votta TJ, Suarez SS. Sperm motility hyperactivation facilitates penetration 
of the hamster zona pellucida. Biol Reprod 1995; 53:1280-1285. 

265. Quill TA, Ren D, Clapham DE, Garbers DL. A voltage-gated ion channel expressed 
specifically in spermatozoa. Proc Natl Acad Sci U S A 2001; 98:12527-12531. 

266. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. A 
sperm ion channel required for sperm motility and male fertility. Nature 2001; 
413:603-609. 

267. Ishijima S, Mohri H, Overstreet JW, Yudin AI. Hyperactivation of monkey 
spermatozoa is triggered by Ca2+ and completed by cAMP. Mol Reprod Dev 2006; 
73:1129-1139. 

268. Suarez SS, Varosi SM, Dai X. Intracellular calcium increases with hyperactivation in 
intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc Natl 
Acad Sci U S A 1993; 90:4660-4664. 

269. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update 2008; 14:647-
657. 



Chapter 1 General introduction 

63 

 

270. Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) 
store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 
65:1606-1615. 

271. Marquez B, Suarez SS. Different signaling pathways in bovine sperm regulate 
capacitation and hyperactivation. Biol Reprod 2004; 70:1626-1633. 

272. Marquez B, Ignotz G, Suarez SS. Contributions of extracellular and intracellular Ca2+ 
to regulation of sperm motility: Release of intracellular stores can hyperactivate 
CatSper1 and CatSper2 null sperm. Dev Biol 2007; 303:214-221. 

273. Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of 
the sperm flagellum that regulates hyperactivated motility. Biol Reprod 2003; 
68:1590-1596. 

274. Carlson AE, Quill TA, Westenbroek RE, Schuh SM, Hille B, Babcock DF. Identical 
phenotypes of CatSper1 and CatSper2 null sperm. J Biol Chem 2005; 280:32238-
32244. 

275. Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, Kirichok Y, 
Ramsey IS, Quill TA, Clapham DE. All four CatSper ion channel proteins are required 
for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A 
2007; 104:1219-1223. 

276. Carlson AE, Westenbroek RE, Quill T, Ren D, Clapham DE, Hille B, Garbers DL, 
Babcock DF. CatSper1 required for evoked Ca2+ entry and control of flagellar 
function in sperm. Proc Natl Acad Sci U S A 2003; 100:14864-14868. 

277. Navarro B, Kirichok Y, Chung JJ, Clapham DE. Ion channels that control fertility in 
mammalian spermatozoa. Int J Dev Biol 2008; 52:607-613. 

278. Maas D, Storey B, Mastroianni Jr L. Hydrogen ion and carbon dioxide content of the 
oviductal fluid of the rhesus monkey (Macaca mulatta). Fertility and sterility 1977; 
28:981-985. 

279. Zeng Y, Oberdorf JA, Florman HM. pH regulation in mouse sperm: identification of 
Na(+)-, Cl(-)-, and HCO3(-)-dependent and arylaminobenzoate-dependent regulatory 
mechanisms and characterization of their roles in sperm capacitation. Dev Biol 1996; 
173:510-520. 

280. Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human 
spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 2010; 
140:327-337. 

281. Navarro B, Kirichok Y, Clapham DE. KSper, a pH-sensitive K+ current that controls 
sperm membrane potential. Proc Natl Acad Sci U S A 2007; 104:7688-7692. 

282. Hernandez-Gonzalez EO, Trevino CL, Castellano LE, de la Vega-Beltran JL, Ocampo 
AY, Wertheimer E, Visconti PE, Darszon A. Involvement of cystic fibrosis 
transmembrane conductance regulator in mouse sperm capacitation. J Biol Chem 2007; 
282:24397-24406. 

283. Alasmari W, Barratt CL, Publicover SJ, Whalley KM, Foster E, Kay V, Martins da 
Silva S, Oxenham SK. The clinical significance of calcium-signalling pathways 
mediating human sperm hyperactivation. Hum Reprod 2013; 28:866-876. 

284. Castellano LE, Trevino CL, Rodriguez D, Serrano CJ, Pacheco J, Tsutsumi V, Felix R, 
Darszon A. Transient receptor potential (TRPC) channels in human sperm: expression, 
cellular localization and involvement in the regulation of flagellar motility. FEBS Lett 
2003; 541:69-74. 

285. Wiesner B, Weiner J, Middendorff R, Hagen V, Kaupp UB, Weyand I. Cyclic 
nucleotide-gated channels on the flagellum control Ca2+ entry into sperm. J Cell Biol 
1998; 142:473-484. 



Chapter 1 General introduction 

64 

 

286. Arnoult C, Cardullo RA, Lemos JR, Florman HM. Activation of mouse sperm T-type 
Ca2+ channels by adhesion to the egg zona pellucida. Proc Natl Acad Sci U S A 1996; 
93:13004-13009. 

287. Benoff S. Voltage dependent calcium channels in mammalian spermatozoa. Front 
Biosci 1998; 3:D1220-1240. 

288. Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF. CaV2.2 and CaV2.3 
(N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse 
sperm. J Biol Chem 2000; 275:21210-21217. 

289. Felix R. Molecular physiology and pathology of Ca2+-conducting channels in the 
plasma membrane of mammalian sperm. Reproduction 2005; 129:251-262. 

290. Darszon A, Lopez-Martinez P, Acevedo JJ, Hernandez-Cruz A, Trevino CL. T-type 
Ca2+ channels in sperm function. Cell Calcium 2006; 40:241-252. 

291. Naaby-Hansen S, Wolkowicz MJ, Klotz K, Bush LA, Westbrook VA, Shibahara H, 
Shetty J, Coonrod SA, Reddi PP, Shannon J, Kinter M, Sherman NE, et al. Co-
localization of the inositol 1,4,5-trisphosphate receptor and calreticulin in the 
equatorial segment and in membrane bounded vesicles in the cytoplasmic droplet of 
human spermatozoa. Mol Hum Reprod 2001; 7:923-933. 

292. Trevino CL, Santi CM, Beltran C, Hernandez-Cruz A, Darszon A, Lomeli H. 
Localisation of inositol trisphosphate and ryanodine receptors during mouse 
spermatogenesis: possible functional implications. Zygote 1998; 6:159-172. 

293. Costello S, Michelangeli F, Nash K, Lefievre L, Morris J, Machado-Oliveira G, 
Barratt C, Kirkman-Brown J, Publicover S. Ca2+-stores in sperm: their identities and 
functions. Reproduction 2009; 138:425-437. 

294. Olson SD, Suarez SS, Fauci LJ. A model of CatSper channel mediated calcium 
dynamics in mammalian spermatozoa. Bull Math Biol 2010; 72:1925-1946. 

295. Alasmari W, Costello S, Correia J, Oxenham SK, Morris J, Fernandes L, Ramalho-
Santos J, Kirkman-Brown J, Michelangeli F, Publicover S, Barratt CL. Ca2+ signals 
generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. J 
Biol Chem 2013; 288:6248-6258. 

296. Chang H, Suarez SS. Two distinct Ca(2+) signaling pathways modulate sperm 
flagellar beating patterns in mice. Biol Reprod 2011; 85:296-305. 

297. Walensky LD, Snyder SH. Inositol 1,4,5-trisphosphate receptors selectively localized 
to the acrosomes of mammalian sperm. J Cell Biol 1995; 130:857-869. 

298. Herrick SB, Schweissinger DL, Kim SW, Bayan KR, Mann S, Cardullo RA. The 
acrosomal vesicle of mouse sperm is a calcium store. J Cell Physiol 2005; 202:663-
671. 

299. Lawson C, Dorval V, Goupil S, Leclerc P. Identification and localisation of SERCA 2 
isoforms in mammalian sperm. Mol Hum Reprod 2007; 13:307-316. 

300. Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL. 
Hyperactivated sperm motility driven by CatSper2 is required for fertilization. Proc 
Natl Acad Sci U S A 2003; 100:14869-14874. 

301. Xia J, Reigada D, Mitchell CH, Ren D. CATSPER channel-mediated Ca2+ entry into 
mouse sperm triggers a tail-to-head propagation. Biol Reprod 2007; 77:551-559. 

302. Wennemuth G, Babcock DF, Hille B. Calcium clearance mechanisms of mouse sperm. 
J Gen Physiol 2003; 122:115-128. 

303. Olson SD, Fauci LJ, Suarez SS. Mathematical modeling of calcium signaling during 
sperm hyperactivation. Mol Hum Reprod 2011; 17:500-510. 



Chapter 1 General introduction 

65 

 

304. Olson SD, Suarez SS, Fauci LJ. Coupling biochemistry and hydrodynamics captures 
hyperactivated sperm motility in a simple flagellar model. J Theor Biol 2011; 
283:203-216. 

305. Wennemuth G, Carlson AE, Harper AJ, Babcock DF. Bicarbonate actions on flagellar 
and Ca2+ -channel responses: initial events in sperm activation. Development 2003; 
130:1317-1326. 

306. Ho HC, Suarez SS. Hyperactivation of mammalian spermatozoa: function and 
regulation. Reproduction 2001; 122:519-526. 

307. Nicholls DG, Chalmers S. The integration of mitochondrial calcium transport and 
storage. J Bioenerg Biomembr 2004; 36:277-281. 

308. Lindemann CB, Lesich KA. Flagellar and ciliary beating: the proven and the possible. 
J Cell Sci 2010; 123:519-528. 

309. Mahony MC, Gwathmey T. Protein tyrosine phosphorylation during hyperactivated 
motility of cynomolgus monkey (Macaca fascicularis) spermatozoa. Biol Reprod 1999; 
60:1239-1243. 

310. Si Y, Okuno M. Role of tyrosine phosphorylation of flagellar proteins in hamster 
sperm hyperactivation. Biol Reprod 1999; 61:240-246. 

311. Si Y. Hyperactivation of hamster sperm motility by temperature-dependent tyrosine 
phosphorylation of an 80-kDa protein. Biol Reprod 1999; 61:247-252. 

312. Baker MA, Hetherington L, Aitken RJ. Identification of SRC as a key PKA-stimulated 
tyrosine kinase involved in the capacitation-associated hyperactivation of murine 
spermatozoa. J Cell Sci 2006; 119:3182-3192. 

313. Kaneto M, Krisfalusi M, Eddy EM, O'Brien DA, Miki K. Bicarbonate-induced 
phosphorylation of p270 protein in mouse sperm by cAMP-dependent protein kinase. 
Mol Reprod Dev 2008; 75:1045-1053. 

314. Goto N, Harayama H. Calyculin A-sensitive protein phosphatases are involved in 
maintenance of progressive movement in mouse spermatozoa in vitro by suppression 
of autophosphorylation of protein kinase A. J Reprod Dev 2009; 55:327-334. 

315. Harayama H, Nishijima K, Murase T, Sakase M, Fukushima M. Relationship of 
protein tyrosine phosphorylation state with tolerance to frozen storage and the 
potential to undergo cyclic AMP-dependent hyperactivation in the spermatozoa of 
Japanese Black bulls. Mol Reprod Dev 2010; 77:910-921. 

316. Carrera A, Gerton GL, Moss SB. The major fibrous sheath polypeptide of mouse 
sperm: structural and functional similarities to the A-kinase anchoring proteins. Dev 
Biol 1994; 165:272-284. 

317. Mandal A, Naaby-Hansen S, Wolkowicz MJ, Klotz K, Shetty J, Retief JD, Coonrod 
SA, Kinter M, Sherman N, Cesar F, Flickinger CJ, Herr JC. FSP95, a testis-specific 
95-kilodalton fibrous sheath antigen that undergoes tyrosine phosphorylation in 
capacitated human spermatozoa. Biol Reprod 1999; 61:1184-1197. 

318. Vijayaraghavan S, Liberty GA, Mohan J, Winfrey VP, Olson GE, Carr DW. Isolation 
and molecular characterization of AKAP110, a novel, sperm-specific protein kinase 
A-anchoring protein. Mol Endocrinol 1999; 13:705-717. 

319. Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, Marto JA, 
Shabanowitz J, Herr JC, Hunt DF, Visconti PE. Phosphoproteome analysis of 
capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring 
protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 2003; 
278:11579-11589. 

320. Naaby-Hansen S, Mandal A, Wolkowicz MJ, Sen B, Westbrook VA, Shetty J, 
Coonrod SA, Klotz KL, Kim YH, Bush LA, Flickinger CJ, Herr JC. CABYR, a novel 



Chapter 1 General introduction 

66 

 

calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein involved in 
capacitation. Dev Biol 2002; 242:236-254. 

321. Newell AE, Fiedler SE, Ruan JM, Pan J, Wang PJ, Deininger J, Corless CL, Carr DW. 
Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP 
interaction. Cell Motil Cytoskeleton 2008; 65:539-552. 

322. Schlingmann K, Michaut MA, McElwee JL, Wolff CA, Travis AJ, Turner RM. 
Calmodulin and CaMKII in the sperm principal piece: evidence for a motility-related 
calcium/calmodulin pathway. J Androl 2007; 28:706-716. 

323. Means AR, Tash JS, Chafouleas JG, Lagace L, Guerriero V. Regulation of the 
cytoskeleton by Ca2+-calmodulin and cAMP. Ann N Y Acad Sci 1982; 383:69-84. 

324. Bendahmane M, Lynch C, 2nd, Tulsiani DR. Calmodulin signals capacitation and 
triggers the agonist-induced acrosome reaction in mouse spermatozoa. Arch Biochem 
Biophys 2001; 390:1-8. 

325. Ignotz GG, Suarez SS. Calcium/calmodulin and calmodulin kinase II stimulate 
hyperactivation in demembranated bovine sperm. Biol Reprod 2005; 73:519-526. 

326. Jaiswal BS, Conti M. Calcium regulation of the soluble adenylyl cyclase expressed in 
mammalian spermatozoa. Proc Natl Acad Sci U S A 2003; 100:10676-10681. 

327. Litvin TN, Kamenetsky M, Zarifyan A, Buck J, Levin LR. Kinetic properties of 
"soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J Biol Chem 
2003; 278:15922-15926. 

328. Marin-Briggiler CI, Jha KN, Chertihin O, Buffone MG, Herr JC, Vazquez-Levin MH, 
Visconti PE. Evidence of the presence of calcium/calmodulin-dependent protein 
kinase IV in human sperm and its involvement in motility regulation. J Cell Sci 2005; 
118:2013-2022. 

329. Tash JS, Krinks M, Patel J, Means RL, Klee CB, Means AR. Identification, 
characterization, and functional correlation of calmodulin-dependent protein 
phosphatase in sperm. J Cell Biol 1988; 106:1625-1633. 

330. Carrera A, Moos J, Ning XP, Gerton GL, Tesarik J, Kopf GS, Moss SB. Regulation of 
protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent 
mechanism: identification of A kinase anchor proteins as major substrates for tyrosine 
phosphorylation. Dev Biol 1996; 180:284-296. 

331. Olds-Clarke P. Sperm from tw32/+ mice: capacitation is normal, but hyperactivation 
is premature and nonhyperactivated sperm are slow. Dev Biol 1989; 131:475-482. 

332. McPartlin LA, Visconti PE, Bedford-Guaus SJ. Guanine-nucleotide exchange factors 
(RAPGEF3/RAPGEF4) induce sperm membrane depolarization and acrosomal 
exocytosis in capacitated stallion sperm. Biol Reprod 2011; 85:179-188. 

333. Thomas AD, Meyers SA, Ball BA. Capacitation-like changes in equine spermatozoa 
following cryopreservation. Theriogenology 2006; 65:1531-1550. 

334. Gonzalez-Fernandez L, Macias-Garcia B, Loux SC, Varner DD, Hinrichs K. Focal 
adhesion kinases and calcium/calmodulin-dependent protein kinases regulate protein 
tyrosine phosphorylation in stallion sperm. Biol Reprod 2013; 88:138. 

335. Aalberts M, Sostaric E, Wubbolts R, Wauben MW, Nolte-'t Hoen EN, Gadella BM, 
Stout TA, Stoorvogel W. Spermatozoa recruit prostasomes in response to capacitation 
induction. Biochim Biophys Acta 2013; 1834:2326-2335. 

336. Lasko J, Schlingmann K, Klocke A, Mengel GA, Turner R. Calcium/calmodulin and 
cAMP/protein kinase-A pathways regulate sperm motility in the stallion. Anim 
Reprod Sci 2012; 132:169-177. 

337. Loux SC, Crawford KR, Ing NH, Gonzalez-Fernandez L, Macias-Garcia B, Love CC, 
Varner DD, Velez IC, Choi YH, Hinrichs K. CatSper and the relationship of 



Chapter 1 General introduction 

67 

 

hyperactivated motility to intracellular calcium and pH kinetics in equine sperm. Biol 
Reprod 2013; 89:123. 

338. Ortgies F, Klewitz J, Gorgens A, Martinsson G, Sieme H. Effect of procaine, 
pentoxifylline and trolox on capacitation and hyperactivation of stallion spermatozoa. 
Andrologia 2012; 44 Suppl 1:130-138. 

339. Bailey JL, Bilodeau JF, Cormier N. Semen cryopreservation in domestic animals: a 
damaging and capacitating phenomenon. J Androl 2000; 21:1-7. 

340. Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod 
Sci 2000; 60-61:481-492. 

341. Aitken RJ, Wang YF, Liu J, Best F, Richardson DW. The influence of medium 
composition, osmolarity and albumin content on the acrosome reaction and fertilizing 
capacity of human spermatozoa: development of an improved zona-free hamster egg 
penetration test. Int J Androl 1983; 6:180-193. 

342. Burnaugh L, Ball BA, Sabeur K, Thomas AD, Meyers SA. Osmotic stress stimulates 
generation of superoxide anion by spermatozoa in horses. Anim Reprod Sci 2010; 
117:249-260. 

343. Eisenbach M, Giojalas LC. Sperm guidance in mammals - an unpaved road to the egg. 
Nat Rev Mol Cell Biol 2006; 7:276-285. 

344. Eisenbach M. Sperm chemotaxis. Rev Reprod 1999; 4:56-66. 
345. Eisenbach M. Mammalian sperm chemotaxis and its association with capacitation. 

Dev Genet 1999; 25:87-94. 
346. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M. Olfactory receptors are 

displayed on dog mature sperm cells. J Cell Biol 1993; 123:1441-1452. 
347. Fukuda N, Yomogida K, Okabe M, Touhara K. Functional characterization of a mouse 

testicular olfactory receptor and its role in chemosensing and in regulation of sperm 
motility. J Cell Sci 2004; 117:5835-5845. 

348. Walensky LD, Roskams AJ, Lefkowitz RJ, Snyder SH, Ronnett GV. Odorant 
receptors and desensitization proteins colocalize in mammalian sperm. Mol Med 1995; 
1:130-141. 

349. Villanueva-Diaz C, Vadillo-Ortega F, Kably-Ambe A, Diaz-Perez MA, Krivitzky SK. 
Evidence that human follicular fluid contains a chemoattractant for spermatozoa. Fertil 
Steril 1990; 54:1180-1182. 

350. Ralt D, Goldenberg M, Fetterolf P, Thompson D, Dor J, Mashiach S, Garbers DL, 
Eisenbach M. Sperm attraction to a follicular factor(s) correlates with human egg 
fertilizability. Proc Natl Acad Sci U S A 1991; 88:2840-2844. 

351. Ralt D, Manor M, Cohen-Dayag A, Tur-Kaspa I, Ben-Shlomo I, Makler A, Yuli I, Dor 
J, Blumberg S, Mashiach S, et al. Chemotaxis and chemokinesis of human 
spermatozoa to follicular factors. Biol Reprod 1994; 50:774-785. 

352. Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC, Tur-Kaspa I, Eisenbach 
M. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells 
secrete sperm chemoattractants. Hum Reprod 2005; 20:761-767. 

353. Wang Y, Storeng R, Dale PO, Abyholm T, Tanbo T. Effects of follicular fluid and 
steroid hormones on chemotaxis and motility of human spermatozoa in vitro. Gynecol 
Endocrinol 2001; 15:286-292. 

354. Guidobaldi HA, Teves ME, Unates DR, Anastasia A, Giojalas LC. Progesterone from 
the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus 
complex. PLoS One 2008; 3:3040. 



Chapter 1 General introduction 

68 

 

355. Guidobaldi HA, Teves ME, Unates DR, Giojalas LC. Sperm transport and retention at 
the fertilization site is orchestrated by a chemical guidance and oviduct movement. 
Reproduction 2012; 143:587-596. 

356. Zanetti N, Mayorga LS. Acrosomal swelling and membrane docking are required for 
hybrid vesicle formation during the human sperm acrosome reaction. Biol Reprod 
2009; 81:396-405. 

357. Vigil P. Gamete membrane fusion in hamster spermatozoa with reacted equatorial 
segment. Gamete Res 1989; 23:203-213. 

358. Vjugina U, Evans JP. New insights into the molecular basis of mammalian sperm-egg 
membrane interactions. Front Biosci 2008; 13:462-476. 

359. Kim KS, Gerton GL. Differential release of soluble and matrix components: evidence 
for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse 
sperm. Dev Biol 2003; 264:141-152. 

360. Kim E, Yamashita M, Kimura M, Honda A, Kashiwabara S, Baba T. Sperm 
penetration through cumulus mass and zona pellucida. Int J Dev Biol 2008; 52:677-
682. 

361. Buffone MG, Foster JA, Gerton GL. The role of the acrosomal matrix in fertilization. 
Int J Dev Biol 2008; 52:511-522. 

362. Roggero CM, De Blas GA, Dai H, Tomes CN, Rizo J, Mayorga LS. 
Complexin/synaptotagmin interplay controls acrosomal exocytosis. J Biol Chem 2007; 
282:26335-26343. 

363. Zhao L, Burkin HR, Shi X, Li L, Reim K, Miller DJ. Complexin I is required for 
mammalian sperm acrosomal exocytosis. Dev Biol 2007; 309:236-244. 

364. Zhao L, Shi X, Li L, Miller DJ. Dynamin 2 associates with complexins and is found in 
the acrosomal region of mammalian sperm. Mol Reprod Dev 2007; 74:750-757. 

365. Castillo Bennett J, Roggero CM, Mancifesta FE, Mayorga LS. Calcineurin-mediated 
dephosphorylation of synaptotagmin VI is necessary for acrosomal exocytosis. J Biol 
Chem 2010; 285:26269-26278. 

366. Ackermann F, Zitranski N, Heydecke D, Wilhelm B, Gudermann T, Boekhoff I. The 
Multi-PDZ domain protein MUPP1 as a lipid raft-associated scaffolding protein 
controlling the acrosome reaction in mammalian spermatozoa. J Cell Physiol 2008; 
214:757-768. 

367. Ackermann F, Zitranski N, Borth H, Buech T, Gudermann T, Boekhoff I. 
CaMKIIalpha interacts with multi-PDZ domain protein MUPP1 in spermatozoa and 
prevents spontaneous acrosomal exocytosis. J Cell Sci 2009; 122:4547-4557. 

368. Bleil JD, Wassarman PM. Identification of a ZP3-binding protein on acrosome-intact 
mouse sperm by photoaffinity crosslinking. Proc Natl Acad Sci U S A 1990; 87:5563-
5567. 

369. Cheng FP, Fazeli A, Voorhout WF, Marks A, Bevers MM, Colenbrander B. Use of 
peanut agglutinin to assess the acrosomal status and the zona pellucida-induced 
acrosome reaction in stallion spermatozoa. J Androl 1996; 17:674-682. 

370. Meyers SA, Liu IK, Overstreet JW, Vadas S, Drobnis EZ. Zona pellucida binding and 
zona-induced acrosome reactions in horse spermatozoa: comparisons between fertile 
and subfertile stallions. Theriogenology 1996; 46:1277-1288. 

371. Saaranen MJ, Calvo L, Dennison L, Banks S, Bustillo M, Dorfmann AD, Goldstein M, 
Thorsell L, Schulman JD, Sherins RJ. Acrosome reaction inducing activity in 
follicular fluid correlates with progesterone concentration but not with oocyte maturity 
or fertilizability. Hum Reprod 1993; 8:1448-1454. 



Chapter 1 General introduction 

69 

 

372. Meyers SA, Overstreet JW, Liu IK, Drobnis EZ. Capacitation in vitro of stallion 
spermatozoa: comparison of progesterone-induced acrosome reactions in fertile and 
subfertile males. J Androl 1995; 16:47-54. 

 



 

 

 

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CHAPTER 2  

AIMS AND OUTLINES OF THE THESIS    



 

 

 

 



Chapter 2 Aims and Outlines of the Thesis 

73 

 

How do stallion spermatozoa interact with the oviduct environment in the peri-

ovulatory period and obtain their fertilizing capability? Understanding this fundamental 

question will provide essential knowledge to effectively induce in vitro capacitation of 

stallion spermatozoa and equine fertilization. As fertilization occurs in vivo in the oviduct, we 

hypothesize that oviduct factors are essential to induce capacitation of the sperm cells in vitro. 

If we are able to identify the capacitation triggers present in the oviduct and add these factors 

to the current equine IVF media, we will establish a repeatable conventional equine IVF 

system. To this end, we used an oviduct explant and apical plasma membrane (APM) model 

to study the sperm-oviduct interactions, induction of sperm capacitation, release of oviduct 

epithelium-bound spermatozoa and fertilization in the horse.  

The specific scientific aims of this thesis were: 

1. To examine the involvement of various carbohydrates, glycosaminoglycans, S-S 

reductants and capacitation triggers (Ca2+, HCO3
- and albumin) in sperm-oviduct 

binding using two different sperm-oviduct binding inhibition assays (oviduct explant 

and oviduct APM assay) (CHAPTER 3).    

 

2. To identify whether or not binding of stallion sperm to oviduct explants in the late pre-

ovulatory period induces tail-associated protein tyrosine phosphorylation and if so, 

which regulating mechanism causes this effect (CHAPTER 4). 

 

3. To evaluate the role of various maternal reproductive tract fluids and cells on the 

release of viable, tail-associated protein tyrosine phosphorylated stallion spermatozoa, 

probably involved in the initiation of hyperactivated sperm motility (CHAPTER 5). 

 

4. To assess if viable, hyperactivated and tail-associated protein tyrosine phosphorylated 

spermatozoa are able to in vitro fertilize mature equine oocytes after inducing both 

capacitation characteristics in 2 different ways: (1) using in vivo-like capacitating 

conditions based on the results of chapter 5, and (2) after incubation in air followed by 

procaine exposure. We question previously published equine IVF results based on in 

vitro sperm capacitation by procaine. Additionally, we assess the direct effect of 

procaine on equine oocytes (CHAPTER 6).  
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CHAPTER 3  
AFFINITY OF STALLION SPERM FOR 
OVIDUCT BINDING IS INHIBITED BY 

THE COMBINATION OF BICARBONATE 
AND ALBUMIN, BUT BINDING 

RELEASE IS NOT TRIGGERED BY 
CALCIUM, CARBOHYDRATES OR S-S 

REDUCTANTS  
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ABSTRACT 

 

In many species, sperm binding to oviduct epithelium is believed to be an essential 

step in generating a highly fertile capacitated sperm population primed for fertilization. In 

several mammalian species, this interaction is based on carbohydrate-lectin recognition. D-

galactose has previously been characterized as a key-molecule that facilitates sperm-oviduct 

binding in the horse. We used oviduct explant and oviduct apical plasma membrane (APM) 

assays to investigate the effects of various carbohydrates, glycosaminoglycans, lectins, S-S 

reductants and the capacitating factors albumin, Ca2+ and HCO3
- on sperm-oviduct binding in 

the horse. Carbohydrate-specific lectin staining indicated that N-acetylgalactosamine, N-

acetylneuraminic acid (sialic acid), and D-mannose or D-glucose were the most abundant 

carbohydrates on equine oviduct epithelia whereas D-galactose moieties were not detected. 

However, in a competitive binding assay, sperm-oviduct binding density was not influenced 

by any tested carbohydrates, glycosaminoglycans, lectins or penicillamine, nor did the 

glycosaminoglycans induce sperm tail-associated protein tyrosine phosphorylation. 

Furthermore, N-glycosidase F (PNGase) pretreatment of oviduct explants and APM did not 

alter sperm-oviduct binding density. By contrast, a combination of the sperm capacitating 

factors albumin and HCO3
- severely reduced (>10 fold) stallion sperm affinity for oviduct 

binding by inducing rapid head-to-head agglutination, both of which events were independent 

of Ca2+ and an elevated pH (7.9). Conversely, neither albumin, HCO3
- or any other 

capacitating factor could induce release of oviduct-bound sperm. In conclusion, a combination 

of albumin and HCO3
- markedly reduced sperm affinity for binding to oviduct epithelium 

presumably in part due to the head-to-head sperm agglutination induced. 
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INTRODUCTION 

 

Sperm storage after mating is a female reproductive tract phenomenon that has been 

observed in various animals with the presumed aim to preserving sperm fertilizing capacity in 

species in which mating and ovulation are poorly synchronized [1]. In the mare [2, 3] and 

many other mammals (rabbit: [4]; pig: [5]; sheep: [6]; mouse: [7]; cattle: [8]; hamster: [9]), an 

oviductal sperm reservoir is established at the uterotubal junction and the caudal part of the 

oviductal isthmus. This sperm reservoir contains spermatozoa bound to the epithelial surface 

by their apical head region. Most of the bound sperm are found in pockets formed by mucosal 

folds. The precise identity of molecules involved in sperm-oviduct interaction is not clear, but 

there are indications that the interaction in several mammals is mediated by carbohydrate 

ligands in a species-specific manner [10]. In general, spermatozoa contain lectin-like 

receptors on their plasma membrane with affinity for carbohydrate moieties found on the 

surface of oviduct epithelial cells. Interactions between the two can therefore be studied using 

competitive carbohydrate-lectin binding assays. It has also been hypothesized that, when 

ovulation is imminent, oviduct bound spermatozoa become capacitated and subsequently 

release. The releasing factor needs to have either a stronger affinity for the carbohydrate-

ligand receptors on the sperm plasma membrane, with sperm release as a result of a 

competitive interaction as shown in cattle [11-13], or enzymatic activity capable of disturbing 

the lectin recognition site or substrate.  

 

Bull spermatozoa actively bind via the apical part of the sperm head surface to the 

oviduct epithelium [14]. Only non-capacitated bovine spermatozoa are able to bind to 

oviductal epithelium in vitro [15, 16]. Importantly, the bound spermatozoa appear to remain 

in a rather quiescent state in the early pre-ovulatory stage oviduct. This has been demonstrated 

by incubation of rabbit, bull, boar and stallion spermatozoa with the apical plasma membranes 

of pre-ovulatory oviductal epithelial cells; binding to oviductal epithelium prolonged sperm 

longevity [17, 18] by maintaining low cytoplasmic Ca2+ levels [19]. Oviduct binding of non-

capacitated bull sperm can be inhibited by fucose and fucoidan (a sulphated polysaccharide 

that predominantly consists of fucose) [11], while pretreatment of bovine oviduct explants 

with fucosidase significantly reduces sperm binding [20]. Not only the presence of fucose, but 

its position within the complex carbohydrate moieties is important for functional sperm 

oviduct binding. For instance, only trisaccharide Lewis A (α-1-Fuc[1, 4]-β-D-Gal[1, 3]-d-
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GlcNAc) significantly reduced binding of spermatozoa to oviduct epithelia whereas other 

fucose-containing oligosaccharides failed to influence sperm-oviduct binding [11, 21]. A 

competitive carbohydrate binding inhibition assay, using fetuin and sialic acid individually, 

was successfully used to block hamster sperm-oviduct binding [22]. In pigs, the major 

inhibitory effect could be mimicked by biantennary structures containing a mannose core with 

6-sialylated lactosamines at one or more termini. In pigs, as in cattle, binding to carbohydrate 

moieties was very specific; different isomers of the specific motif did not bind sperm [23].  

 

At the late pre-ovulatory stage, it is thought that oviduct bound sperm undergo final 

maturation or capacitation and are released from oviduct epithelial cells by undergoing 

plasma membrane changes and achieving hyperactivated motility at various rates [24]. In 

many mammals, this release coincides with raised levels of capacitation factors [25]. In cattle, 

sulfated glycosaminoglycans induce a reduction in fucose binding by spermatozoa, which is 

regulated by direct competition. This suggests that glycosaminoglycans released into the 

bovine oviduct near the time of ovulation display a stronger affinity for sperm plasma 

membrane receptors than fucose moieties expressed on the oviduct membrane [11]. In 

addition, disulphide-reductants like penicillamine inhibit sperm-oviduct binding and facilitate 

sperm release from the oviduct epithelium. It was suggested that reversible adhesion of bull 

spermatozoa to the oviduct epithelium is modulated by redox control of sperm surface protein 

sulfhydryls [26].   

 

Much less is known about sperm-oviduct epithelium binding in the horse. Inhibition of 

stallion sperm binding to oviduct epithelial monolayers has been reported after adding fetuin, 

asialofetuin or D-galactose to the culture medium (D-galactose gave the most prominent 

effects) [27]. Moreover, since galactose-binding proteins have been observed on the rostral 

and post-acrosomal regions of the sperm head of non-capacitated stallion spermatozoa [28], 

the authors concluded that D-galactose was the key molecule facilitating the binding of non-

capacitated spermatozoa to oviduct epithelium in the horse [27, 29]. Nevertheless, equine 

oviduct epithelium expresses very few D-galactose moieties [30, 31], and it is more likely that 

other, as yet undefined, factors are involved in regulating binding of non-capacitated stallion 

sperm to the oviduct epithelium. 



Chapter 3  

80 

 

For release of sperm from the epithelium lining the equine oviduct, high 

concentrations of sulfated glycosaminoglycans in oviductal fluid (originating from the 

ovulatory follicle or secreted from the oviduct epithelium) may be important [32]. 

Glycosaminoglycans and disulphide-reductants have been reported to play a role in bovine 

sperm-oviduct binding and sperm release from the epithelium [12]. We therefore decided to 

investigate the involvement of various carbohydrates in the regulation of equine sperm-

oviduct binding and release, as well as that of known capacitation factors such as albumin, 

Ca2+ and HCO3
- ions. 

 

MATERIALS AND METHODS 

 

Chemicals and reagents  

Dulbecco’s phosphate buffered saline (DPBS), HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid) buffered saline (HBS), fetal bovine serum (FBS) (Batch: 

07G8814F) and Dulbecco's Modified Eagle’s Medium / Nutrient Mixture F-12 (DMEM/F12) 

were purchased from Gibco® Life Technologies (Merelbeke, Belgium). Various 

carbohydrates and glycosaminoglycans (D-galactose, N-acetylgalactosamine, N-

acetylglucosamine, fetuin, asialofetuin, D-fucose, fucoidan, D-mannose, mannan, N-

acetylneuraminic (sialic) acid, chondroitin sulfate, dextran sulfate, heparan sulfate, heparin, 

hyaluronic acid, keratan sulfate), D-penicillamine, fatty acid-free bovine serum albumin 

(A9418; cell culture tested), ethylenediaminetetraacetic acid (EDTA) and all chemicals not 

otherwise listed were obtained from Sigma-Aldrich (Bornem, Belgium). Various lectins (non-

fluorescein conjugated and fluorescein conjugated): PNA (Arachis hypogaea [peanut] 

agglutinin), DBA (Dolichos biflorus agglutinin), HPA (Helix pomatia agglutinin), WGA 

(Triticum vulgare [wheat germ] agglutinin), UEA I (Ulex europaeus agglutinin), SNA 

(Sambucus nigra agglutinin), Con A (Canavalia ensiformis agglutinin), LCA (Lens culinaris 

agglutinin), PSA (Pisum sativum [pea] agglutinin) were purchased from Labconsult SPRL 

(Vector Labs, Brussels, Belgium). Hoechst 33342 and Alexa Fluor 488-conjugated goat anti-

mouse antibody were obtained from Molecular Probes (Ghent, Belgium). Monoclonal 

4G10®Platinum, anti-phosphotyrosine mouse antibodies were obtained from Millipore 

(Overijse, Belgium). Protease inhibitors (Comlate Mini, EDTA-free) were purchased from 

Roche (Mannheim, Germany). 
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Animals 

Oviducts were collected at a local slaughterhouse (Euro Meat Group, Moeskroen, 

Belgium) from healthy Warmblood mares aged between 5 and 22 years and without any 

visible reproductive tract pathology. Only oviducts from mares with growing follicles and 

without a corpus luteum on the ovaries in combination with estrous oedema in the uterine 

wall, indicating that the mare was in estrus, were used for this study.  

 

Preparation of oviduct explants and isolation of oviduct apical plasma membranes  

Five oviducts per experiment were prepared for oviduct explant culture, as previously 

described by Nelis et al. [33]. Briefly, oviducts from mares in early estrus were dissected free 

of extraneous connective tissue, clamped at both ends and transported on ice in sterile 0.9% 

saline containing 50 μg / ml gentamycin. Upon arrival at the lab, the oviducts were washed in 

PBS and the epithelial cells were harvested by scraping the ampullary-isthmic mucosa of the 

longitudinally incised oviduct. The harvested cellular material was transferred to a tube 

containing HEPES-buffered Tyrode’s albumin pyruvate lactate (HEPES buffered TALP) (10 

μg / ml gentamycin sulfate, 10 mM HEPES, and 3 mg / ml BSA; based on [34]) and left to 

settle for 10 min, after which the cell pellet was resuspended in 3 ml of fresh HEPES-buffered 

TALP washing medium. The process of sedimentation was repeated twice. The time-span 

from slaughter of mares to seeding of the cells was approximately 3 to 4 h. Next, the 

harvested cellular material was washed and cultured overnight in Dulbecco's Modified 

Eagle’s Medium / Nutrient Mixture F-12 (DMEM/F12) with 10% fetal bovine serum (FBS) at 

38.5 °C in a humidified atmosphere of 5% CO2-in-air.  

To isolate oviduct apical plasma membrane (APM) [17], oviducts from early estrous 

mares were collected as for oviduct explant preparation. All further processing of the oviducts 

in the laboratory took place on ice (0-4°C). Upon arrival in the lab, oviducts were dissected 

free from surrounding tissue, opened longitudinally and rinsed with ice-cold saline. 

Subsequently, oviduct epithelia from the ampullary-isthmic mucosa was gently harvested by 

scraping and then suspended in hypotonic buffer solution (HiP; 50 mM mannitol, 2 mM Tris-

HCl, pH=7.1). This suspension was homogenized by Turrax blending (IKA T-18 Ultra Turrax 

Digital Homogenizer; 115 VAC; Metrohm Belgium n.v., Antwerp, Belgium) at maximum 

speed for 2 x 3 min, and further sonicated for 5 x 5 sec. To this homogenized suspension, 10 
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mM solid MgCl2 (hexahydrate; Bornem, Belgium) was added, to cross-link non-apical cell 

plasma membranes. After incubation on a rotation plate for 30 min, the suspension was 

centrifuged at 3000g for 15 min to remove large cellular debris and agglutinated non-apical 

plasma membranes. The pellet was discarded from the supernatant and the supernatant was 

subsequently centrifuged at 27 000g for 30 min. After these centrifugation steps, the resulting 

pellet was resuspended in Mannitol buffer (MB; 100mM mannitol, 20mM Tris-Hepes buffer, 

pH=7.4) and homogenized by pipetting for 5 min. In order to improve the degree of purity, 

unwanted debris was washed from the APM fraction using a 15 min 6000g centrifugation 

step. The resulting pellet was discarded and the supernatant was centrifuged at 23 000g for 30 

min to pellet the washed APM vesicles. Pelleted APM vesicles were then suspended in HBS 

supplemented with protease inhibitors and stored at -80°C until further use. Purity of the 

membrane isolates was assessed by measuring apical plasma membrane γ-glutamyl 

transpeptidase activity [17]. Fractions of oviduct APM samples were collected, and protein 

content was determined using a modification of the method described by Lowry et al. [35], 

using BSA as the standard. 

 

Semen collection and preparation  

Semen was collected using an artificial vagina (Colorado State University AV) from 

three adult stallions of proven fertility. The raw ejaculate was filtered through gauze to 

remove the gel fraction and any debris, before visual evaluation of sperm motility by light 

microscopy (200x) on a heated stage at 37.0 °C. Semen with adequate sperm motility was 

immediately transported to the laboratory for further processing. The nuclei of spermatozoa in 

fresh semen with a concentration of 100 to 300 x 106 spermatozoa / ml were labelled by pre-

incubating one ml semen with 3.2 μM Hoechst 33342 for 10 min. Subsequently, the 

suspension of Hoechst stained spermatozoa was washed using a 45 / 90% Percoll® gradient 

[36, 37]. Next, the sperm pellet was diluted in Whitten’s medium (100 mM NaCl, 4.7 mM 

KCl, 1.2 mM MgCl2, 5.5 mM glucose, 22 mM HEPES, 2.4 mM sodium lactate, 1.0 mM 

pyruvate and 0.05% polyvinylpyrrolidone ; pH=7.4 and 280-300 mOsm / kg; adapted from 

McPartlin et al. [38]; further reffered as non-capacitating medium) to the desired 

concentration (10, 20 or 50 x 106 spermatozoa / ml). At least 3 replicates of each experiment 

were performed using an ejaculate from each of the three stallions. The study was approved 

by the Ethical Committee of Ghent University’s Faculty of Veterinary Medicine (EC2013/175 
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and EC2013/176). 

Sperm-oviduct explant and sperm-oviduct APM assay 

Oviduct explants were cultured in DMEM/F12 medium with 10% FBS, equilibrated 

with 5% CO2 in a humidified atmosphere at 38.5 °C, as described by Nelis et al. [33]. After 

overnight incubation, oviduct explant material contained vesicular epithelial cell clumps; 

vesicles with a diameter of < 200 μm were selected, washed and transferred in groups of 5 to 

45 μl incubation droplets. Sperm binding to oviduct explants was performed in non-

capacitating medium at 38.5 °C in air. To provide sperm capacitation supporting conditions, 

Whitten’s medium was modified to capacitating medium by replacing the sodium lactate with 

2.4 mM calcium lactate and adding 25 mM NaHCO3 and 7 mg / ml bovine serum albumin 

(BSA; pH=7.4 and 280-300 mOsm / kg; osmolality was adjusted by stepwise addition of 

NaCl); this medium was pre-equilibrated for at least 2 h in a humidified atmosphere 

containing 5% CO2 at 38.5°C(adapted from McPartlin et al. [38]). Elevated pH conditions 

were achieved by incubating capacitating medium in air until a pH of 7.9 was attained. In 

general, a final concentration of 2 million (carbohydrate-glycosaminoglycan-penicillamine 

pre-incubation) or 5 million (lectin pre-incubation) Hoechst stained spermatozoa / ml was 

produced by adding 5 μl Percoll® washed and diluted sperm (20 or 50 x 106 / ml spermatozoa) 

to the 45 μl medium droplets containing the oviduct explants [39]. The 50 μl medium droplets 

(38.5 °C in air) were covered under mineral oil to prevent evaporation. Similar experiments 

were repeated under capacitating conditions (38.5 °C in 5% CO2-in-air). Sperm-oviduct 

binding was additionally assessed in various non-capacitating conditions with individual or 

combined addition of BSA, calcium lactate, NaHCO3 or EDTA (pH=7.4; media were pre-

equilibrated for 2 h at 38.5 °C in 5% CO2-in-air to avoid a pH change in the medium). Sperm-

oviduct binding was also tested in capacitating medium at pH 7.9. Identical conditions were 

used to test sperm release from oviduct explants, for which sperm-oviduct explants were 

previously established in non-capacitating conditions, subsequently washed twice and 

transferred to the sperm release conditions. Ultimately, the effect of sperm concentration (1, 2, 

5, 10, 25, 50, 75, 100 x 106 spermatozoa / ml) on binding capacity of pre-incubated sperm to 

oviduct explants was assessed in both non-capacitating and capacitating conditions. Each 

replicate was performed using different ejaculates.  
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To establish a sperm-oviduct APM binding assay, a dot blot technique was adapted 

from Tsai et al. [40]. In brief, dot blotting was performed using the Easy-Titer™ ELIFA dot 

blot system (Pierce, Rockford IL, USA). Nitrocellulose membranes (Sigma-Aldrich, Bornem, 

Belgium) were rinsed in Milli-Q and oviduct APM samples containing 20 μg protein were 

subsequently pipetted (10 μl of 2 μg / μl APM protein) into separate wells. Membranes and 

adhering proteins were dried using a vacuum system (flow rate 100 μl / 1.5 min / well). After 

blotting, non-specific binding was blocked using 50 ml 10% BSA in HBS for 1 h at room 

temperature. Oviduct APM coated nitrocellulose membrane was subsequently washed twice 

with non-capacitating medium and the spots were then individually cut. Per tested condition, 

three APM coated blots were further co-incubated with carbohydrate and glycosaminoglycan 

pre-incubated, Hoechst-stained spermatozoa (1 x 106 spermatozoa / ml) under non-

capacitating conditions (38.5°C) in a 2 ml Eppendorf tube (Sigma-Aldrich, Bornem, 

Belgium). Similar experiments were repeated under capacitating conditions (38.5 °C in 5% 

CO2-in-air). After 2 h co-incubation, APM coated blots were washed 3 times. Quantitative 

analysis of dot blot labeling was performed by scanning the blots with a GS-700 densitometer. 

Absorbance results achieved by the sperm-oviduct APM assay were corrected for the control 

absorbance (nitrocellulose membrane without coated oviduct APM). 

 

Effect of carbohydrate, glycosaminoglycan, penicillamine, lectin, Ca2+, HCO3
- and 

albumin pre-incubation on sperm-oviduct binding 

Before adding sperm to either oviduct explants or oviduct APM, Hoechst-stained 

spermatozoa were pre-incubated with various carbohydrates (50 mM; D(+)-galactose, N-

acetylgalactosamine, N-acetylglucosamine, D(+)-fucose, D(+)-mannose, N-acetylneuraminic 

(sialic) acid: 5 mg / ml; asialofetuin, fetuin, fucoidan, mannan: 10 μg / ml; chondroitin sulfate, 

dextran sulfate, heparan sulfate, heparin, hyaluronic acid, keratan sulfate), or penicillamine 

(0.125, 0.25, 0.5, 1, 5 and 10 mM) (Figure 1). Hoechst-stained sperm were pre-incubated at a 

concentration of 10 or 20 x 106 spermatozoa / ml in 500 μl non-capacitating and capacitating 

conditions at 38.5°C to saturate sperm plasma membrane receptors so that they could have a 

competitive inhibitory effect on sperm-oviduct binding. After 20 min, sperm suspensions 

were washed by centrifugation (600g; 5 min) with 500 μl non-capacitating or capacitating 

medium and 5 μl of the washed sperm solution was added to either oviduct explants (2 x 106 

spermatozoa / ml) or oviduct APM (1 x 106 spermatozoa / ml) (control condition). The 
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competitive inhibitory effect of lectins on sperm-oviduct binding was assessed by pretreating 

oviduct explants with individual, or mixtures of, various lectins (50 μg / ml: PNA, DBA, 

HPA, WGA, UEA I, SNA, Con A, LCA, PSA or in case of the lectin mix; 20 μg / ml of each 

lectin; supplementary table) in 50 μl droplets of non-capacitating medium under mineral oil at 

38.5°C (Figure 1). After 2 h, oviduct explants were washed in non-capacitating medium and 5 

μl Hoechst-stained sperm was added to the 45 μl oviduct-explant containing non-capacitating 

droplets (5x 106 spermatozoa / ml). These incubations were repeated using capacitating 

conditions in which Hoechst-stained spermatozoa were pre–incubated in either full 

capacitation medium, individual or combinations of 7 mg / ml BSA, 2.4 mM calcium lactate 

or 25 mM NaHCO3 in non-capacitating medium (pH=7.4; 2 h pre-equilibrated in 5% CO2 in 

air to avoid a pH change in the medium). To test the role of Ca2+ in sperm-oviduct binding, 2 

mM (non-capacitating medium) or 4 mM (capacitating medium) EDTA [41, 42] was added 

(pH=7.4; 2 h pre-equilibrated in 5% CO2 in air to avoid a pH change in the medium). In 

addition, the effect of elevated pH 7.9 in capacitating medium was assessed. Similar 

incubation conditions were used to test the ability of the capacitating factors to trigger sperm-

oviduct release after establishment of sperm-oviduct complexes in non-capacitating medium. 
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Supplementary table: Various used lectins 

Lectin Lectin source Sugar specificity Inhibitory sugar 

PNA Arachis hypogea Gal 1,3GalNAc D-Gal 

DBA Dolichos biflorus αGalNAc GalNAc 

HPA Helix pomatia αGalNAc GalNAc 

WGA Triticum vulgaris GlcNAc>>NeuNAc GlcNAc 

UEA I Ulex europaeus Α-L-Fuc L-Fuc 

SNA Sambucus nigra Neu5Acα6Gal/GalNAc NeuNac 

Con A Canavalia ensiformis Man> Glc D-Man and D-Glc 

LCA Lens culinaris Man, Glc D-Man and D-Glc 

PSA Pisum sativum Man, Glc D-Man and D-Glc 

Gal, Galactose; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; NeuNac, N- 
acetyl neuraminic (sialic) acid; Fuc, Fucose; Man, Mannose; Glc, Glucose 

 

Individual and combined effect of Ca2+, HCO3
- or albumin on head-to-head 

agglutination of stallion spermatozoa 

Head-to-head sperm agglutination was assessed after 0.5 and 2 h in non-capacitating 

medium containing 7 mg / ml BSA, 2.4 mM calcium lactate or 25 mM NaHCO3 individually 

or in combinations. To test the role of Ca2+ in sperm-oviduct binding, 2 mM (non-capacitating 

medium) or 4 mM (capacitating medium) EDTA [41, 42] was added (pH=7.4; 2 h pre-

equilibrated in 5% CO2 in air to avoid a pH change in the medium). The effect of elevated pH 

(7.9) in capacitating medium was also assessed. Sperm was incubated at a concentration of 10 

x 106 spermatozoa / ml in 500 μl of each medium sample at 38.5°C. After 0.5 and 2 h 

incubation, sperm suspensions were evaluated for sperm agglutination by placing a 10 μl 

aliquot onto a pre-warmed glass slide covered with a warm glass cover slip. For each medium 

sample, 200 randomly selected motile spermatozoa were examined and, subsequently, the 

percentage of head-to-head agglutinated sperm was calculated. 
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Effect of N-glycosidase F (PNGase) treatment on sperm-oviduct binding   

To elucidate the involvement of N-linked carbohydrates in sperm-oviduct interaction, 

oviduct explants and oviduct APM were treated for 24 hours with and without (control) the N-

Glycosidase F enzyme [43, 44]. To this end, 10 oviduct-explants or 20 μg oviduct APM 

protein were incubated in PBS to which 3 μl N-Glycosidase F was then added. Enzyme 

activity was evaluated by Con A-FITC staining of oviduct explants before and after N-

Glycosidase F treatment [30]. The enzyme-treated oviduct explants and oviduct APM were 

further processed for sperm binding assays as previously described. Incubations were 

performed under non-capacitating and capacitating conditions (Figure 1). 

  

Carbohydrate expression on oviduct explant epithelial cells 

To examine which carbohydrates could play a key role in sperm-oviduct binding, the 

expression of carbohydrate moieties on the oviduct epithelial explants was assessed using 

fluorescein (FITC) conjugated lectins (PNA, DBA, HPA, WGA, UEA 1, SNA, Con A, LCA, 

PSA). Specificity of the lectins was previously demonstrated by Desantis et al. [30, 31]. 

Briefly, after fixing in 4% (w/v) paraformaldehyde in PBS for 15 min at room temperature, 

oviduct explants were washed twice in 500 μl blocking buffer (PBS containing 1% BSA) and 

stained with 50 μg / ml lectin-FITC in DPBS [30, 31] for 15 min at room temperature. After 

two washes with DPBS, the stained oviduct explants were mounted as described above using 

1.4-diazabicyclo[2.2.2] octane (DABCO) as antifade . Samples were examined using a Leica 

DMR microscope equipped with a mercury lamp and appropriate filters, at 400x 

magnification. Quantification of carbohydrate expression was performed by scoring the 

fluorescence intensity (+++, ++, + and -). Imaging of the lectin-stained oviduct explants was 

performed using standard settings (camera exposure: 204.1 ms; camera capture format: 2560 

x 1920).   
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Tail-associated protein tyrosine phosphorylation after exposure to various sulfated 

glycosaminoglycans  

After 6 h incubation, the same glycosaminoglycan conditions were used as during the 

pre-incubation steps to assess competitive inhibition of sperm–oviduct binding. A portion of 

the treated Hoechst-stained sperm suspensions (10 x 106 spermatozoa / ml) were further 

processed to detect protein tyrosine phosphorylation, as previously described [39]. In brief, 

spermatozoa were washed twice in 1 ml DPBS (600g; 5 min) and fixed in 500μl 4% 

paraformaldehyde in PBS at room temperature for 15 min. The fixative was removed by three 

washing steps using 1 ml DPBS (600g; 5 min). The washed spermatozoa were subsequently 

incubated in 500 μl 0.1% Triton X-100 in DPBS for 10 min at room temperature to ensure 

complete membrane permeabilization. The immobilized and permeabilized spermatozoa were 

then washed twice (600g; 5 min) in 1 ml DPBS and further incubated in 500 μl blocking 

buffer (DPBS containing 1% BSA) for 10 min at room temperature. Next, spermatozoa were 

incubated in 200 μl buffer containing 0.1% BSA and supplemented with a mouse monoclonal 

4G10®Platinum IgG2b protein anti-phosphotyrosine antibody (diluted 1:500) at 4°C. After 

overnight incubation, unbound antibody was removed by washing the spermatozoa twice 

using 1 ml of DPBS containing 0.1% BSA (600g; 5 min). The resulting spermatozoa were 

then stained with a monoclonal goat anti-mouse antibody conjugated to Alexa Fluor 488 

(Invitrogen, Molecular Probes, Ghent, Belgium) for 1h at room temperature. After 

immunolabelling, the non-bound antibody conjugates were removed by washing three times 

using 1 ml PBS containing 0.1% BSA (600g; 5 min), and once using PBS. The 

immunolabelled spermatozoa were mounted on glass slides as described above and sealed 

with nail polish. The proportion of the total sperm population with green fluorescent tails (and 

Hoechst 33342 fluorescent heads) was determined by randomly assessing 200 spermatozoa. 

Samples were examined using a Leica DMR microscope equipped with a mercury lamp and 

appropriate filters, at 400x magnification. 
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Quantification of sperm-oviduct binding and tail-associated protein tyrosine 

phosphorylation 

Density of sperm binding to oviduct APM after 2 h co-incubation was determined 

after two washing steps, in either non-capacitating or capacitating medium, by quantitative 

analysis of dot blot labeling. This analysis was performed by scanning the blots with a GS-

700 densitometer equipped with a UV lamp (Bio-Rad Laboratories, Hercules, CA, USA) 

using Quantity One acquisition software (version 4.3, Biorad). Densitometric quantitation was 

carried out using the Gel-Pro Analyzer software (version 3.0; MediaCybernetics, Silver 

Spring, MD, USA). 

Density of sperm binding to the oviduct explants after 2 h co-incubation was similarly 

determined in five microscopic fields (400x magnification), after two washing steps. The 

percentage of spermatozoa with tail-associated protein tyrosine phosphorylation (PY+ / 

Hoechst+) was determined by evaluating 200 randomly selected spermatozoa (Hoechst+). 

Both parameters were evaluated by means of fluorescence microscopy using a Leica DMR 

microscope equipped with excitation filters BP 340/380 nm, BP 450/490 nm, BP 560/40 nm 

and a 100 W mercury lamp. Alexa Fluor 488-conjugated goat anti-mouse antibody and 

Hoechst 33342 were sequentially excited using 499 nm and 345 nm wavelengths. Emission 

spectra of the dyes were then filtered at 519 nm and 478 nm. These emission spectra were 

detected by blue (LP 425 nm), green (LP 515 nm), and red (BP 645/75 nm) filters, 

corresponding to the emission peaks of the dyes. Images were acquired using the Image 

Database program (Leica, Van Hopplynus N.V., Brussel, Belgium). In addition, the surface 

area of the oviduct explants in each microscopic field (at 400x magnification) was measured 

using this program. The two fluorophores were checked for signal overlap, and no leakage of 

signals was detected. 

Head-to-head sperm agglutination after 0.5 and 2 h in various medium conditions was 

determined by evaluating 200 randomly chosen, motile spermatozoa and observed at 400x 

magnification using the DIC and warm-stage (38.5 °C) equipped Leica DM 5500 B 

fluorescence microscope described above. 
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Statistical analysis 

Competitive carbohydrate / glycosaminoglycans / lectin / penicillamine / N-

glycosidase F inhibition of sperm–oviduct binding, the effect of various glycosaminoglycans 

on protein tyrosine phosphorylation and the effect of various capacitating factors (individual 

and combined effects of Ca2+, HCO3
- or albumin) on sperm-oviduct binding, release and 

head-to-head agglutination were assessed by analysis of variance (ANOVA). Significant 

differences in the number of oviduct-bound spermatozoa, or optical spot density, and the 

percentage of tyrosine phosphorylated (PY+) and head-to-head agglutinated spermatozoa over 

time were determined using repeated measures ANOVA with Greenhouse-Geisser and 

Bonferroni correction, as implemented in the general linear model. Scheffé post-hoc tests 

were performed for pair-wise comparisons. Statistical analysis and graph plotting was 

performed using SPSS version 20 for Windows (SPSS IBM, Brussels, Belgium). Differences 

were considered significant if P<0.05. 
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RESULTS 

 

Standardization of sperm-oviduct explant and sperm-oviduct APM assays 

We previously showed that the saturation concentration for sperm binding to oviduct 

explants in non-capacitating conditions was reached at 5 x 106 spermatozoa / ml [39]. To test 

the ability of carbohydrates to competitively inhibit sperm-oviduct explant binding, a sperm 

concentration of 2 x 106 spermatozoa / ml was used. A similar experiment was performed for 

the sperm-oviduct APM assay, and sperm binding to oviduct APM was saturated at 2 x 106 

spermatozoa / ml. Therefore, a below saturation concentration of 1 x 106 spermatozoa / ml 

was used to test competitive carbohydrate inhibition of sperm-oviduct binding (Figure 2). To 

test competitive lectin inhibition of sperm-oviduct explant binding, a concentration above the 

saturation level was used (5 x 106 spermatozoa / ml).  

 
Figure 2. Effect of sperm concentration on binding density of stallion sperm to equine oviduct APM 
under non-capacitating conditions. Saturation of sperm-oviduct explant binding occurred at 2 x 106 
spermatozoa / ml. Data represent mean (± SD) number of spermatozoa bound to APM (n=30 per 
group) in three replicates. Values that differ significantly are indicated by different capitals. One-way 
ANOVA, followed by Bonferroni post hoc tests for pairwise comparison. 
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To standardize the sperm-oviduct APM assay, the purity of the apical plasma 

membrane fractions was checked using well-established enzyme assays (see Smith and 

Nothnick [17] for full validation). γ-Glutamyl transpeptidase was used as a marker for the 

apical plasma membrane, and proved to be enriched 21 ± 4 times in plasma membrane 

preparations (n = 3).  

 

Tested carbohydrates did not competitively reduce sperm-oviduct APM binding 

As demonstrated by Suarez [10, 25], species-specific carbohydrate moieties expressed 

on the epithelium facilitated binding of the head of the spermatozoa that ultimately populate 

the sperm reservoir. In order to assess the importance of carbohydrates in sperm-oviduct 

binding in equids, we used our oviduct derived APM to test competitive carbohydrate 

inhibition of sperm binding. Sperm binding to nitrocellulose coated with oviductal APM was 

assessed after pre-incubating spermatozoa with carbohydrates (D-galactose, N-

acetylgalactosamine, N-acetylglucosamine, asialofetuin, fetuin, D-fucose, fucoidan, D-

mannose, mannan, N-acetylneuraminic (sialic) acid). None of the tested carbohydrates 

reduced the sperm-oviduct APM binding density in either non-capacitating (P>0.95 for all 

comparisons) or capacitating conditions (P>0.22 for all comparisons). Similar to our previous 

study [39], sperm-oviduct binding density was significantly higher in non-capacitating than 

capacitating conditions (P<0.001 for all comparisons; Figures 3A and 3B). 

 



Chapter 3  

94 

 

 

Figure 3. (A) Effect of different carbohydrates (D-galactose, N-acetylgalactosamine, N-
acetylglucosamine, asialofetuin, fetuin, D-fucose, fucoidan, D-mannose, mannan and N-
acetylneuraminic (sialic) acid) on equine sperm-oviduct APM binding density under non-capacitating 
(dark grey bars) and capacitating (light grey bars) conditions. Data represent mean (± SD) optical spot 
density (n=10 per group) over three replicates. Repeated measure ANOVA with Greenhouse-Heisser 
and Bonferroni correction, followed by Scheffé post hoc tests for pairwise comparisons. (B) 
Fluorescent spots represent Hoechst stained spermatozoa bound to oviduct APM coated on 
nitrocellulose after pre-incubation with the test carbohydrate followed by 2 h co-incubation in (a) non-
capacitating and (b) capacitating medium. Each spot represents one tested carbohydrate (row 1 to 3 
from left to right: D-galactose, N-acetylgalactosamine, asialofetuin, N-acetylglucosamine, fetuin, D-
fucose, fucoidan, D-mannose, mannan, N-acetylneuraminic (sialic) acid and controls (row 3). (c) 
Nitrocellulose paper without oviduct APM was included as an additional control and the optical 
density of the paper subtracted from the optical spot density of the other spots (a,b,c: original 
magnification). 
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Tested carbohydrates did not reduce sperm-oviduct explant binding 

To validate the results obtained for the oviduct-derived APM model (described above), 

the same experiments were carried out using oviduct explants. In accordance with the oviduct 

APM experiments, none of the tested carbohydrates reduced the density of sperm binding to 

oviduct explants in either non-capacitating (P>0.96 for all comparisons) or capacitating 

conditions (P>0.59 for all comparisons). As for APM, sperm-oviduct binding density was 

significantly higher in non-capacitating than capacitating conditions (P<0.001 for all 

comparisons; Figures 4A and 4B).  
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Figure 4. (A) Effect of different carbohydrates (D-galactose, N-acetylgalactosamine, asialofetuin, N-
acetylglucosamine, fetuin, D-fucose, fucoidan, D-mannose, mannan, and N-acetylneuraminic (sialic) 
acid) on equine sperm-oviduct explant binding density under non-capacitating (dark grey bars) and 
capacitating (light grey bars) conditions. Data represent mean (± SD) number of spermatozoa bound to 
oviduct explants (n=10 per group) over five replicates. Repeated measure ANOVA with Greenhouse-
Heisser and Bonferroni correction, follwoed by Scheffé post hoc tests for pairwise comparison. (B) 
Fluorescence micrographs represent Hoechst stained spermatozoa bound to oviduct explants after 2 h 
co-incubation in (a) non-capacitating and (b) capacitating medium (b, c: original magnification, 400x, 
scale bar = 25 μm). 
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N-acetylgalactosamine and D-mannose / D-glucose moieties are expressed on equine 

oviduct explant epithelium   

Lectin histochemistry of oviductal epithelium was used to demonstrate that N-

acetylgalactosamine (DBA and HPA +++), N-acetylneuraminic (sialic) acid (SNA +++) and 

D-mannose / D-glucose (Con A, LCA and PSA +++) were the pre-dominant carbohydrate 

moieties expressed on equine oviduct epithelium. WGA-FITC (+), a lectin that binds to N-

acetylglucosamine moieties and to a lesser extent N-acetyl neuraminic (sialic) acid, displayed 

a weaker expression pattern probably because of expression of the latter carbohydrate. D-

galactose (PNA) and L-fucose moieties were not detected on equine oviduct epithelium (UEA 

I ) (Figure 5).   

 
Figure 5: Fluorescence micrographs of carbohydrate expression patterns on equine oviduct explant 
epithelia. Carbohydrate expression was assessed using various lectin-FITC conjugates; (a) PNA +/-, 
(b) DBA +++, (c) HPA +++, (d) WGA +, (e) UEA I -, (f) SNA +++, (g) Con A +++, (h) LCA +++ and 
(i) PSA +++ (a, b, c, d, e, f, g, h, i: original magnification, 400x, scale bar = 25 μm). 



Chapter 3  

98 

 

Tested lectins did not reduce sperm-oviduct explant binding 

Various lectins were also tested in the sperm-oviduct assays to alternatively examine 

the role of oviduct carbohydrate moieties in sperm-oviduct binding. Sperm binding to oviduct 

explants was examined after pre-incubating oviduct explants with individual or a mix of 

lectins (PNA, DBA, HPA, WGA, UEA I, SNA, Con A, LCA and PSA), and compared to 

control explants not exposed to lectins. Similar to the carbohydrate studies, none of the lectins 

reduced the sperm-binding density to oviduct explants in either non-capacitating (P>0.99 for 

all comparisons) or capacitating conditions (P>0.96 for all comparisons; Figure 6); again, 

sperm-oviduct binding density was significantly higher in non-capacitating compared to 

capacitating conditions (P<0.001 for all comparisons). 

 
 

Figure 6: Effect of an individual or the mix of different lectins (PNA, DBA, HPA, WGA, UEA I, Con 
A, LCA, PSA, SNA) on sperm-oviduct explant binding density under non-capacitating (dark grey 
bars) and capacitating (light grey bars) conditions. Data represent mean (± SD) number of 
spermatozoa bound to oviduct explants (n=10 per group) over three replicates. Repeated measure 
ANOVA with Greenhouse-Heisser and Bonferroni correction, followed by Scheffé post hoc tests for 
pairwise comparison. 
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N-linked carbohydrates do not regulate sperm-oviduct binding 

N-linked glycosylation is prevalent in proteins destined for extracellular locations 

including proteins expressed on the extracellular side of the plasma membrane, secreted 

proteins and proteins presentin body fluids [45, 46]. The possible involvement of N-

glycosylated moieties in sperm oviduct binding was tested by pretreating either oviduct APM 

or oviduct explants for 24 hours with the enzyme N-glycosidase F (PNGase), which removes 

N-linked glycosylated moieties from glycoproteins. Indeed, the enzyme treatment effectively 

removed Con A binding sites, given that Con A-FITC staining was markedly reduced after N-

glycosidase F treatment (Figure 7A). However, the N-glycosidase F pre-treatment of oviduct 

epithelium did not significantly affect sperm-oviduct binding densities in either the oviduct 

APM (Figure 7B) or oviduct explant systems (Figure 7C), and in either non-capacitating 

(APM assay: P>0.75 for all comparisons; oviduct explant assay: P>0.09 for all comparisons) 

or capacitating conditions (APM assay: P>0.95 for all comparisons; oviduct explant assay: 

P>0.17 for all comparisons). 
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Figure 7: (A) Fluorescence micrographs of Con A-FITC stained equine oviduct explants (a) 
before and (b) after PNGase treatment (a, b: original magnification, 400x, Bar = 25 μm). The 
effect of PNGase pretreatment on (B) sperm-oviduct APM and (C) sperm-oviduct explant 
binding density under non-capacitating (dark grey bars) and capacitating (light grey bars) 
conditions was also assessed. Data represent mean optical spot densities (n=3 spots per group) 
and mean (± SD) number of spermatozoa bound to oviduct explants (n=10 per group) over 
three replicates. Repeated measure ANOVA with Greenhouse-Heisser and Bonferroni 
correction, followed by Scheffé post hoc tests for pairwise comparison. 
 

In vitro capacitation induces protein tyrosine phosphorylation in equine sperm tails 

whereas glycosaminoglygans have no effect   

In cattle, heparin-like sulfated glycosaminoglycans, normally present in follicular and 

oviductal fluid, have been proposed to be potential in vivo capacitation agents [36, 47, 48]. 

Heparin also initiated sperm release from the bovine oviduct epithelium [13], associated with 
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protein tyrosine phosphorylation [49]. Interestingly, in the mare high concentrations of 

sulfated glycosaminoglycans have been reported in follicular and oviductal fluid [32]. 

Therefore, the in vitro effect of added (sulfated) glycosaminoglycans on protein tyrosine 

phosphorylation (as a marker for sperm capacitation) was monitored. None of the tested 

glycosaminoglycans had any stimulatory or inhibitory effect on tail-associated protein 

tyrosine phosphorylation of spermatozoa in suspension after 6 h incubation in non-

capacitating conditions (8 ± 4%; P>0.09 for all comparison; Figure 8). Moreover, the increase 

in tyrosine phosphorylated sperm (P<0.001 for all comparisons) induced by capacitating 

conditions (15 ± 7%; Figure 8) was not affected by addition of glycosaminoglycans (P>0.79 

for all comparisons). These results indicate that glycosaminoglycans do not induce equine 

sperm capacitation. 

 

Figure 8: Effect of different glycosaminoglycans on protein tyrosine phosphorylation in the tail of 
stallion sperm incubated in non-capacitating and capacitating media for 6 h. No effect of added 
glycosaminoglycans on protein tyrosine phosphorylation was observed in either condition. Data 
represent mean (± SD) percentages of protein tyrosine phosphorylated spermatozoa in non-
capacitating (light grey bars) and capacitating media (dark grey bars) (n=200 spermatozoa in each 
group; three replicates). Repeated measure ANOVA with Greenhouse-Heisser and Bonferroni 
correction, followed by Scheffé post hoc tests for pairwise comparison. 
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Glycosaminoglycans do not competitively inhibit sperm-oviduct explant binding 

In cattle, after contact with various capacitation inducers (e.g. glycosaminoglycans and 

HCO3
-) the affinity of non-capacitated spermatozoa for carbohydrate moieties on the oviduct 

epithelium decreases dramatically, while the affinity for zona pellucida glycoproteins rises 

[11]. Initially, competition for oviduct carbohydrate binding receptors plays a role in sperm 

release from oviduct epithelium, while capacitation induces membrane changes that further 

modify the affinity of sperm receptors. We assessed the ability of spermatozoa to bind to 

oviduct APM or oviduct explants during a 2 h co-incubation after pretreatment with various 

sulfated glycosaminoglycans (chondroitin sulfate, dextran sulfate, heparan sulfate, heparin, 

hyaluronic acid, keratan sulfate). None of the tested glycosaminoglycans decreased the sperm-

oviduct binding density in either non-capacitating (APM assay: P>0.93 for all comparisons; 

Figure 9A. Oviduct explant assay: P>0.20 for all comparisons; Figure 9B) or capacitating 

conditions (APM assay: P>0.49 for all comparisons; Figure 9A. Oviduct explant assay: 

P>0.09 for all comparisons; Figure 9B). Similar to other experiments, only capacitating 

conditions decreased the density of sperm-oviduct epithelium binding (APM and oviduct 

explant assays: P<0.001 for all comparisons). 
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Figure 9: The effect of different glycosaminoglycans (chondroitin sulfate, dextran sulfate, heparan 
sulfate, heparin, hyaluronic acid, keratan sulfate) on (A) sperm-oviduct APM and (B) sperm-oviduct 
explant binding density under non-capacitating (dark grey bars) and capacitating (light grey bars) 
conditions was assessed. Data represent mean (± SD) number of spermatozoa bound to oviduct 
explants (n=10 per group) over five replicates. Repeated measure ANOVA with Greenhouse-Heisser 
and Bonferroni correction, followed by Scheffé post hoc tests for pairwise comparison. 

 

Penicillamine does not reduce sperm-oviduct explant binding density 

In cattle, disulphide-reductants like penicillamine markedly reduce the affinity of 

spermatozoa for carbohydrate moieties on the oviduct epithelium [26]. Moreover, release of 

bull spermatozoa from oviduct epithelium following exposure to penicillamine was provoked 

by redox control of sperm surface protein sulfhydryls (S-S ↔ 2SH). We assessed the ability 

of spermatozoa to bind to oviduct explants after pretreatment with various concentrations of 

penicillamine (0, 0.125, 0.25, 0.5, 1, 5 and 10 mM), none of which reduced oviduct 

membrane binding density in either non-capacitating (P>0.93 for all comparisons) or 
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capacitating (P>0.81 for all comparisons) conditions. Similar to other experiments, only 

capacitating conditions decrease the density of sperm-oviduct epithelium binding (P<0.001 

for all comparisons; Figure 10). 

 

 
Figure 10: The effect of different concentrations of penicillamine (0, 0.125, 0.25, 0.5, 1, 5 and 10 mM) 
on initial density of equine sperm binding to oviduct explants under non-capacitating (dark grey bars) 
and capacitating (light grey bars) conditions. No effect of penicillamine on sperm-oviduct binding was 
evident in either condition. Data represent mean (± SD) number of spermatozoa bound to oviduct 
explants (n=10 per group) over five replicates. Repeated measure ANOVA with Greenhouse-Heisser 
and Bonferroni correction, followed by Scheffé post hoc tests for pairwise comparison. 
 

Sperm-oviduct binding is not regulated by Ca2+, but a combination of albumin and 

HCO3
- reduces sperm-oviduct explant binding density 

As shown in previous experiments, capacitating conditions supported sperm-oviduct 

binding at a significantly lower level than non-capacitating conditions. In cattle, Ca2+ -

dependent lectin binding has been shown to initiate sperm-oviduct binding whereas 

bicarbonate decreased sperm-oviduct affinity [11]. We therefore tested the effect of 

preincubation for 20 min with each of the three major factors required for capacitation in vitro 

(albumin and / or Ca2+ and / or HCO3
-), individually or in combinations, on the ability of 

spermatozoa to bind to oviduct explants during a subsequent 2 h co-incubation. The results 

indicated that binding of stallion spermatozoa to oviduct explant epithelium was independent 

of Ca2+ and alkalinity (pH 7.9). However, sperm pre-incubated in HCO3
- and albumin 
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enriched media showed a significantly decreased binding affinity for the oviduct in all groups 

(P<0.001; Figure 11) while individual exposure to either HCO3
- or albumin had no effect.

Sperm-oviduct binding density was also significantly lower when 2 mM EDTA was added to 

non-capacitating medium (P<0.001; Figure 11). Despite the latter finding, we conclude that 

equine sperm-oviduct binding is Ca2+-independent because levels of sperm-oviduct binding

were still very high in Ca2+ free conditions. Moreover, removal of Ca2+ by 4 mM EDTA in

capacitating conditions did not significantly lower sperm-oviduct binding compared to the 

same conditions without EDTA (P=0.98; Figure 11). These results suggest that sperm binding 

to oviduct epithelium is not initiated by a Ca2+ -dependent lectin interaction, whereas

combined exposure to HCO3
- and albumin significantly reduced the affinity of spermatozoa

for oviduct binding. 
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Figure 11. Individual and combined effects of albumin, Ca2+, HCO3

- and EDTA on initial density of 
equine sperm-oviduct. Data represent mean (± SD) number of spermatozoa bound to oviduct explants 
(n=10 per group) per mm² over three replicates. Ca2+, HCO3

- and albumin did not affect sperm-oviduct 
binding density individually, whereas the combination of these 3 capacitating factors supported sperm-
oviduct binding at a significantly lower density. Additionally, sperm-oviduct binding transpired not to 
be Ca2+ dependent. Values that differ significantly are indicated by different small letters. One-way 
ANOVA was followed by Bonferroni post hoc tests for pairwise comparison. 

 
None of glycosaminoglycans, penicillamine, HCO3

-, Ca2+, albumin or alkalinity (pH 7.9) 

induce release of oviduct bound spermatozoa. 

It has previously been shown that heparin [13] and penicillamine [26] initiate sperm 

release from the bovine oviduct epithelium. Washed sperm-oviduct explants, established in 

non-capacitating conditions, were incubated for 2 h with glycosaminoglycans, penicillamine 

and / or the three major capacitation agents (BSA,Ca2+ and HCO3
-) added individually or in 

combinations. Interestingly, while the density of sperm-oviduct binding clearly decreased in 

the combined presence of HCO3
- and albumin, sperm release from oviduct explants could not 

be induced using glycosaminoglycans (Figure 12), penicillamine (Figure 13), albumin, HCO3
- 
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alone or Ca2+ (Figure 14). Moreover, neither capacitating conditions at pH 7.4 or at an 

elevated pH 7.9 were able to influence the density of spermatozoa binding to oviduct explant 

epithelium (Figure 14).  

 

 
Figure 12: The effect of different glycosaminoglycans (chondroitin sulfate, dextran sulfate, heparan 
sulfate, heparin, hyaluronic acid, keratan sulfate) on sperm release from oviduct explants under non-
capacitating (dark grey bars) and capacitating (light grey bars) conditions was assessed. Data represent 
mean (± SD) number of spermatozoa bound to oviduct explants (n=10 per group) over five replicates. 
None of these glycosaminoglycans induced release of spermatozoa from the oviduct explants. 
Repeated measure ANOVA with Greenhouse-Heisser and Bonferroni correction, followed by Scheffé 
post hoc tests for pairwise comparison. 
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Figure 13: The effect of different concentrations of penicillamine (0, 0.125, 0.25, 0.5, 1, 5 and 10 mM) 
on density of sperm binding to oviduct explants after attempts to trigger release under non-capacitating 
(dark grey bars) and capacitating (light grey bars) conditions. No effect of penicillamine on sperm-
oviduct release was evident in either condition. Data represent mean (± SD) number of spermatozoa 
bound to oviduct explants (n=10 per group) over five replicates. Repeated measure ANOVA with 
Greenhouse-Heisser and Bonferroni correction, followed by Scheffé post hoc tests for pairwise 
comparison. 
 



Chapter 3  

109 

 

 
Figure 14. Individual and combined effects of albumin, Ca2+, HCO3

- and EDTA on binding density 
after incubation to trigger sperm release. Data represent mean (± SD) number of spermatozoa bound to 
oviduct explants (n=10 per group) per mm² over three replicates. None of the tested conditions caused 
marked release of spermatozoa from the oviduct explants. One-way ANOVA was followed by 
Bonferroni post hoc tests for pairwise comparison.  
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Exposure of stallion sperm to HCO3
-, Ca2+ and albumin in combination induces head-to-

head agglutination independent of external Ca2+  

As previously shown for bull [50] and boar [51, 52] spermatozoa, contact with HCO3
-, 

Ca2+ and albumin induced rapid head-to-head agglutination in suspended sperm. For this 

reason, we hypothesized that reduced sperm-oviduct binding in combined HCO3
- and albumin 

conditions was a product of rapid head-to-head agglutination of stallion sperm. Therefore, we 

examined sperm agglutination in the presence of the three capacitation agents (BSA, Ca2+ and 

HCO3
-) added individually or in combinations. In comparison to non-capacitating medium (4 

± 1%), we observed a small but significant increase after 0.5 h incubation in non-capacitating 

medium enriched with albumin (17 ± 6%; P=0.04), Ca2+ (17 ± 5%; P=0.04) or HCO3
- (16 ± 

8%; P=0.03). Agglutination was even more pronounced when capacitating factors were 

combined (albumin + Ca2+: 40 ± 16%; P=0.001 and Ca2+ + HCO3
-: 39 ± 10%; P=0.002). 

Surprisingly, incubation in combined albumin + HCO3
- (83 ± 10%) showed similar 

agglutination rates to those observed when all three capacitating factors were combined 

(capacitating medium; 90 ± 4%; P=0.99). Moreover, sperm incubated in capacitating medium 

(albumin + Ca2+ + HCO3
-) at elevated pH 7.9 showed a similar agglutination rate (91 ± 3%; 

P=0.99) (Figure 15A and Figure 15B). After 2 h incubation, similar trends were observed 

though agglutination rates were generally higher than at 0.5 h (non-capacitating, 17 ± 7%; 

albumin, 36 ± 11%; Ca2+, 28 ± 5%; HCO3
- enriched medium 36 ± 11%, and combined 

albumin + Ca2+ medium 80 ± 8%: P<0.01 for all comparisons) with the exceptions of (1) 

albumin + HCO3
- (83 ± 10%; P=0.98) and (2) Ca2+ + HCO3

- (39 ± 10%; P=0.24), and 

capacitating medium at both (3) pH 7.4 (39 ± 10%; P=0.87) and (4) 7.9 (39 ± 10%; P=0.82) 

(Figure 15A). Interestingly, stallion sperm agglutination in our studies was Ca2+ independent, 

and there was no effect on agglutination rates of adding EDTA to non-capacitating (at 0.5 h: 3 

± 2%, P=0.99 and at 2 h: 8 ± 1%, P=0.96) or capacitating medium (at 0.5 h: 83 ± 9%, P=0.97 

and at 2 h: 86 ± 4%, P=0.98) (Figure 15A). In summary, combined HCO3
- and albumin 

supplementation facilitated rapid sperm agglutination which prevented sperm-oviduct binding. 
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Figure 15. (A) Individual and combined effects of albumin, Ca2+, HCO3

- and EDTA on head-to-head 
stallion sperm agglutination after 0.5 h (dark grey) and 2 h (light grey) incubation. Data represent 
mean (± SD) percentages of agglutinated spermatozoa (n=200 spermatozoa per group; three 
replicates). In general, the combination of Ca2+, HCO3

- and albumin induced very high rates of sperm 
agglutination whereas the effects of individual capacitating factors was much lower. Moreover, sperm 
agglutination was shown to be Ca2+ independent. Repeated measure ANOVA with Greenhouse-
Heisser and Bonferroni correction, followed by Scheffé post hoc tests for pairwise comparison. (B) 
Light microscope images illustrate that pre-incubated stallion sperm (2 x 106 spermatozoa / ml) did not 
agglutinate in (a,c) medium whithout capacitating factors (non-capacitating medium) whereas in 
medium containing albumin, Ca2+ and HCO3

- (capacitating conditions: b,d) sperm rapidly agglutinated 
(a, b: original magnification, 400x, Bar = 62.5 μm; c, d: original magnification, 1000x, Bar = 25 μm). 
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Role of combined HCO3
- and albumin in sperm concentration dependent binding to 

equine oviduct explants 

To assess the effects of combined HCO3
- and albumin or capacitating medium (HCO3

-, 

Ca2+ and albumin) on sperm binding to oviduct explants, we additionally evaluated the effect 

of increasing sperm concentrations (1, 2, 5, 10, 25, 50, 75 and 100 x106 spermatozoa / ml) on 

binding to oviduct explants in non-capacitating, non-capacitating enriched with albumin and 

HCO3
-, and capacitating medium. Saturation for sperm binding after 20 min pre-incubation in 

both combined albumin / HCO3
- enriched non-capacitating and capacitating medium was 

reached at 50 x106 spermatozoa / ml (combined albumin / HCO3
- enriched non-capacitating 

medium; 2.1 ± 0.3 x 105 spermatozoa / mm²: capacitating medium; 2.3 ± 0.2 x 

105 spermatozoa / mm²: Figure 16) whereas in non-capacitating medium a similar saturation 

was already reached at 5 x 106 spermatozoa / ml (2.2 ± 0.2 x 105 spermatozoa / mm²: Figure 

16). These results suggest that media enriched with both albumin and HCO3
- contain 

insufficient albumin and / or HCO3
- to reduce the affinity of sperm for oviduct epithelium in 

suspensions with a sperm concentration of 50 x 106 / ml or higher. Above this sperm 

concentration, sperm agglutination is presumably saturated and remaining sperm are free to 

bind to oviduct epithelium. 
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Figure 16. Effect of sperm concentration on density of stallion sperm binding to equine oviduct 
explants under (1) non-capacitating (without albumin; dark grey bars), (2) capacitating (light grey 
bars) and (3) HCO3

- / albumin enriched non-capacitating conditions (white bars). Saturation of sperm-
oviduct explant binding was detected in non-capacitating conditions at 5x106 spermatozoa / ml 
whereas in capacitating and HCO3

- / albumin enriched non-capacitating conditions saturation was not 
evident until 50x106 spermatozoa / ml. Data represent mean (± SD) number of spermatozoa bound to 
oviduct explants (n= 20 / group) in three replicates. For non-capacitating conditions, values that differ 
significantly are indicated by different capital letters. For capacitating conditions, values that differ 
significantly are indicated by different small letters. For non-capacitating conditions enriched with 
HCO3

- and albumin, values that differ significantly are indicated by different greek symbols. ANOVA 
with Greenhouse-Heisser correction, followed by post hoc tests after Bonferroni correction. 
 

 

DISCUSSION 

 

In this study, we found that binding of stallion spermatozoa to oviduct epithelium is 

not influenced by a range of carbohydrates, glycosaminoglycans, S-S reductants, lectins, Ca2+ 

or alkalinity (pH 7.9). On the other hand, we found that the density of stallion sperm binding 

to the oviduct decreased when the spermatozoa had previously been exposed to HCO3
- and 

albumin combined. These results suggest that, in contrast to many other mammalian species, 

equine sperm-oviduct binding is not regulated by Ca2+-dependent lectin or disulphide binding. 

The presence of HCO3
- and albumin altered the capacity of stallion spermatozoa to bind to 



Chapter 3  

114 

 

oviduct epithelium primarily by rapid stimulation of head-to-head sperm agglutination, 

whereas sperm release from oviduct binding could not be provoked under the various tested 

capacitation inducing conditions. 

 

Lectin histochemistry of the different regions of the mare’s oviduct revealed that 

oligosaccharides with terminal N-acetylgalactosamine moieties were the most abundant 

carbohydrates in the isthmus [30, 31, 53]. The expression of N-acetylneuraminic (sialic) acid 

moieties on the luminal surface was lower. Desantis et al. [30, 31] demonstrated that these 

lectin-labeling patterns were very similar in both the isthmus and the ampulla, indicating that 

carbohydrate moieties are fairly uniformly distributed throughout the complete oviduct where 

they act as potential receptors for sperm binding. Moreover, in cattle studies it has been 

shown that the sperm binding capacity of the isthmic and ampullary epithelium is almost 

identical [16, 54]. For these reasons, we hypothesized that sperm-oviduct binding is not 

determined by oviduct location. We subsequently used equine oviduct epithelial explants and 

APM harvested from the ampullary-isthmic junction as an in vitro model for the sperm 

oviduct reservoir as it is not practically feasible to collect epithelial cells exclusively from the 

tiny and very tortuous isthmus.   

 

Oviduct monolayers have been used extensively in earlier in vitro studies of sperm-

oviduct binding [27, 55-57]. However, because morphological and ultrastructural features, 

and consequently the membrane molecular expression patterns are much better preserved, we 

preferred oviduct explants [33]. With regard to the quantification of sperm-oviduct binding, 

we were aware that standardization was a challenge when using equine oviduct explants 

because of the invaginated and irregular oviductal surface, which is very different from the 

flattened surface of an oviduct monolayer [56, 58]. To improve accuracy in the competitive 

sperm-oviduct binding assay, we developed a more standardized oviduct APM assay to 

quantify the binding densities of pre-treated sperm. The oviduct apical membranes still 

displayed the salient surface organelles (e.g. cilia, microvilli) of the oviduct plasma membrane 

while a more flattened surface was achieved. However, this model required many oviducts 

whereas the supply was limited. Therefore, only competitive carbohydrate / 

glycosaminoglycan inhibition of sperm-oviduct binding and the effect of N-glycosidase 

activity were tested using this APM assay. Nevertheless, concordance between the two assays 
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was high, and the results of the oviduct explant assay can be considered as a validation of the 

APM assay.  

 

Carbohydrate moiety expression on oviduct explants was unchanged after overnight 

culture. In accordance with Desantis et al. [30, 31] who examined oviduct tissue sections, N-

acetylgalactosamine moieties were highly expressed on the surface of oviduct explants (DBA 

and HPA +++). Interestingly, our study revealed considerable expression of N-

acetylneuraminic (sialic) acid (SNA +++), α-D-mannose and / or α-D-glucose moieties (Con 

A, LCA and PSA +++) on epithelium of oviduct explants. The negligible histochemical PNA 

signal on oviduct sections [30, 31] and explants indicates that D-galactose is not the ultimate 

critical carbohydrate mediating sperm-oviduct binding in the horse, as previously suggested 

[27, 29].  

 

The potential participation of a broad range of carbohydrates and polysaccharides (D-

galactose, N-acetylgalactosamine, N-acetylglucosamine, asialofetuin, fetuin, D-fucose, 

fucoidan, D-mannose, mannan and N-acetylneuraminic (sialic) acid) in sperm-oviduct 

interaction was tested in the current study using concentrations similar to those used by 

Dobrinski et al. [27]. Fetuin is a polysaccharide that expresses several terminal carbohydrates: 

N-acetylneuraminic (sialic) acid, N-acetylgalactosamine, D-galactose, N-acetylglucosamine 

and D-fucose [57] while asialofetuin expresses identical carbohydrates but has a higher ratio 

of galactosyl residues [59, 60]. Pre-incubating sperm suspensions with any of these 

carbohydrates, including D-galactose, did not inhibit sperm-oviduct binding in either non-

capacitating (Ca2+ free) or capacitating (Ca2+ containing) conditions, as evaluated by both 

assays (oviduct explant or oviduct APM). Using the converse approach, i.e. inhibition of 

sperm-oviduct binding by pre-incubating oviduct explants with various lectins, at 

concentrations similar to those described by Desantis et al. [30, 31], also failed to inhibit 

sperm binding. In addition, sperm-oviduct binding was not decreased when N-linked 

carbohydrates were removed by N-glycosidase F (PNGase). When interpreting these results, a 

few points need to be considered: (1) not only the type of carbohydrate, but also the 

carbohydrate conformation / isomer is important; (2) a secondary binding can possibly be 

facilitated after competing with a primary carbohydrate receptor; (3) the cooperation of 

carbohydrates to facilitate sperm-oviduct binding and (4) a higher sperm-oviduct binding 

density was observed in Ca2+-free or non-capacitating conditions than in capacitating medium 
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containing Ca2+. Although EDTA addition reduced sperm-oviduct binding, the number of 

spermatozoa bound to oviduct explant epithelium was still high. The change in sperm binding 

capacity in the presence of EDTA appears to be due primarily to a depression of sperm 

motility by Ca2+ removal after 30 min of co-incubation (data not shown). As a result, 

spermatozoa exposed to EDTA may have had less time to reach the oviduct explants and 

establish binding in the 50 μl medium droplet. Importantly, the supposed Ca2+ independency 

supports the carbohydrate insensitivity of sperm-oviduct binding as lectin binding is mainly 

regulated by Ca2+. This in turn supports the hypothesis that equine sperm-oviduct affinity is 

not primarily a factor of Ca2+ -dependent lectin binding. Considering the findings above, one 

could question whether the Ca2+ -dependent carbohydrate-protein (lectin) interactions 

demonstrated between sperm and oviduct epithelial cells in vitro in a few mammalian species 

represent (1) the totality of the pre-ovulatory sperm-oviduct binding reaction or (2) only a part 

of that reaction. Hunter [61] previously hypothesized the latter and suggested that there may 

be considerable non-specific binding in vivo. This hypothesis was illustrated by studies in the 

pig that showed similar sperm binding density to tracheal epithelium, containing another type 

of ciliary epithelial cell [61, 62]. In contrast, in man a sequence of three amino acids (Arg-

Gly-Asp) is thought to play an important regulatory role in sperm-oviduct interaction [63].  

 

We also found that sperm-oviduct binding could not be inhibited by pre-incubating 

sperm with different glycosaminoglycans: chondroitin sulfate, dextran sulfate, heparan sulfate, 

heparin, hyaluronic acid and keratan sulfate, at concentrations based on the study of Sostaric 

et al. [11]. Neither could these molecules induce sperm release from oviduct explant binding. 

In cattle, an obvious effect of sulfated glycosaminoglycans on sperm-oviduct release [12, 26], 

capacitation / protein tyrosine phosphorylation [12, 36, 64, 65] and fertilization [36, 65] has 

been shown. In the mare, a high concentration of these molecules has been reported in 

follicular fluid and oviductal fluid, but in our study different types of glycosaminoglycans 

were unable to reduce density of stallion spermatozoa binding to oviduct epithelia. Moreover, 

the tested glycosaminoglycans also had no effect on sperm capacitation parameters such as 

tail-associated protein tyrosine phosphorylation, and presumably play no role in equine sperm 

capacitation. Penicillamine also failed to inhibit sperm-oviduct binding or induce sperm 

release from oviduct epithelium at concentrations based on Aitken et al.’s [66] report that in 

vitro motility of stallion sperm could be preserved by disulfide-reductants like penicillamine. 

In cattle, disulfide-reductants did facilitate sperm release from oviduct epithelium by reducing 
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disulphide covalent bonds to sulfhydryl groups [26]. Our results clearly demonstrate that 

sperm-oviduct binding in the horse is not dependent on disulphide covalent bonds.  

 

Combined HCO3
- and albumin enrichment of incubation media did cause a clear 

decline in density of sperm binding to oviduct epithelium (>10 fold), associated with rapid 

induction of sperm head-to-head agglutination. Both characteristics were independent of Ca2+ 

and alkalinity (pH 7.9). In general, it is thought that a sperm’s capacitation status determines 

its ability to interact with oviduct epithelium [10]. In pig spermatozoa, HCO3
- initiates rapid 

cAMP-driven membrane changes [67] that permit albumin-dependent cholesterol removal, 

followed by a series of functional membrane changes required for the acquisition of fertilizing 

potential [40, 68-70]. These membrane changes are important steps in sperm capacitation in 

vivo and, possibly underlie reduced affinity of sperm for oviduct epithelium in the horse. In 

support of this hypothesis, it was previously reported that exposure of bull sperm to HCO3
- 

resulted in decreased affinity for the D-fucose moieties involved in sperm-oviduct interaction 

[11]. To better understand the role of capacitation in sperm affinity for oviduct binding, it 

would be useful to elucidate whether and which early plasma membrane changes and / or 

cholesterol removal are induced under the combined HCO3
- and albumin conditions.  

 

Sperm agglutination is a common event during manipulation of sperm from many 

mammalian species and is a problem during in vitro sperm studies because it interferes with 

accurate sperm assessment. Sperm agglutination occurs between spermatozoa with intact 

plasma and acrosome membranes [50]. Typically head-to-head agglutination takes place when 

sperm is exposed in vitro to: (1) washing media (ram: [71]); (2) fluids from the female genital 

tract (bull: [72]); (3) divalent cations (rabbit: [73]; bull: [74]; (4) bovine serum in combination 

with semen extender (bull: [75]); and (5) IVF medium (boar: [51, 52]). In general, head-to-

head sperm agglutination is triggered by an ATP-dependent surface reaction activated by 

divalent cations (including Ca2+, Mg2+ and Mn2+) [50-52]. Alternatively, sperm head-to-head 

agglutination has been reported to result from removal of anti-agglutinin from the sperm 

surface at an early stage of the capacitation process in vitro [76, 77]. Since sperm 

agglutination acts independently from Ca2+ we propose that the combination of HCO3
- and 

albumin leads to the release of anti-agglutinin from the sperm plasma membrane over the 

acrosomal region of stallion sperm whereby previously ‘hidden’ receptors on the sperm 

plasma membrane become available for sperm specific head-to-head agglutination 
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interactions. In the pig, Harayama et al. [78, 79] observed similar anti-agglutinin release from 

boar sperm exposed to capacitating media. It has been hypothesized that the loss of anti-

agglutinin from sperm is a product of the HCO3
- induced adenylyl cyclase-cAMP-protein 

kinase pathway initiating changes in the plasma membrane that are aided by serum albumin 

contained in the medium [51]. As a consequence of sperm head-to-head agglutination, in our 

experiments putative sperm plasma membrane receptors in the apical ridge would no longer 

have been available for oviduct binding.  

 

Unfortunately, under none of the tested conditions, we were able to achieve release of 

spermatozoa from oviduct explants. In cattle, in addition to the HCO3
- and albumin induced 

plasma membrane changes, the ability to provoke hyperactivated motility was considered to 

be essential for sperm release [80]. We therefore assume that the failure to induce sperm 

release from oviduct binding is in part a result of the currently defined capacitation media for 

stallion sperm being insufficient to induce full sperm capacitation, including the 

hyperactivated motility required to initiate sperm release from the oviduct epithelium.  

 

In conclusion, equine sperm-oviduct binding is independent of a range of 

carbohydrates, S-S reductants, Ca2+ and alkalinity (pH 7.9) whereas pre-incubation in media 

containing both HCO3
-
 and albumin reduced sperm-oviduct binding. We suggest that the 

requirement for sperm-oviduct binding is dependent on the timing of insemination. If mating 

or insemination occurs during early estrus, sperm may need to survive several days until 

ovulation is imminent, and sperm-oviduct interaction may be critical to adequate longevity of 

sperm viability [19, 81]. By contrast, if sperm enters the oviduct during the peri-ovulatory 

period, rapid induction of capacitation events may decrease sperm affinity for oviduct binding 

or vice versa. This would allow capacitation triggered sperm to proceed immediately along 

the mare’s oviduct to the site of fertilization without an obligatory period of epithelial 

binding. Nevertheless, sperm bound to oviduct epithelium should be able to react to 

capacitation triggers in the oviduct, such as elevated pH [39], to achieve full fertilizing 

capability. Full and proper initiation of capacitation will presumably release sperm optimally 

primed to fertilize from both oviduct epithelium. 



Chapter 3  

119 

 

ACKNOWLEDGEMENTS 

The authors wish to thank Petra Van Damme and Isabel Lemahieu for their excellent 

technical assistance. Fresh stallion semen was kindly provided by the Clinic of Reproduction 

and Obstetrics of Large Animals, Merelbeke, Belgium. The first author (B. Leemans) is a 

research fellow of the agency for Innovation by Science and Technology—Flanders, Belgium 

(IWT), aspirant 101521.  



Chapter 3  

120 

 

REFERENCES 

1. Holt WV. Mechanisms of sperm storage in the female reproductive tract: an 
interspecies comparison. Reprod Domest Anim 2011; 46 Suppl 2:68-74. 

2. Bader H. An investigation of sperm migration into the oviducts of the mare. J Reprod 
Fertil Suppl 1982; 32:59-64. 

3. Scott MA, Liu IK, Overstreet JW, Enders AC. The structural morphology and 
epithelial association of spermatozoa at the uterotubal junction: a descriptive study of 
equine spermatozoa in situ using scanning electron microscopy. J Reprod Fertil Suppl 
2000:415-421. 

4. Harper MJ. Stimulation of sperm movement from the isthmus to the site of 
fertilization in the rabbit oviduct. Biol Reprod 1973; 8:369-377. 

5. Hunter RH. Sperm transport and reservoirs in the pig oviduct in relation to the time of 
ovulation. J Reprod Fertil 1981; 63:109-117. 

6. Hunter RH, Nichol R. Transport of spermatozoa in the sheep oviduct: preovulatory 
sequestering of cells in the caudal isthmus. J Exp Zool 1983; 228:121-128. 

7. Suarez SS. Sperm transport and motility in the mouse oviduct: observations in situ. 
Biol Reprod 1987; 36:203-210. 

8. Hunter RH, Wilmut I. Sperm transport in the cow: peri-ovulatory redistribution of 
viable cells within the oviduct. Reprod Nutr Dev 1984; 24:597-608. 

9. Yanagimachi R, Chang MC. Sperm ascent through the oviduct of the hamster and 
rabbit in relation to the time of ovulation. J Reprod Fertil 1963; 6:413-420. 

10. Suarez SS. Carbohydrate-mediated formation of the oviductal sperm reservoir in 
mammals. Cells Tissues Organs 2001; 168:105-112. 

11. Sostaric E, van de Lest CH, Colenbrander B, Gadella BM. Dynamics of carbohydrate 
affinities at the cell surface of capacitating bovine sperm cells. Biol Reprod 2005; 
72:346-357. 

12. Gualtieri R, Mollo V, Barbato V, Talevi R. Ability of sulfated glycoconjugates and 
disulfide-reductants to release bovine epididymal sperm bound to the oviductal 
epithelium in vitro. Theriogenology 2010; 73:1037-1043. 

13. Talevi R, Gualtieri R. Sulfated glycoconjugates are powerful modulators of bovine 
sperm adhesion and release from the oviductal epithelium in vitro. Biol Reprod 2001; 
64:491-498. 

14. Hunter RH, Flechon B, Flechon JE. Distribution, morphology and epithelial 
interactions of bovine spermatozoa in the oviduct before and after ovulation: a 
scanning electron microscope study. Tissue Cell 1991; 23:641-656. 

15. Gualtieri R, Talevi R. In vitro-cultured bovine oviductal cells bind acrosome-intact 
sperm and retain this ability upon sperm release. Biol Reprod 2000; 62:1754-1762. 

16. Lefebvre R, Chenoweth PJ, Drost M, LeClear CT, MacCubbin M, Dutton JT, Suarez 
SS. Characterization of the oviductal sperm reservoir in cattle. Biol Reprod 1995; 
53:1066-1074. 

17. Smith TT, Nothnick WB. Role of direct contact between spermatozoa and oviductal 
epithelial cells in maintaining rabbit sperm viability. Biol Reprod 1997; 56:83-89. 

18. Boilard M, Bailey J, Collin S, Dufour M, Sirard MA. Effect of bovine oviduct 
epithelial cell apical plasma membranes on sperm function assessed by a novel flow 
cytometric approach. Biol Reprod 2002; 67:1125-1132. 

19. Dobrinski I, Smith TT, Suarez SS, Ball BA. Membrane contact with oviductal 
epithelium modulates the intracellular calcium concentration of equine spermatozoa in 
vitro. Biol Reprod 1997; 56:861-869. 



Chapter 3  

121 

 

20. Lefebvre R, Lo MC, Suarez SS. Bovine sperm binding to oviductal epithelium 
involves fucose recognition. Biol Reprod 1997; 56:1198-1204. 

21. Suarez SS, Revah I, Lo M, Kolle S. Bull sperm binding to oviductal epithelium is 
mediated by a Ca2+-dependent lectin on sperm that recognizes Lewis-a trisaccharide. 
Biol Reprod 1998; 59:39-44. 

22. DeMott RP, Lefebvre R, Suarez SS. Carbohydrates mediate the adherence of hamster 
sperm to oviductal epithelium. Biol Reprod 1995; 52:1395-1403. 

23. Kadirvel G, Machado SA, Korneli C, Collins E, Miller P, Bess KN, Aoki K, Tiemeyer 
M, Bovin N, Miller DJ. Porcine sperm bind to specific 6-sialylated biantennary 
glycans to form the oviduct reservoir. Biol Reprod 2012; 87:147. 

24. Suarez SS. The oviductal sperm reservoir in mammals: mechanisms of formation. Biol 
Reprod 1998; 58:1105-1107. 

25. Suarez SS. Regulation of sperm storage and movement in the mammalian oviduct. Int 
J Dev Biol 2008; 52:455-462. 

26. Gualtieri R, Mollo V, Duma G, Talevi R. Redox control of surface protein 
sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the 
oviductal epithelium and capacitation. Reproduction 2009; 138:33-43. 

27. Dobrinski I, Ignotz GG, Thomas PG, Ball BA. Role of carbohydrates in the 
attachment of equine spermatozoa to uterine tubal (oviductal) epithelial cells in vitro. 
Am J Vet Res 1996; 57:1635-1639. 

28. Sabeur K, Ball BA. Characterization of galactose-binding proteins in equine testis and 
spermatozoa. Anim Reprod Sci 2007; 101:74-84. 

29. Lefebvre R, DeMott R, Suarez S, Samper J. Specific inhibition of equine sperm 
binding to oviductal epithelium. 1995. 

30. Desantis S, Acone F, Corriero A, Deflorio M, Zubani D, Ventriglia G, Palmieri G, De 
Metrio G. Distribution of sialoglycoconjugates in the oviductal isthmus of the horse 
during anoestrus, oestrus and pregnancy: a lectin histochemistry study. Eur J 
Histochem 2004; 48:403-412. 

31. Desantis S, Ventriglia G, Zubani D, Corriero A, Deflorio M, Acone F, Palmieri G, De 
Metrio G. Differential lectin binding patterns in the oviductal ampulla of the horse 
during oestrus. Eur J Histochem 2005; 49:139-149. 

32. Varner DD, Forrest DW, Fuentes F, Taylor TS, Hooper RN, Brinsko SP, Blanchard 
TL. Measurements of glycosaminoglycans in follicular, oviductal and uterine fluids of 
mares. J Reprod Fertil Suppl 1991; 44:297-306. 

33. Nelis H, D'Herde K, Goossens K, Vandenberghe L, Leemans B, Forier K, Smits K, 
Braeckmans K, Peelman L, Van Soom A. Equine oviduct explant culture: a basic 
model to decipher embryo-maternal communication. Reprod Fertil Dev 2014; 26:954-
966. 

34. Rath D, Long CR, Dobrinsky JR, Welch GR, Schreier LL, Johnson LA. In vitro 
production of sexed embryos for gender preselection: high-speed sorting of X-
chromosome-bearing sperm to produce pigs after embryo transfer. J Anim Sci 1999; 
77:3346-3352. 

35. Flesch FM, Voorhout WF, Colenbrander B, van Golde LM, Gadella BM. Use of 
lectins to characterize plasma membrane preparations from boar spermatozoa: a novel 
technique for monitoring membrane purity and quantity. Biol Reprod 1998; 59:1530-
1539. 

36. Parrish JJ, Susko-Parrish J, Winer MA, First NL. Capacitation of bovine sperm by 
heparin. Biol Reprod 1988; 38:1171-1180. 



Chapter 3  

122 

 

37. Tremoleda JL, Stout TAE, Lagutina I, Lazzari G, Bevers MM, Colenbrander B, Galli 
C. Effects of in vitro production on horse embryo morphology, cytoskeletal 
characteristics, and blastocyst capsule formation. Biology of Reproduction 2003; 
69:1895-1906. 

38. McPartlin LA, Littell J, Mark E, Nelson JL, Travis AJ, Bedford-Guaus SJ. A defined 
medium supports changes consistent with capacitation in stallion sperm, as evidenced 
by increases in protein tyrosine phosphorylation and high rates of acrosomal 
exocytosis. Theriogenology 2008; 69:639-650. 

39. Leemans B, Gadella BM, Sostaric E, Nelis H, Stout TA, Hoogewijs M, Van Soom A. 
Oviduct binding and elevated environmental ph induce protein tyrosine 
phosphorylation in stallion spermatozoa. Biol Reprod 2014; 91:13. 

40. Tsai PS, Brewis IA, van Maaren J, Gadella BM. Involvement of complexin 2 in 
docking, locking and unlocking of different SNARE complexes during sperm 
capacitation and induced acrosomal exocytosis. PLoS One 2012; 7:e32603. 

41. Loux SC, Crawford KR, Ing NH, Gonzalez-Fernandez L, Macias-Garcia B, Love CC, 
Varner DD, Velez IC, Choi YH, Hinrichs K. CatSper and the relationship of 
hyperactivated motility to intracellular calcium and pH kinetics in equine sperm. Biol 
Reprod 2013; 89:123. 

42. Sorensen MB, Stoltenberg M, Danscher G, Ernst E. Chelation of intracellular zinc 
ions affects human sperm cell motility. Mol Hum Reprod 1999; 5:338-341. 

43. Takasaki S, Mizuochi T, Kobata A. Hydrazinolysis of asparagine-linked sugar chains 
to produce free oligosaccharides. Methods Enzymol 1982; 83:263-268. 

44. Tarentino AL, Plummer TH, Jr. Peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine 
amidase and endo-beta-N-acetylglucosaminidase from Flavobacterium 
meningosepticum. Methods Enzymol 1987; 138:770-778. 

45. Roth J. Protein N-glycosylation along the secretory pathway: relationship to organelle 
topography and function, protein quality control, and cell interactions. Chem Rev 
2002; 102:285-303. 

46. Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-
linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass 
spectrometry. Nat Biotechnol 2003; 21:660-666. 

47. Parrish JJ, Susko-Parrish JL, First NL. Capacitation of bovine sperm by heparin: 
inhibitory effect of glucose and role of intracellular pH. Biol Reprod 1989; 41:683-
699. 

48. Parrish JJ, Susko-Parrish JL, Handrow RR, Sims MM, First NL. Capacitation of 
bovine spermatozoa by oviduct fluid. Biol Reprod 1989; 40:1020-1025. 

49. Gualtieri R, Boni R, Tosti E, Zagami M, Talevi R. Intracellular calcium and protein 
tyrosine phosphorylation during the release of bovine sperm adhering to the fallopian 
tube epithelium in vitro. Reproduction 2005; 129:51-60. 

50. Yang DH, McMillan AG, Standley NT, Shannon P, Xu ZZ. Extracellular calcium is 
involved in egg yolk-induced head-to-head agglutination of bull sperm. 
Theriogenology 2012; 78:1476-1486. 

51. Harayama H, Miyake M, Kato S. Role of cyclic adenosine 3',5'-monophosphate and 
serum albumin in head-to-head agglutination of boar spermatozoa. Reprod Fertil Dev 
2000; 12:307-318. 

52. Harayama H, Miyake M, Shidara O, Iwamoto E, Kato S. Effects of calcium and 
bicarbonate on head-to-head agglutination in ejaculated boar spermatozoa. Reprod 
Fertil Dev 1998; 10:445-450. 



Chapter 3  

123 

 

53. Ball BA, Dobrinski I, Fagnan MS, Thomas PG. Distribution of glycoconjugates in the 
uterine tube (oviduct) of horses. Am J Vet Res 1997; 58:816-822. 

54. Sostaric E, Dieleman SJ, van de Lest CH, Colenbrander B, Vos PL, Garcia-Gil N, 
Gadella BM. Sperm binding properties and secretory activity of the bovine oviduct 
immediately before and after ovulation. Mol Reprod Dev 2008; 75:60-74. 

55. Ellington JE, Ignotz GG, Varner DD, Marcucio RS, Mathison P, Ball BA. In vitro 
interaction between oviduct epithelial and equine sperm. Arch Androl 1993; 31:79-86. 

56. Thomas PGA, Ignotz GG, Ball BA, Miller PG, Brinsko SP, Currie B. Isolation, 
Culture, and Characterization of Equine Oviduct Epithelial-Cells in-Vitro. Molecular 
Reproduction and Development 1995; 41:468-478. 

57. Hayase T, Rice KG, Dziegielewska KM, Kuhlenschmidt M, Reilly T, Lee YC. 
Comparison of N-glycosides of fetuins from different species and human alpha 2-HS-
glycoprotein. Biochemistry 1992; 31:4915-4921. 

58. Dobrinski I, Jacob JR, Tennant BC, Ball BA. Generation of an equine oviductal 
epithelial cell line for the study of sperm-oviduct interactions. Theriogenology 1999; 
52:875-885. 

59. Dam TK, Gabius HJ, Andre S, Kaltner H, Lensch M, Brewer CF. Galectins bind to the 
multivalent glycoprotein asialofetuin with enhanced affinities and a gradient of 
decreasing binding constants. Biochemistry 2005; 44:12564-12571. 

60. Motoyama K, Nakashima Y, Aramaki Y, Hirayama F, Uekama K, Arima H. In Vitro 
Gene Delivery Mediated by Asialofetuin-Appended Cationic Liposomes Associated 
with gamma-Cyclodextrin into Hepatocytes. J Drug Deliv 2011; 2011:476137. 

61. Hunter RH. Reflections upon sperm-endosalpingeal and sperm-zona pellucida 
interactions in vivo and in vitro. Reprod Domest Anim 2003; 38:147-154. 

62. Hunter RH. Sperm head binding to epithelium of the oviduct isthmus is not an 
essential preliminary to mammalian fertilization - review. Zygote 2011; 19:265-269. 

63. Reeve L, Ledger WL, Pacey AA. Does the Arg-Gly-Asp (RGD) adhesion sequence 
play a role in mediating sperm interaction with the human endosalpinx? Hum Reprod 
2003; 18:1461-1468. 

64. Bergqvist AS, Ballester J, Johannisson A, Lundeheim N, Rodriguez-Martinez H. 
Heparin and dermatan sulphate induced capacitation of frozen-thawed bull 
spermatozoa measured by merocyanine-540. Zygote 2007; 15:225-232. 

65. Parrish JJ. Bovine in vitro fertilization: in vitro oocyte maturation and sperm 
capacitation with heparin. Theriogenology 2014; 81:67-73. 

66. Aitken RJ, Gibb Z, Mitchell LA, Lambourne SR, Connaughton HS, De Iuliis GN. 
Sperm motility is lost in vitro as a consequence of mitochondrial free radical 
production and the generation of electrophilic aldehydes but can be significantly 
rescued by the presence of nucleophilic thiols. Biol Reprod 2012; 87:110. 

67. Flesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM, Colenbrander B, 
Gadella BM. Bicarbonate stimulated phospholipid scrambling induces cholesterol 
redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell 
Sci 2001; 114:3543-3555. 

68. van Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JF, Gadella BM. 
Capacitation-dependent concentration of lipid rafts in the apical ridge head area of 
porcine sperm cells. Mol Hum Reprod 2005; 11:583-590. 

69. van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM. Multiple proteins 
present in purified porcine sperm apical plasma membranes interact with the zona 
pellucida of the oocyte. Mol Hum Reprod 2007; 13:445-454. 



Chapter 3  

124 

 

70. Tsai PS, Garcia-Gil N, van Haeften T, Gadella BM. How pig sperm prepares to 
fertilize: stable acrosome docking to the plasma membrane. PLoS One 2010; 5:e11204. 

71. Dott HM, Walton A. Effects of dilution and washing on ram spermatozoa studied by 
the flow dialysis technique. J Reprod Fertil 1960; 1:350-367. 

72. Lindahl PE. Sperm agglutinating and anti-agglutinating factors in normal follicular 
fluid from cattle. Int J Fertil 1966; 11:297-305. 

73. Bedford JM. Observations on some properties of a potent sperm-head agglutinin in the 
semen of a fertile rabbit. J Reprod Fertil 1970; 22:193-198. 

74. Lindahl PE. Activators of the ATP-dependent surface reaction in the apical cell 
membrane of the bull-sperm head, causing head-to-head association. Exp Cell Res 
1973; 81:413-431. 

75. Senger PL, Saacke RG. Serum-induced head-to-head agglutination of bovine 
spermatozoa. J Reprod Fertil 1976; 47:215-219. 

76. Harayama H, Liao PC, Gage DA, Miyake M, Kato S, Hammerstedt RH. Biochemical 
characterization of sialoprotein "anti-agglutinin" purified from boar epididymal and 
seminal plasma. Mol Reprod Dev 2000; 55:96-103. 

77. Lindahl PE, Sjoblom P. On mechanisms of head-to-head association in bovine 
spermatozoa. Biol Reprod 1981; 25:29-43. 

78. Harayama H, Kato S, Hammerstedt RH. Electrophoretic characterization of boar 
epididymal antiagglutinin. Biol Reprod 1996; 55:325-332. 

79. Harayama H, Magargee SF, Kunze E, Shidara O, Iwamoto E, Arikawa S, Miyake M, 
Kato S, Hammerstedt RH. Changes in epididymal protein anti-agglutinin on ejaculated 
boar spermatozoa during capacitation in vitro. Reprod Fertil Dev 1999; 11:193-199. 

80. Suarez SS. Control of hyperactivation in sperm. Hum Reprod Update 2008; 14:647-
657. 

81. Dobrinski I, Suarez SS, Ball BA. Intracellular calcium concentration in equine 
spermatozoa attached to oviductal epithelial cells in vitro. Biol Reprod 1996; 54:783-
788.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leemans B1, Gadella BM2,3, Sostaric E4, Nelis H1, Stout TAE2,4, Hoogewijs M1, Van 

Soom A1.  

 

1Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, 

Ghent University, Belgium 
2Departments of Farm Animal Health, 3Biochemistry and Cell Biology and 4Equine Sciences, 

Faculty of Veterinary Medicine, Utrecht University, The Netherlands.  

 

Oviduct Binding and Elevated Environmental pH Induce Protein Tyrosine Phosphorylation in 

Stallion Spermatozoa. Biology of Reproduction 2014; 91(1): 1–12.  

 
CHAPTER 4  

OVIDUCT BINDING AND ELEVATED PH 
INDUCE PROTEIN TYROSINE 

PHOSPHORYLATION IN STALLION 
SPERMATOZOA 

 



 

 

 



Chapter 4 

127 

 

ABSTRACT 

 

Sperm-oviduct binding is an essential step in the capacitation process preparing the 

sperm for fertilization in several mammalian species. In many species, capacitation can be 

induced in vitro by exposing spermatozoa to bicarbonate, Ca2+ and albumin; however, these 

conditions are insufficient in the horse. We hypothesized that binding to the oviduct 

epithelium is an essential requirement for the induction of capacitation in stallion spermatozoa. 

Sperm-oviduct binding was established by co-incubating equine oviduct explants for 2 h with 

stallion spermatozoa (2 × 106 spermatozoa / ml), during which it transpired that the highest 

density (per mm²) of oviduct-bound spermatozoa was achieved under non-capacitating 

conditions. In subsequent experiments, sperm-oviduct incubations were performed for 6 h 

under non-capacitating versus capacitating conditions. The oviduct-bound spermatozoa 

showed a time-dependent protein tyrosine phosphorylation response, that was not observed in 

unbound spermatozoa or spermatozoa incubated in oviduct explant conditioned medium. Both 

oviduct-bound and unbound sperm remained motile with intact plasma membrane and 

acrosome. Since protein tyrosine phosphorylation can be induced in equine spermatozoa by 

media with high pH, the intracellular pH of oviduct explant cells and bound spermatozoa was 

monitored fluorometrically after staining with BCECF-AM dye. The epithelial secretory cells 

contained large, alkaline vesicles. Moreover, oviduct-bound spermatozoa showed a gradual 

increase in intracellular pH, presumably due to an alkaline local microenvironment created by 

the secretory epithelial cells, given that unbound spermatozoa did not show intracellular pH 

changes. Thus, sperm-oviduct interaction appears to facilitate equine sperm capacitation by 

creating an alkaline local environment that triggers intracellular protein tyrosine 

phosphorylation in bound sperm.  
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INTRODUCTION 

 

During natural mating, mammalian spermatozoa are deposited in the female 

reproductive tract and subsequently migrate to a sperm reservoir which in many species is 

located in the isthmus of the oviduct [1-3], although there are exceptions such as the bitch [4, 

5]. In the sperm reservoir, spermatozoa bind via the apical region of their head to oviduct 

epithelial cells [6-8]. In cattle and pigs, only spermatozoa with intact acrosomal and plasma 

membranes are able to bind to the oviduct [9-11]. After a period of association with the 

oviduct epithelium, the bound spermatozoa undergo essential capacitation steps and are 

released from the reservoir. The released spermatozoa have thereby acquired a hyperactive 

motility pattern that helps them to move through the extracellular matrices of the cumulus 

complex and zona pellucida in order to reach and fertilize the mature oocyte [1-3]. Despite 

being first described in 1951 [12, 13], the capacitation process is still not fully understood, 

although it is known to involve a series of changes including reorganization of the sperm 

plasma membrane that facilitate cholesterol loss. These membrane events are induced by an 

increase in intracellular HCO3
− concentrations and activation of second messenger systems, 

including a soluble adenylyl cyclase (sAC) and a rise in intracellular Ca2+ [14-16]. The 

activation of sAC and concomitant production of cAMP also result in the activation of protein 

kinase A which in turn phosphorylates tyrosine residues on sperm proteins [15, 17, 18]. The 

necessity for cAMP dependent protein tyrosine phosphorylation, especially in the sperm tail, 

is in various species related to the acquisition of hyperactivated sperm motility and is 

considered to be a marker for some essential elements of the capacitation process [19-24]. The 

rapid cAMP-driven membrane changes also enable depletion of cholesterol, which in turn 

allows aggregation of lipid ordered microdomains at the apical ridge area of the sperm head 

[25]. These microdomains contain functional zona pellucida binding protein complexes [26] 

and the SNARE proteins required to form the trans-SNARE complexes required for the 

docking of the outer acrosomal membrane to the apical sperm plasma membrane [27, 28]. In 

short, the cAMP-driven membrane changes allow albumin dependent removal of cholesterol 

which is followed by a slower series of functional membrane changes required for the 

acquisition of fertilizing potential. 

 

While in vitro capacitation and fertilization are considered to be routine procedures in 

many species, and despite promising results in equine intracellular sperm injection (ICSI) 
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programmes [29-31], there are still no reliably successful conventional in vitro fertilization 

(IVF) protocols for equids [32-34]. Most likely, this is because functional stallion sperm 

capacitation is not induced in vitro using routine capacitation media, i.e. media containing 

BSA, bicarbonate and Ca2+ to promote sperm capacitation as described for various other 

mammalian species including the mouse [19, 20], pig [14] and man [35]. In cattle, induction 

of capacitation is enhanced by additonal use of heparin and phosphodiesterase inhibitors [36, 

37]. The disappointing protein tyrosine phosphorylation response after incubating stallion 

spermatozoa in simple in vitro capacitation media can be compensated by addition of 

membrane soluble cAMP analogues in combination with phosphodiesterase inhibitors which 

combine to increase protein kinase A (PKA) activity and induce protein tyrosine 

phosphorylation in the tail of approximately 50% of stallion spermatozoa [38]. Alternatively, 

reactive oxygen species will induce protein tyrosine phosphorylation in stallion spermatozoa 

[39]. Recently, an increase in the alkalinity of the capacitation medium (to approx. pH values 

of 8) has been reported to induce protein tyrosine phosphorylation [40, 41]. However, it is 

unlikely that such a high pH is the physiological trigger involved in sperm capacitation in vivo 

and it remains unclear how protein tyrosine phosphorylation and related sperm hyperactive 

motility are elicited physiologically in stallion sperm. The current consensus is that the central 

event in sperm capacitation in vivo is binding of the sperm to the oviduct. After a period of 

sperm-oviduct binding, the spermatozoa are released from the epithelium, by which time they 

have acquired the competence for hyperactive motility [42]. Despite the likely involvement of 

oviduct interaction in sperm capacitation in situ, during in vitro fertilization the treatments 

commonly used to trigger capacitation are limited to removal of seminal plasma and 

incubation in a bicarbonate, Ca2+ and albumin enriched medium; this condition fails to elicit 

reliable in vitro fertilization using equine gametes. It is, therefore, tempting to speculate that 

equine sperm-oviduct interaction is an essential requirement for equine sperm capacitation. 

While in situ sperm oviduct interactions are difficult to monitor and interpret, oviduct 

epithelial cell (OEC) monolayers have been used as a model system to study sperm-oviduct 

binding. Bovine, equine and porcine spermatozoa have all been shown to exhibit a 

capacitation-specific chlortetracycline (CTC) staining pattern when released from 

homologous OEC monolayers [9, 43, 44]. However, the utility of oviduct monolayers to 

induce a more physiological sperm capacitation has been questioned because OECs rapidly 

dedifferentiate during culture [11] and it has, therefore, been suggested that an equine oviduct 

explant model may be more representative of the in vivo situation [45]. In cattle, a similar 
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system has been shown to activate spermatozoa which, when released, have acquired the 

competence to fertilize an oocyte [46]. It has been further suggested that spermatozoa are 

activated / capacitated during the late pre-ovulatory period when the oviductal 

microenvironment changes in a way thought to be relevant for inducing sperm capacitation 

and the release of activated spermatozoa [1]. The aim of the current study was therefore to 

develop an equine oviduct explant system and determine its ability to trigger essential steps in 

the capacitation of stallion spermatozoa. We hypothesized that binding to the oviduct 

epithelium is an essential requirement for the induction of capacitation in stallion spermatozoa. 

To this end we investigated whether stallion spermatozoa have affinity for mare oviduct 

epithelial explants and whether this results in intracellular pH changes, protein tyrosine 

phosphorylation and subsequent release of spermatozoa with hyperactivated motility. These 

new insights may help to explain why conventional in vitro fertilization still fails in the horse. 

 

MATERIALS AND METHODS 

 

Chemicals and reagents  

Propidium iodide (PI), SYBR14 (LIVE / DEAD Sperm Viability Kit), JC-1, Hoechst 

33342, BCECF-AM, Alexa Fluor 488-conjugated goat anti-mouse antibody and Texas red-

conjugated goat anti-rabbit antibody were obtained from Molecular Probes (Ghent, Belgium). 

Monoclonal 4G10®Platinum, anti-phosphotyrosine mouse antibodies were obtained from 

Millipore (Overijse, Belgium). Triton X-100, PNA-FITC, the rabbit anti-tubulin antibody, 

fatty acid-free bovine serum albumin (A9418; cell culture tested) and all other chemicals not 

otherwise listed were obtained from Sigma-Aldrich (Bornem, Belgium).  

 

Animals 

Oviducts were collected at a slaughterhouse soon after the slaughter of healthy 

Warmblood mares aged between 5 and 22 years and without any visible reproductive tract 

pathologies. Only oviducts from mares with a large follicle (>35 mm diameter) in 

combination with estrous oedema in the uterine wall, indicating imminent ovulation, were 

used for this study.  
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Preparation of oviduct explants 

Five oviducts per experiment were prepared as previously described by Nelis et al. 

[45]. Briefly, oviducts from pre-ovulatory mares were dissected free of excess connective 

tissue, clamped at both ends and transported on ice in sterile 0.9% saline containing 50 μg / 

ml gentamycin. On arrival at the lab, the oviducts were washed in DPBS and the epithelial 

cells were harvested by scraping the mucosa at the ampullary-isthmic junction of the 

longitudinally incised oviduct. The harvested cellular material was transferred to a tube 

containing HEPES buffered TALP medium and left to settle for 10 min, after which the cell 

pellet was resuspended in 3 ml of fresh HEPES-buffered TALP washing medium. The 

process of sedimentation was repeated twice. Afterwards, the harvested cellular material was 

washed and cultured overnight in Dulbecco's Modified Eagle’s Medium / Nutrient Mixture F-

12 (DMEM/F12) with 10% fetal bovine serum (FBS) at 38.5 °C in a humidified atmosphere 

of 5% CO2 in air. The timespan from slaughter of mares to seeding of the cells was 

approximately 3 to 4 h.  

 

Semen collection and preparation  

Semen was collected using an artificial vagina (Colorado State University AV) from 

three adult stallions of proven good fertility. The raw ejaculate was filtered through gauze to 

remove the gel fraction and any debris, before visual evaluation of sperm motility by light 

microscopy (200x) on a heated stage at 37.0°C; assuming good motility, the semen was 

immediately transported to the laboratory for further processing. One ml of fresh semen with 

a concentration of 100 to 300 x 106 spermatozoa / ml was then washed using a 45 / 90% 

Percoll® gradient [36, 47]. Next, the sperm pellet was diluted to a concentration of 20 x 106 

spermatozoa / ml. At least 3 replicates of each experiment were performed using one ejaculate 

from each of the three stallions. The study was approved by the Ethical Committee of the 

Faculty of Veterinary Medicine of Ghent University (EC2013/175 and EC2013/176). 

 

Sperm oviduct binding 

Oviduct explants were cultured in DMEM/F12 medium supplemented with 10% FBS, 

equilibrated with 5% CO2 in a humidified atmosphere at 38.5 °C, as described by Nelis et al. 
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[45]. After overnight incubation, oviduct explants with a diameter of less than 200 μm were 

selected and washed; 5 oviduct explants per droplet were then transferred to 45 μl droplets of 

different media. Sperm binding to oviduct explants was performed in Whitten’s medium (100 

mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 5.5 mM glucose, 22 mM HEPES, 2.4 mM sodium 

lactate pentahydrate and 1.0 mM pyruvic acid; pH=7.4 and 280-300 mOsm / kg) at 38.5 °C in 

air; further referred to as non-capacitating medium / conditions. To provide sperm 

capacitation supporting conditions, Whitten’s medium was modified by replacing the sodium 

lactate pentahydrate with 2.4 mM calcium lactate pentahydrate and adding 25 mM NaHCO3 

and 7 mg / ml BSA (pH=7.4 and 280-300 mOsm / kg; osmolality was adjusted by reducing 

NaCl); this medium was pre-equilibrated for at least 2 h in a humidified atmosphere 

containing 5% CO2 at 38.5°C and is further referred to as capacitation medium (adapted from 

McPartlin et al. [48]). In general, a final concentration of 2 x 106 spermatozoa / ml was 

obtained by adding 5 μl Percoll® washed and diluted sperm (20 x 106 / ml spermatozoa) to 

the 45 μl oviduct explant-containing droplet. The droplets were cultured under mineral oil to 

prevent evaporation. Three different incubation conditions were applied; non-capacitating 

conditions (38.5°C in air), DMEM/F12 with 10% FBS and capacitating medium (38.5°C, in a 

humidified atmosphere equilibrated with 5% CO2). Each replicate was performed with a 

different ejaculate.  

 

Oviduct ciliary activity and sperm binding 

Oviduct explant viability was tested in both non-capacitating and capacitating medium 

at various durations of culture (0, 2, 4, 6, 12 and 24 h). At each time point, viability of oviduct 

explants was evaluated by assessing ciliary activity using a phase contrast microscope 

(magnification of 1000x). The effect of sperm concentration on sperm binding to oviduct 

explants was assessed in non-capacitating medium using 0.5, 1, 2, 5 or 10 x 106 spermatozoa / 

ml. After 2 h of co-incubation, the sperm-oviduct explants were washed twice in non-

capacitating medium and evaluated for sperm-oviduct binding. Subsequently, sperm-oviduct 

binding was tested in three different co-incubation media: DMEM/F12 with 10% FBS (basic 

culture medium for oviduct explants), non-capacitating medium and capacitating medium. For 

each condition, stallion sperm were added to oviduct explants at a concentration of 2 x 106 

spermatozoa / ml and incubated for 0.5, 2, 4 or 6 h. In some cases, after a 2 h co-incubation in 

non-capacitating medium, sperm-oviduct explants were washed and transferred to non-
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capacitating or to capacitating medium for a further 0.5, 3 or 6 h. 

Sperm and oviduct explant staining 

The number of spermatozoa bound to oviduct epithelium was determined by 

visualizing the live sperm using 2 μM JC-1 in HEPES-buffered washing medium for 15 

minutes at 37 °C in 5% CO2 in air, to stain the mitochondria in the sperm mid-piece [49]. This 

fluorophore can reversibly change its emission from yellow-red (aerobic sperm metabolism) 

to green (anaerobic metabolism accompanied by depolarization of the inner mitochondrial 

membrane [50]. JC-1 was combined with a live / dead cell nucleus stain combination, 

SYBR14 (20 μM) and propidium iodide (PI; 50 nM) (LIVE / DEAD Sperm Viability Kit; 

Molecular Probes, Leiden, The Netherlands) [49]. Stained oviduct explants and sperm-oviduct 

explant complexes were washed twice in HEPES buffered washing medium and mounted on 

siliconized glass slides (Marienfeld, Germany) using 1.4-Diazabicyclo[2.2.2]octane 

(DABCO) as antifade, and sealed with nail polish. Green fluorescence-labelled oviduct cells 

and sperm heads were considered viable, whereas red oviduct cells and sperm heads were 

considered dead. Finally, the relative percentages of viable, aerobically metabolizing oviduct 

epithelial cells and spermatozoa were scored by counting the viable cells in 5 microscopic 

fields. Samples were examined using a Leica DMR microscope equipped with a mercury 

lamp and appropriate filters, at a magnification of 400x. 

 

Acrosome status  

The acrosome status of spermatozoa that had been incubated with oviduct epithelial 

explants for a period of 6 h in non-capacitating and capacitating media was assessed using 

fluorescein conjugated peanut agglutinin (PNA-FITC) to discriminate acrosome-intact from 

acrosome deteriorated spermatozoa [51]. Briefly, after fixation in 4% (w/v) paraformaldehyde 

in DPBS for 15 min at room temperature, sperm oviduct explants were washed in DPBS and 

further permeabilized by incubating in 0.1% Triton X-100 in DPBS for 10 min at room 

temperature. After washing in DPBS, the sperm-oviduct explants were stained for 15 min at 

room temperature with 1 μg / ml PNA-FITC. After two extra washes with DPBS, the stained 

sperm-oviduct explants were mounted as described above. Spermatozoa with PNA-FITC-

labelled acrosome regions were considered acrosome-intact, whereas spermatozoa with no 

fluorescence over the acrosomal region were considered to be acrosome reacted. The relative 
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percentages of acrosome-intact spermatozoa were scored by counting 200 spermatozoa per 

sperm-oviduct explant incubation. Samples were examined using a Leica DMR microscope 

equipped with a mercury lamp and appropriate filters, at a magnification of 400x. 

 

Sperm tail-associated protein tyrosine phosphorylation 

After co-incubation, sperm-oviduct explant complexes were washed twice and fixed in 

4% paraformaldehyde in DPBS at room temperature for 15 min. The fixative was removed by 

three washing steps using DPBS. The washed sperm-oviduct explant complexes were 

subsequently incubated in 0.1% Triton X-100 in DPBS for 10 min at room temperature to 

ensure full permeabilization of membranes. The immobilized and permeabilized sperm-

oviduct explant complexes were then incubated in blocking buffer (DPBS containing 1% 

BSA) for 10 min at room temperature. After this step, spermatozoa were incubated in buffer 

containing 0.1% BSA and supplemented with a mix of mouse monoclonal 4G10®Platinum 

IgG2b protein anti-phosphotyrosine antibody (diluted 1:500) and rabbit anti-tubulin antibody 

(diluted 1:80) at 4°C. After overnight incubation, unbound antibody was removed by gently 

washing the sperm-oviduct explant complexes twice using 1 ml of PBS containing 0.1% BSA. 

The resulting sperm-oviduct explant complexes were then stained with a mix of a monoclonal 

goat anti-mouse antibody conjugated to Alexa Fluor 488 (Invitrogen, Molecular Probes, 

Ghent, Belgium) and a goat anti-rabbit antibody conjugated to Texas red for 1 h at room 

temperature. After immunolabeling, the two non-bound antibody conjugates were removed by 

washing three times using DPBS containing 0.1% BSA, and once using DPBS. The 

immunolabelled sperm-oviduct explant complexes were mounted on glass slides as described 

above and sealed with nail polish. The proportion of spermatozoa with green fluorescent tails 

among the total sperm population (with red fluorescent tails) was determined by counting 200 

spermatozoa per sperm-oviduct explant complex. Samples were examined using an Eclipse Ti 

microscope (Nikon, Tokyo, Japan) equipped with a mercury lamp and appropriate filters at a 

minimum magnification of 400×.  

 

Assessing intracellular pH of oviduct epithelial cells and spermatozoa   

Oviduct explants and sperm-oviduct explant complexes were washed twice using HBS 

(HEPES buffered saline) and subsequently stained with 5 μM of the pH-sensitive dye 
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BCECF-AM. After a 30 minute incubation at 38.5 °C, the non-cellular dye was removed by 

washing the complexes twice in HBS. The complexes were then resuspended in medium and 

incubated for an additional 20 min to allow de-esterification of the dyes, and mounted on 

glass slides using DABCO as anti-fading agent and to help immobilize spermatozoa for 

assessing intracellular pH. To determine the pHi of sperm cells, a calibration was first 

performed using BCECF-AM equilibrated spermatozoa in the presence of 0.1% Triton X-100 

and by adjusting the pH with HCl and NaOH [52, 53]. Increasing relative green fluorescence 

was related to increasing intracellular pH [54]. The BCECF signal was measured in oviduct 

epithelial cells and during 6 h sperm-oviduct explant co-incubations in bound as well as 

unbound spermatozoa. Samples were examined using a Leica DMR microscope equipped 

with a Hg-lamp and appropriate filters, at a magnification of 400x and 1000x. 

 

Sperm motility assessment 

Motility patterns during sperm-oviduct explant binding and after sperm release from 

the oviduct explants were assessed using a CCD ICD-46E camera (Ikegami Tsushinki Co. 

Ltd., Japan) attached to an Olympus IX70 inverted microscope (Olympus Belgium N.V., 

Aartselaar, Belgium). Images were acquired using the Image Database program (Leica, Van 

Hopplynus N.V., Brussel, Belgium). 

 

Microscopic imaging of sperm-oviduct binding 

Density of spermatozoa bound to the oviduct explants, along with membrane integrity, 

acrosome status and intracellular pH of bound spermatozoa during the 6 h co-incubation were 

determined in five microscopic fields (400x magnification) by means of fluorescence 

microscopy using a Leica DMR microscope equipped with excitation filters BP 340/380 nm, 

BP 450/490 nm, BP 560/40 nm and a 100 W mercury lamp. Alexa Fluor 488-conjugated goat 

anti-mouse antibody, SYBR14, PNA-FITC, propidium iodide (PI), Texas red-conjugated goat 

anti-rabbit antibody, JC-1, Hoechst 33342 and BCECF-AM ester were sequentially excited 

using 499 nm, 498 nm, 495 nm, 536 nm, 589 nm, 592 nm, 345 nm and 490 nm wavelengths. 

The emission spectra were detected by Blue (BP 470/40 nm), Green (LP 515 nm) and Red 

(BP 645/75 nm) filters corresponding to the emission peaks of the dyes of respectively 519 

nm, 522 nm, 519 nm, 617 nm, 615 nm, 595 nm, 478 nm and 530 nm. Images were acquired 
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using the Image Database program (Leica, Van Hopplynus N.V., Brussel, Belgium). In 

addition, the surface area of the oviduct explants in each microscopic field (at a magnification 

of 400×) was measured using this program. The percentage of spermatozoa with tail-

associated protein tyrosine phosphorylation (PY+ / TUB+) was determined by evaluating 200 

randomly selected spermatozoa (TUB+); the acrosome status of bound spermatozoa (PNA-

FITC+ / TUB+) at each time point of co-incubation was similarly evaluated by confocal 

microscopy using a Bio-Rad Radiance 2100 MP system (Zeiss / Bio-Rad, Hertfordshire, 

U.K.) attached to a Nikon Eclipse TE300 inverted microscope (Nikon, Badhoevedorp, The 

Netherlands) at a magnification of 400x or 1000x. The fluorescent dyes were excited using an 

argon laser and analyzed using the same filters as described for fluorescence microscopy. 

Images were acquired using LaserSharp 2000 software (Zeiss / Bio-Rad) after background 

corrections. For each wavelength, digital optical sections were collected using Z-series 

acquisition at intervals of 0.35 μm. In both systems, the various fluorophores were checked 

for signal overlap; no leakage of signals was detected. 

 

Statistical analysis 

The effects of treatments on sperm parameters were assessed by analysis of variance 

(ANOVA) using the general linear model procedure of SPSS version 20 for Windows (SPSS 

IBM, Brussels, Belgium). The number of spermatozoa bound to oviduct explants and the 

percentages of PI- and SYBR+ spermatozoa as well as the change in the percentage of 

tyrosine phosphorylated (PY+) spermatozoa over time were calculated as repeated measures 

with Greenhouse-Geisser correction by the general linear model and a Bonferroni correction. 

Post hoc tests were performed by Sheffé analysis. Differences were considered significant if 

P<0.05. 
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RESULTS 

 

Viability of oviductal explants  

We previously demonstrated that oviduct explants remained viable for up to 6 days 

when incubated in DMEM/F12 medium with 10% FBS [45]. In order to assess aspects of 

sperm-oviduct binding however, the possibility that the relatively simple sperm incubation 

media may compromise oviduct explant viability was examined by assessing changes in 

morphological features (ciliary activity and membrane-integrity) of explants incubated for 24 

h in non-capacitating and capacitating media. We were able to demonstrate that oviduct 

explants remained viable for at least 24 h when incubated in these media (Figure 1); indeed, 

the vast majority of oviduct explants displayed ciliary activity which was very similar 

between media and changed little over time (99 ± 2%; P=0.44: supplementary video clip; 

Figure 2a) while all cells (100 ± 0%; P=0.67; Figure 2b) of nearly all explants (>99%) 

remained membrane-intact. 

 

 

Figure 1. Oviduct explant viability during 24 h incubation in non-capacitating and capacitating media. 
Data represent mean (± SD) % of oviduct explants (n=30 per group) showing ciliary activity (dark 
grey bars) and membrane integrity (light grey bars) over three replicates. ANOVA with Greenhouse-
Heisser correction; post hoc tests were performed after Bonferroni correction.  
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Figure 2. (a) Representative image from a supplementary video clip of oviduct explants after 24 h 
incubation in non-capacitating Whitten’s medium or capacitating modified-Whitten’s medium. In 99% 
of the oviduct explants, ciliary activity was evident after 24 h incubation. (b) Fluorescence 
microscopic image of oviduct explants after 24 h incubation in non-capacitating Whitten’s medium or 
capacitating modified-Whitten’s medium. SYBR14 / PI staining demonstrated that more than 99% of 
the cells were membrane intact after 24 h incubation (green = membrane-intact) (a: original 
magnification, 1000x; scale bar = 6.25 μm; b: original magnification, 100x; scale bar = 62.5 μm).  

 

Sperm binding capacity of equine oviduct explants  

To standardize the sperm-oviduct binding assay, the saturation concentration for 

sperm binding to oviduct explants was evaluated by exposing oviduct explants to increasing 

sperm concentrations (0.5, 1, 2, 5 and 10 x 106 spermatozoa / ml) in non-capacitating medium. 

Saturation for sperm binding was reached at 5 x 106 spermatozoa / ml (see Figure 3: 1.9 ± 0.4 

x 105 spermatozoa / mm²).  
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Figure 3. Effect of sperm concentration on binding capacity of equine oviduct explants for stallion 
sperm under non-capacitating conditions. Saturation of sperm-oviduct explant binding was detected at 
5 x 106 spermatozoa / ml. Data represent mean (± SD) number of spermatozoa bound to oviduct 
explants (n=30 per group) in four replicates. Values that differ significantly are indicated by different 
capitals. ANOVA with Greenhouse-Heisser correction; post hoc tests were performed after Bonferroni 
correction. 
 

At different time points (0.5, 2, 4, 6 h), sperm-oviduct binding was quantified by using 

a sperm concentration of 2 x 106
 spermatozoa / ml in 45 μl droplets of non-capacitating 

medium and compared to both capacitating medium and the previously described DMEM/F12 

with 10% FBS. The mean ± SD number of bound spermatozoa at different time points (0.5, 2, 

4, 6 h) was 10.0 ± 2.7 x 105 spermatozoa / mm2 in non-capacitating medium, compared to 6.0 

± 1.1 x 105 spermatozoa / mm2 in capacitating medium and 1.4 ± 0.4 x 105 spermatozoa / mm2 

in DMEM/F12 based culture medium; these sperm-binding densities differed significantly 

between media (P<0.001). Within a medium, there was no significant effect of incubation 

time on the number of bound spermatozoa (DMEM/F12 based culture medium: P=0.25; non-

capacitating medium: P= 0.07; capacitating medium: P=0.80) (Figure 4). 
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Figure 4. Effect of media on sperm binding capacity of oviduct explants over time. Data represent 
mean (± SD) number of spermatozoa bound to oviduct explants (n=10 per group) over four replicates. 
Non-capacitating medium (dark grey bars) supported sperm-oviduct binding at a higher level than 
capacitating medium (light grey bars). DMEM/F12 basic culture medium supplemented with 10% 
FBS (black bars) supported the lowest sperm-oviduct binding. Within each time point, values that 
differ significantly are indicated by different capitals. Repeated measures ANOVA with Greenhouse-
Heisser correction; post hoc tests with Bonferroni correction was performed. 
 

Selective binding of intact sperm to oviduct explants 

Plasma membrane and acrosome integrity of sperm bound to oviduct explants were 

assessed during 6 h co-incubation and compared to those of the unbound sperm fraction. It 

transpired that membrane-intact spermatozoa were more prevalent among the oviduct-bound 

sperm population (99.0 ± 0.5%) compared to the unbound sperm fraction (80 ± 2.5%) 

(P<0.001). (Figures 5, 6a, 6b). The same was true for acrosome integrity (99.6 ± 0.8% for 

oviduct explant bound spermatozoa versus 72 ± 11% for non-bound spermatozoa) (Figures 5, 

6c, 6d); again these differences (P<0.001) were not time-dependent (P=0.63) but already 

apparent at time-point 0.5 h. 
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Figure 5: Percentage of plasma membrane-intact, protein tyrosine phosphorylated and membrane-
intact, or acrosome-intact spermatozoa in non-capacitating and capacitating media over time, for 
sperm in suspension or for sperm bound to oviduct explants. In the oviduct explant bound sperm 
population, a time-dependent increase in tail-associated protein tyrosine phosphorylation was observed 
in both conditions. Plasma membrane and acrosome integrity were conserved during sperm-oviduct 
binding. Data represent mean (± SD) percentages of membrane-damaged (black bars), membrane-
intact and protein tyrosine phosphorylated (dark grey bars) and membrane-intact and acrosome-intact 
spermatozoa (light grey bars) (n=10 oviduct explants in each group; three replicates). For the 
percentage of membrane-damaged spermatozoa, values that differ significantly are indicated by 
different capitals. For the percentage of membrane-intact and protein tyrosine phosphorylated 
spermatozoa, values that differ significantly are indicated by different small letters. For the percentage 
of membrane-intact plus acrosome-intact spermatozoa, values that differ significantly are indicated by 
asterisks. Repeated measures ANOVA with Greenhouse-Heisser correction; post hoc tests were 
performed after Bonferroni correction. 
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Figure 6: (a,b) Fluorescence micrographs of spermatozoa bound to oviduct explants. As demonstrated 
by SYBR14 / PI / JC-1 staining, the bound spermatozoa remained membrane-intact (green) for at least 
6 h in non-capacitating and capacitating media (white arrows). (c) Acrosome integrity of spermatozoa 
bound to oviduct explants after 6 h co-incubation in non-capacitating and capacitating media evaluated 
by PNA-FITC using fluorescence and (d) confocal microscopy (a, c: original magnification, 400x, 
scale bar = 25 μm; b, d: original magnification, 1000x; scale bar = 6.25 μm).  
 

Sperm-oviduct binding induced protein tyrosine phosphorylation in sperm tails 

The hypothesis that in vivo sperm capacitation is initiated during residence in the 

sperm reservoir [2] led us to investigate the effect of sperm-oviduct binding on tail-associated 

protein tyrosine phosphorylation, which is thought to be an essential step in capacitation. The 

percentage of membrane-intact spermatozoa with tail-associated protein tyrosine 

phosphorylation was significantly higher for the oviduct explant-bound sperm fraction than 

among the unbound population (P<0.001). After 6 h co-incubation, the percentage of protein 

tyrosine phosphorylated sperm increased to 43 ± 5% of the bound sperm population in non-

capacitating medium compared to 60 ± 16% in capacitating medium (Figure 5, 7a, 7b, 7c). By 
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comparison, only a small percentage of unbound sperm in the same media showed evidence 

of protein tyrosine phosphorylation after 6 h (6 ± 2% and 12 ± 1%, respectively).  

 

Figure 7: Fluorescence micrographs of protein tyrosine phosphorylated spermatozoa bound to oviduct 
explants after 6 h co-incubation in capacitating medium. Bound spermatozoa were identified by means 
of confocal microscopy after double indirect immunofluorescence staining (tubulin = red; protein 
tyrosine phosphorylation = green) at 30 min (a), 3 h (b), and 6 h (c) of co-incubation in capacitating 
medium. Tyrosine phosphorylation increased over time (a, b, c: original magnification, 400x; scale bar 
=25 μm).  

 

Alkaline secretory activity of oviduct explants and the effects on spermatozoa pHi 

It has been reported that equine spermatozoa become protein tyrosine phosphorylated 

after incubation in medium with an external pH≈8, achieved by incubation in air [40, 41]. In 

order to explain the increased protein tyrosine phosphorylation observed in oviduct bound 

spermatozoa we investigated whether this interaction induces alkalization of spermatozoa. 

BCECF-AM staining was performed on oviduct explants and oviduct-bound spermatozoa and 

intracellular pH of both types of cells was assessed over time. Oviduct explants recovered 

from mares at the late pre-ovulatory stage of the cycle contained secretory cells with a mildly 

alkaline apical segment (pH= 7.5-7.8) (Figure 8i, 8j). As incubation progressed, the incidence 

of oviductal cells with an alkaline content decreased (121 ± 23, 112 ± 25, 76 ± 19 and 23 ± 11 

cells per mm² at 0.5, 1, 3 and 6 h, respectively). By contrast, the intracellular pH of 

spermatozoa bound to the oviduct cells increased over time (6.82 ± 0.12, 7.14 ± 0.30, 7.70 ± 

0.16; 7.68 ± 0.12 at 0.5, 1, 3 and 6 h) (Figure 8k, 8l, 8m, 8n). Unbound sperm also exhibited a 

significant intracellular pH rise over time (6.79 ± 0.57, 6.86 ± 0.84, 7.02 ± 0.14, 7.17 ± 0.12 at 

0.5, 1, 3 and 6 h) but the pH values were consistently lower than for oviduct explant-bound 

spermatozoa (P<0.001). Comparing the timing of intracellular alkalization and protein 
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tyrosine phosphorylation in oviduct explant-bound sperm, indicated that alkalization preceded 

protein tyrosine phosphorylation (Figure 5 versus Figure 9: P<0.01).  

 

 

Figure 8: Fluorometric recordings of intracellular pH of (a-h) pH-calibrated spermatozoa (pH 6.7, 6.8, 
6.9, 7.1, 7.3, 7.5, 7.9, 8.3), (i-j) oviduct explants and (k-n) oviduct-bound spermatozoa after 0.5 h, 1 h, 
3 h and 6 h. As demonstrated by BCECF-AM staining, secretory epithelial cells of oviduct explants 
contained intracellular content with increased pH. During 6 h sperm-oviduct explant binding, the 
intracellular pH of bound spermatozoa reached a maximum at 3 h which was maintained until 6 h. 
Additionally, the alkaline secretory content of epithelia was released gradually during the 6 h of 
sperm-oviduct binding. Images were recorded using fluorescence microscopy (i: original 
magnification, 400x, scale bar = 25 μm; a-h and j-n: original magnification, 1000x, scale bar = 6.25 
μm).  
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Figure 9: Mean pHi recorded in oviduct bound spermatozoa (black full line) and sperm suspensions 
(black dotted line) over time. In both sperm populations, a time dependent increase in intracellular pH 
was observed. However, the intracellular pH of oviduct-bound spermatozoa tended to alkalization 
after 3 h sperm-oviduct binding whereas this did not occur in sperm in suspension. Data represent 
mean (± SD) intracellular pH per spermatozoa (n=50 in each group) over three replicates. Within the 
oviduct-bound spermatozoa and suspended sperm populations, values that differ significantly are 
indicated by different capitals. Repeated measures ANOVA with Greenhouse-Heisser correction; post 
hoc tests were performed after Bonferroni correction. 
 

 

DISCUSSION 

 

In vivo, mammalian spermatozoa follow an ordered sequence of events in preparation 

for the fertilization of an oocyte [55]. For equids, the proposed sequence of events includes; (1) 

stallion spermatozoa are ejaculated into the uterine body and transported to the utero-tubal 

junction (UTJ); (2) a ‘reservoir’ of non-capacitated spermatozoa is established at the UTJ; (3) 

spermatozoa within the reservoir become capacitated as the time of ovulation approaches; (4) 

the capacitated spermatozoa are released from the sperm reservoir having acquired 

hyperactivated motility, (5) the released spermatozoa meet the mature oocyte at the 

ampullary-isthmic junction (6) after recognition, the spermatozoa bind to the zona pellucida 

or the intercellular matrix of the cumulus cell complex [56, 57], (7) the acrosome reaction is 

subsequently triggered allowing the sperm to (8) penetrate the cumulus and zona pellucida 
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and enter the perivitelline space, from where (9) the fertilizing spermatozoon can bind and 

fuse with the oolemma. The effects of the oviduct on equine sperm physiology is the subject 

of the current study. 

 

 Conventional IVF with equine gametes is not successful [32-34], whereas oocyte 

transfer [58] and ICSI [31, 59, 60] can be applied successfully in horses. This implies that 

stallion spermatozoa are able to fulfill their role in fertilization in vivo or after injection into 

an oocyte. In contrast to most other mammalian species, stallion spermatozoa are not 

efficiently activated by conventional IVF or in vitro capacitation media (i.e. media containing 

bicarbonate, Ca2+ and defatted albumin as capacitation supporting factors, with or without an 

additional protein kinase A inducer). In vivo the oviduct almost certainly plays a critical role 

in regulating sperm activation, and it is tempting to speculate that oviduct-sperm interactions 

are essential to eliciting capacitation of stallion spermatozoa. Of course, it is difficult to 

monitor sperm-oviduct interactions in situ. Therefore, in the current study, an ex vivo equine 

sperm-oviduct binding model was used to mimic the events that take place in the oviduct 

during the late pre-ovulatory stage. 

 

 Equine oviductal explants in which morphological and ultrastructural features, such as 

ciliary beating, are well preserved [45] were used. This system was selected primarily because 

ciliation in bovine oviductal epithelial cells is thought to be a terminal differentiation event 

that is difficult to induce or maintain in vitro [61]. Moreover, because bull [46] and boar [62] 

sperm bind preferentially to the cilia or to deeper regions of ciliated, and not to the secretory, 

epithelial cells; oviduct epithelial explants are preferred to less differentiated oviduct 

monolayers. Baillie et al. [63] reported that, in man, spermatozoa bind more avidly to 

explants than monolayers. We did not investigate this preference further in the current study 

but found the oviduct explant system to be very practical because, as for cattle [64], the 

explants could be used within 6 to 12 h of harvesting, whereas monolayers can only be used 

several days later [45].  

 

To establish the “in vivo-like” equine oviduct explant culture, epithelial cells were 

recovered from the ampullary-isthmic junction. In vivo on the other hand, the sperm reservoir 

is not thought to extend beyond the first few centimeters of the isthmus proximal to the UTJ. 

However, it is technically almost impossible to reliably and repeatedly collect oviduct 
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epithelial cells exclusively from the equine isthmus because of its very narrow lumen and 

tortuous anatomy [6, 65]. Moreover, because sperm-oviduct epithelial cell binding 

characteristics have been shown to be independent of the oviductal site of origin in cattle [7, 

11], we decided to harvest cells from the isthmic-ampullary junction where we could at least 

reliably harvest a comparable cell population (i.e. from the same location) for each replicate. 

While it is also likely that sperm in the oviductal reservoir are exposed to ampullary 

secretions in vivo, we do acknowledge that the absence of regional differences in oviduct 

epithelial cell binding properties has not been proven for the horse. In this respect, it remains 

possible that cells from the distal isthmus may display different sperm-oviduct interactions to 

those at the ampullary-isthmic junction which would affect interpretation of the outcome of 

the binding studies. 

 

 With regard to the quantification of sperm-oviduct binding, we were aware that 

standardization is the main challenge when using equine oviduct explants due to the 

invaginated and irregular oviductal surface, which is very different from the flattened surface 

of an oviduct monolayer [66, 67]. To achieve standardization in the oviduct-explant model, 

we decided that the ideal sperm concentration needed to be below the sperm-oviduct 

saturation level (5 x 106 spermatozoa / ml), and this was set in non-capacitating conditions at 

2 x 106 spermatozoa / ml. 

 

  Interestingly, the oviduct explants were able to selectively bind intact spermatozoa, 

which is in agreement with previous observations made in pigs [9] and cattle [10], where 

sperm-oviduct binding was shown to be a useful method for selecting and preserving plasma 

membrane and acrosome-intact spermatozoa. We confirmed that only membrane- and 

acrosome-intact spermatozoa bound to oviduct explants and that they maintained their intact 

status for at least 6 h. Oviduct explant binding was most efficient in incubation media devoid 

of capacitation supporting factors, in which sperm binding capacity was approximately twice 

that of incubation in capacitation supporting media. Similar results have been reported in 

cattle [44] and hamsters [68], and support Suarez’ [1] hypothesis that only non-capacitated 

spermatozoa are able to bind to oviduct epithelium during estrus. The reduced sperm binding 

capacity observed under capacitating conditions may be a factor of a substantial population of 

spermatozoa undergoing membrane changes that decrease their affinity for oviduct epithelia. 

Sperm plasma membrane changes are an early and integral part of the stallion sperm 
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capacitation process [69] and are precursors to critical intracellular changes such as protein 

kinase A (PKA) activation and subsequent protein tyrosine phosphorylation. We showed that 

incubation of spermatozoa in capacitation supporting conditions (HCO3
-, BSA and Ca2+) was 

a poor stimulator of protein tyrosine phosphorylation, whereas binding of spermatozoa to 

oviduct explants caused a spectacular increase in the percentage of sperm displaying protein 

tyrosine phosphorylation. On the other hand, significant release of spermatozoa from oviduct 

epithelia was not observed in any of the media tested. The fact that spermatozoa showed the 

lowest binding in the DMEM/F12 based oviduct explant culture medium that contained 10% 

FBS may be explained by the presence of many blocking proteins in FBS that could 

conceivably saturate oviduct binding receptors [70, 71].  

 

One of the central changes triggered during sperm capacitation is the generation of 

hyperactivated sperm motility, which in boar sperm is a process induced by massive protein 

tyrosine phosphorylation [23]. Only a small proportion of the spermatozoa suspended in in 

vitro capacitation media showed a visible protein tyrosine phosphorylation response. However, 

in both the absence and, in particular, the presence of capacitation supporting factors, binding 

to pre-ovulatory oviduct explants induced protein tyrosine phosphorylation in approximately 

half of the spermatozoa, although hyperactivated motility was not observed. Moreover, the 

non-bound sperm showed no such response, indicating that prolonged direct contact with the 

oviduct epithelium is required for the protein tyrosine phosphorylation response. Sperm-

oviduct binding is regarded in many species (pigs [9] and cattle [10]) as a mechanism to select 

membrane-intact, acrosome-intact and non-capacitated spermatozoa. During the 2 h co-

incubation of spermatozoa with oviduct explants, a gradual increase in oviduct binding was 

evident. After 2 washing steps, established sperm-oviduct explants were transferred to either 

non-capacitating or capacitating medium. In both conditions, only minimal release of bound 

spermatozoa was observed during the subsequent 6 h incubation. Possibly, unknown in vivo 

factors (such as the influx of follicular fluid post-ovulation, chemo-attractant components 

derived from the cumulus oocyte complex entering the oviduct or simply the stream of fluids 

through the oviduct) may be required for sperm release. In any case, the protein tyrosine 

phosphorylation induced in vitro by sperm binding to oviduct explants was insufficient to 

allow sperm release from the oviduct cells. This also suggests that the unbound fraction 

almost certainly did not first bind to the oviduct epithelium and then detach soon after but 

within the 2 h co-incubation period. This conclusion is supported by the following 
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observations: (i) In the unbound sperm population, a minimal percentage of spermatozoa 

showed protein tyrosine phosphorylation. If this population had previously bound, we assume 

that the rates of protein tyrosine phosphorylation would have been higher. (ii) Stallion sperm 

incubated in capacitation media in the absence of oviduct epithelium showed similar minimal 

protein tyrosine phosphorylation responses rates (<10% after 6 h; data not shown). 

 

Interestingly, a similar protein tyrosine phosphorylation response has been reported for 

stallion sperm suspensions when the pH of the capacitation medium was alkaline [40, 41]. It 

may therefore be significant that the secretory cells in the oviduct explants contained large 

alkaline vesicles, although these only marginally raised the pH of the incubation medium. In 

vivo however, the alkaline secretions may be diluted to a much lesser extent by oviduct fluid 

and may therefore induce an alkaline local microenvironment that is sufficient to induce 

sperm protein tyrosine phosphorylation without the need for the sperm to bind to the oviduct. 

Certainly, in our in vitro oviduct explant system, direct contact between spermatozoa and 

oviduct explants was necessary. Indeed, the pH of the adhered spermatozoa reached levels 

similar to those described in alkalinized capacitation media [40]. The direct contact of stallion 

spermatozoa to the oviduct epithelium was thus sufficient to induce intracellular alkalization 

consistent with capacitation induction. In the female reproductive tract the pH has been 

reported to exceed 7, reaching values of up to pH 8.0 in cervical mucus and pH 7.4 in the 

equine oviduct [72], although oviductal pH is also affected by the stage of the oestrous cycle 

[72]. Combining the various observations, it is hypothesized that a local increase in the HCO3
- 

concentration is essential for stallion sperm to capacitate and subsequently fertilize [73].  

 

During sperm transport through the female reproductive tract, the intracellular pH of a 

murine or human spermatozoon increases, accompanied by an additional decrease in 

extracellular H+ concentration, and leading to a slightly alkaline pH which is consistently 

lower than the extracellular pH, due to the presence of transmembrane ion pumps [74]. Our 

finding supports and extends previous studies describing the necessity of an alkaline 

environment for stallion sperm capacitation, at the level of protein tyrosine phosphorylation. 

The novel aspect of this study is the finding that this process can be elicited by binding to pre-

ovulatory oviduct explants, which makes it likely that an analogous process takes place in 

vivo. Further research should focus on how the oviduct epithelial cell-sperm contact results in 

induction of protein tyrosine phosphorylation.  
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In contradiction to the present study, it has been shown that horse sperm binding to 

oviduct epithelial cell monolayers reduces Ca2+ metabolism leading to a temporary decrease 

in motility, inhibition of capacitation and increased sperm survival time [75, 76]. Besides a 

low intracellular Ca2+ concentration, Kirichok and Lishko [74] reported a high intracellular H+ 

concentration during this phase that they proposed to have a complementary effect on 

mammalian sperm survival. To date, it is clear that stallion spermatozoa can remain viable in 

the mare’s sperm reservoir for at least 6 days [72]. In contrast to oviduct explants, monolayers 

do not typically retain their morphological and physiological characteristics during culture. In 

particular, the number of secretory cells decreases dramatically, such that the release of 

molecules from secretory granules is likely to be marginal when monolayers are used, 

whereas it is much better conserved in equine oviduct explants [45]. Due to this maintenance 

of secretory activity, the equine oviduct explant model almost certainly mimics in vivo 

conditions better than an epithelial cell monolayer [45]. Moreover, they loss of the alkaline 

secretory vesicles in cells cultured in monolayers, but their retention in oviduct explant 

vesicles probably explains the divergence in their effects on the physiology of bound sperm. 

 

Our findings suggest that physical sperm-oviduct epithelium contact during the late 

pre-ovulatory period is important to switch on intracellular processes involved in sperm 

capacitation. This enhancement of capacitation may involve interaction with oviduct plasma 

membrane molecules or with capacitating factors derived from the secretory oviduct epithelial 

cells. As demonstrated by Suarez [2], species-specific carbohydrate moieties expressed on the 

epithelium are responsible for oviduct epithelium binding to the sperm head. This specific cell 

contact may prepare spermatozoa for capacitation, where the importance of physical contact is 

underlined by the failure of oviduct explant-conditioned medium to stimulate enhanced sperm 

tail protein tyrosine phosphorylation. This rules out the possibility that any “pro-capacitation 

factors” are simply released by the secretory epithelial cells of pre-ovulatory oviduct and are 

active in the surrounding milieu. We therefore hypothesize that a rise in alkaline secretory 

activity takes place in the mare’s oviduct at the late follicular stage and that physical 

interaction of stallion spermatozoa with oviduct epithelial cells induces alkalization and the 

first stages of capacitation (membrane changes and tail-associated protein tyrosine 

phosphorylation).  
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One note of caution is that, despite the alkalization and protein tyrosine 

phosphorylation responses of stallion spermatozoa bound to the oviductal explants, there was 

little or no spontaneous release of activated spermatozoa. In comparison to pigs [23], our 

study did not show a correlation between protein tyrosine phosphorylation and sperm release 

by hyperactivation. This release is a prerequisite for fertilization; to date, only sperm 

incubation with procaine has been shown to reliably induce hyperactivated motility in equine 

sperm [77, 78]. 

 

In conclusion, we showed that oviduct explants harvested during the pre-ovulatory 

period selectively bound membrane-intact sperm and induced protein tyrosine 

phosphorylation, probably by increasing intracellular pH via direct sperm-oviduct epithelial 

contact. Other capacitation tests (membrane lipid order, Ca-assay, acrosome integrity and 

oocyte penetration) and subsequent demonstration of the triggering of the release from 

oviduct epithelium of spermatozoa exhibiting hyperactivated motility would greatly 

complement this study. 
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ABSTRACT 

 

Induction of hyperactivated motility is considered essential to trigger release of 

oviduct-bound mammalian spermatozoa, in preparation for fertilization. In this study, oviduct-

bound stallion spermatozoa were exposed for 2 h to: (1) pre-ovulatory and (2) post-ovulatory 

oviductal fluid; (3) 100% and (4) 10% follicular fluid; (5) cumulus cells, (6) mature equine 

oocytes, (7) capacitating and (8) non-capacitating medium; none of which triggered sperm 

release or hyperactivated motility. Interestingly, native follicular fluid was detrimental to 

sperm viability, an effect that was negated by heat inactivation, charcoal treatment and 30 

kDa filtration alone or in combination. Moreover, sperm suspensions exposed to treated 

follicular fluid at pH7.9 but not pH7.4 showed Ca2+-dependent hypermotility. Fluo-4 AM 

staining of sperm showed elevated cytoplasmic Ca2+ in hyperactivated stallion spermatozoa 

exposed to treated follicular fluid at pH7.9 compared to a modest response in defined 

capacitating conditions at pH7.9 and no response in treated follicular fluid at pH7.4. 

Moreover, 1 h incubation in alkaline, treated follicular fluid induced protein tyrosine 

phosphorylation in 20% of spermatozoa. None of the conditions tested induced widespread 

release of sperm pre-bound to oviduct epithelium. However, the hyperactivating conditions 

did induce release of 70-120 spermatozoa per oviduct explant, of which 48% showed protein 

tyrosine phosphorylation and all were acrosome intact, but capable of acrosomal exocytosis in 

response to Ca2+ ionophore. We conclude that, in the presence of elevated pH and 

extracellular Ca2+, a heat resistant, hydrophilic, <30 kDa component of follicular fluid can 

trigger protein tyrosine phosphorylation, elevated cytoplasmic Ca2+ and hyperactivated 

motility in stallion sperm, but infrequent release of sperm pre-bound to oviduct epithelium. 
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INTRODUCTION 

 

A ‘sperm reservoir’ is established in the oviductal isthmus of female mammals after 

mating and in anticipation of ovulation, and involves sperm binding via their head to oviduct 

epithelial cells, primarily at the level of the luminal cilia but also possibly via microvilli [1-3]. 

Species-specific carbohydrate moieties expressed on the epithelium have been shown to 

underlie the binding with the sperm head [4], while the specific nature of the cell-cell contact 

triggers maturation of competent spermatozoa in a series of events collectively known as 

capacitation [5, 6]. Recently, we and others [7-9] have reported that an alkaline micro-

environment within the equine oviduct leads to a gradual increase in sperm cytoplasmic pH 

which, in turn, correlates with increased phosphorylation of protein tyrosine residues. In vivo, 

it is hypothesized that these events are strictly coordinated to occur just before ovulation, 

when the pre-ovulatory follicle is preparing to release a mature oocyte [2, 10]. 

 

Kirichok and Lishko [11] reported that both the low intracellular Ca2+ concentration 

and the high intracellular H+ concentration, that prevail inside mouse and human spermatozoa, 

have a complementary, positive effect on sperm survival. It was hypothesized that these 

events occur during the oviductal binding phase. In the peri-ovulatory period, changes in the 

oviductal microenvironment provoke the final step in the capacitation process, predominantly 

by triggering Ca2+ influx into oviduct-bound spermatozoa. As a result of Ca2+ influx, a small 

subpopulation of spermatozoa resumes motility, which rapidly progresses to hyperactivated 

motility [12] and generates sufficient force to detach the sperm from the oviduct epithelium 

such that they can escape from the mucosal pockets [13-15]. Supported by this newly 

generated power, the released and hyperactivated sperm are able to progress through the 

viscous fluid of the oviduct and up to the site of fertilization at the ampullary-isthmic junction 

[4, 13, 15, 16]. Hyperactivation also assists the spermatozoa in penetrating the cumulus matrix 

and is essential for penetration of the zona pellucida to allow fertilization of the oocyte [17, 

18]. 

 

At present, it is not entirely clear which biological factors trigger stallion sperm 

hyperactivation. Possible contributors are, however, likely to be present in oviduct epithelial 

secretions, or around the cumulus-oocyte-complex [4, 13, 15, 16]. The molecular basis of 

hyperactivation is also incompletely understood. Reports in mice suggest that opening of H+ 
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and Ca2+ ion channels present in the sperm plasma membrane is sufficient to allow H+ efflux 

from and Ca2+ influx to the sperm cytosol, along their respective concentration gradients [11]. 

The primary source of Ca2+ for the spermatozoon is thus extracellular. An intracellular Ca2+ 

store is also available in the lumen of the redundant nuclear envelope (RNE) located at the 

base of the flagellum [13] but, while this internal Ca2+ store could provide sufficient Ca2+ for 

the induction of hyperactivation, external Ca2+ influx is required to maintain intracellular Ca2+ 

at a level sufficient to sustain hyperactivation [19]. The Ca2+ influx can be realized by 

activation of specific CatSper channels, located at the principal piece of the tail [13, 20-22]. 

Only spermatozoa with increased intracellular pH (due to H+ efflux) are able to activate their 

CatSper channels, and the resulting Ca2+ influx induces the high amplitude, asymmetrical 

flagellar beating of the axoneme that is characteristic of hyperactivated motility [22-24]. 

 

In contrast to mouse sperm, the trigger that activates Ca2+ influx into stallion 

spermatozoa has yet to be identified. On the other hand, the oviduct is the site where 

spermatozoa should acquire hyperactivated motility, physiologically [12]. It has been 

hypothesized that non-capacitated spermatozoa must first bind to the oviduct epithelium 

before they are able to be hyperactivated and released [25]. If release of hyperactivated sperm 

is specific to the late follicular development stage, oviductal secretions or sperm contact with 

oviduct cells exposed to specific endocrine stimuli might be involved in the acquisition of 

hyperactivity, whereas hyperactivation induced after ovulation could be driven by factors 

originating from the ovulating follicle (oocyte–cumulus mass and follicular fluid). Differences 

in the mechanism for triggering sperm hyperactivation exist between species (man: [26]; 

rabbit: [27]; mouse: [28]; cattle: [29]). The current study aimed to elucidate the conditions 

that trigger hyperactivated motility of stallion spermatozoa in the mare’s oviduct and 

determine whether release of capacitated sperm from oviduct epithelial cells could be 

achieved under in vitro conditions. 
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MATERIALS AND METHODS 

 

Chemicals and reagents  

Dulbecco’s phosphate buffered saline (DPBS), fetal bovine serum (FBS) (Batch: 

07G8814F) and Dulbecco's Modified Eagle’s Medium / Nutrient Mixture F-12 (DMEM/F12) 

were purchased from Gibco® Life Technologies (Merelbeke, Belgium). Propidium iodide 

(PI), SYBR14 (LIVE / DEAD Sperm Viability Kit), Hoechst 33342, Alexa Fluor 488-

conjugated goat anti-mouse antibody and fluo-4 AM were obtained from Molecular Probes 

(Ghent, Belgium). Monoclonal 4G10®Platinum, anti-phosphotyrosine mouse antibody was 

obtained from Millipore (Overijse, Belgium). Triton X-100, PNA-FITC, fatty acid-free 

bovine serum albumin (A9418; cell culture tested), ethylenediaminetetraacetic acid (EDTA), 

procaine hydrochloride, Ca2+ ionophore A23187 and all other chemicals not listed otherwise 

were obtained from Sigma-Aldrich (Bornem, Belgium).  

 

Animals 

Oviducts were collected at a slaughterhouse (Euro Meat Group, Moeskroen, Belgium) 

soon after the slaughter of healthy warmblood mares aged between 5 and 22 years and 

without any visible reproductive tract pathologies [9]. Only oviducts from mares with a large 

follicle (>35 mm diameter) in combination with estrous oedema in the uterine wall, indicating 

imminent ovulation, were used to prepare oviduct explants.  

 

Preparation of oviduct explants 

Five oviducts per experiment were prepared as previously described by Nelis et al. 

[30]. Briefly, epithelial cells were harvested from oviducts of preovulatory mares by scraping 

the mucosa at the ampullary-isthmic junction of the longitudinally incised oviduct. The 

harvested cellular material was washed and re-suspended twice in 3 ml fresh HEPES-buffered 

TALP washing medium [31]. Next, the cells were cultured overnight in DMEM/F12 with 10% 

FBS at 38.5 °C in a humidified atmosphere of 5% CO2 in air. The time from slaughter of 

mares to cell culture was approximately 3 to 4 h.  
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Semen collection and preparation  

Semen was collected from three stallions of proven fertility using a Colorado model 

artificial vagina (Animal Reproduction Systems; Chino, CA, USA). The raw ejaculate was 

filtered through gauze to remove the gel fraction and any debris. Samples with good motility 

(>70% motile sperm) were transported immediately to the laboratory for further processing. 

One ml of fresh semen was then centrifuged over a 45 / 90% Percoll® gradient [32, 33]. Next, 

the sperm pellet was washed once with Whitten’s medium (‘non-capacitating medium’: 100 

mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 5.5 mM glucose, 22 mM HEPES, 2.4 mM sodium 

lactate and 1.0 mM pyruvic acid; pH=7.4 and 280-300 mOsm / kg; [34] and subsequently 

diluted to a concentration of 20 x 106 spermatozoa / ml in non-capacitating medium. Each 

experiment was performed using one ejaculate from each of the three stallions. The study was 

approved by the Ethics Committee of the Faculty of Veterinary Medicine of Ghent University 

(EC2013/175 and EC2013/176). 

 

Sperm-oviduct explant binding and induction of capacitation 

We previously described the establishment of sperm-oviduct explants in which bound 

spermatozoa can be induced to exhibit protein tyrosine phosphorylation in their tail [9]. In 

brief, oviduct explants were cultured in a DMEM/F12-based medium, and equilibrated with 5% 

CO2 in a humidified atmosphere at 38.5°C, as described by Nelis et al. [30]. Sperm binding to 

oviduct explants (5 per 45 μl droplet) was performed in non-capacitating medium at 38.5°C in 

air. Capacitating medium was made by substituting the sodium lactate in non-capacitating 

medium with 2.4 mM CaCl2 and adding 25 mM NaHCO3 and 7 mg / ml BSA (pH=7.4 and 

280-300 mOsm / kg; osmolality was adjusted by adding the NaCl in steps) (adapted from 

[34]). In general, a final concentration of 2 x 106 spermatozoa / ml was used. After a 2 h co-

incubation in non-capacitating medium, sperm-oviduct explants were washed twice and 

transferred to capacitating / hyperactivating medium for 2 h. Each replicate was performed 

with one ejaculate from a different stallion. 
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Collection of fluids and cells that sperm may contact in the sperm reservoir 

For each experiment, pre- and post-ovulatory stage oviducts, and ovaries containing a 

pre-ovulatory follicle (diameter > 35mm), were collected at the slaughterhouse and 

immediately transported to the laboratory. Oviducts were trimmed and flushed successively 

with 1 ml of capacitating medium. Next, the oviduct flushing fluid was filtered through a 0.2 

μm Acrodisc® Syringe Filter with a Supor® Membrane (Pall® Corporation Life Sciences, 

Ghent, Belgium). 

Follicular fluid (FF; pH ≈ 7.2) was collected from five pre-ovulatory follicles 

(diameter > 35mm). Cumulus-oocyte complexes were recovered from the aspirated FF and 

matured by incubation in FF for 28 h at 38.5°C in 5% CO2 in air. Subsequently, oocytes were 

denuded of their cumulus investment by gentle mouth pipetting. The remaining FF was 

centrifuged at 100xg for 10 min at 22°C before the supernatant was filtered as described for 

oviduct flushing fluids. Both cell suspensions and collected fluids were incubated for 2 h with 

sperm bound to oviduct explants to evaluate their effects on sperm hyperactivation and sperm 

release. 

 

Treatment of FF  

Freshly filtered (2 μm diameter) FF (pH ≈ 7.2) was treated in 5 different ways: (1) 

centrifuged through a 100 kDa filter (10 min at 14000g; Amicon Ultra-0.5 ml Centrifugal 

Filters for Protein Purification and Concentration: Millipore, Overijse, Belgium) to see 

whether the effects of whole FF were elicited by molecules <100 kDa; (2) by heat inactivation 

in a 55°C water bath for 0.5 h [35-37] to examine whether the FF factor was heat resistant; (3) 

charcoal treatment as described by Cheng et al. [38] to examine whether a lipid or lipid-bound 

factor, including steroid hormones [39], was implicated. For charcoal treatment, pooled FF 

was stirred at ambient temperature for 45 minutes with 50 mg charcoal / ml (Norit: activated 

and neutralized; Sigma, Bornem, Belgium) and then centrifuged at 4500g for 1 h at 4°C. The 

supernatant was filtered through a 0.2 μm Acrodisc® Syringe Filter with a Supor® 

Membrane (Pall® Corporation Life Sciences, Ghent, Belgium), to remove any remaining 

charcoal particles; (4) centrifuged through a 30 kDa filter (30 min-3000g; Vivaspin 15R, 

Sartorius Biolab Products, Goettingen, Germany) to examine whether the FF factor MW was 

<30 kDa; (5) triple treated to see if the effects were still apparent after successive heat-
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inactivation, charcoal treatment and 30 kDa filtration; and (6) some heat-inactivated, 

charcoal-treated, 30 kDa-filtered or triple-treated FF samples were incubated in air until the 

pH rose to 7.9. Similar treatments were performed with capacitating medium. All treated FF 

samples were stored in aliquots at -80°C until further use. To prevent pH changes in elevated 

pH treated FF and capacitating medium during sperm incubation, experiments were 

performed in closed 1 ml tubes (Greiner bio-one, Vilvoorde, Belgium) to prevent contact with 

air.  

 

Sperm viability assay 

To examine the membrane integrity of spermatozoa attached to or released from 

oviduct explants, spermatozoa and sperm-oviduct explants were respectively washed by 

centrifugation (600g for 5 min) or transferred to pre-warmed DPBS (37°C) and stained with 

the nucleic acid stains SYBR14 (20 μM) and propidium iodide (PI; 50 nM) (LIVE / DEAD 

Sperm Viability Kit; Molecular Probes, Leiden, The Netherlands) [40]. Stained spermatozoa 

and sperm-oviduct explants were washed and mounted on pre-warmed glass slides 

(Marienfeld, Lauda-Königshofen, Germany). Sperm with green fluorescence-labelled nuclei 

were considered viable, whereas sperm with red-stained nuclei were considered dead. Finally, 

the percentages of viable spermatozoa were scored by counting 200 randomly selected 

released spermatozoa. Samples were examined using a Leica DMR microscope equipped with 

a mercury lamp and appropriate filters at a magnification of 400x. 

 

Quantification of tail-associated protein tyrosine phosphorylation  

Incubated sperm preparations were washed twice and fixed in 4% paraformaldehyde in 

DPBS at room temperature for 15 min as described previously [9]. Fixed spermatozoa were 

washed and incubated in 0.1% Triton X-100 in DPBS for 10 min at room temperature. The 

permeabilized spermatozoa were then incubated in blocking buffer (DPBS containing 1% 

BSA) for 10 min at room temperature. Next, spermatozoa were incubated overnight at 4°C in 

buffer containing 0.1% BSA and the mouse monoclonal 4G10®Platinum IgG2b protein anti-

phosphotyrosine antibody (diluted 1:500). After incubation, spermatozoa were washed and 

stained with a monoclonal goat anti-mouse antibody conjugated to Alexa Fluor 488 

(Invitrogen, Molecular Probes, Ghent, Belgium) for 1 h at room temperature. The immune 
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labelled spermatozoa were mounted on glass slides under a cover slip. The proportion of 

spermatozoa with green fluorescent tails among the total sperm population (with Hoechst 

33342 fluorescent heads) was determined by randomly scoring 200 spermatozoa. Samples 

were examined using a Leica DMR microscope equipped with a mercury lamp and 

appropriate filters, at a magnification of 400x. 

 

Sperm acrosome status  

The acrosome status of spermatozoa was assessed using fluorescein-conjugated peanut 

agglutinin (PNA-FITC) to discriminate acrosome-intact spermatozoa from acrosome 

deteriorated or reacted spermatozoa [41]. In brief, after fixation in 4% (w/v) 

paraformaldehyde in DPBS for 15 min at room temperature, spermatozoa were washed in 

DPBS and permeabilized in 0.1% Triton X-100 in DPBS for 10 min at room temperature [9]. 

After washing, spermatozoa were stained for 15 min at room temperature with 1 μg / ml 

PNA-FITC and subsequently washed and mounted as described above. Spermatozoa with 

PNA-FITC-labelled acrosome regions were considered acrosome-intact, whereas spermatozoa 

with no fluorescence over the acrosomal region were considered acrosome reacted or 

deteriorated. The percentages of acrosome-intact spermatozoa were scored by examining 200 

spermatozoa using a Leica DMR microscope equipped with a mercury lamp and appropriate 

filters, at a magnification of 400x. 

 

Cytoplasmic Ca2+ imaging in stallion spermatozoa 

Stallion spermatozoa were washed in non-capacitating medium and stained for 30 min 

in 5 μM of the Ca2+-sensitive dye fluo-4 AM in non-capacitating medium at 38.5 °C. 

Spermatozoa were washed and incubated for an additional 20 min at 38.5 °C to allow de-

esterification of the fluo-4 AM probe before analysis. Subsequently, fluo-4 AM loaded sperm 

suspensions (10 x 106 spermatozoa / ml) were incubated for 0.5 h in different capacitating or 

hyperactivating media. Next, the sperm suspensions were mounted on glass slides as 

described previously. The intensity of the Fluo-4 AM signal correlates with the cytoplasmic 

Ca2+ concentration. In this study, we used the cytoplasmic Ca2+ signal from sperm incubated 

in capacitating medium at pH 7.4 as the reference intensity. Increased cytoplasmic Ca2+ signal 

during incubation was taken to indicate external Ca2+ dependent capacitation or hypermotility. 
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The percentages of spermatozoa with increased cytoplasmic Ca2+ were scored by examining 

200 spermatozoa and using a Leica DMR microscope equipped with a mercury lamp and 

appropriate filters, at a magnification of 1000x.    

 

Sperm motility assessment 

Sperm motility patterns were assessed using a CCD ICD-46E camera (Ikegami 

Tsushinki Co. Ltd., Japan) attached to an Olympus IX70 inverted microscope (Olympus 

Belgium N.V., Aartselaar, Belgium). Images were acquired using the Image Database 

program (Leica, Van Hopplynus N.V., Brussel, Belgium).                                                                              

Motility parameters of spermatozoa in suspension were evaluated using a computer-

assisted sperm analyzer (CASA: Hamilton-Thorne Ceros 12.3). Under defined capacitating 

conditions, BSA was replaced with PVA to avoid the sperm agglutination observed after 

centrifugation in BSA-containing medium [42]. For each analysis, 10 μl of sperm suspension 

diluted in the various treated FF or capacitating media was mounted on a pre-warmed glass 

slide (Marienfeld, Lauda-Königshofen, Germany) and maintained at 37°C using a Tokai Hit 

thermo plate. Five randomly selected microscopic fields in the center of the slide were 

scanned 4 times each, generating 20 scans for every sample. The mean of the 5 scans for each 

microscopic field was used for statistical analysis. The settings of the CASA-software HTR 

12.3 for analyzing motility parameters of stallion sperm were based on Loomis and Graham 

[43] and described previously by Hoogewijs et al. [44]. To evaluate hyperactivated motility, 6 

different parameters were initially evaluated: total motile sperm (TM; %), progressively 

motile sperm (PM; %), amplitude of lateral head displacement (ALH; μm), curvilinear 

velocity (VCL; μm / s), straightness (STR) and linearity (LIN). These parameters help detect 

increased vigour and asymmetry of flagellar movement during hyperactivation and have been 

associated with hyperactivated motility in bovine [29] and equine [41] sperm. Ultimately, the 

amplitude of lateral head displacement (ALH) and the curvilinear velocity (VCL) proved to 

be most useful for classifying hyperactivated motility in stallion sperm [42, 45]. 
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Microscopic evaluation of stained spermatozoa 

Sperm stained for either membrane integrity, acrosome status or tail-associated protein 

tyrosine phosphorylation (PY+) were detected by means of fluorescence microscopy (400x) 

using a Leica DMR microscope equipped with excitation filters of 360–590 nm and a 100 W 

mercury lamp. Alexa Fluor 488-conjugated goat anti-mouse antibody, SYBR14, PNA-FITC, 

Fluo-4 AM, propidium iodide (PI) and Hoechst 33342 were excited using 495 nm, 488 nm, 

495 nm, 494 nm, 536 nm and 343 nm, respectively. Emission spectra of the dyes were then 

filtered at 519 nm, 521 nm, 519 nm, 516 nm, 617 nm and 483 nm. These emission spectra 

were detected by blue (LP 425 nm), green (LP 515 nm), and red (BP 645/75 nm) filters 

corresponding to the emission peaks of the dyes. Images were acquired using the Image 

Database program (Leica, Van Hopplynus N.V., Brussel, Belgium).  

 

Sperm and oviduct explant co-incubation  

Groups of five sperm-oviduct explants established in non-capacitating medium, were 

incubated for 2 h in 50 μl droplets under oil containing (1) fluid flushed from the oviducts of 

mares slaughtered pre-ovulation; (2) fluid flushed from post-ovulation mare oviducts; (3) 100% 

FF; (4) 10% FF diluted in capacitating medium; (5) capacitating medium containing equine 

cumulus cells; (6) capacitating medium containing mature (MII) equine oocytes; (7) 

capacitating medium and (8) non-capacitating medium; all conditions were tested at both pH 

7.4 and pH 7.9 except non-capacitating medium pH 7.9. Counting of the number of 

spermatozoa bound per mm² sperm-oviduct explant was blinded to treatment groups.  

Subsequently, sperm incubated in pure fresh FF (0, 10 or 100%) at pH 7.4 and 7.9, 

were scored for plasma membrane and acrosome integrity and for CASA motility parameters. 

Additionally, the effect of fresh FF on oviduct explant viability was evaluated by examining 

ciliary activity and cell membrane integrity.  

Next, viability parameters of suspended sperm incubated in (1) 100 kDa filtered fresh 

FF, (2) heat-inactivated FF, (3) charcoal-treated FF, (4) 30 kDa filtered fresh FF and (5) triple 

treated (heat-inactivated, charcoal-treated and 30 kDa filtered) FF were examined during a 6 h 

incubation.  
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Subsequently, the various motility parameters indicating hyperactivated motility of 

suspended sperm (10x106 spermatozoa / ml) incubated in 100% heat-inactivated FF, 100% 

charcoal-treated FF, 30 kDa filtered FF and 100% triple treated FF at both pH 7.4 and pH 7.9 

were evaluated by CASA over time.  

After 0.5 h of incubation in (1) heat-inactivated FF, (2) charcoal-treated FF, (3) 30 

kDa filtered FF, (4) triple treated FF and (5) capacitating medium, the lateral head 

displacement and curvilinear velocity (indicating hyperactived motility) of spermatozoa in 

suspension (10x106 spermatozoa / ml) were monitored. All FF conditions were tested at both 

pH 7.9 and 7.4 in 3 concentrations: (1) 100% FF, (2) 50% FF and (3) 10% FF. In addition, the 

Ca2+ dependency of hyperactivated motility was assessed in all undiluted treated FF and 

capacitating medium at pH 7.9 and 7.4 by adding 2 mM EDTA.      

Next, the % spermatozoa that showed cytoplasmic Ca2+ influx was assessed by fluo-4 

AM in sperm (10x106 spermatozoa / ml) incubated for 0.5 h in (1) capacitating medium, (2) 

100% heat-inactivated FF, (3) 100% charcoal-treated, (4) 100% 30 kDa filtered FF and (5) 

100% triple treated FF at both pH 7.4 and pH 7.9.        

After 1 h incubation, membrane integrity, protein tyrosine phosphorylation and 

acrosome status were assessed in 9 different conditions at elevated pH 7.9: (1) 100% and (2) 

10% heat-inactivated FF, (3) 100% and (4) 10% charcoal-treated FF, (5) 100% and (6) 10% 

30 kDa filtered FF, (7) 100% and (8) 10% triple treated FF and (9) capacitating medium. 

Subsequently, the functionality of the sperm to undergo the acrosome reaction was scored 

after incubation in identical FF conditions (pH 7.9) followed by exposure to 5 μM Ca2+ 

ionophore A23187 for 30 min.  

In addition, sperm-oviduct explants incubated in capacitating media for 2 h were 

washed twice and transferred to (1) 100% and (2) 10% heat-inactivated FF; (3) 100% and (4) 

10% charcoal-treated FF; (5) 100% and (6) 10% 30 kDa filtered FF, (7) 100% and (8) 10% 

triple treated FF, (9) 5 mM procaine hydrochloride in capacitating medium and (10) 

capacitating medium, to determine whether induction of hyperactivation in spermatozoa 

bound to oviduct explants induced sperm release. Two pH’s (7.4 and 7.9) were tested for each 

condition. The number of released spermatozoa per oviduct explant and the change in the 

number of spermatozoa bound per mm² sperm-oviduct explant were counted, blind to the 

treatment. 
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Ultimately, released spermatozoa in all the hyperactivating conditions (100% heat-

inactivated FF pH 7.9, 100% charcoal-treated FF pH 7.9, 100% 30 kDa filtered FF pH 7.9, 

100% triple treated FF pH 7.9, 5 mM procaine in capacitating medium pH 7.4 and 5 mM 

procaine in capacitating medium pH 7.9) were assessed after 2 h for membrane and acrosome 

integrity and tail-associated protein tyrosine phosphorylation.  

 

Statistical analysis 

The effects of treatments on sperm parameters were assessed by analysis of variance 

(ANOVA). Significant differences in the number of spermatozoa released from oviduct 

binding, displaying motility parameters indicating hyperactivated motility (TM, PM, ALH, 

VCL, STR and LIN) and the percentages of viable spermatozoa were determined using 

repeated measures ANOVA with Greenhouse-Geisser and Bonferroni corrections, as 

implemented in the general linear model. The same statistical test was used to assess changes 

in the percentage of tail-associated protein tyrosine phosphorylated (PY+), acrosome reacted 

spermatozoa or spermatozoa with an increased cytoplasmic Ca2+ concentration over time. 

Scheffé post-hoc tests were performed for pairwise comparisons. Statistical analysis and 

graph plotting were performed using SPSS version 20 for Windows (SPSS IBM, Brussels, 

Belgium). Differences were considered significant if P<0.05. 

 

 

RESULTS 

 

Oviduct epithelium-bound sperm cells are not released by exposure to fluids and cells 

that they may encounter during sperm-oviduct binding, at either pH 7.4 or pH 7.9 

At the time of ovulation in vivo, the equine oviduct is thought to have an alkaline 

micro-environment [9]. At this time, a population of oviduct-bound sperm is released from the 

sperm reservoir to proceed to the ampulla of the mare’s oviduct and accomplish fertilization, 

after induction of hyperactivated motility. In the first experiment, oviduct explants with bound 

stallion spermatozoa (approximately 120,000 spermatozoa bound per mm2; Figure 1) were 

incubated at both pH 7.4 and 7.9 and exposed to the various fluids and cells that they should 

encounter in vivo. After 2 h of sperm-oviduct explant incubation at both pH 7.4 and 7.9, no 
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significant sperm release was observed following exposure to either: (1) fluid flushed from 

the oviducts of mares slaughtered pre-ovulation; (2) fluid flushed from post-ovulation mare 

oviducts; (3) 100% FF (4); 10% FF diluted in capacitating medium; (5) capacitating medium 

containing equine cumulus cells, (6) capacitating medium containing mature (MII) equine 

oocytes, (7) capacitating medium and (8) non-capacitating medium pH 7.4 (P>0.33 for all 

comparisons; Figure 1). The few spermatozoa released in each treatment were nearly all 

membrane-damaged and immotile (data not shown).  

  

 
Figure 1. Mean (± s.d.) number of stallion spermatozoa bound per mm² equine oviduct epithelium, 
assessed after 2 h incubation at both pH 7.4 (black bars) and 7.9 (grey bars) with; (1) oviductal flush 
fluid from mares slaughtered pre-ovulation; (2) oviductal flush fluid from mares slaughtered post-
ovulation; (3) 100% fresh follicular fluid (FF); (4) 10% fresh FF in capacitating medium; (5) equine 
cumulus cells in capacitating medium; (6) mature (MII) equine oocytes in capacitating medium; (7) 
capacitating medium; or (8) non-capacitating medium (control) (P>0.05). Data represent four 
replicates (n= 40 per group) analyzed by one-way ANOVA with post hoc Bonferroni tests for pairwise 
comparisons. 
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Fresh FF has a detrimental effect on sperm membrane integrity and motility at both pH 

7.4 and 7.9 

Fresh FF had a detrimental effect on sperm at both pH 7.4 and 7.9, regardless of 

whether the sperm were bound to oviduct explants or in suspension. The detrimental effects 

on sperm membrane and acrosome integrity were apparent in undiluted and in 10-fold diluted 

FF, albeit that at the 10-fold dilution the deteriorating effects of FF were ameliorated (see 

Figure 2). In each of the three incubation conditions at pH 7.4, a significant decrease in the 

percentage of sperm with intact membranes was observed over time, such that after 6 h in 

capacitating (0% FF) conditions significantly more spermatozoa remained membrane-intact 

(38 ± 6%) than after incubation in 10% fresh FF (15 ± 3%) (P<0.001). When sperm 

suspensions were incubated in 100% fresh FF, the deterioration was even more rapid 

(P<0.001 for all comparisons between the 3 different FF conditions except time point 0 h). 

After 30 min incubation, only 14 ± 6% of the sperm population in 100% FF was still 

membrane-intact, and after 1 h less than 10% of the sperm were still viable. The percentage of 

motile sperm showed a similar deterioration to membrane integrity over time for the three 

incubation conditions. The destructive effect of FF on plasma membrane integrity and 

motility did not immediately cause deterioration of the acrosome (Figure 2). Only after more 

than 1 h of incubation was acrosome deterioration observed in 10% (21 ± 5% after 6 h; 

P=0.02) and 100% (48 ± 8% after 3 h; P<0.001) FF conditions, although this was more 

marked than in capacitation medium where no significant induction of acrosome deterioration 

was seen (8 ± 4% after 6 h; Figure 2). Very similar changes were observed using the same 

conditions at pH 7.9 (Figure 2). Thus, regardless of pH (7.4. vs 7.9), fresh FF caused 

concentration dependent sperm deterioration. In contrast, fresh FF did not detrimentally affect 

the viability of the oviduct epithelial cells lining the explants. The oviduct explants remained 

viable for at least 24 h when incubated in 10% or 100% fresh FF at pH 7.4, and the epithelial 

cells displayed similar ciliary activity between media and over time (100 ± 0%); almost all 

cells (>99%) of nearly all explants (95 ± 9%; P=0.84) remained membrane-intact. Similar 

findings applied for incubation at pH 7.9 (Figure 3).  
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Figure 2. Stallion sperm viability during 6 h incubation at both pH 7.4 and 7.9 in capacitating medium, 
10% fresh follicular fluid (FF) diluted in capacitating medium and 100% fresh FF. The graphs depict 
mean (± s.d.) percentages of membrane-intact (black bars), motile (dark grey) and acrosome-reacted 
spermatozoa (light grey) (n= 200 spermatozoa per group) for three replicates. For membrane-intact 
spermatozoa, values that differ significantly are indicated by different capitals. For motile spermatozoa, 
values that differ significantly are indicated by different small letters. For percentage acrosome-
detoriated spermatozoa, values that differ significantly are indicated by different numbers of asterisks. 
Analysis was performed using repeated measure ANOVA with Greenhouse-Heisser and Bonferroni 
correction; Scheffé post hoc tests were used for pairwise comparisons. 
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Figure 3. Viability of equine oviduct explants during 24 h incubation at both pH 7.4 and 7.9 in 
capacitating medium, 10% fresh follicular fluid (FF) and 100% fresh FF. Data represent mean (± SD) 
percent of oviduct explants (n=30 per group) showing ciliary activity (black bars) or intact cell 
membranes (light grey bars) over three replicates. Statistical analysis was performed using repeated 
measure ANOVA with Greenhouse-Heisser and Bonferroni correction; Scheffé post hoc tests were 
used for pairwise comparisons. 

 

A 30-100 kDa heat-instable lipophilic FF factor is responsible for sperm deterioration 

Fresh FF was treated in 5 different ways to elucidate properties of the sperm 

deteriorating substance(s): (1) centrifugation though a 100 kDa filter (to remove large 

proteins), (2) heat inactivation (to neutralize tertiary and quaternary folded proteins, including 

complement factors, by protein denaturation), (3) charcoal treatment (to remove lipids / 

lipoproteins and lipophilic molecules, including steroids), (4) centrifugation through a 30 kDa 

filter (filtered FF containing <30 kDa components) and (5) triple treatment (combination of 

heat inactivation, charcoal treatment and 30 kDa filtration). The fresh FF fraction subjected to 

100 kDa filtration, retained the membrane damaging and motility reducing effects on sperm in 

suspension (Figure 4). By contrast, heat inactivation, charcoal treatment, 30 kDa filtration and 
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triple treatment all resulted in a complete abolishment of the detrimental effects of FF on 

sperm in suspension (Figure 4; P<0.001). All FF fractions which received the former 

treatments are further referred to as “treated FF”. In this respect, after 6 h incubation in treated 

FF (heat-inactivated, charcoal-treated, 30 kDa filtration or triple treated) percentages of motile 

and progressively motile sperm were > 55% and > 35%, respectively. For spermatozoa 

incubated in 100 kDa filtered FF, both total and progressive motility dropped to <1% 

(P<0.001; Figure 4). Thus, the FF component detrimental to sperm integrity is apparently a 

heat instable, 30-100 kDa lipophilic entity. 

 

 
Figure 4. Viability of stallion sperm during a 6 h incubation in 100% FF treated in five different ways: 
100 kDa filtration, heat-inactivation, charcoal treatment, 30 kDa filtration and triple treatment (heat 
inactivation, charcoal treatment and 30 kDa filtration). Sperm maintained viability during incubation 
when fresh FF was heat-inactivated, charcoal-treated, filtration through a 30 kDa filter or triple treated. 
Data represent mean (± s.d.) percent membrane-intact (black bars), motile (dark grey) or progressively 
motile (light grey) spermatozoa (n= 200 spermatozoa per group) for three replicates. For membrane-
intact spermatozoa, values that differ significantly are indicated by capitals. For total sperm motility, 
values that differ significantly are indicated by small letters. For progressive sperm motility, values 
that differ significantly are indicated by asterisks. Statistical analysis was performed using repeated 
measure ANOVA with Greenhouse-Heisser and Bonferroni correction; Scheffé post hoc tests were 
used for pairwise comparisons. 
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Treated FF induces hyperactive motility responses in suspended sperm at pH 7.9 but not 

pH 7.4 

As described previously [9], oviduct-bound spermatozoa undergo intracellular 

alkalinization and subsequent protein tyrosine phosphorylation in association with a locally 

elevated pH. While fresh pre-ovulatory FF samples had a standard physiological pH (7.2 ± 0.4; 

n=5 samples; p=0.26), we found that increasing medium pH to 7.9 in the presence of treated 

FF was sufficient to induce hyperactivation in stallion sperm in suspension that had not had 

any contact with oviduct tissues (Figure 5 and 6, and supplementary figure). 

At different incubation time points (10 min, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 hours), six 

different CASA parameters associated with hyperactive motility (total motility, progressive 

motility, lateral head displacement, curvilinear velocity, straightness and linearity) were 

significantly different between spermatozoa incubated in treated FF at physiological pH (7.4) 

and spermatozoa incubated at slightly alkaline pH (7.9) (p<0.001). With respect to time, 

sperm suspensions in pH 7.9 treated FF showed a significant rise in ALH and VCL (Loux et 

al. 2013, McPartlin et al. 2009) within 0.5 h of incubation, values were respectively: heat-

inactivated FF, 6.3 ± 0.2 μm and 161 ± 7 μm / s; charcoal-inactivated FF, 6.4 ± 0.1 μm and 

169 ± 8 μm / s; 30 kDa filtered FF, 6.1 ± 0.1 μm and 159 ± 14 μm / s; triple treated FF, 6.5 ± 

0.1 μm and 159 ± 13 μm / s. These ALH and VCL values remained unchanged until 2.5 h 

(Figure 5 and supplementary figure). After 2.5 h of incubation, ALH and VCL decreased 

significantly and a marked drop in total motility was observed that indicated a loss of viability 

(Figure 5 and supplementary figure). In contrast, sperm exposed to similarly treated FF at pH 

7.4 remained progressively motile with only a slight decrease during the 4 h incubation (at 0.5 

h; ALH and VCL: heat-inactivated FF, 3.3 ± 0.1 μm and 83 ± 3 μm / s; charcoal-inactivated 

FF, 3.5 ± 0.1 μm and 78 ± 4 μm / s; 30 kDa filtered FF, 3.1 ± 0.2 μm and 74 ± 2 μm / s; triple 

treated FF, 3.5 ± 0.3 μm and 74 ± 1 μm / s). In summary, during incubation in all four types 

of treated FF at pH 7.9, hyperactivation peaked during 0.5-1 h and had begun to decrease by 

2.5 h of incubation, whereas similar conditions at pH 7.4 did not induce a similar change in 

motility (Figure 5 and supplementary figure).  
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Figure 5. Evaluation of different motility parameters (% total motile, % progressively motile, lateral 
head displacement, curvilinear velocity, straightness and linearity) during 4 h incubation of stallion 
sperm suspended in (1) 100% heat-inactivated follicular fluid (FF) at pH 7.9 (full black line) and (2) 
100% heat-inactivated FF at pH 7.4 (dotted black line). Heat-inactivated FF stimulated sperm 
hypermotility at pH 7.9 but not at pH 7.4. Very similar observations were obtained for charcoal-treated, 
30 kDa filtered and triple-treated FF preparations (see supplementary figure). Data represent mean (± 
s.d) for total (%) and progressively motile (%) spermatozoa, amplitude of lateral head displacement 
(μm), curvilinear velocity (μm / s), straightness (%) and linearity (%) (n=5 samples in each group) for 
three replicates. Analysis was performed using repeated measure ANOVA with Greenhouse-Heisser 
and Bonferroni correction; Scheffé post hoc tests were used for pairwise comparisons. 
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Supplementary figure. Evaluation of various motility parameters (% total motile, % progressive 
motile, lateral head displacement, curvilinear velocity, straightness and linearity) during 4 h incubation 
of stallion sperm in (1) 100% heat-inactivated FF at pH 7.9 (dark blue line), (2) 100% heat-inactivated 
FF at pH 7.4 (green line), (3) 100% charcoal-treated FF at pH 7.9 (orange line), (4) 100% charcoal-
treated FF at pH 7.4 (purple line), (5) 100% 30 kDa filtered FF at pH 7.9 (black line), (6) 100% 30 
kDa filtered FF at pH 7.4 (red line), (7) 100% triple treated FF at pH 7.9 (light blue line) and (8) 100% 
triple treated FF at pH 7.4 (grey line). At pH 7.9, all of heat-inactivated, charcoal-treated, 30 kDa 
filtered and triple treated FF supported sperm hypermotility whereas none did so at pH 7.4. Data 
represent mean (± s.d) of total motile (%), progressively motility (%), amplitude of lateral head 
displacement (μm), curvilinear velocity (μm / s), straightness (%) and linearity (%) (n=5 samples in 
each group) for three replicates. Analysis was performed using repeated measure ANOVA with 
Greenhouse-Heisser and Bonferroni correction; Scheffé post hoc tests were used for pairwise 
comparisons.
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Treated FF induced concentration dependent hypermotility responses  

Alkaline pH (7.9), but not pH 7.4, induced hyperactivated stallion sperm motility in 

the different undiluted treated FFs, as described above. The dose dependency of the 

hyperactivating effect was tested further by assessing ALH and VCL in sperm suspensions 

incubated for 0.5 h in (1) 100%, (2) 50%, (3) 10% and (4) 0% treated FF diluted in 

capacitating medium (pH 7.9 and 7.4).  

After 0.5 h incubation in all 50% and 10% treated FF media and capacitating medium 

(100% or 0% FF) at pH 7.9, stallion spermatozoa showed significantly lower hypermotility 

parameters (ALH and VCL) compared to those exposed to undiluted, treated FF (P<0.001; 

Figure 6). Moreover, a significant effect of treated FF concentration was observed; 

spermatozoa incubated in 50% treated FF showed significantly higher ALH and VCL than 

sperm in 10% treated FF or capacitating medium (0%; P<0.001, Figure 6). Indeed, the ALH 

and VCL for sperm incubated in 10% treated FF were very similar to capacitating conditions 

(P=0.11; Figure 6).  

Similar to the observations for undiluted treated FF (Figures 5 and 6), sperm 

suspensions incubated in capacitating medium (0%) at pH 7.9 showed significantly higher 

ALH and VCL values than sperm in capacitating medium at pH 7.4 (P<0.001); however, the 

switch from pH 7.4 to 7.9 elicited a much less pronounced effect than in treated FF (Figure 6). 

Thus pH 7.9 capacitation medium was insufficient to achieve maximal hyperactivated 

motility. In general at pH 7.9, treated FF induced hyperactive motility of equine sperm in a 

concentration dependent manner. 
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Figure 6. Evaluation of (a) lateral head displacement (ALH) and (b) curvilinear velocity (VCL) as 
indicators of hyperactivated motility in stallion sperm after 0.5 h incubation at both pH 7.9 and 7.4 in 
(1) heat-inactivated follicular fluid (FF: black bars), (2) charcoal-treated FF (dark grey bars), (3) 30 
kDa filtered FF (light grey bars), (4) triple treated FF (white bars) and (5) capacitating medium (0% 
FF = 100% capacitating medium; striped bars). For all FF preparations, 100, 50 and 10% FF diluted in 
capacitating medium were assessed; the effect of Ca2+ depletion by 2 mM EDTA was tested for all FF 
treatments (100%) (n=5 samples in each group; 3 replicates). Induction of hyperactivated motility in 
suspended sperm by the various undiluted FF preparations clearly required external Ca2+ and an 
elevated medium pH 7.9; a much lower hyperactivation response was observed in capacitating 
medium even in the presence of Ca2+ and at pH 7.9. For lateral head displacement, values that differ 
significantly are indicated by different small letters; for curvilinear velocity, values that differ 
significantly are indicated by different capitals. Statistical analysis was performed by repeated measure 
ANOVA with Greenhouse-Heisser and Bonferroni correction; Scheffé post hoc tests were used for 
pairwise comparisons. 
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Hyperactivated motility induced by undiluted treated FF depends on external Ca2+ and 

coincides with an increase in cytoplasmic Ca2+ in the sperm head and mid-piece  

Hyperactivated motility in mouse sperm [21, 46] is dependent on the presence and 

function of the pH-gated CatSper channel, which allows a cytoplasmic Ca2+ influx from the 

sperm environment. CatSper activation has also been shown to play a role in hyperactivated 

motility of human sperm [47-49]. On the other hand, in stallion sperm hyperactivation 

induced by procaine did not seem to be dependent on external Ca2+, although CatSper1 

proteins were shown to be present along the principle piece [42]. We investigated whether the 

induction of hyperactivation in stallion sperm by treated FF at pH 7.9 was dependent on 

external Ca2+. Addition of 2 mM EDTA to undiluted treated FF at pH 7.9 led to a marked 

drop in lateral head displacement (ALH) and curvilinear velocity (VCL), indicating an overall 

loss in sperm (hyper)motility (Figure 6). Thus, hyperactivated motility in stallion spermatozoa 

in undiluted treated FF was clearly dependent on an external Ca2+ source.  

 Considering that in murine and human sperm, hyperactivated motility is induced by 

external Ca2+ influx through CatSper channels, we investigated whether hyperactivated 

motility in stallion sperm coincided with an increased cytoplasmic Ca2+ concentration 

(monitored by fluo-4 AM) after 0.5 h exposure to undiluted treated FF. At pH 7.4, we 

observed that spermatozoa incubated in treated FF had a similar cytoplasmic Ca2+ signal to 

control spermatozoa incubated in capacitating medium at pH 7.4 (control; 0 ± 0%; heat-

inactivated FF: 3 ± 1%, charcoal-treated FF: 2 ± 1%, 30 kDa filtered FF: 3 ± 2% and triple 

treated FF: 3 ± 1%). By contrast, at pH 7.9 the percentage of spermatozoa with increased 

cytoplasmic Ca2+ signals was significantly higher in sperm suspensions incubated in treated 

FF (heat-inactivated FF, 63 ± 9; charcoal-treated FF, 71 ± 9%; 30 kDa filtered FF, 66 ± 11%; 

triple treated FF, 59 ± 7%) and capacitating medium (pH 7.9; control, 18 ± 5%), although 

capacitating medium was much less supportive than treated FF (P<0.001). At pH 7.9 

conditions, increased cytoplasmic Ca2+ was mainly observed in the sperm head and midpiece 

region and co-incided with hypermotility (Figure 7). 
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Figure 7. Representative DIC images to illustrate motility patterns of stallion spermatozoa after 1 h 
incubation in (a, f) capacitating medium (control: normal cytoplasmic Ca2+ concentration), (b, g) 
undiluted heat-inactivated follicular fluid (FF), (c, h) undiluted charcoal-treated FF, (d, i) undiluted 30 
kDa filtered FF and (e, j) undiluted triple treated FF. All treatments were performed at both pH 7.4 (a, 
b, c, d, e) and pH 7.9 (f, g, h, i, j). In all FF preparations at pH 7.9, stallion spermatozoa showed a 
hyperactive motility pattern, whereas spermatozoa incubated at pH 7.4 or in capacitating medium at 
pH 7.9 generally did not. Representative images of fluo-4 AM labelled stallion spermatozoa (a’, b’, c’, 
d’, e’, f’, g’, h’, i’ and j’) incubated under identical conditions, showed that induction of hyperactive 
motility by FF preparations coincided with an intensified cytoplasmic Ca2+ signal (original 
magnification, 1000x, Bar = 25 μm). 

 

Stallion sperm in pH 7.9 treated FF suspensions undergo tail-associated protein tyrosine 

phosphorylation but, despite the sperm retaining acrosome responsiveness, the 

acrosome reaction is not induced  

 When sperm suspensions were incubated in treated FF with an elevated pH (7.9), 

sperm membrane integrity was well preserved after 1 h of incubation (Figure 8) with at least 

70% of the sperm population membrane-intact in all groups. More than 18% of the sperm 

showed tail-associated protein tyrosine phosphorylation, but the cells did not undergo 

acrosomal exocytosis in any of the treatment groups. However, sperm suspensions incubated 
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in treated FF were still able to undergo an acrosome reaction following exposure to Ca2+ 

ionophore A23187; indeed, acrosomal exocytosis was induced in more than 40% of the 

spermatozoa incubated in treated FF (Figure 8). In general at pH 7.9, the percentages of 

membrane-intact, protein tyrosine phosphorylated and acrosome intact sperm were 

independent of the FF concentration (100 or 10%) (P > 0.18 for all comparisons; Figure 8). 

Figure 8. Percentages of membrane-intact, protein tyrosine phosphorylated and acrosome-reacted 
stallion spermatozoa after 1 h incubation in 9 different conditions at elevated pH (7.9): (1) 100% heat-
inactivated follicular fluid (FF), (2) 10% heat-inactivated FF in capacitating medium, (3) 100% 
charcoal-treated FF, (4) 10% charcoal-treated FF in capacitating medium, (5) 100% 30 kDa filtered FF, 
(6) 10% 30 kDa filtered FF in capacitating medium, (7) 100% triple treated FF, (8) 10% triple treated 
FF in capacitating medium and (9) capacitating medium. Hyperactivating treatments also induced a 
pH-dependent tail-associated protein tyrosine phosphorylation, although the acrosome reaction was 
not stimulated. The percentage of acrosome reacted stallion spermatozoa after 1 h incubation under 
identical treated-FF conditions at pH 7.9 and followed by 30 min exposure to Ca2+ ionophore A23187 
was also examined. While treated FF did not induce the acrosome reaction, the sperm were still able to 
undergo acrosomal exocytosis in response to Ca2+ ionophore. Data represent mean (± s.d) percent 
membrane-intact (black bars), protein tyrosine phosphorylated (dark grey bars) and acrosome-reacted 
spermatozoa before (white bars) and after (hatched bars) Ca2+ ionophore A23187 exposure (n=5 sperm 
suspensions in each group) for three replicates. Analysis was performed using one-way ANOVA, with 
post hoc Scheffé tests for pairwise comparisons. 
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Hyperactivation induced the release of a very limited number of spermatozoa from 

oviduct explants 

In cattle, during the process of in vitro capacitation oviduct-bound spermatozoa will 

release from the epithelium in a hyperactivated state [50]. Since we found that treated FF can 

trigger sperm hyperactivation we wanted to determine whether it would induce oviduct-bound 

sperm to release. To this end, sperm-oviduct explant binding was allowed under non-

capacitating conditions (approximately 120,000 bound spermatozoa / mm2) and, subsequently, 

these sperm-oviduct explants were transferred to capacitating / hyperactivating media. 

Alternatively, sperm-oviduct explants were incubated in the different treated FFs (heat 

inactivated, charcoal treated, 30 kDa filtered and triple treatment). In addition, capacitation 

media containing 5 mM procaine and / or at pH 7.9 were compared to pH 7.4 capacitation 

conditions. After 2 h of incubation, none of the conditions resulted in significant sperm 

release considering the total number of sperm bound per mm² (Figure 9b). However, in all 

conditions inducing hyperactivated sperm motility in previous experiments, a small number of 

hyperactivated spermatozoa (70-120 spermatozoa per oviduct explant; Figure 9a) were 

released from the oviduct explants (Figure 10a and Figure 10b). We conclude that the 

induction of sperm hyperactivated motility did not induce a massive release of capacitated 

spermatozoa from the oviduct epithelium. However, these findings may reflect earlier 

suggestions that only a very small population of spermatozoa is able to release from their 

binding and approach the oocyte at the time of fertilization, to reduce the risk of polyspermy 

[51-53].
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Figure 9. (a) Mean number of stallion spermatozoa released per oviduct explant and (b) mean 
spermatozoa bound per mm² epithelium, assessed after 2 h incubation in (1) 100% heat-inactivated 
follicular fluid (FF) (2) 10% heat-inactivated FF in capacitating medium (3) 100% charcoal treated FF 
(4) 10% charcoal treated FF in capacitating medium (5) 100% 30 kDa filtered FF (6) 10% 30 kDa 
filtered FF in capacitating medium, (7) 100% triple treated FF, (8) 10% triple treated FF in 
capacitating medium, (9) 5 mM procaine in capacitating medium and (10) capacitating medium. Each 
incubation was performed at pH 7.4 (black bars) and pH 7.9 (light grey). Only a modest release of 
oviduct bound spermatozoa was observed in the various hyperactivating conditions. Data represent 
mean (± s.d.) bound spermatozoa per mm² (n= 20 per group) for three replicates. Analysis was 
performed using repeated measure ANOVA with Greenhouse-Heisser and Bonferroni correction, with 
Scheffé post hoc tests for pairwise comparisons. 
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Figure 10. (A) Representative image from a supplementary video clip of an oviduct explant during a 2 
h incubation in 100% heat-inactivated FF. Bound spermatozoa showed hyperactivated motility, as 
indicated by curvature of the sperm tails. (B) Representative images from a supplementary video clip 
of spermatozoa released from oviduct explants during incubation in 100% heat-inactivated FF. After 2 
h in FF at pH 7.9, a modest release of hyperactivated spermatozoa was observed (a, b, c, d: original 
magnification, 400x; scale bar = 25 μm).   
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Properties of sperm released from the oviduct  

After release of hyperactivated spermatozoa from the oviduct epithelium triggered by 

pH 7.9 treated FF, at least 85% of the released spermatozoa were membrane-intact, > 45% 

showed tail-associated protein tyrosine phosphorylation, whereas hardly any had undergone 

acrosomal exocytosis. Similar results were achieved in the presence of procaine (at pH 7.4 

and 7.9) except that tail-associated protein tyrosine phosphorylation rates were much lower 

(8%) in the pH 7.4 procaine condition (Figure 11). 

 

 
Figure 11. Percentages of membrane-intact, protein tyrosine phosphorylated and acrosome-reacted 
stallion spermatozoa following release from oviduct explant binding during 2 h incubation in (1) 100% 
heat-inactivated FF, (2) 100% charcoal-treated FF, (3) 100% 30 kDa filtered FF, (4) 100% triple 
treated FF, (5) 5 mM procaine diluted in capacitating medium pH 7.4 and (7) 5 mM procaine diluted 
in capacitating medium pH 7.9 capacitating medium. Data represent mean (± s.d) % membrane-intact 
(black bars), % protein tyrosine phosphorylated (dark grey bars) and % acrosome-reacted spermatozoa 
(white bars). Data represent mean (± s.d) percentage of hyperactivated (black bars), membrane-intact 
(dark grey bars), protein tyrosine phosphorylated (light grey bars) and acrosome-reacted (white bars) 
spermatozoa (n=20 oviduct explants in each group) for three replicates. For protein tyrosine 
phosphorylated spermatozoa, values that differ significantly are indicated by different small letters. 
Analysis was performed using one-way ANOVA; Scheffé post hoc tests were performed for pairwise 
comparisons.
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DISCUSSION 

 

It is generally believed that mammalian sperm, including stallion spermatozoa, have to 

follow a regulated sequence of events during capacitation in vivo in order to achieve 

fertilizing capacity [25]. Ejaculated spermatozoa travel through the mare’s reproductive tract 

to the oviduct where a sperm reservoir is formed by viable, non-capacitated spermatozoa [54, 

55]. In a previous study, we reported that equine oviduct epithelial cells harvested close to the 

time of ovulation contain large secretory vesicles with an elevated pH. Moreover, protein 

tyrosine phosphorylation in the tails of spermatozoa bound to these oviduct epithelial cells 

was associated with contemporaneous intracellular alkalization of the spermatozoa and 

vesicle discharge [9]. In anticipation of oocyte arrival, spermatozoa in which capacitation has 

been initiated need to be released from the oviduct epithelium, an event that may require the 

acquisition of hyperactivated motility [12, 22]. Released capacitated / hyperactivated 

spermatozoa will subsequently migrate to the isthmus-ampullary junction to fertilize the 

mature oocyte [17, 18]. Sperm release from the oviduct epithelium by hyperactivation, and 

subsequent acrosome reaction after contacting the extracellular vestments of the oocyte has, 

however, not yet been reliably achieved in vitro in the horse, but may be crucial to obtaining 

reliable fertilization in vitro. Until now, only exposure to procaine has been shown to reliably 

induce hyperactivated motility in stallion spermatozoa [42, 45, 56], and this was independent 

of CatSper-related Ca2+ influx [42]. In the current study, we induced hyperactivation of 

stallion spermatozoa using slightly alkaline (pH 7.9) undiluted treated FF (i.e. either heat-

inactivated, charcoal-treated, 30 kDa filtered or all three to neutralize a spermicidal factor in 

FF). In contrast to procaine induced hyperactivation [42], we found that the treated FF 

induced hyperactivation in stallion sperm was dependent on external Ca2+. Under the 

hyperactivating conditions at pH 7.9, a significant rise in cytoplasmic Ca2+ levels was 

observed predominantly in the sperm head and mid-piece. The hyperactivated sperm 

remained membrane and acrosome intact and showed protein tyrosine phosphorylation, i.e. 

the cardinal signs of sperm capacitation without sperm deterioration. Interestingly, sperm 

bound to oviduct epithelium were not released en masse into the lumen after such treatments. 

Instead, only a very small population was released although a large proportion of these cells 

did show a capacitation-like phenotype in terms of motility, tyrosine phosphorylation and 

membrane integrity. In short, a combined effect of elevated environmental pH, external Ca2+ 
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and unidentified FF factor(s) appear to trigger hyperactivation of stallion spermatozoa, 

whereas the tail-associated protein tyrosine phosphorylation response appears to depend only 

on pH. 

 

By testing a variety of FF treatments, we were able to demonstrate that sperm integrity 

was maintained in heat-inactivated, charcoal-treated, 30 kDa filtered or triple treated FF 

whereas untreated fluid or a <100 kDa filtrate had a sperm deteriorating effect. This implies 

that the FF component that compromises sperm viability has a size between 30 and 100 kDa, 

but can be neutralized by heat-inactivation or charcoal treatment. Heat inactivation causes the 

breakdown of tertiary and quaternary protein structures and could, for example, neutralize 

complement factors that might be activated under in vitro conditions due to exposure to air 

[57]. Charcoal treatment extracts the lipid fraction including steroids and lipoproteins [38]. 

Based on these results, we hypothesize that the sperm deteriorating factor is a steroid or lipid 

bound to a protein. Further research is required to elucidate which component of fresh, air-

exposed FF exerts a detrimental effect on sperm in vitro.  

 

Interestingly, rather than stimulating sperm deterioration, the undiluted treated FF 

(heat-inactivated, charcoal-treated, 30 kDa filtered or triple treated) was able to induce 

hyperactivation of stallion spermatozoa in suspension at pH 7.9. A similar trend was also 

observed for spermatozoa incubated in capacitating conditions at pH 7.9, although the 

hyperactivated motility response was much lower than in treated FF. However, we have not 

yet identified the component(s) of equine FF that triggers hyperactivated sperm motility. 

Possible heat resistant, hydrophilic candidates (<30 kDa) in FF include carbohydrates, small 

heat resistant proteins and electrolytes. Theoretically, our results suggest that (1) components 

of FF may be involved in sperm hyperactivation in the horse oviduct or that (2) undiluted 

treated FF mimics capacitation conditions that are induced in vivo by oviduct secretions in the 

peri-ovulatory period. Additionally, the fact that hyperactivated motility required a slightly 

alkaline pH, that was not a feature of pre-ovulatory FF (pH ± 7.2), supports our hypothesis 

that, in the narrow and tortuous oviduct lumen, alkalinization at the sperm-oviduct interface 

results from oviduct secretory activity at the time of ovulation [9], which in turn triggers an 

intracellular pH rise in oviduct-bound stallion spermatozoa and provokes protein tyrosine 

phosphorylation. In the present study, we additionally showed that FF components have a 

significant effect on sperm hyperactivation.  
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Undiluted treated FF stimulated the biggest increase in ALH and VCL, whereas a 

more muted hyperactivation response was observed when sperm were incubated in 50% and 

10% FF (pH 7.9) or in capacitating medium alone (pH 7.9). These observations demonstrate a 

concentration-dependent effect of the unidentified FF factor(s) on stallion sperm 

hyperactivation.  

 

The results of this study highlight that there is as yet no defined capacitating medium 

for stallion sperm. In this respect, it is pertinent that capacitating conditions that reliably and 

repeatably support equine in vitro fertilization have not yet been reported. As concluded by 

McPartlin et al. [45], a major deficit of current capacitating media appears to be the ability to 

induce hyperactivated motility in stallion sperm. Besides the fact that an elevated pH seems to 

be critical, further research needs to focus on a systematic investigation of components in 

treated FF compared to capacitating medium. Comparing the sperm hyperactivation 

supporting conditions among various mammals, we assume that this process is not well 

conserved. In man, it has been reported that factors in FF, and secreted by cumulus cells, can 

initiate hyperactivation [26, 58, 59]. In the hamster [60] and rabbit [27, 61], contact with FF 

also provokes sperm hyperactivation. The key elements of these ovulation associated products 

on CatSper induced hypermotility are bicarbonate, which supports an alkaline intracellular 

pH, and progesterone [17, 18, 62, 63]. On the other hand, various studies in rabbit [64], mouse 

[28], and large farm animals [53, 65] with relatively long pre-ovulatory periods, have 

indicated that sperm hyperactivation and subsequent sperm-oviduct release starts in a 

controlled manner shortly before ovulation. This implies that the trigger to hyperactivation 

must be derived from oviductal fluid or by contact with oviduct epithelia, and not from 

components resulting from ovulation, such as FF or the cumulus-oocyte-complex. The active 

components in the oviduct which induce CatSper-induced hypermotility also appear to differ 

between species. In the mouse, bicarbonate is the main trigger for hyperactivation [66]. In bull 

sperm, Marquez and Suarez [29] concluded that an increased external pH was the primary 

signal for sperm hyperactivation. Bull sperm can also achieve full fertilizing capacity after 

contact with heparin and other sulfated glycoconjugates. These molecules are abundantly 

present in oviductal and FF, and induce release of sperm adhering to oviduct epithelium 

monolayers in vitro by increasing their flagellar beat [67-69]. Heparin-like molecules also 

induce hyperactivation of free-swimming sperm [70]. The biological hyperactivating triggers 

for stallion sperm have not been investigated.  



Chapter 5 

191 

 

The experiments to examine the induction of hyperactivation by undiluted treated FF 

showed clearly that hyperactivated motility triggered in this way depends on extracellular 

Ca2+. Surprisingly, these results are in contrast to procaine-induced hyperactivated motility for 

which external Ca2+ was not required [42]. In mice, hyperactivated sperm motility during 

capacitation is provoked by Ca2+ influx through pH-gated cationic CatSper channels, located 

along the principal piece of the sperm flagellum [13, 20-22, 46, 71]. In man, mutations in 

CATSPER genes have similarly been associated with infertility and abnormal sperm motility 

[47-49]. Whether our undiluted inactivated FF conditions induce hyperactivated motility by 

Ca2+ influx via CatSper channels or via other Ca2+ permeable ion channels (voltage-gated Ca2+ 

channels (CaVs), transient receptor potential (TRP) channels, cyclic nucleic gated (CNG) 

channels or pkD2 cation channels [22, 72] remains to be investigated, but some important 

elements indicate that functional pH-gated cationic CatSper channels are likely to be 

involved. Firstly, CatSper1 proteins have been shown to be present along the principal piece 

of stallion sperm [42]. Additionally, we showed that the initiation of hyperactivated motility 

was a specific alkaline pH dependent event. Moreover, we showed that FF-induced 

hyperactivated motility of stallion sperm depends on external Ca2+. These observations favour 

the hypothesis that CatSper channels are involved in capacitation-related hyperactivated 

motility in the horse. This hypothesis was further supported by the increased cytoplasmic Ca2+ 

signal in sperm incubated in treated FF at pH 7.9. After 1 h incubation under hyperactivating 

conditions, Fluo-4 AM labelling appeared mainly in the sperm head and midpiece, but was 

very weak in the principle piece. It is interesting that a marked Ca2+ signal was not observed 

in the principle piece, where the CatSper channels are meant to be located. In mice, Xia and 

Ren [73] showed that the Ca2+ signal acquired during incubation in hyperactivating conditions 

rapidly propagated from the principle piece to the sperm head. Moreover, it has been 

hypothesized that the external Ca2+ influx through the CatSper channels subsequently induces 

a Ca2+ release from the intracellular cytoplasmic Ca2+ stores or the redundant nuclear 

envelope, involving inositol triphosphate receptors located near the sperm neck (‘Ca2+ 

induced Ca2+ release’) [18, 74-77]. This may help explain why a significant cytoplasmic Ca2+ 

rise is seen in the sperm head and mid-piece.       

 

In this study, the acrosome reaction was not induced during sperm incubation in the 

treated FF samples, even though incubated sperm were still capable of acrosomal exocytosis. 

Previously, progesterone was shown to be the key factor inducing the acrosome reaction in 
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FF-exposed stallion sperm, and did so without affecting sperm viability and motility [38, 78]. 

It is also known that steroid hormones, including progesterone, bind to albumin in blood 

serum [79] and FF [80]. We propose that removing the sperm deteriorating component in FF 

by various treatments (heat-inactivation, charcoal treatment and 30 kDa filtration) 

coincidentally inactivated or otherwise extracted this steroid-protein complex. In support of 

this hypothesis, Cheng et al. [38] demonstrated that charcoal treatment, to remove 

progesterone from FF, also removed the stimulus for stallion sperm to undergo the acrosome 

reaction.    

 

In the first experiment, we showed that contact with reproductive fluids and cells that 

the sperm would expect to contact in the sperm reservoir during the peri-ovulatory period, did 

not induce release of stallion sperm from oviduct epithelium. In the light of our subsequent 

hypothesis that treated FF preparations with elevated pH mimic the physiological condition in 

the oviduct during the peri-ovulatory period, we need to consider the possibility that, in vitro, 

the collected pre- and post-ovulatory oviductal fluids do not represent the in vivo condition 

since the oviductal fluid was (1) flushed using capacitating medium and was thus 

considerably diluted whereby important molecules would have been diluted; or (2) the pH of 

oviductal fluid may have been decreased by this method of collection. However, given the 

very limited amount of free fluid present in the oviduct it was impossible to collect a usable 

amount in pure form. Furthermore, in the final experiment we observed that even induction of 

hyperactivated motility by treated FF or procaine did not induce massive sperm release. 

However, in terms of the absolute number of spermatozoa, hyperactivating conditions (the 

combined effects of FF factors and elevated pH or procaine) induced a limited release of 

sperm bound to oviduct explants. We can suggest two reasons why the released sperm 

fraction was so small: (1) just like sperm-oviduct binding, sperm-oviduct release is a sperm 

quality selection mechanism that ensures an optimum chance of the mature oocyte being 

fertilized by a suitable sperm; (2) Suarez [81, 82] hypothesized that close coordination of 

plasma membrane changes and the induction of hyperactivated motility is a requirement for 

sperm release from the oviduct epithelium. Our FF hyperactivating conditions may have 

lacked appropriate triggers for capacitation-related plasma membrane changes. On the other 

hand, Hunter [51-53] showed that in vivo at the time of fertilization only a very small number 

of capacitated, hyperactivated oviduct-bound spermatozoa are able to escape from the oviduct 

epithelium and reach the cumulus-oocyte complex at the isthmic-ampullary junction (low 



Chapter 5 

193 

 

sperm:egg ratios). The biological relevance can be viewed in the context of a reduced risk of 

multiple oocyte penetration or polyspermy. Moreover, Hunter [55, 83] reported that, in 

contrast to the tight regulation during the peri-ovulatory period, during the post-ovulatory 

period increasing numbers of spermatozoa were able to detach from the oviduct. This does not 

interfere with fertilization because a stable block to polyspermy is rapidly established in 

fertilized, activated oocytes. In our experiments, we did not observe this enhanced release by 

ovulation associated factors. Two possible reasons can explain why: (1) we only used 

oviducts from cyclic mares in the pre-ovulatory stage or (2) our FF conditions did not support 

hyperactivation for long enough, given the loss of sperm viability and motility after 2.5 h 

incubation. In summary, these observations indicate that the induction of hyperactivated 

sperm motility was not sufficient to release large numbers of sperm from oviduct binding; 

however, a small but significant population did release. 

 

In conclusion, we have previously shown that stallion sperm acquire important 

hallmarks of capacitation (elevated intracellular pH and tail-associated protein tyrosine 

phosphorylation) after binding to alkaline vesicle-containing pre-ovulatory oviduct epithelial 

cells. In the present study, we found that contact with treated FF components induces 

hyperactivated sperm motility using a mechanism that depends on an elevated pH and 

extracellular Ca2+; however, this induction of hyperactivation triggers only a modest sperm 

release from the oviduct epithelium. It is therefore likely that other factors that support aspects 

of capacitation and hyperactivation are needed to complete the cascade that prepares the 

spermatozoa for the acrosome reaction and penetration of the zona pellucida. 
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ABSTRACT 

 

Co-incubating equine gametes in the presence of procaine has been reported to 

facilitate in vitro fertilization, with cleavage rates exceeding 60%. It has been suggested that 

procaine promotes sperm penetration by inducing hyperactivated motility to accompany tail-

associated protein tyrosine phosphorylation, triggered by other medium conditions like 

elevated medium pH. Both capacitation characteristics were also induced in treated follicular 

fluid with elevated pH (7.9) (Chapter 5). In this study, we demonstrate that both capacitating 

conditions described above trigger hyperactivation and tail-associated protein tyrosine 

phosphorylation in stallion sperm but were still insufficient to facilitate in vitro fertilization. 

Moreover, we found that procaine (1-5 mM) did not facilitate stallion sperm penetration of 

equine oocytes, but instead induced sperm-independent oocyte cytokinesis in the absence of 

the second polar body extrusion. Indeed, 56 ± 4% of oocytes cleaved within 2.5 d of exposure 

to 2.5 mM procaine, irrespective of sperm presence. However, the cleaved oocytes did not 

develop beyond 8-16 cells, and the daughter cells either lacked nuclei or contained aberrant, 

condensed DNA fragments. By contrast, intra-cytoplasmic sperm injection (ICSI) was 

followed by second polar body extrusion and formation of normal blastocysts. Moreover, 

neither the calcium oscillations detectable using fura-2 AM staining nor the cortical granule 

reaction visualized by LCA-FITC staining, after oocyte activation induced by ICSI or 

ionomycin treatment, were detected after exposing oocytes to 2.5 mM procaine. Instead, 

procaine initiated an ooplasmic alkalinization, detectable by BCECF-AM staining, that was 

not observed after other treatments. This alkalinization was followed, after an additional 18 h 

incubation, by cortical F-actin depolymerization, as demonstrated by reduced actin phalloidin-

FITC staining intensity, that resembled preparation for cytokinesis in ICSI-fertilized zygotes. 

Overall, we conclude that the induction of hyperactivated motility in tyrosine phosphorylated 

spermatozoa is still insufficient to fertilize equine oocytes in vitro. However, procaine induces 

cytokinesis in equine oocytes accompanied by aberrant chromatin condensation and 

cytoplasmic division; this explains why embryos produced after exposing equine oocytes to 

procaine fail to develop beyond the 8-16 cell stage.  
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INTRODUCTION 

 

The birth of two foals produced after in vitro fertilization (IVF) of in vivo matured 

equine oocytes was reported in 1991 [1, 2]. Unfortunately, subsequent attempts to establish a 

repeatable protocol for conventional IVF in horses have not been successful [3, 4], and it has 

been suggested that the primary deficit is the inability to adequately induce capacitation of 

stallion spermatozoa in vitro. More specifically, the absence of hyperactivated sperm motility 

under standard in vitro capacitation conditions has been proposed as the main reason why in 

vitro fertilization fails in the horse [5]. In 2009, McPartlin et al. [6] reported promising equine 

IVF results after including procaine in the co-incubation medium. The procaine induced 

hyperactivated motility in stallion spermatozoa, and this was concluded to be responsible for 

the high cleavage rates observed in the incubated oocytes. An additional important step in the 

capacitation process, protein tyrosine phosphorylation, was shown to be provoked by 

incubating stallion spermatozoa in air, and to be independent of the exposure to procaine [6, 

7]. Most importantly, approximately 60% of mature (MII) oocytes developed two pronuclei 

during a 24 h culture subsequent to 18 h co-incubation with procaine-activated sperm. 

Embryo development was reported up to the 8-cell stage (day 3). More recently, Ambruosi et 

al. (2013) similarly reported that almost 40% of horse oocytes exposed to sperm and procaine 

formed two pronuclei after 24 h incubation in identical hyperactivation conditions [8].  

 

Procaine is a local anesthetic known to induce a neuromuscular block and to increase 

the neuromuscular responses to non-depolarizing muscle relaxants, primarily via actions on 

the voltage-gated sodium channel [9]. The hyperactivation of sperm motility by procaine 

(guinea pig, [10]; horse, [6, 11, 12]) has, in the horse, been associated with a moderate 

increase in intracellular pH, an obligatory step in initiating pH-gated calcium influx through 

CATSPER channels [13]. Surprisingly, procaine-induced hyperactivated motility was not 

dependent on external calcium in either stallion [12] or guinea pig [10] spermatozoa, 

supporting the hypothesis that the calcium is mobilized from internal calcium stores, which 

contrasts to what is thought to happen during physiological induction of hyperactivated sperm 

motility [14, 15]. 

 

The two published studies on the effects of procaine on horse IVF [6, 8] used the same 

approach, i.e. they exposed both oocytes and spermatozoa simultaneously to procaine. 
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Therefore, a concurrent effect of procaine on oocyte activation cannot be excluded. Oocytes 

require a rise in cytoplasmic calcium after fertilization or parthenogenetic activation to 

resume meiosis and embark on embryonic development. During gamete fusion, a sperm-

specific phospholipase C zeta (PLCζ) is introduced into the oocyte, and is a key factor in 

inducing an inositol triphosphate (IP3) mediated calcium release from intracellular stores 

(calcium oscillations; mouse [16], human [17]). Various methods have been employed to 

induce artificial calcium oscillations in mammalian oocytes in vitro and thereby provoke 

oocyte activation and embryo development. Electrical pulses [18], Ca2+ ionophore [19] and 

strontium [20] are typically used as parthenogenetic agents, and it has been demonstrated that 

electrical pulses and Ca2+ ionophore generate a single calcium elevation whereas multiple 

calcium oscillations are induced by normal fertilization or strontium [20]. Moreover, there is 

some evidence that procaine is able to disregulate cytoplasmic calcium rise(s) in female 

gametes. In pig [21, 22] and cattle [23, 24] oocytes, the calcium rise could be inhibited by 

injecting procaine into the cytoplasm. Further downstream in the oocyte activation pathway, 

the calcium rise triggers the cortical granule reaction. In many mammalian species, including 

the horse [25], cortical granule accumulation at the periphery of the oocyte cytoplasm (horse, 

[25]; pig, [26, 27]) is indicative of cytoplasmic maturation; moreover, these granules are 

extruded into the perivitelline space after the onset of calcium oscillations during oocyte 

activation [25]. 

 

Another effect of procaine on female gametes has been described in the sea urchin, 

namely that procaine and other weak bases provoke an elevation in cytoplasmic pH [28, 29] 

that, in turn, induces cortical F-actin turnover [29] as part of the dramatic changes that the 

cytoskeleton of a mature oocyte needs to undergo in response to activation [28]. In particular, 

the total amount of F-actin first increases and subsequently decreases to allow cytokinesis 

[30]. 

 

Beside procaine capacitating conditions, we showed also that treated follicular fluid 

(FF) (heat-inactivated FF, charcoal-treated FF, <30 kDa centrifuged FF and triple treated FF) 

at pH 7.9 induced both sperm hypermotility and tail-associated protein tyrosine 

phosphorylation in stallion sperm (Chapter 5). In this study, we aimed to investigate the role 

of both capacitating media in equine in vitro fertilization by assessing: 1) sperm penetration 

through the zona pellucida, (2) second polar body extrusion and (3) pronucleus formation. 
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Since the inclusion of procaine in equine in vitro fertilization media has been shown to induce 

oocyte cleavage but did not result in blastocyst formation, we additionally aimed to 

investigate the direct effect of procaine on equine oocytes. Moreover, (1) the activation of the 

oocyte’s cortical granule reaction, (2) the presence and arrangement of chromatin in the 

cleavage products, (3) changes in cytoplasmic calcium and pH in oocytes, (4) and F-actin 

distribution in oocytes, were assessed. The resulting data help explain why capacitating media 

still fail to support equine IVF and why procaine in equine IVF media resulted in high oocyte 

cleavage rates without development to the blastocyst stage. 

 

 

MATERIALS AND METHODS 

 

Chemicals and reagents  

Alexa Fluor 488-conjugated goat anti-mouse antibody, Hoechst 33342, MitoTracker 

Green FM and BCECF-acetoxymethyl (AM) ester were obtained from Molecular Probes 

(Ghent, Belgium). Monoclonal 4G10 Platinum anti-phosphotyrosine mouse antibodies were 

purchased from Millipore (Overijse, Belgium). Fura-2 AM ester was obtained from Invitrogen 

(Life Technologies, Merelbeke, Belgium) and LCA-FITC was purchased from Labconsult 

SPRL (Vector Labs, Brussels, Belgium). Dimethylsulfoxide (DMSO), fatty acid-free bovine 

serum albumin (A9418; cell culture tested), lacmoid, phalloidin-FITC, triton X-100, tween, 

pronase from streptomyces griseus and all other chemicals not otherwise listed were obtained 

from Sigma-Aldrich (Bornem, Belgium).  

 

Collection of follicular fluid  

For each experiment, five ovaries containing a follicle at the late preovulatory stage 

(diameter > 35mm), were collected at the slaughterhouse and immediately transported to the 

laboratory. Follicular fluid (FF) was collected by individually aspirating the contents of five 

follicles (diameter > 35mm) using an 18 gauge winged infusion set needle attached to a 15 ml 

polystyrene conical tube, under low pressure provided by a vacuum pump. The FF was 

centrifuged at 100g for 10 min at 22°C before the supernatant was filtered through a 0.2 μm 
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Acrodisc® Syringe Filter with a Supor® Membrane (Pall® Corporation Life Sciences, Ghent, 

Belgium).  

 

Treatment of follicular fluid  

Follicular fluid samples were processed as described in Leemans et al. (2015; Chapter 

5). In brief, freshly filtered (2 μm diameter) FF was treated in 4 different ways: (1) by heat 

inactivation in a warm water bath at 55°C for 0.5 h; (2) charcoal treatment; (3) centrifuged 

through a 30 kDa filter (30 min-3000g; Vivaspin 15R, Sartorius Biolab Products, Goettingen, 

Germany); (4) triple treated (successive heat-inactivation, charcoal treatment and 30 kDa 

centrifugation); moreover heat-inactivated, charcoal-treated, 30 kDa-filtered or triple-treated 

FF samples were incubated in air until the pH rose to 7.9. All treated FF samples were stored 

in aliquots at -80°C until further use, for a maximum of one month. To control pH changes in 

pH elevated treated FF during sperm-oocyte incubation, experiments were performed in 

closed 1 ml tubes (Greiner bio-one, Vilvoorde, Belgium) to prevent contact with air during 

the experiment. 

 

Semen collection and preparation  

Semen was collected from three adult stallions of proven good fertility using a 

Colorado model artificial vagina (Animal Reproduction Systems; Chino, CA, USA). The raw 

ejaculate was filtered through gauze to remove the gel fraction and any debris, before visual 

evaluation of sperm motility by light microscopy (200x) on a heated stage at 37°C; if the 

motility was acceptable (>65% motile), the semen was immediately transported to the 

laboratory for further processing. One ml of fresh semen with a concentration of 100 to 300 x 

106 spermatozoa / ml was washed using a 45 / 90% Percoll® gradient [31, 32]. Next, the 

sperm pellet was washed once with non-capacitating medium (100 mM NaCl, 4.7 mM KCl, 

1.2 mM MgCl2, 5.5 mM glucose, 22 mM HEPES, 2.4 mM sodium lactate and 1.0 mM 

pyruvic acid; pH=7.4 and 280-300 mOsm / kg; [7]). Each experiment was performed using 

one ejaculate from each of the three stallions. The study was approved by the Ethics 

Committee of the Faculty of Veterinary Medicine of Ghent University (EC2013/175 and 

EC2013/176). 
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For the sperm penetration experiments, spermatozoa were labelled with MitoTracker 

Green FM before further processing. Briefly, 200 nM MitoTracker Green FM dissolved in 

0.025% DMSO was added to the Percoll® washed sperm suspension (100 x 106 spermatozoa / 

ml) diluted in 10 ml non-capacitating medium. After 30 min incubation at 37 °C, the sperm 

suspension was washed twice in 10 ml non-capacitating medium (600g; 5 min).  

 

Sperm capacitation / hyperactivation 

To provide conditions supportive of sperm capacitation, non-capacitating medium was 

modified by replacing the sodium lactate with 2.4 mM calcium lactate and adding 25 mM 

NaHCO3 and 7 mg / ml BSA (pH=7.4; 280-300 mOsm / kg; osmolality was adjusted by 

graduated addition of the NaCl); this medium was pre-equilibrated for at least 2 h in a 

humidified atmosphere containing 5% CO2 at 38.5 °C and is further referred to as capacitating 

medium (adapted from McPartlin et al. [7]). The washed sperm pellet was diluted to a 

concentration of 10 x 106 spermatozoa / ml with capacitating medium. After 6 h pre-

incubation in humidified air at 38.5 °C, hyperactivated motility was induced by resuspending 

the spermatozoa in capacitating medium supplemented with either 0, 1, 2.5 or 5 mM procaine 

hydrochloride (Sigma-Aldrich, Bornem, Belgium) at a final concentration of 1 x 106 

spermatozoa / ml [6]. More precisely, a stock of 10 mM procaine hydrochloride dissolved in 

capacitating medium was pre-equilibrated for at least 2 h in a humidified atmosphere 

containing 5% CO2 at 38.5 °C to restore the pH to the physiological range (7.2 - 7.4). 

Moreover, various procaine concentrations (0, 1, 2.5 and 5 mM) were prepared by diluting the 

stock solution with the required amount of equilibrated capacitating medium. In this way the 

pH of all incubation media was adjusted to 7.2-7.4. 

 

Similar capacitation characteristics were alternatively induced by sperm incubation (1 

x 106 spermatozoa / ml) in undiluted treated FF at pH 7.9 (heat-inactivated FF, charcoal-

treated FF, <30 kDa centrifuged FF and triple treated FF; Chapter 5). 
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Oocyte maturation  

Ovaries were collected from slaughtered mares (Euro Meat Group, Moeskroen, 

Belgium). Within 4 h after slaughter, all follicles larger than 5 mm were aspirated using a 16 

gauge needle attached to a vacuum pump (~100 mm Hg), scraped with the aspirating needle 

and flushed with phosphate buffered saline (DPBS) containing 25 IU / ml heparin. A 

maximum of 30 cumulus-oocyte complexes (COCs) were transferred to 500 μl Dulbecco’s 

Modified Eagle Medium Nutrient Mixture F-12 (DMEM/F12) based maturation medium [33] 

and placed in an incubator at 38.2°C in a humidified atmosphere of 5% CO2-in-air for 28 h. 

After maturation, COCs were partially or completely denuded by gentle pipetting in 0.05% 

bovine hyaluronidase diluted in 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid 

(HEPES) buffered DMEM/F12 medium. Degenerated oocytes were excluded from 

subsequent experiments. Only completely denuded oocytes with an extruded polar body were 

used for piezo drill intra-cytoplasmic sperm injection (ICSI) and parthenogenetic activation 

by ionomycin treatment, whereas all non-degenerated oocytes were used for IVF with the 

assumption that an extruded polar body was present since it could not be visualized in 

partially cumulus-enclosed oocytes.  

 

In vitro fertilization / oocyte activation in the presence of procaine and treated follicular 

fluid with elevated pH (7.9) 

Equine IVF was performed in the presence of 0, 1, 2.5 or 5 mM procaine 

hydrochloride, as described by McPartlin et al. [6] and in undiluted treated FF at pH 7.9 (heat-

inactivated, charcoal treated, 30 kDa centrifuged and triple treated FF; Chapter 5).  

 

As previously indicated using procaine conditions, sperm was incubated at 10 x 106 

spermatozoa / ml in capacitating medium for 6 h and then diluted to 1 x 106 spermatozoa / ml 

in procaine containing capacitating medium to achieve final concentrations of 0, 1, 2.5 or 5 

mM procaine (medium pH=7.2-7.4; previously adjusted by incubation in an atmosphere 

containing 5% CO2). One hundred μl droplets of these sperm suspensions were pipetted into 

petri dishes and covered with 5% CO2 equilibrated mineral oil. Five completely or partially 

denuded mature oocytes were then transferred to each medium droplet, and the petri dishes 

were incubated at 38.2 °C in 5% CO2 in humidified air.  
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Using treated FF at pH 7.9, sperm (1 x 106 spermatozoa / ml) and five completely or 

partially denuded mature oocytes were coincubated in a closed 1 ml tube (Greiner bio-one, 

Vilvoorde, Belgium) in 4 different FF treatments at pH 7.9 (heat-inactivated FF, charcoal 

treated FF, 30 kDa centrifuged FF and triple treated FF).  

 

After 18 h of co-incubation in both capacitating conditions, partially denuded oocytes 

were fully denuded by gentle pipetting in 0.05% bovine hyaluronidase in HEPES buffered 

DMEM/F12. Subsequently, oocytes were checked for sperm penetration or cultured for an 

additional 6 h to assess oocyte nuclear configuration and second polar body formation; or 2.5 

days in groups of 5 oocytes per 5 μl droplet of DMEM/F12 with 10% fetal calf serum, at 

38.5°C in a humidified atmosphere of 5% CO2, 5% O2 and 90% N2. The presumptive 

embryos were fixed at different developmental stages (zygote, 2-cell, 4-8 cell, 8-16 cell) to 

assess nuclear configuration, second polar body formation and developmental stage. Oocytes 

were incubated in similar procaine-containing media in the absence of sperm. 

 

Parthenogenetic activation by ionomycin 

Parthenogenetically activated equine oocytes were used as negative controls for sperm 

penetration and its role in calcium dependent oocyte activation, including second polar body 

formation. The protocol was performed as described by Heras et al. ([34]; based on K. 

Hinrichs, personal communication). Briefly, cumulus-denuded mature oocytes were incubated 

for 4 min in 5 μM ionomycin diluted in non-capacitating medium on a heated stage (37°C). 

After washing five times in wash medium (0.5% BSA in DPBS), oocytes were incubated for 

30 min in non-capacitating medium and then transferred to 2 mM 6-(dimethylamino)purine 

dissolved in DMEM/F12 medium. After 4 h incubation, the oocytes were washed 5 times with 

wash medium and once with DMEM/F12. The parthenogenetically activated oocytes were 

cultured in groups of 5 in 5 μl droplets of DMEM/F12 with 10% fetal calf serum at 38.5°C in 

a humidified atmosphere of 5% CO2, 5% O2 and 90% N2.  

 

ICSI 

ICSI zygotes were used as a positive control for sperm penetration, second polar body 

formation, embryonic development up to the blastocyst stage (7-9 days after ICSI), DNA 
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configuration, the cytoplasmic calcium response to fertilization and F-actin redistribution. 

ICSI was performed as described by Smits et al. [35]. In brief, in preparation for ICSI the 

oocytes were held in (HEPES) buffered DMEM/F12 medium, and the sperm in 9% 

polyvinylpyrrolidone in DPBS. All manipulations were performed on the heated stage (38.5 

°C) of an inverted microscope. A progressively motile sperm was immobilized and 

subsequently injected into the cytoplasm of a mature oocyte using a piezo drill (Prime Tech, 

Ibaraki, Japan). The injected oocytes were cultured in groups of 5 in 5 μl droplets of 

DMEM/F12 with 10% fetal calf serum at 38.5°C in a humidified atmosphere of 5% CO2, 5% 

O2 and 90% N2.  

 

Quantification of tail-associated protein tyrosine phosphorylation  

Assessment of protein tyrosine phosphorylation was performed as described by 

Leemans et al. [36]. Briefly, after 6 h of incubating pre-labelled (200 nM MitoTracker Green 

FM in 0.025% DMSO) or non-labelled sperm in various concentrations of procaine (0, 1, 2.5, 

5 mM) and atmospheric conditions (5% CO2 or air), sperm suspensions were washed twice 

and fixed in 4% paraformaldehyde in DPBS at room temperature for 15 min. The fixative was 

removed by three centrifugation steps using DPBS (600g for 5 min). The washed spermatozoa 

were subsequently incubated in 0.1% Triton X-100 in DPBS for 10 min at room temperature 

to ensure complete permeabilization of the membranes. The permeabilized spermatozoa were 

then incubated in blocking buffer (DPBS containing 1% BSA) for 10 min at room 

temperature. Next, the spermatozoa were incubated overnight at 4°C in buffer containing 0.1% 

BSA and the mouse monoclonal 4G10®Platinum IgG2b protein anti-phosphotyrosine antibody 

(diluted 1:500). After incubation, unbound antibody was removed by washing the 

spermatozoa twice with 1 ml of DPBS containing 0.1% BSA (600g for 5 min). The 

spermatozoa were then stained with a monoclonal goat anti-mouse antibody conjugated to 

Alexa Fluor 488 (Invitrogen, Molecular Probes, Ghent, Belgium) for 1h at room temperature. 

After immunolabelling, the non-bound antibody conjugates were removed by washing three 

times with DPBS containing 0.1% BSA, and once using DPBS (600g for 5 min). The 

immunolabelled spermatozoa were mounted on glass slides under a cover slip and sealed with 

nail polish. The proportion of spermatozoa with green fluorescent tails among the total sperm 

population (with Hoechst 33342 fluorescent heads) was determined by randomly scoring 200 
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spermatozoa. Samples were examined using a Leica DMR microscope equipped with a 

mercury lamp and appropriate filters, at a magnification of 400x. 

 

Sperm penetration, DNA configuration and embryonic development 

Oocytes and zygotes were fixed at different developmental stages in 4% 

paraformaldehyde in DPBS at room temperature for 1 h. The fixative was removed by 

washing the oocytes twice in wash medium. Next, the fixed oocytes were incubated in a 3.2 

μM Hoechst 33342 solution in wash medium for 10 min at room temperature. The oocytes 

were then washed 4 times in wash medium and mounted on siliconized glass slides 

(Marienfeld, Germany) using 1,4-Diazabicyclo[2,2,2]octane (DABCO) as antifade, and sealed 

with nail polish. Excessive pressure from the cover slip was prevented by placing a few 

droplets of vaseline on the microscope slides prior to mounting. Starting from the incubation 

in Hoechst 33342, oocytes were shielded from the light to prevent premature fading. Mounted 

slides were kept at 4°C in the dark until evaluation. The presence of a MitoTracker Green FM 

positive sperm tail in the oocyte cytoplasm indicated sperm penetration through the zona 

pellucida (fertilization) while the Hoechst stain visualized the DNA of both the oocyte and the 

spermatozoa. The presence of a second polar body containing condensed DNA was also 

determined using both Hoechst staining and a fluorescent miscroscope and light microscopy, 

because it is a hall mark of oocyte activation during fertilization and signals the completion of 

the second meiotic division of the maternal chromatin. After 2.5 d in culture, the ability of 

equine oocytes / zygotes to undergo nuclear duplication and cell cleavage was assessed. 

Alternatively, oocyte degeneration was apparent if the oocytes showed an irregular oolemma 

or shape.  

 

To confirm the validity of the MitoTracker Green FM labelled sperm-oocyte 

penetration experiments, in vitro fertilization was alternatively performed using unlabelled 

spermatozoa with sperm-penetration assessed by post-fixation lacmoid staining, as described 

by Martinez et al. [37]. Briefly, after IVF incubation and removal of the cumulus cells, 

denuded oocytes were mounted on a glass slide and fixed with acetic alcohol (acetic acid to 

ethanol, 1:3 v:v) for at least 24 h. The fixed oocytes were stained with 1% (w:v) lacmoid in 

acetic acid. The stained oocytes were immediately evaluated under a phase contrast 

microscope at x400 magnification. Oocytes were considered to have been penetrated 
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(fertilized) when at least one sperm tail was visible within the oocyte cytoplasm and the DNA 

of both the oocyte and the spermatozoa could be visualized. The presence of a second polar 

body was also examined.  

 

Calcium oscillation pattern analysis 

The possibility that 2.5 mM procaine induced oocyte activation by triggering calcium 

influx was investigated by imaging calcium oscillations. The calcium oscillation patterns were 

compared to those for oocytes activated parthenogenetically using ionomycin, and for oocytes 

fertilized by ICSI. The protocol was based on that described by Nikiforaki et al. [38]. Briefly, 

morphologically normal MII stage equine oocytes were loaded with 7.5 μM of the ratiometric 

calcium sensitive dye fura-2 acetoxymethyl (AM) ester in non-capacitating medium at 

38.5 °C in air for 20 min, and then washed repeatedly in non-capacitating medium. The 

oocytes were then transferred to a 20 μl droplet of capacitating medium containing 2.5 mM 

procaine or 5 μM ionomycin, or subjected to ICSI in the absence of either activator, and 

incubated under equilibrated mineral oil on a 35 mm diameter glass bottom dish (MatTek 

Corp., cat.no. P35G-0P 14-C, Ashland, USA).  

 

Calcium imaging was performed on the pre-heated stage (38.5 °C) of an inverted 

epifluorescence microscope (TH4-200, Olympus Soft Imaging Solutions GmBH, Belgium) 

equipped with a 10× objective (100x magnification) and UV light provided by a 75W Xenon 

arc lamp and modulated by neutral density filters. Recording cytoplasmic calcium began 

immediately after the exposure of oocytes to procaine or ionomycin, and within 40 min after 

ICSI. In the procaine and ionomycin groups, fluorescence measurements were made every 10 

s for 6 h with a filter switch that provided excitation alternating between 340 and 380 nm; no 

illumination was applied between measurements. Similar measurements were performed 

every 30 s for 16 h in oocytes fertilized by ICSI. The concentration of free intracellular 

calcium was assumed to be proportional to the ratio of fluorescence at 340/380 (expressed in 

arbitrary units, AU). Baseline fluorescence was then set to ratio = 1. The microscope was 

equipped with an Okolabs stage micro-environment chamber enclosed in a CO2 microscope 

cage incubator so that all measurements were conducted at 37 °C in the presence of 6% CO2. 

Oocytes that did not show any calcium oscillations in the ionomycin group were considered 

non-activated while, in the ICSI group, non-reactive oocytes were considered non-fertilized. 
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In these two groups, only oocytes that showed a calcium signal were included in subsequent 

analysis of calcium oscillation patterns.  

 

Distribution of the cortical granules 

The protocol for assessing cortical granule distribution was adapted from Carneiro et 

al. [25]. Briefly, the zona pellucida (ZP) was first removed by incubating the denuded oocytes 

for 2-5 min at 38.5°C in 0.3% pronase from streptomyces griseus in HEPES-buffered TCM-

199 with Hank’s salts. The oocytes were then fixed in 4% paraformaldehyde in DPBS for 30 

min at room temperature. Next, the oocytes were washed twice in wash medium before being 

incubated for 2 h in blocking solution (0.1% BSA, 0.75% glycine and 0.2% NaN3 in DPBS) at 

room temperature. After this step, oocytes were incubated for 1 h at room temperature in 

permeabilization solution (0.5% Triton X-100 and 0.05% Tween in blocking solution). 

Permeabilized oocytes were washed twice in wash medium before labelling the cortical 

granules by incubation for 15 min at room temperature in 10 μg / ml fluorescein 

isothiocyanate-labelled Lens culinaris agglutinin (FITC-LCA) in blocking solution. To verify 

the nuclear status, the chromatin was counterstained with 3.2 mM Hoechst 33342 in wash 

medium for 10 min at room temperature. Subsequently, the oocytes were mounted on glass 

microscope slides as described above. LCA labelled oocytes were further divided into two 

categories based on the distribution of the cortical granules: (1) clearly visible cortical 

granules at the periphery of the ooplasm, indicating oocyte cytoplasmic maturation and (2) 

absence of cortical granules in the oocyte cytoplasm, indicating cortical granule exocytosis. 

 

Assessing cytoplasmic pH of procaine exposed oocytes  

Mature oocytes were washed twice using non-capacitating medium and stained with 5 

μM of the pH-sensitive dye BCECF-AM in non-capacitating medium by incubation at 

38.5 °C for 30 min. The extracellular dye was then removed by washing the oocytes twice in 

non-capacitating medium, and the washed oocytes were transferred to capacitating medium in 

which they were incubated for a further 20 min to allow de-esterification of the BCECF-AM. 

Subsequently, the BCECF signal was measured in oocytes mounted on glass slides after 0, 1, 

3 and 6 h incubation in capacitating medium containing 0, 1, 2.5, 5 and 10 mM procaine.  
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Imaging of oocyte cytoplasmic pH was performed on the pre-heated stage (38.5°C) of 

a fluorescence microscope (Leica DM 5500 B microscope; Leica Microsystems GmbH; 

Wetzlar, Germany) equipped with a 10× objective (100x magnification) and with UV light 

provided by a 120 W Hg lamp and modulated by neutral density filters. Recording of 

cytoplasmic pH was performed using a filter switch that provided excitation alternating 

between 440 and 490 nm. The cytoplasmic pH was proportional to the ratio of fluorescence at 

440/490 (expressed in arbitrary units, AU). Baseline fluorescence was then set to ratio = 1.  

 

To make representative images, the fluorescent signal for BCECF-AM labelled 

oocytes was acquired after 1 h incubation in various procaine concentrations and loaded into 

the Image Database program (Leica, Van Hopplynus N.V., Brussel, Belgium). We set the 

baseline pH as that observed in 0 mM procaine under capacitating conditions at 1 h. We then 

assigned this fluorescence intensity a value of 0 by adjusting the settings such that no 

fluorescence was observed in BCECF-AM labelled oocytes in 0 mM procaine medium. All 

other oocytes incubated under 1, 2.5 and 5 mM procaine conditions were imaged with 

identical settings.  

 

F-actin Distribution 

The distribution of F-actin in horse oocytes was assessed as described previously by 

Van den Broeke et al. [39]. Oocytes were fixed for 30 min in 4% paraformaldehyde in DPBS 

at room temperature. After being washed twice in wash medium, the oocytes were 

permeabilized using 0.1% Triton X-100 in DPBS for 1 h at room temperature. Subsequently, 

oocytes were washed twice in wash medium and incubated with 40 μM FITC-labelled 

phalloidin in DPBS for 1 h at room temperature. Next, the oocytes were washed in DPBS and 

mounted on glass slides as described previously. The intensity of the FITC signal correlates 

with the amount of F-actin. In this study we considered the amount of F-actin in mature 

oocytes as the reference intensity. Increased or similar FITC intensity indicated the beginning 

of the cell cycle whereas a decreased FITC signal indicated the end of cell cycle associated 

with the preparation for cytokinesis.  
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Sperm motility assessment 

To assess the combined effects of MitoTracker Green FM and DMSO on sperm 

motility, parameters of MitoTracker Green FM labelled sperm in suspension were evaluated 

using a computer-assisted sperm analyzer (CASA: Hamilton-Thorne motility analyzer Ceros 

version 12.3d; Hamilton-Thorne Research, Beverly, MA, USA). Under defined capacitating 

conditions, BSA was replaced with PVA to avoid the marked sperm agglutination noted for 

stallion sperm after centrifugation in BSA-containing medium [12]. For each analysis, 10 μl 

of sperm solution diluted in non-capacitating medium was mounted on a pre-warmed glass 

slide (Marienfeld, Lauda-Königshofen, Germany) and maintained at 37°C using a minitherm 

stage warmer. Five randomly selected microscopic fields in the center of the slide were 

scanned 4 times each, generating 20 scans for every sample. The mean of the 5 scans for each 

sample was used for statistical analysis. The settings of the CASA-software HTR 12.3 for 

analyzing motility parameters of stallion sperm, were based on Loomis and Graham [40] and 

described previously by Hoogewijs et al. [41]. To evaluate the effect on sperm viability of 0, 

200, 400, 800 and 1000 nM MitoTracker Green FM dissolved respectively in 0, 0.025, 0.05, 

0.10 and 0.125% DMSO, the percentages of motile and progressively motile sperm were 

assessed. To assess the effect of 0, 1, 2.5 and 5 mM procaine on hypermotility parameters of 

sperm pre-labelled with 200 nM MitoTracker Green FM in 0.025% DMSO or non-labelled 

sperm, 2 motility parameters were evaluated: amplitude of lateral head displacement (ALH, in 

μm; ALH is the mean width of head oscillations), curvilinear velocity (VCL, in μm / s; VCL 

is the average velocity of a sperm head along its actual, two-dimensional curvilinear 

trajectory). Finally, an increase in these 2 motility parameters, ALH and VCL, was used to 

demonstrate hyperactivated motility in stallion sperm [6, 12]. 

 

Microscopic imaging  

Embryonic development was assessed using a CCD ICD-46E camera (Ikegami 

Tsushinki Co. Ltd., Japan) attached to an Olympus IX70 inverted microscope (Olympus 

Belgium N.V., Aartselaar, Belgium). Images of cleaved oocytes were acquired using the 

Image Database program (Leica, Van Hopplynus N.V., Brussel, Belgium). 
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Sperm labelling by various MitoTracker Green FM concentrations, sperm penetration 

through the zona pellucida, second polar body formation and DNA configuration of embryo 

development stages, the cortical granule distribution, cytoplasmic pH and F-actin distribution 

were determined by means of fluorescence microscopy using a Leica DM 5500 B microscope 

equipped with excitation filters with band pass 340/380 nm, 450/490 nm, 560/40 nm and a 

120 W mercury lamp. MitoTracker Green FM, Hoechst 33342, LCA-FITC, BCECF-AM and 

phalloidin-FITC were excited using 490 nm, 345 nm, 495 nm, 490 nm and 495 nm 

wavelengths, respectively. The emission spectra were detected by Blue (BP 470/40 nm) and 

Green (LP 515 nm) filters corresponding to the emission peaks of the dyes at respectively 516 

nm, 478 nm, 519 nm, 530 nm and 519 nm. Images were acquired using the Image Database 

program (Leica, Van Hopplynus N.V., Brussel, Belgium). The various fluorophores were 

checked for signal overlap; no bleed through of signals was detected. 

 

Sperm penetration through the zona pellucida, DNA configuration, the cortical granule 

and F-actin distribution were confirmed by confocal microscopy using a Leica TCS SPE-II 

laser scanning spectral confocal system (Leica Microsystems GmbH; Wetzlar, Germany), 

equipped with an ACS APO 63X oil immersion objective (Leica) and linked to a DM 2500 

upright microscope (Leica Microsystems). The fluorescent dyes were excited using a diode 

laser and analyzed using similar detection filters to those described for fluorescence 

microscopy. The images were obtained using Leica confocal software. For each wavelength, 

digital optical sections were collected using Z-series acquisition every 0.5 μm. Corresponding 

DIC images and images of lacmoid-stained oocytes were acquired using the Leica DM 5500 

B fluorescence microscope described above.  

 

Oocyte cleavage, second polar body formation and DNA configuration were 

confirmed by confocal microscopy using an inverted Nikon A1R confocal microscope (Nikon 

Instruments, Paris, France), mounted on a Nikon Ti body, using a 60× / 1.4 Plan Apo oil 

immersion lens. Hoechst was excited using a 405 nm diode laser and a 488 nm Argon laser 

was used for simultaneous DIC imaging. Images were acquired using Nikon Elements 

Software and a pinhole setting of 1 Airy unit and constant acquisition settings (laser power, 

gain and offset, scan speed). Digital optical sections were collected across an axial range that 

spanned the oocyte, at a step size of 1 μm. 
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Statistical analysis 

The effect of the combination of MitoTracker Green FM and DMSO on sperm 

motility parameters, the effect of different concentrations of procaine on embryonic 

development, the relative cytoplasmic pH change induced by different concentrations of 

procaine and the amount of F-actin in the cortical region were assessed by analysis of 

variance (ANOVA). Significant differences were determined using repeated measures 

ANOVA with Greenhouse-Geisser and Bonferroni correction, as implemented in the general 

linear model. Scheffé post-hoc tests were performed for pairwise comparisons. Differences 

were considered significant if P<0.05.  

 

The effect of different fertilization conditions on sperm-oocyte penetration, extrusion 

of the second polar body, pronucleus formation and the effect of procaine on cortical granule 

reaction induction were analyzed by binary logistic regression for binomially distributed data. 

Where differences existed, further comparisons of groups were performed by chi-square 

analysis (χ2 fit tests). All experiments were repeated three times. Differences were considered 

significant if P<0.05. All analyses were performed using SPSS version 20 for Windows 

(SPSS IBM, Brussels, Belgium). 

 

RESULTS 

 

Effect of procaine and MitoTracker Green FM on sperm motility characteristics 

To assess the effect of MitoTracker Green FM and DMSO on sperm motility, 10 ml 

sperm suspensions (100 x 106 spermatozoa / ml) were incubated for 30 min with various 

concentrations of this mitochondrion specific stain dissolved in DMSO. In the control sperm 

suspension (0 nM MitoTracker Green FM, 0% DMSO) in our study, 82 ± 3% of the 

spermatozoa were motile and 57 ± 4% were progressively motile. Incubation with 200 nM 

MitoTracker Green FM and 0.025% DMSO did not significantly affect motility (total motility: 

78 ± 3%; P = 0.32, progressive motility: 61 ± 2%; P = 0.21). However, incubation with 0.05% 

DMSO, irrespective of the additional presence of 400 nM MitoTracker Green FM, depressed 

motility (P = 0.01 and 0.03 for total and progressive motility, respectively). Total (69 ± 4%) 

and progressive motility (47 ± 5%) in the presence of 400 nM MitoTracker Green FM and 
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total (71 ± 2%) and progressive motility (42 ± 3%) in the presence of 0.05% DMSO without 

MitoTracker did not differ (P = 0.31 and 0.15 for total and progressive motility, respectively). 

Higher concentrations of DMSO further disrupted both total and progressive sperm motility 

independent of the inclusion of MitoTracker Green FM, although the latter appeared to have 

an additional inhibitory effect on total but not progressive motility (Figures 1). We note that 

the presence of 0.1% DMSO also resulted in abnormal sperm movement. We concluded that 

200 nM MitoTracker Green FM was the most suitable concentration for assessing sperm 

penetration through the zona pellucida, since there was no observable effect on gross sperm 

motility while a clear MitoTracker Green FM signal could be observed in the sperm mid-

piece (Figure 2). The DMSO and MitoTracker Green FM concentrations used were relatively 

low compared to those used in successful in vitro fertilization experiments with bovine [42] 

and mouse [43] gametes.  

 

Figure 1. CASA motility parameters for stallion sperm suspensions after 30 min incubation with 
various concentrations of MitoTracker Green FM (MTG) dissolved in DMSO: 0 nM MTG, 200 nM 
MTG and 0.025% DMSO, 400 nM MTG and 0.05% DMSO, 800 nM MTG and 0.1% DMSO, 0 nM 
MTG and 0.05% DMSO and 0 nM MTG plus 0.1% DMSO and subsequently diluted in 10 ml non-
capacitating medium. Bars show mean (± s.d.) percentages of motile (dark grey bars) and 
progressively motile (light grey) spermatozoa for three replicates. For the percentage of motile 
spermatozoa, values that differ significantly are indicated by different small letters (motile sperm) or 
capitals (progressively motile sperm). Comparisons were performed using repeated measure ANOVA 
with Greenhouse-Heisser and Bonferroni correction, followed by Scheffé post hoc tests for pairwise 
comparisons.
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Figure 2. Fluorescence microscope images of spermatozoa stained with MitoTracker Green FM 
(MTG) dissolved in DMSO (a) 0 nM MTG, (b) 200 nM MTG and 0.025% DMSO, (c) 400 nM MTG 
and 0.05% DMSO and (d) 800 nM MTG and 0.1% DMSO. Corresponding light microscope images (e, 
f, g, h) were taken by DIC (original magnification, 1000 x: Bar = 25 μm). 

 

In Chapter 5 we showed that differently treated FF at pH 7.9 induced hyperactivated 

motility. To assess the effect of the various procaine, MitoTracker Green FM and DMSO 

concentrations on sperm hypermotility, non-labelled and Mitotracker Green FM labelled (200 

nM MitoTracker Green FM in 0.025% DMSO) sperm preparations (10 x 106 spermatozoa / 

ml) were first incubated for 6 h in capacitating conditions with an elevated pH (7.9) and 

subsequently for 30 min in various procaine concentrations (0, 1, 2.5 and 5 mM). Compared 

to procaine-free capacitating conditions (ALH: 4.0 ± 0.3 μm and VCL: 110 ± 3 μm / s), sperm 
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ALH and VCL measurements were significantly higher when procaine was included (1 mM: 

ALH 5.9 ± 0.4 μm and VCL 147 ± 6 μm / s; 2.5 mM: ALH 7.1 ± 0.3 μm and VCL 185 ± 8 

μm / s and 5 mM: ALH 7.0 ± 0.2 μm and VCL 187 ± 13 μm / s) and became more 

pronounced as the procaine concentration increased. In accordance with the motility data 

described above, no significant effect on sperm hypermotility parameters was observed when 

sperm suspensions were pre-labelled with 200 nM MitoTracker Green FM dissolved in 0.025% 

DMSO (0 mM: ALH 4.1 ± 0.2 μm and VCL 118 ± 6 μm / s; 1 mM: ALH, 5.7 ± 0.3 μm and 

VCL 153 ± 5 μm / s; 2.5 mM: ALH 7.2 ± 0.5 μm and VCL 183 ± 6 μm / s and 5 mM: ALH 

7.2 ± 0.3 μm and VCL 188 ± 11 μm / s) (Figure 3A and 3B).  

 

 

Figure 3. Motility patterns indicative of hyperactivated motility were assessed by CASA and included 

(A) lateral head displacement (ALH) and (B) curvilinear velocity (VCL) in 200 nM MitoTracker 

Green (MTG) + 0.025% DMSO labelled (black bars) and non-MTG labelled (white bars) stallion 

sperm suspensions after 6 h incubation in capacitating medium and subsequently 30 min incubation in 

0, 1, 2.5 and 5 mM procaine dissolved in capacitating medium (pH=7.4) (n=5 samples in each group; 

3 replicates). Hyperactivated motility in sperm suspensions was clearly triggered by 2.5 and 5 mM 

procaine while motility indicative of hypermotility (ALH and VCL) was not evident at lower procaine 

concentrations. Pre-labelling stallion spermatozoa with MTG did not have any effect on 

hyperactivated motility. For both lateral head displacement and curvilinear velocity, values that differ 

significantly are indicated by different small letters. Repeated measure ANOVA with Greenhouse-

Heisser and Bonferroni correction; Scheffé post hoc tests were performed for pairwise comparison. 
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Effect of procaine and MitoTracker Green FM on sperm tail-associated protein tyrosine 

phosphorylation  

In chapter 5 we showed that differently treated FF at pH 7.9 induced tail-associated 

protein tyrosine phosphorylation in stallion sperm. To assess the effect of MitoTracker Green 

FM dissolved in DMSO and procaine on tail-associated protein tyrosine phosphorylation, 

sperm suspensions (10 x 106 spermatozoa / ml) were incubated for 6 h in 0, 1, 2.5 and 5 mM 

procaine at 2 different pHs, namely pH 7.4 (5% CO2 in air incubation) and pH 7.9 (air 

incubation). Similar to previous reports [36, 44, 45], in these capacitating conditions tail-

associated protein tyrosine phosphorylation was induced by an atmospheric air-related pH 

increase to 7.9, whereas procaine had no significant effect on this capacitation-associated 

event (pH 7.4 conditions: 0 mM, 11 ± 3%; 1 mM, 10 ± 2%; 2.5 mM, 10 ± 2% and 5 mM, 10 ± 

3% compared to pH 7.9 conditions: 0 mM, 76 ± 2%; 1 mM, 75 ± 5%; 2.5 mM, 75 ± 3% and 5 

mM, 72 ± 3%). Moreover, no effect of MitoTracker Green FM dissolved in DMSO was 

evident for rates of tail-associated protein tyrosine phosphorylation (pH 7.4 conditions: 0 mM, 

10 ± 2%; 1 mM, 9 ± 2%; 2.5 mM, 11 ± 1% and 5 mM, 9 ± 2% compared to pH 7.9 conditions: 

0 mM, 75 ± 5%; 1 mM, 74 ± 3%; 2.5 mM, 73 ± 5% and 5 mM, 70 ± 4%) (Figure 4). 

 

Figure 4. The percentage of spermatozoa pre-labelled with 200 nM MTG dissolved in 0.025% DMSO 
(black bars) and 0 nM MTG (white bars) and subsequently incubated for 6 h in 0, 1, 2.5 and 5 mM 
procaine that showed tail-associated protein tyrosine phosphorylation was assessed at pH 7.4 and pH 
7.9 (n=5 samples in each group; 3 replicates). Tail-associated protein tyrosine phosphorylation in 
stallion spermatozoa was cleary related to elevated medium pH 7.9 whereas procaine and MTG-
DMSO did not have any effect. Values that differ significantly are indicated by different small letters. 
Repeated measure ANOVA with Greenhouse-Heisser and Bonferroni correction; Scheffé post hoc 
tests were performed for pairwise comparison. 
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Procaine and treated follicular fluid at pH 7.9 do not induce penetration of equine 

oocytes by sperm in vitro  

In previous equine studies, fertilization after conventional IVF was assessed by 

determining the presence of at least 2 pronuclei in oocytes fixed 24 h after the in vitro 

fertilization incubation [8, 46, 47]. McPartlin et al. [6] assessed pronuclear formation after 18 

h of gamete co-incubation and an additional 24 h culture. This would not however 

differentiate definitively between true fertilization following sperm penetration and 

parthenogenetic activation of an unfertilized oocyte. McPartlin et al. [6] did not report the 

oocyte-activation specific appearance of a second polar body in in vitro fertilized oocytes. We 

consider definitive proof of fertilization to include the presence of at least one sperm in the 

cytoplasm of the oocyte as assessed using; (1) labelled spermatozoa e.g. with 200 nM 

MitoTracker Green FM shortly before gamete co-incubation to label the mitochondria in the 

mid-piece [42] or; (2) post-fixation lacmoid staining of in vitro fertilized oocytes. In addition, 

the formation of the second polar body could be assessed by both Hoechst staining and light 

microscopic evaluation (3) and would confirm completion of the second meiotic division. 

Equine gamete co-incubation in the presence of 0, 1, 2.5 or 5 mM procaine (Figure 5a) and in 

treated FF at pH 7.9 (Figure 5b) did not result in sperm penetration through the zona pellucida 

in any cases (0 ± 0%) as assessed by MitoTracker Green FM pre-labelling. Neither did the 

presence of cumulus cells around the oocytes affect sperm-oocyte penetration rates. Oocytes 

activated parthenogenetically using ionomycin (Figure 5c) were used as a negative control, 

and also showed no evidence of MitoTracker Green FM labelling in the oocyte cytoplasm. As 

a positive control for stability of the stain, sperm were injected into mature (MII) equine 

oocytes by ICSI (Figure 5d); in these oocytes the sperm tail was clearly visible inside the 

oocyte cytoplasm (P-value < 0.001 for all comparisons). The failure of oocyte penetration 

during IVF was confirmed using unlabelled sperm and post-fixation lacmoid staining (Figure 

5e, 5f, 5g and 5h). Furthermore, none of the procaine or FF treated oocytes formed a second 

polar body as evidence of completion of the second meiotic division (0 ± 0%). By contrast, 89 

± 7% of ICSI fertilized oocytes showed a normal second polar body containing condensed 

DNA (see Figure 5d and 5h). Together these data support the hypothesis that procaine and 

treated FF (pH 7.9) does not support sperm penetration or in vitro fertilization. 
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Figure 5. Confocal microscope images of a cumulus-free oocyte after 18 h co-incubation with 
spermatozoa in (a) 5 mM procaine diluted in capacitating medium and (b) heat-inactivated FF (pH 
7.9), and stained with Hoechst and Mitotracker Green FM to assess sperm penetration, (c) an oocyte 
activated parthenogenetically using ionomycin (negative control) and (d) an oocyte fertilized by ICSI 
(positive control). Corresponding light microscopic images (a’, b’, c’, d’) were taken by DIC. The 
formation of a second polar body and the presence of a spermatozoon inside the cytoplasm of oocytes 
incubated with sperm, in the presence or absence of procaine, was never observed. Indeed, the 
formation of pronuclei was a rare observation (<3%) in oocytes incubated with sperm. Similar 
observations were made for gamete co-incubation in treated FF (pH 7.9). Light microscopic DIC 
images of an oocyte after 18 h co-incubation with unlabelled sperm in (e) 5 mM procaine or (f) heat-
inactivated FF, (g) an oocyte activated parthenogenetically using ionomycin (negative control) and (h) 
an ICSI-fertilized oocyte (positive control) after post-fixation lacmoid staining were also examined. 
Both methods of evaluation indicated that IVF in the presence of procaine induced neither fertilization 
nor normal parthenogenesis, but instead triggered DNA fragmentation. In similarity, IVF in the 
presence of treated FF (pH 7.9) did not induce fertilization or parthenogenesis although oocytes were 
arrested in metaphase II (n=20 oocytes; three replicates; original magnification, 630 x: Bar = 25 μm. 
ST; sperm tail. PN; pronucleus. PB; polar body. F; condensed DNA fragments). 
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Procaine induces cell cleavage up to the 8-16 cell stage  

After 2.5 days of culture, we observed a degenerative effect of 5 mM procaine on the 

oocyte. In capacitating conditions, 7 ± 3% of completely cumulus-denuded oocytes (CD) and 

5 ± 5% of partially cumulus-denuded oocytes (PD) degenerated; in 1 mM procaine 8 ± 4% 

CD and 7 ± 4% PD degenerated; in 2.5 mM procaine 12 ± 3% CD and 10 ± 3% PD; and in 5 

mM procaine 38 ± 6% CD and 27 ± 4% PD degenerated. This suggested a concentration-

dependent toxic effect of procaine on developing embryos that could be partially inhibited by 

the presence of cumulus cells around the oocytes during the 24 h gamete co-incubation (P < 

0.001 for all comparisons; Figure 6). Moreover, no significant degenerative effect on treated 

FF (pH 7.9) exposed oocytes could be observed (heat-inactivated FF, 9 ± 4% CD and 5 ± 3% 

PD; charcoal-inactivated FF, 5 ± 7% CD and 4 ± 4% PD; 30 kDa filtered FF, 10 ± 4% CD 

and 7 ± 2% PD; and triple treated FF, 8 ± 6% CD and 7 ± 3% PD).   

Interestingly, in our hands in the presence of 2.5 mM procaine, 44 ± 12% CD and 56 ± 

4% PD oocytes cleaved, whereas cleavage was significantly reduced in the presence of 5 mM 

procaine (12 ± 6% CD and 8 ± 4% PD). Significantly more oocytes started to cleave when the 

cumulus investment was left in place during gamete co-incubation (P < 0.001 for all 

comparisons; Figure 6). A significantly higher cleavage rate was achieved in ICSI-fertilized 

oocytes (78 ± 8% of injected oocytes; P < 0.001). Tellingly, oocytes that cleaved in the 

presence of procaine never developed beyond the 8-16 cell stage even though, after exposure 

to 2.5 mM procaine in capacitating conditions, 70 ± 5% CD and 67 ± 8% PD of the cleaved 

oocytes reached the 8-16 cell stage (31 ± 2% CD and 37 ± 4% PD of the incubated oocytes). 

A similar pattern was observed after exposure to 5 mM procaine, when 63 ± 3% CD and 65 ± 

5% PD developed to the 8-16 cell stage (8 ± 2% of CD and 5 ± 1% of PD oocytes). The 

presence of cumulus cells around the oocyte did not have a significant effect on the 

percentage of cleaved oocytes that reached the 8-16 cell stage (P > 0.14 for all comparisons). 

Moreover, no effect on oocyte cleavage could be observed in 0 and 1 mM procaine conditions 

and the 4 treated FF conditions (pH 7.9) (<1 % in all groups). In short, cleaved embryos that 

formed in the presence of procaine never (0 ± 0%) reached the blastocyst stage whereas 15 ± 

6% of ICSI oocytes did develop to blastocysts (Figure 7). After 5-6 days of incubation, all 

presumptive embryos derived from procaine treatments started to degenerate. Moreover, none 

of these parameters differed significantly between oocytes incubated in the presence or 
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absence of spermatozoa. This indicates that procaine induced oocyte activation, cleavage and 

embryo development were all sperm-independent (Figure 6 and 7).  

 

Figure 6. Percentage of completely or partially cumulus-denuded oocytes that had degenerated or 
cleaved after 2.5 days in culture following fertilization incubation in capacitating medium containing 0, 
1, 2.5 or 5 mM procaine with or without spermatozoa. ICSI fertilized oocytes were used as a positive 
control for cleavage (hatched bar). In the presence of 2.5 and 5 mM procaine, oocytes cleaved up to 
the 8-cell stage. Cleavage was not observed for 1 mM procaine or capacitating medium (0 mM 
procaine). Data represent mean (± s.d.) percentages of oocytes after incubation in capacitating medium 
(black bars), 1 mM procaine in capacitating medium (dark grey bars), 2.5 mM (light grey bars) and 5 
mM procaine (white bars); n=20 oocytes in each group, three replicates. Values that differ 
significantly (p<0.05) are indicated by different small letters for degenerated oocytes or capitals for 
cleavage. Values that differ significantly between completely and partially cumulus-denuded oocytes 
are indicated by Greek letters (p<0.05). The numbers of degenerated and cleaved oocytes were 
analyzed by binary logistic regression, with chi-square (χ2) tests performed for pairwise comparison. 
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Figure 7. Micrographs of embryo developmental stages (a, e and i: 2-cell; b, f and j: 4-cell; c, 
g and k: 8-cell; d, h and l: 16-cell; m: blastocyst) after oocytes were incubated for 18 h in 2.5 
mM procaine in capacitating medium with or without sperm, and subsequently cultured in a 
DMEM/F12 plus 10% FBS based medium. Oocytes that cleaved in the presence of procaine 
never developed further than the 8-16 cell stage. ICSI fertilized oocytes were used as positive 
control (original magnification, 400x: Bar = 20 μm). 

 

Procaine-induced embryonic cleavage is associated with aberrant DNA segregation and 

fragmentation 

As indicated above, procaine triggered cleavage of horse oocytes while treated FF (pH 

7.9) did not. We also analyzed the effect of procaine (0, 1, 2.5 and 5 mM procaine in 

capacitating conditions) and treated FF (pH 7.9) on nuclear configuration during embryo 

development. After 24 h incubation in the presence of 5 mM procaine, we observed 

significantly more DNA fragmentation in the oocytes than in oocytes exposed to 0, 1, or 2.5 

mM procaine or treated FFs (pH 7.9). Moreover, the incidence of oocytes with fragmented 

DNA was higher for the completely denuded (CD) than for the partially cumulus-denuded 

oocytes (PD) (Figure 8). In addition, in 0 (control) and 1 mM procaine, the majority of 

oocytes displayed a normal metaphase spindle (MI: 32 ± 3 and MII: 55 ± 9%) indicating that 

procaine up to 1 mM did not affect the DNA configuration (Figure 8). A very similar pattern 

was observed in oocytes incubated in treated FF with elevated pH (7.9) (heat-inactivated FF, 
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MI: 27 ± 7 and MII: 61 ± 5%; charcoal-inactivated FF, MI: 31 ± 5 and MII: 54 ± 7%; 30 kDa 

filtered FF, MI: 29 ± 3 and MII: 55 ± 4%; and triple treated FF, MI: 33 ± 7 and MII: 58 ± 6%). 

By contrast, after exposure to 2.5 or 5 mM procaine one (1F) or two (2F) very condensed 

fragments of DNA were observed instead (2.5 mM procaine: 32 ± 3% 1F and 57 ± 3% 2F; 5 

mM procaine: 20 ± 5% 1F and 50 ± 10% 2F, respectively; Figure 8). The presence of cumulus 

cells around the oocytes during procaine exposure (P < 0.001 for all comparisons) protected 

against DNA fragmentation. The formation of normal healthy (pro)nuclei (1 or 2 PN), 

indicating that oocytes had undergone fertilization or viable parthenogenesis, was a rare 

finding in procaine-treated oocytes (less than 3 ± 3%; Figure 8) and treated FF (pH 7.9) 

exposed oocytes (less than 2 ± 3%). In contrast to oocytes incubated with sperm at various 

procaine concentrations, 87 ± 5% of ICSI fertilized oocytes formed two pronuclei 24 h after 

injection using the same maturation and culture conditions used for procaine-exposed oocytes 

(p<0.001 for all comparisons). 

During development of embryos formed in the presence of procaine, the majority of 

the apparent daughter cells did not contain DNA at all, while others displayed condensed, 

fragmented pieces of DNA (Figure 9). In ICSI-fertilized oocytes, every cell contained a 

nucleus (Figure 9). None of these parameters evaluated after procaine exposure differed 

between oocytes incubated in the presence or absence of spermatozoa, again indicating that 

procaine-induced cleavage events were sperm-independent (P > 0.11 for all comparisons; 

Figure 8 and 9). 
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Figure 8. Percentages of completely or partially cumulus-denuded oocytes that showed (1) 
degeneration, (2) meiosis I stage (MI), (3) meiosis II stage (MII), (4) 1 pronucleus (1PN), (5) 2 
pronuclei (2PN), (6) 1 DNA fragment (1F) and (7) 2 DNA fragments (2F) after 24 h in fertilization 
incubation in capacitating medium containing 0, 1, 2.5 and 5 mM procaine with or without 
spermatozoa. In general, this experiment showed clearly that procaine-exposed oocytes rarely form 
pronuclei, but instead exhibit condensed DNA fragments. Data represent mean (± s.d.) percentages of 
oocytes after incubation in capacitating medium (black bars), 1 mM procaine in capacitating medium 
(dark grey bars), 2.5 mM (light grey bars) and 5 mM procaine (white bars); n=10 oocytes in each 
group, three replicates. Values that do not differ significantly (p<0.05) within each type of DNA 
configuration are indicated by the same small letter. Values that do not differ significantly between 
cumulus-free and cumulus-intact oocytes are indicated by the same capital letter (p<0.05). The 
numbers of degenerated and cleaved oocytes were analyzed by binary logistic regression, with chi-
square (χ2) tests performed for pairwise comparison. 
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Figure 9. Confocal micrographs to demonstrate the DNA of different embryo developmental stages (a, 
e and i: uncleaved oocyte; b, f and j: 2-3-cell stage; c, g and k: 5-6-cell; d, h and l: 8-16-cell and m: 
blastocyst) after incubation for 18 h in 2.5 mM procaine in capacitating medium with or without sperm, 
followed by culture in a DMEM/F12 plus 10% FBS based medium. Many cells contained no DNA, 
and the visible DNA was very condensed and fragmented. ICSI fertilized oocytes were used as 
positive control (original magnification, 400x: Bar = 20 μm). 
 

Procaine does not induce cytoplasmic calcium oscillations in horse oocytes  

With respect to what has been reported for various mammalian species [38, 48, 49], 

we wanted to determine whether procaine-induced horse oocyte activation evoked calcium 

oscillations. To this end, we ratiometrically measured calcium oscillations in procaine- and 

ionomycin-exposed, and in ICSI-fertilized, horse oocytes. In the case of ICSI, fertilized 

oocytes exhibited a series of cytoplasmic calcium rises over at least 16 h (Figure 10c). This 

pattern was similar to that reported previously in mouse [48], human [38, 48] and equine [50] 

oocytes. Similar to reports for mouse and human oocytes [51, 52], parthenogenetic activation 

by ionomycin induced a single early rise in intracellular calcium (Figure 10b). By contrast, 

incubation of in vitro matured equine oocytes in 2.5 mM procaine did not trigger cytoplasmic 

calcium fluctuations during a 6 h incubation (Figure 10a).  
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Figure 10. Representative cytoplasmic calcium oscillations assessed using the ratiometric dye, fura-2 
AM, in equine oocytes exposed for 6 h to (a) 2.5 mM procaine and (b) 5 μM ionomycin or for 16 h 
after (c) fertilization by ICSI. Procaine did not induce a cytoplasmic calcium rise in equine oocytes, 
whereas a single early cytoplasmic calcium rise was observed after exposure to ionomycin, and 
multiple calcium oscillations were evident after fertilization by ICSI (n=20 oocytes for the procaine 
group; n=5 oocytes for the ionomycin group; n= 15 oocytes for the ICSI group). 
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Procaine does not induce cortical granule exocytosis 

To alternatively assess calcium signaling during oocyte activation we used lectin 

staining (LCA-FITC) to determine whether procaine could induce the cortical reaction. After 

oocyte maturation, we found that the cortical granules were concentrated in the periphery of 

the cytoplasm of most oocytes (83 ± 3%; Figure 11a). When the oocytes were subsequently 

incubated for 6 h in capacitating conditions (0% procaine), the same cortical granule pattern 

was generally maintained (85 ± 5%; Figure 11d). Ionomycin-activated and ICSI fertilized 

oocytes lost their cortical granules, indicating that the oocytes had undergone calcium-

dependent cortical granule extrusion (ionomycin: 85 ± 4%, ICSI: 82 ± 7%; Figure 11b and 

11c). By contrast, procaine-activated oocytes did not extrude their cortical granules during a 6 

h procaine / IVF incubation; instead a proportion of the cortical granules were maintained in 

the periphery of the cytoplasm and even more were redistributed to more centrally in the 

cytoplasm (2.5 mM procaine: 76 ± 7%; 5 mM procaine: 68 ± 5%; Figure 11e and 11f).  
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Figure 11. Cortical granule exocytosis was assessed by LCA-FITC staining in (a) mature oocytes; (b) 
6 h after exposure to 5 μM ionomycin; (c) 6 h after ICSI; 6 h after exposure to (d) 0 mM, (e) 2.5 mM 
procaine and (f) 5 mM Procaine (n=10 oocytes in each group; three replicates). Corresponding light 
microscopic images (a’, b’, c’, d’, e’, f’) were taken by DIC. Procaine did not induce cortical granule 
exocytosis but ICSI fertilization and ionomycin activation did. Moreover, in the procaine-activated 
oocytes, the cortical granules were present not only in the periphery of the oocyte cytoplasm but also 
more centrally (original magnification, 630x: Bar = 25 μm). 
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Procaine induces cytoplasmic alkalinization in horse oocytes 

Using BCECF-AM staining, we ratiometrically assessed the effect on horse oocytes of 

exposure to 0, 1, 2.5, 5 and 10 mM procaine. It transpired that procaine induced a rapid, 

concentration-dependent increase in the BCECF-AM ratio during the first hour of incubation 

(after 1 h in 0 mM procaine: 1.13 ± 0.06; in 1 mM procaine: 1.33 ± 0.06; in 2.5 mM procaine: 

1.87 ± 0.10; in 5 mM procaine: 2.97 ± 0.15; and in 10 mM procaine: 5.13 ± 0.21) which 

remained constant during the remainder of the 6 h culture period (P > 0.11 for all comparisons; 

Figure 12a). The procaine concentration dependent increase in BCECF-AM fluorescence in 

horse oocytes at 1 h of incubation is shown in Figure 12b. The BCECF-AM fluorescence in 

horse oocytes incubated in 0 mM procaine was assigned as the baseline to which oocytes 

exposed to procaine differed significantly (p<0.001).  

 
Figure 12. (a) Intracellular pH was assessed at 0, 1, 3 and 6 h using the ratiometric dye BCECF-AM 
in equine oocytes exposed to 0, 1, 2.5, 5 and 10 mM procaine in capacitating medium. Increasing 
procaine concentration was associated with an increase in cytoplasmic pH. Values are mean (± s.d.) 
BCECF-AM ratio in oocytes exposed to 0, 1, 2.5, 5 and 10 mM procaine (n=5 oocytes in each group; 
three replicates). Values that differ significantly are indicated by different small letters (p<0.05). 
Comparisons were performed by repeated measure ANOVA with Greenhouse-Heisser and Bonferroni 
correction; Scheffé post hoc tests were used for pairwise comparisons. (B) Changes in BCECF-AM 
fluorescence intensity in equine oocytes exposed to 0, 1, 2.5, 5 and 10 mM procaine in capacitating 
media for 1 h. A clear procaine concentration dependent fluorescence signal (indicating a pH rise) was 
observed (original magnification, 100x: Bar = 25 μm). 
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Procaine induces depolymerization of cortical F-actin in horse oocytes 

To assess the effect of procaine on cortical F-actin turnover in preparation for 

cytokinesis, we used phalloidin-FITC staining. Two different phalloidin-FITC staining 

patterns were observed (Figure 13). The amount of F-actin present in the cortical region of 

mature oocytes was relatively high (Figure 13a). After 18 h exposure to procaine (2.5 mM), 

the majority of oocytes showed a clear decrease in F-actin abundance (Figure 13d; only 24 ± 

6% oocytes retained the more intense phalloidin labelling pattern), whereas in standard 

conditions (0 mM procaine) the F-actin pattern was similar to that seen in pre-incubation MII 

oocytes (81 ± 5%; Figure 13c; P<0.001). As expected, 18 h after injection ICSI-fertilized 

oocytes also showed a decrease in F-actin abundance (Figure 13b) with only 26 ± 5% 

retaining the abundant phalloidin labelling pattern. The similarity in actin cytoskeleton 

depolymerization in ICSI-fertilized and procaine-treated oocytes indicates that at least some 

aspects of procaine-induced cytokinesis of equine oocytes are similar to fertilization-induced 

cleavage.  

 

Figure 13. Cortical F-actin distribution as assessed by actin phalloidin-FITC staining in (a) mature 
oocytes and (b) ICSI-fertilized oocytes (18 h after ICSI), compared to oocytes exposed for 18 h to (c) 
0 mM (capacitating), and d) 2.5 mM procaine (n=10 oocytes in each group; three replicates). 
Corresponding light microscopic images (a’, b’, c’ and d’) were taken by DIC. Exposure of horse 
oocytes to procaine was associated with depolymerization (reduced abundance) of F-actin (original 
magnification, 630x: Bar = 25 μm). 
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DISCUSSION 

 

The principal aim of this study was to determine if hyperactivated, protein tyrosine 

phosphorylated stallion spermatozoa allows to fertilize mature equine oocytes in vitro. We 

found that both procaine capacitating conditions and treated FF at pH 7.9 did not support 

equine IVF. Instead, procaine had a direct effect on equine oocytes, inducing cytokinesis 

followed by further cleavage up to the 8-16 cell stage, which was not accompanied by sperm 

penetration or second polar body formation. Interestingly, we also noted that in procaine-

activated oocytes the DNA in the metaphase II plate condensed without prior formation of a 

proper pronucleus. During cytoplasmic cleavage, these condensed DNA fragments segregated 

to one of the two daughter cells only, indicating that DNA duplication did not take place. 

Moreover, we clearly demonstrated that procaine-induced cytokinesis in equine oocytes was 

not stimulated by a rise in cytoplasmic calcium, in marked contrast to the situation in oocytes 

fertilized by ICSI or parthenogenetically-activated by ionomycin. Instead, exposure of equine 

oocytes to procaine induced a rapid increase in cytoplasmic pH followed by a pH–dependent 

reduction in F-actin, both of which are important steps in cytokinesis [29]. 

  

The first important observation was that tail-associated protein tyrosine 

phosphorylated, hyperactivated stallion spermatozoa were not able to penetrate equine 

oocytes in vitro despite the presence of 0, 1, 2.5 or 5 mM procaine or being exposed to treated 

FF at pH 7.9, as evidenced by incubating oocytes with spermatozoa labelled with MitoTracker 

Green FM. These results were confirmed on oocytes treated with unlabelled sperm using post-

fixation lacmoid staining. That similar cleavage rates under procaine conditions were 

achieved irrespective of the presence of spermatozoa, further suggests that the primary effect 

of procaine was not to trigger sperm penetration. Moreover, oocytes that cleaved in the 

presence of procaine did not form a second polar body, suggesting failure of normal oocyte 

activation. By contrast, the injection of a single sperm cell into an oocyte by ICSI was 

followed by (1) normal second polar body formation and (2) normal pronucleus formation, 

demonstrating that the incubation conditions were adequate for oocyte maturation and embryo 

development. Possibly, an oviduct derived factor is essential for equine oocyte penetration by 

a sperm, but we do not yet know whether that factor is implicated in modifying the cumulus / 

zona pellucida or the sperm surface. Without that oviduct factor, it appears that sperm cannot 

fertilize the oocyte, regardless of the presence of cumulus cells 



Chapter 6 

235 

 

In a number of previous studies, the success of fertilization was determined 

exclusively by the presence of 2 pronuclei at 20-24 h after sperm-oocyte co-incubation [6, 8, 

46]. Although we agree that the detection of two pronuclei and cell cleavage are generally 

indicative of fertilization in the horse, neither parthenogenetic activation followed by the 

formation of two maternal pronuclei nor oocyte cytokinesis can be excluded by these end-

points. That is why we decided to determine whether a sperm cell could be shown to enter the 

oocyte under the procaine / capacitating conditions. Labelling bull spermatozoa with 

MitoTracker Green FM had previously been shown not to interfere with fertilization and 

embryo development in a bovine IVF system [42]. Because horse-specific fertilization 

characteristics are not yet known, and to exclude any possible interfering effect of 

MitoTracker Green FM and DMSO on sperm-oocyte penetration, unlabelled sperm and post-

fixation lacmoid staining were used to confirm the failure of sperm penetration. Moreover, 

pre-labelling sperm with MitoTracker Green FM dissolved in DMSO did not affect sperm 

(hyper)motility or tail-associated protein tyrosine phosphorylation. Thus, MitoTracker Green 

FM sperm pre-labelling was not responsible for failure of sperm-oocyte penetration in 

procaine / capacitating conditions and pre-labelling sperm with this dye may be a valuable 

additional tool for assessing fertilization in the horse, as has been shown in other mammalian 

species [42, 43]. In our study, not a single spermatozoon was observed in the cytoplasm of an 

oocyte in any of the IVF conditions, and we conclude that fertilization does not occur under 

normal or procaine-supplemented capacitating conditions or treated FF condtions with 

elevated pH (7.9). We also note that, while procaine induced cleavage of the oocytes, none of 

the resulting ‘embryos’ formed a visible second polar body. Previous studies have not 

addressed the presence of a second polar body in the cleaved oocytes [6, 8]. The absence of 

the second polar body is a clear indication that the second meiotic division of the maternal 

DNA is not completed normally. In this respect, DNA fragmentation is also visible in both 

nuclei of the two-cell stage procaine-induced embryo depicted by McPartlin et al. [6]. We 

speculate that the aberrant chromatin condensation and fragmentation in procaine-treated 

oocytes prevents development beyond the third or fourth cytoplasmic cleavage. By contrast, 

sperm injected oocytes developed into normal blastocysts and showed normal second polar 

body formation, normal pronucleus formation, and had no signs of unequal DNA division or 

DNA condensation and fragmentation, demonstrating that both the oocytes and embryo 

culture conditions were adequate to support embryo development. 
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A second important observation was that procaine induced a rise in cytoplasmic pH in 

horse oocytes. At concentrations of ≥ 5 mM procaine, the resulting high pH exerted a 

degenerative effect on the oocytes that was not observed at ≤ 2.5 mM. In sea urchin eggs, 

procaine acts as a proton acceptor and thereby mediates cytoplasmic alkalinization [28]. At 5 

mM procaine, the rise in cytoplasmic pH was presumably too high and therefore induced 

oocyte degeneration. This effect could be partially countered by the presence of a cumulus 

cell investment around the mature oocyte. At lower concentrations of procaine (2.5 mM), the 

rise in cytoplasmic pH did not induce degeneration but instead triggered cytoplasmic cleavage 

up to the 8-16 cell stage. This procaine concentration most likely induced the appropriate rise 

in cytoplasmic pH to activate equine oocytes, whereas a lower procaine concentration did not 

provoke sufficient cytoplasmic pH change to activate cytokinesis. Similar to our results, 

exposure of sea urchin eggs to procaine induced a cytoplasmic pH increase [53]. Procaine, 

and some other local anesthetics, are tertiary amines that show characteristics of weak bases. 

Winkler and Grainger [28] demonstrated that procaine acted as a proton acceptor within the 

oocyte cytoplasm. In sea urchin eggs, elevated cytoplasmic pH mediated cortical non-

filamentous actin polymerization and a rapid increase in the amount of F-actin [29, 54]. 

Elevated pH acts directly on actin / actin binding protein complexes [55, 56]. The 

polymerization of cortical non-filamentous actin to F-actin, to construct a functional 

contractile ring to mediate cell cleavage, followed by a decrease in F-actin is required for 

cytoskeleton reorganization prior to cytokinesis [54, 57, 58].  

 

It therefore appears that procaine can induce cytokinesis in equine oocytes, but that 

this is not accompanied by normal nuclear division and mitosis. As mentioned above, after 18 

h incubation in 2.5 mM procaine, the DNA configuration changed from a metaphase II plate 

to one or two very condensed DNA fragments, without prior pronucleus formation. Moreover, 

when cytoplasmic cleavage was initiated, the DNA did not divide appropriately, such that 

during the subsequent oocyte divisions the majority of the ‘cells’ did not contain nuclear 

material. An additional explanation can be found in studies in other systems; in cultured 

myogenic cells, procaine exerts a concentration dependent toxic effect on the DNA [59] and, 

in fertilized sea urchin eggs, high concentrations of procaine (10 mM) were associated with 

the inhibition of DNA synthesis and the polymerization of tubulin, which has an important 

function in the construction of the meiotic spindle [60, 61]. These events appear to be related 

to the procaine-induced elevation in cytoplasmic pH [61] and are most probably the cause of 
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the DNA fragmentation that we observed. It is also unlikely that this compacted DNA could 

initiate embryonic genome activation, such that more advanced stages would inevitably 

degenerate. In conclusion, we assume that 2.5 mM procaine induced the appropriate 

cytoplasmic pH shift to cause cytokinesis without DNA replication.  

 

A third important observation was that procaine did not induce oocyte activation via 

the normal pathway, which begins with a rise in cytoplasmic calcium. In various mammalian 

species, oocyte activation is induced by a cytoplasmic calcium rise soon after fertilization or 

after contact with the parthenogenetic agent [62]. In our study we found that, as reported for 

other mammalian species, ionomycin induced an early single cytoplasmic calcium rise, 

whereas ICSI induced calcium oscillations, in mature oocytes. A rise in oocyte cytoplasmic 

calcium is generally accepted to induce both ‘early’ and ‘late’ events of the fertilization 

process, where the early events include the cortical reaction, sodium influx and a respiratory 

burst, and the late events include an increase in intracellular pH, DNA and protein synthesis 

and chromosome replication and segregation [63, 64]. However, after 6 h exposure to 2.5 mM 

procaine no cytoplasmic calcium rise was observed in equine oocytes and neither did procaine 

induce the calcium dependent cortical reaction. Similar observations have been reported in sea 

urchin eggs [65, 66] in which procaine failed to trigger either calcium influx [65] or release 

from intracellular calcium stores [66]. Also in pig [21, 22] and cattle [23, 24], the oocyte- 

activation associated calcium rise could be inhibited by injecting procaine into the cytoplasm, 

because even low concentrations (max 200 μM) of procaine were able to block the ryanodine 

receptors on the calcium channels of the cytoplasmic calcium stores. These observations 

reinforce the conclusion that calcium oscillations early in fertilization and the subsequent 

cortical reaction, as seen in horse oocytes subjected to ICSI, do not take place in the presence 

of procaine. 

 

Finally, we showed that the total amount of F-actin in the equine oocyte decreased 

significantly during 18 h of incubation in the presence of 2.5 mM procaine in a similar fashion 

to that observed in sperm injected oocytes. Reduction in F-actin has to occur at the end of the 

cell cycle in preparation for cytokinesis [30]. Moreover, a cyclic increase and decrease in the 

amount of cortical F-actin has been observed during early cleavage divisions, with a peak near 

the beginning of the cell cycle and a trough during cytokinesis [30]. In sea urchin eggs, weak 

bases such as procaine can stimulate pH mediated actin turnover [67-70]. Moreover, ADF / 
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cofilin (AC) proteins exhibit a pH dependent role in F-actin turnover [71, 72] consisting of an 

alkalinity-associated increase in F-actin depolymerization activity, with a critical 

concentration around neutral pH [73], and a temporary concentration at the contractile ring 

during cytokinesis [74]. ADF / cofilin (AC) proteins have been found in all eukaryotic cells 

thus far examined [75-78] and are therefore likely to be involved in cytokinesis of the horse 

zygote or oocyte. 

 

It may be argued that sea urchins are not representative of fertilization events in 

mammals. However, similarities in fertilization-mediated events, like calcium induced oocyte 

activation and the subsequent cortical reaction, have been reported [79]. Following the 

cytoplasmic calcium transient, an efflux of protons from the egg results in an elevated 

cytoplasmic pH in fertilized sea urchin eggs [80], which initiates cortical F-actin turnover [29, 

30]. However, the physiological role of a raised cytoplasmic pH in mammalian oocyte 

activation is not clear [62]. Further research is required to elucidate whether such events are 

evolutionarily conserved between the sea urchin and mammalian species. More importantly, 

proof is required that a rise in cytoplasmic pH contributes to oocyte activation during normal 

fertilization or ionomycin treatment in horses. Theoretically, a pH rise in a horse oocyte could 

induce: 1) a non-physiological activation of pH-sensitive enzymes involved in actin 

polymerization / cytokinesis or, as in sea urchins, 2) a physiological response that results in 

cytokinesis.  

 

In conclusion, we have shown that hyperactivated, protein tyrosine phosphorylated 

stallion spermatozoa does not facilitate penetration of horse oocytes by spermatozoa, despite 

the direct stimulating effect of procaine and treated FF (pH 7.9) on hyperactivated motility in 

stallion spermatozoa. In our hands, procaine instead induced a pH rise dependent cytokinesis 

in equine oocytes, without inducing an intracellular calcium increase, albeit only over a small 

range of procaine concentrations. Cleaved oocytes developed to the 8-16 cell stage without 

undergoing proper DNA duplication and without the formation of a second polar body. 

Moreover, the unequally divided DNA deteriorated by becoming condensed and fragmented. 
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When the original concept for this research plan was first drafted in 2010, little was 

known about the possible triggers present in the oviduct of the mare near ovulation to force 

the stallion sperm through the capacitation process. Between 1990 and 2000, a few American 

researchers studied sperm-oviduct interaction in horses using an oviduct monolayer model [1-

15]. Since then, almost no new data have been reported concerning this topic in the horse. 

The general aim of this thesis was to optimize an in vivo-like oviduct explant model in 

order to improve our current understanding on how spermatozoa behave in the oviduct and 

eventually achieve the ability to fertilize, a process known as “capacitation” [16, 17]. Based 

on research in other mammalian species, Suarez [18] postulated the following hypothesis on 

in vivo capacitation. Briefly, millions of sperm cells are inseminated in the uterine body in 

order to fertilize only one oocyte. Of those millions spermatozoa, only thousands reach the 

isthmus of the oviduct. As they arrive, many are trapped and held in a sperm reservoir near 

the caudal site of the oviduct until close to ovulation. This sperm reservoir is established by 

the reversible binding of spermatozoa to the oviduct epithelium, a process which is facilitated 

by a Ca2+-dependent lectin binding in cattle and other mammals. In the timespan prior to 

ovulation, the fertility of bound sperm is maintained in the sperm reservoir. In the late pre-

ovulatory period, capacitation triggers force the bound sperm to undergo various capacitation-

related events. Finally, sperm cells will escape from the reservoir by achieving hyperactivated 

motility and will move to the site of fertilization, i.e. the isthmic-ampullary junction. 

Capacitated spermatozoa will penetrate the oocyte’s extracellular vestments eventually 

resulting in fertilization. Polyspermic fertilization is also controlled by the sperm reservoir by 

allowing only a few sperm cells at a time to reach the oocyte in the ampulla. Additionally, the 

release of the cortical granules in the perivitelline space of the oocyte after the first sperm cell 

has penetrated and oviduct secretions like osteopontin [19], oviduct-specific glycoprotein and 

heparin [20] support the sperm reservoir in preventing polyspermy. 
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Figure 1: Schematic figure illustrating the hypothesis of Suarez: ‘How do mammalian sperm achieve 
fertilizing capability in the female genital tract’. (1) Ejaculated sperm is coated with seminal plasma 
de-capacitating factors over its entire surface (2) which provides protection in the uterus from 
surveillance and response by both the innate and adaptive immune systems of the female. Moreover, 
this coating also inhibits an early onset of the capacitation process and imparts a high negative charge 
that enables sperm to swim smoothly through the negatively charged genital tract fluid / mucus. (3) 
Upon arrival in the oviduct, viable, non-capacitated sperm cells bind to the cilia and microvilli of 
oviduct epithelium. Sperm cells are kept in a quiescent state until ovulation is imminent. A reservoir of 
sperm cells is formed as more sperm cells migrate into the oviduct and bind to the epithelium. (4) In 
the peri-ovulatory period, capacitation triggers arise in the oviduct fluid and exposed sperm cells start 
the capacitation process. By achieving hyperactivated motility, sperm cells are able to escape from the 
oviduct reservoir (5). Liberated, hyperactivated sperm will migrate to the site of fertilization. Now, 
sperm cells can penetrate the hyaluronan-rich cumulus matrix and bind to / penetrate through the zona 
pellucida of the oocyte. (Figure adapted from Tollner et al. [21]). 

 

Because so few data are available on the mechanisms regulating sperm capacitation in 

the horse, we focused in this thesis on (1) the molecular basis of equine sperm-oviduct 

binding, (2) the identification of the capacitation mechanisms that induce tail-associated 

protein tyrosine phosphorylation and hyperactivation, (3) the possible induction of release of 

hyperactivated, protein tyrosine phosphorylated spermatozoa from the oviduct epithelium, and 

(4) the fertilizing capability of hyperactivated, protein tyrosine phosphorylated spermatozoa. 

1 2

3
4
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 Sperm-oviduct interactions 1.

1. Type of sperm-oviduct binding 

In a few mammalian species like hamster, pig, cattle and horse, the molecular base of 

the sperm-oviduct binding consists of a Ca2+-dependent lectin binding [22]. Using the oviduct 

monolayer model, Dobrinski et al. [1] showed in the horse that D-galactose carbohydrate 

moieties expressed on the oviduct epithelium exerted a key role as oviduct receptor in the 

equine sperm-oviduct interaction. Unfortunately, the Ca2+-dependency of this binding was not 

tested. In chapter 3 of this thesis, we could not confirm the data of Dobrinski et al. using both 

the oviduct explant and oviduct apical plasma membrane model. Although carbohydrates 

including galactosyl moieties were highly expressed along the oviduct epithelium, we clearly 

demonstrated that several tested carbohydrates including D-galactose were not involved in 

this binding reaction. Additionally, we showed that the sperm-oviduct explant binding was 

not dependent on Ca2+ nor did a disulphide (S-S) covalent binding facilitate this interaction. 

As such, we could conclude that the equine sperm-oviduct epithelium interaction in vivo is not 

exclusively based on a single lectin or S-S covalent binding.  

However, we were not able to elucidate the type of oviduct receptor(s) which is / are 

indeed responsible for the equine sperm-oviduct binding. Furthermore, the specificity of the 

equine sperm oviduct binding can be questioned as well both in vitro as in vivo. The 

carbohydrate-protein (lectin) interactions demonstrated in vitro between sperm and oviduct 

epithelial cells might represent either the totality of the pre-ovulatory sperm binding reaction 

or only a proportion of that reaction. If the latter is true, a strong degree of non-specific 

binding is present in vivo. This hypothesis was supported by studies [23, 24] showing a 

similar sperm binding capacity to tracheal epithelium, another type of ciliary epithelial cells. 

These observations strongly suggest the ‘non-specific’ nature of the binding of stallion 

spermatozoa to the oviduct instead of an exclusive binding mechanism regulated by a lectin or 

S-S interaction. It can be hypothesized that a secondary binding can be realized after 

competing with a primary carbohydrate receptor. Additionally, not only the type of 

carbohydrate but also the carbohydrate conformation / isomer might be important. Moreover, 

the presentation of the carbohydrate moiety within a larger glycoprotein determines the 

binding affinity too. Carbohydrates on both the oviduct as sperm cell surface might cooperate 

as well to facilitate sperm-oviduct binding. Cooperativity is mainly regulated by hydroxyl 
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groups which may participate in carbohydrate-protein interaction as both donor as acceptor 

(reviewed by del Carmen Fernandez-Alonso [25]). Moreover, carbohydrate-binding proteins 

show very shallow and solvent exposed binding sites. They make only few direct contacts 

with their target ligands. Thus, a key phenomenon leading to the specificity of such 

interactions resides in “multivalency”, arising from multiple protein-carbohydrate interactions 

which cooperate in a recognition event to achieve the necessary functional affinity. This leads 

to the need of multiple receptors arranged in such a way to bind efficiently to multiple 

saccharide ligands [26, 27]. Also, individual receptors can contain more than one binding site 

or oligomerize to form larger structures with multiple binding sites. As an example, 

asialoglycoprotein receptors on the surface of both hepatocytes and peritoneal macrophages 

bind terminal N-acetylgalactosamine residues and terminal galactose residues. However, the 

hepatic receptor binds oligosaccharides with terminal N-acetylgalactosamine residues more 

tightly than ligands with terminal galactose residues, but the macrophage receptor shows no 

such differential binding affinity [28]. 

2. Is in vivo sperm binding to oviduct epithelium in the isthmic sperm reservoir 
necessary for capacitation / fertilization? 

The caudal isthmus has been identified as sperm reservoir in mares prior to ovulation 

[14, 29, 30]. However, the necessity for sperm to interact with isthmic oviduct epithelial cells 

in vivo to achieve fertilizing capability is a point of discussion. When spermatozoa are directly 

inseminated in the equine oviduct via the infundibulum, similar pregnancy rates are obtained 

as after AI in the uterine body [31]. This suggests that the uterine body and the isthmus are 

both no obligatory sites for stallion spermatozoa to pass prior to capacitation / fertilization 

while the ampulla is a crucial environment for stallion spermatozoa to achieve the ability to 

capacitate / fertilize. As such, the horse is an important exception as in many species like 

human, cattle and pig, sperm capacitation, fertilization and blastocyst development can be 

achieved in vitro in the absence of any of these epithelia.  

We hypothesize that the sperm-oviduct binding should be considered as a pre-

ovulatory storage strategy associated with sperm quiescence and not a prerequisite in the 

capacitation process. Moreover, we hypothesize that sperm capacitation is induced by oviduct 

secretions containing the appropriate capacitation triggers. Indeed, we showed that exposing 

stallion spermatozoa to medium containing combined HCO3
- (25 mM; pH= 7.4) and albumin 

decreased dramatically the density of bound sperm on the oviduct epithelia coinciding with 
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massively increased sperm head-to-head agglutination. Sperm head-to-head agglutination is 

considered in the pig as an early stage of the capacitation process in vitro due to removal of 

anti-agglutinin from the sperm surface. This suggests that capacitation under our capacitating 

conditions occurred along the apical part of the sperm plasma membrane (Chapter 3 and 5). 

As in the pig [32-34], we hypothesize that head-to-head agglutination in stallion sperm 

coincides with (1) the removal of sperm surface bound de-capacitation factors (seminal 

plasma proteins) and / or (2) early plasma membrane changes. Further research should focus 

in this area of the sperm capacitation pathway. 

Tail-associated protein tyrosine phosphorylation is an important hallmark for 

capacitation. In Chapter 4, we observed that in vitro oviduct bound stallion sperm showed 

higher rates of protein tyrosine phosphorylation – in a time-dependent manner when 

compared to unbound spermatozoa. Initially, we hypothesized that the interaction between the 

sperm cells and the oviduct was important in vitro to switch on the intracellular capacitation 

processes. However, triggering capacitation in oviduct explant bound sperm is more likely 

due to the release of “pro-capacitating factors” from the secretory oviduct cells. This 

hypothesis is supported by the fact that a similar protein tyrosine phosphorylation response 

has been reported for stallion sperm suspensions when the pH of the capacitation medium was 

alkaline [35, 36]. It may therefore be significant that the secretory cells in the oviduct explants 

contained large alkaline vesicles (Chapter 4), although secretion of this vesicles only 

marginally raised the pH of the incubation medium. These observations suggested that in vitro 

oviduct secretions probably form an alkaline gradient around each oviduct explant. In vivo 

however, the alkaline secretions may be diluted to a much lesser extent by oviduct fluid and 

may therefore induce an alkaline local microenvironment that is sufficient to induce sperm 

protein tyrosine phosphorylation without the need for the sperm to bind to the oviduct. 

Certainly, in our in vitro oviduct explant system, direct contact between spermatozoa and 

oviduct explants was also necessary to induce intracellular alkalization consistent with 

capacitation induction (Chapter 4). Combining the various observations, it is hypothesized 

that a local increase in the HCO3
- concentration is essential for stallion sperm to capacitate 

and subsequently fertilize [37]. 

All these data support our hypothesis that equine sperm capacitation does not depend 

on physical contact with oviduct epithelium but that the exposure to oviduct secretions is of 
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utmost importance. Considering our results, we hypothesize that the in vivo sperm-oviduct 

binding depends on the timing when non-capacitated sperm cells enter the oviduct: 

(1) If non-capacitated sperm cells arrive in the early pre-ovulatory oviduct, the majority of 

the sperm population will bind to the oviduct epithelium in the isthmus and form a 

sperm reservoir. As such, sperm cells are stored in the oviduct until the moment that 

capacitation triggers appear near ovulation.  

 

(2) If non-capacitated sperm cells arrive in the peri-ovulatory oviduct, the sperm cells 

immediately get in touch with the oviduct secretions which contain the capacitation 

triggers and subsequently lose their affinity to bind to the oviduct. Sperm cells should 

not be stored as fertilization should occur as soon as possible.  

 

 Sperm-oviduct release: The number of released 2.

spermatozoa 
In Chapter 5, we demonstrated that only treated follicular fluid (pH 7.9) was able to 

induce hyperactivated motility if sperm cells were previously bound to oviduct explants in 

both non-capacitating and capacitating conditions. Although an important proportion of bound 

spermatozoa showed hyperactivated motility combined with tail-associated protein tyrosine 

phosphorylation, only a small number of spermatozoa was released from the oviduct 

epithelium. Moreover, capacitating conditions including HCO3
-, Ca2+ and albumin did not 

facilitate hyperactivated motility nor was sperm release induced (Chapter 3). An interesting 

question that still needs to be answered is: “What is the physiological number of sperm cells 

that should be released from the oviduct reservoir to fertilize the oocyte at the moment of 

ovulation?”. In cattle, it has been demonstrated in vitro that heparin [38, 39] and S-S 

reductants like penicillamine [39-41] are both capacitation triggers which are able to 

extensively release sperm from oviduct monolayers. Both triggers are also present in vivo in 

oviduct and follicular fluid. In contrast, a low sperm:egg ratio is initially in vivo essential for 

monospermic fertilization [42]. To this end, the oviduct strongly regulates the number of 

spermatozoa detaching from the epithelium and progressing to the fertilization site in the peri-

ovulatory period. Near ovulation, when at least one oocyte will soon be shedded into the 

oviduct, a small number of sperm cells is capacitated and released from the oviduct 
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epithelium [43-47]. Such a controlled release of a few capacitated spermatozoa leads to a low 

sperm:egg ratio at the isthmic-ampullary junction and reduces the risk of polyspermic 

fertilization [44, 45, 47]. These observations strongly support our in vitro findings of discrete 

sperm release in hyperactivating capacitating conditions. The stringent regulation in vivo 

around the time of ovulation is in sharp contrast with the progressively increasing post-

ovulatory release of sperm cells. This release however occurs too late in time to influence 

fertilization [47-51]. The endocrine activity of the ipsilateral gonad overall controls these pre-

and post-ovulatory events within the oviduct [44, 48, 52, 53]. A local counter-current transfer 

of hormones between the ovarian vein and oviduct branch of the ovarian artery [44, 47, 48, 52] 

regulates the cycle-dependent changes in the oviduct, specifically the microenvironment 

created by the oviduct secretions, which is essential for the onset of sperm capacitation, the 

timing of sperm release and fertilization [43]. The lack of the extensive release of sperm cells 

in our in vitro capacitating / release conditions can be explained as follows: (1) hypermotility 

in vitro was not maintained for a sufficient timespan (max 2.5 h) and / or (2) our capacitating / 

hyperactivating conditions still lack one or more capacitating trigger(s) which induce(s) other 

capacitating events. It has previously been hypothesized that sperm plasma membrane 

changes are also important to release spermatozoa from the oviduct epithelium [22]. In a 

follow-up study, these capacitation-related membrane changes should be studied more in 

detail. 

 

 Elevated pH is a key component in equine capacitating 3.

conditions 
The acid-base balance in the male and female reproductive tract is finely modulated 

[54, 55]. The male reproductive tract and more specific the epididymis contains acidic luminal 

fluid (pH≈6.5; 3-4 mM HCO3
-) [56-59] which renders mature sperm quiescent. Due to the 

secretion of HCO3
- in the cauda of the epididymis, the pH slightly increases and the sperm 

gains progressive motility upon arrival. During ejaculation, spermatozoa are mixed with 

seminal plasma resulting in a further increase of the pH to 7.2 (25-30 mM HCO3
-) [59], but at 

the same time seminal plasma contains also de-capacitation factors preventing capacitation. In 

contrast, luminal fluids of the female reproductive tract of various mammalian species, i.e. the 

uterus and especially the oviduct, tend to be alkaline [60-62]. In the uterus, spermatozoa are 
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still mixed with seminal plasma whereas upon entering the oviduct the sperm is separated 

from these de-capacitation factors (reviewed by Liu et al. [37]). It has been suggested that an 

increased, slightly alkaline pH is present in the oviduct lumen in the peri-ovulatory period 

[35]. The concentration of HCO3
- during the complete pre-ovulatory period probably varies 

though the pH in the oviduct will never be lower than 7.4 (Figure 2).  

We showed for the first time that the number of alkaline secretory vesicles located in 

the epithelium of oviduct explants decreased significantly during sperm binding (Chapter 4). 

As such, an alkaline local microenvironment is created in vitro during capacitation. 

 In response to elevated pH 7.9 capacitating conditions, stallion sperm showed: 

(1) a clearly decreased density of sperm binding to the oviduct but instead induced head-

to-head agglutination. This event is already induced by capacitating conditions at pH 

7.4 but a further elevated pH 7.9 supports this property as well (Chapter 3). 

(2) a gradual increasing intracellular pH associated with an increased protein tyrosine 

phosphorylation of the sperm tail (Chapter 4 and [35, 36]). 

(3) induced hyperactivated motility which facilitates sperm release in a discrete fashion 

(Chapter 5). 

Figure 2: Evolvement of the pH of luminal genital tract fluids that stallion sperm encounter before 
achieving fertilizing capability. The epididymis contains acidic luminal fluid which renders mature 
sperm quiescent. During ejaculation, spermatozoa are mixed with seminal plasma which prevents 
capacitation. In the peri-ovulatory period, inseminated spermatozoa arrive in the slightly alkaline 
environment of the oviduct. This condition is essential to force stallion sperm through the capacitation 
process.
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The effect of increased environmental pH on capacitation strongly suggests that equine 

sperm capacitation / fertilization media require a standard higher pH compared to other 

mammalian species. However, our capacitating conditions do not facilitate the acrosome 

reaction (Chapter 4 and 5) and equine IVF (Chapter 6) yet. Considering our observations in 

the horse, alkaline secretory vesicles in the oviduct epithelium are not demonstrated yet in 

other mammalian species. Very likely in the horse, the oviduct secretions contain additional 

pH-sensitive factors. The effect of these unidentified factors should be tested in the future by 

using native oviduct fluid to perform equine IVF. In this way a redefined capacitating medium 

including all important capacitating / fertilization triggers might be established after 

identifying the active capacitation triggers. So far, the plasma membrane changes necessary to 

induce the acrosome reaction at the final stage of capacitation are not supported. 

 

 Capacitation-related changes of the sperm cells in the 4.

equine oviduct  
In Chapter 4 and 5 we showed that the combined effect of the elevated environmental 

pH, the external Ca2+ and the unidentified follicular fluid factor(s) induced hyperactivation, 

tail-associated protein tyrosine phosphorylation and sperm release from the oviduct 

epithelium. The question remains whether or not follicular fluid enters the tiny oviduct in the 

horse in vivo after ovulation and whether it mixes with the oviduct secretions to induce 

stallion sperm capacitation. In Chapter 4, we showed that secretory epithelial cells contained 

large, alkaline vesicles which were gradually secreted in the capacitating medium. 

Subsequently, only tail-associated protein tyrosine phosphorylation was observed in oviduct-

bound spermatozoa but no hyperactivation or sperm-oviduct release. In contrast, these three 

capacitation events were successfully induced during incubation in undiluted follicular fluid 

with elevated pH (7.9) (Chapter 5). Therefore, we initially hypothezised that a mix of oviduct 

secretions and follicular fluid components induced sperm capacitation in the peri-ovulatory 

oviduct (Hypothesis 1) (Figure 3).  
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Figure 3: A schematic overview of hypothesis 1 whereby capacitation of stallion sperm in vivo is 
induced by a mix of oviduct secretions and follicular fluid (a: sperm-oviduct binding, b: secretion of 
the alkaline vesicles of the secretory epithelial cells, c: induction of hypermotility and tail-associated 
protein tyrosine phosphorylation, d: release of sperm from oviduct epithelium, (e) a small amount of 
follicular fluid enters the oviduct after ovulation). 

However, we subsequently showed that an elevated pH (7.9) is also essential for 

stallion spermatozoa capacitation. Since pre-ovulatory follicular fluid is not alkaline (pH ± 

7.2), the physiological relevance of hypothesis 1 can be questioned. Unfortunately, the pH of 

equine oviduct fluid is not measured yet during the complete secretory phase of the oviduct 

epithelium in the peri-ovulatory period. It might be that capacitation in the narrow and 

tortuous oviduct lumen might be induced by oviduct secretions only (Hypothesis 2). 

Hypothetically, the unidentified follicular fluid factor(s) might be secreted by the oviduct 

epithelium as well. In the latter point of view, the fact that we observed only protein tyrosine 

phosphorylation in sperm bound to oviduct explants (Chapter 4) might be due to a dilution 

gradient of pro-capacitating factors whereby the secretory epithelial cells supported the 

alkaline local microenvironment but the concentration of the unidentified follicular fluid 

factor(s) was too low to induce the other capacitation events.  
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 Fertilization, parthenogenesis or cytokinesis? 5.
We showed in Chapter 6 that equine oocytes in vitro can be parthenogenetically 

activated using ionomycin by facilitating the Ca2+ release from the oocyte’s intracellular Ca2+ 

store [63, 64]. As such, the oocyte activation after gamete fusion is perfectly mimicked by 

indirectly increasing the cytoplasmic Ca2+ concentration. Procaine acts more downstream in 

the oocyte activation process and induces only cytokinesis events via a pH-dependent 

depolymerization of F-actin while nuclear activation is not triggered (Chapter 6). However, 

the concentration of procaine used to induce cytokinesis activation appeared to be DNA toxic. 

Besides the fact that procaine does not facilitate fertilization in the horse, it is also not of use 

to study oocyte activation events. McPartlin and co-authors [65] claimed in 2009 that 

procaine facilitated equine IVF by inducing sperm hypermotility. In their study, oocyte 

cleavage rates of 61% were reported but cleaved oocytes never developed further than the 8-

16 cell stage (at this stage genome activation is taking place in horse embryos). On the other 

hand, the direct effect of procaine on equine oocytes was never considered in this study. We 

showed that procaine not only induced cytokinesis instead of fertilization or normal 

parthenogenesis but also severe DNA fragmentation in equine oocytes (Chapter 6). Therefore, 

more stringent evaluation methods are needed to assess fertilization in the horse as the 

reported fertilization rates in the study of McPartlin et al. [65] are likely a result of induced 

cytokinesis (Chapter 6). Due to the low incidence of parthenogenesis (around 5%) in currently 

used IVF systems in farm animals, the presence of two pronuclei after 20-24 h gamete co-

incubation visualized by nuclear chromatin stainings such as Hoechst or propidium iodide, is 

generally considered as a valid method to assess fertilization [66-68]. Considering the poor 

equine IVF rates (see introduction: Table 1), the presence of 2 pronuclei as confirmation of 

fertilization seems however not conclusive to distinguish normal fertilization from 

parthenogenesis. Indeed, using techniques as pre-labelling sperm with MitoTracker Green FM 

/ Hoechst and lacmoid post-fixation, we were able to differentiate fertilization (two PB within 

the perivitelline space, two PN and a sperm tail within the ooplasm) from parthenogenesis 

(one PB, one or two PN and no sperm tail) (Figure 4). Alternatively, we recently established a 

staining technique to differentiate the paternal from the maternal pronucleus in equine zygotes 

produced by ICSI [67]. We found that the paternal and maternal pronucleus in equine zygotes 

displayed different histone 3 methylation (H3K9me3) patterns. This staining technique could 
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not be applied to the procaine experiments as the exposed oocytes did not form normal 

pronuclei but instead produced condensed DNA fragments (Figure 4).  

 

Figure 4: Methods to distinguish fertilization from parthenogenesis. (a) Previously the presence of 2 
pronuclei (2 PN), evaluated by nuclear stainings as Hoechst, was considered conclusive to assess 
fertilization of equine oocytes (image from McPartlin et al. 2009). However, this method cannot 
exclude parthenogenesis. Therefore, the additional presence of the sperm tail (ST) and the second 
extruded polar body (PB) showed by (b) MitoTracker Green FM pre-labelling combined with Hoechst 
postfixation or (c) lacmoid postfixation, should be demonstrated; or (d) paternal (pPN) and maternal 
(mPN) pronuclei in equine zygotes should be distinguished by different histone 3 methylation 
(H3K9me3) patterns (image kindly provided by drs Sonia Heras–RBU-Ugent). 

 

 Optimization of the currently used equine capacitating / 6.

IVF medium 
Direct gamete co-incubation in procaine capacitating conditions is not an adequate 

way to perform equine IVF regarding its direct toxic effect on the DNA of equine oocytes 
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(Chapter 6). However, future research might focus on evaluating the effect on embryo 

development of ICSI fertilized oocytes after exposure to procaine for 18 h or verifying if 

stallion spermatozoa are still hypermotile after washing the procaine-exposed sperm. If so, 

procaine can still be applied in equine IVF protocols. Moreover, we showed that tail-

associated protein tyrosine phosphorylated and hyperactivated spermatozoa still failed to 

penetrate the oocyte’s extracellular vestments (Chapter 6). So, a working equine IVF system 

is still not realized which might be explained by the fact that we were unable to induce the 

membrane changes leading to the acrosome reaction with our improved, elevated pH 

capacitating conditions (pg 221-222). Further research might focus on the biological triggers 

which induce these capacitation-related membrane changes. In conclusion, the exact trigger 

for full capacitation resulting in a repeatable, working equine IVF system is still unknown. 

The composition of capacitating key factors in oviduct fluid is usually mimicked in vitro by 

establishing an efficient capacitation / fertilization medium. Based on our data and many other 

reports, we hypothesize that essential capacitating factors are currently still lacking. 

Determining these missing factors in oviduct secretions (Chapter 5) and / or follicular fluid 

will be an enormous challenge in the future. 

 

 Further considerations  7.
The main aim of this thesis was to elucidate the in vitro capacitation triggers of equine 

spermatozoa in order to establish an efficient and repeatable equine IVF system. 

Unfortunately, we succeeded only partially in our goals. We identified the biological 

capacitation triggers which facilitate the tail-associated protein tyrosine phosphorylation and 

hyperactivated motility in stallion sperm. As the acrosome reaction could not be induced, 

further research should focus on capacitation-related membrane changes which were not 

studied in this thesis. However, it should be verified first if our improved capacitation 

conditions also support: (1) the increased lipid fluidity of the sperm plasma membrane (using 

merocyanine 540 staining), (2) the cholesterol extraction from the sperm plasma membrane 

(by filipine staining) and (3) the lateral redistribution of the lipid rafts in the apical region (by 

caveolin and flotilin isolation from the apical sperm plasma membrane). If not, further 

research should focus as well on the biological triggers inducing these capacitation-related 

membrane events. We are convinced that inducing the sperm plasma membrane changes 

eventually will support the acrosome reaction. When combined with the capacitation triggers 
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that induce tail-associated protein tyrosine phosphorylation and hyperactivated sperm motility, 

stallion sperm will be able to penetrate the cumulus and ZP barriers. Subsequently, the 

penetrated sperm cell will fuse with the oocyte to accomplish fertilization.  

Nanotechnology as microfluidic automation - the automated routing, dispensing, 

mixing, and / or separation of fluids through microchannels - by 3D prints, inserts and 

microfluidics has been introduced recently in reproductive biology to mimic more closely the 

physiological function of the oviduct in vivo. For example in pig, IVF of porcine oocytes in 

microchannels resulted in a higher incidence of monospermic fertilization compared to 

oocytes fertilized in the traditional microdrop system with comparable penetration and male 

pronucleus formation rates [69]. In the horse, further research should focus on cultivating 

oviduct cell cultures in microfluidic channels. The switch from a static to a more dynamic 

model will generate a more robust oviduct epithelium cell model in terms of morphological, 

ultrastructural and physiological features. The development of such a model will improve the 

knowledge on gamete-oviduct interaction including sperm capacitation and fertilization. 

Developing an efficient conventional IVF system is imperative since the only method 

so far to produce IVF foals, intracytoplasmic sperm injection (ICSI), has some disadvantages. 

Besides the fact that ICSI in the horse requires very expensive equipment and highly trained 

technicians, the oocyte is traumatized which results in a low average success rate. Only a few 

labs worldwide are able to achieve satisfying ICSI results (blastocyst rates of 20%) and can 

implement this technique in a clinical setting to produce foals from subfertile horses. If a 

repeatable conventional IVF system could be established in the future, a cheaper and more 

ergonomic system would be available. However, stallions with capacitation-related fertility 

problems are not eligible for this method. Once complete capacitating conditions can be 

established, ejaculates can be scored in vitro before performing AI or IVF. Testing the in vitro 

capability of the sperm to undergo the different steps of capacitation will give more 

information about the in vivo fertility. In addition to the general sperm fertility assessment in 

practice, this approach will save a lot of time, money and labor because infertile stallions with 

capacitation-related problems can immediately be excluded for AI and IVF. ICSI is the only 

method to obtain offspring from these stallions. 
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 General conclusions  8.
Based on the results obtained in this thesis, following conclusions can be drawn: 

1. Carbohydrate moieties expressed along the oviduct epithelium do not facilitate sperm-

oviduct binding. Using our oviduct explant and apical plasma membrane model, Ca2+ -

dependent lectin or disulphide interaction did not facilitate this binding exclusively. 

Unfortunately, the exact nature of the sperm oviduct binding in horses could not be 

determined. 

 
2. A reduced density of sperm bound to stallion oviduct epithelia was observed when 

sperm was exposed to capacitating conditions, due to the combined effect of HCO3
- 

and albumin. This is probably related to the coinciding sperm head-to-head 

agglutination, an event associated with early capacitation.  

 
3. An essential role of elevated pH (7.9) in stallion capacitation events was clearly 

demonstrated. Tail-associated protein tyrosine phosphorylation and increased 

cytoplasmic pH in stallion sperm was induced by releasing alkaline secretory granules 

towards the oviduct bound sperm. Additionally, switching from progressive to 

hyperactivated sperm motility also depended on an elevated pH. Further research 

should focus on the anticipated role of CATSPER on hyperactivated motility induced 

by elevated pH conditions. 

 
4. Generally, it has been accepted that tail-associated protein tyrosine phosphorylated, 

hyperactivated spermatozoa are able to support equine IVF. However, capacitation 

triggers supporting these events still failed to allow the in vitro fertilization of equine 

oocytes. It is clear that equine capacitating media still lack some essential components. 

 
Procaine has a direct effect on equine oocytes by inducing cytokinesis which 

unfortunately coincides with DNA fragmentation. The latter explains why oocytes 

exposed to procaine never develop further than the 8-16 cell stage. In conclusion, procaine 

is not able to support equine IVF. 
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Horse breeding has evolved immensely the past century as equine reproduction is no 

longer limited to natural breeding. Based on the successes achieved in human infertility 

treatments, various assisted reproductive techniques have also been introduced in equine 

practice to produce foals from subfertile horses. Applying these techniques also accelerates 

the genetic progress in the horse breeding industry and supports the conservation of 

endangered horse breeds and wild equids. Techniques like artificial insemination and embryo 

transfer (ET) are nowadays already very successful while the in vitro production of equine 

embryos (IVP) gradually gains popularity as horse infertility treatment. Currently, IVP can 

only be commercially provided using intracytoplasmic sperm injection (ICSI). Unfortunately, 

ICSI is very expensive and labor intense, requires a lot of expertise and most importantly, the 

blastocyst rate is very low.  

Conventional in vitro fertilization (IVF) might be an alternative for ICSI to produce 

equine embryos. Although two foals were born by IVF in the early nineties, this initial 

success could not be repeated later on. Limited successes claiming in vitro fertilization were 

not repeatable between labs and even not within the same lab. Apparently, stallion sperm is in 

vitro not able to penetrate the zona pellucida (ZP), a glycoprotein layer surrounding the 

oocyte. It is generally accepted that equine IVF does not succeed due to insufficient sperm 

capacitation in vitro and not because of oocyte maturation abnormalities. Indeed, in vivo 

matured oocytes could not be fertilized in vitro while transfer of in vitro matured oocytes to 

the oviduct of an inseminated mare yielded similar pregnancy rates as normal AI. 

Additionally, penetrating the ZP mechanically by ICSI using in vitro matured oocytes also 

results in normal fertilization.  

In general, this thesis mainly focused on fundamental capacitation-related changes of 

stallion sperm, a process which sperm cells undergo in order to achieve the ability to fertilize. 

First, we aimed to study the interaction between stallion spermatozoa and oviduct epithelium 

receptors (Chapter 3). Next, the physiological triggers to induce tail-associated protein 

tyrosine phosphorylation (Chapter 4) and hyperactivated motility (Chapter 5) were identified. 

As sperm capacitation events in vivo are facilitated in the oviduct near ovulation, these events 

were in vitro studied in a more in vivo-like model by developing two bioassays, i.e. an oviduct 

explant and an oviduct apical plasma membrane model (Chapter 3, 4 and 5).  
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In vivo, the sperm binding to oviduct epithelium at the caudal part of the oviduct is 

probably an essential step to recruit and store viable and potentially fertile non-capacitated 

spermatozoa prior to fertilization, the so called sperm reservoir. In several mammalian species 

like cattle, hamster and pig, this molecular interaction between sperm and oviduct epithelium 

is based on a Ca2+-dependent carbohydrate-lectin recognition. In cattle, glycosaminoglycans, 

S-S reductants and capacitation triggers like albumin, Ca2+ or HCO3
- change the affinity of the 

sperm cells for the oviduct epithelium and induce the release of the bound sperm. In the horse, 

D-galactose has previously been identified as a key-molecule facilitating the sperm-oviduct 

binding using the oviduct monolayer model. In Chapter 3, we evaluated the role of various 

carbohydrates, glycosaminoglycans, lectins, S-S reductants and capacitation factors like 

albumin, Ca2+ and HCO3
- in the sperm-oviduct interaction in the horse using an oviduct 

explant and oviduct apical plasma membrane model. Despite the high expression of N-

acetylgalactosamine, N-acetylneuraminicacid (sialic acid) and D-mannose or D-glucose in the 

oviduct epithelium, D-galactose moieties were not detected. Using a competitive binding 

assay and pretreatment of this assay with N-glycosidase F, we were able to demonstrate that 

the equine sperm-oviduct binding was not exclusively regulated by a Ca2+-dependent lectin or 

disulphide (S-S) binding. Moreover, the combined sperm capacitating factors albumin and 

HCO3
- even severely reduced (>10 fold) the sperm affinity for the oviduct epithelium. Instead, 

the affinity between stallion sperm cells increased considerably resulting in Ca2+-independent 

head-to-head agglutination. 

 In vivo, the sperm-oviduct binding near ovulation is an essential step as well in the 

capacitation process preparing the sperm for fertilization. One of the most important 

hallmarks of sperm capacitation is the tail-associated protein tyrosine phosphorylation. In 

many species, tail-associated protein tyrosine phosphorylation can in vitro be induced by 

exposing spermatozoa to HCO3
-, Ca2+ and albumin. These conditions, however, are deficient 

in cattle and equine. In cattle, capacitation can be induced by adding heparin-like 

glycosaminoglycans to the capacitating medium. Exposure to these capacitation triggers in 

vitro induces a considerable increase in tail-associated protein tyrosine phosphorylated 

spermatozoa. Unfortunately, heparin-like glycosaminoglycans have no capacitation-related 

effects on stallion sperm (Chapter 3). Using the oviduct explant model, in vitro binding to 

oviduct epithelium appears essential to induce capacitation in stallion spermatozoa (Chapter 

4). Oviduct-bound spermatozoa show a time-dependent protein tyrosine phosphorylation 
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response which is not observed in unbound spermatozoa or spermatozoa incubated in oviduct 

explant conditioned medium. Interestingly, both oviduct-bound and unbound sperm remains 

motile with intact plasma membrane and acrosome. As protein tyrosine phosphorylation is 

induced in equine spermatozoa using media with high pH, the intracellular pH of oviduct 

explant cells and bound spermatozoa was subsequently monitored. Apparently, the sperm-

oviduct interaction facilitated the tail-associated protein tyrosine phosphorylation in bound 

sperm by creating an alkaline microenvironment surrounding each oviduct explant. The 

secretory epithelial cells contained large, alkaline vesicles which disappeared during sperm-

oviduct binding. Moreover, a time-dependent gradual increase in intracellular pH was 

observed in oviduct-bound spermatozoa, while unbound spermatozoa do not show 

intracellular pH changes.  

Inducing hyperactivated motility near ovulation is considered as a next essential step 

in capacitation to release the bound spermatozoa from the oviduct epithelium. Defined 

capacitating medium alone or enriched with glycosaminoglycans or S-S reductants appeared 

insufficient to induce sperm release from oviduct epithelium, most likely due to the inability 

of stallion spermatozoa to induce hyperactivated motility when bound to the oviduct (Chapter 

3 and 5). In Chapter 5, possible in vivo hyperactivating / release conditions were tested by 

adding female genital tract cells and fluids to the sperm-oviduct explant model. Surprisingly, 

flushed pre-ovulatory and post-ovulatory oviduct fluid, 100% and 10% follicular fluid, 

cumulus cells and mature equine oocytes did not trigger sperm release or hyperactivated 

motility. As native follicular fluid even was detrimental to sperm viability, the sperm 

deteriorative component (heat sensible, lipophilic, 30-100 kDa factor) was eliminated by heat 

inactivation, charcoal treatment or 30 kDa filtration, respectively or in combination. Sperm 

suspensions exposed to treated follicular fluid induced clearly hyperactivated motility in 

stallion sperm at pH 7.9 but not at pH 7.4. Moreover, the elevated pH combined with the 

extracellular Ca2+ and a heat resistant, hydrophilic, <30 kDa component of follicular fluid 

apparently triggered tail-associated protein tyrosine phosphorylation, elevated cytoplasmic 

Ca2+ concentration and hyperactivated motility in stallion spermatozoa. Interestingly, 

incubation in these hyperactivating conditions induced only a limited release of oviduct pre-

bound sperm. 
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One study from 2009 suggested a central role for tail-associated protein tyrosine 

phosphorylated and hyperactivated stallion spermatozoa in successful equine IVF. Co-

incubating equine gametes in the presence of 5 mM procaine facilitated equine IVF, with 

cleavage rates higher than 60%. Unfortunately, embryos did not develop further than the 8-16 

cell stage. In the latter study, it was hypothesized that procaine promoted sperm penetration 

by inducing hyperactivated motility to accompany the tail-associated protein tyrosine 

phosphorylation, triggered by elevated pH medium conditions. In our study, both tail-

associated protein tyrosine phosphorylation and hyperactivated motility of stallion 

spermatozoa were achieved using treated follicular fluid with elevated pH (Chapter 5). 

However, the fertilizing ability of tail-associated protein tyrosine phosphorylated, 

hyperactivated spermatozoa was tested by performing IVF using both procaine and treated 

follicular fluid (pH 7.9) capacitating conditions (Chapter 6). When fertilization was assessed 

by sperm penetration, extrusion of the second polar body and pronuclei formation, it appeared 

that fertilization failed under both in vitro conditions. Moreover, equine oocytes exposed to 

2.5 and 5 mM procaine showed cleavage, independently from the co-incubated sperm. The 

cleaved oocytes though did not develop beyond 8-16 cells, and the blastomeres either lacked 

nuclei or contained aberrant, condensed DNA fragments. Instead of increasing the 

cytoplasmic Ca2+ level of exposed oocytes, procaine initiates an ooplasmic alkalinization 

followed by a cortical F-actin depolymerization resulting in cytokinesis and aberrant 

chromatin condensation in equine oocytes. 

In conclusion, more fundamental insights on capacitation-related changes of stallion 

spermatozoa in the oviduct during the peri-ovulatory period are provided in this thesis. Equine 

in vitro capacitating media should standard be adjusted to pH 7.9 when considering its effect 

on sperm capacitation including cytoplasmic Ca2+ and pH rise, tail-associated protein tyrosine 

phosphorylation and hyperactivated motility. Unfortunately, a repeatable and standardized 

equine IVF protocol is not established yet as the current capacitating conditions still lack the 

capacitation triggers responsible for the acrosome reaction. The missing capacitation triggers 

in follicular and / or oviduct fluid should be identified and added to the defined equine 

capacitating medium in order to establish IVF in the horse. 



 

 

 

 

 

 

 
SAMENVATTING  

 



 

 

 

 



Samenvatting 

275 

 

De laatste eeuw heeft de paardenfokkerij een enorme vooruitgang gekend waarbij, 

naast natuurlijke dekking, ook gebruik wordt gemaakt van geassisteerde 

voortplantingstechnieken. Vruchtbaarheidsbehandelingen die ontwikkeld zijn bij de mens, 

worden nu gebruikt bij het paard om veulens te produceren van subfertiele paarden. Daarnaast 

wordt de genetische vooruitgang van bepaalde bloedlijnen met behulp van deze technieken 

versneld en zijn deze belangrijk voor het in standhouden van bedreigde paardenrassen en 

wilde paardachtigen. Kunstmatige inseminatie en embryotransplantatie worden momenteel 

routinematig uitgevoerd bij het paard. Ook de in-vitro embryoproductie wint aan populariteit 

als alternatieve vruchtbaarheidsbehandeling. Op dit moment is de in vitro productie van 

paardenembryo’s enkel mogelijk met behulp van intracytoplasmatische sperma-injectie (ICSI). 

Uiteindelijk worden de in vitro geproduceerde blastocysten individueel overgezet in de 

baarmoeder van een draagmerrie via embryotransplantatie. De blastocystpercentages die 

bereikt worden met ICSI - een dure, arbeidsintensieve techniek die veel expertise vergt – zijn 

momenteel echter nog behoorlijk laag. 

Een alternatief voor de in vitro productie van paardenembryo’s is klassieke in-

vitrofertilisatie. In de vroege jaren negentig zijn via deze techniek twee veulens geboren maar 

dit initieel succes kon later niet meer herhaald worden. Sindsdien zijn vele pogingen 

ondernomen, waarbij gebruik gemaakt werd van verschillende in-vitrofertilisatie procedures, 

met echter geen of lage, niet herhaalbare bevruchtingsresultaten. Uiteindelijk blijkt 

hengstensperma niet in staat om de zona pellucida, een glycoproteinenlaag rond de eicel, te 

penetreren. Algemeen wordt aanvaard dat in-vitrofertilisatie bij het paard niet werkt omdat de 

spermacellen bij de hengst in vitro onvoldoende capaciteren aangezien de in vitro maturatie 

van paardeneicellen voldoende goed verloopt. Deze hypothese wordt enerzijds ondersteund 

door het feit dat in vivo gematureerde eicellen in vitro niet kunnen bevrucht worden terwijl 

anderzijds, de transfer van in vitro gerijpte eicellen naar de eileider van een geïnsemineerde 

merrie gelijkaardige drachtresultaten oplevert als kunstmatige inseminatie. Bovendien leidt de 

mechanische penetratie van de zona pellucida bij ICSI ook tot normale bevruchting.  

In deze thesis hebben we grotendeels gefocust op de fundamentele aspecten van 

capacitatiegerelateerde veranderingen die hengstenspermacellen moeten ondergaan alvorens 

bevruchtingskrachtig te zijn. Het doel van deze thesis was om (1) de interactie tussen 

hengstenspermacellen en eileiderepitheelcellen te bestuderen (Hoofdstuk 3) en (2) de 

fysiologische triggers voor de inductie van tyrosinefosforylatie in de spermastaart (Hoofdstuk 
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4) en hyperactieve motiliteit (Hoofdstuk 5) te identificeren. In vivo vindt capacitatie van 

spermacellen plaats tijdens de peri-ovulatoire periode. Om deze capacitatiegerelateerde 

veranderingen in vitro te bestuderen, werden twee modellen ontwikkeld, nl. een oviduct 

explant- en een oviduct apicale plasmamembraanmodel. 

De binding van spermacellen in vivo aan eileiderepitheel ter hoogte van het caudale 

deel van de eileider is een essentiële stap om fertiele, niet-gecapaciteerde spermacellen te 

selecteren en te bewaren tot het moment van de bevruchting. Deze gebonden spermacellen 

worden het spermareservoir genoemd. Bij verschillende diersoorten zoals het rund, de 

hamster en het varken bestaat de moleculaire interactie tussen het sperma en de 

eileiderepitheelcellen uit een Ca2+ -afhankelijke koolhydraat-lectine verbinding. Bij het rund 

veranderen glycosaminoglycanen, S-S reducerende stoffen en capacitatietriggers zoals 

albumine, Ca2+ of HCO3
- de affiniteit van de spermacellen voor het eileiderepitheel zodat de 

spermacellen het eileiderepitheel loslaten. Met behulp van een oviduct monolaagmodel is bij 

het paard D-galactose eerder geïdentificeerd als de sleutelmolecule die de binding tussen 

sperma- en eileidercel mogelijk maakt. In Hoofdstuk 3 hebben we de rol van verschillende 

koolhydraten, glycosaminoglycanen, lectines, S-S reducerende stoffen en capacitatie triggers 

zoals albumine, Ca2+ en HCO3
- onderzocht in de interactie tussen sperma- en 

eileiderepitheelcellen bij het paard met behulp van een oviduct explant- en oviduct apicale 

plasmamembraanmodel. N-acetylgalactosamine, N-acetylneuraminiczuur (siaalzuur) en D-

mannose of D-glucose kwamen tot expressie op het eileiderepitheel terwijl de expressie van 

D-galactose niet kon worden aangetoond. Bovendien werd door middel van een competitieve 

bindingstest aangetoond dat de verbinding tussen sperma en eileidercellen niet alleen verloopt 

via een Ca2+ -afhankelijke koolhydraat-lectine of disufide (S-S) verbinding. De incubatie van 

spermacellen in medium met capacitatiefactoren albumine en HCO3
- verminderde aanzienlijk 

de affiniteit van de spermacellen voor het eileiderepitheel (>10x). Tegelijkertijd steeg de 

onderlinge affiniteit van hengstensperma enorm met een Ca2+ -onafhankelijke agglutinatie 

van de spermakoppen tot gevolg. 

De in vivo interactie tussen sperma en eileiderepitheelcellen in de peri-ovulatoire 

periode is eveneens een essentiële stap in het capacitatieproces van spermacellen bij 

verschillende zoogdieren. Eén van de belangrijkste kenmerken van spermacapacitatie is 

tyrosinefosforylatie van de eiwitten in de spermastaart. Bij vele diersoorten kan 

spermacapacitatie, en dus ook tyrosinefosforylatie van eiwitten in de spermastaart, 



Samenvatting 

277 

 

geïnduceerd worden door de spermacellen in vitro bloot te stellen aan HCO3
-, Ca2+ en 

albumine in het incubatiemedium. Deze condities blijken echter onvoldoende voor capacitatie 

van runder- en hengstensperma. Bij het rund wordt volledige capacitatie met een uitgebreide 

tyrosinefosforylatie van de eiwitten in de spermastaart geïnduceerd door heparine-achtige 

glycosaminoglycanen toe te voegen aan het capacitatiemedium. Deze moleculen hebben 

echter geen effect op capacitatie van hengstensperma (Hoofdstuk 3). Met behulp van het 

oviduct explantmodel hebben we aangetoond dat de binding tussen sperma en 

eileiderepitheelcellen in vitro een essentiële vereiste is voor de capacitatie van 

hengstenspermacellen (Hoofdstuk 4). Spermacellen gebonden aan eileiderepitheel vertoonden 

een tijdsafhankelijke tyrosinefosforylatie van de eiwitten in de spermastaart terwijl 

ongebonden spermacellen of spermacellen geïncubeerd in oviduct explant-geconditioneerd 

medium, deze eigenschap niet vertoonden. Zowel de gebonden als de ongebonden 

spermacellen bleven motiel en vertoonden een intacte plasmamembraan en acrosoom. 

Vroeger werd reeds aangetoond dat tyrosinefosforylatie van eiwitten in de spermastaart in 

vitro geïnduceerd kon worden door hengstenspermacellen te incuberen in medium met een 

verhoogde pH. Als we de intracellulaire pH van de oviductexplantcellen, de oviduct-

gebonden en ongebonden spermacellen evalueerden, bleek duidelijk dat tyrosinefosforylatie 

van eiwitten in de spermastaart bij de gebonden spermacellen veroorzaakt werd door het 

creëren van een alkalisch micromilieu rond iedere oviduct explant. Het secretorisch epitheel 

van de eileider bevat grote alkalische vesikels die vrijgesteld werden gedurende de sperma-

oviduct binding. Op hetzelfde moment werd een graduele toename van de intracellulaire pH 

van de gebonden spermacellen waargenomen terwijl de ongebonden spermacellen geen 

stijging vertoonden van de intracellulaire pH. 

Vervolgens moeten de spermacellen in de peri-ovulatoire periode hyperactieve 

motiliteit vertonen opdat ze het eileiderepitheel zouden kunnen loslaten. Gedefinieerd 

capacitatiemedium of capacitatiemedium verrijkt met glycosaminoglycanen of S-S 

reducerende stoffen waren als dusdanig in vitro onvoldoende in staat om deze loslating van 

hengstenspermacellen te verwezenlijken (Hoofdstuk 3 en 5). In hoofdstuk 5 werden mogelijke 

in vivo hyperactivatie- / loslatingstriggers getest door cellen en vochten van het 

geslachtsapparaat van de merrie toe te voegen aan het sperma-oviduct explantmodel. 

Gespoeld eileidervocht afkomstig van pre- en post-ovulatoire merries, 100% en 10% vers 

follikelvocht, cumuluscellen en rijpe eicellen bleken helemaal geen effect te hebben op 
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hyperactieve motiliteit en loslating van gebonden spermacellen aan het eileiderepitheel. Vers 

follikelvocht bleek zelfs een schadelijk effect te hebben op de leefbaarheid van 

hengstenspermacellen. Daarom werd de spermatoxische component (een hittegevoelige, 

vetoplosbare factor met een grootte tussen de 30-100 kDa) eerst geneutraliseerd door 

respectievelijk hitte-inactivatie, actieve kool behandeling of 30 kDa centrifugatie, of door een 

combinatie van deze drie behandelingen. Na deze verschillende follikelvochtbehandelingen 

vertoonden de spermasuspensies die geïncubeerd werden bij pH 7.9 duidelijke hyperactieve 

motiliteit in tegenstelling tot de spermacellen die geïncubeerd werden bij pH 7.4. Bovendien 

bleken de verhoogde pH, het extracellulaire Ca2+ en de ongedefinieerde, hittegevoelige, 

wateroplosbare follikelvochtfactor kleiner dan 30 kDa, ook tyrosinefosforylatie van eiwitten 

in de spermastaart, een verhoogde intracellulaire Ca2+ concentratie en hyperactieve motiliteit 

te veroorzaken. Daarnaast werd ook een beperkte loslating van de gebonden 

hengstenspermacellen waargenomen. 

In 2009 werd een studie gepubliceerd waarin men beweerde dat 

tyrosinegefosforyleerde, hyperactieve hengstenspermacellen in staat waren om in-

vitrofertilisatie bij het paard te realiseren. In de aanwezigheid van procaïne zou na coïncubatie 

van sperma en eicellen meer dan 60% van de paardeneicellen beginnen delen. De embryos 

ontwikkelden echter niet verder dan het 8-16 cellig stadium. Men besloot dat spermacellen 

onder invloed van procaïne in staat waren om de zona pellucida te penetreren door het 

induceren van hyperactieve motiliteit in de tyrosinegefosforyleerde spermacellen. Hiertoe 

werden de spermacellen voorafgaand geïncubeerd in capacitatiemedium met een verhoogde 

pH. Beide capacitatiekarakteristieken werden echter ook geïnduceerd na de incubatie van 

hengstenspermacellen in de verschillende follikelvochtbehandelingen bij pH 7.9 (Hoofdstuk 

5). Wanneer we echter het bevruchtend vermogen van de tyrosinegefosforyleerde, 

hyperactieve hengstenspermacellen testen door in-vitrofertilisatie uit te voeren in 

capacitatiemedium met procaïne of na de verschillende follikelvochtbehandelingen bij pH 7.9, 

bleken beide condities onvoldoende om in-vitro bevruchting van paardeneicellen mogelijk te 

maken (Hoofdstuk 6). De bevruchting werd beoordeeld door het evalueren van de 

aanwezigheid van een spermastaart in het cytoplasma van de eicel, het uitstoten van een 

tweede poollichaampje en de vorming van twee pronuclei. Bovendien stelden we vast dat 2.5 

en 5 mM procaïne deling van paardeneicellen induceerde onafhankelijk van de aanwezigheid 

van spermacellen. Deze gedeelde eicellen ontwikkelden echter ook niet verder dan het 8-16 
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cellig stadium en bovendien vertoonden de dochtercellen ofwel geen celkern ofwel zeer 

gecondenseerde, afwijkende DNA fragmenten. Procaïne bleek uiteindelijk ook geen toename 

van de intracellulaire Ca2+ concentratie in de eicellen te veroorzaken maar wel een toename 

van de intracellulaire pH. Deze pH stijging veroorzaakt vervolgens een depolymerisatie van 

F-actine in de corticale regio van de eicel wat verder leidt tot de inductie van celdeling van 

paardeneicellen gecombineerd met DNA fragmentatie.  

Deze thesis heeft bijgedragen tot het verwerven van een beter fundamenteel inzicht in 

de interacties tussen hengstensperma en de eileider tijdens de peri-ovulatoire periode bij het 

paard. Door het feit dat spermacapacitatie bij de hengst duidelijk verbetert bij een licht 

alkalische pH, dient de pH van in vitro capacitatiemedia voor hengstensperma standaard 

aangepast te worden naar 7.9. Jammer genoeg is deze aanpassing onvoldoende om in-

vitrofertilisatie bij het paard werkzaam te maken omdat blijkbaar belangrijke 

capacitatiefactoren nog steeds ontbreken in gedefinieerde capacitatiemedia die de 

acrosoomreactie induceren. Het is dus belangrijk om in de toekomst de resterende 

capacitatiefactoren in follikel- en eileidervocht te identificeren om uiteindelijk een werkzaam 

capacitatiemedium voor paarden te kunnen ontwikkelen. 
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Om het met de woorden van Stefan Brijs te zeggen: ‘Soms is wat onmogelijk lijkt, 
alleen maar moeilijk. En dan is het slechts een kwestie van doorzetten’ (‘De engelenmaker’). 
Dit citaat beschrijft perfect hoe ik me vandaag voel als ik reflecteer over de afgelopen 5 jaar. 
Ik ben ontzettend dankbaar dat ik het voorrecht heb om hier vandaag te staan. Ik besef echter 
heel goed dat ik dit niet alleen had gekund. Vandaar dat ik het nu het moment acht om een 
welgemeend dankjewel te zeggen aan de mensen die mij op één of andere manier hebben 
bijgestaan op de tocht waarin ik vandaag een belangrijke mijlpaal heb bereikt. 

Graag wil ik allereerst mijn promotor Professor Dr. Ann Van Soom bedanken. Ik was 
de IWT kandidaat waaraan jij het meeste werk had. Mede door jouw hulp heb ik de beurs, 
wonder boven wonder, gehaald. Naarmate de tijd vorderde kreeg ik het gevoel dat het 
vertrouwen in een goede afloop groeide. Het feit dat je mij volledige wetenschappelijke 
vrijheid hebt gegeven om mijn onderzoek de richting in te sturen waarvan ik dacht dat het de 
juiste was, sterkt me in deze gedachte. Ik apprecieer het ontzettend dat het MIJN doctoraat is 
kunnen worden. Bedankt daarvoor!! 

Professor Dr. Maarten Hoogewijs. Maarten, mijn co-promotor en tevens één van mijn 
inspiratiebronnen. Ik herinner me nog zeer goed hoe gefascineerd ik was als student op het 
moment dat jij, waarschijnlijk voor de zoveelste keer, je verhaal deed over de wondere wereld 
van de spermacellen. Naarmate de tijd vorderde kruisten onze wegen zich en nam jij het co-
promotorschap op jou. Jouw wetenschappelijke kennis, klinische vaardigheden en je 
ongelooflijke werkattitude gaven mij altijd heel veel vertrouwen. Wat mijn toekomst ook zal 
brengen; besef dat jouw mening altijd heel belangrijk is geweest voor mij. Een welgemeende 
merci voor jouw steun en geloof in mij en bijkomend voor alle kansen die jij voor mij hebt 
trachten te creëren. Ik wens jou op mijn beurt ontzettend veel succes in alles wat je 
onderneemt! Tot later!! 

Ik ben heel blij om vandaag ook Professor Dr. Bart Gadella te kunnen bedanken. Bart, 
ik heb het jou wel eens eerder gezegd in een gezellige bar in San Juan te Puerto Rico, maar bij 
deze nogmaals, heel erg bedankt! Ik voel me nog steeds ontzettend vereerd dat jij hebt willen 
deel uitmaken van ‘mijn team’. Zoals we het zelf genoemd hebben, “the low lands did it” . 
Mede door jouw uitzonderlijke expertise hebben we er iets moois van kunnen maken. 
Minstens even belangrijk is jouw enthousiasme voor de resultaten die ik op gepaste 
tijdstippen aan je voorstelde. Beide aspecten hebben van mij de onderzoeker gemaakt die ik 
nu ben. Ze hebben mijn passie voor het vak alleen maar doen toenemen gedurende dit traject. 
Ik heb bovendien ingezien dat the sky NIET the limit is. Ik heb zoveel van jou geleerd Bart! 
Bedankt daarvoor! 

Een grote dankuwel verdient ook Professor Dr. Tom Stout. Tom, ondanks dat jij pas 
later in ‘mijn team’ bent gekomen was jij de juiste persoon op de juiste plaats. Jouw bijdrage 
aan mijn manuscripten is van zeer groot belang geweest. Ik heb zelden iemand gezien die de 
combinatie van klinische expertise, de fundamentele wetenschap en de meer politieke 
aangelegenheden zo goed beheerst. Respect Tom! 

I would like to express also my gratitude to the three members of the Reading 
Committee (in alphabetic order: Professor Dr. Catherine Delessale, Professor Dr. Stefan 
Deleuze and Professor Dr. Björn Heindryckx) for their great efforts to carefully read my 
thesis and for their constructive remarks to improve my thesis. Professor Heindryckx van het 
UZ Gent, bedankt om mij te laten infiltreren in jouw labo met mijn, op het eerste zicht 
gedegenereerde, paardeneicellen. Het was me altijd zeer aangenaam! 

Dr. Catharina De Schauwer. Catharina, naarmate mijn eindsprint naderde en ik op een 
moment een beetje radeloos werd over wie mijn schrijfsels voor dit boekje allemaal ging 
nalezen heb jij helemaal vrijwillig deze taak op jou genomen. Wetende dat jouw expertise in 
een volledig ander veld ligt, zeg ik vandaag chapeau en een diepgemeende dankjewel! Ik heb 
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jou pas later beter leren kennen. Je hebt mij altijd met respect behandeld, je nek voor mij 
uitgestoken en mij advies gegeven alsof het voor jezelf zou geweest zijn. Je weet dat ik dat 
enorm apprecieer. Ook bedankt voor de gesprekken over wetenschap, over levenswijsheid EN 
-ervaring. Ze hebben me veel deugd gedaan. Wat jouw toekomst ook brengt, ik weet dat het 
allemaal goed zal komen. En weet dat er voor iedere gemiste kans een betere op jou ligt te 
wachten ! Succes met alles wat je nog doet Catharina! Wij horen mekaar nog! 

Hilde, bijna Dr. Nelis, jij bent voor mij een echte “compagnon de route" geweest. 
Ontzettend bedankt om die rol op jou te willen nemen. Ik weet zeker dat we mekaar sterker en 
beter hebben gemaakt. We hebben samen gewerkt om meer inzicht te krijgen in het 
paardenoviductverhaal. Wel, ik denk met enige bescheidenheid te kunnen stellen: dat is ons 
gelukt! Jij combineert intelligentie met een onuitputtelijke werkijver. Dit verdient enkel mijn 
respect! Bij deze nogmaals mijn excuses dat ik er maandag fysiek niet bij kan zijn. Mijn 
gedachte zullen dat echter wel zijn. Ik heb er enorm veel spijt van dat de zaken zo gelopen 
zijn maar ik ben blij dat je mij deze unieke kans van harte gunt. Hilde, bedankt voor alles! 

Dr. Edita Sostaric, Edita, jij hebt mij aan het begin van mijn doctoraatsperiode vanuit 
Utrecht heel erg mee ondersteund. In het bijzonder tijdens mijn verblijf van 4 maanden in 
Utrecht was jij mijn steunpilaar. Je leerde mij een pak nieuwe technieken. Een wereld ging 
letterlijk voor mij open. Naast de wetenschap konden we het verder ook goed met elkaar 
vinden. Jij had ook altijd oog voor de persoon achter de onderzoeker. Wij zijn mekaar nadien 
wel uit het oog verloren omdat je toekomst ook opeens een onverwachte wending kreeg. Toch 
bedankt voor alles wat ik van jou heb kunnen leren. Je bent een persoon naar mijn hart! 

Prof. Dr. Winnok De Vos. Winnok, ik ben je zeer erkentelijk voor het maken van de 
prachtige confocale beelden. Ook al hebben we mekaar niet veel gezien, ik heb goede 
herinneringen aan mijn passages op de Coupure. Merci! 

My dear Sonia, I feel so privileged having you as a colleague and a friend. Thank you 
for being hours and hours, even at Saturday midnight, with me at the confocal microscope 
hoping for that one perfect image. Thanks also for our direct and sharp discussions about our 
research. I will also never forget our unforgettable trip to New York and Puerto Rico. But 
most importantly, I want to thank you today for being very honest with me, even if I instantly 
did not like what you said . You are very straightforward and this forced me to think about a 
lot of things. I learned from you that almost nothing is for granted and, to say it with your 
words, that you need to fight to reach your goals. The fact that our culture background is 
completely different inspired, I think, both of us, aiming to find always the truth and 
perfection in every aspect of life. I hope you can finish your PhD on time and I wish you all 
the best for the future! Muchas gracias! 

Thanks to all my other colleagues where I shared the office with. Josine, jij was samen 
met Hilde mijn allereerste bureaugenootje. Bedankt voor de fijne periode en de leuke 
gesprekken. Ruth, ongelooflijk dat we ergens terloops ontdekt hebben dat we beiden al jaren 
in Katelijne City wonen. De wereld is soms zo klein. Veel succes in Japan en ik kom daar met 
jou wel eens een goed pak frit met mayonaise eten . Of zou het beter iets anders vettigs zijn 

? Nerea, good luck with the rest of your track. As you know, I find your research incredibly 
fascinating! Go for it! Lynn, samen met Sonia hebben wij veel gediscussieerd over wat goed 
onderzoek moet zijn. De juiste balans noem ik het maar. Aangezien we de lat voor onszelf 
altijd hoog hebben gelegd denk ik dat we niet de gemakkelijkste weg hebben gekozen. We 
hebben mekaar getriggerd om er zoveel als mogelijk uit te halen. Ik heb er alle vertrouwen in 
dat het jou ook gaat lukken! Keep up the good spirit en veel succes in alles wat de toekomst 
voor jou te bieden heeft. Je verdient het!! 

Ook mijn oprechte dank aan mijn andere RBU collega’s. Katrien, jouw topic heeft me 
naar de RBU gelokt. Eerst als masterproefstudent, later als doctoraatsstudent. Veel succes in 



Dankwoord 

285 

 

je verdere carrière. Eline W, Maaike, Féline, ik wens jullie nog een leuke tijd bij de RBU en 
veel succes met jullie doctoraat! Maak er wat van en merci voor alles! Mijn dank gaat ook uit 
naar Petra en Isabel. Ik weet dat ik de lat voor jullie soms hoog heb gelegd. Dit doe ik ook 
voor mezelf omdat ik graag het onderste uit de kan haal. Sorry, als dat niet altijd zo is 
overgekomen! Ook de mensen van genetica die vaak bij ons over de vloer kwamen hebben 
mee bijgedragen tot de typische RBU sfeer. Eline C merci voor de hulp wanneer ik eicellen 
moest verzamelen. Sara veel succes met het moederschap, de sperma-analyse is blijkbaar niet 
nodig geweest . Wenwen thanks for being always happy! Keep on smiling and I am sure 
you will get the PhD soon! I would like to thank also some people from other labs. Fenia and 
Aspasia, it seems that the nicest persons on earth are from Greece! Minerva, thanks to be so 
grateful for helping me with the calcium measurements. Take care and good luck with your 
PhD! Marcin, I hope you will soon get a grant to continue your work in Poland! 

Femke, als iemand in dit dankwoord zeker niet mag ontbreken dan ben jij het. Onze 
gemeenschappelijke interesses, zowel op wetenschappelijk gebied als daarbuiten, hebben 
ervoor gezorgd dat we goede vrienden geworden zijn. Ik keek altijd uit naar onze 
verschillende bezoekjes aan elkaar, ofwel jij naar Sint-Katelijne-Waver ofwel ik naar 
Tervuren. Bedankt voor de lange, gezellige gesprekken die we hebben gehad. Jouw inzichten 
hebben mij geholpen om de dingen te zien zoals ik ze vandaag zie. Ik vind het ongelooflijk 
spijtig dat jij hier vandaag ontbreekt. Ik had maar wat sneller mijn doctoraat moeten 
beëindigen, maar het is anders gelopen. Ook al leef je momenteel aan de andere kant van de 
wereld, we gaan, zoals beloofd, elkaar niet uit het oog verliezen. Ik hoop van harte dat jij je 
draai vindt in Singapore samen Stef en je twee kindjes. Tot binnenkort in Singapore! 

De collega’s van het paardenteam mag ik ook niet vergeten! Kim en Cyriel bedankt 
voor de vele keren dat jullie tussendoor even Roy konden afnemen! Jan en Kim, samen met 
Maarten hebben we een fantastische trip naar Nieuw-Zeeland gemaakt! In één woord: 
onvergetelijk! Valerie en Margot, nog veel succes met alles wat jullie nog gaan ondernemen. 

Jenne, als niet RBU lid hebben we vaak met elkaar opgetrokken. Merci voor de leuke 
tijd! We hebben heel vaak samen iets gedronken en / of gegeten. De ene keer al wat meer dan 
de andere . We konden echt praten over van alles en nog wat, dikke merci daarvoor! 
Ondertussen zijn we, samen met Margot, ook huisgenoten geworden. Het bevalt me 
wonderwel. Al zal het waarschijnlijk maar voor een heel korte periode zijn, merci voor het 
vertrouwen. Maak dat doctoraat nu ook maar snel af! Ik hoop van harte dat het je lukt zonder 
al teveel moeilijkheden. Nog veel succes in alles wat je doet en je bent welkom hé! 

Mieke en Vanessa, samen met nog een aantal andere collega’s, die ik al eerder 
vernoemd heb, hebben we goede herinneringen aan onze trip naar Antalya in Turkije. De 
mogelijkheid tot het ongelimiteerd consumeren van de ‘Sueno’ cocktail heeft hilarische 
momenten opgeleverd. Zoals afgesproken ga ik hier niet verder over uitwijden . Bedankt 
beide voor de quizavonden waaraan we hebben deelgenomen en de tussentijdse gesprekken 
die we gehad hebben. Vanessa, ik hoop te denken dat je gelukkig bent in de praktijk. Merci 
voor de zaken die ik van jou heb kunnen leren. Ik bewonder jouw overgave! Mieke, ik 
bewonder je voor je inzet voor Abajaa! Ik hoop dat je dat nog lang blijft doen! Veel succes 
nog met je doctoraat! 

Aan alle andere collega’s van de DI08, ik ga jullie niet allemaal vermelden omdat ik 
dan zeker mensen ga vergeten, bedankt voor de leuke tijd. Sandra en Leila, merci voor de 
administratieve hulp! Ria, de onomwonden gesprekken heb ik altijd erg gewaardeerd. Ik ga ze 
missen. Marnik, bedankt voor de vele gesprekken over paarden en vogels. Dirk, ook met jou 
heb ik vele keren over paarden gepraat. Ik hoop dat jouw ‘Thunder’ nakomeling een toppaard 
wordt! 
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Mijn vroegere studiegenootjes, Charlotte, Lore en Machteld, in tegenstelling tot 
mezelf zijn jullie rasechte dierenartsen geworden. Soms vraag ik me wel eens af of ik de juiste 
beslissing heb genomen, maar niet veel later besef ik dat wat ik nu doe echt mijn ding is. We 
zien elkaar niet veel meer, maar als het ervan komt is het precies nog zoals het enkele jaren 
geleden was. Onze levens zijn allemaal erg veranderd maar niettemin koester ik zeer goede 
herinneringen aan ‘onze tijd’! Bedankt en tot de volgende zitting. 

Valerie en Filip, bedankt voor de vele gezellige zaterdagavonden samen met ons 
Annemie en de Jelle. Op die momenten vond ik vaak mijn broodnodige rust. Ik hoop er in de 
toekomst terug wat meer bij te zijn! Ik hoop uit de grond van mijn hart dat jullie droom snel 
werkelijkheid wordt! Courage! 

Jens, jij bent al van toen we nog snotneuzen waren mijn jumpingmaatje. Door 
omstandigheden hebben we mekaar meer dan 10 jaar niet meer gezien. Toen ik de draad weer 
opnam leek het wel alsof het gisteren was. Het is leuk dat te ervaren. Merci voor de vele, 
soms filosofische, gesprekken die we hadden tussen het rijden van onze parcours door! 

En dan is het, niet in het minst, de beurt aan het ‘Bosveld team’! Als ik even tel dan 
loop ik, bijna letterlijk, al 18 jaar de deur bij jullie plat. Vandaag is het dus de moment om te 
zeggen: Merci Jene, Rita, Koen, Nelly, Danny, Kim, Julie, Lise, Jelle, Jan, Niels en Laura 
voor alles. Ik ben al die tijd bij jullie behandeld geweest als een eigen zoon, broer,…. Jullie 
weten nog niet half hoe dankbaar ik hiervoor ben! Jene, wat hebben wij samen al niet 
meegemaakt en opgebouwd… Van Olympische Cadjanine, tot mijn tweede ruitercarrière met 
Gwendolin en Glorita tot het opbouwen van een collectie vogels waar we, en ik denk terecht, 
heel fier op mogen zijn! Bedankt voor alle kansen die ik van jou gekregen heb. Maar nog veel 
belangrijker, jij was er ALTIJD op de momenten dat ik je het meest nodig had. In al wat ik 
doe steun jij mij voor de volle 100%. Dat is de reden waarom onze band zo sterk is. Het is zo 
moeilijk om dat hier in een paar zinnen samen te vatten, maar Jene, zonder jou zou mijn leven 
een pak moeilijker zijn geweest. Bedankt daarvoor! Nelly, dikke merci om iedere dag, bijna 
stipt om 15 uur , onze vogels te voederen als ik er weeral eens niet op tijd geraak. Jij bent 
ook heel vaak een klankbord voor mij. Een welgemeende dikke merci voor alles! Julie, ik heb 
het je al vaker gezegd, je bent een superamazone! De manier waarop jij met Mirella en vele 
andere, moeilijke, paarden kan rijden vind ik fantastisch, alsof het de eenvoudigste zaak van 
de wereld is! Jouw natuurlijke aanvoelen en de zachte manier waarmee je omgaat met jouw 
paarden verklaren volgens mij jouw talent. Ik hoop dat we nog vaak samen kunnen trainen. 
De prijzen zullen bij jou blijven binnenstromen, dat weet ik zeker . Nog veel succes! Lise, 
bedankt voor alle filmpjes die je hebt gemaakt van mijn parcours! Team Bosveld, ik ben 
ongelooflijk blij om deel uit te maken van jullie team! 

En uiteindelijk wil ik nog zeer graag mijn allergrootste dank uiten aan mijn familie. 
We weten het allemaal, het is niet altijd simpel geweest. Toch heb ik het gevoel dat we ons er 
op één of andere manier altijd wel doorslaan. Het is goed voor mij te weten dat sommige 
zaken in het leven ‘onvoorwaardelijk’ blijken te zijn. 

Moeke, jij bent altijd één van mijn grootste en trouwste supporters geweest. Ik weet 
dat je heel erg, misschien soms teveel, meeleeft met ons. Dat siert je enorm maar dat heeft 
jouw leven niet altijd gemakkelijker gemaakt. De zorg om… was en is altijd heel groot. Bij 
deze wil ik je heel graag bedanken voor de manier waarop jij dat voor mij hebt gedaan, de 
kansen die je mij hebt gegeven en alle andere dingen waaraan ik momenteel niet denk! Moeke 
bedankt dat ik jouw zoon mag zijn! Ik hoop dat je met heel veel zorg met jouw gezondheid 
blijft omspringen. Willy, merci om ons Moeke weer terug gelukkig te maken! Ze verdient het! 

Liesbeth, Katrien, Annemie en Ben, ondanks we uit hetzelfde nest komen, proberen 
we, elk op onze eigen manier, ons leven te leiden. Liesbeth, het was jouw droom om een mooi 
gezin te hebben. Vanop afstand lijk je daar wonderwel in gelukt te zijn. Ik bewonder jouw 



Dankwoord 

287 

 

idealisme en je daadkracht. Katrien, jij kan ‘multitasken’ als geen ander. Ik wou dat ik dat ook 
kan, maar helaas… ik zal er nooit sterk in zijn. Ik hoop dat je in de toekomst, naast de zorg 
voor jouw mooi gezin, meer tijd gaat vinden om jouw ambities waar te maken. Annemie, 
naast mijn zus ben jij ook een echte vriendin voor mij. Heel hard bedankt voor jouw steun! Ik 
denk dat je me wel begrijpt! Na ongeveer 4 jaar te hebben verbouwd hoop ik dat je stilaan 
weer wat meer tijd voor jezelf gaat hebben. Ik hoop dat dit ook een moment mag zijn dat je 
goed voor jezelf gaat zorgen. Altijd maar geven is heel mooi maar soms denk ik dat je ook 
eens aan jezelf moet denken! Je moet me beloven dat te doen! Ben, als handige Harry van de 
familie hoop ik dat je al jouw ambities, en ik weet dat dit er veel zijn, kan waarmaken. Aan 
motivatie zal het zeker niet ontbreken. Zussen en broer, merci voor alles! Ik zie jullie graag! 
Stefaan, Kurt, Jelle en Inne, bedankt om deel uit te maken van onze familie. Jullie 
aanwezigheid kan ik enkel maar bestempelen als een verrijking! 

Ondertussen zijn er ook al 5 kleinkindjes. De familiebijeenkomsten zijn er een heel 
pak drukker op geworden , maar ik zou jullie niet meer kunnen missen! Nathan, als peter 
hoop ik dat je een onbezorgde jeugd tegemoet gaat. En als ik daarbij kan helpen, graag! Jij 
bent één van mijn grote inspiratiebronnen! Jonas, Emma, Nathan, Wies en Margot jullie zijn 
vandaag nog wat te klein om te beseffen wat voor een belangrijke dag dit vandaag voor mij is. 
Ik hoop het op een dag aan jullie te kunnen uitleggen! 
            

Bart 
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