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“Every human generation has its own illusions with regard to civilization; some
believe they are taking part in its upsurge, others that they are witnesses of its

extinction. In fact, it always both flames and smolders and is extinguished, according
to the place and the angle of view.”

IVO ANDRIĆ
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Samenvatting

Veldsimulatoren gebaseerd op de vergelijkingen van Maxwell kunnen worden ingezet
bij de modellering van complexe elektromagnetische structuren zoals antennes, ver-
strooiers, transmissielijnen, gedrukte schakelingen, fotonische systemen, enz. De
simulatoren beschouwen de geometrische beschrijving van de structuren, alsook de
elektrische eigenschappen van de gebruikte materialen en het type excitatie van het
probleem. Na het oplossen van integraal- en/of differentiaalvergelijkingen leveren
ze dan typisch veld- en stroomdistributies, evenals andere interessante grootheden,
zoals bijvoorbeeld parasitaire impedanties en antennewinst. Het gebruik van deze
simulatoren heeft geleid tot het beter modelleren van circuits en systemen tijdens hun
ontwerp. Nauwkeurigheid en efficiëntie van deze simulatoren is dus cruciaal voor
vele applicaties waarbij signalen worden overgebracht via elektromagnetische golven,
zoals bijvoorbeeld bij navigatiesystemen gebaseerd op het Global Positioning System
(GPS), mobiele telefonie, Wi-Fi, en ook defensiesystemen. Dientengevolge is er een
voortdurende vraag naar uitbreiding van deze veldsimulatoren voor het modelleren
van nieuwe technologieën en naar verder onderzoek inzake hun nauwkeurigheid en
efficiëntie.

De stand van de technologie is vandaag zo ver gevorderd dat de huidige veldsimulatoren
niet meer toereikend zijn qua nauwkeurigheid. Dit komt omdat fabricageprocessen ver-
schillende soorten variabiliteit introduceren en deze kunnen niet op een deterministische
manier worden beschreven. Onze elektromagnetische modellen moeten stochastisch
zijn en de veldsimulatoren moeten stochastische effecten kunnen capteren. Vanuit het
standpunt van de implementatie van dergelijke simulatoren betekent dit dat nieuwe
uitbreidingen dienen te worden toegevoegd aan de bestaande implementaties en/of dat
(delen van) de software volledig dienen te worden herschreven.

In dit proefschrift ligt de voornaamste focus op stochastische methodes die een
volledige wijziging van bestaande deterministische simulatoren vergen. De determinis-
tische simulator waarop we ons hier baseren, vertrekt van randintegraalvergelijkingen
(Boundary Integral Equation – BIE) die worden opgelost via de momentenmethode
(Method of Moments – MoM). De berekening van een matrix-vector product (MVP)
wordt versneld door gebruik te maken van de snelle multipoolmethode (Multilevel Fast
Multipole Method – MLFMM). Deze aanpak kan worden ingezet om de verstrooiing
aan twee-dimensionale (2D) perfect elektrisch geleidende (perfect electrically con-
ducting – PEC) en diëlektrische objecten die worden belicht door een transversaal
magnetische (TM) golf te analyseren. Het is in het verleden reeds aangetoond dat
MLFMM een heel efficiënte methode is die toelaat de verstrooiing aan elektrische
grote objecten te modelleren. Onderzoek werd gevoerd naar diverse aspecten van de
implementatie: parallellisatie, combinatie met Singular Value Decomposition (SVD),
toepassing op verschillende soorten elektromagnetische problemen, enz. Daarom
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gebruiken we hier de goedgekende MLFMM als startpunt voor de ontwikkeling van
nieuwe, efficiënte stochastische simulatoren.

In het inleidend hoofdstuk wordt, aan de hand van enkele typische voorbeelden, de
variabiliteit van klassieke structuren geschetst en wordt de noodzaak aan stochastische
elektromagnetische analyse toegelicht. Eveneens wordt er meer aandacht geschonken
aan de beschrijving van stochastische methodes dan aan MLFMM, maar er worden wel
veel referenties gegeven die MLFMM exhaustief behandelen. Stochastische methodes
kunnen worden ondergebracht in twee categorieën: methodes gebaseerd op het nemen
van monsters (sampling-based) en niet-sampling-based methodes. In het bijzonder
wordt er dieper ingegaan op methodes die gebaseerd zijn op de ontwikkeling van
de relevante grootheden in polynomen, de zogeheten Polynomial Chaos Expansion
(PCE) methodes. Deze kunnen worden onderverdeeld in intrusieve methodes, die
een complete wijziging van bestaande deterministische simulatoren vereisen, en niet-
intrusieve methodes. Tevens wordt er in dit hoofdstuk aandacht geschonken aan
multidimensionale numerieke integratie, aangezien dit een belangrijk onderdeel vormt
van PCE methodes.

Het tweede hoofdstuk beschrijft de Stochastische Galerkin Methode (SGM) en zijn
toepassing op de standaard MoM voor de analyse van verstrooiing van elektromag-
netische golven aan PEC objecten die worden gekenmerkt door twee verschillende
en representatieve types variabiliteit: (i) oppervlakteruwheid, beschreven door een
verzameling van gecorreleerde random variabelen en (ii) variaties van de posities
van de objecten, beschreven door een verzameling onafhankelijke random variabelen.
Hiertoe wordt de belangrijkste te bepalen grootheid, namelijk de stroomdichtheid
op het oppervlak van het object, uitgedrukt als een som van enerzijds gekende or-
thonormale polynomen met onbekende coëfficiënten in het domein van de random
variabelen en anderzijds pulsbasisfuncties in het spatiale domein waarin de verstrooier
zich bevindt. Aangezien de objecten groter zijn dan de golflengte, treden er golfeffecten
op. Galerkinprojectie levert de onbekende coëfficiënten, en zodoende de gezochte
oppervlaktestroomdichtheid.

De SGM-MoM uit het tweede hoofdstuk werd niet eerder getest in de context van
elektromagnetische verstrooiing. Maar de echte nieuwe bijdragen van dit werk wor-
den beschreven vanaf het derde hoofdstuk. In Hoofdstuk 3 wordt immers de SGM
gecombineerd met de MLFMM. Het belangrijkste probleem hierbij is het bewaren van
de nauwkeurigheid en de efficiëntie. Het grote aantal stochastische onbekenden en
de twee Galerkinprojecties in de MLFMM zorgen ervoor dat het ontwerpen van een
geschikte SGM-MLFMM heel uitdagend is. De verstrooiingsproblemen die beschouwd
worden in dit hoofdstuk omvatten random variaties van de posities van de verstrooi-
iers. Zodoende kan de stochastische geometrie beschreven worden aan de hand van
een verzameling van onafhankelijke random variabelen. De nieuwe, voorgestelde
SGM-MLFMM leidt tot een ijle polynomiale beschrijving van de typische MLFMM
intermediaire grootheden (namelijk de aggregatie- en desaggregatiematrices), wat heel
voordelig is voor wat betreft de computationele efficiëntie. Daarenboven wordt in
Hoofdstuk 4 een preconditioneringsalgoritme voor de SGM-MLFMM voorgesteld
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dat de oplossing van de stochastische verstrooiingsproblemen verder versnelt. De
Galerkinprojecties introduceren wel afrondingsfouten die, samen met de traditionele
MLFMM nauwkeurigheid, de globale precisie van de methode beïnvloeden.

Het aantal variabelen van beide types, stochastisch en spatiaal, kan zo groot worden dat
een simulatie op één enkele computer niet meer mogelijk is. Daarom wordt parallel-
lisatie van het SGM-MLFMM algoritme bestudeerd in Hoofdstuk 5. De parallellisatie
wordt hier uitgevoerd in het spatiale domein, wat betekent dat de onbekenden verdeeld
worden over verscheidene computationele nodes door gebruik te maken van het tra-
ditionele, deterministische, geparallelliseerde MLFMM algoritme. Dit algoritme is
gebaseerd op hiërarchische partitionering, wat inhoudt dat de brongroepen en hun
stralingspatronen in de laagste lagen van de MLFMM worden toegewezen aan één
computer, terwijl de stralingspatronen in hogere lagen worden gedistribueerd. De
standaard MLFMM operaties die worden uitgevoerd op deze stralingspatronen (ag-
gregatie, interpolatie, translatie, anterpolatie en desaggregatie) zijn echter compleet
opnieuw geïmplementeerd om te kunnen worden gebruikt binnen het kader van het
SGM algoritme. De nieuwe en efficiënte geparallelliseerde methode is toegepast op
optische systemen.

Oppervlakteruwheid is een belangrijk type variabiliteit dat een aanzienlijke invloed
heeft op de verstrooide velden. In tegenstelling tot positionele variabiliteit dient de
oppervlakteruwheid te worden beschreven aan de hand van een verzameling gecor-
releerde random variabelen, wat nefast is voor de efficiëntie en nauwkeurigheid van
de methode. Het belangrijkste knelpunt is de multidimensionale integratie. In Hoofd-
stuk 6 wordt dit opgevangen door een Cholesky decompositie in te voeren, zodoende
opnieuw ijle polynomiale beschrijvingen te verkrijgen. Onderhavig werk toont aan dat
de voorgestelde SGM beter presteert dan de standaard niet-intrusieve methodes.

Het zevende hoofdstuk beschrijft onzekerheidskwantificatie (Uncertainty Quantifi-
cation – UQ) methodes die gebaseerd zijn op tensordecompositie. Aangezien PCE-
gebaseerde methodes in feite big data problemen zijn, kunnen deze data worden
behandeld als tensors. Door de redundantie in de data te benutten, worden de tensoren
herschreven als benaderingen van lage rang. Dergelijke methodes zijn puur sampling-
based, maar kunnen worden toegepast op zowel intrusieve als niet-intrusieve wijze.
In Hoofdstuk 7 wordt de basis gelegd voor verder onderzoek in dit domein. Er wordt
immers aangetoond dat deze tensormethodes kunnen worden gecombineerd met de
zogeheten Statistische Moment Behoudende Model Orde Reductie (SMOR) techniek
en met MLFMM.

Ten slotte worden in het laatste hoofdstuk de voornaamste conclusies, resulterend
uit het onderzoek gepresenteerd in dit proefschrift, geformuleerd. De in onderhavig
werk voorgestelde algoritmes zijn toepasbaar op 2D verstrooiingsproblemen. Hun
uitbreiding, aanpassing en verdere ontwikkeling voor 3D applicaties is een uitdagend
onderzoeksonderwerp. Verscheidene mogelijkheden tot verder onderzoek naar UQ
methodes voor elektromagnetische problemen worden daarom voorgesteld.





Summary

Full-wave Maxwell equation solvers have proven their ability to model complex elec-
tromagnetic structures such as antennas, scatterers, transmission lines, printed circuit
boards, photonics systems, etc. These solvers start from the geometrical description of
the structure, the electrical properties of the materials and the type of excitation and,
after solving integral or differential equations, they produce field and current distri-
butions, as well as values for other parameters of interest, e.g. parasitic impedances,
antenna gain, etc. Using these solvers has improved the modeling of many circuits
and devices in the design stage, so their accuracy and efficiency is crucial for many
applications where signals are transmitted via electromagnetic waves, including the
Global Positioning System (GPS), mobile phone, Wi-Fi and defense systems. There-
fore, there is a constant demand for making these full-wave solvers applicable to new
technologies and for ongoing research in improving their efficiency and accuracy.

Nowadays, technology is going beyond the current ability of the Maxwell solvers
for accurate modeling. Manufacturing processes introduce several kinds of variability
that cannot be deterministically described. This means that our electromagnetic models
need to be stochastic and the Maxwell solvers should be capable of capturing these
stochastic effects. From an implementation viewpoint, this means that new features
need to be added to the current solvers and/or that (some parts of the solvers) need to
be completely rewritten.

In this thesis, the main focus is on the type of stochastic methods which require
complete modification of the existing deterministic solver. The deterministic solver
used here is based on solving Boundary Integral Equations (BIE) by means of the
Method of Moments (MoM). Calculation of a matrix-vector product (MVP), evolving
from the BIE-MoM, is sped up by leveraging the Multilevel Fast Multipole Method
(MLFMM). The application range for the solver is scattering from two dimensional
(2D) perfect electrically conducting (PEC) and dielectric objects under transverse
magnetic (TM) incidence. In the past, MLFMM was shown to be the most efficient tool
for the modeling of extremely large scattering problems and research was conducted
on different aspects of its implementation: parallelization, combination with a singular
value decomposition (SVD), application to different kinds of electromagnetic problems,
etc. Therefore, we have used well-studied MLFMM as a starting point for developing
efficient stochastic solvers.

The general introduction explains why stochastic electromagnetic analysis is needed by
presenting some examples of variability on different structures. Also in the introductory
chapter, more attention is devoted to stochastic methods than to the core of MLFMM
modeling, but extensive references are provided for the latter one. Stochastic methods
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are classified in sampling based and non-sampling based methods, and among them,
methods based on polynomial chaos expansion (PCE) are considered in detail. Two
main classes of PCE based methods can be distinguished: intrusive methods, which
require a complete modification of existing deterministic solvers, and non-intrusive
methods. Moreover, algorithms for multidimensional numerical integration, which are
found to be at the core of PCE based methods, are explained.

The second chapter describes the formalism of an intrusive Stochastic Galerkin Method
(SGM) and its application to the standard MoM for scattering analysis of PEC scat-
terers with two different and representative types of variability: (i) surface roughness
described with a set of corellated random variables and (ii) variations in position
described by a set of independent variables. The primary quantity of interest (QoI)
which is, for scattering problems, the unknown current distribution, is expressed as a
sum of known orthonormal polynomials with unknown coefficients over the space on
which random variables are defined and pulse base functions over the spatial domain
on which the scatterer is defined. The structure is larger than the operating wavelength
and hence, full-wave effects are present. Galerkin projection leads to finding these
unknown coefficients.

Although the SGM-MoM of Chapter 2 was not described in the context of scattering
problems before, the novel contributions of the thesis start with the third chapter. In
this chapter a combination of SGM and MLFMM is described. The main problem is to
maintain accuracy and efficiency. The large number of stochastic unknowns and the
two Galerkin projections in the MLFMM, make it challenging to derive the desired
SGM-MLFMM method. The considered scattering problems deal with random position
variations described by independent sets of random variables. This is shown to result in
a sparse polynomial approximation of intermediate quantities (namely aggregation and
disaggregation matrices), which has a very beneficial effect on the computational effi-
ciency. In Chapter 4, a preconditioner for the SGM-MLFMM algorithm is derived and
implemented, as such further expediting the solution of stochastic scattering problems.
The Galerkin projections introduce truncation errors and, together with the standard
MLFMM accuracy limits, influence the overall accuracy of the new method.

The number of both type of variables, stochastic and spatial, can become so large
that simulation on one computer is not possible. Therefore, the parallelization of the
novel method is considered in the fifth chapter. The parallelization is performed in the
spatial domain, which means that unknowns are distributed to different computational
nodes by using the standard deterministic algorithm for the parallel MLFMM . This
algorithm is based on hierarchical partitioning, which means that on lower levels of the
MLFMM the group of sources and their radiation patterns are assigned to the same
computer, and for higher levels the radiation patterns are distributed. The standard
MLFMM operations on radiation patterns (aggregation, interpolation, translation, anter-
polation and disaggregation) are completely rewritten according to the SGM algorithm.
This new and efficient parallelized method is applied to optical systems.
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Surface roughness is an important type of variability with a substantial influence
on the scattered fields. In contrast to position uncertainty, roughness statistics are
described by correlated random variables which has a large effect on the efficiency
and accuracy of the method. The main bottleneck is the required multidimensional
integration. In Chapter 6, this is treated by introducing Cholesky decomposition which
tends to produce sparse polynomial approximations. Our work shows that the SGM
method outperforms standard non-intrusive methods.

The seventh chapter introduces state-of-the-art uncertainty quantification (UQ) tools
based on tensor decomposition. Since PCE-based methods become big data problems,
these data are treated as a tensor and by exploiting data redundancy, a tensor can
be efficiently represented by a low-rank approximation. These methods are purely
sampling-based, but they can be applied intrusively as well as non-intrusively. This
chapter paves the way for future research in this domain, as it is shown that these
tensor methods may be combined with Statistical Moments preserving Model Order
Reduction (SMOR) and MLFMM.

Finally, the last chapter formulates main conclusions drawn from the research and
results presented in this thesis. The algorithms that are developed throughout this thesis
are applicable to 2D scattering problems, but their improvement, modification and
development for 3D problems is a further research challenge. Several paths for con-
tinuation in the domain of UQ of electromagnetic problems are proposed. This thesis
clearly illustrates the effect of uncertainties on the electromagnetic characteristics of
scatterers. The same effects are captured with a traditional Monte Carlo (MC) method,
SGM-MoM, SGM-MLFMM and their non-intrusive counterparts. The difference is in
the simulation time needed for extraction of stochastic parameter of interest. This thesis
proposes efficient MLFMM-based algorithms for 2D problems, but also indicates that
the right method for UQ is dependent on many factors. The efficiency of UQ methods
is of a great importance, so knowledge the inherent properties of them is a first step in
choosing right one. The novel method expands the application range where intrusive
SGM method can be efficiently applied.
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Polynomial Chaos Based Uncertainty Quantification
for Stochastic Electromagnetic Scattering Problems





1
Introduction

1.1 Motivation

In order to meet the specifications in terms of available bandwidth and speed, electronic
circuits operate at high frequencies. Therefore, modeling of these circuits and structures
requires dealing with all high-frequency phenomena, which can only be achieved by
a full-wave approach, i.e. by accurately solve Maxwell’s equations for the problem
under consideration. Moreover, owing to technology scaling and miniaturization of
components, process variations have a significant impact on the circuit performance
[1]. These variations are the result of manufacturing and include geometrical variations
and electrical properties variations [2]. Geometrical variations include shape variations
due to the lithographic process and line edge roughness or width variations because
of etching. Electrical properties variations may be induced by, e.g. random-dopant
fluctuations (RDF) in CMOS technology [3]. Also, in the context of textile patch
antennas, substrate compression causes the variation of the electrical permittivity [4].
Several types of geometrical variations are presented in Figs. 1.1, 1.2 and 1.3.
Variations may also be induced by the designer in order to optimize the design. These
variations can be topological, when a completely different arrangement of the compo-
nents constituting the circuit is put forward, and non-topological, when the dimensions
of the components and the distances between them are varied [8]. The first type of
variations doesn’t share any similarity with some “initial” structure and topology is
completely changed, so the topology is suitable for the standard deterministic sim-
ulation using the existing tools. The second type of variations, however, are of the
same type as the process variations in the sense that it concerns (small) variations with
respect to a nominal design.
Process variations are often not known in a deterministic way. Similarly, design vari-
ations of the second type can be treated as stochastic processes. The same holds
for variations of the behavior due to aging of electronic devices or due to changing
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Figure 1.1: Surface roughness of an inner-layer copper trace. Reprint from [5].

Figure 1.2: Example of a 45 nm M1 first metal-interconnect layer affected by line edge
roughness. Left: nominal design; Right: image of the realized pattern on the wafer.
Reprint from [6].

Figure 1.3: Undesired electrical shorts (left) and open (right) caused by lithography
process variations. Reprint from [7].
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environmental conditions, such as temperature, humidity and power supply fluctuations.
Consequently, the development of stochastic modeling tools has received great attention
during the recent years. The variations incorporated in novel mathematical models, and
that are not known when the model is derived, are called uncertainties. To aid the design,
the goal is now to model the novel electronic devices, including these uncertainties. In
particular, the influence on the device’s behavior needs to be quantified. This kind of
modeling is called Uncertainty Quantification (UQ). Traditionally, UQ is carried out by
means of the well-known Monte Carlo (MC) method, which is unfortunately found to
be computationally expensive [9]. Recently, novel variation-aware methods based on
Polynomial Chaos Expansion (PCE), have been developed for interconnect and lumped
circuit analysis [10]–[13]. To asses high-frequency phenomena, PCE-based methods
are developed in combination with Computational ElectroMagnetics (CEM) methods
such as the Finite Element Methods (FEM) [14], the Finite Difference Time Domain
(FDTD) method [15] and the Method of Moments (MoM) [16], [17].
A certain class of electromagnetic problems are conveniently described by means
of Integral Equations (IE) that are solved via the MoM (see Section 1.2.2). This is
the case for antenna structures, scatterers and the full-wave analysis of interconnects.
Morover, the Multilevel Fast Multipole Method (MLFMM) (Section 1.2.3) can be used
to expedite the solution of the linear system that evolves from the MoM [18].
In this work, the goal is to develop novel MLFMM-based variation-aware methods for
UQ of full-wave electromagnetic problems. In particular, the focus is on variations of
two-dimensional (2D) electromagnetic scatterers and optical systems.

1.2 Electromagnetic modeling

1.2.1 Scattering problem

A set of mathematical equations describing the connection between the electric and
magnetic fields as well as between current densities and charges (as a sources of
those fields) was put forward by James Clerk Maxwell [19]. These equations are
written in integral or differential form, but cannot be directly interpreted by a computer.
Converting these equations into appropriate computational models, which can be
evaluated by the computer, is the focus of CEM.
For radiation and scattering problems, CEM methods are often based on Boundary
Integral Equations (BIE), described in terms of the electric (Js) and magnetic (M s)
current densities at the interfaces between media [20]. This current densities are then the
only unknowns of the problem. Once they have been determined, the electromagnetic
fields in every point in space can be computed.
A typical scattering problem, where an incident field impinges upon an object, as such
inducing current densities at the interface as well as a scattered field, is schematically
presented in Fig. 1.4. Throughout this thesis we will restrict ourselves to 2D scatterers,
i.e. scatterers that are infinitely long cylinders with arbitrary cross-section. Moreover,
we investigate Transverse Magnetic (TM) scattering, which means that the magnetic
field has a component that is transversal with respect to the axis of invariance. As
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Ei

Es

Js M s

Figure 1.4: An incident electromagnetic wave Ei impinges upon an arbitrary shaped
object and produces current densities at the interface as well as a scattered field Es.

indicated before, solving the scattering problems requires two steps [21]:

• Solving the pertinent integral equation(s) to find unknown current densities Js
and/orM s,

• Integrating the current densities to determine the scattered fields.

For simplicity, let us assume here that the scatterer is made of a Perfectly Electrically
Conducting (PEC) material and, thus, only Js exists on the surface of the object. (In
Chapter 5, dielectric objects will be considered too.) The scattered electrical field,
which only has a z-component is given by [20]:

Esz(ρ) = −jωµ
∫
S

G(ρ,ρ′)Jz(ρ′)dρ′, (1.1)

where Jz(ρ′) is the unknown current density on the scatterer (which also only has a
z-component), µ is permeability of the background medium, S is the surface of the
scatterer, and G(ρ,ρ′) is the 2D Green’s function

G(ρ,ρ′) = j

4H
(2)
0 (k|ρ− ρ′|), (1.2)
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where H(2)
0 (·) is the zeroth-order Hankel function of the second kind, and k = ω/c is

the wavenumber, with ω the angular frequency of the incident wave and c the speed of
light in the background medium. To create the BIE, we impose the boundary condition
for the tangential electrical field at the surface of the PEC object:

Eiz = −Esz . (1.3)

Inserting (1.1) into (1.3), and evaluation for observation points ρ, yields the sought-for
BIE, which is here an Electric Field Integral Equation (EFIE)

lim
ρ→S

Eiz(ρ) = −jωµ lim
ρ→S

∫
S

G(ρ,ρ′)Jz(ρ′)dρ′ (1.4)

1.2.2 Method of Moments

The EFIE can be cast as
L(Jz) = Eiz, (1.5)

where L represents the linear integral operator. To solve integral equation (1.5) by
means of the MoM [22], the scatterer is discretized, i.e., divided in segments. Then, the
current density Jz is expanded as a sum of pulse basis functions bj(ρ) with unknown
coefficients Ij (j = 1, ..., N ):

Jz(ρ′) =
N∑
j=1

Ijbj(ρ′). (1.6)

The discretized integral equation is then written as:

N∑
j=1

IjL(bj) = Eiz. (1.7)

After projecting of both sides of (1.7) on the same set of basis functions, called Galerkin
projection, a linear system of N equations and N unknowns Ij is obtained:

ZijIj = Vi, i = 1, ..., N, (1.8)

with

Zij =< L(bj), bi >, (1.9)

Vi =< Eiz, bi >, (1.10)

where the projection was performed by using the inner product < ·, · > of the corre-
sponding Hilbert space. The linear system can also be written in matrix form:

ZI = V . (1.11)



8 Chapter 1. Introduction

Usually, for scattering problems the EFIE-MoM system matrixZ is dense. To solve sys-
tem (1.11) using an iterative method, the computational complexity scales as RO(N2),
which is complexity of one matrix-vector product (MVP) multiplied by the number of
iterations R that are required to reach the predefined accuracy. Clearly, this procedure
becomes expensive for large scatterers that need to be discretized into a large number
of segments N .

1.2.3 Multilevel Fast Multipole Method

One way to deal with the poor scaling properties of the traditional MoM is to exploit
the structure of the matrix Z. Each element of this matrix, as seen from (1.9), de-
scribes the interaction between two segments of the scatterer. Instead of considering
these N2 “connections” individually, the scatterer can be subdivided into groups of
sources. Interaction between elements in different groups is then performed in three
steps. Firstly, during the aggregation step, the aggregated radiated field from many
sources bj residing in a source group gs is calculated. Secondly, during the translation
step, this field is transferred to another observation group go. In the last step, called
disaggregation step, the incoming field in the observation group go is projected onto
every observer bi in that group. In this way, each matrix element can be factorized
as [23]:

Zij = Di,goTgo,gsAgs,j (1.12)

Equation (1.12) is the core of the one-level Fast Multipole Method (FMM), first intro-
duced by Rokhlin [24]. This decomposition is valid only for source and observation
groups that are sufficiently separated in space. Otherwise, the electromagnetic interac-
tion needs to be calculated in the classical MoM way. For implementation details, the
reader is refered to [18], where it is also shown that the complexity of one MVP can be
reduced to O(N1.5) [18].
For even better efficiency, one-level FMM is extended to the Multilevel Fast Multipole
Method (MLFMM) by hierarchically organizing the groups of sources into a tree-like
structure [21]. The computational cost of one MVP calculated in this way can be
reduced to O(N)[18].

1.3 Uncertainty quantification and stochastic
electromagnetic modeling

The term uncertainty quantification (UQ) refers to techniques that quantitatively char-
acterize uncertainties in computational models. An example is the scattering problem
of Section 1.2.1, but with a random geometry. The randomness may stem from a
non-deterministically known position of the scatterer and/or from variations on the
shape of its surface S. Consequently, since ρ and ρ′ in the EFIE (1.4) are no longer
deterministic, this leads to variability of the current density Jz and of the scattered
field.



1.3. Uncertainty quantification and stochastic electromagnetic modeling 9

Eiz Esz

ρ3(ξ3)

ρ1(ξ1)

ρ2(ξ2)
x0

y

Figure 1.5: An incident electromagnetic wave Eiz impinges upon an arbitrarily shaped
object prone to variability. The randomness is induced by the unknown and random
position (dashed) of the nominal structure (dotted) denoted by ρ1(ξ1), where ξ1 is a
random variable. Another source of randomness is the roughness of the scatterer which
is described by the vectors of unknown points on the surface, e.g. ρ2(ξ2) and ρ3(ξ3),
with ξ2 and ξ3 being random variables.

1.3.1 Problem statement

Let assume that the scatterer presented in Fig. 1.4 is prone to variability. Its position
is described by random variables (RVs) and/or it possesses a randomly varying rough
surface which is also described by a set of RVs as depicted in Fig. 1.5. All these RVs are
collected in a vector ξ defined with probability density function (PDF) W (ξ) defined
over the probabilistic space Ω. Assume, for now, that variables in ξ are mutually
independent and that the size of this vector is M . (The case with correlated RVs is
treated in Chapter 6.) Given the geometrical variability, all quantities in (1.11) are
dependent on ξ:

Z(ξ)I(ξ) = V (ξ). (1.13)

The system in (1.13) is no longer deterministic, but stochastic. In particular, we can
consider the stochastic scattering problem as a system with a given input variability ξ
and unknown output variability I(ξ). The goal is to find how the input variability
propagates through the system.
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1.3.2 Monte Carlo method

A standard and traditional technique for UQ is the Monte Carlo (MC) method [9]. This
method considers many random realizations of the geometry, i.e. of the surface S.
Each such realization is described by a specific value ξg of the random vector ξ and,
as such, a deterministic MoM system is created:

Z(ξg)I(ξg) = V (ξg), (1.14)

and solved with a standard deterministic solver. From a set of such solutions, one can
readily calculate all statistical information, such as mean, variance, PDF, etc. The mean
of the random process I(ξ) is computed as:

E[I(ξ)] =
∑Ns
g=1 I(ξg)
Ns

, (1.15)

where Ns represents the number of MC realizations. The operator E[·] denotes the
mathematical averaging or mean. The variance is calculated as:

Var[I(ξ)] =
∑Ns
g=1 |I(ξg)− E[I(ξ)]|2

Ns − 1 . (1.16)

MC is robust and easy to implement. Unfortunately, it converges relatively slowly with
a rate of O(1/

√
Ns). Consequently, a large number of repetitive executions of the

deterministic solver is required, which can rapidly become intractable in the case of
full-wave scattering problems.

1.3.3 Generalized Polynomial Chaos

Contrary to the MC method, which is a sampling-based method as the many realizations
ξg are sampled according to PDF W (ξ), there are also methods that fall into the
category of non-sampling-based methods. One of them is the perturbation method,
where the output variability is expanded as a Taylor series around the mean value [8].
The problem with this method is that it can only handle small variations and it cannot
take the variability over the whole random space into account.
A more elegant way to quantify the output variability is by means of polynomial
representations. The generalized Polynomial Chaos (gPC) approach was developed
by Ghanem and inspired by the theory of Wiener [25]. The idea is to represent a
stochastic process as a linear combination of orthogonal (in our case orthonormal)
basis functions, namely polynomials. The polynomial basis is chosen according to
the Wiener-Askey scheme [26]. In this scheme, different polynomials are orthogonal
with respect to different weighting functions. In the case of gPC, these weighting
functions are the pertinent PDFs. If output variation is smooth enough that can be
represented with polynomials, then optimal convergence is achieved, if, for example,
Hermite polynomials, are chosen for Gaussian distributions, Legendre polynomials for
uniform distribution, Laguerre polynomials for Beta distributions, etc.
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In the case of scattering problems, stochastic process I(ξ) is subjected to Polynomial
Chaos Expansion (PCE) [27]:

I(ξ) ≈
K∑
k=0

Ikφk(ξ), (1.17)

where Ik is an (as yet unknowns) PCE coefficient and φk(ξ) represents a multivariate
polynomial (k = 0, ...,K). These multivariate polynomials are created as products of
univariate polynomials, as follows:

φk(ξ) =
M∏
i=1

φiki (ξi), (1.18)

where φiki is the i-th univariate polynomial, chosen according to the Wiener-Askey
scheme, dependent on the single RV ξi. This polynomial is of order ik. The total
polynomial order of the multivariate polynomial φk(ξ) is given by:

P =
M∑
i=1

ik. (1.19)

For a predefined maximum polynomial order P , called total degree, the number of
polynomials that can be created and used in (1.17) is given by:

K + 1 = (M + P )!
M !P ! ≈ MP

P ! . (1.20)

It is clearly visible that the number of polynomials K + 1 grows rapidly with the
number of RVs M and this introduces the so-called curse of dimensionality to the gPC
approach. Once the PCE coefficients Ik are known, one can easily find the mean and
the variance [28]:

E[I(ξ)] = I0, (1.21)

Var[I(ξ)] =
K∑
k=1
|Ik|2. (1.22)

The advantage of gPC compared to MC is its much better convergence.

1.3.3.1 Numerical integration

The PCE coefficient can be calculated via projection:

Ik =< I(ξ), φk(ξ) >=
∫
ξ

I(ξ)φk(ξ)W (ξ)dξ. (1.23)

This involves a multidimensional integration over M dimensions. Standard integration
schemes in one dimension are often based on Gauss quadrature rules [29]. The
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integral is then approximated by a weighted sum of function values. For example, the
1D integration of a function f(x) with weighting function w(x) within the domain
x ∈]−B,B[ is evaluated as:∫ B

−B
f(x)w(x) dx =

n∑
i=1

wi f(xi), (1.24)

and wi and xi are the weights and nodes resp., chosen according to the weighting
function. The limits of integration are, e.g. B = 1 for uniform distribution and B =∞
for Gaussian distribution. The number of weights and nodes n determines the accuracy.
In the M -dimensional case, if over each dimension, the integration is performed using
n quadrature points, then the total number of points is nN . This approach is called
the full tensor-product integration. Even when a small number of points is used in
each dimension, e.g. n = 2, the total number of points for, e.g., M = 30 is already
230 > 109, which is prohibitively high.
Sparse grids are methods proposed to avoid this huge number of integration points.
They are based on Smolyak’s algorithm, which chooses a subset of points from tensor
products [30]. The problem with this method is that the integration weights can
become negative. For functions that are not smooth enough, this can lead to physically
impossible results [31].
Note that, to calculate the coefficient corresponding to the polynomial with order P ,
the integration rule needs to be exact to, at least, order 2P . Even though the number
of points is reduced by using sparse grids, the curse of dimensionality remains, as
the total number of Smolyak integration points needed to integrate polynomials up to
polynomial order 2P + 1 is still [32]:

NSmolyak ≈
2P

P !M
P . (1.25)

For high dimensional problems, due to this curse of dimensionality, sometimes MC
remains the only acceptable choice for UQ.
Besides Smolyak’s rule, Stroud’s rules can be used. This rule produce the smallest
number of integration points for a given dimension [32]. Unfortunately, these inte-
gration rules are only suitable for PCE with a polynomial order that does not exceed
1.

1.3.3.2 Intrusive and non-intrusive methods

Whithin the framework of gPC, there are two classes of methods for the UQ of the
output variability: intrusive and non-intrusive methods [28]. Non-intrusive methods
rely on (1.23), i.e. one finds projection coefficients of the output quantity I(ξ) by
using an integration scheme. The advantage of this method is that it is easy to apply,
much like MC, it can be considered as a sampling based method, in the sense that it
requires reusing a traditional deterministic solver to asses several realizations of the
random process, chosen according to the nodes of the integration scheme. Contrary
to MC, these realization points are not random, but chosen smartly according to the
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∑K
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∑K
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Figure 1.6: Schematic representation of the non-intrusive collocation (upper) and
intrusive stochastic Galerkin (bottom) method. The output quantities of both methods
are PDF, PCE coefficients, mean, variance.

PDF, such that good convergence of the result is preserved. This method is often
called the Stochastic Collocation Method (SCM). Note that, in literature, a difference
between collocation methods based on integration by using Smolyak points (pseudo
spectral approach) and an approximation of polynomials with Lagrange interpolation
is described [33].
In an intrusive approach, the computational model is changed. Schematically, the
difference between intrusive and non-intrusive methods is presented in Fig. 1.6. A well
established intrusive technique is the Stochastic Galerkin Method (SGM), described
in the next chapters. In this method, all quantities (Z(ξ), V (ξ) and I(ξ)) in (1.13)
are represented via PCE and the unknown coefficients Ik are found via Galerkin
projection. Contrary to SCM, where many uncoupled deterministic systems are solved,
in the SGM method, K + 1 coupled deterministic equations need to be solved. The
deterministic complexity of the SCM scales with NSmolyak. For SGM, the discussion
of the complexity is not so straightforward, as it largely depends on the specific problem
and the (implementation of the) algorithm. Comparison of SCM and SGM for several
scattering problems can be found in the next chapters and it will be shown that SGM
scales with the number of polynomials K + 1, and outperform SCM K < NSmolyak.
For completeness it is mentioned that members of the UQ community also focus on
non-intrusive methods that are combined with Analysis of Variance (ANOVA) [34], L1
sparse approximation [35] and low rank tensor recovery [36]. Recently, the Stochastic
Testing (ST) method was developed and this method can either be intrusive or non-
intrusive depending its implementation [37].
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1.4 Outline of the thesis

This thesis is divided into eight chapters, of which this introduction is the first one.
The second chapter deals with the intrusive SGM and its combination with the MoM.
An efficiency and accuracy analysis is performed and the results are compared with
the non-intrusive SCM and with MC. Combination of MoM and SGM was already
investigated in the context of interconnect problems, but here we study full-wave
scattering problems.
The next chapter introduces the novel method that leverages MLFMM, as the motivation
of our work is to develop fast and efficient methods for scattering problems. The
theoretical framework is developed and applied to geometrical structures described by
independent random variables. A comparison with the SGM-MoM of Chapter 2 with
focus on the computation of one matrix-vector product (MVP), reveals that MLFMM
can hugely accelerate the SGM-MoM.
To speed up the iterative solution of the linear system evolving from the MLFMM-
accelerated MoM, a preconditioner is specially developed for the novel SGM-MLFMM
formalism. This part is covered in Chapter 4.
Still, for certain problems, the SGM-MLFMM needs to deal with many unknowns,
which cannot be stored and handled by one computational node. Chapter 5 introduces
the parallelization of the novel stochastic method. To show the necessity of the
developed parallelization strategy, extremely large optical systems, prone to variability,
are simulated. A thorough CPU timing and parallel scalability analysis is presented.
Combination of MLFMM and SGM for correlated random variables, e.g. needed to
describe the rough surfaces, is presented in Chapter 6. Often, the standard Karhunen-
Loève transformation is used to decorrelates the random variables, but we show that
Cholesky decomposition is a better choice in case of scattering at rough surfaces. In
particular, for low correlation lengths this lead to a considerable reduction of the setup
and solution time.
Whereas Chapters 2-6 put more emphasis on intrusive methods, Chapter 7 describes a
state-of-the art non-intrusive method, based on tensor-train (TT) decomposition. It is
shown that the hybridization of this TT method with a Statistical Moment Preserving
Model Order Reduction (SMOR) approach, may lead to efficient ways to tackle the
UQ of scattering problems.
Finally, in Chapter 8, the main conclusions and an outline for future research are given.
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In this chapter, the Electric Field Integral Equation for perfect electrically
conducting scatterers is combined with the Stochastic Galerkin Method
(SGM) to model the impact of stochastic variations of the shape of the
scatterer on the radar cross-section and on the induced current distribution.
The SGM is compared to the Stochastic Collocation Method (SCM) and
it is shown that for a modest number of random variables the SGM is a
good alternative to the SCM.
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2.1 Introduction

Electromagnetic solvers are widely used in the analysis of scattering and remote sensing
problems as well as in the analysis and design of antennas and high-speed systems,
to model electromagnetic compatibility problems and in many other domains. The
straightforward way to assess the influence of geometrical or material variations and
uncertainties with these solvers is by implementing Monte Carlo (MC) simulations.
The major drawback of MC is the slow convergence at a rate of 1/

√
n, where n is the

number of separate runs of the code. More sophisticated methods have been proposed
based on the expansion of the quantities of interest into a (truncated) polynomial chaos
expansion (PCE) using orthogonal polynomials depending on the particular distribution
of the random variables [1]. These methods come in two flavors: the non-intrusive
Stochastic Collocation Method (SCM) [2] and the intrusive Stochastic Galerkin Method
(SGM) [3]. PCE-based methods are already used for variability analysis of (on-chip)
interconnects [4][5][6]. Very recently, polynomial chaos was introduced in the Finite
Difference Time Domain (FDTD) analysis of microwave circuits [7]. Furthermore, a
thorough discussion of the use of a PCE-method, more particularly a multi-element
SCM, for statistical EMC/EMI characterization, was presented in [8]. Calculation of
the statistical properties of two-dimensional electromagnetic scattering from random
rough surfaces combining the MC approach with a deterministic method of moments
simulator is discussed in [9]. In view of the superiority of PCE-based methods over
MC simulations, [10] presents the combination of the SCM with a time-domain Finite
Element technique for scattering by two- and three-dimensional perfectly electrically
conducting objects of varying shape.
In view of previous work, in particular [8], this chapter focusses on the use of the SGM
as compared to the SCM to model stochastic scattering problems by means of integral
equations and the Method of Moments (MoM). To the best knowledge of the authors,
this communication is the first to discuss the SGM-MoM combination for scattering
problems. We restrict ourselves to frequency domain scattering by two-dimensional
PEC objects under TM-incidence to keep this communication sufficiently succinct.
In order to see what the benefits and drawbacks of SGM are compared to SCM, of
course we also provide the necessary numerical data to compare both approaches.
Furthermore, we do not only present results for the radar cross-section, but also pay
attention to the current distribution on the scatterer.
Section II first briefly introduces the electric field integral equation and its MoM
discretization. Next, a discussion is provided on the polynomial chaos expansion in
the MoM, with particular emphasis on the differences between SGM and SCM. In
Section III, two pertinent examples are discussed in detail. In these examples we
consider different distributions: uniform and uncorrelated in the first example and
correlated with a Gaussian covariance matrix in the second example. Conclusions are
formulated in Section IV.
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2.2 The stochastic scattering problem

We consider two-dimensional frequency domain scattering by PEC objects, residing in
free space, the geometry of which is not deterministic but varies stochastically. The
z-axis is the axis of invariance. The incident wave is a TM-polarized plane wave
with electric field Ei = Eiuz . The ejωt-dependence is suppressed. To determine the
scattered field, we apply a surface integral equation technique. Although the electrical
field integral equation (EFIE) can be used for both open and closed structures, the
combined field integral equation (CFIE) is preferred for closed structures to avoid
spurious resonances. For brevity, we assume that the reader is familiar with the
EFIE. This integral equation can be solved by the MoM. N pulse basis functions
bj , j = 1, 2, ..., N , are introduced to expand the unknown surface current density Jz
on the PEC scatterer as:

Jz(ρ′) =
N∑
j=1

Ijbj(ρ′), (2.1)

with Ij the unknown expansion coefficients. Applying a Galerkin testing procedure
then yields a N ×N linear system in the unknown expansion coefficients Ij :

N∑
j=1

ZijIj = Vi, i = 1, 2, ..., N or ZI = V . (2.2)

We do not give the explicit expressions for Z and V as the readers are undoubtedly
familiar with them. Now suppose the scatterer is not defined deterministically but
has a geometry which exhibits some inherent variability. This variability is described
by a set of M random variables. We assume that these variables are independent
random variables which are collected in the vector ξ = [ξ1 ξ2 ... ξM ]. The case of
correlated variables can be treated as well by starting from a properly defined set of
independent variables or, for Gaussian random variables, by adopting a Karhunen-
Loève transformation (KLT) [11]. All quantities in ( 2.2) now depend on ξ, i.e:

Z(ξ)I(ξ) = V (ξ). (2.3)

The goal of solving (2.3) is to determine the full statistics of the induced currents, of
the scattered fields, and in particular of the radar cross-section (RCS). To this end,
all quantities of interest are represented in terms of a truncated polynomial chaos
expansion

Zij(ξ) =
K∑
k=0

Zij,kφk(ξ), (2.4a)

Vi(ξ) =
K∑
k=0

Vi,kφk(ξ), Ij(ξ) =
K∑
k=0

Ij,kφk(ξ), (2.4b)

where Zij,k, Vi,k and Ij,k are expansion coefficients and the φk(ξ) are multivariate
polynomials that are orthonormal with respect to the probabilistic density functions rele-
vant to the particular scattering problem that is treated. Hence,< φj(ξ), φk(ξ) >= δjk,
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with the inner product < f(ξ), g(ξ) > defined as

< f(ξ), g(ξ) >=
∫
ξ1

· · ·
∫
ξM

f(ξ)g(ξ)W (ξ)dξ1 · · · dξM (2.5)

and with δjk = 0 for j 6= k and δjk = 1 for j = k. W (ξ) is the probability density
function associated with the random vector ξ. As we work with independent stochastic
variables,W is the product of the probability density functionsWm,m = 1, 2, ..,M , of
the individual random variables ξm. The polynomials φk(ξ) themselves are constructed
as products of univariate polynomials only depending on a single random variable.
For each multivariate polynomial, the total degree, i.e. the sum of the orders of the
univariate polynomials, is at most P . This maximum order is a parameter that we
can choose. The number M of random variables determines the number K + 1 of
multivariate polynomials as follows:

K + 1 = (M + P )!
M !P ! . (2.6)

Zij,k and Vi,k in (2.4) are obtained through projection:

Vi,k =< Vi(ξ), φk(ξ) >, Zij,k =< Zij(ξ), φk(ξ) > . (2.7)

By substituting (2.4) into ( 2.2), we get

K∑
k=0

Vi,kφk(ξ) =
N∑
j=1

K∑
k=0

K∑
l=0

Zij,kIj,lφk(ξ)φl(ξ), ∀ i. (2.8)

Galerkin projection of both sides of (2.8) on φm finally leads to the following set of
equations for the Ij,k in (2.4b)

Ṽ = Z̃Ĩ, (2.9)

where Z̃ is a deterministic matrix given by

Z̃ =
K∑
k=0

(


γk00 γk10 · · · γkK0
γk01 γk11 · · · γkK1

...
...

. . .
...

γk0K γk1K · · · γkKK

⊗Zk), (2.10)

with γklm =< φk(ξ)φl(ξ), φm(ξ) > and where⊗ stands for the Kronecker product of
matrices. The N ×N matrix Zk is similar to Z in ( 2.2), but with the Zij replaced by
Zij,k; Ṽ

T = [V1,0...VN,0V1,1...VN,1...V1,K ...VN,K ] and similarly for Ĩ . Eqn. (2.10)
shows that the application of the SGM leads to a new system matrix the size of which
is now much larger, i.e. (K + 1)N × (K + 1)N instead of N ×N . However, this new
system is deterministic, as thanks to the Galerkin projection the dependence on ξ has
vanished. Solving (2.9) yields Ĩ . Inserting this solution into (1.4.b) then yields the full
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statistics of the induced current. For example, the mean value of this current on the
j-th segment (j = 1, 2, ..., N ) is given by

E[Ij(ξ)] = Ij,0, (2.11)

where E[·] denotes the expected value operator. The variance is computed as

E[|Ij(ξ)− E[Ij(ξ)]|2] =
K∑
k=1
|Ij,k|2. (2.12)

Besides the above stochastic moments, the probability density functions (PDF) and
cumulative distribution functions (CDF) can also be readily computed from (2.4).
Obviously, the SGM, presented above, is an intrusive method. The Stochastic Colloca-
tion Method (SCM) is non-intrusive. We refer the reader to [8] for details. In the SCM
any quantity of interest f(ξ) is expanded as:

f(ξ) =
K∑
k=0

fkφk(ξ), (2.13a)

fk =< f(ξ), φk(ξ) >≈
Np∑
r=1

wrf(ξr)φk(ξr), (2.13b)

where wr and ξr are the weights and sampling points of the quadrature. Consequently,
in the SCM, the desired statistical information is obtained by knowledge of the solution
of (2.3) in Np sampling points in the M -dimensional space of the random variables
ξ. The SCM can thus easily be built on top of a deterministic code by solving Np
deterministic problems (2.2).

2.3 Numerical examples

2.3.1 Scattering by a finite periodic array of PEC strips

As a first example, consider TM-scattering by a periodic but finite array of five PEC
strips as depicted in Fig. 2.1. The x-coordinates of the position vectors of the centers
of the strips remain fixed with constant spacing T . However, the widths of the strips
w and their heights h w.r.t. a nominal plane are chosen to be independent uniformly
distributed random variables, hence M = 10. The widths of the strips vary between
0.2T and 0.8T , with T = 3λ/4, and the heights of the strips between−λ/10 and λ/10,
where λ is the wavelength of the incident wave. In the MoM analysis, the discretization
of each strip will be chosen fine enough and such that the number of divisions remains
identical when considering varying widths.

As uniform distributions are considered, normalized Legendre polynomials are the ap-
propriate functions to model the uncertainty. This implies that in (2.5), the multivariate
polynomials φj(ξ) are constructed as products of univariate Legendre polynomials.
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Figure 2.1: Periodic array of PEC strips. Widths w and heights h are random.

When calculating the matrix elements in (2.3) or (2.9), elements describing MoM
interactions on the same strip only depend on a single random variable, i.e. the width,
and all other matrix elements depend on four random variables, the two heights and the
two widths. The right hand side data depend on two random variables. The incident
wave is a TM-polarized plane wave impinging under an angle α = 3π/4 with the
positive x-axis.
The current on each of the five strips is modeled using 20 equal length subdivisions
on which the current is taken to be constant, i.e. the total number of unknowns in the
MoM is N = 100. For this example and the following ones, the quantities of interest
(surface current, RCS, impedance matrix elements) are modeled using expansions of
type (2.13a) with highest polynomial order, i.e. total degree, P = 4. Our experience
shows that P = 4 suffices to accurately describe the wanted statistics. To assess the
effect of this total degree, below, results for P = 4 will be compared to results for
P = 1, P = 2 and P = 3. Due to the fact that calculating the expansion coefficients
according to (2.13b) implies that, for P = 4, up to eight-order polynomials play a role,
we opt for an integration scheme that assures correct integration up to and including
order 9. When lowering the total degree P , we lower the accuracy of the integration
scheme at the same time, as such using the most optimal approach.
Both in SGM and in SCM we have to calculate integrals of the form (2.13b) to ob-
tain the expansion coefficients of the quantities of interest. In the present example,
these integrals are integrals over a 10-dimensional parameter space. Naive application
of Gauss-Legendre quadrature with 5 sampling points (to assure exact integration
for polynomials up to order 9) leads to Np = 510 sampling points in (2.13b). This
huge number can however be avoided by applying Smolyak’s rule. Smolyak’s rule or
Smolyak integration is a sparse grid technique to integrate high dimensional functions
[12]. This particular sparse grid technique only requires Np = 8761 sampling points
for about the same accuracy, i.e. a reduction by more than a factor of 1000. For smaller
values of P , even less Smolyak points are needed: Np = 21 for P = 1, Np = 221 for
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P = 2 and Np = 1581 for P = 3.
From (2.6), including multivariate polynomials up to total degree P = 4 in SGM,
implies thatK+1 = 1001. To find the Zij,k in (2.8), Smolyak’s rule requiresNp×N2

interaction integrals to be calculated followed by the solution of a single linear system
(2.9) of dimension (K + 1)N × (K + 1)N .
On the other hand, applying SCM again consists in calculating Np ×N2 MoM interac-
tion integrals and the solution of not a single but of Np linear systems of size N ×N .
It is immediately clear that straightforward application of SGM leads to a numerical
effort which vastly exceeds that of SCM. However, the purpose of the present example
is to demonstrate that the above conclusion is not necessarily unavoidable when taking
the particular nature of the considered problem into account. Indeed, remark that the
Zij only depend on the width, when considering interactions on the same strip. For
strip to strip interactions only four variables matter. Thus, in SGM, we do not need
to consider the full ten-dimensional parameter space and this has a very considerable
impact on the CPU-time as will become clear from the numerical results.
Before turning to these numerical results, let us also point out the following. Iteratively
solving the large linear system (2.9) not only requires a lot of CPU-time but storing all
matrix elements can lead to very high (or even impossibly high) memory requirements.
To alleviate this problem, we only store the Zij,k of matrix Zk in (2.10). It so turns
out that quite a large number of the γklm also needed in (2.10) are zero. The non-zero
ones can easily be stored and the Kronecker product is then calculated on-the-fly when
iteratively solving (2.9).
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Figure 2.2: Magnitude of the mean value (full line) and standard deviation (dash-dotted
line), of the current distribution for total degree P = 4 for the example of Fig. 2.1.

For P = 4, Fig. 2.2 shows the magnitude of the mean value |E(Jz)| (2.11) and the
standard deviation (stdev) of the induced current, i.e. the square root of the variance
defined in (2.12). Results for SGM, SCM and MC are indistinguishable on the scale of
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the figure. For both SGM and SCM, CPU-time and memory requirements are given in
Table 2.1 as a function of P , together with the mean value and variance of the absolute
value of the center current on subdivision 10. For this particular example, the MC
analysis was performed using 5× 104 samples. The values obtained with SCM and

Table 2.1: Simulation data for the PEC strip array

method P memory CPU-time mean variance
SGM 1 1.7 MB 3.8 s 3.5420 1.6726
SGM 2 10.3 MB 34.8 s 3.5527 1.7034
SGM 3 45.7 MB 290 s 3.5376 1.7177
SGM 4 172 MB 50 m 3.5369 1.7227
SCM 1 50 kB 5 s 3.5476 1.4366
SCM 2 403 kB 56 s 3.5319 1.6872
SCM 3 4.8 MB 394 s 3.5376 1.7258
SCM 4 71 MB 37 m 3.5370 1.7279

MC 5× 104 - - 3 h 30 m 3.5381 1.7242

SGM clearly converge to the same value, while the MC result has not yet converged to
this value. In this example, SGM remains more CPU-time efficient than SCM up to
P = 3. The radar cross-section (RCS) is given by

σ2D/λ

2.5 3 3.5 4 4.5 5 5.50.01

0.2

0.4

0.6

0.8

0.99

|Jz| [A/m]

10 12 14 16 18 20 22 24 26 28 30 32

C
D

F

Figure 2.3: CDF for the amplitude of the current for the 10th MoM subdivision (full
line) and for the RCS in the direction of specular reflection (dash-dotted line) for the
example of Fig. 2.1.



2.3. Numerical examples 27

σ2D = lim
ρ→∞

2πρ |E
s
z |2

|Eiz|2
, (2.14)

where ρ is the distance to the origin O in Fig. 2.1, Eiz is the incident electric field
and Esz is the scattered electric field which can be derived from the induced currents.
Fig. 2.3 shows both the Cumulative Distribution Function (CDF) of the absolute value
of the current induced on subdivision 10 and the CDF of the RCS in the specular
reflection direction, i.e. in the direction making an angle of π/4 with the x-axis.
Remark that both quantities vary considerably over the space of random variables.
In order to correctly represent the relative behavior of the two CDFs, the minimum
and maximum values on the horizontal axes for both current and RCS correspond to
CDF-values of 0.01 and 0.99 respectively.

2.3.2 Non-smooth surface

As a second example consider the TM-scattering by a non-smooth finite PEC-strip of
width w (see Fig. 2.4). The roughness of this strip is described by a stochastic Gaussian
process. To this end the strip is divided in M − 1 segments. The x-coordinates of
the endpoints of each segment remain fixed and are equidistantly spaced, i.e. ∆x =
w/(M − 1). However, the corresponding y-coordinates are situated at a variable
positive or negative height above a reference level, as also indicated on Fig. 2.4. We
collect these y-coordinates in a height vector h = [y1 y2 ... yM ]T . The roughness is
described by the following stochastic Gaussian process

P (h) = 1
M
√

2π
e−

1
2h

TΣ
−1
h (2.15)

and a Gaussian correlation matrix the elements of which are

[Σ(x)]ij = σ2e
−

|xi−xj |
2

L2
c (2.16)

whereLc is the correlation length, σ the standard deviation and with xj the x-coordinate
of each end point. The dimension of the random space considered in this example is
M . The correlated random variables are decorrelated by means of the KLT. First, the
correlation matrix is diagonalized:

U
T
Σ U = Λ. (2.17)

Second, the random heights h are described in terms of a set of M independent
standard normal random variables ξ = [ξ1 ... ξM ] through

h = E[h] +U Λ
1/2

ξ (2.18)

where E[h] is the mean value of random vector h. In this case, the appropriate
polynomials to model the uncertainty are orthonormalized Hermite polynomials. The
incident wave is identical to the one used in the previous example except for the angle
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Figure 2.4: Non-smooth PEC surface described by a set of points with variable height
w.r.t. a reference plane.

of incidence which is now α = 2π/3.
The numerical results discussed below are for a strip with widthw = 2λ. The roughness
of this strip is modeled with M = 10 Gaussian correlated random height variables with
standard deviation σ = λ/30 and correlation length Lc = λ/3 in (2.16). For M = 10,
the strip is modeled by 9 straight segments and 20 elementary unknowns per segment
are introduced for the MoM, i.e., N = 180. We again compare SCM and SGM results
and complement them by a MC analysis based on 5× 104 samples.
Fig. 2.5 displays the magnitude of the mean value and the standard deviation of the

current on each of the 180 MoM subdivisions. All simulation results are collected in
Table 2.2. The mean value and variance data are for the absolute value of the current
near the center (MoM subdivision 90). Remark the excellent agreement between SGM
and SCM, while, again, MC has not yet converged to yield correspondingly accurate
results. For P = 1 and P = 2 the CPU-time needed, differs little, but the difference
rapidly increases with P .

Similar to Fig. 2.3, Fig. 2.6 shows the CDF of the absolute value of the current induced
on subdivision 90 and the CDF of the RCS in the specular reflection direction, i.e. in
the direction making an angle of π/3 with the x-axis.

2.4 Conclusions

In this communication, we have shown how a frequency domain integral equation for
scattering by two-dimensional PEC objects in free space can be combined with the
intrusive Stochastic Galerkin Method. Attention is paid to the full statistics of the
induced currents and the RCS due to stochastic changes in the geometry of the scatterer.
The obtained results are compared to those of the non-intrusive stochastic collocation
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Figure 2.5: Magnitude of the mean value (full line) and standard deviation (dash-dotted
line), of the current distribution for the maximum polynomial order 4 for the example
of Fig. 2.4

Table 2.2: Simulation data for the non-smooth surface

method P memory CPU-time mean variance
SGM 1 571 kB 17.8 s 9.2598 2.1054
SGM 2 28.2 MB 5.4 m 9.2615 2.0962
SGM 3 33.4 MB 37.4 m 9.2614 2.0969
SGM 4 460 MB 12 h 9.2614 2.0969
SCM 1 63.8 kB 17.2 s 9.2587 2.1436
SCM 2 486 kB 3 m 9.2615 2.0970
SCM 3 5 MB 21.8 m 9.2614 2.0970
SCM 4 56 MB 2 h 2 m 9.2614 2.0969

MC 5× 104 - - 11 h 10 m 9.2642 2.0954

method which has already been studied in detail in literature. When applying the
MoM with N unknowns, the CPU-time required by the SGM is dominated by the
(K + 1)N × (K + 1)N deterministic matrix problem that has to be solved, where
K is the number of multivariate polynomial chaos expansion polynomials. This
number rapidly grows with the number of stochastic variables (the so-called curse
of dimensionality) and also with the total degree P of the multivariate expansion
polynomials. The CPU-time of the SCM is roughly proportional to Np times solving
an N × N system, with Np the number of integration points needed to calculate
expansion coefficients in the high- dimensional space of the stochastic variables. The
two selected examples (with 10 random variables) show that up to total degree P = 2
both SCM and SGM remain comparable in CPU-time requirements. From P = 3
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Figure 2.6: CDF for the amplitude of the current for the 90th MoM subdivision (full
line) and for the RCS in the direction of specular reflection (dash-dotted line) for the
example of Fig.2.4.

on, the SCM clearly becomes more efficient. For problems with a large number of
stochastic variables, SCM is the only viable option.
From the numerical results (for the presented examples and several other ones), it
also follows that it is very difficult to predict when a predefined accuracy has been
reached, especially so for the variance. At present a mathematical criterion predicting
the accuracy of the polynomial chaos expansion is lacking. Hence, from an engineering
point of view, the best approach seems to be to start calculations with a low total
degree P and with the minimum number of integration points needed for that degree.
Increasing the total degree and the number of integration points should then reveal how
trustworthy the as yet obtained data are.
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In this chapter, the Multilevel Fast Multipole Method (MLFMM) is com-
bined with the Polynomial Chaos Expansion (PCE) approach to model the
stochastic variations of a scatterer. In particular, it is demonstrated how
the Stochastic Galerkin Method (SGM) can be combined with an MLFMM
accelerated Method of Moments (MoM) and how the beneficial effects of
the MLFMM for electromagnetically large scatterers are retained in the
stochastic case.
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3.1 Introduction

Electromagnetic scattering analysis relies on exact data of the considered structures
such as material parameters and geometry. In reality, these data exhibit variability
and modeling of these uncertainties can be achieved by combining electromagnetic
analysis and stochastic analysis methods. The standard approach is to assume that
the parameters of interest are random variables with a predefined probability density
function (PDF). The goal is to determine the statistics of output parameters of interest,
such as the bistatic radar cross-section (RCS) and the current distribution on the
scatterer.
A standard way to analyze the effect of variability is by means of straightforward Monte
Carlo (MC) simulations which, unfortunately, show quite slow convergence at a rate
1/
√
Ns, whereNs is the number of separate runs of the code. As an alternative, spectral

methods based on polynomial chaos expansions (PCE) using orthogonal polynomials
depending on the particular distribution of the random variables were proposed [1].
Roughly speaking, these methods come in two flavors: the non-intrusive ones, such
as the Stochastic Collocation Method (SCM) [2] and the intrusive methods, such as
the Stochastic Galerkin method (SGM) [3]. Whereas non-intrusive methods rely on a
standard deterministic solver to obtain the statistical information, intrusive methods
require the development of a dedicated new solver. PCE-based methods are already
used for variability analysis of (on-chip) interconnects [4][5]. Superiority of PCE-based
methods over MC simulations for scattering problems is, e.g., demonstrated in [6] and
will not be repeated in this chapter.
In this chapter, we will use the SGM approach to model stochastic scattering problem by
means of an integral equation. As indicated in [5], applying SGM to integral equations
combined with the Method of Moments (MoM), leads to solving a large deterministic
problem. In order to decrease the computational complexity, the Multilevel Fast
Multipole Method (MLFMM) [7] is invoked. To the best knowledge of the authors, this
chapter is the first to discuss the combination of MLFMM with the intrusive SGM for
the stochastic analysis of scattering problems. To assess the benefits of the MLFMM
approach, we compare it to the standard MoM approach combined with SGM. Section
II discusses the theoretical framework, combining the Electric Field Integral Equation
(EFIE), its MoM solution, the SGM with its expansion of all variables in the proper
stochastic basis functions and the way the MLFMM can be adapted to the stochastic
approach. The numerical example in Section III illustrates the acceleration obtained by
introducing the MLFMM in the stochastic approach.

3.2 The stochastic scattering problem

We consider two-dimensional frequency domain scattering by perfect electrically
conducting (PEC) objects, residing in free space, with a stochastically defined geometry.
This geometric variability of the scatterer is described by a set of M independent
random variables which are collected in the vector ξ = [ξ1 ξ2 ... ξM ] with domain Ω.
The z-axis is the axis of invariance. The incident wave is a TM-polarized plane wave
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with electric field Ei = Eiuz . To determine the scattered field, we apply an electric
field integral equation (EFIE) solved by the MoM. To this end, the scatterer is divided
into N segments and pulse basis functions for the current distribution are used. As a
result, a stochastic linear system equation is obtained:

Z(ξ)I(ξ) = V (ξ). (3.1)

Next, all elements of ( 3.1) are represented via a PCE, from which we get:

K∑
k=0

V kφk(ξ) =
K∑
k=0

K∑
l=0

ZkI lφk(ξ)φl(ξ), (3.2)

where Zk, V k and I l represent the expansion coefficients of system matrix Z, RHS
V and unknown current density I , resp. φk(ξ) and φl(ξ) are multivariate polynomials
that are orthonormal with respect to the PDF W (ξ) of the random vector ξ. The
expansion coefficients of any quantity f(ξ) are obtained via:

fk =< f(ξ), φk(ξ) >, (3.3)

where < f(ξ), g(ξ) > represents an inner product defined as:

< f(ξ), g(ξ) >=
∫
Ω

f(ξ)g(ξ)W (ξ)dξ, (3.4)

with property < φj(ξ), φk(ξ) >= δjk, where δjk is the Kronecker δ. Multivariate
polynomials φk(ξ) are constructed as products of univariate polynomials only depend-
ing on a single random variable with sum of the orders of the univariate polynomials
(total degree) at most P . The number of polynomials K + 1 that is used in the PCE is
determined as:

K + 1 = (M + P )!
M !P ! . (3.5)

Galerkin projection of both sides of (3.2) on φm(ξ) finally leads to the following
deterministic set of equations where the dependence on ξ has been eliminated

V m =
∑

m:γklm 6=0
Zk I l γklm (3.6)

with γklm =< φk(ξ)φl(ξ), φm(ξ) > and where the summation is taken for all non-
zero values of γklm. Equation (3.6) represents a large deterministic system with
(K + 1)N unknowns as in [5]. This system has O(K2N2) memory complexity and
O(K3N3) computational complexity when using a direct solver. Memory complexity
is reduced to O(KN2) and computational complexity to O(nnzN2) when using
an iterative solver, where nnz represents the number of non-zero values of γklm.
Numerical calculations show that for P = 1, nnz = O(K), while for P > 1,
nnz = O(K1.5) instead of O(K3) when all coefficients γklm would be different from
zero. This is presented in Fig. 3.1 and more details can be found in [8]. Applying
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Figure 3.1: The number of non-zero values of nnz (blue) and trending curve with law
O(K1.5) (red) for different number of polynomials.

MLFMM can further decrease the computational complexity. In the FMM procedure
the structure is divided into groups of sources and the matrix-vector product (MVP)
is computed by calculation of the electric field radiated by one group of sources with
group center ρs at the group of observation points with group center ρo[7]. This is
done via the plane wave decomposition of the 2-D Green’s function G(ρ(ξ),ρ′(ξ)).
One element of the matrix Zk of expansion coefficients is calculated as:

Zij,k =
∫
Ω

∫
si

∫
sj

G(ρ(ξ),ρ′(ξ))dρ′dρ φk(ξ)W (ξ)dξ, (3.7)

where ρ′ ∈ sj and ρ ∈ si, as testing and basis function are constant over segments si
and sj . If the distance between the source group and observation group is sufficiently
large, calculation of the interaction can be decomposed in an aggregation, translation
and disaggregation step, i.e.

Zk =
∫
Ω

D(ρ(ξ),ρo)T qA(ρ′(ξ),ρs)φk(ξ)W (ξ)dξ, (3.8)
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where T q represents the diagonal translation matrix, whereA(ρ′(ξ),ρs) is the aggre-
gation matrix of the source group and whereD(ρ(ξ),ρo) is the disaggregation matrix
of the observation group. Since we are dealing with independent random variables
which describe the scatterer’s geometry and source and observation group are separated,
we assume that the aggregation matrix only depends on vector ξs which is a subset of
vector ξ and is independent of subset ξo on which the disaggregation matrix depends.
This means that the integral in (3.8) can be represented as a product of two integrals,
one over subset ξs and one over subset ξo. This leads to substantial simplifications as
the PCE of disaggregation and aggregation matrix can now be determined separately.
Furthermore, the translation matrix T q = T q(ρs,ρo) depends on the group centers
and also in case of stochastic variations we can keep these centers fixed. Hence, T q is
a deterministic function, independent of ξ, as long as the pertinent subsets ξs and ξo
are disjunct.

In the MLFMM approach, groups are hierarchically divided into levels, where higher
level groups consist of sets of lower level ones. To perform the MVP, first, in the
aggregation step, the radiation pattern of the source group is sampled into outgoing
plane waves (OPWs). On the lowest level this is done by multiplying the aggregation
matrix of the group with the vector of current strengths of the sources. In the stochastic
case, we need the PCE of the OPWs. The PCE coefficients for these OPWs, collected
in vectorsOPWm, are obtained via:

OPWm =
∑

m:γklm 6=0
Ak I l γklm (3.9)

where matrices Ak are the expansion coefficients of the aggregation matrix. OPWs
of groups on higher levels are calculated via interpolation and shifting operations [7].
Via the translation step, OPWs are converted in incoming plane waves (IPWs) arriving
at the observation group. IPWs at lower levels are calculated via anterpolation and
shifting operations[7]. Finally, on the lowest level, stochastic IPWs are evaluated at
the observations points in the disaggregation step. This leads to the coefficients V m in
(3.6), given by:

V m =
∑

m:γklm 6=0
Dk IPW lγklm (3.10)

where matrices Dk are the expansion coefficients of the disaggregation matrix and
IPW l represents the expansion coefficients of the IPWs. In the MLFMM approach
advocated here, (3.9) and (3.10) are calculated at the lowest level of the MLFMM
tree. The cost of these steps in a deterministic MLFMM scheme is O(N) [7]. From
(3.9) and (3.10), it can be seen that the complexity is now increased to O(nnzN).
But, since the aggregation and disaggregation matrices only depend on subsets of ξ,
many expansion coefficientsAk andDk are zero, and the complexity is substantially
decreased, as will be numerically demonstrated in the next section. The complexity of
other operations (interpolation, shifting, translation, anterpolation) is (K + 1) times
higher than in the deterministic case, since OPWs and IPWs are described via PCE.
For dense structures, complexity of these operations would be O(KN). In a similar
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way, the matrices Zk are however sparse, and the complexity of MVPs in the MoM
can be reduced, as will be demonstrated in the next section.

3.3 Numerical example

3.3.1 Scattering by a finite periodic 2D array of PEC strips

E
i

H
i

T

O

α x

y

h

w

B0
B1

B2 B3

T

Figure 3.2: Periodic 2D array of PEC strips. Widths w and heights h are random. For
clarity, here, the case with only four strips is shown.

We consider TM-scattering by a periodic but finite 2D array of PEC strips with varying
widths w as depicted in Fig. 3.2 for the four strips case. The x-coordinates of the
position vectors of the centers of the strips remain fixed with constant spacing T . On
the other hand, the y-coordinates vary as described by relative heights h w.r.t. the
nominal y-values. These nominal values are again equally separated by a spacing T .
The variability of the structure is hence described by vectors of widths w and relative
heights h which are chosen to be independent uniformly distributed random variables.
The widths of the strips vary between 0.5T −λ/20 and 0.5T +λ/20, with T = λ, and
the heights of the strips between −λ/20 and λ/20, where λ is the wavelength of the
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incident wave, i.e. we introduce 20% variations compared to nominal width w = 0.5T .
The incident wave is a TM-polarized plane wave impinging under an angle α = 3π/4
with the positive x-axis and frequency f = 2.45 GHz.

In the MLFMM scheme, the structure is divided in square boxes with fixed side T
and centers indicated by B0, B1, B2 and B3 which coincide with the nominal position
vectors of the centers of the strips. In order to demonstrate the benefits of using the
MLFMM, the number of strips will be increased to 4 by 4, 8 by 8 and 16 by 16, keeping
the nominal center positions on a regular T by T grid. At the lowest MLFMM level
the box size also remains T by T .

The PCE uses multivariate orthonormal Legendre polynomials which are the proper
functions to model uncertainties in the case of uniform distributions. In the MoM
approach, matrix elements that describe interactions on the same strip depend on a
single random variable, i.e. the width, and matrix elements that describe interactions
between two strips depend on four random variables, i.e. two widths and two heights.
Hence, in this example, the M dimensional integral in (3.7) is reduced to either a one
dimensional or a four dimensional integral. When calculating Ak and Dk, matrix
elements only depend on two random variables.
The current on each of the strips is modeled using 20 equal length subdivisions with
piecewise constant basis functions. The total number of unknowns in the MoM grows
from N = 80 in the 2 × 2 case to N = 5120 in the 16 × 16 case. The total number
of random variables also grows with a factor 4 from M = 8 to M = 512. For this
example, the quantities of interest (surface current, RHS, impedance matrix elements)
are modeled using expansions with highest polynomial order, i.e. total degree, P = 2.
Our experience shows that P = 2 suffices to describe the wanted statistics with
acceptable accuracy. In the last example with 512 random variables, the total number
of polynomials in (3.5) is so large, i.e. 131841, that we have restricted ourselves
to the P = 1 case. Fig. 3.3 represents the mean value and the standard deviation
of the induced current for top left strip of the scatterer for the 4 × 4 case. Results
from straightforward application of the SGM-MoM combination and from SGM-MoM
with MLFMM acceleration are indistinguishable on the scale of the figure. The most
important numerical difference between the two approaches is due to the fact that
the MoM-SGM approach uses a PCE for Z(ξ), I(ξ) and V (ξ) in (3.1), while the
SGM-MoM-MLFMM does the same for V (ξ) and I(ξ) but on top of that introduces
separate PCEs for the disaggregation and aggregation matricesD(ξ) andA(ξ) in (3.8),
possibly leading to additional truncation errors in (3.9) and (3.10). This truncation error
when using SGM is discussed in [9], showing that this error decreases for increasing
polynomial order P and for decreasing variations of the random variables. Another
numerical difference arises when determining the radiated field due to a group of
sources in an MLFMM box. In the SGM-MoM approach this field is directly obtained
using the Green’s function and the PCE of the currents. In the SGM-MoM-MLFMM
approach this field emerges from the group’s OPW expansion and depends both on the
PCE of these OPWs and on the number of sampling directions. In order to illustrate
the numerical differences, results for the mean and the variance of the magnitude of the
center current on subdivision 10 of the top left strip for the 4× 4 and 8× 8 examples
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Figure 3.3: Magnitude of the mean value (full line) and standard deviation (dash-dotted
line), of the current distribution on the top left strip for the 4 × 4 example and total
degree P = 2.

Table 3.1: Mean and variance of the magnitude of the center current of the top left strip
for different methods

method P mean (4× 4) variance (4× 4)
MoM 1 5.7503 2.1910

MoM-MLFMM 1 5.7497 2.1907
MoM 2 5.7598 2.0813

MoM-MLFMM 2 5.7598 2.0817

method P mean (8× 8) variance (8× 8)
MoM 1 6.0925 2.8665

MoM-MLFMM 1 6.1000 2.8930
MoM 2 6.0991 2.6294

MoM-MLFMM 2 6.0991 2.6298

are shown in Table 3.1, for P = 1 and P = 2.

The radar cross-section (RCS) per unit length (p.u.l.), also called scattering width, is
given by

σ2D = lim
ρ→∞

2πρ |E
s
z |2

|Eiz|2
, (3.11)

where ρ is the distance to the origin O in Fig. 3.2, Eiz is the incident electric field and
Esz is the scattered electric field which can be derived from the induced currents or in
the MLFMM approach, by using the OPWs expansion at the highest level. Fig. 3.4
shows the mean value and variations around this mean value with maximum variability
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Figure 3.4: Mean RCS p.u.l. with ± one standard deviation variation for structure with
8× 8 strips for polynomial order P = 2.

of one standard deviation for the structure with 8 × 8 strips. It can be seen that the
RCS p.u.l. is the highest in the specular reflection direction and that the radiation
pattern shows a number of side lobes. The ± one standard deviation of these lobes
is quite substantial. Finally, in Table 3.2, in order to demonstrate the computational

Table 3.2: CPU time for one MVP product

N P K + 1 nnz MLFMM [s] MoM [s]
320 0 1 1 0.0017 0.0012
320 1 33 97 0.0658 0.04822
320 2 561 37521 1.8509 1.5181

1280 0 1 1 0.0103 0.0184
1280 1 129 385 1.334 2.3681
1280 2 8385 2171457 118.99 204.33
5120 0 1 1 0.0518 0.2877
5120 1 513 1537 25.34 149.07

efficiency of the proposed MLFMM approach, we present the CPU time for one matrix-
vector product (MVP) for different cases and polynomial orders, again comparing
the straightforward SGM-MoM approach to the MLFMM accelerated one. In this
table, N is the number of unknowns in the MoM (320: 4 × 4 case; 1280: 8 × 8
case; 5120: 16× 16 case), P is the maximum degree of the multivariate polynomials,
K + 1 is the corresponding total number of polynomials corresponding to a particular
P -value and nnz is the number of non-zero values of γklm in (6). Remark that the case
P = 0 simply corresponds to using the nominal value of all variables, i.e. the simple
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deterministic case. Further remark that nnz has to be weighed against the maximum of
K3 when all γklm would be different from zero. Table 3.2 shows that the acceleration
due to the MLFMM is very substantial for the largest (16×16) scatterer. The crossover
point is found at about N = 1000, as is also the case for traditional (deterministic)
MLFMM.

3.4 Conclusions

In this chapter, two-dimensional TM-scattering at an electrically large, stochastically
varying, PEC scatterer was used to demonstrate how the statistics of induced currents
and of the radiation pattern can be found by optimally combining the MoM, the SGM
and the acceleration due to the MLFMM. The SGM is an intrusive method allowing to
replace the original stochastic problem by an equivalent, but much larger, deterministic
problem. As the PEC strip array example in the chapter demonstrates, the solution
of this larger deterministic problem, greatly benefits from the MLFMM by taking
into account the particularities of the matrix-vector product which arises from the
application of the SGM.
Further research is needed to include dielectrics objects to extend this approach to the
2D analysis of multiconductor transmission lines, and also to the 3D case in order to
find out if all conclusions remain valid.
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ÆÆÆ

In this chapter, we present a preconditioner for an intrusive Stochastic
Galerkin Method (SGM) based scattering solver that also leverages the
Multilevel Fast Multipole Method (MLFMM). The proposed preconditioner
is essential in developing a general and intrusive SGM method. The
simulation results were obtained for a canonical scattering structure with
perfect electrically conducting (PEC) strips with statistically varying
geometry. Results are reported for the number of iterations, with and
without using a preconditioner, and for the time required to setup the
preconditioner.
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4.1 Introduction

Stochastic modeling of electromagnetic structures that exhibit inherent variability
has been studied in recent years. Methods based on polynomial chaos expansion
(PCE) have better accuracy and efficiency over traditional Monte Carlo (MC) analysis
[1]. These methods can be divided into two classes: non-intrusive ones, which rely
on reusing a traditional deterministic solver, and intrusive solvers, which require
modification of the computational algorithm. Both types were combined with the
Method of Moments (MoM) for solving Boundary Integral Equation (BIE) scattering
problems [2]. The basic idea of all PCE based methods is to describe the random
variations by a linear combination of polynomials. The number of polynomials K
grows rapidly with the number of stochastic parameters and the polynomial order. The
intrusive SGM approach results in a large linear system of equations that needs to
be solved. To decrease the computational time needed to solve such a large system,
the Multilevel Fast Multipole Method (MLFMM) is invoked [3]. It was shown that
the calculation of matrix element interactions through a plane wave decomposition
of the Green’s function remains applicable in the stochastic case if the variations of
sources residing in sufficiently separated boxes are mutually independent. The total
complexity of one matrix-vector product is shown to be equal to the deterministic
MLFMM complexity scaled by a factor that depends on K. To further decrease the
solution time, the number of iterations in the iterative solver should be reduced.
We consider the same structure as in [3], which is a standard structure for analyzing
novel methods. PEC strips are organized in a periodic two-dimensional, but finite array,
as in Fig. 3.2. For each strip, its width w is considered as a random variable, as well as
its y-coordinate of the position of its center, which is described by its relative offset
h w.r.t. the nominal value. The nominal positions of the centers are equally spaced
with a constant spacing T . The variability is described with vectors of widths w and
heights h, which are chosen to be independent uniformly distributed random variables.
The widths vary between 0.5T − λ/20 and 0.5T + λ/20, while heights vary between
−λ/20 and λ/20, where T = 0.5λ, and λ is the wavelength.

In order to show the benefits of the SGM-MLFMM, in [3], the 2 × 2 structure in
Fig. 3.2 was taken as a starting point and expanded into a 4× 4 and 8× 8 structure,
keeping the same rectangular organization of the strips. It was shown that the crossover
point, when a SGM-based MoM and MLFMM are compared, is the same as in the
deterministic case.
To reduce the number of iterations, we introduce a preconditioner that is based on a
block-Jacobi preconditioner. This type of a preconditioner was introduced in [4]. The
SGM matrix exhibits a block structure where the diagonal blocks are, in general, equal
to the average (mean) matrix Z0 of the structure. The random variations are to be
found in the other blocks. This means that the resulting matrix is diagonally dominant,
and for small relative variations, this block diagonal matrix with Z0 on the diagonal is
a good representation of the whole matrix and thus it can be used as a preconditioner.
However, when using the MLFMM, the entire Z0 with size N ×N is never stored.
Therefore, the preconditioner is based on the diagonal blocks within the Z0 matrix that
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correspond to the near interactions, in our case, near interactions between points in one
box on the lowest MLFMM level that contain one PEC strip. The organization of this
matrix is presented schematically in Fig. 4.1. The black squares within the diagonal
block correspond to the near interactions within one box and in the MLFMM approach
these blocks are actually stored. The size of the blocks could be increased at the cost
of a higher setup time, since the number of sources and random variables inside the
block are increased. Moreover, more near interactions in the MLFMM tree would be
involved which affects the solution time.

KN

KN

N

N

Z0

Figure 4.1: Block diagonal organization of the preconditioner matrix. Due to the lack
of the space, the simple situation for the 2× 2 array with K = 4 is presented.

4.2 Simulation results

Here we provide results for two types of the structures, one involving 4× 4 and another
involving 8× 8 strips. The first structure is represented with 32 random variables and
discretized with N = 320 unknowns. The second one is described with 128 random
variables and discretized with 1280 unknowns. Simulations are obtained with total
polynomial orders 1 and 2, as presented in Table 4.1. The iterative precision is set to
10−8 and a stabilized biconjugate gradient iterative solver is used [5]. To compare
results, we will focus on the total setup time tse, solution time tso and the number of
iterations Niter needed to obtain the predefined accuracy. The last column in Table 4.1
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indicates whether the preconditioner was used or not. The total number of unknowns is
Nstoc = KN .

Table 4.1: Simulation results

Nstoc K tse [s] tso[s] Niter Preconditioner
10 560 33 16.4 3 49 yes
10 560 33 15.7 12.9 225 no
179 520 561 76 100 56 yes
179 520 561 74.4 450 258 no
165 120 129 90 249 190 yes
165 120 129 88.6 987 778 no

10 732 800 8 385 423 31 114 212 yes
10 732 800 8 385 422 116 816 818 no

It is clear from the table that the number of iterations when using a preconditioner
is smaller than without preconditioner. This significantly reduces the solution time,
even though the time for a single iteration is increased due to the application of the
preconditioner. We can see small differences in setup time, which now involves
additional calculation of the inverse of the block matrix. However, this difference is
negligible compared to the total time. It is clear that this type of the preconditioner,
although simple, remains effective for the SGM-MLFMM solver. Even for small
electromagnetic structures, this preconditioner is needed, since complexity grows fast
with the number of polynomials K.

4.3 Conclusions

Developing an efficient preconditioner is essential in the construction of general and
intrusive MLFMM-based stochastic methods. We have shown that a simple block-
Jacobi preconditioner can serve for this purpose. The choice of the preconditioner is
based on the particular properties of the SGM matrix and the geometry. One should
be careful when determining the size of the blocks on which preconditioning will be
applied, especially so for large structures. Further research is needed to combine this
preconditioner with large electromagnetic structures and to study its effectiveness.



References

[1] D. B. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos for
stochastic differential equations”, SIAM Journal on Scientific Computing, vol.
24, no. 2, pp. 619–644, 2002.

[2] Z. Zubac, D. De Zutter, and D. Vande Ginste, “Scattering from two-dimensional
objects of varying shape combining the Method of Moments with the Stochastic
Galerkin Method”, IEEE Transactions on Antennas and Propagation, vol. 62,
no. 9, pp. 4852–4856, Sep. 2014.

[3] Z. Zubac, D. De Zutter, and D. Vande Ginste, “Scattering from two-dimensional
objects of varying shape combining the Multilevel Fast Multipole Method
(MLFMM) with the Stochastic Galerkin Method (SGM)”, IEEE Antennas and
Wireless Propagation Letters, vol. 13, pp. 1275–1278, Jul. 2014.

[4] M. F. Pellissetti and R. G. Ghanem, “Iterative solution of systems of linear
equations arising in the context of Stochastic Finite Elements”, Advances in
Engineering Software, vol. 31, pp. 607–616, 2000.

[5] R. D. da Cunha and T. Hopkins, Pim 2.2 the Parallel Iterative Methods Package
for Systems of Linear Equations User’s Guide (Fortran 77 version), UKC,
University of Kent, Canterbury, UK, 2000.





5
Efficient uncertainty

quantification of large
two-dimensional optical systems

with a parallelized stochastic
Galerkin method

Zdravko Zubac, Jan Fostier, Daniël De Zutter and Dries Vande Ginste

Published in Optics Express, vol. 23, no. 24, pp. 30 833–30 850, Nov. 2015.

ÆÆÆ

It is well-known that geometrical variations due to manufacturing toler-
ances can degrade the performance of optical devices. In recent literature,
polynomial chaos expansion (PCE) methods were proposed to model
this statistical behavior. Nonetheless, traditional PCE solvers require a
lot of memory and their computational complexity leads to prohibitively
long simulation times, making these methods intractable for large optical
systems. The uncertainty quantification (UQ) of various types of large,
two-dimensional lens systems is presented in this chapter, leveraging a
novel parallelized Multilevel Fast Multipole Method (MLFMM) based
Stochastic Galerkin Method (SGM). It is demonstrated that this technique
can handle large optical structures in reasonable time, e.g., a stochas-
tic lens system with more than 10 million unknowns was solved in less
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than an hour by using 3 compute nodes. The SGM, which is an intrusive
PCE method, guarantees the accuracy of the method. By conjunction
with MLFMM, usage of a preconditioner and by constructing and im-
plementing a parallelized algorithm, a high efficiency is achieved. This
is demonstrated with parallel scalability graphs. The novel approach is
illustrated for different types of lens system and numerical results are vali-
dated against a collocation method, which relies on reusing a traditional
deterministic solver. The last example concerns a Cassegrain system with
five random variables, for which a speed-up of more than 12× compared
to a collocation method is achieved.

5.1 Introduction

Variability analysis and uncertainty quantification (UQ) have become a major concern
during the design step of optical systems and components as manufacturing toler-
ances and process variations can have a dramatic influence on the performance [1].
In particular, even small variations of geometrical dimensions or material properties
affect the electromagnetic behavior of the structures under design. To model these
variations, one may simply combine statistical analysis with traditional, deterministic,
full-wave solvers. The widely used Monte Carlo (MC) technique is an example of such
an approach, repeatedly solving a large number of deterministic problems (samples),
leading to an easy to implement and robust analysis. Unfortunately, MC has a slow
convergence rate, yielding a high computational cost. For large full-wave problems,
as typically encountered during the UQ of optical lens systems, this method rapidly
becomes intractable.
To more efficiently assess variability, methods based on Polynomial Chaos Expansions
(PCE) have been devised [2]. The basic idea of PCE methods is that any variation of a
set of (geometric or material) parameters can be represented as a linear combination of
polynomials that depend on these input parameters. Subsequently, the pertinent system
equations, e.g. Maxwell’s equations, are solved, taking these polynomial variations
into account. This leads to a stochastic description of the variability of the desired
output parameters, which can for example be electric field strengths. Traditionally,
PCE-based methods can be subdivided into two classes. First, the class of non-intrusive
PCE methods, such as the Stochastic Collocation Method (SCM), relies, like the MC
method, on reusing the deterministic code to solve the system equations. In contrast
to MC, SCM chooses the samples in a more clever way, depending on the Probabil-
ity Density Function (PDF) of the input parameters. Second, the class of intrusive
PCE methods, such as the Stochastic Galerkin Method (SGM), requires a thorough
modification of the solver that tackles the system equations. In literature, it is argued
that the SGM often leads to better accuracy than the SCM. In the domain of electrical
engineering, intrusive methods are already successfully applied in the variability analy-
sis of on-chip interconnects [3], [4] and scattering problems [5]–[7]. Recently, in the
domain of photonics, the non-intrusive SCM method has been applied for the UQ of a



5.2. Theoretical framework 53

silicon-on-insulator based directional coupler [8].
In this chapter, the focus is on the UQ of large optical lens systems. Thereto, an
intrusive full-wave SGM scheme is proposed. The full-wave character of the problem
is described by means of a set of boundary integral equations (BIE) that are solved
by means of the Method of Moments (MoM) [9]. To expedite the computations, the
Multilevel Fast Multipole Method (MLFMM) has been combined with a SGM-MoM
solver. In [7] it was shown that such an approach leads to the traditional O(N logN)
computational complexity, N being the number of unknowns, but scaled with a factor
that depends on the number of polynomials. Whereas in [7] relatively small scattering
problems were handled, here, we aim to model large optical setups. Therefore, we
present the parallelization of the full-wave intrusive SGM-MLFMM solver and we
propose an effective preconditioning scheme to further accelerate the computations.
Parallelization of SGM applied to elliptic partial differential equations is reported
in [10], but as explained further it is still prohibitively slow to deal with the optical
systems presented in this chapter. In [11], an asynchronous parallelization of MLFMM
for deterministic structures consisting of multiple dielectric objects is described. To our
best knowledge, however, present chapter is the first that proposes the parallelization
of a full-wave SGM-MLFMM solver for Maxwell’s equations, capable of handling
both dielectric and perfectly electric conducting (PEC) objects.
This chapter is organized as follows. In Section 5.2, we present the theoretical frame-
work of the SGM-MLFMM paradigm for solving BIEs. Section 3 deals with the
implementation of the algorithm with a focus on its parallelization and on the design
of a preconditioner. In Section 4, we report simulation results for several large optical
structures, such as lens systems. We validate our method by comparing the results with
a traditional SCM. Finally, in Section 5, we give some concluding remarks.

5.2 Theoretical framework

We start with a very general description of the electromagnetic problem geometry under
consideration, which allows deriving a rigorous theoretical framework. Consider two-
dimensional (2D) dielectric objects with a refractive index ni, or equivalently, by means
of their permittivity εi and permeability µi, and perfectly electrically conducting (PEC)
objects, residing in free space (Fig. 5.1). The geometry of these objects is stochastically
described by means of a set of M random variables (RV) that are collected in the
random vector ξ = [ξ1 ξ2 ... ξM ] with domain Ω. One object can depend on zero, one
or more RVs. The objects are illuminated by an incoming transverse magnetic (TM)
electromagnetic wave Eiz . In the sequel, an exp(jωt) time dependence, with ω the
angular frequency, is assumed and suppressed throughout the text.

Starting from Maxwell’s equations, the scattering problem is cast as a boundary integral
equation (BIE), which for dielectric objects was written down in [12]. For conciseness,
we limit the description to the case of a single object with contour C, for which the
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Perfect electrical conductor (PEC)

µ1, ε1, ξ1 C1

µ2, ε2, ξ2 C2

µ3, ε3, ξ3
C3

µ0, ε0

ξ4 C4

Eiz ,Hi
t

ŷ

x̂

ẑ

Figure 5.1: Canonical problem geometry. Objects are described by their electrical prop-
erties µi, εi and their geometries are defined with contours Ci. Stochastic variations of
the geometry are introduced and indicated by means of a set of random variables ξi,
i = 1, ...,M.

pertinent BIEs are given by [13]:

Eiz − lim
r→C+

∮
C

[
Ez

∂G0

∂n′
− jk2

0
ωε0

G0Ht

]
dc′

= lim
r→C−

∮
C

[
Ez

∂G

∂n′
− jk2

ωε
GHt

]
dc′, (5.1)

Hi
t − lim
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∮
C

[
− jωεo

k2
0
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∂2G0

∂n∂n′
− ∂G0

∂n
Ht

]
dc′

= lim
r→C−

∮
C

[
− jωε

k2 Ez
∂2G

∂n∂n′
− ∂G

∂n
Ht

]
dc′, (5.2)

where Go represents the Green’s function of the free space background medium with
wavenumber k0 given by:

G0(ρ,ρ′) = j

4H
(2)
0 (k0|ρ− ρ′|), (5.3)

and G represents a similar Green’s function for the i-th medium with wavenumber
ki = k0ni, corresponding to the material the object is made of. The unknowns are the
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z-oriented electric field Ez and the magnetic field Ht tangential to the contour C. C+

and C− represents the path of integration along the contour C when integrating just
outside and just inside the object respectively. To solve the BIE, the contour is divided
into a number of segments Nseg. The unknown magnetic field Ht is expanded into
pulse basis functions bi(ρ′) defined over these segments, while the unknown electric
field Ez is expanded into triangular basis functions ti(ρ′) as follows:

Ht =
Nseg∑
i=1

Ht,i bi(ρ′), (5.4)

Ez =
Nseg∑
i=1

Ez,i ti(ρ′). (5.5)

This discretization leads to a number of N = 2Nseg scalar unknown expansion
coefficients Ht,i and Ez,i. To create a traditional MoM linear system of equations,
triangular testing functions ti(ρ) for Ht and pulse testing functions bi(ρ) for Ez are
used. The resulting linear system of equations is written as:

Vi =
N∑
j=1

Zij Ij , for all i = 1, ..., N, (5.6)

with
Vi =

∫
li

Eiz bi(ρ)dρ (5.7)

or
Vi =

∫
li

Hi
t ti(ρ)dρ, (5.8)

and:

Zij =
∫
li

∫
lj

Ez,j bi(ρ) tj(ρ′)
∂G0

∂n′
dρdρ′ +

∫
li

∫
lj

Ez,j bi(ρ) tj(ρ′)
∂G

∂n′
dρdρ′,

(5.9)
or

Zij = −
∫
li

∫
lj

Ht,j bi(ρ) bj(ρ′)
jk2

0
ωε0

G0 dρdρ
′−∫
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∫
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Ht,j bi(ρ) bj(ρ′)
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ωε
Gdρdρ′, (5.10)
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Zij = −
∫
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or

Zij = −
∫
li

∫
lj

Ht,j ti(ρ) bj(ρ′)
∂G0

∂n
dρdρ′ −

∫
li

∫
lj

Ht,j ti(ρ) bj(ρ′)
∂G

∂n
dρdρ′,

(5.12)
where the integrations are done over line segments li and lj .
When the geometry of the objects is stochastic, meaning the location of several seg-
ments of the contours may depend on one or more of the RVs, the resulting MoM
system becomes stochastic and is in general written as:

Z(ξ)I(ξ) = V (ξ), (5.13)

where the traditional N ×N interaction matrix Z, the known right-hand side (RHS)
N -vector V , and the vector I collecting the N unknown expansion coefficients, all
become dependent on the random vector ξ. The reader is encouraged to consult [3],
[14], [15] and the references therein to gain familiarity with the SGM in the domain of
electrical engineering. Here, similarly as in [6], where the SGM was combined with
the MoM for small scattering problems, we start from expansions of the stochastic
quantities introduced in Eq.( 5.13) into polynomial basis functions. These PCEs are
given by:

Z(ξ) ≈
K∑
k=0

Zkφk(ξ), (5.14)

V (ξ) ≈
K∑
k=0

V kφk(ξ), (5.15)

I(ξ) ≈
K∑
k=0

Ikφk(ξ), (5.16)

where φk(ξ) are multivariate polynomials, i.e. products of M univariate polynomials
for the individual RVs ξi chosen according to the Wiener-Askey scheme [2] and such
that they are orthonormal with respect to the probability density function (PDF) W (ξ)
with domain Ω of the random vector ξ, as follows:

< φj(ξ), φk(ξ) >= δjk (5.17)

where δjk is the Kronecker δ and with the inner product defined as:

< f(ξ), g(ξ) >=
∫
Ω

f(ξ)g(ξ)W (ξ)dξ. (5.18)

The M univariate polynomials are multiplied following the total degree rule, i.e., so
that sum of the orders is at most P . Given this total order P , the number of polynomials
K + 1, as used in the PCEs Eqs. ( 5.14), ( 5.15) and ( 5.16), is determined as:

K + 1 = (M + P )!
M !P ! . (5.19)
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The expansion coefficients in Eqs. ( 5.14) and ( 5.15) are found via projection:

Xk =<X(ξ), φk(ξ) >, (5.20)

where X represents Z and V . Inserting PCE Eqs. (5.14), (5.15) and (5.16) into Eq.
(5.13) yields:

K∑
k=0

V kφk(ξ) =
K∑
k=0

K∑
l=0

ZkI lφk(ξ)φl(ξ), (5.21)

Galerkin projection of both sides of Eq. (5.21) onto the orthogonal polynomial basis
functions leads to:

<

K∑
k=0

V kφk(ξ), φm(ξ) >=<
K∑
k=0

K∑
l=0

ZkI lφk(ξ)φl(ξ), φm(ξ) >,

for all m = 0, ...,K, (5.22)

which, after using the orthonormal property given by Eq. (5.17), again results in an
equivalent system of equations, in which the stochastic dependence is eliminated:

V m =
∑

m:γklm 6=0
Zk I l γklm (5.23)

with γklm =< φk(ξ)φl(ξ), φm(ξ) > and where the summation is taken for all non-
zero values of γklm. The linear system given by Eq. (5.23) shows that the traditional
O(N2) complexity for a standard deterministic MoM is now scaled with factor that
corresponds to the number of non-zero values of γklm and follows an O(K1.5) scaling
law of [7]. Moreover, the total number of unknowns in (5.23) is actually Nstoc =
(K + 1)N . In conclusion, although SGM-MoM is accurate for small scattering
problems, the approach rapidly becomes intractable for the variability analysis of a
large electromagnetic structures. Therefore, in the next section, MLFMM will be
introduced. This then further allows parallelization, which is necessary to expedite the
computations.

5.3 Implementation of a parallel SGM-MLFMM solver
with a preconditioner

5.3.1 SGM-MLFMM

A vast amount of literature is available describing the traditional, deterministic MLFMM
scheme [16]. This scheme has, e.g., also been applied to scattering from and radiation
by intricate dielectric objects such as printed circuit board antennas [17], [18] and to
photonic crystal waveguides [19]. The reader is encouraged to consult these references
to gain familiarity with the MLFMM scheme. Here, for conciseness, we only repeat
the gist of it and immediately introduce a stochastic variant. This algorithm allows im-
proving the computational complexity of the matrix-vector product (MVP) during the
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iterative solution of Eq. (5.23) and avoiding the storage of Z(ξ) or its PCE coefficients
Zk.

ρco− ρ
c
s

B

B′

R

x̂

ŷ
R ρ(ξo)

ρco

ρ′(ξs)
ρcs

Figure 5.2: Typical MLFMM constellation of a source box B′ and an observation box
B.

The boundaries of all dielectric objects are discretized into N finite segments, corre-
sponding to the pertinent BIE-MoM approach. Next, all these segments are recursively
subdivided in an L-level MLFMM quad-tree. At each level l = 1, 2, . . . , L, the boxes
are circumscribed by a hypothetical circle of radius Rl. Any interaction between two
segments in the BIE-MoM scheme, corresponding to one element of the matrix Z(ξ),
is readily rewritten as the interaction between many elementary line sources si(ξs)
with strength Jsi(ξ). In Fig. 5.2, one such single line source, located at ρ′(ξs) and
residing in source boxB′, and a single observer, located at ρ(ξo) and residing in source
box B, is shown. Note that the locations ρ′ and ρ depend on mutually independent
subsets ξs and ξo of the total set of RVs ξ, as in MLFMM algorithms the source and
observation boxes must be separated sufficiently far from each other. The centers of
the source and observation box are located at the deterministic locations ρcs and ρco
respectively.
We invoke the well-known plane-wave decomposition of the pertinent Green’s func-
tion G(ρ(ξo),ρ′(ξs)) of the background medium to rewrite the MVP as follows [16].
First, during the so-called aggregation step, the radiation pattern of box B′ is sampled
into 2Q+ 1 outgoing plane waves (OPWs):

OPWB′

q′ (ξ) =
∑
si

ejk(ϕq′ )·(ρ
′(ξs)−ρcs)Jsi(ξ), (5.24)

where k(ϕq′) = k(cosϕq′ x̂ + sinϕq′ ŷ). The samples are taken at angles ϕq′ =
2πq′/(2Q+ 1), q′ = −Q, . . . , Q, and the number of samples is typically chosen such
that the radiation pattern is reconstructed with a desired number of digits of accuracy,
denoted as d0. In a well-constructed MLFMM tree, any accuracy up to machine
precision can be reached [16], provided Q is chosen to be:



5.3. Implementation of a parallel SGM-MLFMM solver with a preconditioner 59

Q = 2kR+ 1.8d2/3
0 (2kR)1/3. (5.25)

The stochastic nature of this aggregation step is indicated by the ξ dependence. In the
proposed SGM-MLFMM approach, PCE expansion are again invoked:

OPWB′(ξ) =
K∑
k=0

OPWB′

k φk(ξ) (5.26)

such that via projection, each PCE-coefficient of the OPWs is computed as:

OPWB′

m =
∑

m:γklm 6=0
Ak I l γklm (5.27)

whereAk are PCE coefficients of the aggregation matrix, defined as:

A(ξs)q′,si = ejk(ϕq′ )·(ρ
′(ξs)−ρcs), q′ = −Q, . . . , Q, (5.28)

and I l are PCE coefficients of the current density which contain PCE coefficients of
the elementary current strengths Jsi(ξ).
Second, during the translation step, a deterministic and diagonal translation matrix T
converts the PCE-coefficients of the OPWs about the center of box B′ to incoming
plane waves (IPWs) about the center of box B, as follows:

IPWB
k,q′ = Tqq(k, |ρccso|, ϕccso)OPWB′

k,q′ , q′ = −Q, . . . , Q, k = 0, . . . ,K,
(5.29)

where the numbers Tqq(k, |ρccso|, ϕccso) represent the 2Q+1 (non-zero) diagonal elements
of the translation matrix, given by:

Tqq(k, ρ, ϕ) = 1
2Q+ 1

Q∑
q′′=−Q

H
(2)
q′′ (kρ)ejq

′′(ϕ−ϕq−π2 ) (5.30)

with ρccso = |ρco − ρcs| the distance between the centers of the boxes and ϕccso the angle
between vector ρco − ρcs and the x-axis.
Third, during the disaggregation step, the IPWs are evaluated at the observation points.
In case of a single, elementary line source at ρ′(ξs), the field at a single observer at
ρ(ξo) in box B is nothing else than the pertinent Green’s function, now expanded
using the plane-wave formalism, as follows:

G(ρ(ξo);ρ′(ξs)) = j

4

Q∑
q=−Q

e−jk(ϕq)·(ρ(ξo)−ρo)IPWB
q (ξ) (5.31)

To obtain an efficient multilevel scheme, the interaction between boxes occurs at
well-chosen levels in the MLFMM tree. Up- and downsampling of OPWs and IPWs
happens via Fast Fourier Transforms (FFTs).
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In the deterministic MLFMM simulation, the total cost of all steps is O(N logN).
The aggregation step and disaggregation steps are calculated with cost O(N). In
the SGM-MLFMM approach, as the aggregation and disaggregation steps now also
depend on subsets of ξ, the computational cost increases up to O(KN) [7]. Similar
observations are valid for the memory complexity.

5.3.2 Parallelization

An efficient implementation of the deterministic MLFMM has allowed handling prob-
lems with up to one million of unknowns on a single workstation. Parallel imple-
mentations on several nodes has led to tackling deterministic problems with billions
of unknowns [20]. In our stochastic case, however, the total number of unknowns
is not only determined by the spatial discretization into N segments, but also by the
number of polynomials, i.e. K + 1. Therefore, the UQ of medium- and large-scale
problems, such as the variability analysis of the optical lens systems presented in this
chapter, should be performed via a parallel algorithm, leveraging the computational
and memory resources of every available computing node.
Parallel solvers require a parallel iterative method (e.g. TFQMR [21]) and a parallel
algorithm to compute the MVP. For the former, libraries like PIM [22] can be readily
applied. From SGM Eq. (12), a straightforward way to parallelize the MVP may be
revealed, namely the distribution of the matrix-vector products ZkI l among several
processes. Each process then computes only a subset of all required matrix-vector
products ZkI l. This idea is applied in [10]. Despite its simplicity, this approach
suffers from the fact that a given product ZkI l in itself is not parallelized. Each such
product can be handled by a single process, but as the dimensions of each matrix Zk
correspond to the number of spatial discretization elements N , the simulation of large
structures with high N is still prohibitively expensive.
As opposed to this approach, we proprose a parallelization scheme where each product
ZkI l in itself is parallelized among all of the processes. This scheme has the advantage
that the geometrical discretization elements are distributed among the processes. We
provide an overview of the underlying concepts and refer to the extensive literature
that exists for parallel deterministic MLFMM algorithms where appropriate.
The MLFMM tree is created for the complete electromagnetic structure under consider-
ation. The boxes at a prespecified level-of-partitioning (LoP) in this tree are partitioned
and assigned to different processes. If a certain box is a assigned to a certain process,
the entire subtree of that box and all corresponding geometrical segments and unknown
stochastic expansion coefficients (K + 1 coefficients per segment) are also assigned
to that process. The partitioning is done in such way that approximately the same
number of expansion coefficients is assigned to each process. To ensure a good spatial
locality between boxes assigned to a given process, boxes are ordered according to
a Hilbert space filling curve (SFC) prior to partitioning. Smaller dielectric regions
will be partitioned among fewer processes whereas large dielectric regions (e.g. the
background medium) will be partitioned among many processes.
For a given LoP and all levels below, it holds that a box is assigned to only one single
process. All K + 1 radiation patterns (both outgoing and incoming) in such a box are
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also assigned to that process and the process is responsible for their computation. For
levels higher than the LoP, it becomes increasingly difficult to achieve a good load
balance because the number of boxes decreases for higher levels. Nevertheless, the
amount of required computations on those levels does not decrease because of the size
of the radiation patterns increases with higher levels. To deal with this, we propose
to extend the hierarchical partitioning strategy [23], [24] developed for deterministic
MLFMM to the stochastic case. As illustrated in Fig. 5.3, rather than assigning a box

process 0

process 1

process 2

process 3

OPWB0
k

OPWB1
k

OPWB2
k

Figure 5.3: Organization of MLFMM boxes and partitioning scheme for an arbitrary
structure. On the lowest level each box is handled by one process; on higher levels, K
radiation samples are shared among all processes. OPWBi

k is k-th PCE coefficient of
the box on the level i.

and its radiation patterns as a whole to a single process, boxes are shared between an
increasing number of processes as the number of radiation pattern samples increases.
Specifically, from the LoP onwards, for every next level, each of the K + 1 radiation
pattern samples in a box are partitioned in an increasing number of 2, 4, 8, 16, ... etc.
partitions. A process then holds only a single partition of the radiation pattern samples
in its memory. It has been shown that, in the deterministic case, such a hierarchical par-
titioning scheme is able to effectively balance the load among processes [24]. Processes



62 Chapter 5. Parallelized SGM-MLFMM for Large Optical Systems

are responsible for the computation of all radiation pattern samples and expansion coef-
ficients that are locally held in memory using the execution of the MLFMM algorithm.
Some of these computations rely on data that is not locally stored and thus needs to be
communicated through the interconnection network. As we are dealing with multiple
dielectric objects, we opted for the asynchronous approach described in [11]. At a
given point in time, different processes can perform different kind of tasks: certain
processes might be communicating while others are performing (different kinds of)
calculations. All computations that need to be performed by a process are partitioned
into work packages. These work packages are sorted in a priority queue. Some work
packages depend on data to be received from other processes and can only be scheduled
once these data have actually been received. Similarly, certain work packages result in
(intermediate) data that needs to be sent to other processes. The priority queue ensures
that work packages are handled in such order that the overall idle time of processes is
minimized. Organization of these working packages and priorities of the operations
are well described in [11].

5.3.3 Preconditioner

For any iterative process, the number of iterations needed to obtain a result with a
predefined accuracy is an important factor. This number depends on the condition
number of the system matrix [25] . By rewriting Eq. (5.23) in matrix form, it can be
seen that the equivalent system matrix of the SGM possesses a block-structure [4].
The zeroth-order PCE coefficient which corresponds to the mean of the Z(ξ) matrix,
i.e. Z0, is located on diagonal blocks. Higher PCE coefficients of the matrix only
marginally contribute to these diagonal blocks. For small variations, which is the case
in most practical applications, the equivalent SGM system matrix is thus block-diagonal
dominant and a block-Jacobi preconditioner could be used [26].
However, given our MLFMM-approach, the submatrix Z0 is never stored. Moreover,
calculation of its inverse for large structures would rapidly become prohibitively
expensive. Therefore, a different type of preconditioner is proposed here. Within Z0,
there are so-called near interactions that are calculated with a classical MoM approach.
These interactions are found on and around the main diagonal of the Z0 matrix. Our
preconditioner is based on these “near” blocks. The size of these blocks, i.e. the
number of interactions which are calculated in this classical MoM fashion, determines
the efficiency of the preconditioner. On the one hand, if the blocks are large, then
preconditioning becomes stronger, but the memory, setup time and time required for
one MVP also increases. On the other hand, if these blocks are chosen small, then
the preconditioner may become rather useless, especially for large electromagnetic
structures.

5.4 Numerical results

All simulations were performed on a system supporting the Message Passing Interface
(MPI), which was used to implement the parallel SGM-MLFMM solver. As indicated
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further, some simulations were performed on one node with multiple cores, while others
were performed on several nodes connected by an InfiniBand network. The linear
system of equations is solved with Parallel Iterative Methods (PIM) using TFQMR.

5.4.1 Validation example: lens system with translational variation

As a validation example, we consider a lens system of two circular lenses with a
permittivity εr = 4 and a PEC aperture, as shown in Fig. 5.4. The size of the lenses is
2000λ and 5000λ, respectively, and they are separated by a distance of 30000λ. The
size of the gap in the PEC shield is 2500λ and the shield is placed at a distance of
20000λ from the leftmost lens. The structure is illuminated with a Gaussian beam of
width 500λ impinging upon the center of the leftmost lens along the optical axis. A
deterministic simulation of this system was presented in [27], where good accuracy
between Gaussian-beam, 1.5D and 2D full-wave methods was reported. Moreover,
the 2D full-wave method has been validated up to 100 million of unknowns for both
dielectric and PEC cylinders for which analytical solutions exist [28].

30000λ

εr = 4, µo, ξ1

F1

εr = 4, µo, ξ2

F2
5000λ2000λ 2500λ

20000λ
x̂

ŷ
PEC

PEC

Figure 5.4: The lens system setup.

The structure and the total field calculated in a region with a width of 40000λ and a
height of 8000λ is presented in Fig. 5.5. One pixel corresponds to a cell of size 10λ×
10λ. A block-Jacobi preconditioner was used on blocks with dimension 16λ× 16λ.
The iterative precision was set to 10−3. For this deterministic simulation, the number of
unknowns is 705008 and the iterative precision is reached after Niter = 369 iterations.
To induce variations, the y-coordinates of the positions of the lenses are now uniformly
varied between −λ/20 and λ/20 of their nominal values. The uniform distribution is
chosen as all realizations are equally probable and it also leads to the largest variation
in the field values. Stochastic simulations are performed by two methods: (i) a robust
and easy to implement SCM and (ii) the novel SGM-MLFMM, in order to validate
the accuracy of the latter. As our results are validated with a non-intrusive SCM that
merely reuses results from the deterministic 2D algorithm [27], the output variability
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of our novel stochastic SGM-MLFMM is expected to match well with Gaussian beam
based methods.

0

0.5

1

Figure 5.5: Field density |Ez|(V/m) for the deterministic simulation for the configura-
tion of Fig. 5.4.

To present the influence of the variations, the average field density and its standard
deviations (stdev) around the two focal points (indicated with F1 and F2 in Fig. 5.4),
i.e. in an area with a width of 2000λ and a height of 1000λ, are presented in Fig. 5.6.
The influence of the geometrical variations are clearly appreciated from this figure.
It is also observed that left from the PEC slit the variations are concentrated mainly
around the focal point, i.e. where the field value reaches its maximum. At the right side
of the PEC slit, the variations are more evenly distributed in the neighbourhood of the
focal point. To give an indication of the variation, we mention that at the point where
the standard deviation is maximal and equal 0.0828 V/m, the average field density is
1.5287 V/m, i.e. the output variation of the field is about 0.0828/1.5287 ≈ 5.4%. This
location is near the right focal point, indicated with the red arrow in Fig. 5.4.

0

4.18

(a) mean - first focal point
0

0.06

(b) standard deviation - first focal point

0

2.71

(c) mean - second focal point
0

0.08

(d) standard deviation - second focal point

Figure 5.6: Mean and standard deviation of the field density |Ez|(V/m) around the
focal points.

To validate our method, its accuracy is compared to SCM, as presented in Table 5.1.
The accuracy of both solvers is set to 10−3. Both methods converge to the same result
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for different polynomial orders and even for P = 1 we get accurate results. For all
polynomial orders, the number of iterations is about the same as in the deterministic
case. This is important, since one MVP is computationally expensive. For example,
for P = 3, the total number of unknowns is Nstoc = 7 050 080 and the number of
iterations is 372. This means that our preconditioner is efficient for this stochastically
varying structure. Note that for the SCM method, the number of iterations is equal to
the average number of iterations for all considered realizations of the RVs.

Table 5.1: Mean and standard deviation for the point indicated on Fig. 5.4, i.e.
the point close to the second focal point with maximum variance.

Method P Nstoc Niter Mean (V/m) stdev (V/m) CPU time
SGM 1 2 115 024 365 1.5287 0.0828 2 h
SGM 2 4 230 048 355 1.5287 0.0828 5.1 h
SGM 3 7 050 080 372 1.5287 0.0828 9 h
SCM 1 2 115 024 385 1.5329 0.0829 3.8 h
SCM 2 4 230 048 363 1.5329 0.0829 8 h
SCM 3 7 050 080 370 1.5329 0.0829 15.5 h

Regarding the computational cost, SGM shows a clear advantage over SCM. To
make a fair comparison, both SGM and SCM simulations were performed on the
same machine. In the case of SCM, a wrapper function sequentially executes the
parallelized deterministic code for different realizations of a random vector. Using a
single node containing two quad-core CPUs (8 cores in total) running at 2 GHz, where
simulations are performed with 8 parallel processes, and for P = 2, the SGM-MLFMM
computation takes about 5h, while the SCM simulation for all realizations takes about
8 h.
For larger P , we need more nodes to get results in a reasonable time. To give an
indication, running the SGM-MLFMM for this lens setup with P = 4 and Nstoc =
10 575 120, takes about 1h, when using 3 nodes and 16 parallel processes per node. This
simulation was performed on the Flemish Supercomputer Center (VSC) infrastructure
where one node has a dual-socket octo-core CPU (16 CPU cores in total) running at 2.6
GHz. On the same machine we also performed a benchmark test for the MVPs for a
varying number of processes and we calculated the speedup and parallel efficiency. The
speedup is defined as the ratio of the runtime on a single process T1 and the runtime
Tn using p processes:

Sp = T1

Tp
. (5.32)

In the ideal case the speedup factor is equal to the number of processes that is used. The
parallel efficiency η is the ratio of the speedup and the theoretical maximum speedup:

ηp = Sp
p

= T1

pTp
. (5.33)

The graphs for the scalability and speedup are presented in Fig. 5.7. All simulations
were performed for the P = 2 case. It is visible that our algorithm scales very well
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with an increasing number of processes. The efficiency decreases due to the increasing
amount of data that needs to be communicated.
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Figure 5.7: Speedup and parallel efficiency for a varying number of parallel processes.

5.4.2 Application example 1: Lens system with rotational variation

As a second example, we consider the same lens system as in Section 5.4.1, but now,
the variations of the lenses’ positions are induced by rotation in the (x, y)-plane of the
lenses around their centers. The lenses’ rotations are described by a uniform stochastic
process with a maximum deviation of 1/60 of a degree. The average field pattern looks
like in Fig. 5.6, but the field pattern for standard deviation is different and is shown in
Fig. 5.8. We can observe that the standard deviation is now slightly smaller. However,
the relative variation is higher as the maximal variations occurs at points where the
field strength is low.

The number of iterations required to obtain an iterative precision of 10−3 is higher in
this case, e.g. for P = 2, 1018 iterations are required. This is a consequence of the
larger variations on the phase of the field and the loss of symmetry with respect to the
optical axis of the setup. Additionally, in Table 5.2, we provide results for the point
close to second focal point at which the standard deviation is the highest.

In this case, we can see that P = 3 is sufficient to obtain convergence and with
P = 2 we get acceptable results. Due to the phase effect, P = 1 provides a slightly
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Figure 5.8: Standard deviation of the field density |Ez|(V/m) around the focal points.

Table 5.2: Mean and standard deviation for the point close to the second focal
point with maximum variance.

Method P Mean (V/m) stdev (V/m)
SGM 1 0.4482 0.0407
SGM 2 0.4603 0.0541
SGM 3 0.4601 0.0526

different result than for that obtained for the higher orders. Simulation with P = 3 and
Nstoc = 7 050 080 unknowns takes about 1h on 3 nodes with 16 parallel processes.

A typical quantity of interest describing such lens system is the local intensity, defined
as:

I = cnε0
2 |Ez|

2, (5.34)

where c is speed of light in vacuum and n is the refractive index. To get a better insight
in the variation of the local intensity when lenses are prone to variability, the PDFs of
the local intensity for the second focal point and the point with maximum variance are
presented in Fig. 5.9. It is clearly visible that the local intensity in both observation
points is considerably affected by the variation of the lenses.

5.4.3 Application example 2: Cassegrain antenna system with
induced variations

As a final example, we consider a Cassegrain antenna system, with a 35-meter parabolic
main reflector and a 6-meter hyperbolic sub-reflector. Additionally, this system consists
of one flat mirror and one elliptical mirror. The structure is based on a similar problem
described in [28]. The operating frequency is chosen to be 32 GHz, so we perform
one harmonic simulation at that frequency. The structure is excited with a Gaussian
beam with a waist of 2 m impinging upon a coated lens with a 4 meter diameter.
This is a lens with a relative permittivity of εr = 4 and a λ/4 coating with a relative
permittivity εr = 2, such that reflections are largely eliminated. The uncertainty is
induced by varying the relative positions of every part (lens, mirrors, one reflector, one
sub-reflector) of the system. In particular, the y-coordinate of every part is again a
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Figure 5.9: PDF of the local intensity I (mW/m2) for two points behind the rightmost
lens.

random variable such that the relative variation w.r.t. its nominal center is uniformly
distributed within the interval [−λ/20, λ/20[. In this way, we introduce 5 RVs that
describe the stochastic nature of the geometry. In Fig. 5.10, the average field density
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Figure 5.10: The average total field density |Ez|(V/m) of the Cassegrain antenna
system illuminated with a Gaussian beam incident from the bottom onto the coated
lens. The results are obtained with a polynomial order P = 3.

of the Cassegrain antenna system is shown. The standard deviation of the total field
for this structure is presented in Fig. 5.11. We can see that the highest variation of the
field is induced around the focal points, but due to the phase effect variation, a standing
wave pattern is also visible.
The simulation is performed by using 4 nodes with 16 CPU cores per node (64 parallel
processes in total). The block size of the preconditioner is chosen to be 16λ × 16λ.
For P = 2, K + 1 = 21 and Nstoc = 5 073 579, the system was solved after 2630
iterations and 2h 44 min. For P = 3, K + 1 = 56 and Nstoc = 13 529 544, the system



5.5. Conclusions 69

0

0.1

0.2

0.3

0.4

0.5

Figure 5.11: The standard deviation of the total field density |Ez|(V/m) of the
Cassegrain antenna system illuminated with a Gaussian beam incident from the bottom
onto the coated lens. The results are obtained with polynomial order P = 3.

was solved after 2767 iterations and 7h 47 min. The setup time and post-processing
time are negligible compared to the solution time. However, for a different block-Jacobi
size of 32λ×32λ, we get a better run time. For example, then, for P = 3, the system is
solved in 3h and 50 min after 783 iteration with a negligible increase of the setup time.
This shows that one should carefully select the preconditioner size. We also remark
that the time needed to solve this problem using the same computational resources with
the SCM and with P = 2 is about 30h, which again demonstrates the necessity of the
advocated parallel SGM-MLFMM solver.

Finally, we also provide a graph for the average total field density |Ez| radiated upward.
The field is calculated on the line segment connecting the left and the right top corner
of Fig. 5.10, i.e. 1 400λ above the center of the main parabolic reflector. The line
segment has a length 3 800λ and the field is calculated in 380 points. The results are
again compared with the SCM, showing the accuracy of the proposed method.

5.5 Conclusions

In this chapter, we have described the parallelization of the MLFMM-based SGM
solver. The chapter provides a theoretical background together with the complexity
issues of the algorithm. Since this complexity grows fast with the number of spatial and
stochastic unknowns, the solver leverages parallelization which allows simulation of
large optical structures. Moreover, to decrease the number of iterations in the iterative
solver, a block-Jacobi preconditioner is proposed. It was shown that a carefully
chosen size of the preconditioner can reduce the computational time by a factor of
two. Compared to a more traditional SCM, the selected examples clearly demonstrate
the effectiveness of our novel algorithm, with speed-up factors of more than 12×,
still maintaining excellent accuracy. Moreover, they show the need for the advocated
intrusive stochastic modeling algorithm when dealing with large-scale optical problems.
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Figure 5.12: The average total field density |Ez|(V/m) radiated away from the
Cassegrain antenna system along an 3 800λ long line segment, 1 400λ above the
center of the main parabolic reflector.

Acknowledgment

The computational resources (Stevin Supercomputer Infrastructure) and services used
in this work were provided by the VSC (Flemish Supercomputer Center), funded by
Ghent University, the Hercules Foundation and the Flemish Government, department
EWI.



References

[1] X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation
in silicon photonic devices”, Appl. Opt., vol. 52, no. 31, pp. 7638–7647, 2013.

[2] D. B. Xiu and G. E. Karniadakis, “The Wiener-Askey polynomial chaos for
stochastic differential equations”, SIAM Journal on Scientific Computing, vol.
24, no. 2, pp. 619–644, 2002.

[3] D. Vande Ginste, D. De Zutter, D. Deschrijver, T. Dhaene, P. Manfredi, and
F. Canavero, “Stochastic modeling-based variability analysis of on-chip inter-
connects”, IEEE Transactions on Components, Packaging and Manufacturing
Technology, vol. 2, no. 7, pp. 1182–1192, Jul. 2012.

[4] T. El-Moselhy and L. Daniel, “Variation-aware stochastic extraction with large
parameter dimensionality: Review and comparison of state of the art intrusive
and non-intrusive technique”, in 2011 12th International Symposium on Quality
Electronic Design (ISQED 2011), 14-16 March 2011, Santa Clara, CA, USA,
2011, pp. 508–517.

[5] C. Chauvière, J. S. Hesthaven, and L. C. Wilcox, “Efficient computation of
RCS from scatterers of uncertain shapes”, IEEE Transactions on Antennas and
Propagation, vol. 55, no. 5, pp. 1437–1448, May 2007.

[6] Z. Zubac, D. De Zutter, and D. Vande Ginste, “Scattering from two-dimensional
objects of varying shape combining the Method of Moments with the Stochastic
Galerkin Method”, IEEE Transactions on Antennas and Propagation, vol. 62,
no. 9, pp. 4852–4856, Sep. 2014.

[7] Z. Zubac, D. De Zutter, and D. Vande Ginste, “Scattering from two-dimensional
objects of varying shape combining the Multilevel Fast Multipole Method
(MLFMM) with the Stochastic Galerkin Method (SGM)”, IEEE Antennas and
Wireless Propagation Letters, vol. 13, pp. 1275–1278, Jul. 2014.

[8] T.-W. Weng, Z. Zhang, Z. Su, Y. Marzouk, A. Melloni, and L. Daniel, “Uncer-
tainty quantification of silicon photonic devices with correlated and non-gaussian
random parameters”, Opt. Express, vol. 23, no. 4, pp. 4242–4254, 2015.

[9] R. F. Harrington, Field Computation by Moment Methods. New York: IEEE
Press, 1993.

[10] A. Keese and H. G. Matthies, “Hierarchical parallelisation for the solution
of stochastic finite element equations”, Computers & Structures, vol. 83, no.
14, pp. 1033 –1047, 2005, Uncertainties in Structural Mechanics and Analy-
sis–Computational Methods.

[11] J. Fostier and F. Olyslager, “An asynchronous parallel mlfma for scattering at
multiple dielectric objects”, IEEE Transactions on Antennas and Propagation,,
vol. 56, no. 8, pp. 2346–2355, 2008.



72 Chapter 5. Parallelized SGM-MLFMM for Large Optical Systems

[12] A. J. Poggio and E. K. Miller, “Integral equation solutions for three dimensional
scattering problems”, in Computer techniques for electromagnetics, R. Mittra,
Ed., Pergamon Press, 1973, pp. 159–264.

[13] F. Olyslager, D. De Zutter, and K. Blomme, “Rigorous analysis of the propaga-
tion characteristics of general lossless and lossy multiconductor transmission
lines in multilayered media”, IEEE Transactions on Microwave Theory and
Techniques,, vol. 41, no. 1, pp. 79–88, 1993.

[14] A. Biondi, D. Vande Ginste, D. De Zutter, P. Manfredi, and F. Canavero, “Vari-
ability analysis of interconnects terminated by general nonlinear loads”, IEEE
Transactions on Components, Packaging and Manufacturing Technology,, vol.
3, no. 7, pp. 1244–1251, Jul. 2013.

[15] P. Manfredi, D. Vande Ginste, D. De Zutter, and F. Canavero, “Uncertainty
assessment of lossy and dispersive lines in spice-type environments”, IEEE
Transactions on Components, Packaging and Manufacturing Technology,, vol.
3, no. 7, pp. 1252–1258, Jul. 2013.

[16] W. C. Chew, J. M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms
in Computational Electromagnetics. Norwood, MA: Artech House, 2001.

[17] D. Vande Ginste, H. Rogier, F. Olyslager, and D. De Zutter, “A fast multipole
method for layered media based on the application of perfectly matched layers -
the 2-d case”, IEEE Transactions on Antennas and Propagation,, vol. 52, no.
10, pp. 2631–2640, 2004.

[18] D. Vande Ginste, E. Michielssen, F. Olyslager, and D. De Zutter, “An efficient
perfectly matched layer based multilevel fast multipole algorithm for large planar
microwave structures”, IEEE Transactions on Antennas and Propagation,, vol.
54, no. 5, pp. 1538–1548, 2006.

[19] D. Pissoort, E. Michielssen, D. Vande Ginste, and F. Olyslager, “Fast-multipole
analysis of electromagnetic scattering by photonic crystal slabs”, Lightwave
Technology, Journal of, vol. 25, no. 9, pp. 2847–2863, 2007.

[20] B. Michiels, J. Fostier, I. Bogaert, and D. De Zutter, “Full-wave simulations of
electromagnetic scattering problems with billions of unknowns”, IEEE Transac-
tions on Antennas and Propagation, vol. 63, pp. 796–799, Feb. 2015.

[21] R. W. Freund, “A transpose-free quasi-minimal residual algorithm for non-
hermitian linear systems”, SIAM Journal on Scientific Computing, vol. 14, no. 2,
pp. 470–482, 1993.

[22] R. D. da Cunha and T. Hopkins, Pim 2.2 the Parallel Iterative Methods Package
for Systems of Linear Equations User’s Guide (Fortran 77 version), UKC,
University of Kent, Canterbury, UK, 2000.

[23] O. Ergul and L. Gurel, “Efficient parallelization of the multilevel fast multipole
algorithm for the solution of large-scale scattering problems”, IEEE Transactions
on Antennas and Propagation,, vol. 56, no. 8, pp. 2335–2345, 2008.



5.5. Conclusions 73

[24] J. Fostier and F. Olyslager, “A provably scalable parallel multilevel fast multipole
algorithm”, Electronics Letters, vol. 44, no. 19, pp. 1111–1113, 2008.

[25] D. Pissoort, E. Michielssen, D. Vande Ginste, and F. Olyslager, “Fast-multipole
analysis of electromagnetic scattering by photonic crystal slabs”, Journal of
lightwave technology, vol. 25, no. 9, pp. 2847–2863, 2007.

[26] M. F. Pellissetti and R. G. Ghanem, “Iterative solution of systems of linear
equations arising in the context of Stochastic Finite Elements”, Advances in
Engineering Software, vol. 31, pp. 607–616, 2000.

[27] I Ocket, B Nauwelaers, J. Fostier, L. Meert, F. Olyslager, G Koers, J Stiens,
R Vounckx, and I Jager, “Characterization of speckle/despeckling in active mil-
limeter wave imaging systems using a first order 1.5d model - art. no. 619409.”,
Millimeter-wave and Terahertz photonics, vol. 6194, pp. 19 409–19 409, 2006.

[28] J. Fostier and F. Olyslager, “An open-source implementation for full-wave 2d
scattering by million-wavelength-size objects”, IEEE Antennas & Propagation
Magazine, vol. 52, no. 5, pp. 23–34, 2010.





6
A Cholesky-Based

SGM-MLFMM for Stochastic
Full-Wave Problems Described

by Correlated Random Variables

Zdravko Zubac, Luca Daniel, Daniël De Zutter and Dries Vande Ginste

Based on a paper submitted to Antennas and Wireless Propagation Letters, April 2016

ÆÆÆ

In this chapter, the Multilevel Fast Multipole Method (MLFMM) is com-
bined with the Polynomial Chaos Expansion (PCE) based Stochastic
Galerkin Method (SGM) to stochastically model scatterers with geomet-
rical variations that need to be described by a set of correlated random
variables (RVs). It is demonstrated how Cholesky decomposition is the
appropriate choice for the RVs transformation, leading to an efficient
SGM-MLFMM algorithm. The novel method is applied to the uncertainty
quantification (UQ) of the currents induced on a rough surface, being a
classic example of a scatterer described by means of correlated RVs, and
the results clearly demonstrate its superiority compared to non-intrusive
PCE methods and to the standard Monte Carlo (MC) method.
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6.1 Introduction

Electromagnetic simulation of objects prone to variability has become an important
issue. Often, Uncertainty Quantification (UQ) relies on Monte Carlo (MC) analysis,
which requires many calls to a standard deterministic (full-wave) solver, making it not
tractable. Recently, the Polynomial Chaos Expansion (PCE) approach was introduced
and combined with known computational electromagnetics (CEM) methods, both in an
intrusive and a non-intrusive way [1][2]. For the scattering analysis of large structures,
the Multilevel Fast Multipole Method (MLFMM) was combined with the PCE-based
Stochastic Galerkin Method (SGM) [3]. Parallelization of the SGM-MLFMM even
led to the efficient UQ of large optical systems [4]. Yet, only variability described
by independent random variables (RVs) could be treated with this method. However,
problems affected by variability, e.g. introduced by the manufacturing process, can
most often only be described by a set of correlated RVs, rather than independent ones.
Then, traditionally, this set of correlated RVs is transformed into a set of independent
RVs via the well-known Karhunen-Loève (KL) transformation [5]. Unfortunately,
when in the space of the correlated RVs, the so-called correlation length is small, then
the total number of independent RVs after KL transform stays as large as the number of
correlated RVs, leading to a high-dimensional problem. In [6], where a finite element
method (FEM) was adopted, this was dealt with by dividing the space of variables
into subspaces with a correlation length comparable to their size. Nevertheless, when
using an integral equation (IE) formulation, where the electromagnetic behavior is
described globally, such an approach as described in [6] is not possible. Therefore,
in this chapter, we introduce another transformation to tackle the correlation, i.e. the
Cholesky transformation. This alleviates the curse of dimensionality within the IE-
based SGM-MLFMM framework.
This chapter is organized as follows. Section 5.1 describes the theoretical framework of
the stochastic MLFMM with correlated RVs. An illustrative numerical example of the
scattering at a two-dimensional (2D) rough surface is given in Section 5.2. Section 5.3
concludes the chapter.

6.2 Cholesky-based SGM-MLFMM

As a generic example for full-wave stochastic problems with correlated RVs, in this
chapter, we consider two-dimensional frequency domain scattering from a perfect
electrically conducting (PEC) plate of width w, residing in free space. As depicted in
Fig. 6.1, the plate’s roughness is stochastically defined by letting the height ofM nodes,
equidistantly spaced along the x-axis, vary randomly. These heights are described by a
set of M correlated Gaussian variables, collected in vector h = [h1, h2, ..., hM ], and
with correlation matrixΣ. The elements of the correlation matrix are given by:

Σij = σ2 exp (− |xi − xj |
2

L2
c

), i, j = 1, ...,M, (6.1)
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Figure 6.1: Rough surface described by a set of correlated random variables (RVs) hi.

where σ is the standard deviation and Lc the correlation length. Traditionally, in order
to apply PCE, the correlated RVs are converted into independent RVs, collected in
vector ξ = [ξ1, ξ2, ..., ξR] via the KL transform as follows:

h = µ+U Λ1/2
ξ, (6.2)

where µ is the mean value of h, and U and Λ are matrices defined by the eigenvalue
decomposition of the correlation matrixΣ, i.e.

Σ = U ΛU
T
. (6.3)

Note that the number of independent parameters R may be smaller than the number
of correlated parameters M (R ¶ M ). The standard electric field IE description of
the scattering problem of Fig. 6.1 in conjunction with the Method of Moments (MoM)
yields a linear system that is dependent on ξ:

Z(ξ)I(ξ) = V (ξ), (6.4)

with Z(ξ) the MoM system matrix, I(ξ) the vector collecting the unknown current
densities and V (ξ) the known RHS. All quantities in (6.4) are expressed in PCE form,
e.g. for Z(ξ):

Z(ξ) =
K∑
k=0

Zk φk(ξ), (6.5)

where {φk(ξ)}k=0,...,K represents a set of K + 1 mutually orthonormal multivariate
polynomials according to the Wiener-Askey scheme. In the case of Gaussian variables
h (and thus ξ), these are products of univariate Hermite polynomials, dependent on a
single RV ξi. The total number of polynomials grows rapidly with R as

K + 1 = (R+ P )!
R!P ! , (6.6)
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where P is the total order of the polynomials φk(ξ), calculated as the sum of the
orders of the univariate polynomials they are composed of. Calculation of the PCE
coefficients Zk is done via projection, necessitating a multidimensional integration in
the R-dimensional space of ξ:

Zk =< Z(ξ), φk(ξ) >= ∫
ξ1

...

∫
ξR

Z(ξ)φk(ξ)W (ξ)dξ1...dξR, (6.7)

where W (ξ) represents the multivariate Gaussian probability density function (PDF)
of ξ. In particular, when the correlation length Lc is low, the KL transform may lead to
a dense, square matrix U Λ

1/2
, i.e. R = M and each correlated RV hi is dependent

on all RVs ξ. Moreover, each matrix element of Z(ξ) will also depend on all RVs ξ,
and the multidimensional integrals of type (6.7) become cumbersome to compute.
After calculating the coefficients V k in a similar way, solution of the system (6.4), for
the unknown coefficients Ik, is obtained via Galerkin projection:

V m =
K∑

k,l=0
γklm 6=0

Zk I l γklm, m = 0, ..,K, (6.8)

where γklm represents a three-term inner product of Hermite polynomials:

γklm =< φk(ξ)φl(ξ), φm(ξ) > . (6.9)

Note that (6.8) constitutes a deterministic linear system with a complexity that scales
with the number of non-zero numbers γklm, which follows an O(K1.5) law.
To expedite the solution of the linear system, MLFMM [7] is invoked, by dividing the
structure into groups of sources. If the distance between a source and an observation
group is large enough, then the system (6.4) can be approximated as:

D(ξ)T A(ξ) I(ξ) ≈ Z(ξ) I(ξ), (6.10)

where D(ξ), T and A(ξ) represent the well-known dissagregation, translation and
aggregation matrix respectively. However, in contrast to the problems described in
[3], whereas the aggregation and disaggregation matrices were dependent only on
a group of sources, and thus only on few hi, here, they are still dependent on all
independent RVs ξ. Besides the aforementioned curse of dimensionality in calculating
PCE projections (6.7), this also entails an unacceptably long solution time of (6.8).
Indeed, since the aggregation and the disaggregation matrices are dependent on all
independent RVs, their PCE coefficients are all nonzero and the complexity does not
scale linearly with the number of polynomials K as in [3], but with the total number of
γklm.
To tackle this issue, instead of using the traditional KL transform, we propose to adopt
a Cholesky transformation. Then, the correlated RVs are expressed via another vector
of independent RVs η:

h = µ+Lη, (6.11)
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Figure 6.2: Magnitude (on a logarithmic scale) of the elements of the correlation matrix
Σ for a canonical problem.

where L is a lower triangular matrix related to the correlation matrix as follows:

Σ = LL
T
. (6.12)

To show the benefits of this Cholesky decomposition, for a canonical structure as
shown in Fig. 6.1, with M = 200, Lc = λ/5, σ = λ/20 and w = 20λ (with λ the
free-space wavelength), we present the structure of the correlation matrix in Fig. 6.2
and its corresponding KL and Cholesky matrices in Fig. 6.3. Whereas the KL matrix
U Λ

1/2
is a densely filled matrix, the off-diagonal elements of the Cholesky matrix L

rapidly vanish. Consequently, when dimensionality reduction with KL transform is not
possible, the benefits of the advocated Cholesky approach are:

• The M correlated RVs h depend only on a few independent RVs η. Thus, the
M -dimensional integrals of type (6.7) depending on these correlated RVs, are
reduced in dimension, and their computation is expedited

• Many PCE coefficients are zero, as their corresponding stochastic quantities, in
particluar the elements of Z(η), only depend on a few independent RVs. This
substantially improves the computational and memory complexity.
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to the decomposition ofΣ, shown in Fig. 6.2.
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6.3 Numerical example

We consider scattering from a rough PEC strip of width w = 100λ, whose roughness
is described by 81 RVs that determine the y-coordinates of the equally distributed
points on the structure, as presented in Fig. 6.1. The correlation length is Lc = λ and
the standard deviation is σ = λ/20. The incident field is a TM-polarized plane wave
impinging under an angle of α = 3π/4. The structure is discretized with N = 2 000
segments and the unknown current density is defined adopting piecewise constant basis
functions. All computations are carried out on a Dell PC with a quad-core Intel(R)
Core(TM) i7-2600 processor operating at 3.40 GHz and with 8 GB RAM memory.
To validate the accuracy and demonstrate the efficiency of our novel method, a standard
MC analysis with 10 000 samples is used as a reference solution. This MC analysis
takes about 7h. Moreover, the stochastic scattering problem is also solved by means of
the non-intrusive PCE-based Stochastic Collocation Method (SCM) leveraging sparse
Smolyak integration [8]. To achieve an accuracy of 0.15% compared to MC for the
average current density, the SGM-MLFMM scheme uses polynomial order P = 2.
Also, SCM uses P = 2 and 13 285 Smolyak integration points. The timing analysis is
as follows: the novel SGM-MLFMM scheme takes about 1h and SCM takes around
10h. The gain is achieved in both the setup and the solution phase, as visible from
Table 6.1. If the KL transform would be used in combination with SGM, then the
setup time for calculation of the PCE coefficients ofD andA coefficients would be
determined by (6.7), and would be of the same order of magnitude as the setup time of
SCM.

Table 6.1: Setup and solution time

method setup solution
SGM 99 s 3 948 s
SCM 26 570 s 7 971 s

The average current density on the strip is given in Fig. 6.4 and its standard deviation
is presented in Fig. 6.5. A good agreement between SGM and MC is visible. These
results are presented for polynomial order P = 2 and the corresponding total number
of stochastic unknowns Nstoc = (K + 1)N = 6 806 000.
To reduce possible truncation errors, as described in [9], the polynomial order should
be chosen large enough such that the PCE of Z can be found accurately through
multiplication and Galerkin projection of the PCE coefficients of D and A. To
demonstrate the influence of the truncation error on the average current density, in
Fig. 6.6 we present E[Js] in the middle of the strip for several polynomial orders. From
this figure, the convergence of the advocated SGM-MLFMM scheme is clearly visible,
which also again validates our method. Moreover, at this point, it is important to point
out that, in particular when dealing with full-wave problems, variations of the output
parameters, such as current density, can be substantial and the Smolyak integration rule
used in SCM may fail to produce good results. This is visible from Fig. 6.7, where the
standard deviation of the current density Js in the middle of the rough strip is shown.
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Figure 6.4: Average current density E[Js] on the rough strip, with E[·] the expectation
operator.

This behavior is well known for integration of functions that are not smooth enough
[10]. The proposed SGM-MLFMM does not suffer from this issue, however, since the
integration was done in a lower dimensional space thanks to the advocated Cholesky
transformation. To achieve the same level of accuracy for the standard deviation, with
the SGM, the number of Smolyak integration points should be increased to 722 089,
which becomes prohibitively expensive. This clearly demonstrates the huge advantage
the novel SGM-MLFMM scheme over SCM.

6.4 Conclusions

In this chapter, the UQ of full-wave stochastic problems, described by correlated RVs,
was investigated. Classically, the KL transformation is applied to decorrelate the RVs.
However, for the envisaged applications, the SGM-MLFMM scheme, presented in
literature before by the authors, cannot be straightforwardly extended by incorporat-
ing a KL transformation, and this because of two reasons: (i) the computation of
the PCE coefficients entails integration in a highly-dimensional space; (ii) all these
PCE are nonzero, as the stochastic quantities are dependent on all independent RVs
after KL transformation. We proposed to tackle these issues by invoking Cholesky
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decomposition of the correlation matrix instead, leading to a very accurate and efficient
SGM-MLFMM algorithm. The novel method was validated and compared against a
MC analysis and a SCM for the case of scattering at rough PEC plate.
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(TT) Decomposition with
Statistical Moments preserving

Model Order Reduction (SMOR)
for the efficient variation aware
analysis of scattering problems
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ÆÆÆ

In this chapter, two methods, Tensor-Train (TT) decomposition and Statis-
tical Moments preserving Model Order Reduction (SMOR), are described
as a starting point for the usage of these two methods in conjuction with
the Multilevel Fast Multipole Mrthod (MLFMM). Computational complex-
ity of such a novel approach is discussed and illustrated by means of some
numerical examples. This chapter can be seem as a starting point of the
development of novel (semi-) intrusive methods for full-wave stochastic
EM problems.
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7.1 Introduction

Accurate simulation of electromagnetic structures must include process variation effects
as they may lead to performance degradation. These variations render the geometry of
the structure stochastic and, hence, standard deterministic solvers cannot be used. The
set of random variables (RVs), describing the stochastic nature of the geometry, can
be large. Traditionally, the Monte Carlo (MC) method, despite the fact that it entails
slow convergence, is the only acceptable choice for stochastic analysis in case of a
large number of RVs [1], as methods based on polynomial chaos expansion (PCE)
suffer from the curse of dimensionality. To mitigate this problem, i.e. to maintain good
convergence of the PCE-based methods even for a huge number of RVs, alternatives
have been proposed, in particular for the non-intrusive class of methods, such as,
e.g., the Stochastic Collocation Method (SCM). Two such alternatives, the analysis
of variance (ANOVA) technique [2] and compressed sampling (CS) [3], exploit the
sparsity of high-dimensional PCE.
The curse of dimensionality stems from the multidimensional integrations of the
type (6.7), necessitating many deterministic costly simulations for the corresponding
integration points. One way to reduce the number of points is by using sparse-grid
Smolyak integration, but this method can produce non-physical results for non-smooth
functions [4]. Also, the cost of one EM evaluation for one integration point may
be reduced by using Model Order Reduction (MoR). The reduced model is rapidly
evaluated for a large number of points, while only a few costly deterministic simulations
are needed to construct it [5]. As this method preserves statistical moments, it is called
Statistical Moments preserving Model Order Reduction (SMOR).
Recently, tensor-based methods were introduced to the PCE community as a promising
solution for high-dimensional problems [6]. The idea is to extend the usage of tensor-
product integration to high-dimensional problems by using a low-rank approximation
of the tensors. One class of such methods leverages tensor-train (TT) decomposition [7]
and another class is based on the optimization of a non-convex problem that seeks to
represent a tensor as an outer product of a few vectors [8].
In this chapter, we propose the combination of TT decomposition and SMOR for the
non-intrusive stochastic analysis of high-dimensional problems. On the one hand,
we show how the low-rank nature of the tensor is exploited to reduce the number
of integration points. On the other hand, we explain how, by using deterministic
simulations, a reduced model can be built, starting from deterministic simulations.
This chapter lays the foundations for the hybridization of these two methods. By
means of some numerical examples, the usability of this novel TT + SMOR method is
demonstrated.
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Figure 7.1: Visualization of vectors (left), matrices (middle) and 3-mode tensors (right).

7.2 Description of the core techniques

7.2.1 Tensor-Train (TT) Decomposition

A tensor is a multidimensional array of data. It is a natural extension of vectors (1D
array of data) and matrices (2D array of data). The number of dimensions in a tensor d
is called the mode of the tensor. Thus, a scalar is a 0-mode tensor, a vector is a
1-mode tensor and a matrix is a 2-mode tensor. A visualization of a vector, a matrix
and a 3-mode tensor is given in Fig 7.1. Mathematically, a tensor of real elements is
denoted A ∈ RM1×M2×...×Md , where Mk represents the size of the k-th dimension.
An element of the tensor is written as A(i1, i2, ..., id) where the positive integer ik is
the index of the k-th dimension and 1 ≤ ik ≤Mk. More details about operations on
tensors are found in [6], [9]. One property of a tensor, in which we are interested in in
this work, is its tensor rank. It is defined as the smallest positive integer r, such that

A =
r∑
j=1

v
(1)
j ◦ v

(2)
j ◦ ... ◦ v

(d)
j , (7.1)

where the operator ◦ denotes the tensor product and with vectors v(k)
j ∈ RMk . A rank

one tensor can be written as

A = v(1) ◦ v(2) ◦ ... ◦ v(d), (7.2)

with v(k) ∈ RMk or thus,

A(i1, i2, ..., id) =
d∏
k=1

v(k)(ik). (7.3)

A multidimensional integration procedure may be written in terms of tensors. Con-
sider, e.g., the integral that represents the expectation of a stochastic process h(ξ) =
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h(ξ1, ξ2, ..., ξd):

E[h(ξ1, ξ2, ..., ξd)] =
∫
ξ1

∫
ξ2

· · ·
∫
ξd

h(ξ1, ξ2, ..., ξd)W (ξ1, ξ2, ..., ξd)dξ1dξ2...dξd,

(7.4)
where W (ξ1, ξ2, ..., ξd) denotes the process’s probability density function (PDF). This
d-dimensional integral may be computed by using an appropriate Gauss quadrature
rule, chosen according to the PDF. If Mk points are used in the k-th dimension, then
the integral is numerically calculated as:

E[h(ξ1, ξ2, ..., ξd)] ≈
M1∑
i1=1

M2∑
i2

...

Md∑
id=1

h(ξi11 , ξ
i2
2 , ..., ξ

id
d )

d∏
k=1

wikk , (7.5)

where, for the k-th dimension, ξikk and wikk denote the ik-th Gauss quadrature point and
weight respectively. This integral can also be seen as an inner product of two d-mode
tensors. Denote

H(i1, i2, ..., id) = h(ξi11 , ξ
i2
2 , ..., ξ

id
d ), (7.6)

W(i1, i2, ..., id) =
d∏
k=1

wikk , (7.7)

then, (7.5) is rewritten as:

E[h(ξ1, ξ2, ..., ξd)] ≈<H,W >, (7.8)

where < ·, · > represents the tensor inner product, defined as follows:

<H,W >=
M1∑
i1=1

M2∑
i2

...

Md∑
id=1

H(i1, i2, · · · , id)W(i1, i2, · · · , id) (7.9)

Suppose the number of points in each dimension is equal, i.e. M1 = M2 = ... =
Mk = M , then the cost of computing the tensor and the tensor inner product isO(Md).
This becomes rapidly intractable for large d.
To tackle the huge computational cost, a low-rank representation of the tensors is
invoked. Clearly, W is a rank-1 tensor:

W = w(1) ◦w(2) ◦ · · · ◦w(d), (7.10)

wherew(k) = [w1
k . . . w

d
k]T ∈ RM×1, with T the transpose operator,contains all Gauss

quadrature weights for parameter ξk. The cost of storing this tensor W is O(Md).
Tensor H can be approximated via tensor-train (TT) decomposition [7] using a low
rank tensors. Each element of H is then given by:

H(i1, i2, ..., id) ≈ G1(:, i1, :)G2(:, i2, :) · · ·Gd(:, id, :), (7.11)
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Figure 7.2: Representation of matrix as a product of two low-rank matrices.
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Figure 7.3: Tensor-train decomposition of a 3-mode tensor A ∈ RM1×M2×M3 .

where Gk ∈ Rrk−1×M×rk are the cores of the tensor H and the arguments (:, ik, :)
denote that the pertinent subpart of k-th core Gk is used to end up with the desired
(i1, i2, ..., id)-th element of H. When h(ξ1, ..., ξd) is a scalar-valued function the num-
bers r1 = rd = 1. The vector r = [r1r2 . . . rk] is called the TT-rank. Assuming that
r1 = r2 = ... = rd = r, memory complexity scales as O(Mr2d). This decomposition
is similar to the singular value decomposition (SVD) or QR decomposition of matrices,
i.e. when matrix A ∈ RM×N is represented as a product of two low-rank matrices
A1 ∈ RM×R and A2 ∈ RR×N , as indicated in Fig. 7.2. One element of the matrix
A(i1, i2) is then calculated as:

A(i1, i2) = A1(i1, :)A2(:, i2), (7.12)

whereA1(i1, :) represents a row vector andA2(:, i2) a column vector. When tensor-
train decomposition is considered, the decomposition cores are 3-mode tensors instead
of matrices, as represented in Fig. 7.3, except for the first and last one if h(ξ1, ..., ξd) is
a scalar value function. Therefore, one element of the tensor A can be written as:

A(i1, i2, i3) ≈ G1(i1, :)G2(:, i2, :)G3(:, i3), (7.13)

where G1(i1, :) represents a 1× r1 vector, G2(:, i2, :) represents a r1 × r2 matrix and
G3(:, i3) represents a r2 × 1 vector. In general decompositions of the type (7.11), by
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fixing the second index ik, the TT cores become matrices. More about calculation of
tensor cores is found in [7]. Note that the TT decomposition differs from (7.1), called
canonical decomposition, and Tucker decomposition that is described in [9].
When the TT decomposition of H is found, the inner product (7.8) can be calculated
as follows:

<H,W >≈H1H2 · · ·Hd, (7.14)

with

Hk =
M∑
ik=1

wikk Gk(:, ik, :). (7.15)

In a similar fashion, the H tensor is projected onto an orthonormal polynomial basis
φk(ξk) can also be done in a similar fashion. More details can be found in [6], [10].

7.2.1.1 Numerical example: integration of a multivariate function

We consider a function h(ξ) =
∑25
i=1 ξ

4
i , where ξ is a vector of 25 independent RVs

with a standard normal distribution N (0, 1).
It is readily analytically calculated that E[h(ξ)] = 75. This result is used as a reference
to test our numerical integration routines. When a full tensor integration with 3 nodes
in each dimension would be applied (integration is exact up to polynomial order 5),
the total number of integration points would be 325 ≈ 8 · 1011, which is prohibitively
expensive. By using the capabilities of TT toolbox [11], in particular by computing
the cross approximation as described in [12], the integral is calculated via only 11 124
function evaluations with machine precision accuracy.
Another alternative is to use Smolyak integration rule with an exactness up to polyno-
mial order 5. For this particular example, the total number of Smolyak points is then
1 301, which is smaller than the number of function evaluations in the TT approxima-
tion. However, for larger polynomial orders, e.g. when h2(ξ) =

∑25
i=1 ξ

6
i is integrated,

TT becomes more efficient than the Smolyak rule. Indeed, for a numerical integration
that is exact up to polynomial order 7, the number of points with TT decomposition
is 20 192 and with Smolyak integration rule it is already 22 201. For a larger number
of RVs, the difference, will only increase, making TT even more beneficial. The
advantage of TT approximation is that it can integrate polynomials up to a maximum
order in each dimension separately, whereas Smolyak rule only allows to integrate
polynomial exactly up to a total order.

7.2.2 Statistical Moment Preserving Model order Reduction

In a non-intrusive algorithm, the number of consecutive calls to the deterministic
solver can be large. For the scattering problems considered in this dissertation, which
are tackled via a BIE-MoM approach, each step involves solving a linear systems
Z(ξk) I(ξk) = V (ξk) for a different realization ξk of the random vector ξ, where
Z(ξk) ∈ RN×N is the system matrix, V (ξk) ∈ RN×1 is the known RHS and I(ξk) ∈
RN×1 represents the vector collecting the unknown current density coefficients. As
these linear systems originate from the same nominal structure, one way to expedite
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their solution is to exploit their similarity.
The SMOR method assumes that the solution can be spanned by a smaller number
of basis vectors. Consider the solution for the k-th realization, expressed in terms of
r basis vectors, as follows:

I(ξk) = U r z, (7.16)

where U r ∈ RN×r is a matrix whose columns are these basis vectors. The determina-
tion of this basis will be discussed below and z ∈ Cr×1 is a new sought-for vector of
unknowns. The linear system is now rewritten as:

Z(ξk)U r z = V (ξk). (7.17)

To obtain an r × r solvable linear system, the left projection matrix U
H

r , where H
indicates the Hermitian operator, is used for Galerkin projection of the system:

U
H

r Z(ξk)U r z = U
H

r V (ξk). (7.18)

The original unknown vector I(ξk) is then found via:

I(ξk) = U r (UH

r Z(ξk)U r)−1U
H

r V (ξk). (7.19)

The key issue in this method is constructing the matrix U r. In [5], this matrix is
constructed by a Gram-Schmidt orthogonalization of the vectors that are obtained by
solving the system for several realizations. The idea is to dynamically expand the basis
and check whether the solution for a new realization can be expressed in terms of the
previously calculated basis. This is checked by computing the residual

r(ξk) = V (ξk)−Z U r (UH

r Z(ξk)U r)−1U
H

r V (ξk). (7.20)

If the residual is smaller than some predefined threshold, then the current subspace
U r encompasses the solution which is found via (7.19). If this residual is large, the
original linear system has to be solved via a traditional approach. Afterwards, the basis
is extended with a vector u, given by

u = I(ξk)−U rU
H

r I(ξk). (7.21)

The new matrix U r+1 is formed by extending the previous basis as follows U r+1 =
[U r u]. The final number of basis vectors needed to accurately span the entire solution
space is denoted R and it depends on the structure, its variability and predefined
threshold value. More implementation details are found in [5].

7.2.2.1 Numerical example: Rough strip with Gaussian statistics

We consider a rough two-dimensional (2D) PEC strip with width w = 100λ, similar as
the one shown in Fig. 6.1, but whose roughness is described by a set of 81 independent
RVs with a normal distribution. We investigate to what extent the reduced space
depends on the standard deviation σ of these normal distributions. For a predefined
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threshold 10−3, when σ = λ/10 000, only R = 2 basis vectors are needed to span the
entire space. For σ = λ/100, and the same threshold, this number is R = 83, and for
σ = λ/20 the size of the reduced basis is R = 242. In all cases 500 realizations were
considered. These results are logical, since for a larger input variability we expect that
the solutions for different realization points are “less similar”.
The results also clearly show the benefits of using a reduced model. Any non-intrusive
algorithm (standard SCM, MC, TT) can be used in conjunction with SMOR. For
the stochastic analysis of the rough strip with σ = λ/100, e.g., and assuming that a
non-intrusive method requires the evaluation of 10 000 realizations of ξ, only about 1%
of linear systems needs to be solved in a traditional way, whereas all others are solved
by making use of the basis U r and by checking the residual r(ξq), as described above.
Still, for every realization ξk the linear system (7.18) needs to be constructed. When
the Multilevel Fast Multipole Method (MLFMM) is used, this includes performing
fast matrix vector multiplications (MVP) of the matrix Z(ξk) with the R basis vectors
of the matrix UR. The complexity of this step is RP (N), where P (N) denotes the
complexity of the standard deterministic MLFMM, i.e. P (N) = O(N logN) for 2D
scatterers. The total complexity of constructing the system U

H

r Z(ξk)U r during the
setup phase of the algorithm is then RO(N log(N)) + R2O(N). The solution time
scales as NirO(R2), when iterative solvers are used and where Nir represents total
number of iterations. Still, for R� N , it is clear that the RO(N log(N) time of the
setup phase dominates.
When we compare the SMOR with a standard non-intrusive method leveraging MLFMM,
the computational complexity for the latter one scales as NiO(N logN), where Ni in
number of matrix-vector products (MVPs) needed to solve the system. So, the SMOR
method becomes efficient only if R < Ni. For the present example, the average value
of Ni is about 90 for a 10−4 accuracy. Hence, this implementation of SMOR becomes
inefficient when σ > λ/100.

7.3 Combination of TT and SMOR

On the one hand, It is clear that TT can offer a huge advantage when Smolyak’s sparse
rule fails to produce good results. On the other hand, SMOR can exploit the similarity
between the several linear systems, that need to be solved. The main bottleneck
of constructing the linear system (7.18) can be removed by using the multivariate
polynomial PCE of the system matrix [5]:

Z(ξ) =
K∑
k=0

Zkφk(ξ), (7.22)

where φk(ξ) are multivariate orthonormal polynomial basis functions, as also described
in the previous chapters. By using PCE, the new system matrix, projected onto basis
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U r+1, is written as: follows:

U
H

r+1Z(ξ)U r+1 =
K∑
k=0

U
H

r+1ZkU r+1 φk(ξ). (7.23)

So, it can be found from the previous basisU r and the new basis vectoru by computing
the product in the right hand side of (7.23) in the following manner:[

U
H

r

uH

]
Zk
[
U r u

]
=
[
U
H

r ZkU r U
H

r Zk u
uH ZkU r uH Zk u

]
(7.24)

The products U
H

r ZkU r, U
H

r Zk and ZkU r are already available at step r + 1 ,
so the only additional cost is to find uH Zk u. After the reduced model is built, the
system matrix of type (7.18) is calculated using the multivariate polynomial evaluation
(7.23).
This approach, when used in conjuction with MLFMM, as described in the previous
chapter, leads to a very efficient evaluation of the Zk. However, to build reduced
models of type (7.24), the evaluation of Zk u has a complexity that scales with the
number of polynomials K. In contrast to [5] where coefficients are calculated via
simple matrix-vector multiplications, here this requires one Galerkin projection at the
disaggregation side [13]. So, some parts of the algorithm need to be rewritten, making
this approach both intrusive and non-intrusive in nature.
It is clearly visible that this novel approach could be more efficient than a standard non-
intrusive method. However, further optimization of the algorithm and its application
and many numerical tests are needed to gain more insight.

7.4 Conclusions

In this chapter, we have introduced methods based on tensor decomposition, which
are nowadays often used in the domain of UQ. These methods are combined with
non-intrusive methods, so we have suggested their combination with SMOR in order
to derive a new and efficient algorithm. However, by means of very simple numerical
examples, we have indicated that many parameters, type of structure, variability,
number of RVs, etc affect the total solution time. Still, conjuction of MLFMM with TT
decomposition and SMOR seems to be a promising way to conceive novel, efficient
tools for stochastic EM modeling.
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8
Conclusions

8.1 General conclusions

In this thesis, novel uncertainty quantification (UQ) methods for full-wave scattering
problems were investigated. The main focus was on developing intrusive polynomial
chaos expansion (PCE) based techniques. Starting from a stochastic boundary integral
equation (BIE) description of the scattering problems, solutions were found via a
standard Method of Moments (MoM) in combination with the PCE-based stochastic
Galerkin Method (SGM). The Multilevel Fast Multipole Method (MLFMM) was intro-
duced to speed up the computations, and as such, an efficient SGM-MLFMM algorithm
was constructed. The efficiency and accuracy with which typical statistical quantities
such as mean, variance, PDF, etc, can be calculated, were thoroughly validated, tested,
and compared with the non-intrusive Stochastic Collocation Method (SCM) and the
standard Monte Carlo (MC) approach. The hybridization of the (MLFMM-accelerated)
BIE-MoM with the SGM to efficiently solve Maxwell’s equations or the Helmholtz
equation were never attempted before in literature, and, hence, this is considered as
the main novel contribution of this work. The several flavors of the newly developed
algorithms are detailed next.

After a general introduction in Chapter 1, the second chapter covers the standard
MoM scheme and its combination with both the SGM and the SCM method. It is
important to mention here again that, for the scattering problems under consideration,
even a small variation of the input parameters (i.e. the properties of the scatterer) can
already lead to a significant variability of the output parameters, such as the current
density on the scatterer’s surface. This is due to the stochastically varying phase of the
electromagnetic fields. This is unavoidable for full-wave (scattering) problems, and
justifies the need of dedicated solvers, as presented in this work. The third chapter
describes the SGM-MoM of Chapter 2 accelerated by means of the MLFMM. Special
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attention was devoted to the computational complexity and truncation error of the novel
SGM-MLFMM scheme. To further expedite the computations, in particular to reduce
the number of iterations during the solution of the linear system evolving from the
MoM, a preconditioner was constructed, as presented in Chapter 4. The parallelization
of the SGM-MLFMM is proposed in the fifth chapter. In this chapter, scattering at both
perfectly electrically conducting and dielectric objects were considered. Moreover,
two-dimensional equivalents of real optical systems were simulated and the results
show a great advantage over SCM and MC methods. Chapter 6 introduced the new
Cholesky-based strategy to deal with correlated random variables as opposed to the tra-
ditionally used Karhunen-Loève transformation (KLT). It was shown that this approach
deals well with low correlation lengths and it mitigates the curse of dimensionality
issues evolving from the multidimensional integrations. The Cholesky approach outper-
forms the KLT during both the setup and the solution phase of the algorithm. Finally,
in Chapter 7, the groundwork is laid for a promising sampling-based hybrid method,
leveraging tensor-train (TT) decomposition and Statistical Moment Preserving Model
Order Reduction (SMOR).

All novel methods show an excellent accuracy and efficiency. For many situations, the
standard deterministic complexity is simply scaled with the number of polynomials
used in the PCE, which makes these methods usable for any situation where SGM-
MoM can be used. However, as discussed in this work, the choice between adopting a
non-intrusive versus an intrusive method may depend on the specific application and is
not always straightforward.

8.2 Future research

The research in the domain of uncertainty quantification of electromagnetic problems
is not a finished story. Despite the fact that several important issues were successfully
addressed in this works, also many new questions arise from it. Thus, future research
can be split into several directions.

From an electromagnetic point of view, it would be interesting to combine the SGM
with MLFMM for three-dimensional scattering problems and real-life applications.
Studying the impact of the typical, low-frequency breakdown on the SGM-MLFMM
scheme and dealing with it, is another challenging path. In particular, one might wonder
whether the scalability with the number of polynomials remains intact and it has to be
checked whether the method is still competitive compared to the standard SCM.

Parallelization of the SGM-MLFMM for large electromagnetic structures whose vari-
ability is described by a set of few random variables was tackled in this thesis. However,
for a large number of variables, the approach described in this thesis might not be
sufficient. Further research on the parallelization of the proposed schemes, in particular
from a stochastic viewpoint, i.e. to deal with many RVs, is required.
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As stated before, the choice between intrusive and non-intrusive methods remains
difficult for full-wave electromagnetic problems. For a large number of polynomials,
the PCE problem becomes a big data problem. To the best of the author’s knowledge,
novel UQ methods are mostly based on non-intrusive formalisms and the usage of
tensors. From this perspective, intrusive methods become obsolete. However, methods
that allow the fast computation of the stochastic matrix vector product (MVP) of type
Z(ξ)I(ξ) are still decent alternatives. Novel algorithms based on SGM should be,
at least, scalable for a large number of polynomials K and phase effects should be
properly dealth with. In particular, truncating PCE series in the MLFMM scheme,
might lead to phase errors, and consequently, more research on the development of fast
MVPs is needed.

In many areas of electrical engineering, there are lot of uncertainties that influence
the behavior of circuits and devices. Therefore, studying and analyzing the stochastic
nature is of the utmost importance. Based on novel stochastic models, such as the ones
developed in this thesis, optimization of the initial design might make the circuit less
sensitive to process variations. PCE-based UQ methods can be used, in the forward
loop, of novel robust optimizers and pave the way to variability-aware design.
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