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1 Introduction

1.1 Magnetic Resonance Imaging

1.1.1 A short history of neuroscience
For centuries, people have been interested in the origin of mental pro-
cesses. The very first record of the term ‘brain’ dates back to as early as
Ancient Egypt and is found in the Edwin Smith Surgical papyrus, the
oldest known document dealing with surgery. It was written ca 1700 BCE
and describes 48 medical cases of which 7 deal with brain injuries. Using
a remarkable rationality for those times, the cranial structures are realis-
tically described and the brain is already linked to speech, paralysis and
the occurrence of seizures.

But even a 1000 year later, in Ancient Greece, people didn’t seem to
know much more about the brain. The general belief at the time, as the
philosopher and scientist Aristotle (384-322 BC) defended, was that con-
sciousness is rooted in the human heart, the brain merely being a cooling
mechanism for the blood. This view was challenged on one hand by Plato
(428-347 BC) who wrote in his book Timaios that the soul is divided into
three parts : the immortal soul in the head, reason in the heart, and the
roots of emotion lying in the liver. And on the other hand by Hippocrates
(460-379 BC), the father of medicine, who already understood, thanks to
his experiments, that the brain was actually the seat of mental processes.

Those views remained until the Roman times and were improved by
Galen (129-199 AC). This Roman physician dissected and studied numer-
ous brains of sheep, monkeys, dogs, swines and other mammal, and came
to the conclusion that the brain, in addition to the mental processes, con-
trolled the bodily functions as well. He also made studies of cranial nerves
and the spinal cord and understood the difference between motor and
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2 Chapter 1

sensory nerves. All of his new-acquired knowledge led him to believe that
there was no intrinsic distinction between the mind and the body and
he attempted to attribute particular nervous diseases to dysfunctions of
specific brain regions. Even though some of his beliefs would often seem
bizarre nowadays, his ideas became influential throughout the world. Af-
ter him, it was no longer possible to ignore the fact that the brain was
the center of our thoughts and emotions.

But during the Middle Ages, it was more important for the Church
to focus on the ethereal soul. So instead of promoting the mere materi-
alistic theory of Galen, without rejecting him on other subjects however,
they followed Aristotle’s classification of the mind into feeling, thinking,
remembering, etc. Since the dominant church fathers, like Augustine of
Hippo, thought that brain tissue was too mundane to act as an interme-
diary between the earthly body and the heavenly soul, they put the mind
in the empty part of the brain, the ventricles, which had been claimed
to be hollow by Galen in the context of his theory of blood circulation
in the brain. With such strong views, it was difficult to make any signif-
icant progress on the understanding of the brain and the human mind,
even though the period was fruitful in philosophical debates about the na-
ture of the mind. While Europe was under the influence of strong religion
dogmas, the Arabic civilization was in a Golden Age which allowed the
translation, study, and preservation of all the great philosophers and doc-
tors of the Antic World. But there as well, the religious dogmas prevented
any real improvement.

Things would radically change with the Renaissance period. Even
though the Church would still be strong through the Inquisition, peo-
ple would start dissecting bodies, driven by scientific or artistic purposes.
One of the first to do so was Andreas Vesalius (1514-1564), the father of
human anatomy. He gave the most advanced description of the human
brain so far, showing the absence of holes in the ventricles, destroying the
belief that it was the siege of our soul. He also helped defining the nerves
by rejecting ligaments and tendons as part of the nervous system as previ-
ously thought, and he showed that the nerves were not hollow. This quest
for truth was continued by many scientists of that time, among which
Descartes (1596-1650) who was so interested in the subject that it has
been written that if Descartes were alive today, he would be in charge of
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the CAT and PET scan machines in a major research hospital (Watson
2002, p. 15). But in spite of their dedication and studies, and even though
they passed on to us a detailed anatomical description, those pioneers
could not pin down the relationship between the brain and our mental
processes. It became clear that only through a thorough and systematic
study in a scientific setting, the secrets of the brain could be further un-
raveled.

The neuroscientists in the 19th and 20th century focused mostly on
the mapping of the brain. Where are the crucial functions such as vision,
control, speech, emotions,.. located in the brain? The first widespread
theory was the pseudoscience of phrenology. The first phrenologist, Franz
Gall (1758-1828), believed the mind was like other muscles in the body:
when exercising a specific function, the brain region responsible for this
function grows, which leads to bumps on the skull. By carefully inspecting
skulls of people, Gall derived a detailed atlas with psychological functions.
While we know today that the idea of phrenology is not scientifically
grounded, the idea that functions are located in localized parts of the
brain is considered an important historical advance in neuroscience.

From then onwards, the brain was studied intensively. Different meth-
ods for research can be distinguished: lesion studies, drug studies and
recordings of electrical activity. The study of the brain lesions could be
done after the subject has died. Despite being useful for anatomical re-
search, it is less suitable for functional research. For that matter one
investigated the psychological functions of subjects with lesions in the
brain. A famous example is Phineas Gage (1823-1860), who survived a
rock-blasting accident that destroyed much of his brain’s left frontal lobe.
After the accident, his functions remained intact, but his personality and
behavior changed largely, which indicates that the frontal lobe is respon-
sible for personality. Another important lesion study was the research of
the French physician Pierre Broca (1824-1880). By studying the brain of
patients with speech difficulties, he discovered the exact location of the
center of language production. Later, this work was extended by Wer-
nicke (1848-1905), who localized precisely the brain area responsible for
language comprehension through lesion studies. But even though lesion
studies are undoubtedly important and useful for neuroscience, they are
limited in their applicability. The patients are only studied after they
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obtained the lesion, and it is often difficult to find patients with isolated
damage. Another problem with lesion studies relates to the network struc-
ture of the brain. From a lesion study, one can conclude that a specific
part of the brain relates to a specific function. However, as brain functions
act as a network, probably other brain regions relate to the same function.
A certain brain region can therefore be necessary but not sufficient for a
function.

In contrast, drug studies allow investigation of large brain networks
that cannot be associated with a simple task. A disadvantage however is
the difficulty to identify functions of specific brain regions.

A third method to study the brain, imaging, was only discovered in
the beginning of the 20th century. Electroencephalography, which is up
to today the most direct measure of neuronal activity, detects very rapid
changes in electrical potential, and is therefore the perfect way to study
the timing of brain processes. However, because the measurements can
only be performed outside of the brain, its power for localization is very
low.

Later, at the beginning of the 20th century, new technological advances
and progress in the science of physics led to the discovery of better imaging
of the body. In the early 1980s, new techniques using X-rays such as
computerised axial tomography (CAT), single photon emission computed
tomography (SPECT) and positron emission tomography (PET) allowed
to study not only the anatomy but also the function of the brain. A few
years later, magnetic resonance imaging (MRI) was applied to study in
vivo the anatomy of the brain. Today, the progress in neuroscience is faster
than ever and this success can be largely attributed to the advances in
neuroimaging, and more specifically to MRI.

To conclude our historical survey of the study of the brain, we can
say that even though it has been an object of interest since the beginning
of mankind history, it is only very recently that we came to understand,
even though in a very limited way, the functions of that amazing and
somewhat mysterious organ. After more than 3500 years of philosophical
and scientific debates, the question of the relationship between our mind
and our brain remains one of the most difficult, but undoubtedly the most
interesting, modern medicine has to answer.



Introduction 5

M
agnetic Field

A. B.

Figure 1.1: Protons in free space with random orientations (A) and protons
in a magnetic field (B).

1.1.2 Basic MRI physics

MRI relies on a core set of physical principles. In what follows, a short
overview will be given on their physical principles. At the end of this
section, it will become clear how brain functions can be measured using
MRI.

Nuclear spins MRI focusses on the detection of hydrogen nuclei, which
is an atom consisting of a single proton. A single proton under normal
conditions spins about itself and are therefore called a spin. This rotational
movement causes electrical current because of its positive charge, which in
turn causes a magnetic moment, µ. The rotation also induces an angular
moment J as a result of its mass. The gyromagnetic ratio γ, defined as
µ/J , is crucial for MRI. In the absence of magnetic fields, as in panel A of
Figure 1.1, the spins are oriented randomly. When placed in an external
magnetic field with strength B0, the spin axis of all spins align with the
magnetic field (Figure 1.1 panel B).

However, the spin axes are not perfectly aligned with the magnetic
field. In addition to their spinning motion, their axis of spin itself wobbles
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Figure 1.2: Panel A shows the precession of the spin. Panel B shows the
difference between high energy (black) and low energy (grey) spins.

around a vertical axis, see panel A in Figure 1.2. This motion is known as
precession: the angular moment J precesses arond the external field axis
with an angular frequency known as the Larmor frequency ω = −γB,
where B is the magnitude of the magnetic field and γ the gyromagnetic
ratio. As is shown in panel B in Figure 1.2, recessing protons can be in
two states: parallel or antiparallel to the magnetic field. Protons in the
parallel state have a low energy level, protons in the antiparallel state
have a higher energy level. The aim is to measure the net magnetisation,
which is determined by the difference between the number of high en-
ergy spins and the number of low energy spins in a certain volume. If
an excitation pulse, in the form of another magnetic field, with the right
amount of energy is applied, some spins will absorb that energy and jump
to the high-energy state, in a process called excitations. Once the excita-
tion pulse is turned off, some high-energy spins return to the low-energy
state, thereby releasing the absorbed energy in the reception period. The
released electromagnetic energy can be detected by a radio frequency coil.
Measurement of this emitted energy, or MR signal, provides the data that
go into our images.

Net Magnetisation The net magnetisation M is defined as the sum of
the magnetic moments from spins. Without a magnetic field, the spin axes
of all nuclei are oriented in random directions, so that the net magnetisa-
tion is zero. In the precense of a magnetic field, all magnetic moments align
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in either the parallel or antiparallel state. There are always more parallel
than antiparallel spins, therefore there is always net magnetisation in the
presence of a magnetic field. Based on the net magnetisation, the number
of protons within a unit volume can be estimated. As such, in this specific
case the amount of hydrogen in a unit volume can be estimated. However,
the net magnetisation of a spin system cannot be measured directly. An
indirect measure for the net magnetisation is excitation.

Excitation To change the net magnetisation, MRI scanners use radio
frequency coils to transmit an electromagnetic excitation pulse (B1) at
the same frequency as the spin precession (i.e. the Larmor frequency),
which allows to perturb the spins. By applying an excitation pulse, the
net magnetisation vector is tipped downward from the longitudinal to the
transverse plane, a process called nutation. Because of the precession, the
downward movement of the net magnetisation will follow a spiral motion,
as shown in Figure 1.3. As a result of this nutation, the net magnetisation
of the spin system is changed and this change can be measured with
another receiver coil. Once the excitation pulse is taken away, the spin
system gradually loses the energy absorbed during the excitation and the
spins return to the parallel (or antiparallel) state. This phenomenon is
known as longitudinal relaxation. The time constant associated with this
longitudinal relaxation process is called T1, and the relaxation process is
called T1 recovery. Another process associated with the removal of the
excitation pulse is transverse relaxation: at first the spins precess as the
same starting point but over time this coherence is gradually lost and
they become out of phase. The signal loss by this mechanism is called
T2 decay and is characterised by a time constant known as T2. Both T1
recovery and T2 decay can be measured by the receiver coil. It is exactly
the T2 decay that will provide an indirect way to measure brain activation.
After applying Fourier transformation, the data can be transformed to
magnitude data and phase data. This magnitude data can be used as the
final measure for neural activation.

The BOLD response Under neural activation, neurons immediately need
a new supply of energy. Therefore these neurons receive immediately glu-
cose through an increase in oxygenated blood around these neurons. This
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Figure 1.3: This figure shows the nutation of the net magnetisation M ,
from the longitudinal (z-axis) to the transverse plane (x- and y-axis).

results in a higher rate of oxygenated blood flow and an expansion of
blood vessels. The blood-flow change takes place within 2 or 3 mm of
where the neural activation is. Oxygenated blood consists mostly of hy-
drogen atoms. As hydrogen nuclei are known to lose their magnetisation
faster via T2 decay, there will be an increase in MR signal where blood
is highly oxygenated. The result is the measurement of the blood oxy-
genation level dependent (BOLD). The BOLD signal is only a correlate
of neural activity. The oxygenation of the blood happens only after the
neural activation, following a function defined as the haemodynamic re-
sponse function or HRF (Figure 1.4). The specific form of this response
function varies for different brain regions and for different subjects. Still,
the BOLD signal with its imperfections is accepted as a plausible measure
of neural activity in the brain.

1.2 The statistical analysis of fMRI data

1.2.1 The fMRI experiment

Images The result of a brain scan, is a matrix of numbers, as is shown in
Figure 1.5. The brain is divided into many small blocks, which are called
voxels, where for each voxel the BOLD response is measured using the
principles laid out in the previous section. The size of the voxels depends
on the resolution of the scanner, but balances with current scanners some-
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Figure 1.4: Haemodynamic response function.

where between 1 and 3mm3. The goal of an fMRI study is to get more
insight in the functions of the brain. However, when looking at the BOLD
response for a normal awake person, we will see that the whole brain is
activated. Therefore, the BOLD response from one scan does not tell us
anything about the location of specific psychological functions. We there-
fore need a range of scans accompanied with a psychological experiment.

Example: the Auditory dataset An example of an fMRI experiment is
the auditory experiment, which is one of the first experiments with fMRI
data collected and analyzed in 1991 (Friston, Ashburner, Kiebel, Nichols,
& Penny, 2007). The goal of the experiment was to detect brain regions
involved in auditory perception. In order to find those regions, a subject
was placed in a scanner, while auditory stimulation was presented. In the
experiment, the subject was presented with a block of auditory stimuli,
more specific bi-syllabic words, alternated with silence, where each block
lasted for +/− 40 seconds. More general, there are two conditions: the
active condition and the inactive condition. During the experiment, MRI
scans of the brain are taken every 7 seconds. In the analysis of the data, the
scans of the active condition are contrasted with the scans of the inactive
condition. More specific, for each voxel, the intensity of the BOLD signal
are compared between the two conditions, using statistical tests. If for a
certain voxel, the difference in BOLD-intensity between the two conditions
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Figure 1.5: Graphical representation of a brain scan divided into voxels.
(R. Poldrack et al., 2011)

is sufficiently large compared to the difference within the conditions, this
voxel is declared statistically significant related to the auditory function.
The result is a map where all voxels are shown that are significantly related
to the psychological function of auditory perception. The analysis pipeline
of this experiment can be found in Figure 1.6.

fMRI analysis The auditory dataset was collected and analysed in 1991.
Of course, in the past 20 years, the analyses of fMRI data have largely
been optimised and improved. Nowadays, the procedures and corrections
to analyse fMRI data are collected in an analysis pipeline, shown in Figure
1.7. The main steps in the analysis of fMRI data are preprocessing, model
fitting and localisation. In the following sections, we will discuss each of
these steps in more detail.

1.2.2 Preprocessing
Slice timing correction fMRI data consist of different scans of the brain
that are taken for example every 2 seconds. However, the data are taken
in different slices, from the neck of the subject to the top of the head.
Therefore, the timing between the scans of the two lowest slices is exactly
2 seconds, but the timing between the scans of the lowest and the high-
est slice are slightly different. The first preprocessing step consists of a
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Figure 1.6: Graphical representation of a simple fMRI experiment in which
the brain location related to auditory perception is under investigation.
In a first step of an fMRI experiment (panel A), a continuous time se-
ries of scans is taken, while the subject is presented either with auditory
stimulation (active condition) or with silence (inactive condition). In the
next step (panel B), a comparison is made between the scans during the
active and the nonactive condition. More specific, for each volume unit
(voxel) the comparison is made (panel C). Statistical testing procedures
enable to draw inference on whether the differences in brain activation
are due to the difference in condition, or are rather due to chance. In the
last step (panel D), for each voxel, a decision is made whether the voxel
is significantly related to task or not.
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Figure 1.7: Main steps in the analysis of fMRI data.

correction for the difference in slice timing.

Head motion correction The analysis of fMRI data happens typically
voxelwise, so the BOLD signal is at first compared between minuscule
volume units during the experiment. It is therefore key that these volume
units refer to the exact same location in the brain in every scan. A big
problem for this is the fact that - even though the head is securely fastened
during the experiment - there exist small movements of the brain. By
estimating the rotation and shift of the brain, and consequently shifting
the BOLD measurements slightly according to the movements, the scans
are corrected for head motion. This step is often referred to as realignment.

Coregistration During the experiment, a high resolution anatomical scan
is taken, that often has dimensions 256 × 256 × 160. The fMRI data it-
self have a very low resolution because of the high temporal resolution,
often in dimensions 64 × 64 × 48. In the coregistration step of the pre-
processing, these two scans are aligned, so that results from the fMRI
experiment (with statements about brain functions), can be compared to
the anatomical scans (with statements about the anatomical regions).
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Normalisation In order to increase the validity of the fMRI experiment,
multiple subjects are used. However, different people have different brain
shapes and sizes. When we want to make general statements about the
brain activation over different subjects, it is important to align the brains
of the different subjects to a standard template of the brain. For example,
an atlas produced by the Montreal Neurological Institute (MNI) is very
popular for the normalisation step.

Spatial smoothing The last big preprocessing step is the spatial smooth-
ing of the brain. The BOLD signal measured in the brain suffers from
many noise components and is very rough. However, we can assume that
the oxygen in the blood does not stop and completely changes at the
border of a voxel. It is the inverse, the oxygen level will not differ much
between neighbouring voxels. Therefore, the BOLD value in each voxel is
replaced by a weighted average of the BOLD responses in neighbouring
voxels, where voxels at small distances have larger weights than voxels at
a larger distance.

Other preprocessing steps In the spatial smoothing, the data is blurred
across neighbouring voxels. Another preprocessing step consists of tem-
poral smoothing, where the data is blurred in between each scan, as it
makes sense that the oxygen level does not change hugely between 2 dif-
ferent time points. However, this induces even more autocorrelation be-
tween the timepoints than there already is. As subsequent analyses require
different timepoints to be independent, the data is often de-correlated or
whitened. Not all noise is due to the subject, also the scanner suffers from
noise. One such example is drift: even though the magnetic field should
remain constant, it often changes over the course of an experiment. There-
fore, the magnetisation is measured separately, and the data are corrected
for the drift. Finally, sometimes global differences exist across sessions or
subjects that can be easily corrected by applying a grand mean scaling.
Consequently, the mean of the BOLD response from each scanning ses-
sion has the same numerical value. Once all these preprocessing steps are
carried out, the actual statistical analysis of the BOLD signal can start.
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1.2.3 Model fitting

There are different models plausible to capture the data. Two main fam-
ilies of models exist: the GLM approach and multivariate analyses, such
as ICA, PCA,... The GLM method constructs a test for each voxel that
is only based on information in the voxel itself. This is a mass-univariate
approach as it performs a large number of tests that are univarate of
nature. The multivariate approach combines information over voxels. We
will use multivariate analyses in chapter 5, but in what follows we focus
on univariate analyses.

Single subject analysis

The way in which the conditions are compared in Figure 1.6 is easily un-
derstandable, but is unfortunately a very simplified version of the reality.
In Figure 1.4 it is shown that there is a lag in the blood flow to the active
brain regions, and therefore it is not simply possible to compare the scans
in a categorical way (active condition vs. non-active condition). Instead
we look at the brain activations as a time series. Panel A of Figure 1.8
shows the design of the experiment. Because of the lag in blood flow in
the brain, we would expect the BOLD signal in an activated voxel, with-
out any noise, to be a time series as shown in panel B of Figure 1.8. The
BOLD-signal observed in a voxel involved in the experiment is not perfect,
as many sources influence the measured signal besides the experimental
condition. Instead, we observe a signal as presented in panel C of Figure
1.8. To quantify the overlap between the design and the observed signal
in a certain voxel, a linear model as follows is used.

Yi = b0 + b1Xi + ei (1.1)

where Yi refers to the observed BOLD signal in a certain time point
(black line in Figure 1.8 C) and Xi refers to the expected BOLD signal
under perfect activation (grey line in panel B of Figure 1.8). b̂0 and b̂1
are estimates for the relation between Yi and Xi and b0 and b1 can be
estimated by minimising the difference between Yi and b0 +b1Xi. b0 refers
to the baseline of the BOLD-signal, and b1 is a scaling factor for the design
that quantifies the overlap between the design and the observed BOLD
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signal. The part of the observed signal that cannot be predicted by the
expected activation, is called the residual error, ei, which is assumed to
be zero on average. When the variance of these errors is large, it is hard
to estimate b1, or in other words the variance on the estimate b̂1, V ar(b̂1)
is large. With a lower residual variance, it is easier to observe the relation
between Yi and Xi, and thus V ar(b̂1) will be smaller.

To study whether there is a relationship between the design and the
observed BOLD signal, we formulate the following hypothesis:

H0 : b1 = 0 (1.2)

If H0 cannot be rejected, then we state that the particular voxel is not
responsible for the task. However, the estimated b1 will hardly ever be
equal to zero, but what matters is whether this is statistically significant
or whether the difference is due to chance. Stated differently, we want to
see whether b1 is large compared to the variance on the estimate b1. To
do so, we compute a statistic that measures the evidence against H0, such
as a T -statistic:

T = b̂1/V ar(b̂1) (1.3)

In a next section, we will discuss how these statistics can help us decide
whether we have enough evidence against the hypothesis in Equation (1.2)
to conclude that the voxel is active.

In our example on auditory perception, there is only one design com-
ponent in a blocked design (i.e. 30 seconds on / 30 seconds off). However,
many more experimental designs are possible. Figure 1.9 shows two ex-
amples of alternative designs. The left panel in the figure shows an event-
related design, where the conditions are not alternated in a blocked design,
but appear at random time points. An example is an experiment where
every now and then a very hard and surprising sound is played. The right
panel of Figure 1.9 shows how multiple design components, or regressors,
are possible in the same experiment. One example is when no visual stim-
uli are shown, followed by 20 seconds of seeing faces and thereafter 20
seconds of seeing houses. The linear model then changes to:

Yi = b0 + b1X1i + b2X2i + ei (1.4)
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Figure 1.8: This figure shows how to model the voxelwise time series. Panel
A shows the box-car design, with an on-off experimental design. Panel B
shows the expected activation given the haemodynamic response function.
Panel C shows two observed time series, and it shows how the parameters
b0 and b1 represent the relationship between the observed time series and
the expected activation.
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Figure 1.9: This figure shows how different experimental designs are pos-
sible. The left panels show an event-related design, while the right panel
shows a design with two regressors. The upper panel (A) shows the ex-
perimental design, the middle panel (B) shows the expected activation
taking into account the HRF. The lower panel (C) shows an example of a
time series observed in a certain voxel and the estimates that result from
the linear model.

It can be seen that b1 represents the relationship between the observed
BOLD signal and the first regressor (eg. faces), and b2 quantifies the
relationship between the observed BOLD signal and the second regressor
(eg. houses). An experiment with multiple regressors allows to compare
the active condition with the non-active condition (H0 : b1 = 0 or H0 :
b2 = 0), but also to compare the different active conditions, for example
the difference between seeing faces and houses (H0 : b1 = b2).

1.2.4 Group analysis
It is known that brain functions differ between people. Therefore results
on brain functions cannot be claimed based on the results from one sub-
ject. On the other hand, the interest may lie in the differences between
different subjects. Therefore, we often perform the same fMRI experi-
ment on many different subjects. The analysis of a group study always
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starts with a single-subject analysis for each subject as described above.
For each subject s, and for each voxel i, we obtain an estimated param-
eter b̂1is and its variance V ar(b̂1is). This step is often referred to as the
first level analysis. In the second level analysis, we perform a new analy-
sis, where we compare the b1-parameter estimates for each voxel between
subject groups. The linear model is the same as in equation 1.1, but now
Xis refers to group identity. The outcome variable Yi refers to the b1is-
parameter estimates. It is clear from Figure 1.10 that the second level
analysis is very similar to the first level analysis, but different conditions
now refer to between-subject differences (eg. sick vs. healthy, male vs. fe-
male,...) instead of within-subject experimental conditions. In the event
that there is only one group, we compare all b1-parameters with 0, and
the design matrix Xis will be (1, 1, ..., 1).

1.2.5 Localisation
Statistical inference

In the previous section, we explained how to compute a statistic for each
voxel based on a linear model. In this section will discuss how to make
binary choices for each voxel, i.e. is a voxel significantly related to the
experimental design or not? This enables to localise in the brain which
area is responsible for a given task. We test for each voxel the null hypoth-
esis H0 of no task-related activation against the alternative hypothesis of
task-related activation Ha. It is unknown whether H0 or Ha is true. As
such two distinct errors are possible, as shown in Table 1.1. If there is
no task-related activation in the voxel, we can make a false positive clas-
sification, also denoted as a type I error. If the voxel is involved in the
experimental task, but we mistakenly declare it non-significant, we make
a type II error or a false negative. The goal of any statistical test is to
minimise the number of errors made.

To guide the classification, we rely on the probability density function
(PDF) of a statistic under the null hypothesis to make inference. The PDF
allows us to compute the one-sided p-value, where p = P (T ≥ t|H0), the
probability to find a statistic equal or larger than the observed statistic
when H0 is true, as is shown in Figure 1.11. For many statistics, such as
the T-statistic in Equation 1.3, the PDF is known. To make inferences on
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Figure 1.10: This figure shows the second level analysis of a group study.

Declared active Declared inactive
Non-active False positive True negative

(Type I error)
Active True positive False negative

(Type II error)

Table 1.1: Possible outcomes for a statistical test.
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Figure 1.11: Example of a p-value computation. The vertical coordinate
is the probability density for each outcome, computed under the null hy-
pothesis. The p-value is the area under the curve past the observed data
point.

the activation level for each voxel, we set a threshold α on these p-values,
and declare all p-values higher than α non-significant (H0 not rejected).
All p-values below α are declared significant (rejectH0). As a consequence,
we find a certain threshold c, for which holds that α = P (T ≥ c|H0), the
probability of detecting a false positive when H0 is true. The rationale
behind this is that if one finds enough evidence against the null hypothesis,
one can confidently reject it. This procedure controls the probability of a
type I error at level α.

The multiple testing problem

In an fMRI analysis, we test for activation in over 100 000 voxels at
the same time. Suppose that there is no effect of the task anywhere in
the brain and all voxels are independent. If we would then test using a
very common level of α = 0.05, we can expect an average of 5000 falsely
positives. In other words, we would on average falsely conclude that there
is an effect in 5000 voxels. This problematic situation that occurs when
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Declared active Declared inactive Total
Non-active F m0 − F m0
Active T m1 − T m1

Total S m− S m

Table 1.2: Expected numbers in a cross-classification when testing m vox-
els for significance . m1 is m−m0. S represents the number of voxels that
are declared active. F and T respectively represent the false and true
positives.

testing many statistical tests simultaneously, is called the multiple testing
problem. Assume that we test H0 against Ha for m voxels. The possible
outcomes when testing m voxels are denoted in the Table 1.2.

In the framework of multiple tests, several definitions of a type I error
rate exist:

• PCER: The Per-Comparison Error Rate, equal to E(F )/m, the ex-
pected number of type I errors divided by the total number of tests.

• FWER: The FamilyWise Error Rate, defined as P (F ≥ 1), the prob-
ability of making at least one type I error.

• FDR: The False Discovery rate, the expected proportion of true null
hypotheses among the rejected ones, E(F/S), where the proportion
is set to 0 in case of no rejections (S=0).

Each of these error rates can be controlled using certain procedures.
We discuss one procedure per error rate, however many more procedures
exist.

PCER control In case we threshold the p-values at level α as we did
in a single hypothesis problem, and therefore do not correct for multiple
comparisons, we control the PCER at level α.

FWER control The most common FWER controlling procedure is the
Bonferroni procedure. Here each of m tests is performed at significance
level α/m. This controls the FWER at level α.



22 Chapter 1

FDR control Let p1 ≤ p2 ≤ ... ≤ pm represent the ordered voxelwise
p-values. Then the procedure of Benjamini & Hochberg (1995) controls
the FDR at level α as follows:

• Find the largest k such that pk ≥ k
mα

• Then reject all Hi for i = 1, ..., k.

Random Field Theory

The thresholding procedures described above all make the assumption
that the tests are independent. But the statistical tests in neighbouring
voxels are not independent. When there is strong brain activation in a
voxel, there is a high chance that the neighbouring voxels will be active
as well. Many testing procedures have been developed where the corre-
lation between the different tests is captured. However, spatial correla-
tion is a specific type of correlation, that calls for specific solutions. One
framework for topological inference that allows to test for activation while
taking into account the spatial structure is Random Field Theory (Adler,
1981; Friston, Frith, Liddle, & Frackowiak, 1991). Assume that under the
null hypothesis of no activation, the three dimensional array of statistics,
also called the statistical parametric map (SPM), is a gaussian random
field. A gaussian random field is a collection of random variables that
have a multivariate Gaussian distribution. One important feature of the
random field is the spatial smoothness, translated as the standard devia-
tion in directions i = x, y, z of the multivariate Gaussian distribution, σi.
Related to this measure of smoothness, we define a resel as a resolution
element, which describes the actual spatial image resolution in a volume.
The number of resels will be lower or equal to the number of voxels in
the image. If we define the full width at half maximum of an image as
FWHMi =

√
8 log 2σi, then the resel size equals:

resel = FWHMx × FWHMy × FWHMz (1.5)

Assume one only considers statistics that exceed a certain threshold
u. The collection of these voxels form an excursion set. For this excursion
threshold u, it is possible to compute the Euler characteristic (EC), a
topological invariant that describes the topological space’s shape. The
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precise definition is rather complex, but as an approximation, it can be
described as:

EC = #(blobs)−#(holes) (1.6)

For example, a doughnut has one blob and one hole (EC=0), a ball
has only one blob (EC=1), the galaxy has one hole but many blobs, a
block of Swiss cheese has one blob but many holes, etc.

In the context of fMRI, if the excursion threshold u for the SPM is
large enough to make sure that there are no holes in the excursion set, then
the Euler characteristic will be equal to the number of blobs. Under the
null hypothesis of no activation, every blob is a false positive blob. We can
redefine all type I error rates described above in this spatial framework:

• PCER: the average number of blobs over all resels

• FWER: the probability of finding one or more blobs

FDR has no meaning under the assumption of the complete null. As
such, we can find a new threshold t to control one of these false positive
rates voxelwise.

Levels of inference

Within the framework of topological inference, different levels of inference
can be defined: voxelwise, clusterwise, peakwise and setwise. All proce-
dures differ in their number of tests n, the feature they focus on, and the
probability of the features.

voxel level inference Voxelwise statistical testing refers to all voxels
being tested simultaneously, with one of the procedures described above.
n is the total number of voxels, the p-values can be computed with classical
statistical testing and is derived from the voxelwise test statistic.

peak level inference In peakwise inference, we only consider local max-
ima (the maxima of all neighbouring voxels). n refers to the number of
peaks above excursion threshold u. The p-value for local maxima t is ap-
proximated as (for derivation see Durnez, Moerkerke, & Nichols 2014):
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P (T ≥ t|T ≥ u,H0) ≈ exp(−u(t− u)) (1.7)

cluster level inference When performing statistical tests on clusters, one
considers all clusters above excursion threshold u. The p-value is computed
based on the extent of each cluster. The idea is to approximate the shape
of the image by a quadratic with a peak at the local maximum. For a
Gaussian random field, the spatial extent S is approximated by the vol-
ume where the quadratic of height H above u cuts the threshold u. The
spatial extent can be expressed as S ≈ rHD/2 (Worsley, 2007), with D

the number of dimensions (i.e. three), with

r = FWHMDuD/2P (T ≥ u|H0)
ECD(u)Γ(D/2 + 1) . (1.8)

The p-value for a cluster with an observed spatial extent s can be
approximated as follows (Worsley, 2007):

P (S ≥ s|D,FWHMD, u,H0) ≈ exp(−u(s/r)2/D) (1.9)

set level inference Set level inference aims to make an overall conclusion:
is there task-related activation in the brain or not? These tests have not
been widely used because their lack of localizing power. The set-level
approaches an omnibus test (Friston et al., 2007), with l equal to the
cluster number:

P (activation) = 1−
l−1∑
i=0

1
l!EC

l
D exp (−ECD) (1.10)

1.2.6 The power problem in neuroscience
Statistical power

In the previous section, we show how to compute the p-value of a voxel, the
probability of a false positive, and how to threshold these, while controlling
a fixed false positive rate. While it is important to avoid false positives, it
is also important to consider the chance at false negatives as much time
and money is invested in scientific research (Figure 1.12). When H0 is
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rejected as soon as the test statistic is larger than or equal to cutoff c, the
type II error rate is defined as β = P (T ≤ c|Ha), the probability of making
a false negative error when Ha is true. In panel B of Figure 1.12, both
the α- and β-levels are shown. To have a measure how sensitive a testing
procedure is, we define statistical power as the probability of detecting an
effect when it is actually present, P (T ≥ c|Ha).

Power in fMRI

We argue that while it is very useful to prevent false positives, it is also nec-
essary to take into account the prevalence of false negatives in a study. Be-
cause the more one tries to prevent false positives, the higher the chances
at false negatives. This problem is especially present in neuroimaging. The
scanners are known to be prone to different sources of noise (Geissler et
al., 2007), and the multiple comparisons problem in neuroscience is of a
huge dimension. Therefore, neuroscience, more than most other sciences
suffer from a huge loss in power (Button et al., 2013). The goal of this doc-
toral thesis is to assess the power problem for individual fMRI studies, as
well as providing answers to specific settings of problems with statistical
power.

1.3 Motivation and outline
Different statistical procedures have been introduced that deal with the
multiple testing problem. Control of the FDR was introduced in neu-
roscience and because of its higher power, it replaced FWER control.
However, higher power comes with a great loss of specificity, also called
the true negative rate. We can ask ourselves: is the gain in power worth
the loss in specificity? This question is tackled in the second chapter. We
compare control of FWER and FDR on a number of features, such as
specificity, statistical power, and stability for a large range of possible
scenarios. Stability can for example be measured through the variability
of the results, with a lower variability indicating a higher stability. There
we find that for a fixed α-level FWER control indeed exhibits very low
power, a problem overcome significantly by FDR control. But on the other
hand FDR control suffers from a big loss of stability. Consequently FDR
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Figure 1.12: Panel A. In noisy contexts, where activation can be hardly
separated from non-activation, the distributions under H0 and Ha are
closely together. In this example, the observed data point does not exceed
the threshold for activation (i.e. its p-value is higher than the applied
α-level. Therefore, for this data point (voxel), we would conclude that
there is no significant effect. However, when looking at the probability
density function of Ha, it is clear that this observation actually has a high
probability of being observed when Ha is true. Even more, the probability
of observing this point under Ha is higher than the probability of the
observation under H0. Panel B. For a certain statistical threshold c, we
can define α as the probability of a type I error when H0 is true, and β
as the probability of a type II error when Ha is true.
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control is not the holy grail of multiple testing procedures. When conduct-
ing an fMRI study, careful attention should be given to the thresholding
question, thereby considering which thresholding procedure comes with
which power.

However, apart from few publications on how to choose an appropriate
sample size for fMRI experiments (Friston, 2012; Desmond & Glover, 2002;
Mumford, 2012), few is known on statistical power in fMRI. Therefore in
the third chapter, we present a concise procedure with which power can be
estimated for a given study post-hoc. This enables researchers to evaluate
their own studies, and makes it possible to assess to which extent their
studies find the task-related brain activation of study.

A drawback of this procedure is that it only functions post hoc and
cannot yet predict the power of a study before it is conducted. Therefore,
in chapter four, we extend the procedure for this purpose. We present a
simple way to characterise the spatial signal in an fMRI study, and a direct
way to estimate power based on an existing pilot study. Specifically, using
just (1) the proportion of the brain activated and (2) the average effect size
in activated brain regions, we can produce closed form power calculations
for given sample size, brain volume and smoothness. This procedure allows
minimising the cost of an fMRI experiment, while preserving a predefined
statistical power.

However sometimes the goal of a study prevents the possibility of sim-
ply increasing its sample size. One such example is pre-surgical fMRI, in
which one localises certain psychological tasks in a subject prior to under-
going surgery for brain tumors, epilepsy, etc. In that case a researcher has
to deal with the power that comes with the single subject data. This fact
notwithstanding, a classical stringent focus on preventing false positives
is accompanied by a risk of false negatives, which can be detrimental,
particularly in clinical settings where false negatives may lead to surgical
resection of vital brain tissue. Therefore, in chapter five, we present an
alternative based thresholding procedure that incorporates information
on false positives and false negatives. This results in a layered statisti-
cal map for the brain. One layer marks voxels exhibiting strong evidence
against the traditional null hypothesis, while a second layer marks the
voxels where activation cannot be confidently excluded. The third layer
marks voxels where the presence of activation can be rejected. In this
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procedure, control of false positives remains possible but our procedure
also takes into account information on the false negative rate. With the
procedure in chapter five, we aspire to better delineate the extent of psy-
chological functions in the brain using fMRI. In chapter six, we explore
the possibility to evaluate statistical procedures that test for brain activa-
tion by combining fMRI data with data from Diffusion Weighted Imaging
(DWI). DWI is a technique that rather searches structural connectivity
in the brain and separates different brain areas based on their physical
connections in the brain. We use data from a patient with a brain tumor
who undergoes both an fMRI experiment and DWI. We apply both clas-
sical significance testing and our alternative based testing procedure to
the fMRI data and compare which of both procedures best predicts the
results obtained with DWI. A big overlap between completely indepen-
dent procedures indicates a better predictive validity of the procedure.
We conclude with an overview of the main findings and conclusions in
each study in chapter seven. The implications and shortcomings of our
results are discussed in a more general framework, while at the same time
we provide indications for future research concerning statistical power in
neuroscience. Chapter 2, 3, 4, and 5 are originally written as stand-alone
articles. As a result, there exists some overlap between these chapters. No-
tation is introduced per chapter and may not be the same throughout the
complete thesis. Chapter 2 is published in Biometrical Journal (Durnez,
Moerkerke, & Nichols, 2014), chapter 3 in NeuroImage (Durnez, Roels, &
Moerkerke, 2014), and chapter 5 is published in Cognitive and Behavioral
Neuroscience (Durnez, Moerkerke, Bartsch, & Nichols, 2013).



2Multiple testing in fMRI: an
empirical case study on the
balance between sensitivity,

specificity and stability. 1

Abstract Functional Magnetic Resonance Imaging is a widespread
technique in cognitive psychology that allows visualizing brain activa-
tion. The data analysis encompasses an enormous number of simul-
taneous statistical tests. Procedures that either control the family-
wise error rate or the false discovery rate have been applied to these
data. These methods are mostly validated in terms of average sensi-
tivity and specificity. However, procedures are not comparable if re-
quirements on their error rates differ. Moreover, less attention has
been given to the instability or variability of results. In a simulation
study in the context of imaging, we first compare the Bonferroni and
Benjamini-Hochberg procedure. Considering Bonferroni as a way to
control the expected number of type I errors enables more lenient
thresholding compared to familywise error rate control and a direct
comparison between both procedures. We point out that while the
same balance is obtained between average sensitivity and specificity,
the Benjamini-Hochberg procedure appears less stable. Secondly, we
have implemented the procedure of Gordon, Chen, Glazko, & Yakovlev
(2009) (originally proposed for gene selection) which includes stability,
measured through bootstrapping, in the decision criterion. Simulations
indicate that the method attains the same balance between sensitivity
and specificity. It improves the stability of Benjamini-Hochberg but
does not outperform Bonferroni making this computationally heavy
bootstrap procedure less appealing. Third, we show how stability of
thresholding procedures can be assessed using real data. In a data set
on face recognition, we again find that Bonferroni renders more stable
results.

1This chapter is based on:
Durnez, J., Roels, S.P. and Moerkerke, B. (2014). Multiple testing in fMRI: an empirical
case study on the balance between sensitivity, specificity and stability. Biometrical
Journal, 56 (4), 649–661

29
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2.1 Introduction

Functional neuroimaging plays an important role in current research that
unravels the functioning of the human brain, not only within medical
sciences but also within cognitive, clinical and social psychology (Dolan,
2008; DeCharms, 2008). Functional Magnetic Resonance imaging (fMRI)
is a neuroimaging technique that allows to measure brain activity in a
non-invasive way. An fMRI study leads to the production of enormous
amounts of data. The brain is divided in over 200 000 volume units (voxels)
for which a signal is measured on a series of time points. In a univariate,
voxelwise approach, a statistical test is performed for each voxel, resulting
in over 200 000 statistical tests. As such, one is confronted with a multiple
testing problem.

Neural activity in the brain leads to an increase in the amount of blood
flowing through the active area and the heart sends more oxygenated
blood to the activated region resulting in locally higher blood oxygen
levels. The signal measured in functional MRI (fMRI) is a correlate of
this oxygen level, and is called the blood oxygenation level dependent
(BOLD) signal. In an fMRI experiment, a time sequence of brain images
is obtained while participants perform a series of tasks under different
conditions inside an MRI scanner. Changes in BOLD signal between such
different conditions are used to localize task related areas in the brain.

In what follows, we consider testing for activation in a single subject. A
moderate resolution of fMRI data is a brain of more than 200 000 voxels,
e.g.m = 64×64×64 voxels. Yi denotes a vector containing the time series
(with n timepoints) of measured BOLD signal in voxel i (i = 1, ...,m). In
practice, preprocessing steps are often performed to correct this signal for
artefacts such as head motion etc.

The data is often spatially smoothed as a preprocessing step, as this
greatly increases the signal-to-noise ratio which improves sensitivity for
detecting true activation. A possible drawback is the reduction of spatial
accuracy in detecting activation.

In the classical general linear model (GLM) approach, a time series of
BOLD-signal Yi for each voxel i is modeled as a linear combination of
different signal components, presented by the columns in the design matrix
X. Temporal correlation is removed through pre-whitening and a linear
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model is fit to test specific parameters evaluating evidence for activation.
Subsequently, the effect of the different conditions on the BOLD-signal
is expressed by a statistical parametric map (SPM) of the brain with
a T -statistic or corresponding p-value for each voxel. A more extensive
clarification on the data structure and analysis of an fMRI experiment
can be found in the Supplementary Material.

Many procedures have been proposed for voxel based testing that ei-
ther control the familywise error rate (FWER; Friston et al., 1991) or the
false discovery rate (FDR; Genovese, Lazar, & Nichols, 2002). Most of
them can be seen as an extension or specific case of the basic methods for
FWER and FDR control, which are the Bonferroni correction (BF; Bon-
ferroni, 1936) and the Benjamini-Hochberg correction (BH; Benjamini &
Hochberg, 1995). It is often argued that the FWER is too conservative as
an error rate in a large-scale test setting and that FDR control is more sen-
sible. However, both BF and BH attain type I error rate control through
p-value thresholding. Hence, FDR control only results in a higher sensi-
tivity by imposing a lower specificity. Consequently it can be expected
that the average power for comparable p-value cutoffs is equal for both
FWER and FDR control. Gordon, Glazko, Qiu, & Yakovlev (2007) state
that the conservative nature of the BF procedure is not due to the proce-
dure itself but due to the requirements that are posed on the procedure.
They advocate the procedure as a way to control the per family error rate
(PFER), defined as the expected number of type I errors. This makes the
procedure intrinsically less conservative.

Not only the average performance of testing procedures is important
but also their contribution to the variability on test results, which indi-
cates instability of the testing procedure. While studied in the context of
genetics (Qiu, Xiao, Gordon, & Yakovlev, 2006; Gordon et al., 2007, 2009;
Hommel & Bretz, 2008; Owen, 2005), this aspect has remained largely
unexplored in the context of fMRI data analysis until recently (see for
example Bellec, Rosa-Neto, Lyttelton, Benali, & Evans, 2010). If a brain
region is declared to be active based on statistical criteria, it is key to
have a measure of the reproducibility of these results. Stable procedures
yield a low variability on the number of selected voxels. Even when the
activation is the same in different datasets, the number of selected vox-
els can be very different due to differences in the noise. Instability in the
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testing method is expressed by a high standard deviation on the number
of selected voxels in relation to the average number of selected voxels. As
the outcomes of statistical tests are random variables, stability can be ex-
pressed in terms of the variance of the number of selected voxels (Gordon
et al., 2007) or the variance of the number of erroneously accepted or re-
jected hypotheses (Gordon et al., 2009). In their study on the assessment
of stability in the context of gene selection, Qiu et al. (2006) find that
FWER controlling procedures tend to be more stable than FDR control-
ling procedures. Hommel & Bretz (2008) show that the classical BF is
more stable than its adjusted forms, more in particular the Bonferroni-
Holm procedure (Holm, 1979) as well as the Simes procedure (Benjamini
& Hochberg, 1995). Owen (2005) give a theoretical insight in the fact that
dependency between tests (which is a characteristic very present in fMRI)
increases the instability of the testing procedure.

Also in the context of genetics, Gordon et al. (2009) measure the selec-
tion stability of a feature as the frequency of selection of the feature over
different bootstrap samples of the data in which the original thresholding
is repeated. They propose a new selection criterion that includes this sta-
bility measure with the aim to attain a better balance between sensitivity
and specificity and a higher stability.

In this paper, we provide new insights into the operating characteris-
tics of FWER and FDR thresholding in fMRI data analyses. We set up a
simulation study in an fMRI context to study the balance between sensi-
tivity and specificity for the BF and BH procedure. We also evaluate the
procedures in terms of their stability properties. Secondly, we implement
the method of Gordon et al. (2009) - GCGY, for application in an fMRI
context. Our extensive simulation study enables a thorough evaluation
of the performance of the procedure. Simulation results to assess perfor-
mance are more restrictive in the work of Gordon et al. (2009). We further
demonstrate the assessment of stability of selection procedures in a real
data set on face recognition.

This paper is organized as follows. In section 2, we briefly introduce
the data structure and test setting in an fMRI study. More details on the
simulation procedure can be found in the Supplementary Information.
In section 3, we describe different methods for evaluating multiple testing
procedures. We further outline the testing principle of Gordon et al. (2009)
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in an fMRI context. Results of an extensive simulation study comparing
BF, BH and GCGY are given in section 4. In section 5, we illustrate how
the stability of BF and BH is assessed in a real data set on face recognition.

2.2 Data

2.2.1 Simulation procedure
In each simulation step, a 3-dimensional map consisting of 30 × 30 × 30
voxels is constructed. Every voxel contains a time series of n = 120 time-
points. A block of 14×14×14 voxels in the center is activated. A blocked
design with 2 conditions (on and off) is used, with 3 blocks of 40 seconds
(20 seconds on/20 seconds off). The BOLD signal of the activated voxels is
simulated such that it correlates with the ON-OFF status of the blocks.
The signal-to-noise ratio is 0.025, such that the effect size is 0.025 and
the noise follows a standard normal distribution. Temporal dependence
is added in the noise with an auto-correlation coefficient of ρ = 0.20.
Data are spatially smoothed before analysis. The relation between the
smoothness of the data and the spatial correlation is further explored in
the Supplementary Information. As this process combines the signal in
each voxel with the signal of surrounding voxels, this imposes a spatial
correlation among voxels. We use a smoothing kernel with a full width
half maximum (FWHM) of 2 times the voxel size. In the Supplementary
Material, results are also presented for different smoothing kernels and
hence different degrees of spatial correlation. It is important to note that
smoothing also spreads out the activation outside the borders of the orig-
inal activated block. In a simulation setting, this complicates deciding on
false and true positives. We have chosen to only consider the original ac-
tivation block as truly activated. Another option is to look at the extend
of true activation in neighboring voxels, however, this typically involves
an arbitrary activation cutoff to decide on true activation. To avoid this
problem, one could also consider a simulation setting in which only the
noise (and not the signal) is smoothed but this renders less realistic data.

After performing the whitening procedure from Glaser & Friston (2007),
T -statistics are obtained for each voxel using the classical GLM procedure,
where the measured signal is related to the design of the experiment.
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Both BF and BH and their bootstrap versions as described in Gordon
et al. (2009) are applied as a thresholding technique for each simulated
data set. The simulation procedure is repeated 500 times. The data are
analyzed in R with the routines used in the software package SPM.

2.2.2 Real data application
The data used for this study are from a single-subject event-related design
where faces were presented against a checkerboard (see Henson, Shallice,
Gorno-Tempini, & Dolan, 2002). The goal of the analysis is to find the
precise location in the brain responsible for recognizing faces. The data
set consisted of 64 × 64 × 64 voxels. Two sessions of 356 volumes were
acquired, with a repetition time of 2 seconds per volume.

2.3 Methods

2.3.1 Problem setting and aim
A classical BF correction for FWER control at level α rejects all null
hypotheses for which the p-value is smaller than α/m resulting in (ex-
tremely) low p-value thresholds. While BF is typically advocated as a
FWER controlling procedure, the procedure also controls the PFER at
the same level (Gordon et al., 2007; Lee, 2004). Based on the fact that the
BF controls the PFER, the BF correction can be used to produce p-value
thresholds comparable to those in FDR controlling procedures. Therefore,
we vary p-value thresholds such that the PFER ranges between 0 and m
for BF and the FDR between 0 and 1 for BH. This allows a comparison
of the different procedures in terms of sensitivity, but more importantly,
this makes it possible to study the operating characteristics of both pro-
cedures when requirements on their error rates are comparable (Gordon
et al., 2007).

In this paper, our aim is to compare the BF and BH procedure by
means of a simulation study in the context of fMRI. As opposed to what is
typically done in literature, we will do this for a wide range of requirements
on the error rates of the procedures and we will not only focus on average
performance but also on the stability. This will help to nuance claims in
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literature that one procedure uniformly outperforms another (Gordon et
al., 2007).

2.3.2 Evaluation criteria for multiple testing procedures
First, we evaluate the multiple testing procedures based on the receiver-
operator characteristic (ROC). Gordon et al. (2007) show that the out-
comes of the BF procedure and the FDR controlling BH procedure (Ben-
jamini & Hochberg, 1995) are highly correlated if requirements on their er-
ror rates become comparable. Therefore, when comparing different meth-
ods, it is important to review the methods for a range of p-value thresh-
olds. This can be done by an ROC analysis, in which the true positive
rate (TPR) is plotted against false positive rate (FPR), as one varies a
threshold. The quality of a method can be quantified as the area under
the curve. The larger the area, the better the balance between sensitivity
and specificity (Skudlarski, Constable, & Gore, 1999). To further investi-
gate the findings of Gordon et al. (2007) in the context of fMRI data, we
compare an ROC curve for both procedures in a simulation study.

Secondly, we evaluate the multiple testing procedures with respect to
their stability. In line with Qiu et al. (2006), we mainly consider two sta-
bility measures: the variability on the number of selected voxels and the
frequency with which a given voxel is selected over different samples. In
a simulation setting, we observe the number of selected voxels and their
standard deviation. A high standard deviation on the number of selected
voxels in relation to the average number of selected voxels indicates in-
stability in the testing method. In the simulations, we also consider the
variance on the different error rates. Selection frequency is studied using
a real data set from which we subsample through a bootstrap procedure.
The most stable voxels are those that are selected with a high frequency
over different bootstrap samples.

2.3.3 Incorporating stability into the decision criterion
As long as we focus on p-value thresholding, we can expect that the av-
erage sensitivity is equal when the average specificity is the same. More
specific, when thresholding p-values, there is a fixed monotonicity between
different hypotheses (i.e. different voxels). Consequently, less specificity
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will be accompanied with a fixed increase in sensitivity. Aiming to bal-
ance sensitivity and specificity, Gordon et al. (2009) propose to include
frequency of selection into the decision criterion. Their approach proceeds
as follows: a fixed multiple testing procedure is performed on a number
of different sets of features (in their case: genes, in our case: voxels), with
each set approximating the original data. The threshold h is a propor-
tion that reflects a predefined selection frequency, i.e. the proportion of
selection over the different sets. Only those features are selected that are
declared significant in at least h × 100 % of the different sets based on
the used multiple testing procedure. Since this method uses information
on reproducibility, one expects higher stability. Gordon et al. (2009) show
in their paper how the frequency of selection directly controls the balance
of type I and II errors. More in particular, they indicate how h represents
the ratio of the penalty for a type I error versus the sum of the penalties
for type I and type II errors. Selecting features that are selected in at least
h × 100% the different sets, minimizes the corresponding penalty function
of type I and type II error rates. For example, the choice of a threshold
h equal to 0.7 implies that only features are selected that are chosen in
at least 70% of the different sets. This corresponds to selecting a set of
features in such a way that a penalty function is minimized in which the
relative costs of type I and type II errors are respectively 70% and 30%
of the total cost of an error.

As a test statistic is used other than p-values, which allows to optimize
a gain function that balances type I and type II errors, it is of interest
to study the overall balance between sensitivity and specificity. To ob-
tain different sets of the same data, we follow the approach of Gordon
et al. (2009) and bootstrap from the original data. To implement their
procedure, we perform the following steps.

1. Whitening procedure. The temporal correlation that disallows to re-
sample the data over time points, is removed. As the data in fMRI
research represents a time series of blood flow intensities for each
voxel, the data is affected by temporal correlation. When Yi repre-
sents the measured signal in voxel i, a matrix W is determined such
thatWYi represents the signal without temporal correlation.W can
be found using restricted MLE estimation as described in Glaser &
Friston (2007).
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2. Bootstrap procedure. For each voxel, a linear regression model is fit-
ted on the whitened time series, i.e. WYi is regressed on WX. Next,
a bootstrap sample is taken from the residuals and these residuals
are added again to the estimated activation. By ‘unwhitening’ the
data, we obtain a realistic new data set. This second step is repeated
100 times, in order to obtain 100 new data sets.

3. Activation detection. For each of the bootstapped data sets, a clas-
sical thresholding procedure (here: BF and BH) is used. The critical
threshold h selects all voxels that are called significant in more than
(h× 100)% of the bootstrap samples.

For this procedure, we consider 4 different values for the selection
criterion h: 0.10, 0.50, 0.75 and 0.90. A more technical explanation of the
resampling procedure can be found in the Supplementary Information.

In what follows, we refer to BF and BH procedures that are applied
on the original (i.e. not bootstrapped) data as the classical procedures.
The procedures based on the frequency of selection among the bootstrap
samples, are referred to as the bootstrapped procedures. We will compare
respectively BF and BH with their bootstrapped procedures as proposed
by Gordon et al. (2009), on both their average performance and stability.

2.4 Results

2.4.1 Simulated data
The ROC curves for the BF and the BH procedure are displayed in panels
A and B in Figure 2.1. For a range of thresholds, an ROC curve can be
constructed. As can be seen in panels A and B in Figure 2.1, the BF and
BH procedures produce the same ROC curve as expected. That is, the
relation between sensitivity (operationalized as the TPR, the true positive
rate) and specificity (defined as 1-FPR, the false positive) is on average
the same for both methods. We see that FWER and FDR control at a 5%
level correspond to different points on the ROC curve. As indicated on
panels A and B in Figure 2.1, an FWER control of 0.05 logically leads to a
much more stringent result than a FDR control of 0.05, resulting in fewer
false positives, but also less power. We can conclude that the difference in
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average performance between FWER and FDR control can be explained
by the difference in threshold selection, which is an arbitrary choice made
by the researcher. This confirms the intuitive findings of Gordon et al.
(2007).

Interestingly, the bootstrapped procedure also results in an equal ROC
for BH and BF, while deciding on activation is not purely based on p-
value thresholding. For procedures that use p-value thresholding, we ex-
pect equal ROCs as the order in which voxels are declared significant is
equal. However, the bootstrapped procedures are not solely based on p-
value thresholding but also incorporate information on stability. Given the
ROC remains the same as for the classical procedures, the bootstrapped
methods are not able to detect activation with more power than the classi-
cal methods. As can be seen on Figure 2.1 and indicated by Gordon et al.
(2009), a h-threshold reflects the relative cost of type I and type II errors.
By fixing a decision criterion (e.g. FWER=0.05), choosing different h-
values allows to move along the ROC-curve, but this can also be achieved
by choosing different significance levels for the BF or BH procedures. In
the example on Figure 2.1, it can be seen for BH that a higher h-threshold
of 0.90 leads to a lower sensitivity but a higher specificity, while a lower
h-threshold (0.50) results in higher sensitivity but lower specificity than
the classical procedures. According to Gordon et al. (2009), this enables
to balance type I and type II errors with pre-specified penalties to both
errors which implies that the h-value does not directly reflect the obtained
balance between sensitivity and specificity. This makes the results of the
bootstrapped procedures more difficult to interpret in practice.

An intuitive interpretation as to why the bootstrapped procedures do
not change the overall balance between sensitivity and specificity is as fol-
lows. Suppose for each voxel, we have a normally distributed test statistic
t. As the bootstrap procedure adds noise obtained by subsampling to the
observed effect size, a new distribution of T -values is constructed where
the non-centrality parameter equals the original statistic t. If we fix the
threshold on the frequency of selection at h = 0.5, a voxel is declared to
be active as soon as half of the T -values in the bootstrap distribution is
larger than tα with tα representing the statistical threshold correspond-
ing to either the BF or BH procedure. This implies that the median of
the T -values is larger than tα but in case of a symmetric distribution,
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Figure 2.1: Roc curves (upper panel) for FWER / PFER control (BF
correction) and FDR control (BH correction). Stability evaluation (lower
panel) for FWER control (BF correction) and FDR control (BH correc-
tion). A high standard deviation (sd) of the number of selected voxels in
relation to the average number of selected voxels points at the instability
of the testing procedure. The four different lines in the figures correspond
to the four procedures compared: the original procedure and the bootstrap
procedure with h = 0.10, h = 0.50, 0.75 or 0.90.
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the median is equal to the observed test statistic t. Hence, a voxel is
declared active as soon as t > tα which coincides with a classical BF cri-
terion. When h is different from 50%, controlling a probability under the
bootstrapped distribution of T -values is essentially the same as selecting
voxels with t > tα∗ where α∗ differs from the chosen α in the original
BF procedure. With a symmetrical distribution for the test statistics, the
bootstrapped procedures asymptotically converge to the BF procedure
and hence, choosing different values of h only allows to shift along the
ROC curve.

Based on this reasoning, we expect that control with h = 0.50 will
correspond asymptotically to the original thresholding. In our example,
we have a finite number of time points which explains why the original
procedure and its bootstrapped versions do not render identical results.

Figure 2.1 also shows the original procedure together with the boot-
strapped methods for a specific FWER and FDR control of 0.05. We see
that whereas in the original procedure, BH is much more liberal than BF,
this difference is smaller to nonexisting for the bootstrapped methods.
Consequently, the bootstrapped procedures for BH makes the original
specificity higher for all h levels. On the other hand, the specificity for BF
is at the same level for the original procedures as for the bootstrapped
procedure.

In panel C and D of Figure 2.1, the standard deviation on the number
of selected voxels is plotted against the number of selected voxels for the
BF and BH procedure. It can be seen that BF is more stable than BH. This
could be due to the adaptive character of FDR control. As the number of
voxels is the same in each simulation step, the BF threshold remains the
same when controlling the PFER at a fixed level. For FDR control using
the BH procedure, the threshold is adaptive to the data. As we expect
that the bootstrapped procedure asymptotically converges to a classical
criterion with fixed t-value threshold, the procedure results in the same
level of stability as BF. The instability of BH compared with BF cannot
be attributed to a difference in the expected FDR, as is shown in section
4 of the Supplementary Information.

It can further be seen in Figure 2.1 that for the BF procedure, there
is no improvement in variability when using the bootstrapped procedure.
However, there is a great improvement in stability for the BH procedure.
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Table 2.1: Averages and standard deviations (SD) over 500 simulations.
The variation coefficient that divides the SD on the number of voxels
selected by the mean number of voxels selected is also given (SD/Nr.). m
denotes the number of tests (voxels).

Number of voxels selected FPR TPR
(SD, SD/Nr.) (SD) (SD)

FWER ≤ 0.05 27.382 ( 25.024 , 0.914 ) 0 ( 0 ) 0.01 ( 0.009 )
FDR ≤ 0.05 627.128 ( 270.303 , 0.431 ) 0.002 ( 0.001 ) 0.211 ( 0.089 )
PFER/m ≤ 0.05 3350.398 ( 299.55 , 0.089 ) 0.061 ( 0.009 ) 0.683 ( 0.057 )

The instability of the procedure, can almost be reduced up to the level
of BF. This is in line with what can be expected based on the reasoning
above.

The fact that the bootstrapped procedure retains the same balance
between average sensitivity and specificity, is computationally heavy, and
does not outperform BF in terms of stability, does not make the procedure
appealing in an fMRI context.

For the number of selected voxels, the FPR and the TPR, the average
and variability over simulations are obtained. Results for specific realistic
thresholds are summarized in Table 2.1. In addition, we also show results
for controlling the per comparisonwise error rate, i.e. PFER/m, at a fixed
level. Logically, FWER control is more conservative than FDR control,
and PFER control more liberal. We find that the variation coefficient
(defined as the standard deviation of the number of selected voxels divided
by the number of selected voxels) on the number of selected voxels is higher
when controlling the FDR at 5% than controlling the PFER at 5%. This is
remarkable, given the fact that control of the PFER is much more liberal
and still exhibits a smaller variation coefficient than the FDR control.
This reflects what is shown in Figure 2.1 for a range of cutoffs.

However, it should also be noted that FWER control at 5% exhibits
a larger variation coefficient than FDR control at 5%, despite that BH
overall being less stable than BF. This can be explained by the fact that
BF control at 5% is more stringent than BH control at 5%. As can be
seen in Figure 2.2, the variation coefficient decreases as procedures gets
more liberal.

For now, we have aligned the BF and BH procedure using the num-
ber of selected voxels. However, we can show the same results, aligning



42 Chapter 2

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability for BF procedures

observed False Positive Rate

va
ria

tio
n 

co
ef

fic
ie

nt

●

● original
bootstrap h=0.10
bootstrap h=0.50
bootstrap h=0.75
bootstrap h=0.90

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stability for BH procedures

observed False Positive Rate

va
ria

tio
n 

co
ef

fic
ie

nt

●

Figure 2.2: The variation coefficient (i.e. standard deviation on number
of selected voxels divided by the number of selected voxels) in function of
the observed False Positive Rate FPR. Given a fixed level of the observed
FPR, BH results in a higher variation coefficient. However, when compar-
ing FWER and FDR control at 5% by respectively BF and BH (indicated
by the dots), BF results in a higher variation coefficient than BH.
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Figure 2.3: Stability evaluation for FWER control (BF correction) and
FDR control (BH correction). A high standard deviation (sd) of the num-
ber of selected voxels in relation to the posterior predictive value (PPV)
points at the instability of the testing procedure.

the procedures using another metric. For example, Figure 2.3 shows the
variability of the posterior predictive value as a function of the posterior
predictive value PPV which is the proportion of correctly rejected voxels
out of total voxels rejected. It can be seen again that BH elicits the highest
variability, but logically, using the bootstrap procedure, this instability is
decreased.

An important remark should be made on the dependence of the tests.
Storey (Storey & Tibshirani, 2003) show that that the threshold of the BH
procedure converged almost surely to a fixed number for increasing num-
ber of hypotheses. We have done an additional simulation study, where
we investigate this further. This can be found in the Supplementary In-
formation.

2.4.2 Real data application

In order to compare the performance of the BF and BH procedure in terms
of stability, a GLM is fitted on preprocessed data and an FWER and
FDR threshold is applied on the SPM. The thresholds for the BF and BH
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procedures are chosen so that both procedures result in the same number
of significant voxels (2530 voxels). This leads to a PFER of 154 and an
FDR control of 0.001. Subsequently, we obtain 100 replications of the data
by bootstrapping from the original data. For each voxel, the frequency
of selection over bootstrap samples is determined for both thresholds.
We threshold this selection frequency (expressed in % of the number of
bootstrap samples) at 80%. Figure 2.4 shows images of the resulting SPMs.

It can be seen that PFER control leads to the selection of more “sta-
ble voxels” (with frequency of occurrence > 80%). This is further demon-
strated in Figure 2.5, where the average frequency of occurrence is de-
picted against the uncorrected p-values. We see that the voxels selected
by PFER control are uniformly more stable than those selected by FDR
control as the voxels with smaller p-values are more frequently selected
with the BF procedure.

We have repeated this analysis for FWER control at the 5% level in
the Supplementary Information. The same conclusions can be drawn.

2.5 Discussion
Many publications consider the use of multiple testing procedures for vox-
elwise fMRI data analysis which control either the FWER or the FDR (Lo-
gan & Rowe, 2004). While it is often claimed that FDR control is more
powerful than FWER control, we have demonstrated through a simula-
tion study that the actual trade-off between sensitivity and specificity for
the BF and BH procedure is equal. Hence, BF can be made as powerful
as the BH procedure by a proper choice of its threshold, a conclusion
also made by Gordon et al. (2007) and Korn, Troendle, Mcshane, & Si-
mon (2004). As such, the procedure should be more generally regarded
as PFER controlling. While one could argue that the PFER ignores the
multiplicity of tests completely, we advocate a well contemplated choice
of threshold since the same (both liberal and conservative) results can be
obtained through PFER and FDR control.

A distinct advantage of the BF procedure is its higher stability. Selec-
tion stability relates to the reproducibility of scientific results. Simulation
results indicate that the variance on the number of selected voxels is over-
all higher for BH than for BF when considering a range of thresholds.
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Figure 2.4: Results of the analyses on the Henson data set. On the left are
the analyses with BF correction, (PFER=154). On the right are the analy-
ses using the BH procedure (FDR=0.001). Above are the results with clas-
sical analyses with the voxels exceeding the significance level highlighted.
The plots below display the percentage of selection over bootstrap samples
with the “stable voxels” (with frequency of occurence > 80%) highlighted.
The thresholds are chosen to make sure that in the images above, the same
number of voxels are significant.
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Figure 2.5: Henson data: Average selection proportion as a function of
uncorrected p-values.

In real data, we find that PFER (or FWER) control leads to more sta-
ble voxels (with frequencies of more than 80%) than FDR control when
selection criteria are comparable.

Gordon et al. (2009) use the frequency of occurrence as a selection pro-
cedure in its own right. We have applied this technique in the context of
fMRI for a large range of possible cutoffs, thereby providing more insight
into the characteristics of the procedure. In our simulation study, we find
an ROC curve that is virtually identical to the ROC curve of the original
BF and BH procedure. For a fixed threshold (e.g. FDR=0.05) however, a
different point on the ROC is obtained when taking selection frequency
into account. The finding of identical ROC’s for the original and boot-
strapped versions of the procedures is because the two procedures will
asymptotically converge, and therefore again the balance between sensi-
tivity and specificity cannot be improved. We further find an advantage
for the bootstrapped procedures in terms of the stability. Combining FDR
control with frequency of selection renders more stable results, almost up
to the level of FWER control.
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While including frequency of selection improves selection stability, we
conclude that the procedure is not practically appealing in an fMRI con-
text. First, the improvement in stability is small to non-existent for the
BF procedure. Secondly, the procedure is very computer intensive given
the dimension of the data sets in brain imaging. Finally, the ROC curve is
the same as for the BF and BH procedure. In this paper, we have shown
that using the BF procedure as a PFER controlling procedure allows a
different trade-off between specificity and sensitivity. The procedure also
demonstrates a high stability, excluding the need for bootstrapped proce-
dures. We show that these results hold for different levels of smoothness
and are therefore independent of the correlation between the measured
signal in different voxels.

These conclusions however can only be drawn for Bonferroni and
Benjamini-Hochberg procedures. Other procedures controlling the FWER
and FDR have been proposed in literature. For example for FDR control,
some authors have discussed controlling quantiles of the false discovery
proportion, rather than controlling it in expectation, leading typically to
more conservative inference (Wasserman & Genovese, 2004). We do not
claim that the same conclusions can be drawn for these procedures con-
trolling the FDR.

In this paper, we only consider voxelwise detection of activation through
a general linear model approach. Statistical techniques that take into ac-
count the spatial correlation are also available. Some of these methods (e.g.
smoothing raw test statistics, Logan, Geliazkova, & Rowe, 2008) also ap-
ply voxelwise thresholding. Hence, the findings in this study also translate
to these more general settings. Random field theory (Friston et al., 1991;
Chumbley, Worsley, Flandin, & Friston, 2010) is often used in fMRI to
obtain a more precise estimate of the FWER by taking into account the
statistical dependence between voxels as opposed to BF which may be-
come overly conservative. Nevertheless, Random field theory suffers from
many burdensome assumptions (Nichols & Hayasaka, 2003) and can only
be used for low p-value thresholds which excludes the possibility to study
performance for a wide range of thresholds. Other spatial methods per-
form inference on topological features, such as peaks or clusters, rather
than on voxels (Chumbley et al., 2010). Further research is needed to see
if the conclusions in this study are also tenable for topological testing
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procedures. Chumbley et al. (2010) point out the difficulty to assess error
rates for such procedures. Morever, Nichols (2012) argues that peaks or
cluster thresholding makes strong assumptions on the smoothness of the
data, and therefore voxelwise activation detection remains a useful tool in
fMRI.

For bootstrapping fMRI time series, we use a residual bootstrap on
decorrelated data. Other procedures, such as Fourier, Wavelet (Friman &
Westin, 2005) and block bootstrap (Lahiri, 2003) resampling are possi-
ble, but few is known on the properties and results of different resampling
techniques for the specific case of fMRI data. Another issue in this study is
the use of smoothing within the resampling setting. In an fMRI data anal-
ysis, the signals are smoothed before analysis, leading to a ‘smeared out’
image. In this paper, resampling is done on this smoothed data. However,
the order of smoothing and resampling can be inversed. Further research
is needed to compare the different smoothing models when resampling
fMRI data.
Acknowledgements
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Appendices

2.A fMRI analysis
Neural activity in the brain leads to an increase in the amount of blood
flowing through the active area and the heart sends more oxygenated
blood to the activated region resulting in locally higher blood oxygen
levels. The signal measured in functional MRI (fMRI) is a correlate of
this oxygen level, and is called the blood oxygenation level dependent
(BOLD) signal. During an fMRI experiment, subjects are placed inside
the scanner. Their brain is divided in a large number of volume units or
voxels, where 64× 64× 64 voxels corresponds with an average resolution.
For each voxel, the BOLD signal is measured during the timcourse of
the experiment. For a single subject, a 4D image is obtained containing
the BOLD signal, with the first 3 dimensions the spatial dimensions in
the brain, and the fourth dimension the different timepoints at which
measurements have been taken. Yi denotes the vector of time series of the
BOLD signal for voxel i (i = 1, ...,m) with n time points. As the neural
activation invokes the blood flow, the BOLD-signal represents the neural
activation with a certain lag following a specific haemodynamic response
function (HRF). The true HRF is often unknown and voxelspecific, but
the canonical HRF is closely related to the true HRF.

During the experiment, subjects perform a task evoked by stimuli,
under specific conditions. The most simple and straightforward method
is a block design, in which stimuli are presented continuously for a longer
period of time, alternated with a block without stimulation. An example
is listening to sounds alternated with silence. The design is expressed in
the design matrix X. To take into account the lag with which the blood
runs, X is convolved with the canonical HRF.

In order to relate Yi to the design, a linear regression analysis of the
time series of the BOLD signal on the design matrix is performed for
each voxel, resulting in a three-dimensional T -map, which is called the
statistical parametric map (SPM).

49
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2.B Simulations
Simulated data A 3-dimensional map consisting of 30× 30× 30 voxels
is constructed. For each voxel, a time series of n = 120 timepoints is
constructed. The image in this stage is 4 dimensional, with the first 3
dimensions referring to space, while the fourth dimension contains the
timing information. A blocked design with 2 conditions (on and off) is
used, with 3 blocks of 40 seconds (20 seconds on/20 seconds off), the
design is represented in Figure 2.6.
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Figure 2.6: Graphical representation of the design used in the simulated
experiment.

About 10% of the voxels are actively related to the design, all gathered
in an activated region of 14 × 14 × 14 voxels in the center of the image.
For the activated voxels, the activation level is presented in the upper left
panel of Figure 2.7. The height of the activation depends on the signal-to-
noise ratio, which is defined as S̄/σtnoise, with S̄ the mean signal intensity
and σ2

tnoise the non-task-related variability over time. The SNR is set to
0.2. Consequently, we have an activation height of 0.2 and σ2

tnoise is equal
to 1. The activation is convolved with a canonical hemodynamic response
function,

f(x) = 1
28.48909

(( x

6 ∗ 0.9

)6
e

−(x−6∗0.9)
0.9 − 0.35

( x

12 ∗ 0.9

)12
e

−(x−12∗0.9)
0.9 .

)
(2.1)

This results in a BOLD-signal without noise Ybold for each voxel, as
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Figure 2.7: Graphical representation of the simulated time series in an
active (left) and an inactive voxel (right). The upper panel represents the
raw activation. The middle panels represent the convoluted activation,
and the lower panels represent the resulting time series after adding the
noise (before smoothing).

shown in the middle left panel of Figure 2.7.

In each simulation, noise is added to the image, consisting of temporal
correlated noise. The noise follows an autoregressive model AR(1), where
the error term for one time point is partially dependent on the error term
of the previous timepoint. The temporal dependence is fixed to ρ = 0.2.
The error term for each voxel i on timepoint j is created using Equations
2.2 and 2.3.
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εij = ρεi,j−1 + ξij (2.2)
ξij ∼ N(0, σ2

tnoise) (2.3)

The resulting time series for an active and inactive voxel are shown in
Figure 2.7. Before analysis, the data are smoothed with a Gaussian kernel
with a full width at half maximum (FWHM) 2 times the size of the voxel
dimension.

Analysis Once the simulated data are obtained, the data are analyzed.
The data are analyzed in R (R Core Team, 2014) with the routines used
in the software package SPM (Ashburner, Friston, & Penny, 2012). First
the whitening procedure used in the software package SPM estimates and
removes the temporal dependence. Consequently, T -statistics are obtained
for each voxel using a classical GLM procedure. Both BF and BH are
applied as a thresholding technique for each simulated data set, as well as
the bootstrapped procedure.

P -value thresholds are varied such that the PFER ranges between 0
and m for BF and the FDR between 0 and 1 for BH. For the bootstrap
procedures, the selection criterion h is fixed at 3 different values: 0.50,
0.75 and 0.90.

Each simulation procedure is repeated 500 times.
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2.C Resampling
After whitening the data to remove temporal correlation, a linear re-
gression model is fit for each voxel i, using a least squares algoritm,
Yi = Xβ̂i + ei, with E(ei) = 0. As a result, Yi is split up into the
activation Xβ̂i and the residuals ei. From the residuals ei, a random
bootstrap sample with replacement ei

∗ = (e∗i1, e∗i2, · · · , e∗in) is taken, with
n the number of time points. These residuals are then added to the fitted
values:

Ỹi
∗ = X̃iβ̂i + ei

∗.

Resampling is performed for all voxels simultaneously by bootstrap-
ping time points from entire images. This means that for a new resampled
data set, Y ∗i is the same as in the original data for each voxel i. ei is con-
structed by resampling ei over time points such that the resampled time
points are equal for all voxels. In this way, the spatial structure in the
original data is accounted for. This results in a replicate of the whitened
vector Yi. To construct a replicate of the original data matrix, temporal
correlation is again added to the data by performing the inverse operation
of the original whitening procedure.

We can now repeat the bootstrap procedure ` times. This results in
` replicates of the original data set. For every replicate, a thresholding
procedure is performed. A voxelwise GLM can be performed to test for
activation, resulting in a T -statistic for each voxel. p-values are obtained
under the assumption of normally distributed error terms. Each statistical
parametric map (SPM) is then thresholded according to a specified proce-
dure. After thresholding all ` replicates, there are ` decisions on whether
a voxels is selected or not. In that way, the frequency of occurrence across
subsamples can be obtained.

High frequencies of occurrence (e.g. 90%) indicate stability: the voxels
are chosen in most of the resamples. Lower frequencies indicate a lower
stability: these voxels are chosen a few times in the different resamples.
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2.D Difference in observed FDR as possible ex-
planation for the difference in stability.

We compared both methods in terms of stability by plotting the variability
on the number of selected voxels against the average number of selected
voxels. Therefore, we assume that the average number of selected voxels
is the base for a fair comparison between both methods. However, one
could reason that the false discovery rate for a fixed average number of
selected voxels is different for BF and BH. In this case, fixing the average
number of selected voxels would not allow to compare both procedures.
Consequently, it is useful to not only compare the methods based on the
average number of selected voxels, but also based on the average number
of false discoveries. Therefore we plotted the false discovery rate observed
in our simulations against the average number of selected voxels. It can
be seen in Figure 2.8 that the false discovery rates are equal for BF and
BH when the average number of selected voxels is equal. Consequently, we
cannot attribute the difference in stability to a difference in the number
of false discoveries.
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Figure 2.8: A plot of the average observed false discovery rate (FDR)
against the average number of selected voxels. Observed FDR is defined
as the proportion of the number of false discoveries amongst all selected
voxels.
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2.E Additional simulation study
We have done a small simulation study to further investigate the observed
differences in stability between Benjamini-Hochberg and Bonferroni. We
replicate the simulation study of Qiu et al. (2006), where outcome values
for m genes or features are compared between two groups. Each group
has a sample size of n = 15. To vary the number of tested hypotheses, we
perform simulations for different values of m (m = 100, 500, 1000, 10000).
The number of true alternative hypotheses is fixed to 10%.

The observed outcome values for the features are generated from the
standard normal distribution. For the features that stem from the alter-
native, the values within one group stem from a normal distribution with
mean 2 and variance 1.

For data sets generated in a setting where correlation is present, an
exchangeable pairwise correlation structure with correlation coefficient ρ is
imposed on the outcome values of the features. Following Qiu et al. (2006),
we generate a vector of length 2n = 30 for each feature i (i = 1, . . . ,m)
with components xij (j = 1, . . . , 2n) drawn from the standard normal
distribution. Then we add correlation between the values of the same
sample by creating the outcome value yij as follows:

yij = √ρaj +
√

1− ρxij ,

where aj is again drawn from the standard normal distribution. At the
end, a value of 2 is added to the outcome values in the first group of the
features that stem from the alternative. In that way, for every i1 6= i2,
cor(yi1j , yi2j) = ρ. In our simulations, ρ is chosen either equal to 0 or 0.5.
Qiu et al. (2006) argue that they do not attempt to model actual biological
correlation (which can be more complicated) as their purpose is mainly
to investigate the effect of correlation on results of testing procedures.
For each feature, a two-sample t-test is performed which is corrected for
multiple testing, either using Bonferroni or Benjamini-Hochberg.

Results of the simulation study are shown in Figure 2.9 and 2.10.
It can be seen on Figure 2.9 that stability increases with the num-

ber of hypotheses when the features are uncorrelated (ρ = 0). We find
that in case the proportion of selected hypotheses is small (which corre-
sponds to respectively a small imposed FDR level and Type I error rate),
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both procedures coincide in terms of stability when m = 10 000. For a
larger proportion of selected hypotheses, BF appears to remain more sta-
ble. The difference becomes smaller when m increases and is expected
to disappear when m is increased even further. This effect is also shown
in Figure 2.10 where the specific uncorrected p-value cutoff indeed con-
verges to a fixed number with increasing tests, but converges quicker when
the cutoff is smaller. Results drastically change as soon as correlation is
introduced (ρ = 0.5). We find that increasing the number of hypotheses
does not increase stability and that overall, Bonferroni is more stable than
Benjamini-Hochberg (Figure 2.9).On Figure 2.10, it can be seen that the
variance of the p-value cutoff remains more or less the same when the
number of tested hypotheses increases.

We acknowledge that in this simulation setting, we did not consider the
case of weak dependency in which case the performance of test procedures
is asymptotically the same as if tests were independent. On the contrary,
we simulated scenarios where there is a strong correlation between each
pair of features. This enables to assess how procedures react in case of
strong (and often complex) correlations among tests.
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Figure 2.9: Stability of Benjamini-Hochberg and Bonferroni. Instability
is assessed by the standard deviation on the number of selected voxels
relative to the total number of hypotheses.
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Figure 2.10: The figure shows the uncorrected p-value cutoff when using
BH without (ρ = 0) and with (ρ = 0.5) correlation among the tests. Re-
sults are shown for FDR control at 5% (left) and at 50% (right). The
figure shows that indeed the uncorrected p-value threshold converges to a
fixed point for an increasing number of tests. This can be seen as the vari-
ance decreases when the number of tests increase. This variance however
depends on the FDR cutoff. When thresholding at FDR = 0.80, the vari-
ance is much higher. Although this cutoff is unrealistic, it shows how the
procedure performs at the extremes. However, the convergence to a fixed
p-value cutoff completely disappears when correlation is present among
the test statistics.
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Figure 2.11: The figure shows the spatial correlation between the voxels.

2.F Spatial correlation
Spatial correlation among test statistics is key in fMRI data. By smoothing
the data, we impose a spatial correlation on the data. To visualise the
relation between smoothness and spatial correlation, we have computed
the correlation between a certain voxel, and voxels at different distances.
We have averaged this over time points. The result can be seen in Figure
2.11 in which we show the spatial correlation in terms of classical point-by-
point correlation. On this figure, we demonstrate that a spatial correlation
with a fixed size is induced by smoothing the data.



60 Chapter 2

2.G Results of the simulations with varying de-
grees of smoothness

An often-used preprocessing step in the analysis of fMRI data are smooth-
ing the data. As this has a large positive effect on the sensitivity of the
analysis, it is interesting to see how our results can be extended under
different degrees of smoothness. In the original paper, we used a smooth-
ing kernel with full-width at half maximum (FWHM) of 2 times the voxel
size. We have also used 5 other possible values of the FWHM: 0.5, 1, 1.5,
2.5 and 3. In Figures 2.12 to 2.16, the results can be found under different
degrees of smoothness.

It can be seen in the figures below that indeed the area under the curve
of the ROC increases for higher values of smoothness, thereby indicating
that the power of the analysis increases for equal levels of specificity. The
main conclusions of our simulation study however do not differ for dif-
ferent ranges of smoothness, i.e. the different multiple testing procedures
produce equal ROCs. BF elicits a much higher stability then BH. Using
the bootstrap procedure by Gordon et al. (2009) can improve the stability
of BH up to the level of BF, whereas the stability of BF remains the same.

The observant reader will see that the maximum standard deviation of
the number of selected voxels is not monotonic in the smoothing param-
eter FWHM as is shown in Figure 2.17. In this Figure, the smoothness
parameter σ is related to the FWHM as follows: FWHM =

√
σ28log2.

We have investigated this further by looking at the standard deviation in
function of the smoothing parameter when fixing the average number of
selected voxels in Figure 2.18. It can be seen that for BF, the standard
deviation increases for increasing smoothing values. Another pattern is
observed for BH procedures. There, we see that for rather stringent FPR
control (i.e. selecting 5000 voxels), instability increases with the smoothing
parameter. On the other hand, at the more liberal thresholds, the instabil-
ity for FDR control decreases with the smoothing parameter. Due to this
pattern, we expect that peak of the standard deviation corresponds to a
different average number of selected voxels, when varying the smoothing
parameter, and therefore it is not monotonic.
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Figure 2.12: Roc curves (upper panel) and stability plot when the data
was smoothed with a Gaussian kernel with a FWHM of 0.5.
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Figure 2.13: Roc curves (upper panel) and stability plot when the data
was smoothed with a Gaussian kernel with a FWHM of 1.
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Figure 2.14: Roc curves (upper panel) and stability plot when the data
was smoothed with a Gaussian kernel with a FWHM of 1.5.
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Figure 2.15: Roc curves (upper panel) and stability plot when the data
was smoothed with a Gaussian kernel with a FWHM of 2.5.
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Figure 2.16: Roc curves (upper panel) and stability plot when the data
was smoothed with a Gaussian kernel with a FWHM of 3.
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Figure 2.17: Plot which shows the maximum variability of a procedure as
a function of the smoothness parameter sigma. The parameter sigma σ
is related to the full width half maximum up to a constant, FWHM =√
σ28log2.
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Figure 2.18: The standard deviation of the number of selected voxels as
a function of the smoothness parameter sigma, for fixed average numbers
of selected voxels. The parameter sigma σ is related to the full width half
maximum up to a constant, FWHM =

√
σ28log2.
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2.H Real data application with FWER control
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Figure 2.19: Results of the analyses on the Henson data set. On the left
are the analyses with BF correction, (FWER=0.05). On the right are
the analyses using the BH procedure (FDR=3 × 10−7). Above are the
results with classical analyses with the voxels exceeding the significance
level highlighted. The plots below display the percentage of selection over
bootstrap samples with the “stable voxels” (with frequency of occurence
> 80%) highlighted. The thresholds are chosen to make sure that in the
images above, the same number of voxels are significant.





3 Post-hoc power estimation
for topological inference in

fMRI1

Abstract When analyzing functional MRI data, several thresholding
procedures are available to account for the huge number of volume
units or features that are tested simultaneously. The main focus of
these methods is to prevent an inflation of false positives. However,
this comes with a serious decrease in power and leads to a problematic
imbalance between type I and type II errors. In this paper, we show
how estimating the number of activated peaks or clusters enables to
estimate post-hoc how powerful the selection procedure performs. This
procedure can be used in real studies as a diagnostics tool, and raises
awareness on how much activation is potentially missed. The method
is evaluated and illustrated using simulations and a real data example.
Our real data example illustrates the lack of power in current fMRI
research.

3.1 Introduction
Traditional multiple testing procedures for neuroimaging data, such as
the Bonferroni procedure (Bonferroni, 1936), control the family-wise error
rate (FWER) which is the probability of at least one false positive. When
dealing with a huge number of tests, as is the case in fMRI data anal-
ysis, controlling the FWER typically results in low power or sensitivity
to detect important effects. As a result interest has grown in procedures
that control the number of false positives relative to the total number
of positive statistical tests. This error rate is called the False Discovery
Rate (FDR) (Benjamini & Hochberg, 1995). Both FWER and FDR con-
trol have been succesfully applied to voxelwise inference for fMRI data
(Nichols & Hayasaka, 2003; Genovese et al., 2002).

As smooth fMRI data represents a continuous signal, some procedures
1This chapter is based on:

Durnez, J., Moerkerke, B. and Nichols, T.E. (2014). Post-hoc power estimation for
topological inference in fMRI. NeuroImage, 84, 45–64.
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focus on inference for topological features as clusters or peaks, instead
of making inference on individual voxels (Worsley, Evans, Marrett, &
Neelin, 1992; Hayasaka, Phan, Liberzon, Worsley, & Nichols, 2004; Per-
one Pacifico, Genovese, Verdinelli, & Wasserman, 2004; Worsley, Taylor,
Tomaiuolo, & Lerch, 2004). Random field theory (Adler, 1981) or per-
mutation procedures (Nichols & Holmes, 2002) enable cluster and peak
level inference. For peak-level inference, the statistic values at the peaks
(or local maxima) are then transformed to peak p-values, which can be
interpreted as “The probability of finding a peak at least as high as this
peak when the null hypothesis is true”. Cluster-level inference constitute
of cluster p-values based on the extent of the cluster. The p-value can con-
sequently be interpreted as “The probability of finding a cluster at least
as large as this cluster when the null hypothesis is true”. Techniques have
been developed to use these peak and cluster p-values to control both
the FWER (Friston et al., 2007) and the FDR (Chumbley et al., 2010;
Chumbley & Friston, 2009) when testing topological features.

Whichever method one uses, the emphasis is typically on controlling
an excess of type I errors. This comes with a price: when making the
threshold for statistical significance more stringent, many activated brain
regions will inevitably not reach the level of significance, leading to an
increase in type II errors or a (possible a dramatic) drop in power. As
Lieberman & Cunningham (2009) point out, the considerable focus on
measures taken to avoid type I errors is in stark contrast to the scant
attention paid to power. Lieberman & Cunningham (2009) show with
a small omnibus power analysis that, for a large effect, the probability
of detection drops to less than 15% when a voxelwise significance level of
α = 0.001 is used, a very liberal significance level when measured in terms
of the FWER.

While stringent control of type I errors minimizes false positive results
in literature, the accompanying limits on power comes with negative con-
sequences. One example is the biasing of results of meta-analyses of fMRI
studies: type II error rates are never reported and will consequently not
be considered in aggregate analyses (Lieberman & Cunningham, 2009).
Another case in which little power may lead to dramatic results is pre-
surgical fMRI, where patients undergoing brain surgery are scanned in
order to find vital brain tissue. In this setting, significant activations are



Post-hoc power estimation 71

used to mark “eloquent” brain tissue, neccessary for vital function such
as speech or walking. A type II error can therefore lead to removal of vital
brain tissue. Several new methods have been developed with the specific
goal of avoiding type II errors around the tumor (Johnson, Liu, Bartsch,
& Nichols, 2012; Gorgolewski, Storkey, Bastin, & Pernet, 2012).

To meet an acceptable level of power in fMRI studies, several a pri-
ori power calculation methods are available (Mumford & Nichols, 2008;
Desmond & Glover, 2002; Zarahn & Slifstein, 2001). However, while the
type I error rate of a study is mostly clearly defined and easily inter-
pretable (e.g. when controlling FDR at 5%, one can estimate that 1 in
20 significant peaks will be false positives and therefore non-active), the
existing power estimators often involve complex equations and many un-
known parameters, depending on how activation is defined. In contrast,
the aim of this study is to present a method to estimate the power of
an fMRI study post-hoc. One family of existing post-hoc power estima-
tors makes use of the proportion of non-active features (Zehetmayer &
Posch, 2010). Zehetmayer & Posch (2010) have extensively studied the
estimation of the proportion of non-activated features (π0) in the field
of statistical genetics where one aims to detect genetic markers that are
associated with a phenotype. Within brain imaging, estimates for π0 have
been introduced in voxel-based morphometry for adaptive FDR control
(Chen, Wang, Eberly, Caffo, & Schwartz, 2009). Chen et al. (2009) argue
that within fMRI, it is impossible and needless to estimate the proportion
of non-active voxels, since this proportion is typically very close to 1. Post
hoc approaches to power that use the proportion of non-active voxels can
therefore not be used in the context of voxelwise inference. However, when
considering topological features, the number of statistical tests decreases
and the proportion of active features increases. Consequently, existing
techniques can be used to estimate the number of inactive peaks or clus-
ters in respectively peak-level or cluster-level inference for fMRI which
enables post-hoc power estimation.
In section 2, we show how the number of inactive features (π0) for both
peaks and clusters can be estimated. As in Zehetmayer & Posch (2010)
in the context of genetics, we use these estimates for π0 to estimate the
true positive rate (TPR, classical definition of power) and the false non-
discovery rate (FNR) (Genovese et al., 2002) in section 3. This leads to the
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construction of a study-specific free-response receiver operator character-
istics (FROC) curve, in which the true positive rate is plotted against the
false positive rate (Smith & Nichols, 2009) in section 4. Finally, section 5
illustrates the proposed methods using a real data set on the neuropsy-
chological underpinning of face recognition (Henson et al., 2002).

3.2 Prevalence of activation

3.2.1 Estimation procedures
Topological inference The two most widely used topological features in
neuroimaging are clusters and peaks. These features are defined on a test
statistic image, where a linear model is fit and a test statistic t computed
at each voxel. A well-considered threshold u is applied to the test statistic
image to create an excursion set of supra-threshold voxels. This primary
threshold eliminates very small peak values and defines clusters.

Peaks are local maxima in the excursion set and are defined as having
the maximal t-value within their neighbourhood; we use a 26-point neigh-
borhood defined by voxels sharing a common face, edge or corner with
a given voxel. The test statistic for the peak is the t-value of the peak
itself. When performing inference on a peak, the goal is to find a second
threshold tα for which all suprathreshold peaks are considered to be ac-
tive. This is shown in Figure 3.1. Uncorrected p-values for peak values
can be found that give the probability that a peak equal or higher can be
found under the null hypothesis of no activation. These peak p-values can
be submitted to any multiple testing strategy, resulting in a controlled
type I or false positive rate.

Clusters are defined as a neighbouring set of voxels in the excursion
set; we again use a 26-point neighborhood to define clusters. The size of
each cluster is quantified as its extent, or the number of voxels within
the cluster. Cluster-level inference consists of finding an extent threshold,
where all clusters encompassing more than a certain number of voxels are
called active. Analogously to peak-level inference, uncorrected p-values
for cluster size are computed which give the probability that a cluster as
large or larger can be found when there is no activation. As is the case
for peaks, corrections for multiple testing can be used.
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Figure 3.1: Peaks and clusters are defined by first applying a first threshold
u, which reveals several clusters and eliminates small peaks. Thereafter,
based on the t-values of the peaks {z1, z2, ..., zm} or the size of the clusters
{s1, s2, ..., sm}, a second threshold tα is chosen, to control the false positive
rate at a predefined level.

An important characteristic of peaks and clusters is that their appear-
ance is a stochastic process, defined by the spatial distribution of the t-
values. Consequently, peaks and clusters are randomly located and when
an experiment is replicated, clusters and peaks may comprise different
voxels. Therefore interpretation of results cannot be directly translated
between different replications of the same experiment (Nichols, 2012).

A number of procedures have been presented that provide p-values for
clusters or peaks (Heller, Stanley, Yekutieli, Rubin, & Benjamini, 2006;
Hayasaka et al., 2004; Zhang, Nichols, & Johnson, 2009; Chumbley & Fris-
ton, 2009; Friston et al., 2007; Forman et al., 1995; Hayasaka et al., 2004;
Perone Pacifico et al., 2004; Nichols & Holmes, 2002). In what follows, we
consider the two most popular techniques: random field theory (Chumbley
et al., 2010; Friston et al., 2007) and non-parametric permutation tests
(Nichols & Holmes, 2002).

Random Field Theory (RFT) To precisely state the random field theory
results we need a small amount of notation for the continuous random
process that approximates our observed statistic image. Let Ω ⊂ RD be
the D-dimensional search region of interest (e.g., the brain), and T (x) ∈ R
be a random variable, the test statistic at voxel x ∈ RD. Then to control
the FWER over the brain we approximate the maximum distribution of
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T (x) as

P (max
x∈Ω

T (x) ≥ t|H0) ≈
D∑
d=0

ReselsdECd(t) (3.1)

with H0 representing the hypothesis of no activation, max(T ) the value
of the maximum statistic searched over the brain, D the number of di-
mensions, Reselsd the number of d-dimensional resolution elements of the
search region, and ECd(t) the d-dimensional Euler characteristic density
of the test statistic. The Euler characteristic counts the number of clusters
above t if the region has no holes, which is likely to be the case if t is large
(Worsley, 2007).

While P (maxx∈Ω T (x) ≥ t|H0) is usually used to approximate the
FWER-corrected p-value for a voxel with statistic value t, RFT can also
be used to obtain uncorrected p-values for a local maximum in the image,
as well as clusters. The result for peak uncorrected p-values, surprisingly,
does not depend on the search region or smoothness and is poorly de-
scribed, so we detail it here.

Let T = u + H be the height of a local maximum above a threshold,
that is, conditional on T > u. The conditional probability of H can be
seen to be a ratio of two extrema

P (H ≥ m/u|T > u) = P (M ≥ u+m/u|T > u)

= P (M ≥ u+m/u)
P (T > u)

for some fixed m > 0. The numerator and denominator of this expression
can each be approximated with the d = 3 term of Equation 3.1, and then
Resels3 terms cancel and one is left with an expression that, as u → ∞,
goes to e−m. To find an uncorrected p-value for observed local maximum
t, we solve t = u+m/u for m, substitute and get

P (T ≥ t|T ≥ u,H0) ≈ exp(−u(t− u)).

For clusters, the spatial extent can be expressed as S ≈ cHD/2 (Wors-
ley, 2007) with

c = FWHMDuD/2P (T ≥ u|H0)
ECD(u)Γ(D/2 + 1) (3.2)
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The p-value for a cluster with an observed spatial extent s is approximated
as follows:

P (S ≥ s|H0) ≈ exp(−u(s/c)2/D) (3.3)

The non-parametric permutation framework RFT results depend on
assumptions of smooth Gaussian multivariate noise, and even when these
assumptions are met RFT results may not be accurate (Nichols & Hayasaka,
2003; Hayasaka, 2003). Hence we also consider the use of permutation
methods to provide emperical null distributions upon which to base p-
values (Dwass, 1957). A permutation test is based on an assumption of
exchangeable data under the null hypothesis of no effect. For example, in
a 2-sample t-test, under the null hypothesis all the data are equivalent and
can be randomly assigned to either group. For fMRI, drift and temporal
autocorrelation violate the assumption of exchangeability; thus we whiten
the residuals before permutation (Bullmore et al., 1996) and, as a further
precaution, only shuffle condition labels within adjacent blocks.

Data is repeatedly analyzed to create a null distribution and, to control
FWER, a maximal distribution is created and used to compute FWER-
corrected p-values (Nichols & Hayasaka, 2003).

Choice of p-values In what follows, we use p-values on topological fea-
tures to estimate power. We used simulated and real null data to verify
the accuracy of RFT and permutation p-values. We used temporally and
spatially correlated synthetic data as well as real resting-state fMRI data,
for each emperically measuring the probability of finding a feature greater
than or equal to the observed feature under the null of no activation. See
Appendix A for details.

To summarize the results shown in Appendix A, for peaks both RFT
and non-parametric p-values are very close to their observed p-values un-
der the null hypothesis. In this paper, we therefore only show results
for RFT p-values because of computational simplicity, though of course
our methods are equally applicable to permutation p-values. For clusters,
RFT p-values show a deviation from the observed p-values, while non-
parametric p-values provide good estimates. Therefore, we only consider
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Declared active Declared inactive Total
Non-active F m0 − F m0
Active T m1 − T m1

Total S m− S m

Table 3.1: Expected numbers in a cross-classification of selected features
with active features. m1 is m −m0. S represents the number of features
that are declared active. F and T respectively represent the false and true
positives.

non-parametric p-values for clusters. This does not imply that the pro-
posed procedures are not suitable for RFT cluster p-values.

In the remainder of this paper, we generically denote peaks and clusters
as “topological features”, or just “features”.

Estimation of π0 If a set of m topological features is subjected to sta-
tistical testing, a certain number m0 of these features is expected to be
non-active. In this study, we presume that a topological feature can be bi-
nary classified as either active or non-active. As in Schwartzman, Gavrilov,
& Adler (2011), we define an active peak as a peak situated in active brain
tissue, while a non-active peak lies in a non-active brain region. We con-
sider a cluster to be active if it contains at least one voxel that lies in
an active area. Other definitions of active clusters are possible such as in
Heller et al. (2006) and Chumbley & Friston (2009).

Standard practice is to reject the null hypothesis when the p-value is
lower than a pre-specified significance level α (with α the per compari-
son error rate). Table 3.1 gives a two-way classification of true activation
status and declared status according to a statistical test. For example,
from the m features, S features can be declared as active while m − S
features do not reach the level of significance to be declared as active. As-
suming p-values are uniformly distributed under the null hypothesis H0,
we expect to select α ×m0 non-active features with a p-value threshold
equal to α. Table 3.2 shows the expected counts, where only the number
of true hypotheses m0 is unknown, and is the basis of power calculations
made further in the text (Delongchamp, Bowyer, Chen, & Kodell, 2004).
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Declared active Declared inactive Total
Non-active αm0 = F m0 − αm0 m0
Active S − αm0 = T m1 − (S − αm0) m1

Total S m− S m

Table 3.2: Expected numbers in a classification of m features (De-
longchamp et al., 2004), where only m0 (and hence m1 = m − m0) is
unknown.

Estimating m0 enables estimating the total number of true positives and
false positives (Zehetmayer & Posch, 2010). Zehetmayer & Posch (2010)
also outline assumptions with respect to dependency among tests. As we
consider topological as opposed to voxelwise inference, we are not dealing
with highly correlated test statistics across the brain.

The number of inactive features m0 is equal to π0×m, where π0 is the
proportion of inactive features. In the literature, there are several differ-
ent methods available that estimate the proportion of inactive features in
a large-scale testing setting (Benjamini & Hochberg, 2000; Storey, 2002;
Storey & Tibshirani, 2003; Pounds & Morris, 2003; Pounds & Cheng,
2004). These methods all rely on the fact that p-values are uniformly dis-
tributed under the null hypothesis H0 but differ in the way they estimate
the proportion of null p-values. An overview within statistical genetics
has been given by Broberg (2005). We reconsider these results however,
as the topological features of statistical parametric maps are random in
number, and number fewer than the genes or proteins used in these other
works. We apply and compare the following methods to estimate π0 using
simulations, in a similar way as Broberg (2005) and Zehetmayer & Posch
(2010):

1. BH: The adaptive lowest slope estimator (Benjamini & Hochberg,
2000)

2. S: The p-value smoother (Storey, 2002)

3. ST: The p-value smoother with bootstrap resampling (Storey & Tib-
shirani, 2003)
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4. PM: The beta-uniform model (Pounds & Morris, 2003)

5. PC: The spacing loess histogram (Pounds & Cheng, 2004)

An overview and an example of these estimators can be found in Figure
3.2.

3.2.2 Simulations

We simulate a blocked design with 10 blocks of the active condition,
altered with 10 blocks of non-activity. Each block consists of 20 time
points, thus leading to 400 time points in total. The image is comprised of
40×40×40 voxels, which corresponds to a brain volume in moderate res-
olution data. The data are generated using neuRosim (Welvaert, Durnez,
Moerkerke, Verdoolaege, & Rosseel, 2011) with a mixture of Gaussian
white noise and temporal noise. NeuRosim is a statistical toolbox in R,
consisting of different data generation functions for neuroimaging data.
The temporal dependence is fixed to ρ = 0.20. First, for 5 regions of
7×7×7 voxels, a signal is added in half of the time points with signal-to-
noise ratio (SNR) of 0.015 before smoothing. The images are convolved
with a 3D isotropic Gaussian kernel with σ = 2.5. A general linear model
(GLM) is fit to the data resulting in a T -statistic image with 398 degrees
of freedom. The excursion threshold u is set such that P (T398 ≥ u) = 0.01.
This threshold needs to be high enough for random field theory assump-
tions to hold, but low enough to preserve as much information as possible.
Apart from some vague advise, no clear vision has been given to the exact
choice of the threshold (Smith & Nichols, 2009). The permutation based
approach works for any excursion threshold. After the excursion set is de-
fined, the peaks and clusters on the T -image are computed with 26-point
neighborhood and their uncorrected p-values are calculated.

Next, the different parameters (number of activated regions, SNR,
smoothing parameter σ, u) are varied in the study over a range of values to
investigate the influence they exert on the proposed estimation procedure.

The statistic values of the topological features (i.e. peak height and
cluster size) are converted to uncorrected p-values, the basis for the esti-
mation of π0. This simulation routine is repeated 500 times.
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Benjamini & Hochberg (2000) -
BH: After sorting the p-values, the
slope Si is calculated between the ith
p-value and the point (m+ 1, 1) for
ascending i (solid lines). The first i

for which Si < Si−1 is considered the
first p-value from the alternative

hypothesis (dashed line).
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Storey & Tibshirani (2003) - ST;
Storey (2002) - S : For a certain λ
(here: 0.5), π0 is estimated as the
density of p-values greater than λ

(dark grey) divided by the expected
density under H0, 1 − λ (light grey).

Storey & Tibshirani (2003) and
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The probability density function f̂(pi)

is estimated by applying a loess
smoother through the histogram of
p-values (solid line). π0 is then

estimated as f̂(max(pi)).

Figure 3.2: Overview of the different methods to estimate π0 under con-
sideration. All methods are applied to the same example, with H0 = x ∼
N(0, 1) and Ha = x ∼ N(3, 1) with df = 30. The true π0 is equal to 0.5.
The estimates from the different estimators are: π̂0(BH) = 0.60, π̂0(S) =
0.29, π̂0(ST ) = 0.31, π̂0(PM) = 0.40, π̂0(PC) = 0.21.
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Peaks Clusters
Mean π̂0 (sd) RMSE (sd) Mean π̂0 (sd) RMSE (sd)

True π0 0.77 ( 0.04 ) 0.87 ( 0.03 )

Benjamini-Hochberg (BH) 0.87 ( 0.06 ) 0.12 ( 0.11 ) 0.95 ( 0.04 ) 0.08 ( 0.08 )
Storey (S) 0.84 ( 0.19 ) 0.2 ( 0.20 ) 0.94 ( 0.14 ) 0.15 ( 0.22 )
Storey-Tibshirani (ST) 0.72 ( 0.17 ) 0.17 ( 0.25 ) 0.84 ( 0.16 ) 0.15 ( 0.25 )
Pounds-Morris (PM) 0.74 ( 0.08 ) 0.08 ( 0.10 ) 0.83 ( 0.06 ) 0.07 ( 0.08 )
Pounds-Cheng (PC) 0.59 ( 0.12 ) 0.21 ( 0.24 ) 0.62 ( 0.11 ) 0.28 ( 0.25 )

Table 3.3: Results of π0 estimators when applied to neuroimaging data
based on n =500 simulations with the average π0 (standard devia-
tion) and the RMSE (standard deviation). The RMSE is defined as√

1/n
∑n
i=1(π̂0i − π0i)2. Results are obtained with the basic scenario with

P (T398 ≥ u) = 0.05, SNR = 0.015, σ = 2.5 and with 5 blocks of activation.

3.2.3 Comparison of different π0 estimators

The different π0 estimators are applied to simulated data sets. A compar-
ison between the estimators for a specific combination of parameters can
be found in Table 3.3. We compare the estimators with the true under-
lying values and compute the root of the mean squared error (RMSE).
With π0i (π̂0i) the (estimated) proportion of non-active features in sim-
ulation step i and n the number of simulations, the RMSE is defined
as
√

1/n
∑n
i=1(π̂0i − π0i)2. It should be noted that due to the random

character of peak and cluster appearance and location, the true π0 varies
in each simulation step and therefore, the estimates for π0 are evaluated
against the true π0 in each simulation step separately. We see that PM
produces the smallest bias and RMSE, with a small variance on the re-
sults. In Appendix B, it is shown that this result is consistent for varying
SNR, smoothing parameter σ, u and for a varying number of activated
regions. We decide that PM has the best overall performance, and use this
estimator for the following steps. We stress, though, that our method can
be used with any accurate π0 estimation method.
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3.3 Estimation of the number of true positives
and false negatives

Having derived a list of significantly ‘active’ features, it is of interest to
estimate power. As is the case for defining a measure of the number of
false positives, there are several possible measures of the number of true
positives when performing many tests simultaneously. We will enlist two
measures of power that can be estimated based on Table 3.1.

3.3.1 True Positive Rate
As a counterpart of the false positive rate (FPR = E(F )/m0), the clas-
sical way to denote the power of a test is the true positive rate (TPR =
E(T )/m1). This measure quantifies the expected proportion of the sig-
nificant active peaks out of all active peaks. The TPR can be estimated
based on the results of Table 3.2 as (S − αm0)/m1. Typically, one con-
siders a range of p-value thresholds. For example, the TPR corresponding
to thresholds equal to the observed p-values pi (i = 1, . . . ,m) can be
estimated. The TPR should be monotonously increasing with increasing
threshold, and needs to be smaller than 1. This is imposed as follows in
the estimation procedure:

T̂PR(pi) = max
p∗<pi

(
S − p∗m0

m1
,
S − pim0

m1

)
(3.4)

T̂PR(pi) = max
(
S − pim0

m1
, 1
)

(3.5)

The results of the simulation study with respect to estimating the
TPR are presented in Table 3.4 for p-value thresholds that are chosen to
respectively control the FWER and the FDR at the 5% level.

Figure 3.3 shows that the average quality of the estimation of the TPR
is independent of the amount of activation and the SNR for peaks. For
clusters, bias shrinks as more activated clusters are present. The signal-
to-noise ratio and the smoothness have a small impact on the estima-
tion procedure. For peak-level thresholding, a low to moderate excursion
threshold u leads to a minimal bias on the results, while for cluster-level
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FWER = 0.05 FDR = 0.05
Mean (sd) RMSE (sd) Mean(sd) RMSE (sd)

TPR

peaks: observed TPR 0.22 ( 0.12 ) 0.41 ( 0.18 )
peaks: estimated TPR 0.21 ( 0.11 ) 0.06 ( 0.08 ) 0.39 ( 0.16 ) 0.1 ( 0.13 )
clusters: observed TPR 0.64 ( 0.22 ) 0.82 ( 0.17 )
clusters: estimated TPR 0.53 ( 0.18 ) 0.18 ( 0.21 ) 0.68 ( 0.13 ) 0.22 ( 0.24 )

FNR

peaks: observed FNR 0.22 ( 0.06 ) 0.18 ( 0.06 )
peaks: estimated FNR 0.25 ( 0.09 ) 0.08 ( 0.11 ) 0.21 ( 0.09 ) 0.09 ( 0.11 )
clusters: observed FNR 0.07 ( 0.04 ) 0.04 ( 0.04 )
clusters: estimated FNR 0.1 ( 0.05 ) 0.06 ( 0.08 ) 0.07 ( 0.04 ) 0.06 ( 0.08 )

Table 3.4: For the estimated TPR and FNR for peak and cluster level in-
ference, the average (standard deviation) and RMSE (standard deviation)
is shown, based on 500 simulations. The RMSE is defined as respectively√

1/n
∑n
i=1(T̂PRi − TPRi)2 and

√
1/n

∑n
i=1(F̂NRi − FNRi)2 with n

the number of simulations. Results are obtained with the basic scenario
with P (T398 ≥ u) = 0.05, SNR = 0.015, σ = 2.5 and with 5 blocks of
activation.

inference, the best results are obtained for a moderate to high excursion
threshold u. Roughly spoken, we find biases ranging from -0.20 to 0.20,
which is comparable to the results of Zehetmayer & Posch (2010), where
absolute biases on the TPR were found ranging from 0.11 to 0.70.

A low true positive rate indicates that some suprathreshold clusters
that overlap with true activated areas remain undiscovered. However, it
is possible that multiple suprathreshold clusters overlap with truly acti-
vated areas. For neuroscientists, missing some active clusters is acceptable
if other clusters around the same activated area are discovered. In that
case, the activation in the brain is discovered by at least one significant
cluster. The average percentage of missed areas is shown in Figure 3.4. It
can be seen that this percentage is rather high, but shrinks with higher
levels of signal-to-noise ratio. It can also be seen that the percentage
missed areas drops when the excursion threshold is liberal. This is because
suprathreshold clusters in this case are very large, and one suprathreshold
cluster often extends to multiple activated areas.

3.3.2 False Non-discovery Rate
When controlling the false discovery rate (FDR), it is of interest to define
a measure for power equivalent to the FDR, named the false non-discovery
rate (FNR) (Genovese et al., 2002) which is defined as E[(m1−T )/(m−S)]
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Figure 3.3: Bias and RMSE of the TPR estimator with 95% confidence
interval. For 500 simulations, in each of the graphs, one of the parameters
is varied. When the parameter is not varied, it takes the following values:
number of activated regions = 5, SNR= 0.015, smoothing parameter σ =
2.5, excursion threshold P (T398 ≥ u) = 0.01. On the left side, the mean
estimated TPR (dashed line) is compared with the true mean TPR (full
line). On the right side, the RMSE is plotted.
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Figure 3.4: The average percentage of activated areas that are not discov-
ered for cluster-level inference with FWER = 0.05 over 500 simulations.

if S 6= m and 0 otherwise. It represents the proportion of false non-
discoveries in relation to the total number of non-discoveries. This measure
can again be estimated using Table 3.2.

Equivalent with the restrictions on the TPR, the FNR should be
monotonously decreasing with increasing FPR, and needs to be smaller
than 1. This is imposed as follows in the estimation procedure:

F̂NR(pi) = min
p∗<pi

(
m1 − (S − p∗m0)

m− S
,
m1 − (S − pim0)

m− S

)
(3.6)

F̂NR(pi) = max
(
m1 − (S − p∗m0)

m− S
, 1
)

(3.7)

The results of the simulation study are presented in Table 3.4 and
Figure 3.5. As opposed to the results of the TPR, the FNR is consistently
over-estimated. The estimates are robust against variations in the different
parameters.

3.3.3 Effect of the number of time points
Our simulated design represents an fMRI experiment of 400 time points.
The duration of the experiment influences the power obtained in the anal-
ysis. This is however reflected in the signal-to-noise ratio: a longer exper-
iment increases the signal-to-noise ratio. In Appendix 3.C we have sepa-
rately investigated the effect of the duration on the TPR and the FNR



Post-hoc power estimation 85

False Non−discovery Rate

Number of activated regions

F
N

R

2 3 4 5 6 7 8

0
0.

2
0.

4

True
Estimated
Peaks FWER=0.05
Peaks FDR=0.05
Clusters FWER=0.05
Clusters FDR=0.05

RMSE

Number of activated regions

R
M

S
E

2 3 4 5 6 7 8

0
0.

2

Peaks FWER=0.05
Peaks FDR=0.05
Clusters FWER=0.05
Clusters FDR=0.05

False Non−discovery Rate

SNR

F
N

R

0.005 0.01 0.015 0.02 0.025

0.
0

0.
1

0.
2

0.
3

0.
4

RMSE

SNR

R
M

S
E

0.005 0.01 0.015 0.02 0.025

0.
00

0.
05

0.
10

0.
15

0.
20

False Non−discovery Rate

smoothing parameter

F
N

R

0 1.25 2.5 3.75 5

0.
0

0.
1

0.
2

0.
3

0.
4

RMSE

smoothing parameter

R
M

S
E

0 1.25 2.5 3.75 5

0.
00

0.
05

0.
10

0.
15

0.
20

False Non−discovery Rate

excursion threshold

F
N

R

0.001 0.005 0.01 0.05 0.1

0.
0

0.
1

0.
2

0.
3

0.
4

RMSE

excursion threshold

R
M

S
E

0.001 0.005 0.01 0.05 0.1

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 3.5: Bias and RMSE of the FNR estimator with 95% confidence
interval. For 500 simulations, in each of the graphs, one of the parameters
is varied. When the parameter is not varied, it takes the following values:
number of activated regions = 5, SNR= 0.015, smoothing parameter σ =
2.5, excursion threshold P (T398 ≥ u) = 0.01. On the left side, the mean
estimated FNR (dashed line) is compared with the true mean FNR (full
line). On the right side, the RMSE is plotted.
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(and its estimates). Results confirm that the effect of the number of time
points can be studied through the SNR.

3.4 Estimating the Free-Receiver Operator Curve
(FROC)

3.4.1 Procedure
In a Free-Receiver Operator Curve, the TPR as in Equation 3.4 and 3.5
for a range of p-value thresholds α is plotted against the false positive
rate (FPR = α). The FROC displays the relation between sensitivity
and specificity.

3.4.2 Simulation results
This estimation procedure has been applied to the simulated data for
both peaks and clusters. A figure of the estimated and true FROC can be
found in Figure 3.6. It can be seen that there is a substantial deviation
between the true and the estimated FROC for high values for α. However,
realistic values of α are between 0 and 0.05, and within this range, the
estimation procedure performs well. An overview of the different FROCs
under different conditions can be found in the Appendix D.

3.5 Real Data Application
To further demonstrate the principle of the method for peak-level infer-
ence, we apply the presented technique to real fMRI data stemming from
a single-subject event-related design (Henson et al., 2002). The study is 2
× 2 factorial with factors ‘fame’ and ‘repetition’; famous and non-famous
faces are presented twice against a checkerboard (see Henson et al. 2002
for more details). For this example, we look at the average effect of pre-
senting faces, averaged over the levels of repetition.

As in the original paper by Henson et al. (2002), we use an uncor-
rected p-value threshold of 0.01 as excursion threshold, which reveals 97
peaks. Using the post-hoc power estimation of this procedure, we obtain
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Figure 3.6: Free-Receiver Operator Curve (FROC). The left-hand side
shows the complete FROC, the right-hand side shows the part of this
FROC for realistically small α-values. Results are obtained with the basic
scenario with P (T398 ≥ u) = 0.05, SNR = 0.015, σ = 2.5 and with 5
blocks of activation.

an estimate for the proportion of null peaks (π0) in the image of 36%.
With this estimate, we are able to construct the FROC for this study, as
can be seen in Figure 3.7.

As a first example, we use the thresholding procedure performed in
the original paper by Henson et al. (2002), where they threshold these
peaks to control the FWER at a level 5%. There are 35 peaks considered
as active, i.e. these peaks are considered to lie within a brain region that
becomes active when performing the experimental task involving faces
(see Table 3.5).

We find that thresholding peaks to control the FWER at level 5%
coincides with an estimated TPR of 55%. This means that we estimate
that only 55% of the truly active peaks in this study are detected. The
estimated FNR is equal to 44%, meaning that among 62 peaks we did not
select, we estimate that 44% are actual active peaks. It is obvious that
results indicate that the post-hoc power for an FWER control of 5% is
too low as there is only a 55% chance to detect true activation.

Next, we consider results for thresholding peaks to control the FDR at
level 5%, using the procedure described by Chumbley et al. (2010). This
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procedure is the default in the popular software package SPM. Using
this threshold, we find 52 significantly active peaks. With the procedure
presented in this paper, we find an estimate for the TPR equal to 81%
and for the FNR equal to 26%.

When taking a closer look at Figure 3.7, it can be seen that FDR
control of 5% allows more false positives than FWER control at 5%, hence
the increase in power. By using a different thresholding strategy, one shifts
on the FROC. Therefore, when one aims at a power of 80%, which is a
reasonable request in social sciences, the FDR procedure reaches this goal,
while FWER control fails at providing enough power in this fMRI study.
However, estimates for the FNR indicate that, even with FDR control,
26% of truly active peaks are not detected.

When thresholding p-values uncorrected for multiple comparisons at
5%, i.e. at a per-family error rate (PFER) of 5%, an estimated power of
84% is obtained with a FNR of 23%.
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Figure 3.7: Estimated FROC for the Henson data set. The panel on the
left shows the a range of FPR and TPR from 0 to 100%, while the right
hand panel zooms in on the obtained values for FPR and TPR.

3.6 Discussion

We investigate estimating power for inference in fMRI research, based on
the estimated proportion π0 of truly non-active peaks or clusters. We show
that for different signal-to-noise ratio conditions, π0 can be estimated with
a reasonable accuracy. Different estimators are available, but our results
favor the method of Pounds & Morris (2003), since this estimator seems
robust against differences in signal-to-noise ratio, smoothness, the size of
π0 and the excursion threshold u. We show that one can easily estimate
a threshold’s post-how power for detecting activation.

In social sciences, power studies are often performed a priori, i.e. be-
fore the actual experiment is performed. In these studies, the standard
is to reach a power of 80%. For fMRI, such procedures are available for
group-level analyses (Mumford & Nichols, 2008; Zarahn & Slifstein, 2001;
Smith, Jenkinson, Beckmann, Miller, & Woolrich, 2007; Hayasaka, Peiffer,
Hugenschmidt, & Laurienti, 2007; Desmond & Glover, 2002), but these
mostly include an arbitrary standard error or effect size estimation. We
presented a technique that can estimate power post hoc, without any as-
sumptions on effect sizes. Our real data example shows that when one
aims to see the activation related to viewing faces, only 50% of the ac-
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tual activity can be discovered. Such findings will mostly impair the most
vulnerable studies, such as studies involving social cognition, which are
often characterised by small effect sizes and low power to detect the effects
(Lieberman & Cunningham, 2009). We do not make an explicit compar-
ison here between the a priori defined power and the obtained post-hoc
power, as we mainly focused on single-subject designs, and power calcu-
lations present in literature compute power for group-level inference.

In the real data example, we can see that if we must attain a power
of 80%, the type I error rate cannot be controlled at a FWER level, but
should be controlled using a more lenient measure of false positives such
as the false discovery rate (FDR) or the per family error rate (PFER).
Controlling the FDR or PFER at 5% leads to more acceptable levels of
power.

It is argued in a general setting that, post-hoc power estimation pro-
cedures make no sense since, post-hoc, test results are no longer random:
whether the peak is active or not is fixed (Hoenig & Eisey, 2001). However,
in a multiplicity setting, post-hoc power does not relate to the result of
one statistical test, but many different tests. Therefore it is useful to con-
sider how many activation is missed on average. Using π0, we can estimate
how many of the peaks are actually active. Of course, this does not tell us
where the activity can be found. Hoenig & Eisey (2001) argue against the
use of post-hoc power estimation, as this often involves calculating the
probability of finding the observed effect ‘if it were true’. In that case, the
alternative hypothesis Ha is always centered around this observed effect.
As for non-significant results, the applied T -value threshold is higher than
this observed effect, the T -threshold will always be on the upper half of
Ha for a non- significant result. Therefore, non-significant tests will al-
ways have a power lower than 50%. Inversely for significant results, the
used T -threshold will always be on the lower half of Ha and significant
tests always lead to powers higher than 50%. As the power estimation
procedure presented in this paper does not involve test-specific power es-
timation based on the observed effect, but rather the overall performance
in a multiplicity context, the argument of Hoenig & Eisey (2001) is no
longer valid.

We show that the used estimators are vulnerable to differences in
smoothness: higher smoothness leads to lower bias. Peaks and clusters
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are spatial features, and therefore require a certain amount of spatial con-
tinuousness. The spatial continuousness is improved by pre-smoothing the
data. The higher the level of smoothness, the more accurate the p-values
for the features, and therefore, the more accurate our estimation proce-
dure becomes.

Two important words of caution should be made on the use of peaks
and clusters. The first is on the random character of the topological fea-
tures. The importance of this study has been evaluated with simulated
data sets. However, in each simulation step of a given scenario, the fea-
tures appear at random locations. Secondly, peak and cluster p-values can
only be estimated conditional on the excursion threshold u. Therefore, for
power estimation, features below the threshold are not considered. In this
study, we did not account for any true or false negatives below the ex-
cursion threshold. This is common practice in real studies as topological
features below the excursion threshold are not considered. The problem
of choosing the excursion threshold is acknowledged in literature and so-
lutions have been provided (Adler, Bobrowski, & Borman, 2010; Smith
& Nichols, 2009). The techniques shown in this paper are also applicable
to threshold-free techniques, as the only required input are p-values on
the topological features. All techniques to obtain p-values for topological
features, such as threshold-free cluster enhancement (Smith & Nichols,
2009) or cluster mass inference (Zhang et al., 2009) can be combined with
the procedure presented here.

It should also be pointed out that while the procedure presented here
was mainly applied to single-subject fMRI designs, it is also suitable for
group-level inference. When a statistical parametric map is obtained for
any design, it is possible to derive the topological features and correspond-
ing p-values enabling power estimation. Consequently, the procedure can
also be used for other neuroimaging techniques such as voxel-based mor-
phometry and diffusion tensor imaging.

The computational complexity of this procedure is very low. Estimat-
ing π̂0 using the method provided by Pounds & Morris (2003) includes
a computational minimization of a two-parameter function, but as the
number of peaks or clusters is much smaller than the number of voxels,
the minimization takes less than one minute on an Intel Core i7 3,4GHz
with 4 GB of memory. Once π̂0 has been estimated, estimating the power
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is only a matter of simple calculus.
To conclude, we argue that post-hoc power estimation gives unique

and insightful information on a completed study. Our real data example
shows that the estimated power is dramatically low when controlling the
FWER at 5 %. This means that for this study, no clear conclusions can
be drawn for areas where the null of no activation is not rejected since
only half of the true activation is detected. We expect that these results
are not unique, since the effect of faces in the Henson data set has been
replicated many times. We expect that many activations in less powerful
experiments, such as social cognition experiments, remains unexplored.
Low power of 8% on average was also reported by Button et al. (2013) on
average over 91 different studies. They argue for more attention improving
reproducibility in neuroscience. One possibility to increase sensitivity in
neuroimaging studies, could be multivariate analyses that consider several
voxels simultaneously, such as multi-voxel pattern analysis. (Kriegeskorte,
Goebel, & Bandettini, 2006) or canonical correlation analysis (Friman,
Borga, Lundberg, & Knutsson, 2003). These multivariate approaches yield
a higher power than univariate GLM analyses. We argue that a call needs
to be made to statistical testing procedures with a better balance between
sensitivity and specificity (Lieberman & Cunningham, 2009). By raising
awareness on the power of existing studies, this procedure is a first step
in this direction.
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Appendices

3.A Comparison of topological random field the-
ory and non-parametric p-values

3.A.1 Simulations under the null hypothesis

Time series of 400 time points are constructed, with for each time point
an image of 40×40×40 voxels, which corresponds to moderate resolution
data. Images are generated using neuRosim (Welvaert et al., 2011) with
temporal correlated noise. The temporal dependence is fixed to ρ = 0.20.
The error term for each voxel on timepoint i is created using the following
equation.

εi = ρεi−1 + ξi (3.8)
ξi ∼ N(0, σ2) (3.9)

The images are convolved with a 3D isotropic Gaussian kernel of width
9 and σ = 2.5.

A design matrix is constructed for a blocked design with 10 blocks of
the active condition, altered with 10 blocks of non-activity. The active
condition does not have any effect on the brain images, and therefore, the
null hypothesis of no activation is true for the whole brain map. A GLM is
fit to the data and a T -statistic image results with 398 degrees of freedom.
The excursion threshold u is set at P (T398 ≥ u) = 0.01.

After the excursion set is defined, peaks and clusters on the T-image
are sought with a 26-point clustering algorithm. p-values for peaks and
cluster size are calculated using both random field theory and permuta-
tions. RFT cluster p-values are computed using FSL (Smith et al., 2004).
From the simulated data we also calculate the empirical or observed p-
values, the percentage of features that are as large or larger. In the fol-
lowing section, these observed p-values are compared to the RFT and
permutation p-values.
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In each simulation, on average 86.29 peaks and 68.99 clusters were
discovered. The average cluster size is 23.29 voxels, and the average peak
height is equal to 3.00. 500 simulations were performed.

3.A.2 Real data under the null hypothesis
Analogous to what is described in Eklund, Andersson, Josephson, Johan-
nesson, & Knutsson (2012), we have analysed 500 resting state fMRI data
sets with an arbitrary (non-resting) experimental design. As subjects were
at rest, the null hypothesis is true and this data can be use to compare
with RFT and permutation inference. We have used the freely available
resting state fMRI data sets in the Neuroimaging Informatics Tools and
Resources Clearinghouse (NITRC) 1000 functional connectomes project
(Biswal et al., 2010). The data sets are described in Table 3.6. All data
sets were analyzed with FSL. Each data set was motion corrected and
smoothed with a kernel with FWHM 8mm. No motion regressors are
included. A block based design was used with altering periods of 10 sec-
onds of activity and rest. The design is convolved with the hemodynamic
response function and its temporal derivative. The analyses result in t-
statistics for each voxel. These are subject to topological inference with
an excursion threshold of u = 2.65. The data sets result on average in
23.01 clusters and 28.42 peaks. Using RFT and permutation inference,
p-values are computed for each suprathreshold cluster or peak. As we did
not wish to assume that the peak values or cluster sizes were comparable
over different datasets, we did not compute observed p-values. Therefore,
we only analyse the distribution of the topological p-values over data sets.

For the permutation tests, only 20 permutations were performed for
each data set due to its computational complexity, but as the data sets
emit an average of at least 20 clusters/peaks per data set, the permutation
distribution is based on over 400 values, which is acceptable.

3.A.3 Results
Simulated data sets

Cluster p-values Figure 3.8 shows that the bias of the RFT p-values
is larger than the bias of the permutation p-values, with a much wider
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Institution Persons Number of subjects

AnnArbor Monk, C.S., Seidler, R.D., Peltier, S.J. 25
AnnArbor Monk, C.S., Seidler, R.D., Peltier, S.J. 36
Atlanta Mayberg, H.S. 28
Baltimore Pekar, J.J., Mostofsky, S.H. 23
Bangor Colcombe, S. 20
Beijing Zang, Y.F. 198
Berlin Margulies, D. 26
Cambridge Buckner, R.I. 146

Table 3.6: Overview of the rest data sets used for the empirical study.

variance. When looking at the absolute deviation for each estimate, the
results are more striking: on average, an RFT cluster p-value has a de-
viation of 40% from the real p-value. This deviation is much smaller for
permutation p-values.

On the left panel of Figure 3.8, it can be seen that the deviation of
the RFT p-values follows a specific pattern. p-values estimated with RFT
mostly overestimate the true p-value. The permutation p-values shows a
straight pattern, as can be expected. There is also a large mean bias for the
RFT estimates, while these quantities are rather low for the permutation
p-values.

These results are also reflected in Figure 3.9. Permutation p-values and
observed p-values are uniformly distributed, as expected under the null
hypothesis. The histogram of the RFT p-values however show a deviation
from this uniform distribution.

We can conclude from this small simulation study that permutation
p-values are preferrred to obtain p-values for clusters.

Peak p-values For peak p-values, better results for RFT are obtained as
can be seen in Figure 3.10 and 3.11. The variance on the estimation bias
is also smaller, and the histogram shows a more uniform distribution. We
therefore conclude that both estimation procedures perform equally well.
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Figure 3.8: (left) Plot of estimated p-values against observed p-values for
the simulated data, (right) boxplot of bias for cluster p-values.
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Figure 3.9: Histogram of estimated and observed p-values for clusters for
the simulated data.
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Figure 3.10: (left) Plot of estimated p-values against observed p-values,
(right) boxplot of bias for peak p-values for the simulated data.
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Figure 3.11: Histogram of estimated and observed p-values for peaks for
the simulated data.
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Figure 3.12: Histograms of the estimated p-values for clusters (upper pan-
els) and for peaks (lower panels) for both RFT (left) and permutation
(right) for the resting state data.

Resting state data sets

Cluster p-values In Figure 3.12, it can be seen that the p-values obtained
with RFT for clusters overestimate the real p-value. This conclusion is
in line with the conclusions drawn with the simulation study. We can
conclude that permutation based p-values perform much better, except
for the very small clusters of size 1, that all result in an equal p-value very
close to 1.

For peak level inference based on permutation, we can draw the same
conclusions as with the simulated data sets, namely that both RFT and
permutation based methods result in a uniform distribution, in concor-
dance with the expectance.
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3.B Influence of different parameters on the es-
timation of π0

As can be seen in Figure 3.13, increasing the number of activated fields in
the brain, and therefore decreasing π0 does not change the performance
of the estimators for peaks. π̂0 remains conservatively overestimated for a
different number of activated regions with the BH and S estimator. The
bias and the RMSE of the PC estimator are small and independent of the
number of activated regions. PM provides good estimates with in each
simulation an average deviation of less than 5%.

The same results can be seen in cluster size thresholding, where PM
provides the least biased estimates with the smallest RMSE.

When the signal-to-noise ratio is varied, as is shown in Figure 3.14,
results are ambiguous. For peaks, low SNR-values produce large deviations
between the estimated π0 and its true value. Larger values for SNR result
in good estimates for PC and PM, while ST, S and BH largely overestimate
π0. This is also reflected in the RMSE. PM provides a low RMSE for high
SNR-values, S, ST and BH provide a higher RMSE regardless of the SNR.

SNR influences the estimation of π0 to a less extent for cluster thresh-
olding. Here, again PM provides the best estimates.

When varying the smoothness (Figure 3.15), the same pattern appears
for peaks and clusters. When the smoothing parameter σ is very low, the
results are very unstable and volatile. After a certain point (σ ∼ 2.5), the
performance of the estimators become stable. For peaks, this can be due
to the assumptions of RFT, where the data are required to be continuous
fields. When no smoothing is applied, the brain image is not spatially
continuous, and with this assumption broken, the peak p-values are unre-
liable. For clusters, when no smoothing is applied, less consistent clusters
appear and the excursion set follows a speckled pattern. Conseqently this
could cause the non-parametric p-values to become unreliable. Again PM
shows the smallest bias and the lowest RMSE for both clusters and peaks.

In Figure 3.16, we varied the excursion threshold u. We find that the
higher the threshold, the smaller the RMSE for all estimators for both
peaks and clusters. Varying the excursion threshold only influences the
bias of the PM estimator to a small extent for peaks. For clusters, all
methods are dependent on the excursion threshold.
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When summarizing all results, we find that PM is rather stable over
smoothness and SNR.
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Figure 3.13: Bias and RMSE of π0 estimators with 95% confidence inter-
val. For 500 simulations, the number of activated regions is varied, while
all other parameters are held constant (SNR= 0.04, smoothing parameter
σ = 2.5, excursion threshold P (T398 ≥ u) = 0.01). The RMSE is defined
as
√

1/n
∑n
i=1(π̂0i − π0i)2.
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Figure 3.14: Bias and RMSE of π0 estimators with 95% confidence inter-
val. For 500 simulations, the signal-to-noise ratio is varied, while all other
parameters are held constant (5 activated fields, smoothing parameter σ
= 2.5, excursion threshold P (T398 ≥ u) = 0.01)). The RMSE is defined
as
√

1/n
∑n
i=1(π̂0i − π0i)2.
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Figure 3.15: Bias and RMSE of π0 estimators with 95% confidence in-
terval. For 500 simulations, the smoothness of the image is varied, while
all other parameters are held constant (5 activated fields, SNR = 0.04,
excursion threshold P (T398 ≥ u) = 0.01). The RMSE is defined as√

1/n
∑n
i=1(π̂0i − π0i)2.
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Figure 3.16: Bias and RMSE of π0 estimators with 95% confidence inter-
val. For 500 simulations, u is varied, while all other parameters are held
constant (5 activated fields, smoothing parameter σ = 2.5, SNR=0.04).
The RMSE is defined as

√
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∑n
i=1(π̂0i − π0i)2.
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3.C The influence of the duration of the exper-
iment on the power of the study

We have repeated the simulation paradigm described in section 3.2.2,
while varying the total number of time points. We have simulated a
blocked design with blocks of 20 time points. The image is made of
40×40×40 voxels, which corresponds to moderate resolution data. Images
are generated using neuRosim (Welvaert et al., 2011) with Gaussian white
noise. First, for 5 regions of 7×7×7 voxels, a signal is added in half of the
time points with signal-to-noise ratio (SNR) of 0.015 before smoothing.
The images are convolved with a 3D isotropic Gaussian kernel of width 9
and σ = 2.5. A general linear model (GLM) is fit to the data resulting in
a T -statistic image with 398 degrees of freedom. The excursion threshold
u is set at P (T398 ≥ u) = 0.01. After the excursion set is defined, the
peaks and clusters on the T -image are sought with a 26-point clustering
algorithm and their uncorrected topological p-values are calculated.

We have considered 4 different scenario’s with the number of time
points equal to 100, 200, 300 or 400. Consequently the experiment con-
sisted of 5, 10, 15 or 20 blocks. The resulting TPR and FNR can be seen
in Figure 3.17. It can be seen that with an increasing number of time-
points, the power of the study as measured by the TPR also increases.
There is no clear relationship with the resulting FNR. These results are in
concordance with the results of the influence of the SNR, as can be seen
in Figures 3.3 and 3.5.
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3.D FROCs under different conditions
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Figure 3.18: FROCs when varying the number of activated fields.
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Figure 3.19: FROCs when varying the SNR.
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Figure 3.20: FROCs when varying the smoothing parameter σ.
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Figure 3.21: FROCs when varying the excursion threshold.





4 Simplified power and
sample size calculations

using prevalence &
magnitude of active peaks.1

Abstract There is increasing concern about statistical power in pub-
lished neuroscience research, and not the least for published fMRI ex-
periments. Not only does low power decreases the chance of detecting
a true effect, but also reduces the chance that a statistically signifi-
cant result indicates a true effect (Ioannidis, 2005). Put another way,
studies with the least power will be the least reproducible, and thus a
(prospective) power analysis is a critical component of any paper. In
this work we present a simple way to characterize the spatial signal
in a fMRI study, and a direct way to estimate these two parameters
based on an existing study. Specifically, using just the (1) the propor-
tion of the brain activated and (2) the average effect size in activated
brain regions, we can produce closed form power calculations for given
sample size, brain volume and smoothness. This procedure allows to
minimize the cost of an fMRI experiment, while preserving a prede-
fined statistical power. The method is evaluated and illustrated using
simulations a real data example, and an application to data from the
Human Connectome Project. The procedures presented in this paper
are made publicly available in a toolbox.

4.1 Introduction
The goal of a prospective power analysis for fMRI experiments is twofold.
A first task to be performed is to optimization of the experimental design
to ensure maximal statistical power for the study goal. Methods have been
developed to find optimal experimental designs (Wager & Nichols, 2003;
Friston, Zarahn, Josephs, Henson, & Dale, 1999; Smith et al., 2007). The
second aim is to guarantee an optimal number of subjects, which has been
discussed by Desmond & Glover (2002) and Mumford & Nichols (2008).
One typically aims for a statistical power of 80% implying that a true
effect in the population is detected with a 80% chance. Given statistical

1This chapter represents collaborative work with following authors: Durnez J.,
Burgess G., Degryse J., Seurinck R., Barch D., Moerkerke B. and Nichols T.
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procedures, it is possible to compute the minimal number of subjects to
obtain the aimed statistical power. As such, power calculations prevent
researchers to spend time and money on studies that are underpowered,
but on the other hand also prevents researchers to invest too much time
and money in scanning extra subjects, while the accompanying increase
in power is only minimal.

While it is straightforward to compute power for a single, univariate
response, determining the power of an fMRI study is a formidable task
as many parameters need to be specified, such as a within and between
subject variance, the first and second level design, the temporal autocor-
relation and the size of the hypothesised effect. Many of these parameters
are estimated based on a pilot study. But the most difficult parameter to
specify will be the region-of-interest, the ROI, the specific location where
activations are expected. It is dangerous to base this on the results of
the pilot study, as this results in circularity (Vul, Harris, Winkielman, &
Pashler, 2009; Kriegeskorte, Simmons, Bellgowan, & Baker, 2010).

In this work we present a simple way to characterize the spatial sig-
nal in an fMRI study, and a direct way to estimate power based on an
existing pilot study. Specifically, using just (1) the volume of the brain
activated and (2) the average effect size in activated brain regions, we can
directly calculate power for given sample size, brain volume and smooth-
ness. This procedure allows minimising the cost of an fMRI experiment,
while preserving a predefined statistical power.

The procedure is an extension of the procedure presented in Durnez,
Moerkerke, & Nichols (2014), where we estimate the peakwise prevalence
of activation π1 in an experiment. The estimate of π1 allows to predict the
number of false negatives and the total number of activated peaks. The
ratio between these two, gives a post hoc estimate of the average power.
In the new procedure we present here, we start with the estimation of π1
based on the pilot data set. Using this parameter, we fit peak heights above
cluster forming threshold u as a mixture of two distributions, one for null
peaks and one for peaks in activated regions. Once an estimate for the
alternative distribution Ha is known, this distribution can be transformed
to an alternative distribution for a larger sample size. As such, not only
the power of the pilot study can be estimated, but also a new study with
the same experiment and a larger sample size. This allows to perform
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sample size calculations.
In this paper, we present the procedure, and we evaluate the procedure

based on simple simulations for different combinations of fMRI character-
istics, such as spatial extent of the signal, peak forming threshold and
signal intensity. Next, we show the procedure on a typical example of an
fMRI experiment using an fMRI dataset (Seurinck, de Lange, Achten, &
Vingerhoets, 2011). Third, we present results of the procedure applied to
the data from the Human Connectome Program (Van Essen et al., 2012).
First, these data is of a very high quality, resulting in a very high power
when taking all subjects. Therefore, when analysing all data, we have a
high level of certainty of the location of the effect. When we use subsam-
ples of these data, we recreate smaller fMRI studies. The results thereof
can be compared to the results of the full dataset, as is the case in sim-
ulations. The added value of the HCP data is that many unknown noise
sources in fMRI are present that cannot be added to simulated data. Fi-
nally we conclude with a discussion on the topic and the implementation
of the procedure in an R-package.

4.2 Methods

4.2.1 Measures of power
Consider a single univariate test for which the null hypothesis H0 is re-
jected in favor of the alternative hypothesis Ha when the test statistic Z
exceeds threshold z with z chosen to control the type I error rate. The
power of this test is defined as P (Z ≥ z|Ha). To calculate this power, we
need the distribution of Z under Ha.

In a multiplicity context where many tests are performed simultane-
ously such as voxelwise testing, several definitions for power exist (see
for example Dudoit, Shaffer, & Block, 2003). Let I1 denote the set of
indices for voxels that are truly activated. For each voxel i with i ∈ I1
with corresponding test statistic Zi, the power is P (Zi ≥ z). Under the
assumption of an equal distribution for all Zi with i ∈ I1, this voxel-
wise power can be written as P (Zi ≥ z|i ∈ I1) and can be given the
interpretation of average power over all activated voxels. Alternatively,
as a counterpart for controlling the familywise error rate (FWER) or the
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probability of at least one type I error, familywise power is defined as
P (Zi ≥ z for at least one i ∈ I1).

Equally, we can define average and familywise power for peak-wise
tests where only peaks larger than the excursion threshold u are considered
and where we have a test statistic Zuj in each peak j. Let J1 denote
the set of indices for peaks above u corresponding to a voxel containing
true signal. Average power is then defined as P (Zuj ≥ z|j ∈ J1) while
familywise power is defined as P (Zuj ≥ z for at least one j ∈ J1).

In what remains, we focus on average power. First, it is the most intu-
itive measure of power as it reflects the average probability of a rejection
within the set of false null hypotheses. Secondly, familywise power may
not be a satisfactory measure as a high probability of at least one rejec-
tion within the set of truly activated peaks may still be accompanied by
a large proportion of false negatives.

4.2.2 Estimation Procedure
To calculate average peakwise power, it is key to know the distribution
of peak heights for active peaks (distribution under Ha). Using excur-
sion threshold u, peak heights of non-active peaks follow an exponential
distribution with mean 1/u (Worsley, 2007). We further assume that the
distribution of active peak heights J1 is a normal distribution truncated
at excursion threshold u. We define Z as the peak heights, and Zu the
peak heights above clusterforming threshold u. With π1 the proportion of
activated peaks among the total number of peaks above u, the distribu-
tion of peak heights Zu above u can be written as the following mixture
distribution:

f(zu|π0, µ1, σ1, u) = (1− π1)u exp(−u(zu − u))︸ ︷︷ ︸
null distribution

+π1

1
σ1
ϕ
(
zu−µ1
σ1

)
1− Φ

(
u−µ1
σ1

)
︸ ︷︷ ︸

alternative distribution
(4.1)

with φ and Φ respectively representing the density and cumulative distri-
bution function of the standard normal distribution.

To obtain π1 for a certain dataset, different estimators have been pro-
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posed in literature (Benjamini & Hochberg, 2000; Storey & Tibshirani,
2003; Storey, 2002; Pounds & Morris, 2003; Pounds & Cheng, 2004). All
of these use the observed distribution of the p-values to determine what
proportion of p-values stem from the null. A comparison of the estimators
for peak inference in fMRI data analysis have been discussed in Durnez,
Moerkerke, & Nichols (2014).

Once π1 is estimated for a dataset with sample size n, we estimate
the remaining parameters in Equation 4.1 using maximum likelihood on
the same data. This renders the parameters µ1 and σ1 of the truncated
peak distribution under the alternative Ha. Let Zuj = (bj/σ)

√
n denote

an active peak (j ∈ J1) with bj the average experimental effect for voxel j
over n subjects and σ the standard deviation of bj over n individuals. The
expected value of the peak height under the alternative before truncation
equals µ1 = E(bj/σ)

√
n = (µ/σ)

√
n. We define δ = µ/σ.

Consequently, for a new sample of size n∗, the distribution of acti-
vated peaks before truncation will be N (µ∗1, σ1) with µ∗1 = δ

√
n∗. We

hereby assume that the variance of the distribution σ2
1 remains constant

for different sample sizes. Given a statistical threshold z such that the null
hypothesis of no activation is rejected for a peak if the height of the peak is
larger than z, the average peakwise power with truncation at peakforming
threshold u can be calculated as P (Zu ≥ z) where Zu follows again the
truncated normal distribution described above. P (Zu ≥ z) is computed
using the cumulative density function of a truncated normal distribution,
given by

P (Zu ≥ z) =
Φ
(
z−µ∗

1
σ1

)
− Φ

(
u−µ∗

1
σ1

)
1− Φ

(
u−µ∗

1
σ1

) (4.2)

The statistical threshold z can either be uncorrected or corrected for
multiple testing.

4.2.3 Simulations

For a given sample size n, we generate n statistical parametric maps,
summarizing evidence for activation. These represent for each subject the
average effect of the design in a first-level analysis, i.e. a three-dimensional
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map of b-values. We simulate n single 208 × 208 × 208 white standard
normal noise Gaussian images with voxel sizes of 3×3×3 mm. The sample
size n varies between 10 and 30 subjects. Images are smoothed with a 3D
Gaussian kernel with a full-width at half maximum (FWHM) of 8 mm.
We truncate the outer 72 voxels from the smoothed images to avoid non-
uniform smoothness at the edge, resulting in a 64×64×64 image. In each
b-map, true activation is imposed on a block of 33× 33× 33 voxels, which
spans 14 % of the total brain volume. Within this activation block, the
effect size varies between 0.25 and 2.25 units for all n subjects. In a next
step, a t image is obtained by calculating a one-sample t test statistic
on the subject-specific b-maps. In this t image, peaks are defined. All
peaks are transformed from T to Z statistics and only peaks above cluster
forming threshold u are considered, where u varies between 0 and 4 in the
simulations. This allows to use random field theory for the computation
of peak p-values:

P (Z ≥ z|Z ≥ u,H0) ≈ exp (−u(z − u)) (4.3)

Peaks located on the border of the activation (2 voxels at the inner or
outer border) are discarded, as voxels at the inner or outer border have
respectively a higher or lower probability to become a peak than elsewhere
in the image. Voxels in the non-active area that border the activated are
adjacent to maximal three voxels that are active, and are therefore higher
on average. Therefore these voxels have a lower probability of becoming
a peak. Likewise, voxels in the inner border of the active area neighbour
at least three voxels that are on average lower. These voxels thus have a
higher probability of being a peak.

We use these simulations to study the performance of the procedure
described in section 3.1. More specifically, in a given study, the so-called
pilot study, we estimate π1 - using the procedure presented by Pounds &
Morris (2003) - and the distribution of the truncated normal distribution
N(µ1, σ1) to predict power of future studies in function of sample size.
This predicted power is compared to the actual power in simulated images
for which the underlying truth is known. The true power in these images
is obtained as the ratio of the number of discovered peaks in activated
areas and the total number of peaks in activated areas. In total, 100
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simulations are performed. Hence, power for a sample size n1 is estimated
in each of 100 simulated pilot studies of sample size n0 and the average
over these simulations is compared to the average of the actual power in
100 simulated images of sample size n1. In the same manner, we compare
the estimated π1 to the corresponding true values. The true underlying
π1 is obtained by calculating the percentage of peaks that are located in
activated areas.

For the true effect size, E(Zuj ) is computed as the average peak height
of peaks in activated areas. However, we need to take into account that the
estimated effect size µ1 is the effect size before truncation, and does not
equal E(Zuj ). The expected value of the peak height under the truncated
alternative equals E(Zuj |j ∈ J ) = µ1 + σ1τ , with τ

τ =
ϕ
(
u−µ1
σ1

)
1− Φ

(
u−µ1
σ1

) (4.4)

In order to provide a good comparison, we compare E(Zuj ) to the ex-
pected peak height of the estimated truncated normal distribution, which
equals µ̂1 + σ̂1τ̂ .

We consider statistical thresholds z for peak height that are (a) uncor-
rected for multiple testing and correspond to α-levels of 0.001 and 0.05,
(b) corrected to control the FWER at level 0.05 using a Bonferroni cor-
rection and (c) corrected to control the false discovery rate (FDR) at level
0.05. False discovery rate control is done with the correction of Benjamini
& Hochberg (1995) and of Storey (2002). These thresholds are computed
based on the null distribution of peaks as shown in Equation 4.1. For (b),
it is assumed that the number of peaks will be the same in a new sample
as in the pilot study. For (c), it is important to note that FDR correc-
tion uses an adaptive, data dependent threshold, but in a priori power
calculations, we use a prediction of this threshold for future studies with
typically larger sample sizes. We use the FDR threshold from the pilot
study as a cutoff in the larger sample sizes. The rationale behind this is
that the average power will increase with sample size, and consequently
the FDR cutoff will decrease. Therefore, using the original FDR threshold
will result in conservative results.
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4.2.4 Data example
We apply our estimation procedure in a study on the role of higher or-
dered visual areas for imagined visual motion of Seurinck et al. (2011).
The original study consists of 13 subjects and was analysed voxelwise
with an FWER control at the 5% significance level. We re-analyse the
data as follows: first level analyses were carried out with a standard vox-
elwise GLM-approach using FSL’s feat function (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012). Consequently, the second level anal-
ysis is performed in R with ordinary least squares, resulting in a 3D T -
statistic map. In this map, peaks are defined with an excursion threshold
u = 2 and a 18-points clustering algorithm. Topological peak p-values are
computed using Random Field Theory as in Equation 4.3.

The prevalence of activated peaks is computed with the procedure
presented by Pounds & Morris (2003). Consequently, we transform the
distribution for activated peaks based on 13 subjects to distributions for
sample sizes between 10 and 40 subjects. Power is calculated for different
statistical thresholds.

4.2.5 HCP data
Simulations provide a good way to evaluate a procedure, but they often fail
to capture all subtleties of real data. Instead of adjusting our simulations
to capture as much as noise components as possible, we also evaluate
the procedure on real data. Therefore we use task data from the human
connectome project (HCP) (Van Essen et al., 2012). We have data from
80 subjects for a simple working memory task. With such a large pool
of participants, we assume that any group analysis of > 50 participants
results in high powered results and can reflect population results.

The procedure used to analyse these data is showed in Figure 4.1 and
is described below.

We start with 80 first-level b-maps. From this, we take a subsample
of 10 to 30 subjects (the held in data). On these data we perform an
OLS group analysis and define peaks based on the resulting t image. We
transform the peaks to Z statistics and apply an excursion threshold u.
Using these peaks, we apply the estimation procedure as described above.
On the remaining subjects (the held out data), we also perform an OLS
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HELD IN DATA:
PEAKWISE GROUP ANALYSIS

(pilot study)

HELD OUT DATA:
VOXELWISE GROUP ANALYSIS

(truth)

RESULT:
list of local maximum voxels
 non-signi�cant
 signi�cant

RESULT:
voxelwise activation map
 active
 non-active

active non-active

signi�cant

non-signi�cant

true positive false positive

false negative true negative

COMBINE RESULTS

POPULATION RESULTS

True π1     = 
#{            }

#{                            }

True e�ect size = average height of   {          }

DATA AT HAND:
activation maps of 80 subjects

PROCEDURE:
HELD IN DATA: take subsamples (pilot study) to perform estimation procedure

HELD OUT DATA: use remaining data to obtain high powered (population?) results

USE OF HCP DATA

ESTIMATION RESULTS

Estimate π1, e�ect size and power 
based only on peakwise analysis.

Compare for each subsample estimates to:

True power  = 
#{    }

#{           }

EVALUATE ESTIMATION PROCEDURE

Figure 4.1: Overview of the procedure used to evaluate power calculations
on the HCP-data
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group analyses, but once we obtain the t image, we threshold voxelwise
with false discovery rate control (Benjamini Hochberg procedure) and
continue with voxelwise results.

To validate the estimation procedure, we combine the held-in data
and the held-out data as follows: when a peak from the held-in data cor-
responds to a significant voxel in the powerful held-out data, we consider
this as an active peak. When a peak corresponds to a non-significant voxel
in the held-out data, it is considered inactive. True π1 is then defined as
the ratio of the number of activated peaks and the total number of peaks.
The true effect size is the average peak height of all peaks that are lo-
cated in activated area. Finally, true power is defined as the ratio of the
number of significant peaks (for given thresholding procedure) and the
total number of activated peaks. The true power is computed for subsam-
ples between 10 and 30 subjects. As such the power predictions on small
sample sizes can be compared to true power on larger samples.

This resampling procedure is repeated 100 times. For the evaluation
of the procedure, the power and the estimates are averaged over all 100
resamples.

Some tweaking however is needed to use these real data for evaluation
purposes. While we assume that the analysis of the held-out data is pow-
erful enough to represent results on a population level, it is well known
that fMRI data suffer from some artefacts that need to be taken into ac-
count. First of all, the null distribution of statistics within the t image are
more dispersed than under the expected t distribution. This affects the
voxelwise analysis of the held-out data, in which we use the false discovery
rate. Therefore, instead of thresholding the maps based on the observed t
image, we first estimate the null distribution for the held-out data using
the empirical null procedure of Efron (2004). Using a maximal likelihood
estimator, the mean (µ0) and the variance (σ0) of the null distribution are
estimated. Next, all maps (both held-in and held-out) are normalized as
(T − µ0)/σ0, with the estimates of this empirical null distribution before
continuing with the voxelwise statistical analysis.

Another problem arises from the fact that we assume to have knowl-
edge on the true activation level based on the results for the held out
data while these data were analyzed using the false discovery rate control.
Therefore, the set of voxels (and consequently peaks) that we call acti-
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vated will be contaminated with about 5% false positives. On the other
hand, within the voxels (and consequently peaks) that appear inactive,
there might be false negatives. This poses a problem for our measures of
true π1, true effect size δ and true power. Table 4.1 states the problem
and introduces some notation.

Estimated Null (PN ) Estimated Alternative (PA)
Truly Null Truly Alternative Truly Null Truly Alternative

P 0
N P 1

N P 0
A P 1

A

πN0 PN (1− πN0 )PN πA0 PA (1− πA0 )PA

Table 4.1: Table to clarify the problem of the miscalculation of the true
π0.

We define PN as the number of peaks that we estimate to be non-active
(null) and PA the number of peaks that we estimate to be active (alterna-
tive). In the set of peaks that are labeled inactive, P 0

N peaks are truly null,
while P 1

N peaks are actually active. We can estimate the proportion of null
peaks in the estimated null distribution πN0 using the model of Pounds
& Morris (2003), as such we can estimate P 0

N and P 1
N . In a similar way,

for the peaks that are labeled active, we define P 0
A as the peaks that are

null and P 1
A as the peaks that are alternative. Here as well we define the

proportion of null peaks in the estimated alternative distribution πA0 .
Now we can define πc0 as the proportion of nonactive peaks, corrected

for the errors in what we estimate to be null and alternative:

πc0 = πN0 PN + πA0 PA
N

(4.5)

with N the total number of peaks.
Likewise, we want to correct for misestimating the true effect size δ.

The problem is stated in table 4.2. For the set of peaks that are labeled
as inactive, E0

N denotes the effect size of the true null effects and E1
N the

effect size of the peaks that are actually activated. For the set of peaks
that are labeled as active, E0

A denotes the effect size of the effects of the
peaks that are actually inactive while E1

A represents the effect size of the
true alternative effects. From Random Field Theory, we know that the
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effect size under the null distribution is u + 1/u, where u is the cluster
forming threshold. We compute EN as the average peak height in the
null distribution and EA as the average peak height in the alternative
distribution. As such we can compute E1

N and E1
A as follows:

E1
N = EN − πN0 (u+ 1/u)

(1− πN0 )
(4.6)

E1
A = EA − πA0 (u+ 1/u)

(1− πA0 )
(4.7)

This enables to compute the effect size Ec corrected for the computa-
tion error as a weighted average of E1

N and E1
A with the weights according

to the number of peaks in the estimated null and alternative distribution.

Ec = P 1
NE

1
N + P 1

AE
1
A

P 1
N + P 1

A

(4.8)

Estimated Null (EN ) Estimated Alternative (EA)
Truly Null Truly Alternative Truly Null Truly Alternative

E0
N = u+ 1/u E1

N E0
A = u+ 1/u E1

A

EN = πN0 (u+ 1/u) + (1− πN0 )E1
N EA = πA0 (u+ 1/u) + (1− πA0 )E1

A

Table 4.2: Table to clarify the problem of the miscalculation of the true
effect size.
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4.3 Results

4.3.1 Simulations
Results of the estimation procedure for the prevalence of activation π1 are
shown in Figure 4.2. It can be seen that for all sample sizes, the prevalence
of activation is overestimated. Biases range from 5 to 10%, with a small
variance on the estimates. The prevalence of activation on the other hand
is estimated with a small bias, the estimation of the expected peak height
is very accurate with no bias and a very small variance on the estimation,
which can be seen in Figure 4.3.
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Figure 4.2: Plot of estimated π1 against true π1 for different sample sizes
and different values for µ1.

Figure 4.4 shows that not only the effect magnitude estimation but
also the estimation of the complete distribution also matches the true
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Figure 4.3: Plot of estimated expected peak height against true expected
peak height for different effect sizes.

underlying distribution. More in particular, it can be seen that there is
a good overlap of the average estimated alternative distribution and the
observed alternative distribution. The difference in height of the distribu-
tion is due to the bias in the estimation of the prevalence of activation
π1.

Finally, when looking at the results for the power estimation in Figure
4.5, it can be seen that we obtain good estimates for power, not only in the
given sample size, but also predictive for larger sample sizes. In low effect
sizes, where only uncorrected thresholding (p < .05 and p < .001) leads
to significant results (power > 0), the estimation is somewhat biased.
The reason why the procedure is not able to estimate power for FDR
thresholding in larger sample sizes, is that in the pilot study no significant
effects are found. Therefore, there is no cutoff, and as such power cannot be
estimated in larger sample sizes. For effect sizes, uncorrected thresholding
easily results in a power of 100%, but this is not the case for corrected
thresholding procedures for which power estimations are very accurate.
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Figure 4.4: Plot of estimated and observed peak height distributions for
different effect sizes. The solid line represents the truly observed distribu-
tion, the dashed line is the estimated distribution. Different colours refer
to different sample sizes.

One assumption for our method is that π1 remains constant for dif-
ferent sample sizes and that the number of peaks is constant for different
sample sizes. It can be seen in Figure 4.6 and 4.7 that when the peak
forming threshold u is held constant at 2, the emission of peaks is con-
stant for different sample sizes, as well for non-active and active regions.
The prevalence of activation π1 is also constant for different sample sizes
for a fixed u.
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Figure 4.5: Plot of estimated and observed power for different effect sizes
and different testing procedures. The power is estimated from a pilot study
with 15 subjects.
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Figure 4.6: Plot of number of peaks per 100 voxels for different effect sizes,
sample sizes and peak forming thresholds.
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Figure 4.7: Plot of the true π1 for different effect sizes, sample sizes and
peak forming thresholds.
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4.3.2 Example
After the second level analysis, we find 253 peaks. We compute p-values
based on the exponential null distribution (see Equation 4.3). Using the
method of Pounds & Morris (2003), we find an estimate for the prevalence
of activation π1 = 0.55. The estimated distributions of p-values can be
seen in the left panel of Figure 4.8. Once we obtain this estimate, we
proceed with estimating the distribution of the peak heights under the
alternative hypothesis. We estimate that the distribution of active peaks
is N(4.24, 2.5) truncated at u = 2 which corresponds to an effect size δ of
1.18. The results can be seen in the right panel of Figure 4.8.

Distribution of 253 peak p−values
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Figure 4.8: Left: Estimated distribution of peak p-values. The histogram
of peak p-values is shown in light blue, the lines show the estimated part
of the histogram stemming from the null distribution (green) and the
total distribution (blue). Right: Estimated distribution of peak heights.
The histogram of the peak heights is shown in light blue, the lines show
the estimated distributions for the null (dark green), the alternative (light
green) and the total distribution (blue)

The results of the power estimation procedure can be found in Figure
4.9. It can be seen that in the current study, with false discovery rate
control with the method of (Storey, 2002), further denoted as Q, the



134 Chapter 4

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Power with varying sample size

Subjects

A
ve

ra
ge

 p
ow

er

MCP

uncor. p<.05
uncor. p<.001
FDR<.05 (Q)
FDR<.05 (BH)
FWER<.05

●

●

●

●

●

0.74

0.37

0.8

0.61

0.25

Figure 4.9: The figure shows the estimated power for different multiple
testing procedures in function of sample size. The big dot represents the
current study as it was performed, on the left hand side is the power in
the current study printed.

highest power is obtained (80 %). A false discovery rate control with the
method of Benjamini & Hochberg (1995), further denoted as BH, results
in a power of 61%. Uncorrected testing at α = 0.05 leads to a power
of 74%, with α = 0.001 the power will be 37%. Lastly, the power with
familywise error rate control at 0.05 is the lowest, and equals 25%.
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4.3.3 HCP data
Results of the estimation procedure for the prevalence of activation π1 and
the effect size are shown in Figure 4.10. It can be seen that the prevalence
is overestimated in all cases while the effect size δ is underestimated.
When looking at the estimation of the power (Figure 4.11), we see that the
power is mostly overestimated for the low powers, which can be explained
by the underestimation of the effect size. For larger sample sizes (and
consequently larger powers) we obtain good predictions for the power
based on a pilot study with 15 subjects.
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Figure 4.10: The upper panels show an evaluation of the estimation of π1
(left) and the effect size (right). The dots refer to the different subsamples
taken from the data. The lower panels show the bias to these estimates.
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4.4 Discussion

In neuroscience, scientific results are often based on fMRI studies that
suffer from a lack of power. In order to safe costs and effort, while pre-
serving sufficient power for detecting important effects, we presented a
method to predict power for different sample sizes. While other methods
for power calculations in fMRI often require the estimation of many differ-
ent parameters that are often difficult to estimate (Mumford & Nichols,
2008; Desmond & Glover, 2002), our method is based on only peak values
that require Random Field Theory assumptions for the computation of
p-values.

We focus on peaks for several reasons. We have shown in previous work
that the assumption of a uniform distribution of the p-values under the
null is mainly attained with peak p-values, but not with cluster p-values
(Durnez, Moerkerke, & Nichols, 2014). As this is an assumption crucial
for the procedure presented here, we opt for peak inference rather than
cluster inference. Moreover, problems with localisation and stability have
been reported with cluster inference (Roels, Bossier, Loeys, & Moerkerke,
2014; Woo, Krishnan, & Wager, 2014). However, when a user wants to
infer power for cluster inference, this procedure on peaks can be used as a
lower bound, as the power of cluster inference should be generally higher
than peak inference (Friston et al., 2007). We do not choose to apply the
method for voxelwise testing as π1 will be very close to 0 in that case
which makes its estimation hard if not impossible. On the other hand, it
is possible to use the method if the prevalence of activation is widespread
in the brain. It is up to the researcher to decide whether this shall be the
call in the new study.

We have evaluated the procedure using simulated data. The data rep-
resent a simplified fMRI experiment, but we still vary a number of pa-
rameters, like the effect size, the thresholding procedure,... to ensure that
the findings are generalisable to a range of different possible fMRI experi-
ments. In our simulations, we have used a constant effect size of activation
over different subjects. We have not applied subject-specific effect sizes, as
we believe this would not alter the average effect size, but it would only
inflate the between subjects variance, which will lead to a smaller nor-
malised effect size. We believe it is not necessary to both vary the average
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effect size, and the between subjects variance.
This method is only a first step in developing a means to obtain more

powerful fMRI studies. Many different extensions are possible. One of
these possibilities is the development of a testing procedure that would
allow to use the pilot data in the final study without harming the false
positive rate. Another possibility is to use the pilot data not only for a
power calculation, but also for a variance optimisation procedure, and
thereby improving power not only by increasing the sample size, but also
by minimising the variance on the results. Thirdly, the estimated effect
size could, besides sample size, incorporate other characteristics, that al-
low the optimisation of future studies without the restriction that all
characteristics are identical to the pilot study.

Although the evaluation on this method was performed on whole-brain
analyses, it is also possible to only apply it to a certain part of the brain,
when a region of interest is specified.

We have made the procedure available to the community in an online
toolbox.
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5 Alternative based
thresholding with

application to pre-surgical
fMRI.1

Abstract Functional Magnetic Reasonance Imaging (fMRI) plays an
important role in pre-surgical planning for patients with resectable
brain lesions such as tumors. With appropriately designed tasks, the
results of fMRI studies can guide resection, thereby preserving vi-
tal brain tissue. The mass univariate approach to fMRI data analysis
consists of performing a statistical test in each voxel, which is used to
classify voxels either as active or inactive, i.e. related, or not, to the
task of interest. In cognitive neuroscience, the focus is on controlling
the rate of false positives while accounting for the severe multiple test-
ing problem of searching the brain for activations. However, stringent
control of false positives is accompanied by a risk of false negatives
which can be detrimental, particularly in clinical settings where false
negatives may lead to surgical resection of vital brain tissue. Conse-
quently, for clinical applications we argue for a testing procedure with
a stronger focus on preventing false negatives. We present a thresh-
olding procedure that incorporates information on false positives and
false negatives. We combine 2 measures of significance for each voxel: a
classical p-value which reflects evidence against the null hypothesis of
no activation and an alternative p-value which reflects evidence against
activation of a pre-specified size. This results in a layered statistical
map for the brain. One layer marks voxels exhibiting strong evidence
against the traditional null hypothesis, while a second layer marks vox-
els where activation cannot be confidently excluded. The third layer
marks voxels where the presence of activation can be rejected.

5.1 Introduction
A common treatment for patients suffering from a brain tumor is surgical
resection of the tumor. In order to minimize the risk of resecting brain tis-
sue involved in essential brain functions, such as speech or language com-

1This chapter is based on:
Durnez, J., Moerkerke, B., Bartsch, A., Nichols, T.E. (2013). Alternative-based thresh-
olding with application to pre surgical fMRI. Cognitive, Affective & Behavioral Neu-
roscience, 13 (4), 703–713.
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prehension, these patients often undergo pre-surgical functional Magnetic
Resonance Imaging (fMRI). This is a technique that shows subject-specific
neural activity changes in the brain. The resulting fMRI data can assist the
surgeon in performing the tumor resection while preserving the brain tis-
sue involved in important cognitive and sensorimotor functions (Bartsch,
Homola, Biller, Solymosi, & Bendszus, 2006), and can even be used to
predict the outcome of post-operative cognitive functioning (Richardson
et al., 2004).

To analyse fMRI data, a huge number of statistical tests are performed
simultaneously. In cognitive neuroscience, this technique is used to link
neurological and neuropsychological functions with their respective loca-
tion in the brain, supporting different theories of brain function. To be
confident that a brain area is associated with a task it is essential to ac-
count for the multiple testing problem. This can be done using corrections
for either the familywise error rate (Worsley et al., 1996; Friston et al.,
1991) or the false discovery rate (Genovese et al., 2002). These multiple
testing corrections result in a more stringent control of the null hypothe-
sis of no activation, and consequently, the probability of a false negative
increases (Logan & Rowe, 2004; Lieberman & Cunningham, 2009). In cog-
nitive neuroscience, a false positive means fallacious support for a given
cognitive theory. While false positives can often be discovered by unsuc-
cessfully trying to replicate the study, much time, effort and money can
be expended. As a result the scientific discipline generally deems stringent
control of false positives necessary, accepting the concomitant sacrifices in
sensitivity.

In a clinical setting such as pre-surgical fMRI however, a loss in power
means true activation is not discovered, and this might result in the re-
section of vital brain tissue (Haller & Bartsch, 2009). Inversely, false pos-
itives have a less negative impact on the surgical result (Gorgolewski et
al., 2012). The goal of classical hypothesis testing is to prevent the null
hypothesis from being rejected, by only considering voxels as being ac-
tive when enough evidence against the null of no activation is found. This
asymmetrical way of penalising errors in statistical inference is undesir-
able in this context (Johnson et al., 2012), and instead the focus should
be on protecting the alternative hypothesis: one only wants to exclude ac-
tivation when enough evidence against activation is found. We therefore
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present a new hypothesis thresholding procedure that incorporates both
information on false positives and false negatives and thus is ideally suited
for pre-surgical fMRI.

In classical hypothesis testing, the evidence against null hypothesis is
measured with the p-value, the null hypothesis probability of data as or
more extreme than that observed. Thresholding a p-value at α produces
a statistical test that controls of false positive rate at α. To allow direct
control of false negative risk, we present a symmetrical measure which
quantifies evidence against the alternative hypothesis (Moerkerke, Goet-
ghebeur, De Riek, & Roldan-Ruiz, 2006). Correspondingly, thresholding
this probability measure at β ensures control of the false negative rate at
β.

By combining thresholds on the classical and alternative p-value, we
use information on the probability of false positives and false negatives.
We show that thresholding both error measurements results in a layered
statistical map for the brain, each layer marking voxels with evidence
(or lack there of) against the null and/or alternative hypothesis. One
layer consists of voxels exhibiting strong evidence against the null of no
activation, while a second layer is formed by voxels for which activation
cannot be confidently excluded. The third level then consists of voxels for
which the presence of activation can be rejected.

fMRI data can be analyzed in different ways. The most popular method
is a confirmatory mass-univariate GLM-analysis, where the measured time
series in each voxel is regressed onto the design of the experiment, result-
ing in an estimate of the effect, for which a T -statistic with corresponding
classical p-value can be computed for each voxel. This method has shown
to be very effective and robust, but its downside is the mass-univariate
character. While many attempts have been made to take into account the
spatial character of the data with data smoothing and peak- and cluster-
thresholding, the GLM fails to recognize patterns of activation or noise.
In this light, statistical techniques for multivariate data have been suc-
cessfully applied to fMRI data. Independent Component Analysis (ICA,
Beckmann & Smith, 2004) is an exploratory method used to find hidden
source signals, modelling the observed data as a (unobserved) linear mix-
ture of (unobserved) sources. ICA therefore allows to discover spatially
and temporally structured noise. Given the popularity of the GLM and
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the upcoming interest for ICA, especially in a clinical context, we will
introduce the thresholding procedure for both techniques. We show how
the ideas can be translated to different statistical techniques.

In section 2, we introduce and combine quantities to measure signif-
icance when testing for activation. To this end, we start with a simple
setting in which test statistics are assumed to be Gaussian distributed
and take the general form of the ratio of an observed effect and its stan-
dard error. These settings directly translate to the case of univariate linear
modeling that make use of T -distributions. We further demonstrate how
to use the principle for independent component analysis (ICA). In section
3, we present the results of the procedure applied to pre-surgical fMRI
data.

5.2 Methods

5.2.1 Measures of evidence against the null and alterna-
tive

At each voxel i, i = 1, . . . , I, we assume that a linear model is fit and
produces ∆̂i, an unbiased estimate of the BOLD effect of interest ∆i, and
an estimate of the standard deviation of ∆̂i, its “standard error” SE(∆̂i).
We henceforth suppress the voxel subscript unless needed for clarity. We
assume that the degrees-of-freedom are sufficiently large so that SE(∆̂)
has neglible variability, as is the case for fMRI time series. We further
assume that the data, model and contrast has been scaled appropriately
so that ∆̂ has units of percent BOLD change (or, at least approximately,
as when global brain intensity is scaled to 1002).

The null and the alternative hypothesis The null hypothesisH0 : ∆ = 0
states that the true effect magnitude is zero, and an underlying difference
between conditions ∆ is equal to 0. Classical statistical inference involves
computing a test statistic, converted to a p-value, that measures the ev-
idence against this null hypothesis. The decision procedure to reject H0
is calibrated to maintain the Type I error at α. However, failing to reject

2Note that, as of SPM8, the global brain intensity after intensity normalisation, is
scaled to 200 or greater.
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H0 does not allow one to conclude that H0 is true. The reason is that the
probability calculation of the p-value is based on the assumption that the
null hypothesis is true. It is a logical fallacy, “affirming the consequent” or
“reasoning to a forgone conclusion,” to begin by assuming something and
then, eventually, conclude that the initial thing is true. More concretely,
when we fail to reject H0 it could simply be because there are only sub-
tle deviations from H0 that are not detected or because the precision on
the observed effect is too small to reach statistical significance. Scientists
frequently make this mistake and there have been various guidelines on re-
porting study results (see e.g. Meehl 1978; Schmidt & Hunter 2002) which
all stress the importance of complementing p-values with effect sizes.

Our procedure considers an “alternative hypothesis” p-value, p1, that
measures the evidence againstHa : ∆ = ∆1, the non-zero effect magnitude
expected under activation. fMRI-studies are often preceeded with power
analyses for sample size calculations which also require the specification
of ∆1. In literature, different approaches to choose a meaningful ∆1 have
been presented (Desmond & Glover, 2002; Hayasaka et al., 2007; Mumford
& Nichols, 2008; Zarahn & Slifstein, 2001). Alternatively, in pre-surgical
fMRI, one can estimate ∆1 based on data in previous patients.

Measures of significance At a given voxel we have a test statistic T
with observed value

t = ∆̂
SE(∆̂)

. (5.1)

We assume that T has a known distribution under H0 (e.g. Student’s t
with given degrees-of-freedom, or Gaussian), so that we can compute the
classical p-value

p0 = P (T ≥ t|H0). (5.2)

That is, p0 quantifies the evidence against the null hypothesis H0 of no
task-related activation.

In a symmetrical fashion, the alternative p-value is defined as in Mo-
erkerke et al. (2006):

p1 = P (T ≤ t|Ha). (5.3)

Correspondingly, p1 measures the evidence against Ha, and corresponds
to the classical p-value for testing a “null” H1 versus “alternative” H0. In
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generally, as the evidence in favor of H1 grows, p0 becomes smaller and
p1 becomes larger.

In order to compute p1 we need the distribution of T under Ha, which
requires specification of ∆1. However, we don’t expect a single magnitude
of true activation, but a distribution of different true values (Desmond &
Glover, 2002). Therefore, in a Bayesian spirit, we specify a distribution of
likely values of ∆1 instead of fixed value:

∆1 ∼ N
(
µ, τ2) (5.4)

where µ is the expected magnitude of effect under true activation while ac-
knowledging variation among voxels, specifically Gaussian variation with
standard deviation τ .

Assuming that T also follows a Gaussian distribution, it has the fol-
lowing distribution under Ha at voxel i:

Ti ∼ N

(
µ

SE(∆̂i)
,
SE(∆̂i)2 + τ2

SE(∆̂i)2
,

)
(5.5)

where voxel subscripts are used to emphasize that the values of µ and
τ are fixed for the entire brain, and based on prior knowledge or other
experiments, while SE(∆̂i) is from each individual voxel. With this distri-
bution we can compute p1 at each voxel. An illustration of both measures
of significance can be seen in Figure 5.1. As the alternative distribution
depends on the voxel-specific standard error, the distance between the null
and alternative distributions will be voxel-specific. In particular a large
standard error results in a large overlap between H0 and Ha, while small
standard errors lead to a large distance and little overlap between H0 and
Ha.

5.2.2 Combining measures of significance
In classical null hypothesis significance testing, a threshold α on p0 can
be translated into a threshold tα for the test statistic in equation (5.1).
In parallel, a threshold β on p1 can be translated into a test statistic
threshold tβ . While tα is determined by α (and degrees-of-freedom if not
using a Gaussian), tβ further depends on β, µ, τ and SE(∆̂i). Thus tβ
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Figure 5.1: The distributions of an effect under H0 and Ha are displayed
for an observed effect of t = 1.5, SE(∆̂) = 1, ∆1 = 2 and τ = 1. Note that
Ha has a wider distribution than H0 due to the uncertainty on ∆1.

varies over the brain depending on the (estimated) standard error.
Figure 5.2 shows the possible results of this testing procedure, with α

and β relatively small. In what is expected to be the typical scenario, with
standard error that is large relative to the true effect magnitude, tβ < tα
and three possible outcomes can be distinguished.

One outcome is when voxels exhibit evidence against H0 and at the
same time are consistent with Ha (p0 < α and p1 > β; red in Figure
5.2). This is the most compelling case for the presence of true activation
(∆ > 0). The opposite outcome is a large p0 and a small p1 (p0 > α and
p1 < β; grey in figure 5.2). Here the data are consistent with the null and
there is evidence to reject the alternative, and is the most compelling case
for true absence of activation (∆ = 0). The third outcome is when the
data are compatible with both the null and alternative, and neither can
be excluded (p0 > α and p1 > β; yellow in Figure 5.2).

A less frequent, albeit possible scenario appears when the standard
error is small relative to the true effect magnitude, tα < tβ and H0 and
Ha can be clearly distinguished. Voxels with no effect or strong effects
will be identified as before (p0 > α and p1 < β, no activation; p0 < α

and p1 > β, activation). However, for certain data there is both evidence
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Figure 5.2: When thresholding p0 and p1 at significance levels α and β,
two possibilities arise: tβ < tα (upper panel) or tα < tβ (lower panel).



Alternative-based thresholding 147

against H0 as well as against Ha (p0 < α and p1 < β; orange in Figure
5.2). It indicates a case where the effect is so small as to lack practical
significance.

For pre-surgical fMRI, this procedure provides information on which
areas are confidently safe to be resected (grey areas), which area’s should
absolutely be avoided when resecting brain tissue (red areas) and in which
area’s the surgeon should take care because neither hypotheses can be
rejected (yellow areas). When the fourth type of voxel is found, meaning
both hypotheses can be rejected (orange areas), an abundance of caution
suggests that again care be taken, since rejection of H0 does suggest some
association with the task, just at a possibly very small magnitude. The
specific application to real data is shown in the section 3.

5.2.3 Alternative Thresholding of Independent Compo-
nent Analysis (ICA)

Above we described the classical and alternative p-value for a traditional
setting, where a test statistic is the ratio of an observed effect and its stan-
dard error as is the case for T -statistics when using the GLM. Here we
demonstrate that the technique is also applicable in more general settings,
in particular with maps from Independent Component Analysis. Exact im-
plimentation details of ICA methods differ; our development here follows
the FSL3 software’s implementation, MELODIC (Beckmann & Smith,
2004), but should be readily applicable to other ICA software.

Independent Component Analysis (ICA) is a technique for multivariate
data-driven analysis of fMRI-data. It does not require the specification
of the experimental design and produces spatio-temporal patterns that
explain the variability in the data. ICA transforms the four-dimensional
fMRI data intoK pairs of spatial and temporal modes. Each spatial mode,
or Independent Component (IC) image, is associated with one IC time
series. The variation explained by each component is the IC time series
scaled by the weights at each voxel in the IC image; equivalently, it is the
spatial pattern in an IC image scaled by each value of the IC time series.
Stated simply, the weights represent the association between the temporal
activation pattern observed in the voxel and the temporal pattern in the

3http://www.fmrib.ox.ac.uk/fsl
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K different components.
Let Y represent the J × I data matrix, where J is the number of time

points and I is the number of voxels. We assume that the data at each
voxel have been mean-centered, that is, the column means of Y are zero.
ICA decomposes the data as per

Y ≈M S1 C S2 S0 (5.6)

whereM is a J ×K matrix with one temporal mode in each column, and
C is a K × I matrix with one spatial mode in each row; S1 (K ×K) is a
diagonal scaling matrix that ensures that the temporal modes have unit
variance, and S0 and S2 (both I × I) are diagonal scaling matrices that
ensure that background noise in the spatial modes have unit variance. See
Appendix 5.A for detailed definitions of these scaling factors.

In the presentation and interpretation of ICA results, each of the K
spatial modes in C are visualised and explored. Since they have been
noise-normalised, they are often treated as z-score images and thresholded
to control a nominal false positive rate. The end result is an inference
that quantifies the relation between the corresponding temporal mode
in M and Y . We seek to apply our alternative hypothesis thresholding
procedure to these maps, but first we need to define a meaningful effect
size in percent BOLD change, and transform this to the scale of C.

Meaningful BOLD effect sizes with ICA Consider a particular IC of
interest, k ∈ {1, . . . ,K}, and a particular voxel i ∈ {1, . . . , I} of interest
in the spatial mode. Specifically, consider the contribution of the k-th IC
to the time series at voxel i:

mk s1,k cki s2,i s0,i (5.7)

where mk is the k-th column of M , cki = (C)ki, and s1,k, s2,i, and s0,i
are the indicated diagonal elements of the scaling matrices.

As previously mentioned, the rows of C are normalised to have noise
variance of 1, so cki has z-score (and not BOLD data) units. We need to
compute a meaningful percent BOLD change effect. We will first compute
this for a fixed ∆1, in the units of cki, and will later impose a distribution
on the effect size. Equation (5.7) shows that the temporal variation from
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IC k is determined by not only cki and the scaling factors, but mk as
well. Butmk is scaled to unit variance, and will not induce a unit BOLD
change in the data. We propose scaling mk so that it (roughly) expresses
a unit BOLD effect, and as a result preserves the units of the other terms.
Specifically, we introduce hk

mk hkh
−1
k s1,k cki s2,i s0,i. (5.8)

so that mk hk expresses a unit BOLD effect in the data. One way to set
the factor hk is so that mk hk has baseline to peak range of 1. Another
way is to regressmk on a covariate d that expresses the anticipated (unit)
experimental effect; setting hk to the inverse of the regression coefficient
will ensure that mk hk corresponds to an approximate unit BOLD effect.

Finally, we correct for the attenuation of the hypothesized effect based
on the mismatch between mk and d. That is, even if we choose hk well,
mk hk may only be weakly correlated with d. As a result we scale the
expected BOLD effect of IC k at voxel i by ρmkd, the correlation between
mk and d; see Appendix 5.B for details.

Now we can relate the expected (attenuated) percent BOLD change,
ρmkd ∆1, to the units of IC temporal mode. Let ∆∗1 be the expected
alternative mean effect in the z-score statistic cki, then

ρmkd ∆1 ≈ h−1
k s1,k ∆∗1 s2,i s0,i (5.9)

and thus we can translate BOLD units into cik units with ∆∗1 ≈ s∗ik ∆1,
where

s∗ki = ρmkd hk s
−1
1,k s

−1
2,i s

−1
0,i . (5.10)

Finally, this implies that our distribution of alternative effects in cki units
is

∆∗1 ∼ N
(
s∗ki µ, s

∗2
ki τ

2) (5.11)

(c.f. Eqn. (5.4)).
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Significance procedure As cki has unit noise variance, with an assump-
tion of Gaussianity the null distribution is given by

cki|H0 ∼ N (0, 1) . (5.12)

Under the alternative, we consider the addition of effect ∆∗1 to cki yielding
the alternative distribution

cki|Ha ∼ N
(
s∗ki µ, 1 + s∗2ki τ

2) . (5.13)

5.2.4 Data
We consider data from a patient suffering from a left prefrontal brain
tumor. The study design was a box-car design, where the patient was
asked to alternate between recitation of tongue-twisters and quiescence.
Figure 5.3 shows a sagittal slice of the T2 image, with the tumor visible in
inferior prefrontal frontal cortex. For the application to mass univariate
linear modeling, the data were analyzed wit FEAT in FSL 4.1 (Smith
et al., 2004). The application to independent component analysis was
performed using MELODIC in FSL 4.1 (Beckmann & Smith, 2004).

5.3 Results

5.3.1 Univariate linear modeling
We applied these techniques to the data described in Section 5.2.4. We
derive the expected effect magnitude for ∆1 and the variability of that
effect τ from 5 patients who underwent the same fMRI paradigm. We
threshold the image of each individual using an FDR-control at 0.05 and
look at the average percent BOLD change units in each individual. The
results are shown in table 5.1. Therefore we specify the expected effect
magnitude for ∆1 of µ = 0.73 percent BOLD change units, and variability
of that effect as τ =

√
τ̂2 = 0.21 percent BOLD change. These results are

consistent with others in the literature (see e.g. Desmond & Glover (2002),
Figure 7A)

Results are shown in Figure 5.4 with thresholds α = 0.001 and β =
0.20. In other words, we specified a p0 threshold for declaring an activation
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Figure 5.3: Anatomical scan of the patient. The tumor can be clearly seen
in the prefrontal cortex.

Average µ̂ Average τ̂2

Patient 1 0.59 0.20
Patient 2 0.55 0.26
Patient 3 0.68 0.35
Patient 4 0.75 0.46
Patient 5 1.08 0.84
Average 0.73 0.43

Table 5.1: Average effect sizes in five previously tested patients in percent
BOLD change units.



152 Chapter 5

when there is none at 1-in-1000; and we set the p1 threshold for declaring
the absence of activation when in fact the specified activation magnitude
is present at 1-in-5. The red and the (scant) orange voxels show where
H0 can be confidently rejected, and, if presurgical planning was done only
on the basis of classical null hypothesis testing, all other tissue would be
regarded as “safe”. Considering information on the alternative, we have
the red voxels where, specifically, H0 can be rejected and Ha cannot be
rejected; i.e. the red voxels are incompatible with the null and compatible
with the alternative, and thus are strong evidence for the effect. The yellow
areas are areas are where neither H0 nor Ha can be rejected; here the data
is compatible with both the null and alternative, and suggest a lack of
confidence in ruling out activation. Finally, for voxels with no coloration,
the H0 cannot be rejected but Ha can; the data are compatible with the
null and incompatible with the alternative, and thus have good evidence
for a lack of activation and suggest that these brain regions can be safely
resected. This shows the key strength of the procedure: among voxels
traditionally classified as “nonactive”, i.e. those with insufficiently small
p0’s, it distinguishes between voxels where there is compelling evidence
for non-activation (not colored) and those voxels where we cannot rule
out the possibility of activation (yellow).

The orange voxels represent voxels for which the observed effect size is
between the null hypothesis of no activation and the expected effect size.
In these voxels, both the null and the alternative hypothesis are rejected
which corresponds to very low residual noise in the GLM.
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Alternative thresholding approach applied to classical univariate testing

10

20

30

40

50

60

10 20 30 40 50 60

●

●

●

β >= 0.20
α <= 0.001
β >= 0.20 & α <=  0.001

Figure 5.4: Sagittal slice of “layered” activation inference overlaying
grayscale T2* reference image, threshold values of α = 0.001 and β = 0.20.
Red areas show areas of high confidence of activation (H0 rejected, Ha not
rejected), while yellow areas show areas where activation cannot be ruled
out (neither H0 nor Ha rejected); uncolored areas have high confidence
of no activation (H0 not rejected, Ha rejected), while the few orange vox-
els indicate voxels with significant but surprisingly small BOLD response
magnitude (H0 and Ha rejected).
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5.3.2 Independent Components Analysis Results
We applied these techniques to the data described in Section 5.2.4. We
use the same effect size and uncertainty as in Section 5.3.1, i.e. µ = 0.73
and τ = 0.18 percent BOLD change units. MELODIC’s automated di-
mensionality estimation method in MELODIC found 52 components. We
chose one IC whose time series corresponded to the design matrix, shown
in Figure 5.5. Regressing this temporal mode on the design gives a coef-
ficient of β̂ = 1.48, and thus h = β̂−1 = 0.677 is the scaling factor used
to have the temporal mode express a unit-BOLD effect (see Eqn. (5.8)).
The pointwise correlation between the design and the chosen component
is ρmd = 0.63, which is used to attenuate he expected effect magnitude
(see Eqn. (5.9)).

The layered thresholding procedure for this IC is shown in Figure 5.6,
for α = 0.001 and β = 0.20. There is a set of voxels with strong evidence
(red, H0 rejected, Ha accepted) but also additional voxels where both
hypotheses are rejected (orange). As mentioned above, in the setting of
presurginal planning, these orange regions are best regarded as regions of
possible activation, and thus excluded from resection.

This result is quite different from the GLM results, and is a reflection of
the dramatically lower voxel-wise variance in the IC spatial mode relative
to the GLM statistic image. The explanation is that the GLM result
accounts for all noise variance, while the IC spatial map only reflects the
noise in the subspace corresponding to the IC temporal mode (Beckmann
& Smith, 2004).

Crucially, we stress that our thresholding procedure only seeks to im-
prove the interpretability of the ICA result, and does not produce con-
firmatory inferences; IC selection is intrincally post hoc and subsequent
inferences circular, and all we attempt to do here is improve the thresh-
olding of a selected IC spatial map.
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Figure 5.5: The time series of a selected IC, with a least squares fit of
regressing the series on the design shown in gray. The estimated response
height is used to normalise the component to have unit BOLD effect, and
the pointwise correlation between the design and the selected IC is used
to attenuate the expected BOLD response manitude.
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Alternative hypothesis thresholding ICA
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Figure 5.6: Results of the alternative thresholding procedure when using
ICA. Sagittal slice of “layered” activation inference overlaying grayscale
T2* reference image, threshold values of α = 0.001 and β = 0.20. Red
areas show areas of high confidence of activation (H0 rejected, Ha not
rejected), orange areas show voxels with significant but surprisingly small
BOLD response magnitude (H0 and Ha rejected); uncolored areas have
high confidence of no activation (H0 not rejected, Ha rejected).
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5.4 Discussion

Statistical thresholding in the context of multiple tests is generally driven
by the need to limit false positives. These stringent testing procedures
in fMRI research leads to an abundance of false negatives (Lieberman &
Cunningham, 2009) and are therefore less useful in the context of pre-
surgical fMRI where a false negative can have dire consequences. While
many attempts have been made to propose more liberal testing criteria for
example by controlling the FDR instead of the FWER (Genovese et al.,
2002), the focus is still on protecting the type I error rate. The unilateral
focus on preventing false positives leads to a bias towards large obvious
effects and against complex cognitive and affective effects (Lieberman &
Cunningham, 2009). We therefore propose a measure that quantifies the
evidence against the alternative hypothesis as introduced in Moerkerke et
al. (2006). We use this quantity p1 in addition with the classical p0-value
in a procedure that results in a thresholding procedure with multiple lay-
ers of significance. One layer consists of voxels exhibiting strong evidence
of activation (red in Figure 5.4 & 5.6), while a another layer shows vox-
els with ambiguous evidence (yellow and orange), and a final layer then
consists of voxels for which the presence of activation can be confidently
rejected (an absense of overlaid statistic values). Thereby we offer a more
symmetrical interest towards both false positives and false negatives.

We have chosen to focus on voxel-wise inference instead of other topo-
logical features, such as peaks (Chumbley et al., 2010) or clusters (Chum-
bley & Friston, 2009). These topological inference methods have reduced
spatial specificity relative to voxel-wise inference, and are therefore less
suitable for pre-surgical fMRI where maximal spatial precision is needed.

To use the procedure discribed in this paper, an expected effect size
and its variance needs to be defined on a BOLD-scale. This is an arbitrary
choice, however many possibilities are available. Desmond & Glover (2002)
show for a specific experimental paradigm the distribution of percent sig-
nal change with its distribution. They show on average a BOLD effect
size of 0.48 percent BOLD change. Another possibility to estimate the
expected effect size can be based on previous research. As in pre-surgical
fMRI, the same experiment is repeated over most patients, the effect size
can be derived from patients that already underwent the experiment and
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surgery. The degree to which brain activation in patients is representative
for the particular setting for which estimates are needed, highly depends
on the context and should be carefully judged. It can be expected that
different methods will affect the estimates for µ and τ , however we found
that the estimates we obtained by averaging over voxels is close to the
effect sizes that can be found in literature.

The two different analytical approaches we used, the GLM and ICA,
show somewhat different results. While both GLM and ICA analyses
found similar sets of voxels that were confidently activated (H0 rejected,
Ha not), in the GLM analysis many voxels were found that do not show
evidence against the null nor against the alternative (yellow, in Figure
5.4). The explanation for this outcome is the high level of noise present
in the data and thus confusion about the veracity of either H0 or Ha.
In contrast, in the ICA analysis, almost no voxels have this ambiguity,
and instead we find voxels that have evidence against both the null and
the alternative. As ICA is a good tool to identify structured noise in a
data-driven manner, it can be expected that the residual voxelwise vari-
ance will be smaller. Low variances results in a large distance between
the null and the alternative distribution functions. Whereas the difference
between ICA and the GLM seem contradictory at first, we argue that
the differences in our approach reflect real differences between the two
analysis tools.

The quantity p1 shows a relationship with the voxel-based statistical
power defined by Van Horn, Ellmore, Esposito, & Berman (1998). The
voxelwise power by Van Horn et al. (1998) translates to the complement of
the alternative p-value, p1, in our study. However, the use of the quantity is
fundamentally different. Whereas Van Horn et al. (1998) use the voxelwise
power to visualise and interpret the results of a certain study, we explicitly
threshold the quantity. Moreover, the interpretation of both quantities is
not so straightforward. When a high power is encountered in a certain
voxel, with the method of Van Horn et al. (1998), it is interpreted as
follows: “If the observed effect in the voxel would be used as cutoff when
testing fromH0, we have a high probability to rejectH0 whenH0 is indeed
false”. However, a large voxelwise power translates to a small p1 and is
in our study interpreted as follows: “When the alternative hypothesis is
true, there is a small probability of observing this effect”, and we will
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interpret this effect as evidence against the alternative hypothesis. This
interpretation is much more straightforward and usable.

This procedure has been developed in light of pre-surgical fMRI, as
false negatives can have harmful consequences for the patient. However
the lack of power is omnipresent in fMRI-analyses (Lieberman & Cunning-
ham, 2009) and therefore this procedure is also very useful in all branches
of cognitive neuroscience. For example, negative results (i.e. voxels that
are not significantly related to the task) are sometimes regarded as ev-
idence against activation. However, these conclusions are not provided
by null hypothesis significance testing. The presented procedure, on the
other hand, quantifies the evidence for no activation at each voxel, and is
therefore perfectly suited to interpret negative results.

We would like to stress that this procedure does not abandon null hy-
pothesis significance testing. The classical significance testing framework
is still included in the procedure, represented by one layer of significance.
The method is merely an extension of the thresholded statistical para-
metric map, thereby providing a new layer with information on type II
error rate control. Mixture modelling is similiar in spirit to this method,
in that null and the alternative distribution are used, however mixture
model applications usually focus on only controlling type I errors. With a
fitted mixture model you could also apply our method and find p0 and p1
values, however we take pains to estimate alternative effect magnitudes
a priori, from separate data, to remove any circularity.

In this procedure, control of false positives remains possible but our
procedure also takes into account information on the false negative rate.
We do not assert that our method alleaviates all concerns with multiplic-
ity, and one possible direction of future work is a multiplicity correction
that adjusts both null and alternative hypothesis inferences for the num-
ber of tests.





Appendices

5.A Scaling steps in ICA

Let Y be the J × I data matrix for time points j = 1, . . . , J and voxels
i = 1, . . . , I. Then the normalised datamatrix Y ∗ can be expressed as

Y ∗ = Y S−1
0 ,

where S0 the I × I diagonal matrix with voxelwise robust variance esti-
mates on the diagonal. Then the independent component analysis results
in the following decomposition

Y ∗ ≈MC∗, (5.14)

whereM represents the J ×K-mixing matrix, where K is the number of
components. When K < J , equation 5.14 is only an approximation. C∗

is the K × I-matrix with the original image component loadings.

In the probabilistic ICA framework Beckmann & Smith (2004), C∗

is Gaussian distributed, and can therefore be used as a test statistic. To
normalise C∗ to a standard Gaussian distribution,

C = S−1
1 C∗S−1

2 (5.15)

where the diagonalmatrix S1 scales the components (over voxels) and the
diagonalmatrix S2 scales the voxels (over components):

S2
1 = diag{M−1(M−1)′} (5.16)

S2 = diag{SD(Y ∗ −MC∗)}
√
I −K√
I − 1

, (5.17)

where SD(Y ∗−MC∗) is the column-wise standard deviation of the resid-
uals of the ICA approximation. Consequently, we can approximate Y as
MS1CS2S0 in equation 5.6.
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5.B Attenuation of Anticipated BOLD Effect
for a Given IC

A basic result in psychometrics (Spearman, 1904) gives that the corre-
lation between unreliable measures is attenuated by the the test-retest
reliability of each measure. For example, if measure A imperfectly mea-
sures variable A∗, and B imperfectly measures B∗, then the correlation
of A and B is attenuated relative to the uncorrupted measures:

Corr(A,B) = Corr(A∗, B∗) √ρAA
√
ρBB , (5.18)

where ρAA and ρBB are the test-retest correlations of A and B.
In our setting, let A be the BOLD response, and B be the IC time

course m. The reproducibilty of BOLD (ρAA) is respectible, with Vul
et al. (2009) reporting reliabilities between .66 and .94; however most
procedures for fMRI data analysis do not take this into account, and
hence we only consider ρAA = 1.

We are interested in the “reproducibility” of a IC time course relative
to the experimental design d. Of course obtaining two replicates of an
IC time course that both equally reflect d is not feasible, but we can
indirectly estiamte ρBB as follows.

Consider a general test-retest setting, where measurement B1 is made
at one time, and, later, a “retest” gives measurement B2. Assuming ad-
ditive error, we can relate the ‘corrupted’ measures to the ‘uncorrupted’
measures as

B1 = B∗ + ε1 (5.19)
B2 = B∗ + ε2, (5.20)

where εj , j = 1, 2, are the measurement-specific errors, and we assume
Var(B∗) = σ2 is the variance of the perfectly reproduciable measure and
Var(εj), is the variance of the corrupting noise. The test-retest correlation
is then

ρBB = Corr(B1, B2) = σ2

σ2 + τ2 . (5.21)
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If, instead, one corrupted measure was correlated with the uncorrupted
‘true’ measure, you find

Corr(B1, B
∗) = σ√

σ2 + τ2
= √ρBB . (5.22)

Or, equivalently, ρBB = Corr(B1, B
∗)2. In short, these results show that

we can estimate the “reproducibility” ofmk as a noisy sample of the true
d as ρ2

mkd.
Finally, from Equation (5.18), taking ρAA = 1 and ρBB = ρ2

mkd, we see
that the attenuation factor needed to account for the mismatch between
mk and d is just ρmkd.





6 Evaluating statistical
procedures using different

signal sources: a case
study.1

Abstract Statistical inference in cognitive neuroscience focuses on
stringent control of false positives, accepting the concomitant sacri-
fices in sensitivity. However, this is accompanied by a risk of false neg-
atives, which can be detrimental, for example, in clinical settings where
false negatives may lead to surgical resection of vital brain tissue. We
have recently presented a new hypothesis thresholding procedure that
incorporates information on both false positives and false negatives
(Durnez et al., 2013). The result is a layered statistical map, marked
by voxels exhibiting (i) strong evidence against the null hypothesis, (ii)
evidence against the null but at practically insignificant effect sizes,
(iii) responses where activation cannot be confidently excluded and
finally (iv) responses where activation can be rejected.
In this chapter, some first steps are taken towards evaluation of sta-
tistical testing procedures by assessing the overlap between func-
tional activations and structural connectivity. To compare our pro-
cedure with classical significance testing, we assess the difference be-
tween alternative-based testing (ABT) and classical hypothesis test-
ing (CHT) using cross-correlations and overlap between activation
and structural connectivity profiles (Homola, Jbabdi, Beckmann, &
Bartsch, 2012). The approach is exemplified in a patient undergoing
pre-surgical mapping and tractography.

6.1 Introduction
When surgically resecting brain tumors, one wants to minimize risk of re-
secting brain tissue involved in important cerebral functions. Pre-surgical
fMRI probes such functions to localize eloquent brain tissue. Statistical in-
ference in cognitive neuroscience focuses on control of false positives. The
scientific discipline deems stringent control of false positives necessary, ac-
cepting the concomitant sacrifices in sensitivity. In a clinical setting, a loss

1This chapter represents collaborative work with following authors: Durnez J., Ho-
mola G., Jbabdi S., Nichols T., Moerkerke B. and Bartsch A.
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in power means true activation is not discovered, and this might result
in the resection of vital brain tissue. This asymmetrical way of penalising
errors in statistical inference is undesirable in this context. We therefore
presented a new hypothesis thresholding procedure that incorporates in-
formation on both false positives and false negatives and is as such ideally
suited for pre-surgical fMRI (Durnez et al., 2013).

To test for brain activation, we test for each voxel H0 : ∆ = 0 against
Ha : ∆ = ∆1, where ∆ is BOLD effect of interest in units of percent
BOLD change and ∆1 the non-zero effect magnitude expected under acti-
vation. In classical hypothesis testing, the evidence againstH0 is measured
with the p-value, the null hypothesis probability of data at least as ex-
treme than the observed result. Thresholding a p-value at α produces a
statistical test that controls the false positive rate at α. To allow direct
control of false negative risk, we present a symmetrical measure p1 which
quantifies evidence against the Ha. Thresholding this probability measure
at β ensures control of the false negative rate at β.

We measure evidence against H0 with p0 = P (T ≥ t|H0) and the
evidence against Ha with p1 = P (T ≤ t|Ha). As we do not expect a single
magnitude of true activation but a distribution of different true values, we
impose the following distribution on ∆1 : ∆1 ∼ N

(
µ, τ2). Let ∆̂ represent

an estimator for the BOLD effect in a single voxel with corresponding
standard error SE(∆̂). With T = ∆̂/SE(∆̂) the test statistic for testing
H0 against Ha, we find:

Ti ∼ N

(
µ

SE(∆̂i)
,
SE(∆̂i)2 + τ2

SE(∆̂i)2
,

)
|Ha (6.1)

When thresholding p0 and p1 at respectively level α and β, for given
value of µ (expected activation) and τ (its uncertainty), the result is a
layered statistical map, marked by voxels exhibiting (i) strong evidence
against the null hypothesis, (ii) evidence against the null but at prac-
tically insignificant effect sizes, (iii) responses where activation cannot
be confidently excluded and finally (iv) responses where activations can
be rejected. In this chapter, we use data from a single patient undergo-
ing pre-surgical mapping and tractography. We use these data to inspect
the relation between activation and connectivity. More specifically, we as-
sess the difference between alternative-based testing (ABT) and classical
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Figure 6.1: T1-weighted scan of the patient.

hypothesis testing (CHT) using cross-correlations and overlap between
activation and connectivity (Homola et al., 2012).

The approach is exemplified in a patient undergoing pre-surgical map-
ping and tractography.

6.2 Methods

6.2.1 Data

We consider data from a patient with left frontal grade II oligodendroglioma.
The lesion is an intra-axial space-occupying lesion of 26 (A-P) × 29 (L-R)
× 32 (V-D) mm extension behind the coronary suture entered to the left
percentile sulcus. Figure 6.1 shows the tumor in the left hemisphere of
the brain.The patient is right-dominant for hand, foot and eye. Data are
obtained with a 3T TimTrio (Siemens, Erlangen, Germany) , 32 channel
head coil.
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6.2.2 Preprocessing and statistical analysis of fMRI data
In order to locate anterior and posterior language regions, the patient
underwent two fMRI experiments: (1) reading nonfinal embedded clause
sentences versus rest (semantic language-comprehension task and (2) de-
tection of words from pseudowords versus blocks of tones (phonological
language task. The first contrast aims to detect the posterior language
area, while the second contrast refers to the anterior language area. The
data are processed using FSL 5.0.6 (http://www.fmrib.ox.ac.uk/fsl/). As
preprocessing, the data are motion-corrected using mcflirt, pre whitened
using film and smoothed with a Gaussian kernel with 5mm full width
at half maximum (voxelsize × 3 × 3.45 mm). The data are transformed
to T1-space before analysis using FSL’s FLIRT tool, where the transfor-
mation matrix is computed based on the transformation from the mean
EPI-image to the T1-image. First, regions-of-interest (ROI) are defined.
For the posterior language area (1st paradigm), we restrict analysis to
the anterior devision of the middle and superior temporal gyrus and the
supramarginal gyrus. The analysis of the anterior language area (2nd
paradigm) is restricted to the inferior and middle frontal gyrus. The first-
level analysis is carried out by applying a GLM within FEAT within these
regions-of-interest. From the GLM we derive T-statistic images and a p-
value for each voxel. We apply the testing procedure presented above,
in which four layers of activation are defined. For the α-parameter, we
choose the cutoff that controls the false discovery rate at 5% within the
ROI. The β-parameter is set to 0.20, to provide an average statistical
power of 80%. For the alternative distribution, we aim at effects of size
µ = 0.50 (0.5 % BOLD change) with variation τ = 0.01. After analysis
with the alternative-based procedure, four voxels are labeled according to
the following labeling scheme:

• NON-ACTIVE LABEL: p0 > α∩ p1 < β: Activation can be
confidently excluded.

• ACTIVE LABEL: p0 ≤ α ∩ p1 ≥ β. The voxels show strong
evidence against the null hypothesis.

• UNCERTAINTY LABEL: p0 ≥ α ∩ p1 ≥ β: Voxels cannot
be confidently declared inactive.
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• PRACTICAL INSIGNIFICANT LABEL: p0 ≤ α∩ p1 ≤
β: These voxels show evidence against the null but at practically
insignificant effect sizes.

To compare classical hypothesis testing (CHT) with alternative-based
testing (ABT), we define the significant result based on these layers.
Classical testing results comprise the active layer and the practically
insignificant layer (which just corresponds to using a FDR corrected
threshold at 5%. The significant area for the alternative-based thresh-
olding procedure is the active layer and the uncertain layer, which
corresponds to voxels with p1 ≥ β.

6.2.3 Preprocessing and statistical analysis of DWI data
The diffusion weighted images are taken in 2x160 directions, with resolu-
tion 120× 120× 60. DWI data are corrected for eddy-currents (including
motion) and geometric distortions and brain-extracted. The DWI data are
processed using FSL’s FDT toolbox. Two fiber orientations are modeled
and the probabilistic distributions of diffusion parameters are built up at
each voxel (using bedpostx, part of FDT). After computing the fiber ori-
entations, the fiber anisotropy results are transformed to T1-space using
FSL’s FLIRT tool, where the transformation matrix is computed based on
the translation from the mean functional isotropy image to the T1-image.
For the tractography in T1-space, we use probabilistic modelling of multi-
ple fiber orientations using probtrackx (part of FDT). The goal of the DWI
analysis is to track which voxels in the anterior language area have tracts
to the posterior language area and vice versa. To that end, two masks
are defined. The anterior language area is defined as the intersection of
the fMRI results for the words-tones-contrast and the anterior anatomical
mask described above (inferior and middle frontal gyrus). The posterior
language area is defined as the intersection of the fMRI results for read-
ing nonfinal embedded clause sentences and the posterior anatomical map
used for fMRI analysis (anterior devision of middle and superior temporal
gyrus and the supra marginal gyrus). Probabilistic streamlines are seeded
from one of these masks. A total of 5000 samples is sent out from each
tracking point. Stop masking is used to exclude indirect routes. The result
is a map containing for each voxel the number of samples seeded from that
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voxel reaching the relevant target mask. These probabilistic pathways are
thresholded at ≥ 1% connecting samples passing through each voxel. We
measure connectivity score as the number of connecting samples divided
by the total number of samples.

6.2.4 Combining fMRI and DWI
We compare the connectivity scores and the activation scores (p-values)
using a minimum intersection map. The idea is that peaks in the struc-
tural connectivity profile should predict peaks in the functional activa-
tion profile.To generate voxel-wise minimum intersection maps (see Figure
6.2), the distributions of activation probabilities and average connectivity
scores are shifted to zero minima and normalized to their robust maximum
values (i.e. the 95th percentile).

6.3 Results

6.3.1 fMRI results
In Figure 6.3, we show the results of the fMRI data analysis in the four
different layers. There is an indication for activation in the tumor based on
the deviation from the null hypothesis of no activation. However, adding
information on the alternative indicates that the result might be statisti-
cally significant, but is not of practical significance: the effect size in these
voxels is too small to represent real activation. Electrocortical stimulation
mapping and the postoperative patient condition after gross tumor resec-
tion confirmed that there were no essential intratumoral activations. We
show how the uncertain layer is in this case mainly an extension of the
width of the active region and can be seen as a ‘safe’ boundary delineation.

6.3.2 DWI results
We show in Figure 6.4 how high connectivity values are indeed related with
the posterior language area. The anterior language area is not correctly
discovered, as the connectivity values in frontal mask are highest inside the
tumor, which is adjacent to the expected region according to the mask.
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Figure 6.2: From Homola (2012) Schematic illustration of minimum inter-
section maps. Minimum intersection maps are generated between different
profiles of functional activation (red) and structural connectivity (blue).
The profiles are normalized, i.e. scaled to the same min/max range. To
build the minimum intersection (dotted), the minimum (MIM) of the two
is considered at each point along the profile. Minimum intersection peaks
indicate different degrees of spatial correspondence between high structural
connectivity (S) and functional probability (F) values: Minimum intersec-
tion maps resembling F signify concordant presence of F- and S-peaks (left
and upper right minimum intersects). Note that when F and S are too dis-
similar, the minimum intersection is flat (middle). A non-flat minimum
intersect with a sharp peak and displaced compared to F indicates a close
but out-of-center overlap of F- and S-peaks (bottom right).
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Figure 6.3: The results from the fMRI analysis with alternative based
thresholding. The results for the anterior language area is shown in the left
panel, the right panel represents the experiment for the posterior language
area. The copper color refers to the practically insignificant voxels, red
refers to active voxels, the yellow voxels show uncertainty

It should be noted that the specific value of the connectivity values is
dependent on the size of the masks and is therefore not interpretable.

6.3.3 Minimum intersection maps

For the posterior language area, we find reasonable overlap between con-
nectivity measures and fMRI results in a comparable way, as is shown in
Figure 6.5. For the anterior language area, we find slight overlap between
the classical hypothesis testing results and connectivity in the tumor,
whilst no overlap between alternative-based testing and classical hypoth-
esis testing.

6.3.4 Measures of activation and connectivity scores

More insight in the connectivity scores in relation to the testing procedures
is given in Figure 6.6. An important remark is that the connectivity values
in the posterior language area are overall smaller than the connectivity
values in the anterior language area. This can be explained by the fact
that the anterior mask is smaller than the posterior mask, and thus there
is a smaller chance that sent samples arrive in the anterior mask than in
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Figure 6.4: The results from the DWI analysis. The red voxels are the
connectivity values in the posterior language area mask, while the blue
voxels represent the connectivity values in the anterior language area.

Figure 6.5: The minimum intersection maps. The red voxels represent the
overlap between fMRI and DWI for the posterior language region, while
the blue voxels represent the overlap for the anterior language area. The
left image shows the classical testing results, the right figure are the results
from the alternative based thresholding procedure.
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Figure 6.6: The connectivity scores with respect to the voxelwise p0 and
p1-value. Each dot represents a voxel with a connectivity score higher than
1%. Furthermore the testing procedures are shown as background colors.
The labeling is as follows: red refers to the active label, yellow represents
the uncertain label, practical insignificance is shown in dark grey and light
grey is for non-significant voxels.

the posterior mask. This difference has no intrinsic meaning with respect
to the connectivity in both regions.

The main finding is the apparent relation between p0 and connectivity
scores. Low connectivity scores are related to high p0 values, as expected.
But furthermore we also see that higher p1-values are also linked with
higher connectivity scores. This indicates that adding the p1-value to the
testing criterion provides useful information.

6.3.5 Spatial cross-correlations

We show the relationship between p0-values and connectivity scores in
Figure 6.7. For the posterior language area, we show that higher p0-values
are accompanied by lower connectivity scores as expected. However, for
the anterior language area, there is a clear bimodal distribution visible and
therefore the smoother cannot be interpreted in a straightforward way.
The same figure in relation with p1-values instead of p0-values is shown
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Figure 6.7: Two-dimensional histograms for the p0-values against the con-
nectivity values. Darker colors indicate more datapoints in the given bin.
The line through the datapoints is a non-parametric loess smoother.

in Figure 6.8. We expect that higher p1-values indicate higher functional
activation, and should be accompanied by higher connectivity values. This
is observable in the posterior language area, but again because of the
bimodality in the anterior language area, we make no interpretations of
the smoother. Finally, we show the connectivity values in relation with
(1 − p0)/(1 − p1) in Figure 6.9. Higher values of the numerator indicate
more activation, higher values of the denominator indicate less activation.
As such, higher values of the fraction indicate more activation. Again,
we find expected results in the posterior language area but not in the
anterior language area. In the posterior language area, we find a drop in
connectivity values for high activation.
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Figure 6.8: Two-dimensional histograms for the p1-values against the con-
nectivity values. Darker colors indicate more datapoints in the given bin.
The line through the datapoints is a non-parametric loess smoother.
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Figure 6.9: Two-dimensional histograms for (1− p0)/(1− p1) against the
connectivity values. Darker colors indicate more datapoints in the given
bin. The line through the datapoints is a non-parametric loess smoother.
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6.4 Discussion

In this work, we have taken some first steps towards evaluating statistical
procedures by relating the fMRI results to the structural connectivity
profile. More precise, we localise the two main language areas in the brain,
of which we know there is a strong connection between both. We measure
voxelwise connectivity measures, indicating the strength of connection
from one region to the other region, and relate these to the voxelwise
testing procedure.

For the case study at hand, an important finding from the fMRI re-
sults is that only the classical testing procedure detects activation within
the tumor while removing the tumor did not have any significant effect,
and moreover electrocortical stimulation mapping confirmed that there
were not intramural activations. However, we also found high connectiv-
ity measures in the tumor and not in the area where it is to be expected.
Furthermore we observed an unexpected bimodal distribution of the con-
nectivity values in this area. There might be several reasons for these
results, such as distortion because of the tumor. Another reason could be
that co-registration (between fMRI - structural T1-scan and DWI data)
resulted in spatial deplacement of crucial information. Co-registration is
optimal in terms of finding the global minimal deviation from the tem-
plate, but around tumors, registration often fails locally. A third reason
for the connectivity pattern in the tumor could be due to our mask def-
inition. We have used large masks, which allows large pathways to be
discovered. To avoid contamination between different pathways, we used
exclusion masks. However, it is still possible that there is contamination
of the dorsal pathway from the ventral pathway, which could explain the
high intratumoral connectivity values. Based on these data and analyses,
a unique cause for the results cannot be identified.

One possible way to further inspect the relationship between functional
and structural measures, is to define unrelated regions for negative control.
High connectivity values in unrelated regions (either close or far from the
tumor) could disentangle possible explanations for the results.

Furthermore, we would like to remark that while we found a drop
in connectivity profile for high activation values, this drop has also been
observed with Homola et al. (2012) in a different setting.
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This work aims to show how evaluation of statistical procedure could
be validated using real data. We showed an example of such a validation
with data from a single person. However, these results are not answering
all questions. It is clear that on the one hand more research should be done
on the relation between fMRI and connectivity in general. On the other
hand, interesting results have emerged from the current validation but to
draw conclusions on the performance of both thresholding procedures, the
validation requires more data and deeper analyses.
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7 General discussion

7.1 Introduction

During the past five years, we studied practical and accurate approaches
to statistical significance and power for fMRI. We investigated and com-
pared different methods for detecting brain activation based on statistical
significance in terms of reproducibility, statistical specificity and power
(Chapter 2). We presented a procedure to estimate power for a given
study, and demonstrated the lack of statistical power in current fMRI
studies (Chapter 3). We extended the procedure to enable the computa-
tion of the minimal sample size in an fMRI experiment that is required to
achieve a predefined statistical power (Chapter 4). However, the goal of
an fMRI study may prevent the possibility of simply increasing its sample
size. Therefore, we presented an alternative based thresholding procedure
for pre-surgical fMRI (Chapter 5) and some first steps towards evaluating
the method by combining functional (fMRI) and connectivity (DTI) data
have been demonstrated (Chapter 6).

In this chapter, we present a short overview of our results and their
implications. We integrate these findings with existing literature and put
the frameworks of this thesis in a broader context, both with more his-
torical important work and with recent advances in the field. Finally, we
will present some new interesting research directions, through which the
power problem in fMRI and neuroimaging in general could be further
investigated.
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7.2 Multiple testing framework

We dedicated the first chapter of this dissertation to the multiple testing
problem in fMRI. The multiple testing problem emerges when many statis-
tical tests are performed simultaneously; in that case there is an inflation
of false positive results. This problem is typically addressed by imposing a
more stringent statistical threshold, though the extent of this adjustment
is up for debate. The thresholding problem is not new to neuroimaging.
Ever since the first fMRI experiment, the multiple testing problem was ac-
knowledged in determining appropriate thresholds, and specific solutions
were provided. The multiple testing problem is an old problem, for which
many solutions were available at the time fMRI analyses were starting to
develop. These procedures aim to control the familywise error rate, the
chance of at least one false positive over all tests performed (e.g. the Bon-
ferroni correction, Bonferroni 1936). At the same time there was already
a well established framework for randomness in spatial fields, the random
field theory (Adler, 1981). Combining these two, Worsley et al. (1992) and
(Friston et al., 1991) presented a way to take both the multiple testing
problem in fMRI and the spatial character of the fMRI data. Gradually,
focus shifted to topological inference in which voxelwise testing is replaces
by cluster- or peakwise testing. This approach also builds on random field
theory.

Friston, Holmes, Poline, Price, & Frith (1996) was the first to discuss
power issues in neuroimaging, by performing a power test for different
levels of inference. However, controlling the familywise error rate was an
idea put forward when the multiple testing problem mostly comprised a
small number of tests. With the rise of big datasets (neuroscience, ge-
netics, etc.), it became clear that controlling the family-wise error rate
was too strict as a testing criterion. Therefore the control of the false dis-
covery rate, the proportion of false discoveries out of all discoveries, was
introduced (Genovese et al., 2002). Up until today, many of the statistical
questions from that time are currently still hot topics.

Recently, the problem of thresholding received a storm of attention
when Bennett, Baird, Miller, & Wolford (2009) performed a real psy-
chological experiment with one subject: a dead atlantic salmon, with an
uncorrected statistical threshold. The dead salmon appeared to have brain
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activation. This experiment was designed to show that when the end user
community prefers the use of uncorrected thresholds, despite many avail-
able statistical procedures to control the multiple testing problem in fMRI,
results are prone to discover an abundance of false brain activation. In an-
other publication, Bennett, Wolford, & Miller (2009) argued for a princi-
pled control of false positives. “A procedure that places appropriate limits
on the rate of false positives across the whole brain gives readers the in-
formation they need to properly evaluate the results.” (Bennett, Wolford,
& Miller, 2009). Luckily, under the impulse of a few popular publications
about publishing fMRI studies (R. A. Poldrack et al., 2008; Friston, 2012),
today nearly all fMRI publications correctly report how they handle the
multiple testing problem.
Still, there is no golden standard to deal with the multiple testing prob-
lem. Many effort has been put into providing a good comparison between
different thresholding procedures (Marchini & Presanis, 2004; Logan &
Rowe, 2004; Nichols & Hayasaka, 2003; Eklund et al., 2012). However,
through FDR control, power is only gained by allowing more false pos-
itives. We demonstrated this in our first study (Durnez, Roels, & Mo-
erkerke, 2014). In the second chapter of this thesis, we found no new
trade-off between false positives and false negatives for FWER and FDR
control. In other words, for a given specificity, FWER and FDR control
performance is equal in terms of sensitivity. Therefore, we compared FDR
and FWER control (operationalised as the procedure by Benjamini &
Hochberg 1995 and Bonferroni 1936) on a third operation characteristic,
namely its stability. We found a much bigger variance on the results of
the FDR procedure than on the results of the FWER controlling proce-
dure, because of its adaptive nature. Including stability into the decision
criterion through bootstrapping made FDR control more stable but did
not alter the trade-off between sensitivity and specificity. As a conclusion,
like (Bennett, Wolford, & Miller, 2009), we advocate a well-contemplated
choice of threshold since the same (both liberal and conservative) results
can be obtained through FWER and FDR control.
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7.3 Statistical power framework

Currently there is still a huge imbalance between false positives and false
negatives in fMRI with typically less attention for the latter. In cognitive
neuroscience, a false positive means fallacious support for a given cogni-
tive theory. While false positives can often be discovered by unsuccessfully
trying to replicate the study, much time, effort and money can be spent.
As a result, the scientific discipline generally deems stringent control of
false positives necessary, accepting the concomitant sacrifices in sensitiv-
ity. However, in chapter five, we discussed pre-surgical fMRI, where false
negatives can be detrimental, for example, in clinical settings where false
negatives may lead to surgical resection of vital brain tissue. We presented
a procedure procedure that incorporates information on both false pos-
itives and false negatives [2]. The result was a layered statistical map,
marked by voxels exhibiting (i) strong evidence against the null hypoth-
esis, (ii) evidence against the null but with practically insignificant effect
sizes, (iii) responses where activation cannot be confidently excluded and
finally (iv) responses where activations can be rejected. This procedure
can greatly decrease the risk of missing activation in a surgical setting.

Nonetheless, the problematic imbalance between false positives and
false negatives is not restricted to clinical settings only. Lieberman & Cun-
ningham (2009) also argue for a better balance between false positives and
false negatives in cognitive neuroscience. In 2013, cognitive neuroscience
was criticised in the important publication of Button et al. (2013), where
the author tackles the reliability of all neurosciences. They stated that
most neuroscience studies suffer from low statistical power. They argued
that low power not only decreases the chance of detecting a true effect,
but it also reduces the chance that a statistically significant result indi-
cates a true effect. To meet an acceptable level of power in fMRI stud-
ies, several a priori power calculation methods have been made available
(Desmond & Glover, 2002; Mumford & Nichols, 2008; Zarahn & Slifstein,
2001; Hayasaka et al., 2007; Smith et al., 2007; Zarahn & Slifstein, 2001).
However, while the type I error rate of a study is mostly clearly defined and
easily interpretable, the existing power estimators often involve complex
equations and many unknown parameters, depending on how activation
is defined. In our third chapter, we presented a method to estimate the
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number of activated features (Durnez, Moerkerke, & Nichols, 2014). We
considered peaks or clusters of activation as a topological feature. Knowl-
edge of the number of active features enables to estimate post-hoc how
powerful the selection procedure performs. In our data example in the
third chapter, we showed that when one aims to see the activation re-
lated to viewing faces, only 50% of the actual activity can be found. Such
findings will mostly impair the most vulnerable studies, such as studies in-
volving social cognition, which are often characterised by small effect sizes
and low power to detect the effect (Lieberman & Cunningham, 2009).We
argued that a call needs to be made to statistical testing procedures with
a better balance between sensitivity and specificity. By raising awareness
on the power of existing studies, this procedure is a first step in this di-
rection. A drawback of this procedure is that it only functions post-hoc
and cannot predict the outcome of a study before it is conducted. As such
the lack of power can be made more explicit, but not overcome with this
procedure.
While power is straightforward to compute for a single, univariate re-
sponse, determining the power of a fMRI study is a formidable task as
the magnitude, spatial extent and location of a hypothesized effect are
difficult to specify. In the fourth chapter of this thesis, we presented a
simple way to characterize the spatial signal in a fMRI study, and a direct
way to estimate power based on an existing pilot study. Specifically, using
just (1) the volume of the brain activated and (2) the average effect size in
activated brain regions, we directly calculated power for given sample size,
brain volume and smoothness. This procedure allows minimizing the cost
of an fMRI experiment, while preserving a predefined statistical power.

7.4 Future directions

This dissertation’s main merit lies in a thorough investigation of the prob-
lem of statistical power for fMRI, which has deepened our understanding
of the driving factors of statistical power in fMRI and serves as a reference
point for further research. We end this dissertation by presenting possi-
ble ways as to how significance and power in neuroscience can be further
examined.
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Integration within the field: meta-analysis
The number of human fMRI studies has risen dramatically over the last
15 years. The growth of the field deems integration of findings neces-
sary. Quantitative meta-analyses can be used to localise the brain regions
most consistently activated by a particular type of task (Wager, Lindquist,
Nichols, Kober, & Van Snellenberg, 2009). Moreover, meta-analyses can
help to separate the wheat from the chaff in imaging studies, identifying
consistent activations and those that do not replicate (Kober & Wager,
2010). In other words, false positives will be filtered as they will likely
appear in only a small fraction of the studies while a false negative can
still be picked up as this activation will likely show in some of the per-
formed studies. While we focused in this thesis mainly on single (multi-
subject) studies, it is clear that integrating different fMRI studies to the
same cognitive function can largely improve statistical power as well -
especially given the large body of studies that are already available. An
overview of statistical procedures to perform meta-analyses is given in
Wager, Lindquist, & Kaplan (2007).

Integration beyond the field: multimodal data integration
Meta-analyses are available to integrate different studies in the same
modality (i.e. fMRI). However, the growth of neuroscience extends far
beyond fMRI, as nowadays many different techniques for brain activa-
tion and structure exist, such as diffusion weighted imaging, resting state
fMRI, structural MRI. The power problem in neurosciences extends be-
yond the fMRI studies we have targeted in this thesis. It is therefore a
logical step to advance towards combining and integrating data from dif-
ferent sources (R. Poldrack, 2012). We have touched this topic in chapter
six, where we combine DWI with fMRI. The possible combinations of in-
formation sources is endless, and this line of research is only starting to
develop.

An open source character is typical and deemed important in neuro-
science. Open databases are perfectly suited for multimodal data integra-
tion. Many repositories with large datasets, such as the Human Connec-
tome Project (Van Essen et al., 2012), or repositories collecting datasets
from many different studies, such as OpenfMRI (R. Poldrack, 2012) are
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available. Bringing together already existing information from different
sources will not only be very cost-efficient, but more importantly it will
advance a better understanding of the human brain.

Including practical significance into the testing criterion

Finally I would like to point out the importance of a better inspection
of the observed effect size when analysing fMRI data. Statistical analyses
focus mainly on T or Z statistics, which roughly equals as the observed
effect size divided by its standard error. This means that voxels with a very
low variance are often seen as voxels carrying important effects, even if the
effect size is small, and not biologically relevant. Likewise, effects in voxel
may be of scientific interest but may not reach the threshold of statistical
significance because of a low precision with which the effect is measured,
and are therefore ignored. Therefore it is key to make a distinction between
practical and statistical significance. Statistical significance is concerned
with whether a research result is due to chance or sampling variability;
practical significance is concerned with whether the result is of scientific
interest (Kirk, 1996). To define what is practically relevant, we should look
at the unit of measurement. The MRI signal is measured is units of BOLD
signal and the contrast between different conditions will be measured in
percent BOLD change. This unit is difficult to interpret, and as such it
is hard to make statements on the expected percent BOLD change, but
Desmond & Glover (2002) reported that effect sizes between 0.25 and 0.75
percent BOLD change are valid estimates for relevant effects. Therefore
we can assume that effect that are much smaller than these estimates
are not biologically relevant. The idea of mapping and interpreting effect
sizes has also been suggested in literature by Van Horn et al. (1998) and
Nichols & Holmes (2002).

We approached this topic in chapter five, where we included the ex-
pected effect size that is of practical interest in the testing criterion. In-
stead of labeling voxels as ‘active’ versus ‘non-active’, we added two new
labels: ‘practically non significant’ and ‘uncertain’. These two labels refer
to the link between the observed effect size and the expected effect size.
If an effect showed no statistically significant deviance from the null hy-
pothesis, but the observed effect size was still close to the expected effect
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size, we declared the voxel as ‘uncertain’. If the effect showed substantial
deviance from the null hypothesis of no activation, but the effect size was
small (and biologically non-relevant), the voxel was declared practically
insignificant. We have shown the merit of this classification system in
chapter six. There we found deviance from the null hypothesis in a brain
tumor, but with our alternative-based testing procedure we find that this
activation is practically insignificant, a label that was proven to be correct
by the intact psychological functions after removal of the tumor.

We argued for the use of effect sizes in the testing criterion in a pre-
surgical context. Two other settings where including the effect size is of
importance are the following:

Functional Regions-of-Interest (fROI) When testing for significance for
a certain brain task, all measurements of the brain are considered. How-
ever, sometimes there may be strong arguments as to why only a portion
of the brain needs to be investigated. For example for a language exper-
iment, the present knowledge of the language network can restrict the
analysis to a certain region of interest (ROI). This reduces greatly the
number of tests and thus increases sensitivity. For certain experiments,
researchers perform a single subject fMRI experiment to detect for exam-
ple the subject-specific language network. The ROI is defined based on a
functional task, and is therefore called a functional ROI. In such a task
localiser, it is also of key to avoid false negatives, and thus this setting
will benefit from statistical analysis including pre-defined effect sizes.

Large datasets Most of the published fMRI studies involve 15 to 25 sub-
jects. However, subtle effects are not observable in small samples. Conse-
quently, large consortia of research groups are emerging to obtain larger
sample sizes that are able to inspect small effects, and they reach sam-
ple sizes up to 1000 subjects. But by increasing sample size, statistically
non-significant results may become significant, independent from the ob-
served effect size. Therefore Quinlan (2013) argues in favour of small-scale
science. Thyreau et al. (2012) tested a cohort study of 1326 subject and
found that the larger the sample size, the less anatomically relevant the
results tend to be. These facts notwithstanding, we believe that returning
to small scale science would be a serious degression in the growth of neu-
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roscience. A better solution to the significance problem in large databases
would be to include pre-defined effect sizes in the testing criterion, and as
such provide an answer biologically implausible, but significant results.





8 Nederlandstalige
samenvatting

Eén van de belangrijkste trends van de afgelopen 20 jaar op gebied van
psychologisch onderzoek, is de opkomst van neurologische beeldvorming.
De koploper in dit domein is functionele magnetische resonantie imaging
(fMRI), waarmee de verhouding van zuurstofarm en zuurstofrijk bloed
gemeten kan worden (het BOLD signaal), wat toelaat om breinactiva-
tie op een niet-invasieve manier te meten. In een fMRI-experiment wordt
een opeenvolging van hersenbeelden bekomen terwijl de participanten een
cognitieve taak uitvoeren. Wanneer een verandering van signaal tussen
de beelden optreedt, kan men op die manier de taakgerelateerde gebie-
den in de hersenen lokaliseren. Een fMRI-studie leidt tot de productie van
enorme hoeveelheden data. Om deze data adequaat te analyseren, worden
de hersenbeelden in een groot aantal volume-eenheden (voxels) opgedeeld.
Vervolgens wordt per voxel de tijdsreeks van het gemeten signaal gemo-
delleerd als een lineaire combinatie van verschillende signaalcomponenten.
Op die manier kan per voxel onderzocht worden of er aanwijzingen voor
activatie zijn.

Nagaan of er activatie is, houdt in dat er een gigantisch aantal sta-
tistische toetsen simultaan uitgevoerd worden (meer dan 100 000 voxels).
Daardoor wordt men geconfronteerd met het multiple testing probleem:
het veelvuldig toetsen leidt tot een explosie van valse positieven. Om hier-
voor afdoende te corrigeren, zijn procedures ontwikkeld om het aantal
type I fouten (het verkeerdelijk oppikken van activatie) binnen de perken
te houden. Zo werd er aanvankelijk voor gezorgd dat men de kans op ten
minste 1 vals positief resultaat (de family-wise error rate, FWER) onder
een bepaald niveau α kan houden. Deze aanpak heeft tot gevolg dat de
sensitiviteit of de power van de toetsen heel laag wordt. Dit betekent dat er
een grote toename is van het aantal type II fouten (het verkeerdelijk niet
oppikken van activatie). Omwille van het conservatieve karakter van de
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FWER als foutmaat, verschoof de focus naar een foutmaat die het relatief
aantal vals positieven ten opzichte van het aantal geselecteerde voxels on-
der controle houdt. Er werden procedures ontwikkeld om deze foutmaat,
de false discovery rate FDR, lager dan een vooropgesteld niveau α te hou-
den (Benjamini & Hochberg, 1995; Storey, 2002; Genovese et al., 2002;
Chumbley & Friston, 2009). Bij een vast α-niveau levert dit meer power
op dan controle van de FWER. Deze hogere power gaat steeds gepaard
met een daling in specificiteit, met andere woorden, er wordt enkel aan
power gewonnen door het aantal valse positieven te laten toenemen. We
kunnen onszelf afvragen of de winst in power het verlies in specificiteit wel
waard is? We bekijken dit in meer detail in hoofdstuk twee. Daarin verge-
lijken we controle van FWER en FDR op een aantal eigenschappen, zoals
specificiteit, statistische power en stabiliteit voor een breed scala aan mo-
gelijke scenario’s. We vinden dat voor een vast α-niveau FWER-controle
inderdaad een heel lage power heeft. Dit probleem vermindert sterk bij
het gebruik van FDR-controle. Als we echter het α-niveau variëren, leve-
ren FDR en FWER-controle bij eenzelfde specificiteit gemiddeld dezelfde
power op. Dit betekent in essentie dat de FDR-procedures enkel minder
streng zijn bij de selectie maar geen nieuwe trade-off tussen sensitiviteit
en specificiteit opleveren. Bovendien vinden we dat FDR-controle gepaard
gaat met een lagere stabiliteit van de testprocedure en dus een beperktere
reproduceerbaarheid. Bijgevolg concluderen we dat FDR-controle niet de
ultieme oplossing biedt voor het multiple testing probleem. Bij het uitvoe-
ren van een fMRI studie moet men daarom voldoende aandacht schenken
aan het probleem van thresholding en aan de power die hierbij hoort.

Behalve een beperkt aantal publicaties over hoe een gepaste steek-
proefgrootte kan gekozen worden in functie van power (Friston, 2012;
Desmond & Glover, 2002; Mumford, 2012), heeft statistische power in
fMRI tot nu toe relatief weinig aandacht gekregen. In het derde hoofdstuk
stellen we daarom een procedure voor waarmee we post-hoc power kunnen
schatten voor een gegeven studie. Dit stelt onderzoekers in staat hun ei-
gen studies te evalueren, en bovendien is het met deze manier mogelijk na
te gaan in welke mate deze studies in staat zijn om de taak-gerelateerde
hersenactivatie te detecteren.

Een nadeel van deze procedure is dat ze enkel post-hoc functioneert,
en daardoor de uitkomst van een studie niet kan voorspellen voordat deze
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uitgevoerd wordt. Daarom breiden we de procedure uit in hoofdstuk vier.
We stellen een eenvoudige manier voor die het spatiale signaal in een
fMRI studie karakteriseert, en een directe manier om power te schatten
op basis van een bestaande pilootstudie. Meer bepaald gebruiken we en-
kel (1) de proportie van het brein dat geactiveerd is en (2) de gemiddelde
effectgrootte in geactiveerde breinregio’s om powerberekeningen te doen
voor een gegeven steekproefgrootte, breinvolume en smoothness. Deze pro-
cedure laat toe om de kost van een fMRI experiment te minimaliseren,
terwijl men een vooraf te bepalen niveau van statistische power kan hand-
haven.

Anderzijds laat het doel van een studie niet altijd toe om de steek-
proefgrootte te vergroten. Pre-chirurgische fMRI is daar een voorbeeld
van. Bijvoorbeeld bij hersentumoren en epilepsie worden bij een patiënt
via prechirurgische fMRI psychologische taken gelokaliseerd in de herse-
nen, voordat deze patiënt hersenchirurgie ondergaat. Zo probeert men
te vermijden dat cruciale psychologische functies beschadigd worden bij
de operatie. In dit geval moet de onderzoeker de statistische power aan-
vaarden die hoort bij data afkomstig van slechts één subject. Echter gaat
een strikte focus op de preventie van valse positieven steeds samen met
een risico op valse negatieven. Deze focus kan vooral in klinische settings
ongunstig zijn, waar valse negatieve kunnen leiden tot het chirurgisch
verwijderen van belangrijk hersenweefsel. Daarom stellen we in hoofdstuk
vijf een alternatieve thresholding procedure voor, waar rekening gehouden
wordt met de kans op zowel valse positieven als valse negatieven. We com-
bineren twee maten voor significantie in elke voxel: een klassieke p-waarde
die bewijskracht tegen de nulhypothese van geen effect meet en een al-
ternatieve p-waarde die bewijskracht tegen activatie van een welbepaalde
grootte meet. Het resultaat is een gelaagde statistische map van het brein.
Een eerste laag representeert voxels die sterke evidentie uiten tegen de tra-
ditionele nulhypothese, terwijl een tweede laag voxels bevat waar activatie
niet kan uitgesloten worden met een zekere betrouwbaarheid. In de derde
laag van voxels kan activatie uitgesloten worden. In deze procedure blijft
controle op valse positieven mogelijk, maar onze procedure neemt daarbij
ook informatie over de kans op valse negatieven in overweging. Met de
procedure van hoofdstuk vijf hopen we beter de psychologische functies
in het brein af te bakenen.
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In hoofdstuk zes geven we de aanzet om een manier te ontwikkelen
waarmee statistische procedures voor fMRI gevalideerd kunnen worden.
We passen dit toe op een fMRI experiment op een patiënt met een hersen-
tumor. De patiënt onderging eveneens Diffusion Weighted Imaging (DWI),
een techniek die eerder de structurele connecties in de hersenen blootlegt,
en die verschillende breinregio’s kan afbakenen op basis van hun fysieke
connecties. We passen zowel de klassieke testprocedure als onze alterna-
tieve testprocedure toe op de fMRI data, en we vergelijken welke van beide
procedures best de resultaten van DTI kan voorspellen. Een grote overlap
tussen volledig onafhankelijke procedures (fMRI en DWI) wijst op een
betere predicatieve validiteit van de procedure.

We besluiten dit doctoraat met een overzicht van de belangrijkste be-
vindingen en conclusies van de verschillende studies in hoofdstuk zeven.
De gevolgen en tekortkomingen van onze resultaten worden besproken in
een meer algemeen denkkader. Daar bovenop geven we indicaties voor
toekomstig onderzoek voor wat betreft statistische power in neuroweten-
schappen. Hoofdstuk twee, drie, vier en vijf werden origineel geschreven
als wetenschappelijke papers. Hoofdstuk twee werd gepubliceerd in Bi-
ometrical Journal (Durnez, Roels, & Moerkerke, 2014), hoofdstuk drie
in NeuroImage (Durnez, Moerkerke, & Nichols, 2014) en hoofdstuk vijf
werd gepubliceerd in Cognitive and Behavioral Neuroscience (Durnez et
al., 2013).
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