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AD   Anaerobic digestion 

AOA   Ammonium oxidizing archaea 

(Aer)AOB  (Aerobic) ammonium oxidizing bacteria 

AnAOB   Anoxic ammonium oxidizing bacteria 
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FISH   Fluorescent in-situ hybridization 
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HRT   Hydraulic retention time 
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N   Nitrogen 

Nr   Reactive nitrogen 

N/DN   Nitrification/Denitrification 
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NOB   Nitrite oxidizing bacteria 

NXR   Nitrite oxidoreductase 

OPEX   Operational expenditures 

OTU   Operational taxonomic unit 

PN/A   Partial nitritation/anammox 

PVA   Polyvinyl alcohol 

qPCR   Quantitative polymerase chain reaction 

SBR   Sequencing batch reactor 

SHARON  Single reactor system for High Ammonia Removal Over Nitrite 

SRT   Sludge retention time 

SVI   Sludge volume index 

TEM   Transmission electron microscopy 

TSS   Total suspended solids 

USB   Upflow sludge blanket 

VSS   Volatile suspended solids 

WW   Wastewater 

Y   Sludge yield 
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1. Nitrogen 

Nitrogen (N) is a crucial building block of life. It is ubiquitous in all living organisms as an 

essential element in amino acids, proteins and nucleic acids and a prerequisite for 

photosynthesis as a fundamental atom in chlorophyll. Although 78% (v/v) of the Earth’s 

atmosphere consists out of nitrogen gas (N2), these strongly bound nitrogen atoms are 

unavailable to most organisms.  

Two natural processes can provide the energy to convert N2 into the biologically available 

‘reactive’ forms of nitrogen (Nr), i.e. ammonia (NH3), nitrite/nitrate (NO2
-/NO3

-) and nitrogen 

oxides (NOX). Lightning (2%) and biological nitrogen fixation (BNF) (29/69% 

terrestrial/marine) result in in a natural creation rate of 203 Tg N year-1 (Fowler et al., 2013; 

Vitousek et al., 2013). Only a number of specialized free-living or symbiotic prokaryotes, the 

so-called diazotrophs, possess the key enzyme nitrogenase reducing N2 into ammonium (NH4
+) 

(Stacey et al., 1992). For millennia, the formation of Nr by these natural processes was 

balanced by deep sedimentation and the conversion of Nr back to N2 by several processes (e.g. 

denitrification), resulting in limited accumulation of Nr in environmental reservoirs (Galloway 

et al., 2014).  

A growing human population in need of increased amounts of Nr for food and energy 

production however significantly altered this balanced N-cycle. The first main anthropogenic 

contribution to the increase in Nr was food production, starting at a relatively small scale in 

1850 by cultivation-induced BNF (C-BNF) (15 Tg N year-1, Figure 1.1). New Nr was generated 

during the cultivation of legumes (e.g. peas, beans), self- fertilizing the soil through symbiosis 

with diazotrophs, and during the cultivation of rice by cyanobacteria growing in anaerobic 

environments (Galloway et al., 2004). The food demand rapidly surpassed the traditional Nr 

sources such as biomass and manure, creating a need for synthetic fertilizers. The 

development of the Haber-Bosch process resulted in a doubling of the production of 

anthropogenic Nr per capita in less than 25 years (30 kg N yr-1, Figure 1.1). This powerful 

process catalytically combines H2 and N2 to NH3 under high pressure (15-25 MPa) and high 

temperature (300-350°C) (Chagas, 2007). Beside fertilizer production, Haber-Bosch nitrogen 

has been increasingly used as a cooling agent and in industrial products such as fibers, plastics 
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and paints (Gu et al., 2013). The increased demand for energy to run the Industrial Revolution 

moreover resulted in an increased fossil fuel combustion, emitting nitrogen as NOx to the 

atmosphere as a waste product. Overall, in 2010, human Nr creation (220 Tg N year-1) was 

more than three-fold greater than natural terrestrial Nr creation (Fowler et al., 2013; Vitousek 

et al., 2013). The Haber-Bosch process was responsible for more than half (120 Tg N yr-1) of 

the human Nr creation, while C-BNF, fossil fuel combustion and industrial Nr contributed with 

40, 40 and 25 Tg N yr-1, respectively (Galloway et al., 2014). The enormous anthropogenic 

input of nitrogen imbalanced the natural nitrogen cycle, leading to accumulation of Nr in many 

natural ecosystems causing a worldwide environmental problem. Just as biodiversity loss and 

the biogeochemical P-flow from fertilizers to erodible soils, the anthropogenic distortion of 

the nitrogen cycle has by far exceeded the safety bounderies of our planet (Figure 1.2) 

(Rockstrom et al., 2009; Steffen et al., 2015). 

 

Figure 1.1 Temporal trends in global anthropogenic Nr creation on a total (left y-axis) and per-
capita (right y-axis) basis. Adapted from Galloway et al. (2014). The green and brown lines 
represent future scenarios (2050) consisting of a baseline (without specific Nr mitigation) and 
a low estimate, respectively. 
 

Reactive nitrogen is a main wastewater component in our global society, representing about 

20 Tg N yr-1, of which more than 99% is not treated and thus released as such in the 

environment (Galloway et al., 2008). Nitrogen in wastewater is commonly present as 

ammonium, in equilibrium with its unionized form free ammonia, which is toxic to aquatic 

macro-organisms at concentrations as low as 0.25 mg NH3 L-1 (Randall and Tsui, 2002). 
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Increased nitrogen levels lead to algal blooms (eutrophication), causing oxygen depletion, a 

loss of biodiversity and even extensive fish mortality in case of toxic blooms (Camargo and 

Alonso, 2006). Microbial nitrification is furthermore enhanced by increased ammonium 

availability, resulting in additional oxygen depletion, subsequent fish mortality, the formation 

of nitrite and nitrate and a pH decrease. These toxic compounds can contaminate 

groundwater and drinking water, hereby playing a significant role in the development of 

health issues such as methemoglobinemia (‘blue-baby syndrome’), certain types of cancer and 

other chronic health issues (Ward et al., 2005). A significant decrease of the nitrogen 

wastewater flux to the environment is thus crucial to prevent problems relevant to global 

ecology and society.  

 

Figure 1.2 The current status of the control variables for seven of the nine planetary 
boundaries, where the inner green shading represents the proposed safe operating space. 
Anthropogenic perturbation levels of four of the earth system processes/features (climate 
change, biosphere integrity, biogeochemical flows, and land-system change) exceed the 
proposed planetary boundary (Steffen et al., 2015). 

The nitrogen wastewater flux to the environment can be decreased via biological nitrogen 

removal (Section 2) or nitrogen recovery, e.g. air stripping, steam stripping, struvite 

precipitation, reverse osmosis and (bio)electrolysis. Both economical and sustainability 
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aspects determine the choice between nitrogen removal or recovery. From an energy point 

of view, nitrogen recovery could be more sustainable if the energy input is lower than the sum 

of nitrogen removal (0.9-2.3 kWh kg-1 N) and subsequent re-fixation through the Haber-Bosch 

process (9.6-12.4 kWh kg-1 N) (Mulder, 2003). However, as the fertilizer prices are still 

relatively low compared with the energy and chemical cost associated with nitrogen recovery 

technologies, biological nitrogen removal is the most cost-efficient option for wastewaters 

containing up to 5 g N L-1 according to Mulder et al. (2003). In some cases with current 

available technology, nitrogen recovery through ammonia stripping can even be cost 

competitive from 2 g N L-1 on (Menkveld and Broeders, 2015). New approaches such as urine 

separation resulting in very concentrated streams, however, could render recovery more 

efficient (Maurer et al., 2003). 

2. Biological nitrogen removal (BNR) 

2.1. Key functional processes 

In accordance with the natural microbial nitrogen cycle (Figure 1.3), in biological nitrogen 

removal (BNR), four important functional processes are linked to four groups of bacteria 

enabling the transformation of Nr to N2. The oxidation of ammonia (NH3) to nitrite (NO2
-), i.e. 

nitritation (Section 2.1.1) and subsequently nitrate (NO3
-), i.e. nitratation (Section 2.1.2), is 

commonly known as nitrification. Further reduction of NO2
-/NO3

- to N2 is carried out through 

denitrification (Section 2.1.3) or anaerobic ammonium oxidation or anammox (Section 2.1.4).  

 

Nitrate can furthermore also be reduced by the dissimilatory nitrate reduction to ammonium 

or DNRA process. DNRA has been found to be the main nitrate reduction pathway in anaerobic 

digesters and in other methanogenic environments (Percheron et al., 1999), especially when 

high COD/NO3 ratios (> 58) occur (Akunna et al., 1992). No literature is available on DNRA in 

conventional nitrification/denitrification systems, however, as usually lower COD/NO3 ratios 

are present, DNRA is considered negligible in these systems and not discussed further. 
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Figure 1.3 The microbial nitrogen cycle with pathways related to catabolism (dashed arrows) 
and anabolism (full arrows). Oxidation states of the nitrogen compounds are indicated in pink, 
and intermediates are shown between brackets. Adapted from Vlaeminck et al. (2011). 
 
 
 

2.1.1. Nitritation 

Aerobic microbial oxidation of ammonia to nitrite is the first step of nitrification and for 

decades, the ammonium oxidizing bacteria (AOB) were seen as the only protagonists. AOB 

catalyze this catabolic reaction (ΔG°’= -271 kJ mol-1) in two sequential steps (Sayavedra-Soto 

and Arp, 2011). Ammonia is first oxidized to hydroxylamine (NH2OH) with the membrane 

bound enzyme ammonia monooxygenase (AMO). The periplasmatic hydroxylamine 

oxidoreductase (HAO) then oxidizes hydroxylamine to nitrite, hereby providing the two 

reducing equivalents for the first step. The two other produced electrons are used for 

respiratory purposes, i.e. reducing oxygen (O2) by a terminal oxidase, thereby generation a 

proton (H+) motive force. 
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NH3 + O2 + 2 H+ + 2 e- 
              AMO            
→              NH2OH + H2O 

NH2OH + H2O  
             HAO             
→              NO2

- + 5 H+ + 4 e- 

0.5 O2 + 2 H+ + 2 e- 
terminal oxidase
→              H2O  

______________________________________________ 
NH3 + 1.5 O2  

                                    
→             NO2

- + H+ + H2O             (ΔG°’= -271 kJ mol-1) 
 

The fundamental axiom that AOB, belonging to the β-and γ-Proteobacteria, were the only 

protagonists for nitritation was however challenged by the discovery that mesophilic archaea 

have ammonia oxidizing potential. The isolation of the marine aerobic ammonium oxidizing 

archaeon (AOA) Nitrosopumulus maritimus (Könneke et al., 2005), which fall within a novel 

archaeal phylum now known as Thaumarchaeota, broadened the phylogenetic capability of 

aerobic ammonium oxidation and led to a fundamental shift in our view of the nitrogen cycle. 

In particular because archaeal AMO-like gene sequences were found in almost every 

environment on Earth, including oceans, estuaries, soils, and animal gut and they outnumber 

their bacterial counterparts in many habitats, even in some wastewater treatment plants 

(Schleper, 2010; Limpiyakorn et al., 2013). Although ammonia limitation, low dissolved oxygen 

concentrations, pH and mixotrophy have been suggested as factors providing niche 

specialisation and differentiation between AOA and AOB (Hatzenpichler, 2012; Stahl and de la 

Torre, 2012), current data from genomes, cultures, field studies, and microcosms suggest that 

no single factor discriminates between AOA and AOB (Prosser and Nicol, 2012). 

While it is generally accepted that ammonia (NH3) is the actual substrate of AOB, the term 

ammonium (NH4
+) is commonly used instead to refer to AOB activity, as is done throughout 

this thesis. However, it is unclear whether archaeal AMO catalyzes the same reaction as its 

bacterial counterpart. Although characterized AOA produce hydroxylamine as an 

intermediate in the ammonia oxidation pathway (Vajrala et al., 2013), no HAO homologue, 

cytochrome c, or enzymes for the detoxification of NH2OH have been found in any AOA 

genome (Hatzenpichler, 2012). Even though the archaeal pathway is considered unresolved 

at this time, recent studies showing nitric oxide (NO) production during ammonia oxidation, 

suggest that NO may be an intermediate or function as a redox shuttle delivering electrons to 

the AMO (Stahl and de la Torre, 2012; Martens-Habbena et al., 2015). 
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2.1.2. Nitratation 

The second step of nitrification is the oxidation of nitrite to nitrate (ΔG°’= -54 kJ mol-1), 

catalysed by a nitrite oxidoreductase (NXR) delivering two electrons which are transferred to 

oxygen with a terminal oxidase (Starkenburg et al., 2011): 

NO2
- + H2O  

              NXR            
→             NO3

- +  2 H+ + 2 e-  

0.5 O2 + 2 H+ + 2 e- 
terminal oxidase
→              H2O  

______________________________________________ 

NO2
- + 0.5 O2  

                                    
→             NO3

-      (ΔG°’= -54 kJ mol-1) 

 

The majority of the known nitrite oxidizing bacteria (NOB) belong either to the Proteobacteria 

(Nitrobacter (α-), Nitrococcus (γ-), Nitrospina (δ-) and Nitrotoga (β-)) or to the genus Nitrospira 

of the phylum Nitrospirae (Koops and Pommerening-Roser, 2001; Alawi et al., 2007). 

However, recently, a nitrite oxidizing bacterium belonging to the phylum Chloroflexi, 

Nitrolancetus hollandicus, was isolated from a nitrifying reactor (Sorokin et al., 2012). 

Nitrospira related NOB appear to be mostly prevailing in sewage treatment plants (Daims et 

al., 2006). So far, no nitrite oxidizing archaea (NOA) have been discovered yet. 

 

2.1.3. Denitrification 

The denitrification process, comprising the stepwise reduction of nitrate/nitrite to dinitrogen 

gas, can be performed by autotrophic or heterotrophic denitrifiers (Matějů et al., 1992). 

Denitrification by chemolithoautotrophic bacteria using e.g. hydrogen or sulfur as an electron 

donor is successfully used in the treatment of drinking water. In wastewater treatment, 

heterotrophic denitrifying bacteria are mainly used since adequate amounts of carbon are 

usually present. Most denitrifying species are facultative aerobes able to use oxygen in an 

aerobic metabolism, and, in the absence of oxygen, to reduce nitrate in an anoxic metabolism. 

Therefore, the same biomass can be used in a combined aerobic/anoxic process for carbon 

and nitrate removal. Heterotrophic denitrifiers reduce nitrate/nitrite according to the 

following biochemical pathway (Zumft, 1997):   
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NO3
- 

       NAR       
→         NO2

-  
       NIR       
→         NO  

       NOR       
→          N2O  

       NOS       
→         N2 

The enzymes involved in each of these reduction steps are nitrate reductase (NAR), nitrite 

reductase (NIR), nitric oxide reductase (NOR) and nitrous oxide reductase (NOS) with a Gibbs 

free energy of -161, -76, -306 and -340 kJ mol-1. Heterotrophic denitrifiers include some 

archaea and many bacteria spread over the Actinobacteria, the Bacteroidetes, the Firmicutes 

and four of the five subclasses of the Proteobacteria (Zumft, 1997).  

2.1.4. Anammox 

Ammonium and nitrite can anaerobically be converted to dinitrogen gas by the anammox 

process according to the following catabolic reactions (ΔG°’= -358 kJ mol-1) (Strous et al., 1998; 

Strous et al., 2006):  

 

NO2
- + e- + 2 H+  

          NIR        
→          NO + H2O 

NH4
+ + NO + 3 e- + 2 H+  

          HH          
→          N2H4 + H2O  

N2H4   
 

          HAO         
→           N2 +  4 H+ + 4 e-  

______________________________________________ 
NO2

- + NH4
+

   

                           
→          N2 + H2O  

 
 

Nitrite is first reduced to nitric oxide by a nitrite reductase (NIR), which is subsequently 

combined with ammonium to hydrazine (N2H4) by a hydrazine hydrolase (HH). Finally, a 

hydroxylamine oxidoreductase (HAO) like enzyme oxidizes hydrazine to dinitrogen gas.  

Nitrate is produced during anabolism (Table 1.1), since nitrite oxidation is thought to generate 

reducing equivalents for carbon dioxide fixation (van de Graaf et al., 1996). 

 

Anaerobic ammonium oxidizing bacteria (AnAOB) are exclusively monophyletic members of 

the phylum Planctomycetes (Strous et al., 1999). 



 

 

Table 1.1 Overall stoichiometry of the four key functional processes (nitritation, nitratation, anammox and denitrification) as well as the 
combinations conventionally applied in biological nitrogen removal (N/DN, Nit/DeNit and PN/A) (Vlaeminck, 2009). 

Process Number Sub 
reaction 

Stoichiometry 

Nitritation  1 Substrates 
Products 

NH4
+ + 1.382 O2 + 0.091 HCO3

- 
0.982 NO2

- + 1.891 H+ + 0.091 CH1.4O0.5N0.2 + 1.36 H2O 
 

Nitratation 2 Substrates 
Products 

NO2
- + 0.488 O2 + 0.003 NH4

+ + 0.013 HCO3
- 

NO3
- + 0.013 CH1.4O0.5N0.2 + 0.008 H2O 

 

Anammox 3 Substrates 
Products 

NH4
+ + 1.32 NO2

- + 0.066 HCO3
- + 0.13 H+ 

1.02 N2 + 0.26 NO3
- + 0.066 CH2O0.5N0.15 + 2.03 H2O 

 

Denitrification 4 Substrates 
Products 

NO3
- + 1.080 CH3OH 

0.476 N2 + OH- + 0.760 CO2 + 0.325 CH1.4O0.5N0.2 + 1.440 H2O 
 

Denitritation 5 Substrates 
Products 

NO2
- + 0.53 CH3OH 

0.48 N2 + OH- + 0.33 CO2 + 0.20 CH1.4O0.5N0.2 + 0.56 H2O 

Nitrification/Denitrification 
(N/DN) 

1+2+4 Substrates 
Products 

NH4
+ + 1.856 O2 + 1.058 CH3OH 

0.457 N2 + 1.010 H+ + 0.641 CO2 + 0.421 CH1.4O0.5N0.2 + 2.349 H2O 
 

Nitritation/Denitritation 
(Nit/DeNit) 

1+5 Substrates 
Products 

NH4
+ + 1.382 O2 + 0.52 CH3OH 

0.47 N2 + 0.998 H+ + 0.235 CO2 + 0.287 CH1.4O0.5N0.2 + 2.349 H2O 
 

Partial nitritation/Anammox 
(PN/A) 

1+3 Substrates 
Products 

NH4
+ + 0.792 O2 + 0.080 HCO3

- 
0.435 N2 + 1.029 H+ + 0.111 NO3

- + 0.052 CH1.4O0.5N0.2 + 0.028 CH2O0.5N0.15  
+ 1.460 H2O 
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2.2. Different process configurations 

2.2.1. Conventional nitrogen removal 

Conventional BNR is based on the combination of autotrophic nitrification  and heterotrophic 

denitrification (N/DN). The overall stoichiometry of the separate functional microbial 

processes, as separately discussed in sections 2.1.1-2.1.3, and the commonly applied 

combinations in BNR are presented in Table 1.1. Typical mesophilic specific nitrification and 

denitrification rates in conventional activated sludge systems are in the order of magnitude of 

0.025 and 0.25 g N g-1 VSS d-1, respectively (Henze et al., 2008). Dedicated 

nitrification/denitrification reactors on concentrated nitrogen streams can however reach 

considerable higher rates of e.g. 230 and 1000 mg N g-1 VSS d-1 for nitrification and 

denitrification, respectively (Fux et al., 2003). As nitrification and denitrification are performed 

under different conditions and by different microorganisms, the processes have to be 

separated in time or space to function effectively. An overview of the different established 

N/DN process configurations, operated as one- or two stage systems are presented in Table 

1.2. and described below (Henze et al., 2008; Zhu et al., 2008).  

Table 1.2 Overview of the different conventional nitrification/denitrification (N/DN) process 
configurations (Henze et al., 2008; Zhu et al., 2008).  

Process N/DN separation Stages 

Post-denitrification Space 2 

Pre-denitrification  

     = modified Ludzack-Ettinger (MLE) system 

Space 2 

Bio-denitro Space 2 

Bardenpho system Space 4 

Step feeding Space >2 

Simultaneous N/DN  Space/Time 1 

Sequential batch reactor Time 1 

If separated in space, the position of the anoxic zone in the biological reactor significantly 

affects the denitrifying performance. In the simplest method, the post-denitrification system, 

the first reactor is aerobic and the second anoxic. Complete nitrification as well as oxidation 
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of biodegradable organics occur in the first reactor, while denitrification occurs in the second. 

However, often an additional external carbon source is needed to achieve complete 

denitrification. Utilization of the influent organics as carbon source for denitrification can be 

achieved with a pre-denitrification system, including recycling of the nitrate rich effluent of 

the aerobic nitrification reactor to the anoxic reactor. In order to overcome the deficiency of 

incomplete nitrate removal in the standard 2 stage pre-denitrification system, the 4-stage 

Bardenpho system was proposed, including a secondary anoxic reactor and a reaeration 

reactor. The need of large reactor volumes can however be avoided by alternative processes 

such as the Bio-denitro process, where in general two tanks working in an alternating mode 

of operation, or a step feeding process, where wastewater is introduced to several points 

along the aeration basin.  

In a one stage system, nitrification and denitrification can be both separated in space or in 

time. In simultaneous N/DN systems (e.g. an oxidation ditch), a natural separation of nitrifiers 

and denitrifiers occurs as a result of the slow oxygen diffusion in sludge flocs. Nitrifiers located 

on the outside of the floc scavenge the oxygen and nitrate formed diffuses together with 

soluble organics inside the floc, supporting denitrification in the anoxic core. As aeration in 

those systems is usually controlled by nitrate sensors, also a separation in time is provided. 

Similarly, in a sequential batch reactor (SBR) both processes are separated in time by applying 

different aeration and non-aeration phases in the same reactor. It had to be noted however 

that in practice the separation of aerobic/anoxic processes is not straight forward as there are 

space limitations in mixing. This can result in locally different conditions as anoxic zones in 

aerobic phases and vice versa.  

2.2.2. Shortcut nitrogen removal 

Shortcut biological nitrogen removal refers to two processes that convert ammonia to 

nitrogen gas via nitrite: nitritation/denitritation (Nit/DeNit) and partial nitritation/anammox. 

Nit/DeNit halts the oxidation step at nitrite and denitrifies nitrite directly to nitrogen gas. 

Partial nitritation/anammox is the process where half of the ammonia is oxidized to nitrite 

combined with oxidation of the remaining ammonia using nitrite as electron acceptor via the 
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anammox reaction. These processes not only reduce the aeration demand, but also the carbon 

requirement and the sludge production. 

Preventing the oxidation of nitrite to nitrate, thus the suppression of NOB, is the critical factor 

for successful short-cut nitrogen removal and can be achieved by several control strategies. 

The higher affinity of AOB for oxygen compared with NOB leads to out-competition of NOB 

and thus nitrite accumulation at low dissolved oxygen (DO) concentrations at side stream 

conditions (1-1.5 mg L-1) (Blackburne et al., 2008). In other cases, however, the effect of DO 

on the AOB/NOB balance may be different as recently shown for mainstream conditions 

(Regmi et al., 2014). Maximum growth rates of AOB and NOB species vary with temperature. 

Elevated temperatures (> 20°C) not only promotes the growth of certain AOB species but can 

also expand the growth rate differences between certain AOB and NOB species (Balmelle et 

al., 1992) and so, eventually, enable NOB washout by imposing a low sludge retention time 

(SRT) (Hellinga et al., 1998). Furthermore intermittent aeration patterns are known to 

outcompete NOB due to the NOB lag phase after the anoxic period (Yoo et al., 1999; Kornaros 

et al., 2010; Gilbert et al., 2014b) and elevated free ammonia (FA)/free nitrous acid (FNA) 

concentrations (Anthonisen et al., 1976) were found to selectively inhibit NOB.  

For a successful parital nitritation/anammox, it is also crucial to sustain the growth of the slow 

growing anammox bacteria in the system. As the doubling time of denitrifiers is about 100 

times shorter than the doubling time of the anammox bacteria, they might be outcompeted 

if too much organic carbon is present (biodegradable COD (bCOD)/N > 3), hereby limiting the 

PN/A application area (Lackner et al., 2008). The advantages compared with N/DN systems (1) 

no requirement of external carbon source, (2) 60% lower aeration demand and (3) 75% lower 

sludge production already resulted in about 100 full scale installations until 2014 (Lackner et 

al., 2014).  
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3. Thermophilic biological nitrogen removal 

As stated in textbooks, it is common knowledge that opposed to other biological processes in 

wastewater treatment, thermophilic nitrification above 40°C is not possible (Figure 1.4) 

(Henze et al., 1997). Investigation of nitrification and denitrification in activated sludge was 

thus mainly focused within the temperature range of 5-35°C (Dawson and Murphy, 1972; 

Painter and Loveless, 1983; Shammas, 1986; Antoniou et al., 1990). Even during the last two 

decades, only 1.8% of the publications concerning BNR appear to investigate nitrogen removal 

in the thermophilic range (Web of Science search based on the keywords ‘biological nitrogen 

removal’ and ‘thermophilic’, 2015). However, different microbes performing one step in the 

thermophilic nitrogen cycle (e.g. AOA and NOB) were previously separately isolated or 

enriched from oligotrophic samples such as hot springs and hydrothermal vents, representing 

a hidden treasure of natural resources (See section 3.3). Although thermophilic carbon 

treatment already pointed out several advantages (See section 3.2), the transposition 

capability into useful communities for biotechnological applications was however still 

unexplored and were investigated in this thesis.  

 

Figure 1.4 Nitrification as a function of temperature. Adapted from Henze et al. (1997)   
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3.1. Life at high temperature 

Thermophiles are commonly defined as organisms living within a temperature range of 50-

60°C (Brock, 1986). Limits are however not well defined and from a wastewater treatment 

perspective, temperatures above 45°C are widely accepted to determine thermophilic 

conditions (Lapara and Alleman, 1999). The upper temperature limit of microbes is mainly 

governed by molecular instability and hydrothermal decomposition of the standard high-

molecular weight components of the cell: nucleic acids (section 3.1.1), proteins (section 3.2.1), 

lipids and other compounds used to build up membranes (section 3.1.3) (Jaenicke and Sterner, 

2006).  

3.1.1. Nucleic acids 

Elevated temperatures induce either strand separation (‘melting’, Tm) of nucleic acids and 

chemical damage of the nucleotide constituents or, at the extreme, breakage of backbone 

phosphodiester bonds (Grogan, 1998; Daniel and Cowan, 2000). The guanine-cytosine (GC) 

pair in nucleic acids is bound by three hydrogen bonds while the adenine-thymine (AT) pairs 

are bound by two hydrogen bonds. Hence, Tm of DNA and RNA is known to increase with 

increased G+C content and could thus be a possible adaptation mechanism to thermophilic 

conditions. A strong positive correlation between the optimum growth temperatures of 

prokaryotes and the G+C content of tRNAs/rRNAs was observed (Galtier and Lobry, 1997). The 

genomic DNA is however not correlated with the growth temperature. In contrary, the G+C 

content of some of the most hyperthermophilic archaea revealed to be remarkably low (31 

mol%) and an average of 45 mol% for all known (hyper)thermophilic bacteria and archaea was 

described (Stetter, 1996; Grogan, 1998). Additional extrinsic factors such small metabolites 

(polyamines), proteins or salts are thus necessary to stabilize the DNA double helix. High salt 

concentrations (e.g. Mg2+- and Na+-salts) namely mask the destabilizing charge repulsion 

between the two negatively charged phosphodiester backbones hereby increasing the base-

interaction strength. 
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3.1.2. Proteins 

The biochemical limit of viability of water-soluble proteins is around 130-140°C (Jaenicke and 

Sterner, 2006). Natural amino acids decompose hydrothermally and the solvent properties of 

water change with increasing temperature. As a consequence, the differences between polar 

and non-polar residues is masked, thus interfering with the ‘hydrophobic collapse’ as the 

initial step of protein folding. An increased intrinsic stability can be obtained by additional 

stabilizing intra- and intermolecular interactions. Ion pairs, hydrogen bonds, and disulphide 

bonds stabilize proteins, occurring from primary to quaternary structure of proteins. 

Generally, (hyper)thermophilic proteins are known to (1) show a decreased content of 

uncharged polar amino acids, (2) contain an increased content of charged amino acids, being 

involved in stabilizing ion pairs at the protein surface and (3) are on average significantly 

smaller than the mesophilic homologues (Jaenicke and Sterner, 2006).  

Beside the increased intrinsic stability of proteins at higher temperature, extrinsic stabilizing 

mechanisms such as ligand binding and crowding, but more important, preferential solvation 

in the presence of high concentrations of compatible solutes and the actions of ‘molecular 

chaperones’ play a crucial role. Compatible solutes are small organic solutes that many 

organisms accumulate in response to different stress conditions, but do not compromise any 

cellular functions (e.g. amino acids, sugars, polyols, methylamines) (Santos and da Costa, 

2002). Stabilizing compounds are preferentially excluded from the protein surface as the 

protein has a higher affinity for water than for those solutes. Consequently, the proteins are 

preferentially hydrated, favouring the native state and makes unfolding more difficult. Beside 

compatible solutes, molecular chaperones play a crucial role in stabilisation of thermophilic 

proteins, better known as heat-shock proteins (HSP). They are omnipresent in the cell and can 

be defined as ‘any protein that transiently interacts with/stabilizes an unstable conformer of 

another protein, facilitating its folding, assembly and interaction with other cellular 

components, as well as its intracellular transport or proteolytic degradation’ (Leroux and Hartl, 

2000).   
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3.1.3. Lipids and membranes 

The cell membrane is a barrier between the cytosol and environment consisting of lipid layers 

with embedded proteins that generate specific and vital solute concentration gradients over 

the membrane. Active transport mechanisms or passive diffusion helps the penetration of 

small solutes across the membrane. As passive diffusion is accelerated with increasing 

temperature, thermophilic membranes do not only have to be thermostable, but do require 

specific mechanisms to limit the permeability of ions, especially of protons, because of the 

essential role of proton gradients in ATP synthesis. This is also known as the ‘homeoproton 

permeability adaptation’ (van de Vossenberg et al., 1995). 

In contrast with nucleic acids and proteins, where the thermophilic cells consist of the same 

building block as mesophilic cells, a clear difference in chemical composition of 

lipids/membranes can be observed (Table 1.3, Figure 1.5). Generally, the cell membrane is 

composed of inner and outer hydrophilic surfaces (polar head groups) enclosing a 

hydrophobic interior (long hydrophobic chains). All bacterial lipids are composed of esters 

between glycerol and fatty acid chains, whereas archaeal lipids are composed of ethers 

between glycerol (or another alcohol) and branched C20-hydrocarbon sidechains (Schouten et 

al., 2013).  

 

Table 1.3. Overview of fundamental difference in the chemical composition of lipids and 
membranes of bacteria and (thermophilic) archaea. 

 Lipid type Glycerol Side chain membrane 

Bacteria glycerol fatty acyl diesters 1 Fatty acid Bilayer 

Archaea diphytanylglycerol diether  

 = archaeol 

1 C20-hydrocarbon Bilayer 

Thermophilic 

archaea 

dibiphytanylglycerol tetraether 

= caldarchaeol 

2 C20-hydrocarbon* Monolayer 

* possibly modified with cyclopentane rings 
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Figure 1.5. The basic chemical structures of archaeal (left) and bacterial (right) membrane 
lipids. Examples of intact membrane structures used by archaea (left) and bacteria (right) are 
shown below, including the monolayers that are produced by some archaea and the highly 
unsaturated membranes produced by some bacteria. The arrow (bottom) indicates a general 
trend of increasing permeability to ions such as protons and sodium. (Valentine, 2007). 
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The hydrocarbon chains within archaeal lipids consist of repeated isoprenoid units with a 

methyl group at every 4th carbon atom in the backbone, hereby restricting the mobility of the 

chains and so, stabilizing them and restricting ion permeability. The side chains can be either 

ether-linked with one glycerol unit (archaeol) as found in all archaea or with two glycerol units 

(caldarchaeol), only found in thermophilic archaea (Table 1.3). Caldarchaeols can furthermore 

be modified with cyclopentane rings in the side chains, together with the ether bonds, being 

crucial for ensuring the low ion permeability at high temperatures (Jaenicke and Sterner, 

2006). Caldarchaeols moreover form monolayers that, in contrast with the typical bilayer 

structure of bacterial membranes, result in smaller diameters and are much more stable due 

to their covalent character. A relevant example of a thermophilic archaeal membrane 

compound is crenarchaeol, dominating the membrane lipids of the ammonium oxidizing 

archaea (AOA) Candidatus Nitrososphaera gargensis (Figure 1.6) (Pitcher et al., 2010). 

 

Figure 1.6. Molecular structure of Crenarchaeol, a dibiphytanylglycerol tetraether, the main 
membrane lipid component of the of the AOA Candidatus Nitrososphaera gargensis (Pitcher 
et al., 2010). 

Beside the intrinsic differences, both bacteria and archaea can adjust the chemical 

composition of their membranes in function of temperature fluctuations, ensuring constant 

stability and permeability. Archaea respond to elevated temperatures by increasing the 

degree of saturation, cyclization of the side chains and by replacing diether to tetratether 

lipids. Bacteria act by increasing the average length of the lipid acyl side chains, the degree of 

saturation and the ratio of iso/anteiso branched fatty acids (Koga, 2012).  
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3.2. Thermophilic carbon treatment 

3.2.1. Thermophilic aerobic treatment 

The first aerobic thermophilic biological treatments, referred to as ‘fluidized composters’, 

emerged from the composting process, commonly used to treat moist organic solids (Rozich 

and Bordacs, 2002). In the autothermal thermophilic aerobic digestion (ATAD) process, the 

microbial mediated breakdown of organics results in a heat release of sufficient magnitude to 

maintain reactor temperatures of 45-65°C. The ATAD process initially evolved from a 

pasteurization process for sewage sludge and animal slurries as it produces a biologically 

stable product suitable for disposal in the environment (Layden et al., 2007). Full scale ATAD 

processes have been in operation since 1977, particularly in Canada and the United States 

(Layden et al., 2007). Beside the ATAD process for ‘aerobic digestion’ of sludge, thermophilic 

aerobic wastewater treatment for the treatment of industrial wastewaters (pulp and paper, 

brewery, slaughterhouse,…) has extensively been studied in laboratory and pilot-scale 

reactors and a few full scale plants (Suvilampi and Rintala, 2003).  

As predicted by the van’t Hoff-Arrhenius equation, thermophilic biodegradation rates are 

higher compared with mesophilic rates. Thermophilic aerobic processes are consequently 

known to operate under markedly high loading rates up to 25 kg COD m-3 d-1, decreasing the 

required reactor volume and reducing the construction costs. Elevated biodegradation rates 

allow rapid recovery from reactor failing conditions hereby improving process stability 

(Lapara and Alleman, 1999). Furthermore, the sludge yield is generally accepted to be lower 

at thermophilic compared with mesophilic conditions (Suvilampi et al., 2006). 

The settling of small particles (e.g. free bacteria) should theoretically be enhanced with 

increasing temperatures due to lower water viscosity (Schwarzenbach et al., 2005). However, 

the common opinion is that thermophilic aerobic processes suffer from poor sludge settling 

properties due to a poor floc formation at high temperatures (Suvilampi et al., 2006).   
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3.2.1. Thermophilic anaerobic digestion 

Similar with the ATAD process, anaerobic digestion (AD) has historically mainly been 

associated with the treatment of animal manure and sewage sludge as a 

hygienization/stabilization practice prior to land application. However, increased 

environmental awareness together with the demand for renewable energy and new waste 

management strategies, have broadened the application domain of AD. In AD, organic 

material is converted to biogas (mainly methane and carbon dioxide), that can be converted 

to heat and electrical energy by a combined heat and power (CHP) unit. This resulted in a 

tripling of the gross green power production in Flanders (Belgium) from various biogas 

technologies over the 5 last years (De Geest et al., 2012).  

Although most of the installed anaerobic digesters until now are mesophilic, thermophilic 

(55°C) AD is gaining more attention. Thermophilic AD shows a higher reduction of pathogens 

and can achieve higher loading rates compared with mesophilic AD (De la Rubia et al., 2013). 

Higher biogas production rates and higher volatile solids reduction can be achieved. However 

also higher toxic, free ammonia concentrations and accumulation of volatile fatty acids were 

observed and if a lot of energy is needed for heating, thermophilic AD might be energetically 

less favourable.  
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3.3. Thermophilic nitrogen converting microorganisms 

Thermophilic microorganisms, including nitrogen-converting species, are considered the 

pioneers of life on our planet (Nisbet and Sleep, 2001). Nitrogenase, which after Rubisco is the 

next most important enzyme, consists of an iron protein and a molybdenum–iron protein 

including sulfur. The presence of molybdenum, iron and sulfur suggest a hydrothermal 

heritage (Nisbet and Sleep, 2001). The recent discovery of thermophilic AOA and NOB 

(sections 3.3.1 and 3.3.2), and the detection of anammox sequences in thermophilic 

environments (section 3.3.4), show that even nowadays, thermophilic nitrogen cycling might 

be crucial for hydrothermal and geothermal life. 

3.3.1. Nitritation 

An overview of the different ammonium oxidizing strains isolated from thermophilic 

environments is presented in Table 1.4. Beside a morphological observation of Nitrosomonas 

at 50°C (Golovacheva, 1976) and the isolation of some thermophilic heterotrophic AOB (Table 

1.4), thus far, only one thermophilic autotrophic AOB was isolated and characterized. It was 

isolated from activated sludge in a thermal power station, is related to Nitrosomonas nitrosa, 

and has a ‘moderately’ thermophilic optimum temperature (42°C) (Itoh et al., 2013). 

Autotrophic ammonium oxidation at higher temperatures seems to be dominated by AOA. 

Four thermophilic AOA isolations/enrichments are described so far (Table 1.4), of which 

“Candidatus Nitrosocaldus yellowstonii”, enriched from a Yellowstone hot spring, oxidizes 

ammonium at the highest temperature (74°C) (de la Torre et al., 2008). The difficulty of 

cultivating the slow growing AOA at elevated temperature under laboratory conditions 

resulted in low number of enrichments. However, many archaeal ammonia monooxygenase 

(amoA) genes have been detected in high-temperature habitats such as deep-sea 

hydrothermal vents (Wang et al., 2009b; Baker et al., 2012), subsurface thermal springs (Spear 

et al., 2007; Weidler et al., 2008) and terrestrial hot springs (Reigstad et al., 2008; Dodsworth 

et al., 2011). In addition to these oligotrophic ecosystems, the amoA gene was also measured 

in nutrient-rich high-temperature engineered environments such as petroleum reservoirs (Li 

et al., 2011) and composting facilities (Zeng et al., 2011). 



  

 

Table 1.4 Overview of the thermophilic ammonium oxidizing strains isolated from thermophilic environments. Het: heterotrophic. n.d.: not 
determined.  

 

Micro-

organism 
Strain 

Topt 

(°C) 

Tmax 

(°C) 
Origin Reference 

AOB Nitrosomonas sp. JPCCT2 42 48 
activated sludge  

(thermal power station) 
(Itoh et al., 2013) 

Het AOB Bacillus sp. strain T3 50 n.d. 
compost  

(cattle manure) 
(Shimaya and Hashimoto, 2011) 

Het AOB Bacillus sp. and Thermus sp. 65 75 
hydrothermal vent  

(Mid-Atlantic Ridge) 
(Mevel and Prieur, 1998) 

AOA Nitrosospaera viennensis strain EN76 42 47 
garden soil 

 (Vienna, Austria) 
(Tourna et al., 2011) 

AOA “Candidatus Nitrososphaera gargensis” 46 50 
hot spring sediment  

(Baikal rift zone, Russia) 
(Hatzenpichler et al., 2008) 

AOA “Candidatus Nitrosotenuis uzonensis” 46 52 
hot spring sediment  

(Kamchatka, Russia) 
(Lebedeva et al., 2013) 

AOA “Candidatus Nitrosocaldus yellowstonii” 72 74 
hot spring sediment  

(Yellowstone, USA) 
(de la Torre et al., 2008) 
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3.3.2. Nitratation 

Nitrospira spp. are the most dominant nitrite oxidizers up to 60°C. Nitrospira calida was 

isolated from a microbial mat of a terrestrial geothermal spring and maximally oxidizes nitrite 

at 46-52°C (Lebedeva et al., 2011). Thus far, other detected/enriched NOB from geothermal 

springs are all closely related with Nitrospira calida (Marks et al., 2012; Edwards et al., 2013). 

The recently discovered Nitrolancetus hollandicus belonging to the phylum Chloroflexi is 

considered a thermotolerant nitrite oxidizer with a maximum growth temperature of 46°C, 

and nitrite oxidizing activity up to 63°C (Sorokin et al., 2012). 

3.3.3. Denitrification 

In contrast with the relative recent discovery of thermophilic nitrifying micro-organisms, the 

first thermophilic denitrifying bacteria was isolated in 1913, originally named 

Denitrobacterium thermophilum (Ambroz, 1913), later renamed as Bacillus thermo-

denitrificans and then reclassified as Geobacillus thermodenitrificans (Coorevits et al., 2012). 

The majority of the described thermophilic denitrifiers belong to the Geobacillus lineage, of 

which most of the known are presented in Table 1.5. Beside these Gram positive, spore 

forming Geobacilli, also archaea and non-spore forming bacteria such as Thermus 

thermophiles are known to denitrify under thermophilic conditions (Table 1.5) (Oshima and 

Imahori, 1974; Cabello et al., 2004). 

3.3.4. Anammox 

The maximum temperature at which anammox growth was observed is 43°C (Strous et al., 

1999). Although anammox enrichments at thermophilic temperatures did not succeed so far 

(Itoh et al., 2013), the presence of anammox has been reported in different high temperature 

environments. Amplification of 16S rRNA gene sequences related to known anammox 

bacteria, ladderanes lipids analysis and isotope experiments showed the occurrence of 

anammox in deep-sea hydrothermal vents (Byrne et al., 2009), hot springs (Jaeschke et al., 

2009) and high temperature petroleum reservoirs (Li et al., 2010).



 

 

 Table 1.5 Examples of different thermophilic denitrifying bacteria and archaea isolated from thermophilic environments. red: reduction 

 
Strain 

NO3
-  

red 

NO2
- 

red 

Topt 

(°C) 

Tmax 

(°C) 
Origin Reference 

Bacteria        

 Geobacillus thermodenitrificans  + + 55 70 soil (Manachini et al., 2000; Nazina et al., 2001) 

 Geobacillus stearothermophilus + + 60 80 soil (Ho et al., 1993; Nazina et al., 2001) 

 Geobacillus thermoglucosidasius + - 62 69 soil  (Suzuki et al., 1983; Nazina et al., 2001) 

 Geobacillus uzenensis. + - 55 65 oilfield (Nazina et al., 2001) 

 Geobacillus subterraneus + + 58 70 oilfield  (Nazina et al., 2001) 

 Geobacillus toebii + + 60 70 hay compost (Sung et al., 2002) 

 Anoxybacillus pushchinensis + + 55 65 manure amended soil  (Yamamoto et al., 2006) 

 Thermus thermophilus  + - 65 85 thermal water  (Oshima and Imahori, 1974) 

 Hydrogenobacter thermophiles  + + 70 75 thermal water  (Suzuki et al., 2001) 

 Petrobacter succinatimandens + - 50 60 oil well  (Salinas et al., 2004) 

Archaea        

 Pyrobaculum aerophilum + + 100 102 boiling marine water hole (Volkl et al., 1993) 

 Haloarcula marismortui + + 45 50 Dead sea (Oren et al., 1990) 

 Haloferax denitrificans + + 50 55 salt lake (Tomlinson et al., 1986) 
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3.4. Thermophilic nitrogen biotechnology 

Different nitrogen containing warm wastewater streams could potentially be treated with 

thermophilic nitrogen removal: domestic wastewater in tropical regions with high seasonal 

temperatures, industrial wastewaters from e.g. steel industry and fertilizer industry  and 

thermophilic digestates (e.g. sludge, biorefinery (Agler et al., 2008)). However, thermophilic 

nitrogen biotechnology is an unexplored territory. So far, four studies focused on the 

biological nitrogen removal performance at thermophilic temperatures, of which half of them 

only investigated the short-term effect of elevated temperatures on nitrification (N) or 

denitrification (DN). Both, nitrifying as well as denitrifying activity was measured up to 50°C in 

short-term (hours) batch activity tests in activated sludge from an oil refinery (Lopez-Vazquez 

et al., 2013) and manure treatment plant, respectively (Willers et al., 1998). These short-term 

tests only clarify the effect of temperature on the intrinsic N or DN rate, while long term 

exposure to thermophilic conditions can induce a loss of N/DN capacity due to biomass decay. 

However, the mesophilic population may adapt to high temperatures after long-term 

exposure. 

Shore et al. (2012) investigated the temperature transition of two nitrifying moving bed 

biofilm reactors (MBBR) at 30°C to 40°C and 45°C, respectively. The temperature increase to 

40°C initially inhibited nitrification in the MBBR, but recovered within four weeks reaching a 

maximum nitrification rate of 144 mg N L−1 d−1. At 45°C, however, no nitrification could be 

achieved. In contrast with the relatively low maximum reactor temperature of 40°C for 

nitrification, a denitrifying upflow sludge blanket (USB) reactor was described at 55°C (Laurino 

and Sineriz, 1991). The USB reactor was inoculated with thermal mud originating from a hot 

spring and started-up in batch mode for 15 days. After switching to continuous mode, a 

maximum nitrogen removal rate of 1317 mg N L-1 d-1 with a nitrate removal efficiency of 78.4% 

was observed.  

Beside these two research articles focusing on N/DN at elevated reactor temperatures, 

thermophilic nitrogen removal has mainly been investigated as a part of studies focusing on 

thermophilic activated sludge. As the main goal in those studies was the oxidation of organic 

material, the exact fate of nitrogen in these thermophilic systems remained unclear in most 
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cases. Limited data with regard to the nitrogen balance is available but the main nitrogen 

removal mechanisms are assumed to be ammonia stripping and nitrogen assimilation into 

biomass (Table 1.6). The detection of nitrous oxide (N2O) in the gas phase of a lab-scale aerobic 

thermophilic bioreactor treating swine waste suggests that nitrogen was partially removed by 

biological nitrogen conversion. Nitrous oxide is a well-known intermediate of the (anoxic) 

denitrification process (see section 2.1.3), but can also be formed by autotrophic nitrifiers 

during nitrification or ‘nitrifier denitrification’ (Wrage et al., 2001). However, as neither nitrite 

nor nitrate were ever measured in thermophilic aerobic bioreactors, there is no evidence that 

nitrification took place in these thermophilic systems (Juteau, 2006). 

 

 

Table 1.6 Reported nitrogen balances in different aerobic thermophilic reactor studies. n.d.: 
not determined. * not measured (estimated in the respective study through calculation of the 
nitrogen balance) 

Influent   Nitrogen mass balance (% N) Reference 

Type mg N L-1 

(g COD/ 

g N) 

T 

(°C) 

Effluent Bio-

mass 

NH3 N2O N2  

Industrial  1817 

(9.2) 

45 21 13 66* n.d. n.d. (Kurian et al., 2005) 

Pig waste 4680 

(7.5) 

50 40 4.8 35 20 n.d. (Yi et al., 2003) 

Pig waste  4718 

(7.4) 

60 34 n.d. 28 9 29 (Lee et al., 2004) 

Synthetic  765 

(14.6) 

60 46 9 28* n.d. 17* (Abeynayaka and 

Visvanathan, 2011a) 

Synthetic  320 

(14.7) 

60 64 5 24* n.d. 7* (Abeynayaka and 

Visvanathan, 2011b) 
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Although ammonia stripping is assumed to be the main nitrogen removal mechanism in 

current warm streams, according to Table 1.6, still 21-64% of the ammonium remains in the 

effluent and needs further treatment. Ammonia stripping efficiencies can be increased with 

caustic dosage with current dedicated technologies up to 85-90% (Menkveld and Broeders, 

2015). Though, depending on the nitrogen discharge limits, a biological nitrogen removal is 

needed as it can achieve removal efficiencies > 95%. The cost effectiveness of nitrogen 

recovery through ammonia stripping furthermore mainly depends on the ammonium 

concentration in the influent (> 2-5 g N L-1), scale of the installation, and the local value and 

market for ammonium sulphate. Although some streams are eventually enough concentrated 

(Table 1.6), it thus not always make sense to recover depending on the discharge limits and 

ammonium sulphate market and so, thermophilic nitrogen removal is needed. 
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4. Objectives and outline of this research 

Thermophilic nitrogen cycling microorganisms were separately isolated, enriched or detected, 

representing a hidden treasure of natural resources. The transposition capability into useful, 

biotechnological communities for wastewater treatment is however still unexplored. 

Therefore, four research chapters were elaborated in this work to develop thermophilic 

nitrogen removal processes (Figure 1.7).  
 

 

Figure 1.7. A graphical overview of the different research chapters 
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As nitrification is known as the most sensitive- and rate limiting step in conventional biological 

nitrogen removal, this research focused on development strategies for thermophilic 

nitrification. Three research papers were elaborated with two fundamentally different 

strategies to achieve thermophilic nitrification. The first strategy involved the transition of an 

established mesophilic nitrifying community to elevated temperatures (Chapter 2 and 3), 

whereas the second strategy involved the selective enrichment of thermophilic nitrifiers from 

natural thermophilic environments (Chapter 4).  

Thermophiles have faster growth rates than mesophiles, however, due to even higher 

maintenance energy and decay rates, this results in lower net microbial growth (Lapara and 

Alleman, 1999). The low sludge growth suggest that long adaptation/acclimatization periods 

will be necessary to achieve thermophilic nitrogen removal. This PhD research therefore 

developed strategies to shorten down the adaptation period, mainly by the use of a pre-

exposure to stress. Pre-exposure to a certain stress can in some cases namely result in an 

increased resistance towards this, or another, subsequent stress (Fletcher and Csonka, 1998; 

Philippot et al., 2008). With regard to an increasing temperature stress in this case, heat-shock 

proteins (HSP) are known to play a crucial role (Jaenicke and Sterner, 2006). Interestingly, 

beside a temperature shock, HSP production and subsequent heat-shock response can also be 

induced by osmotic stress (Feder and Hofmann, 1999). Therefore both salt stress (Chapter 2) 

and temperature stress (Chapter 3), in the form of a temperature oscillation, was evaluated 

to facilitate the transition process. The low sludge growth furthermore suggest the need of a 

good biomass retention and was investigated through the implementation of different sludge 

growth modes (Chapter 3). 

 

 Chapter 2: Salt stress was anticipated to improve the thermo-elasticity of the mesophilic 

sludge. Short term batch tests evaluated different salt concentrations at different 

temperatures and for different sludge types. The use of salt amendment as a tool to 

achieve more efficient temperature transitions for mesophilic sludge was subsequently 

investigated in a long term reactor subjected to a stepwise temperature increase. 
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 Chapter 3: The thermo-elasticity of a suspended growth reactor system was evaluated for 

an oscillating and gradual temperature increase, in which it was compared with a biofilm 

based system. The adaptive capacities were closely monitored with parallel batch activity 

tests and the abundance of key nitrifiers was followed over time. 

 

 Chapter 4: Samples from composting facilities were used as inocula for the batch-wise 

enrichment of thermophilic (50°C) nitrifying communities. The objective of this research 

was to assess the biotechnological potential of this nitrifying enrichment in a continuous 

bioreactor and to provide a phylogenetic, physiological and morphological 

characterization of the nitrifying community. 

 

In the second part of this work, thermophilic denitrification was extensively compared with 

mesophilic denitrification (Chapter 5).  

 Chapter 5: This chapter assessed the start-up of a thermophilic denitrifying reactor (55°C) 

in continuous mode with a mesophilic inoculum (26°C). Reactor performance, sludge 

characteristics and microbial community were compared with a mesophilic denitrifying 

reactor (34°C) for different feeding periods ranging from synthetic to real wastewater. 

In a final general discussion the main results are discussed, after which future perspectives 

and research suggestions are proposed, followed by an overall conclusion (Chapter 6).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 2:  

INCREASED SALINITY IMPROVES THE THERMOTOLERANCE 

OF MESOPHILIC NITRIFICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter has been redrafted after: 

Courtens, E.N.P., Boon, N., De Schryver, P. & Vlaeminck S.E. 2014. Increased salinity 

increases the thermotolerance of mesophilic nitrification. Applied Microbiology and 

Biotechnology, 98(10), 4691-4699.
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1. Introduction 

The adaptive capacities of microbial communities to changing temperatures have been 

described, for instance for activated sludge systems (Suvilampi and Rintala, 2003). 

Acclimatization periods are mostly needed, but some factors can improve resistance to higher 

temperatures. In food preservation for example, high osmolarity induced an increased 

thermotolerance in Salmonella (Fletcher and Csonka, 1998). As a response to osmotic stress, 

microorganisms accumulate osmoprotectants. The role of those compatible solutes can also 

protect the cell or cell components from other environmental constraints such as freezing, 

desiccation, oxygen radicals, and high temperature (Welsh, 2000). These findings suggest that, 

although a salt shock is known to inhibit both AerAOB and NOB (Moussa et al., 2006), the 

associated induction of compatible solutes may also help nitrifiers to maintain their activity at 

higher temperatures. 

This study investigated whether increased salinity can enhance the thermotolerance of a 

mesophilic nitrifying community. Firstly, in batch activity tests, both the effect of different salt 

concentrations at 40°C as the effect of 5 g NaCl L-1 at different temperatures was explored, 

measuring not only immediate activity, but also activity after 48 h. Subsequently, a continuous 

experiment with fed-batch reactors was used to evaluate salt amendment (7.5 g NaCl L-1) 

between 34 and 50°C. Besides physicochemical measurements, the nitrifying community was 

closely monitored by microbial as well as molecular analyses. 

2. Materials and methods 

2.1. Activity batch tests 

Aerobic batch experiments were performed as described by Windey et al. (2005). Initially, a 

screening test at 34 and 40°C with a salinity shock of 5 g NaCl L-1 was performed on two 

different inocula containing AerAOB and NOB. Conventional activated sludge (CAS) and sludge 

from a biological nutrient removal (BNR) reactor were used. Beside the nitrifying AerAOB and 

NOB, the CAS sludge contained additional aerobic heterotrophs and the BNR sludge additional 

anammox bacteria (AnAOB). The CAS sludge was freshly collected from a sewage treatment 
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plant (Destelbergen, Belgium), operating at a yearly average temperature of 15°C, while the 

BNR sludge was harvested from a mature lab-scale rotating biological contactor operating at 

34°C for ten years and fed with synthetic influent (1 g N L-1 (NH4)2SO4, 7.5 g NaHCO3 g-1 N and 

308 mg KH2PO4 L-1 (Pynaert et al., 2003). As only the BNR sludge showed significant effects, 

further tests were performed with this biomass. Firstly, at 40°C, the effect of different salinity 

shocks (0, 2, 5 and 8 g NaCl L-1) was tested. Secondly, a salinity shock of 5 g NaCl L-1 was tested 

at three different temperatures (31, 40 and 45°C) and both the direct activity as well as the 

activity after 48h was determined. The aerobic tests were all performed in open Erlenmeyer 

flasks with ammonium as substrate (NH4Cl, 50 mg N L-1) and a pH 7 buffering solution with 

final concentrations of 1 g NaHCO3 L-1, 4.2 g KH2PO4 L-1 and 5.8 g K2HPO4 L-1. Ammonium, nitrite 

and nitrate concentrations were monitored for a period of 8 hours after substrate addition. 

The direct specific activity was calculated based on the partial nitritation/anammox 

stoichiometry (eq 1+3 in Table 1.1) (Vlaeminck et al., 2012) after the first substrate addition 

(substrate added after ±1 hour acclimatization of the sludge to the tested temperature), 

whereas the activity after 48h was calculated after a second substrate addition. In short, the 

nitrogen loss was assigned to AnAOB activity and AerAOB activity was calculated based on the 

ammonium removal taking into account the contribution of the AnAOB activity. Similarly, the 

NOB activity was calculated based on the nitrate production taking into account the nitrate 

production by the anammox (0.26 mol NO3
- produced/mol NH4

+ removed). 

r_AerAOB (mg N L-1 d-1) =  PNO2 + NOB +1.32/2.32 x (RN + (0.11/0.89 x RN)))  (1) 

r_NOB (mg N L-1 d-1) = PNO3 – (0.11/0.89 x RN)      (2) 

Herein, RN is nitrogen removal rate by AnAOB (mg N L-1 d-1), PNO2 the part of the AerAOB nitrite 

production rate that was not consumed by NOB or AnAOB (mg N L-1 d-1) and PNO3 the nitrate 

production rate produced by NOB and AnAOB (mg N L-1 d-1). The constants of 0.11/0.89 are 

derived from the nitrate production in PN/A stoichiometry (i.e. eq 3 in Table 1.1), whereas the 

constants 1.32/2.32 are derived from the anammox stoichiometry itself in which 1.32 mole 

nitrite is combined with one mole of ammonium (eq. 3 in Table 1.1). All tests were performed 

in triplicate on a shaker (100 rpm), including an abiotic reference for stripping and a reference 

without NaCl addition for each temperature.   
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2.2. Reactor set-up and operation 

The two parallel fixed-bed (AnoxKaldnes K1 carriers, filling ratio 50%) reactors (salt and 

control) had an effective liquid volume of 2 L, an inner diameter of 12 cm (Figure 2.1). The 

reactors were inoculated with BNR biofilm sludge originating from a rotating biological 

contactor described by Pynaert et al. (2003) at an initial biomass concentration of 3.3 ± 0.1 g 

VSS L-1. The reactors were operated in a sequential batch feeding/withdrawal mode to allow 

for both biofilm as suspended growth. The one hour cycle consisted of a 50 min aerobic 

reaction period including a 6 min feeding period at the beginning of the cycle, followed by a 5 

min settling period and a 5 min decanting period. In order to estimate the amount of NH3 

stripping during operation, hydraulic tests (without biomass) were performed in the reactors 

before start-up at pH 8, 50°C and varying NH4
+ concentrations. Reactors were fed with 

synthetic medium consisting of (NH4)2SO4 (50 mg N L-1), 7 g NaHCO3 g N-1 (1.17 mol NaHCO3 

mol-1 N) and KH2PO4 (10 mg P L-1) dissolved in tap water resulting in a salinity of 2 g L-1 NaCl 

equivalents. The influent of the salt reactor was supplemented with 7.5 g NaCl L-1. As less 

bicarbonate was dosed in the reactor influent compared with the batch tests, a higher NaCl 

concentration was dosed here in order to reach the same final conductivity as in the batch 

tests.  

 

Figure 2.1 Reactor set-up of the fixed bed reactors (filling ± 50%). 
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The reactor vessels were jacketed, and the temperature was controlled with a circulating 

thermostatic water bath. After a start-up period of 14 days at 34°C, the temperature of both 

was gradually increased to 40, 42.5, 45, 47.5 and 50°C on days 14, 88, 130, 180 and 193, 

respectively. Temperature was increased after 2 weeks of stabilization, except for the 40°C 

period, where each reactor suffered from a pH control failure and a longer stabilization period 

was applied. At 40 and 42.5°C, a 2 week period where no NaCl was added to the feed of the 

salt reactor was also included.  

In principle the influent nitrogen concentrations were kept stable. However, from the moment 

that AerAOB activity decreased, the influent NH4
+ concentration was lowered from 50 to 20 

mg N L-1 to avoid higher free ammonia (FA) concentrations. FA concentrations were calculated 

based on pH, T and ionic strength, as described in Bell et al. (2008) and reached 0.30 ± 0.23 

and 0.19 ± 0.35 mg N L-1 in the control and salt reactor, respectively. From the moment 

AerAOB activity decreased, 50 mg N L-1 nitrite was additionally dosed in the influent as NaNO2 

to prevent NOB substrate limitation and thus underestimation of the NOB activity, as done 

from day 23 on in the control reactor and from day 58 on in the salt reactor (Figure 2.5 B).  

The reactor pH was controlled between pH 6.8 and 7.0 by dosage of 0.1 M NaOH/HCl in order 

to minimize FA stripping and avoid high FA concentrations at higher temperatures. Averages 

pH values of 6.88 ± 0.18 and 6.91 ± 0.16 for the control and salt reactor were reached, 

respectively. High pressure air pumps provided aeration through a diffuser stone at an average 

superficial air flow rate of 1.33 m3 m-2 h-1, resulting in the dissolved oxygen (DO) 

concentrations of 3.94 ± 1.23 and 4.06 ± 1.14 mg O2 L-1 for the control and salt reactor, 

respectively. Flow rates were not significantly different (7.5 ± 1.0 and 7.8 ± 1.2 L d-1, for control 

and salt reactor respectively), resulting in similar hydraulic retention times (HRT) of 6.51 ± 0.80 

and 6.12 ± 0.60 h, respectively. Consistent with the batch tests, the AerAOB and NOB 

volumetric activities were calculated based on the partial nitritation/anammox stoichiometry 

(eq 1,2) and average activities were calculated at stable periods of minimum 5 days.  
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2.3. Chemical analyses 

Ammonium (Nessler method) and volatile suspended solids (VSS) were measured according 

to standard methods (Greenberg et al., 1992). Nitrite and nitrate were determined on a 761 

Compact Ion Chromatograph (Metrohm, Switzerland) equipped with a conductivity detector. 

DO and pH were measured with, respectively, a HQ30d DO meter (Hach Lange, Germany) and 

an electrode installed on a R305 pH-controller (Consort, Belgium). Fatty acid methyl esters 

(FAME) from the biomass were prepared by transesterification for identification by a gas 

chromatograph (Coutteau and Sorgeloos, 1995). 

2.4. Molecular analyses of the microbial communities 

Fluorescent in-situ hybridization (FISH) was used to determine the NOB genus, i.e. distinguish 

between Nitrobacter and Nitrospira, as a supporting analysis for the NOB target choice in the 

following qPCR analysis. Inoculum and endpoint samples were examined by FISH as described 

by Vlaeminck et al. (2010). Quantitative polymerase chain reaction (qPCR) was used to 

quantify the abundance of AOA, AerAOB, NOB and AnAOB over time. Biomass samples were 

taken from the inoculum and before each change in temperature or salt concentration. DNA 

extraction and qPCR were performed according to De Clippeleir et al. (2012) targeting the 

functional amoA gene for AerAOB and AOA, and the 16S rRNA genes of the AnAOB (Kuenenia 

and Brocadia), and Nitrospira sp. Denaturing gradient gel electrophoresis (DGGE) was used 

to evaluate the AerAOB community evolution. An inoculum sample was compared with 

samples of both reactors at the end of each temperature period. Nested PCR, and DGGE were 

performed based on the primers CTO189ABf, CTO189Cf, and CTO653r for β-proteobacterial 

AerAOB (Pynaert et al., 2003). The obtained DGGE patterns were subsequently processed with 

BioNumerics software (Applied Maths, Belgium).  
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3. Results 

3.1. Batch activity tests 

Increased salinity could possibly enhance the thermotolerance of mesophilic nitrifiers through 

the induction of compatible solutes that can help nitrifiers to maintain their activity at higher 

temperatures. The batch screening experiments with CAS sludge at 34 and 40°C, however, did 

not show any beneficial effect of salt addition (Figure 2.2). At 34°C, addition of 5 g NaCl L-1 

namely inhibited AerAOB and NOB by 37% and 91% respectively. Moreover, at 40°C, nearly 

complete inhibition of NOB was observed. The CAS sludge was not used further.  

 

Figure 2.2 Effect of salt addition (5 g NaCl L−1) on the direct specific AerAOB and NOB activities 
of the CAS. All experiments were performed in triplicate, and statistically significant 
differences (p<0.05) between the control and the salt addition are indicated with an asterisk. 

The effect of different NaCl concentrations (0-2-5 and 8 g L-1) were tested on the BNR sludge 

at 40°C (Figure 2.3). Although no effect could be observed on the NOB activity, the AerAOB 

activity increased with increasing NaCl concentration until a maximum at 5 g NaCl L-1. At 8 g 

NaCl-1, activity declined, showing no significant difference to the control treatment (Figure 

2.3). Consequently, a concentration of 5 g NaCl L-1 was used to test its effect at three different 

temperatures (Figure 2.4). 
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Figure 2.3 Effect of different salt concentrations on the direct specific AerAOB and NOB 
activities of the BNR sludge. All experiments were performed in triplicate, statistically 
significant differences (p<0.05) between the control and the salt addition are indicated with 
an asterisk. 

In both the control and salt treatment of 5 g NaCl L-1, specific activities decreased with 

increasing temperature. The lowest temperature tested was 34°C, the temperature 

corresponding to the temperature of the BNR reactor. At 34°C, salt addition induced no 

significant immediate changes for AerAOB and NOB activity. Also after 48 h, no salt effect 

could be detected. Whereas NOB activity was not affected by salt addition at 40°C, the 

immediate AerAOB activity increased by 21% compared to the control treatment at 40°C. 

However, after 48h, no significant activity effect of salt addition could be observed anymore. 

The same phenomenon was observed at 45°C, where the salt addition increased the 

immediate AerAOB activity by 20%. While for the AerAOB salt addition had a positive effect 

on the activity, for the NOB salt addition decreased the direct activity at 45°C by 83%. After 

48h at 45°C, no AerAOB activity could be detected anymore. Consequently, as no nitrite was 

added in this test and not produced by the AerAOB, the NOB activity could not be determined. 

Beside AerAOB and NOB, the BNR sludge also contained AnAOB. The presence of anoxic zones 

resulted in a nitrogen loss of 37±11%. Both at 34 and 40°C, the addition of salt decreased the 

AnAOB activity. After 48h, AnAOB activity could only be detected at 34°C. To confirm the 
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observed salt-induced thermotolerance on AerAOB and exclude a possible starvation effect, 

a long term reactor experiment was conducted. 

 

Figure 2.4 Effect of salt addition (5 g NaCl L−1) on the specific AerAOB and NOB activities of the 
BNR sludge at different temperatures (34, 40 and 45 °C). Both the direct specific activity (top) 
and the specific activity after 48 h (bottom) were determined. All experiments were 
performed in triplicate, and statistically significant differences (p<0.05) between the control 
and the salt addition treatment are indicated with an asterisk.
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3.2. Parallel reactor tests 

A control reactor and a salt reactor were set up in parallel to investigate the longterm effect 

of salt addition on the thermotolerance of AerAOB and NOB. The imposed temperature profile, 

salt dosage and influent nitrogen concentrations are shown in Figure 2.5 A and B, respectively. 

Figure 2.5 C and D show the measured effluent nitrogen concentration and the resulting 

calculated AerAOB and NOB volumetric activities. During the elevated temperature periods 

(>40°C), 99 ± 3% (control reactor) and 91 ± 6% (salt reactor) of the removed ammonium was 

recovered as nitrite or nitrate, indicating that nitrification was the main process involved. 

Denitrification, especially by AnAOB, had thus a minor effect on ammonia conversion 

compared with aerobic ammonia oxidation. Moreover, hydraulic stripping tests in the reactors 

reveal that 6 mg N L-1 d-1 is stripped at pH 8, 55°C and 20 mg NH4
+ L-1. Since the reactors were 

controlled at pH 7 and the temperature was mostly much lower than 50°C, stripping 

accounted for << 4% of the nitrogen loading. Furthermore, assimilation of nitrogen into 

biomass is minimal for autotrophic nitrifiers (Barnes and Bliss, 1983), accounting for about 

2.3% of the converted nitrogen. 

After a start-up period of 14 days, stable nitrification rates of 229 ± 40 and 134 ± 10 mg N L-1 

d-1 were reached for the control and the salt reactor, respectively (Figure 2.5 D). Increasing 

the temperature from 34 to 40°C (day 15, Figure 2.5 A) initially decreased the specific AerAOB 

and NOB activities in the control reactor by respectively 90 and 88% resulting in a build-up of 

ammonium up to 46 mg N L-1 (Figure 2.5 C). The salt reactor was more resistant to this 

temperature shock as the immediate decrease in activities for AerAOB and NOB were only 25 

and 51%, respectively. Together these data refer to a 65% (= 90% - 25%) and 37% (= 88% - 

51%) reduced activity loss for nitritation and nitratation, respectively. The nitrification in the 

salt reactor restored nearly completely after 20 days. However, in the control reactor, only 

the NOB could restore entirely, while the AerAOB only regained 54% of their activity present 

before the temperature increase. While at 34°C, no significant differences in FA could be 

observed between both reactors, at 40°C, the control reactor reached significantly higher FA 

values as a consequence of the strongly reduced ammonium oxidation activity. These elevated 

FA concentrations in the control reactor probably did not facilitate the recovery of the AerAOB.  



 

 

 

Figure 2.5 Operation and performance characteristics of control (left) and salt reactor (right). 
(A) Temperature and influent NaCl dosage (B) Influent nitrogen concentrations (C) Effluent 
nitrogen concentrations (D) Volumetric AerAOB and NOB activity.
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During the 40°C period, both reactors suffered from a pH control failure resulting in a 

temporary drop in activity at day 43 and 68 for the control and salt reactor, respectively. 

Raising the temperature from 40 to 42.5°C on day 88 (Figure 2.5 A) showed a similar salt 

protection trend. No significant changes in activity were observed in the salt reactor while in 

the control reactor, AerAOB and NOB activity decreased by respectively 36 and 21% (Figure 

2.5 D).  

After the further temperature increase to 45°C, the AerAOB activity disappeared completely 

in both reactors rendering 42.5°C the maximum cultivation temperature for AerAOB in this 

study with ammonium oxidation rates of 113 ± 13 and 184 ± 9 mg N L-1 d-1 in the control and 

salt reactor, respectively (Figure 2.5 D). For the NOB, transition from 42.5 to 45°C resulted in 

an activity drop. However, this was transient and entirely due to nitrite limitation deriving 

from the AerAOB’s activity loss. Indeed, increased dosage of nitrite in the influent (Figure 2.5 

B) restored the NOB activity at the level before temperature increase.  

Raising the temperature from 45 to 47.5°C, led to a constant NOB activity for the salt reactor 

(302 ± 21 mg N L-1 d-1), yet the control reactor practically lost all nitratation activity achieving 

a steady state of about 5 days at 49 ± 7 mg N L-1 d-1. The salt reactor finally lost its nitratation 

activity after the final increase to 50°C. Overall, NOB activity could be maintained until 47.5°C 

with a six fold higher activity in the salt reactor than in the control reactor (Figure 2.5 D).  

In order to investigate whether the salt was essential in the functioning of the salt reactor, a 

period without salt addition was included, both at 40 and 42.5°C (Figure 2.5 A). At 40°C, 

removing the salt had no effect on the AerAOB activity but did increase the NOB activity 

(Figure 2.5 D). At 42.5°C, removal of the salt did not affect the NOB, but affected the AerAOB 

activity with a decrease of 19% (Figure 2.5 D). Restarting salt addition, however, increased 

AerAOB activity to the original level. This decrease is however small compared with the 

AerAOB activity decrease of 90% after the first temperature transition, indicating that salt 

addition is more essential during the temperature transition than for a good performance 

after the temperature raise.  
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3.3. Fatty acid methyl ester (FAME) profiles  

The FAME profiles allow studying biomass fatty acid composition, reflecting among others the 

membrane fluidity. No major differences could be observed in the FAME results between both 

reactors at day 148 (Table 2.1). Over time, some clear changes occurred in the reactors 

compared to the inoculum, indicating a clear temperature effect. The saturated fatty acid 16:0 

almost doubled in abundance while some unsaturated fatty acids such as 14:1(n-5) and 

16:1(n-7) decreased, suggesting hydrogenation of unsaturated fatty acids. This phenomenon 

is clearly illustrated in the evolution of the ratio saturated upon unsaturated fatty acids 

(sat/unsat) over time (Figure 2.6). The ratio evolved similarly in both reactors, starting at 1 

and gradually increasing to 2, and thus doubling the level of saturation.  

 

Table 2.1 Relative long-chain fatty acid composition of the inoculum biomass and biomass 
from control and salt reactor at day 148, as determined through FAME analysis. Compounds 
below 1% in all samples were omitted from the table. 

 Inoculum Control reactor Salt reactor 

14:0 5.8 1.8 2.0 

14:1(n-5) 15.4 2.9 2.1 

15:1(n-5) 0.1 4.5 2.4 

16:0 33.1 56.6 57.8 

16:1(n-7) 16.0 12.3 12.4 

17:1(n-7) 2.2 1.5 3.3 

18:0 4.8 3.4 3.5 

18:1(n-9) 5.1 3.8 2.7 

18:1(n-7) 2.9 0.9 1.5 

19:1(n-9) 0.3 1.6 2.3 

18:4(n-3) 0.5 3.2 2.7 

20:0 1.3 0.6 0.8 

21:0 1.1 1.9 1.5 

20:3(n-3) 1.1 0.0 0.0 

22:0 1.0 0.5 0.9 

22:6(n-3) 1.2 0.2 0.4 
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Figure 2.6 Evolution of the saturated/unsaturated fatty acid ratio of the microbial biomass in 
the control and the salt reactor, as determined through FAME analysis. 

3.4. Molecular analyses of the microbial communities  

FISH revealed that only Nitrospira NOB was present in the inoculum and both reactors at day 

148, and that Nitrobacter could not be retrieved in any sample (data not shown).  

For qPCR, AerAOB, AOA, AnAOB and the NOB Nitrospira were targeted (Figure 2.7). AOA were 

not detected in the inoculum, nor in one of the reactors. AerAOB, AnAOB and NOB evolved 

similarly in both reactors (Figure 2.7). AerAOB and Nitrospira copies ng−1 DNA increased with 

respectively one and two log units. The AnAOB copies ng−1 DNA however decreased with one 

log unit. When the last qPCR result (Figure 2.7, day 158) is compared with the corresponding 

specific activities (Figure 2.4 D), it has to be noted that although no AerAOB activity was 

detected for almost one week, still 3 × 105 and 1 × 106 AerAOB copies ng−1 DNA were measured.  

The DGGE profiles for AerAOB confirmed that only some evolution had occurred at the species 

level, suggesting that salinity did not induce strong selection towards specialized bacteria 
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(Figure 2.8).  The effect of temperature on the microbial community was thus similar for both 

reactors. 

 

Figure 2.7 qPCR abundance of AerAOB, NOB-Nitrospira, AnAOB, expressed as copies ng−1 DNA, 
in the control and salt reactor. AOA were under the detection limit of 120 copies ng−1 DNA. 

 

 

Figure 2.8 DGGE for β-proteobacterial AerAOB. Biomass samples were taken at the end of a 
temperature period (34, 40, 42.5 and 45°C). Similarities were calculated using the Pearson 
correlation coefficient. C: control reactor; S: salt reactor. 
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4. Discussion  

This study showed that mesophilic nitrifying sludge can gradually adapt to 42.5°C and 47.5°C 

for nitritation and nitratation, respectively. It was shown that a more efficient temperature 

transition and eventually higher temperatures can be reached through addition of NaCl at 5 

to 7.5 g L-1. 

4.1. Thermophilic nitrogen removal 

Numerous thermophilic AOA have already been enriched (de la Torre et al., 2008; 

Hatzenpichler et al., 2008), which might derive from the pioneering role under the more 

extreme conditions of the early Earth (Vlaeminck et al., 2011). In this study however, no AOA 

could be detected in the inoculum and in both reactors after 148 days. AerAOB and NOB have 

also been detected and/or enriched in batch cultures from for example hot springs 

(Golovacheva, 1976; Lebedeva et al., 2005). The applications of those thermophilic nitrogen 

converting organisms for the treatment of nitrogenous wastewater in reactors have been 

scarce, however. The main nitrogen removal mechanisms in thermophilic activated sludge 

experiments have been ammonia stripping and nitrogen assimilation, accounting for 80 to 

100% of the total nitrogen removal (Kurian et al., 2005; Abeynayaka and Visvanathan, 2011b). 

The amount of stripping in this study was minimal, since the nitrogen balance in the elevated 

temperature periods (>40°C) could be closed for >99% and >91% in the control and salt 

reactor, respectively. The main nitrogen loss (± 19%) occurred during start-up of the salt 

reactor at 34°C (Figure 2.5 B and C), while a negligible nitrogen loss was measured in the 

control reactor. This is the period where the AerAOB and NOB were inhibited by the salt 

addition, so that both ammonium and nitrite became available. Since the reactors were 

inoculated with AnAOB containing BNR biofilm, providing anoxic zones, and ammonia 

stripping and nitrogen assimilation were minimal, the nitrogen loss during the start-up of the 

salt reactor can thus at least be attributed to AnAOB activity. 

Lopez-Vaquez et al. (2013) detected nitrifying activity in mesophilic biomass in short-term 

batch tests up to 50°C, yet the activity after a longer incubation period was not investigated. 

The results of the present study however showed a complete loss of AOB activity upon 48 
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hours incubation at 45°C, demonstrating the need for longer term reactor experiments to 

investigate thermophilic nitrification. Similarly, Sudarno et al. (2011) showed that mesophilic 

nitrifying biomass could not recover at 22.5°C after an incubation at 50°C. In the cited study, 

ammonium and nitrite oxidation rates in batch assays increased from 12.5°C to 40°C and were 

almost zero at 50°C. Until now, only Shore et al. (2012) focused on the temperature transition 

of a nitrifying moving bed biofilm reactor, only testing at 40 and 45°C. At 40°C, nitrification 

was still observed at maximum 144 mg N L-1 d-1, which is comparable to our study. At 45°C, no 

nitrification could be achieved. Our study shows that nitrification in engineered systems is also 

possible above 40°C. Mesophilic nitrifying sludge could be adapted to 42.5°C with nitrification 

rates of 184 mg N L-1 d-1
. Moreover, by using salt addition, NOB could even be further adapted 

until 47.5°C with a nitrite oxidation rate of 302 mg N L-1 d-1. Cooling of warm wastewaters for 

nitrification could thus partly be avoided using transient salt addition, hereby reducing both 

investment and operating costs. 

4.2. Effect of salt on nitrification 

In wastewater treatment, salt is considered as a common stress factor inhibiting the 

autotrophic nitrification (Moussa et al., 2006). Dincer and Kargi (1999) showed that both 

AerAOB and NOB activity linearly decrease with increasing salt concentrations, with NOB 

seeming to be more sensitive. Indeed, after the start-up period of the continuous reactors, 

both AerAOB and NOB activities were lower in the salt reactor compared with the control 

reactor (Figure 2.5 D). Moreover, the decrease in NOB activity in the salt reactor is more 

pronounced, reflecting the higher sensitivity of the NOB towards a salt shock. Nitrifiers can 

nevertheless adapt to salt concentrations up to 20 g NaCl L-1 (Bassin et al., 2012), explaining 

the absence of NOB inhibition after some weeks (Figure 2.5 D). In the batch activity tests with 

BNR sludge, NOB showed inhibition with addition of 5 g NaCl L-1 at 45°C, while AerAOB were 

stimulated at 40 and 45°C (Figure 2.4). Interestingly, the NOB inhibition was only observed at 

45°C and not at 34 and 40°C suggesting that, next to the applied NaCl concentration, 

temperature has an important role in the salt shock response of NOB. Indeed, the CAS sludge, 

used at operating temperatures of about 15°C, already showed 91% NOB inhibition to a salt 

addition of 5 g NaCl L-1 at 34°C (Figure 2.2). The higher sensitivity of the CAS sludge towards 
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salt stress can potentially also be explained by the lower conductivity of the CAS influent 

compared with the BNR sludge treating high-strength nitrogenous wastewater. 

4.3. Stress response versus adaptation and/or selection 

The batch activity tests demonstrated the short-term salt and temperature stress responses. 

Addition of salt showed an increased direct AerAOB activity at elevated temperatures (Figure 

2.4), suggesting an interconnection between osmotic and thermal stress response. Bacteria 

immediately react to stress conditions by expressing those genes whose products are required 

to deal with the damaging nature of the stress. Firstly, exposure to high osmolarity involves 

the accumulation of compatible solutes in order to counteract the osmotic stress (Welsh, 

2000). The role of these small organic compounds is however not limited to osmoprotection 

and can protect temperature-sensitive enzymes from denaturation and stimulate their 

renaturation (Caldas et al., 1999). Secondly, osmotic stress can also induce the synthesis of 

heat-shock proteins (HSP) and hereby initiating the heat-shock response (Feder and Hofmann, 

1999). 

While AerAOB activity in the BNR sludge increased with salt addition at elevated 

temperatures, the activity of NOB in the same test decreased at 45°C (Figure 2.4). As NOB 

seem more sensitive to salt inhibition (Dincer and Kargi, 1999), it is likely that the inhibition 

effect predominated over the indirect protective effect through the production of HSP or 

compatible solutes. This was probably also the case for both the AerAOB and the NOB in the 

CAS sludge, where salt addition showed no positive effect. On the contrary, a positive NOB 

effect could be observed in the continuous experiment where NOB were adapted to the added 

salt concentration. The salt reactor reached NOB activity until 47.5°C while the control reactor 

lost all nitratation activity at that temperature.  

In contrast to the direct stress response on the short term, the process of adaptation and/or 

selection is dominating on a longer term and is clearly reflected in the FAME analysis (Table 

2.1 and Figure 2.6). Conventionally, FAME profiles are routinely used as a biomarker for 

identification or characterization of microbial communities (Cavigelli et al., 1995), as some 

FAME profiles can be linked to certain microbial groups, or genera. Recently however, FAME 

analyses have been used to evaluate the adaptation of certain microorganisms to a particular 
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environmental condition, such as acid environments (Quivey et al., 2000). Indeed, regulation 

of membrane fluidity through fatty acid alterations is a way for the bacterial membrane to 

restore the balance between bilayer and non-bilayer forming lipids when challenged with 

environmental disturbances such as temperature (Denich et al., 2003). In this study, higher 

temperatures resulted in a doubling of the ratio of saturated upon unsaturated fatty acids 

suggesting adaptation (Figure 2.6). However, since the DGGE profiles indicates some changes 

in the microbial community with increasing temperature (Figure 2.8), it is inconclusive 

whether adaptation and/or specialization towards specific species occurred and identification 

was thus not pursued.  

Although a clear temperature effect was observed in the microbial community over time, 

there were no clear differences between the control and salt reactor, neither in DGGE, qPCR 

or FAME data. The communities in both reactors hence responded similarly to higher 

temperatures, despite the addition of salt. These observations consequently confirm that salt 

addition interacts mainly on a short term, in the direct stress response, and did not remarkably 

influence long term community adaptation/selection at higher temperatures. Further 

research should clarify this salt-stress response on the gene expression level and identify the 

development of possible specialized species. 

5. Conclusions 

Overall, this study demonstrates salt addition as a tool for a more efficient temperature 

transition for mesophilic sludge (34°C) and the achievement of higher nitrification 

temperatures as: 

 Addition of 5 g NaCl L-1 increased the activity of AerAOB in batch activity tests at 40 

and 45°C by 20-21%. 

 In a long-term continuous reactor test, the AerAOB activity showed 65 and 37% higher 

immediate resistance in the salt reactor (7.5 g NaCl L-1) for the temperature transitions 

from 34 to 40°C and 40 to 42.5°C.  
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 The control reactor lost NOB activity at 47.5°C, while the salt reactor only lost activity 

at 50°C. 
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1. Introduction 

Thermophilic nitrification could be achieved by the adaptation of existing mesophilic nitrifying 

communities to elevated temperatures. Shore et al. (2012) achieved complete nitrification at 

40°C applying a stepwise temperature step from 30 to 40°C (10°C d-1) to a moving bed biofilm 

reactor (MBBR). In a parallel MBBR the temperature was increased from 30 to 45°C (15°C d-1), 

however, losing all nitrifying activity. Slightly higher nitrification temperatures (42.5°C) were 

reached in Chapter 1, in which smaller temperature differences (2.5°C d-1) were imposed from 

40°C on. However, from those studies it is clear that no ‘real’ thermophilic (>45°C) nitrification 

can be achieved through a stepwise temperature increase pattern (> 2.5°C d-1), although 

short-term activity measurements of mesophilic sludge (34°C) showed nitrifying potential up 

to 50°C (Lopez-Vazquez et al., 2014). 

Therefore, in this chapter, the adaptive capacities of mesophilic nitrifying sludge to gradual 

temperature increase patterns were explored. In a first reactor experiment, a non-oscillating 

linear temperature increase (0.25°C d-1) was compared with an oscillating increase (amplitude 

2°C) with the same final slope. Pre-exposure to a certain stress can in some cases result in an 

increased resilience towards this stress as shown for copper stress in denitrifiers (Philippot et 

al., 2008; Li et al., 2014). In a second experiment, a linear temperature increase with a lower 

slope (0.08°C d-1) was investigated, in which a floccular growth system (SBR) was compared 

with a biofilm based system (MBBR). Biomass retention of the slow growing thermophilic 

autotrophs is essential, and could eventually be favored through a biofilm based reactor 

system. Finally, the nitrifying community was closely monitored by batch activity tests and 

molecular analyses during the linear temperature increase to elucidate the adaptation process 

or shifts in the microbial community. 

2. Materials and methods 

2.1. Reactor set-up and operation 

An overview of the two reactor experiments and associated reactor parameters is presented 

in Table 3.1. In the first experiment with two identical lab-scale sequential batch reactors  

(SBR), a linear temperature increase (0.25°C d-1) with (SBR1) and without (SBR2) an oscillation 
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(amplitude 2°C, frequency 0.088 d-1) were compared. In the second reactor experiment, a 

lower linear temperature increase (0.08°C d-1) was investigated, in which a SBR (SBR3) was 

compared with a MBBR. The majority of the process and feeding parameters were equal in all 

reactors to investigate the effect of temperature pattern and/or sludge flocculation state 

(flocs versus biofilm) (Table 3.1).  

Table 3.1 Overview of reactor parameters and temperature increase patterns in the two 
different reactor experiments. n.a.: not applicable, SBR: sequencing batch reactor, MBBR: 
moving bed biofilm reactor, VER: volumetric exchange ratio, HRT: hydraulic retention time. 

 

The reactor vessels (working volume 2 L, diameter 12 cm) were jacketed, allowing 

temperature control with a circulating thermostatic water bath, and equipped with a stirring 

device. The reactor pH was controlled between pH 6.5 and 7.5 by a dosage of 0.1 M NaOH/HCl, 

and continuous aeration was provided by air pumps through a diffuser stone. The synthetic 

medium consisted of (NH4)2SO4 (10-800 mg N L−1), 11-12 g NaHCO3 g-1 N, KH2PO4 (10 mg P L−1) 

and 0.1 mL L-1 trace element solution dissolved in tap water (Kuai and Verstraete, 1998). The 

nitrogen loading was adjusted through the NH4
+ concentration in the influent. The 6- and 4-h 

cycle of the SBR consisted of a 330 and 210-min aerobic reaction period including three 25-

min feeding periods, a 15-min settling period, a 5-min decanting period and a 10-min idle 

period.  

The carrier material of the MBBR consisted of polyvinyl alcohol (PVA)-gel beads (Kuraray, 

Japan) at a volumetric filling ratio of 15%. All reactors were inoculated with the same 

commercial nitrifying inoculum (Avecom NV) at an initial biomass concentration of 2.4 ± 0.1 g 

 Experiment 1 Experiment 2 

Reactor(type) SBR1 SBR2
 SBR3

 MBBR 

Linear temperature increase Oscillating Steady Steady 
Linear slope (°C d-1) 0.25 <40°C: 0.16 

>40°C: 0.08 
Oscillating amplitude (°C) 2 n.a. n.a. 
Oscillating frequency (d-1) 0.088 n.a. n.a. 
Experimental periods      
          Stabilization (d) 7 79 
          Temperature increase (d) 50 150 
VER (%) 25 20 
Cycle duration (h) 6 4 
Flowrate (L) 2.1 ± 0.2 2.1 ± 0.3 
HRT (d) 1.0 ± 0.2 1.0 ± 0.2 
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VSS L-1. To ensure sufficient biomass growth on the carriers of the MBBR, a stabilization period 

(day 1- day 79) was included in the second experiment. The MBBR was initially operated in the 

same sequencing batch feeding/withdrawal mode during the stabilization period to ensure 

enough suspended biomass for biomass growth on the carriers. Once growth was observed 

on the carriers, initially, half of the suspended biomass was wasted (day 23 of the stabilization 

period). Further on, the residual suspended biomass was gradually wasted at about 45 mg VSS 

d-1 until day 79 when the settling period was excluded. 

2.2. Ex-situ nitrification activity tests 

In parallel with the second reactor experiment, batch activity tests were performed with the 

SBR3 sludge and MBBR carriers to monitor the evolution of the optimal temperature for both 

ammonium and nitrite oxidation. At the reactor temperature of 38°C, 40°C, 42°C, 44°C, 46°C 

and 48°C, the specific ammonium and nitrite oxidizing activities were measured at the 

respective reactor temperature ±2°C. For the SBR3 sludge, 96-well plates with a working 

volume of 250 µL were used, while the MBBR carriers were transferred in 24-well plates with 

a working volume of 1.5-2.5 mL. Plates were incubated in a MB100-4A Thermoshaker 

(Hangzhou Allsheng Instruments, China) at the specific temperature, in which oxygen was 

provided through intensive shaking at 600 rpm. The buffer solution (pH 7) contained final 

concentrations of 2 g P L-1 (KH2PO4/K2HPO4), 1 g NaHCO3 L-1, 0.1 mL L-1 trace element solution 

(Kuai and Verstraete, 1998) and (NH4)2SO4 or NaNO2 (60 mg N L-1). The sensitivity of 

ammonium and nitrite oxidation for free ammonia (FA) was also evaluated by determining the 

specific activity at different ammonium concentrations (25-200 mg N L-1). All treatments were 

performed in sextuple, and liquid samples (2 µL) were taken over time for NH4
+ and NO2

- 

analysis. These high-throughput activity measurements were highly optimized for each sludge 

type prior to the actual tests. A validation experiment was performed in which the obtained 

rates were not significantly different with rates obtained in conventional 250 mL Erlenmeyer 

batch tests. 

2.3. Sludge production and settleability 

The sludge yield (Y) was calculated to evaluate the sludge production, taking into account the 

growth and death of the biomass. Calculations were performed using cumulative terms: 
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𝑌𝑜𝑏𝑠 = 
∑𝑉𝑆𝑆 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

∑𝐶𝑂𝐷 𝑟𝑒𝑚𝑜𝑣𝑒𝑑
=  
∑(𝐹𝑤. 𝑉𝑆𝑆𝑤 + 𝐹𝑒𝑓 . 𝑉𝑆𝑆𝑒𝑓 + 𝛥𝑉𝑆𝑆𝑠𝑦𝑠𝑡𝑒𝑚)

∑(𝐹𝑖𝑛. (𝐶𝑂𝐷𝑖𝑛 − 𝐶𝑂𝐷𝑒𝑓))
=  
𝑘𝑔 𝑉𝑆𝑆

𝑘𝑔 𝐶𝑂𝐷
 

where Fw, Fin and Fef correspond to the waste, influent and effluent flows (L d-1), respectively; 

CODin and CODef correspond to soluble organic matter in the influent and effluent (g COD L-1), 

respectively; VSSW and VSSeff correspond to the VSS in the waste and the effluent (g VSS L-1), 

respectively; and ΔVSSsystem corresponds to the biomass accumulation in the system (g VSS L-

1). Biomass settleability of the floccular sludge was measured through the determination of 

the sludge volume index (SVI*) with an in house, not standard, protocol. The sludge height 

variation was monitored for 5 min instead of 30 min in a 1 L Imhoff cone to prevent extensive 

cooling of the sludge. 

2.4. Functional community analysis 

Biomass samples of the inoculum and the reactors (SBR3 and MBBR) were collected over time, 

and total DNA was extracted using the Fast-Prep24 instrument (MP-BIO, Germany) as 

described previously (Vilchez-Vargas et al., 2013). DNA quality and quantity were analysed 

electrophoretically on 1% (w/v) agarose gels and spectrophotometrically by determination of 

the absorbance at 260nm and the absorbance ratios at 260 nm and 280 nm, using NanoDrop 

ND-1000 (Thermo Scientific), respectively. The SYBR Green assay (Power SyBr Green, Applied 

Biosystems) was used to quantify the 16S rRNA of Nitrospira spp. and Nitrobacter spp. and the 

functional amoA gene for β-proteobacterial AOB and AOA (Table 3.2).  

 

Table 3.2 Overview of the primers sets and conditions used for determination of the 
abundance of β-proteobacterial AOB, AOA, Nitrospira spp. and Nitrobacter spp. with qPCR. 

Functional 
group 

Target gene Primers Melting 
temp (°C) 

Reference 

AOB amoA gene amoA-1F 54.1 (Rotthauwe et al., 1997) 
  amoA-2R 59.2  

AOA Crenarchaeal  CrenamoA23f 51.2 (Tourna et al., 2008) 
 amoA gene CrenamoA616R 54.4  

Nitrospira spp. 16S rRNA NSR1113F 56.3 (Dionisi et al., 2002) 
  NSR1264R 57.6  

Nitrobacter  16S rRNA Nitro1198F 57.8 (Graham et al., 2007) 
spp.  Nitro1423R 60.4  
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Nitrifiers were identified using pair-end high-throughput sequencing (MiSeq Illumina 

platform) of the regions V5-V6 of the 16S rRNA gene, using the primers 807F and 1050R 

previously described (Bohorquez et al., 2012). Amplification, sequencing and bioinformatic 

processing of sequences was done according to Camarinha-Silva et al. (2014) with some 

modifications. Raw sequences were assembled (Cole et al., 2014) and subsequently aligned 

using MOTHOR (gotoh algorithm with the SILVA reference database) prior to preclustering. 

Only phylotypes exhibiting a cumulative abundance of at least 0.1% (sum of percentage 

normalized data from all samples; “gut filter”) and a sequence length >200bp were considered 

for follow-up analysis. Phylogenetic analyses were performed with MEGA5 (Tamura et al., 

2011) using the neighbor-joining method with Jukes-Cantor correction and pairwise deletion 

of gaps/missing data. A total of 1000 bootstrap replications were performed to test for branch 

robustness. 

 

2.5. Chemical analyses 

Ammonium (Nessler method), total suspended solids (TSS) and volatile suspended solids (VSS) 

were measured according to standard methods (Greenberg et al., 1992). Nitrite, nitrate, DO 

and pH were measured as discussed in Chapter 2. The biomass concentration in the MBBR 

was determined through extraction of the biomass from the PVA carriers and subsequent 

protein measurement. The protein content was then translated to a VSS concentration using 

the average protein content of the MBBR sludge, 0.31 g protein g-1 VSSMBBR sludge as 

determined. The carriers were cut in fine pieces and incubated in 1 M NaOH for 30 min at 46°C 

with regular mixing for biomass extraction. To determine the protein concentration in the 

extract, the method developed by Lowry was used with bovine serum albumin (BSA) as the 

standard. In the batch activity tests, the liquid samples for ammonium and nitrite 

determination were always immediately analyzed spectrophotometrically with the Berthelot 

and Montgomery reaction, including a triplicate standard curve for each analysis run. 

Measurements were obtained using a Tecan infinite plate reader (Tecan, Switzerland), and 

biomass was quantified through protein concentrations.  
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3. Results 

3.1. Oscillating versus non-oscillating linear temperature increase 

The adaptive capacities of mesophilic nitrifying sludge were first evaluated for two different 

gradual temperature increase patterns. An oscillating temperature increase with an amplitude 

of 2°C and a frequency of 0.088 d-1 was compared with an non-oscillating increase with the 

same linear slope (0.25°C d-1) as shown in Figure 3.1. Prior to any temperature increase, the 

reactors were started up identically at 37°C reaching ammonium removal rates of 180 ± 14 mg 

N L-1 d-1 or 136 ± 10 mg N g VSS-1 d-1 after one week of stabilization. Nitrite accumulation was 

negligible in both reactors and nitrate production accounted for 95% of the ammonium 

removal. Up to 40°C, no changes in volumetric rates were observed in both reactors. Further 

temperature increase above 40°C, however, negatively affected the nitrifying activity in both 

reactors, with a more pronounced effect in the oscillating reactor. At 42°C, only 15% of the 

initial volumetric nitrifying activity remained in the oscillating reactor (26 ± 5 mg N L-1 d-1) while 

50% remained in the non-oscillating one (90 ± 3 mg N L-1 d-1) (Figure 3.1). Although the non-

oscillating reactor seemed to better resist the temperature increase, the decreasing trend 

pursued in both reactors finally resulting in an entire loss of activity at 45°C in both reactors, 

suggesting that the imposed slope of 0.25°C d-1 was too high. 
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Figure 3.1 Temperature increase pattern (A) and ammonium removal rate (B) of two 
sequential batch reactors (SBR1 and SBR2) comparing an oscillating with a non-oscillating 
temperature increase (0.25°C d-1).  
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3.2. Floccular versus biofilm based reactor system 

3.2.1. Reactor performance 

In the second reactor experiment, a linear temperature increase with a lower slope was 

investigated (0.08-0.16°C d-1), in which a SBR (SBR3) was compared with a MBBR (Table 3.1). 

A 79-day stabilization period at 38°C allowed sufficient acclimatization of the inoculum and, 

more specifically, biomass growth on the PVA gel carriers of the MBBR. The suspended 

biomass in the MBBR was gradually wasted during this period, while clear attached growth 

was observed (Figure 3.2).  

Figure 3.2 Ammonium consumption and biomass content (suspended and attached) of the 
sequential batch reactor (SBR3) and the moving bed biofilm reactor (MBBR) during the start-
up and stabilization period at 38°C. 

At the start of the actual experiment the settling was excluded to waste all the suspended 

sludge. This resulted in about a doubling of the attached growth (Figure 3.3 C) and a further 

increase of the ammonium removal rate up to 580 ± 44 mg N L-1 d-1 (Figure 3.3 B). As the SBR3 

sludge content also sharply increased from about 3.3 g VSS L-1 (day 6) to 4.5 g VSS L-1 (day 16), 

eventually endangering settling behavior, about one third of the SBR3 sludge was wasted 

before the start of the temperature increase. Concurrently, the loading was lowered by one 

third to prevent overloading, reaching comparable volumetric nitrification rates in both 

reactors (Figure 3.3 B). From day 20 on, temperature was gradually increased in both reactors 

at a slope of 0.16°C d-1 (Figure 3.3 A). In accordance with the first reactor experiment, from 

38°C to 40°C, no negative effect on the nitrification performance was observed.



 

 

 

Figure 3.3 Operation and performance characteristics of SBR3 (left) and MBBR (right). (A) 
Temperature increase patterns. (B) Volumetric ammonium removal and nitrite/nitrate 
production rates. (C) Specific rates and sludge content. (D) Abundance of nitrifiers as 
determined by qPCR.

A 

u 
0 
'-' 

50 
48 

46 

44 

42 

40 

38 

49.5 oe 

36+---~--~--~--~~--~--~~-, 

B 1200 

c 300 

250 

200 

150 

100 

50 

D 
Ie+ II 

Ie+ JO 

~ le+8 .ë.. 
0 
(.) 

'-' 
le+7 

le+6 

0 

r--. 
I 

1\ 
w,J \ 

/I \ 
;r V \ 

20 40 60 80 I 00 120 140 160 

Operation day 

0 

MBBR 

46.5 oe 

+ . ---o-- NH
4 

consumpnon 

· · · . .a,·· · N0
2 
• production 

-~- N03• production 

- · - AOBIAOA 
_ _._ NOB 

vss 

...... , 
\ 
\.. 

' ' ' 

amoA AOB 
amoA AOA 
16S Nitrobac/er 
16S Nitrospira 

20 40 60 80 100 120 140 160 

Operation day 



Chapter 3 

 

63 

On the contrary, volumetric rates slightly increased (Figure 3.3 B). As temperatures above 40°C 

initiated reactor failing in the first experiment (Figure 3.1), from 40°C on, the imposed slope 

was halved to 0.08°C d-1 (day 32). At that moment, a technical failure of the pH controller led 

to acidification (pH 5) in the MBBR resulting in a 18% decrease of nitrification performance. 

The MBBR recovered, even though temperature further increased. Stable ammonium removal 

rates of 563 ± 52 mg N L-1 d-1 (SBR3) and 358 ± 40 mg N L-1 d-1 (MBBR) were observed in both 

reactors until 45°C. From 45.5°C on, however ammonium removal rates gradually decreased 

in the MBBR from 358 ± 40 to 23 ± 8 mg N L-1 d-1 at 46.5°C (Figure 3.3 B). As more than 90% of 

the activity was lost, temperature increase was ceased in the MBBR. In contrast, volumetric 

rates increased in the SBR3 up to 776 ± 62 mg N L-1 d-1 at a temperature as high as 49°C, 

corresponding with a specific ammonium removal rate of 155 ± 24 mg N g VSS-1 d-1 (Figure 3.3 

C). Nitrite accumulation was observed from temperatures higher than 49°C up to 200 mg N L-

1. As batch activity tests with SBR3 sludge showed that nitrite concentrations up to 500 mg N 

L-1 did not have a significant effect on the ammonium oxidizing activity (p<0.05), the loading 

rate was not adjusted. At 49.5°C, a malfunctioning of the pH controller pump now also 

acidified the SBR3 (pH 3-4), resulting in a decrease of ammonium removal activity to 30 mg N 

L-1 d-1. The temperature in the SBR3 was decreased to 48.5°C to allow for recovery of the SBR3. 

Ammonium oxidation rates increased again reaching >300 mg N L-1 d-1 after 50 days, while 

nitrite oxidation could not be recovered. Overall, the highest temperature where complete 

and stable nitrification was observed was 45.5°C and 49°C in the MBBR and SBR3, respectively. 

3.2.2. Community adaptation 

The adaptive capacity of the SBR3 and MBBR sludge towards the imposed temperature 

increase was closely monitored with parallel batch activity tests. Every 2°C along the 

temperature increase, specific ammonium and nitrite oxidizing activities of both sludge types 

were measured at the respective reactor temperature and at plus and minus 2°C. The results 

of these batch activity tests are presented in Figure 3.4. Similar observations were made for 

both reactors up to 42°C. Although the differences were small, it appeared that between 38 

and 42°C, the temperature with the highest ammonium oxidizing activity was 40°C. Although 

the ammonium oxidation optimum in the SBR3 gradually shifted from 40°C towards 46-48°C 
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(Figure 3.4 A), the MBBR optimum did not get higher than 42°C (Figure 3.4 B). Moreover, at a 

reactor temperature of 44°C, no ammonium oxidation activity could be measured in the MBBR 

sludge at 46°C, clearly predicting the MBBR crash at 46°C (Figure 3.4 B). Despite the loss of 

ammonium oxidation at 46°C, the batch activity test indicate that the MBBR’s nitrite oxidizers 

were still active up to 48°C (Figure 3.4 D). The nitrite oxidizers in the SBR3 seemed to be 

adapted once the reactor reached 48°C, but a significant inhibition was observed at 50°C 

(Figure 3.4 C). Indeed, temperatures higher than 49°C led to nitrite accumulation in the SBR3 

(Figure 3.3 B). 

 

Figure 3.4 Relative temperature activity curves for ammonium (A,B) and nitrite (C,D) oxidation 
of the SBR3 (A,C) and MBBR (B,D) sludge. Each curve represent a batch test performed at a 
certain reactor temperature, of which the temperature is indicated with a symbol. Per batch 
test, the temperature where the highest activity was measured was indicated as the ‘optimum 
temperature’ and assigned as 100%. All experiments were performed in sextuple, and 
statistically significant optima (student’s t-test, p<0.05) are indicated with an asterisk. 
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3.2.3. Free ammonia sensitivity 

Sensitivity of the nitrifying sludge for elevated free ammonia (FA) was evaluated along the 

temperature increase. No significant inhibition of ammonium oxidation could be measured in 

both reactors by FA up to 6 mg N L-1, in contrast, ammonium oxidation was stimulated by 

elevated FA (Figure 3.5 A and B). The SBR3’s nitrite oxidizers were initially only slightly or not 

inhibited by FA up to 6 mg N L-1 at the lower operating temperatures (38-42°C), but were 

strongly inhibited at 46-48°C with a 50% (IC50) and 100% (IC100) inhibitory concentration of 

0.67 ± 0.01 and 1.42 ± 0.08 mg NH3-N L-1, respectively (Figure 3.5 C). The opposite trend was 

observed in the MBBR. Nitrite oxidation was clearly inhibited at 38-40°C, with an IC50 of 0.48 

± 0.07 mg NH3-N L-1, while the inhibition by FA disappeared at elevated temperatures (44-

46°C) (Figure 3.5 D), possibly due to an increased diffusion limitation as the biomass 

concentration in the MBBR and thus thickness of the biomass strongly increased over 

time/temperature. 

 
Figure 3.5 Effect of free ammonia (FA) on the ammonium (A,B) and nitrite (C,D) oxidizing 
activity of the SBR3 (A,C) and MBBR (B,D) sludge, along the different reached reactor 
temperatures during the experiment. (n=6) 
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3.2.4. Sludge production and settleability 

The increasing temperature initially induced a sharp decrease in sludge production in the SBR3. 

The observed sludge yield halved from 0.074 to 0.035 g VSS g-1 N from 38°C to 42°C, whereas 

it increased again from 44°C to a yield of 0.067 ± 0.005 g VSS g-1 N up to 48°C (Figure 3.6). In 

contrast, sludge production in the MBBR amounted 0.11 g VSS g-1 N until 42°C, whereupon it 

decreased and finally became negative at 46°C as a result of biomass die off (Figure 2.3 C). 

Settling behavior of the SBR3 sludge was stable up to 44°C, with a SVI5* of 241 ± 38 mL g-1, and 

improved at 46-48°C with a SVI5* of 154 ± 2 mL g-1 (Figure 3.6). The sludge residence time 

(SRT) in the SBR3 was 92 ± 7 days, while the SRT of the MBBR was considered infinite as nearly 

no suspended sludge could be measured in the effluent. 

 

 

 

 

  

 

 

 

Figure 3.6 Observed sludge yield (Yobs) and sludge volume index (SVI5*) of the SBR3 sludge at 
the different reactor temperatures.  

3.2.5. Funtional community analysis 

The abundance of selected key groups of nitrifying microorganisms was followed along the 

temperature increase by means of qPCR. The reactors were inoculated with the same 

inoculum, comprising a relatively well-balanced amount of AOB versus AOA (2.1x109 versus 

3.5x108 amoA gene copies g-1 VSS) and Nitrospira spp. versus Nitrobacter spp. (6.7x109 versus 

4.8x1010 16S gene copies g-1 VSS). The AOB dominance was preserved in both reactors after 
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the stabilization period reaching an AOB/AOA ratio of 279 and 7091 in the SBR3 and MBBR, 

respectively. The bacterial amoA gene abundance kept stable up to 45°C around 1010 copies 

g-1 VSS in both reactors, and then gradually decreased (Figure 3.3 D). Clear differences in AOA 

abundances were, however, observed between the different reactors. The MBBR biomass 

retained significantly less AOA compared with the SBR3 sludge after the stabilization period 

(Figure 3.3 D, day 16). Moreover, a steep increase in AOA abundance of 3 log units was 

observed in the SBR3 at about 44°C, rising from 1.0x107 to 2.9x1010 copies g-1 VSS, while the 

AOA abundance in the MBBR only slightly increased with 2 log units to 8.6x108 copies g-1 VSS 

at 46°C. This shows a clear shift in dominant ammonium oxidizers in the SBR3 from AOB to 

AOA from 45°C on, while this shift never completely occurred in the MBBR. For nitrite 

oxidation, Nitrospira spp. were dominant over Nitrobacter spp. in both reactors over the 

whole experiment (Figure 3.3 D). The observed trends in key nitrifier abundances were 

confirmed by High-throughput Illumina sequencing. The AOB retrieved in the MBBR appeared 

to be Nitrosomonas europeae and the AOA in the SBR3 (Phy8) belonged to the Nitrososphaera 

genus (Figure 3.8). Interestingly, this AOA (Phy8) only showed a 95% similarity with the original 

AOA present in the inoculum (Phy56).  The closest related known NOB of the dominant 

Nitrospira in both reactors is Nitrospira japonica J1 with 91% similarity (Figure 3.7). 

 
Figure 3.7 Phylogenetic relationships between the most dominant Nitrospira 16S rRNA gene 
sequence in the SBR3 and MBBR (Phy3) and all described Nitrospira cultures or isolates, as well 
as relevant environmental clone sequences. 
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Figure 3.8 Phylogenetic relationships between the archaeal 16S rRNA gene sequences in the 
SBR3 (Phy8) and inoculum (Phy56) and all described AOA cultures or isolates, as well as 
relevant environmental clone sequences.  
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4. Discussion  

4.1. Overall performance 

The adaptive capacities of mesophilic nitrifying sludge for different linear temperature 

increase patterns and different sludge growth modes were explored in this study of which the 

main results are summarized in Table 3.2. A non-oscillating temperature pattern (SBR2) 

appeared to be more effective than an oscillating pattern (SBR1) for the tested slope of 0.25°C 

d-1 as both the volumetric as specific rates were 2-3 times higher. In general, the ‘low-slope’ 

reactors (SBR3 and MBBR) reached 3 to 30 times higher volumetric rates than the ‘high-slope’ 

reactors (SBR1 and SBR2), at significantly higher temperatures. Finally, the biofilm based system 

(MBBR) showed 2.5 lower rates than the parallel the floccular growth system (SBR3). Overall, 

within the range of the tested parameters/combinations in this study, the highest temperature 

with moreover the highest volumetric and specific rates were achieved through the transition 

of mesophilic nitrifying sludge by a slow, non-oscillating linear temperature increase (SBR3). 

The effect of oscillation at a lower slope and oscillation in a MBBR were not investigated in this 

chapter and could eventually give better results. 

Table 3.2 Overview of the volumetric and biomass specific rates achieved at the highest 
temperature where complete and stable nitrification was observed in the two different 
reactor experiments. Averages calculated over at least 3 hydraulic retention times (± 3 
operation days). n.a.: not applicable, SBR: sequencing batch reactor, MBBR: moving bed 
biofilm reactor. 

*   In all cases, nitrite accumulation was negligible and nitrate formation > 90% of ammonium removal 
** Only one biomass measurement available for the specific period  

 

 Experiment 1 Experiment 2 

Reactor(type) SBR1 SBR2
 SBR3

 MBBR 

Linear temperature increase Oscillating Steady Steady 
Linear slope (°C d-1) 0.25 <40°C: 0.16 

>40°C: 0.08 
Oscillating amplitude (°C) 2 n.a. n.a. 

Highest temperature (°C) 42 42 49 45,5 
Ammonium conversion rates*     
          Volumetric (mg N L-1 d-1) 26 ± 5 90 ± 3 794 ± 57 309 ± 30 
          Specific (mg N g-1 VSS d-1) 72** 139 ± 18 151 ± 7 67** 
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The successful transition of the SBR3 towards thermophilic temperatures was, remarkably, 

accompanied with a shift in sludge production trend (Figure 3.6). The decreasing trend sharply 

reversed at 44°C finally resulting in comparable sludge yields at 38°C and 48°C (0.0687 ± 0.005 

g VSS g-1 N). Overall, sludge yields were lower than reported values for combined AOB and 

NOB sludge yield of 0.19-0.21 g VSS g-1 N at mesophilic temperatures (Barnes and Bliss, 1983; 

Henze et al., 2008). In parallel, a clear shift in optimum temperature was observed with the 

ex-situ activity measurements. These small, fast (few hours), high-throughput activity tests, 

based on simple spectrophotometrical measurements, could predict the loss of ammonium 

and nitrite oxidation in the MBBR and SBR3 (Figure 3.4), respectively. One could thus lower the 

slope of the imposed temperature slope when the optimum do not seem to evolve with the 

current temperature and so, steer the temperature increase strategy to achieve thermophilic 

nitrification. 

4.2. Temperature increase pattern 

Pre-exposure to a certain stress can result in an increased resilience to a secondary exposure 

(Philippot et al., 2008; Ryall et al., 2012). In the framework of this study, a pre-exposure to an 

elevated temperature can e.g. induce the production of heat-shock proteins (HSP) that could 

possibly protect the biomass during a secondary temperature increase and so, improve the 

adaptive capabilities. This study however showed that the oscillating temperature pattern did 

not improve the adaptive capabilities of mesophilic nitrifying sludge towards higher 

temperatures (Figure 3.1). The tested amplitude of 2°C was possibly too high to observe 

beneficial effects and thus, smaller oscillating could eventually give better results. 

The linear character of the imposed temperature pattern in this study was clearly more 

successful than stepwise increase patterns reaching only maximum nitrification temperatures 

of 40 and 42.5°C (Shore et al., 2012)(Chapter 2). This is in line with observations at a lower 

temperature range (10-20°C) in which the negative effect of a sudden temperature decrease 

on nitrification was much stronger than a gradual temperature decrease (Hwang and 

Oleszkiewicz, 2007). A possible benchmark value to compare the temperature slope the 

nitrifiers in this study experienced is the slope of seasonal temperature fluctuations in natural 

environments such as tropical soils  (0.2°C d-1) (Sierra, 2002) or wastewater treatment facilities 
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in moderate climates (0.07°C d-1) (Gilbert et al., 2015). Nitrifiers in these environments are 

namely known to cope with these temperature slopes. The latest slope is perfectly 

comparable with the slope of 0.08 °C d-1 in this study during which the highest nitrification 

temperature of 49°C was reached (Figure 3.3). Thus, a relatively low slope in temperature 

increase seems essential to allow transition of nitrifiers to elevated temperatures.  

4.3. Sludge growth mode 

A floccular growth system (SBR3) was compared with a biofilm based system (MBBR), as 

biomass retention of the slow growing autotrophs is essential during the transition process, 

and could eventually be favored through a biofilm based reactor system. Experiences with 

thermophilic carbon treatment showed that thermophilic aerobic processes suffer from poor 

sludge settling properties (Suvilampi and Rintala, 2003), thus, operation of settling based 

system such as a SBR may be threatened. Remarkably, settling behavior of the SBR3 sludge in 

this study did not deteriorate (Figure 3.6), resulting in only minor differences in sludge 

retention time between both reactors.  

The MBBR was initially hypothesized to better cope with the temperature transition, as 

biofilms show increased resistance to many types of environmental challenges (Gilbert et al., 

2002). Recently, Gilbert et al. (2015) showed that nitrate production in a partial 

nitritation/anammox MBBR was more resilient against a gradual temperature reduction (20°C 

to 10°C, 0.07 °C d-1), compared with a SBR, though ammonium oxidation declined similarly in 

both reactor types. Several observations, such as the increased resistance of biofilms towards 

antibiotics, are mainly explained by the restricted diffusion(Mah and O'Toole, 2001). Recently, 

other factors, such as slow growth rate, high culture density and heterogeneity, were shown 

to influence the general stress response in biofilms (Mah and O’Toole, 2011; Ryall et al., 2012), 

and could eventually favor the adaptive capacities of nitrifiers towards elevated temperatures. 

This study is however in contrast with this hypothesis, as the ammonium oxidation MBBR 

failed around 46°C, while it could still be maintained until 49°C in the SBR3 (Figure 3.3 B). The 

successful transition in the SBR3 seemed to be related to the observed shift of AOB to AOA 

dominance that was not achieved in the MBBR (Figure 3.3 D). This is in accordance with 

literature, where most described thermophilic ammonium oxidizers are archaeal (de la Torre 
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et al., 2008; Hatzenpichler et al., 2008; Lebedeva et al., 2013). The slower growth rate of the 

nitrifiers in the MBBR, initially supposed to favor the general stress response on a short term 

(Ryall et al., 2012), probably delayed the essential selection process on a long term. Indeed, 

an increase in AOA abundance in the biofilm was also observed, though one month later than 

in the SBR3 (Figure 3.3 D). Furthermore, although both reactors were inoculated with the same 

AOA/AOB ratio, the relative decrease in AOA during the stabilization period was more 

pronounced in the biofilm than the flocs resulting in an initially lower AOA abundance in the 

biofilm. The late start of the increasing trend of AOA in the MBBR suggests that the essential 

shift could eventually also have been achieved with an even lower slope of temperature 

increase. Besides the actual abundance of AOA in the biofilm, different, less thermotolerant, 

AOA species could have been enriched in the biofilm, compared with the floccular sludge. It 

has to be noted that AOA are not obligate autotrophic ammonia oxidizers (Mußmann et al., 

2011). The measured archaeal amoA gene abundance in this study thus only gives an indirect 

proof of the importance of AOA activity in the transition of nitrification to elevated 

temperatures. The link between AOA abundance and the observed autotrophic ammonia 

oxidation activity can be confirmed with isotope studies as was performed in Chapter 4. 

Observations regarding nitrite oxidation were in line with literature, stating that Nitrospira is 

the most dominant nitrite oxidizer up to 60°C (Lebedeva et al., 2011; Marks et al., 2012; 

Edwards et al., 2013). In this study, no shifts were observed, and Nitrospira was dominant in 

both reactors over the entire experiment (Figure 3.3 D). However, remarkable differences in 

free ammonia sensitivity were observed between reactors and over time (Figure 3.5), 

suggesting that a possible selection on species level occurred during the transition. Overall, 

nitrite oxidizers were much more sensitive compared with the ammonium oxidizers, finally 

resulting in the development of a partial nitritation reactor at 48.5°C, opening opportunities 

for short-cut nitrogen removal processes. 

4.4. Practical implications 

The results of this study suggest that existing mesophilic nitrifying wastewater plants can be 

upgraded to thermophilic systems through a slow, non-oscillating linear temperature 

increase. Excluding the stabilization period, which is non-relevant for existing plants, this could 
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be achieved in about 140 days. Close monitoring of the transition with the high-throughput 

activity tests as described in this study, could moreover allow an even faster transition period. 

It should be emphasized that, beside the temperature increase pattern, the presence of AOA 

in the mesophilic sludge appeared to be essential for a successful transition. The fact that AOA 

appear to be distributed in wastewater treatment plants worldwide, even in equal or higher 

abundance than AOB (Limpiyakorn et al., 2013), opens thus opportunities for thermophilic 

nitrogen removal. 

5. Conclusions 

 The oscillating temperature pattern with an amplitude of 2°C and a slope of 0.25°C d-1 

achieved a low nitrification rate of 26 ± 5 mg N L-1 d-1 at 42°C and lost all activity at 

45°C.  

 The moving bed biofilm reactor subjected to a slope of 0.08-0.16°C d-1 was able to 

oxidize ammonium up to 46°C, though, at a low volumetric rate of 32 ± 7 mg N L-1 d-1. 

 Nitrification rates of up to 800 mg N L-1 d-1 and 170 mg N g VSS-1 d-1 were achieved at 

49°C through gradual adaptation (0.08 °C d-1) of mesophilic nitrifying sludge in a SBR3. 

 The successful transition from mesophilic to thermophilic ammonium oxidation in the 

SBR3 was linked to a dominance shift of archaeal above bacterial amoA.  

 Ex-situ batch activity measurements can serve as a good tool to monitor the process 

response to transition, predicting reactor failures, thus enabling steering of the 

temperature increase pattern.  
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CHAPTER 4:  

A ROBUST NITRIFYING COMMUNITY IN A BIOREACTOR AT 
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1. Introduction 

Many archaeal amoA genes were detected in thermophilic environments (Chapter 1). The 

difficulty of cultivating the slow growing AOA at elevated temperature under laboratory 

conditions however resulted in only three enrichments so far (“Candidatus Nitrosocaldus 

yellowstonii”, “Candidatus Nitrososphaera gargensis” and “Candidatus Nitrosotenius 

uzonensis”). Moreover, until now, thermophilic AOA and NOB were always separately 

enriched/studied in batch cultures. No successful partnership of the two groups of 

thermophilic microorganisms has been described in either batch culture or in bioreactors with 

the goal of complete nitrification. Beside for Nitrolancetus hollandicus (Sorokin et al., 2012), 

all reported substrate/product inhibitions effect for the described thermophilic nitrogen–

converting organisms are relatively high (Hatzenpichler et al., 2008; Lebedeva et al., 2011), 

making them unsuitable for robust biotechnological applications. Nevertheless, there is a 

growing interest in the development of thermophilic nitrogen removal processes for the 

treatment of warm wastewaters implying advantages such as lower sludge production, better 

settling properties and higher hygienization (Suvilampi and Rintala, 2003).  

This study describes the enrichment of autotrophic thermophilic nitrifiers from compost and 

the successful operation of a thermophilic nitrifying bioreactor with high biotechnological 

potential. We demonstrate that autotrophic AOA and NOB serve as key players in the 

microbial community of the thermophilic nitrifying bioreactor. We also provide a 

phylogenetic, physiological and morphological characterization of this unique nitrifying 

community.  

2. Materials and methods 

2.1. Inoculum and batch experiments 

Different aerobic compost facilities were sampled during the thermophilic stage (50-70°C): 

digested organic waste (a), green waste (b), cow manure (c) and a mix of rabbit manure/green 

waste (d). A ‘compost extract’ was prepared by shaking 20 g of compost in 200 mL water with 

glass beads (12 h). The extract was used as inoculum (25 vol%) for enrichment incubations 
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(50°C) in a buffered medium (pH 7) with final concentrations of 0.929 g KH2PO4 L-1, 1.622 g 

K2HPO4 L-1 and 0.5 g NaHCO3 L-1 with (NH4)2SO4 or NaNO2 as the only substrate (20 mg N L-1). 

All incubations were provided with two different packing materials, Kaldness K1 as well as 

polyurethane foam, to allow both suspended as biofilm growth.  

2.2. Reactor set-up and operation 

The compost enrichments showing both NH4
+ and NO2

- oxidation (b, d) were transferred to a 

fixed bed bioreactor. A filling ratio of the carrier material, consisting the Kaldness K1 carriers 

and polyurethane foam, of about 50% was used to allow for both biofilm as suspended 

growth. The reactor vessel (2 L, diameter 12 cm) was jacketed, allowing temperature control 

at 50°C with a circulating thermostatic water bath. The reactor was operated in a sequencing 

batch feeding/withdrawal mode. The 3-h cycle consisted of a 150-min aerobic reaction period, 

a 10-min feeding period at the beginning of the cycle, a 15-min settling period, a 5-min 

decanting period and a 10-min idle period. The bioreactor was fed with a synthetic medium 

consisting of (NH4)2SO4 (10-140 mg N L−1), NaNO2 (0-50 mg N L−1), 9 g NaHCO3 g-1 N, KH2PO4 

(10 mg P L−1), NaCl (1.2 g L-1) and 0.1 mL L-1 trace element solution (Kuai and Verstraete, 1998) 

dissolved in tap water. A flow rate of 3.4 ± 0.2 L d-1 resulted in a hydraulic retention time of 

14 ± 0.7 h. Any transient NH4
+/NO2

- build-up was immediately corrected by adjusting the 

nitrogen loading, preventing accumulation of free ammonia (FA) or free nitrous acid (FNA). 

The reactor pH was controlled between pH 6.8 and 7.2 by a dosage of 0.1 M NaOH/HCl. The 

dissolved oxygen was controlled at 3.6 ± 0.2 mg L-1 with air pumps providing aeration through 

a diffuser stone at a superficial air flow rate of 1.33 m3 m−2 h−1.  

2.3. Physiological characterization 

Physiological characterization and a range of inhibition tests were performed in ex-situ batch 

activity measurements in 96-well plates with a working volume of 250 µL, of which 50 µL 

sludge suspension consisting of homogenized biofilm sludge and suspended sludge. Plates 

were incubated in a MB100-4A Thermoshaker (Hangzhou Allsheng Instruments, China) at 50°C 

and 600 rpm, containing a buffer solution with a final concentration of 500 mg P L-1 

(KH2PO4/K2HPO4), 500 mg NaHCO3 L-1, 0.1 mL L-1 trace element solution (Kuai and Verstraete, 

1998) and (NH4)2SO4 or NaNO2. Operational parameters in the batch tests varied according to 
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the investigated parameter. pH, temperature and substrate concentrations were measured in 

all tests. From these, FA/FNA concentrations were calculated based on their chemical 

equilibrium (Anthonisen et al., 1976). The effects of the different parameters can only be 

separated from each other by a combination of different tests as presented in Table 4.1 for 

ammonium oxidation. A similar strategy was applied for separation of nitrite and FNA effects 

on nitrite oxidation. All treatments were performed in sextuple, and liquid samples (2 µL) were 

taken over time for NH4
+ and NO2

- analysis. Protein measurements enabled the calculation of 

specific rates that were converted to volatile suspended solids (VSS) based on the average 

protein content of the thermophilic sludge (32.7% protein VSS-1). 

Table 4.1 Overview of the operational parameters during different ex-situ batch activity 
measurements enabling the separation of the effect of pH, temperature, ammonium and free 
ammonia (FA) on ammonium oxidation. = : equal, ≠ : changing. 

 
*: Concentrations below 2.4 mg NH3-N L-1 are considered as not-varying, as Figure 4.7 A 
showed no inhibition of ammonium oxidation up to this concentration 
**: Figure 4.7 A showed no influence of ammonium concentration on ammonium oxidation. 
Ammonium concentration varying but considered as equal as long as corresponding FA is 
below 2.4 mg NH3-N L-1.  

2.4. High-throughput DNA sequencing and phylogenetic analysis 

Biomass samples of the reactor were collected monthly over a six month period (days 245-

387), and total DNA was extracted as described in Chapter 3. Prokaryotic biodiversity was 

analyzed using pair-end high-throughput sequencing (MiSeq Illumina platform) of the regions 

V5-V6 of the 16S rRNA gene, using the primers 807F and 1050R previously described 

(Bohorquez et al., 2012). The sequences were analyzed as described before (Camarinha-Silva 

et al., 2014), obtaining the data presented in Table 4.2. Forward and reverse reads were 

aligned manually, allowing zero mismatch. Sequencing depth was rarefied to the minimum, 

obtaining 18191 operational taxonomic units (OTUs)  per sample. The vegan, phyloseq and 

 Investigated 
parameter 

Operational parameters during batch test 
 

Figure 

 Temperature pH Ammonium FA  

FA = = ≠ ≠ Figure 4.7 A 
Ammonium = = ≠ = (*) Figure 4.7 A 

pH = ≠ ≠ (**) = (*) Figure 4.8 A 
Temperature ≠ = = = (*) Figure 4.8 B 
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MASS packages in R were used to plot the rarefaction curves, normalize to the minimum 

sequencing depth and calculate Pearson’s correlation respectively. Phylogenetic analyses 

were performed with MEGA5 (Tamura et al., 2011) using the neighbor-joining method with 

Jukes-Cantor correction and pairwise deletion of gaps/missing data. A total of 1000 bootstrap 

replications were performed to test for branch robustness. Heat map was generated using 

gplots and RColorBrewer packages. 

 

Table 4.2 Overview of Illumina data before quality filter (raw data), after quality filter and after 
clustering (cut off 99%). 

Sample 1 2 3 4 5 6 

Total number of reads  

(raw data) 

42460 22296 30051 35026 33354 26171 

Total number of reads after 
quality filter 

35404 18191 22847 28872 26893 21404 

Phylotypes after clustering with 
cut off of 99% 

97 103 122 119 102 100 

 

2.5. Electron microscopy 

For electron microscopy, biofilm material from three different sampling sites in the bioreactor 

was fixated and embedded in SPURR as described by Spieck and Lipski (2011) (Spieck and 

Lipski, 2011). The ultrathin sections were observed using a transmission electron microscope 

(model JEM 100C or LEO-906E, Zeiss, Jena, Germany). 

2.6. Stable isotope probing: membrane lipids 

Reactor biomass was incubated (50°C, 100 rpm) in 120 mL gas-tight serum flasks containing 

20 mL phosphate buffer (pH 7) with final concentrations of 750 mg P L-1 (KH2PO4/ K2HPO4), 1 

g NaH13CO3 L-1 and NH4
+ or NO2

- as the sole nitrogen source. Liquid samples (2 µL) were taken 

over time for NH4
+ and NO2

- analysis. pH was adjusted through the addition of HCl or 

NaH13CO3. Biomass from three parallel incubations with NH4
+ (harvested at day 0, 49 and 85) 

served for alkyl iodides analysis, while biomass from five parallel incubations with NO2
- 

(harvested at day 0, 3, 7, 14 and 21) served for PLFA analysis. The sampling points were 

determined based on the relative abundance of the AOA/NOB, the oxidation rates and the 
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sensitivity of the respective biomarker analysis. 

Alkyl iodides analysis 

Biomass was subjected to acid hydrolysis by refluxing for 3 h with 5% HCl in MeOH. The 

resulting extract was separated using Al2O3 chromatography. Hexane:DCM (9:1) and 

DCM:methanol (1:1) as eluents, yielding an apolar and polar fraction. An aliquot of the polar 

fraction was analyzed for tetraether lipids using HPLC/MS (Schouten et al., 2007). The 

remaining polar fractions were subjected to chemical treatment to release the biphytanyl 

chains from the tetraether lipids (Lengger et al., 2014). The stable carbon isotopic composition 

of the released biphytanes was analyzed in replicate using an Agilent 6800 GC coupled to a 

Thermo Fisher Delta V isotope ratio monitoring mass spectrometer (Thermo Fisher Scientific, 

Waltham, MA, USA) (Lengger et al., 2014).  

Phospholipid fatty acid analysis 

Extraction and derivatization of PLFAs for compound specific 13C analysis was adapted from 

Huygens et al. 2011 (Huygens et al., 2011). Identification of 11-methyl C16:0 was based on the 

retention time and comparison with published mass spectra (Lipski et al., 2001) using the mass 

fragments m/z 185 and m/z 213 resulting from cleavage of the molecule at both sides of the 

methyl-branch, as these are diagnostic fragments of 11-methyl-branched FAME. Isotopic 

enrichment was assessed using the m/z 74/(74 + 76) ratio of the methyl acetate ion fragment. 

2.7. Chemical analyses 

NH4
+ (Nessler and Berthelot), NO2

- (IC and Montgomery), NO3
-, VSS, protein (Lowry), DO and 

pH were measured as described in previous Chapters.   
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3. Results 

3.1. Thermophilic batch enrichments  

Samples from four composting facilities served as inocula for the batch-wise enrichment of 

thermophilic (50°C) nitrifying communities. The different origin of the organic fractions of the 

samples resulted in different N-compound distributions in the compost solution. The green 

waste (a) and rabbit manure/green waste mixture (b) exclusively contained oxidized forms of 

nitrogen (NO2
-/NO3

-), while the digested organic waste (c) and cow manure (d) only contained 

NH4
+. This distinction was reflected in the observed thermophilic nitrifying activity. First NH4

+ 

and NO2
- oxidation was observed after approximately 100 days of incubation. Samples (a) and 

(b) showed both NH4
+ and NO2

- oxidation, while samples (c) and (d) only showed NO2
- 

oxidation. After one year of incubation and several dilution steps, two highly active NO2
- 

oxidizing and two enchained NH4
+ and NO2

- oxidizing enrichment communities were obtained.  

3.2. Bioreactor performance 

The enrichments showing complete nitrification were pooled and served as inoculum for the 

bioreactor at 50°C. Initial volumetric nitrification rates were low (4.7 ± 2.6 mg N L-1 d-1). 

However, after two months of operation, a clear exponential increase in nitrifying activity was 

observed in the reactor reaching volumetric NH4
+ and NO2

- oxidation rates of 126±7 and 189 

± 17 mg N L-1 d-1, respectively (Figure 4.1). After this first stage, due to a technical failure, the 

community was challenged by a temperature drop to 30°C and a subsequent shock at pH 11 

(days 235-238), leading to an initial loss of ammonium oxidation activity. However, the reactor 

re-stabilized successfully, reaching nitrification rates higher than 200 mg NH4
+-N L-1 d-1 (Figure 

4.1). Moreover, a low nitrogen loss was observed. Practically all the removed NH4
+-N was 

recovered as NO3
--N (93 ± 4%), confirming that nitrification was the main process involved. 

The biomass predominantly appeared as an orange to brownish biofilm on the packing 

material and wall of the reactor vessel. 
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Figure 4.1 Performance (mg N L-1 d-1) and nitrogen loss (%), i.e., the amount of removed NH4
+-

N not recovered as NO2
--N or NO3

--N, in the thermophilic bioreactor (50°C) inoculated with 
thermophilic nitrifying batch enrichments from compost samples. The white and black 
triangles indicate the sampling for high-throughput DNA sequencing and transmission 
electron microscopy, respectively. Temperature drop (30°C) and a subsequent shock (pH 11) 
at days 235-238 due to a technical failure. 
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3.3. Phylogeny and morphology 

The thermophilic nitrifying microbial community was analysed over a six month period of the 

reactor experiment (days 245-387). Illumina sequencing identified one unique sequence 

(OTU7) of archaea in all samples closely related to the AOA “Candidatus Nitrososphaera 

gargensis” Ga9.2 (99% similarity) (Figure 4.2), while no known AOB could be detected in any 

of the samples.  

 

Figure 4.2 Phylogenetic relationships between the archaeal 16S rRNA gene sequence (OTU7) 
of the thermophilic nitrifying reactor biomass and all described AOA cultures or isolates, as 
well as relevant environmental clone sequences. OTU7 belongs to the group 1.1b of 
Thaumarchaeota (formerly Crenarchaeota). 

For nitrite oxidation, several different sequences closely related to Nitrospira spp. were 

identified. OTU1, 99% similar to Nitrospira calida Ns10 (Figure 4.3), was the most abundant 

Nitrospira in the community in all samples and the only Nitrospira-related OTU that strongly 

increased in abundance over time. A clear enrichment of the different Nitrospira 
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representatives was observed over time. The relative abundance increased gradually from 2% 

to 22-25% over 6 months of operation. The AOA abundance, however, strongly fluctuated 

over the different samples from 0.1 to 18%. The unbalanced ratio of AOA/NOB in this 

community is a result of the influent feeding strategy in which, beside ammonium (20-120 mg 

N L-1), nitrite was provided along the experiment (± 34 mg N L-1) to prevent limitation in NOB 

growth in case ammonium oxidation would attenuate (Figure 4.1).  

 

Figure 4.3 Phylogenetic relationships between the Nitrospira 16S rRNA gene sequences of the 
thermophilic nitrifying reactor biomass (OTU1) and all described Nitrospira cultures or isolates, 
as well as relevant environmental clone sequences. 
 

 

The nitrifying core appeared to have the same preferred satellite populations. Both the 

abundance of OTU7 and OTU1 were positively correlated (ρ >0.9) with the abundance of 

OTU146 (most probably Bacteroidetes spp.), OTU47 (Ignavibacterium), OTU80 

(Planctomycetacea), OTU87 (unclassified bacteria) and OTU92 (Betaproteobacteria) (Figure 

4.4



 

 

 
Figure 4.4 Phylogenetic relationships and the relative abundances over time of the OTUs related to bacteria and archaea found in the thermal 
bioreactor with Pearson correlations higher than 0.9 and lower than -0.9. Column A (blue circles) shows the positive correlations with OTU7, 
column B (yellow circles) shows the positive correlations with OTU1. Column C (pink circles) shows the negative correlations with OTU7 and 
column D (green circles) shows the negative correlations with OTU1. 
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The presence of the described nitrifiers in the biofilm of the thermophilic reactor was 

morphologically confirmed in all samples through transmission electron microscopy (TEM) 

(Figure 4.5). Cells of Nitrospira spp. were characterized by a spiral-shaped morphology with a 

pleomorphic cell appearance, a wide periplasmic space and a granular cell interior (Ehrich et 

al., 1995) and the “Candidatus Nitrososphaera gargensis” related AOA were characterised by 

small, very dense, coccoid-shaped cells (Tourna et al., 2011).  

 

Figure 4.5 Transmission electron micrographs of ultrathin sections of the thermophilic reactor 
biofilm. (A) single “Candidatus Nitrososphaera gargensis”–like AOA cell; (B) a single Nitrospira 
cell; (C) co-occurrence of single AOA and Nitrospira cells loosely associated with each other 
and close to an abundant, but unknown cell type embedded in a dense biofilm structure.  

3.4. Carbon incorporation 

The autotrophic nature of the AOA and NOB during nitrification was investigated by 

incorporation of 13C-derived bicarbonate into the characteristic membrane lipids during two 

sets of incubations, one with NH4
+ and another with NO2

-. Isotopic analysis of the biphytane 

moieties of the characteristic archaeal membrane lipids, glycerol dibiphytanyl glycerol 

tetraether lipids (GDGTs), was performed for AOA. The GDGTs were dominated by 
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crenarchaeol, in agreement with culture studies of “Candidatus Nitrososphaera gargensis” 

(Pitcher et al., 2010). The two biphytanes released showed considerable enrichment in 13C 

compared to the start of the incubation, pointing at AOA autotrophy (Figure 4.6). The activity 

of NOB was determined by assessing the incorporation of 13C-labeled bicarbonate into 11-

methyl C16:0, a specific biomarker for moderately thermophilic Nitrospira (Lipski et al., 2001; 

Spieck and Lipski, 2011). The isotopic label was incorporated in the 11-methyl C16:0 

phospholipid fatty acid biomarker after a lag-time of 3 days at the rate of 0.3% d-1 during the 

21 days of incubation. Interestingly, the NOB 13C enrichment (%) appeared to be linear with 

the total amount of nitrogen oxidized (Figure 4.6), demonstrating that the autotrophic carbon 

assimilation by NOB occurred concurrently with the NO2
- oxidation. For AOA, however, due to 

the lower sensitivity of the AOA biomarker analysis and lower AOA oxidation rates only two 

valid data points remained and do not allow to draw conclusions regarding linearity. 

Furthermore, the partnership between “Candidatus Nitrososphaera gargensis” and Nitrospira 

calida was confirmed, as a 26% 13C enrichment was observed for the Nitrospira biomarker at 

the end of the incubation fed with NH4
+. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6 Relationship between the absolute amount of nitrogen oxidized and the 13C 
incorporation in characteristic biomarkers: the biphytane moieties of the glycerol dibiphytanyl 
glycerol tetraether lipids (GDGTs), more specifically crenarchaeol, as a biomarker for 
“Candidatus Nitrososphaera gargensis” and the 11 methyl C16:0 as a specific phospholipid 
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fatty acid biomarker of Nitrospira spp. Data points represent the average replicate extractions 
(n=3), error bars represent the standard error. 

3.5. Physiological characterization 

The thermophilic biomass showed specific nitrifying rates up to 198 ± 10 and 894 ± 81 mg N 

g-1 VSS d-1, for NH4
+ and NO2

- oxidation, respectively. Taken into account an average relative 

abundance of 10% AOA and 25% NOB and the simplified assumption that total protein was 

equally distributed among all organisms in the culture, these rates result in a specific AOA and 

NOB rate of 18 ± 1 and 33 ± 3 µg N mg-1 protein h-1, respectively. With respect to the 

development of biotechnological applications and effective process control strategies, it is 

important to distinguish the inhibitory effects of NH4
+ from those of free ammonia (FA) and 

NO2
- from those of free nitrous acid (FNA). The thermophilic ammonium and nitrite oxidizers 

were both sensitive to FA, while insusceptible to NH4
+. Ammonium oxidation was not inhibited 

up to 300 mg NH4
+-N L-1 for the batch activity series with low FA, while it was inhibited for the 

series tested at a higher FA, resulting in an IC50 of 7.5 mg NH3-N L-1 (Figure 4.7 A). Nitrite 

oxidation was slightly more sensitive for FA with an IC50 of 5.0 mg NH3-N L-1 (Figure 4.7 B). 

Regarding NO2
-/FNA inhibition, ammonium oxidizers were clearly inhibited by NO2

- and not by 

FNA. Both the series with high and low FNA gave the same inhibition response with increasing 

NO2
- concentrations (Figure 4.7 C). Sensitivity was, however, very low, characterized with an 

IC50 of 2117 mg NO2
--N L-1. In contrast, the NOB were extremely sensitive to FNA and not to 

NO2
- with an IC50 of 0.0010 mg HNO2-N L-1 (Figure 4.7 D). Lowering FNA while applying the 

same NO2
- concentrations namely eliminated the inhibitory effect. Nitrate inhibition of nitrite 

oxidation was also observed (IC50 360 mg NO3
-
-N L-1).  

Thermophilic NH4
+ oxidation showed a pH optimum at pH 7, maintaining >70% of its activity 

within the tested pH range (pH 6-8) (Figure 4.8 A). Although the bioreactor was controlled 

between pH 6.8-7.2, it showed increasing NO2
- oxidation at lower pH, given low FNA 

concentrations (Figure 4.8 C). Ammonium oxidation showed a broad temperature optimum 

(45-55°C), while nitrite oxidation showed a clear optimal activity at the reactor temperature 

(50°C). The thermophilic NH4
+ oxidation could be inhibited by the conventional nitrification 

inhibitor ATU at neutral pH with an IC50/100 of 3.5/8.8 mM. 
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Figure 4.7 Effect of ammonium/FA (free ammonia) and nitrite/FNA (free nitrous acid) on 
thermophilic ammonia (A and C) and nitrite (B and D) oxidation. Each figure represents two 
sets of experiments (filled versus empty circles) where he full lines show the resulting 
inhibition pattern, while the dotted lines show the corresponding FA/FNA of the 
corresponding test.  
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Figure 4.8 Effect of pH and temperature on thermophilic ammonium (A and B) and nitrite (C 
and D) oxidation. The full lines represent the remaining activity, while the dotted lines show 
the corresponding FA/FNA of the corresponding test. In Figure C, two sets of experiments are 
presented, in which the same pH range is tested but at different nitrite and thus FNA 
concentrations. 

4. Discussion  

In this study, the enrichment of coupled autotrophic thermophilic ammonium and nitrite 

oxidizers from compost was achieved followed by the successful operation of a thermophilic 

nitrifying bioreactor, opening up opportunities for nitrogen removal in warm wastewater. 

 

The thermophilic nitrifying community consisted of an AOA and NOB closely related to 

“Candidatus Nitrososphaera gargensis” and Nitrospira calida, respectively, both of which were 

originally isolated from geothermal springs (Hatzenpichler et al., 2008; Lebedeva et al., 2011). 
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In contrast to the oligotrophic nature of these geothermal springs, this study enriched nitrifiers 

from aerobic compost, a nutrient-rich high-temperature anthropogenic environment. 

Although many archaeal amoA genes (Maeda et al., 2011; Zeng et al., 2011) and even 

“Candidatus Nitrososphaera gargensis”–like sequences (Yamamoto et al., 2011; Oishi et al., 

2012) were detected during composting processes, so far, no autotrophic thermophilic 

nitrifiers were enriched from compost. Only a heterotrophic AOB growing at 50°C related to 

Bacillus halodurans was isolated previously from animal waste composting (Shimaya and 

Hashimoto, 2011). The presence of the described core nitrifiers in the bioreactor was, 

furthermore, linked with their activity and functionality. Incorporation of 13C labeled 

bicarbonate was observed into crenarchaeol and 11-methyl C16:0, characteristic membrane 

lipids for “Candidatus Nitrososphaera gargensis” (Pitcher et al., 2010) and Nitrospira (Lipski et 

al., 2001), respectively (Figure 4.6). Although the carbon assimilation confirmed the 

autotrophic activity of the studied nitrifiers, it does not exclude the presence of other, 

unknown autotrophic or heterotrophic nitrifiers. An abundant cell type, embedded in a dense 

biofilm structure could not be identified (Figure 4.5 C). Together with the observed 

delay/heterogeneity of the AOA presence over time, this could suggest that an 

uncharacterized ammonium oxidizing organism was also present, as was recently observed in 

reactors with low dissolved oxygen concentrations (Fitzgerald et al., 2015). The linearity of the 

nitrite oxidation and the 13C enrichment in the stable isotope experiment (Figure 4.6), 

however, suggest that at least the NOB Nitrospira calida was an important thermophilic 

nitrifier in the biomass community. 

The physiological characterization revealed that the specific oxidation rates of both AOA (18 ± 

1 µg N mg-1 protein h-1) and NOB (33 ± 3 µg N mg-1 protein h-1) were in the same order of 

magnitude as related nitrifiers. In particular, the specific rates for AOA range from 11 to 24 µg 

N mg-1 protein h-1 (Kim et al., 2012), while reported rates for Nitrospira spp. range between 16 

and 42 µg N mg-1 protein h-1 (Nowka et al., 2015). Interesting differences in substrate/product 

tolerances were observed. Until now, data concerning NH4
+/NH3 inhibition on (thermophilic) 

AOA has been limited attributing the inhibitory effect to NH4
+ without excluding FA inhibition. 

However, with respect to biotechnological applications and the development of effective 

process control strategies, this distinction can be of great importance and was determined in 

this study. The “Candidatus Nitrososphaera gargensis”–like AOA in the thermophilic nitrifying 
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bioreactor appeared to be insensitive to NH4
+, while it was significantly inhibited by FA 

concentrations of 7.4 mg NH3-N L-1 (Figure 4.7 A). At a neutral pH and a temperature of 50°C, 

this inhibition corresponds to a NH4
+ concentration of 260 mg NH4

+-N L-1. This concentration 

is 6 times higher than the inhibitory NH4
+ concentration reported for “Candidatus 

Nitrososphaera gargensis” (Hatzenpichler et al., 2008). The higher FA tolerance could be 

attributed to the fact that the AOA in this study originated from nutrient-rich compost in 

contrast with oligotrophic geothermal springs. Indeed, the AOA detected in cattle manure 

compost by Oishi et al. (2012) showed ammonium oxidizing activity at 46°C up to FA 

concentrations of 18 mg N L-1 (10 mM, pH 7.8). The thermophilic NOB in the bioreactor of our 

study were also sensitive to FA and insensitive to NH4
+, but the higher sensitivity (IC50 of 5.0 

mg NH3-N L-1) could allow a selective NOB inhibition based on FA. Furthermore, the AOA were 

insensitive to FNA, while the NOB were extremely sensitive to FNA (IC50 of 0.0010 mg HNO2-N 

L-1) (Figure 4.7 C, D). Both the insensitivity of AOA for FNA and the high sensitivity of NOB for 

FA and FNA suggest that a selective NOB inhibition could be easily established in the described 

thermophilic nitrifying community, enabling the development of more cost-effective nitrogen 

removal processes, such as nitritation/denitritation or deammonification.  

With respect to the biotechnological applications of thermophilic nitrifiers in wastewater 

treatment, it is important to establish a robust and stable satellite community around the main 

functional players. Pearson correlations indicated that both the AOA and NOB in the 

thermophilic biomass evolved towards the same preferred satellite community (Figure 4.4). 

Interestingly, these microbial groups were also identified together with closely related AOA 

and NOB sequences in natural nitrification-driven thermophilic environments (Lin et al., 2012; 

Marks et al., 2012; Nishizawa et al., 2013). As observed for methanotrophs, for which the 

methanotrophic activity was stimulated by increased heterotrophic richness of the satellite 

community (Ho et al., 2014), the co-occurrence of these microbial groups in natural 

thermophilic environments, as in the bioreactor described in this study, might have a beneficial 

effect on the nitrifying activity. Furthermore, positive correlations between both key players 

and the presence of the phyla Bacteroidetes, Firmicutes and Deinococcus-Thermus, among 

others, can facilitate the development of complete nitrogen removal processes, as these 

groups were described as the main constituents of a thermophilic denitrifying reactor (Chapter 

5). 
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Until now, the main thermophilic nitrogen removal mechanism was assumed to be ammonia 

stripping and nitrogen assimilation into biomass. However, as discussed in Chapter 1, not all 

ammonia can be removed through stripping and depending on the ammonium concentration 

in the influent and the local market/value of ammonium sulphate, ammonium recovery is not 

always cost competitive and thus development op thermophilic biotechnology for nitrogen 

removal is necessary. Besides eliminating cooling requirements, thermophilic nitrogen 

removal also lowers sludge production and confers better settling properties (Suvilampi and 

Rintala, 2003). These advantages apply not only to warm wastewaters but also to wastewaters 

on sites with excess heat available. A few lab-scale studies have explored the potential of 

thermophilic nitrification for wastewater treatment, but achieved no more than 40-42.5°C 

(Shore et al., 2012; Courtens et al., 2014a). Thus far, this is the first study describing a 

thermophilic nitrifying bioreactor at 50°C. Although challenges such as the effect of carbon on 

the autotrophic/heterotrophic competition and the coupling of nitrification with a reductive 

nitrogen removal process (denitrification, anammox) have to be addressed to enable 

implementation, this study paves the way for thermophilic nitrogen removal. 

 

5. Conclusions 

 Thermophilic autotrophic ammonium and nitrite oxidizers were batch-wise enriched 

from compost samples and served as inoculum for a nitrifying bioreactor at 50°C with 

high biotechnological potential. 

 The nitrifying community contained up to 17% ammonium oxidizing archaea (AOA) 

closely related to “Candidatus Nitrososphaera gargensis”, and 25% nitrite oxidizing 

bacteria (NOB) related to Nitrospira calida. 

 Their autotrophic nitrifying activity was confirmed by incorporation of 13C-derived 

bicarbonate into the respective characteristic membrane lipids during nitrification. 

 The combination of different inhibition tests enabled the separation of the effect of 

interlinked parameters such as temperature, pH, NH4
+ and FA. NOB were more 

sensitive to FA than the AOA and moreover strongly inhibited by FNA while AOA could 
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only be inhibited by high NO2
- concentrations, independent of the FNA concentration. 

These observed difference in product/substrate inhibition opens the path for short-cut 

nitrogen removal processes. 
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1. Introduction 

Thermophilic denitrifying micro-organisms are widely spread in natural ecosystems (Chapter 

1). However, until now, only one study was focused on the development of a thermophilic 

denitrifying reactor for wastewater treatment. Laurino and Sineriz (1991) investigated 

denitrification in a lab-scale upflow sludge blanket (USB) reactor at 55 °C fed with ethanol as 

carbon and energy source. The USB reactor was inoculated with thermal mud originating from 

a hot spring and started-up in batch mode for 15 days. After switching to continuous mode, a 

maximum nitrogen removal rate of 1317 mg N L-1 d-1 with a nitrate removal efficiency of 78 % 

was observed, resulting in a maximal specific removal rate of 51 mg N g-1 VS d-1.  

The current study investigated whether a non-thermophilic inoculum, i.e. mesophilic 

denitrifying sludge (26 °C), can be used for the start-up of a thermophilic (55 °C) sequential 

batch reactor (SBR). A parallel mesophilic control SBR (34 °C) was inoculated with the same 

sludge enabling an extensive comparison between mesophilic and thermophilic 

denitrification. Both functional aspects such as maximal specific nitrate removal rate, sludge 

production, sludge settleability and nitrous oxide production and phylogenetic diversity of the 

microbial community were compared for different substrate complexities ranging from 

synthetic influent to real waste streams. 

2. Materials and methods 

2.1. Set-up and operation of the denitrifying reactors 

Two parallel sequential batch reactors (SBR) had an effective liquid volume of 2 L and an inner 

diameter of 12 cm. Operational temperatures were chosen from an application point of view, 

representing the typical temperatures of mesophilic (34°C) and thermophilic (55°C) 

digestates, for the mesophilic (control) and thermophilic SBR, respectively. The reactor vessels 

were jacketed, and the temperature was controlled with a circulating thermostatic water 

bath. The two-hour cycle consisted of a 90 min reaction period including stirring (60 rpm), 

followed by a 15 min settling period and a 15 min decanting period. The reactors were 

inoculated with nitrifying/denitrifying (N/DN) sludge, originated from a landfill leachate 

wastewater treatment plant with an average temperature of 26.3 ± 3.6°C, at an initial biomass 
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concentration of 4.0 ± 0.2 g volatile suspended solids (VSS) L-1. During start-up of the reactors, 

considerable amounts of sludge washed out. After stabilization, sludge was wasted in order 

to keep the sludge concentration around 2 g VSS L-1. For the mesophilic SBR 1.3 ± 0.7 g VSS 

was wasted on a daily basis, while practically no sludge was wasted in the thermophilic SBR, 

resulting in a sludge residence time (SRT) of 2.3 ± 0.5 and 4.9 ± 0.9 days for the mesophilic and 

thermophilic SBR, respectively. An identical feeding strategy was applied for both reactors, 

whereby different wastewater matrices and COD types were used ranging from sodium nitrate 

containing tap water to industrial wastewater (WW) from the fertilizer industry, sodium 

acetate (NaAc) and diluted molasses. Other than NO3
- and COD, the influent also contained 

(NH4)2SO4 (0.05 g N g-1 NO3
--N) and KH2PO4 (10 mg P L-1) and was acidified throughout the 

whole experiment with HCl resulting in an influent pH of 2.5 ± 0.4 in order to indirectly control 

the pH in the reactor. Three main feeding periods were distinguished according to the COD 

and NO3
- source: the synthetic period (CODNaAc/NNO3), the real wastestream/synthetic period 

(CODMolassas/NNO3) and the real wastestream (WS) period (CODMolassas/NFertilizer WW), 

respectively, each including different phases, depending on the NO3
- loading rate (Table 5.1). 

The transitions between the three feeding periods occurred after at least 5 times the sludge 

retention time (SRT of 2.3 ± 0.5 and 4.9 ± 0.8 days for the mesophilic and thermophilic SBR) to 

ensure a ‘stable’ microbial community and at a same loading rate enabling comparison of the 

different influents. However, if the transition resulted in nitrite accumulation, the loading was 

lowered. The synthetic period (CODNaAc/NNO3) consisted of a start-up phase of 14 days (phase 

I), a high loading phase (phase II) for determination of the maximum volumetric/specific 

removal rates and a moderately loaded phase (phase III), facilitating the determination of 

settling properties and comparison between the two systems. The real WS/synthetic feeding 

period (CODMolassas/NNO3) with diluted molasses as carbon source included 2 phases (IV and V), 

where phase V served as an adaptation phase to the characteristics of the industrial WW from 

fertilizer industry (Table 5.1). Finally, in the last feeding period, the real WS period 

(CODMolassas/NFertilizer WW), two different batches of industrial WW were used, resulting in two 

phases (VI and VII). Average volumetric and specific denitrification activities were calculated 

based on nitrate removal over stable operational periods of minimum 5 days. The removed 

COD/N, or more specifically COD/NO3-Nequivalent was calculated taking into account the nitrite 

production (eq. 1) (Matějů et al., 1992). Per mole COD to denitrify a mole nitrate to nitrogen 



Mesophilic vs. thermophilic denitrification 

 

98  

gas, about 0.4 is used for the reduction to nitrite, while 0.6 is used for the reduction of nitrite 

to nitrogen gas. 

  Removed COD/N  (𝑔/𝑔) =  
𝐶𝑂𝐷𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡− 𝐶𝑂𝐷𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡

(𝑁𝑂3
−𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛− 𝑁𝑂2

−𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛)+0.4×𝑁𝑂2
−𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

  (1) 

 
Table 5.1 Overview of the different feeding periods, which were identical in both reactors. 
WW: wastewater, WS: wastestream, * different value in thermophilic reactor 

Feeding period Synthetic Combi  
Real WS/Synthetic 

Real WS 

COD source Na-acetate Molasses Molasses 
NO3

-
 matrix Tap water Tap water Fertilizer WW 

Phase I II III IV V VI VII 

Duration (d) 13 16 17 13 13 14 9 
NO3

- (mg N L-1) 100-400 400(*200) 200 150 300 287 ± 4 182 ± 7 
NO3

- loading 
(mg N L-1 d-1) 

350-
1500 

1508±65 
(*739±27) 

765±19 568±29 383±38 475±62 325±18 

CODin/Nin (g/g) 4.6±0.3 4.3±0.5 4.1±0.3 4.9±0.3 5.0±0.6 5.4±0.4 5.3±0.3 

2.2. Denitrification activity batch tests  

Parallel with the start-up of the reactors, anoxic batch tests were performed at 34°C and 55°C 

with the same inoculum in order to clarify the impact of the temperature shock on the 

denitrifying activity. Serum flasks with a volume of 120 mL were used, containing 80 mL of 

mixed liquor buffer solution (pH 8) with final concentrations of 0.6 g KH2PO4 L-1 and 10.5 g 

K2HPO4 L-1 and a biomass concentration of 3.6±0.1 g VSS L-1. The serum flasks were closed with 

rubber stoppers and flushed with N2 gas. Flushed substrate solution of NaNO3 and NaAc 

(COD/N = 4) was supplemented by means of needled syringes to a final concentration of 100 

mg N L-1. After 72 hours a second spike of substrate (NaNO3 and NaAc) was provided. 

Similarly, during the feeding period with real WS (CODMolassas/NFertilizer WW) (phase VI), anoxic 

batch tests were performed with the mesophilic and thermophilic reactor sludge investigating 

maximal specific rates and nitrous oxide (N2O) production. The same buffer medium was used 

with a biomass concentration of 0.4 ± 0.04 g VSS L-1. Flushed substrate solutions of NaNO3 

with NaAc (COD/N = 4) and NaNO3 with molasses (COD/N = 6.5) were supplemented by means 

of needled syringes to a final concentration of 50 mg N L-1. All tests were performed in 

triplicate on a shaker (100 rpm). Liquid samples were taken over time for nitrite, nitrate and 
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COD analysis. The last batch tests also included head-space gas sampling and gas pressure 

measurements for N2O analysis. 

2.3. Chemical analyses 

Ammonium (Nessler), total Kjeldahl-N, TSS, VSS, and biochemical oxygen demand (BOD5) were 

measured according to standard methods (Greenberg et al., 1992). COD was measured by 

photometric methods using Nanocolor test tubes (Macherey-Nagel, Germany). Nitrite, 

nitrate, DO and pH were determined as described in previous chapters. Gas pressure was 

measured using a tensiometer (Infield 7 with T1Kc sensor head, UMS, München, Germany). 

N2O measurements were performed with a Shimadzu GC-14B gas chromatograph (Shimadzu, 

Kyoto, Japan) with an electron capture detector and two packed columns (1 and 2 m, 

respectively; Porapack Q, 80/100 mesh). The operating conditions were as follows: carrier gas 

N2 (55 mL/min), injector temperature 105°C, column and oven temperature 55°C and detector 

temperature 250°C. The chromatograph was calibrated using N2O standard gas (250±13 ppmv 

or 25.3 ± 1.5 ppmv in He).  

2.4. Sludge characteristics 

A Mastersizer S (Malvern, Malvern, UK) was used for size distribution measurements of the 

sludge samples with a glass flask as small volume dispersion unit. The results were calculated 

using the “polydisperse” analysis model in the Mastersizer software. Biomass settleability 

(SVI5
*) and sludge yield (Y) were determined as described in Chapter 3.  

2.5. High throughput DNA sequencing of the denitrifying microbial communities 

Biomass samples (2 mL) were collected of the inoculum and both reactors over the different 

time periods and DNA extraction was performed as described in Chapter 3. Biodiversity was 

analyzed using high throughput sequencing (MiSeq Illumina platform). For that, regions V5-

V6 of the 16S rRNA gene was amplified and targeted with adapters and barcodes suitable for 

Illumina sequencing (Bohorquez et al., 2012; Camarinha-Silva et al., 2014). Samples from both 

reactors were analyzed obtaining an average of 24844 OTU, clustered into 197 unique taxa, 

and taxonomically annotated using Silva database (Pruesse et al., 2007). The vegan package 

in R (version 3.0.2) was used to calculate diversity indexes such as Shannon, Pielou (diversity 
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function) and Bray-Curtis dissimilarity indexes (vegdist function). Each set of reads was 

normalized to the minimum sequencing depth using phyloseq package. 

3. Results and discussion 

3.1. Start-up of thermophilic denitrification 

The mesophilic and thermophilic SBR showed a similar start-up in terms of specific nitrogen 

removal activity (Figure 5.1, phase I). As the inoculum was derived from a mesophilic N/DN 

plant (26°C), this suggests direct adaptation to the higher mesophilic (34°C) but, more 

importantly also to the thermophilic temperatures (55°C). In contrast to the study of Laurino 

and Siñeriz (1991), in which specific thermal mud was used for the start-up of a thermophilic 

denitrifying reactor via 15 days of batch mode operation, this study showed that a more 

efficient start-up could be reached via continuous operation, even without specific 

thermophilic inocula. The continuous start-up probably facilitated the enrichment of 

thermophilic bacteria by preventing the accumulation of decay- and by-products while making 

space for ‘new’ organisms. 

 

Parallel with the start-up of the reactors, anoxic batch tests with the inoculum were 

performed at 34°C and 55°C in order to clarify the temperature shock impact on the 

denitrifying activity. Although no difference could be observed in the nitrate consumption at 

34°C and 55°C in the batch tests, a significant nitrite build-up occurred at 55°C and resulted in 

a 54% lower total specific nitrogen removal (Figure 5.2). Similarly, during the start-up of the 

reactors, the thermophilic SBR showed nitrite build-up while the mesophilic SBR did not 

(Figure 5.1). After 13 days start-up however, this nitrite build-up decreased and disappeared. 

Interestingly, while the direct activity measurements of the anoxic batch tests showed a 54% 

lower total specific nitrogen removal at 55°C compared to 34°C, after 72 hours, the specific 

nitrogen removal at 55°C was 52% higher than at 34°C. At 55°C, the decay and lysis of bacteria 

probably predominated in the direct activity measurements resulting in a lower nitrogen 

removal. Indeed, the VSS content clearly decreased over time both in the batch tests (Figure 

5.2) as well as in the thermophilic SBR (Table 5.2). This was also observed during the start-up 
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of a thermophilic aerobic wastewater treatment process inoculated with mesophilic sludge, 

initially measuring an increase of COD as a result of cell lysis, where COD removal was only 

observed after some hours (Suvilampi and Rintala, 2003). 

 

 

Figure 5.1 Reactor performance of the mesophilic (top) and thermophilic (bottom) denitrifying 
SBR along the different feeding periods represented by the volumetric NO3

- loading/removal 
and NO2

- production (mg N L-1 d-1) and total specific nitrogen removal rates (mg N g-1 VSS d-1). 
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Figure 5.2 Effect of a temperature shock on the denitrifying activity of the mesophilic inoculum 
(26°C), immediately after heating and after 72 hours at the shocked temperature. Nitrate 
removal (white), nitrite production (grey), total nitrogen removal (black) and VSS 
concentration (black dots)  

Table 5.2 Reactor performance parameters for the mesophilic and thermophilic SBR during 
the three different feeding periods; n(Synthetic)=46, n(Real WS/Synthetic)=26, n(Real WS)=23. 

 Feeding period Mesophilic SBR Thermophilic SBR 

 Synthetic 8.9 ± 0.1 8.7 ± 0.2 

pH Real WS/Synthetic 7.6 ± 0.5 7.9 ± 0.3 

 Real WS 7.9 ± 0.1 8.1 ± 0.1 

 Synthetic 3.6 ± 0.3 2.8 ± 0.3 

Removed COD/N Real WS/Synthetic 4.5 ± 0.8 4.5 ± 1.1 

(g COD g-1 N) Real WS 5.0 ± 0.6 4.9 ± 1.1 

 Synthetic 0.68 ± 0.06 Decreasing from 0.72 to 0.28 

VSSsludge/TSSsludge Real WS/Synthetic 0.84 ± 0.04 0.29 ± 0.06 

 Real WS 0.87 ± 0.04 0.46 ± 0.07 

 Inoculum 63 63 

Mean floc size Real WS/Synthetic 242 72 

 (µm) Real WS 381 87 
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Similarly, Lopez-Vazquez et al. (2013) examined the immediate denitrification activity of 

industrial N/DN sludge (34°C) at different temperatures (35-55°C). Curiously, denitrification 

activity could only be detected up to 50°C, while at 55°C no significant activity was measured. 

It is unclear whether this observation suggests that not all mesophilic inocula could be used 

for direct start-up of thermophilic denitrifying reactors above 50°C or, as these batch activity 

tests were performed on a short term (hours), whether the decay and lysis of the bacteria 

possibly predominated in this stage resulting in no net nitrogen removal. 

3.2. Denitrification performance 

After the start-up, in phase II of the reactor experiment, the loading was kept high in order to 

determine the maximum specific nitrogen removal rates (Figure 5.1, phase II). The mesophilic 

sludge reached about twice the specific nitrogen removal rates of the thermophilic sludge, i.e. 

922 ± 21 and 435 ± 21 mg N g-1 VSS d-1, respectively. Nevertheless, the observed specific 

thermophilic rates were about a factor 8.5 higher than the rates described by Laurino and 

Siñeriz (1991) who reached about 51 mg N g-1 VS d-1 in a UASB reactor at 55°C. The large 

difference in specific removal rate between these two thermophilic reactors can potentially 

be attributed to the reactor configuration, resulting in different sludge aggregation states and 

sludge densities. UASB reactors are known to form dense granular sludge with lower specific 

activities compared with floccular sludge (Jin et al., 2012). As the thermophilic SBR in this study 

had a relatively low biomass content (1.2 ± 0.5 g VSS L-1) compared with the UASB reactor 

described by Laurino and Siñeriz (1991) (25.8 g VS L-1), the volumetric nitrogen removal rates 

were lower reaching 496 ± 100 mg N L-1 d-1 (SBR) versus 855 ± 215 mg N L-1 d-1 (UASB). Typical 

specific mesophilic denitrification rates range from about 50 to 1000 mg N g-1 VSS d-1 (Henze 

et al., 2008). The obtained thermophilic rates in this study were in the range of typical 

mesophilic denitrification whereas the observed maximal mesophilic nitrogen removal rates 

could be considered as relatively high. These high removal rates led to extensive N2 production, 

which resulted in floating sludge, and were consequently not feasible for practical SBR 

operation. Therefore, from phase III on, the nitrate loading of the mesophilic SBR was 

decreased to the loading of the thermophilic SBR (Table 5.1), facilitating the settling and, as 

such, a comparison between the two systems was possible (see subsection 3.3).  
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The synthetic feeding period consisting of tap water provided with NaNO3 and NaAc was 

followed by a semi-synthetic feeding period where the COD source was replaced by diluted 

molasses (Table 5.1, phase IV). Molasses mainly consist of sugars with sucrose as the main 

constituent accounting for 32.5% (m/m) (Hamlin et al., 2008). Both reactors suffered from this 

abrupt change in COD source as an immediate decrease in total nitrogen removal of 89% and 

59% was observed for the mesophilic and thermophilic SBR, respectively (Figure 5.1, phase 

IV). As several studies already showed that molasses can be used as a good carbon source for 

denitrification (Ueda et al., 2006; Hamlin et al., 2008) and highly diluted (500x) molasses were 

used in this study, it is unlikely that some inhibitory compounds in the complex molasses broth 

could have been the cause of the nitrite accumulation. Partial inhibition of the denitritation 

resulting in nitrite accumulation can also be a result of high oxygen levels or increased pH 

(Glass and Silverstein, 1998; Oh and Silverstein, 1999). The DO level in both reactors was 

always < 0.05 mg O2 L-1 and the pH actually decreased (± pH 8.8 to ± pH 7.8) after the COD 

change (Table 5.2). This indicates that the change in COD source itself caused the nitrite 

accumulation.  

The higher resilience of the thermophilic denitrifying sludge towards changes in COD source 

was also reflected in the results of the anoxic batch activity tests (Figure 5.3), performed 

during the last feeding period (Real WS, phase IV). The denitrifying activity of the mesophilic 

and thermophilic sludge acclimated to molasses was determined for both molasses as well as 

for acetate. Although no substantial difference between acetate and molasses could be 

observed for the thermophilic sludge, the total nitrogen removal of the mesophilic sludge with 

acetate as COD source was about 7.6 times lower than with molasses (Figure 5.3). Similarly, 

Cherchi et al. (2009) showed that acetate-acclimated mesophilic biomass could use only 

acetate efficiently, while marginal denitrification rates were obtained with other carbon 

sources such as glucose and methanol. The disability of specific carbon-acclimated biomass to 

instantly use other carbon sources can be linked to a highly specialized, non-diverse 

community. The higher microbial diversity/evenness in the thermophilic denitrifying sludge at 

the end of the synthetic feeding period with acetate (see subsection 3.4) could thus potentially 

explain the higher resilience to the abrupt COD change.  
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Figure 5.3 Effect of carbon source (acetate vs. molasses) on the denitrifying activity of 
mesophilic (34°C) and thermophilic (55°C) sludge acclimated to molasses and fertilizer 
wastewater (phase VI) presented by the total specific nitrogen removal rates (top) and the 
removed COD/N (bottom).  

Beside this higher resilience of the thermophilic SBR towards changes in COD source, also a 

lower COD requirement, and thus higher denitrification efficiency was observed. During the 

synthetic feeding period with acetate (phases I-III) a ratio of 3.6 ± 0.3 g CODremoved/g Nremoved 

was measured in the mesophilic SBR while only a ratio of 2.8 ± 0.3 was observed in the 

thermophilic SBR (Table 5.2). The influence of temperature on the consumed COD/N ratio was 

already observed in a lower temperature range where at 10°C and 25°C, a ratio of about 6 and 

4 was measured, respectively (Peng et al., 2007). As stated by Peng et al. (2007), a high degree 

of endogenous respiration, typical for thermophilic conditions, results in a considerably lower 

apparent growth yield and a thereby lower consumed COD/N ratio. Indeed, the thermophilic 

sludge showed a lower sludge production (See subsection 3.3, Figure 5.4). Additionally, the 

lower consumed COD/N ratio can also be attributed to more internally available COD as a 



Mesophilic vs. thermophilic denitrification 

 

106  

result of a higher cell decay/lysis at elevated temperatures. After the COD change however, 

no differences in removed COD/N ratio could be detected anymore (Table 5.2). In this phase, 

the effect of carbon source possibly dominated over the temperature effect. Once acclimated 

to the molasses, the anoxic batch activity tests show that the thermophilic sludge again had a 

lower removed COD/N ratio (Figure 5.3). 

In the third phase, also the NO3
- matrix was changed from tap water to NO3

- rich industrial 

WW from fertilizer industry (phase VI, 287 ± 4 mg NO3
- L-1), possibly containing additional 

inhibitory compounds. Similar with the change in COD source in phase IV, a transient nitrite 

build-up was observed in both reactors (Figure 5.1). As nitrite build-up is a known factor 

triggering N2O emissions in nitrification but also in denitrification reactors (Kampschreur et al., 

2009), N2O emission was investigated in parallel batch tests during phase VI. High nitrite 

concentrations namely lead to a lower denitrification rate and accumulation of NO and N2O 

(Schulthess et al., 1995). Although a nitrite concentration of 21 ± 5 and 27 ± 6 mg NO2
--N L-1 

was measured in the mesophilic and thermophilic microcosms in this study, negligible N2O 

emission (≤ 0.05% N of reduced NO3
--N) was measured in all treatments. Finally, both reactors 

were able to treat the industrial wastewater using the by-product from sugar refinery 

(molasses) as carbon source (Figure 5.1, phase VI and VII).  

3.3. Sludge characteristics  

Different sludge characteristics of the mesophilic and thermophilic denitrifying biomass were 

monitored over the three feeding periods. The particle size of the mesophilic sludge flocs was 

clearly higher than the thermophilic sludge flocs reaching a volume mean diameter of 381 µm 

compared to 87 µm (Table 5.2, Real WS). This trend was also observed in a study that 

compared mesophilic (20-35°C) and thermophilic (55°C) activated sludge processes (Suvilampi 

et al., 2005). The floc sizes in our study were completely in the range of the size distribution 

of the cited study where 150-500 µm flocs were dominant in the mesophilic activated sludge, 

whereas 50-150 µm flocs were dominant in the thermophilic activated sludge. The higher 

complexity of the influent matrix clearly increased the particle size of the mesophilic 

denitrifying sludge. It was shown that activated sludge fed with glucose produces more 

extracellular polymeric substances (EPS) than sludge that was fed on acetate (Li and Yang, 
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2007). As EPS are known to determine floc structure/formation and molasses mainly consist 

of sugars, this can eventually explain the observed increase in mesophilic floc size with a 

change in COD composition. However, for the thermophilic denitrifying sludge, only a slight 

increase could be observed along the different feeding periods (Table 5.2). This could possibly 

be justified by the fact that the properties of specific EPS functional groups rather than the 

quantity of bound EPS determine the difference in bioflocculation behavior between 

thermophilic and mesophilic sludge (Liao et al., 2011). 

 

 

 

 

  
 
 
 
 
 
 
 
 
Figure 5.4 Impact of mesophilic (34°C) vs. thermophilic (55°C) temperature on sludge 
characteristics. (A) Sludge volume index* (n=3) and (B) sludge production for the mesophilic 
and thermophilic denitrifying biomass for the different feeding periods. 
 
Although the thermophilic denitrifying sludge consisted of much smaller particles, it showed 

better settling properties reaching a 3.6 times lower sludge volume index (SVI*) in the last 

phase (Figure 5.4 A, Real WS). This is surprising as thermophilic aerobic processes are generally 

known to suffer from poor settling properties as a result of poor floc formation under 

thermophilic conditions (Suvilampi and Rintala, 2003). The better settling of the thermophilic 

sludge could have been the result of a higher inorganic content (54% versus 13% in the 

thermophilic and mesophilic sludge, respectively, Table 5.2) and hence a higher specific 

density. Indeed, several studies already showed a good inverse correlation between both 

VSS/TSS ratio and density and VSS/TSS ratio and settling velocity (Schuler and Jang, 2007; 

Vlyssides et al., 2008). This can lead to implementation of shorter settling times and thus 

higher volumetric loadings in SBR or smaller settlers in continuous systems. This high inorganic 
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content was also observed in the thermophilic granular denitrifying sludge described by 

Laurino and Siñeriz (1991) accounting for 43%. Beside the large effect of temperature on SVI*, 

the settleability of both sludge types clearly declined with increasing complexity of the influent 

matrix (Figure 5.4 A). Similarly, Li and Yang (2007) demonstrated that acetate-fed activated 

sludge had more EPS and consequently performed better in terms of bioflocculation and 

sludge sedimentation than glucose-fed sludge. 

Thermophiles have faster growth rates than mesophiles, however, due to even higher 

maintenance energy and decay rates, this results in lower net microbial growth (Lapara and 

Alleman, 1999). The thermophilic SBR showed about 50% less sludge production in the last 

phases (Figure 5.4 B, real WS), thereby strongly reducing operational costs. The sludge 

production values in this study (Figure 5.4 B) were in the range of reported sludge production 

values under thermophilic aerobic conditions ranging between 0.05 and 0.3 kg SS kg-1 

CODremoved (Suvilampi and Rintala, 2003). Similar with the SVI* measurements, sludge 

production increased with increasing complexity of the influent matrix (Figure 5.4 B). This was 

also the case in the study conducted by Hamlin et al. (2008) who compared sludge production 

for different carbon sources. In the cited study, the order of sludge production from lowest to 

highest appeared to be methanol < acetic acid < starch < molasses. 

3.4. Diversity, evenness and dynamics of the microbial community  

Phylogenetic studies comparing mesophilic and thermophilic aerobic wastewater treatment 

systems demonstrated that elevated reactor temperatures resulted in a lower microbial 

diversity and more selective microbial communities limited to a narrow range of COD types 

(Tripathi and Allen, 1999; LaPara et al., 2000). In this study however, illumina sequencing 

indicated that the diversity of the thermophilic DN sludge was nearly always comparable or 

even higher than the mesophilic DN sludge (Figure 5.5 A). Species richness were comparable 

in both sludge types ranging between 91-112 species and 100-112 species for the mesophilic 

and thermophilic sludge, respectively. Nevertheless, the microbial community evenness 

showed the same trend as the microbial diversity (Figure 5.5 A). Remarkably, at the end of the 

synthetic period, both the microbial diversity and evenness were about 2.3 times higher in the 

thermophilic sludge compared with the mesophilic sludge (Figure 5.5 A). As discussed above, 
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this can possibly explain the higher resilience of the thermophilic SBR towards the abrupt 

change in COD source from phase IV on (Figure 5.1), confirming that the initial community 

evenness favours functionality under selective stress (Wittebolle et al., 2009). 

 

Figure 5.5 A. Diversity (Shannon index) and evenness (Pielou index) B. microbial community 
dynamics represented by the Bray-Curtis dissimilarity indexes for the mesophilic and 
thermophilic sludge along the operational periods. The Bray-Curtis dissimilarity indexes were 
calculated compared with the previous sampling point (first sample compared with inoculum). 

Beside a higher (or equally) diverse microbial community, the thermophilic sludge also 

showed a much more stable microbial community over the different feeding periods. The 

Bray-Curtis dissimilarity indexes (BC), a statistic used to qualify the compositional dissimilarity 

between two different samples (0< BC< 1), where 0 means the two samples have the same 
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composition (sharing all the species), while 1 means the two sites do not share any species, of 

the thermophilic sludge was namely always lower than the mesophilic sludge (Figure 5.5 B). 

As each sample is compared to the previous sample in time, this shows that the thermophilic 

sludge composition is less dynamic and thus more stable than the mesophilic sludge. In 

particular for the transition from acetate to molasses, a large difference in dynamics was 

observed, resulting in a Bray-Curtis dissimilarity index of 0.61 and 0.28 for the mesophilic and 

thermophilic sludge, respectively. Furthermore, the Bray-Curtis dissimilarity indexes of the 

thermophilic sludge are completely in the range of normal temporal variations (13-41%) 

observed in steady-state activated sludge lab reactors (Hai et al., 2014) indicating that a quit 

stable microbial community was reached in all the feeding periods. The higher microbial 

community stability is possibly due to a lower competition at extreme conditions as a result 

of less competitors, because less micro-organisms are able to grow. However, no difference 

in species richness was observed in this study, rejecting this hypothesis. Dion (2008) stated it 

differently: “Competition between individuals may play a larger role in nonextreme 

environments, whereas environmental pressures would be determinant under extreme 

conditions.” The lower competition at extreme conditions would thus not result from lower 

microbes able to grow, but to the higher environmental pressure. 

Although the most abundant genera for both the mesophilic and thermophilic denitrifying 

sludge remained present after switching from acetate to molasses as carbon source (Figure 

5.6), some new genera were detected. This indicates that adaptation of denitrifying 

communities to changes in carbon sources may involve both the regulation of enzyme 

expression in existing populations and the enrichment of new populations. Both the 

mesophilic and thermophilic community strongly increased in diversity and evenness with 

increased COD complexity (Figure 5.5 A). Similarly, Lee and Welander (1996) observed that 

crude syrup (90% sucrose), compared with acetic acid, selected for a more heterogeneous and 

metabolically versatile microbiota. The change in NO3
--matrix from tap water to fertilizer WW 

further increased the diversity and evenness of the thermophilic sludge, while it slightly 

decreased in the mesophilic sludge (Figure 5.5 A).  

Overall, during the real WS feeding period the mesophilic sludge was dominated by 

Bacteriodetes (54%) consisting of 36% Porphyromonadaceae (Paludibacter) and 18% 
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Saprospiraceae (Figure 5.6). It has to be noted that the results are based on read abundance 

and can differ from the actual abundance as different bacterial groups can have different 16S 

rRNA gene copy numbers (Fogel et al., 1999). Nevertheless, these results offer a good 

estimation of the dominant bacterial groups. Although the thermophilic sludge obtained by 

Laurino and Siñeriz (1991) was almost exclusively composed of bacteria belonging to the 

Firmicutes (Bacillus), only 14% of the thermophilic sludge in this study consisted of these 

spore-forming bacteria. Other than Firmicutes (14%), the most abundant phyla were 

Deinococcus-Thermus (30%, Thermus), Proteobacteria (24%, Hydrogenophilus) and 

Bacteroidetes (9%, Bacteriodes) (Figure 5.6). 

 

Figure 5.6 Distribution of the most abundant genera (*family, **order or ***phylum) in the 
mesophilic and thermophilic denitrifying sludge at the end of each feeding phase (based on 
read abundance, taxa representing more than 3% of the communities). 
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4. Conclusions 

 Denitrifying activity of mesophilic sludge (26°C) was maintained at 55°C resulting in a start-

up of a thermophilic denitrifying SBR in less than one week, hereby providing the potential 

for a rapid conversion of existing mesophilic systems with cooling to thermophilic systems 

 The thermophilic denitrification showed a 73% lower sludge volume index so that shorter 

settling times and thus higher volumetric loadings in SBR or smaller settlers in continuous 

systems can be implemented.  

 Other than the elimination of cooling, thermophilic denitrification could lower operational 

costs as a 45% lower sludge production was observed compared with mesophilic 

denitrification. 

 Both the mesophilic (34°C) and thermophilic (55°C) SBR were able to treat nitrate-rich 

industrial wastewater using a by-product from sugar refinery (molasses) as carbon source, 

whereby the thermophilic sludge showed a higher resilience towards a change in COD type 

from acetate to molasses. 

 The microbial diversity and evenness of the thermophilic denitrifying sludge was always 

comparable or even higher than the mesophilic sludge and moreover, showed a more 

stable community over time. 
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In this doctoral work, lab-scale reactor experiments based on synthetic feed demonstrated 

that thermophilic nitrogen removal through nitrification and denitrification is 

biotechnologically feasible. The (initial) oxidation of ammonium to nitrate, nitrification, clearly 

seemed to be the limiting step for the development of thermophilic nitrogen removal and was 

therefore extensively studied in 3 chapters (Chapters 2-4). The interdisciplinary approach 

linking thermophilic N-cycling microbiology and engineering resulted in the successful 

operation of a thermophilic nitrifying bioreactor. To the best of the author’s knowledge, this 

has never been described before and could moreover be achieved through two fundamentally 

different strategies (Chapter 3 & 4). In this general discussion, the different investigated 

strategies will be compared and evaluated from a biotechnological but also from an ecological 

perspective, in order to enlarge the understanding of the adaptation-selection process. The 

main identified microbial players will therefore be analysed in depth, especially in relation 

with the niche differentiation for thermophilic nitrogen removal. Finally, the potential for 

practical implementation was examined through a detailed cost calculation and discussion of 

the future challenges. 

1. Essential ingredients for successful thermophilic nitrification 

1.1. Selective pressure 

As cited by the Dutch botanist and microbiologist Baas Becking in 1934 ‘Everything is 

everywhere, but, the environment selects’, any selective pressure (within the biochemical 

limits of life) should result in the development of a stable microbial community. In relation 

with biotechnology and especially practical implementation or retrofitting, one may want this 

selection process as efficient as possible. An overview of the 5 investigated temperature 

selection pressure strategies to achieve thermophilic nitrification and their results are 

presented in Table 6.1. The two fundamentally different selection categories, one imposing a 

gradual increasing temperature selection pressure (Chapter 2 & 3) while the other an instant 

temperature selection (Chapter 4), could both successfully achieve thermophilic nitrification 

(± 50°C). From a practical point of view, however, the gradual temperature increase (Chapter 

3) seems the best option as higher volumetric rates were achieved in half the time (150 versus 

more than 300 days). 



 

  

Table 6.1 Overview of the different investigated temperature increase strategies applied to achieve thermophilic nitrification in this thesis. The 
main results concerning reactor performance and microbial community are presented at the highest temperature where complete and stable 
nitrification was achieved. Ch.: Chapter, A: amplitude, Os: oscillating, vol.: volumetric.  
 

Ch T 

pattern 

 

Slope 

(°C d-1) 

Tmax 

(°C) 

 

Δt 

(d) 

 

Synthetic 

Influent 

Nitrification rate Nitrogen oxidizing community 

(mg N L-1) Vol. 

 (mg N  

L-1 d-1) 

Specific 

 (mg N 

 g-1 VSS d-1) 

 

 

AOB 

 

 

AOA 

 

 

Nitrobacter 

 

 

Nitrospira 

2 Step 2.5 42.5 

*47.5 

90 

*180 

20-50 

*0-50/100 

184 ± 9 

*366 ± 9 

184 

*302 

+ - - + 

 

3 Os 0.25 

(A: 2°C) 

42 35 10-250 26 ± 5 72 + + + + 

3 Linear 0.25 42 35 10-250 90 ± 3 139 + + + + 

 

3 Linear 0.08 49 150 400-1000 794 ± 57 155 + 
Nitrosomonas 

genus 

+++ 
Nitrosophaera 

genus 

+ 
 

++ 
 

4 Instant - 50 >300 10-140 229 ± 13 198 - +++ 
Nitrosophaera 

gargensis 

- +++ 
Nitrospira 

calida 

*different value for nitrite oxidation as nitrite was separately dosed in this case.
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Within all the experiments imposing a gradual temperature increase in this thesis and 

literature, a clear negative correlation is observed between the maximum nitrification 

temperature and the applied slope of temperature increase (Table 6.1). In other words, the 

smaller the temperature increase per day, the higher the nitrification temperatures that were 

achieved. This suggests that the transition from mesophilic to thermophilic nitrification only 

succeeds if enough time is provided. Although different regulatory adaptations can help 

microbes to survive and grow at elevated temperatures (Chapter 1), the transition process 

thus seemed to be a rather slow process, indicating that selection, rather than regulatory 

adaptation, occurred. When transferring a microbial community to a new environment, or a 

certain stress is imposed, there might be a direct response through regulatory adaptation, 

however with a limit in the level of fitness (Ryall et al., 2012) . On a longer term, increased 

fitness is achieved by selection, such as mutational adaptations on a population level as 

presented in Figure 6.1 or by replacement/out-competition of certain dominant species by 

others on a community level.  

 

 

Figure 6.1 Fitness increase through regulation and mutational processes in a population, 
relative to the pre-stressed state, upon a transition to a new environment (Ryall et al., 2012). 
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It is very complex to exactly determine which adaptation/selection processes occurred within 

the sludge, i.e. a mixed microbial community. Further research with pure cultures or synthetic 

microbial communities and the use of meta-/transcript-genomics techniques could possibly 

elucidate that. In Chapter 4, most likely a selection on community level occurred, as a high 

temperature was directly imposed. Yet, the gradual temperature increase in Chapter 3 

probably allowed that also selection on a population level (i.e. within a certain species) and 

regulatory adaptations took place. Although these processes could have helped out the 

transition process from mesophilic to thermophilic nitrification in this case, after all, the clear 

shift observed with qPCR from AOB to AOA again indicates towards a selection on community 

level. As the selection on community level seemed to be dominant in the two successful 

strategies, it is clear that the initial microbial community, i.e. the inoculum, plays a big role in 

the efficiency of the selection process and will be discussed in the next section. 

1.2. Main microbial players 

The two successful strategies started with a different inoculum and a different selection 

procedure was applied. However in both cases, a very similar nitrogen oxidizing community 

was achieved, consisting of Nitrososphaera-related AOA and Nitrospira-related NOB (Table 

6.1). The imposed final reactor conditions, achieved by different manners, thus selected for 

very specific micro-organisms.  

1.2.1. Inoculum and influent 

Although upon Baas Becking ‘everything is everywhere’, logically, the efficiency of the 

selection process is correlated with the initial presence/abundance of those main microbial 

players in the initial microbial community, i.e. inoculum. The mesophilic nitrifying sludge 

inoculum in Chapter 3 contained a relatively high abundance of archaeal amoA and 16S 

Nitrospira copies, 1 x 109 and 3 x 1011 copies g-1 DW , respectively. This is in accordance with 

the fact that Nitrospira is the most prevailing NOB genus in wastewater treatment plants 

(WWTP) (Daims et al., 2006) and that AOA appear to be distributed in WWTP worldwide 

(Limpiyakorn et al., 2013). In contrast, in natural thermophilic environments where 

thermophilic nitrifiers are known to be present, their abundance is generally quite low (e.g. 

102 – 104 copies g-1 hydrothermal sediment (Wang et al., 2009a)). In the semi-engineered 
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compost system, serving as an inoculum in Chapter 4, the archaeal amoA abundance is 

typically fluctuating in course of the composting process, ranging from 0 to 107copies g-1 DW 

compost (Yamamoto et al., 2010). Regrettably, NOB in the composting process have not been 

characterized well (Maeda et al., 2011). The time variation in which both thermophilic 

nitrification systems were achieved in this PhD thesis (Table 6.1) can thus probably, beside the 

difference in selection pressure and selection processes occurring, partly be explained by the 

difference in initial abundance of AOA and Nitrospira species. 

Although mainly synthetic feed was used in this thesis, the microbial community of the 

influent can also influence the microbial community of the bioreactor. In case of warm 

wastewaters however, influent microbial diversity will probably be low. 

1.2.2. K-strategists ? 

The natural thermophilic environments in which thermophilic nitrifiers were detected are 

generally known to be oligotrophic. Reported ammonium concentrations in hot springs and 

hydrothermal plumes range from 7 to 100 µM and 0.2-3 µM, respectively, while nitrite is 

generally not detected (Lebedeva et al., 2005; de la Torre et al., 2008; Baker et al., 2012). It is 

thus logic that AOA and Nitrospira, known as K-strategists characterized by a high substrate 

affinity and a low growth rate (Ward et al., 2011), are mainly retrieved in these environments 

(Chapter 1, Table 1.4). 

In contrast with the thermophilic oligotrophic natural environments, feeding operation in this 

thesis always ensured non-limiting ammonium conditions. In fact, although the feeding 

operation was equal over time, the real substrate for ammonium oxidation, ammonia (NH3), 

increased with increasing temperature (equilibrium NH4
+ ↔ NH3 + H+). Curiously, also here a 

selection was made towards these K-strategist with high substrate affinity, although both r-

strategist AOB and Nitrobacter were initially significantly present in the inoculum (Chapter 3). 

Moreover, as decay rates increase with increasing temperature, one could expect a selection 

for fast growing micro-organisms in order to compensate for the high decay. Microbial 

diversity in general is known to decrease over 40°C (Sharp et al., 2014), suggesting that in 

accordance with the essence of the r/K selection theory, in which organisms strive to maximize 

their fitness for survival in either uncrowded (r) or crowded (K) environments, elevated 
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temperatures would make room for r-strategists (Andrews and Harris, 1986). These 

contradictory aspects suggest that the general accepted r/K theory may not be the 

appropriate ecological explanation for the specific niche differentiation of AOA and Nitrospira 

in thermophilic environments. Nevertheless, the conception of the ecological strategy has 

previously been invoked by different researchers, resulting in a third less-known type of 

ecological strategy, the L-strategy. Literally stated, this strategy is implemented by micro-

organisms that are well adapted to the adverse/extreme environment or in other words, 

micro-organisms that can maintain their high population densities under unfavorable 

conditions (Golovlev, 2001). Typical examples of L-strategists are spore-forming bacteria or 

non-spore-forming bacteria that may occur in the so-called viable but nonculturable state 

(VBNC). 

AOA versus AOB 

First characterized archaea thrived in high-saline, high-temperature, acid and strict anoxia 

conditions and were therefore originally labeled as extremophiles (Woese et al., 1978). The 

subsequent discovery that archaea are abundant throughout world’s oceans and many other 

non-extreme environments in the biosphere however rejected this ecological perspective 

(Delong, 1992; Chaban et al., 2006). The unifying ecological principle accepted today is that 

adaptation to chronic energy stress is the crucial factor that distinguishes the archaea from 

the bacteria (Valentine, 2007) and explains the out competition of AOB by AOA in this thesis. 

An overview of the cellular energy losses is presented in Figure 6.2. At elevated temperatures, 

micro-organisms face two main energetic challenges: high rates of biochemical breakdown 

but more importantly, an increased membrane permeability. The high permeability of ions 

(especially protons) menaces the proton motive force (PMF) and thus energy transduction in 

the cytoplasmic membrane. Maximum growth temperature of micro-organisms thus mainly 

depend on the degree of homeoproton permeability adaptation, i.e. the limit of ion 

permeability (van de Vossenberg et al., 1995). The primary biochemical basis for this 

adaptation is the membrane composition. The typical ether lipids in archaea (Table 1.3, 

Chapter 1) strongly reduce the ion permeability due to a higher stability (restriction in 

hydrocarbon chain mobility) and a lower membrane dipole potential compared with the ester 

bound fatty acid chains in bacteria. Furthermore, it was recently shown that AOA use the most 
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energy efficient aerobic pathway for carbon dioxide fixation, offering advantage to AOA in this 

high energy-requiring thermophilic environment (Könneke et al., 2014). 

 
 
Figure 6.2 The energy requirements for conditions of survival, maintenance and growth. 
(Valentine, 2007) 

Nitrospira versus Nitrobacter 

The energetic challenges described above apply for any microbial cell. Besides AOA for 

ammonium oxidation, it is arguable that nitrite oxidizing archaea (NOA) may also be present 

in the environment and be selectively enriched at elevated temperatures. However, until now, 

no NOA were discovered yet, although different researchers cite the possibility (Ward et al., 

2007; You et al., 2009). The upper temperature limit for known nitrite oxidizers is lower than 

for the isolated ammonium oxidizers. A maximum temperature of 60-65°C was reported for 

Nitrospira, while the AOA “Candidatus Nitrosocaldus yellowstonii” grows up to 74°C (Chapter 

1). As furthermore nitrite is generally not accumulating in natural environments, some 

unknown micro-organisms may fill this gap unless nitrite is chemically oxidized (Udert et al., 

2005). Besides NOA, other unknown bacterial lineages could also be capable to oxidize nitrite 

at elevated temperatures. Recently, a new member of the phylum Chloroflexi was described 

with nitrite oxidizing activity up to 63°C (Sorokin et al., 2012). 

The permeability of the ester bound bacterial cell membranes can be adjusted to a certain 

extent by the nature of the fatty acids, partly explaining the out competition of Nitrobacter by 

Nitrospira in this thesis (Chapter 3). Based on literature, a clear difference in degree of 

saturation can namely be observed between both genera. The fatty acid profile of Nitrobacter 
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is characterized by the unsaturated vaccenic acid as the main compound (C18:1 cis 11, 80-

92%), while the saturated palmitic acid (C16:0) is the dominant fatty acid (50%) in enrichment 

cultures of Nitrospira growing at 42-47°C (Lipski et al., 2001).  

Another difference between both genera that can, beside the membrane permeability, 

possibly explain the selection of Nitrospira at elevated temperatures is the location of the 

nitrite oxidoreductase enzyme (NXR). The cytoplasmic NXR of Nitrobacter depends on 

nitrate/nitrite transport across the cytoplasmic membrane (Ward et al., 2011). In contrast, the 

Nitrospira NXR is located in the periplasm, eliminating the need of energy-requiring 

nitrate/nitrite transport and hereby offering advantage for Nitrospira concerning the high 

energetic challenges at elevated temperatures. 

1.2.3. Satellite community 

The nitrification reactors in this thesis were operated with ammoniacal synthetic wastewater, 

without the presence of organic carbon. However, in successful thermophilic reactor in 

Chapter 4, the core autotrophic nitrifying community only comprised 25-40% of the total 

microbial community, even after two years of selective enrichment. Illumina sequencing 

revealed that the large satellite community mainly consisted of heterotrophs. Indeed, it is 

known that autotrophic nitrifiers reduce inorganic carbon to form biomass and excrete 

organic carbon (i.e. soluble microbial product, SMP) that supports heterotrophic growth (Ni 

et al., 2011). Yet, the fraction of heterotrophic growth in the autotrophic nitrification reactors 

of this work are remarkably higher (60-75%) than observations reported in literature. 

Heterotrophic fractions of 15%, 30% and 30-62% were reported for nitrifying suspended 

sludge, granules and biofilm, respectively (Ni et al., 2011; Gilbert et al., 2014a). The 

specificities of the interactions of the heterotrophs with the nitrifiers are largely unknown and 

especially in the thermophilic case, the ‘chicken-egg’ paradox appears. Is the increased 

heterotrophic fraction a consequence of the thermophilic operation resulting in higher decay 

rates and thus more SMP, or can thermophilic nitrification only be achieved with the help of 

this large heterotrophic community? Heterotophs namely produce organic compounds that 

can stimulate nitrifiers (Rittmann et al., 1994). Especially the results in Chapter 3, in which a 

very small non-nitrifying bacterial fraction was observed in the ‘early-crashing’ MBBR (5%) in 

contrast with the successful SBR (75%), particularly suggest that the heterotrophic community 
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plays an essential role in the development of thermophilic nitrification. More insights into this 

fundamental matter would allow the development of indirect control strategies to ensure the 

stability of the sensible nitrifying community. 

1.3. Culture history 

Beside the genotype, and thus the presence of the main microbial players in the inoculum, the 

immediate culture history of a population/community is an inevitable determinant of the 

overall effect of an environmental transition (Ryall et al., 2012). Factors such as growth rate, 

growth phase, culture density and growth state namely have a major influence on microbial 

gene expression/regulation and thus the immediate regulatory adaptation. This was discussed 

in Chapter 4 where, beside the fact that the MBBR contained a lower initial abundance of AOA 

in the biofilm compared with the SBR, the different response could also be influenced by the 

different growth state (suspended vs biofilm) of the micro-organisms of concern.  

Another aspect of ‘microbial history’ that affects the regulatory response is prior exposure to 

a stress. This was clearly demonstrated in Chapter 2 in which an initial salt stress increased 

the tolerance towards a subsequent temperature shock resulting in more efficient 

temperature transitions and higher nitrification temperatures. Preliminary tests showed that 

the reverse phenomenon could eventually also be applied i.e. using temperature shocks to 

improve the tolerance of nitrifying sludge towards higher salinities. Overnight incubation of 

nitrifying sludge at 40°C abolished the subsequent inhibitory effect of 10 g NaCl L-1 on 

ammonium oxidation at a subsequent incubation at 30°C (Figure 6.3). Further research is 

needed to find the appropriate incubation time and temperature to enlarge this effect 

towards higher salinities and eventually also nitrite oxidation. If so, this temperature-induced 

halophilic nitrogen removal can offer a solution for industries coping with highly saline waste 

streams (e.g. concentrated urine, mustard tuber wastewater) or wastewater with high 

fluctuations in salinity (e.g. fish canning industry). 
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Figure 6.3 Salt inhibition effect on ammonium (left) and nitrite (right) oxidation at 30°C after 
a prior overnight incubation without salt addition at 40°C. 

 

2. Thermophilic denitrification 

In contrast with nitrification, thermophilic denitrification was achieved without any issues. The 

big difference in efficiency to achieve the thermophilic conditions can basically be explained 

by two main factors.  

From a thermodynamic point of view, it is clear that heterotrophic denitrification yields much 

more energy than autotrophic nitrification. More Gibbs free energy is available through the 

denitrification reactions (Chapter 1) and less Gibbs energy is required for biomass formation 

from organic carbon compared to carbon dioxide (Heijnen et al., 2009). As a consequence, 

shorter doubling times and higher sludge yields are obtained resulting in more mutations per 

unit of time and thus a faster selection on population level. The higher growth rates would 

also allow a more rapid replacement of dominant species by other and thus an accelerated 

selection on community level. Finally, beside the increased growth rates, the selection on a 

community level is also facilitated by the large diversity among denitrifiers and the fact that 

heterotrophic bacteria are predominant in wastewater treatment plants. 
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3. Potential for practical implementation 

This thesis delivered the proof of concept that thermophilic nitrogen removal through 

nitrification/denitrification is possible in lab-scale reactors based on synthetic feed. It is 

however crucial for further developments to determine whether this process is favorable from 

an economical perspective and which future challenges will have to be tackled enabling 

practical implementation.  

3.1 Economic perspective 

A detailed cost calculation was performed in accordance with Courtens et al. (2014b) focusing 

on the nitrogen removal step (N/DN), comparing mesophilic (30°C) versus thermophilic (50°C) 

treatment. The calculations were carried out based on three industrial case studies (Table 6.2) 

nowadays cooling their wastewater enabling conventional mesophilic treatment.  

 

Table 6.2 Wastewater characteristics and current installation (focus on reactor basin, sludge 
settling/thickening and cooling device) of the three cases used in the cost calculation. AD: 
anaerobic digestion. MBR: membrane bioreactor. * anaerobically pretreated 

Case  1 2 3 

Industry  Manure treatment Potato processing Waste to energy 

Wastewater    
Origin  Liquid fraction pig 

manure 
‘Frites’ 

production * 
Supernatant 

thermophilic AD 
Temperature °C >40 45 45 
Flowrate m³ d-1 342 1944 288 
COD mg L-1 20000 1335 11000 
N mg L-1 5000 249 250 
COD/N  4 5.4 44 

Current installation SBR CSTR + thickener MBR 
Reactor volume m³ 16000 9153 2500 
Settling/thickening m³ - 1853 - 
Cooling device     
- Type 

 
Surface aerator Cooling tower Cooling tower 

- Motor kW 2*15 2*30 6 
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Following assumptions were made: 

 All civil engineering work was: accounted for at current prices, including installation; and 

calculated at the detail level of, for instance, concrete, rebar, shutters, pumps and valves 

for the aeration basin and sludge thickener. The costs for detailed engineering were 

separately added as 20% of the equipment capital expenditure (CAPEX). All capital costs 

were amortized at 3.5% over 10 years.  

 Due to contradictory observations in this thesis compared with literature concerning 

specific rates of mesophilic vs. thermophilic conditions, for the economic calculations the 

same specific rates (and VSS concentrations) were assumed. Also equal VSS 

concentrations were assumed, resulting in equal reactor volumes. As the reduced sludge 

production was in line with literature, sludge thickener and dewatering systems were 

designed (55%) smaller in the thermophilic scenario based on the parameter below. 

 The assimilation due to heterotrophic growth was calculated taken into account an 

observed yield factor of 0.27 and 0.12 kg COD in biomass per kg COD removed, for 

mesophilic and thermophilic treatment at a sludge retention time of 15 days. These yields 

were derived from a maximum yield factor of 0.47 kg VSS per kg COD with a decay 

coefficient of 0.096 d-1 (30°C) at mesophilic temperatures (van Haandel and van der Lubbe, 

2007), and a maximum yield factor of 0.51 kg VSS per kg COD with a decay coefficient of 

0.33 d-1 (50°C) for thermophilic treatment (Vogelaar et al., 2003). 1.42 g COD g-1 VSS was 

assumed. The nitrogen content of the biomass was assumed to be 5%, with a value of 1.33 

g COD g-1 VSS this results in a value of 0.067 g N g-1 CODremoved. For autotrophic conversions 

sludge production was neglected. The sludge dewatering centrifuge was assumed to 

concentrate incoming sludge to 20% DW (0.7 kg VSS kg-1 TSS), implying an operational cost 

of 150€ ton-1 DW and further disposed at 320 € ton-1 DW resulting in a total sludge 

treatment and disposal cost of 470 € ton-1 DW (Paul et al., 2006) (Figure 6.4). 

 The oxygen demand for nitrification/denitrification could be calculated from the 

stoichiometry in Chapter 1 (Table 1.1) and was 4.34 kg O2 kg-1 N removed. Oxygen savings 

by denitrification were calculated based on nitrogen oxygen equivalents (NOE) of 2.86 

O2/NO3. Furthermore assuming an oxygen demand for COD removal of 0.73 - 0.88 kg O2 

kg-1 COD removed based on the observed yield (mesophilic-thermophilic), an actual 

electrical oxygen transfer efficiency of 1.5 kg O2 kWh-1 and an electricity price of 0.1 € kWh-
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1 (van Haandel and van der Lubbe, 2007), the resulting operational costs (OPEX) for 

aeration were calculated (Figure 6.4).  

 Mixing and pumping energy cost were considered equal in both scenarios and calculated 

based on the assumption that about 30% of the total electrical consumption is for non-

aeration purposes (Zessner et al., 2010).  

 The cost for cooling was calculated based on the installed power of the cooling device 

assuming operation at 80% capacity.   

 Effluent norms were set on 25 mg COD L-1 and 20 mg N L-1. 

 

 

Figure 6.4 Illustration of OPEX calculation for sludge production and aeration demand.



 

 

Table 6.3 Capital and operational costs (CAPEX and OPEX) for nitrogen removal from three types of industrial wastewaters through mesophilic 
and thermophilic nitrification/denitrification. TM: treatment, DP: disposal. The ‘Δ’ column represents the relative advantage of thermophilic 
versus mesophilic treatment for the corresponding section (%). *newly built

  1 – Manure treatment 2 – Potato processing 3 – Waste to energy 

  Mesophilic Thermophilic Δ Mesophilic Thermophilic Δ Mesophilic Thermophilic Δ 

  10³  
€ 

10³ 
€ y-1 

10³  
€ 

10³ 
€ y-1 

% 10³  
€ 

10³ 
€ y-1 

10³  
€ 

10³ 
€ y-1 

% 10³ 
€ 

10³ 
€ y-1 

10³ 
€ 

10³ 
€ y-1 

% 

CAPEX                
 Reactor basin* 4 129  4 129   2 363  2 363   664  664   
 Settler & thickener -  -   1 280  577  55 -  -   
 Centrifuge (dewatering) 1 168  521  55 431  193  55 538  240  55 
 Cooling system 17  -  100 136  -  100 13  -  100 
 Carbon dosage system 29  -  100 -  -   -  -   
 Electric installation 70  70   70  70   70  70   
 Control & automation 59  59   59  59   59  59   
 Detailed engineering 1 094  956   868  652   269  207   
                 
 Sum CAPEX 6 563 789 5 735 690 13 5 206 574 3 914 447 22 1 613 194 1 240 149 23 
                 
OPEX                
 Cooling wastewater  13  - 100  39  - 100  4  - 100 
 Aeration  169  212 -25  51  67 -31  42  61 -48 
 Mixing/pumping  73  73   22  22   18  18  
 Carbon addition  11  - 100  -  -   -  -  
 Sludge TM & DP  345  154 55  128  57 55  159  71 55 
                 
 Sum OPEX  611  439 28  240  146 39  222  150 32 
                

CAPEX + OPEX  1 400  1 128 19  814  593 27  416  299 28 
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Although the development of thermophilic nitrogen removal in this thesis initially emerged 

from the idea to treat warm wastewaters without cooling requirements, the economic benefit 

of eliminating the cooling step seem marginal. It can save no more than 3% on capital 

expenditures and 2% on operational costs, except for the potato processing plant (case 2) 

where high flowrates have to be cooled and operational savings get up to 16% (Table 6.3). 

Cooling of warm wastewaters with heat exchangers and cooling towers is thus theoretically 

feasible. The cost calculation however shows that implementation of thermophilic nitrogen 

treatment can potentially involve total costs savings of 19 to 28% (CAPEX + OPEX), as 

highlighted in green in Table 6.3. 

The major share in the economical savings (70-99%) is related with the reduced sludge 

production at elevated temperatures. Although thermophiles have faster growth rates than 

mesophiles, a lower net microbial growth is observed due to even higher maintenance energy 

and decay rates (Chapter 5, (Lapara and Alleman, 1999)). This is directly translated in a 

reduction of the sludge disposal costs (OPEX) but also implies that smaller settlers/thickeners 

can be build resulting in a reduction of capital costs, but also a more efficient utilization of 

valuable industrial surface space. A lower observed sludge yield and thus a lower flow of 

carbon to sludge however means that more carbon has to be oxidized to carbon dioxide 

resulting in a higher cost for aeration (25-48%), especially for streams with high COD/N ratios 

(case 3). Nonetheless, in all cases, the cost savings from reduced sludge production greatly 

compensate the increase need of aeration. It has to be noted that the imposed SRT also has 

an influence on the observed sludge yield, as presented in the equation below, and thus the 

respective savings. 

𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
𝑌𝑚𝑎𝑥

(1 + 𝑆𝑅𝑇 × 𝑑𝑒𝑐𝑎𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)
 

 

As thermophiles also have higher decay coefficients, imposing higher SRT could enlarge the 

benefits of thermophilic treatment even more. The costs for addition of an extra carbon 

source to achieve full denitrification in waste streams with low COD/N ratios as in case 1 could 

moreover be lowered/avoided as thermophilic denitrification showed a lower COD 

requirement compared with mesophilic denitrification (Chapter 5). 
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Overall, thermophilic nitrogen removal can treat a wide range of nitrogen-rich waste streams 

whereas the exploitable advantages not only depend on the kind of waste stream/loading, 

but also on the degree of dependence on additional processing units such as for hygienisation, 

digestion, and rest heat recovery. As the main economic benefit of thermophilic nitrogen 

removal seems related with the reduced sludge production, the opportunities are not only 

applicable to warm wastewaters. Many industries have an excess of rest heat on-site that 

could easily be recovered to warm up a mesophilic waste stream to temperatures above 45°C. 

Indeed, the capital cost for a plate heat exchanger would not be higher than 0.4% of the total 

CAPEX as the prices, depending on the flowrate, range from 4 000 (cases 1 & 3) to 14 000 € 

(case 2) (E-Ster Bvba). An overview of possible application domains and their heat 

source/pattern are presented in Table 6.4.  

Table 6.4 Overview of possible application domains divided based on the heat source origin 
and pattern. 

Heat 
source 

Temperature 
profile 

Examples 

 
Water 

Fixed Thermophilic digestate;  
Industrial wastewater (e.g. steel industry, fertilizer industry) 

Varying Domestic wastewater (seasonal e.g. Saudi Arabia);  
Industrial wastewater (batch units, shutdowns/start-ups) 

Metabolic/
operational 

Fixed Autothermal thermophilic aerobic digestion (ATAD) 

Varying Industrial wastewater (e.g. manure) 

External Fixed Any other streams with rest heat available 

 

3.2 Future challenges  

This thesis delivered the proof of concept that thermophilic nitrogen removal through 

nitrification/denitrification is possible in lab-scale reactors based on synthetic feed. First of all, 

the robustness of this process should be proven on a long term and real wastestream, 

especially in terms of fluctuations of influent wastewater flow and content. Furthermore, in 

order to complete the curve of the known ‘text book’ Figure 1.4 (page 14) and allow modelling 

of nitrification at elevated temperatures, determination of kinetic parameters is needed. 
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3.2.1. Carbon 

Thermophilic nitrification and denitrification were studied separately in this thesis. As both 

processes are usually separated in space in conventional systems (Chapter 1), one would 

theoretically not expect too much troubles to link both processes. The feasibility of 

thermophilic nitrification was however demonstrated based on ammoniacal synthetic 

wastewater, though, without any carbon source (Chapters 2-4). Depending on the COD/N 

ratio, the presence of carbon can influence the competition between autotrophs and 

heterotrophs and thus possibly endanger the thermophilic nitrification performance. Aerobic 

heterotrophs namely compete with nitrifiers for oxygen and space in the sludge floc/biofilm. 

The COD/N ratio affects this competition, in which an increasing ratio implies a decreasing 

nitrifying activity as a result of increasing heterotrophic activity as shown for mesophilic 

conditions in Figure 6.5. Although the reduced nitrifying activity at elevated COD/N is generally 

not a problem to maintain nitrification at mesophilic temperatures, especially in the 

thermophilic case where a big heterotrophic fraction was observed in the reactors fed without 

carbon, actual thermophilic growth kinetics for both aerobic/anoxic heterotrophs and 

nitrifiers should be determined in order to evaluated whether the presence of carbon could 

form a problem.  

 

Figure 6.5 Relationship between nitrification rate and influent COD/N ratio (Adapted from 
Chen et al. (2006)) 

Increasing activity of thermophilic aerobic heterotrophic bacteria due to elevated carbon 

content will not only affect the autotroph-heterotroph competition, but could also deteriorate 
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sludge characteristics. Although both nitrification and denitrification experiments in this 

thesis showed an enhanced settling behavior with increasing temperatures (Chapter 4 – 5), 

the common opinion is that thermophilic aerobic carbon processes suffer from poor sludge 

settling (Suvilampi and Rintala, 2003).  

3.2.2. Oxygen 

Increasing temperatures result in a lower oxygen solubility: the oxygen saturation 

concentration (CS) at 25°C is 8.3 mg O2 L-1, while 5.6 mg O2 L-1 at 50°C. This leads to a smaller 

driving force (CS - C ) and hence to a lower oxygen transfer rate (OTR).  

OTR = KLA x (CS-C) 

At the other hand, the diffusion rate of oxygen increases with increasing temperatures, while 

the liquid viscosity and surface tension decrease, hereby increasing the oxygen transfer 

coefficient (KLA). Overall, Vogelaar et al. (2000) showed that the decreasing CS was completely 

offset by the increased KLA within the temperature range of 20-55°C, suggesting that no big 

troubles concerning aeration can be expected at thermophilic temperatures. 

The membranes of the conventional fine bubble membrane diffuser systems have maximum 

operating temperatures. In case of thermophilic aeration other, more expensive, membranes 

will have to be used. However, other alternative exist such as fine bubble ABS tube diffusers 

with a tolerance up to 100°C, stainless steel coarse bubble diffusers or surface aerators. 

3.2.3. Short-cut nitrogen removal 

The cost calculation clearly showed that implementation of thermophilic 

nitrification/denitrification could economically make sense. More cost savings could however 

be achieved with the development of thermophilic short-cut nitrogen removal processes such 

as nitritation/denitritation and partial nitritation/anammox. Beside a reduction in the aeration 

demand, these processes also reduce the carbon requirements (Chapter 1). The cost 

associated with chemical purchase and the associated biomass production is hereby lowered, 

but also additional influent carbon could become available for gas production and energy 

generation through anaerobic digestion, important from a resource recovery perspective. 
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A crucial factor to enable the development of short-cut nitrogen processes is the selective out-

competition of NOB. This thesis shows potential for selective NOB inhibition as thermophilic 

NOB not only seem more sensitive for FA than thermophilic AOA, but also show an inhibition 

for FNA, while AOA are insensitive (Chapter 3). The SBR in Chapter 4 confirmed this difference 

in FA sensitivity, but also showed that NOB surrender before the AOA during the gradual 

imposed temperature increase easily resulting in partial nitritation. Although different studies 

showed the occurrence of anammox in several natural thermophilic environments (Chapter 

1), the enrichment of thermophilic anammox bacteria will be the biggest challenge. The low 

growth rate of the anammox bacteria will even lower at thermophilic conditions, requiring a 

lot of patience and perseverance for enrichment. 

4. Conclusions 

Biological nitrogen removal (BNR) is a well-established technology within the wastewater 

treatment industry. Although thermophilic nitrogen cycling microorganisms were already 

enriched/detected in multiple thermophilic environments, all full- and lab-scale realizations 

are however mesophilic. The unexplored transposition capability of thermophilic nitrogen 

converting microbes into useful, biotechnological communities was explored in this thesis. 

The interdisciplinary approach linking thermophilic N-cycling microbiology and engineering 

resulted in the successful operation of a thermophilic (50°C) nitrifying bioreactor with 

comparable specific rates with literature. This was never described before and could moreover 

be achieved through two fundamentally different strategies. On the one hand, a thermophilic 

nitrification reactor at 49°C was achieved by subjecting an established mesophilic nitrifying 

community to a slow (0.08°C d-1), non-oscillating linear temperature increase (Chapter 3). It 

was furthermore shown that salt amendment can be used as a tool for a more efficient 

temperature transitions of mesophilic sludge (Chapter 2). On the other hand, a thermophilic 

nitrification reactor at 50°C was achieved through selective enrichment from compost 

samples (Chapter 4). Both strategies showed the importance of ammonium oxidizing archaea 

(AOA) and Nitrospira as key players for succesfull thermophilic nitrification. Finally, also the 

biotechnological potential of thermophilic denitrification was demonstrated as a thermophilic 

SBR could immediately be started-up with mesophilic activated sludge (26 °C) and showed, 
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despite the lower specific rates,  a 73% lower sludge volume index, a 45% lower sludge 

production and a higher resilience towards a change in carbon source compared with the 

mesophilic SBR. 

Overall this PhD research expanded the microbial ecology knowledge of thermophilic nitrogen 

cycling microbes from natural thermophilic environments to engineered systems. For the first 

time, coupled thermophilic ammonia- and nitrite-oxidizers were enriched, moreover from a 

nutrient-rich inoculum, and resulted in a thermophilic nitrification bioreactor opening 

opportunities for  thermophilic nitrogen removal biotechnology. Regarding to practice, this 

means that warm wastewaters could eventually treated without cooling. Significant total cost 

savings (19-28%) could be reached compared with mesophilic treatment so that even 

mesophilic waters could profit from the savings in case rest heat is available.
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Abstract 

Nitrogen is a major wastewater component in our global society, and its treatment prevents 

environmental deterioration. Biological nitrogen removing (BNR) biotechnology is mostly the 

rational solution, with thousands of full-scale realizations established, which are however all 

mesophilic. In contrast, for carbon treatment, thermophilic biotechnology has been 

established for over 30 years. Experiences with thermophilic activated sludge for instance 

pointed out several advantages, such as a higher stability, higher rates, a lower sludge 

production and a better hygienization.  

Thermophilic nitrogen cycling microorganisms such as ammonium oxidizing archaea (AOA), 

nitrite oxidizing bacteria (NOB) and even anammox bacteria were separately 

isolated/enriched or detected in multiple thermophilic environments. At the beginning of this 

research these microbes represented a hidden treasure of natural resources, with an 

unexplored transposition capability into useful, biotechnological communities. The goal of this 

research was therefore to develop thermophilic biological nitrogen removal processes.  

The initial oxidation of ammonium to nitrate, nitrification, clearly seemed to be the limiting 

step for the development of thermophilic nitrogen removal and was therefore extensively 

studied in 3 chapters (Chapters 2, 3 and 4). The interdisciplinary approach linking thermophilic 

N-cycling microbiology and engineering resulted in the successful operation of a thermophilic 

nitrifying bioreactor. This was never described before and could moreover be achieved 

through two fundamentally different strategies (Chapter 3 and 4).  

The first strategy involved the transition of an established mesophilic nitrifying community to 

elevated temperatures (Chapter 2 and 3). A first research chapter (Chapter 2) demonstrated 

that salt amendment can be used as a tool for a more efficient temperature transitions and 

could eventually reach higher nitrification temperatures. Batch activity tests showed an 

increased activity of aerobic ammonium oxidizing bacteria (AOB) of 20-21% at 40 and 45°C by 

the addition of 5 g NaCl L-1. For NOB, the activity remained unaltered at 40°C, yet decreased 

by 83% at 45°C. In a subsequent long-term continuous reactor test, temperature was 

increased from 34 to 40, 42.5, 45, 47.5 and 50°C. The AOB activity showed 65 and 37% higher 
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immediate resistance in the salt reactor (7.5 g NaCl L-1) for the first two temperature 

transitions, and lost activity from 45°C onwards. NOB activity, in contrast to the batch tests, 

was 37 and 21% more resistance in the salt reactor for the first two transitions. Despite the 

beneficial effect of salt addition, overall, no ammonium oxidation above 42.5°C was achieved 

with this step-wise temperature increase pattern. Therefore, in the second research chapter 

(Chapter 3), the adaptive capacities of mesophilic nitrifying sludge were evaluated for linear 

temperature increase patterns (non-oscillating vs. oscillating and slopes of 0.25 vs. 0.08 °C d-

1). Furthermore, the effect of sludge growth mode (suspended vs. attached growth) was 

investigated by comparing a sequencing batch reactor (SBR) with a moving bed biofilm reactor 

(MBBR). The oscillating temperature pattern (0.25 °C d-1) and the moving bed biofilm reactor 

(0.08 °C d-1) could not reach nitrification at temperatures higher than 46°C. However, 

nitrification rates up to 800 mg N L-1 d-1 and 150 mg N g-1 VSS d-1 were achieved at a 

temperature as high as 49°C by imposing the slowest linear temperature increase to 

suspended sludge. Microbial community analysis revealed that this successful transition 

related with the dominance shift of AOA above AOB, while Nitrospira dominance over 

Nitrobacter was constant. This observation was accompanied with an increase in sludge yield 

and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity 

measurements, predicting an upcoming reactor failure at higher temperature. Overall, the 

results of this research chapter suggest that existing mesophilic nitrifying wastewater 

treatment plants can be upgraded to thermophilic systems through a slow, non-oscillating 

linear temperature increase, steered by ex-situ temperature sensitivity measurements. 

The second strategy used in this thesis to develop thermophilic nitrification is the selective 

enrichment of thermophilic nitrifiers from natural thermophilic environments. In Chapter 4, 

samples from composting facilities were used as inoculum for the batch-wise enrichment of 

thermophilic nitrifying communities. Subsequently, the enrichments were transferred to a 

bioreactor fed with synthetic influent to obtain a stable, high-rate nitrifying process. The 

community contained up to 17% AOA closely related to “Candidatus Nitrososphaera 

gargensis”, and 25% NOB related to Nitrospira calida. Incorporation of 13C-derived 

bicarbonate into the respective characteristic membrane lipids during nitrification supported 

their activity as autotrophs. Specific activities up to 198 ± 10 and 894 ± 81 mg N g-1 VSS d-1 for 
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AOA and NOB were measured, and interesting difference in substrate/product inhibitions 

were observed that open a way for short-cut nitrogen removal processes.  

The potential of thermophilic denitrification (55°C) was explored in the last research chapter 

(Chapter 5), in which it was extensively compared to mesophilic denitrification (34°C). 

Remarkably, the thermophilic SBR could immediately be started up with mesophilic activated 

sludge (26 °C), obtaining nitrogen removal rates higher than 500 mg N g-1 VSS d-1 in less than 

one week. Although the parallel mesophilic SBR showed twice as high specific nitrogen 

removal rates, the maximum thermophilic denitrifying activity in this study was nearly 10 

times higher than the activities reported thus far. The thermophilic SBR moreover had a 73% 

lower sludge volume index, a 45% lower sludge production and a higher resilience towards a 

change in carbon source compared with the mesophilic SBR. The higher resilience was 

potentially related to a higher microbial diversity and evenness of the thermophilic 

community. Overall, this Chapter 5 showed the capability of mesophilic denitrifiers to 

maintain their activity after a large temperature increase suggesting that existing mesophilic 

process systems could thus efficiently be converted to thermophilic systems. 

Finally, a detailed cost calculation in the general discussion (Chapter 6) revealed that, although 

the development of thermophilic BNR in this thesis initially emerged from the idea to treat 

warm wastewaters without cooling requirements, the economic benefit of eliminating the 

cooling step seem marginal. Thermophilic versus mesophilic nitrogen removal treatment 

could save up to 19 to 28% of the total costs, in which the major share in the economical 

savings is related with the reduced sludge production at elevated temperatures. 

Generally, this work showed that both thermophilic nitrification and denitrification are 

biotechnologically possible. The upgrade of existing wastewater treatment plants to 

thermophilic BNR could be possible, hereby implying significant economic advantages. The 

effect of carbon on thermophilic nitrification and the coupling of both processes should 

however further be investigated to allow full-scale application. 
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Samenvatting 

Reactieve stikstofcomponenten zijn belangrijke afvalwatercomponenten die, indien geloosd 

in het milieu, aanleiding kunnen geven tot ernstige globale ecologische problemen. In de 

meeste gevallen is biologische stikstofverwijdering via de conventionele nitrificatie/ 

denitrificatie de meest rationele oplossing. Hoewel dit een goed bestudeerd proces is, met 

duizenden volle schaal installaties, blijven toepassingen boven de 40°C een grote uitdaging. 

Nochtans zou de implementatie van thermofiele biologische stikstofverwijdering door het 

elimineren van de koelingsbehoefte van belang kunnen zijn voor de behandeling van warme 

afvalwateren. Studies met betrekking tot thermofiele koolstofverwijdering toonden 

bovendien reeds aan dat aerobe thermofiele processen ook stabieler zijn, hogere 

omzettingssnelheden bereiken zodat kleinere reactoren kunnen worden gebruikt, minder slib 

produceren en een hogere graad van hygiënisatie bereiken.  

Thermofiele stikstof omzettende micro-organismen zoals ammonium oxiderende archaea 

(AOA) en nitriet oxiderende bacteriën (NOB) werden tot nog toe al gedetecteerd of aangerijkt 

uit natuurlijke thermofiele omgevingen, maar hun potentieel voor toepassing in 

afvalwaterbehandeling werd nog niet onderzocht. Aan de start van deze thesis vormden deze 

thermofiele stikstofcycli microben dus een verborgen schat aan natuurlijke hulpbronnen, met 

een onontgonnen vermogen in nuttige, biotechnologische consortia. Het doel van deze thesis 

was daarom de ontwikkeling van thermofiele biologische stikstofverwijdering processen. 

De initiële oxidatie van ammonium tot nitraat of nitrificatie bleek snel de limiterende stap te 

zijn voor de ontwikkeling van thermofiele stikstofverwijdering. Dit werd daarom uitgebreid 

onderzocht in drie hoofstukken (Hoofdstuk 2, 3 en 4). De interdisciplinaire 

microbiologische/ingenieurs-benadering bracht een thermofiele nitrificatie bioreactor tot 

stand. Dit werd nog nooit beschreven en kon bovendien worden bewerkstelligd via twee 

fundamenteel verschillende strategieën. 

De eerste strategie omvat de transitie van een gevestigde mesofiele stikstofverwijderende 

gemeenschap naar thermofiele temperaturen (Hoofdstuk 2 en 3). Hoofdstuk 2 toonde aan 

dat zoutstress de thermo-elasticiteit van mesofiel nitrificerend slib verbetert. Een 
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kortstondige zout toevoeging kan gebruikt worden als een middel om efficiëntere 

temperatuurtransities en eventueel hogeren temperaturen te bereiken. In batch 

experimenten werd als gevolg van een 5 g L-1 NaCl zoutstress een 20-21% hogere activiteit van 

ammonium oxiderende bacteriën (AOB) waargenomen bij 40°C en 45°C. Dit fenomeen werd 

bevestigd in een continu reactor experiment waarbij een controle reactor werd vergeleken 

met een zout reactor (7.5 g L-1 NaCl) tijdens een stapsgewijze temperatuursverhoging van 34°C 

tot 50°C. De AOB in de zout reactor vertoonde een 65 en 37% hogere weerstand voor de eerste 

twee temperatuur stappen van 34°C naar 40°C en 42.5°C. De NOB, dat in de batchtesten 

negatief beïnvloed werden door het zout, vertoonden in de zout reactor wel een verhoogde 

weerstand van 37 en 21% voor dezelfde temperatuur sprongen en bereikte temperaturen tot 

47.5°C. Niettegenstaande het positief effect van het zout, was 42.5°C de hoogste temperatuur 

met volledige nitrificatie via deze stapsgewijze temperatuur opdrijving. Daarom werden, in 

Hoofdstuk 3, de adaptieve capaciteiten van mesofiel nitrificerend slib geëvalueerd voor een 

lineaire temperatuur opdrijving waarbij het effect van temperatuur-oscillatie, temperatuur 

helling (0.25 vs. 0.08 °C d-1) en slib groei modus (gesuspendeerd vs. biofilm) werd onderzocht. 

Tijdens de oscillerende temperatuur opdrijving (0.25°C d-1) en de biofilm gebaseerde reactor 

werd geen nitrificatie activiteit gemeten boven de 46°C. Nitrificatie snelheden tot 800 mg N L-

1 d-1 en 150 mg N g-1 VSS d-1 werden echter bereikt op 49°C in de reactor met gesuspendeerd 

slib waarbij een lineaire helling van 0.08 °C d-1 werd opgelegd. Microbiële gemeenschaps-

analyse toonde aan dat deze succesvolle transitie gelinkt was met een dominantie shift van 

AOA over AOB. Parallelle ex-situ temperatuur gevoeligheidstesten voorspelden bovendien elk 

reactor falen. De resultaten van dit hoofdstuk suggereren dat bestaande mesofiele 

nitrificerende systemen kunnen omgezet worden naar thermofiele systemen via een trage, 

niet-oscillerende lineaire temperatuur opdrijving waarbij de transitie kan worden gestuurd via 

ex-situ temperatuur gevoeligheidstesten. 

De tweede strategie in dit doctoraatsonderzoek om thermofiele nitrificatie te bewerkstelligen 

was de selectieve aanrijking van thermofiele nitrificeerders uit natuurlijke thermofiele 

omgevingen. In Hoofdstuk 4 dienden stalen van aërobe compost faciliteiten als inoculum voor 

de bathgewijze  aanrijking van thermofiele nitrificerende gemeenschappen (50°C). Vervolgens 

werden de aanrijkingen overgebracht in een sequentiële bacth reactor (SBR) gevoed met 
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synthetisch N-houdend influent, waarbij een stabiel systeem werd bereikt met hoge 

nitrificatie snelheden. De thermofiele nitrificerende gemeenschap bestond uit 17% 

ongecultiveerde AOA gerelateerd met “Candidatus Nitrososphaera gargensis” (99%) en 25% 

NOB gerelateerd met Nitrospira calida (98%). Incorporatie van 13C gemerkt bicarbonaat in de 

respectievelijke karakteristieke membraan lipiden tijdens nitrificatie ondersteunden hun 

activiteit als autotrofen.  De biomassa vertoonde hoge specifieke snelheden tot 198 ± 10 en 

894 ± 81 mg N g-1 VSS dag-1 voor AOA en NOB waarbij interessante verschillen in 

substraat/product inhibities werden opgemerkt dat de weg openen naar ‘short-cut’ 

stikstofverwijderingsprocessen zoals partiële nitritatie/anammox. 

Het potentieel van thermofiele denitrificatie (55°C) werd onderzocht in Hoofdstuk 5, waarbij 

het uitgebreid werd vergeleken met mesofiele denitrificatie (34°C). De thermofiele SBR kon 

meteen worden opgestart met mesofiel slib (26°C) en bereikte stikstofverwijderingssnelheden 

hoger dan 500 mg N L-1 d-1 in minder dan één week. Hoewel de mesofiele SBR dubbel zo hoge 

specifieke snelheden vertoonde, was de maximale thermofiele denitrificerende activiteit 10 

keer hoger dan gerapporteerde snelheden. De thermofiele SBR had bovendien een 73% lagere 

slib volume index, produceerde 45% minder slib, en was robuuster ten op zichte van abrupte 

veranderingen in influent samenstelling. Moleculaire analyses toonden aan dat de thermofiele 

gemeenschap even divers, maar veel stabieler was, wat zijn hogere robuustheid naar 

veranderingen in operationele parameters kan verklaren. 

Hoewel de ontwikkeling van thermofiele stikstofverwijdering initieel voortkwam uit het idee 

om warme afvalwateren te behandelen zonder koeling toonde de gedetailleerde 

kostenberekening in Hoofdstuk 6 aan dat het economisch voordeel van het verwijderen van 

de koelingsbehoefte klein is. Het grootste economische voordeel is gerelateerd met de 

verlaagd slibproductie. Thermofiele stikstofbehandeling kan, in vergelijking met mesofiele 

behandeling, een totale kostenbesparing van 19 tot 28% teweegbrengen. 

Samengevat toonde dit doctoraatsonderzoek aan dat zowel thermofiele nitrificatie als 

denitrificatie biotechnologisch mogelijk zijn. Bestaande mesofiele installaties zouden 

omgevormd kunnen worden tot thermofiele systemen met significante kostenbesparingen. 

Het effect van koolstof op thermofiele nitrificatie en de koppeling van de afzonderlijke 
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processen moet echter verder onderzocht worden om volle schaal toepassingen mogelijk te 

maken.
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Doctoreren is een kunst… startend met een initieel plan en niet wetend waar ze je uiteindelijk 

naar toe leidt. Hindernissen dwingen je ertoe je pad te verleggen en verschillende 

inspiratiebronnen brengen je elke dag wat verder om uiteindelijk samen met de ervaring van 

derden de finale vormgeving te bereiken. Dit werk zou nooit de vorm hebben bereikt die ze 

nu heeft zonder de hulp van vele mensen die ik bij deze van harte zou willen bedanken 

First of all I would like to thank the members of the examination committee. It is really an 

honor to defend my work in front of such prominent group of specialist in the field. Your 

thorough examination of this work, and the doubtlessly critical questions are greatly 

appreciated. Monica, bedankt voor de prachtige ervaring in Akureyri ! 

Mijn beide promotoren, Prof. Dr. ir. Nico Boon en Prof. Dr. ir. Siegfried E. Vlaeminck verdienen 

uiteraard ook mijn opperste en oprechte dank. Zonder hen was ik kortweg nooit aan dit 

doctoraat begonnen. Siegfried, ik zie me nog zitten aan je bureau in de ‘postdoc office’ waar 

we samen de FWO hebben geschreven en ik ben er zeker van, die FWO heb ik mede dankzij 

jou binnengehaald ! Je deur stond altijd open, bedankt voor je ongelofelijk enthousiasme en 

medeleven bij elke respectievelijke crash of mijlpaal. Nico, bedankt voor alle kansen die je me 

hebt gegeven, het blindelingse vertrouwen en vooral de grote vrijheid die je me gaf. Jullie 

vormden de perfecte match tussen ecologie en technologie, de perfecte balans die samen met 

jullie constante input en wetenschappelijke motivatie tot dit mooie verhaal heeft geleid.  

Naast mijn twee promotoren heb ik ook het genoegen gehad nauw samen te werken met 

andere gedreven academici binnen en buiten LabMET. Vooreerst hartelijk dank aan Prof. em. 

Willy Verstraete. Hoewel ik zeer zelfverzerkerd aan de master in de chemie was begonnen, 

ben jij degene die me heeft meegesleept in de wonderlijke wereld van de biologische 

afvalwaterzuivering dat ik sinds dien niet meer heb losgelaten. Bedankt voor je ongelofelijk 

enthousiasme voor het vak en de inspiratie die je me gaf. Het N-team heeft altijd een 

belangrijke rol gespeeld in mijn onderzoek. Ik heb enorm veel opgestoken van de kennis, 

kritische blik en efficiëntie van de drie anciens in de N-cluster Haydée, Joachim en Joeri. José, 

he mucho disfrutado de trabajar con usted y el anammox caliente. Muchas gracias por todo 
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el ayudo con el reactor y la lectura de mi thesis. Peter, jij ook hartelijk dank voor het nalezen. 

Een grote dank ook aan mijn thesisstudenten Karla, Dries, Robin, Tom, Mathijs en Delphine. 

Jullie leverden elk een significante bijdrage tot elk van mijn publicaties. Eén voor één 

topstudenten ! Tom, ik ben blij dat ik mijn dierbare ‘baby’s’ aan jou mag overdragen. Mooie 

toekomst voor het thermofiele N-onderzoek verzekerd, jouw enthousiasme en gedrevenheid 

zal je nog ver brengen. A special thanks to Prof. Eva Spieck for my research stay in Hamburg. 

You took the time to go through every sample, explain me everything about the microbiology 

of nitrifiers and take wonderful TEM pictures that even reached my cover page. The quality of 

Chapter 4 would not have been as good without your contribution, thank you ! De mensen 

van Isofys, Prof. Pascal Boeckx, maar in het bijzonder Samuel en Katja zou ik ook graag 

bedanken. Al sinds het tijdperk van mijn thesis werd ik er telkens opnieuw met een grote 

glimlach ontvangen. Alle resultaten omtrent moleculair onderzoek heb ik vooral te danken 

aan Tim, Ramiro en FM. Dikke merci gasten om mij hier telkens opnieuw mee bij te staan in 

het moleculair labo of achter de PC.  

Ik had ook de kans om met verschillende industriële partners te werken die mijn blik op mijn 

onderzoek sterk hebben verruimd. Bedankt Kevin van de Merlen (AWWS bv) voor het 

uitdagend inkapseling project en het beschikbaar stellen van industrieel afvalwater. Hartelijk 

dank aan Fabian De Wilde (OWS nv), Marc Verhofstede (Humus sprl.), Luc Declercq en Stefanie 

Delbeke voor de compost stalen. Bedankt Vincens Mausen (Hydrio bvba) en Francis voor het 

leuke bluswater project. Bedankt Luc Heeren (Farm Frites NV) voor het enthousiast 

bedrijfsbezoek en het delen van alle nodige data voor de economische studie. Last but not 

least, een dikke merci aan Pascal Pipyn (GWE), die sinds het prille begin in mijn onderzoek 

geloofde en het op regelmatige basis stuurde met zijn enorme industriële projectkennis. Ik 

kijk er naar uit mij nu volop voor GWE te kunnen inzetten en samen verder als collega’s samen 

te werken. 

Naast wetenschappelijke kennis en ervaring is een goede werksfeer een onmisbare factor in 

gans dit verhaal. Ik had het geluk nog toe te stromen in de gezelligste bureau van het boerekot, 

de authentieke rotonde 1.0, waar ik van de ‘anciens’ een goede basis meekreeg voor het 

overleven op LabMET. In het bijzonder dank aan onze bompa Willem voor de quiz/spelletjes 

avonden, Joeri en Joachim voor de leuke momenten in Nepal, Simon voor de live 
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sportverslagen en Sam voor de vele babbeltjes. Mijn enige vrouwelijke rotonde gezel Haydée 

verliet de rotonde, maar ik kreeg er snel 2 ongelofelijke dames bij. Sylvia en Synthia, geen 

collega’s maar vriendinnen ! Bedankt voor de talrijk babbels, roddels, lachen en tranen die we 

hebben gedeeld zowel in de rotonde, het labo of erbuiten. Altijd kon ik bij jullie terecht om 

stoom af te blazen maar ook om plezier te maken. Dan denk ik vooral aan de thuis-quiz 

avonden, de flamingo quiz met ons Karen, de ijsjes pauzes in de zon, de zovele middagpauzes 

op onze trappen, de spaghetti avonden bij Sam, de spontane Rotonde bbq in het park, het 

zotte Belval congres en zoveel meer. De transformatie van de rotonde 1.0 naar 2.0 was een 

pijnlijke stap, echter, we kregen er een tal van toffe collega’s bij. Muchas gracias Marta por su 

apoyo dentro y fuera del laboratorio, he aprendido mucho de ti. You are a top woman, good 

luck in Bath ! Thanks all rotonderos Stephen, Kun, Dries, Oliver, Francis, Cristina, Eleni, Sandra, 

Antonin, Sunil, Alberto, Way, Hugo, Amanda, Melanie, Chiara, Nayaret and post-rotonderos 

Wendy, Bejamin, Ruben and Tom for the fun time in the office, the Friet-clusters and Beer-

clusters. Er is natuurlijk nog een wereld buiten de rotonde: de K32, de resto en de Koepuur. 

Bedankt Jo, José, Dries en Tom voor de talrijke momenten die we in de K32 hebben gedeeld. 

Ik durf niet te zeggen dat ik deze kelder toch zal missen  Bedankt aan de andere bureau 

collega’s Annelies, Jan, FM, Jana, Tim, Linde, Gio, Marlies, … voor de talrijke aangename 

middag lunchen, koepuur avonden en winterweekends. Graag had ik ook de belangrijke 

bijdrage van het lieftallig ATP willen benadrukken. Eerst en vooral onze mama’s op LabMET, 

Christine en Regine, bedankt voor jullie jarenlange steun en hulp met alle administratie. Mike 

en Robin, bedankt voor alle technische ondersteuning. Tim, naast al de hulp met de 

moleculaire mambo jambo, merci voor al de prachtige illustraties die je voor me hebt 

gemaakt. Bedankt Siska voor de goede zorgen in verband met alle bestellingen. Greet, het was 

zo aangenaam om samen met jou de IC te runnen. Bedankt voor alle babbels René. Jana, 

bedankt voor je dagelijkse glimlach en hulp in het labo.  

Buiten LabMET kon ik op steun rekenen van heel wat goede vrienden en familie waarmee ik 

mijn zinnen kon verzetten en soms, voor heel eventjes, mijn thermo-beestjes uit mijn 

gedachten kon wissen. Thanks trouwe Boerekot vrienden voor de jaarlijkse weekends, de 

resto en café bezoekjes, de uitstapjes, de feestjes, … Bedankt Jan voor alles, ik kan me mijn 9 

jarige Boerekot carrière zonder jou niet inbeelden. Thanks Jan, Wout en Tine voor de gezellige 
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Catan en Agricola avondjes. Thanks Veerle voor je lunch bezoekjes op de faculteit en zoveel 

meer. Thanks Fleur voor de sportieve pauzes en samen met Pam voor de talrijke leuke 

avonden. Ik ben trots binnenkort Bruggeling te worden. Dikke merci aan mijn Brugse vrienden 

die van elke zondag een feest maakten zodat ik vol goede moed weer aan de werkweek kon 

beginnen. Altijd thuis in Brugge dankzij mijn liefste schoonfamilie. Bedankt Linda, Stan, 

Cathrina, Simon en Oshin voor jullie gastvrijheid en liefde. Simon, bedankt voor het maken 

van de cover. 

Papa, maman et soeurette, merci pour votre soutien et votre amour. Papa, c’est toi qui m’as 

donné le goût d’apprendre et de découvrir depuis que je suis toute petite. Merci pour votre 

enthousiasme et votre fierté, elle me donne de l’énergie tous les jours. Je vous aime. 

Seán, mijn kunstenaar, mijn vriend, mijn liefde, en binnenkort ook mijn man. Bedankt voor je 

onvoorwaardelijke steun en liefde elke dag opnieuw. Altijd aan mijn zij, zelfs tot in de K32 

tijdens verlofdagen als het moest. Nu dit boek ten einde is, werk ik enkel nog aan ons 

hoofdstuk, beloofd ! Want er wacht ons nog heel wat moois daar in de Zevenbergenlaan. Hou 

van je ! 

Emilie, September 2015 
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