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Outline and aim of this thesis 

 

Delivering tumour-associated antigens (TAAg) to dendritic cells (DCs), the most 

potent class of antigen presenting cells (APCs) of our immune system, has emerged as a 

promising anti-cancer therapy by harnessing patients’ own immune system at recognizing 

and eliminating metastatic growth. Currently, several clinical trials obtain promising results 

with adoptive transfer of DCs and T cells that were conditioned ex vivo with TAAg. An even 

more viable approach, with broader clinical feasibility, is direct in vivo delivery of peptide- or 

protein-based TAAg to DCs in combination with specific immune-activating stimuli. The 

major bottleneck of this approach is the lack of efficiency, upon administration, of TAAg to 

reach and activate DCs. Indeed, due to their small size and low immunogenicity, peptides 

rapidly diffuse in the body, bind to randomly encountered MHCI molecules and are incapable 

of providing DCs with the correct stimuli to steer the immune response towards the 

induction of cytotoxic T cells (CTLs) that can recognize and kill cancer cells. Thus, there is a 

clear need to investigate how TAAg and immune-activating stimuli can be delivered more 

efficiently to DCs. This need will become even more urgent with the emergence of 

personalized medicine, which involves mutanome analysis of individual patients to identify 

neoantigens that are uniquely expressed by tumours of specific patients. As these can vary in 

composition and physicochemical properties, it is of great interest to develop a generic 

vaccine design platform that can cope with these heterogeneities. 

With respect to the improvement of CTL responses, molecular adjuvants have been 

developed that bind to pathogen recognition receptors (PRR) – such as Toll-like receptors 

(TLRs) – which are expressed on the cell surface or endosomal membrane of DCs. Among the 

different TLR agonists that are under investigation, agonists for TLR7/8 are highly promising 

as their receptors are found on a broad spectrum of APC subsets, both in mice and in 

humans. In addition, whereas TLR7/8 receptors from the evolutionary point of view 

recognize single stranded RNA from infecting viruses, synthetic small molecule TLR7/8 

agonists – such as imidazoquinolines – have been developed that strongly activate DCs to 

promote Th1-type immune responses. However, a major hurdle that hampers successful 

clinical translation of these components is the systemic inflammation caused when they 
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enter systemic circulation. Especially in immune-compromised and weakened patients, such 

systemic inflammation should be avoided at all costs. 

The aim of this thesis is the exploration of a materials chemistry approach to engineer 

the immune system by developing well-defined polymeric materials that can accommodate 

vaccine antigens and immune-modulatory components, and delivery these to DCs. From the 

materials chemistry side, efforts will focus on elucidating optimal conjugation strategies to 

link polymers to proteins, assemble proteins and polymers into nanoparticles, and formulate 

molecular adjuvants in polymeric nanoparticles. From the immunological side, efforts will 

focus on elucidating the in vitro and in vivo behaviour of the developed systems. 

In Chapter 1, a brief introduction is given on the workings of the immune system, 

alongside the opportunities for nanotechnology to engineer the immune system. Delivering 

antigens formulated as nano- or microparticles can dramatically enhance priming of naïve T 

and B lymphocytes. This can be attributed to their high tissue mobility and efficient passive 

transport to the draining lymph nodes, and the promotion of cross-presentation. Moreover, 

the evoked adaptive immune responses can be further improved by co-delivery of potent 

immune-modulators. 

In Chapter 2, an extensive overview is given on transiently thermoresponsive 

polymers. In the following chapters, this class of polymers will be used to generate polymer-

protein conjugates with temperature-triggered self-assembly and acid-triggered disassembly 

behaviour. 

Chapters 3-5 deal with different strategies for the design of such polymer-protein 

conjugates. Polymer-protein conjugation has received increasing interest owing to the ability 

to engineer proteins with a wide variety of properties, by simply coupling protein-reactive 

polymers to certain amino acid residues. Controlled radical polymerization such as reversible 

addition-fragmentation chain transfer (RAFT) polymerization offers an excellent tool to 

synthesize polymers with well-defined composition, chain length, narrow dispersity and 

functional end groups that can be used for protein conjugation. 

In Chapter 3, four different protein-reactive RAFT chain transfer agents (CTAs) are 

prepared containing either a N-hydroxysuccinimide (NHS) or pentafluorophenyl (PFP) ester 

moiety that can conjugate to lysine residues, and alternatively a maleimide or pyridyl 

disulfide (PDS) moiety for conjugation to cysteine residues. In Chapter 4, a head-tot-head 

comparison of these different conjugation strategies is performed in their bioconjugation 
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efficiency to albumin via a ‘grafting-to’ approach. To this end, both hydrophilic model 

polymers as well as transiently thermoresponsive polymers are used. In addition, the 

applicability of strain-promoted azide–alkyne cycloadditions (SPAAC) for the conjugation of 

azide-functionalized protein to cyclooctyne-containing polymers is explored. 

In Chapter 5, we elaborate on a ‘grafting-from’ approach as an alternative strategy 

for the synthesis of polymer-protein conjugates. The major advantage of this method is that 

the obtained polymer-protein conjugates do not have to be purified from unreacted 

polymer, which is often tedious and requires preparative gel filtration chromatography. 

Here, the polymer chain is grown directly from a protein that is modified with a CTA. By 

polymerizing a transiently thermoresponsive polymer from the protein surface, conjugates 

are obtained with temperature-triggered self-assembly and acid-triggered disassembly 

behavior. Moreover hydrophobic compounds including immune-modulating compounds can 

be encapsulated into the core of these self-assembled globules.  

As it remains unclear whether non-covalently assembled nanoparticles remain intact 

in vivo, it is of interest to develop covalently linked nanostructures with increased stability. 

In Chapter 6, we therefore investigate the effect of surface chemistry on the in vitro and in 

vivo immune-biological behavior of covalently bound hydrogel nanoparticles. In addition, we 

explore the applicability of super resolution microscopy for imaging the intracellular fate of 

such nanoparticles.  

In Chapter 7, we introduce a versatile nanogel system based on a RAFT-based block 

copolymer containing a solvophylic poly(ethylene glycol)-like block and a solvophobic 

activated ester block. The latter allows for core-crosslinking and various functionalizations 

with amine-containing compounds. This was demonstrated by dialing in a TLR agonist, that 

yielded nanogels with alluring properties in view of vaccine applications. Moreover, the 

nanogels were rendered protein-reactive by introducing vinyl sulfone moieties at the chain 

ends of the RAFT polymers upon post-polymerization aminolysis of the thiocarbonyl group. 

A discussion of the results obtained in this thesis in view of the broader international 

context is given in Chapter 8. In addition, we highlight some future developments that are 

expected in this field of research. Finally, a general conclusion and brief summary can be 

found in Chapter 9. 
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Chapter 1 

 

The immune system and vaccine 

development 

 
The immune system 

Our immune system plays a critical role in providing protection against microbial 

attack and possibly against the development of tumors. Upon their invasion of epithelial 

cells, pathogens can bind receptors on innate immune cells (e.g. neutrophils and 

macrophages) that recognize conserved molecular motifs characteristic of bacteria, viruses 

and fungi. This enables innate immune cells to quickly phagocytose (i.e. internalize) 

pathogens and secrete reactive oxygen species or cytokines, providing an immediate but 

relatively non-specific antimicrobial and inflammatory defense. In addition to this conserved 

innate immune system, the adaptive immune system provides a more specific and long-term 

defense mechanism. It is comprised of B cells and T cells that express a large diversity of 

clonal antigen receptors, allowing recognition of specific antigens expressed by foreign 

pathogens or cancer cells. Moreover, these cells can differentiate into long-lived memory 

cells, that elicit a rapid immune response upon re-exposure to previously encountered 

antigens.  
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Upon antigen recognition via their B cell receptor, B cells produce antibodies that 

bind and neutralize the ability of pathogens to invade host cells and/or promote their 

phagocytosis (i.e. humoral immunity). T cells by contrast, recognize antigen-derived peptides 

presented by antigen-presenting cells (APCs) via their T cell receptor (TCR) and differentiate 

into effector T cells when the appropriate signals are present. CD4 T cells differentiate into T-

helper (Th) cells, that secrete cytokines to direct the immune functions of other white blood 

cells. CD8 T cells by contrast, differentiate into cytotoxic T cells (CTLs), which have the 

capacity to recognize and kill infected or transformed cells (i.e. cellular immunity). To prime 

a naïve T cell to become an effector T cell (Th or CTL) three signals are needed (Figure 1).  

First, the antigen needs to be processed by antigen presenting cells (APCs) and 

displayed as a peptide on their surface receptors, i.e. major histocompatibility complex 

(MHC) molecules, to enable presentation to T cells. In this respect, two different pathways 

can be distinguished. In most cell types, MHCI molecules are loaded with cytosolic proteins 

in the endoplasmatic reticulum after cleavage by the proteasome, to allow presentation to 

CD8 T cells. In this way, the internal proteome of the cell is made accessible for surveillance 

by CTLs. The MHCII processing pathway by contrast, is restricted to professional APCs (e.g. B 

cells, macrophages, dendritic cells) and enables the presentation of endocytosed proteins on 

MHCII to CD4 T cells after degradation in endo-lysosomal compartments.1  

 

 

 

Figure 1. Initiation of effector T cell responses requires three signals. Stimulation of the TCR by MHC/peptide 

complexes delivers signal 1, interactions between co-stimulatory ligands on the APC and CD28 on the T cell 

provide signal 2 and the secretion of inflammatory cytokines that polarize T cell responses delivers signal 3. 

Reprinted from reference 2. 
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Dendritic cells (DCs) are the most potent class of APC in our immune system, with 

multiple subtypes displaying different functional properties.3-5 Resident lymphoid DCs 

directly migrate to lymphoid tissue after their emigration from the blood and can be divided 

into CD8α- and CD8α+ subsets. The CD8α+ subset has been reported to be more efficient in 

a process called cross-presentation, in which endocytosed antigens are loaded onto MHCI 

molecules instead of MHCII.6,7 This pathway is essential for the induction of CTL responses 

against viruses and intracellular bacteria that do not infect DCs, and against tumor growth. 

By contrast, CD8α- DCs are more potent in MHCII-mediated antigen presentation, and thus 

in the priming of CD4 T cells.8 In addition to these resident lymphoid DCs, lymph nodes also 

contain DCs that have migrated from peripheral tissues, where they continuously sample 

antigens. Before migration to the lymph nodes however, these immature DCs have poor 

antigen presenting properties as they show a show a low expression of co-stimulatory 

ligands that are necessary for priming of naïve T cells.  

Indeed, priming of naïve T cells requires a second co-stimulatory signal being 

delivered by the APC, in addition to antigen presentation on MHC molecules (Figure 1). This 

is mediated by interactions between the co-stimulatory ligands CD80 and CD86 on the DC 

and the receptor CD28 on the T cell. In case of infection, triggering of pattern recognition 

receptors (PRRs) on the DC surface results in upregulation of these co-stimulatory ligands 

and secretion of inflammatory cytokines by the activated DCs.9 In addition, inflammatory 

monocytes are recruited to the site of inflammation, which subsequently differentiate into 

DCs that are also capable of priming CD4 and CD8 T cell responses.9,10 Interestingly, even in 

absence of inflammation or infection, peripheral tissue DCs appear to mature and migrate to 

the lymph nodes where they present sampled antigen to naive T cells with appropriate co-

stimulatory ligands. However, this process leads to tolerance rather than immunity and is an 

important mechanism for the maintenance of tolerance to self-antigens.11  

Depending on the set of PRRs triggered, DCs secrete different cytokine profiles which 

is the third signal required for priming naïve T cells (Figure 1) and largely determines the 

nature of the induced immune response.12,13 This pathogen-based distinction is of crucial 

importance to mount effective immune defenses against a variety of pathogens. PRRs 

typically recognize pathogen-associated molecular patterns (PAMPs) that are essential for 

pathogen survival and thus evolutionary conserved.14-17 The most studied PPRs are Toll-like 

receptors (TLRs), that can be localized at the plasma membrane or the endosomal 
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membrane. The cytokine microenvironment that is generated by DCs upon PPR triggering 

will steer the differentiation of naïve CD4 T cell into a specific subset, following recognition 

of a MHCII/peptide complex. These CD4 T helper subsets include Th1 cells that activate 

cellular immunity responses against intracellular pathogens, and Th2 cells that promote 

humoral immunity.18 More recently, Th17 cells have been identified as a new subset of T-

helper cells that mediate protection against extracellular bacteria and potentially fungi.19-21 

Figure 2 gives a simplified schematic overview to illustrate the various aspect of our immune 

systems described above. 

 

 

Figure 2. Schematic overview of the adaptive immune system. 

 

 

Nanoparticles in vaccine development2,22 

A fundamental property of the adaptive immune system is the capacity of B-cells and 

T-cells to differentiate into long-lived memory cells, that will react faster and more 

vigorously when the same pathogen is encountered in the future. This immunological 

memory underlies the success of vaccination. By pre-exposing the immune system to either 

weakened/killed pathogens or immunogenic components of the pathogen, a fast and strong 

immune response can be evoked upon re-exposure to the native pathogen, ideally 

preventing illness. Since the pioneering work of Jenner and Pasteur over 200 years ago, 

vaccines have dramatically improved human health by preventing numerous infectious 
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diseases including smallpox, poliomyelitis and tetanus.23,24 Nevertheless, many challenges 

remain.  

For most prophylactic vaccines, effectiveness is measured by the ability to produce 

long-lasting neutralizing antibodies to block infection. However, to develop effective 

preventive vaccines against insidious pathogens such as human immunodeficiency virus 

(HIV), Plasmodium (the causative agent of malaria) and Mycobacterium tuberculosis; CD8+ T 

cell responses are required to act synergistically with humoral immunity to eliminate 

infected cells. Given the high virulence of these pathogens, vaccines composed of live 

attenuated strains (that typically elicit strong CD8+ T cell priming) impose serious safety 

issues. In this respect, entirely synthetic vaccines composed of recombinant antigens are 

much safer, but require the addition of molecular adjuvants due to their poor 

immunogenicity.  

The design of vaccines that induce strong cytotoxic T cell responses is also applicable 

for the development of immunotherapeutic treatments of cancer and chronic viral infections 

such as HIV and hepatitis C virus (HCV).25 In this regard, the use of so-called checkpoint 

inhibitors that block inhibitory receptors on T cells are likely to provide additional 

opportunities to enhance vaccine efficacy in cancer patients.26 These include antibodies 

against cytotoxic T-lymphocyte antigen 4 (CTLA-4) and antibodies against programmed 

death-1 (PD-1) and programmed death-ligand 1 (PD-L1). 

 

Size-based lymph node targeting and cross-presentation 

Targeting of lymph node resident DCs is an attractive approach in view of vaccine 

development, as lymph nodes are the sites of lymphocyte priming by APCs and subsequent 

adaptive immune responses. Antigen targeting towards DCs can be obtained by coupling the 

antigens to antibodies or ligands specific for DC surface receptors,27 or alternatively by 

delivering antigens associated with particles in the 0.1–10 µm range.28,29 Particulates in this 

size range indeed mimic the dimensions of bacteria and viruses, to which DCs have evolved 

to react. To directly target the lymphoid DC population however, ultra-small nanoparticles 

(20 – 100 nm) are more effective as they rapidly reach the lymph nodes through passive 

drainage via the lymphatics. In contrast to these ultra-small nanoparticles, particles in the 

lower micron range are more tightly retained in the interstitial space and require active 

transport by migratory DCs to reach the lymph nodes; whilst even smaller materials will 
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predominately clear to the blood (Figure 2).30,31 Moreover, it was found that small 

nanoparticles were primarily taken up by CD8α+ DCs, which are reported to be specialized in 

cross-presentation.7  

The most appealing part of using particulate carriers for antigen delivery is indeed 

their capacity to promote cross-presentation of endocytosed exogenous antigens via the 

MHCI route, rather than the usual MHCII antigen processing pathway. For soluble antigens, 

this process appears to be dependent on their routing to stable early endosomes specialized 

for cross-presentation.32,33 Targeting of antigens to these specialized compartments is 

mediated by binding to specific endocytotic receptors such as DEC20527, the mannose 

receptor32 and langerin34; which are mainly expressed on CD8α+ DCs. Nevertheless, although 

receptor-mediated endocytosis of soluble antigens can result in cross-presentation, the 

efficiency of this process is rather inefficient. Antigens delivered to DCs in a particulate form 

by contrast, such as viruses and bacteria, are internalized via macropinocytosis or 

phagocytosis and are far more efficiently cross-presented to CD8 T cells. Multiple studies 

have indeed demonstrated a strong increase in cross-presentation and the induction of CTL 

responses after antigen encapsulation in carriers that mimic the particulate nature of viruses 

and bacteria.35-40  

Multiple mechanisms have been proposed as to how particles promote cross-

presentation. The phagosomal escape hypothesis suggests that antigen is exported from the 

macropinosome or phagosome and subsequently enters the classical MHCI processing route, 

similar to cytosolic proteins (Figure 3A).35,41 Therefore, hydrazide- or acetal-based pH-

responsive particles have been developed that degrade or disassemble upon phagosomal 

acidification. Subsequently, their single components exert osmotic pressure on the 

phagosomal membrane, leading to its rupture and the release of their payload directly into 

the cytosol.39,42,43 Alternatively, amine-containing polymers can exhibit a so-called proton 

sponge effect, thereby buffering the phagosomal compartment and preventing the 

phagosomal acidification process. The subsequent influx of protons to force acidification, 

induces an osmotic pressure which is also able to rupture the phagosomal membrane.44,45 

However, phagosomes and macropinosomes might be able to recruit all the 

necessary machinery for MHCI-mediated antigen presentation themselves, by fusing with ER 

membranes.46-48 This proposed mechanisms suggests that antigens are exported from the 

phagosomal lumen, processed by recruited immunoproteasomes, and re-imported into the 
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same phagosome for loading onto MHCI molecules (Figure 3B).49 Recent evidence indicates 

that antigen processing and loading onto MHCI and MHCII actually occur in the same 

phagosome but at distinct time intervals following particle internalization, mediated by 

variations in the phagosomal pH. In this respect, initial active alkalization of the phagosome 

appears to be crucial for MHCI loading by preventing activation of lysosomal proteases and 

consequently rescuing antigens from fast processing for MHCII loading.50,51  

 

 

 

Figure 3. Proposed mechanisms for antigen cross-presentation, mediated by particulate carriers. (A) 

Phagosome-to-cytosol route for cross-presentation. (B) Phagosomes as fully competent organelles for cross-

presentation. Reprinted from reference 2. 
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In literature, several conflicting observations have been reported regarding the 

optimal particle size to promote cross-presentation.38,52-54 Although microparticles might be 

intrinsically superior in promoting antigen processing towards the MHCI route, upon 

subcutaneous injection they are primarily taken up by other phagocytic cells (e.g. 

macrophages) rather than by DCs. As a result, microparticles generally target fewer DCs in 

vivo compared to nanoparticles, that passively migrate to the draining lymph node via the 

lymphatics. Therefore, strategies that allow microparticle targeting to DCs might result in 

superior cross-presentation. In this respect, particulate carriers can be modified with 

antibodies or ligands specific for DC surface markers and endocytosis receptors, including 

anti-CD11c antibody derivatives55,56, anti-DEC205 antibodies56,57 and anti-CD40 

antibodies56,58. 

 

Nanoparticles as adjuvants 

As most recombinant antigens fail to activate DCs, they require the addition of 

adjuvants that can enhance the intrinsic immunogenicity of the antigen in vivo. Most 

adjuvants, including the widely used aluminum hydroxide59, have been derived empirically 

based on their capacity to increase adaptive immune responses to co-delivered antigens, but 

their mode of action remained elusive for a long time.60 Only recently, it was found that at 

least part of the adjuvant properties of aluminum hydroxide can be attributed to formation 

of the NALP3 inflammasome and the subsequent release of the potent pro-inflammatory 

cytokine IL-1β.59,61-65 NALP3 belongs to a class of cytosolic PRRs that can be triggered by 

various endogenous and microbial danger signals and mediates inflammatory responses.66 

Interestingly, particulate adjuvants also appear to activate the NALP3 inflammasome, which 

seems crucial for the activation of cellular immune responses.63,67 For humoral immune 

responses however, NALP3 activation was completely dispensable, suggesting that 

additional pathways must be involved in the adjuvant properties of particulates. Proposed 

mechanisms are interactions with dendritic cell membrane lipids that promote antigen 

uptake, and induction of cell death with subsequent release of host cell DNA. 68,69 

Although the particulate nature of delivery vehicles might be sufficient to be 

recognized by the immune system as intrinsically dangerous via inflammasome activation, 

most particulates are only poor activators of DCs. Moreover, classical adjuvants largely fail to 

activate the cellular arm of the immune response, making them ineffective against many 
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intracellular pathogens. Consequently, there is an urgent need to develop new adjuvants 

that also allow the induction of Th1, Th17 and CTL responses. In this regard, co-delivery of 

particulate antigen formulations with PRR agonists might work synergistic in evoking potent 

immune responses.70-74 Moreover, particulate delivery of PPR agonists significantly reduces 

inflammatory toxicity that is generally associated with the use of immune potentiators, by 

limiting their systemic distribution.75-77 Most of the PAMP mimics currently tested are TLR 

agonists that, in contrast to aluminum salts, have the capacity to steer DCs to activate Th1 

and CTL responses.78-81 Co-administration of antigen carriers and TLR agonists can be 

achieved by either mere co-injection, or by physical association of the TLR agonist and the 

carrier via surface adsorption and encapsulation. Recent data clearly indicate that the latter 

strategy is superior in inducing strong effector T cell responses.82-87 Moreover, the selection 

of specific functional ligands might also allow to steer the immune response towards the 

desired direction, e.g. Th1 or Th17 skewed responses.  

Although the benefits of co-encapsulating antigen and TLR agonist in microparticles 

have clearly been demonstrated, the encapsulation process itself remains a challenging task. 

Developing polymeric particles with strong intrinsic immune activating properties could 

alleviate these complex procedures. In this regard, a promising approach might be the use of 

biomaterials that activate the complement system. This ancient component of the immune 

system provides a direct biochemical defense mechanism to kill and opsonize 

microorganisms, but can also activate adaptive immune responses. Literature has shown 

that activation of the complement by nanoparticles is dependent on their surface chemistry. 

Biomaterials containing high levels of free hydroxyls and amine nucleophiles for example, 

strongly activate the complement cascade.88 Alternatively, intrinsic adjuvant capacity of 

nanoparticles might be derived from their hydrophobicity, which might be an important 

conserved danger signal.89,90 Unfolded proteins, microbes and dying cells indeed all possess 

hydrophobic properties. 
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Chapter 2 

 

Transiently thermoresponsive polymers 

and their applications in biomedicine 

 
Introduction 

Stimuli-responsive polymers are capable to undergo significant physical or chemical 

changes in response to small variations in the external environmental conditions. These 

variations can be classified as either physical stimuli including temperature, 

electric/magnetic fields and mechanical pressure, or chemical stimuli such as pH, ionic 

factors or chemical agents. In some examples, two or more stimuli-responsive mechanisms 

can be combined into one polymer system. In this chapter we introduce the term transiently 

thermoresponsive polymers for polymers that gradually alter their temperature-responsive 

behavior upon contact with another external stimulus. Typically, these thermoresponsive 

polymers bear additional stimuli-responsive moieties (to e.g. water, pH, light, 

reduction/oxidation) located in the polymer backbone or in the side chain that, upon 

cleavage, induce a permanent shift in the cloud point temperature (Tcp; i.e. the temperature 

at which the polymers transition from soluble to globular occurs). This class of polymers 

possess attractive properties for advanced applications in biomedicine. 
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For instance, block copolymers with a thermoresponsive segment have the ability to 

self-assemble into nanoparticles when aqueous solutions of these polymers are heated 

above their Tcp (Figure 1).1,2 These systems yield micellar drug delivery vehicles through self-

assembly in aqueous media, thereby avoiding the use of harmful organic solvents for 

solubilization and subsequent solvent displacement. By engineering these polymers to lose 

their thermoresponsive behavior at body temperature upon contact with another external 

trigger within a physiologically relevant window, they can become fully water soluble and 

can be excreted from the body by renal clearance. Moreover, this hydrophobic-to-

hydrophilic transformation and subsequent micellar destabilization can be exploited to 

release a therapeutic payload that is encapsulated within the hydrophobic core of these 

nanoparticles.3-5  Alternatively the Tcp of double-hydrophilic block copolymers comprising a 

thermoresponsive segment can be fine-tuned just above body temperature, which has been 

used for site-specific drug release upon locally induced hyperthermia that causes collapse of 

the thermoresponsive block and subsequent structural distortion of the micellar 

nanocarriers.2-4 

Often, these transiently thermoresponsive polymer systems are used as 

biodegradable in situ reverse thermogelling injectables. An aqueous solution of this type of 

polymer is a free-flowing sol at room temperature, allowing homogeneous mixing of a 

therapeutic payload. Upon injection, sol-to-gel transition generates a synthetic tissue matrix 

or drug depot at body temperature. Moreover, this method avoid invasive surgery for 

implantation and allows formulation of therapeutically fragile macromolecules (e.g. DNA, 

RNA and proteins) at low temperature.6-8  
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Figure 1. Schematic representation of transiently thermoresponsive polymer systems. Upon heating above the 

Tcp of the thermoresponsive block, hydrophobic association between dehydrated polymer chains triggers 

reversible self-assembly into micellar nanoparticles or hydrogels, as exemplified for diblock and triblock 

copolymers respectively. The formation of hydrophobic pockets in the micelle core or within the hydrogel 

network, allows the encapsulation of hydrophobic drug molecules (plain green discs). Moreover, in case of the 

hydrogels, macromolecular therapeutic compounds (e.g. proteins, green circles) can be entrapped in the mesh 

of the polymer network. Upon contact with a second stimulus that triggers a degradation reaction in the 

polymer side chain or backbone, the polymers irreversibly transform into fully soluble unimers accompanied by 

an increase in the Tcp , and concomitant release of the encapsulated payload. 
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Thermoresponsive polymers that exhibit temperature-responsive behavior in 

aqueous solution are soluble at low temperature due to extensive hydrogen bonding with 

the surrounding water molecules and subsequent hindered polymer-polymer interactions. 

Heating above the Tcp favors the disruption of these hydrogen bonds due to entropic 

reasons, which enables polymer-polymer interactions (i.e. hydrogen bonding or hydrophobic 

interactions) and limits the polymers’ solubility in water.9,10 Poly(N-isopropylacrylamide) or 

p(NIPAAm) is undoubtedly the most extensively studied thermoresponsive polymers having 

a Tcp of about 32°C in aqueous solution (Figure 2A).11-13 This value can easily be modulated 

by copolymerization with either hydrophobic or hydrophilic monomers, respectively leading 

to a decrease or increase of the copolymers´ Tcp.14-16 Moreover NIPAAm can be 

copolymerized with degradable monomers affording transiently thermoresponsive behavior 

which, as introduced earlier, is an attractive feature for biomedical applications. More 

recently, alternative systems have emerged based on oligo(ethylene glycol) or OEG with a Tcp 

tunable by both the OEG chain length and the introduction of comonomers (Figure 2B). This 

chapter will focus on the various chemistries that have been employed to allow a permanent 

upwards shift in Tcp in response to base- or acid-catalyzed hydrolysis, light, enzymes or 

oxidation/reduction. The corresponding molecular structures are listed in Table 1-5 for each 

type of chemistry used to endow polymers with transient properties. Throughout the text 

we will also highlight several applications of the polymers in drug delivery and tissue 

engineering. 

 

 

 

Figure 2. Molecular structure of (A) poly(N-isopropylacrylamide) or p(NIPAAm) and (B) poly[oligo(ethylene 

glycol) methyl ether methacrylate] or p(OEGMA) as the two most investigated thermoresponsive polymer 

systems. 
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Transiently thermoresponsive polymers with base-sensitive groups 

As water is abundantly present in the human body, the introduction of hydrolysable 

moieties is a popular feature to engineer biodegradable materials.5 Several classes of 

hydrolytically degradable polymers have been reported, including poly(anhydride)s, 

poly(ester)s, poly(urethane)s, poly(carbonate)s, poly(phosphoester)s and poly(amide)s. In 

this section we will focus on thermoresponsive polymers that lose their temperature-

responsive behavior upon base-catalyzed hydrolysis of pendant groups. This feature can be 

exploited for controlled drug delivery. The corresponding structures are shown in Table 1. 

 

Esters 

Ester moieties in polymer side chain  

The first reports on hydrolysis-dependent thermoresponsive behavior typically deal 

with copolymers of NIPAAm with comonomers that are more hydrophobic than NIPAAm, but 

contain hydrolytically labile ester moieties. Upon hydrolysis of the esters under neutral or 

basic conditions the comonomers become more hydrophilic, leading to a progressive 

increase of the copolymer´s Tcp and finally result in fully water soluble polymers at body 

temperature. Pitt et al. were the first to synthesize transiently thermoresponsive p(NIPAAm) 

copolymers by introducing the hydrolytically labile N-acryloxy succinimide (i.e. an activated 

ester of acrylic acid) into the backbone [1.1].17. Upon hydrolysis of the acryloxy succinimide 

groups into acrylic acid, an increase of the Tcp takes place. Also monomers bearing 

hydrolytically labile lactate ester moieties such as 2-hydroxyethyl methacrylate oligolactate 

(HEMA-Lacn)18-22 and 2-hydroxypropyl methacrylamide oligolactate (HPMAm-Lacn)23,24 

(where n is the number of lactic acid units per HEMA or HPMAm repeating unit) have been 

successfully copolymerized with NIPAAm [1.2]. In analogy to N-acryloxy succinimide, 

copolymers of HEAM-Lacn or HPMAm-Lacn with NIPAAm exhibit a hydrophobic-to-

hydrophilic transformation upon hydrolysis of the lactic acid side chains with an increase of 

their Tcp. Note that in these cases, upon hydrolysis, (co)polymers are obtained with pending 

hydroxyl groups. This concept was exploited for the controlled instability of polymeric 

micelles composed of a hydrophilic poly(ethylene glycol) block and a thermoresponsive 

p(NIPAAm-co-HPMAm-Lacn) block.23 Additionally, this approach was extensively investigated 

to prepare degradable p(NIPAAm)-based injectable hydrogels with reverse thermogelling 

behavior. Typically NIPAAm is copolymerized with acrylic acid and HEMA-Lacn to manipulate 
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the Tcp before (e.g. 23.5 – 34.9 °C) and after hydrolysis (e.g. 43.2 – 44.1 °C) respectively.19,20 

Additional comonomers can also be added to introduce various functionalities such as 

bioconjugation sites.21,22  

Alternatively, p(NIPAAm)-based polymers have been grafted onto enzymatically 

degradable polysaccharide backbones such as chitosan25,26, hyaluronic acid27 and dextran28-30 

to design biodegradable nanoparticles or hydrogels. However, intact p(NIPAAm) chains 

remain after enzymatic degradation of the polysaccharide backbone and moreover, the 

specific enzymes required to decompose these biopolymers are not abundantly present in 

the human body. To cope with the latter issue, Lowe et al. copolymerized NIPAAm with a 

dextran-based macromer containing multiple hydrolytically degradable oligolactate-2-

hydroxyethyl methacrylate units (Dex-lactate-HEMA) to generate thermoresponsive and 

hydrolytically degradable nanoparticles and hydrogels [1.3].31,32 However, here an increase 

of hydrophobicity was observed upon cleavage of the pendant oligolactate linker groups due 

to subsequent loss of the hydrophilic dextran moieties.  

In 2004, Hennink and co-workers reported that also homopolymers of mono- and 

dilactate substituted HPMAm, thus without the need for copolymerization with NIPAAm, 

exhibited thermosensitive behavior with a lower Tcp for the more hydrophobic p(HPMAm-

Lac2) compared to the monolactate variant [1.4].33 The Tcp could be fine-tuned by 

copolymerization of HPMAm-Lacn with different values of n (typically combining mono- and 

dilactate). As described earlier, p(HPMAm-Lacn) is transformed into the more hydrophilic and 

biocompatible p(HPMAm) upon hydrolysis of the labile lactate esters under neutral or basic 

conditions, thereby enabling a “hydrophobic-to-hydrophilic” conversion at body 

temperature. Hennink and co-workers exploited this chemistry to synthesize polymeric 

micelles that could be destabilized at body temperature with consequent release of their 

payload in a controlled way. Amphiphilic block copolymers were synthesized consisting of a 

hydrophilic poly(ethylene glycol) (PEG) block and a thermosensitive biodegradable 

p(HPMAm-Lac2) block [1.5].34 These PEG-b-p(HPMAm-Lac2) block copolymers formed 

micelles in water by heating an aqueous polymer solution from below to above the critical 

micellization temperature (cmt). The micelles were stable at pH 5, but gradually dissolved at 

pH 8.6 upon hydrolysis of the lactic acid side groups and the resulting irreversible 

hydrophobic-to-hydrophilic transition of the thermosensitive p(HPMAm-Lac2) block. Pyrene 

loading studies (Figure 3) confirmed the applicability of these block copolymer micelles for 
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controlled delivery of hydrophobic drugs. In this regard, Hennink and co-workers employed 

these PEG-b-p(HPMAm-Lac2) block copolymers for the preparation of a block copolymer 

micelle formulation of the anti-cancer drug paclitaxel (PTX).35 Exploiting the copolymers´ 

thermoresponsive behavior, drug encapsulation was performed by simply mixing a small 

volume of a concentrated PTX solution in ethanol with an aqueous polymer solution 

followed by heating the solution above the cmt of the polymer. At pH 8.8 the PTX-loaded 

micelles destabilized within 10 hours due to the hydrolysis of the lactic acid side group of the 

pHPMAm-Lac2, but remained stable over 200 hours at the physiological pH of 7.4. 

Nonetheless the simple preparation method, avoiding the use of harmful organic solvents, 

makes this kind of block copolymer micelles attractive as delivery vehicles for hydrophobic 

compounds as shown for photosensitizers36, vitamin K37 and MRI contrast agents38. 

As most long-circulating polymeric nanoparticles are cleared from systemic 

circulation in pre-clinical laboratory animal models within the first 8-10 h after intravenous 

administration, an ideal carrier should remain stable over this period of time and destabilizes 

upon arrival at its site of action with a concomitant release of its drug load.39 Because the 

destabilization time of empty PEG-b-p(HPMAm-Lac2) micelles was approximately 8 days at 

physiological conditions (37 °C, pH 7.4), the Hennink group aimed at the design of block 

copolymer micelles that could destabilize within 1 day under physiological conditions. From 

previous research it was known that the ester of the primary alcohol in (2-

hydroxyethyl)methacrylate-dilactate (HEMA-Lac2) showed faster hydrolysis than an ester of 

the secondary alcohol in the HPMAm. However, the corresponding p(HEMA) degradation 

product was insufficiently soluble at physiological temperature, thereby preventing the 

release of payload from the polymeric micelles at body temperature.18 The authors 

anticipated that a methacrylamide with a primary alcohol function, such as N-(2-

hydroxyethyl)methacrylamide (HEMAm), could be more suitable and therefore HEMAm-Lacn 

was used as a (co)monomer in various biodegradable (block co-) polymers.40 Polymerization 

of HEMAm-Lac2 yielded thermoresponsive polymers with a Tcp of 22 °C that could be lowered 

by introducing HEMAm-Lac4 as comonomer [1.6]. Moreover, PEG-b-p[(HEMAm-Lac2)-co-

(HEMAm-Lac4)] block copolymers were found to self-assemble into compact spherical 

micelles [1.7], that fully destabilized under physiological conditions within 8 h due to 

hydrolysis of the lactate side chains.  
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Figure 3. (A) Synthesis of HPMAm-Lac2 and base-catalyzed hydrolysis of PEG-b-p(HPMAm-Lac2) block 

copolymers. (B) Cryo-TEM of PEG-p(HPMAm-Lac2) micelles. (C) Change in emission spectra (I338/I333 ratio) of 

pyrene solubilized in PEG-b-p(HPMAm-Lac2) micelles at 37 °C and at pH 5.0 (closed circles) and pH 8.6 (open 

circles). Reproduced from reference 34. 

 

 

Similar to modification with lactic acid moieties, also other hydrolytically labile ester 

groups were introduced into the side chain of the HEMA monomer in view of designing 

transiently thermoresponsive (co)polymers. An example is poly(ε-caprolactone)-2-

hydroxylethyl methacrylate (HEMA-PCL) bearing hydrolytically labile caprolactone-derived 

ester moieties in the polymer side chains.41,42 The HEMA-PCL monomer was further modified 

with the enzymatically degradable polysaccharide dextran and copolymerization of this Dex-

PCL-HEMA monomer with NIPAAm yielded reverse thermogelling biomaterials for tissue 

engineering applications [1.8]. Implantation of the hydrogel into infarcted myocardium of 

rabbits prevented adverse cardiac remodelling and dysfunction. Rosellini et al. 

copolymerized 2-hydroxyethylmethacrylate-6-hydroxyhexanoate (HEMA-Hex) with NIPAAm, 
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which yielded copolymers with a Tcp below body temperature [1.9].43 Hydrolysis was found 

to occur on the peripheral ester bond of the lateral chain, with the release of 6-

hydroxyhexanoic acid and the subsequent increase of the Tcp above body temperature.  

Additionally, also other monomers bearing hydrolytically labile ester groups were 

copolymerized with NIPAAm. Vernon et al. reported on the synthesis of poly[(NIPAAm)-co-

(dimethyl-Ɣ-butyrolactone acrylate)] copolymers with a hydrolysis-dependent 

thermosensitivity.44 The Tcp could be tuned by varying the dimethyl-Ɣ-butyrolactone acrylate 

(DBA) content, and increased above body temperature upon ring-opening hydrolysis of the 

DBA side group. The hydrolysis of the ester group in the ring structure was found to occur 

without cleavage of the ester near the backbone, thereby avoiding low molecular weight by-

products and subsequent toxic effects. Nevertheless, the Tcp of the initial polymers was 

below room temperature, which limited the applicability for in situ gelling injectable 

hydrogel purpose. Therefore, the authors added a third more hydrophilic comonomer, i.e. 

acrylic acid, to increase the initial Tcp. Moreover, it was suggested that the presence of 

acrylic acid facilitated the access of water to DBA ester groups, thereby accelerating the 

degradation rate [1.10].45,46  

A singular class of polymers are the poly(cyanoacrylate)s, that have been used as 

tissue adhesives.47 It was found that the pendant esters in the side chain could be degraded 

by esterases (cfr. section enzyme-sensitive groups).48 Moreover, thermogelling properties in 

aqueous solution were reported for poly(ethylene glycol)-co-poly(ethyl-2-cyanoacrylate) 

[1.11].49 Interestingly, their sol-to-gel transition temperature increased as the concentration 

increased. 

In analogy with their earlier reports on p(HPMAm-Lacn), Hennink et al. recently 

prepared a new series of polymers based on methyl, ethyl, and isopropyl esters of Nα-

(methacryloyl)-serine and –threonine; that exhibited thermosensitive behavior without the 

need for copolymerization with NIPAAm [1.12].50 The corresponding homo- and co-polymers 

exhibited thermoresponsive behavior with Tcp  values that were tailored by variation of the 

monomers hydrophobicity and ranged from 15 °C to above 100 °C. These monomers were 

used to synthesize amphiphilic block copolymers with PEG that formed nanoparticles above 

their Tcp. Upon incubation at physiological conditions, the Tcp increased due to ester 

hydrolysis, resulting in nanoparticle destabilization.  
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Ester moieties in polymer backbone  

In contrast to the presence of esters as pending side groups, ring-opening 

polymerization of lactide, ε-caprolactone (CL) or 2-methylene-1,3-dioxepane (MDO) 

introduces hydrolytically labile bonds into the polymer backbone (Figure 4). While lactide 

and CL are generally polymerized by cationic ring-opening polymerization (ROP), MDO can 

copolymerize with vinyl monomers by radical polymerization (RP), installing CL ester groups 

in the aliphatic polymer backbone.51 In this regard, Liu et al. synthesized biodegradable 

p(NIPAAm-co-MDO) random copolymers where hydrolytically labile ester groups were 

present within the p(NIPAAm) backbone [1.13].52 These polymers were crosslinked using 

N,N’-methylenebisacrylamide to obtain biodegradable hydrogels. In general, block 

copolymers of p(NIPAAm) with hydrophobic blocks of both PCL [1.14] and poly(lactic acid) 

(PLA) [1.15] have been extensively employed by various groups to form micelles with a 

hydrated p(NIPAAm) corona below its Tcp.53-64 When heated above the Tcp the micelle shell 

becomes hydrophobic, leading to micelle destabilization and release of an encapsulated 

payload. To be suitable for in vivo applications, the Tcp is fine-tuned above body temperature 

by mixing the p(NIPAAm) block with hydrophilic comonomers such as acrylamide56-58, 

dimethylacrylamide59-63 or methacrylic acid64. Upon degradation of the esters present in the 

backbone, it is suggested that the polymeric micelles dissociate into low molecular weight 

p(NIPAAm) segments that can be excreted by glomeral filtration.53 However, the 

thermoresponsive properties of these p(NIPAAm) segments remain intact and thus globular 

precipitates are still expected to be formed at body temperature. Therefore we do not 

consider these systems as transiently thermoresponsive and will not further discuss them in 

this chapter. The same holds true for p(NIPAAm)-based block copolymers with poly(D,L-

lactide-co-glycolide) (PLGA) that were developed to increase the drug loading capacity 

compared to PLA block copolymers;65,66 and similar PLA/PCL block copolymer systems where 

pluronics or poly(N-vinylcaprolactam) are used as the thermoresponsive polymer blocks.67-70 

However, by replacing the poly(propylene oxide) block in ABA or BAB type triblock 

poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) pluronics (PEO-PPO-PEO) 

with PLA, PLGA [1.16] or PCL, the resulting triblock copolymers lose their thermoresponsive 

behavior upon degradation of the labile ester moieties.71-74 These are reverse thermogelling 

biodegradable block copolymers that have been explored as injectable in situ gelling systems 
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for drug delivery of tissue engineering. As these systems have already been thoroughly 

discussed by others, they will not be described in the current chapter. 6-8 

 

 

 

Figure 4. Polymerization of lactide (LA), ε-caprolactone (CL) or 2-methylene-1,3-dioxepane (MDO) via ring-

opening polymerization (ROP) or radical polymerization (RP), generating a degradable poly(ester) backbone. 
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Poly(ethylene oxide) (PEO) or poly(ethylene glycol) (PEG) is a hydrophilic polymer 

that has been extensively used for the modification of therapeutic proteins (e.g. PEGylation) 

to prolong their body-residence time and to reduce the protein immunogenicity.39,75-77 

Although PEG is often used as a hydrophilic building block, it actually exhibits 

thermoresponsive behavior with a Tcp around 85°C.78 Various groups have introduced PEG 

side chains onto poly(ester) backbones to obtain biodegradable thermoresponsive polymers. 

Baker et al. synthesized a series of lactides that had one OEG monomethyl ether chain per 

lactic acid residue.79 Their subsequent ring-opening polymerization yielded high molecular 

weight oligo(ethylene oxide)-grafted poly(lactide)s that exhibited thermoresponsive 

behavior dependent on the OEG chain length [1.17]. Polymers with 1 or 2 ethylene oxide 

repeat units were more hydrophilic than polylactide but still insoluble in water, whereas 

polymers having 3 or 4 ethylene oxide repeating units were water-soluble and exhibited a Tcp 

of 19 and 37 °C respectively. The use of an acetylene-functionalized derivative of a lactide 

monomer, i.e. propargyl glycolide (PGL), allowed for further chemical modification via 

copper-mediated alkyne-azide “click” chemistry. Grafting mixtures of methoxy diethylene 

glycol (mDEG) and alkyl azides yielded water-soluble polymers with tunable Tcp values in a 

range from 25 to 65 °C by adjusting the mDEG:alkyl ratio in the azide feed [1.18] (Figure 5).80  

 

 

 

Figure 5. Design of poly(glycolide)-based thermoresponsive materials with tunable Tcp via alkyne-azide ‘click’ 

chemistry. Reproduced from reference 80. 
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Li et al. also employed click chemistry to introduce PEG side chains on a poly(ester) 

backbone that was additionally modified with acid-labile ketal groups (cfr. section 

acetal/ketal) or redox-sensitive disulfide moieties (cfr. section reduction-sensitive groups) 

[1.19].81 It was found that increasing the length of the PEG side chain resulted in an increase 

of the Tcp for the same polymer backbone. Degradation under either acidic or reductive 

conditions of the ketal-modified and disulfide-modified poly(ester)s respectively, induced a 

shift of the Tcp values compared to precursor polymers. Reduction of the disulfide linkages 

resulted in a decreased Tcp (ca. 5 °C), whereas an increase of Tcp (ca. 3 °C) was observed after 

degradation of the ketal linkage. Hydrolysis of the unmodified poly(ester) backbone under 

basic conditions generated pH-sensitive thermoresponsive behavior. Stefan et al. prepared 

biodegradable thermoresponsive polymers with a Tcp of 47.5°C by ring-opening 

polymerization of Ɣ-substituted 3-caprolactone derivatives containing a hydrophilic 

oligo(ethylene glycol) side chain.82 The Tcp could be lowered close to body temperature by 

adding a more hydrophobic polymer block based on a Ɣ-substituted 3-caprolactone 

monomer containing an octyloxy group [1.20]. Deng et al. reported on the alternating ring-

opening copolymerization of succinic anhydride (SA) and a functionalized epoxide bearing 

OEG monomethyl ether pendant groups, which yielded thermoresponsive polymers with a 

degradable poly(ester) backbone [1.21].83,84 The Tcp of the polymers could be tuned in a 

range from 18 to 50 °C by copolymerization of SA and a mixture of functionalized epoxides 

with varying OEG chain lengths.85 Alternatively Shen et al. introduced hydrolytically labile β-

thioether esters onto a PEG backbone by Michael addition reaction of dithiols and 

poly(ethylene glycol) diacrylates (PEGDA) or dimethacrylates (PEGDMA), with Tcp values 

ranging from 10 to 50°C [1.22].86 

As an alternative to p(NIPAAm), Lutz et al. prepared well-defined thermoresponsive 

copolymers of 2-(2-methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene glycol) 

methyl ether methacrylate (OEGMA).87-89 The Tcp of the p(MEO2MA-co-OEOMA) polymers in 

water could be varied from 25 to 90°C but their biomedical applications were limited and 

were not claimed to be degradable. To enhance the biocompatibility of these polymers, Lutz 

and coworkers introduced the MDO-like cyclic ketene 5,6-benzo-2-methylene-1,3-dioxepane 

(BMDO) monomer as third comonomer in atom transfer radical copolymerization (ATRP) of 

MEO2MA and OEGMA, which installed hydrolysable ester groups into the polymer backbone 

[1.23].90 The copolymers could be degraded both hydrolytically and enzymatically by 
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addition of KOH or Candida antarctica lipases respectively. In analogy to the work of Lutz 

and coworkers, Agarwal et al. found that ring-opening of BMDO during copolymerization 

with NIPAAm introduced degradable ester linkages into the p(NIPAAm) backbone [1.24].91 

These p(NIPAAm-co-BMDO) copolymers were hydrolytically unstable under basic conditions 

and their thermoresponsive behavior could be tuned by controlling the amount of 

incorporated BMDO. Matyjaszewski et al. prepared similar p(NIPAAm-co-BMDO) polymers 

by ATRP and reversible addition-fragmentation chain transfer (RAFT)92 and more recently 

the solid-state thermal degradation of these copolymers was investigated93. 

Via single-electron transfer living radical copolymerization (SET-LRP) of NIPAAm with 

an ester-containing comonomer, Kamigaito et al. obtained degradable and 

thermoresponsive polymers [1.25].94 Upon base-catalyzed hydrolysis of the ester-linked 

monomers in methanol, the degradation products exhibited higher Tcp values than those of 

the original polymers due to the introduction of hydrophilic hydroxyl groups at the 

hydrolyzed chain end. Instead of radical polymerization, He et al. grafted both monomeric 

NIPAAm units and hydrophobic cholesteryl onto poly(amino ester)s containing secondary 

amines in their backbones, to obtain thermo- and pH-responsive degradable poly(amino 

ester)s with thermoresponsive properties similar to those of elastin-like poly(peptide)s 

[1.26] (ELPs, cfr. section enzyme-sensitive groups).95 Inspired by these ELPs; Joy and 

coworkers synthesized polymers with a hydrolytically degradable poly(ester) backbone, 

bearing various amides in their sides chains [1.27].96 The polymers were thermoresponsive 

and their Tcp could be tuned within a range of 7.2 to 53 °C through copolymerization of 

monomers containing different amide side chains. Above the Tcp the (co)polymers formed 

coacervate droplets in which Nile Red could be encapsulated. 

 

Organophosphazenes 

Poly(phosphazenes) are inorganic polymers with a backbone consisting of alternating 

nitrogen and phosphor atoms linked by alternating single and double bonds. The phosphor 

atom can accommodate 2 organic side groups, which allows for tuning of the polymer 

properties.97 Poly[(alkyl ether)phosphazenes] with oligo(ethylene glycol) segments for 

example have been reported to exhibit thermoresponsive behavior in aqueous solution98,99 

and were rendered biodegradable by Soo Sohn et al. via the introduction of amino acid 

esters (AAE) side groups in addition to methoxy PEG (MPEG) side groups100 [1.28]. The Tcp 
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values of these polymers varied from 25 to 99 °C, depending on several factors such as 

composition of the substituents, chain length of MPEG, and the type of amino acid and ester 

side groups. Hydrolysis of the polymers was faster under acidic and basic conditions than at 

neutral pH.101  

The hydrolytic degradation of poly(organophophazenes) substituted with AAE side 

groups has been proposed to occur via a carboxylic acid-catalyzed degradation pathway 

(Figure 6).102-104 An initiating step is hydrolysis of the labile AAE which generates the 

corresponding free carboxylic acid groups that subsequently attacks the polymer backbone, 

resulting in backbone cleavage. The rate of ester hydrolysis in aqueous solution is known to 

decrease in the order of basic > acidic > neutral conditions. Therefore, the authors suggested 

that AAE may be rapidly hydrolyzed at basic pH but generates less free carboxylic acid 

moieties and more carboxylate anions than at acidic pH, resulting in no significant difference 

between the hydrolysis rates under both conditions. Polymer degradation led to 

fragmentation of the poly(phosphazene) backbone with mostly phosphates and ammonia as 

hydrolysis products. Whether this is to  a more or lesser extent harmful towards protein- or 

DNA-based drugs and living tissue than acidic by-products from lactate ester hydrolysis still 

needs to be elucidated.  

 

 

 

Figure 6. Proposed carboxylic acid-catalyzed hydrolytic pathway of poly(organophosphazene) with MPEG and 

amino acid esters as side groups. Reproduced from reference 101. 
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As an addition to these O,N-systems, the same group of authors examined the 

thermoresponsive and hydrolytic behavior of poly(organophosphazene)s bearing α-amino-

ω-methoxy-poly(ethylene glycol) (AMPEG) and AAE in a N,N-system [1.30].105 These 

polymers exhibited higher Tcp values and faster degradation rates than MPEG-based 

polymers, which is probably due to the higher hydrophilicity of AMPEG. When AMPEG was 

combined with hydrophobic L-isoleucine ethyl esters (IleOEt) as side groups, the polymers 

exhibited reversible sol-gel properties which are of interest for the development of 

injectable in situ gelling systems.106 Therefore, the commonly used anticancer drugs PTX and 

doxorubicin (DOX) were conjugated to carboxylic acid-terminated 

poly(organophosphazene)s bearing AMPEG and IleOET side groups, to generate locally 

injectable and biodegradable thermosensitive hydrogels.107,108.  

Another application explored for these hydrogels was the localized and long-term 

delivery of short interfering RNA (siRNA) by conjugating low molecular weight 

poly(ethyleneimine) (PEI) to the poly(organophosphazene) backbone in a similar way as the 

PXT/DOX conjugates.109 Being a polycation, PEI forms electrostatic complexes with siRNAs 

upon mixing, protecting complexed siRNA from nucleases, facilitating intracellular uptake 

and subsequent cytoplasmic localization. In a follow-up paper the same group of authors 

replaced PEI by protamine, a cell penetrating protein that forms electrostatic complexes 

with siRNA, which enhanced intracellular delivery and the subsequent gene silencing 

efficiency.110 Similar protamine-poly(organophosphazene) conjugates could be used for the 

sustained release of the negatively charged human Growth Hormone (hGH).111  

Thermogelling poly(organophosphazenes) have also been designed for long-term 

magnetic resonance imaging (MRI) by binding of ferrite (CoFe2O4) nanoparticles stabilized by 

hydrophobic surfactants. The latter allow interactions with the L-isoleucine ethyl esters side 

groups of the poly(organophosphazene).112 In addition, PTX was loaded into these magnetic 

hydrogels by simple mixing to serve as an injectable MRI-monitored long-term therapeutic 

hydrogel system for solid tumors.113,114  

In all these examples the hydrolytically labile AEE on the poly(phosphazene) 

backbone was the L-isoleucine ethyl esters (IleOEt). Soo Sohn et al. reported that attempts 

to employ other amino acids in combination with the PEG side groups were unsuccessful and 

suggested the amino acids were not able to form sufficiently strong physical junction zones 

to afford gel formation with OEG. However, by replacing the amino acid ester by more 
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hydrophobic oligopeptides, the gel strength of these thermogelling 

poly(organophosphazene)s could by increased.115 Similarly, OEGs and various depsipeptide 

or dipeptide ethyl esters (DPEE) side groups were introduced onto the 

poly(organophosphazene) backbone to accelerate polymer degradation. Unfortunately, in 

none of these cases the Tcp values were in a biologically relevant window.116,117 By contrast, 

the use of short OEG fragments such as tri- or tetra(ethylene glycol) along with a dipeptide 

ethyl ester (GlyGluEt2) afforded biocompatible and thermosensitive 

poly(organophosphazenes) with a Tcp below body temperature [1.29].118 These amphiphilic 

polymers proved to be biocompatible in a local tolerance test using rabbits and were loaded 

with hGH as a model hydrophobic drug that could be released in a controlled fashion in vitro. 

Earlier, the authors introduced GlyGluEt2 side chains to conjugate a platinum(II)-based anti-

cancer drug to MPEG poly(organophosphazenes).119 By replacing the AEE and PEG side 

groups with lactic acid esters and methoxyethoxyethoxy (MEE) groups respectively, Bi et al. 

also obtained thermosensitive and hydrolytic degradable poly(organophosphazenes) 

[1.31].120,121 Allcock et al. reported earlier on biodegradable poly(organophosphazenes) 

bearing lactic acid ester side group, but these polymers did not exhibit thermoresponsive 

behavior.122 Alternatively Qiu et al. grafted amino terminated p(NIPAAm) onto 

poly(organophosphazenes) with AEE side groups, resulting in thermosensitivity and 

micellization behavior that could be exploited for drug delivery purposes [1.32].123-125  

Alternatively, Soo Sohn et al. synthesized hydrolytically degradable thermoresponsive 

oligomeric cyclophosphazenes bearing alkoxy PEG (APEG) and AEE side groups [1.33].126 127 

By grafting hydrophobic oligopeptides as side groups on MPEG-bearing 

cyclotriphosphazenes, amphiphilic trimers were obtained that formed stable micelles by self-

assembly in aqueous solution with a mean diameter ranging from 7.4 to 13.9 nm.128,129 The 

drug entrapment efficiency and in vitro release profile of one of the trimers was studied 

using human growth hormone (hGH) as a model drug. The tripodal amphiphile containing 

MPEG with an average molecular weight of 750 as a hydrophilic group and a linear 

hexapeptide GlyPheLeuGlyPheLeuEt as a hydrophobic group was found to be most 

promising and further used for the encapsulation of various hydrophobic anti-cancer drugs 

including a platinum(II)-based compound130 (Figure 7) and docetaxel (currently in preclinical 

studies as Phostaxel). 131,132 When the oligopeptide side chains were replaced by fatty acids 

as hydrophobic groups, the resulting amphiphiles were found to form more stable micelles 
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compared to the oligopeptide analogues and their highly hydrophobic core environment 

could be engineered to accommodate nonpolar drugs.133 To ensure the presence of 

functional carboxylic acid groups allowing for phosphazene ring cleavage, the fatty acid was 

linked to the ring via a spacer group. Although all these cyclotriphosphazenes micelles are by 

definition transiently thermoresponsive polymeric systems with Tcp values over a wide 

temperature range, it’s their inherent amphiphilic character rather than their Tcp that was 

exploited for biomedical applications and will therefore not be further discussed in this 

chapter.  

 

 

 

Figure 7. (A) Conceptual diagram for micelle encapsulation of a platinum(II)-based anti-cancer drug, i.e. cis-

(cha)2Pt(NO3)2, using a tripodal cyclotriphosphazene amphiphile [NP(MPEG750)(GlyPheLeu)2Et]3 in aqueous 

solution. (B) Size distributions of the micelles before (black) and after (red) drug loading. (C) Survival rate of the 

mice intravenously treated with different doses of free (Pt) or micellar (MPt) anti-cancer drug. Reproduced 

from reference 130. 
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Phosphoesters 

Poly(phosphoester)s (PPEs) represent a wide range of biodegradable polymers with 

repeating phosphoester linkages in the backbone that allow various modifications through 

the pentavalent phosphor atom.134 Much of the PPE chemistry and the biological relevance 

of these polymers was pioneered by Penczek and co-workers in the 1970s.135-137 Due to the 

favorable degradation behavior via alkaline or enzyme-catalyzed hydrolysis of phosphoester 

linkages under physiological relevant conditions134,138, PPEs have been explored for drug and 

gene delivery139-142 and tissue engineering applications143-145. Iwasaki et al. were the first to 

report on thermoresponsive PPEs through copolymerization of 2-ethoxy-2-oxo-1,3,2-

dioxaphospholane (EEP) and 2-isopropoxy-2-oxo-1,3,2-dioxaphospholane (IPP) [1.34].146 The 

Tcp of p(EEP) was 38 °C and linearly decreased with an increase in the IPP content. Wurm and 

co-workers replaced IPP by the less hydrophobic 2-ethoxy-4-methyl-2-oxo-1,3,2-

dioxaphospholane (EMEP), yielding p(EEP-co-EMEP) poly(phosphoester)s with 

thermoresponsive properties [1.35].147 Jun Wang et al. copolymerized EEP and IPP via ring-

opening polymerization using monomethyl ether PEG as initiator and demonstrated the 

temperature-induced self-assembly of these block copolymers into nanoparticles [1.36].148 

The polymers were found to be biocompatible and hydrolytically degradable under neutral 

conditions, with the generation of non-toxic degradation products. The same group of 

authors used hydrophobic PCL to initiate ring-opening polymerization of EEP in combination 

with IPP or 2-methoxy-2-oxo-1,3,2-dioxaphospholane (MEP) as co-monomers and 

investigated the influence of the block copolymer composition on their temperature-

triggered phase transition behavior [1.37].149 Alternatively, Leong and coworkers found that 

aqueous solutions of poly(propylene phosphate) homopolymers displayed a sol-gel 

transition temperature in the presence of calcium ions [1.38].150  

 

Formamides 

Akashi et al. reported on N-vinylalkylamide monomers that bear a vinyl group and 

various alkyl side chains connected via an amide linkage.151-154 Interestingly, aqueous 

solutions of poly(N-vinylisobutyramide) or poly(NVIBA) exhibited a Tcp of approximately 

39°C.153 Copolymerization with either hydrophilic or hydrophobic comonomers yielded 

copolymers with respectively a higher and lower Tcp.154 In this regard, copolymerization of 

NVIBA with N-vinylformamide (NVF) yielded transiently thermoresponsive p(NVF-co-NVIBA) 
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copolymers with Tcp values that could be tuned in the range of 45 to 70 °C, depending on the 

hydrophilic NVF content [1.39].155 As hydrolytic cleavage decreases with increasing 

hydrophobicity of the substituent, NVF units could be degraded into poly(vinylamine) or 

p(VAm) under both acidic and basic condition upon heating, whereas NVIBA units remained 

intact. Therefore p(NVF-co-NVIBA) could be selectively hydrolyzed to yield p(VAm-co-NVIBA) 

copolymers with an apparent loss of thermoresponsive behavior. However, in further work 

these authors found that only above the pKa of the side chain amino groups (pKa = 10) the 

thermoresponsive behavior of the p(VAm-co-NVIBA) copolymers emerged.156 At a pH above 

these pKa values, the amino groups exist in their less hydrophilic free base form resulting in 

thermoresponsive behavior with successive increase in Tcp values, depending on the p(VAm) 

content of the copolymer. More recently, the same group synthesized copolymers 

containing N-vinylbutyramide (NVBA) and VAm with more physiologically relevant Tcp values 

ranging from 33 to 39.5°C [1.40].157 Note that poly(amino acids) bearing enzyme-degradable 

amide moieties will be discussed in the section discussing transiently thermoresponsive 

polymers with enzyme-sensitive groups. 

 

Carbonates 

Compared to typical aliphatic poly(ester)s, poly(trimethylene carbonate)s (PTMC) 

exhibit unique degradation behavior, such as resistance to non-enzymatic hydrolysis at 

physiological pH and the generation of non-acidic degradation products (i.e. 1,3-propanediol 

and carbon dioxide) in the presence of enzymes such as lipases (cfr. section enzyme-

sensitive groups).158 PTMC diblock copolymers of MPEG and PTMC were reported to 

undergo sol-to-gel transition as temperature increased but they indeed did not degrade in 

phosphate buffered saline at room temperature over 90 days [1.41].159,160 Lee and 

coworkers incorporated caprolactone moieties (cfr. section esters) into the PTMC block to 

generate MPEG poly(ester) diblock copolymers, but did not report on their hydrolysis rate 

[1.42].161 The Hedrick group synthesized thermoresponsive block copolymers by ring-

opening polymerization of cyclic 2,2-bis(methylol) propionic acid derived carbonate 

monomers, functionalized with ester-linked hydrophilic PEG chains or hydrophobic alkyl 

groups [1.43].162 All the PTMC-based block copolymers were thermoresponsive but only one 

had a biorelevant Tcp (36°C in PBS) and was used for the micellar encapsulation of PTX. 

Relative to a temperature below the Tcp, PTX release from the micelles at body temperature 
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was higher (Figure 8) and the subsequent anti-cancer activity more pronounced. Akashi and 

co-workers found that homopolymers of a cyclic trimethylol alkane derived carbonate 

bearing an ether-linked methoxy terminated tri(ethylene glycol) unit in the side chain had a 

Tcp around body temperature [1.44].163 The Tcp values ranged from 31 to 35 °C and were 

influenced by the molecular weight and polymer concentration. Similar homopolymers with 

more hydrophylic tetra(ethylene glycol) pendant moieties had a Tcp of 72°C. Fosong Wang et 

al. synthesized biodegradable poly(carbonate-ether)s (PCEs) with Tcp values in a broad 

window from 22 to 84 °C by copolymerization of CO2 and ethylene oxide using a double 

metal cyanide catalyst [1.45].164 The Tcp value was highly sensitive to the carbonate unit (CU) 

content and the molecular weight of PCEs, and it showed a linear relation with CU content 

for PCEs for a similar molecular weight. Recently, Xinling Wang et al. constructed a series of 

thermoresponsive poly(carbonate)s by polymerizing cyclic TMC monomers that bear OEG 

units via thioether or/and sulfone bonds [1.46].165 The Tcp could be tuned from 0 to 46 °C by 

controlling the pendant OEG chain length and the thioether/sulfone bond. Oxidation of the 

more hydrophobic thioether to a sulfone moiety rendered the polymers more hydrophilic 

and hence increased the Tcp of the poly(carbonate) polymers within a physiological relevant 

temperature window. It should be noted that none of the papers that describe these PTMC 

polymers, report on hydrolysis experiments to investigate the subsequent effect on their Tcp.  

In analogy to the copolymerization of NIPAAm with monomers possessing a 

hydrolytic poly(ester) side chain with lactic acid or caprolactone moieties (cfr. section 

esters), Wagner et al. used a hydroxyethyl methacrylate-poly(trimethylene carbonate) 

(HEMA-PTMC) monomer to introduce biodegradability in p(NIPAAm)-based hydrogels.166 By 

adding acrylic acid as a third co-monomer the Tcp was adjusted below body temperature 

which allowed inverse thermogellation at body temperature upon injection [1.47]. Upon 

cleavage of the carbonate moieties in these polymers, the Tcp rose above body temperature. 

Here the rather slow hydrolysis rate of the carbonate esters in PTMS was exploited to retain 

the gel structure over several weeks, which was necessary for the envisioned applications in 

cardiac tissue engineering. The De Geest group recently reported on HPMAm modified with 

an ethyl group (HPMAm-EC) via carbonate ester moiety.167 Free radical polymerization of 

HPMAm-EC using a PEG-based macroinitiatior yielded degradable temperature-responsive 

block copolymers that assembled into micelles above their Tcp of 17°C [1.48] (Figure 8). 

These polymeric micelles could efficiently solubilize hydrophobic compounds such as dyes 
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and the anticancer drug PTX, thereby enhancing cellular uptake of these compounds in vitro. 

Under basic condition, these micelles disassembled into water-soluble unimers through 

hydrolytic degradation of the carbonate esters which connects the HPMAm backbone to the 

pending ethyl side chains. Similar as earlier reported for HPMAm modified with lactate 

esters, the micelles remained stable at physiological pH over prolonged periods of time.  

 

 

 

Figure 8. (A) Synthesis and degradation mechanism of PEG-b-p(HPMAm-EC) block copolymers. (B) Evolution of 

particle size distribution measured by DLS as a function of temperature (B1) and degradation time in aqueous 

medium of different pH (B2). (C) In vitro evaluation of PEG-b-p(HPMAm-EC) loaded with a hydrophobic 

compound. (C1) Confocal microscopy of B16.F10 melanoma cells pulsed with dye-loaded micelles and (C2) cell 

viability of SKOV-3 cells pulsed with PTX loaded micelles. Genexol-PM was used as control nanoformulation. 

Reproduced from reference 167. 
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Table 1. Transiently thermoresponsive polymers with base-sensitive groups 

ESTERS 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

1.1 Poly[(N-isopropylacrylamide)-co-(N-acryloxy succinimide)]  

or p(NIPAAm-co-NAS) 

 

19 – 28°C  NIPAAm 17 

1.2 Poly[(N-isopropylacrylamide)-co-(2-hydroxyethyl methacrylate 

oligolactate)] or p(NIPAAm-co-HEMA-Lacn) 

12 – 30 °C 

 

NIPAAm 18-21 

 

 Poly[(N-isopropylacrylamide)-co-(2-hydroxypropyl 

methacrylamide lactate)] or p(NIPAAm-co-HPMAm-Lacn) 

10 – 30 °C NIPAAm 23,24 

 

 

   

1.3 Poly[(N-isopropylacrylamide)-co-(dextran oligolactate 2-

hydroxyethyl methacrylate)]  

or p(NIPAAm-co-Dex-lactateHEMA) 

 

32°C (cgt) NIPAAm 31,32 

1.4 Poly(2-hydroxypropyl methacrylamide mono/dilactate) 

or p(HPMAm-Lac1/2) 

 

13 – 65 °C inherent 33 
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1.5 Poly(ethylene glycol)-b-poly(2-hydroxypropyl methacrylamide 

dilactate) or PEG-b-p(HPMAm-Lac2)

 

6 – 12.5 °C  

(cmt) 

inherent 34,35 

1.6 Poly(2-hydroxyethyl methacrylamide di/tetralactate)  

or p(HEMAm-Lac2/4)  

 

5 – 22 °C inherent 40 

1.6 Poly(ethylene glycol)-b-poly(2-hydroxyethyl methacrylamide 

lactate) or PEG-b-p(HEMAm-Lac2/4) 

 

6 – 22 °C 

(cmt) 

inherent 40 

1.8 Poly[(N-isopropylacrylamide)-co-(dextran poly(ε-

caprolactone) 2-hydroxyethyl methacrylate)]  

or p(NIPAAm-co-Dex-PCL-HEMA) 

 

33.2 °C 

(cgt) 

NIPAAm 41,42 
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1.9 Poly[(N-isopropylacrylamide)-co-(2-hydroxyethyl 

methacrylate-6-hydroxyhexanoate)]  

or p(NIPAAm-co-HEMA-Hex) 

 

23 °C NIPAAm 43 

1.10 Poly[(N-isopropylacrylamide)-co-(dimethyl-Ɣ-butyrolactone 

acrylate)-co-(acrylic acid)] or p(NIPAAm-co-DBA-co-AA) 

 

16.3 – 35.2 °C NIPAAm 44-46 

1.11 Poly(ethylene glycol)-co-poly(ethyl-2-cyanoacrylate) 

 

15 – 30 °C 

(cmt/cgt) 

OEG 49 

1.12 (Co-)polymers of methyl (Me), ethyl (Et) and isopropyl (iPr) 

esters of N
α
-(methacryloyl)-serine and –threonine 

 

1.5 – >100 °C inherent 50 

1.13 Poly[(N-isopropylacrylamide)-co-(2-methylene-1,3-

dioxepane)] or p(NIPAAm-co-MDO) 

 

28 °C 

(cgt) 

NIPAAm 52 

1.14 Poly(N-isopropylacrylamide)-b-poly(ε-caprolactone)  

or p(NIPAAm)-b-PCL) 

 

Variable b/c 

comonomers 

NIPAAm 56,59,62 
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1.15 Poly(N-isopropylacrylamide)-b-poly(lactic acid) 

or p(NIPAAm)-b-PLA) 

 

Variable b/c 

comonomers 

NIPAAm 53-

55,57,58,

60-64 

1.16 Poly(ethylene oxide)-b-poly(lactic acid / lactic acid-co-

glycolic acid)-b-poly(ethylene oxide) 

or PEO-b-PLA/PLGA-b-PEO  

 

20 – 80°C 

(cgt) 

OEG 71,72,74 

1.17 Poly(ethylene oxide)-grafted poly(lactide)s 

 

19 -37 °C OEG 79 

1.18 1-decyl azide and methoxy diethylene glycol azide grafted on 

poly(propargyl glycolide); decyl/mDEG–grafted-PPGL 

 

25 – 65 °C OEG/alkyl 

ratio 

80 

1.19 Methoxy oligo(ethylene glycol) grafted on a (disulfide/ketal-

modified) polyester backbone 

 

31.2 – 58.5 °C OEG 81 

1.20 Poly(Ɣ-octyloxy-3-caprolactone)-b-poly[Ɣ-2-(2-(2-

methoxyethoxy) ethoxy) ethoxy-3-caprolactone] 

 

37.5 °C OEG/alkyl 

ratio 

82 
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1.21 Poly[(2-(2-(2-methoxy)oligo(ethoxy))methyl)oxirane)-alt- 

(succinic anhydride)] or p(MEnMO-alt-SA) 

 

18 – 50 °C OEG 83-85 

1.22 Polycondensation of poly(ethylene glycol) diacrylates 

(PEGDA) or dimethacrylates (PEGDMA) with dithiols 

 

10 – 50°C OEG/alkyl 

ratio 

86 

1.23 Poly[(2-(2-methoxyethoxy)ethyl methacrylate)-co-

(oligo(ethylene glycol) methacrylate)-co-(5,6-benzo-2-

methylene-1,3-dioxepane)] 

 or p(MEO2MO-co-OEGMA-co-BMDO) 

 

31 -67 °C OEG 90 

1.24 Poly[(N-isopropylacrylamide)-co-(5,6-benzo-2-methylene-

1,3-dioxepane)] or p(NIPAAm-co-BMDO) 

 

13 - 31.5 °C NIPAAm 91,92 

1.25 Poly[(N-isopropylacrylamide)-co-(3-butenyl 2-

chloropropionate)] 

 

24.5 – 33.2 °C NIPAAm 94 
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1.26 Poly[(1,4-butanediol diacrylate)/(poly(ethylene glycol) 

diacrylate)-(1-(2-aminoethyl) piperazine)]-g-(cholesteryl)-g-

(N-isopropylacrylamide)  

or p(BDA/PEGDA-AEPZ)-g-CE-g-NIPAAm 

 

30.5 – 36.5 °C NIPAAm/ 

OEG  

95 

1.27 Hydroxyethyl succinamide (HESA) based polymers 

 

7.2 – 53 °C ELP-like 96 

ORGANOPHOSPHAZENES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

1.28 

1.29 

Poly(organophosphazene)s with methoxy-poly(ethylene 

glycol) (MPEG) and amino acid ester side groups via O,N-

system 

 

25.2 – 98.5 °C 

[1.28] 

 

25 – 81 °C 

[1.29] 

 

OEG 100,118 

1.30 Poly(organophosphazene)s with α-amino-ω-methoxy-

poly(ethylene glycol) (AMPEG) and amino acid ester side 

groups via N,N-system 

 

32 - >100 °C OEG 105,106 
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1.31 Poly(organophosphazene)s with methoxyethoxyethoxy 

(MEE) and lactic acid ester side groups via O,O-system 

 

33 – 52 °C OEG 120,121 

1.32 Poly(organophosphazene)s with poly(N-isopropylacrylamide) 

and glycine ethyl ester side groups via N,N-system 

 

30 °C NIPAAm 123-125 

1.33 Cyclotriphosphazenes with methoxy poly(ethylene glycol) 

and amino acid ester (AAE) side groups 

 

10.5 - >100 °C OEG 126-129 

PHOSPHOESTERS 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

1.34 

 

Poly[(2-ethoxy-2-oxo-1,3,2-dioxaphospholane)-co-

(isopropoxy-2-oxo-1,3,2-dioxaphospholane)]  

or p(EEP-co-IPP) 

 

18 -38 °C 

 

inherent 146 

1.35 Poly[(2-ethoxy-2-oxo-1,3,2-dioxaphospholane)-co-(2-ethoxy-

4-methyl-2-oxo-1,3,2-dioxaphospholane)]  

or p(EEP-co-EMEP) 

 

40 – 45 °C inherent 147 
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1.36 Monomethylether poly(ethylene glycol)-b-poly[(2-ethoxy-2-

oxo-1,3,2-dioxaphospholane)-co-(isopropoxy-2-oxo-1,3,2-

dioxaphospholane)] or mPEG-b-p(EEP-co-IPP) 

 

27 – 50 °C (cmt) inherent 148 

1.37 Poly(ε-caprolactone)-b-poly[(2-ethoxy-2-oxo-1,3,2-

dioxaphospholane)-co-(isopropoxy-2-oxo-1,3,2-

dioxaphospholane)/(2-methoxy-2-oxo-1,3,2-

dioxaphospholane)] or PCL-b-p(EEP-co-IPP/MEP) 

 

14 – 54 °C 

(cmt) 

inherent 149 

1.38 Poly(propylene phosphate) 

 

35 – 65 °C 

(cgt with Ca
2+

 

present) 

inherent 150 

FORMAMIDES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

1.39 
 

1.40 

Poly[(N-vinylformamide)-co-(N-vinylisobutyramide)] or 

poly(NVF-co-NVIBA) 

Poly[(N-vinylformamide)-co-( N-vinylbutyramide)] or 

poly(NVF-co-NVBA) 

 

45 -70 °C  

[1.39] 

33 – 39.5 °C 

[1.40] 

inherent 155,157 

CARBONATES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

1.41 Methoxy poly(ethylene glycol)-b-poly(trimethylene 

carbonate) or MPEG-b-PTMC 

 

20 – 75°C  

(cgt) 

OEG 159,160 
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1.42 Methoxy poly(ethylene glycol)-b-poly[(ε-caprolactone)-co-

(trimethylene carbonate)] or MPEG-b-(PCL-co-PTMC) 

 

37 – 47 °C OEG 161 

1.43 Poly(ethyl methyl trimethylene carbonate)-b-poly[(PEG 

methyl trimethylene carbonate)-co-(dodecyl methyl 

trimethylene carbonate)] or p[MTC-C2-b-(MTC-PEG-co-MTC-

C12)] 

 

40 – 60 °C OEG/alkyl 

ratio 

162 

1.44 Poly[5-(2-methoxy oligo(ethyoxy) methyl)-5-methyl-1,3- 

dioxa-2-one] or p(MTC-MOEnOM). 

 

31 – 72 °C OEG 163 

1.45 Poly(carbonate-ether)s or PCE 

 

21.5 – 84.1 °C OEG 164 

1.46 Poly(PEG thioether/sulphone methyl trimethylene 

carbonate) or p(MTC-S/SO-EGn) 

 

0 – 46° C OEG 165 

1.47 Poly[(N-isopropylacrylamide)-co-(acrylic acid)-co- 

(hydroxyethyl methacrylate-poly(trimethylene carbonate))] 

or 

p(NIPAAm-co-AAc-co-HEMAPTMC). 

 

29.1 – 44.5 °C 

(cgt) 

NIPAAm 166 

  



Chapter 2  

58 

1.48 Poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) 

methacrylamide ethyl carbonate] or PEG-b-p(HPMAm-EC) 

 

17 °C (cmt) inherent 167 

cmt = critical micellization temperature, cgt = critical gelation temperature 

 

 

Transiently thermoresponsive polymers with acid-sensitive groups 

In most examples described before, the cleavable moieties are preferentially 

hydrolyzed at neutral or basic pH, but are relatively stable under acidic conditions. In the 

following paragraphs various acid-degradable thermoresponsive polymers will be discussed, 

including their advantage over ester-based systems in view of biomedical applications 

Thermoresponsive polymers that have the ability to self-assemble into nanoparticles above 

their Tcp, but lose this feature upon acid-catalyzed cleavage of a usually hydrophobic moiety 

are of interest for the selective delivery of drugs to diseased tissues or upon internalization 

in intracellular acidic vesicles such as endosomes, lysosomes and phagosomes. Indeed, due 

to the fact that cancer cells have an abnormal acidic extracellular environment,168,169 acid-

sensitivity of a polymeric nanocarrier is an attractive trigger for drug release. Several pH-

responsive nanoparticle systems have been reported to increase the efficacy of anticancer 

drugs in cancer therapy.170-173 Moreover, drug delivery vehicles with pH-responsive shedding 

have been exploited for the cytoplasmic delivery of therapeutically fragile macromolecules 

(e.g. DNA, RNA and proteins) upon acidification of the late endosome and lysosome.174,175  

According to the difference in response mechanism, pH-sensitive polymers can be 

classified into two categories. The first category of pH-sensitive polymers contains reversible 

ionizable segments such as poly(acid)s and poly(base)s176-178, whose properties change 

reversibly by protonation or deprotonation as the pH of the surrounding environment 

changes. However, it should be noted that ionization can also cause permanent 

morphological changes of polymer particles, yielding out-of-equilibrium “frozen” 

structures.179,180 The second category encompasses polymers with acid-labile linkages or 

moieties such as acetals181-188, orthoesters189-193, hydrazones194-197, anhydrides198 and 
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others199,200 into the polymer main or side chain. As thermoresponsive  polymers with 

reversibly ionizable segments are not transiently responsive to temperature and are already 

reviewed by others,2,201-203 they will not be further discussed here. In the following section 

we will focus on polymers that are temperature-responsive, but lose their Tcp upon acidic 

catalyzed hydrolysis (Table 2). 

 

Ortho-esters 

Li et al. prepared acid-labile, thermoresponsive poly(methacrylamide)s with pendant 

cyclic orthoester groups by free radical copolymerization of N-(2-methoxy-1,3-dioxan-5-yl) 

methacrylamide (NMM) and N-(2-ethoxy-1,3-dioxan-5-yl)methacrylamide (NEM) [2.1].204 

The Tcp of these copolymers could be tuned by changing the feed ratio of the two monomers 

and increased by gradual hydrolysis of the acid-labile orthoester groups. Upon complete 

hydrolysis, the polymers became fully water-soluble in aqueous medium. In a following 

study the trans and cis isomers of NEM were separated and used for radical polymerization, 

yielding p(tNEM) and p(cNEM) respectively.205 They found that the stereochemical 

structures of the pendant cyclic orthoester groups in these poly(methacrylamide)s strongly 

affected their aqueous solution properties as well as their hydrolysis kinetics. P(cNEM) had a 

higher Tcp with a smaller transition enthalpy compared to p(tNEM). Around their respective 

Tcp values, p(cNEM) exhibited a liquid-liquid phase separation whereas p(tNEM) displayed a 

liquid-solid phase transition. Moreover, the products that were formed upon acid-triggered 

hydrolysis were affected by the configuration of the pendant cyclic groups.  

In parallel, the same group of authors also prepared poly(acrylamides) with pendant 

cyclic orthoester groups by ATRP of trans-N-(2-ethoxy-1,3-dioxan-5-yl)acrylamide (tNEA) 

using a PEG macroinitiator [2.2].206 These block copolymers exhibited thermoresponsive 

behavior, with decreasing Tcp for increasing p(tNEA) block length. The hydrophobic dye Nile 

Red could be loaded into the corresponding micelles that were stable at neutral pH, but 

were destabilized by acid-triggered hydrolysis of the orthoester moieties with subsequent 

release of Nile Red. To enable simultaneous loading of hydrophilic compounds through the 

formation of polymersomes (i.e. vesicles composed of amphiphilic block copolymers), a 

series of diblock copolymers containing a short PEG segment and p(tNEA) blocks with 

different lengths were synthesized.207 These were water-soluble at low temperature, but 

upon heating above the Tcp they self-assembled into different morphologies, depending on 
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the chain length of p(tNEA) and the polymer concentration. Micellar nanoparticles 

dissociated faster than polymersomes, but both showed accelerated hydrolysis under acidic 

conditions. Polymersomes could co-encapsulate both a water-soluble biomacromolecule (i.e. 

FITC-labeled lysozyme) and a hydrophobic drug (i.e. DOX) without the use of organic solvent, 

and exhibited pH-dependent drug release.  

In a following study, a series of poly[(meth)acrylamide] derivatives with pendant 

orthoester groups were synthesized, varying in the type of alkyl substitutes, the 

stereochemical structures (trans versus cis) and the main chain structures, i.e. 

poly(methacrylamide) versus poly(acrylamide) [2.3].208 Aqueous solution properties and pH-

dependent hydrolysis behavior of these polymers were studied. In general, 

poly(methacrylamide)s displayed higher Tcp  values than poly(acrylamide)s. Polymers with 

larger alkyl substitutes and trans configuration had a lower Tcp  and exhibited liquid-solid 

phase transitions, while those with smaller alkyl substitutes and cis configuration displayed 

liquid-liquid phase separation. The acid-triggered hydrolysis rate of the pendant orthoesters 

increased as the alkyl substitutes changed from methyl to isopropyl, and the configuration 

changed from cis to trans.  

Also poly(acrylate) derivatives with six-member cyclic orthoester groups, i.e. 2-(1,3-

dioxan-2-yloxy)ethyl acrylate (DEA) and 2-(5,5-dimethyl-1,3-dioxan-2-yloxy) ethyl 

acrylate(DMDEA) have been synthesized.209 These two monomers were copolymerized with 

oligo(ethylene glycol) acrylate (OEGA) by ATRP yielding two series of thermoresponsive 

copolymers, i.e. p(DEA-co-OEGA) and p(DMDEA-co-OEGA), with Tcp values ranging from 13 to 

36 °C [2.4]. Compared to analogous poly(acrylamides) (vide infra), these acid-labile 

poly(acrylate)s are supposed to be less cytotoxic since they yield 2-hydroxyethyl acrylate 

instead of 2-hydroxyethyl acrylamide upon acid-catalyzed hydrolysis in the body. Therefore 

this chemistry was used to synthesize a series of multi-responsive nanogels by mini-emulsion 

copolymerization of OEGA and DMDEA, using bis(2-acryloyloxyethyl) disulfide (BADS) as a 

crosslinker.210 These thermoresponsive nanogels were capable of encapsulating hydrophobic 

compounds such as Nile Red, PTX and DOX, with accelerated drug release by a cooperative 

effect of both acid-triggered hydrolysis and 1,4-dithiothreitol (DTT) induced reductive 

degradation (Figure 9).  
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Figure 9. Synthesis and stimuli-responsive properties of p(OEGA-co-DMDEA-co-BADS) nanogels. Reprinted 

from reference 210. 

 

Alternatively, Heller et al. prepared reverse thermogelling PEG-grafted 

poly(orthoester)s bearing acid-labile moieties in the polymer backbone.211 Initially, reverse 

thermogelling PEG-grafted poly(acetals) (cfr. section acetals/ketals) were developed, but 

their degradation was too slow at physiological pH. This issue was addressed by grafting PEG 

onto a poly(orthoester) or poly(acetal-co-orthoester) backbone [2.5] Similarly, Wang and co-

workers synthesized acid-labile poly(orthoester amide) or p(OEA) copolymers by 

polycondensation of a monomeric diamine containing a stabilized orthoester group with 

diacid esters of different chain lengths [2.6].212 The resulting p(OEA) copolymers exhibited a 

temperature-triggered reversible sol-gel phase transition in water which was exploited for 

the encapsulation of fluorescently labeled dextran as a model macromolecular drug. The 

p(OEA) hydrogels were capable of releasing the model drug through surface-erosion in 

response to mildly acidic pH. Later the same acid labile orthoester motif was incorporated in 

the side chain of a methacrylate monomer that was polymerized via ATRP from a PEG 

macro-initiator.213 The resulting amphiphilic diblock copolymers self-assembled into micelles 

and were loaded with DOX that was released at a much higher rate in response to a 

decrease in pH. However, the authors did not report on any thermoresponsive behavior of 

these polymers.  
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Acetals/ketals  

The Fréchet group was the first to report on acid-labile acetal moieties in a polymer 

side chain to allow for a hydrophobic-to-hydrophylic conversion upon hydrolysis.214 By 

attaching a cyclic benzylidene acetal side group, monomers were equipped with 

hydrophobic groups via an acid-sensitive linkage and could be used as core constituent of 

block copolymer micelles (Figure 10). Upon acid-triggered hydrolysis of the cyclic acetal 

groups, the generation of more hydrophilic diol moieties caused destabilization of the 

micelles with subsequent release of an encapsulated payload. However, the authors did not 

mention any temperature-responsive behavior of these systems. A similar approach was 

used by Endo et al. to synthesize statistical amphiphilic copolymers containing 2,3-

dihydroxypropyl methacrylate with a lilial-derived acetal moiety as a hydrophobic side chain 

and PEG as a hydrophilic side chain [2.7].215 Although these polymers also did not exhibit 

typical thermoresponsive behavior, the aggregation-dissociation behavior of one of the 

polymers in aqueous media was dependent on temperature in the presence of NaCl. In 

aqueous solution without NaCl the polymers self-assembled into micelles independent of 

the solution temperature, but upon addition of NaCl the micelles assembled into larger 

aggregates upon heating above the Tcp. Based on this temperature-responsive behavior, 

hydrolysis of the acid-labile acetal side chain could be inhibited upon heating-induced 

aggregation. Alternatively Alexander et al. used a similar acetal-bearing hydrophobic 

monomer for copolymerization with NIPAAm, aiming at loss of thermoresponsive self-

assembly behavior upon acid-catalyzed hydrolysis of the dioxolane moieties with subsequent 

increase of Tcp [2.8].216 These polymers were used to graft to branched PEI as a model 

polycation used in nucleic acid delivery systems. 

Thayumanavan et al. reported on triple stimuli-responsive block copolymers with an 

acid-sensitive tetrahydropyran-protected poly(2-hydroxyethyl methacrylate) or p(THP-

HEMA) as the hydrophobic part and temperature-responsive p(NIPAAm) as the hydrophilic 

part, linked via a redox-sensitive disulfide bond [2.9].217 Deprotection of the THP moieties 

under mild acidic conditions converts the hydrophobic block to a hydrophilic p(HEMA) and 

resulted in a loss of the block copolymers’ thermoresponsive behavior. However, upon 

reduction of the disulfide bond connecting both blocks, the polymers disintegrate into their 

constituent homopolymers, thereby yielding thermoresponsive p(NIPAAm) segments (Figure 

11). Analogously Yue Zhao et al. prepared diblock copolymers composed of hydrophilic PEG 
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and hydrophobic poly(2-tetrahydropyranyl methacrylate) or p(THPMA) blocks.218 The PEG-b-

p(THPMA) block copolymers formed micelles in aqueous solution that could be destabilized 

by hydrolytic cleavage of the THP groups, but did not exhibit temperature-responsive 

behavior. 

 

 

Figure 10. (A) Acid-catalyzed hydrolysis of a poly(ethylene glycol)-b-poly(cyclic benzylidene acetal-

functionalized aspartic acid) block copolymer or PEG-b-p(CBA-Asp) and (B) subsequent release of their 

fluorescent payload. Reproduced from reference 214. 

 

 

 

Figure 11. (A) Molecular structure of p(NIPAAm)-SS-p(THP-HEMA) block copolymers (BCP) with temperature-, 

reduction- and acid-sensitive moieties. (B) Thermoresponsive behavior of the BCP upon treatment with acid 

(B1) or the reductive agent DTT (B2). Reproduced from reference 217. 
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In analogy to their previous work (vide infra), Li and co-workers synthesized another 

type of acid-labile thermoresponsive polymers with pendant six-membered acetal groups by 

radical homopolymerization of N-(2,2-dimethyl-1,3-dioxan-5-yl) methacrylamide 

(NDMMAm) and N-(2,2-dimethyl-1,3-dioxan-5-yl) acrylamide (NDMAm) [2.10].219 Both 

polymers were pH-sensitive and upon acid-catalyzed hydrolysis of the acetal groups, the Tcp 

of p(NDMMAm) gradually increased. However, the hydrolysis rate of these six-membered 

cyclic acetals was about 10 times slower compared to their previously reported orthoester-

based polymers, which is in accordance with other findings in literature.220 However, 

because the degradation products of acetal hydrolysis are neutral, the authors suggested 

they may avoid the inflammatory problems associated with the acidic degradation products 

of commonly used poly(ester)s or poly(orthoester)s. Robin et al. prepared a structural 

analogue of NDMA, i.e. 5-acrylamido-5-hydroxymethyl-2,2-dimethyl-1,3-dioxane (pTHAM), 

which was copolymerized with the corresponding acetal-free tris(hydroxymethyl) 

acrylamidomethane (THAM) monomer [2.11].221 Statistical p(pTHAM-co-THAM) copolymers 

exhibited thermoresponsive behavior, but transformed into the fully water-soluble p(THAM) 

upon acid-catalyzed hydrolysis. 

Kizhakkedathu et al. reported on a thermoresponsive poly(N-alkylacrylamide)s with 

pendant five-membered acetal groups, i.e. poly[(N-(2,2-dimethyl-1,3-dioxolane)-methyl) 

acrylamide] or p(DMDOMAm) [2.12].222 Aqueous solutions of p(DMDOMAm) homopolymers 

exhibited a Tcp around 23 °C that increased upon acid-catalyzed cleavage of the pendant 

dioxolane groups into hydrophilic diol repeating units (Figure 12 A-B). This approach 

afforded the synthesis of a series thermoresponsive polymers with different Tcp values from 

a single batch of polymer with constant degree of polymerization. The diol moiety generated 

during hydrolysis was further oxidized to create reactive aldehyde functionalities along the 

polymer backbone, which could be exploited for the conjugation of various biomolecules. 

The same monomer was used by the De Geest group for the RAFT polymerization using a 

protein-based macro chain transfer agent (CTA).223 Upon growth of the DMDOMAm polymer 

chain from the protein surface, the polymer-protein conjugates self-assembled into 

nanoparticles with a hydrophobic cavity that served for intracellular co-delivery of proteins 

and hydrophobic molecules. Acid-triggered hydrolysis of the dioxolane units into diol 

moieties rendered the conjugates fully water soluble irrespective of temperature (Figure 12 

C). The applicability of these self-assembled nanoparticles for vaccine delivery was 
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demonstrated by the encapsulation of a hydrophobic immune-stimulatory Toll-like receptor 

agonist.  

 

 

Figure 12. (A) Acid-catalyzed hydrolysis of p(DMDOMAm) with transformation of the pendant dioxolane groups 

into hydrophilic diol repeating units. (B) Relationship between Tcp (LCST) and molar ratio of the diol moiety on 

p(DMDOMAm). (C) Reproduced from references 222,223. 

 

 

The acrylate analogue of the DMDOMAm was used by Nie et al. to synthesize 

amphiphilic Y-shaped polymers by ATRP, containing MPEG as a hydrophilic block and two 

poly[(2,2-dimethyl-1,3-dioxolane-4-yl)methyl acrylate] or p(DMDMA) branches as 

hydrophobic blocks [2.13].224 These amphiphilic block copolymers self-assembled in aqueous 

solution into micellar aggregates and exhibited Tcp values in a range from 30 to 60°C. Upon 

heating the authors observed a decrease in particle size, which they exploited for the 

accelerated release of encapsulated Nile Red. De Geest and Hoogenboom copolymerized 

DMDMA with either methoxy tri(ethylene glycol) acrylate (mTEGA) or 2-hydroxyethyl 

acrylate (HEA), yielding copolymers with Tcp values that could be tailored by varying the 

DMDMA feed ratio [2.14].225,226 Both copolymers degraded into fully soluble unimers under 

acidic conditions, but the degradation rate was significantly higher when using HEA as a 

comonomer. This was ascribed to the better hydration of the hydroxy-containing collapsed 

p(HEA-co-DMDMA) globules in conjunction with autocatalytic acceleration of the hydrolysis 

reactions by the hydroxyl groups. To assess the bio-applicability of these block copolymers, 
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PTX was loaded in block copolymers containing p(HEA) as hydrophilic block and a p(HEA-co-

DMDMA) copolymer as thermoresponsive block, thereby increasing PTX solubility and 

allowing pH-triggered drug release (Figure 13).227 

Shinde et al. used the same acetal motif that is present in DMDOMAm and DMDMA 

to protect a glucose- and galactose-derived glycomonomers that each were copolymerized 

with NIPAAm [2.15].228,229 The Tcp values decreased linearly with an increasing protected 

glycomonomer content in the copolymers. Upon acidic hydrolysis of acetonide-protected 

polymers the Tcp of the copolymers increased to around or above body temperature. 

More recently, Koberstein and coworkers reported on thermoresponsive polymers 

bearing acetal moieties in their backbone, allowing for acid-catalyzed hydrolysis into 

aldehyde and neutral diol degradation products [2.16].230 The polymers were synthesized by 

step growth polymerization of divinyl ether with diol monomers, that each comprised a 

hydrophobic part containing methylene units and a hydrophilic part with ethylene oxide 

units. The hydrophilic/hydrophobic balance could be tuned by altering the ratio of 

methylene to ethylene oxide moieties in either of the two monomers, yielding Tcp values in a 

temperature range of about 6 − 80 °C. 

 

 

 

Figure 13. Self-assembly behavior, loading strategy (solvent displacement) and acid-triggered degradation of 

responsive p(HEA)-b-p(HEA-co-DMDMA) block copolymer drug nanocarriers. Reprinted from reference 227. 
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Oxazolidines 

In addition to cyclic acetals and orthoester, oxazolidines are another class of pH-

sensitive moieties that undergo facile and complete hydrolysis over a wide pH range, 

producing the corresponding carbonyl and b-amino alcohol compounds as degradation 

products.231 Oxazolidines can be regarded as cyclic acetal analogs with one oxygen atom 

replaced by nitrogen that can bear additional functional groups that can influence the 

hydrolysis behavior.232 Erjian Wang et al. reported on the RAFT polymerization of a 

oxazolidine based acid-labile monomer N-acryloyl-2,2-dimethyl-1,3-oxazolidine (ADMO) 

using a PEG-based chain transfer agent [2.17].233 The resulting PEG-b-p(ADMO) block 

copolymers formed micelles in water that could be disrupted with release of their payload 

upon acidic hydrolysis due to transformation of hydrophobic p(ADMO) into hydrophilic 

poly(2-hydroxyethyl acrylamide). The Tcp of these polymers could be modulated from 40° to 

72°C by varying the p(ADMO) block length or by partial acidic hydrolysis of the p(ADMO) 

segments.234  

 

Hydrazones/oximes 

Hruby et al. reported on biodegradable thermoresponsive copolymers of N-

isopropylmethacrylamide and a methacrylamide monomer containing hydrophobic n-alkyl 

groups attached via a hydrolytically labile hydrazone bond [2.18].235 The cloud point of these 

copolymers could be adjusted by varying the copolymer composition and upon acid-

catalyzed cleavage of the hydrazone bonds, the polymers became fully water soluble at body 

temperature. These thermoresponsive polymers were proposed to serve as carriers in 

radiotherapeutic applications by entrapping the model therapeutic radionuclide 64Cu in its 

hydrophobic chelate form until complete dissolution by hydrolytic degradation. Fulton et al. 

engineered thermoresponsive copolymer scaffolds containing reactive aldehyde moieties 

that allowed for conjugation of alkoxyamine and hydrazide residues through oxime [2.19] or 

hydrazone [2.20] ligation respectively.236 One could envision that conjugation of 

hydrophobic molecules could lower the Tcp of a polymer scaffold to below body 

temperature, but exhibit a hydrophobic-to-hydrophilic conversion at 37°C upon hydrolysis of 

the acid-labile oximes and hydrazones. However, the authors found that conjugation of 

hydrophobic residues yields copolymers whose Tcp values are in most cases unexpectedly 

higher than those of the parent copolymer scaffold.   
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Table 2. Transiently thermoresponsive polymers with acid-sensitive groups 

ORTHOESTER 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

2.1 Poly[(N-(2-methoxy-1,3-dioxan-5-yl)methacrylamide)-co-(N-(2-

ethoxy-1,3-dioxan-5-yl)methacrylamide)] or p(NMM-co-NEM) 

 

22.5 – 52.1 °C inherent 204 

2.2 Poly(ethylene glycol)-b-poly[trans-N-(2-ethoxy-1,3-dioxan-5-

yl)acrylamide] or PEG-b-p(tNEA) 

 

13.7 – 17.5 °C 

(cmt) 

inherent 206 

2.3 Poly[N-(2-alkyloxy-1,3-dioxan-5-yl)acrylamide] (A) 

Poly[N-(2-alkyloxy-1,3-dioxan-5-yl)methacrylamide] (M) 

 

12 – 36.6 °C 

11.5 – 40 °C 

inherent 208 

2.4 Poly[(oligo(ethyleneglycol) acrylate)-co-(2-(1,3-dioxan-2-yloxy) 

ethyl acrylate)] or p(OEGA-co-DEA) 

Poly[(oligo(ethyleneglycol) acrylate)-co-(2-(5,5-dimethyl-1,3-

dioxan-2-yloxy) ethyl acrylate)] or p(OEGA-co-DMDEA)  

 

12.9 – 30.8 °C 

 

22.1 – 35.8 °C 

OEG 209 
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2.5 Poly(acetal-co-orthoester)-g-poly(ethylene glycol) 

 

26 – 34 °C 

(cgt) 

OEG 211 

2.6 Polycondensation of 4-Aminomethyl-2-aminopentyloxy-2-

methyl-(1,3)-dioxolan with disuccinimidyl suberate, sebacate, 

or dodecanoate  

 

40 – 80 °C inherent 212 

ACETALS/KETALS 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

2.7 Poly(ethylene glycol)-co-poly(cyclic acetal-functionalized 2,3-

dihydroxypropyl methacrylate) 

 

59 °C  

(cmt in salt) 

OEG/alkyl ratio 215 

2.8 Poly[(N-isopropylacrylamide)-co-(N-(2-(2,4,6-trimethoxy 

phenyl)-1,3-dioxan-5-yl)acrylamide] or p(NIPAAm-co-TMPDA) 

 

16 – 33 °C NIPAAm 216 

2.9 Poly[(N-isopropylacrylamide)-b-(tetrahydropyran-protected 2-

hydroxyethyl methacrylate)] or p(NIPAAm-b-THP-HEMA) 

 

35 °C NIPAAm 217 
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2.10 Poly[N-(2,2-dimethyl-1,3-dioxan-5-yl)acrylamide] or 

p(NDMAm) 

Poly[N-(2,2-dimethyl-1,3-dioxan-5-yl)methacrylamide] or 

p(NDMMAm)  

 

17.8 °C 

 

15.3 °C 

inherent 219 

2.11 Poly[(5-acrylamido-5-hydroxymethyl-2,2-dimethyl-1,3-

dioxane)-co-(tris(hydroxymethyl)acrylamidemethane)]  

or p(pTHAM-co-THAM) 

 

12.5 –58 °C inherent 221 

2.12 Poly[(N-(2,2-dimethyl-1,3-dioxolane)methyl)acrylamide]  

or p(DMDOMAm) 

 

23 °C inherent 222,223 

2.13 Monomethoxy poly(ethylene glycol)-b-poly[(2,2-dimethyl-1,3-

dioxolane-4-yl)methyl acrylate]2 or MPEG-b-p(DMDMA)2 

 

30 – 60 °C OEG 224 
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2.14 Poly[(2,2-dimethyl-1,3-dioxolane-4-yl)methyl acrylate]-co-

poly[methoxy tri(ethylene glycol)acrylate] or p(DMDMA)-co-

p(mTEGA)  

Poly[(2,2-dimethyl-1,3-dioxolane-4-yl)methyl acrylate]-co-

poly(2-hydroxyethyl acrylate) or p(DMDMA)-co-p(HEA)  

 

13.6 – 67.8 °C 

 

 

9 – 70 °C 

inherent 225,226 

2.15 Copolymer of N-isopropylacrylamide with 3-Acrylamido-3-

deoxy-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose or an 6-

azido-6-deoxy-1,2:3,4-di-O-isopropylidene-α-D 

galactopyranose based acrylate 

 

13.1 – 28.6 °C 

 

20 – 28 °C 

NIPAAm 228 

 

229 

2.16 Poly(acetals) via step growth polymerization of divinyl ethers 

with diols 

 

6 – 80 °C OEG/alkyl 230 

OXAZOLIDINES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

2.17 Poly(ethylene glycol)-b-poly(N-acryloyl-2,2-dimethyl-1,3-

oxazolidine) or PEG-b-p(ADMO) 

 

40 – 72 °C 

(cmt) 

OEG 233,234 
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HYDRAZONES/OXIMES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

2.18 Poly(N-isopropylmethacrylamide)-co-poly[N-(5-

((propen/hexan/dodecan-2-ylidenehydrazino) 

carbonyl)pentyl)methacrylamide]  

 

13 – 44 °C NIPMAm 235 

 

2.19 Poly[oligo(ethylene glycol) monomethyl ether methacrylate]-

co-poly[acylhydrazide-reacted (methacryloxyethoxy) 

benzaldehyde] of p(OEGMA)-co-p(AH-MAEBA) 

 

38 °C OEG/alkyl 236 
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2.20 Poly[oligo(ethylene glycol) monomethyl ether methacrylate]-

co-poly[alkoxyamine-reacted (methacryloxyethoxy) 

benzaldehyde] of p(OEGMA)-co-p(AA-MAEBA) 

 

42 -48.5 °C OEG/alkyl 236 

cmt = critical micellization temperature, cgt = critical gelation temperature 

 

 

Transiently thermoresponsive polymers with photo-sensitive groups 

Various groups have explored photo-induced switching of the Tcp of 

thermoresponsive polymers. Typically photochromic side-groups such as azobenzenes237-241, 

1,2-dithienylethene derivatives242 or spirobenzopyran243 are incorporated into a 

thermoresponsive polymer backbone (Figure 14 A). Upon UV radiation, these groups 

undergo photo-isomerization (cis/trans), resulting in a shift of the Tcp. Another example of a 

photo-responsive compound is the dye malachite green that changes from a nonionic 

structure to a cationic form upon UV irradiation, which has been reported to cause an 

upwards shift in Tcp of a random copolymer with NIPAAm compared to the Tcp in the dark.244 

However, these are multicycle photoswitches that are reversible and hence do not result in 

transiently thermoresponsive polymers. Single-cycle photoswitches can be obtained by the 

removal of photo-cleavable protective groups upon photo-irradiation and have been used 

for various biomedical applications (Figure 14 B).245,246 The Zhao group for example, 

synthesized various amphiphilic block copolymers where the hydrophobic block was 

functionalized with light-cleavable moieties such as ester derivatives of pyrenylmethyl,247 2-

nitrobenzyl,248 and 7-(diethylamino)coumarin.249 Upon irradiation and subsequent cleavage 

of the photo-labile moieties the hydrophobic polymer blocks became hydrophilic, resulting 

in disruption of micellar nanoparticles derived from these polymers and subsequent release 

of their payload.  
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Figure 14. Overview of multicycle (A) and single-cycle (B) photoswitches that can be exploited to induce 

hydrophobic-to-hydrophylic conversions in polymer chains. 

 

 

The 2-nitrobenzyl motif in particular has been used by various groups to engineer 

photo-sensitive transiently thermoresponsive polymers (Table 3). Diez et al. exploited this 

chemistry to devise a photolithographic approach based on thermoresponsive poly(N-

isopropylacrylamide-co-2-nitrobenzylacrylate) random copolymers, i.e. p(NIPAAm-co-NBA) 

[3.1].250 Incorporating hydrophobic 2-nitrobenzyl photocleavable groups into the p(NIPAAm) 

chains resulted in a decrease in Tcp compared to a p(NIPAAm) homopolymer. However, upon 

UV irradiation the Tcp of the copolymers gradually increased to above 50°C due to the 

formation of poly(N-isopropylacrylamide-co-acrylic acid). Illuminated parts of a thin casted 

p(NIPAAm-co-NBA) film will therefore dissolve at higher temperatures than the surrounding 

areas, leading to pattern development (Figure 15). Similarly, Zhao and coworkers prepared 

thermo- and light-sensitive diblock copolymers by copolymerizing a mixture of 

ethoxytri(ethylene glycol) acrylate (TEGEA) and 2-nitrobenzyl acrylate (NBA) from a PEG 

macroinitiator [3.2].251 The resulting PEG-b-p(TEGEA-co-NBA) copolymers were water 

soluble at low temperature but self-assembled into micelles when the solution was heated 

above the Tcp of the p(TEGEA-co-NBA) polymer block. Upon UV irradiation, the 2-nitrobenzyl 

group was cleaved and the Tcp of the thermosensitive block increased, causing the 



Transiently thermoresponsive polymers and their applications in biomedicine 

75 

dissociation of micelles and release of encapsulated Nile Red. By further increasing the 

temperature above the Tcp of the newly formed thermosensitive block, micellization 

reoccurred and the released Nile Red could be re-encapsulated into the micelle core. Liu et 

al. synthesized diblock copolymers comprising a PEG block and a dual thermo- and light-

responsive block based on p(NIPAAm) and the light-cleavable poly[5-(2′-

(dimethylamino)ethoxy)-2-nitrobenzyl acrylate] or p(DMNA) [3.3].252 For their application, 

either a fluorescence resonance energy transfer (FRET) donor or acceptor moiety was also 

included in the multiresponsive blocks. After mixing these two different block copolymers, 

they self-assembled into micelles when heating above the Tcp. This induced a closer spatial 

proximity between the FRET pair within the micellar core and led to substantially enhanced 

FRET efficiency. Upon UV irradiation, the DMNA moieties underwent light-induced cleavage, 

yielding negatively charged carboxylate groups which caused an increase in Tcp from 31 to 

46°C, thereby leading to micellar disruption accompanied by a decrease in FRET efficiency. 

 

 

 

Figure 15. Scheme of photopatterning using p(NIPAAm)-based photoresists with temperature-triggered 

development. Thermoresponsive poly(2-nitrobenzylacrylate-co-N-isopropylacrylamide) is deposited as 

photoresist onto a substrate (a). Illumination of the photoresist (b) results in photocleavage of nitrobenzyl 

acrylate groups, increasing the Tcp (LCST). After the photoresist pattern is developed at slightly lower 

temperature (c), proteins are adsorbed (d). The photoresist (together with the proteins on top) can be 

completely removed in aqueous environment at low temperatures (e). Reprinted from reference 250.  
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Table 3. Transiently thermoresponsive polymers with photo-sensitive groups 

NITROBENZYL DERIVATIVES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

3.1 Poly[(N-isopropylacrylamide)-co-(2-nitrobenzylacrylate) or 

p(NIPAAm-co-NBA) 

 

5 – 24 °C NIPAAm 250 

3.2 

 

Poly[(ethoxytri(ethylene glycol) acrylate)-co-(2-nitrobenzyl 

acrylate)] or p(TEGEA-co-NBA) 

Poly(ethylene glycol)-b-poly[(ethoxytri(ethylene glycol) 

acrylate)-co-(2-nitrobenzyl acrylate)] or 

PEG-b-p(TEGEA-co-NBA) 

 

18 °C 

 

21 – 25 °C 

(cmt) 

OEG 

 

 

251 

3.3 Poly(ethylene glycol)-b-poly[(N-isopropylacrylamide)-co-(5-(2′-

(Dimethylamino)ethoxy)-2-nitrobenzyl acrylate)-co-(FRET-

active acrylate)] 

 

30 – 32 °C NIPAAm 252 

cmt = critical micellization temperature 
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Transiently thermoresponsive polymers with enzyme-sensitive groups 

Poly(peptide)s have been proposed as promising biomaterials for drug delivery and 

tissue engineering due to their structural similarity to natural proteins and their enzymatic 

degradability.253-259 Most aqueous poly(peptide) solutions form a gel phase at low 

temperatures due to strong hydrogen bonding or ionic interactions and undergo a gel-to-sol 

transition as temperature increases. A typical example are triblock copoly(peptides) with 

relatively short leucine zipper end blocks that flank a water-soluble poly(electrolyte) 

domain.256 Natural poly(peptides) such as β-lactoglobulin260,261 and elastin-like 

poly(peptide)s (ELP)262-264 however, have reported to exhibit reverse thermal gelation 

properties. ELPs are oligomeric repeats of the penta(peptide) Val-Pro-Gly-Xaa-Gly where the 

guest residue Xaa can be any amino acid with the exception of proline. Similar to synthetic 

thermoresponsive polymers, they are highly soluble in water below their Tcp, but precipitate 

and aggregate when temperature is raised above this Tcp. This point is dependent on the 

guest residues and the number of repeats in the primary sequence, and may be tailored to 

the desired application.265 This unique property has been exploited for the purification of 

recombinant ELP(-tagged) proteins by simple centrifugation cycles at elevated temperature 

and was termed inverse transition cycling by the Chilkoti group.266-269 By combining a 

thermosensitive ELP segment, bearing valine as the Xaa guest residue, with silk-like Gly-Ala-

Gly-Ala-Gly-Ser fragments270,271 or collagen-derived Pro-Hyp-Gly sequences272, polymers with 

reversed thermogelling properties were obtained. Furthermore, elastin-like poly(peptides) 

have been explored as biodegradable thermoresponsive materials for drug delivery such as 

hyperthermic cancer treatment. These systems have already been discussed by 

others2,8,271,273-276 and are beyond the scope of the current chapter.  

In addition to ELP-based polymers, various other biodegradable thermoresponsive 

poly(amino acids) have been described (Table 4). Poly(aspartic acid) or p(Asp) in particular 

has drawn attention as water-soluble biomaterial owing to its facile synthesis from aspartic 

acid via poly(succinimide) or p(SI) and versatile modification by nucleophilic substitution 

reactions.277,278 Jeong et al. introduced hydrophobic phenyl alanine ethyl esters and α-

amino-o-methoxy PEGs onto a p(SI) backbone, resulting in poly(N-substituted α/β-

asparagine)s or p(N-Asn) with Tcp values ranging from 30 to 40°C depending on the number 

of grafted PEG-chains [4.1].279 When p(N-Asn) with a Tcp of 30°C was dissolved in phosphate 

buffer, the Tcp of the polymer increased to about 40 °C over two weeks due to the hydrolysis 
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of the ethyl esters into the corresponding carboxylic acids. By grafting amino poly(propylene 

glycol) (PPG) onto the p(SI) backbone, the resulting p(Asp)-g-PPG polymers exhibited 

thermogelling behavior with a pH-dependent Tcp due to the ionization of aspartic acid 

moieties [4.2].280 Similarly, Kobayashi et al. prepared biodegradable thermoresponsive p(N-

Asn) through the reaction of p(SI) with amino alcohols.281 By covalent crosslinking of these 

polymers with diisocyanates, hydrogels were obtained that allowed for temperature-

triggered release of a model drug.282 Later, the same group of authors found that p(N-Asn) 

with thermogelation properties could be obtained by grafting more hydrophobic amino alkyl 

groups onto a p(SI) backbone, in addition to amino alcohols [4.3].283  

In analogy to poly(N-substituted α/β-asparagine)s, Kobayashi and coworkers reacted 

poly(Ɣ-glutamic acid) with amino alcohols to obtain stimuli-responsive poly(α-N-substituted 

Ɣ-glutamine) with Tcp values that were sensitive to pH changes [4.4].284 Akashi et al. also 

prepared thermosensitive poly(Ɣ-glutamic acid) by introducing hydrophobic n-propyl groups 

onto the polymeric chain [4.5]285, while Li and coworkers prepared PEGylated poly-L-

glutamates with thermoresponsive properties [4.6]286. Although all these polymers are 

presumed to be biodegradable, no degradation studies were performed in the 

corresponding papers of all three groups (e.g. Kobayashi, Akashi and Li). Jeong et al. 

reported on PEG-b-poly(alanine) or PEG-p(Al) block copolymers [4.7],poly(alanine) end-

capped poloxamers [4.8] and PEG-b-poly(alanine-co-phenyl alanine) or PEG-b-p(Al-Phe) [4.9] 

as reverse thermogelling poly(peptides).287-289 The p(Al)-PLX-p(Al) and PEG-b-p(Al-Phe) gels 

were stable in phosphate buffer saline but degraded in the subcutaneous layer of rats and in 

presence of the enzyme elastase.  

Zhang and coworkers reported on random copolymers based on N-substituted N-

carboxyanhydrides (NCA) monomers, i.e. Et-NCA and Bu-NCA [4.10].290 The resulting 

poly[(N-ethyl glycine)-r-(N-butyl glycine)] poly(peptoid) polymers were thermoresponsive 

and their Tcp could be tuned in the temperature range of 20 °C to 60 °C. Because NCAs are 

sensitive to moisture and heat however, synthesis must be conducted in an anhydrous and 

anaerobic environment. Therefore Ling et al. copolymerized two N-substituted glycine N-

thiocarboxyanhydrides (NTAs) monomers, i.e. sarcosine NTA (Sar-NTA) and N-butylglycine 

NTA (NBG-NTA), which are more stable than NCA analogues [4.11].291 The resulting p(Sar-r-

NBG)s polymers were thermoresponsive and their Tcp values could be tuned between 27 and 

71 °C by adjusting the sarcosine molar fraction in the copolymers. Both groups stated that 
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these N-substituted poly(glycine) backbones are known to be biodegradable, but did not 

include degradation studies in their respective papers. 

Well-established thermoresponsive polymers such as p(NIPAAm) have also been 

grafted onto poly(amino acid)s.292,293 As mentioned before, these systems are not transiently 

thermoresponsive as the p(NIPAAm) chains stay intact upon enzymatic degradation of the 

poly(amino acid)s. The same holds true for p(NIPAAm)-based hydrogels with peptide 

crosslinkers as described by the Healy group.294 Alternatively Katayama et al. introduced a 

peptide bearing monomer onto a p(NIPAAm) backbone that could be enzymatically 

degraded.295 They synthesized a thermosensitive copolymer of NIPAAm with N-

methacryloyl-GLRRASLG which contains a peptide substrate for protein kinase A (PKA) 

[4.12], a key kinase in intracellular signal transduction. In response to phosphorylation by 

activated PKA, the Tcp  of the copolymer increased from below to above body temperature 

due to the hydrophobic-to-hydrophylic transition of the peptide side chains (Figure 16). 

When introducing N-methacryloyl-PEG as a third comonomer, the resulting copolymers 

formed micellar nanoparticles above their Tcp that could disintegrate into soluble unimers in 

response to the PKA signal with subsequent release of an encapsulated payload. The authors 

suggested that this strategy could be applied to target kinases that are exclusively activated 

in disordered cells by changing the substrate peptide sequence, which would allow site-

specific drug release into these specific cells if intracellular uptake and subsequent cytosolic 

translocation occurred.  

 

 

Figure 16. (A) Molecular structure of p(NIPAAm-co-N-methacryloyl-GLRRASLG) and phosphorylation by protein 

kinase A (PKA). (B) Temperature dependence of the light transmittance of a p(NIPAAm-co-N-methacryloyl-

GLRRASLG) solution before and after phosphorylation with activated PKA. Reproduced from reference 295. 
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Table 4. Transiently thermoresponsive polymers with enzyme-sensitive groups 

POLY(AMINO ACIDS) 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

4.1 Poly[(aspartic acid)-g-(α-amino-o-methoxy poly(ethylene 

glycol))]-co-poly[(aspartic acid)-g-(phenyl alanine ethyl ester)] 

 

30 – 40 °C OEG/alkyl 

ratio 

279 

4.2 Poly[(aspartic acid)-g-(amino-poly(propylene glycol))] 

 

21 – 28 °C  

(at pH 3) 

OEG 280 

4.3 Poly[(aspartic acid)-g-(amino alcohols/amino alkyls)] 

 

23 – 44 °C 

 

 

inherent 281,28

3 

4.4 Poly[(Ɣ-glutamic acid)-g-(amino alcohols)] 

 

21 – 50 °C inherent 284 
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4.5 Poly[(Ɣ-glutamic acid)-g-(n-propyl)] 

 

25 – 83 °C  

(in salt) 

inherent  285 

4.6 Poly[(Ɣ-(2-Methoxy-oligo(ethoxy))esteryl-L-Glutamate] or 

p(EGnGlu) 

 

32 – 57 °C OEG 286 

4.7 Poly(ethylene glycol)-b-poly(alanine) or PEG-b-p(Al) 

 

10 – 80 °C OEG 288 

4.8 Poly(alanine) end-capped poly(propylene glycol)-poly(ethylene 

glycol)-poly(propylene glycol) or p(Al)-PLX-p(Al) 

 

13 – 39 °C 

(cgt) 

poloxamer 287 

4.9 Poly(ethylene glycol)-b-poly(alanine-co-phenyl alanine) or PEG-

b-p(Al-co-Phe) 

 

10 -22 °C 

(cgt) 

OEG 289 

4.10 Poly[(N-ethyl glycine)-r-(N-butyl glycine)]  

 

20 – 60°C inherent 290 

4.11 Poly[(sarcosine NTA)-r-(N-butylglycine NTA)] or p(Sar-r-NBG) 

 

27 – 71 °C inherent 291 
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KINASE SUBSTRATES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

4.12 Poly[(N-isopropylacrylamide)-co-(N-methacryloyl-GLRRASLG)-co-

(N-methacryloyl-poly(ethylene glycol))] 

 

36.7 °C NIPAAm 295 

cgt = critical gelation temperature 

 

 

Transiently thermoresponsive polymers with redox-sensitive groups 

 

Reduction-sensitive groups 

Several groups have introduced reduction-sensitive disulfide moieties into 

thermoresponsive polymers to allow for glutathione-triggered disassembly (Table 5). 

Glutathione is the main reducing agent (antioxidant) that is present in the human body. 

Moreover, intracellular glutathione concentrations are significantly higher than in systemic 

circulation (millimolar vs micromolar levels) which can be exploited to trigger degradation 

following cellular internalization.296-299 In this regard, it is crucial to note that elevated 

glutathione levels are only found in the cytoplasm and not in endosomal vesicles where 

nanoparticles are typically stored upon endocytosis. Thus to be useful for cell uptake 

triggered drug release, additional cues to promote endosomal release should be used or one 

should speculated on disulfide exchange with cysteine moieties of cellular proteins.300 

Gibson et al. introduced disulfide linkages into p(NIPAAm) by polycondensation of a RAFT-

derived telechelic macromonomer, yielding polymers with redox-sensitive thermoresponsive 

behavior [5.1].301 For this purpose, NIPAAm was polymerized using a RAFT agent with a 

pyridyl disulfide moiety at the α-terminus, which allowed a polycondensation-type, step-

growth polymerization following aminolysis of the ω-terminal dithioester. Upon reduction 
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and subsequent cleavage of the polymer chain, the Tcp increased from 46 to 62 °C (Figure 

17). Later the shift in Tcp was engineered to occur in a more physiologically relevant 

window.302  

A similar approach was employed by Kwon Oh and coworkers to tune the 

thermoresponsive properties of p(OEGMA) units that were first described by Lutz et al. (cfr. 

section esters).303 They used a bifunctional phenylthiocarbonylthio-based RAFT agent 

containing an internal disulfide bond. Aminolysis of the phenylthiocarbonylthiol groups 

yielded thermoresponsive polymers with both middle disulfide and terminal thiol groups, 

which allowed thiol-disulfide exchange reactions to form p(OEGMA)-multisegmented 

poly(disulfide)s [5.2]. Upon reduction, the authors also observed a significant upward shift in 

Tcp compared to the non-cleaved polymer chains. Alternatively, they introduced a 

hydrophobic poly(methacrylate) functionalized with pendant disulfide linkages into the 

copolymers, resulting in lower Tcp values [5.3].304 Upon cleavage of the pendant disulfide 

linkages into the corresponding thiols in response to external reducing agents, the 

copolymers became more hydrophilic, resulting in a shift in Tcp from 29 to 38 °C. Upon 

conversion of the free pendant thiols to sulfides linkages by thiol–ene reactions Michael 

addition with acrylates, the Tcp decreased again. This strategy could allow for the 

incorporation of additional reactive moieties or the conjugation of therapeutic molecules. 

Later on, these redox-sensitive thermoresponsive copolymers where used as a second block 

in combination with a PEG block to generate double hydrophilic diblock copolymers that can 

be converted into disulfide-crosslinked nanogels at temperatures above the Tcp.305  

Alternatively Jeong et al. prepared thermoresponsive PEG disulfide multiblock co-

polymers by oxidative coupling of α,ω-dithio-PEG chains of 400 Da and 600 Da respectively, 

which introduced redox-sensitive linkages along the PEG backbone [5.4].306 Depending on 

the ratio of the PEG400 disulfide to PEG600 disulfide, the Tcp of the polymers could be 

controlled between 27 and 35 °C. The PEG disulfide multiblock co-polymer could be 

degraded in the presence of glutathione in a thiol-concentration-dependent manner. 
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Figure 17. (A) SEC analysis demonstrating the successful polymer “condensation” procedure using a telechelic 

p(NIPAAm) macromonomer and subsequent reduction of the introduced backbone disulfides. (B) Turbidimetry 

curves showing an upwards shift in Tcp of p(NIPAAm) following reduction of backbone disulfide bonds. 

Reproduced from reference 301. 

 

 

Oxidation-sensitive groups 

As mentioned in the section discussing carbonate-bearing polymers, Wang et al. 

constructed a series of thermoresponsive poly(carbonate)s by polymerizing cyclic TMC 

monomers that bear OEG units via thioether or/and sulfone bonds [1.44] (Table 1).165 

Oxidation of the more hydrophobic thioether to a sulfone moiety rendered the polymers 

more hydrophilic and hence increased the Tcp of the poly(carbonate) polymers. 

Duval and coworkers prepared an ABC triblock polymer poly[(propylenesulfide)-b-

(N,N-dimethylacrylamide)-b-(N-isopropylacrylamide)] or p(PS-b-DMA-b-NIPAAm) that can 

degrade upon contact with reactive oxygen species (ROS) [5.5].307 Due to the hydrophobicity 

of the p(PS) block, these polymers self-assemble into micelles at room temperature 

containing a hydrophobic p(PS) core that can accommodate hydrophobic drugs, and a 

p(NIPAAm) outer corona. Upon heating p(PS-b-DMA-b-NIPAAm) solutions above the Tcp of 

p(NIPAAm), stable hydrated gels were formed. When exposed to ROS, the p(PS) block slowly 

transforms into the more hydrophilic poly(propylene sulfoxide) and ultimately 

poly(propylene sulfone), resulting in hydrogel degradation and drug release. Using ROS as a 

trigger for degradation and drug release has potential for biomedical applications as 

upregulation of oxidative stress is associated with various pathologies, including arthritis, 

atherosclerosis and cancer. 
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Davis et al. prepared thermoresponsive diblock copolymers of PEG and p(NIPAAm) 

that were sensitive to the biological messenger molecule nitric oxide (NO).308 Using a 

functionalized PEG-based macroinitiator for ATRP polymerization of NIPAAm, both blocks 

were linked by an o-nitroaniline motif that could be reduced to an amide-functionalized o-

phenylenediamine moiety [5.6]. In the presence of NO, the o-phenylenediamine groups 

were transformed into hydrolytically labile benzotriazoles, resulting in spontaneous 

hydrolysis and scission of the original diblock copolymers with subsequent decrease in Tcp of 

the remaining p(NIPAAm) chains. Although this synthetic approach could allow for NO-

triggered release of an encapsulated payload, it yields polymers that are the opposite of 

transiently thermoresponsive systems covered in this chapter. 

 

 

Table 5. Transiently thermoresponsive polymers with redox-sensitive groups 

REDUCTION-SENSITIVE DISULFIDES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

5.1 Polycondensation of thiol-terminated telechelic poly(N-

isopropylacrylamide) 

 

46.4 °C NIPAAm 301 

5.2 Polycondensation of thiol-terminated telechelic 

poly[oligo(ethylene glycol) monomethyl ether methacrylate] 

 

36 °C OEG 303 

5.3 Poly[oligo(ethylene glycol)monomethyl ether methacrylate]-

co-poly(HMssEt methacrylate)] 

 

29.2 °C OEG 304 
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5.4 Polycondensation of α,ω-dithio-PEG400 and α,ω-dithio-PEG600 

 

27 – 35 °C OEG 306 

OXIDATION-SENSITIVE SULFIDES 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

1.44 
(Table 1) 

Poly(PEG thioether/sulphone methyl trimethylene carbonate) 

or p(MTC-S/SO-EGn) 

 

0 – 46° C OEG 165 

5.5 Poly[(propylenesulfide)-b-(N,N-dimethylacrylamide)-b-(N-

isopropylacrylamide)] or p(PS-b-DMA-b-NIPAAm) 

 

32 °C (cgt) 

 

 

NIPAAm 307 

NO-MEDIATED OXIDATION 

 

Label Polymer Tcp T-responsive 

moiety 

Ref. 

5.6 Poly(ethylene glycol)-b-(o-phenylenediamine)-poly(N-

isopropylacrylamide) or PEG-b-(NH2)-p(NIPAAm) 

 

43.2 – 48.6 °C 

 

 

NIPAAm /  

OEG 

308 

cgt = critical gelation temperature 
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Conclusion 

Summarizing, we have covered in this chapter the state of the art in the field of 

transiently thermoresponsive polymers and highlighted some of their applications in drug 

delivery and tissue engineering. Due to the formation of hydrophobic domains, such 

polymers are very well suited to self-assemble into supramolecular structures such as 

micelles and hydrogels. Several types of chemistry have been explored to alleviate the 

thermoresponsive properties of this class of polymers, leading to gradual or triggered 

disassembly and/or drug release. Ester chemistry has so far been the most popular route to 

confer polymers with transiently thermoresponsive properties and micellar anti-cancer drug 

formulation based on this approach are currently in clinical trial, as is the case for in situ 

gelling hydrogels. The ongoing revolution in highly controlled macromolecular chemistry 

could open new avenues for the design of transiently thermoresponsive materials with 

precisely tailored properties. Furthermore, as is often the case in advanced drug delivery, a 

rational choice will need to be made between functionality, simplicity, robustness, 

reproducibility and regulatory approval.  
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Abstract 

In this chapter we aimed at preparing well-defined polymers for conjugation to 

proteins by reversible addition-fragmentation chain transfer (RAFT) polymerization of both 

acrylates and methacrylamides with protein-reactive chain transfer agents (CTAs). These 

RAFT agents contained either a N-hydroxysuccinimide (NHS) or pentafluorophenyl (PFP) 

ester moiety that can be conjugated to lysine residues, and alternatively a maleimide (MAL) 

or pyridyl disulfide (PDS) moiety that can be conjugated to cysteine residues. The 

polymerization kinetics of these RAFT agents were investigated for the polymerization of a 

model hydrophilic acrylate monomer 2-hydroxyethylacrylate (HEA) and methacrylamides 

with biomedical relevance, i.e. 2-hydroxypropylmethacrylamide (HPMAm) and its thermo-

responsive dilactate derivative (HPMAm-Lac2). 

 

 

Introduction 

Polymer-protein conjugation strategies have received increasing interest owing to 

the ability to engineer proteins with a wide variety of properties, by simply coupling protein-

reactive polymers to certain amino acid residues.1-5 For example the conjugation of linear 

poly(ethylene glycol) to proteins, commonly known as PEGylation, results in prolonged body-

residence time and a reduction of protein immunogenicity by blocking the adhesion of 

opsonins present in blood serum. In this way the proteins are masked from phagocytic cells 

and opsonization is strongly reduced.6-8  

Controlled radical polymerization offers an excellent tool to synthesize polymers with 

well-defined composition, chain length, narrow dispersity and functional end groups that 

can be used for protein conjugation.9,10 This significantly increases versatility and 

reproducibility compared to classical free radical polymerization, which is important with 

respect to both the design of multifunctional polymeric architectures as well as towards 

regulatory affairs. Reversible addition-fragmentation chain transfer (RAFT) polymerization in 

particular, has shown to be tolerant to many chemical groups and offers a straightforward 

route to synthesize polymers with a protein-reactive end-group via the use of a functional 

chain transfer agent (CTA).11,12 
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Sumerlin et al. reported on the use of a N-hydroxysuccinimide containing RAFT agent 

to synthesize poly(N-isopropylacrylamide) or p(NIPAAm) with a protein-reactive end-group 

that allowed conjugation to lysine residues.13 Depending on the polymer to protein ratio, 

multi-site attachment (i.e. multiple polymer chains grafted onto one protein chain) can be 

obtained. However, for some applications, single site attachment, i.e. one polymer chain per 

protein molecule, might be more advantageous. In this regard, Velonia and co-workers used 

a protected maleimide functionalized RAFT CTA that can react with less abundantly present 

free cysteine residues.14 Alternatively, the Maynard group used a pyridyl disulfide group to 

introduce reversibility into conjugate bonds.15 In addition to these conventional protein-

reactive groups, increasing synthetic effort is dedicated to develop newly emerging 

conjugation chemistries based on reactive moieties such as thiazolidine-2-thione16, 

pentafluorophenyl17,18 and dibromomaleimide19. However, no direct comparison of these 

different conjugation strategies had been reported. 

In this chapter, 4 different protein-reactive RAFT CTAs are prepared containing either 

a N-hydroxysuccinimide (NHS) or pentafluorophenyl (PFP) ester moiety that can conjugate to 

lysine residues, and alternatively a maleimide or pyridyl disulfide (PDS) moiety for 

conjugation to cysteine residues. The polymerization kinetics of these RAFT agents are 

investigated for the polymerization of a model hydrophilic acrylate monomer 2-

hydroxyethylacrylate (HEA) and methacrylamides with biomedical relevance, i.e. 2-

hydroxypropylmethacrylamide (HPMAm) and its thermo-responsive dilactate derivative 

(HPMAm-Lac2). These monomers are currently intensively studied for biomedical 

applications, in particular for anti-cancer drug formulations.20-24 

 

 

Material and methods 

 

Materials 

Organic solvents dichloromethane (DCM, anhydrous and HPLC grade), toluene, 

methanol, chloroform, hexane, ethylacetate, dimethylacetamide (DMA, anhydrous), 

dimethylformamide (DMF, anhydrous) and chemicals N-hydroxysuccinimide, 

pentafluorophenol, mercaptoethanol, furan, 2-(2-amino-ethoxy)-ethanol), MgSO4 and NaSO4 

were obtained from Sigma Aldrich and used without purification. Azobisisobutyronitrile 
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(AIBN, 98%, Aldrich) was recrystallized from MeOH (twice) and stored in a freezer. 2-

Hydroxyethyl acrylate (HEA, 96%, Aldrich) was destabilized by passing the monomer over a 

column with inhibitor remover (Aldrich) prior to polymerization. The RAFT agent 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CDTPA) was purchased from Sigma 

Aldrich whilst 2-propanoic acid butyl trithiocarbonate (PABTC) and 4-cyano-4-

[(ethylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CETPA) were prepared according to 

established procedures.25,26 Chemicals 2,2'-dipyridyl disulfide, 4-dimethylaminopyridine 

(DMAP), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) and N,N'-

diisopropylcarbodiimide (DIC) were purchased from TCI Europe. Maleic anhydride from 

Merck Germany was used as received. 2-Hydroxypropylmethacrylamide (HPMAm) was 

obtained from Polysciences, whilst HPMAm-dilactate was synthesized according to 

established procedures.27  

 

Instrumentation 

Kinetic studies of the RAFT polymerizations were performed using a Chemspeed 

ASW2000 automated synthesizer equipped with 16 parallel reactors of 13 mL, a Huber Petite 

Fleur thermostat for heating/cooling, a Huber Ministat 125 for reflux and a Vacuubrand PC 

3000 vacuum pump following a recently reported protocol.28,29 Stock solutions of all 

components were prepared and bubbled with argon for at least 30 minutes before being 

introduced into the robot system and then kept under argon atmosphere. The reactors were 

degassed through ten vacuum-argon cycles and subsequently flushed with argon to ensure 

an inert atmosphere. The hood of the automated synthesizer was continuously flushed with 

nitrogen. Stock solutions were transferred to the reactors using the syringe of the 

automated synthesizer while the reactors were cooled to 10°C, after which the reactors 

were heated to 70°C to start the polymerizations. During the reactions samples were taken 

at preset time intervals for GC, SEC and NMR analysis. The polymerizations were stopped by 

cooling the reactors to 10°C.  

Gas chromatography was performed on a 7890A from Agilent Technologies with an 

Agilent J&W Advanced Capillary GC column (30 m, 0.320 mm, and 0.25 μm). Injections were 

performed with an Agilent Technologies 7693 auto sampler. Detection was done with a FID 

detector. The injector and detector temperatures were kept constant at 250 and 280°C, 

respectively. The column was initially set at 50°C, followed by two heating stages: from 50°C 
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to 100°C with a rate of 20°C /min and from 100°C to 300°C with a rate of 50°C /min, and 

then held at this temperature for 0.5 minutes. Conversion of HEA was determined based on 

the integration of the monomer peak using DMA as internal standard. 

Size exclusion chromatography was carried out on an Agilent 1260 system, equipped 

with an 1260 ISO-pump, an 1260 diode array detector (DAD) and an 1260 refractive index 

detector (RID). Measurement were done in DMA containing 50 mM LiCl at 50°C and with a 

flow rate of 0.593 mL/min. The two PL gel 5 µm mixed-D columns were calibrated with 

poly(methylmethacrylate) (PMMA) standards (Polymer standards service) in a molecular 

weight (Mn) range of 1980 Da to 372000 Da. 

1H-NMR an 19F-NMR spectra were recorded on a Bruker 300 MHz FT-NMR 

spectrometer using CDCl3 as solvent.  

Column chromatography was performed on a Grace Reveleris X2 flash 

chromatography system using silica Reveleris flash cartridges.  

 

Synthesis of N-hydroxysuccinimide containing CTA 

N-hydroxysuccinimide (NHS) PABTC was synthesized as reported by Sumerlin et al.13 

PABTC (1.430 g, 6 mmol) and NHS (690.54 mg, 6 mmol) were introduced in a round-bottom 

flask and dissolved in anhydrous dichloromethane (DCM, 50 mL). The reaction mixture was 

cooled to 0°C in an ice bath and a solution of DIC (757 mg, 6 mmol) in anhydrous DCM (10 

mL) was added drop-wise while vigorously stirring. The reaction mixture was stirred in an ice 

bath for 2h and subsequently at room temperature overnight. The resulting solution was 

filtered (whatman grade 2), and the solvent was evaporated under vacuum. The crude 

product was purified by column chromatography on silica gel with a mobile phase of 

EtOAc/hexane 1/1 (v/v). The first fraction was collected and the solvent was removed under 

reduced pressure to obtain the product as a yellow oil (986 mg, yield 49%, Figure 1).  

 

Synthesis of pentafluorophenol containing CTA 

Pentafluorophenol (PFP) PABTC was synthesized as described by Stenzel et al.17 

PABTC (1.192 g, 5 mmol), PFP (1.012 g, 5.5 mmol) and DMAP (61 mg, 0.5 mmol) were 

introduced into a round-bottom flask and dissolved in anhydrous dichloromethane (DCM, 50 

mL). The reaction mixture was cooled to 0°C in an ice bath and a solution of DIC (694 mg, 5.5 

mmol) in DCM (10 mL) was added drop-wise while vigorously stirring. The reaction mixture 
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was stirred in an ice bath for 2h and subsequently at room temperature overnight. The 

resulting solution was filtered (whatman grade 2), and the solvent was evaporated under 

vacuum. The crude product was purified by column chromatography on silica gel using 

chloroform as eluent. The first fraction was collected and the solvent was removed under 

reduced pressure to obtain the product as an orange/red oil (1.490 g, yield 67%, Figure 2). 

The same procedure was used to functionalize CDTPA (yield 67%, Figure 3) and CETPA (yield 

64%, Figure 4) with PFP. 

 

Figure 1. 
1
H-NMR of NHS PABTC (300 MHz, CDCl3) δ (ppm): 5.13 (q, J = 7.5, 1H, -CHCH3), 3.36 (t, J = 7.4 Hz, 2 H, -

SCH2-), 2.82 (s, 4 H, -COCH2CH2CO-), 1.73 (d, J = 7.5 Hz, 3 H, -CHCH3), 1.68 (tt, J = 7.4 Hz, 2 H, -SCH2CH2-), 1.42 

(app. sext, J = 7.4 Hz, -CH2CH3), 0.92 (t, J = 7.4 Hz, 3H, -CH2CH3). 

 

 

Figure 2. 
1
H-NMR of PFP PABTC (300 MHz, CDCl3) δ (ppm): 5.10 (q, J = 7.4, 1H, -CHCH3), 3.38 (t, J = 7.4 Hz, 2 H, -

SCH2-), 1.76 (d, J = 7.4 Hz, 3 H, -CHCH3), 1.69 (tt, J = 7.4 Hz, 2 H, -SCH2CH2-), 1.44 (app. sext, J = 7.4 Hz, -CH2CH3), 

0.93 (t, J = 7.4 Hz, 3H, -CH2CH3). Not shown: 
19

F-NMR (300 MHz, CDCl3) δ (ppm): -152.27 (d, 2 F), -157.40 (t, 1 F), 

-162.07 (t, 2F) 
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Figure 3. 
1
H-NMR of PFP CDTPA (300 MHz, CDCl3) δ (ppm): 3.33 (t, J = 7.4 Hz, -SCH2-), 3.03-2.96 (band, 2 H, -

CCH2-), 2.73-2.45 (band, 2 H, -COCH2-), 1.92 (s, 3 H, -CCH3), 1.75-1.64 (band, 2 H, -SCH2CH2-), 1.44-1.21 (band 18 

H, -C9H18CH3) 0.87 (t, J = 6.4 Hz, 3 H, -CH2CH3). Not shown: 
19

F-NMR (300 MHz, CDCl3) δ (ppm): -152.49 (d, 2 F), -

157.29 (t, 1 F), -161.86 (t, 2F). 

 

 

Figure 4. 
1
H-NMR of PFP CETPA (300 MHz, CDCl3) δ (ppm): 3.36 (q, J = 7.4 Hz, 2 H, -CH2CH3), 3.03-2.97 (band, 2 

H, -CCH2-), 3.75-2.45 (band, 2 H, -COCH2-), 1.92 (s, 3 H, -CCH3), 1.36 (t, J = 7.4 Hz, 3 H, -CH2CH3). Not shown: 
19

F-

NMR (300 MHz, CDCl3) δ (ppm): -152.49 (d, 2 F), -157.29 (t, 1 F), -161.86 (t, 2F). 

 

Synthesis of the pyridyl disulfide containing CTA 

Synthesis of hydroxyethyl pyridyl disulfide 

Hydroxyethyl pyridyl disulfide (HEPDS) was synthesized as described by 

Thayumanavan et al.30 2,2'-dipyridyl disulfide (25 g, 113 mmol) was dissolved in 120 mL of 

methanol containing 1.7 mL of glacial acetic acid. A solution of mercaptoethanol (4.434 g, 57 

mmol) in methanol (25 mL) was added drop-wise at room temperature while vigorously 

stirring. The reaction was continued at room temperature for additional 3 hours. The 
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resulting solution was filtered (whatman grade 2), and the solvent was evaporated under 

vacuum. The crude product was purified by column chromatography on silica gel with a 

gradient of EtOAc/hexane 30/70-50/50 (v/v). The second fraction was collected and the 

solvent was removed under reduced pressure to obtain the product as a colorless oil (7.5 g, 

yield 70%, Figure 5).  

Synthesis of pyridyl disulfide containing CTA 

HEPDS was used to synthesize the pyridyl disulfide (PDS) RAFT agent as reported by 

Maynard et al.15 PABTC (2.86 g, 12 mmol) and HEPDS (1.87 g, 10 mmol) were introduced into 

a round-bottom flask and dissolved in anhydrous dichloromethane (DCM, 50 mL). The 

reaction mixture was cooled to 0°C in an ice bath while vigorously stirring. EDC (2.12 mL, 12 

mmol) and DMAP (122 mg, 1 mmol) were then added in one portion. The reaction was 

stirred in an ice bath for 2h and subsequently at room temperature overnight. The resulting 

solution was filtered (whatman grade 2), and the solvent was evaporated under vacuum. 

The crude product was purified by column chromatography on silica gel with a mobile phase 

of EtOAc/hexane 1/2 (v/v). The second fraction was collected and the solvent was removed 

under reduced pressure to obtain the product as a yellow oil (2.287 g, yield 56%, Figure 6). 

The same procedure was used to functionalize CETPA with PDS (yield 46%, Figure 7). 

 

 

Figure 5. 
1
H-NMR of HEPDS (300 MHz, CDCl3) δ (ppm): 8.45 (m, 1H, Hortho-N), 7.55 (m, 1H, Hmeta-N), 7.37 (m, 1H, 

Hpara-N), 7.10 (ddd, J = 1.1, 5.2 and 7.4 Hz, 1H, Hortho-disulfide), 5.98-4.65 (m, 1H, -OH), 3.76 (t, J = 5.2 Hz, 2H, -

CH2OH), 2.91 (t, J = 5.2, 2H, -CH2CH2OH) 
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Figure 6. 
1
H-NMR of PDS PABTC (300 MHz, CDCl3) δ (ppm): 8.46 (m, 1 H, Hortho-N), 7.70-7.60 (band, 2 H, Hmeta-N 

and Hpara-N), 7.09 (ddd, J = 1.7, 4.9 and 6.6 Hz, 1 H, Hortho-disulfide), 4.80 (q, J = 7.4 Hz, 1 H, -CHCH3), 4.38 (t, J = 6.4 

Hz, 2 H, -OCH2-), 3.34 (t, J = 7.3 Hz, 2 H, -SCH2C3H7 ), 3.03 (t, J = 6.4 Hz, 2 H, -CH2CH2O-), 1.66 (app. quint, J = 7.3 

Hz, 2 H, -SCH2CH2-), 1.57 (d, J = 7.4 Hz, 3 H, -CHCH3), 1.41 (app. sext, J = 7.3 Hz, -CH2CH3-), 0.91(t, J = 7.3 Hz, 3H, 

-CH2CH3). 

 

 

 

Figure 7. 
1
H-NMR of PDS CETPA (300 MHz, CDCl3) δ (ppm): 8.50-8.45 (m, 1 H, Hortho-N), 7.68-7.56 (band, 2 H, 

Hmeta-N and Hpara-N), 7.14-7.07 (m, 1 H, Hortho-disulfide), 4.37 (t, J = 6.4 Hz, 2 H, -OCH2-), 3.34 (q, J = 7.4 Hz, 2 H, -

CH2CH3), 3.04 (t, J = 6.4 Hz, 2 H, -OCH2CH2-), 2.65-2.45 (band, 2 H, -COCH2CH2-), 2.41-2.21 (band, 2 H, -COCH2-), 

1.86 (s, 3 H, -CCH3), 1.35 (t, J = 7.4 Hz, 3 H, -CH2CH3) 
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Synthesis of the (furan protected) maleimide containing CTA 

Synthesis of 4,10-Dioxatricyclo[5.2.1.0(2,6)]dec-8-ene-3,5-dione [1] 

4,10-Dioxatricyclo[5.2.1.0(2,6)]dec-8-ene-3,5-dione was synthesized as reported by 

Velonia et al.14 Maleic anhydride (30.0 g, 306 mmol) was suspended in 150 mL of toluene 

and the mixture was warmed to 80 °C in an oil bath. Furan (33.4 mL, 459 mmol) was added 

via syringe while vigorously stirring and the resulting turbid solution was stirred for 6 h. The 

mixture was then cooled to ambient temperature and the stirring was stopped. After 1 h, 

the formed white crystals were collected by filtration and washed with 30 mL of hexane to 

obtain the product as small white crystals (44 g, yield 87%, Figure 8)  

Synthesis of 4-[2-(2-Hydroxy-ethoxy)-ethyl]-10-oxa-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-

ene-3,5-dione [2] 

The anhydride [1] (16.00 g, 96.3 mmol) was suspended in methanol (250 mL) and the 

mixture was cooled in an ice bath. A solution of 2-(2-amino-ethoxy)-ethanol (9.64 mL, 96.3 

mmol) in 20 mL of methanol was subsequently added dropwise (15 min) while vigorously 

stirring. Next, the reaction was stirred at ambient temperature for 30 min and finally 

refluxed for 4 h. After cooling the mixture to ambient temperature, the solvent was removed 

under reduced pressure, and the residue was dissolved in 2 x 150 mL of DCM (in two 

portions) and washed with 2 x 100 mL of water separately. The organic layers were 

combined, dried over MgSO4 and filtered. Removal of the solvent under reduced pressure 

yielded the product as a highly viscous yellow residue (6.88 g, yield 28%, Figure 9). 

Synthesis of 2-butylsulfanylthiocarbonylsulfanyl-propionic acid 2-[2-(3,5-dioxo-10-

oxa-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-en-4-yl)-ethoxy]-ethyl ester [3] 

A solution of compound [2] (2.5 g, 9.87 mmol) and PABTC (2.82 g, 11.8 mmol) in 

dichloromethane (20 mL) was cooled in an ice bath while vigorously stirring. Solutions of EDC 

(1.84 g, 11.8 mmol) and DMAP (0.15 g, 1.18 mmol) in DCM were then added drop-wise via 

syringe over 10 minutes. The reaction was stirred in an ice bath for 2h and subsequently at 

room temperature overnight. The product was diluted with dichloromethane (100 mL), 

washed with distilled water (3x100 mL), dried with sodium sulfate (Na2SO4), filtered and 

finally dried under reduced pressure to get product [3]. Finally the product was purified by 

column chromatography on silica gel using a mobile phase of EtOAC/hexane 1/1 (v/v). The 

third fraction was collected and the solvent was removed under reduced pressure to obtain 

the product as a yellow oil (2.24 g, yield 48%, Figure 10). 
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Figure 8. 
1
H-NMR of compound [1] (300 MHz, CDCl3) δ (ppm): 6.57 (t, J = 0.9 Hz, 2H, -CHvinyl-), 5.45 (t, J = 0.9 Hz, 

2H, -CHO-), 3.17 (s, 2H, -CH-). 

 

 

 

Figure 9. 
1
H-NMR of compound [2] (300 MHz, CDCl3) δ (ppm): 6.49 (t, J = 0.9 Hz, 2H, -CHvinyl-), 5.27 (t, J = 0.9 Hz, 

2H, -CHO-), 3.71-3.67 (band, 2 H, -CH2OH), 3.65-3.60 (band, 4 H, -NCH2CH2-), 3.53-3.50 (band, 2 H, -CH2CH2OH), 

2.85 (s, 2H, -CH-), 2.57-2.22 (m, 1 H, -OH). 
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Figure 10. 
1
H-NMR of compound [3] (300 MHz, CDCl3) δ (ppm): 6.50 (t, J = 0.8 Hz, 2 H, -CHvinyl-), 5.25 (t, J = 0.8 

Hz, 2H, -CHO-), 4.82 (q, J = 7.3, 1H, -CHCH3), 4.23 (m, 2 H, -COOCH2-), 3.70-3.59 (band, 6 H, -NCH2CH2OCH2-), 

3.35 (m, 2 H, -SCH2-), 2.86 (s, 2H, -CHCON-), 1.67 (app. quint, J = 7.4, 2 H, -SCH2CH2-), 1.59 (d, J = 7.3 Hz, 3 H, -

CHCH3), 1.42 (app. sext, J = 7.4 Hz, -CH2CH3-), 0.92 (t, J = 7.3 Hz, 3H, -CH2CH3). 

 

RAFT polymerization of HEA with the protein-reactive CTA’s 

Kinetic study in Chemspeed robot 

The functionalized PABTC CTAs were used for the RAFT polymerization of HEA in DMF 

(2.5M) at 70°C, using AIBN as initiator at a HEA:CTA:AIBN ratio of 100:1:0.2 or 100:1:0.1, 

respectively. Samples were taken at various time points (T0 = 0 min, T1= 10 min, T2 = 20 

min, T3 = 30 min, T4 = 40 min, T5 = 50 min, T6 = 60 min, T7 = 90 min, T8 = 120 min, T9 = 150 

min, T10 =180 min) and were evaluated via GC to follow HEA conversion and SEC to follow 

the number average molecular weight (Mn) and dispersity (Đ) of the polymers in time. 

Synthesis of functional poly(2-hydroxyethylacrylate) for protein conjugation 

The HEA:CTA:AIBN ratio was kept at 100:1:0.1 and polymerizations were stopped 

after 30 min (MAL CTA), 90 min (PFP CTA) and 120 min (NHS and PDS CTA). An example RAFT 

polymerization was as follows. HEA (10 mmol, 1.149 mL), CTA (0.1 mmol) and AIBN (0.01 

mmol, 1.642 mg) were transferred into a schlenktube and dissolved in anhydrous DMF (2.9 

mL, 2.5M). After bubbling with nitrogen for 30 min., the solution was heated at 70°C in an oil 

bath for the predetermined time before being quenched by cooling it in an ice water bath 
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and exposing the polymerization solution to air. The reaction solutions were diluted with 

DCM in a 1:1 ratio, and the polymeric product was precipitated into hexane and dried under 

vacuum to yield protein-reactive polymers. 

Deprotection of the furan-protected maleimide group 

Deprotection was accomplished by a retro Diels-Alder reaction.14 After precipitation, 

the polymer was dissolved in dioxane (1g / 25 mL) and the solution was heated to 110°C in 

an oil bath. Next, dioxane was removed under reduced pressure to give the final polymer. As 

a control, the trithiocarbonate polymer end-group was cleaved into a thiol by aminolysis. 

After 30 minutes of polymerization, the reaction mixture was cooled to room temperature 

and an excess of propylamine in molar ratio of 1:30 CTA:Propylamine was added to the 

schlenktube. The solution was stirred for 2 hours at room temperature and the formed 

product was precipitated 3 times in hexane. Next, the same deprotection procedure was 

performed as described above. 

 

RAFT polymerization of HPMAm with the protein-reactive CTA’s 

Kinetic study in Chemspeed robot 

The functionalized PFP CDTPA and PFP CETPA CTA’s were used for the RAFT 

polymerization of HPMAm in DMAc (2M) at 70°C, using AIBN as initiator at a 

HPMAm:CTA:AIBN ratio of 100:1:0.2 or 200:1:0.2, respectively. This rather high AIBN 

concentration was required to allow efficient initiation of the RAFT polymerization of 

HPMAm. Stock solution of AIBN, CTA and monomer were bubbled with nitrogen for 30 min. 

and the polymerization reactions were performed in the reactors of the Chemspeed robot 

under argon atmosphere. Samples were taken at various time points (T0 = 0 min, T1= 30 

min, T2 = 60 min, T3 = 90 min, T4 = 120 min, T5 = 180 min, T6 = 240 min, T7 = 300 min, T8 = 

360 min, T9 = 480 min, T10 =600 min) and were evaluated via 1H-NMR spectroscopy to 

follow monomer conversion and SEC to follow the number average molecular weight (Mn) 

and dispersity (Đ) of the polymers in time. The conversion of HPMAm was determined 

according to literature by comparing the 1H-NMR integration areas of resonances from the 

vinyl protons of HPMAm at 5.30 ppm and the methine protons of HPMAm at 3.65 ppm of 

the crude reaction mixture.31 
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Synthesis of functional poly(N-hydroxypropylmethacrylamide) for protein conjugation  

An example RAFT polymerization with PDS CETPA CTA was as follows. HPMAm (6.98 

mmol, 1 g), CTA (0.07 mmol for DP100; 0.035 mmol for DP200) and AIBN (0.014 mmol for 

DP100; 0.007 mmol for DP200) were transferred into a schlenktube and dissolved in 

anhydrous DMAc (3.5 mL, 2M). After bubbling with nitrogen for 30 min., the solution was 

heated at 70°C in an oil bath for 10h. The polymers were isolated by precipitation in diethyl 

ether and dried under vacuum. The same conditions were used to polymerize HPMAm-Lac2. 

 

 

Results and discussion 

 

Synthesis of protein-reactive CTAs for acrylate RAFT polymers 

Four different trithiocarbonate-based CTAs for acrylate/acrylamide RAFT 

polymerization bearing a protein-reactive functional group at the R-position were 

synthesized. This was done by carbodiimide-mediated esterification of the carboxylic acid 

group of 2-(n-butyltrithiocarbonylthio) propionic acid (PABTC) with either N-

hydroxysuccinimide (NHS), pentafluorophenol (PFP), hydroxethylpyridyldisulfide (HEPDS) or 

4-[2-(2-Hydroxy-ethoxy)-ethyl]-10-oxa-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-ene-3,5-dione. The 

latter contains a furan-protected maleimide that requires deprotection, revealing the 

maleimide, prior to protein-conjugation. Note that the furan protection group is required to 

avoid side-reactions by radical addition to the maleimide during RAFT polymerization. 

Scheme 1 summarizes the synthesis of these different CTAs, and illustrates how they 

conjugate to either lysine or cysteine residues to afford protein conjugation. For the sake of 

clarity the respective CTAs will be further denoted as NHS-PABTC, PFP-PABTC, PDS-PABTC 

and FpMAL-PABTC (Fp: furan-protected). Further on, the polymer with a deprotected 

maleimide group will be referred to as MAL. 

 

RAFT polymerization of HEA with protein-reactive CTAs 

The respective CTAs with a protein-reactive functional group were subsequently used 

for RAFT polymerization of 2-hydroxyethylacrylate (HEA) (Scheme 1) with a targeted degree 

of polymerization (DP) of 100. Note that this DP was chosen arbitrary, and in future work we 

are aiming at investigating the influence of polymer chain length on the conjugation 
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efficiency of the respective functional RAFT polymers. Polymerization kinetics were studied 

using an automated synthesis robot that allows to run multiple polymerization reactions, 

including sampling, in parallel. This set-up minimizes the experimental error and batch-to-

batch variation. Polymerizations were run in duplicate at 70°C and with two different AIBN 

to CTA (i.e 0.1 and 0.2) ratios. Although it is well-documented that polymerization of acrylate 

monomers at 70°C can cause side reactions (e.g. backbiting)32, we have chosen work 

conditions that have been reported in literature to provide good control over the 

polymerization.33,34 

Samples were analyzed by gas chromatography (GC) for monomer conversion (Figure 

11) and by size exclusion chromatography (SEC, Figure 12) for their molecular weight and 

dispersity. The kinetic data depict that NHS-, PFP- and PDS-PABTC provide, for both 

AIBN/CTA ratios, good control over the polymerization as indicated by the linear pseudo-first 

order kinetic plots and the linear growth of molecular weight with monomer conversions. A 

double molar mass shoulder in the SEC elugrams was only observed above 90% conversion, 

indicative of termination by chain coupling as commonly observed for radical polymerization 

at high monomer conversion. As expected, the RAFT polymerization kinetics are, within 

experimental error, independent of the CTA as the initiating fragments are very similar. 

Furthermore, using more AIBN results in faster polymerization due to the higher 

concentration of radicals. However, it should be noted that in case of FpMAL-PABTC, side-

reactions were observed above 50% conversion, as witnessed by the emergence of a 

multimodal distribution in the SEC elugrams and an increase in dispersity. This is probably 

due to in situ deprotection of the maleimide at the polymerization temperature of 70°C and 

its subsequent incorporation into the polymer chains by radical addition. This issue could not 

be fully solved by using V70 initiator (10 hour half-life at 30°C) and performing the 

polymerization reaction at 50°C (data not shown), which suggests other side reactions might 

underlie the reduced control over RAFTpolymerization using this FpMAL-PABTC. 
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Next, a larger amount of p(HEA) was synthesized with the different RAFT CTAs and, 

based on the kinetic data, conversion was stopped at 90 % when using NHS-PABTC, PFP-

PABTC and PDS-PABTC as chain transfer agent and 50 % when using FpMAL-PABTC to obtain 

well-defined polymers for further polymer-protein conjugation studies. The obtained 

polymers were purified by threefold precipitation and drying under high vacuum, followed 

by storage at -20 °C under nitrogen prior to further use. The properties of the polymers are 

listed in Table 1. All polymers had narrow molecular weight distributions (PDI < 1.2), 

indicative of a well-controlled RAFT polymerization process. Note that the molecular weights 

(Mn) determined by SEC are largely overestimated, due to differences in hydrodynamic 

volume with respect to the PMMA standards. 
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Figure 11. Kinetic curve versus RAFT polymerization time of HEA, using 4 different protein-reactive CTAs in DMF 

at 70°C with a HEA:CTA:AIBN molar ratio of 100:1:0.1 (left graph) or 100:1:0.2 (right graph). 
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Figure 12. RAFT polymerization of HEA, using 4 different protein-reactive CTAs in DMF at 70°C with a 

HEA:CTA:AIBN molar ratio of 100:1:0.1 (red curves) or 100:1:0.2 (blue curves). SEC traces at different 

timepoints (left), and molecular weight (Mn) and PDI (Ð) of the polymers versus monomer conversion (right). 

The green curve illustrates the theoretical molecular weight (Mn(theor)) based off of monomer conversion.  



Synthesis of protein-reactive polymers via RAFT polymerization 

121 

 

Table 1. Protein-reactive p(HEA) polymers, synthesized in DMF at 70°C with AIBN as an initiator and 

functionalized PABTC as a RAFT CTA.  

CTA [HEA]/[CTA] treaction DPGC Mn
GC Mn

SEC Ð 

NHS-PABTC 100 120 min 94 10.9 kDa 32 kDa 1.18 

PFP-PABTC 100 90 min 94 10.9 Da 29 kDa 1.16 

PDS-PABTC 100 120 min 93 10.8 kDa 28 kDa 1.15 

FpMAL-PABTC 100 30 min 56 6.5 kDa 21 kDa 1.20 

MAL-PABTC - - - - 25 kDa 1.20 

 

In case of p(HEA) synthesized using Fp-MAL-PABTC as chain transfer agent, the 

maleimide group needed to be deprotected prior to protein-conjugation. This was done by 

refluxing the purified polymer in dioxane at 110 °C. Note that in literature this reaction is 

mostly reported in toluene14, however this was not possible due to the insolubility of p(HEA) 

in this solvent. SEC analysis (Figure 13A) shows that the polymer could be recovered without 

alteration in the molecular weight and dispersity, while 1H-NMR analysis revealed the 

disappearance of the signal from the furan moiety (Figure 13B). To investigate the effect of 

cleavage of the trithiocarbonate end-group, we have converted this group into a thiol by 

aminolysis (i.e. addition of propylamine), followed by threefold precipitation and high 

vacuum to remove the propylamine. When subsequently the deprotection of the maleimide 

was performed, a multimodal elugram was observed by SEC analysis (Figure 2A). This 

suggests that under the conditions used for deprotection of maleimide end-group, the 

trithiocarbonate moiety at the other polymer chain end most likely remains intact, which is 

essential to obtain well-defined MAL-p(HEA). 
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Figure 13. Deprotection of fpMAL-p(HEA). (A) SEC elugram of p(HEA) synthesized using fpMAL-PABTC as chain 

transfer agent before (blue curve) and after deprotection (green curve) of the maleimide end-group. As 

control, the trithiocarbonate end-group was cleaved into a thiol prior to the deprotection reaction, leading to a 

multimodal distribution (red curve). (B) 
1
H-NMR (500 MHz, DMSO) of fpMAL-p(HEA) (blue curve) and after 

deprotection (green curve) where the peak of the furan vinyl protons (6.56 ppm) diminishes and the maleimide 

vinyl protons appear (7.07 ppm). 
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Synthesis of protein-reactive CTA’s for methacrylamide RAFT polymers 

Next we explored the applicability of the PFP and PDS containing RAFT agents to 

obtain protein-reactive poly(N-hydroxypropylmethacrylamide) or p(HMPA) (scheme 2), 

which is a highly relevant polymer in view of biomedical applications.20,21 In addition we also 

evaluated the polymerization of N-hydroxypropylmethacrylamide-dilactate, which yields 

temperature responsive polymers (phase transition temperature Tcp= 10 °C) that witness a 

gradual increase in Tcp upon degradation of the dilactate side chains and which are currently 

under investigation for a number of biomedical applications, including anti-cancer drug 

delivery and tissue engineering.22-24,35 Successful application of the RAFT process requires 

the appropriate selection of a RAFT agent for a particular monomer.9 Indeed, it has been 

reported that RAFT polymerization of methacrylates and methacrylamides requires the 

presence of a cyano moiety adjacent to the thiocarbonate moiety.36 This was confirmed by 

us as well, as PABTC was found incapable of yielding well defined pHMPA.  

Several groups have reported on RAFT of p(HMPA) using trithio- and dithiocarbonate 

based chain transfer agents.31,37 In our present work we opted for a cyanotrithiocarbonate 

CTA for its reported higher hydrolytic stability38,39 and its lower susceptibility to retardation 

at the initial phase of the polymerization40. Hennink and co-workers used the commercially 

available  4-cyano-4- [(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CDTPA) CTA for 

the polymerization of HPMAm.31 However, to minimize in future studies the contribution of 

the aliphatic dodecyl chain to potential self-assembly behavior in aqueous medium by 

hydrophobic interaction, we compared the performance of this CTA to 4-cyano-4- 

[(ethylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CETPA) which might be preferred due to 

the shorter ethyl chain length of the Z-group. CETPA was successfully functionalized with 

respectively PFP and PDS by carbodiimide chemistry.  
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Scheme 2. Synthesis of the different functional CTAs used in this work for RAFT polymerization of N-

hydroxypropylmethacrylamide (HPMAm). 

 

 

RAFT polymerization of HPMAm with protein-reactive CTAs 

Kinetic studies of HPMAm polymerization carried out in an automated synthesis 

robot showed for both the PFP-CDTPA and PFP-CETPA chain transfer agents high control 

over the polymerization reaction with linear pseudo-first order kinetic plots and a linear 

growth of molecular weight with monomer conversions (Figure 14). Overall, conversions 

were significantly lower than for HEA polymerization, which can be likely ascribed to the 

lower reactivity of methacrylamides versus acrylates. Therefore, we also investigated higher 

DP values, i.e. DP=200, to obtain higher molecular weight polymers at similar conversions. As 



Synthesis of protein-reactive polymers via RAFT polymerization 

125 

shown in Figure 14, this was found to be successful. These polymerization conditions were 

then used to synthesize well defined PFP- and PDS- p(HPMAm) and PDS-p(HPMAm-Lac2) 

using functionalized CETPA as RAFT agent. The specifications of the synthesized polymers are 

listed in Table 2. Note that the molecular weights (Mn) determined by SEC are largely 

overestimated, due to differences in hydrodynamic volume with respect to the PMMA 

standards. 
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Figure 14. RAFT polymerization of HPMAm using PFP-CDTPA (left) and PFP-CETPA (right) in DMAc at 70°C with 

a HPMAm:CTA:AIBN molar ratio of 100:1:0.2 (red curves) or 200:1:0.2 (blue curves). (A) Kinetic curve versus 

polymerization time. (B) SEC traces at different timepoints. (C) Molecular weight (Mn) and PDI of the polymers 

versus monomer conversion. 
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Table 2. Protein-reactive p(HPMAm) and poly(HPMAm-Lac2) polymers synthesized in DMAc at 70°C with AIBN 

as an initiator and functionalized CETPA as a CTA. 

PR CTA Monomer [M]/[CTA] treaction DPNMR Mn
NMR Mn

SEC PDI 

PFP HPMAm 100 10 h 59 8.4 kDa 21 kDa 1.24 

PFP HPMAm 200 10 h 123 17.6 kDa 33 kDa 1.27 

PDS HPMAm 100 10 h 30 4.3 kDa 13 kDa 1.20 

PDS HPMAm 200 10 h 46 6.6 kDa 16 kDa 1.24 

PDS HPMAm-Lac2 100 10 h 33 4.7 kDa 13 kDa 1.19 

 

 

Conclusions 

A series of RAFT chain transfer agents for both acrylates and methacrylamides were 

functionalized with different reactive moieties that can be conjugated to either lysine or cysteine 

residues to afford polymer-protein conjugates. RAFT polymerization with these protein-reactive 

CTA’s provided high control over the polymerization with linear pseudo-first order kinetic plots and a 

linear growth of molecular weight with monomer conversions, for both acrylates and 

methacrylamides. The chain transfer agent bearing a (protected) maleimide, however, was prone to 

side-reactions and therefore, polymerization had to be stopped at 50% conversion to be able to 

obtain well-defined polymers. This can probably be attributed to deprotection of the maleimide 

during polymerization, inducing its participation in the polymerization process. Moreover, an 

additional deprotection step is necessary to activate the protein-reactive maleimide group. These 

setbacks make the maleimide group a less attractive conjugation strategy. 
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Abstract 

In this chapter, the bioconjugation efficiency of polymers with different protein-

reactive groups was investigated as a function of stoichiometry, polymer molecular weight, 

and protein pre-conditioning. First, RAFT-derived polymers were used that contained either 

a N-hydroxysuccinimide (NHS) or pentafluorophenyl (PFP) ester moiety that can be 

conjugated to lysine residues, and alternatively a maleimide (MAL) or pyridyl disulfide (PDS) 

moiety that can be conjugated to cysteine residues. Some of these protein-reactive polymers 

were thermoresponsive and required optimized conjugation conditions. Protein modification 

with N-succinimidyl-S-acetylthiopropionate (SATP) was performed to introduce sulfhydryl 

groups onto primary amines and increase the conjugation efficiency with MAL- and PDS-

containing polymers. Alternatively, bicyclononyne (BCN) functionalized poly(2-ethyl-2-

oxazoline) or p(EtOx) was conjugated to azide-substituted proteins via copper-free strain-

promoted azide-alkyne cycloaddition (SPAAC) reactions. 

 

 

Introduction 

As discussed earlier, polymer-protein conjugation strategies have received increasing 

interest owing to the ability to engineer proteins with a wide variety of properties.1-5 

Different approaches have been proposed to design polymer-protein conjugates (Scheme 1) 

including the ‘grafting-to’ method, where a pre-formed reactive polymer is conjugated to a 

protein; and the ‘grafting-from’ method, where the polymer chain is grown from a protein 

macroinitiator (or macroCTA).6 Both strategies can be followed using protein-reactive RAFT 

agents such as the ones prepared in Chapter 3.7-9 The advantage of ‘grafting-to’ is the use of 

pre-synthesized polymer, which allows thorough characterization of the polymer and avoids 

exposure of the protein to potentially denaturing polymerization conditions. An additional 

limitation of the ‘grafting-from’ method is the possible sterical hindrance during 

polymerization, leading to a substantial amount of unreacted protein-bound CTA. However, 

a major advantage of the ‘grafting-from’ approach is that the prepared conjugates only need 

to be purified from low molecular weight compounds (i.e. unreacted monomer, initiator, 

etc…). This can easily be done by dialysis, unlike the removal of unreacted polymer, involved 
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in ‘grafting-to’, which is often tedious and requires preparative gel filtration 

chromatography.  

An alternative approach to conventional conjugation chemistries is the use of so-

called orthogonal handles, e.g. copper(I)-catalyzed cyclo-addition (CuAAC) between an azide 

and an alkyne6 (i.e. the Huisgen-Sharpless ‘click’ reaction10). This involves a two-step 

modification strategy where the protein is first modified with an orthogonal (i.e. a group that 

does not interfere with any of the amino acid residues) functional group, that is then in a 

second step used to conjugate to the functional end-group of a polymer in a ‘grafting-to’ 

manner. Different groups described the synthesis of an azide-functionalized RAFT agent that 

can couple to alkyne-modified biomolecules.11,12
 As the use of CuAAC in living systems is 

limited by the toxicity of copper(I), Bertozzi and coworkers sought to activate alkynes by a 

method other than metal catalysis, namely by ring strain.13 This led to the discovery of 

strain-promoted azide–alkyne cycloadditions (SPAAC) between azides and cyclooctyne 

derivatives, that do not require cytotoxic copper as a catalyst.14 Among the various 

cyclooctynes that have been developed for SPAAC reactions, derivatives of 

bicyclo[6.1.0]non-4-yne (BCN) can be prepared with the least synthetic effort.15  

In this chapter, we first performed a head-to-head comparison of four different 

protein-reactive RAFT CTAs in their bioconjugation efficiency to two types of serum albumin 

(i.e. avian and bovine) via a ‘grafting-to’ approach. These CTAs contained either a N-

hydroxysuccinimide (NHS) or pentafluorophenyl (PFP) ester moiety that can conjugate to 

lysine residues, and alternatively a maleimide or pyridyl disulfide (PDS) moiety for 

conjugation to cysteine residues (Chapter 3). The proteins were also modified with N-

succinimidyl-S-acetylthiopropionate (SATP) to introduce sulfhydryl groups onto primary 

amines and increase the conjugation efficiency with MAL- and PDS-containing polymers. In 

addition to model hydrophilic RAFT-based polymers containing these protein-reactive 

groups, we also conjugated transiently thermoresponsive polymers (Chapter 2) to proteins 

and investigated whether this provided the protein with dual temperature- and pH-

responsive properties. In a second part of this chapter, we introduced azide-based 

orthogonal handles onto BSA, allowing subsequent bioconjugation to BCN-functional poly(2-

ethyl-2-oxazoline) or p(EtOx) via copper-free SPAAC. 
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Scheme 1. Schematic overview of the different RAFT-based strategies that are available for designing polymer-

protein conjugates. 

 

 

Material and methods 

 

Materials 

Chemicals bovine serum albumin (BSA), NaHCO3, NaSCN, hydroxylamine-HCl, 

ethylenediaminetetraacetic acid (EDTA) and ninhydrin reagent (2% solution) were obtained 

from Sigma Aldrich and used without purification. Ovalbumin (OVA) was purchased from 

Worthington, whilst N-succinimidyl-S-acetylthiopropionate (SATP) and NHS-PEG4-N3 were 

obtained from Thermo Scientific. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed with a 4-20% polyacrylamide gradient gel, using the Mini-

PROTEAN Tetra Cell from Bio-Rad.  

The synthesis and characterization of the employed protein-reactive homopolymers 

containing 2-hydroxyethylacrylate (HEA), 2-hydroxypropylmethacrylamide (HPMAm) and its 

thermoresponsive dilactate derivative (HPMAm-Lac2) have been discussed in Chapter 3. The 

synthesis and characterization of NHS-containing P33 and P32 polymers (6 kDa and 18 kDa 

respectively) and of bicyclononyne (BCN) functional poly(2-ethyl-2-oxazoline) (PEtOx) was 

performed by the Hoogenboom group and has been discussed in the corresponding 

papers.16,17  

 

Conjugation of RAFT-based protein-reactive polymers to OVA and BSA 

An example conjugation procedure is as follows. Stock solutions of protein (1.16 x 10-

4 M, 5 mg OVA or 7.7 mg BSA / mL) and polymer (10 mg/mL) were prepared in a bicarbonate 

buffer (0.1M, pH 8.2). The stock solutions were combined to obtain a molar ratio of 

protein:polymer 1:10 or 1:20. Subsequently, the reaction mixture was diluted with buffer 

solution to obtain a protein concentration of 9.30 x 10-6 M. For conjugation reactions with 
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SATP-modified protein, a deacetylation solution (0.5 M hydroxylamine-HCl / 25 mM EDTA in 

PBS) was added to the reaction in a 300-fold molar excess of hydroxylamine to protein. For 

conjugation reactions with p(HPMAm-Lac2), a 1M NaSCN solution was used to enhance 

polymer solution by “salting in”. Next, the mixture was incubated overnight at room 

temperature (or on ice for HPMAm-Lac2) with continuous stirring. Conjugation efficiency was 

evaluated by native SDS-PAGE. β-Mercaptoethanol was used to check reversibility of the 

PDS- and MAL-conjugates. Quantification of protein conjugation was done by automated 

integration of optical density by ImageJ software and calculating the ratio of bound protein 

to total protein content per lane (Figure 1).  

 

 

Figure 1. Quantification of protein conjugation by automated integration of optical density by ImageJ software 

and calculating the ratio of conjugated protein (B) to total protein content per lane (A+B). As BSA forms high 

molecular weight aggregates, these bands were excluded from the calculations. For OVA, aggregation did not 

occur. 
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SATP-modification of OVA and BSA 

Prior to conjugation, part of the lysines of OVA and BSA was modified with N-

Succinimidyl S-Acetylthiopropionate (SATP) (Scheme 2). SATP (20 mg/mL in anhydrous 

DMSO) was added to a stock solution of OVA and BSA (120 µM in PBS) in a molar ratio of 

protein:SATP 1:20. The mixture was incubated at room temperature for 45 min. and 

unreacted SATP was removed using a disposable PD10 desalting column (Sigma). After 

freeze-drying, the degree of modification was calculated by determination of the moles of 

free amines per mol of protein before and after SATP modification using the ninhydrin 

assay.18 

 

 

Scheme 2. Reaction scheme for the modification of protein amino groups with SATP. First, primary amines on 

the protein react and form an amide bond with N-succinimidyl-S-acetylthiopropionate (SATP), which contains a 

protected sulfhydryl. Next, hydroxylamine is used to deacetylate the sulfur and yield a sulfhydryl group. 

 

 

Conjugation of RAFT-based NHS-containing thermopresponsive polymers to lysozyme 

A typical conjugation procedure for NHS-P33 (6 kDa) and NHS-P32 (18 kDa) was as 

follows. A lysozyme (from hen egg white, Sigma) solution in DI water (0.25 mL, 8.56 × 10-5 

mmol, 5 mg/mL) was added to different volumes of polymer solution in DI water (10 mg/mL 

for NHS-P33 and 20 mg/mL for NHS-P32), respectively in a 1:1, 1:10 and 1:20 molar ratio. 

The total volume was brought to 2 mL with a 0.1 M sodium bicarbonate buffer of pH 8.3. The 

solutions were kept at room temperature with gentle shaking overnight. Polymer solution 

without lysozyme was included as a control. Moreover half of the conjugation mixture was 

brought to pH 3 with 0.1 M HCl and kept in a heating block at 56°C overnight, in order to 
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hydrolyse the polymer under accelerated conditions. The undiluted conjugation mixtures 

were analyzed by SDS-PAGE. To confirm thermoresponsive behaviour, native page was 

performed at room temperature and at 45°C by placing the PAGE set-up in an oven. 

 

Conjugation of PEtOx-BCN to NHS-PEG4-N3 modified BSA 

Stock solutions of BSA (1.16 x 10-4 M, 7.7 mg/mL in PBS pH 7.4) and NHS-PEG4-N3 

(2.57 x 10-2 M, 10 mg/mL in DMSO) were prepared. BSA (1.16 x 10-4 mmol, 1 mL) was 

modified with a 5-, 10- or 20-fold molar excess of NHS-PEG4-N3 (22.5, 45 or 90 µL 

respectively). After overnight reaction, the protein solution were dialyzed against DI water (6 

x 5L) for 2 days using a MWCO of 8000 Da and freeze-dried. Stock solutions of BSA-PEG4-N3 

(1.16 x 10-4 M, 7.7 mg/mL in PBS pH 7.4) and PEtOx-BCN (3.33 x 10-3 M, 10 mg/mL in PBS pH 

7.4) were combined to obtain a molar ratio of protein:polymer 1:10 or 1:20. The reaction 

mixtures were diluted with PBS to obtain a final protein concentration of 1.16 x 10-5 M and 

incubated overnight at room temperature with continuous stirring. Conjugation efficiency 

was evaluated by SDS-PAGE. Quantification of protein conjugation was done by automated 

integration of optical density by ImageJ software (Figure 1). 

 

 

Results and discussion 

 

Protein conjugation using protein-reactive p(HEA) 

In the first part of this chapter we aimed at evaluating the performance of the 

respective functional polymeric end-groups prepared in Chapter 3 with respect to protein 

conjugation. Scheme 3 gives an overview of the respective conjugation chemistries. For this 

purpose, ovalbumin (OVA) and bovine serum albumin (BSA) were chosen as model proteins. 

The reason for choosing OVA is due to the availability of a large number of in vitro and in 

vivo immune-biological assays for OVA-based formulations.19-21 This makes OVA a useful 

model vaccine antigen for screening of the adjuvant effect of (stimuli-responsive) polymer 

conjugation to OVA. BSA was used as reference protein, as it has been extensively reported 

in literature for the evaluation of polymer-protein conjugation.7,9,22 The properties of both 

proteins, including the number of lysine and cysteine residues respectively, are summarized 

in Table 1.  
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Scheme 3. Overview of the applied conjugation chemistries for protein conjugation. From left to right: N-

hydroxysuccinimide (NHS) and pentafluorophenyl (PFP) esters that can conjugate to lysine residues, and 

alternatively a pyridyl disulfide (PDS) and maleimide (MAL) for conjugation to cysteine residues. 

 

 

Bovine Serum Albumine (BSA) 

 

 

 

 

66.5 kDa  

17 disulfide bridges (red) 

1 free cysteine residue (green) 

59 lysine residues (blue) 

Ovalbumine (OVA) 

 

 

 

 

44 kDa 

1 disulfide bridge (red) 

4 free cysteine residues (green) 

20 lysine residues (blue) 

Table 1. Structural properties of BSA and OVA.  
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All conjugation reactions were performed in a 0.1 M sodium bicarbonate buffer of pH 

8.2. This buffer has been reported by various groups as being an optimal conjugation buffer 

for the respective functional groups23-25. OVA and BSA were incubated in aqueous medium 

with the different functional p(HEA)’s in a protein-to-polymer molar ratio of 1:10 or 1:20, 

respectively. After overnight reaction, the conjugates were analyzed by SDS-PAGE and after 

staining, the gels were imaged and processed by ImageJ software. In the Materials and 

Methods section, the quantitative analysis of the SDS-PAGE data by ImageJ is explained into 

detail. Note that to preserve the disulfide bonds that are formed between the PDS-p(HEA) 

and the proteins, SDS-PAGE was run under non-reductive conditions (in absence of β-

mercaptoethanol). 

For OVA, conjugation efficacy was relatively low, especially when using activated 

ester functionalized polymers. Of these two activated ester containing polymers (i.e. bearing 

NHS, respectively PFP as end-group), the PFP-functional polymers appeared to perform the 

best. This can likely be ascribed to the higher hydrolytic stability of PFP-esters versus NHS-

esters.26,27 This would provide more opportunity for the PFP-esters to react with lysine 

moieties, whereas the NHS-esters will be more prone to rapid hydrolysis in aqueous medium 

into carboxylic acid moieties. The best performing functional group for OVA appeared to be 

the PDS which afforded over 50 % of the protein to become conjugated (Figure 2). This can 

be attributed to the 4 free cysteine residues within the OVA protein sequence. 

For BSA, the overall conjugation efficacies were higher and PFP was the best 

performing functional group, allowing over 80% of the protein to become conjugated. The 

limited increase in protein-binding when doubling the polymer-to-protein ratio from 10:1 to 

20:1 highlights the current limitations of the ‘grafting-to’ approach. This offers a window of 

opportunity for either elaborating onto alternative strategies (e.g. ‘grafting from’) or to 

develop more quantitatively strategies involving more reactive orthogonal groups, e.g. in 

combination with recombinant protein engineering to introduce complimentary reactive 

groups on a well-accessible site on the protein periphery. As BSA contains only one free 

cysteine residue, lower conjugation efficiency  with thiol-reactive moieties (i.e. PDS and 

MAL) was expected. 
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Figure 2. SDS-PAGE results from the conjugation of OVA (43 kDa) and BSA (66 kDa) with protein-reactive 

p(HEA) polymers (NHS, PFP, PDS and MAL) in a molar ratio of protein:polymer 1:10 and 1:20. (Mean ± SD, n = 3, 

*** p < 0.0001; one-way ANOVA) 

 

To evaluate the reversibility of the PDS- and MAL-conjugates, reductive SDS-PAGE in 

presence of β-mercaptoethanol was performed. As expected, the disulfide bonds formed 

between the proteins and the PDS-p(HEA) were fully cleaved upon reduction (Figure 3). For 

MAL, the BSA conjugates remained intact in the presence of β-mercaptoethanol. Although it 

is common knowledge that a thio-ether bond by Michael-type addition is irreversible, some 

recent findings have suggested limited stability of thiol-maleimide bonds under physiological 

conditions.28 Similar results were observed for OVA (results not shown). It should be noted 

that the protein retention by SDS-PAGE was slightly increased with the use of β-

mercaptoethanol.  
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Figure 3. SDS-PAGE results from the conjugation of BSA with PDS- and MAL-containing p(HEA) with and without 

β-mercaptoethanol, in a molar ratio of protein:polymer 1:10 and 1:20. β+ = reductive SDS-AGE, β- = native SDS-

PAGE. (Mean ± SD, n = 3, *** p < 0.0001, ** p < 0.001, one-way ANOVA) 

 

 

To further enhance the conjugation efficiency for PDS- and MAL-moieties, OVA and 

BSA were modified with SATP, which adds sulfhydryl groups onto primary amines (i.e., lysine 

residues and the N-terminus) of proteins in a protected form. Deprotection by deacylation to 

generate a free sulfhydryl is accomplished by treatment with an excess of hydroxylamine. 

Quantification of the free amines before and after SATP modification (molar ratio 1:20) by 

ninhydrin assay showed a conversion of 79% and 78% for BSA and OVA respectively. Due to 

the extensive modification of the lysine residues, staining of the gels became less efficient as 

coommassie dyes have a high complexation affinity for lysine moieties.29 Nonetheless, SDS-

PAGE analysis revealed that the introduction of sulfhydryl groups onto primary amines 

groups of proteins strongly increases conjugation efficiency with PDS and MAL containing 

p(HEA) (Figure 4). PDS-p(HEA) reaches 100% of conjugation for both OVA and BSA, even at a 

protein-to-polymer ratio of 1:10. 
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Figure 4. SDS-PAGE results from the conjugation of SATP-modified OVA and BSA with PDS- and MAL-containing 

p(HEA) in a molar ratio of protein:polymer 1:10 and 1:20. S- = native protein, S+ = SATP-modified protein. 

(Mean ± SD, n = 3, *** p < 0.0001; one-way ANOVA) 

 

Protein conjugation using protein-reactive p(HPMAm) and p(HPMAm-Lac2) 

In analogy with the protein-conjugation experiments with p(HEA), we now used PFP-

p(HMPA) and PDS-p(HMPA) of different molecular weights to conjugate to OVA and BSA, in a 

1:10 and 1:20 protein-to-polymer ratio. Protein conjugation was performed under identical 

conditions as described earlier for p(HEA). Interestingly, SDS-PAGE analysis (Figure 5) of the 

reaction mixture yielded similar trends as observed for the conjugation experiments with 

p(HEA). Again, conjugation of PFP-functionalized polymer was much more efficient for BSA 

conjugation than for OVA conjugation, whereas PDS-p(HPMAm) was much more efficient in 

conjugating to OVA than to BSA. This points out that differences in conjugation efficiency are 

most likely due to differences in protein structure, especially the availability of reactive 

groups rather than polymer chemistry, at least for the systems studied in this work. 

Moreover, the conjugation products with PFP-p(HPMAm) of DP123 clearly exhibited an 

increase in molecular weight as compared to those with PFP-p(HPMAm) of DP59. For the 

PDS-p(HPMAm) polymers this effect was less clear, due to the smaller difference in 

molecular weight. 
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Figure 5. SDS-PAGE results from the conjugation of OVA and BSA with PFP- and PDS-containing p(HPMAm) of 

different molecular weights, in a molar ratio of protein:polymer 1:10 and 1:20. (Mean ± SD, n = 3) 

 

 

For conjugation experiments with the thermoresponsive p(HPMAm-Lac2), we found 

that performing conjugation below the Tcp of the polymer (i.e. at 0°C) did not yield polymer-

protein conjugation, while performing the conjugation reaction at room temperature (i.e. 

above the Tcp) with the polymer in collapsed state was unsuccessful too. To address this 

issue we added sodium thiocyanate (NaSCN) which is known from the Hofmeister series to 

exert a strong ‘salting in effect’ and is capable of increasing the phase transition temperature 

of polymers.30,31 We observed that in presence of 1M NaSCN p(HMPA-Lac2) became fully 

soluble in an ice bath and the consequent conjugation efficiency of PDS- p(HMPA-Lac2) to 

OVA was found to be drastically improved (Figure 6). These results indicate that even though 

p(HPMAm-Lac2) is soluble at 0°C, the polymer end group is inaccessible for conjugation in 

the absence of NaSCN. 
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Figure 6. SDS-PAGE results from the conjugation of OVA with PDS-containing p(HPMAm-Lac2) in a molar ratio of 

protein:polymer 1:10 and 1:20 in the standard 0.1M NaHCO3 conjugation buffer and in a 1M NaSCN “salting in” 

solution. (Mean ± SD, n = 3, *** p < 0.0001; one-way ANOVA) 

 

 

Protein conjugation using NHS-containing thermoresponsive polymers 

In addition to PDS-containing p(HPMAm-Lac2), we investigated whether low 

temperature aqueous conjugation of transiently thermoresponsive NHS-containing polymers 

to proteins, allowed modulation of the solution behavior of the polymer-protein conjugates 

by altering temperature and/or pH. Therefore, copolymers of HEA and (2,2-dimethyl-1,3-

dioxolane-4-yl)methyl acrylate (DMDMA) were synthesized by the Hoogenboom lab using an 

NHS-containing RAFT CTA (Scheme 3). Copolymerization with DMDMA was reported to 

allow ‘à la carte’ tuning of the Tcp below physiological temperature by varying the monomer 

ratio.16 Importantly, the acetal groups of the DMDMA are acid-labile,32 thereby hydrolyzing 

into hydrophilic glycerol acrylate moieties at low pH. Copolymers of two different molecular 

weights, i.e. 6 (NHS-P32) and 18 kDa (NHS-P33), were synthesized that exhibited a Tcp of 24.2 

oC and 31 oC respectively. 
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Scheme 3. Molecular structure and (partial) hydrolysis of NHS-containing, pH degradable, temperature-

responsive copolymers containing HEA and DMDMA. P33-NHS = p(DMDMA28-co-mTEGA56) and P32-NHS = 

p(DMDMA7-co-mTEGA22). 

 

 

Lysozyme was used as model protein and the polymers were conjugated below their 

Tcp in aqueous medium buffered, at pH 8.3. SDS-PAGE (Figure 7) demonstrated that, relative 

to native lysozyme (lane 2), the polymer-protein conjugates (lane 3 to 8) exhibited an 

increase in molecular weight, indicating successful bio-conjugation. As expected, the 6 kDa 

polymer yielded lower MW conjugates than the 18 kDa polymer. Increasing the molar ratio 

of polymer to lysozyme resulted in a larger amount of protein becoming conjugated, likely 

with multiple chains attached. Control samples (polymer incubated without lysozyme) were 

not visible on the gel and proteins mixed with unreactive copolymers without NHS-ester 

end-group did not induce a delay in gel migration (data not shown). 

To assess whether copolymer conjugation provides the protein with dual 

temperature- and pH-responsive properties, we measured the electrophoretic mobility of 

the conjugates by SDS-PAGE below and above the Tcp of the copolymers and before and 

after acid-triggered hydrolysis. As the presence of SDS in the PAGE experiment would 

strongly increases the Tcp of the copolymers, we performed PAGE under so-called ‘native’ 

non-reducing conditions excluding SDS. As shown in Figure 8, when PAGE was performed 

below the Tcp of the copolymers, no difference in electrophoretic mobility was observed 

between non-hydrolyzed and hydrolyzed conjugates. Contrary, when PAGE was performed 

above the Tcp of the copolymers, the non-hydrolyzed conjugates did not migrate on the gel 

whereas the hydrolyzed conjugates migrated on the gel, independently of temperature. 

These data clearly demonstrate that the copolymer-protein conjugates have dual-responsive 

properties. Indeed, the conjugates are water soluble below the Tcp, precipitate from solution 

above the Tcp while regaining full solubility upon hydrolysis of the acetals into hydrophilic 

glycerol moieties. 
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Figure 7. SDS-PAGE analysis of the conjugation mixtures. (Lane 2) Native lysozyme. (Lane 3 to 5) Lysozyme - 6 

kDa polymer (NHS-P32) conjugates in a ratio 1:1, 1:10 and 1:20 (Lane 6 to 8) Lysozyme - 18 kDa polymer (NHS-

P33) conjugates in a  ratio 1:1, 1:10 and 1:20. 

 

 
Figure 8. Native PAGE of primary and hydrolyzed protein-polymer conjugates (18 kDa copolymer, ratio 20:1). 

Below Tcp there is no clear difference between both samples. Above Tcp, however, the intact polymer 

conjugates are not visible on the gel due to precipitation in the well. 
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Protein conjugation using BCN-functional PEtOx 

As an alternative to the conventional ‘grafting-to’ conjugation approach, we also 

evaluated the use of so-called orthogonal handles for strain-promoted azide–alkyne 

cycloaddition (SPAAC) between azide-functional proteins and cyclooctyne-functional 

polymers. The Hoogenboom lab synthesized poly(2-ethyl-2-oxazoline) or p(EtOx) via cationic 

ring-opening polymerization (CROP) using a bicyclononyne (BCN) tosylate initiator, yielding a 

5 kDa BCN-functional PEtOx polymer (Scheme 4). Unlike the copper(I)-catalyzed cyclo-

addition (CuAAC) between an azide and an alkyne6, ring strain in cyclooctyne derivatives 

allows for copper-free ‘click’ reactions.14 Bovine serum albumin (BSA) was modified with 

respectively a 5-, 10- or 20-fold molar excess NHS-PEG4-N3, followed by extensive dialysis to 

remove unreacted azide. In this step, lysine residues are substituted with azides that contain 

a tetraethyleneglycol spacer, through amide bond formation. In a second step, PEtOx-BCN is 

conjugated to BSA via SPAAC using a protein to polymer molar ratio of 1:10 or 1:20. After 

overnight reaction, the conjugates were analyzed by SDS-PAGE (Figure 9A). Integration of 

the optical density of the gels (Figure 9B), reveals a clear shift in molecular weight for the 

BSA-PEG4-N3 towards higher molecular weight species, demonstrating successful 

conjugation. This shift depends both on the extent of azide modification of BSA in the first 

step and on the excess of PEtOx-BCN added in the second step.  

 

 

 

Scheme 4. Conjugation of bicyclononyne (BCN)-functional poly(2-ethyl-2-oxazoline) or p(EtOx) to azide-

functionalized protein. 
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Figure 9. (A) SDS-PAGE analysis of the conjugation of PEtOx-BCN to azide-modified BSA. (B) Quantification of 

PEtOx-BCN to BSA conjugation by integration of the optical density. 

 

 

Conclusions 

In summary, the conjugation efficiency of acrylate and methacrylamide polymers 

with different protein-reactive moieties to two types of serum albumin (i.e. avian and 

bovine) was investigated. These include N-hydroxysuccinimide (NHS) or pentafluorophenyl 

(PFP) ester moieties that can be conjugated to lysine residues, and alternatively maleimide 

(MAL) or pyridyl disulfide (PDS) moieties that can be conjugated to cysteine residues. PFP- 

and PDS-containing polymers exhibited the highest conjugation efficiency with BSA and OVA 

respectively, as observed for both p(HEA) and p(HPMAm), and therefore are the preferred 

conjugation chemistries for BSA and OVA respectively. The disulfide bond in the PDS-

polymer-protein conjugates was fully cleaved upon reduction, whereas MAL-based 

conjugates remained intact under reductive conditions. Introduction of additional thiol 

moieties by converting lysine residues with SATP, strongly increased protein-conjugation 

efficiencies for both PDS- and MAL-containing polymers. This can be exploited for PDS-
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polymer-BSA conjugates, when a reversible disulfide bond is preferred to the stable amide 

bonds obtained with PFP-containing polymers. Additionally, we were also able to conjugate 

transiently thermoresponsive RAFT-based polymers to proteins. The dilactate derivative of 

HPMAm (i.e. HPMAm-Lac2) could be reacted with OVA via a PDS CTA when using a ‘salting-

in’ approach. Conjugating lysozyme to NHS-containing thermoresponsive and acid-

degradable polymers yielded polymer-protein conjugates with dual-responsive properties. 

Finally, copper-free ‘click’ chemistry was successfully used to conjugate BCN-functional 

PEtOx to azide-modified BSA. 
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Abstract 

In this chapter, a ‘grafting-from’ strategy was evaluated as an alternative for the 

‘grafting-to’ approach, to prepare transiently responsive protein-polymer conjugates. The 

‘grafting-from’ approach should avoid the need for large molar excesses of protein-reactive 

polymer to obtain high protein conjugation efficiency. The model protein bovine serum 

albumin (BSA) was modified with a chain transfer agent to allow ‘grafting-from’ RAFT 

polymerization of a dioxolane-containing acrylamide. The resulting protein-polymer 

conjugates were thermoresponsive, and self-assembled into nanoparticles at physiological 

temperature and pH. Acidic triggered hydrolysis of the dioxolane units into diol moieties 

rendered the conjugates fully water soluble, irrespective of temperature. Additionally, these 

thermoresponsive and acid-labile protein-polymer conjugates were used for the intracellular 

delivery of proteins and hydrophobic molecules. Via solvent displacement, the amphiphilic 

conjugates could be loaded with hydrophobic molecules, including a fluorescent dye and an 

immune-modulating compound that holds potential for vaccine delivery. The efficacy of 

these protein-polymer conjugates as intracellular delivery vehicles was demonstrated by in 

vitro experiments in dendritic cells. 

 

 

Introduction 

Efficient polymer-protein conjugation is a crucial step in the design of many 

therapeutic protein formulations including vaccine nanoformulations and antibody-drug 

conjugates.1,2 Particulary covalent modification with stimuli-responsive polymers is of 

interest, to confer the responsive properties of these polymers to the attached protein 

molecules. For example, temperature-responsive polymers conjugated to proteins can self-

assemble into nanoparticles above the cloud point temperature (Tcp), due to their 

amphiphilic character.3,4 This controlled and reversible aggregation of proteins into 

nanoparticles could be exploited for vaccine delivery. 

Whereas soluble antigen is predominantly presented by dendritic cells (DCs; the most 

potent class of antigen presenting cells) to CD4 T cells, antigen in the form of nano- and 

microparticles becomes presented to both CD4 and CD8 T cells. This process of cross-

presentation occurs because exogenous antigens in particulate form mimic the morphology 
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of micro-organisms and can thus be better recognized by DCs as being potentially 

dangerous, thereby altering the route of internalization and antigen presentation (Chapter 

1).5-9 MHCI-peptide stimulated CD8 T cells will differentiate into cytotoxic T cells, that 

possess the unique capacity to recognize and kill infected or transformed cells. This path of 

the immune response is termed cellular immunity and is thought to be crucial for effective 

vaccination against intracellular pathogens such as HIV, malaria, tuberculosis and for anti-

cancer immune therapy.10,11  

The cross-presentation pathway can be further improved by co-encapsulation of 

immune-modulators that shape the direction and strength of the adaptive immune 

response.12,13 In this context, agonists of Toll-like receptors (TLRs) are under intensive 

investigation as adjuvants for vaccination14 or as agents for anti-cancer immunotherapy.15 In 

addition, ultra-small nanoparticles and albumin-binding amphiphiles, are efficiently 

transported via the interstitial flow and lymphatic capillaries to the draining lymph nodes 

where they are taken up by dendritic cells (DCs).16-18 

As discussed in Chapter 2, Kizhakkedathu and co-workers described the synthesis and 

polymerization of [(2,2-dimethyl-1,3-dioxolane)methyl]acrylamide (DMDOMAm), yielding 

temperature-responsive polymers with acid-labile dioxolane side groups.19 Gradual 

hydrolysis of these dioxolane groups into diol moieties increases the Tcp of the polymers 

from below room temperature upwards until they become fully water soluble, irrespective 

of temperature. Such transiently responsive homopolymers are also expected to possess a 

better predictable behavior than combining multiple co-monomers yielding temperature- 

and pH-responsive polymers, e.g. the HEA/DMDMA copolymer system (Chapter 2 and 4).20,21 

Amongst the different controlled radical polymerization techniques,22,23 reversible 

addition-fragmentation chain transfer (RAFT) polymerization in particular, has shown to be 

tolerant to many chemical groups, solvent media and offers a straightforward route to 

synthesize polymers with a protein-reactive end-group via the use of a functional chain 

transfer agent (CTA).4,24,25 In the previous chapter we reported on a head-to-head evaluation 

of several protein-reactive RAFT CTAs for protein-polymer conjugation via a ‘grafting-to’ 

approach.26 The advantage of the ‘grafting-to’ approach is the use of pre-synthesized 

polymer, which allows for thorough characterization of the polymer and avoids exposure of 

the protein to potentially denaturing polymerization conditions. However, we found that a 
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large molar excess (up to 20-40 fold) of protein-reactive polymer is required to obtain full 

protein conjugation.  

An alternative approach is a ‘grafting-from’ approach, where the polymer chain is 

grown directly from a protein that is modified with a CTA.27-29 The major advantage is that 

the prepared conjugates only need to be purified from low molecular weight compounds 

(i.e. unreacted monomer, initiator, …). This can easily be done by dialysis, unlike the removal 

of unreacted polymer, involved in ‘grafting-to’, which is often tedious and requires 

preparative gel filtration chromatography. However, possible steric hindrance during 

polymerization can lead to a substantial amount of unreacted protein-bound CTA.  

In this chapter, we design transiently thermoresponsive protein-polymer conjugates 

via a ‘grafting-from’ RAFT approach. Bovine serum albumin (BSA) is modified with 

pentafluorophenyl (PFP) CTA moieties, allowing ‘grafting-from’ RAFT polymerization of 

DMDOMAm. The resulting conjugates can change from a soluble to aggregated state in 

response to temperature; but become fully soluble, irrespective of temperature, by acid 

triggered hydrolysis. These conjugates are intended to be responsive to the acidic 

endosomal milieu where nanoparticles are usually stored upon phagocytosis.30 These 

features are essential for clearance of the polymeric carrier from the body, to avoid long-

term accumulation. In addition, we establish an in vitro proof-of-concept showing that 

p(DMDOMAm)-conjugation can be used for intracellular co-delivery of proteins and small 

hydrophobic molecules loaded into the hydrophobic domains of the p(DMDOMAm) above 

its Tcp. Fluorescently labeled BSA-p(DMDOMAm) conjugates are encapsulated with a 

hydrophobic dye to evaluate the uptake in DCs by flow cytometry. Analogously, unlabeled 

conjugates are loaded with an immune-modulating TLR agonist to induce maturation in bone 

marrow DCs. 

 

 

Material and methods 

 

Materials 

Unless otherwise noted all chemicals were purchased from Sigma-Aldrich. 2.2’-

azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044) was purchased from Wako 

Chemicals. The pentafluorophenyl modified 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] 
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pentanoic acid (PFP-CETPA) RAFT agent was synthesized as reported earlier.26 The [(2,2-

dimethyl-1,3-dioxolane)methyl] acrylamide (DMDOMAm) was synthesized according to 

literature.19 Cyanine5-NHS (Cy5-NHS) and cyanine3-alkyne (Cy3-alkyne) were purchased 

from Lumiprobe. CL075 was purchased from Invivogen. The immortalized dendritic cell line 

DC2.4 was a kind gift from Dr. Kenneth Rock.31 Bone marrow derived dendritic cells were 

obtained as previously reported.32 Cell culture medium and supplements, Hoechst and 

Cholera Toxin Subunit B, Alexa Fluor® 488 Conjugate (CTB-AF488) were purchased from Life 

Technologies. FC block, MHCII-FITC, CD11c-APC and CD86-PE were obtained from BD 

Pharmingen.  

 

Conjugation of BSA with pentafluorophenyl CTA to obtain macroCTA 

BSA (3.2 g; 48.4 µmol; 1 equiv.) was dissolved in phosphate buffered saline (PBS; 413 

mL; pH 7.4) in a 1 L round bottom flask, equipped with a magnetic stir bar. The solution was 

purged with nitrogen for 40 min. A solution of the PFP-CETPA (415.6 mg, 968 µmol, 20 

equiv.) in DMF (17 mL) was added dropwise, and the solution was stirred at room 

temperature overnight. The reaction mixture was centrifuged twice (4000 rpm, 10 min, 5 °C) 

to remove the excess of PFP CTA. Subsequently, the supernatant was dialyzed against 

deionized (DI) water (6 x 15 L) for 2 days, using a MWCO of 8000 Da, and then lyophilized to 

isolate the BSA macroCTA. 

 

UV-Vis analysis BSA macroCTA 

UV-Vis spectroscopy was carried out on a Shimadzu UV-1650PC UV-Vis double beam 

spectrophotometer. PFP-CETPA was dissolved in methanol to obtain a 3 mg/mL (7 mM) 

concentrated stock solution that was used to make a two-fold dilution series ranging from 6 

µg/mL to 48 µg/mL. The absorbance of each solution was measured at 306 nm (λmax of the 

PFP-CETPA) to obtain a linear plot of CTA concentration versus absorbance. The CTA 

extinction coefficient was determined to be ε = 9875 M-1 cm-1, and this value was used to 

calculate the concentration of the CTA content within the BSA macroRAFT agent.  

 

RAFT homopolymerization of DMDOMAm 

DMDOMAm (15 mmol), PFP-CETPA (0.075 mmol for a DP 200) and AIBN (0.015 

mmol) were transferred into a Schlenk tube and dissolved in anhydrous DMF (2M monomer 
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concentration). After bubbling with nitrogen for 30 min, the solution was heated at 70°C in 

an oil bath for 4 h. The polymers were isolated by precipitation in hexane and dried under 

vacuum. Monomer conversion was measured by 1H-NMR and calculated to be 92% (DPNMR = 

184, MwNMR = 34.4 kDa). The purified polymer was characterized by SEC analysis (MnSEC = 

26,3 kDa, PDI = 1.15).  

1H-NMR spectra were recorded on a Bruker 300 MHz FT-NMR spectrometer using 

CDCl3 as solvent. Size exclusion chromatography was carried out on Shimadzu Prominence 

GPC system equipped with a LC-20AD isocratic pump and a RID-20A refractive index 

detector. Measurement were done in DMA containing 50 mM LiCl at 50°C and with a flow 

rate of 0.593 mL/min. The two PL gel 5 µm mixed-D columns were calibrated with 

poly(methylmethacrylate) (PMMA) standards (Polymer standards service) in a molecular 

weight (Mn) range of 1980 Da to 372000 Da. 

 

RAFT polymerization of DMDOMAm with BSA macroCTA 

A ‘grafting-from’ RAFT polymerization of DMDOMAm from the BSA macroCTA with 

an aimed degree of polymerization (DP) of 200 was conducted as follows. DMDOMAm (185 

mg, 1 mmol), BSA macroCTA (65 mg, 1 µmoL of protein, which contained 5 µmol of CTA 

functionality, as determined by UV-Vis), VA-044 (2 mg, 6.5 µmol) and phosphate buffer pH 6 

(PB, 3.8 mL) were sealed in a Schlenk vial equipped with a magnetic stir bar. The solution 

was degassed by 5 cycles of freeze-vacuum-thaw, prior to immersing the Schlenk vial into a 

preheated oil bath at 25°C. For a DP of 100, the [DMDOMAm]:[CTAfunctionality] ratio was kept 

at 100:1 instead of 200:1. VA-044 was employed in a [VA-044]:[CTAfunctionality] ratio of 1.3:1. 

After 16 h reaction the polymerization mixture had become turbid, indicative of 

polymerization-induced self-assembly (PISA). Time samples before (T0) and after (Te) 

polymerization were analyzed on SDS-PAGE and DLS. Half of the reaction mixture was 

diluted with DI water and dialyzed against DI water (6 x 5L; 4°C) for 2 days using a MWCO of 

8000 Da. The other half was first diluted 3 times with a 0.1 M bicarbonate buffer pH 8.2 and 

fluorescently labeled with the Cy5-NHS (stock solution in DMSO, molar ratio BSA:Cy5-NHS = 

1:10). After overnight reaction, the fluorescently labeled BSA-p(DMDOMAm) conjugates 

were dialyzed against DI water (10 x 5 L, 4°C). The resulting solutions were lyophilized to 

obtain the unlabeled and Cy5-labeled protein-polymer conjugates respectively. 
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Sodium Dodecyl Sulfate-polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE was performed with a 4-20 % polyacrylamide gradient gel using the Mini-

PROTEAN Tetra Cell from Bio-Rad, at 175 V for 45 min. The polymerization time point 

samples were diluted 20 times with ice-cold phosphate buffer at pH 6 and were further 

diluted with 4x Laemmli sample buffer in a 3:1 ratio before loading on the SDS-PAGE gels. 

Staining was accomplished with Coomassie Blue. Integration of the protein bands was done 

by ImageJ software as reported earlier.26 

 

Dynamic Light Scattering (DLS) 

DLS measurements of polymerization time point samples were conducted with a 

Malvern Zetasizer Nano-S. Both T0 and Te were measured below (3°C) and above (30°C) the 

Tcp of the protein-polymer conjugates.  

 

Cloud Point Temperature (Tcp) measurements 

The phase transition temperature of the protein-polymer conjugates was determined 

by DLS measurements at 1°C intervals ranging from 5 to 40°C. The purified BSA-

p(DMDOMAm) conjugates were dissolved in ice-cold PBS (2.5 mg/mL) and filtered through a 

0.45 µm syringe filter prior to measurements. The Tcp was defined as the temperature where 

the mean volume and derived count rate abruptly shifted to higher values. 

 

Determination of the Critical Micellar Concentration (cmc) 

Similar to a previously reported protocol, the cmc of the BSA-p(DMDOMAm) 

conjugates were determined by fluorescence microscopy using pyrene as a fluorescent 

probe.21 First, 5 mL of protein-polymer conjugate solutions were prepared in ice-cold PBS 

with concentrations ranging from 0.001 to 1 mg/mL. The samples were kept on ice and a 

pyrene working solution in acetone (16.67 µL, 36 µg/mL) was added under continuous 

stirring and heating above the Tcp. After overnight evaporation of the acetone, fluorescence 

excitation spectra were collected at 25°C on a Cary Eclipse fluorescence spectrophotometer 

(Agilent Technologies) equipped with a Varian Cary Temperature Controller. The cmc was 

quantified based on the change in excitation intensity ratio at 338 and 333 nm upon dilution  
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Hydrolysis of dioxolane side groups 

A solution of the BSA-p(DMDOMAm) conjugates (2.5 mg/mL in ice-cold PBS) was 

filtered through a 0.45 µm syringe filter and 475 µL was transferred into a DLS cuvette. The 

sample was measured on DLS at 37°C, followed by addition of an HCl stock solution (25 µL, 

1M) to obtain an 50 mM HCl final concentration. The evolution of particle size and light 

scattering intensity was followed in function of time by DLS at 37°C. To confirm that the 

evolution in particle size is due to hydrolysis of the p(DMDOMAm) dioxolane side groups 

rather that degradation of the BSA itself, several control experiments were included. Both 

soluble BSA and the BSA-p(DMDOMAm) conjugates (2.5 mg/mL) treated with 50 mM HCl 

were compared with untreated samples by SDS-PAGE. 

 

Loading of BSA-p(DMDOMAm) nanoparticles with hydrophobic molecules 

A typical solvent displacement loading protocol for the BSA-p(DMDOMAm) particles 

was as follows. The protein-polymer conjugates were dissolved in ice-cold PBS buffer (2.5 

mg/mL) and a stock solution of the hydrophobic compound in ethanol was added under 

continuous stirring and heating above the Tcp. After overnight evaporation of ethanol at 

37°C, the non-encapsulated hydrophobic compound was removed by filtration (0.45 µm 

syringe filter). In this way, Cy5-labeled BSA-p(DMDOMAm) conjugates (1 mL, 2.5 mg/mL in 

PBS) were loaded with Cy3-alkyne (5 µL, 1 mg/mL in ethanol) and unlabeled BSA-

p(DMDOMAm) conjugates (0.5 mL, 2.5 mg/mL in PBS) were loaded with CL075 (15 µL, 5 

mg/mL in ethanol). As a control, the same procedure was repeated for solutions of PBS 

buffer and (Cy5-)BSA macroCTA. 

 

In vitro uptake experiment by DC2.4 cells 

DC2.4 cells (immortalized dendritic cell line) were cultured in RPMI-glutamax, 

supplemented with 10% FBS, 1 mM sodium pyruvate, 10 mM HEPES buffer, 0.05 mM 2-

mercaptoethanol, MEM NEAA and antibiotics (50 units/mL penicillin and 50 µg/mL 

streptomycin). Cells were incubated at 37 °C in an controlled, sterile environment of 95% 

relative humidity and 5% CO2. DC2.4 cells were seeded into 24-well titer plates (250 000 

cells per well, suspended in 0.95 mL of culture medium) and incubated overnight to allow 

cell sedimentation and subsequent adhesion to the bottom of the wells. Next, 50 µL of the 

Cy3-alkyne loaded Cy5-BSA-p(DMDOMAm) particles (2.5 mg/mL, cfr. supra) was added to 
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the cells (conjugate concentration in wells of 0.125 mg/mL), followed by 24 h of incubation 

to allow cellular uptake. The same procedure was followed for Cy3-alkyne loaded PBS and 

Cy5-BSA macroCTA control samples. After overnight incubation, the wells were aspirated, 

washed with 1 mL of PBS and incubated with 500 µL of Cell Dissociation Buffer (15 min., 

37°C). The cell suspensions were transferred into Eppendorf tubes and immediately 

centrifuged (350 g, 10 min., 5 °C). Finally, the supernatant was aspirated and the cell pellets 

were suspended in 200 µL of PBS and kept on ice to maintain cell integrity. FACS was 

performed on a BD Accuri C6 (BD Biosciences). The data were processed by FlowJo software. 

 

Confocal microscopy on DC2.4 cells 

DC2.4 cells were plated out on Willco-Dish glass bottom dishes (50 000 cells, 

suspended in 200 µL of culture medium) and incubated overnight. Next, 10 µL of the Cy3-

alkyne loaded Cy5-BSA-p(DMDOMAm) particles (2.5 mg/mL, cfr. supra) was added, followed 

by 24 h of incubation. Hoechst and CTB-AF488 staining was carried out simultaneously on 

fixed cells. In summary, culture medium was aspirated and cells were washed with PBS. 

Next, 200 µL of 4 % paraformaldehyde was added and allowed to fixate for 30 min. A 

staining solution was prepared by adding Hoechst (10 µL of a 1 mg/mL stock in DMSO) and 

CTB-AF488 (5 µL of a 1 mg/mL stock in PBS) to a PBS buffer containing 1% of BSA (2.5 mL). 

After aspiration and washing, 200 µL of this staining solution was added to the fixed cells and 

incubated for 40 minutes at room temperature. Finally, the samples were washed with 1% 

BSA PBS buffer. Confocal microscopy was carried out on a Leica DMI6000 B inverted 

microscope equipped with an oil immersion objective (Leica, 63x, NA 1.40) and attached to 

an Andor DSD2 confocal scanner. Images were processed with ImageJ software. 

 

In vitro maturation experiment in murine bone marrow derived DCs 

Mouse bone-marrow-derived DCs (BM-DCs) were generated using a modified Inaba 

protocol.33 Bone marrow was flushed from the femurs and tibias obtained from euthanized 

C57BL/6 mice with complete RPMI. The cell suspension was filtered through a 100 μm cell 

strainer and incubated for 3−5 min in red blood cell lysis buffer on ice. The cells were 

subsequently seeded into a 24 well plate at a density of 1.5 × 105 cells/mL in complete RPMI 

containing 20 ng/mL of GM-CSF and incubated at 37 °C / 5 % CO2 for 7 days. To ensure 

optimal BM-DC growth, fresh medium containing 20 ng/mL GM-CSF was added on day 3, 
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and on day 6 the medium was refreshed at 10 ng/mL GM-CSF. Day 7 BM-DCs were incubated 

with 25 µL of the CL075 loaded BSA-p(DMDOMAm) particles (2.5 mg/mL, cfr. supra). CL075 

loaded PBS and BSA macroCTA were included as control samples. After overnight incubation, 

the cell suspensions were transferred into Eppendorf tubes and immediately centrifuged 

(350 g, 10 min., 5 °C). The supernatant was aspirated and the cell pellets were suspended in 

50 µL of an antibody cocktail solution containing Fc block (diluted 200x), MHCII-FITC (diluted 

500x), CD11c-APC (diluted 200x) and CD86-PE (diluted 200x) in PBS buffer. After 30 min. of 

incubation on ice, 200 µL of PBS was added to the samples prior to centrifugation (350 g, 10 

min., 5 °C). Finally, the supernatant was aspirated and the cell pellets were suspended in 200 

µL of PBS and kept on ice to maintain cell integrity. FACS was performed on a BD Accuri C6 

(BD Biosciences). The data were processed by FlowJo software. Figure 1 illustrates the 

applied gating strategy, where the CD11c mouse DC surface marker is used to distinguish the 

dendritic cells from other bone morrow derived cell types. 

 

 

Figure 1. Flow cytometry gating strategy on unstained control samples to select DCs from bone marrow 

cultures.  

 

 

Results and discussion 

In this chapter, transiently soluble polymer-protein conjugates were prepared via a 

‘grafting-from’ RAFT approach (Scheme 1). Bovine serum albumin (BSA), used as model 

protein, was reacted with a 20-fold molar excess of a pentafluorophenyl (PFP) functionalized 

trithiocarbonate RAFT CTA. The choice for PFP as activated ester moiety to modify lysine 

residues is based on our previous work where we showed that PFP outperformed the more 

widespread NHS esters in terms of protein-conjugation efficiency, likely due to increased 

hydrolytic stability.26 UV-Vis analysis of the obtained protein macroCTA (λmax of the PFP-CTA 
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is at 306 nm) revealed an average of 5 CTA molecules grafted per BSA molecule (Figure 2). 

Polymerization of DMDOMAm at a targeted DP (degree of polymerization) of respectively 

100 and 200 was conducted at 25°C in phosphate buffer pH 6 using the water-soluble azo 

initiator VA-044 as radical source.28 Overnight reaction yielded a turbid mixture, indicating 

self-assembly to occur during the polymerization reaction. Such phenomenon has been 

termed by several groups as polymerization-induced self-assembly (PISA).34-36 SDS-PAGE 

analysis clearly proved that polymers were grown from the protein backbone, as the protein 

bands had shifted to higher molecular weights (Figure 3). As expected, the protein-polymer 

band for the targeted DP of 200 was visible at higher molecular weights than the one for DP 

100. Integration by ImageJ software, indicated that approximately 30% of the protein 

remained unmodified. This can likely be attributed to uneven distribution of the CTA units 

over the different BSA molecules, and/or BSA molecules with too sterically hindered CTA 

moieties that do not allow for ‘grafting-from’ polymerization.  

 

 

Scheme 1. Molecular structure and schematic representation of the synthesis, self-assembly and disassembly 

of transiently responsive protein-polymer conjugates via ‘grafting from’ RAFT polymerization and loading of 

hydrophobic molecules in their core. 
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Figure 2. UV-Vis spectra of native BSA (orange), CTA-modified BSA (green) and PFP CTA (blue). In the spectra of 

the CTA-modified BSA (green) a second peak appears around the λmax value of the PFP CTA, indicating 

successful modification of the BSA molecules with CETPA. 

 

 

 

Figure 3. SDS-PAGE analysis of BSA-p(DMDOMAm) conjugates with a targeted DP for DMDOMAm of 100 and 

200. 
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DLS analysis of the reaction mixture before (T0) and after (Te) polymerization clearly 

proofs the formation of temperature-responsive conjugates (Figure 4). Before the onset of 

polymerization, there is no significant difference in size upon increase in temperature. After 

polymerization, DLS analysis indicates the presence of temperature-responsive behavior, 

with a Tcp of 27°C and 19°C for BSA-p(DMDOMAm)DP100 and BSA-p(DMDOMAm)DP200
 

respectively (Figure 5). This difference in Tcp could be expected as a shorter p(DMDOMAm) 

chain length will yield less hydrophobic polymer moieties on the conjugates. Below the Tcp, a 

slight increase in size (from 7.25 nm to 8.79 nm and from 6.93 nm to 13.18 nm for BSA-

p(DMDOMAm)DP100 and BSA-p(DMDOMAm)DP200
 respectively) is observed. This can be 

attributed to the presence of grafted polymer chains on the protein which increase the 

hydrodynamic radius. Above the Tcp, the protein-polymer conjugates form particles of 

approximately 48 and 187 nm for BSA-p(DMDOMAm)DP100 and BSA-p(DMDOMAm)DP200
 

respectively. This temperature-reversible transition between globules and fully soluble 

unimers suggests that no significant crosslinking occurred during polymerization. The critical 

micellar concentration (cmc) was in the same order of magnitude for both conjugates: 48 

µg/mL and 51 µg/mL for BSA-p(DMDOMAm)DP100 and BSA-p(DMDOMAm)DP200
 respectively 

(Figure 6).  
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Figure 4 Size distribution measured by DLS of the BSA-p(DMDOMAm) reaction mixtures before (T0) and after 

(Te) polymerization for a targeted DP of 100 and 200. 
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Figure 5. Volume mean diameter (red data points) and count rate (a measure for the light scattering intensity) 

(blue data points) of the BSA-p(DMDOMAm) conjugates as function of temperature, measured by DLS. 
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Figure 6. Intensity ratio of pyrene at 338 nm (I3) and 333 nm (II) as function of the BSA-p(DMDOMAm) 

concentration determined by fluorescence spectroscopy at 25°C. The CMC was similar for BSA-p(DMDOMAm) 

conjugates with different polymer chain lengths: 48 µg/mL for DP100 and 51 µg/mL for DP200. 

 

 

To investigate whether the dioxolane moieties allow the polymer-protein conjugates 

to undergo pH-triggered transition from amphiphilic structures into fully water soluble 

structures, we exposed the conjugates to acidic medium (50 mM HCl as proof of concept) at 

37 °C and monitored the evolution of particle size and light scattering intensity by DLS. As 

shown in Figure 7, the light scattering intensity drops as function of time, indicating the 

hydrolysis of the hydrophobic dioxolane moieties into hydrophilic diol moieties resulted in a 

gradual dissolution of the self-assembled conjugates. In addition, Figure 7 confirms that the 

protein-polymer conjugates lose their self-assembly capacities after hydrolysis, as their size 

at 37 °C returns to that of the non-hydrolyzed conjugates below their Tcp.  
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SDS-PAGE (Figure 8) and 1H-NMR (Figure 9) analysis of BSA, p(DMDOMAm) or BSA-

p(DMDOMAm) suggests that hydrolysis of the ketal moieties and not protein hydrolysis is 

responsible for the pH-triggered transition from globules to unimers of the BSA-

p(DMDOMAm) conjugates. No significant changes in gel retardation or lower molecular 

weight protein fractions that could result from protein hydrolysis were observed. By 

contrast, the 1H-NMR analysis of the p(DMDOMAm) homopolymer clearly revealed removal 

of the dimethyl groups on the dioxolane moieties after treatment with 50 mM HCl. 
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Figure 7. Light scattering intensity measured by DLS as function of time during the acid-catalyzed hydrolysis of 

the BSA-p(DMDOMAm) conjugates at 37 °C (left) and the corresponding size distribution curves before and 

after hydrolysis measured at 37 °C (right). 

 

 

Figure 8. SDS-PAGE analysis of free BSA and BSA-p(DMDOMAm) conjugates treated with 50 mM HCl (pH 1), 

compared with corresponding untreated samples (pH 7).  
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Figure 9. 
1
H-NMR spectra in (CD3)2SO of p(DMDOMAm) before (red curve) and after (blue curve) treatment 

with 50 mM HCl. The spectra clearly show the removal of the dimethyl groups (g) on the dioxolane moieties by 

acidic hydrolysis, yielding hydroxyl groups (h). 

 

 

In a second part of this chapter, we establish an in vitro proof-of-concept showing 

that p(DMDOMAm)-conjugation can be used for intracellular co-delivery of proteins and 

small hydrophobic molecules, loaded into the hydrophobic domains of the p(DMDOMAm) 

above its Tcp (Scheme 1). For this purpose we used dendritic cells (DCs). These are the most 

potent class of antigen presenting cells of the immune system and a key target cell 

population for vaccination and immune-therapy.9 First, the BSA-p(DMDOMAm) conjugates 

were fluorescently labeled with Cy5-NHS, that can bind to the lysine residues in the BSA 

backbone. Next the Cy5-BSA-p(DMDOMAm) particles were loaded via solvent displacement 

from ethanol with the fluorescent dye Cy3-alkyne, as a model hydrophobic molecule. Non-

encapsulated Cy3-alkyne (i.e. precipitated particulates) was removed by filtration. As a 

control, the same procedure was repeated for PBS buffer and soluble BSA macroCTA.  
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Dendritic cells (immortalized DC2.4 cell line) were pulsed with the conjugates, and 

after overnight incubation analyzed by flow cytometry. Figure 10 shows that particulate Cy5-

BSA-p(DMDOMAm) is taken up more efficiently than soluble Cy5-BSA, as the mean 

fluorescence of the Cy5 channel is significantly higher for the Cy5-BSA-p(DMDOMAm) 

conjugates. Also the mean fluorescence in the Cy3 channel clearly indicates that formulation 

of the hydrophobic Cy3-alkyne dye with Cy5-BSA-p(DMDOMAm) conjugates results in higher 

cell uptake. To confirm whether the conjugates are internalized by the cells, rather than 

sticking to the cell surface, confocal microscopy imaging was performed. Figure 11 shows 

that the Cy5-BSA-p(DMDOMAm) particles loaded with the Cy3-alkyne are indeed 

internalized by the dendritic cells. Additionally, a strong co-localization of the Cy3 and Cy5 

channel is observed, suggesting that the BSA-p(DMDOMAm) conjugates act as delivery 

carrier for the hydrophobic Cy3-alkyne dye. 

 

 

 

Figure 10. Mean cell fluorescence in Cy3 and Cy5 channel measured by flow cytometry of DC2.4 cells pulsed 

with Cy3-alkyne formulated in PBS, Cy5-BSA or Cy5-BSA-p(DMDOMAm). 
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Figure 11. Confocal microscopy image of DC2.4 cells pulsed with Cy3-alkyne formulated in Cy5-BSA-

p(DMDOMAm). The cell nucleus and cell membrane are stained with Hoechst and CTB respectively. 

 

 

Next, we aimed at utilizing the BSA-p(DMDOMAm) system to deliver the hydrophobic 

immune-stimulatory molecule CL075.37 CL075 triggers the Toll-like receptor 7, present on 

endosomes of DCs, and boosts cellular immune responses against tumors and intracellular 

pathogens.38 CL075 is water-insoluble and precipitates from solution upon solvent 

displacement from ethanol into water. Formulation was performed similarly as for the 

model compound Cy3-alkyne. Samples were added to mouse bone marrow derived dendritic 

cells (BM-DCs) followed by analysis of the induction of the cell surface maturation markers 

MHCII and CD86 by flow cytometry. Control samples included PBS buffer and BSA macroCTA 

with and without CL075, as well as unloaded BSA-p(DMDOMAm) conjugates. Although the 

basal expression level of MHCII was already high for PBS treated DCs, only DC’s treated with 

CL075 formulated in BSA-p(DMDOMAm) nanoparticles exhibited a significant further 

increase in MHCII expression. Similar, and even more outspoken, was the effect of CL075 

formulated in BSA-p(DMDOMAm) nanoparticles on CD86 expression and on the co-

expression of both MHCII and CD86 (Figure 12). These findings indicate that relative to PBS 

and native BSA, the BSA-p(DMDOMAm) conjugates possess sufficient amphiphilicity to 

encapsulate the hydrophobic CL075, while still allowing it to exert its biological activity on 

DCs. 
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Figure 12. Flow cytometry histograms (top) and quantification (bottom) of maturation marker MHCII and CD86 

in DCs pulsed with CL075 formulated in PBS, BSA and BSA-p(DMDOMAm) and the corresponding negative 

controls. (***; p<0,001) 
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Conclusions 

In conclusion, we have demonstrated that transiently soluble and acid-degradable 

polymer-protein conjugates could be synthesized via a ‘grafting-from’ RAFT approach. 

Bovine serum albumin (BSA) was reacted with a pentafluorophenyl (PFP) functionalized CTA 

which allowed polymerization of the acid-labile DMDOMAm monomer from this protein 

macroCTA, as evidenced by SDS-PAGE. The resulting protein-polymer conjugates exhibited 

thermoresponsive behavior and self-assembled into nanoparticles above their Tcp. When the 

conjugates were exposed to acidic medium, hydrolysis of the dioxolane moieties allowed the 

polymer-protein conjugates to undergo pH-triggered transition from nanoparticulates into 

fully water soluble structures. In addition, we have demonstrated these transiently soluble 

and acid-degradable polymer-protein conjugates can be used for intracellular delivery of 

proteins and hydrophobic molecules. In vitro cell experiments in DCs demonstrated that 

particulate BSA-p(DMDOMAm) was taken up more efficiently than soluble BSA. Formulating 

the hydrophobic Cy3-alkyne within the hydrophobic core of these BSA-DMDOMAm 

conjugates resulted in higher cell uptake of the dye. Analogously, the immune-stimulatory 

molecule CL075 was loaded into the protein-polymer conjugates to induce maturation in 

BM-DCs. A significant up-regulation of maturation markers MHCII and CD86 was only 

observed when CL075 was formulated in BSA-p(DMDOMAm) nanoparticles.  
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Abstract 

The induction of antigen-specific adaptive immunity exclusively occurs in lymphoid 

organs. As a consequence, the efficacy by which vaccines reach these tissues strongly affects 

the potency of the vaccine. In this respect, small nanoparticles have shown to rapidly reach 

the lymph nodes through passive drainage via the lymphatics. Therefore, nanoparticles were 

prepared by the Caruso lab by infiltrating mesoporous silica particles (ca. 200 nm) with 

poly(methacrylic acid), followed by disulfide-based crosslinking and template removal. 

PEGylation of these nanoparticles did not affect their cellular association in vitro, but 

dramatically improved their lymphatic drainage in vivo. In this chapter we will discuss the 

interaction between the hydrogel nanoparticles and DCs in vitro and provide an overview of 

our main findings in vivo. Additionally, a head-to-head comparison of TEM, STORM and 

confocal microscopy was performed, for their applicability in intracellular imaging of such 

nanomedicines. 

 

 

Introduction 

Modulating T and B cell immunity not only is key to the development of improved 

and new vaccines against pathogens, but also holds great promise to treat malignancies, 

autoimmune diseases and allergies.1,2 Priming of T cell responses requires the presentation 

of antigens by dendritic cells (DCs), in the format of processed peptide fragments loaded 

onto major histocompatibility complexes. Priming of B cells and their differentiation into 

antibody secreting plasma cells, relies on surface triggering of the B cell receptor (BCR) by 

antigens. As mentioned in Chapter 1 and 5, priming of naïve T and B cells can be dramatically 

enhanced by delivering antigens formulated as nano- or microparticles.1-5 Compared to 

soluble antigens, particulate vaccines enhance the quality and the magnitude of the adaptive 

immune response by acting on different levels. At the level of the DC, particulate vaccines 

increase antigen uptake and improve antigen presentation to T cells qualitatively and 

quantitatively. Peptide fragments of particulate antigens are loaded onto MHCII and MHCI 

molecules and thus can evoke both CD4 and CD8 T cell responses. By contrast, soluble 

antigens are almost exclusively presented via MHCII molecules, resulting in an immune 

response restricted to CD4 T cells. At the level of the B cell, the display of multiple antigen 
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copies at the particle surface dramatically increases activation of B cells by simultaneous 

triggering of multiple BCRs on the B cell surface.6  

T cell and B cell priming exclusively occur in secondary lymphoid organs. As a 

consequence, the efficacy with which vaccine carriers reach these sites constitutes a critical 

determinant of their efficacy to induce adaptive immunity and thus ultimately affects the 

protective efficacy of the vaccine.7-10As vaccines are commonly delivered by intramuscular or 

subcutaneous injection, lymph nodes are the lymphoid organs vaccines need to target. To 

move from the site of injection to lymph nodes, vaccines must be either transported actively 

to the lymph nodes by tissue DCs; or they need to move along the interstitial flow, across the 

extracellular matrix, into the lymphatics.11 As the latter process does not involve cellular 

uptake for transport, it is called passive drainage. The way particles drain to lymph nodes, 

and the efficacy with which they reach antigen-presenting cells, mainly depends on their in 

situ mobility after injection.  

Particles that show limited mobility in the extracellular matrix, rely on local DCs 

recruited to the injection site for uptake and transport. Such particles become surrounded 

by fibrous tissue and become engulfed predominantly by tissue macrophages. As a 

consequence, only a minor fraction of particle-delivered antigens will reach the lymph nodes 

and contribute to the induction of the antigen-specific immune response. Moreover, the 

long-term presence of particles at the injection site creates an antigen depot that could 

cause exhausted T cell responses, and could hamper vaccine elicited protection.12,13 By 

contrast, particles with high mobility in the extracellular matrix can move along the 

interstitial flow and thus have better potential to reach the lymph nodes, either after uptake 

by tissue DCs or after passive entry into the lymphatics. Similar requirements are needed for 

nanomaterial-based sentinel lymph node mapping.14 However, there is much debate on the 

size and physicochemical properties of particles that is required to ensure optimal lymph 

node targeting. Moreover, particle uptake in vitro often is a poor predictor of in vivo particle 

mobility.  

In this context, PEGylation [i.e. surface modification with poly(ethyleneglycol)] might 

improve the mobility of nanocarriers in the extracellular matrix following subcutaneous 

injection. PEGylation has shown to be a successful strategy to increase the half-life of 

proteins and nanoparticles in systemic circulation after intravenous injection, by reducing 

the interaction with macrophages and serum proteins.15 To assess the impact of PEGylation 
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on the lymphatic drainage properties of reduction-sensitive hydrogel nanoparticles and its 

influence on the subsequent priming of T cells, the Caruso group prepared PEGylated 

hydrogel nanoparticles. In this chapter, we will discuss the in vitro cell experiments and the 

main in vivo data that were obtained, and highlight the potential of engineered hydrogel 

nanoparticles for the lymphatic delivery of antigens and immune-modulating compounds. 

Additionally, we will elaborate on the use of Two-color Stochastic Optical Reconstruction 

Microscopy (STORM) for the direct visualization of the nanoparticle uptake mechanism and 

the intracellular tracking of nanoparticles by dendritic cells. 

 

 

Materials and methods 

 

Materials 

Unless otherwise noted, all chemicals were purchased from Sigma-Aldrich. The 

PEGylated hydrogel nanoparticles were synthesized by our collaborators according to 

previously reported methods16-18 and is discussed in the corresponding paper.19 The 

immortalized dendritic cell line DC2.4 was a kind gift from Dr. Kenneth Rock (Dana Farber 

Cancer Institute, now at University of Massachusetts Medical School).20 Bone marrow 

derived dendritic cells were obtained as previously reported.21 Cell culture medium and 

supplements, Hoechst and Cholera Toxin Subunit B, Alexa Fluor® 647 Conjugate (CTB-AF647) 

were purchased from Life Technologies.  

 

Microscopy 

Confocal images were recorded on a Leica DMI6000B inverted microscope equipped 

with a 10 X and 63x (1.40 NA) oil immersion objective, and coupled to an Andor DSD2 

confocal scanner. Transmission electron microscopy images were viewed on a 1010 (JEOL, 

Tokyo, Japan). 

STORM images were acquired using a Nikon N-STORM 427 system configured for 

total internal reflection fluorescence (TIRF) imaging. Fluorophores were excited by 

illuminating the sample with the 647 nm (∼160 mW), 561 nm 431(∼80 mW), and 488 nm 

(∼80 mW) laser lines built into the microscope. Fluorescence was collected by means of a 

Nikon 100x, 1.4NA oil immersion objective and passed through a quad-band-pass dichroic 
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filter (97335 Nikon). Images were recorded onto a 256 × 256 pixel region (pixel size 170 nm) 

of a EMCCD camera (ixon3, Andor). Single molecules localization movies were analyzed with 

NIS element 437Nikon software.  

 

In vitro cell uptake of PEGylated hydrogel nanoparticles 

DC2.4 cells (immortalized dendritic cell line) were cultured in RPMI-glutamax, 

supplemented with 10% FBS, 1 mM sodium pyruvate, 10 mM HEPES buffer, 0.05 mM 2-

mercaptoethanol, MEM NEAA and antibiotics (50 units/mL penicillin and 50 µg/mL 

streptomycin). Cells were incubated at 37 °C in an controlled, sterile environment of 95% 

relative humidity and 5% CO2. For FACS experiments, DC2.4 cells were seeded into 24-well 

titer plates (250 000 cells per well, suspended in 0.95 mL of culture medium) and incubated 

overnight to allow cell sedimentation and subsequent adhesion to the bottom of the wells. 

Next, 50 µL of the PMA based particles (5E9 particles/mL) was added to the cells (1000 

particles per cell) on ice or at 37°C respectively. After 3h incubation, the wells were 

aspirated, washed with 1 mL of PBS and incubated with 500 µL of Cell Dissociation Buffer (15 

min., 37°C). The cell suspensions were transferred into Eppendorf tubes and immediately 

centrifuged (350 g, 10 min., 5 °C). Finally, the supernatant was aspirated and the cell pellets 

were suspended in 200 µL of PBS and kept on ice to maintain cell integrity. FACS was 

performed on a BD Accuri C6 (BD Biosciences). The data were processed by FlowJo software. 

For confocal and STORM microscopy, DC2.4 cells were seeded into Willco-Dish glass 

bottom dishes (50 000 cells, suspended in 200 µL of culture medium) and incubated for 3h 

(confocal) and overnight (STORM) respectively. Next, 10 µL of the of the PMA based particles 

(5E9 particles/mL) was added to the cells (1000 particles per cell), followed by 24 h of 

incubation. Hoechst (only for confocal, not for STORM) and CTB-AF647 staining was carried 

out simultaneously on fixed cells. In summary, culture medium was aspirated and cells were 

washed with PBS. Next, 200 µL of 4 % paraformaldehyde was added and allowed to fixate for 

30 min. A staining solution was prepared by adding Hoechst (10 µL of a 1 mg/mL stock in 

DMSO) and CTB-AF647 (5 µL of a 1 mg/mL stock in PBS) to a PBS buffer containing 1% of BSA 

(2.5 mL). After aspiration and washing, 200 µL of this staining solution was added to the 

fixed cells and incubated for 40 minutes at room temperature. Finally, the samples were 

washed with 1% BSA PBS buffer.  
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Performance comparison of TEM, STORM and confocal microscopy 

To compare the performance of 3 different microscopy techniques, DCs were 

incubated with a mixture of (i) 300 nm Alexa647-labeled OVA-coated NPs; (ii) 80 nm 

Alexa647-labeled carboxylic acid NPs; and (iii) 300 nm Cy3-labeled amino beads, followed by 

STORM, confocal microscopy and TEM imaging. These nanoparticles (NP) were prepared by 

the Albertazzi lab and is described in the corresponding paper.22 The samples for STORM and 

confocal microscopy were prepared in a similar manner as described in the previous 

paragraph. For TEM, DC2.4 cells were seeded into 24-well plates containing glass coverslips 

inside the wells (250 000 cells, suspended in 1 mL of culture medium) and cultured overnight 

at 37 °C and 5% CO2. Next, NP solution was added, followed by 24 h of culturing at 37° and 

5% CO2. Culture medium was aspirated, and cells were washed with PBS. Next, 1 mL of a 

fixing solution containing 4% paraformaldehyde and 2.5% glutaraldehyde in 0.1 m sodium 

cacodylate buffer (pH 7.2) was added and allowed to fixate for 4 h at room temperature, 

followed by fixation overnight at 48 °C. After washing three times for 20 min with buffer 

solution, cells were dehydrated through a graded ethanol series, including a bulk staining 

with 1% uranylacetate at the 50% ethanol step followed by embedding in Spurr’s resin. 

Ultrathin sections of a gold interference color were cut using an ultramicrotome (ultracut E/ 

464 Reichert-Jung), followed by a poststaining with uranyl acetate and lead citrate in a Leica 

ultrastainer, and collected on Formvar-coated copper slot grids.  

 

 

Result and discussion 

Mesoporous silica (MS) nanoparticles with an average size of 200 nm were 

synthesized according to a previously reported method.16,17 Hydrogel nanoparticles are 

fabricated by infiltrating amine-modified MS nanoparticles with pyridine dithioethylamine 

(PDA)-modified poly(methacrylic acid) (PMAPDA). Subsequently, cysteamine (SH-) modified 

poly(methacrylic acid) (PMASH) is infiltrated, leading to crosslinking by disulfide exchange 

(Figure 1).18 To track particle uptake, fluorescent labeling was performed with Alexa Fluor 

488-cadaverine (AF488) prior to dissolution of the silica template particles in buffered HF 

solution. Since there are both residual thiols and pyridyldisulfides remaining in the PMA 

nanoparticles, PEGylation was performed by grafting maleimide-functionalized 
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poly(ethylene glycol)(PEGMAL) and thiol-functionalized PEG (PEGSH) onto the PMA 

nanoparticles.  

 

 

Figure 1. Schematic representation of the assembly of hydrogel nanoparticles. (a) Infiltration of MS templates 

(ca. 200 nm) with PMA
PDA

. (b) Crosslinking of the PMA
PDA

 by infiltration of PMA
SH

 and disulfide exchange. (c) 

Template dissolution. (d) PEGylation with PEG
MAL

 by thioether formation. In the case of non-PEGylated 

nanoparticles, step d is omitted. 

 

To investigate the interaction between the hydrogel nanoparticles and DCs in vitro, 

we incubated DCs with PMA and PEG-PMA nanoparticles, followed by confocal microscopy 

and quantitative analysis using flow cytometry (FACS). Confocal microscopy (Figure 2A) of 

the cell membrane, stained by AlexaFluor647-conjugated cholera toxin subunit B (AF647-

CTB), demonstrated massive internalization of the nanoparticles by DCs. No obvious 

differences in cell interaction between both types of nanoparticles were observed from 

these images. Figure 2B shows flow cytometry data in terms of the percentage of 

nanoparticle-associated cells (B1) and their mean fluorescence (B2). Nanoparticle uptake 

appears to proceed in an energy-dependent fashion, since minimal cellular association 

occurred at 4 °C, but significantly increased at 37 °C without any difference in nanoparticle–

cell association between PMA and PEG-PMA nanoparticles.  

To gain more insight into the intracellular localization of the nanoparticles by DCs, we 

used stochastic optical reconstruction microscopy (STORM), a super-resolution microscopy 

technique that allows sub-diffraction-limited features to be resolved.23 Figure 3A and B show 

a whole DC and part of a DC, respectively, whereas Figure 3C depicts a series of relevant 

events during the internalization process of the nanoparticles. These pictures show at high 

resolution the engulfment of the nanoparticles by the plasma membrane (Figure 3C1), lipid 
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raft-mediated routing (Figure 3C2) and finally storage of the nanoparticles in 

endo/lysosomal vesicles (Figure 3C3). The most striking feature of these images is that they 

enable imaging at single-particle and single-endo/phago/lysosome resolution. CTB 

specifically binds to the ganglioside GM1 that is present on the plasma membrane of DCs, in 

particular at sites that are involved in lipid raft-mediated endocytosis.24 In this case, it also 

provides an avenue for labeling lipid rafts and becomes incorporated in endo/lysosomal 

membranes, as shown in Figure 3C. This set of data is, to the best of our knowledge, 

amongst the first showing the potential of super-resolution microscopy for assessing the 

intracellular fate of nanoparticles. Note that trafficking of antigen in intracellular vesicles 

does not hamper efficient antigen presentation.25 

 

 

 

Figure 2. In vitro uptake of nanoparticles by DCs. (A) Confocal microscopy and (B) flow cytometry data of DCs 

pulsed with PMASH and PEGPMA nanoparticles (n=3). Particles are labelled with AF488, the cell membrane is 

stained by AF647-CTB and cell nuclei were stained with Hoechst. 

 

 

 



Hydrogel nanocapsules for lymph node targeted vaccine delivery 

179 

 

Figure 3. STORM data of PEGPMA nanoparticles internalized by DCs as illustrated for (A) an entire DC and (B) 

part of a DC. Panels (C1–3) highlight different stages during the internalization process of the nanoparticles: 

(C1) Engulfment of nanoparticles by the plasma membrane. (C2) Intracellular routing and (C3) storage in 

endo/lysosomal vesicles. Particles are labelled with AF488 and the cell membrane is stained by AF647-CTB.  

 

 

Although PEGylation did not affect the uptake of 200 nm sized PMA and PEG-PMA 

nanoparticles by DCs in vitro, it might significantly enhance their mobility and lymph node 

drainage behavior in vivo. Therefore, in vivo experiments in mice were performed. 

Subcutaneous administration of nanoparticles in the footpad resulted in a strongly improved 

lymph node transportation of PEGylated hydrogel nanoparticles compared to their non-

PEGylated counterparts. Significantly more nanoparticle-positive DCs and B cells were 

measured in the draining lymph nodes, and the number of particles on a cell-per-cell basis 

dramatically increased, especially within the migratory DCs population that originates from 

the injection site. This enhanced lymphatic transportation of PEG-PMA nanoparticles can 

clearly be appreciated from the tissue section of the draining popliteal lymph nodes shown 

in Figure 4. The increased presence of particles in the lymph nodes resulted in increased 
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priming of antigen-specific T cells when a CD8 peptide epitope was covalently attached to 

the nanoparticles. We will not elaborate on these data in the current chapter, but they are 

thoroughly discussed in the corresponding paper.19 

 

 

Figure 4. Fluorescence microscopy of lymph nodes of mice injected with (A) PMA and (B) PEG-PMA 

nanoparticles, respectively. The dashed white lines are drawn to distinguish the contours of the lymph nodes.
19

 

 

To fully appreciate the benefit STORM can offer for intracellular imaging of 

nanomedicines, we designed an experiment to be challenging for confocal and electron 

microscopy. DCs were incubated with a mixture of (i) 300 nm Alexa647-labeled OVA-coated 

NPs; (ii) 80 nm Alexa647-labeled carboxylic acid NPs; and (iii) 300 nm Cy3-labeled amino 

beads, followed by STORM, confocal microscopy, and TEM imaging as shown schematically 

in Figure 5A. The mixture of these three species represents a good benchmark to evaluate 

the ability of the different techniques to resolve differences in NP size and color. Figure 5B 

shows TEM, STORM, and confocal images of NP-pulsed dendritic cells; and demonstrates 

that for all the techniques it is possible to visualize particle internalization.  

Whereas TEM does yield a high resolution, albeit with some issues for soft materials 

that have limited contrast upon uranyl acetate or osmium tetrachloride staining, TEM does 

not yield any information on the nanoparticle color and thus surface-functionalization. This 

is showcased in the lower panel of Figure 5B. The excellent resolution of TEM allows for 

discriminating between particles of different sizes, while at the same time solving the 

morphologies of the cellular structures in the surroundings, e.g. endosomal vesicles or 

plasma membrane. However, particles of the same size but different chemical functionality 

are not distinguishable.   
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On the contrary, both confocal and STORM can differentiate between particles with 

different labeling. However, confocal microscopy is unable to discriminate between 300 and 

80 nm particles as they fall below the diffraction limit. Importantly, STORM microscopy 

succeeds in distinguishing both particles varying in size and surface functionality, although 

not at the same resolution of TEM. Notably, confocal and STORM microscopy can be applied 

to live cell samples, a great advantage in the study of dynamic phenomena involving 

nanoparticles in living cells. In this regard, the development of live cell STORM for 

nanoparticles will represent a significant advance toward the understanding of nanoparticle 

trafficking in cells.  

 

 

Conclusion 

In conclusion we found that PEGylation of hydrogel nanoparticles does not affect 

their cellular association in vitro, but dramatically improves their lymphatic drainage in vivo. 

These findings emphasize that in vitro data are not always a legitimate indicator for in vivo 

outcomes. More importantly, it highlights the necessity for nanoparticles to possess a low-

fouling surface to efficiently reach the draining lymph nodes. These findings have provided 

us with a rational basis for optimal vaccine nanoparticle design, as described in the next 

chapter. Furthermore, we have shown the potential of super-resolution microscopy for 

assessing the intracellular fate of nanoparticles. Overall, STORM can fill the gap between 

electron and confocal microscopy, and the development of correlative techniques able to 

superimpose STORM and TEM images can be of further use to the nanomedicine field.26 
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Abstract 

In this chapter, we report on the macromolecular engineering of polymer-based 

nanogels for immune activation and protein conjugation respectively. Polymers containing a 

solvophobic poly(pentafluorophenyl) (PFP) block and a solvophilic poly(methoxytriethylene 

glycol) block were synthesized via RAFT polymerization. Self-assembly in DMSO yielded 

nanoparticles through hydrophobic interaction between the PFP moieties. Additionally, the 

activated PFP esters allowed for core-cross linking and conversion of the nanoparticle into a 

hydrophilic nanogels by amide bond formation with primary amines. This chemistry was 

exploited to covalently ligate a small molecule imidazoquinoline-based TLR7/8 agonist into 

the nanogel core, which are potent activators of the innate immune system. Importantly, the 

imidazoquinoline-ligated nanogels focused the in vivo immune-activation on the draining 

lymph nodes, whilst dramatically reducing systemic inflammation. This unique feature also 

promoted antigen-specific humoral and cellular immune responses against an admixed 

protein antigen. Alternatively, these nanogels were equipped with protein-reactive vinyl 

sulfone moieties to allow for antigen conjugation. Free thiols were introduced at both the 

polymer chain ends through aminolysis of the RAFT thiocarbonyl groups, and into the 

nanogel core by reacting PFP esters with cysteamine. Subsequently, these free thiols were 

converted into vinyl sulfone moieties. Despite sterical constraints, nanogel-associated vinyl 

sulfone moieties remained well accessible for protein conjugation using BSA as a model 

antigen.  

 

 

Introduction 

As discussed earlier, formulating protein antigens as nanoparticles has proven to be a 

promising strategy to modulate and increase the adaptive antigen-specific CD8+ T cell 

response. This occurs through stimulation of the cross-presentation pathway1-5 and 

enhanced lymphatic transportation of nanoparticulate species compared to soluble ones6-8. 

The cross-presentation pathway can be further improved by co-delivery of immune-

modulators that shape the direction and strength of the adaptive immune response.9,10 

Agonists of Toll-like receptors (TLRs) are amongst the most potent activators of the innate 

immune response identified to date and thus are under intensive investigation as adjuvants 
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for vaccination11 or as agents for anti-cancer immunotherapy.12 Especially promising in this 

context are TLR7/8 agonists, that trigger endosomal danger receptors. These receptors 

typically recognize single stranded RNAs generated during viral infection13 but can also be 

triggered by a synthetic class of small molecule imidazoquinolines and guanosines.14 

Due to their pharmacokinetic profile, most molecular adjuvants rapidly diffuse after 

administration and evoke systemic inflammatory responses that cause dose-limiting 

toxicity.15,16 In the context of vaccination, the rapid diffusion of molecular adjuvants 

dramatically lowers the ability of antigen and TLR agonist to reach the same antigen-

presenting cells in the draining lymph node, which results in suboptimal immunity to the 

delivered vaccine antigen and by consequence, wasted inflammation.17 Co-encapsulation of 

antigens and TLR agonists inside polymeric carriers through steric, hydrophobic, or 

electrostatic entrapment as means to augment B and T cell immunity has been pursued by 

us and others.1,2,9,18-21 Nevertheless, the procedures applied to entrap TLR agonists inside 

polymeric carriers are often highly complex and yield ill-defined systems that suffer from 

burst releases of the TLR agonist following in vivo application. Covalent ligation of TLR 

agonists to polymeric nanoparticles might provide chemically better defined alternatives to 

physical (co)-encapsulation systems, as recently nicely highlighted by the Seder lab.22 

Additionally, a robust and selective conjugation strategy needs to be employed to 

enable efficient antigen conjugation to polymeric nanoparticles that contain these TLR 

agonists. In Chapter 3-4, we have endeavored to use maleimide- and pyridyldisulfide-

functionalized RAFT chain transfer agents to generate protein-reactive polymers, forming 

thioether and disulfide bonds with cysteine residues. However, maleimides are instable in 

the presence of primary amines used for nanogel core crosslinking, and pyridyldisulfides are 

prone to disulfide exchange in vivo with randomly encountered cysteines leading to de-

conjugation. Moreover, there is recent evidence on limited stability of maleimide-generated 

thioethers in vivo.23 Therefore, we elaborated on an alternative approach introduced by 

Maynard and co-workers, comprising post-polymerization modification of the thiocarbonyl 

end-group of RAFT polymers into a vinyl sulfone (VS) moiety. The latter can react with free 

cysteine moieties by Michael-type addition, affording stable thioether bonds (Figure 1).24 In 

this approach, after polymerization the thiocarbonyl moiety of the employed RAFT chain 

transfer agent (CTA) was reduced via aminolysis and subsequently, the resulting thiol was 

trapped with a divinyl sulfone.  
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In this chapter, polymer nanogels were prepared by selective crosslinking of self-

assembled amphiphilic reactive ester block copolymers. They are composed of a hydrophilic, 

poly(ethyleneglycol) or PEG-like polymer block based on methoxytriethylene glycol 

methacrylate (mTEGMA) and a hydrophobic polymer block based on pentafluorophenyl 

methacrylate (PFPMA) that can be block copolymerized by reversible addition-fragmentation 

chain transfer (RAFT) polymerization.25 The PEG-like hydrophilic block was used to provide 

nanoparticle stability and tissue mobility as recently demonstrated by us and others.6,9,26 The 

PFPMA block allowed for self-assembly into nanoparticles in polar aprotic solvents (such as 

DMSO), followed by functionalization and crosslinking of the PFP esters with bisamines27 

without facing competing hydrolysis reactions that would occur in aqueous medium.28 This 

feature was exploited to introduce a small molecule imidazoquinoline-based TLR7/8 agonist 

or protein-reactive vinyl sulfone moieties into the nanogel core. At the polymer chain end, 

vinyl sulfone moieties were introduced upon aminolysis of the RAFT thiocarbonyl groups. 

Furthermore, remaining PFP esters could be converted into hydrophilic moieties to yield 

fully hydrated nanogels after transfer to aqueous medium. 

 

 

Figure 1. Protein conjugation of vinyl sulfone-functionalized polymers or nanogels to free cysteine moieties in 

protein by Michael-type addition. 

 

 

Materials and methods 

 

Materials 

Unless otherwise stated, all chemicals were purchased from Sigma Aldrich and Acros 

Organics. 2, 2’-azobis(2-methylpropionitrile) (AIBN) as initiator was provided by Wako 

Chemicals and purified by recrystallization from diethyl ether prior to use. RAFT chain 

transfer agent 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CETPA) and 4-

cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPTPA) and the monomers tri(ethylene 

glycol) methyl ether methacrylate (mTEGMA) and pentafluorophenyl methacrylate (PFPMA) 
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were synthesized according to established procedures.27,29 Synthesis an characterization of 

the TLR agonist-ligated nanogels has been discussed in the corresponding paper30 and was 

similar to the nanogels synthesis described in this chapter. Amicon® Ultra-15 centrifugal 

filters with a MWCO of 3 or 10 kDa were obtained from Merck Millipore. Spectra/Por 3 

dialysis membranes with a MWCO of 1 kDa were obtained from Spectrum Labs. Sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed using Any 

kDTM Mini-PROTEAN® TGXTM precast gels from Bio-Rad. The immortalized dendritic cell line 

DC2.4 was a kind gift from Dr. Kenneth Rock (Dana Farber Cancer Institute, now at University 

of Massachusetts Medical School).31 Bone marrow derived dendritic cells were obtained as 

previously reported.32 Cell culture medium and supplements, Hoechst, Cholera Toxin Subunit 

B Alexa Fluor® 488 Conjugate (CTB-AF488) and tetramethylrhodamine (TMR) cadaverine 

were purchased from Life Technologies. The antibodies Fc block (CD16/32), MHCII-FITC, 

CD11c-APC and CD80-PE were obtained from BD Pharmingen.  

 

Instrumentation 

All 1H-, 13C-, and 19F-NMR spectra were recorded on a Bruker 300 MHz or 400 MHz FT 

NMR spectrometer. Chemical shifts (δ) are provided in ppm relative to TMS. Samples were 

prepared in given deuterated solvents and their signals referenced to residual non-

deuterated signals of the solvent. 

Molecular weight determination of the precursor polymers was obtained using size 

exclusion chromatography (SEC) in tetrahydrofuran (THF) as solvent. This system consisted 

of a PU 1580 pump, AS 1555 auto sampler, UV 1575 UV-detector (detection at 254 nm), RI 

1530 RI-detector from JASCO. Columns were purchased at MZ-Analysentechnik: MZ-Gel 

SDplus 102 Å and MZ-Gel SDplus 106 Å. Calibration was done using poly(styrene) standards 

purchased from Polymer Standard Services.  

UV-Vis spectrophotometry was performed on a Biomate 5 Thermo Spectronic 

spectrometer. Dynamic light scattering (DLS) analyses were performed on a Zetasizer Nano S 

(Malvern Instruments Ltd., Malvern, U.K.) equipped with a HeNe laser (λ = 633 nm) and 

detection a scattering angle of 173°. All samples were filtered through Whatman nylon 

syringe filters (0.45 µm pore size, GE Healthcare Life Science) prior to each measurement. 
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In vitro dendritic cell uptake of TLR agonist-ligated nanogels 

Flow cytometry 

DC2.4 cells (immortalized dendritic cell line) were cultured in RPMI-glutamax, 

supplemented with 10% FBS, 1 mM sodium pyruvate, 10 mM HEPES buffer, 0.05 mM 2-

mercaptoethanol, MEM NEAA and antibiotics (50 units/mL penicillin and 50 µg/mL 

streptomycin). Cells were incubated at 37 °C in an controlled, sterile environment of 95% 

relative humidity and 5% CO2. DC2.4 cells were seeded into 24-well titer plates (250 000 

cells per well, suspended in 0.95 mL of culture medium) and incubated overnight to allow 

cell sedimentation and subsequent adhesion to the bottom of the wells. Next, the cells were 

pulsed with 50 µL (yielding a total polymer/nanogel concentration of 80 µg/mL) of the TMR 

cadaverine-labeled nanogels. The same procedure was followed for soluble polymer and 

PBS. All samples were run in triplicate and the experiment was conducted for 4 h at 4 °C and 

37 °C. Special attention was given at the samples at 4 °C, as they were put on ice 30 min 

prior to pulsing in order to bring their temperature down to 4 °C. After 4 h of incubation, the 

wells were aspirated, washed with 1 mL of PBS and incubated with 500 µL of Cell 

Dissociation Buffer (15 min., 37°C). The cell suspensions were transferred into Eppendorf 

tubes and immediately centrifuged (350 g, 10 min., 5 °C). Finally, the supernatant was 

aspirated and the cell pellets were suspended in 200 µL of PBS and kept on ice to maintain 

cell integrity. FACS was performed on a BD Accuri C6 (BD Biosciences). The data were 

processed by FlowJo software. 

Confocal microscopy 

DC2.4 cells were plated out on Willco-Dish glass bottom dishes (50 000 cells, 

suspended in 200 µL of culture medium) and incubated overnight. Next, 10 µL (yielding a 

total polymer/nanogel concentration of 80 µg/mL) of the respective samples that were 

fluorescently labeled with TMR cadaverine was added, followed by 4 h of incubation. 

Hoechst and CTB-AF488 staining was carried out simultaneously on fixed cells. In summary, 

culture medium was aspirated and cells were washed with PBS. Next, 200 µL of 4 % 

paraformaldehyde was added and allowed to fixate for 30 min. A staining solution was 

prepared by adding Hoechst (10 µL of a 1 mg/mL stock in DMSO) and CTB-AF488 (5 µL of a 1 

mg/mL stock in PBS) to a PBS buffer containing 1% of BSA (2.5 mL). After aspiration and 

washing, 200 µL of this staining solution was added to the fixed cells and incubated for 40 

minutes at room temperature. Finally, the samples were washed with 1% BSA PBS buffer. 
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Confocal microscopy was carried out on a Leica DMI6000 B inverted microscope equipped 

with an oil immersion objective (Leica, 63x, NA 1.40) and attached to an Andor DSD2 

confocal scanner. Images were processed with the ImageJ software package. 

 

In vitro dendritic cell maturation  

Mouse bone-marrow-derived DCs (BM-DCs) were generated from C57BL/6 mice 

using the modified Inaba protocol described in Chapter 5.33 Day 7 bone marrow derived DCs 

were incubated with different concentrations (i.e. total IMDQ-equivalent of 0.08, 0.4 and 2 

µg/mL) of the respective samples. After overnight incubation, the cell suspensions were 

transferred into Eppendorf tubes and immediately centrifuged (350 g, 10 min., 5 °C). The 

supernatant was aspirated and the cell pellets were suspended in 50 µL of an antibody 

cocktail solution containing Fc block (diluted 200x), MHCII-FITC (diluted 500x), CD11c-APC 

(diluted 200x) and CD80-PE (diluted 200x) in PBS buffer. After 30 min. of incubation on ice, 

200 µL of PBS was added to the samples prior to centrifugation (350 g, 10 min., 5 °C). Finally, 

the supernatant was aspirated and the cell pellets were suspended in 200 µL of PBS and kept 

on ice to maintain cell integrity. FACS was performed on a BD Accuri C6 (BD Biosciences). The 

data were processed with the FlowJo software package and the applied gating strategy is 

depicted in Figure 2. 

 

 

Figure 2. Flow cytometry gating strategy for BM-DC maturation. 
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Synthesis of p(PFPMA)33 using CPTPA  

In analogy to earlier reports,27 a Schlenk tube equipped with a stir bar was loaded 

with PFPMA (2.0 g; 7.932 mmol), CPTPA (88.5 mg; 0.317 mmol) and AIBN (5.2 mg; 0.032 

mmol). All compounds were dissolved in anhydrous dioxane (2.0 mL). Following three 

freeze-pump-thaw cycles the tube was immersed in an oil bath at 70 ˚C for 6 h under 

vigorously stirring. A 1H-NMR sample of the reaction mixture dissolved in CDCl3 was analyzed 

showing 50% monomer conversion. The resulting polymer was isolated by precipitation in 

hexane and centrifugation (the supernatant was slightly red from unreacted CTA). After re-

dissolving in a few mL of dioxane, this process was repeated three times. The precipitated 

polymer was dried for 12 h at 40˚C under 10 mbar vacuum affording p(PFPMA)33 

(determined by 1H-NMR, Figure 3) (889 mg; 82%) as a red powder. SEC (THF, PS-Std.): 

Number-average molecular weight (Mn) = 8,400 g/mol; Weight-average molecular weight 

(Mw) = 10,700 g/mol; Molecular weight dispersity (Đ) = 1.29. 

 

 
Figure 3. 

 1
H-NMR (CDCl3, 300 MHz) of p(PFPMA)33: δ [ppm] = 8.20 – 7.30 (m, 5H, -C6H5 CTA phenyl end group); 

3.05 – 1.90 (br, 2H, -CH2- PFPMA polymer main chain); 1.90 – 1.20 (br, 3H, -CH3 PFPMA polymer main chain).  
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Synthesis of p(PFPMA)46 using CETPA  

In analogy to earlier reports,27 a Schlenk tube equipped with a stir bar was loaded 

with PFPMA (2.0 g; 7.932 mmol), CETPA (83.6 mg; 0.317 mmol) and AIBN (5.2 mg; 0.032 

mmol). All compounds were dissolved in anhydrous dioxane (2.0 mL). Following three 

freeze-pump-thaw cycles the tube was immersed in an oil bath at 70˚C for 6 h under 

vigorously stirring. A 1H-NMR sample of the reaction mixture dissolved in CDCl3 was analyzed 

showing 52% monomer conversion. The resulting polymer was isolated by precipitation in 

hexane and centrifugation (the supernatant was slightly yellow from unreacted CTA). After 

re-dissolving in few mL of dioxane, this process was repeated three times. The precipitated 

polymer was dried for 12 h at 40˚C under 10 mbar vacuum affording p(PFPMA)46 

(determined by 1H-NMR, Figure 4) (907 mg; 81%) as a yellow powder. SEC (THF, PS-Std.): Mn 

= 11,800 g/mol; Mw = 15,300 g/mol; Đ = 1.29. 

 

 

Figure 4.
 1

H-NMR (CDCl3, 300 MHz) of p(PFPMA)46: δ [ppm] =  3.60 – 3.05 (m, 2H, -S-CS-S-CH2- CTA ethyl end 

group); 3.05 – 1.90 (br, 2H, -CH2- PFPMA polymer main chain); 1.90 – 1.20 (br, 3H, -CH3 PFPMA polymer main 

chain).  

 

 

Synthesis of CPTPA p(PFPMA)33-b-p(MTEGMA)35 (1)  

In analogy to earlier reports,27 a Schlenk tube equipped with a stir bar was loaded 

with mTEGMA (760 mg; 3.27 mmol), p(PFPMA)33 (425 mg; 0.049 mmol) and AIBN (1.1 mg; 

0.07 mmol). All compounds were dissolved in anhydrous dioxane (2.34 mL). Following three 
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freeze-pump-thaw cycles the tube was immersed in an oil bath at 70˚C for 18 h under 

vigorously stirring. A 1H-NMR sample of the reaction mixture dissolved in CDCl3 was analyzed 

showing 72% monomer conversion. The resulting polymer was isolated by precipitation in 

hexane and centrifugation. After re-dissolving in few mL of dioxane, this process was 

repeated three times. The precipitated polymer was dried for 12 h at 40˚C under 10 mbar 

vacuum affording p(PFPMA)33-b-p(MTEGMA)35 (determined by 1H-NMR, Figure 5) (847 mg; 

87%) as a slightly red powder. 19F-NMR is depicted in Figure 6. SEC (THF, PS-Std.): Mn = 

11,500 g/mol; Mw = 14,000 g/mol; Đ = 1.22.  

 

 

Figure 5. 
1
H-NMR (CDCl3, 300 MHz) of p(PFPMA)33-b-p(MTEGMA)35 (1): δ [ppm] = 8.20 – 7.30 (m, 5H, -C6H5 CTA 

phenyl end group); 4.09 (br, 2H, COO-CH2-); 3.65 (br, 8H, COO-CH2-CH2-O-CH2-CH2-O-CH2-); 3.55 (br, 2H, -CH2-

O-CH3); 3.38 (br, 3H, -O-CH3); 2.85 – 2.10 (br, 2H, -CH2- PFPMA polymer main chain); 2.10 – 1.70 (br, 2H, -CH2- 

MEO3MA polymer main chain); 1.70 – 1.20 (br, 3H, -CH3 PFPMA polymer main chain) and 1.20 – 0.60 (br, 3H, -

CH3 MEO3MA polymer main chain).  

 

Figure 6. 
19

F-NMR (CDCl3, 282 MHz) of p(PFPMA)33-b-p(MTEGMA)35 (1): δ [ppm] =  -150.41 – -151.52 (br, 2F, o-

ArF); -157.00 (br, 1F, p-ArF);  161.96 (br, 2F, m-ArF). 
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Synthesis of CETPA p(PFPMA)46-b-p(MTEGMA)57 (2) 

In analogy to earlier reports,27 a Schlenk tube equipped with a stir bar was loaded 

with mTEGMA (745 mg; 3.21 mmol), p(PFPMA)46 (417 mg; 0.035 mmol) and AIBN (1.0 mg; 

0.006 mmol). All compounds were dissolved in anhydrous dioxane (2.30 mL). Following three 

freeze-pump-thaw cycles the tube was immersed in an oil bath at 70˚C for 18 h under 

vigorously stirring. A 1H-NMR sample of the reaction mixture dissolved in CDCl3 was analyzed 

showing 83% monomer conversion. The resulting polymer was isolated by precipitation in 

hexane and centrifugation. After re-dissolving in few mL of dioxane, this process was 

repeated three times. The precipitated polymer was dried for 12 h at 40˚C under 10 mbar 

vacuum affording p(PFPMA)46-b-p(MTEGMA)57 (determined by 1H-NMR, Figure 7) (865 mg; 

84%) as a slightly red powder. 19F-NMR is depicted in Figure 8. SEC (THF, PS-Std.): Mn = 

19,800 g/mol; Mw = 24,000 g/mol; Đ = 1.21.  

 

 

Figure 7. 
1
H-NMR (CDCl3, 300 MHz) of p(PFPMA)46-b-p(MTEGMA)57: δ [ppm] = 4.08 (br, 2H, COO-CH2-); 3.65 

(br, 8H, COO-CH2-CH2-O-CH2-CH2-O-CH2-); 3.55 (br, 2H, -CH2-O-CH3); 3.38 (br, 3H, -O-CH3); 2.85 – 2.05 (br, 2H, -

CH2- PFPMA polymer main chain); 2.05 – 1.70 (br, 2H, -CH2- MEO3MA polymer main chain); 1.70 – 1.20 (br, 3H, 

-CH3 PFPMA polymer main chain) and 1.20 – 0.60 (br, 3H, -CH3 MEO3MA polymer main chain).  
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Figure 8. 
19

F-NMR (CDCl3, 282 MHz) of p(PFPMA)46-b-p(MTEGMA)57: δ [ppm] = -151.21 – -152.21 (br, 2F, o-

ArF); -157.85 (br, 1F, p-ArF);  162.94 (br, 2F, m-ArF). 

 

Nanogel synthesis 

Crosslinking. 

A detailed example of a one-pot nanogel synthesis using CPTPA p(PFPMA)33-b-

p(MTEGMA)35 (1) is provided below. The precursor block copolymer 1 (150 mg; 296 µmol of 

reactive esters; 1 eq.) was transferred into a round-bottom flask equipped with a stirring bar 

and dispersed at 10 mg/ml in anhydrous DMSO (15 mL) under argon atmosphere. After 

sonication for 2h, the resulting micellar dispersion was characterized by DLS. Crosslinking 

was performed by addition of 2, 2’-(ethylenedioxy)bis(ethylamine) (10.8 µL, 74 µmol, 0.25 

eq.) and triethylamine (TEA) (82.6 µL, 592 µmol, 2 eq) and stirring overnight at 50˚C. This 

step was omitted to yield soluble control polymers with chain end (Polymer_1VS_CE) or 

backbone (Polymer_2VS_CE+BB) VS modification.  

Chain end functionalization (CE). 

Half of the crosslinked nanogel dispersions (75 mg; 4.5 µmol of CTA moieties, 148 

µmol of reactive esters, 1 eq.) was used for VS shell functionalization. To guarantee 

complete removal of remaining PFP esters in the nanogel, the reaction mixture was 

quenched with excess 2-aminoethanol (26.8 µL; 445 µmol; 3 eq. relative to reactive esters) 

and TEA (186 µL, 1.33 mmol, 9 eq. relative to reactive esters). After 6 hours of stirring at 

50˚C under argon atmosphere, an excess of 2,2′-dipyridyl disulfide (99 mg, 449 µmol, 100 eq. 

relative to CTA moieties) was added to the reaction mixture to cap the free thiols generated 

by aminolysis of the CTA moieties. After overnight reaction at 50°C, the solution was diluted 

10x with deionized water and purified 5 times by spin filtration with a 40:60 water:methanol 

mixture to remove the excess of 2-aminoethanol, TEA and 2,2’-dipyridyl disulfide. The 

purified sample was diluted 1:1 with a 0.1 M bicarbonate buffer pH 8.5 and analyzed by UV-
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vis spectroscopy. Subsequently the sample was added to an excess of tris(2-

carboxyethyl)phosphine (TCEP, 26 mg, 89 µmol, 20 eq. relative to CTA moieties) and 

incubated for 15 minutes. The release of 2-pyridinethione upon cleavage of the disulfide 

linkages with the capped thiols was confirmed by UV-vis spectroscopy. An aliquot of this 

mixture was further purified by spin filtration without VS modification to yield non protein-

reactive controls (Nanogel_1SH_CE) The remaining mixture was added dropwise to an excess 

of divinyl sulfone (475 µL, 4.5 mmol, 1000 eq. relative to CTA moieties) and reacted for 

overnight under argon atmosphere at room temperature. Finally, the reaction mixture was 

transferred into a dialysis membrane and dialyzed against 50:50 water:methanol for three 

days, followed by dialysis against pure water and subsequent lyophilization 

(Nanogel_1VS_CE). 

Backbone functionalization (BB).  

Half of the crosslinked nanogel dispersions (75 mg, 148 µmol of reactive esters, 1 eq.) 

was used for VS core functionalization by the introduction of free thiol groups on the 

reactive ester moieties. For that purpose the crosslinked nanogels were reacted with 

cysteamine (8.4 mg, 74 µmol, 0.5 eq.) and TEA (82 µL, 592 µmol, 4 eq.) for 6 hours under 

argon atmosphere at 50°C. To guarantee complete removal of remaining PFP esters in the 

nanogel, the reaction mixture was quenched with excess 2-aminoethanol (26.8 µL; 445 

µmol; 3 eq.) and TEA (186 µL, 1.33 mmol, 9 eq.). In addition, an excess of 2,2′-dipyridyl 

disulfide (408 mg, 1.8 mmol, 12.5 eq.) was added to cap the free thiols originating from the 

introduced cysteamine moieties. After overnight reaction at 50°C, the solution was purified 

by spin filtration and analyzed by UV-vis spectroscopy as described for the shell 

functionalized nanogels. Subsequently the sample was added to an excess of TCEP (212 mg, 

741 µmol, 5 eq.) and incubated for 15 minutes. Again the release of pyridyl disulfide upon 

cleavage of the disulfide linkages with the capped thiols was confirmed by UV-vis 

spectroscopy. An aliquot of this mixture was further purified by spin filtration without VS 

modification to yield non protein-reactive controls (Nanogel_1SH_CE+BB). The remaining 

mixture was then added dropwise to an excess of divinyl sulfone (784 µL, 7.4 mmol, 50 eq.) 

and reacted for overnight under argon atmosphere at room temperature. Finally, the 

reaction mixture was transferred into a dialysis membrane and dialyzed against 50:50 

water:methanol for three days, followed by dialysis against pure water and subsequent 

lyophilization (Nanogel_1VS_CE+BB). 
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Conjugation of VS-functionalized nanogels to BSA 

An example conjugation procedure is as follows. Stock solutions of BSA (1.16 x 10-4 

M, 7.7 mg/mL), TCEP (0.1 M, 30 mg/mL) and nanogels (20 mg/mL) were prepared in a 

bicarbonate buffer (0.1 M, pH 8.2). The TCEP stock was combined with the BSA solution in a 

1:10 ratio and allowed to react for 15 min. Subsequently, the BSA and polymer stock 

solutions were combined to obtain a molar ratio of protein:polymer 1:40. Then the reaction 

mixture was diluted with buffer solution to obtain a protein concentration of 1.51 x 10-5 M. 

Next, 10% of DMSO was added and the mixture was incubated overnight at 20 °C in a 

thermoshaker. Conjugation efficiency was evaluated by reducing SDS-PAGE using β-

Mercaptoethanol as a reducing agent. Quantification of protein conjugation was done by 

automated integration of optical density by ImageJ software and calculating the ratio of 

bound protein to total protein content per lane as described in Chapter 4. 

 

 

Result and discussion 

 

In vitro and in vivo evaluation of TLR agonist-ligated nanogels 

Scheme 1 schematically represents the supramolecular design and chemical synthesis 

of the degradable TLR agonist-ligated nanogels. Self-assembly of well-defined p(MTEGMA-b-

PFPMA) block copolymers in DMSO yielded nanoparticles with a mean size of around 50 nm. 

Detailed synthesis procedures and characterization data are provided in the corresponding 

paper.30 Subsequently, the TLR7/8 agonist 1-(4-(aminomethyl)benzyl)-2-butyl-1H-

imidazo[4,5-c]quinolin-4-amine (IMDQ)34 was covalently ligated into the core of the 

nanoparticles, through amide bond formation between the primary amine of IMDQ and the 

activated PFP esters. Core-crosslinking was performed by addition of the bis-amino-ketal 2,2-

bis(aminoethoxy)propane, which installs pH-sensitive ketal moieties that renders the 

crosslinks susceptible to acid hydrolysis.35,36 Subsequently, the remaining unreacted PFP-

esters were converted to hydrophilic repeating units by addition of excess 2-aminoethanol. 

The latter in combination with the degradable crosslinker affords terminal degradation of 

the nanogels into fully soluble polymers, that can be excreted from the body and thus avoids 

long-term accumulation. As controls, non-crosslinked polymers were prepared by omitting 

the crosslinking step. Fluorescently labeled batches were prepared by adding the primary 
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amine-bearing fluorescent dye AlexaFluor488-cadaverine (AF488) or tetra-methylrhodamine 

cadaverine (TMR) prior to IMDQ ligation and crosslinking. 

 

 

Scheme 1. Assembly of degradable immune-stimulatory nanogels. (A) Schematic overview and (B) 

corresponding chemical structures of nanogel assembly. (a) Block copolymers self-assemble in DMSO into 

nanoparticles. (b) Covalent ligation of TLR7/8 agonist (green) and cross-linking. (c) Conversion of residual PFP 

ester with 2-ethanolamine yielding fully hydrated nanogels after transfer to the aqueous phase 

 

An extensive in vitro evaluation was performed to determine to which extent the 

IMDQ-ligated nanogels could activate bone marrow-derived dendritic cells (BM-DCs) in vitro. 

DCs represent the most potent antigen presenting cells and thus constitute the primary 

target of any adjuvant. As TLR7/8 is localized on the endosomal membrane of DCs, nanogels 

must be internalized by DCs in order for IMDQ to reach its target receptor. To address 

internalization, we pulsed DCs with fluorescently labeled nanogels and soluble (non-

crosslinked) polymer at 4 °C and 37 °C respectively, followed by flow cytometry (FACS) 

analysis and confocal microscopy. At 37 °C, FACS analysis revealed a more profound 

association of DCs with nanogels compared to soluble polymer (Figure 9), a feature that can 

be attributed to the known preference of DCs to ingest particulate material.28 At 4 °C by 

contrast, no cellular association upon incubation was observed. This indicates an energy-

dependent uptake mechanism, since active endocytosis is abolished at 4 °C and only cell 

surface receptor binding or aspecific binding is expected. Confocal microscopy confirmed 

that both nanogels and soluble polymer were indeed internalized by DCs at 37°C and were 

not merely attached to the cell surface (Figure 10).  
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Figure 9. Cellular association between TMR-labeled polymer and nanogels with DCs at 4 °C and 37 °C. (A) Flow 

cytometry histogram, (B1) percentage of positive cells and (B2) mean cellular fluorescence intensity (MFI). 

(n=3) 

 

Figure 10. Confocal microscopy images of DCs pulsed at 37 °C with TMR-labeled (green channel) (A) nanogels 

and (B) non-crosslinked polymer. Cell membranes were labeled with AF647-cholera toxin B (red channel) and 

cell nuclei were labeled with Hoechst (blue channel). The panels (1) depict a confocal xy-section with the 

corresponding orthogonal xz- and yz-planes. The panels (2) depict maximum intensity projections (MIP) of the 

full recorded Z-stack. The images were recorded using identical settings for excitation power, detection 

sensitivity and contrast. Scale bar represents 10 µm. 
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In a subsequent series of experiments, we set out to determine whether nanogel-

ligated and non-crosslinked polymer-ligated IMDQ was still capable of activating its receptor 

in vitro. For this purpose, we pulsed mouse BM-DCs with either soluble IMDQ, polymer-

ligated IMDQ, or nanogel-ligated IMDQ. Control samples were left untreated or pulsed with 

polymer or nanogels without IMDQ. The extent of DC activation was quantified by flow 

cytometric (FACS) measurement of the surface expression of major histocompatibility 

complex class II (MHCII) and the co-stimulatory molecule CD80. The corresponding 

histograms and graphs are depicted in Figure 11 and Figure 12 respectively. FACS analysis 

showed, firstly, that control polymer and nanogels (without ligated IMDQ) did not activate 

DCs, suggesting that these are inherently non-immunogenic, at least under the experimental 

conditions utilized in these experiments. Second, polymer- and nanogel-ligated IMDQ was 

still capable of activating DCs, albeit to a lesser extent than the equivalent amount of soluble 

IMDQ at low doses. This is in analogy with previous findings by the David group, who 

reported that covalent modification of the primary amine of IMDQ with small molecules 

induced a reduction of its capacity to stimulate TRL7/8.34 Nevertheless, in our setting, 

macromolecular modification of IMDQ still provided access to its receptor and allowed 

potent DC activation. Note that the discrepancy between uptake (Figure 9) and DC activation 

(Figure 11) - i.e. TMR-labeled polymer is barely internalized by DCs, whereas polymer-ligated 

IMDQ is only slightly less potent than nanogel-ligated IMDQ - is likely due to the shorter 

incubation time used in the DC uptake study and the more hydrophobic nature of polymer-

ligated IMDQ which could enhance DC uptake in the DC activation study. 

 

Figure 11. Flow cytometry histogram obtained from BM-DCs treated with crosslinked nanogels and soluble 

polymers, conjugated with and without IMDQ at 0.08 µg/mL (non-filled), 0.40 µg/mL (light-filled) and 2.00 

µg/mL (filled). 
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Figure 12. FACS analysis of the induction of DC maturation by soluble IMDQ (blue), IMDQ-ligated polymer 

(green) and IMDQ-ligated nanogels (red) for different concentrations of IMDQ (filled bars). The corresponding 

non-IMDQ-ligated controls are depicted by the hollow bars and correspond to the same concentration of DMSO 

to solubilize IMDQ in PBS and the same concentration of polymer, respectively nanogels as in the IMDQ-ligated 

samples. Data are expressed as (A) the percentage of MHCII
hi

 & CD80
hi

 cells and the mean MFI of the DCs in the 

(B) MHCII and (C) CD80 gate. (n=3)  

 

 

In subsequent in vivo studies in mice we found that the nanogel-mediated delivery of 

IMDQ focuses innate immune activation to the site of injection and its draining lymph node 

(DLN), a feature closely linked to adjuvant potency and minimized toxicity. This was 

demonstrated in IFN-β reporter mice, in which a firefly luciferase encoding sequence had 

been placed under the control of the IFN-β promoter.37 TLR7/8 agonists are indeed very 

potent inducers of type I IFN (including IFN-β), which are required for the adjuvant 

properties of TLR7/8 agonists but are also a cause of severe inflammatory toxicity when 

induced systemically.12,14 Whole-body imaging in IFN-β reporter mice enables a precise, 

spatiotemporal analysis of IFN-β induction in vivo, and can therefore be a useful predictive 

marker in estimating tissue disposition of the adjuvant, but also in assessing systemic 

exposure. As depicted in Figure 13A, soluble IMDQ rapidly induced a systemic IFN-β 

response that coincided with a profound expression of IFN-β in the neck and abdomen of the 

injected mice. This early systemic production of type I IFN is most likely the consequence of 

the rapid diffusion of the injected IMDQ from the footpad to the circulation. In contrast to 

soluble IMDQ, nanogel-ligated IMDQ induced a luciferase signal largely confined to the 

footpad and the draining popliteal LN at 4 h post injection.  

To confirm that IMDQ-nanogels restrict the inflammatory response to the local DLN, 

the acute cellular inflammatory infiltrate in the DLN of soluble IMDQ and IMDQ-nanogel 

injected mice were compared. As depicted in Figure 13B, nanogels by themselves did not 
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increase the total cellularity of the draining lymph node, while soluble IMDQ induced a weak 

increase in cellularity at the local DLN. IMDQ-nanogels by contrast caused a two-fold 

increase in total DLN cellularity, indicating the locally confined release of type I IFN and 

subsequent recruitment of inflammatory cells. In case of soluble IMDQ, type I IFN are 

produced more systemically and even at higher levels in distant sites such as the neck and 

abdomen, a phenomenon that probably diverts inflammatory cells to these sites instead. 

Confocal microscopy of a DLN tissue section upon footpad injection of AF488-labeled 

nanogels demonstrate that the nanogels reach the draining lymph nodes and localize to the 

subcapsular and medullary sinuses of the lymph node, a distribution typically observed when 

nanoparticles reach the lymph nodes by passive flow along the lymphatics (Figure 13C). As 

mentioned earlier, particles with a size range between 10-200 nm indeed enter lymphatic 

vessels by direct diffusion through lymphatic endothelial cell junctions and thus can reach 

the draining lymph nodes without prior cellular uptake.6  

 

 

Figure 13. (A) In vivo luminescence in IFN-β reporter mice. Images recorded after 4, 8 and 24 h post injection of 

(A1) soluble and (A2) nanogel-ligated IMDQ in the footpad (each at 10 μg IMDQ equivalents). (B) FACS analysis 

of the DLN, depicting the total cell count (n=3). (C) Confocal images of the draining popliteal lymph nodes (DLN) 

of mice injected with IMDQ-nanogels (at 10 μg IMDQ equivalents). Scale bar represents 100 μm.
30 
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These data indicate that ligation of IMDQ to the nanogels prevents systemic 

distribution of IMDQ, and instead restricts its action to the injection spot and its draining 

lymph nodes, which should result in a strongly improved therapeutic index. Additionally, the 

functional impact of localized IMDQ activity, by means of nanogel ligation, on the adaptive 

immune response against an admixed antigen was investigated. In this study, nanogel-

ligated IMDQ was shown to outperform soluble IMDQ in terms of cellular and humoral 

responses. We will not elaborate on these data in the current chapter, but a thorough 

discussion including experimental sections for all the above mentioned in vivo studies can be 

found in the corresponding paper.30 Importantly, the covalent ligation of selected peptides 

and antigens to the nanogels could further unveil the potential of these IMDQ-nanogels as 

adjuvants for vaccination. Therefore we aimed at further engineering this nanogel platform 

by introducing protein-reactive moieties that enable antigen conjugation. 

 

Design of protein-reactive nanogels 

The design strategy for protein-reactive nanogels is depicted in Scheme 2. In a first 

step, block copolymers composed of p(PFPMA) and p(mTEGMA) were prepared via RAFT 

polymerization using respectively 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid 

(CPTPA) and 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (CETPA) as a 

chain transfer agent (CTA) and AIBN as radical initiator. We started with polymerizing PFPMA 

affording p(PFPMA) polymers with either a dithiobenzoate end group [p(PFPMA)33 

generated by CPTPA] or an ethyl trithiocarbonate end group [p(PFPMA)46 generated by 

CETPA] that could both be used as a macroCTA for the polymerization of mTEGMA. The 

reason for choosing this sequence, i.e. first polymerizing PFPMA and then mTEGMA, is 

because we desired to obtain block copolymers with the thiocarbonyl RAFT end group at the 

hydrophilic chain end for further post-modification into a cysteine-reactive vinyl sulfone 

moiety. Table 1 summarizes the synthesis conditions and polymer characteristics of well-

defined block copolymers p(PFPMA)33-b-p(MTEGMA)35 and p(PFPMA)46-b-p(MTEGMA)57, 

further denoted as 1 and 2. Size exclusion chromatography (SEC) elugrams with THF as 

eluent are shown in Figure 14, and 1H- and 19F NMR spectra can be found in the Materials 

and Methods section.  
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Table 1. Results of RAFT homo and block copolymerization of PFPMA and mTEGMA. 

 CTA 
[M]:[CTA] 

:[AIBN]  

t 

(h) 

p 

 (%) 

DP 

(NMR) 

MNMR 

(g/mol) 

Mn 

(g/mol) 

Mw 

(g/mol) 
Đ 

(PFPMA)33 CPTPA 25:1:0.1 6 50 33 8,600 8,400 10,700 1.29 

p(PFPMA)46 CETPA 25:1:0.1 6 52 46 11,900 11,800 15,300 1.29 

p(PFPMA)33-b-p(MTEGMA)35 p(PFPMA)33 65:1:0.15 18 72 35 16,700 11,500 14,000 1.22 

p(PFPMA46-b-p(MTEGMA)57 p(PFPMA)46 90:1:0.15 18 83 57 25,100 19,800 24,000 1.21 

 

 

 

Figure 14. Size exclusion chromatogram (eluent: THF) of p(PFPMA) homo and p(PFPMA)-b-p(MTEGMA) block 

copolymers with their according molecular weights and distributions (based on poly(styrene) calibration). 

 

 

In DMSO, both block copolymers 1 and 2 formed self-assembled nanoparticles with a 

mean diameter of respectively 25 and 40 nm, as measured by dynamic light scattering (DLS) 

(Figure 15A). Next, the self-assembled nanoparticles were core-crosslinked by addition of 

0.25 equivalents 2, 2’-(ethylenedioxy)bis(ethylamine) in respect to reactive esters, forming 

stable intra- and inter-polymer amide bonds between the activated PFP-esters. For the sake 

of simplicity, we elaborated in this work solely on non-degradable nanogels. However, as 

shown for the TLR-ligated nanogels and as demonstrated in literature, this class of nanogels 

can easily be rendered degradable in response to endosomal pH using ketal-based bisamine 

crosslinkers.28,30 As controls, we also prepared soluble polymers – instead of nanogels – by 

omitting this crosslinking step, which will further on in this chapter be denoted as ‘polymer’, 

whereas crosslinked nanogels will be denoted as ‘nanogel’. 
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Figure 15. Size distribution curves (volume mean diameter) of 1 and 2 measured at 10 mg/mL (A) in DMSO, (B) 

after chain end functionalization, and (C) backbone and chain end vinyl sulfone functionalization. Crosslinked 

nanogels (denoted as ‘nanogel’) and non-crosslinked controls (denoted as ‘polymer’) were measured in 0.1M 

bicarbonate buffer pH 8.5.  

 

 

Subsequently, the crosslinked nanoparticles were further engineered with cysteine-

reactive moieties at either the p(mTEGMA) chain ends (CE) or both the p(mTEGMA) chain 

ends and the backbone (CE+BB) of the inner core polymers. For engineering cysteine-

reactivity into the nanoparticles only at the chain end, after the crosslinking step, all 

remaining PFP-esters were converted by an excess of 2-aminoethanol. The use of 2-

aminoethanol renders the inner core of the nanoparticles hydrophilic and yields fully 

hydrated nanogels upon transfer of the nanoparticles from DMSO to aqueous medium. To 

introduce cysteine-reactive moieties into the backbone of the inner core polymers, after 

crosslinking, the nanoparticles were first treated with 0.5 equivalents of cysteamine to 

convert remaining PFP-esters into mercaptoethylmethacrylamide moieties. Subsequently, 

the remaining unreacted PFP-esters were also converted to hydrophilic repeating units by 

addition of an excess 2-aminoethanol. For the sake of clarity, vinyl sulfone-functionalized 

nanogels and polymers will be annotated with ‘VS_CE’ referring to nanogels with VS groups 
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only at the p(mTEGMA) chain ends, and ‘VS_CE+BB’ referring to nanogels with VS groups 

both at the p(mTEGMA) chain ends and the backbone of the inner core polymer chains.  

In the presence of primary amines, aminolysis of the thiocarbonyl RAFT end-groups 

leads to free thiols at the p(mTEGMA) chain ends. In our case, the used RAFT CTAs (CPTPA 

and CETPA) afforded block copolymers with either a dithiobenzoate or ethyl trithiocarbonate 

end group that are both suitable for conversion into free thiols by aminolysis. These chain 

end groups, as well as the thiols introduced into the nanogel core via cysteamine, were 

subsequently converted into cysteine-reactive vinyl sulfone moieties. For this purpose, the 

nanoparticles were transferred from DMSO to water via dialysis which also removed low 

molecular weight byproducts and unreacted species. Next, we attempted to react the free 

thiols with an excess of divinyl sulfone via a Michael-type thiol-ene reaction and in presence 

of TCEP, to reduce possibly formed disulfides. However, we observed that over the time 

course of several days during dialysis, the basic milieu that was generated for PFP-ester and 

RAFT end group aminolysis triggered extensive oxidation of the free thiols, which prevented 

subsequent Michael-type reaction with divinyl sulfone. Ellman’s assay on these samples 

confirmed the absence of free thiols (Figure 16).  
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Figure 16. Results of an Ellman’s assay for the detection of free thiols on polymer end groups in the corona of 

nanogel_1 and nanogel_2 prepared by block copolymer p(PFPMA)33-b-p(MTEGMA)35 (1) and p(PFPMA)46-b-

p(MTEGMA)57 (2) after cross-linking with 2, 2’-(ethylenedioxy)bis(ethylamine), RAFT end group aminolysis with 

excess 2-aminoethanol and subsequent dialysis (no treatment with 2,2′-dipyridyl disulfide). No release of 2-

nitro-5-thiobenzoic acid from the Ellman’s reagent (DTNB) was found. 
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To circumvent this issue, immediately after PFP-ester conversion, free thiols were 

capped by addition of 2,2′-dipyridyldisulfide in a one-pot setting without the need for 

intermitted purification. Besides avoiding oxidation during further work-up, capping free 

thiols with 2,2′-dipyridyl disulfide also prevented unwanted inter-particle crosslinking by 

disulfide formation. After removal of low molecular weight by-products and the excess of 

unreacted species by spin filtration, free thiols were regenerated upon reduction of the 

disulfide linkages by TCEP, as monitored by UV-Vis spectrophotometric detection of the 

released pyridine-2-thione (Figure 17 for nanogels, Figure 18 for polymers). Note that spin 

filtration was preferred over dialysis to shorten the time scale of preparation and reduce the 

risk of unwanted oxidative side reactions. Subsequently, the free thiols were reacted with an 

excess of divinyl sulfone to yield cysteine-reactive vinyl sulfone (VS)-functionalized nanogels. 

Additionally, we also prepared control nanogels and soluble polymers by omitting the divinyl 

sulfone modification step. Note that in this case, due to the TCEP treatment, all 

pyridyldisulfide moieties at the polymer chain ends and backbone were converted into free 

thiols (SH). Finally, all samples were extensively dialyzed and obtained as a dry powder after 

lyophilization.  
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Figure 17. UV-Vis spectroscopy analysis of nanogels before (blue curves) and after (red curves) the addition of 

TCEP demonstrates the release of pyridine-2-thione (λmax = 343 nm) upon reduction of disulfide linkages, 

thereby generating free thiols that subsequently can be modified with divinyl sulfone.  
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Figure 18. UV-Vis spectroscopy analysis of non-crosslinked polymer before (blue curves) and after (red curves) 

the addition of TCEP demonstrates the release of pyridine-2-thione (λmax = 343 nm) upon reduction of disulfide 

linkages, thereby generating free thiols that subsequently can be modified with divinyl sulfone.  

 

DLS analysis of re-dispersed samples in aqueous medium are shown in Figure 15B-C. 

For both 1 and 2, crosslinking of the self-assembled micellar structures in DMSO (vide supra) 

with bisamines afforded the formation of nanogels with similar sizes in aqueous medium as 

those measured in DMSO before transformation of the PFP esters (Figure 15A). Contrary, 

when the crosslinking step was omitted, chain end vinyl sulfone functionalized polymers (i.e. 

polymerVS_CE) were fully water soluble due to the introduction of 2-aminoethanol onto the 

reactive ester moieties and exhibited unimer sizes of about 5 nm and 6.6 nm for 1 and 2 

respectively. However, backbone functionalization of the polymers (i.e. polymerVS_CE+BB) with 

vinyl sulfone introduced new hydrophobic moieties onto the reactive ester moieties and 

caused some aggregate formation, in particular in case of 2VS_CE+BB. To confirm the successful 

incorporation of vinyl sulfone, NMR analysis was performed on the non-crosslinked polymers 

(Figure 19). For the chain end functionalized polymer (i.e. polymerVS_CE) we can clearly 

distinguish the vinyl sulfone proton peaks at 6.25-6.50 ppm and 6.85-7 ppm respectively. 

Nonetheless they are relatively weak since only one vinyl sulfone per polymer is possible. 

Side chain functionalized polymers (i.e. polymerVS_CE+BB) by contrast; show broader peaks 
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with an increased intensity due to multiple vinyl sulfones per polymer. However, in both 

cases peak integration was not accurate enough for quantitative analysis. 

 

 

Figure 19.
 1

H-NMR (400 MHz, CD3OD) δ (ppm) of non-crosslinked polymer 1 and 2 with chain end (
VS_CE

) and 

backbone (
VS_CE+BB

) vinyl sulfone functionalization.  

 

Finally, we assessed the conjugation efficiency of the vinyl sulfone functionalized 

nanogels and soluble control polymers. For this purpose, we used bovine serum albumin 

(BSA) as model protein, and assessed conjugation efficiency by SDS-PAGE gel electrophoresis 

under reducing conditions in presence of β-mercaptoethanol. The reason for using BSA, is its 

commercial availability and widespread use as model protein. BSA contains a cysteine that 

does not participate in a disulfide bond (Cys-34). However, this thiol can be partially oxidized 

and therefore BSA was pretreated with 10 mM TCEP. Maynard and coworkers have 

previously demonstrated that this mild reductive treatment induces cleavage of one 

disulfide bond, exposing 2 additional free thiols.38 The subsequent conjugations were 

performed in a 0.1 M bicarbonate buffer at pH 8.5 containing 10% DMSO to enhance 
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solubility of the vinyl sulfone moieties. Either 40 or 80 equivalents of nanogels/polymer to 

protein were added.  

In a first series of conjugation experiments, we used the non-crosslinked soluble 

polymers, with both chain end and chain end plus backbone vinyl sulfone modification, to 

establish a proof-of-concept for vinyl sulfone-based conjugation for this type of polymers. 

The SDS-PAGE data in Figure 20 clearly demonstrates successful conjugation of the vinyl 

sulfone-modified polymers to BSA. Note that SDS-PAGE was run under reducing conditions 

in presence of β-mercaptoethanol, which means that any disulfide formation between BSA 

and free thiols on the control polymers and nanogels were cleaved. Optical integration was 

performed to obtain semi-quantitative data, as described in Chapter 4. Not unexpectedly, a 

higher conjugation efficiency is obtained for polymers that contain vinyl sulfone moieties 

both at their chain end and backbone, i.e. polymerVS_CE+BB, as this offers multiple sites for 

protein conjugation per polymer chain. These polymerVS_CE+BB samples also yield higher 

molecular weight conjugates, evidenced by the emergence of a broad band on the SDS-PAGE 

gel close to where the samples were loaded. Likely, this is due to multiple BSA molecules 

that became crosslinked by one or more polymers. With regard to the effect of the polymer 

to protein ratio, no significant increase in the fraction of conjugated protein is observed. 

These findings also point out the relatively low binding efficiency of a ‘grafting to’ approach 

when attempting to conjugate relatively large polymers to relatively large proteins. 

However, this drawback might be less pronounced for smaller, biologically relevant peptide 

antigens that are less sterically hindered, or for recombinant proteins that are engineered 

with readily accessible pending cysteine residues. 

In a second series of experiments, BSA was conjugated to nanogels bearing vinyl 

sulfone moieties either at their chain ends or both their chain ends and inner core backbone. 

Interestingly, similar conjugation efficiencies were obtained for nanogels (Figure 21) as for 

the soluble control polymers. First of all, this means that sterical restriction induced from the 

crosslinking does not affect the ability of the chain end vinyl sulfone moieties to conjugate to 

proteins. Second, this also means that vinyl sulfone moieties located on the backbone of the 

inner core polymer block are also accessible for protein conjugation. This can likely be 

attributed to the fully hydrated nature of the nanogels, which can allow inwards diffusion of 

proteins; or to a more compound micelle like assembly, which means that both polymer 
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blocks are not fully phase separated, but also intermixed. Such structure would lead to a 

strong increase of cysteine-reactive vinyl sulfone moieties on the nanogel surface. 

 

Figure 20. SDS-PAGE results from the conjugation of BSA (66 kDa) with chain end (CE) and backbone (CE+BB) 

vinyl sulfone functionalized (VS) non-crosslinked polymers P1 and P2 in a molar ratio of protein:polymer 1:40 

and 1:80. Additionally, non-functionalized polymers (SH) were used as negative controls. (Mean ± SD, n = 3) 
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Figure 21. SDS-PAGE results from the conjugation of BSA (66 kDa) with chain end (CE) and backbone (CE+BB) 

vinyl sulfone functionalized (VS) crosslinked nanogels N1 and N2 in a molar ratio of protein:nanogel 1:40 and 

1:80. Additionally, non-functionalized nanogels (SH) were used as negative controls. (Mean ± SD, n = 3) 

 

 

 



Covalently crosslinked nanogels for immune activation and antigen conjugation 

215 

Conclusion 

In summary, we have demonstrated an elegant route to engineer well-defined core-

crosslinked polymeric nanogels with a small molecule imidazoquinoline-based TLR7/8 

agonist or protein antigens respectively. These nanogels combine the efficient triggering of 

TLR7/8, with focusing immune activation to the local injection site and its draining lymph 

node. This is of vital importance as it limits the inflammatory toxicity associated with the use 

of soluble TLR agonists and thus should enable one to increase the dose and to obtain 

improved therapeutic efficacy. Moreover, nanogel mediated delivery of IMDQ was more 

potent at inducing T cell responses and antibody responses against admixed antigen when 

compared to soluble IMDQ. To further unveil the potential of these IMDQ-nanogels as 

adjuvants for vaccination, we elaborated on a strategy to covalently ligate selected peptides 

by introducing cysteine-reactive vinyl sulfone moieties. Importantly, when compared to non-

crosslinked soluble control polymers, crosslinked nanogels exhibited similar conjugation 

efficiencies, pointing out that the installed vinyl sulfone moieties are well accessible for 

cysteine-conjugation, even to a relatively large protein as BSA (66.5 kDa). Our ongoing 

efforts focus on the design of engineered nanocarriers for vaccine delivery that can combine 

potent immune-stimulatory molecules with peptide or protein antigens, to further amplify 

cellular and humoral immune responses. 
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Chapter 8 

 

Broader international context, relevance 

and future perspectives 

 
Strategies to engineer the immune system via a materials chemistry approach, i.e. 

immuno-engineering, have gathered major attention the past decade. In part, this popularity 

is supported by the Nobel Prize in Medicine, that was awarded to Ralph Steinman in 2011 for 

the discovery of the dendritic cell (DC) and its role in adaptive immunity. In particular 

developing strategies to efficiently deliver specific signals and molecules to DCs and T cells to 

modulate their behaviour and/or increase to amplitude of their action, is highly attractive to 

design the next generation of vaccines against intracellular pathogens and to control 

metastatic growth by developing cancer vaccines. 

In this thesis, materials chemistry is merged with immunology to develop nanoscale 

polymeric delivery systems for antigens and molecular adjuvants. A first approach that we 

have developed is the conjugation of so-called transiently thermoresponsive polymers to 

protein antigens. We defined transiently thermoresponsive polymers as polymer that are 

water soluble below a critical temperature, but precipitate from solution above this 

temperature; and loose this property in response to a chemical transformation in the 

polymer side chains or back bone, to become fully water-soluble irrespective of temperature. 

By conjugating such polymers to protein antigens, we envisioned to temporarily change the 

physicochemical state of the antigen between soluble and (nano)particulate. In this concept, 

the hydrophilic protein would form a stabilizing shell that prevents the transiently 
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thermoresponsive polymers from forming macroscopic aggregates at temperatures above 

their cloud point (Tcp), with the formation of micellar nanoparticles instead. In Chapter 2 an 

extensive overview on transiently thermoresponsive polymers is provided, including 

contributions of our own research group, with a particular focus on (meth)acrylamide 

monomers that can be polymerized via controlled radical polymerization.  

From the conceptual point of view, there is similarity with the HPMAm-Lac2 

technology that has been developed in the research group of Prof. Dr. Wim Hennink (Utrecht 

University, The Netherlands) with whom our group has an active collaboration. The HPMAm-

Lac2 technology provides access to poly(methacrylamide) polymers that are water soluble 

below roughly 10°C, and precipitate from solution above this temperature. In response to 

alkaline pH, the lactate esters in the polymer side chain undergo irreversible hydrolysis 

yielding hydrophilic HPMAm units. This feature is highly interesting for sustained release 

applications, but less for cell uptake triggered drug release. Indeed, upon cellular uptake, 

nanoparticles are typically stored in acidic vesicles (termed phagosomes, endosomes, 

lysosomes) that have a pH of about 5 to 6.5. Therefore, in this thesis, focus has been put on 

the use of ketal-based systems that are stable at alkaline and neutral pH, but degrade in 

response to acidic pH.  

Ketal-based (co)polymers have been used in Chapter 4-5 to prepare transiently 

thermoresponsive polymer-protein conjugates. In Chapter 4 a ‘grafting to’ approach was 

elaborated on, in which polymers were synthesized with a protein reactive end-group. In 

Chapter 5 a ‘grafting from’ approach was explored, in which proteins were functionalized 

with a specific group that allowed for the subsequent growth of a polymer chain. The advent 

of controlled radical polymerization (CRP) has triggered a boom in the development of well-

defined functional polymers. CRP allows for precise control over molecular weights, with a 

very narrow molecular weight distribution (i.e. dispersity) by suppressing chain termination 

and other side-reactions. Moreover, the reduction of high-molecular-weight impurities 

avoids incomplete renal excretion. The two most popular controlled radical polymerization 

techniques are atom transfer radical polymerization (ATRP) and reversible addition-

fragmentation chain transfer polymerization (RAFT). Both have been used for ‘grafting to’ 

and ‘grafting from’ approaches, pioneered by several groups including Maynard1, Sumerlin2, 

Boyer3, Haddleton4 and Matyjaszewski5. RAFT in particular has gained popularity in a 

biomedical context, due to the relatively benign reaction conditions and the tolerance to 
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several functional groups. Therefore, RAFT was the preferred controlled radical 

polymerization technique in this thesis, and major effort was devoted to the synthesis of 

functional RAFT chain transfer agents that bear a lysine- or cysteine-reactive moiety at their 

R-position (Chapter 3). Procedures from Sumerlin6, Stenzel7, Maynard8 and Velonia9 were 

used to synthesize 2-propanoic acid butyl trithiocarbonate (PABTC) bearing N-

hydroxysuccinimide respectively pentafluorophenyl activated esters as lysine reactive 

moieties, and pyridyldisulfide respectively maleimide as cysteine-reactive moieties. Head-to-

head comparison of polymers based on these RAFT CTAs with respect to their conjugation 

efficiency, yielded fairly large differences depending on conjugation chemistry and protein 

type (Chapter 4). The most striking observation however, which is in accordance to 

literature, is the very low conjugation efficiency that is obtained. For example, to achieve a 

nearly 100 % conjugation efficiency of BSA, a 20 fold molar excess of PFP-containing polymer 

is required. Taking into account the 59 lysine units in BSA plus the N terminus that could 

potentially be conjugated, roughly a 1000 fold excess of reactive ester end-functionalized 

polymers relative to lysine units is required.  

Moreover, in case of lysine-based polymer-protein conjugation, a mixture of proteins 

conjugated with multiple polymer strands is obtained. Maleimide- and pyridyldisulfide-based 

conjugation strategies by contrast, are more site-specific as cysteines are generally less 

abundant. However, maleimides are relatively unstable in aqueous medium and need to be 

treated with care prior to conjugation. Moreover, maleimide-based conjugation has recently 

been reported to be prone to retro Michael-type addition and hydrolysis of the formed 

linkage.10 Pyridyldisulfides on their hand are stable in aqueous medium, and form disulfide 

linkages with free thiols. The reducible nature of these disulfides can be attractive for the 

design of drug delivery systems, as illustrated in Chapter 6. However, with respect to protein 

conjugation, the likeliness of disulfide exchange with other thiols present in the body needs 

to be taken into account. In view of this hurdle, recently emerging strategies based on 

unnatural amino acids containing azides or alkynes - that are genetically engineered into 

proteins and afford subsequent alkyne-azide cycloaddition - might offer a solution due to the 

high reactivity of these types of reactions (Chapter 4).11,12 Alternative approaches that target 

the modification of the N-terminus might not offer a solution to low conjugation efficiency, 

but could offer an important advantage with regard to site specificity.13  
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Using a ‘grafting from’ approach, one can largely avoid a fraction of soluble polymer 

as the polymer is intended to grow from a protein-based macroCTA onwards. Using this 

approach and BSA as model protein, we were able to synthesize transiently 

thermoresponsive polymer-protein conjugates and demonstrate their temperature-

triggered assembly and pH-triggered irreversible disassembly (Chapter 5). The RAFT CTA was 

introduced onto lysine units, but alternative strategies targeting cysteine moieties or 

involving more recent approaches, such as the use of unnatural amino acids or N-terminal 

modification, could also be attempted. However, with respect to RAFT polymerization, it is 

important to use reaction conditions with a sufficiently high concentration of radical initiator 

to initiate the RAFT process. At very low radical concentrations, such as those when only one 

CTA per protein chain is present, RAFT is unlikely to proceed. In this regard, SET-LRP might 

be beneficial as recently reported by the Haddleton group.14 In Chapter 5, the RAFT grafting 

from approach was used to polymerize the monomer [(2,2-dimethyl-1,3-dioxolane) 

methyl]acrylamide (DMDOMAm), an acrylamide reported by the Kizhakkedathu group to 

yield polymers with a phase transition temperature around room temperature.15 However, a 

drawback of the cyclic ketals in the DMDOMAm repeating units is the relative slow 

degradation in mild acidic medium. Therefore, new endeavors into the synthesis of faster 

degrading ketal monomers is of interest. This research is currently undertaken in our 

research group and linear ketal crosslinkers that afford rapid degradation under mildly acidic 

conditions have been used for the design of core-crosslinked micelles in Chapter 7. 

Interestingly, self-assembled polymer-based amphiphiles are capable of forming 

nanoparticles in the range from a few tens to a few hundreds of nanometer. This size range 

is well suited to promote passive diffusion of nanoparticles, as has been reported by several 

groups.16,17 Nonetheless, stability of self-assembled nanoparticles under physiological 

conditions is often questionable due to the strong dilution upon administration and the 

presence of other amphiphilic components such as proteins, lipids et cetera.18 Subsequent 

micelle dissociation leads to uncontrollable biodistribution properties. Therefore it is critical 

to obtain a more comprehensive understanding of the in vivo fate of both amphiphilic 

polymers and self-assembled polymeric nanoparticles.19 In this respect, a simple and 

straightforward approach to avoid premature disintegration of micellar nanomedicines is to 

stabilize them via crosslinking. 20,21 On the other hand, engineering hydrophilic compounds 

with hydrophobic lipid tails has recently been shown to be a very efficient strategy to deliver 
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immunologically active compounds to the draining lymph nodes through albumin 

hitchhiking.22 In this regard, an exciting avenue for transiently thermoresponsive polymers 

would be to conjugate these to hydrophilic peptide or protein antigens, or non-small 

molecule molecular adjuvants (i.e. PAMPS such as TLR agonists, Chapter 1) to alter their 

solubility state from fully hydrophilic unimers to self-assembled micelles or generally 

albumin-binding amphiphiles. This has not been endeavored during this thesis due to the 

slow degradation of the DMDOMAm system, but will be addressed in future work of our 

research group using a new generation of ketal- and carbonate-based monomers that 

exhibit more favorable degradation behavior in a physiologically relevant window. 

Initially intended as a side-project in this thesis, we evaluated the in vitro and in vivo 

immuno-biological behavior of hydrogel nanoparticles produced by the lab of Prof. Dr. Frank 

Caruso (University of Melbourne, Australia) (Chapter 6). These nanocapsules were fabricated 

through sequential adsorption of thiol- and pyridyldisulfide-modified poly(methacrylic acid) 

(PMA) onto sacrificial 200 nm sized mesoporous silica spheres, that are afterwards 

decomposed by HF treatment.23-25 A major focus was to investigate the effect of PEGylation 

on the lymphatic transportation behavior of these hydrogel nanoparticles. PEGylation has 

proven its use for extending the half-life of therapeutic proteins and improving the plasma 

stability of nanoparticles.26 We found that PEGylation had no influence on nanoparticle 

uptake by DCs in vitro, but strongly improved lymphatic transportation. In the course of 

these research endeavors, we also devoted attention to super resolution microscopy 

imaging of nanoparticle uptake by DCs. For this purpose, we collaborated with the group of 

Dr. Lorenzo Albertazzi (Institute for Bioengineering of Catalonia, Spain and Eindhoven 

University of Technology, Netherlands). Amongst the different kinds of super resolution 

microscopy, stochastical optical reconstruction microscopy (STORM) is applicable to the use 

of common organic dyes, in particular cyanines, and offers a resolution down to a few tens 

of nanometers. By contrast, the slow acquisition time makes it less applicable to live cell 

imaging, unless more sophisticated set-ups are deployed or other super resolution 

techniques including stimulated emission depletion (STED) microscopy are used. For our 

specific case, STORM allowed us to image nanoparticle uptake at a single nanoparticle and 

single endosome level, which is amongst the first reports on super resolution microscopy 

imaging of nanomedicines. In a parallel study, using poly(styrene) nanoparticles as model 
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nanomedicines, we also contributed to comparing the potential of STORM versus 

conventional confocal microscopy and TEM for intracellular imaging.  

Based on the promising lymphatic transportation behavior of hydrogen 

nanoparticles, we have explored the ability of degradable core-crosslinked nanoparticles for 

lymph node focused vaccine delivery (Chapter 7). This approach has been pioneered by 

amongst others the Hubbell16, Irvine22 and Stayton27 groups; mostly focusing on non-

covalent entrapment and/or the use of non-degradable systems. Inspired by the work of 

Nuhn et al.28, we exploited a nanogel system based on amphiphilic block copolymers that 

contain a hydrophilic PEG-like block and a solvophobic poly(pentafluorophenyl 

methacrylate) block containing activated ester repeating units. The latter affords self-

assembly in polar aprotic solvents such as DMSO, which avoids hydrolysis of the activated 

esters that would occur in aqueous medium. This approach offers the possibility to dial in 

bisamine crosslinkers, amine-containing dyes and bioactive molecules; as well as handles for 

subsequent bio-conjugation. By introducing the crosslinks into the particle core, the surface 

and stealth properties of the PEG-like shell remain intact. To obtain nanogels that could 

degrade in response to the acidic pH in intracellular vesicles, a bisamine containing a linear 

ketal was used. To obtain fully hydrated nanogels, the remaining activated esters were 

converted to hydrophilic repeating units by addition of an excess of a hydrophilic 

monoamine. Based on the chain length of the block copolymers, nanogels ranging from 20 - 

100 nm could be obtained. Contrary to the cyclic ketals used earlier in this thesis, the 

incorporation of a linear ketal rendered the nanogels degradable at pH 5 in a timeframe of a 

few hours.  

This system was used to covalently attach a relatively hydrophobic small molecule 

imidazoquinoline TRL7/8 agonist via amide bond formation. This imidazoquinoline 

compound has been developed in the lab of Prof. Dr. Sunil David (University of Minnesota, 

U.S.) with whom our research group has an active collaboration. TLR7/8 agonists are 

currently in clinical trials but are prone to systemic inflammation.29,30 Recently, the Seder 

group has shown that polymer conjugation allows for a better spatio-temporal control of the 

immune activation.31 An important drawback of conjugating a small molecule 

imidazoquinoline TRL7/8 agonist to a hydrophilic polymer however, was uncontrolled 

aggregation due to hydrophobic interaction.32 These phenomena could be avoided by 

accommodating the imidazoquinoline TRL7/8 agonist into the nanogels core, while still 



Broader international context, relevance and future perspectives 

227 

allowing DC activation in vitro. More importantly, in vivo experiments in mice showed that, 

contrary to soluble imidazoquinoline TRL7/8 agonist which caused systemic inflammation, a 

lymph node focused immune activation was induced. Moreover, relative to soluble 

imidazoquinoline TRL7 agonist, more immune cells were attracted to the draining lymph 

node; and relative to blank nanogels, imidazoquinoline TRL7/8 agonist ligated nanogels were 

taken up to a higher extent by immune cells in the draining lymph nodes. This approach has 

huge potential for rational vaccine design and is currently under intensive further 

investigation in our research group.  

In this regard, we aimed to engineer both the nanogel surface as well as the nanogel 

core with reactive handles for peptide- or protein-conjugation. This work was done during a 

6 months research stay in the lab of Prof. Dr. Heather D. Maynard at the University of 

California in Los Angeles (U.S.). Based on our earlier experience with polymer-protein 

conjugation, we endeavored to devise a strategy that would survive the conditions used 

during the nanogels assembly. These include aqueous media, the presence of primary 

amines and basic pH. In this regard, activated esters for lysine-modification are immediately 

excluded and moreover, do not allow for site-specific conjugation. Maleimides are neither 

stable in presence of primary amines and are also prone to hydrolysis. Pyridyldisulfides 

would have been an option, but the ability of these compounds to undergo random disulfide 

exchange under physiological conditions limits their applicability. Therefore, we opted in 

first instance to exploit the presence of the thiocarbonyl RAFT end-group. The latter is 

cleaved in presence of primary amines into a free thiol. Earlier work by the Maynard group 

on soluble polymers has shown that these free thiols could be converted into cysteine-

reactive vinyl sulfones by treatment with an excess of divinyl sulfone.33 Therefore, block 

copolymers were synthesized with the thiocarbonyl RAFT group at the hydrophilic chain end. 

Self-assembly in DMSO, followed by core crosslinking and quenching of the remaining 

reactive esters with amines, induced aminolysis of the pending thiocarbonyl groups. By 

capping the resulting free thiol with 2,2′-dipyridyl disulfide before extensive purification, 

oxidation of the thiols was prevented and allowed for successful Michael-type reactions with 

divinyl sulfone upon treatment with a reducing agent. These vinyl sulfone-functionalized 

nanogels were found to efficiently conjugate to cysteine moieties in BSA as model protein. 

As a second approach, we also dialed cysteamine into the nanogel core which allowed in a 

next step to introduce vinyl sulfone moieties.  
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Both these approaches will be intensively used in future work by our research group 

for the ligation of peptide- and protein-based antigens. With respect to peptide-based 

antigens, nanogel ligation is expected to increase the efficiency by which the antigen is taken 

up by DCs, especially when co-delivered with a molecular adjuvant such as a 

imidazoquinoline TRL7 agonist. By consequence, we anticipate the magnitude of the T cell 

response - in particular cross-presentation to CD8 T cells - to strongly increase. One direction 

that holds high potential is anti-cancer vaccination where either minimal amino acid 

sequence epitopes or longer peptides that contain a proteasome cleavage site, are 

conjugated to the surface of the nanogels that were developed in this thesis. Also for HIV, 

antigenic peptide sequences have been identified that would be worth to explore in the 

context of co-delivery with TRL7/8 agonists.34-36 With respect to protein-based antigens, we 

not only expect the T cell response to dramatically increase, but also expect the B cell 

response to benefit from antigen-nanogel conjugation. Indeed, presenting multiple copies of 

a same protein antigen to B cells, leads to B cell receptor clustering and more potent 

humoral antibody-based responses.  

Besides protein antigens also protein-based targeting ligands can be conjugated to 

the nanogels-platform developed in this thesis. For example, the conjugation of nanobodies 

as targeting ligand is under investigation in our laboratory.37-39 Nanobodies can be easily 

engineered via recombinant methods to contain a terminal cysteine, and due to their small 

size should fairly efficiently conjugate to the nanogels. In terms of payload, a TLR7/8 agonist 

could be envisioned for targeting the tumor stroma40, or a cytostatic compound to target 

cancer cells or the tumor vasculature. Delivery of TRL7/8 agonist containing nanoparticles as 

such is also of interest for anti-tumor therapy, as peritumoral delivery of molecular 

adjuvants, especially those that provoke Th1 immunity, will lead to activation of DCs in the 

tumor stroma and in the tumor draining lymph nodes. In the latter case, DCs that have 

encountered tumor associated antigens can become activated towards enhanced CD8 T cell 

presentation and thus CTL induction. 

Nonetheless, an eminent issue in the nanomedicine field is the outlook towards 

clinical translation. With only a few nanotechnological formulations on the market (e.g. Doxil 

and Abraxane), there is a growing consensus that the next generation of nanomedicines 

should preferably be highly defined and consist of benign compounds to comply with 

regulatory affairs. The general lack of protocols for characterization at physicochemical, 
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biological and physiological level might have been responsible for the failure of certain 

nanomedicines in late clinical stages.41 In this respect, the European Medicines Agency 

(EMA) has undertaken initiatives to facilitate the development of nanomedicines, including 

the publication of several reflections papers on e.g. block copolymer micelles and liposomal 

products.42 In any case, newly developed nanomedicines should allow for large scale 

production with excellent control over their properties in terms of size, dispersity and 

composition (i.e. critical quality attributes or CQAs).21,43 A quick and successful translation of 

emerging nanotherapeutics could be facilitated by adapting the ‘quality-by-design’ approach 

(QbD).44 In this respect, it is fundamental to identify and control the critical points during 

each manufacturing process (i.e. critical process parameters or CPPs). High throughput 

screening and Design of Experiment approaches can facilitate the assessment of justified 

variability in CQAs that still allows for reproducible preclinical characteristics (e.g. 

distribution profile, toxicity, efficacy). 

With regard to the nanogel platform that was developed in this thesis, there is a need 

to rethink the chemical conjugation strategy to avoid the use of PFP-esters as the latter 

require tedious work-up and still hold the risk for trace amounts. Therefore a risk 

assessment should be performed to assess the chance of remaining impurities, and their 

impact on toxicity and CQAs.43 A solution to this issue might be the use of poly(succinimide) 

which only releases water upon amide bond formation with primary amines.45 Also other 

crosslinking chemistries could hold promise in this regard. The latter should exhibit a low 

toxicity profile and thorough in vivo pharmacokinetic studies will be required to assess 

whether the polymeric degradation products of our nanogel platform can indeed be 

secreted from the body as intended by their design with pH-sensitive crosslinks. Despite 

these challenges we still hope to have contributed to the emerging field of immuno-

engineering, and further paved the road for the design of nanocarriers for vaccine delivery 

that can combine potent immune-stimulatory molecules with peptide or protein antigens to 

amplify both cellular and humoral immune responses.  
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Chapter 9 

 

Summary and general conclusions 

 
As explained in Part I, the focus of this thesis was the design of polymer-based 

nanoscale delivery systems that combine antigens and molecular adjuvants for efficient 

dendritic cell targeting. In Chapter 1, a short introduction to the workings of the immune 

system is presented, alongside the opportunities for nanotechnology to engineer the 

immune system. In Chapter 2 an extensive overview is given on transiently 

thermoresponsive polymers. This class of polymers, described as polymers that lose their 

thermoresponsive properties through a chemical transformation in aqueous medium, is 

prominently present in the subsequent experimental chapters. Therefore, Chapter 2 

describes the state of the art in this field, discussing different types of chemical moieties and 

transformation reactions that lead to transiently thermoresponsive polymers. The 

applicability of these polymers is further discussed in a biomedical context. 

In Part II of this thesis, the experimental work is described. In Chapter 3, the 

synthesis of protein-reactive polymers via RAFT polymerization is discussed. Four different 

types of protein-reactive moieties are explored, i.e. N-hydroxysuccinimidyl esters (NHS) 

respectively pentafluorophenyl esters (PFP) as lysine-reactive moieties; and pyridyldisulfides 

respectively maleimides as cysteine reactive moieties. NHS and PFP activated esters form an 

amide bond with lysine residues, whereas pyridyldisulfides and maleimides form a 

(reducible) disulfide respectively thioether bond with cysteine residues. 
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These RAFT CTAs were used for the polymerization of different types of monomers, 

including HEA as model hydrophilic monomer, HPMAm and HPMAm-Lac2. The latter 

monomer was synthesized during a research stay in the lab of Prof. Dr. Wim Hennink 

(Utrecht University, The Netherlands) and yields transiently thermoresponsive polymers. 

Additionally, the group of Prof. Dr. Richard Hoogenboom (Ghent University) provided 

transiently thermoresponsive co-polymers based on HEA and DMDMA; and poly(2-ethyl-2-

oxazolines) terminated with a cyclooctyn moiety. In Chapter 4, these polymers were used for 

protein conjugation using a ´grafting to´ approach. Generally, a large molar excess of 

polymer to protein was required to obtain full protein conjugation. Furthermore, 

conjugation efficiency strongly differed between different proteins and their pre-

conditioning with reactive handles such as protected thiols or azides, that were substituted 

on lysine residues to respectively enhance maleimide/pyridyldisulfide conjugation efficiency 

or allow conjugation by SPAAC. Using the HEA/DMDMA copolymer system, transiently 

thermoresponsive polymer-protein conjugates were prepared that assemble into globules 

above the cloud point temperature of the HEA/DMDMA copolymer and hydrolyze into fully 

soluble (i.e. over a broad temperature range) conjugates in response to acid-triggered side 

chain hydrolysis of the ketal moieties in the DMDMA repeating units. 

In Chapter 5, an alternative strategy for the synthesis of polymer-protein conjugates 

was elaborated on. Here, a protein-based macroCTA was synthesized by ligating a PFP-

containing RAFT CTA onto BSA as model protein. As monomer DMDOMAm was used. This 

ketal-containing acrylamide yields transiently thermoresponsive polymers without the need 

for co-monomers (as was the case for the HEA/DMDMA system), with a cloud point around 

room temperature. RAFT polymerization of DMDOMAm in aqueous medium at ambient 

temperature was possible using VA-044 as low temperature water-soluble radical initiator. 

When a critical monomer conversion was reached, the polymer-protein conjugates 

precipitated from solution due to the thermoresponsive nature of p(DMDOMAm) that 

formed dehydrated globules. The advantage of this ´grafting from´ approach is that much 

polymer-protein conjugation efficiency is achieved without the presence of free polymer. 

This is beneficial as removal of free polymer requires tedious chromatographic purification. 

The BSA-p(DMDOMAm) conjugates were characterized by DLS for their temperature 

triggered self-assembly and acid-triggered disassembly behavior. Additionally, the 

hydrophobic pocket that was formed by the p(DMDOMAm) globules was used to 
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accommodate the hydrophobic dye Cy3 alkyne and the hydrophobic TLR7 agonist CL075. We 

found that the BSA-p(DMDOMAm) conjugates could efficiently solubilize these compounds 

and deliver them to DCs in vitro, evidenced by flow cytometry and confocal microscopy. 

Furthermore we showed that, whereas BSA-p(DMDOMAm) is inert to DCs, CL075 formulated 

in BSA-p(DMDOMAm) could potently activate DCs, as measured by the induction of surface 

maturation markers. 

Whereas the previous chapters dealt with the design of non-covalently assembled 

structures composed of polymers, protein and TLR ligand; there are several good reasons to 

also explore covalently linked structures based on post-modification of preformed polymeric 

nanoparticles. Indeed, a ‘grafting-from’ RAFT conjugation approach as described in Chapter 

5, requires a significant amount of protein to be technically feasible. Furthermore, it is 

unknown whether non-covalently assembled nanoparticles will remain intact in vivo, and the 

same holds true for the non-covalently loaded TLR agonist that was used. Therefore, in 

Chapter 6, we collaborated with the group of Prof. Frank Caruso (University of Melbourne, 

Australia) to investigate the effect of surface chemistry on the in vitro and in vivo immuno-

biological behavior of 200 nm sized hydrogel nanoparticles. Here we found that engineering 

the surface with a low-fouling poly(ethylene glycol) coating dramatically enhanced lymphatic 

transportation in vivo in mice, whereas no effect was observed in vitro on DCs cultures. 

During these endeavors we also contributed to the development of a super resolution 

microscopy (i.e. STORM) method for imaging the intracellular fate of nanoparticles beyond 

the diffraction limit.  

Based on the promising results obtained in Chapter 6, our research group developed 

a nanogel system with sub 100 nm dimensions that contained a poly(ethylene glycol)-like 

stealth coating to provide optimal tissue mobility; and a PFP activated ester core that 

contained acid-labile ketal crosslinks, hydrophilic moieties and the potent TLR7/8 agonist 

IMDQ (provided by the lab of Prof. Dr. Sunil David (University of Minnesota, U.S.)) ligated via 

amide bond formation. These nanogels could, albeit to a lesser extent than IMDQ in freely 

soluble form, activate DCs in vitro. More importantly, they provided a potent lymph node 

focused immune activation in vivo in mice, without causing the systemic inflammation found 

for soluble IMDQ. During a research stay in the group of Prof. Dr. Heather D. Maynard 

(University of California in Los Angeles, U.S.), this nanogel technology was further explored 

in Chapter 7 for protein conjugation. Due to the limitations of activated ester-, 
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pyridyldisulfide- and maleimide-based conjugations encountered in the previous chapters, 

we explored here the use of vinyl sulfone (VS) as a cysteine-reactive moiety. The advantage 

of VS groups is that they can easily be introduced at the chain ends of RAFT polymers upon 

aminolysis of the thiocarbonyl CTA group by post-polymerization modification. We have 

demonstrated an efficient strategy to equip core-crosslinked polymer nanogels with 

cysteine-reactive VS moieties, that allow for the preparation of protein-ligated nanogels. 

Overall, we have explored in this thesis several approaches for polymer-protein 

conjugation and were confronted with several pro´s and many cons of the different 

conjugation strategies that were used. Introducing azide-based reactive handles on lysine 

units followed by SPAAC-based polymer-protein conjugation was found to be highly 

efficient, but yielded non-site-specific conjugation that could be detrimental for the 

bioactivity of the resulting protein. The use of VS, introduced at the polymer chain end via 

post-polymerization modification, was found to be the most versatile cysteine-reactive 

conjugation strategy and was successfully used to obtain stable nanogel-protein conjugates 

in aqueous medium. The use of nanogels was also found to be highly promising for the 

delivery of immunologically active components to the lymph nodes. The findings in this 

thesis provide a rational basis for further vaccine development.  
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Samenvatting en algemene conclusies 

 

Zoals toegelicht in Deel I, lag de focus van deze thesis op de ontwikkeling van een 

polymeer-gebaseerd afgiftesysteem op nanoschaal, dat antigenen en moleculaire adjuvans 

combineerde voor de efficiënte targeting van dendritische cellen. In Hoofdstuk 1 van deze 

thesis wordt een korte introductie gegeven over de werking van het immuunsysteem en de 

mogelijkheden binnen nanotechnologie om het immuun systeem te moduleren. In 

Hoofdstuk 2 wordt een uitgebreid overzicht gegeven van transiënt thermoresponsieve 

polymeren. Deze klasse van polymeren, omschreven als polymeren die hun 

thermoresponsief gedrag verliezen na een chemische transformatie in waterig midden, komt 

uitvoerig aan bod in de volgende experimentele hoofdstukken. Hoofdstuk 2 beschrijft 

daarom de nieuwste ontwikkeling binnen dit veld, inclusief de verschillende types van 

chemische structuren en modificaties die aanleiding geven tot transiënt thermoresponsieve 

polymeren. De toepasbaarheid van deze polymeren wordt besproken in een biomedische 

context.  

In Deel II van deze thesis wordt het experimentele werk beschreven. In Hoofdstuk 3 

komt de synthese van proteïne-reactieve polymeren via RAFT polymerisatie aan bod. Vier 

verschillende types proteïne-reactieve groepen werden onderzocht, namelijk N-

hydroxysuccinimidyl esters (NHS) respectievelijk pentafluorophenyl esters (PFP) als lysine-

reactieve groepen; en pyridyldisulfides respectievelijk maleïmides als cysteïne-reactieve 

groepen. NHS en PFP geactiveerde esters vormen amide bindingen met lysine residu’s, 

terwijl pyridyldisulfides en maleïmides (reduceerbare) disulfide respectievelijk thioether 

bindingen vormt met cysteïnes. Deze RAFT CTAs werden gebruikt voor de polymerisatie van 

verschillende types monomeren, zoals HEA als model hydrofiel monomeer, HPMAm en 

HPMAm-Lac2. Dit laatste monomeer werd gesynthetiseerd tijdens een onderzoeksstage in 

het labo van Prof. Dr. Wim Hennink (Universiteit Utrecht, Nederland), en geeft aanleiding tot 

transiënt thermoresponsieve polymeren. 
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Bijkomend verschafte de groep van Prof. Dr. Richard Hoogenboom (Universiteit Gent) 

transiënt thermoresponsieve copolymeren gebaseerd op HEA en DMDMA, en poly(2-ethyl-2-

oxazolines) getermineerd met een cyclooctyn groep. In Hoofdstuk 4 werden deze polymeren 

gebruikt voor eiwitconjugatie via een ‘grafting-to’ strategie. In het algemeen was er een 

grote molaire overmaat aan polymeer vereist om complete eiwit conjugatie te verkrijgen. 

Bovendien varieerde de conjugatie efficiëntie sterk voor verschillende eiwitten en 

substituties met reactieve groepen zoals beschermde thiolen of azides, om respectievelijk de 

pyridyldisulfide/maleïmide conjugatie efficiëntie verhogen of conjugatie via SPAAC toe te 

laten. Met het HEA/DMDMA copolymeer systeem werden transiënt thermoresponsieve 

polymeer-eiwit conjugaten verkregen, die assembleerden in globulen boven de cloud point 

temperatuur (Tcp) van het copolymeer en degradeerden tot volledige oplosbare (d.w.z. over 

een brede temperatuursrange) conjugaten na zuur-gemedieerde hydrolyse van de ketal 

groepen in de zijketen van de DMDMA repeteereenheden.  

In Hoofdstuk 5 werd een alternatieve strategie uitgewerkt voor de synthese van 

polymeer-eiwit conjugaten. Hier werd een eiwit-gebaseerde macroCTA gesynthetiseerd door 

het ligeren van een PFP-bevattende RAFT CTA aan BSA als model eiwit. Als monomeer werd 

DMDOMAm gebruikt. Dit ketal-bevattende acrylamide geeft aanleiding tot transiënt 

thermoresponsieve polymeren zonder de behoefte aan comonomeren (zoals voor het 

HEA/DMDMA systeem), met een Tcp rond kamertemperatuur. RAFT polymerisatie van 

DMDOMAm in waterig midden bij kamertemperatuur was mogelijk dankzij het gebruik van 

VA-044 als wateroplosbare lage temperatuur radicaalinitiator. Bij een kritische monomeer 

conversie precipiteerden de polymeer-eiwit conjugaten uit oplossing wegens het 

thermoresponsieve karakter van p(DMDOMAm), dat gedehydrateerde globulen vormde. Het 

voordeel van deze ‘grafting-from’ strategie is dat een hoge conjugatie efficiëntie kan worden 

bereikt zonder de aanwezigheid van vrij polymeer. Dit is voordelig aangezien het 

verwijderen van een overmaat aan vrij polymeer arbeidsintensieve chromatografische 

opzuivering vereist. De temperatuur-afhankelijke assembly en zuur-afhankelijke disassemby 

van de BSA-p(DMDOMAm) conjugaten werd gekarakteriseerd via DLS. Bijkomend werd de 

hydrofobe pocket van de p(DMDOMAm) globules gebruikt voor de encapsulatie van de 

hydrofobe kleurstof Cy3 en de hydrofobe TLR7 agonist. De BSA-p(DMDOMAm) conjugaten 

konden deze molecules efficiënt solubiliseren en afgeven aan DCs in vitro, zoals aangetoond 

met flow cytometrie en confocale microscopie. Bovendien werd aangetoond dat BSA-
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p(DMDOMAm) conjugaten inert waren ten opzichte van DCs, terwijl CL075 geformuleerd in 

deze conjugaten DCs potent kon activeren zoals gemeten aan de hand van de inductie van 

maturatie merkers op hun oppervlak.  

Terwijl de vorige hoofdstukken focusten op de ontwikkeling van niet-covalent 

gebonden structuren op basis van polymeren, eiwit en TLR ligand; is er ook gegronde 

interesse om covalent gebonden structuren te ontwikkelen via postmodificatie van eerder 

gevormde polymeer nanopartikels. Een ‘grafting-from’ RAFT strategie vergt inderdaad een 

substantiële hoeveelheid eiwit om technisch haalbaar te zijn. Bovendien blijft het onduidelijk 

of niet-covalent geassembleerde nanopartikels intact zullen blijven in vivo, wat ook geldt 

voor niet-covalent geladen TLR agonist. Daarom werkten we in Hoofdstuk 6 samen met Prof. 

Dr. Frank Caruso (Universiteit Melbourne, Australië) om het effect van oppervlaktechemie te 

onderzoeken op het in vitro en in vivo immuno-biologisch gedrag van 200 nm hydrogel 

nanopartikels. We stelden vast dat het functionaliseren van het oppervlak met een low-

fouling poly(ethylene glycol) coating het lymfatisch transport in vivo in muizen dramatisch 

verbeterde, terwijl er geen effect werd gezien in vitro in DCs culturen. Tijdens deze 

experimenten werkten we ook mee aan de ontwikkeling van een super resolutie microscopie 

methode (nl. STORM) voor het in beeld brengen van de intracellulaire lokalisatie van 

nanopartikels voorbij de diffractie limiet. 

Gebaseerd op de veelbelovende resultaten in Hoofdstuk 6, werd er in onze 

onderzoeksgroep een nanogel systeem ontwikkeld met sub 100 nm dimensies. De nanogels 

waren samengesteld uit een poly(ethylene glycol)-like stealth coating voor optimale weefsel 

mobiliteit; en een PFP geactiveerde ester kern waarin zuur-gevoelige ketal crosslinks, 

hydrofiele ketens en de potente TLR7/8 agonist IMDQ (verschaft door Prof. Dr. Sunil David, 

Universiteit Minnesota, Verenigde Staten) geligeerd werden via amide bindingen. Deze 

IMDQ-bevattende nanogels konden DCs activeren in vitro, al was dit in mindere mate dan 

IMDQ in opgelost vorm. Bovendien zorgden zij voor een potente immuun activatie in vivo in 

muizen, gefocust in de lymfeknoop en zonder het veroorzaken van een systemische 

inflammatie zoals het geval voor vrij IMDQ. Tijdens een onderzoekstage in de groep van Prof. 

Dr. Heather D. Maynard (Universiteit Californië Los Angeles, Verenigde Staten) werd deze 

nanogel technologie verder ontwikkeld voor eiwit conjugatie (Hoofdstuk 7). Gezien de 

limitaties van conjugaties gebaseerd op geactiveerde esters, pyridyldisulfides en maleïmides 

zoals ondervonden in voorgaande hoofdstukken; onderzochten we het gebruik van vinyl 
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sulfone (VS) als cysteïne-reactieve groep. Het voordeel van VS is de gemakkelijke introductie 

op het keteneinde van RAFT-gebaseerde polymeren na aminolyse van de thiocarbonyl CTA 

groep via een postpolymerisatie modificatie. We hebben een efficiënte strategie aangetoond 

om gecrosslinkte polymeer nanogels te voorzien van cysteïne-reactieve VS groepen, die 

toelaat om eiwit-geconjugeerde nanogels te synthetiseren. 

Samengevat hebben we in deze thesis verschillende strategieën onderzocht voor 

polymeer-eiwit conjugatie en werden we geconfronteerd met verscheidene pro’s en vele 

contra’s van de verschillende toegepaste benaderingen. Het gebruik van azide-bevattende 

reactieve groepen, die werden geïntroduceerd op lysine eenheden, gevolgd door SPAAC-

gebaseerde polymeer-eiwit conjugatie was heel efficiënt; maar geeft aanleiding tot niet-site-

specifieke conjugatie die schadelijk zou kunnen zijn voor de bio-activiteit van het 

gemodificeerde eiwit. Het gebruik van VS, die werd geïntroduceerd op het polymeer 

ketenuiteinde via postpolymerisatie modificatie, was de meest veelzijdige cysteïne-reactieve 

strategie en kon succesvol gebruikt worden voor de ontwikkeling van stabiele nanogel-eiwit 

conjugaten in water midden. Bovendien bleek het gebruik van dergelijke nanogels enorm 

veelbelovend voor de afgifte van immunologisch actieve molecules aan de lymfeknopen. De 

bevindingen in deze thesis verschaffen dan ook een rationele basis voor verdere vaccin 

ontwikkeling. 
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