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1
Introduction

1.1 Routing algorithms

Routing algorithms have been studied for over 50 years. Around 1960
several algorithms were proposed, such as the algorithms of Dijkstra [25],
Floyd-Warshall [30, 67] and Bellman-Ford [15, 31]. The late 90’s and early
2000’s saw the rise of interactive route planning applications, mobile naviga-
tion devices and digital GIS systems, for which efficient routing algorithms
were needed which can run on large-scale road networks. The fact that on-
line routing applications process many queries in a short time, and the fact
that mobile devices usually run on a rather slow CPU increased the interest
in efficient routing algorithms even more. The Floyd-Warshall approach is
not very suitable for large road networks since it calculates and stores the
shortest route between all pairs and is therefore both very time-consuming
and memory-consuming. The Bellman-Ford algorithm can be used on road
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CHAPTER 1. INTRODUCTION

networks. However, it is best suited for networks with both positive and
negative arc weights. The algorithm of Dijkstra does not allow negative arc
weights, which are usually not present in road networks, and has a better
time complexity. This makes the algorithm of Dijkstra a better choice.

For this reason, countless efficient algorithms have been proposed which
are based on the algorithm of Dijkstra, most of which aim at reducing the
search space of the algorithm of Dijkstra. A comprehensive but incomplete
overview is given by O’Brien [54]. Several of the methods described in this
overview were proposed by Goldberg et al. [33, 32, 35, 34]. The A* search
method, which is also described in Michalewicz and Fogel [49], is a varia-
tion on the algorithm of Dijkstra that uses an estimation of the distance to
direct the search towards the target. One possibility to calculate such an
estimation is by using landmarks. A small subset (e.g. 20) of the nodes in
a network are chosen as landmarks. In a preprocessing step, the distance
from and to every node and every landmark is calculated. This informa-
tion can then be used to calculate estimations using the triangle inequality.
Algorithms for selecting suitable landmarks are given in [35, 34]. Gold-
berg et al. also use the reach method, which is another pruning method
for the algorithm of Dijkstra proposed by Gutman [37]. When the coordi-
nates of the nodes are present, which is usually the case in road networks,
they can also be used in a preprocessing step to speed up the algorithm of
Dijkstra. An example of such a method is the container method presented
by Willhalm [68]. Finally, Schultes [57] presents an impressive algorithm.
It represents the road network in a hierarchical structure, distinguishing be-
tween different levels of “more important” roads (e.g. highways) and “less
important” roads (e.g. small local streets). By taking advantage of this
hierarchical structure, the Dijkstra search space is reduced massively.

While many efficient algorithms have been proposed, they do not always
satisfy the needs of the user completely. We will call a standard shortest
path algorithm an algorithm which calculates one shortest route between
two given points while assuming that the length of the total route is the
sum of the length of every road segment on this route. However, modern
routing applications demand more and the algorithms should be adapted

14



1.2. ALTERNATIVE ROUTING ALGORITHMS

to more realistic situations and queries. Therefore we believe it is interest-
ing to investigate alternative routing problems rather than to optimize the
standard shortest path algorithms even further.

1.2 Alternative routing algorithms

In this work we focus on three different alternative routing problems, each
of which is described in the following sections.

Turn restrictions

An important difference between routing in road networks and in networks
in general is the fact that turns can be forbidden in road networks. Roads
can have lane dividers or forbidden turn signs which make a specific turn
impossible. Furthermore, a turn can also have a certain cost. Typically,
this is a waiting time spent at intersections, traffic lights or the time needed
to physically take a sharp turn. This means that in some cases a detour
can be necessary to avoid a forbidden or expensive turn, even if this means
passing through the same intersection twice. In the decades before digital
routing in road networks became popular, it was less necessary for shortest
path algorithms to take this into account, which is why many standard
shortest path algorithms assume that every turn is legal and has a zero
cost. However, turn costs can have a large impact on the total travel time.
Nielsen et al. [53] state that in Copenhagen 17% to 35% of the travel time
for cars is spent waiting at intersections. In more congested cities, this ratio
is probably even higher. We will use the term turn restrictions as a general
term for turn costs and turn prohibitions. Currently, the integration of turn
restrictions in routing systems is still not optimal. Many datasets do not
contain data on turn restrictions. Even though some of the more detailed
datasets include information on turn prohibitions, no datasets with realistic
turn costs are available at this moment. Also, many routing algorithms
still do not take turn restrictions into account. However, three methods
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CHAPTER 1. INTRODUCTION

have been proposed: the node splitting method [43, 58], the line graph
method [20, 10, 69, 29] and the direct method [36]. It would be of interest
to learn which of these methods is best suited for a particular dataset,
something which has remained unclear up to now. We will show that the
performance of these algorithms is very dependent on the number of turns
which are prohibited or have a (non-zero) cost. We present an experimental
evaluation to discover how these algorithms compete with each other on
road networks with different amounts of turn costs and turn prohibitions
and present a guideline for choosing the right method for a specific road
network.

k shortest paths

Another alternative routing problem is the k shortest paths problem, where
not only the shortest path is desired, but also the 2nd shortest path, the
3rd shortest path etc. k shortest paths can e.g. be used for routing with
additional constraints. A k shortest paths algorithm can be used to gen-
erate a ranking of shortest paths, from which the paths that best satisfy
the other criteria (such as safety or beautiful scenery) are selected. Dif-
ferent exact algorithms [70, 48, 38] for the k shortest paths problem have
been proposed, but they are all very time-consuming. On the Belgian road
network, it can take up to 10 minutes to find the 100 shortest paths using
an exact algorithm. Finding the 10 000 shortest paths can even take up to
ten hours. This is definitely unacceptable in an interactive routing applica-
tion. Therefore, faster heuristic methods which do not necessarilly find the
optimal solution are necessary. Such heuristic approaches have been pro-
posed by Roddity [55] and Bernstein [16]. However, these heuristics only
provide a theoretical upper bound on the quality of the solution, and no
experimental results are given. We will present a heuristic approach which
finds a solution of good quality and which is much faster than the exact al-
gorithms. We will also show that our heuristic outperforms the theoretical
upper bound by Roddity and Bernstein in most cases.
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Dissimilar paths

Nowadays routing applications and navigation systems typically do not
only calculate a shortest route, but also present the user some alternatives.
In this way, the user can choose one of these routes according to his own
preferences. Google Maps is a good example of this. Different definitions
for dissimilarity can be used. For a routing application, it can be sufficient
to avoid sharing large road segments. A parallel road which is very close to
the original road can be a valid alternative. In other contexts, such as the
transportation of hazardous materials, the physical distance between the
routes needs to be taken into account in the definition of dissimilarity. In
this way, the risk can be spread over different areas. In a dissimilar paths
algorithm, it is very important to make sure that the found solution is of
good quality. On the one hand, the paths cannot be too much alike. On
the other hand, they can also not be too long. The paths should of course
not contain cycles. While different methods have been proposed, not all
methods succeed in finding a solution with a quality that is acceptable for
use in a realistic routing application. A major issue is that the routes often
contain detours which are not natural to the user, e.g. leaving a major road
and then joining it again. Only in recent years, attempts have been made to
eliminate this problem. The concept of local optimality was introduced by
Abraham et al. [11]. Still, the existing methods are either time-consuming
or fail to find a solution in many cases. We will present a heuristic approach
which is very fast at finding a solution consisting of locally optimal paths
and rarely fails to find a solution.

Experiments

While a low theoretical complexity is important, we also attach great im-
portance to the performance of our algorithms in practice. Many CPU
hours were spent comparing and evaluating our algorithms to each other
and to existing methods. The results of these experiments are presented in
this work.
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CHAPTER 1. INTRODUCTION

1.3 Overview

In Chapter 2 the concepts are introduced which are necessary for the re-
mainder of this work. In Chapter 3 we present a computational experiment
comparing methods for routing while taking turns into account. This work
was published in Operations Research Letters [65]. In Chapter 4 we present
our heuristic for the k shortest paths problem and show how well it per-
forms based on our experiments. This work was published in International
Journal of Geographical Information Science [64]. In Chapter 5 our algo-
rithm for dissimilar paths is presented. Finally, the concluding remarks
can be found in Chapter 6. Papers and abstracts regarding one or more
chapters from this text have been presented at and appeared in the proceed-
ings of international conferences, such as Cologne-Twente 2011 [63], ACM
SIGSPATIAL 2010 [61], GIScience 2010 [62], InterCarto-InterGIS 2009 [60]
and LBS 2008 [59]. Throughout this text many symbols are used, most of
which can be looked up in the index at the end.
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2
Preliminaries

In this chapter we will introduce the concepts and notations which are
necessary for the remainder of this text. For routing algorithms it is of
course crucial to have an efficient digital representation of the road net-
work. A comprehensive description of the route calculation problem in
road networks and the modeling of road networks in GIS systems is given
by Miller and Shaw [51, 52]. A road network is essentially modeled as a
graph. Many concepts from graph theory are used in the representation of
a road network. In Section 2.1 we will describe the necessary graph theory
concepts and introduce some notations. In Section 2.2 our graph implemen-
tation is described. Section 2.3 elaborates on the algorithm of Dijkstra, on
which many routing algorithms are based. Section 2.4 describes the exper-
imental setup which was used for all experiments. Particularly, the road
networks which are used as test data are described. Problem-specific ele-
ments regarding the experimental setup are described in the corresponding
chapters.
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CHAPTER 2. PRELIMINARIES

2.1 Basic concepts in graph theory

2.1.1 Graph

While there are many variants on the concept of a graph, a graph can be
defined in general as follows:

Definition 2.1. A graph G is an ordered pair (V,E) such that V is a
finite set of nodes and E is a finite set of edges e such that e = {u, v} is an
unordered pair with u ∈ V and v ∈ V .

A node is often called a vertex in graph theory, but we will use the term
node which is more common in a GIS context. Edges are undirected by
definition. When E is a collection of ordered (u, v) pairs, the graph is
called a directed graph and the ordered (u, v) pairs are called arcs. The
node u is called the tail and the node v is called the head of the arc. We
will always assume the graphs to be directed, so we will only consider arcs.
Throughout this text, we will call n the number of nodes in the graph,
i.e. |V | and we will call m the number of arcs in the graph, i.e. |E|. A
node x ∈ V and an edge {u, v} or arc (u, v) ∈ E are called incident if and
only if x = u or x = v. Two nodes u ∈ V and v ∈ V are adjacent if and
only if there exists an arc (u, v) ∈ E. The degree of a node v ∈ V is the
total number of arcs incident to v. In directed graphs, the in-degree and
out-degree of a node v ∈ V are the total number of incoming and outgoing
arcs in v, respectively. A weighted graph assigns a number (= a weight) to
every arc. The weight of an arc e = (u, v) is denoted as w(e) or as w(u, v).
A subgraph G′ of a graph G = (V,E) is an ordered pair (V ′, E′) such that
V ′ ⊆ V and E′ ⊆ E, where the arcs in E′ are restricted to the nodes in V ′.

2.1.2 Graph visualisation

Nodes are usually visualised by circles. An arc is visualised as an arrow
from the tail node towards the head node of the arc. A line without an
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Figure 2.1: Example of a graph. Nodes are labeled with the letters a, b,
c. The weights for the arcs are shown. There are two arcs with the same
weight in both directions between b and c. This can be visualised as shown
on the left or on the right.

Figure 2.2: Two visualisations for the same graph. Both graphs are the
same, since they have the same topology, even though they have a different
embedding.

arrow represents two arcs with the same weight, one in each direction. Arc
weights are shown as a number along the arc. When necessary, some or
all nodes may be labeled with a number or letter inside the circle. An
example is shown in Figure 2.1. It should be noted that only topology is
defined for a graph. This means that one graph can have different visual
representations. This is shown in Figure 2.2. A set of coordinates may be
available for the nodes. Such a set of coordinates is called an embedding.
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CHAPTER 2. PRELIMINARIES

Figure 2.3: Notation for a path for which no details are shown. The graph
contains two paths between node b and node d: the path b−c−d and another
path for which details are omitted (represented by the curved line).

2.1.3 Paths

A walk is a sequence of nodes (v1,v2,v3,...,vl) such that vi and vi+1 are
adjacent, for all i such that 1 ≤ i < l. If all arcs on a walk are different, the
walk is called a trail. If all arcs and all nodes on a walk are different, it is
called a path. The weight w(P ) of a path P is the sum of the weights of its
arcs, i.e. w(P ) =

∑ℓ
i=2w(vi−1, vi). We will use the notation P.nodeAt(i) to

represent the node at position i in P . A closed path (v1, v2, v3, ..., vl) such
that v1 = vl is called a cycle. A graph is connected if a path exists between
any pair of nodes in the graph. Otherwise the graph is disconnected. A
directed graph is strongly connected if for every pair of nodes {x, y} a path
exists from x to y and from y to x. A subpath of a path P is a path
which is part of the larger path P . We will denote the subpath in P from
x to y as P [x..y]. Two paths P1 = (v1, ..., x) and P2 = (x, ..., vl) can be
concatenated using the + operator, i.e. P1 + P2 = (v1, ..., x, ..., vl), given
that the last node of P1 and the first node of P2 are the same. In the same
manner, a path P = (v1, ..., x) and an arc e = (x, t) can be concatenated,
i.e. P + e = (v1, ..., x, t), given that the last node of P and the tail node
of e are the same. When the context is clear, we will sometimes refer to a
path or subpath from x to y as the x − y path or the x − y subpath. We
will use a curved line to represent paths for which no details are shown, as
can be seen in Figure 2.3.
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Figure 2.4: Undirected rooted tree (top), outward tree (left) and inward
tree (right). The root nodes are labeled as r.

2.1.4 Trees

A tree T is a connected graph which has no cycles. One of the nodes can
be assigned as the root. In this case the tree is called a rooted tree. In a
directed tree, the arcs can be outward (i.e. away from the root) or inward
(i.e. towards the root). We will call a rooted directed tree where are all arcs
are outward or inward an outward tree or inward tree, respectively. In an
outward tree, there is always exactly one path from the root to every node
in the tree. In an inward tree there is always exactly one path from every
node in the tree to the root. Figure 2.4 shows examples of an undirected
rooted tree, an outward tree and an inward tree.

2.2 Representing road networks as a graph

A road network can be modeled as a weighted, directed graph. Nodes
represent intersections or dead ends and arcs represent road segments. Arc
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Figure 2.5: A road network (left) and part of its graph representation
(right). One-way streets, two-way streets and a dead end can be seen.

weights usually represent either travel distances or travel times. In this work
we will assume that arc weights are always non-negative, which is a realistic
assumption in road networks. The graphs in this work are always directed.
In this way, one-way streets and situations where w(u, v) 6= w(v, u) can be
modeled. Figure 2.5 shows an example of how a road network is modeled as
a graph. Our graph implementation models the structure of the graph in an
adjacency list. For every node, all of its outgoing arcs are stored in a Java
ArrayList. This is the most commonly used Java implementation of a list.
The data in the list are stored in an array. For performance and memory
efficiency reasons, nodes are not represented by objects but by numbers
from 0 to n− 1 (with n the number of nodes). This numbering also allows
easy indexing in lists. Arcs are stored as Java objects, storing the tail and
head node and the weight of the arc. In this implementation, outgoing arcs
can be found fast, but it takes O(m) time to find incoming arcs. However,
for some algorithms, it can be necessary to find the incoming arcs fast as
well, e.g. when searching backwards. For this reason, the implementation
can add reverse data, i.e. the incoming arcs, on demand. When the reverse
data are no longer needed, they can be dismissed, again on demand.
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2.3 Shortest path algorithms

2.3.1 The shortest path problem

First, we define the shortest path problem, for which different variations
exist:

• The single-pair shortest path problem is the problem of finding the
path with the lowest weight from a given node s to a given node t.

• The single-source shortest path problem is the problem of finding the
path with the lowest weight from a given node s to all other nodes.

• The single-destination shortest path problem is the problem of finding
the path with the lowest weight from all nodes to a given node t.

• The all-pairs shortest path problem is the problem of finding the path
with the lowest weight between all pairs of nodes.

In routing applications, the user usually enters a query in which he specifies
a start node s and a target node t, which makes it a single-pair shortest
path problem. In this text we will always assume that queries have a start
node called s and a target node called t. We will use the abbreviation
SP for “shortest path”. The weight of the shortest path is denoted by
w(SP ). However, some algorithms in this text use the single-source and
single-destination shortest path problem as well. In the context of rout-
ing applications, usually only paths are desirable, and not trails or walks,
due to the possibility of repeated arcs and/or nodes. However, in Chap-
ter 3 repeated nodes will be useful in some cases. Also, in Chapter 4 and
Chapter 5 some algorithms will start with many trails, some of which may
contain cycles, and then finally select a small cycle-free subset, i.e. a set
of paths. For readability of the text, we have chosen for a slight abuse of
terminology and use the term “path” even though in some cases a cycle
may be present, which is either useful or will lead to the dismissal of the
path.
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2.3.2 The algorithm of Dijkstra

In this section we describe the algorithm of Dijkstra in more detail, since
many algorithms, including ours, are based on the algorithm of Dijkstra.
It can be used both for the single-source shortest path problem and for the
single-pair shortest path problem. Intuitively, it searches in a circle around
the start node s until all nodes have been reached, or until a given target
node t has been reached. The search can be pruned, something which we
will use in this text. The pseudocode is shown in Algorithm 2.1.
The algorithm of Dijkstra assigns labels to the nodes it visits. Let label(v)
be the label for a node v. A label indicates the shortest distance from s to
this node found so far. This means that a shorter distance may or may not
exist. A label can be a temporary label or a permanent label. A temporary
label can still be improved, while a permanent label is guaranteed to be the
shortest distance to this node. The algorithm also stores a shortest path
tree.

Definition 2.2. A shortest path tree SPT for a graph G and a start node
s is a tree rooted in s, and is a subgraph of G, such that for every node v
in SPT , the (only) path from s to v in SPT is also the shortest path from
s to v in G.

A shortest path tree can be complete or partial. If the algorithm visits every
node, the shortest path tree will be complete and contains the shortest path
to every node. If the algorithm stops earlier, it is partial and only contains
a path to the nodes which had already been visited. For every node v
its parent parent(v) in SPT is stored. The algorithm visits the nodes in
ascending order of distance from s. This means that when the shortest
path to a node v is found, the shortest path to all nodes closer than v has
also been found. For this purpose a priority queue is used which orders the
nodes by their label.

The algorithm starts by assigning a label of 0 to the start node and +∞
to all other nodes. Then, in every iteration, the node current with the
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Algorithm 2.1 The algorithm of Dijkstra for single-source shortest path
problems. It can be used as a single-pair shortest path algorithm by using
the permanent labeling of a target node t as a stop condition.

Require: graph G = (V,E), start node s
Ensure: shortest path tree storing the shortest path from s to all nodes
1: for all v ∈ V do

2: label(v)← +∞
3: end for

4: label(s)← 0
5: parent(s)← null
6: add s to priorityqueue
7: add s to SPT
8: while priorityqueue not empty and not STOP do

9: current← priorityqueue.poll()
10: make current permanent
11: for all nodes neighbour adjacent to current do
12: if neighbour is not permanent and neighbour can not be pruned

then

13: if label(current) + w(current, neighbour) < label(neighbour)
then

14: label(neighbour)← label(current) +w(current, neighbour)
15: parent(neighbour)← current
16: add neighbour to priorityqueue
17: add neighbour to SPT {override old entries for neighbour}
18: end if

19: end if

20: end for

21: end while

27



CHAPTER 2. PRELIMINARIES

smallest label is removed from the queue. The node current is made per-
manent and all of its non-permanent neighbours are examined. For ev-
ery such node neighbour, a new label is calculated, i.e. label(current) +
w(current, neighbour). If this label is smaller than the neighbour’s cur-
rent label, label(neighbour) is updated, neighbour is added to the priority
queue, neighbour has its parent set to current and neighbour is added to
the SPT . This overrides any previous entries for neighbour in the SPT .

The algorithm continues until all nodes have a permanent label, or until
another stop condition has been reached. A very common stop condition is
to stop when a given target node t has a permanent label. In this way, the
algorithm of Dijkstra can be used as a single-pair shortest path algorithm.
As can be seen in Line 11 in the pseudocode, the algorithm can also be
pruned. Many algorithms based on the algorithm of Dijkstra make use of
a pruning technique in this step, e.g. the A* algorithm [33, 32, 35, 49].

The algorithm of Dijkstra can also be run backward, starting in a target
node t and finding the shortest path from all other nodes or from one
particular start node s towards t. Therefore, the distinction needs to be
made between a forward shortest path tree and a backward shortest path
tree.

Definition 2.3. A forward shortest path tree SPTOUT for a graph G and
a start node s is an outward tree rooted in s, and is a subgraph of G, such
that for every node v in SPTOUT , the (only) path from s to v in SPTOUT

is also a shortest path from s to v in G.

Definition 2.4. A backward shortest path tree SPTIN for a graph G and
a target node t is an inward tree rooted in t, and is a subgraph of G, such
that for every node v in SPTIN , the (only) path from v to t in SPTIN is
also a shortest path from v to t in G.

Shortest path trees are often marked on a graph by coloring the arcs which
are part of the shortest path tree. Figure 2.6 shows an example of a forward
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Figure 2.6: SPTOUT (blue) and SPTIN (red) for the given graph on top.
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shortest path tree and a backward shortest path tree. The algorithm of
Dijkstra can also be implemented in a bidirectional way. This is described
by O’Brien [54].

2.3.3 Complexity

Using modern data structures, Dijkstra’s algorithm can be implemented
with a complexity O(m + n log n) [14]. However, it should be noted that
road networks are usually sparse. The maximum number of arcs at an
intersection is bounded by a certain constant. This means that m = O(n), a
fact which will be used throughout this text. For the algorithm of Dijkstra,
it means that the complexity is reduced to O(n log n) for road networks.

2.4 Experimental setup

Most of our experiments were run on real-world road networks. A first set
of road networks was provided by the Institute of Theoretical Informatics
at the Karlsruhe Institute of Technology (KIT), led by Dorothea Wagner.
The data were originally intended for the 9th DIMACS Implementation
Challenge [1] and were provided to the Institute of Theoretical Informatics
by the PTV company in Karlsruhe [2]. These road networks are provided
in a text format defined by DIMACS which can easily be read. The road
networks are directed and for every arc the weight is provided, which is the
distance with a precision of 10 meters. We will refer to these data as the
DIMACS road networks.
A second set of road networks was provided by NAVTEQ [5, 6], a major
American provider of GIS data and digital street maps. The data are
provided as shapefiles [7], a file format which is very commonly used in a
GIS context. An enormous amount of attributes is given, many more than
would ever be needed in this work, so most of the attributes we do need
are present. Besides the distance, a speed category is also given, which
we have used to calculate travel times with a precision of 1 second. The
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Road network Country # nodes # arcs provided by

CZE MAX Czech Republic 23 094 53 137 DIMACS
LUX MAX Luxembourg 30 047 69 382 DIMACS
IRL MAX Ireland 32 868 71 474 DIMACS
PRT MAX Portugal 159 945 368 935 DIMACS
BEL MAX Belgium 458 403 1 085,076 DIMACS
CHE MAX Switzerland 585 514 1 339,281 DIMACS
NAVTEQ LUXEMBOURG Luxembourg 39 883 89 594 NAVTEQ
NAVTEQ PARIS Paris 313 536 705 588 NAVTEQ
NAVTEQ BELGIUM Belgium 564 477 1 300 765 NAVTEQ
NAVTEQ NETHERLANDS The Netherlands 1 017 242 2 407 244 NAVTEQ

Table 2.1: Overview of our most commonly used test data. The names
in the left column will be used throughout this text. For the DIMACS
road networks, not the road network for the entire country is used, but the
largest strongly connected subgraph. This explains the MAX in the names.

road networks are also directed. Furthermore, unlike the DIMACS road
networks, information on illegal turns is also given, which will be very use-
ful in Chapter 3. We will refer to these data as the NAVTEQ road networks.

Table 2.1 shows an overview of our most commonly used test graphs,
allthough other graphs were used as well. Every graph in the table is given
a name, which will be used throughout this text. It should be noted that
for Luxembourg and Belgium we have two road networks. One of them is
provided by DIMACS and uses distances as arc weights, while the other
one is provided by NAVTEQ and uses travel times as arc weights. For all
road networks, the embedding (i.e. the coordinates of the nodes) is present.
While some routing algorithms use this embedding, our algorithms do not,
so usually the embedding is not loaded into memory. However, the embed-
ding was used for visualisation purposes. For the visualisation of a shortest
route or several routes, a Google KML file [8] was created which contains
the necessary coordinates to describe the path(s). This KML file was put
as a layer on top of Google Maps. Many examples can be seen throughout
this text, e.g. Figure 5.3 on Page 100.
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All algorithms were implemented, compiled and executed in Java 1.6 [9]. An
amount of memory of 1 800 MB was allocated. The experiments in Chap-
ter 3 and 4 were run on a 2.13 GHz processor, while the experiments in
Chapter 5 were run on a 2.8 GHz processor. Whenever a standard shortest
path algorithm is needed, we have used the algorithm of Dijkstra, since
most standard shortest path algorithms are a variation on the algorithm of
Dijkstra.
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3
Routing algorithms with turn

restrictions

3.1 Introduction

Standard shortest path algorithms usually assume that the total weight of
a route is simply the sum of the weight of all road segments on this route.
However, this model is not always sufficient for a realistic road network.
Usually not all turns can be taken in a road network, e.g., because of a
lane divider or a forbidden turn sign, and even if a turn is legal, it usually
implies an additional cost, e.g., the time needed to physically take a sharp
turn, the time spent waiting at an intersection for other vehicles to pass,
or the time spent waiting at traffic lights. Figure 3.1 shows two situations
where a detour is the best option to avoid a forbidden or expensive turn.
In both cases, a standard shortest path algorithm would see no harm in the
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Figure 3.1: Two situations where a standard shortest path algorithm would
take the obvious left turn to go from A to B. In reality, however, the best
route is the detour shown in the pictures because of either a forbidden turn
(left) or a long waiting time at traffic lights (right).

left turn and simply use it. These examples clearly show that it is crucial
for a route planner to take such turn restrictions into account. However,
standard shortest path algorithms assume that every turn is legal and has
a zero cost.
Different methods have been proposed to overcome this problem. They
will be discussed more thoroughly in the following sections. It would be of
interest to learn how these techniques compete with each other.
The number of turn prohibitions in a road network is of course dependent
on the topology of the network. Furthermore, in a real-life situation not
all datasets may store a cost for every turn in the network. This can be
for memory reasons, but also since visiting every turn to determine this
cost would be a tremendous effort. Therefore, a dataset may store only the
turns for the most important or busiest intersections. However, it is also
possible that many or all turns are stored, e.g., if the turn costs are cal-
culated automatically based on the angle. This motivates an experimental
study to discover the influence of the amount of stored information on the
performance of the algorithms. The results can be used as a guideline for
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Figure 3.2: Graph with forbidden turns. The dashed arrows indicate for-
bidden turns: it is legal to move from arc (d, b) to (b, c) but it is illegal to
move from arc (d, b) to (b, a).

choosing the best method for a particular dataset. While some studies com-
paring shortest path algorithms without turn restrictions can be found in
the literature, e.g. [21, 71, 72, 45], no such study has been done for shortest
path algorithms with turn restrictions until now.
A turn is defined as any transition from an arc to one of its succeeding

arcs. This can be a left turn or a right turn, a U-turn, or even straight
through. We will distinguish between two kinds of turn restrictions: turn
costs and turn prohibitions. We will use the term turn restrictions as a gen-
eral term for both. A turn cost often reflects the waiting time, e.g. at traffic
lights, or the time needed to actually perform the turn, e.g. at very sharp
angles. Turn prohibitions on the other hand reflect those situations where
it is impossible or illegal to take a certain turn, e.g. due to a lane divider
or a traffic sign forbidding the manoeuvre. Figure 3.2 shows an example
of a graph with turn prohibitions. The solid arrows represent arcs. The
dashed arrows indicate turn restrictions, in this case forbidden turns. In
Section 3.2 we give a literature overview on routing algorithms with turn
restrictions. Three known algorithms are described in detail in Section 3.3.
In Section 3.4 certain implementation issues are addressed. In Section 3.5,
3.6, 3.7 and 3.8 we present detailed computational experiments and their
results. Finally, in Section 3.9, we conclude with a guideline for choosing
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the right method for a particular road network.

3.2 Literature overview

The literature considers two possible approaches for handling turn restric-
tions in shortest path algorithms. One approach consists in modifying the
graph to integrate the information about the turn restrictions in the struc-
ture of the graph itself. Standard graph algorithms can then be applied
to the modified graph, without even knowing about the turn restrictions.
Examples of this approach are the node splitting method [43, 58] and the
line graph method [20, 10, 69, 29].
Another approach is to develop a new algorithm which works on the orig-
inal graph and explicitly takes the turn restrictions into account. We will
call this approach the direct method. Gutiérrez and Medaglia [36] present
a modified version of the well-known algorithm of Dijkstra [25], and Zil-
iaskopoulos and Mahmassani [73] present a similar method.
Besides the shortest path algorithms with turn restrictions themselves, it
is also interesting to learn how turn restrictions are assigned to a network.
Nielsen [53] gives a very detailed description of the calculation of turn costs,
taking an impressive range of factors into account such as road capacity,
road congestion, priority of the roads, green time at traffic lights, and green
waves. Another method for assigning turn costs is described by Volker [66].
Not only shortest path algorithms can be affected by turn restrictions,
many graph algorithms can be applied to road networks and should take
turn restrictions into account. Micó et al. [50] present a very general heuris-
tic and an exact method which can be used to include turn restrictions in
many well-known graph problems such as the Chinese Postman Problem,
the Travelling Salesman problem, and the Capacitated Arc Routing Prob-
lem. A more specific method is described by Bräysy et al. [19]. Clossey et
al. [22] describe both a direct method and a graph transforming method
for the Chinese Postman Problem.
Finally, an efficient implementation for shortest path calculation with turn

36



3.3. KNOWN ALGORITHMS: OVERVIEW

Figure 3.3: Node splitting: transformed graph for Figure 3.2. Node b is
split into 6 nodes: b1, b2, b3, b4, b5, b6, each representing an arc incident
with node b. Arcs between the split nodes represent legal turns. Split
nodes and the arcs between them are shown in grey.

prohibitions in the specific case where a turn is only legal if its angle is
between certain values, is proposed by Boroujerdi [17].

3.3 Known algorithms: overview

We have implemented and performed experiments with the node splitting
method, the line graph method and the direct method, since all methods in
the literature are instances of one of these three techniques. The following
paragraphs describe these methods in more detail.

3.3.1 Graph transforming method: node splitting

Node splitting is an intuitive way to modify the graph. Figure 3.3 shows
an example of node splitting for the graph in Figure 3.2. Nodes with turn
restrictions are split into several nodes, one node for every incoming or out-
going arc. Legal turns are represented by arcs between these nodes. The

37



CHAPTER 3. TURN RESTRICTIONS

Figure 3.4: Top: legal turn in original graph (left) and in transformed graph
(right). It is still possible to take this turn in the transformed graph. Bot-
tom: illegal turn in original graph (left) and in transformed graph (right).
The illegal turn cannot be taken in the transformed graph since there is no
arc between b6 and b1.

cost of such an arc is equal to the cost of the represented turn. Forbidden
turns are represented by simply not adding an arc between the correspond-
ing pair of nodes, making it impossible to take this turn. This idea is
illustrated in Figure 3.4. Nodes without turn restrictions are not split in
the transformed graph. Therefore, the size of the transformed graph is
dependent on the number of nodes with turn restrictions.
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Figure 3.5: Line graph: transformed graph for Figure 3.2. Every node in
the line graph represents an arc in the original graph. Arcs in the line graph
represent legal turns in the original graph.

3.3.2 Graph transforming method: line graph

Another graph transforming method transforms the graph into its line
graph. Figure 3.5 shows the line graph for the graph in Figure 3.2. Every
node in the line graph represents an arc in the original graph, while every
arc represents a legal turn in the original graph. The weight of such an
arc in the line graph is the sum of the turn cost and the weight of the arc
which the turn leads to. As with node splitting, illegal turns are simply
represented by not adding an arc between the two corresponding nodes.
This is shown in Figure 3.6. However, there is an important difference
between the line graph and node splitting methods. As mentioned before,
the node splitting method only splits nodes with turn restrictions, while
the line graph method always transforms the entire graph, even if there
are nodes without turn restrictions. Therefore, the number of nodes in the
line graph is always equal to the number of arcs in the original graph, and
the number of arcs in the line graph is always equal to the number of legal
turns in the original graph.
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Figure 3.6: Top: legal turn in the original graph (left) and in the line graph
(right). The legal turn can still be taken in the line graph. Bottom: illegal
turn in the original graph (left) and in the transformed graph (right). The
illegal turn cannot be taken in the transformed graph since there is no arc
between the two red nodes.
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Figure 3.7: Situation where the shortest route contains a cycle. The
shortest route without cycles from node 1 to node 2 is (1, 4, 2) and has
a weight of 102. However, the shortest route is (1, 4, 3, 5, 4, 2) and has a
weight of 5. This route has a cycle since node 4 is used twice. This example
shows that, when turn restrictions are present, a shortest route can contain
the same node more than once.

3.3.3 Algorithm for original graph: direct method

It is also possible to modify the algorithm instead of the graph. Gutiérrez
and Medaglia [36] present a modified version of the algorithm of Dijkstra
for finding shortest paths with turn prohibitions. We will call this method
the direct method. The algorithm of Dijkstra calculates a shortest path
which never contains the same node twice, so there are no cycles in the
resulting path. However, if the graph has turn restrictions, the shortest
route can sometimes include cycles. An example of this situation is shown
in Figure 3.7.

While the algorithm of Dijkstra assigns labels to nodes representing the dis-
tance from the start node, the direct method assigns labels to arcs instead
of nodes. In this way, the direct method calculates a shortest path which
never contains the same arc twice, but which can contain the same node
more than once. An arc label represents the distance from the start node to
this arc, including the arc’s weight itself. While the authors only describe
the direct method for use with turn prohibitions, we extend this method
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for accommodating turn costs as well, as described in the next paragraph.
The direct method is very similar to the algorithm of Dijkstra, for which the
pseudocode is given in Algorithm 2.1 on Page 27. It starts by assigning a
label to every outgoing arc of the start node, equal to the arc’s weight, and
a label with value infinity to all other arcs. However, every newly assigned
label is only a temporary label since a shorter distance to this arc may still
be found. In every iteration the algorithm selects the arc e with the small-
est temporary label in the entire graph and makes this label permanent.
The algorithm then visits all subsequent arcs e′ of e. If e′ already has a
permanent label, e′ is skipped. Otherwise, the algorithm looks up the turn
restriction from e to e′. If this turn is forbidden, the arc e′ is skipped as
well. If the turn is legal, a potential new temporary label for e′ is calculated
which is the sum of the label of e, the turn cost from e to e′ (which can
of course be zero) and the weight of e′. If this new label is smaller than
the current temporary label of e′, the label of e′ is updated and the parent
of e′ is set to e to facilitate the retrieval of the shortest path. It can be
proven that when a label is permanent, no shorter path to this arc can be
found, so the algorithm stops as soon as an arc incident with the target
node receives a permanent label.
It should be noted that this direct method is similar to a standard Dijkstra
algorithm performed on the line graph. When the algorithm of Dijkstra la-
bels a node in the line graph, it assigns a label to a node which corresponds
to an arc in the original graph. This is equivalent to the labeling of an
arc in the original graph by the direct method. We may therefore expect a
more or less similar behaviour for both algorithms.

3.3.4 Time complexity

As mentioned in Section 2.3.3, the algorithm of Dijkstra can be imple-
mented with a time complexity of O(m+ n log n). For road networks, this
is reduced to O(n log n) since m = O(n). Let t be the number of turns in
the graph, tl the number of legal turns, tf the number of forbidden turns,
and tc the number of turns with a non-zero turn cost. Let tr = tf + tc
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be the total number of turns with a turn restriction. Since the line graph
method performs the algorithm of Dijkstra on a graph with m nodes and
tl arcs, the line graph method has a time complexity of O(tl+m logm), or
O(m logm) for road networks.
Even though the behaviour of the direct method is very similar to the line
graph method, the complexity is slightly different. Our implementation of
the direct method iterates over all turns and then checks whether they are
legal or not. Because of this, a term tmust be added to the complexity of the
line graph, resulting in a complexity of O(t+tl+m logm) = O(t+m logm),
or O(m logm) for road networks, since t = O(m) in road networks.
The node splitting method splits every node which is restricted by a turn
cost or turn prohibition into several nodes, one for every incoming or out-
going arc. The number of such restricted nodes in the original graph is
bounded by O(tr), so the number of nodes after node splitting is bounded
by O(n+ trdmax), where dmax is the maximum number of incoming or out-
going arcs in a node. An arc is added for every legal turn at a node with
turn restrictions, so the number of arcs is bounded by O(m + tl). This
leads to a time complexity of O((m+ tl) + (n + trdmax) log(n + trdmax)),
or O((n + trdmax) (log(n+ trdmax)) in road networks.

3.3.5 Memory complexity

Our graph implementation is described in Section 2.2. It stores one object
for every arc. For the nodes, no specific object is stored except for a list
containing all of its outgoing arcs. There are m objects representing arcs
and n (empty or non-empty) lists of arcs. This leads to a memory com-
plexity of O(n + m) for a graph with no turn restrictions. When adding
turn restrictions, an entry is stored in a HashMap for every restricted turn.
This results in a memory complexity of O(n + m + tr) for a graph with
turn restrictions as used by our implementation of the direct method. The
line graph however is actually a transformed graph without any turn re-
strictions, so only its number of nodes m and its number of arcs tl need to
be taken into account. This leads to a memory complexity of O(m + tl)

43



CHAPTER 3. TURN RESTRICTIONS

for the line graph. Finally, for node splitting, the new number of arcs is
bounded by O(m+ tl), so the memory complexity is O(n+m+ tl). From
this theoretical complexity analysis, it can be expected that tr and tl have
an important influence on the performance of the algorithms, as the results
will confirm.

3.4 Implementation issues

The three methods described in the previous section were implemented in
Java. As mentioned before, on a transformed graph any shortest path al-
gorithm can be used. We chose the algorithm of Dijkstra as this gives the
best basis for comparison with the direct method. The graph implemen-
tation is based on the implementation described in Section 2.2, but stores
the turn restrictions as well. This enhanced graph implementation can im-
mediately be used by the direct method, and serves as a basis for a graph
transformation by the other methods. In order to store turn restrictions,
a Java HashMap is stored for every arc which is followed by a restricted
turn. The subsequent arc itself is the key, while the turn cost to travel
from the current arc to the subsequent arc is the value. This turn cost is
set to +∞ for a forbidden turn. If the turn cost for a certain turn is zero
(e.g. a very wide right turn) or if the turn cost is unknown, no key-value
pair is added to the HashMap. This can potentially save a lot of memory,
especially in those cases where turn costs are only known for large and busy
intersections while no information on turn restrictions is available for less
important intersections. The main advantage of this data structure is that
it allows us to check whether a turn is legal and to retrieve a turn cost very
fast.

3.4.1 Graph transformations

When dealing with transformed graphs, certain implementation issues arise.
First of all, the shortest path found in the transformed graph needs conver-
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sion. The transformed graph contains other nodes than the original graph.
Figures 3.4 and 3.6 clearly show that the legal path, marked in green, is
represented by a different sequence of nodes in the transformed graphs. For
node splitting, the transformed graph contains split nodes which were not
present in the original graph. For the line graph, all nodes are new and rep-
resent arcs in the original graph. In both cases, the resulting path consists
of nodes from the transformed graph, not the original graph. Therefore,
the path needs to be converted. For this purpose, some extra information
needs to be stored. This is described in detail in the following paragraphs.
Secondly, for both the line graph and node splitting, a node can be repre-
sented by more than one node in the transformed graph. Hence, a shortest
path query can have multiple start and/or target nodes in the transformed
graph. However, a standard shortest path algorithm such as the algorithm
of Dijkstra cannot deal with this situation. As proposed by Winter [69], this
can be solved quite easily by adding a virtual start node to the transformed
graph with outgoing arcs to all start nodes. In the same way a virtual tar-
get node can be added to the transformed graph with incoming arcs from
all target nodes. The outgoing arcs from the virtual start node and the
incoming arcs for the virtual target node are called the virtual arcs. These
virtual nodes and arcs need to be created before every query. Taking this
into account, a shortest path algorithm on a transformed graph consists of
three steps:

1. Create virtual nodes and arcs in the transformed graph

2. Run any shortest path algorithm on the transformed graph (e.g., the
algorithm of Dijkstra)

3. Convert shortest path

We will refer to the time spent for Step 2 as the strict query time. However,
Steps 1 and 3 may take some time as well, since they both require finding
nodes in the transformed graph corresponding to a node in the original
graph or vice versa. This raises the question if it would be interesting
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to store additional data in memory in which these corresponding nodes
can be looked up in constant time. We will call these additional data a
lookup table. While this decreases the complexity of Steps 1 and 3, it also
requires extra memory. There is a clear trade-off here between running
time and memory usage. Rather than arbitrarily choosing one of both
possibilities, we decided to implement both possibilities for the line graph
method and for node splitting and compare them. We will refer to the line
graph and node splitting method as LINE and SPLIT, respectively. The
implementations with a lookup table will be marked with an asterisk, i.e.
LINE* and SPLIT*. For the direct method, such a lookup table is not
necessary since no virtual nodes or path conversion are needed. The direct
method will only be denoted by DIR.

3.4.2 Line graph

The line graph is implemented in the same way as the original graph, but
some additional data are stored. For every node in the line graph, its corre-
sponding arc in the original graph is stored. This information is structured
in a list L containing the corresponding original-graph arc for every line-
graph node i at position i. In this way, it is possible to convert a path,
consisting of line-graph nodes, to a sequence of arcs in the original graph,
which can then be converted to a path consisting of original-graph nodes.
Another issue is the necessity to find the correct start node(s) and target
node(s) in the line graph for a given query. This information is not readily
available. LINE* and LINE use different strategies for this, which will be
described below.

LINE*

The LINE* implementation stores even more additional information. For
every node in the original graph, a list of corresponding start nodes and a
list of corresponding target nodes in the line graph is stored. Furthermore,
the weights of the virtual start arcs need to be stored. This additional
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information enables the retrieval of the required information in constant
time.

LINE

The LINE implementation has to rely on the list L to find the start and
target node(s). It searches through the entire list and selects all nodes
corresponding to an arc in the original graph with the start node as tail or
the target node as head. This takes linear time in the number of arcs in
the original graph.

3.4.3 Node splitting

Like the line graph, the transformed graph for the node splitting method
is implemented in the same way as the original graph, but stores some
additional data. As mentioned before, the nodes in the original graph
are numbered from 0 to n− 1, n being the number of nodes in the original
graph. Since the transformed graph has more nodes than the original graph
because of the split nodes, the transformed graph will inevitably have some
new nodes with a number ≥ n. Nodes without turn restrictions correspond
to one single node in the transformed graph, with the same node number.
Nodes with turn restrictions are split and thus correspond to multiple nodes
in the transformed graph, one of which is given the node number of the
original node (to preserve a contiguous node numbering), while a contiguous
range of new node numbers is assigned for the other nodes corresponding
to this original node. This numbering system can be seen in Figure 3.8,
which shows an original graph with turn restrictions on three nodes, and
the resulting transformed graph. While a shortest path algorithm can be
run on the transformed graph without knowing the meaning of these new
split nodes, it is necessary for creating virtual nodes and arcs and for path
conversion to know which split nodes in the transformed graph correspond
to which node in the original graph and vice versa. The strategies used by
SPLIT* and SPLIT are described below.
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Figure 3.8: Original graph with three nodes with turn restrictions (left)
and the resulting transformed graph (right). In this figure, a dashed arrow
indicates a legal turn with a turn cost > 0.

SPLIT*

The data structure used by SPLIT* is quite straightforward. For every node
in the transformed graph, its corresponding node in the original graph is
stored. This allows access in constant time. It should be noted that the
entries for the first n nodes are trivial and can therefore be omitted. The
content of this data structure for the example in Figure 3.8 is shown in
Figure 3.9. In the opposite direction, another map is stored which maps
nodes in the original graph to their range of corresponding nodes in the
transformed graph (not shown in the figure).

SPLIT

The information in the structure described above can be stored in a much
more compact way if giving up constant-time access is acceptable. This
representation uses the fact that the collection of split nodes always consists
of the node with the original number together with a contiguous range of
node numbers. Therefore it is sufficient to store an array with the node
numbers of all nodes with turn restrictions, and a second array of the same
length which stores the start of every contiguous range corresponding to
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Figure 3.9: Data structure used by SPLIT* for the example in Figure 3.8.
For every node in the transformed graph, its corresponding node in the
original graph is stored. Entries between brackets are shown for clarity but
are not actually stored.

Figure 3.10: Compact representation for the correspondence between trans-
formed graph and original graph in Figure 3.8. The first row shows the array
of nodes with turn restrictions in the original graph. The second row (with
data between brackets) is added for clarity but is not actually stored. The
third row shows the array of contiguous range starts.

the nodes in the first array. Position i in the second array stores the start
of the contiguous range for the original node at position i in the first array.
Figure 3.10 shows these arrays for the example in Figure 3.8.

This data structure avoids unnecessary memory overhead by not storing
every node explicitly. Another interesting benefit of this data structure
is the possibility to perform a binary search. Using a binary search it is
possible to determine the start of the range in which a certain node lies,
and thus also the correspondig node in the original graph. Since a binary
search takes logarithmic time, this data structure enables virtual nodes and
virtual arcs creation in logarithmic time.
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3.5 Experimental setup

In the experiments we aim to discover the influence of the amount of turn
restrictions on the performance on the algorithms. We also investigate
how the algorithms perform on the NAVTEQ road networks with real-life
turn prohibitions and on SPGRID networks for comparison with the results
of Guttiérrez and Medaglia [36]. As mentioned before, we need to select
a standard shortest path algorithm for calculating shortest paths in the
transformed graphs. We chose the algorithm of Dijkstra, since virtually
every route planning application is based on some variant of the algorithm
of Dijkstra, but we expect similar behaviour for other shortest path algo-
rithms.
In our experiments we study both running times and memory usage. Since
Java cannot measure the exact size of an object, an estimation method is
used. In short, this method consists of generating a number of copies of
the graph object, storing them in an array, calculating the difference be-
tween the amount of used memory before and after, and finally dividing
this difference by the number of copies created. While this method does
not guarantee exact results, substantial efforts were taken to ensure that
the measurements are as accurate as possible. Before the estimation starts,
Java garbage collection is enforced in order to clear the memory from any
remaining objects that are no longer in use. In this way, the measurements
cannot be distorted by the garbage collector removing unrelated objects
during the execution of the estimation method. Also, the first copy of
the object to be measured is always discarded as a “warmup object”, af-
ter which garbage collection is enforced again. For small objects, a large
number of copies was generated and stored in the array mentioned earlier,
spreading the error over all copies. For larger objects, memory was filled to
capacity with as many copies as possible. It goes without saying that the
machine had no other tasks running in the background. We verified the
measurements on different 32 bit machines and different operating systems
and always obtained equivalent results. Therefore, although this method is
not exact, our test results confirm that it is in fact sufficiently accurate.
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3.6 Influence of the amount of turn restrictions

For a fair comparison, only the amount of turn restrictions should be vari-
able while all other factors should remain constant. For this purpose we
applied different amounts of random turn restrictions to several of the
DIMACS road networks. While the turn restrictions are random, the
test graphs do represent real-life road networks for European countries.
We present detailed results for BEL MAX. This graph has 458 403 nodes,
1 085 076 arcs, and 2 922 504 turns. Similar results were obtained for the
road networks of CHE MAX, IRL MAX, LUX MAX, and PRT MAX.
We did experiments where 5%, 10%, 15%, 20%, 25%, 50%, 75% and 100%
of the turns in the same graph have a randomly chosen non-zero turn cost.
For left turns we chose random costs between zero and three times the
average arc weight taken over all arcs in the graph. Since waiting times
for right turns are usually smaller, right turns were assigned random turn
costs between zero and 1.5 times the average arc weight. Since forbidden
turns are less common in road networks, lower percentages are chosen for
forbidden turns. In this case, different versions of the same graph were
assigned 0.1%, 0.5%, 1%, 5%, 10%, 15%, 20% and 25% randomly chosen
forbidden turns.

3.6.1 Memory usage

For each of the test networks, we have measured the size in memory of
the following: the original graph without any turn restrictions, the original
graph + turn restrictions data for the direct method (DIR), the line graph
without lookup table (LINE), the line graph with lookup table (LINE*), the
transformed graph used by the node splitting method without lookup table
(SPLIT) and the transformed graph used by the node splitting method
with lookup table (SPLIT*).

The results for BEL MAX can be seen in Figure 3.11. The displayed values
are not absolute values, but ratios compared to the original graph without
any turn restrictions. For example, for a graph where 20% of the turns
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imply a non-zero cost, the direct method takes 1.9 times more memory
than the original graph. From these charts it is clear that using a lookup
table requires a significant amount of extra memory, sometimes even up to
a factor two.

In the case of turn costs, memory usage for the line graph is constant, since
this method always transforms the entire graph, even if there are only a
few turn costs. On the other hand, memory usage for the direct and node
splitting methods increases with the number of non-zero turn costs, since
more information on turn costs needs to be stored and more nodes need
to be split, respectively. Up to about 25% turn costs, the direct method
requires the smallest amount of memory, while for graphs with more turn
costs, the line graph (without lookup table) is more memory-efficient. In
the case of turn prohibitions, the direct method is always most memory-
efficient for the tested percentages. However, for very small percentages
of turn prohibitions, the memory-efficiency of the node splitting method
and direct method are similar, with the direct method clearly taking over
around 5%. The direct method shows exactly the same behaviour for turn
costs and turn prohibitions, since saving information on forbidden turns
and turn costs takes the same amount of memory. However, memory usage
for the line graph decreases with the number of turn prohibitions. This
can be explained by the fact that fewer legal turns means fewer arcs in
the line graph. As for node splitting, memory usage increases with the
number of turn prohibitions, since more nodes need to be split. However,
the increase is slower for higher numbers of turn prohibitions since more
nodes are already split.

3.6.2 Running times

For the time measurements a set of one hundred random one-to-one queries
was generated for each of the test networks. Every query in such a set has
a random start node and a random target node. For each graph, time mea-
surements were performed with different parameters. These measurements
were all performed on the same set of one hundred queries which was gen-
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(a) Turn costs: memory usage ratio

(b) Turn prohibitions: memory usage ratio

Figure 3.11: BEL MAX: memory usage ratio for different percentages of
turn costs (a) and turn prohibitions (b) for the direct method (DIR), line
graph without lookup table (LINE), node splitting without lookup table
(SPLIT), line graph with lookup table (LINE*) and node splitting with
lookup table (SPLIT*). The size of the original graph without turn restric-
tions is 57.72 MB.
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erated particularly for this graph. The parameters include: the method
which was used, the type of turn restrictions (costs or prohibitions) and
the number of turn restrictions. The average running time was calculated
over these one hundred queries for each set of parameters. Furthermore,
even the same query with the same set of parameters was executed 10 times
and its average was taken, just to make sure that the time measurements
are accurate. Loading the graph into memory is never included in the time
measurements since this needs to happen only once for all the experiments
on a graph. Figure 3.12 displays the results. They only concern the strict
query time, i.e., Step 2 mentioned in Section 3.4. The running times for
the other two steps were measured separately and will be discussed later.
Also, for the time measurements no implementations using a lookup table
are considered, since such a lookup table is not used in this step of the
algorithm.

The displayed values in Figure 3.12 are again ratios compared to the average
running time for the same queries for a standard Dijkstra algorithm on the
original graph. Both charts show very similar query times for the direct
method and the line graph, which can be explained by the similarities
between both methods. For turn costs, the direct method and the line
graph method clearly outperform node splitting. For turn prohibitions,
node splitting is the fastest method for few turn prohibitions (less than
5%), but for road networks with many turn prohibitions, the direct method
and line graph method are again the fastest. Since their running times are
so similar, the actual choice between the direct method and the line graph
method should be made based on memory usage.

3.6.3 Time needed for virtual nodes and path conversion

Running times for creating virtual nodes (Step 1) and path conversion
(Step 3) were measured separately. For almost all methods, regardless of
the usage of a lookup table, the average running times for Step 1 and Step
3 were below 1 millisecond. Keeping in mind that a one-to-one query of the
standard Dijkstra algorithm on average takes 254.49 ms for this graph and
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(a) Turn costs: strict query time ratio

(b) Turn prohibitions: strict query time ratio

Figure 3.12: BEL MAX: average strict query time ratio for different per-
centages of turn costs (a) and turn prohibitions (b) for the direct method
(DIR), the line graph (LINE) and node splitting (SPLIT). The average
running time for a one-to-one query of the standard Dijkstra algorithm on
the original graph is 254.49 ms.

55



CHAPTER 3. TURN RESTRICTIONS

Road network # nodes # arcs # turns % TP Size Dijkstra

Luxembourg 39 883 89 594 226 840 0.14 % 4.85 MB 12.03 ms
Belgium 564 477 1 300 765 3 403 729 0.10 % 69.18 MB 389.62 ms
The Netherlands 1 017 242 2 407 244 6 496 909 0.04 % 128.16 MB 783.35 ms
Paris 313 536 705 588 1 809 714 0.57 % 38.04 MB 151.00 ms

Table 3.1: NAVTEQ real-world road network characteristics. The table
shows the size and amount of turn prohibitions (% TP) for every road
network. The column Dijkstra represents the average time in milliseconds
for a shortest path calculation using the algorithm of Dijkstra.

that the running times measured for the evaluated methods are a multiple
of this, a running time smaller than 1 millisecond is definitely insignificant.
However, there is one exception. The average running time for creating
virtual nodes in the line graph method (without lookup table) is around 17
milliseconds. While the lookup table does provide some speedup here, it is
rather small compared to the large amount of extra required memory and
is generally not worth it unless gaining even a small amount of time is very
critical.

3.7 Performance on real-world road networks with turn

prohibitions by NAVTEQ

The NAVTEQ road networks, as described in Section 2.4, are very inter-
esting since they contain information on turn prohibitions. This makes it
possible to test the algorithm on road networks with real-world turn pro-
hibitions. We had to limit ourselves to turn prohibitions only since, to the
best of our knowledge, no datasets with real-life turn costs are available at
this moment. Additional information on the NAVTEQ road networks, such
as the number of turns and forbidden turns, can be seen in Table 3.1. As
can be seen in the table, these road networks have very low percentages of
turn prohibitions, something which can be expected in a realistic road net-
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(a) NAVTEQ road networks with real-world turn

prohibitions: memory usage ratio

(b) NAVTEQ road networks with real-world

turn prohibitions: strict query time ratio

Figure 3.13: Results for the NAVTEQ road networks with real-world turn
prohibitions. Memory usage ratio (a) compared to the original graph with-
out turn restrictions and strict query time ratio (b) compared to the average
time needed for running the algorithm of Dijkstra on the original graph.
The absolute numbers for the original graphs can be found in Table 3.1.

57



CHAPTER 3. TURN RESTRICTIONS

work. Figure 3.13 shows the memory usage ratio and strict query time ratio
for the four NAVTEQ networks. Only results for implementations without
a lookup table are shown. The results clearly confirm that node splitting is
the fastest method, and is also very memory-efficient. Furthermore, given
the low percentages of turn prohibitions, the ratios for both memory and
running times are very similar to the ratios obtained in the experiments
in Section 3.6. It should also be noted that the results show absolutely no
significant difference between NAVTEQ PARIS, an urban road network,
and the road networks representing entire countries.

3.8 Performance on SPGRID networks

Guttiérrez and Medaglia [36] also present experimental results in their work.
In this section we will show that our results are similar. Guttiérrez and
Medaglia have performed their experiments on SPGRID networks. The
nodes of such a network are structured as a rectangular grid. The nodes on
the rows are connected from left to right in a non-cyclic manner, while the
nodes on columns are connected from top to bottom and from bottom to top
in a cyclic manner. One additional node is connected to every node in the
first column and acts as the start node. The authors chose these networks
because of the resemblance to Manhattan-style urban road networks.
We have run experiments on these SPGRID networks as well. Just like
Guttiérrez and Medaglia, we have used the SPGRID generator to generate
15 random test networks. This generator is described by Cherkassky et
al. [21] and is available for download on the internet [3]. All of the following
properties are exactly the same as in Guttiérrez and Medaglia:

• The grid sizes are 128x128, 256x256 and 512x512.

• Five instances of each size were generated.

• Arc weights were chosen randomly between 1 and 10 000.
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SPGRID Avg. memory Avg. memory Improvement
size DIR (MB) LINE (MB) (vs. LINE)

128x128 2.4 5.9 60.2%
256x256 9.4 23.1 59.2%
512x512 41.0 92.5 55.6%

(a) Gutiérrez and Medaglia

SPGRID Avg. memory Avg. memory Avg. memory Improvement Improvement
size DIR (MB) LINE (MB) LINE* (MB) (vs. LINE) (vs. LINE*)

128x128 5.1 6.5 12.7 22.4% 60.1%
256x256 20.3 25.5 50.5 20.3% 59.7%
512x512 81.2 104.0 203.1 22.0% 60.0%

(b) Our implementation

Table 3.2: Comparison of the results for memory usage by Guttiérrez
and Medaglia [36] and our results.The improvement for DIR is calculated
against LINE (and against LINE* in our results).

• For each of the networks, 20% of the turns were randomly chosen and
set as prohibited.

The results are presented in tables instead of charts, in order to resemble
the tables presented by Guttiérrez and Medaglia.

3.8.1 Memory

Guttiérrez and Medaglia have calculated the memory usage for DIR and
LINE, averaged for the different sizes of SPGRID networks. They also
show the relative improvement of DIR compared to LINE. Their results
are shown in Table 3.2a. This table was taken more or less literally from
their paper. The authors find an improvement in memory usage of about
60%. Table 3.2b shows our results for this same experiment. However, we
have included both LINE and LINE*. For LINE we find an improvement
of about 21%. However, for LINE* we find a very similar improvement
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SPGRID Average time Average time Improvement
size DIR (ms) LINE (ms) (vs. LINE)

128x128 38.50 44.80 14.06%
256x256 186.50 216.20 13.74%
512x512 998.50 1010.50 1.19%

(a) Gutiérrez and Medaglia

SPGRID Average time Average time Improvement
size DIR (ms) LINE (ms) (vs. LINE)

128x128 10.33 10.68 3.20%
256x256 50.22 46.51 -8.00%
512x512 300.75 306.23 1.79%

(b) Our implementation

Table 3.3: Comparison of the results for strict query time by Guttiérrez
and Medaglia [36] and our results. The improvement for DIR is calculated
against LINE.

of about 60%. This is also confirmed by our results in Section 3.6. For
memory usage we had found a ratio of 1.9 for DIR, 2.3 for LINE and 5.1
for LINE*. This leads to an improvement of 1−1.9/2.3 = 17.4% compared
to LINE and 1−1.9/5.1 = 62.7% compared to LINE*, which is again around
60%. This improvement is so similar that it leads us to believe that they
too store some kind of lookup table or other additional data which can be
helpful for the algorithm. However, we have shown that this lookup table
does not provide a significant advantage.

3.8.2 Strict query time

For the time measurements we have determined the strict query time for 10
randomly selected queries for every network and averaged the results over
the different sizes of SPGRID networks. Table 3.3a shows the results by
Guttiérrez and Medaglia, which were taken from their paper. Our results
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are shown in Table 3.3b. They seem less consistent than the results for
memory usage, since sometimes the direct method is faster and sometimes
the line graph method is faster. The results by Guttiérrez and Medaglia
seem to have a similar issue, since the improvement is around 14% for the
smaller graphs and around 1% for the larger graphs. No explanation for
this is given in the paper. However, we can not neglect the fact that for
the 512x512 graphs, our results do confirm their results. We obtain an
improvement of 1.79% while Gutiérrez and Medaglia find an improvement
of 1.2%. We think it is reasonable to assume that for small graphs the
results are more dependent on the implementation, especially the 128x128
graphs which have only 16 384 nodes. For larger graphs we believe that our
results do confirm the results in [36]. This is also confirmed by the fact that
in Section 3.6 we had found a strict query time ratio of 2.5 for DIR and
2.6 for LINE. This leads to an improvement of 1 − 2.5/2.6 = 3.8%, which
is definitely in the same order of magnitude as the results described above.

3.9 Guideline for real-world applications

The results can be summarized in the following guideline for real-world
applications, which can also be seen in Figure 3.14. For road networks with
turn costs, use the direct method if no more than 25% of the turns have a
non-zero cost, and use the line graph method otherwise. For road networks
with forbidden turns, use the node splitting method if less than 5% of the
turns are forbidden, which is generally the case. In exceptional cases where
5% of the turns or more are forbidden, use the direct method. Using a
lookup table with additional information is generally not worth the extra
memory since the speedup is rather insignificant.

61



CHAPTER 3. TURN RESTRICTIONS

≤ 25% > 25% < 5% ≥ 5%

Figure 3.14: Guideline for choosing the right algorithm for a particular
dataset.
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4
k shortest paths

4.1 Introduction

While there are many algorithms for the shortest path problem, in some
cases a ranking of several alternatives for the shortest path is desired. This
problem is called the k shortest paths problem, where k is the number
of paths to be calculated. Several applications of the k shortest paths
problem are listed by Eppstein [26], who mentions finite state machines,
biological sequence alignment and the evaluation of automatic translation
systems. Also, several authors (e.g. Eppstein [26], Martins et al. [48] and
Bernstein [16]) describe how k shortest paths algorithms can be used for
solving problems with additional constraints. A k shortest paths algorithm
can be used to generate a ranking of shortest paths, from which the path(s)
that best satisfy the other criteria are selected. Kuby et al. [44] present a
method for finding alternative routes based on a k shortest paths algo-
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rithm. However, we will show in the next chapter that other methods are
better suited for the specific problem of finding alternative routes. Several
exact algorithms for the k shortest paths problem exist, e.g. Eppstein [26],
Yen [70] and Hershberger et al. [38]. However, they are very time-consuming
and in an interactive application, users expect the results to be shown very
fast. This motivates looking for a method for the k shortest paths problem
which is faster than the exact algorithms, but which does not aim to find
an exact solution. This means that some paths may be missed, causing
other (slightly) longer paths to climb up in the ranking. However, in many
applications it may not be absolutely necessary to find every path in the
ranking, especially in applications where only a small subset of the paths
is actually used in the final result. Roddity [55] and Bernstein [16] give ap-
proximation algorithms with a theoretical performance guarantee, but until
now little research has been done on practical heuristics for the k shortest
paths problem.

In this chapter we present a new heuristic approach. By precalculating a
backward shortest path tree towards the target node, we can avoid having
to perform the many shortest path calculations that typically are part of
k shortest path algorithms. Even though there is no guarantee that the
exact k shortest paths are found, our results show that the heuristic finds
a majority of the paths, with only a slight increase in path weight. Fur-
thermore, the heuristic is much faster than any of the exact algorithms,
typically several hundreds of times faster, sometimes even thousands of
times faster.

This chapter is organised as follows. In Section 4.2 we give some prelimi-
nary background of the k shortest paths problem and a literature overview
of existing algorithms. Section 4.3 describes the general principle behind
deviation path algorithms, on which our heuristic is based, as well as the
algorithm of Yen [70]. In Section 4.4 we present the ideas behind our
heuristic and its efficient implementation, while Section 4.5 describes how
the heuristic can be extended into an exact k shortest paths algorithm. An
evaluation of our heuristic and exact algorithm tested on real-world road
networks is given in Section 4.6.
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4.2 The k shortest paths problem: an overview

4.2.1 General definitions

For a given integer k ≥ 1, the k shortest paths problem is intended to
determine successively the shortest path, the second shortest path, . . . ,
until the k-th shortest path between a given pair of nodes.

4.2.2 k shortest simple vs. non-simple paths

There are two variants of the k shortest paths problem. In the first variant,
the k shortest paths are not allowed to contain cycles, and this is called the
k shortest simple paths problem. The second variant, which allows cycles,
is called the k shortest non-simple paths problem. Figure 4.1 shows the
difference between both versions of the problem. Naturally the shortest
path from node s to node t is the same simple path for both algorithms, as
can be seen at the top. However, the second simple shortest path (left) has
a weight of 9 (left), which is higher than the second non-simple shortest
path with a weight of 6 (right). This example clearly shows that results
can be very different for both variants of the problem.

k shortest non-simple paths

For the k shortest non-simple paths problem, an influential algorithm was
developed by Eppstein [26]. Hoffman and Pavley [40] also describe a method
for the k shortest non-simple paths problem. The algorithm is based on
looking up paths in a precomputed shortest path tree rather than perform-
ing many time-consuming shortest path calculations. Hoffman and Pavley
clearly state that their method allows paths to have loops. They briefly
mention that the method can be adapted for generating loopless paths, but
give no details. However, Brander and Sinclair [18] give an adaptation of
Hoffman and Pavley’s algorithm for generating loopless paths. They use
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Figure 4.1: Shortest path from node s to node t (top), second simple
shortest path (left) and second non-simple shortest path (right).

Hoffman and Pavley’s algorithm to generate the complete ranking of paths,
containing both loopless paths and paths with loops. All paths with loops
need to be stored as well since they may still result in a loopless path later
on. The algorithm does not stop when k paths are generated, but continues
until k of the generated paths are loopless. Obviously, it can be expected
that in many cases, the algorithm needs to generate a very large amount of
paths until k loopless paths are found. We have performed an experiment
to verify this. For different graphs and different values of k, one hundred
random queries were performed and the number of paths which are stored
in memory was determined. The minimum, average and maximum number
for different values of k in CZE MAX is shown in Table 4.1. The results
clearly confirm this expectation. In the worst case more than 1.7 million
paths are stored only to calculate the 100 shortest loopless paths. Further-
more, memory quickly fills up, sometimes causing the algorithm to run out
of memory before it can finish. Table 4.2 shows how often this happens.
For k = 1000 this happens very often and for k = 10000 the algorithm
rarely actually finishes, which is unacceptable.
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k = 100 k = 1000 k = 10000

Minimum 2 484 6 350 524 711

Average 122 436 454 167 1 022 323

Maximum 1 769 552 1 344 353 1 414 923

Table 4.1: Number of paths stored in memory by the Hoffman-Pavley algo-
rithm to calculate k simple shortest paths in CZE MAX. Failed runs due to
insufficient memory are not included in this table. The results are similar
for other graphs.

Graph k = 100 k = 1000 k = 10000

CZE MAX 5% 43% 97%

IRL MAX 4% 28% 97%

LUX MAX 2% 47% 99%

PRT MAX 0% 3% 85%

BEL MAX 5% 54% 100%

Table 4.2: Percentages of Hoffman-Pavley runs which fail due to insuffi-
cient memory. The experiments were run on a machine with 2 GB RAM,
1 800 MB of which was allocated to the Java Virtual Machine.
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Since cycles are usually not relevant for path finding in road networks,
we focus on the k shortest simple paths problem. Since the Hoffman-
Pavley algorithm is in fact a k shortest non-simple paths problem, and
its adaptation is not suitable for large values of k, we do not consider this
algorithm further. However, our heuristic does use the idea of precomputing
a backward shortest path tree, like the Hoffman-Pavley algorithm.

k shortest simple paths

Unfortunately, the k shortest simple paths problem is computationally
harder than the non-simple variant. Most known algorithms for the k short-
est simple paths problem are based on an algorithm which was originally
developed by Yen [70] and simultaneously by Lawler [46]. These algorithms
are based on the fact that the i-th shortest path will always deviate at some
node from a path previously found. For that reason they are called devi-
ation path algorithms. Compared to the algorithm of Dijkstra [25], the
complexity of deviation path algorithms is significantly higher, since they
typically perform many single-source shortest path computations in order
to compute the deviations.

Yen’s algorithm essentially performs O(n) shortest path computations for
each of the k output paths. Since the algorithm of Dijkstra can be imple-
mented in O(m+ n log n) time, the algorithm of Yen can be implemented
in O(nk(m+ n log n)) worst-case time, or simply O(k n2 log n) worst-case
time, when we assume m = O(n). Several improvements to Yen’s algo-
rithm have been proposed and implemented, often algorithms which have
the same worst-case bound but perform well in practice.

A possible variant of Yen’s algorithm, which is suggested by Martins et
al. [48], updates the shortest path tree instead of calculating every shortest
path from scratch. Another variant is introduced by Hershberger at al. [38]
and performs k invocations of the replacement paths algorithm by Hersh-
berger and Suri [39]. The authors claim that for GIS map data with about
5 000 nodes and 12 000 arcs, their algorithm is 4 to 8 times faster than Yen’s
algorithm.
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Algorithm 4.1 Deviation path algorithms: general principle.

Require: graph G, number of shortest paths k, start s, target t
Ensure: sorted collection L of k shortest paths
1: P ← calculate shortest path from s to t
2: add P to collection C of candidate paths
3: for i from 1 to k do

4: P ← shortest path in C
5: remove P from C
6: add P to L
7: calculate deviations of P and add them to C {algorithms differ here,

see Algorithms 4.2, 4.3 and 4.6}
8: end for

Approximation algorithms for the k shortest paths problem have been stud-
ied only recently. Such approximation algorithms typically try to prove a
theoretical upper bound for the performance of their heuristic. An impor-
tant performance measure in the case of k shortest paths is the ratio of
the weight of the i-th path computed by an approximation algorithm over
the weight of the exact i-th path; this is called the stretch of the path.
The first approximation algorithm was published by Roddity [55]; it has a
stretch of 3/2. Recently a (1 + ǫ) approximation algorithm was proposed
by Bernstein [16].

4.3 Deviation path algorithms

4.3.1 General principle

The heuristic we present is based on the algorithm of Yen, and both can
be classified as deviation path algorithms. Deviation path algorithms for k
shortest simple paths are all based on the same principle, which is shown
in pseudocode in Algorithm 4.1.
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Figure 4.2: All possible deviations from a path with 5 nodes.

Two collections of paths are stored, a collection C of candidate paths and
a sorted collection L containing the i (< k) paths found so far. Initially the
collection C contains the shortest path from the start node s to the target
node t, which can be calculated using any shortest path algorithm, such as
Dijkstra’s algorithm [25]. In every iteration, the shortest path P in C is
fetched and removed from C and it is added to L. Next, deviations of P
are calculated and added to C as new candidate paths.

For a given path P containing ℓ nodes, there are only ℓ − 1 nodes where
it is possible to deviate from this path. It is not useful to deviate from
the path in the final node. Figure 4.2 shows all possibilities for a path of
length 5. Without loss of generality, a path can also coincide with some
other path, then deviate from it, and then coincide again. The various de-
viation path algorithms differ in their way of calculating deviations (Line 7
of Algorithm 4.1). It should be noted that it is possible that less than k
paths between the given nodes exist. For readability of the algorithm, this
case was omitted from the pseudocode in Algorithm 4.1, but of course it
should be dealt with in the implementation.

4.3.2 Yen’s algorithm

Yen’s algorithm is an example of a deviation path algorithm and calculates
deviations in the following way. The so-called deviation node vd of a path P
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Figure 4.3: Deviation node for path P . Collection L contains the 5 paths
from s to t found so far. Subpaths coinciding with P are marked in grey.
Path 4 in L has the longest subpath coinciding with P . Therefore, ℓ is the
deviation node of P . There is only one deviation arc for P : the arc (ℓ,m).

from s to t is the last node in the path for which a path exists in L which
completely coincides from s up to vd. In other words, vd is the first node
from which P deviates from all other paths in L. Furthermore, for every
such coinciding path in L, there is one arc from vd to its successor in this
path. The set of such arcs is called the set of deviation arcs for P . An
example is given in Figure 4.3.

In order to calculate deviations from P , Yen’s algorithm removes every
arc (vi, vi+1) between the deviation node vd and the last node t one by one.
All the nodes preceding vi in P are also removed. A new path Q from
vi to t is then calculated using an arbitrary shortest path algorithm. By
concatenating Q and the s− vi subpath of P , i.e. P [s..vi], a new s− t path
is created and added to C. It should be noted that the resulting path does
not contain cycles, since all nodes preceding vi in P were removed from the
graph. All nodes and arcs are restored to the graph after the entire proce-
dure is finished. As mentioned before, the algorithm skips the arcs between
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Algorithm 4.2 Algorithm for calculating deviations in Yen’s algorithm.

Require: set of candidate paths C, path P = (s = v1, v2, ..., vl = t) fetched
from C

Ensure: deviations from P added to C
1: vd ← deviation node of P
2: Ed ← deviation arcs of P
3: for i from 1 to d− 1 do

4: remove vi from the graph
5: end for

6: remove all arcs in Ed from the graph
7: for i from d to l do
8: remove (vi, vi+1) from the graph
9: Q← calculate shortest path from vi to t

10: P ′ ← P [v1..vi] +Q
11: add P ′ to C
12: remove vi from the graph
13: end for

14: restore graph

the first node and the deviation node. This is because the v1 − vd subpath
of P coincides with some other path already in L, so this calculation has
already been done for these arcs. The details in Algorithm 4.2 should make
this clear. It should also be noted that, in an efficient implementation of the
algorithm, nodes and arcs are usually not really removed from the graph,
but rather marked as forbidden, thus allowing a fast reconstruction of the
original graph.
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4.4 Heuristic for calculating deviations

4.4.1 Method

The heuristic we propose is a deviation path algorithm based on the algo-
rithm of Yen. The pseudocode for our heuristic is shown in Algorithm 4.3.
While the algorithm of Yen performs many shortest path computations, the
heuristic is a lot faster because it uses precomputed information instead.
The algorithm starts by calculating a backward shortest path tree SPTIN

towards the target node t. This calculation can be done by running the al-
gorithm of Dijkstra backwards and is performed only once, regardless of k.
The tree SPTIN stores the shortest path weight as well as the shortest path
itself from every node to t and can thus be used by the algorithm to retrieve
the shortest path from any node x to t very fast. Just like the algorithm of
Yen, the heuristic removes every arc (vi, vi+1) between the deviation node
and the target node in a path P and all the nodes preceding vi in P from
the graph in order to calculate deviations. However, while the algorithm of
Yen would perform a shortest path calculation from vi to t, the heuristic
will now use a faster method. All outgoing arcs (vi, x) of vi can lead to
a suitable detour, by concatenating the shortest path from x to t to the
arc (vi, x) and then to P [v1..vi]. The shortest path from every node x to t
can simply be fetched from SPTIN . This eliminates the need to perform
shortest path calculations. Figure 4.4 illustrates this principle. However, a
problem may occur here because the shortest path from x to t which was
fetched from SPTIN may contain nodes and arcs which were removed from
the graph after SPTIN was calculated. It is therefore necessary to check
for every arc and node in the path if it still exists in the graph. Only if
the entire path still exists in the graph, the path can be concatenated and
added to C. Otherwise, the path is simply dropped rather than calculating
a new shortest path. This is what causes the heuristic to be fast but possi-
bly inexact. Figure 4.5 shows an example where the heuristic goes wrong.
Assume that k shortest paths from s to t are sought. The shortest path is
(s, a, t). When calculating deviations from this path, the heuristic looks at
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Figure 4.4: How the heuristic works. Solid lines indicate the current path P
from s to t. Crosses indicate forbidden nodes and arcs. A detour is neces-
sary from vi to t. Dashed lines indicate other outgoing arcs from vi. Dotted
lines indicate paths from these neighbours to t, which can be fetched im-
mediately from the backward shortest path tree SPTIN . These paths are
not allowed to pass through already forbidden nodes or arcs.

Figure 4.5: Small graph where the heuristic does not find exact results.
Arcs in the backward shortest path tree to t are marked as bold dotted
arrows. Looking for deviations from the shortest path (s, a, t), the node s
is forbidden and the second shortest path (s, b, t) is not found.
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Algorithm 4.3 Heuristic for calculating deviations.

Require: graph G, precalculated backward shortest path tree SPTIN , set
of candidate paths C, path P = (s = v1, v2, ..., vl = t) fetched from C

Ensure: deviations from P added to C
1: vd ← deviation node of P
2: Ed ← deviation arcs of P
3: for i from 1 to d− 1 do

4: remove vi from the graph
5: end for

6: remove all arcs in Ed from the graph
7: for i from d to l do
8: remove (vi, vi+1) from the graph
9: for every outgoing arc (vi, x) of vi do

10: Q← fetch shortest path from x to t in SPTIN

11: if Q exists in G then

12: P ′ ← P [v1..vi] + (vi, x) +Q
13: add P ′ to C
14: end if

15: end for

16: remove vi from the graph
17: end for

18: restore graph

the other outgoing arc from s: the arc (s, b) and fetches the shortest path
from b to t in the backward shortest path tree: (b, s, a, t). Since the node s
has been forbidden in the meantime, the path is simply dropped and the
actual second shortest path (s, b, t) is never found.

Complexity of the heuristic

As mentioned earlier, road networks are usually sparse so it can be assumed
that m = O(n), where m is the number of arcs and n is the number of
nodes in the graph. The check on line 11 in Algorithm 4.3 takes O(n) time,
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since all nodes and arcs in the path are checked. This check is performed
O(nk) times: O(n) times by the loop on line 7 in Algorithm 4.3 and k
times by the loop on line 3 in Algorithm 4.1. This leads to a complexity of
O(n2k). The lines 1-6 in Algorithm 4.3 have a complexity of O(n), so they
do not add to the complexity, and neither does the initial calculation of the
backward shortest path tree, which can be implemented with a complexity
of O(n log n) in road networks.

4.4.2 Efficient implementation of the heuristic

The heuristic avoids repeated calls of Dijkstra’s algorithm, which is typi-
cally one of the bottlenecks in most exact k shortest paths algorithms. Most
of the operations performed by the heuristic are light-weight operations. It
is the computation of deviation nodes (and the associated deviation arcs),
which is performed once in every call of the algorithm in Algorithm 4.3,
which now becomes the bottleneck. Hence it is important to implement
this operation efficiently.

The collection L

In a straightforward implementation, the collection L (see Section 4.3) is
represented as a list. In order to find the deviation node and arcs, the
algorithm then needs to iterate over all the paths in L and for every path
over all its nodes, until the path no longer coincides with the current path P .

More efficiently, however, the collection L can be implemented as a devi-
ation tree, an example of which is shown in Figure 4.6. The concept of a
deviation tree was proposed by Roddity and Zwick [56]. Initially the first
path is added entirely to the empty deviation tree D. After that, for every
new path P which is added, the longest subpath P [s..vd] starting in s is
sought in D. The remainder of the path P , i.e. P [vd..t] is then appended
to the node representing vd in D. The node vd is called the deviation
node. Looking up the deviation node can be done efficiently in a similar
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Figure 4.6: Deviation tree (right) for the given collection of paths (left).

way. Algorithms 4.4 and 4.5 show the pseudocode for adding a path to the
deviation tree and for looking up a deviation node, respectively.

In order to get an impression of the effect of using the deviation tree versus
the straightforward list implementation, we performed 10 random queries
for k = 10000 on CZE MAX. We measured running times for both the list
and the deviation tree implementation. The results are shown in the first
chart in Figure 4.7. It is clear that the use of the deviation tree implies a
major speedup compared to the list implementation.

It is interesting to note that Yen’s algorithm also needs to compute devi-
ation nodes and arcs quite often, so Yen’s algorithm can benefit from the
efficient computations described in Algorithms 4.4 and 4.5 as well. The
second chart in Figure 4.7 shows timing results for the same queries using
Yen’s algorithm. But here the speedup is hardly noticeable. This can be
explained by the fact that for the heuristic the relative amount taken by
the operation to find a deviation node is much higher, so the heuristic is
much more affected by the efficiency of this operation. In our experiments
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Algorithm 4.4 Algorithm for adding a path to a deviation tree.

Require: path P , deviation tree D
Ensure: P is added to D
1: if D is empty then

2: D ← P
3: else

4: currentTreeNode← D.root
5: index← 2 {indexing starts at 1}
6: while index ≤ P.length and

currentTreeNode has child P.nodeAt(index) do
7: currentTreeNode← currentTreeNode.child(P.nodeAt(index))
8: index← index+ 1
9: end while

10: append P [P.nodeAt(pathIndex)..t] to currentTreeNode
11: end if

Algorithm 4.5 Algorithm for finding the deviation node of a path in a
deviation tree.
Require: path P , non-empty deviation tree D
Ensure: return deviation node in D for P
1: currentTreeNode← D.root
2: index← 2 {indexing starts at 1}
3: while index ≤ P.length and

currentTreeNode has child P.nodeAt(index) do
4: currentTreeNode← currentTreeNode.child(P.nodeAt(index))
5: index← index+ 1
6: end while

7: return P.nodeAt(index − 1)
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Figure 4.7: Running times for 10 random queries with k = 10000 on
CZE MAX, both for the heuristic and Yen’s algorithm, using the list and
deviation tree implementation for calculating deviation nodes.

(described in Section 4.6) the implementation with a deviation tree was
used for both the heuristic and the algorithm of Yen.

The collection C

The collection C, which stores the candidate paths, is stored as a queue
which sorts the paths in order of ascending path weight. However, the size
of this queue is bounded by k − i, where i is the number of paths already
in L. When the queue has reached its capacity, it no longer accepts paths
which are longer than the longest path in the queue. This is because such
a path can never be part of the k shortest paths. Candidate paths shorter
than the longest path in the queue are accepted into the queue, but in such
cases the longest path is removed from the queue. Not only does this save a
lot of memory, but it also saves time, since paths which are too long for the
queue can immediately be discarded instead of building them and testing
if they exist in G (line 11 in Algorithm 4.3).
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4.5 Exact calculation of shortest paths

A promising feature of the heuristic is the possibility to enhance it to an
efficient exact algorithm. The pseudocode for this algorithm is shown in
Algorithm 4.6. Just like the heuristic, the exact variant checks whether a
generated path still exists in the modified graph (line 11 in Algorithm 4.3).
If not, the exact algorithm calculates a new shortest path (line 14 in Algo-
rithm 4.3), rather than simply dropping the path as the heuristic would do.
Obviously this exact algorithm is slowed down by performing more shortest
path calculations. But it is interesting to see how this algorithm performs
with respect to the other exact algorithms. Another difference is that the
exact algorithm only tries one alternative path (with smallest weight) from
vi to t while the heuristic tries a path for all of vi ’s outgoing arcs. We
will now prove that this algorithm does indeed return the exact k shortest
paths and present experimental results further in this chapter.

Lemma 4.1. The described algorithm calculates an exact set of k shortest
paths.

Proof. It is known that Yen’s algorithm calculates an exact set of k shortest
paths. Yen’s algorithm and this algorithm only differ in lines 9-10 (Algo-
rithm 4.2) and lines 9-16 (Algorithm 4.6) respectively. All other lines are
identical in both algorithms. The given lines operate on the exact same
graph, since the graph is only modified in the identical lines. Lines 9-10 in
Yen’s algorithm simply calculate a shortest path from vi to t and append
it to the v1 − vi subpath of P . Our algorithm first finds the shortest path
from vi to t in the precomputed shortest path tree SPTIN (lines 9-10).
Then, there are two possible cases:

1. The vi−t path which was found in SPTIN is still valid in the modified
graph. In this case it is definitely the shortest path. The shortest
vi− t path in the modified graph cannot be shorter since no nodes or
arcs were added, only removed.
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Algorithm 4.6 Exact algorithm for calculating deviations.

Require: graph G, precalculated backward shortest path tree SPTIN , set
of candidate paths C, path P = (s = v1, v2, ..., vl = t) fetched from C

Ensure: deviations from P added to C
1: vd ← deviation node of P
2: Ed ← deviation arcs of P
3: for i from 1 to d− 1 do

4: remove vi from the graph
5: end for

6: remove all arcs in Ed from the graph
7: for i from d to l do
8: remove (vi, vi+1) from the graph
9: x← find outgoing arc (vi, x) from vi such that

w(vi, x) + T.getWeightToTarget(x) is minimized
10: Q← fetch shortest path from x to t in SPTIN

11: if Q exists in G then

12: P ′ ← P [v1..vi] + (vi, x) +Q
13: else

14: Q← calculate shortest path from vi to t
15: P ′ ← P [v1..vi] +Q
16: end if

17: add P ′ to C
18: remove vi from the graph
19: end for

20: restore graph
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2. The vi − t path which was found in SPTIN is no longer valid in the
modified graph. In this case a new exact shortest path calculation is
performed (line 14).

In both cases the concatenation of the v1−vi subpath of P and the shortest
path from vi to t is assigned to the variable P ′, just like in Yen’s algorithm.
Hence, we can conclude that this algorithm obtains the same results as
Yen’s algorithm and is therefore exact.

4.6 Results and discussion

4.6.1 Experimental setup

In our experiments, we have compared our heuristic and its exact variant
to three existing exact k shortest path algorithms, i.c. the algorithms of
Yen [70], Martins et al. [48] and Hershberger et al. [38]. Where applicable,
Dijkstra’s algorithm was used for shortest path calculations. For each graph
we performed 100 random queries for k = 100, k = 1000 and k = 10000
respectively, thus leading to a total number of 1 500 queries. Both the
quality of the results and the time performance were evaluated. In this
section we present summary results of all these experiments, as well as
detailed results for PRT MAX.

4.6.2 Quality of the paths found

Unlike the exact algorithms, our heuristic approach does not aim at gener-
ating an exact set of k shortest paths. This fact necessitates a comparison
of the results of the heuristic with the exact results. When evaluating the
quality of the paths generated by the heuristic, two aspects are impor-
tant. On the one hand, we need to find out how many paths the heuristic
“misses”. If e.g. the 1 000-th path found by the heuristic is actually the
1006-th path in an exact set of k shortest paths, then the heuristic has
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Figure 4.8: Quality of the paths found by the heuristic for PRT MAX.
The exact ranking e(k) and the weight increase δ(k) are shown for different
values of k, each time for 100 random queries.
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missed six paths. On the other hand, it is also important how much the
path weight increases due to the missed paths. If e.g. the weight of the
1 000-th path found by the heuristic is a travel time of 2 200 seconds, while
the real 1 000-th path has a weight of 2 000 seconds, then the weight became
10% worse.

Let e(k) be the ranking of the k-th path found by the heuristic in an exact
set of k shortest paths. Let δ(k) be the percentual weight increase for the
k-th path found by the heuristic compared to the real k-th shortest path.
It is easy to see that e(k) ≥ k and δ(k) ≥ 0.

For several values of k, the values of e(k) and δ(k) were calculated for a
large number of random queries by comparing the results of the heuristic to
the results of an exact algorithm. The charts in Figure 4.8 show the results
for PRT MAX. As can be seen in the charts, the dots often lie very close
to the horizontal axis, which means for e(k) that (almost) no paths were
missed and for δ(k) that the weight increase is very small in many cases.
There are however some outliers where quite a few paths are missed, but
the number of missed paths remains within acceptable bounds.

Table 4.3 summarises the values of e(k) for all experiments. Each line in
the table corresponds to 100 queries for a given k in a given graph.

The column where e(k) = k shows the number of queries where no paths
were missed, i.e. the heuristic did find the exact solution. For k = 100 this
is the case for 47.4% of all queries, but for larger k this number decreases
drastically. However, the value of e(k) remains within a small constant
factor of k for almost all queries. Even for k = 10000 on average 93.6%
of the queries have e(k) < 4k and on average 97.7% of the queries have
e(k) < 10k.

The effectiveness of the heuristic becomes even more clear when looking
at the values of δ(k), which are summarised in Table 4.4. Again, each
line in the table corresponds to 100 queries for a given k in a given graph
and shows the number of queries where δ(k) < 1%, 2%, 5% or 10%. For
example, for IRL MAX and for k = 100, the weight increase is less than 1%
for 90 out of 100 queries. For 91, 97 and 98 out of 100 queries, the weight
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Graph k e(k) = k e(k) < 2k e(k) < 4k e(k) < 10k

CZE MAX 100 35 91 96 99
1 000 3 83 95 99
10 000 0 68 89 97

IRL MAX 100 45 84 94 95
1 000 7 81 89 95
10 000 6 77 92 100

LUX MAX 100 27 87 95 97
1 000 8 71 84 94
10 000 4 63 80 94

PRT MAX 100 76 100 100 100
1 000 53 99 99 99
10 000 16 88 95 98

BEL MAX 100 54 96 100 100
1 000 18 90 99 100
10 000 1 85 97 99

Table 4.3: For several graphs and several values of k, each time for
100 random queries, the number of queries where e(k) = k, and where
e(k) < 2k, 4k, 10k resp.
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Graph k δ(k) < 1% δ(k) < 2% δ(k) < 5% δ(k) < 10%

CZE MAX 100 94 97 98 99
1 000 93 98 99 99

10 000 89 94 99 100

IRL MAX 100 90 91 97 98
1 000 86 90 95 98

10 000 90 96 99 100

LUX MAX 100 92 95 99 99
1 000 85 89 94 99

10 000 90 93 99 100

PRT MAX 100 100 100 100 100
1 000 100 100 100 100

10 000 98 98 99 100

BEL MAX 100 99 100 100 100
1 000 98 99 100 100

10 000 97 99 99 100

Table 4.4: For several graphs and several values of k, each time for 100 ran-
dom queries, the number of queries where δ(k) < 1%, 2%, 5%, 10% resp.
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increase is less than 2%, 5% and 10%, respectively. It is clear that, even for
large k, the weight increase of the k-th path is very small, mostly under 1%.
A 95.9% of all queries have δ(k) < 2%, while 98.5% have δ(k) < 5%. For
routing applications this is very acceptable since a travel time increase of
less than 2%, or even 5%, can almost be neglected.

Moreover, we can relate our measure δ(k) to the theoretical concept of
stretch, as used in the approximation algorithms of Roddity [55] and Bern-
stein [16]. We recall that the stretch of the i-th path is defined as the ratio
of the weight of the i-th path found by the approximation algorithm over
the weight of the exact i-th path. On the one hand, the stretch 3/2 of the
approximation algorithm of Roddity [55] corresponds to our δ(k) ≤ 50%, an
upper bound which is more than outperformed in almost all cases. On the
other hand, the ǫ in the (1 + ǫ) approximation algorithm of Bernstein [16]
corresponds to our δ(k) ≤ ǫ. For e.g. ǫ = 0.05 = 5%, this condition is
also satisfied in most cases. Hence, although our heuristic gives no upper
bound guarantee for the stretch of the paths, in practice it competes very
well with the (1+ ǫ) approximation algorithm of Bernstein [16] and the 3/2
algorithm of Roddity [55].

4.6.3 Time performance

Of course a heuristic approach is only beneficial if it provides a significant
speedup in comparison with an exact algorithm. In order to evaluate this,
we have compared our heuristic with three existing exact algorithms for
100 random queries and for different values of k. More specifically, for each
individual query we also executed the algorithms of Yen [70], Martins et
al. [48] and Hershberger et al. [38], and took the smallest running time
to compare it with the running time of our heuristic. It should be noted
that the algorithm of Hershberger et al. [38] is often implemented using a
threshold. Therefore the experiments were performed with several smaller
and larger thresholds and for each query the best running time was chosen
individually. The results for PRT MAX can be seen in Figure 4.9. For
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k = 100 k = 1000 k = 10000

Graph average median average median average median

CZE MAX 78 77 189 157 560 239

IRL MAX 95 93 270 241 661 399

LUX MAX 67 58 141 122 293 182

PRT MAX 175 180 678 625 731 479

BEL MAX 145 93 491 303 1 019 389

Table 4.5: Average and median speedup of heuristic versus fastest exact
algorithm.

k = 100 k = 1000 k = 10000

Graph best worst best worst best worst

CZE MAX 222 7 784 6 13 169 19

IRL MAX 236 6 1 095 10 11 062 11

LUX MAX 203 4 500 8 3 191 7

PRT MAX 373 1 2 181 7 8 343 4

BEL MAX 458 4 1 982 2 5 816 12

Table 4.6: Best and worst speedup of heuristic versus fastest exact algo-
rithm.

readability of the chart, the results are sorted by the running time for the
fastest exact algorithm.

The results clearly show that the heuristic is much faster than the exact
algorithms. Indeed, for PRT MAX, the heuristic has a typical running time
of a few seconds even for k = 10000, while for k = 100 more than half of
the queries for the exact algorithms have running times above 1 minute, for
k = 1000 above 8 minutes, for k = 10000 above 18 minutes.

For the other networks similar behaviour can be seen. This is summarised
in Tables 4.5 and 4.6. The smallest speedup is sometimes very small, only
a factor 2 or 4, but as can be seen from the charts in Figure 4.9, these cases
correspond to situations where the fastest exact algorithm runs exception-
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k = 100 k = 1000 k = 10000

Graph average median average median average median

CZE MAX 1.40 1.38 1.30 1.28 1.19 1.13

IRL MAX 1.16 1.13 1.15 1.14 1.15 1.09

LUX MAX 1.25 1.18 1.29 1.14 1.20 1.10

PRT MAX 1.10 1.08 1.21 1.19 1.52 1.46

BEL MAX 2.52 1.84 2.94 1.82 2.62 1.90

Table 4.7: Average and median speedup of our exact algorithm versus
fastest existing exact algorithm.

ally fast. On average the heuristic is several hundreds of times faster than
the exact algorithms, in the best cases even thousands of times faster. In
an interactive routing application, a speedup of this kind can very well be
worth giving up the guarantee of exact results, given that the results are
still of good quality.

For reasons of completeness, we also include the detailed timing results for
the different exact algorithms. These results can be seen in Figure 4.10. The
results are sorted by the running time for Yen’s algorithm. This is only for
the readability of the chart: dots above the dots for Yen’s algorithm indicate
a larger running time than Yen’s algorithm and vice versa. Our experiments
show that the algorithm of Martins et al. [48] is hardly ever the best choice,
as it is typically the slowest of the 3 existing exact algorithms. Moreover
Yen’s algorithm in our implementation is often faster than the algorithm
of Hershberger et al. [38]. Our own exact algorithm is also included in this
chart, and appears to behave quite similar to the running times for Yen’s
algorithm, though a little faster.

Finally, Table 4.7 gives the average and median speedup of our exact algo-
rithm versus the fastest existing exact algorithm. For all but BEL MAX
(where the speedup is 2.5 to 3), the speedup is about 10% to 20%, which
makes our algorithm a valid alternative for the existing exact algorithms.
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(a) PRT MAX, k = 100

(b) PRT MAX, k = 1000

Figure 4.9: Time performance for PRT MAX.
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(c) PRT MAX, k = 10 000

Figure 4.9: Time performance for PRT MAX. For each k, the heuristic
was compared, for 100 random queries, to three existing exact algorithms:
Yen [70], Martins et al. [48] and Hershberger et al. [38]. Only the best
of the running times for the exact algorithms is shown. The horizontal
axis represents the 100 random queries. Results for the same query share
their horizontal position. The vertical axis shows the running times in
milliseconds and has a logarithmic scale. Results are sorted by the running
time for the fastest exact algorithm. (Continued)
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(a) PRT MAX, k = 100

(b) PRT MAX, k = 1000

Figure 4.10: Detailed time performance for PRT MAX
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(c) PRT MAX, k = 10 000

Figure 4.10: Detailed time performance for PRT MAX. Five algorithms
were tested for 100 random queries and different values of k: the three
existing exact algorithms of Yen [70], Martins et al. [48] and Hershberger
et al. [38], our exact algorithm and our heuristic. The horizontal axis rep-
resents the 100 random queries. Results for the same query share their
horizontal position. The vertical axis shows the running times in millisec-
onds and has a logarithmic scale. Results are sorted by the running time
for Yen’s algorithm. (Continued)
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4.7 Conclusion

A new heuristic has been proposed for the k shortest simple paths prob-
lem. Not only does this heuristic generate results of good quality, it is also
very fast. The experiments clearly show that significant speedups can be
achieved by compromising only slightly on path quality. The new heuris-
tic certainly offers possibilities to serve as a basis for other algorithms and
heuristics which make use of a large set of alternative shortest paths. Fur-
thermore, the heuristic can be enhanced to an exact algorithm which is a
good alternative to the existing exact algorithms.
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5
Dissimilar paths

5.1 Motivation

Users of a route planning application often are interested not only in the
shortest path, but also in a few good alternatives. This is because the user
may have certain knowledge about a route, such as toll, scenery or proba-
bility of traffic jams, which the route planner does not take into account.
Also, users may or may not like a particular road segment because of their
personal preferences. Presenting more than one possibility gives the user
the freedom to choose a route according to his own needs. An example is
shown in Figure 5.1.

Naturally, these alternatives are only useful if they are not too much alike,
i.e. if they are dissimilar . The alternatives should also be relatively short
and not contain any detours which do not feel natural to the user. These
criteria are discussed in more detail in Section 5.2.
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Figure 5.1: Example of alternative routes. The shortest route is shown in
red. (Image source: Google Maps)

Having dissimilar alternative routes is also interesting in the context of
transporting hazardous materials, as described by Dell’Olmo et al. [24].
When one route fails due to bad weather conditions, one of the alternatives
can be chosen. Also, the risk can be spread over different routes instead of
just one, so that the risk is equally divided over the population along these
routes.
It should be noted that even though the paths should be dissimilar, they
should not necessarily be disjoint. Different paths often use the same route
at the beginning and at the end, e.g. to reach a highway.
This chapter is organised as follows. In Section 5.2 we define what a “good”
solution should look like. In Section 5.3 a number of known methods are
described. In Section 5.4 we present our original algorithm, which is im-
proved later. In the following sections, we describe our improved algorithm
and describe the experiments on which some of our decisions were based.
In Section 5.12 the algorithm is evaluated in terms of quality of the results
as well as time performance (and the trade-off between the two). Finally,
in Section 5.13, we give some concluding remarks and compare our results
to results in the literature.
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5.2 Evaluation of a solution

A solution S consists of a set of k paths, where k is the requested number
of paths. The solution will always consist of the shortest path and k − 1
alternatives. The quality of a solution is determined by the dissimilarity,
local optimality, the weight of the paths and whether the paths contain
cycles, each of which are described below. In our algorithm a solution
is only feasible if it is locally optimal and contains no cycles, while our
algorithm aims to optimize both dissimilarity and path weight.

Dissimilarity

In order to determine a set of dissimilar paths, some formal definition of
dissimilarity between paths is needed. Several definitions have been pro-
posed. Some definitions only consider whether paths coincide or not, while
others also take into account how far the paths are away from each other
geographically. While definitions of dissimilarity are easily interchangeable
for most algorithms, it is still important that a suitable definition is chosen.
Lombard and Church [47] calculate the area between the path and either
the horizontal or vertical axis of the coordinate system for each path. The
dissimilarity between two paths is then defined as the absolute difference
between their areas.

Akgün et al. [12] propose another definition. They calculate a buffer of
a certain width around the paths and use the area of the intersection of
two buffer zones for the calculation of the dissimilarity between two paths.
This is interesting in the context of transporting hazardous materials since
it helps to avoid the selection of two different roads which are very close
to each other. This would impose a risk on the same group of people and
the two roads would be prone to the same weather conditions. Of course,
a drawback of these last two methods is that they assume that the coor-
dinates of the nodes are present. This takes additional memory and the
coordinates may not always be present in a data set.
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Let ws(Pi, Pj) be the total weight of the overlapping parts in Pi and Pj ,
i.e.

ws(Pi, Pj) =
∑

e∈Pi∩Pj

w(e)

Let wn(Pi, Pj) be the total weight of the parts of Pi which do not overlap
with Pj , i.e.

wn(Pi, Pj) =
∑

e∈Pi\Pj

w(e)

A simple measure for dissimilarity could be wn(Pi, Pj). However, a draw-
back of this method is the fact that in most cases wn(Pi, Pj) 6= wn(Pj , Pi),
so this definition is not symmetric. Akgün et al. [12] describe how this
can lead to different results when calculating dissimilar paths, and propose
another measure which is symmetric. They define the similarity S(Pi, Pj)
between two paths Pi and Pj as

S(Pi, Pj) =
ws(Pi, Pj)/w(Pi) + ws(Pi, Pj)/w(Pj)

2

The dissimilarity D(Pi, Pj) is then defined as

D(Pi, Pj) = 1− S(Pi, Pj)

The result is a number between 0 and 1 where 0 indicates that Pi = Pj ,
while 1 indicates that Pi and Pj are completely disjoint. However, we
will be using a different dissimilarity measure, which will be explained in
Section 5.8.

Local optimality

Even though an alternative path may not be a shortest path, every local
instruction must still feel natural to the user. A path containing small
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Figure 5.2: Top: Undesired situation where a route is not locally optimal
for a certain value of T . The route leaves the main road and then joins it
again. Bottom: Improved route which is locally optimal.

detours which make no sense to the user is not a good alternative. It is
e.g. not a good idea to leave a major road briefly and then join it again.
An example of such a situation is shown in Figure 5.2. This concept was
formally introduced as local optimality by Abraham et al. [11].

Definition 5.1. A path P is T -locally optimal if and only if every sub-
path P ′ of P with w(P ′) ≤ T is a shortest path.

Intuitively, this means that every subpath shorter than T cannot contain
detours. T is usually chosen as a fraction α of the shortest path weight,
e.g. α = 25%. Many of the known methods generate paths which are not
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(a) α = 10%

(b) α = 25%

Figure 5.3: Two solutions for the same query in NAVTEQ BELGIUM with
different values for α.
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locally optimal or strive towards local optimality without guarantees. How-
ever, we believe that the alternatives must be locally optimal for the user
to be satisfied, since any illogical detour may be regarded as disturbing by
the user. Therefore, our algorithm only generates paths which are locally
optimal for a given α. In many of our experiments, we will use α = 25%.
This is the value which is also used by Abraham et al. [11] in their exper-
iments and it leads to paths of good quality. To illustrate this, we have
generated two solutions for the same query using our algorithm which will
be described later. One solution is locally optimal for α = 10% (but not for
α = 15%) and the other solution is locally optimal for α = 25%. Figure 5.3
shows both solutions and gives an idea of the difference between solutions
with different values for α. The paths which are locally optimal only for
α = 10% make some undesired detours around Eeklo and Schoten. This is
not the case for the paths which are locally optimal for α = 25%.

Weight of the paths

The weight of the alternatives should obviously be within acceptable bounds.
It makes no sense to present an alternative which is e.g. twice as long as
the shortest path, unless there is no other option, which is very uncommon
in practice. Most known methods eliminate all paths with a weight higher
than a certain threshold, e.g. 30% longer than the shortest path weight.
Abraham et al. [11] even require that every subpath is not more than a
certain percentage longer than its corresponding shortest path. However,
valuable alternatives may be dismissed by imposing a strict upper bound
on the weight of the paths. Therefore, we aim to avoid this and optimize
both dissimilarity and path weight.

Cycles

Of course, routes containing cycles are definitely suboptimal and should
be avoided at all times. Therefore, our algorithm will eliminate any route
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which contains a cycle.

5.3 Known methods

5.3.1 Iterative penalty

One of the first methods for finding dissimilar paths was proposed in 1993
by Johnson et al. [42] and is called the iterative penalty method. It starts
by finding the shortest path, and then increases the weight of the shortest
path by applying a penalty to it. This process is repeated until enough
paths are found. While this method is very simple and efficient, it has
some drawbacks.
There are many different ways for applying penalties to paths. Penalties can
be applied to nodes or arcs, additively or multiplicatively, different values
for the penalties can be used, nodes and arcs which are already penalized
can be penalized again or not... This needs a lot of finetuning and is not
guaranteed to work well on every network. Additive penalties have the
disadvantage that they penalize paths consisting of many low-weight arcs
more than paths consisting of few high-weight arcs. Also, the same path
may be found twice and these duplicates need to be refused. The higher
the penalty, the less duplicate paths need to be refused.
Another drawback is the fact that this method can easily enforce unnatural
detours. Because of this, the paths are very unlikely to be locally optimal.
Bader et al. [13] suggest an interesting approach to address this issue. They
penalize not only the path itself, but also the arcs around it (decreasing
with the distance to the path). In this way small detours are discouraged.
However, a good alternative might be near the path. Another option they
suggest is to penalize only the path and its incoming and outgoing arcs.
They call this penalty the rejoin penalty.
Another issue is that this method provides no real evaluation of the found
set of paths, so the paths may be very similar after all. Akgün et al. [12]
have performed experiments with the iterative penalty method and found
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that the dissimilarity of the paths is rather disappointing. However, they
do suggest using this method as a basis for another algorithm, which will
be described in Section 5.3.4.

5.3.2 K shortest paths

While k shortest path algorithms (e.g. Yen [70]) have their own applications,
as described in Section 4.1, they are not the best choice as a standalone
algorithm for dissimilar paths. This is because every small variation on the
path can be included in the results as an alternative, but these variations
can also be combined endlessly. Because of this, the paths tend to be very
much alike and for a large graph a good alternative is probably not within
the first 1 000 paths. Figure 5.4 shows the 1 000 shortest paths between two
given points. The paths are so much alike that the difference can hardly be
seen. Also, the alternatives often have small detours, so the paths are very
unlikely to be locally optimal. However, k shortest paths algorithms serve
as a basis for certain dissimilar paths algorithms, such as the algorithm by
Kuby et al. [44] which is described in the next section. It should be noted
that our k shortest paths heuristic presented in Chapter 4 could provide a
large speed-up for such algorithms.

5.3.3 Minimax method

Kuby et al. present a method based on k shortest paths algorithms. They
call it the minimax method. This method is one of the first methods which
consider the dissimilarity between every pair of paths in a solution and not
only between each alternative and the shortest path. A large collection of
paths is generated using a k shortest paths algorithm and then a subset
of short but dissimilar paths is chosen. For selecting a dissimilar subset of
paths, a linear trade-off between the path weight and the dissimilarity is
used. They define the similarity between two paths Pj and Pi as

ws(Pj , Pi)
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Figure 5.4: Ranking of the 1 000 shortest paths (marked in red) between
two points in Luxembourg, calculated using a k shortest paths algorithm.
The paths are so similar that there seems to be only one path.

while the weight of the path Pj is given by

ws(Pj , Pi) +wn(Pj , Pi)

Both of these values should be as low as possible, so their sum should be
as low as possible too, i.e. their sum must be minimized. The authors use
a linear trade-off by applying a weight of β to the similarity:

β × ws(Pj , Pi) + ws(Pj , Pi) + wn(Pj , Pi)
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This can also be written as:

(1 + β)× ws(Pj , Pi) + wn(Pj , Pi)

Finally, this is scaled by dividing by the weight of the shortest path w(P1),
resulting in the following objective function:

(1 + β)× ws(Pj , Pi) + wn(Pj , Pi)

w(P1)

The shortest path P1 is always included in the solution. The other paths
are selected one by one and added to the solution. Suppose j−1 paths have
already been chosen and the j-th path needs to be selected. The objective
function is calculated for every possible path Pk for every path Pi already in
the solution. The path Pj for which the highest value is as low as possible
is added to the solution:

minimize
k

[

max
i=1,...,j−1

(1 + β)×ws(Pk, Pi) + wn(Pk, Pi)

w(P1)

]

The outcome of course depends on β, so some finetuning is needed for
the parameter β. Akgün et al. [12] later pointed out that this problem of
choosing a small selection of paths is essentially a p-dispersion problem and
this method of solving it is essentially the greedy construction heuristic as
proposed by Erkut [28].

5.3.4 P -dispersion algorithms

Akgün et al. [12] present a method which first generates a large amount
of paths, and then selects a small dissimilar subset. For generating a large
amount of paths they use either the iterative penalty method or a k shortest
paths algorithm. For the selection of a dissimilar subset, the authors point
out that this can be modeled as a p-dispersion problem.
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Figure 5.5: Example of a p-dispersion problem where p=4 points must be
chosen out of 6 points. The set consisting of the points marked in black
has the largest minimum distance between any pair of points.

Definition 5.2. The p-dispersion problem is the problem of finding a subset
of p points out of a set of n points such that the minimum distance between
any pair of points in the subset is maximized.

Figure 5.5 illustrates this principle in a two-dimensional setting. This can
be translated to the problem of selecting dissimilar paths by letting the
points correspond to paths. The distance between these points is then de-
fined as the dissimilarity between their corresponding paths, e.g. any of
the dissimilarity functions described in Section 5.2. Unfortunately, the p-
dispersion problem is computationally hard and using an exact algorithm
would definitely lead to high running times which are unacceptable in rout-
ing applications. However, there are many heuristic methods which find
a good solution very fast, but not necessarily the optimal solution. Along
with an exact branch-and-bound algorithm, many different heuristics for
the p-dispersion problem are presented by Erkut et al. [27, 28]. A first
family of heuristics are the construction algorithms, which use a set of
points that are already chosen and another set with the points that are
not (yet) in the solution. Examples are the greedy construction heuristic
which starts with an empty set and adds points one by one, and the greedy

106



5.3. KNOWN METHODS

deletion heuristic which starts with a solution containing all points and
then deletes points until a solution of the right size is found. Erkut et
al. also present a neighbourhood heuristic which eliminates all points from
the search within a certain radius around points that have already been
chosen. Furthermore, an interchange algorithm is presented which starts
with a random solution and tries to improve it by interchanging points in
the solution with points not in the solution. Akgün et al. eventually used
a two-phase heuristic described in [27] which constructs an initial solution
and then improves it using local search.

The authors conclude that while the version using the iterative penalty
method is much faster, it does not always find better results, e.g. in one
case the iterative penalty method finds only 20 paths to choose from that
are at most 40% longer than the shortest path, while the version using
k shortest paths offers a lot more paths to choose from.
It should be noted that this method is a bit dated, since the paper was
written more than ten years ago. The algorithm was tested on a graph
with only 305 nodes and 854 arcs, while modern computers can easily run
routing algorithms on graphs with more than 10 000 or even more than
100 000 nodes. This explains why good results are found when k is only
100 or 200. On larger graphs the first 100 or 200 paths would be very
much alike. Also, the authors generate all paths up to a certain length.
Depending on this length, this may be an enormous amount of paths for
larger graphs. Furthermore, since the paths are generated by the iterative
penalty method or by a k shortest paths algorithm, they are most likely
not locally optimal.

5.3.5 Gateway shortest paths

Lombard and Church [47] introduce the Gateway Shortest Paths method
which forces the paths through different nodes. While this method is very
simple, it fails to consider the dissimilarity between every pair of paths in a
solution and only takes the dissimilarity between the alternatives and the
shortest path into account. This is of course a major drawback and can
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lead to paths that are very similar after all. However, this method was
designed only to find alternatives that are dissimilar to the shortest path,
not to the other alternatives. This method also generates a lot of duplicate
paths and a lot of paths with cycles.

5.3.6 Alternative graph

Bader et al. [13] present a new way for evaluating paths. The solution
is stored in an alternative graph, which is the union of the shortest path
and the alternatives, where arcs may represent subpaths. No constraints are
used for the quality of the subpaths, since the authors believe this takes too
long to evaluate. Instead, postprocessing is performed on the alternative
graph. Arcs representing subpaths with a too high weight are eliminated.

5.3.7 Single via paths

Abraham et al. [11] impose very strict restrictions on candidate paths. The
paths must be dissimilar, locally optimal for a given α and the weight of
the paths and even their subpaths cannot be greater than (1 + ǫ) times
the weight of the corresponding shortest path. Paths which satisfy these
restrictions are called admissible paths. The authors present several heuris-
tics which are based on single via paths. The via path through a node v is
the concatenation of the shortest path from s to v and the shortest path
from v to t. An advantage of these via paths is that they are guaranteed to
be the shortest path through v. The reach method [37] is used for pruning
to speed up the algorithm. However, while some of the heuristics are fast,
the experiments in the paper show that they do not always find a solution.

5.4 A bidirectional heuristic for dissimilar paths

In this section we will describe our initial algorithm for finding dissimilar
paths, which will be improved in the following sections. Our first idea
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was to generate dissimilar paths first, and then modify the paths to make
them locally optimal. This method finds good results that are very similar
to what a real-world route planner would find. However, it also imposes
some problems. We believe it is worth describing this algorithm briefly
since it finds good results and since it was used as a basis for our improved
algorithm. The algorithm consists of three phases, all of which will be
discussed in the following paragraphs:

1. Generate many paths (with an acceptable weight)

2. Find a subset of dissimilar paths

3. Make the paths locally optimal

5.4.1 Phase 1: Generate many paths

Just as in Akgün et al. [12] and Kuby et al. [44], the algorithm starts
by generating a large amount of paths from which a small subset will be
selected later. A constant factor γ > 1 determines the maximum path
weight wmax = γ × w(SP ). Typically, 1 < γ ≤ 2. Rather than using a
k shortest paths algorithm or an iterative penalty method, we use a faster
heuristic which finds paths that are not as similar. The heuristic is based
on the bidirectional version of the algorithm of Dijkstra [25], which runs
two searches, one forward search from the start node and one backward
search from the target node. Both searches take turns in labeling nodes.
Our heuristic is based on this idea. Both searches keep running even after
the shortest path is found. Whenever both searches meet, i.e. a node x is
labeled by both searches, there is a possibility for generating a new path.
First, the weight of the possible path is checked. If this weight is not
greater than wmax, the path is generated by concatenating the s − x and
x − t paths. The new path is added to the collection of generated paths.
Figure 5.6 illustrates this idea. The algorithm continues until the desired
number of initial paths k is found, or until no more paths can be found.
The advantage of this method is that both searches meet at different points

109



CHAPTER 5. DISSIMILAR PATHS

Figure 5.6: Bidirectional heuristic. Left: the forward (blue) and backward
(red) shortest path tree meet in the blue/red node. Right: path generated
after both searches meet. The algorithm will continue to generate paths in
the same way.

in the shortest path trees, so the paths are likely to be dissimilar. The
bidirectional algorithm of Dijkstra has a complexity of O(m + n log n).
Our heuristic adds a term of O(n k) to this, for actually generating the k
paths, leading to a complexity of O(n k + m + n log n), while k shortest
paths algorithms have a significantly higher complexity. Furthermore, the
searches in both directions are pruned at wmax since this branch in the
search can never lead to a path with an acceptable weight.

5.4.2 Phase 2: Find a subset of dissimilar paths

The problem of finding a subset of dissimilar paths is modeled as a p-
dispersion problem. The Greedy Construction method [28] is used. When
applied to paths, this method starts by selecting one random path. Then,
p − 1 times, the dissimilarity between all non-selected paths is calculated
to all of the selected paths. The path with the highest minimum dissim-
ilarity compared to all of the selected paths is chosen, and added to the
selection. However, there is a slight adaptation in our algorithm. Rather
than choosing the first path in the selection randomly, the shortest path is
always chosen as the first path. This is because it makes sense for a rout-
ing application to always include the shortest path in the solution. The
pseudocode is shown in Algorithm 5.1.
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Algorithm 5.1 Greedy construction algorithm for selecting a subset of p
dissimilar paths out of a set of n paths (including the shortest path).

Require: set S = {SP,P1, P2, ..., Pn−1}
Ensure: set S′ containing p dissimilar paths, including SP
1: add SP to S′

2: for i from 2 to p do

3: Dmaxmin ← 0
4: Pcandidate ← null
5: for every path P in S \ S′ do

6: Dmin ← +∞
7: for every path P ′ in S′ do

8: if D(P,P ′) < Dmin then

9: Dmin ← D(P,P ′)
10: end if

11: end for

12: if Dmin > Dmaxmin then

13: Dmaxmin ← Dmin

14: Pcandidate ← P
15: end if

16: end for

17: add Pcandidate to S′

18: end for

111



CHAPTER 5. DISSIMILAR PATHS

Algorithm 5.2 Improve T -local optimality. This heuristic must be re-
peated iteratively until the path is T -locally optimal.

Require: path P = (v1, v2, ..., vn), parameter T
Ensure: T -local optimality of P is improved heuristically
1: for i from 1 to n do

2: P ′ ← (vi)
3: j ← 0
4: while w(P ′) < T AND i+ j < n do

5: j ← j + 1
6: P ′ ← P ′ + vi+j

7: end while

8: P ′′ ←calculate shortest path from vi to vj
9: if w(P ′′) < w(P ′) then

10: Replace P ′ by P ′′ in P
11: i← i+ j {jump to end of new subpath}
12: end if

13: end for

5.4.3 Phase 3: Make the paths locally optimal

At this point, a small set of dissimilar paths is found, but the paths are
not necessarily locally optimal. Therefore, the goal of this phase is to make
the paths locally optimal. Our method for improving the local optimal-
ity checks for every node (except those at a distance < T from t) in the
path if the smallest subpath starting in this node with weight ≥ T is a
shortest path by running the algorithm of Dijkstra. If so, the algorithm
simply moves on to the next node. If not, this subpath is replaced by the
shortest path and the algorithm continues at the endpoint of the new sub-
path. Figure 5.7 illustrates this idea. The pseudocode for the algorithm is
shown in Algorithm 5.2. After this procedure the path is improved but not
necessarily locally optimal. Therefore it is repeated until no more changes
can be made. It should be noted that this procedure checks and improves
local optimality at the same time. This means that, if no more changes can

112



5.4. A BIDIRECTIONAL HEURISTIC FOR DISSIMILAR PATHS

Figure 5.7: How the heuristic for improving T -local optimality works. For
every node the smallest subpath starting in this node with weight ≥ T is
found. If this subpath is a shortest path, it is approved. If not, it is replaced
with the shortest path.

be made, the path has become locally optimal.

5.4.4 Shortcomings of this method

The algorithm finds good results. However, it does have some issues.
Phase 3 performs O(n) Dijkstra runs in every iteration. As can be ex-
pected, this takes a lot of time. This needs to be done iteratively, making
it even more time-consuming. Also, there is no guarantee on the number of
iterations needed. Finally, two dissimilar paths might be transformed into
the same path after Phase 3. Furthermore, this method imposes a strict
upper bound on the weight of the paths. All of these issues are addressed
in our improved algorithm which is presented in the next section.
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5.5 Plateaus

Our improved algorithm generates locally optimal paths but does not need
the very time-consuming phase where paths are modified to be locally op-
timal like in the previous algorithm. The need for checking local optimality
is significantly reduced since part of the generated paths are guaranteed
to be locally optimal. For the other paths, local optimality is only tested
when necessary. The algorithm discards paths that are not locally opti-
mal instead of performing the time-consuming routine to make the paths
locally optimal. Just like the previous method, the bidirectional version
of the algorithm of Dijkstra is used. Instead of creating a path whenever
both searches meet, a path is only generated when a node v has been per-
manently labeled (and not just temporary) in both directions. In this way,
the local optimality can only be violated around v, which facilitates testing
for local optimality. This will be explained in more detail in Section 5.9.
Taking it one step further, not only nodes that appear in both shortest
path trees are considered, but also overlapping parts of both shortest path
trees. Such overlapping parts are called plateaus.

Definition 5.3. A plateau Pl for an s− t query is a maximal path which
appears in both SPTIN and SPTOUT such that all nodes in Pl have a
permanent label in both shortest path trees.

An early method based on plateaus was described briefly by the company
CAMVIT [4] on their website. Also, Abraham et al. [11] prove some prop-
erties regarding plateaus. The authors present several heuristics for finding
dissimilar paths, some of which are said to incorporate elements of plateaus
for efficiency, but only few details are given. In what follows we investigate
in detail how plateaus can be used for finding dissimilar paths and we sug-
gest a robust algorithm based on plateaus. Arcs which are part of a plateau
will be marked in figures as follows (with or without arrows):
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Figure 5.8: (Pruned) SPT’s containing one plateau (left) and the resulting
path (right). SPTOUT is shown in blue, SPTIN is shown in red.

A path can be created from a v−w plateau Pl by concatenating the shortest
s−v path to the plateau and then to the shortest w− t path. Both of these
shortest paths are available in the SPT’s. An example of a plateau and the
resulting path can be seen in Figure 5.8. Whenever an s−t path containing
a plateau is mentioned in the remainder of this text, it refers to the shortest
s− t path containing this plateau (and not to an s− t path which makes a
detour before or after the plateau). We also consider a single node which
has a permanent label in both shortest path trees, but which is not part of
a larger plateau. This is a special case of a plateau, with weight zero and
consisting of one node and no arcs.

5.5.1 Plateaus and local optimality

Abraham et al. [11] prove that any path containing a plateau is T -locally
optimal, T being the weight of its plateau.

Property 5.1. If a path P contains a plateau Pl, then P is w(Pl)−locally
optimal.

Therefore, if w(Pl) ≥ T , P is guaranteed to be T -locally optimal. This
is a very interesting property since it eliminates the need for testing local
optimality for such paths.
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Figure 5.9: The path containing the plateau Pl2 is T -locally optimal for
T > w(Pl2). SPTOUT is shown in blue, SPTIN is shown in red.

Property 5.2. A path P containing a plateau Pl can be T -locally optimal
for T > w(Pl).

This means that paths containing a shorter plateau should not automat-
ically be excluded when T -local optimality is required. Figure 5.9 shows
an example of such a situation. The plateau Pl2 has a weight of 15. How-
ever, while the corresponding path is definitely 15-locally optimal, it is also
34-locally optimal (but not 35-locally optimal) since every subpath with
weight ≤ 34 is a shortest path. Up to now, the only methods which use
plateaus, only consider the plateaus Pl such that w(Pl) ≥ T such that no
local optimality testing is needed. In this work we will show that better
solutions, or even a solution at all, can be found by taking the shorter
plateaus into account as well.

5.5.2 Plateaus and dissimilarity

Another major advantage of using plateaus, is the fact that paths corre-
sponding to long plateaus are likely to be dissimilar. First of all, plateaus
cannot overlap, as is proved in the following lemma:
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Lemma 5.1. For a given s− t query, there is no pair of plateaus Pl1 and
Pl1 such that Pl1 and Pl2 share an x− z subpath.

Proof. Suppose Pl1 is a p1− q1 plateau and Pl2 6= Pl1 is a p2− q2 plateau.
Suppose Pl1 and Pl2 are not disjoint, i.e. they share an x − z subpath.
Since Pl1 6= Pl2, either p1 or q1 is not in Pl2 or p2 or q2 is not in Pl1. Let’s
assume without loss of generality that p1 is not in Pl2. The other cases can
be proved in a similar way. There are two possibilities:

(i) p1 is not on the shortest path from s to p2 (see Figure 5.10). Because
of the definition of plateaus, both the p1 − x and p2 − x subpaths are
on the shortest path from s to x. However, since p1 is not in Pl2
and p1 is not on the shortest path from s to p2, there must be two
shortest paths from s to x in SPTOUT . This is impossible in a SPT,
and therefore a contradiction.

(ii) p1 is on the shortest path from s to p2 (see Figure 5.11). In this case,
the p1−p2 subpath is adjacent to Pl2 and since it is part of a plateau,
appears in both SPTIN and SPTOUT . This means that Pl2 cannot
exist in the given form but should have been extended with the p1−p2
subpath, which is a contradiction.

Another interesting property is the fact that different plateaus always lead
to different paths. This eliminates the need to test whether a path already
exists.

Lemma 5.2. Let Pl1 be a p1 − q1 plateau which leads to the s− t path P .
Then P contains no other plateaus than Pl1.

Proof. Suppose P contains a p1− q1 plateau Pl1 and a p2− q2 plateau Pl2.
Because of Lemma 5.1 it is known that Pl1 and Pl2 do not overlap. Let’s
assume without loss of generality that Pl1 appears before Pl2 in P . Then
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Figure 5.10: Example illustrating Lemma 5.1 where p1 is not on the shortest
path from s to p2. There should be a shortest path in SPTOUT from s to
x via p1 and via p2, which is impossible.

Figure 5.11: Example illustrating Lemma 5.1 where p1 is on the shortest
path from s to p2. In this case the p1 − p2 subpath should have been part
of Pl2.
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the q1 − p2 subpath appears both in SPTOUT (since it is part of the path
generated from Pl2) and in SPTIN (since it is part of the path generated
from Pl1). Therefore, the q1 − p2 subpath is a plateau as well, and the
p1 − q2 subpath is one large plateau, which is a contradiction.

It should be noted that a path resulting from a plateau can still contain
arcs from other plateaus. An example of such a situation in shown in
Figure 5.12. Since plateaus cannot overlap, the paths definitely differ from
other paths in the plateaus themselves. The subpaths before and after the
plateaus may or may not be similar to subpaths in other paths, depending
on the location of the plateaus. Figure 5.13 shows all plateaus Pl such
that w(Pl) ≥ 0.25×w(SP ) for 4 random queries in NAVTEQ BELGIUM.
Because of Property 5.1, all of these plateaus correspond to a path which is
guaranteed to be at least 0.25×w(SP )−locally optimal. The figure clearly
shows that this leads to some good options with high dissimilarity. Also,
the number of such paths is very manageable, typically between 6 and 20 for
Belgium, while enough possibilities to choose from are still provided. This
can drastically reduce the time for making the final selection of paths. It
should be noted that the set of plateaus may have different characteristics
when T -local optimality for other values of T is required. This is examined
more thoroughly in Section 5.7. Another remaining challenge is the fact
that some plateaus correspond to paths which are clearly too long. This
will be addressed in Section 5.8.

5.5.3 Plateaus and cycles

A path containing a plateau may contain a cycle if the subpath after the
plateau crosses the subpath before the plateau. Such a situation is shown
in Figure 5.14. The longer the plateau, the less likely it is for this situation
to occur. Therefore, it is interesting to look for long plateaus, for reasons
of local optimality, dissimilarity and avoiding cycles.
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Figure 5.12: A path containing a plateau may contain arcs from other
plateaus: the path containing Pl1 contains the arc (s, a) which is part of
Pl2. SPTOUT is shown in blue, SPTIN is shown in red.
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Figure 5.13: Four examples of plateaus for four random queries in
NAVTEQ BELGIUM. All plateaus larger than α × w(SP ) are shown for
α = 25%.

5.6 Detecting plateaus

In this section we describe how to build a list containing all plateaus for a
given query. The node sequence for every plateau is stored in this list, such
that the list of plateaus can be used on its own without the shortest path
trees. Plateaus are detected by determining the intersection of SPTOUT

and SPTIN . First, the algorithm of Dijkstra is run in both directions.
Both searches are pruned at β × w(SP ) for a given value of β ≥ 1. After
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Figure 5.14: Situation where a cycle occurs: the path from s to the plateau
(b, c) can be found in SPTOUT and is (s, a, b). The path from the plateau
to t can be found in SPTIN and is (c, d, a, e, t). Both paths go through
node a, which causes a cycle. SPTOUT is shown in blue, SPTIN is shown
in red.
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Algorithm 5.3 Algorithm for finding all plateaus for a given outward and
inward shortest path tree for a query from s to t

Require: SPTOUT , SPTIN

Ensure: list plateaus containing all plateaus for the given SPT’s
1: create childpointers
2: add s to stack
3: while stack is not empty do

4: current← stack.pop()
5: for every child of current in SPTOUT do

6: {some nodes may have only temporary label due to pruning}
7: if child has permanent label in SPTOUT then

8: stack.push(child)
9: end if

10: end for

11: {check using Property 5.3}
12: if current 6= s AND preceding arc is part of plateau then

13: plateaunr← map.get(current.parent)
14: {saves memory, value will not be needed again}
15: map.remove(current.parent)
16: map.put(current, plateaunr)
17: currentplateau← plateaus[plateaunr]
18: add current to currentplateau
19: else

20: {this is the smallest plateau number not yet in use}
21: plateaunr← plateaus.size
22: map.put(current, plateaunr)
23: Pl← createnewplateau
24: add current to Pl
25: add Pl to plateaus
26: end if

27: end while

28: drop childpointers

123



CHAPTER 5. DISSIMILAR PATHS

this, the shortest path trees as well as the shortest path and its weight are
available.
The pseudocode for the detection of plateaus is shown in Algorithm 5.3.
SPTOUT is traversed in preorder. For this purpose, childpointers are cre-
ated since normally only pointers to the parents are stored in the SPT. The
childpointers can be dropped when the plateaus have been determined. A
stack is used to keep track of the traversal.
While the tree is being traversed, for every node in SPTOUT there are three
possibilities:

1. The node is not in SPTIN and is therefore not part of a plateau.

2. The node has a permanent label in SPTIN and the preceding arc is
part of a plateau. In this case the node is part of the same plateau
as its parent.

3. The node has a permanent label in SPTIN but the preceding arc is
not part of a plateau. In this case the first node of a new plateau is
found.

For case 2, the preceding arc of the current node must be part of a plateau.
To determine whether this is the case, the following property is used:

Property 5.3. Let p be the parent of the current node x in SPTOUT . Then
the arc (p, x) is part of a plateau if and only if p has a permanent label in
SPTIN and the parent of p in SPTIN is equal to x.

To distinguish between the plateaus, every plateau is assigned a number.
A HashMap is stored which maps nodes to the number of the plateau they
belong to. In case 2, the plateau number for the parent can be found in
the HashMap. In case 3, a new plateau is created and assigned a number,
which is added to the HashMap. This plateau might be extended when
the other nodes are visited but might also remain a single-node plateau.
For memory efficiency, only the plateau numbers for the last node in each
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Figure 5.15: Detecting plateaus. A shortest path tree SPTOUT is shown on
which the algorithm is being performed. The algorithm has visited the first
10 nodes in the given order. It has detected Plateau 1 and 2 completely but
has only detected the first node of Plateau 3 so far. Nodes 5, 8 and 10 are
marked with their stored plateau number. No plateau numbers are stored
for the other nodes at this point, since plateau numbers are only stored for
the last visited node in their branch.

branch are stored. Whenever a node is assigned the plateau number of its
parent (case 2), the plateau number for the parent is removed from the
map since this information will no longer be needed. This is illustrated in
Figure 5.15.

5.7 Plateaus: an in-depth look

It is interesting to take a closer look at plateaus and their properties. Using
this information, the algorithm can be fine-tuned and appropriate values for
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the parameters can be chosen. No such study has been done before. In this
section we present in-depth results. One hundred random s− t queries were
chosen for each of five road networks. For each s− t query, the complete set
of plateaus was generated using Algorithm 5.3. This was done for different
pruning factors ranging from 1 to 2, to discover the effect of the pruning
factor on the plateaus. We study the number of plateaus, the weight of the
plateaus and of their resulting paths, the occurrence of cycles in those paths
and the local optimality of those paths. In this section, results are presented
for the road networks NAVTEQ LUXEMBOURG and PRT MAX. Results
for the other road networks were similar. In all tables in this section, the
value ǫ is used to indicate “small but not zero”. When “0” is used in the
tables, the value is really zero and not a small value rounded to zero.

5.7.1 Conclusion 1: Many plateaus are generated. Most of them have a

zero weight.

Table 5.1 shows the total amount of plateaus for the different pruning fac-
tors, averaged over the 100 s − t queries (in the last rows of both tables).
The number of plateaus is always quite high, thousands of plateaus are
generated in every case. Also, the number of plateaus increases fast with
the pruning factor. For example, 37 080 plateaus are generated on average
for PRT MAX with a pruning factor of 1. For a pruning factor of 2, this
number rises to 84 914 on average. This means that the pruning factor
needs to be chosen carefully. This will be studied further in Section 5.7.3.
The average amount of plateaus within a given weight range (expressed
as a percentage of w(SP )) is also shown. We can conclude that many of
the plateaus (around 90% of all plateaus) have a zero weight. These are
the nodes in which the shortest path trees touch but do not overlap. It
is good to be aware of this fact, since longer plateaus are more likely to
produce good results. An advantage of this, is that the amount of longer
plateaus is very manageable, typically a few dozens for plateaus longer than
10% × w(SP ).
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Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 6 736 9 158 11 410 12 447 13 463 15 187 16 663 21 654
]0%,5%] 582 734 850 899 945 1 017 1 074 1 237
]5%,10%] 60 74 84 89 93 99 104 119
]10%,15%] 19 23 26 28 29 31 32 36
]15%,20%] 8 10 11 12 12 13 14 16
]20%,25%] 4 5 5 5 6 6 7 7
]25%,50%] 5 6 7 7 7 8 9 11
]50%,75%] 1 1 1 1 1 1 1 2
]75%,85%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]95%,100%[ 0 0 0 0 0 0 ǫ ǫ

100% 1 1 1 1 1 1 1 1
Sum 7 416 10 010 12 395 13 488 14 557 16 364 17 904 23 082

(a) NAVTEQ LUXEMBOURG

Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 32 354 49 570 55 467 57 199 58 706 61 726 65 284 76 725
]0%,5%] 4 638 6 248 6 660 6 767 6 862 7 048 7 280 8 009
]5%,10%] 60 73 84 88 91 96 101 118
]10%,15%] 14 17 20 21 23 24 26 31
]15%,20%] 6 7 8 8 9 10 11 13
]20%,25%] 3 3 4 4 4 4 5 7
]25%,50%] 4 4 5 5 5 6 6 9
]50%,75%] ǫ ǫ ǫ ǫ 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

100% 1 1 1 1 1 1 1 1
Sum 37 080 55 924 62 248 64 094 65 701 68 916 72 715 84 914

(b) PRT MAX

Table 5.1: Many plateaus are generated. Most of them have a zero weight.
For different pruning factors (columns) and different plateau weights (rows)
the total number of plateaus is shown. A value very close to zero is repre-
sented by ǫ.
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5.7.2 Conclusion 2: Paths with short plateaus often contain cycles.

Paths with longer plateaus are unlikely to contain cycles.

From the plateaus, their corresponding s− t paths can be generated. Un-
fortunately, there is no guarantee that these paths do not contain cycles.
In fact, many plateaus are very likely to produce paths with cycles. Ta-
ble 5.2 shows the percentage of plateaus which produce paths with cycles,
for different plateau weights and pruning factors, averaged over the 100
s− t pairs. Almost every plateau with a zero weight produces a path with
a cycle. However, almost none of the longer plateaus produces paths with
cycles. It should also be noted that when a larger pruning factor is used,
cycles are more likely to appear, which is another argument for choosing
the pruning factor very carefully.

5.7.3 Conclusion 3: 1.25 is a good pruning factor.

A good pruning factor does not generate more plateaus than necessary, but
also does not miss too many good alternatives. A good alternative has no
cycles, is locally optimal and is “not too long”. Table 5.3 shows the number
of such good alternatives for different values of α and for different weights
of the alternatives, averaged over the 100 s − t queries. It is important
to point out that rather than the plateau weight, the weight of the s − t
alternatives is considered in this table, since the eventual goal is to have
alternatives which are relatively short, not plateaus. Clearly, more good
alternatives are found when using higher pruning factors. However, this
is especially the case for alternatives with higher weights, which may not
be desirable. For alternatives with a weight no higher than 1.5 times the
shortest path, the same amount of good alternatives is always found for a
pruning factor of 1.25 and a pruning factor of 2. This is the case for all
examined road networks. This means that not a single good alternative
shorter than 1.5 × w(SP ) which would have been found with a pruning
factor of 2, is missed with a pruning factor of 1.25. Because of this, there is
no reason to use a pruning factor of 2, which generates 21 082 plateaus for
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Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 94% 95% 95% 96% 96% 96% 96% 97%
]0%,5%] 22% 24% 26% 26% 27% 28% 28% 31%
]5%,10%] 5% 5% 5% 5% 5% 5% 5% 6%
]10%,15%] 3% 4% 4% 4% 4% 4% 4% 5%
]15%,20%] 1% 1% 2% 2% 2% 3% 3% 4%
]20%,25%] 2% 3% 3% 3% 4% 4% 6% 6%
]25%,50%] ǫ 1% 2% 3% 3% 3% 4% 7%
]50%,75%] 0% 0% 0% 0% 0% 1% 4% 13%
]75%,85%] 0% 0% 0% 0% 0% 0% 0% 0%
]85%,95%] 0% 0% 0% 0% 0% 0% 0% 0%
]95%,100%[ / / / / / / 0% 0%
100% 0% 0% 0% 0% 0% 0% 0% 0%

(a) NAVTEQ LUXEMBOURG

Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 90% 92% 93% 93% 93% 93% 93% 94%
]0%,5%] 22% 28% 30% 30% 30% 31% 32% 36%
]5%,10%] 6% 6% 7% 7% 8% 8% 9% 14%
]10%,15%] 5% 5% 6% 6% 6% 6% 7% 12%
]15%,20%] 4% 5% 5% 5% 5% 7% 7% 12%
]20%,25%] 1% 2% 2% 2% 3% 4% 4% 6%
]25%,50%] 1% 1% 2% 3% 3% 4% 5% 9%
]50%,75%] 0% 0% 2% 2% 2% 2% 2% 7%
]75%,85%] 0% 0% 0% 0% 0% 0% 0% 0%
]85%,95%] 0% 0% 0% 0% 0% 0% 0% 0%
]95%,100%[ 0% 0% 0% 0% 0% 0% 0% 0%
100% 0% 0% 0% 0% 0% 0% 0% 0%

(b) PRT MAX

Table 5.2: Paths with short plateaus often contain cycles. Paths with
longer plateaus are unlikely to contain cycles. For different pruning factors
(columns) and different plateau weights (rows) the percentage of plateaus
which produce cycles is shown. A value very close to zero is represented
by ǫ.
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α
Path weight Pruning factor
×w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2

10%

[1.0,1.1[ 16 16 16 16 16 16 16 16
[1.1,1.25[ 38 41 41 41 41 41 41 41
[1.25,1.5[ 45 55 59 59 59 59 59 59
[1.5,2[ 30 47 64 71 77 84 85 85
≥ 2 0 4 13 18 25 42 60 118

25%

[1.0,1.1[ 4 4 4 4 4 4 4 4
[1.1,1.25[ 6 6 6 6 6 6 6 6
[1.25,1.5[ 9 10 10 10 10 10 10 10
[1.5,2[ 8 11 14 15 16 17 17 17
≥ 2 0 1 4 5 7 12 16 35

50%

[1.0,1.1[ 2 2 2 2 2 2 2 2
[1.1,1.25[ 1 1 1 1 1 1 1 1
[1.25,1.5[ 1 1 1 1 1 1 1 1
[1.5,2[ 1 1 2 2 2 2 2 2
≥ 2 0 ǫ 1 1 1 2 2 6

total # of plateaus 7 416 10 010 12 395 13 488 14 557 16 364 17 904 23 082

(a) NAVTEQ LUXEMBOURG

α
Path weight Pruning factor
×w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2

10%

[1.0,1.1[ 58 74 74 74 74 74 74 74
[1.1,1.25[ 24 25 25 25 25 25 25 25
[1.25,1.5[ 22 30 33 34 34 34 34 34
[1.5,2[ 13 22 31 37 41 46 47 47
≥ 2 ǫ 2 6 8 11 20 31 73

25%

[1.0,1.1[ 46 68 68 68 68 68 68 68
[1.1,1.25[ 3 6 6 6 6 6 6 6
[1.25,1.5[ 4 4 5 5 5 5 5 5
[1.5,2[ 4 5 7 7 8 8 8 8
≥ 2 ǫ 1 2 3 4 6 8 21

50%

[1.0,1.1[ 34 56 56 56 56 56 56 56
[1.1,1.25[ 1 5 5 5 5 5 5 5
[1.25,1.5[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

[1.5,2[ 1 1 1 1 1 1 1 1
≥ 2 0 ǫ ǫ 1 1 1 2 5

total # of plateaus 37 080 55 924 62 248 64 094 65 701 68 916 72 715 84 914

(b) PRT MAX

Table 5.3: 1.25 is a good pruning factor. For different pruning factors
(columns) and different weights of the paths corresponding to the plateaus
and different values of α (rows), the number of “good” paths is shown, i.e.
paths which are cycle-free and locally optimal. The last row shows the total
number of plateaus for each pruning factor.
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NAVTEQ LUXEMBOURG, while a pruning factor of 1.25 produces only
13,488 plateaus and does not miss a single good alternative. For this reason
we choose 1.25 as our default pruning factor.

5.7.4 Conclusion 4: A path with a plateau P l such that w(P l) < T can

still be T-locally optimal.

A path can only be taken into consideration by the algorithm if it is both
locally optimal and cycle-free. If a path contains a plateau Pl, then this
path is guaranteed to be T -locally optimal for T = w(Pl) according to
Property 5.1. Such a path does not need to be tested for local optimality
since it is guaranteed. It only needs to be tested for cycles, which is a lot
less time-consuming. This means that we could consider only looking for
plateaus which are long enough, and in this way eliminating the need for
testing for local optimality at all. However, it is interesting that there are
quite a lot of paths with a plateau shorter than T which are still T -locally
optimal and cycle-free. This is shown in Table 5.4. The table shows the
total number of plateaus for different plateau weights, and how many of
those result in cycle-free locally optimal paths for α = 10%, α = 25% and
α = 50%, averaged over all 100 s− t queries. The pruning factor is fixed at
1.25 in this table. For example, three of the four paths containing a plateau
with a weight in the range ]20%,25%] are locally optimal and cycle-free for
α = 25% in the road network PRT MAX. Even some of the plateaus with
a zero weight are still locally optimal, even for α = 50%. We can conclude
that it is definitely worth looking at the shorter plateaus too.

5.8 The objective function Q(S)

In Section 5.2 the following dissimilarity function by Akgün et al. [12] was
described:

D(Pi, Pj) = 1−
ws(Pi, Pj)/w(Pi) + ws(Pi, Pj)/w(Pj)

2
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Plateau weight α total #
% of w(SP ) 0.1 0.25 0.5 of plateaus
0 23 3 ǫ 12 447
]0,5%] 77 7 1 899
]5%,10%] 54 7 ǫ 89
]10%,15%] 26 7 1 28
]15%,20%] 11 5 ǫ 12
]20%,25%] 5 3 ǫ 5
]25%,50%] 7 7 1 7
]50%,75%] 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ

]95%,100%[ 0 0 0 0
100% 1 1 1 1
Sum 206 40 6 13 488

(a) NAVTEQ LUXEMBOURG

Plateau weight α total #
% of w(SP ) 0.1 0.25 0.5 of plateaus
0 30 28 25 57 199
]0,5%] 72 41 35 6 767
]5%,10%] 38 4 1 88
]10%,15%] 20 4 ǫ 21
]15%,20%] 8 3 ǫ 8
]20%,25%] 4 3 ǫ 4
]25%,50%] 5 5 1 5
]50%,75%] ǫ ǫ ǫ ǫ

]75%,85%] ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ

100% 1 1 1 1
Sum 178 88 64 64 094

(b) PRT MAX

Table 5.4: A path with a plateau Pl such that w(Pl) < T can still be T-
locally optimal. For different values of α (columns) and for different plateau
weights (rows) the number of cycle-free locally optimal paths is shown. For
example, for PRT MAX, 4 plateaus with a weight between 10% and 15% of
w(SP ) result in a cycle-free path which is locally optimal for α = 0.25. The
total number of plateaus in each weight class is shown in the last column.
The pruning factor was set to 1.25.
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Figure 5.16: Example used for evaluating dissimilarity functions. The
shortest path is the path (s, x, t) and has a weight of 10. The curved
lines show two alternatives for the x − t segment. Not all nodes and arcs
are shown.

While this definition is very useful to evaluate dissimilarity as such, it tends
to favor longer paths. Figure 5.16 illustrates this fact. The shortest path SP
from s to t is the (s, x, t) path with a weight of 10. The curved lines
represent two alternatives for the x − t segment. Let P1 be the s − t
alternative with weight 11 and let P2 be the s−t alternative with weight 12.
Then we find

D(SP,P1) = 1−
2/10 + 2/11

2
= 0.809

and

D(SP,P2) = 1−
2/10 + 2/12

2
= 0.817

This means that a p-dispersion method would consider P2 a better alterna-
tive than P1. However, P2 has exactly the same subpath in common with
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SP as P1 does, the only reason why it is “more dissimilar” from SP is the
fact that it is longer.
Many existing methods bypass this problem by deleting every path which
is longer than a certain threshold before running the p-dispersion heuristic.
On the one hand, this can lead to eliminating paths which would have been
good alternatives after all. On the other hand, once a relatively long path
has been kept, it has a higher chance of being chosen by the p-dispersion
method, which can affect the quality of the solution.
Therefore, we have defined a different objective function to be used by the
p-dispersion heuristic which takes both dissimilarity and path weight into
account and which does not favor longer paths like in the example above.
The objective function consists of two components: the adjusted dissimi-
larity AD and the weight ratio WD .
Let wmin(Pi, Pj) be the weight of the shortest path of Pi and Pj . Let
wmax(Pi, Pj) be the weight of the longest path of Pi and Pj . Then we
define the adjusted dissimilarity AD as follows:

AD(Pi, Pj) = 1−
ws(Pi, Pj)

wmin(Pi, Pj)

This measure is symmetric and gives a value between 0 and 1. A value
of 0 represents paths which coincide completely, while a value of 1 repre-
sents completely dissimilar paths. Because of the division by the weight of
the shortest path of both, longer paths are not favored anymore. For the
example in Figure 5.16 the adjusted dissimilarity is as follows:

AD(SP,P1) = 1−
2

10
= 0.8

AD(SP,P2) = 1−
2

10
= 0.8

Using only the adjusted dissimilarity, P1 and P2 would have the same prob-
ability of being chosen by the p-dispersion heuristic. This is why the second
component, the weight ratio WR is introduced:
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WR(Pi, Pj) =
wmin(Pi, Pj)

wmax(Pi, Pj)

Again, this measure is symmetric and gives a value between 0 and 1. Fi-
nally, the new dissimilarity function D′ is a linear combination of both
components, using a parameter β to determine the trade-off between the
two:

D′(Pi, Pj) = β × [1−
ws(Pi, Pj)

wmin(Pi, Pj)
] + (1− β)×

wmin(Pi, Pj)

wmax(Pi, Pj)

This also results in a value between 0 and 1. A user study could determine
a good value for β, but we have used β = 0.5 as this led to good results.
With β = 0.5, for the example in Figure 5.16 we now get:

D′(SP,P1) = β × [1−
2

10
] + (1− β)×

10

11
= 0.855

D′(SP,P2) = β × [1−
2

10
] + (1− β)×

10

12
= 0.817

Using this definition, the path P1 is favored over the path P2, which was
desired. Finally, the objective functionQ(S) defines the quality of a solution
S as the minimum value of the dissimilarity function D′ for every pair in
the solution:

Q(S) = min
Pi,Pj∈S

[

β × [1−
ws(Pi, Pj)

wmin(Pi, Pj)
] + (1− β)×

wmin(Pi, Pj)

wmax(Pi, Pj)

]
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k Given paths
Result QA(S)

QA(S) Q(S)
Result Q(S)

1 0% 6% 13% 15% 15% 21% 38% 60% 75%
0% 60% 75% 0.880 0.739
0% 15% 15% 0.816 0.859

2 0% 1% 12% 31% 39% 47%
0% 12% 47% 0.861 0.792
0% 12% 47% 0.861 0.792

3 0% 0% 2% 2% 3% 5% 7% 33%
0% 3% 33% 0.795 0.759
0% 3% 5% 0.785 0.867

4 0% 0% 4% 6% 21% 23% 23% 30% 30% 89%
0% 23% 89% 0.907 0.705
0% 6% 30% 0.893 0.824

5 0% 1% 2% 10% 18% 30% 39% 97% 99%
0% 18% 99% 0.806 0.726
0% 2% 18% 0.579 0.778

6 0% 3% 3% 4% 8% 10% 16%
0% 10% 16% 0.711 0.778
0% 3% 8% 0.708 0.836

7 0% 3% 13% 74% 85%
0% 13% 74% 0.560 0.509
0% 3% 13% 0.423 0.694

Table 5.5: Comparison of the objective functions Q(S) and QA(S). The
table shows a few representative examples. The 1st column shows the num-
ber of the example. The 2nd column shows the weight of the paths which
were given as input to the p-dispersion algorithm, i.e. how much they are
longer than w(SP ). The 3rd column shows which paths were chosen by
the p-dispersion algorithm using Q(S) and QA(S). Finally, the last two
columns show the quality of these solutions, both according to Q(S) and
QA(S).

Using the dissimilarity definition by Akgün et al. [12] the quality QA(S)
(where the A stands for Akgün) looks like this:

QA(S) = min
Pi,Pj∈S

[

1−
ws(Pi, Pj)/w(Pi) + ws(Pi, Pj)/w(Pj)

2

]

Table 5.5 shows a comparison of Q(S) and QA(S). For a number of s − t
queries, a set of possible paths (including the shortest path) was generated.
This set is the set of cycle-free paths resulting from the plateaus larger than
T , although another set of paths could have been used too since the goal of
the experiment is only to evaluate which paths are chosen out of this set. A
representative set of results is shown. The column “Given paths” shows a
percentage for every path indicating how much longer it is than the shortest
path. E.g. in the first example, the path with the percentage “0%” is the
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shortest path, the path with the percentage “6%” is 6% longer than the
shortest path and so on. Then there are two lines for every example. The
first line shows the results when the p-dispersion heuristic uses QA. The
second line shows the results when the p-dispersion heuristic uses Q. The
third column shows which paths are chosen by both methods. As can be
seen in the results, the p-dispersion heuristic always includes the shortest
path. For comparative purposes, the value for both Q and QA is given for
each solution. E.g., for the 4th example, the p-dispersion heuristic finds the
shortest path and two alternatives which are 23% and 89% longer than the
shortest path when QA is used, and 6% and 30% when Q is used. It is clear
that the alternatives are much shorter when Q is used. The solution “0%
6% 30%” is a lot better than the solution “0% 23% 89%” when considering
the Q value (0.824 vs. 0.705), but hardly any worse when considering the
QA value (0.893 instead of 0.907). The other examples show a similar
behaviour. On the first line, the long paths are favored, often the longest
path is even included in the solution. On the second line, shorter paths
are chosen which leads to a better value of Q and either an only slightly
worse value of QA (Examples 3, 4 and 6) or a huge gain in path weight
(Examples 1, 5 and 7). Sometimes both methods find the same result, as
is the case in Example 2. Finally, Figures 5.17 and 5.18 show solutions of
different quality for the same query. These figures can be used to get an
idea of how “good” a solution is for a certain value of Q(S). It is clear
from these figures that solutions with a higher value for Q(S) have more
dissimilar and/or shorter paths.
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(a) Q(S) = 0.685

(b) Q(S) = 0.726

Figure 5.17: Four solutions of different quality for the same query in
NAVTEQ BELGIUM. Solutions with a higher value of Q(S) clearly contain
more dissimilar and/or shorter paths.
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(c) Q(S) = 0.750

(d) Q(S) = 0.796

Figure 5.17: Four solutions of different quality for the same query in
NAVTEQ BELGIUM. Solutions with a higher value of Q(S) clearly contain
more dissimilar and/or shorter paths. (Continued)
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(a) Q(S) = 0.690

(b) Q(S) = 0.790

Figure 5.18: Two solutions of different quality for the same query in
NAVTEQ BELGIUM. Solutions with a higher value of Q(S) clearly contain
more dissimilar and/or shorter paths.
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5.9 Methods for testing local optimality

Testing local optimality is a critical challenge since it can be very time-
consuming. Both Abraham et al. [11] and Bader et al. [13] mention that
testing local optimality efficiently remains an open question. Therefore, it is
best to avoid testing local optimality as much as possible. However, some-
times local optimality does need to be tested. Some methods for testing
local optimality for a path P from s to t in various situations are described
below.

5.9.1 General method: brute force

The most straightforward method for checking local optimality is a simple
brute force algorithm. It can be used for any path and is similar to Al-
gorithm 5.2. For every node (except those at a distance < T from t), the
algorithm of Dijkstra is performed to see if the smallest subpath starting
in this node with weight ≥ T is a shortest path. However, if this is not
the case, the subpath is not replaced by its corresponding shortest path
(Lines 10 and 11 in Algorithm 5.2), but the algorithm returns false. If
the algorithm reaches the end without finding a subpath which is not a
shortest path, the path is T -locally optimal and true is returned. While
this algorithm is very time-consuming, there is currently no better known
algorithm which can be used for any path. If more is known about the
structure of the path, better algorithms can be used. This is described in
the next paragraphs.

5.9.2 Exact algorithm around one central node

An algorithm for testing local optimality can benefit from the fact that
there is a node x such that s − x and x − t are shortest paths. This case
occurs when a node has a permanent label in SPTOUT and in SPTIN . Let
vi be the node in P between s and x which is the closest node to x such
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that w(P [vi..x]) ≥ T ), or s if no such node exists. Let vj be the node in P
between v and t which is the closest node to x such that w(P [x..vj ] ≥ T ),
or t if no such node exists. Let Q be P [vi..vj ].

Lemma 5.3. If Q = P [vi..vj ] is T -locally optimal, then P is T -locally
optimal.

Proof. Suppose that P is not T -locally optimal. Then there are nodes v′

and v′′ in P such that the v′− v′′ subpath P ′ has a weight ≤ T and is not a
shortest path. P ′ cannot lie between s and x nor can it lie between x and
t since the s− x and x− t subpaths are both shortest paths. Therefore, v′

and v′′ must be on different sides of x. Since w(P [vi..x]) ≥ T (or s = vi)
and w(P [x..vj ]) ≥ T (or vj = t), and w(P ′) ≤ T , P ′ must be a subpath
of Q. Since Q is T -locally optimal, P ′ must be a shortest path, which is a
contradiction.

Therefore, running the brute force algorithm only between vi and vj is
sufficient. Depending on the value of T , this can save a lot of time. This
method and the following methods are illustrated in Figure 5.19.

5.9.3 T -test around one central node

Abraham et al. [11] present a heuristic for testing local optimality. It re-
quires only one run of the algorithm of Dijkstra, but the results may contain
false negatives. It is called the T -test. Instead of running the brute force
algorithm for Q they simply check if Q is a shortest path, which is a suffi-
cient but not necessary condition. They prove that if a path P passes the
T -test, it is definitely T -locally optimal. If P fails the T -test, P is definitely
not 2T -locally optimal and may or may not be T -locally optimal.

5.9.4 Exact algorithm around a plateau

The algorithm for testing local optimality around a central node can be
extended as an algorithm for testing local optimality around plateaus. As
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Figure 5.19: Testing local optimality around a central node (top) and
around a plateau (bottom).

mentioned earlier, Abraham et al. [11] prove that a path is always T -locally
optimal if it contains a plateau with weight at least T . It is only necessary
to test the local optimality if the weight of the plateau is smaller than T .
Assume that the plateau is bounded by the nodes x and y, such that s−y is
a shortest path which includes x and x− t is a shortest path which includes
y. Let vi be the node in P between s and y which is the closest node to y
such that w(P [vi..y] ≥ T ), or s if no such node exists. Let vj be the node in
P between x and t which is the closest node to x such that w(P [x..vj ]) ≥ T ),
or t if no such node exists. Let Q be P [vi..vj ]. We now prove that it is
sufficient to check the local optimality for the path Q, regardless of the size
of the plateau.

Lemma 5.4. If Q = P [vi..vj ] is T -locally optimal, then P is T -locally
optimal.
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Proof. Suppose that P is not T -locally optimal. Then there are nodes v′

and v” in P such that the v′− v′′ subpath P ′ has a weight ≤ T and is not a
shortest path. P ′ cannot lie between s and y nor can it lie between x and t
since the s− y and x− t subpaths are both shortest paths. P ′ cannot be a
subpath of the plateau since a plateau is always a shortest path. Therefore,
v′ and v′′ must be on different sides of the plateau. If the weight of the
plateau is higher than T , then w(P ′) must be higher than T as well, which
is a contradiction. If the weight of the plateau is smaller than T , P ′ must
be a subpath of Q since w(P [vi..y]) ≥ T (or s = vi) and w(P [x..vj ] ≥ T (or
vj = t) and w(P ′) ≤ T . Since Q is T -locally optimal, P ′ must be a shortest
path, which is a contradiction.

5.9.5 T -test around a plateau

The T -test, which was designed by Abraham et al. [11] to be used around
one central node, can also be adapted for use around plateaus. Again,
Q being a shortest path is sufficient (but not necessary). If P passes the
T -test, it is T -locally optimal. If it fails the T -test, it is not [2T − w(Pl)]-
locally optimal. This is a tighter bound than when checking local optimality
around one node. This tighter bound is an interesting benefit of the use of
plateaus, since there will be less false negatives.

Lemma 5.5. If a path P around a plateau passes the T -test, it is T -locally
optimal.

Proof. If P passes the T -test, it means that the path Q is a shortest path
longer than T and therefore T -locally optimal. Based on Lemma 5.3, we
can conclude that P is also T -locally optimal.

Lemma 5.6. If a path P around a plateau fails the T -test, it is not [2T −
w(Pl)]-locally optimal.

Proof. The length of Q is [2T − w(Pl)] (see Figure 5.20). If P fails the
T -test, it means that Q is not a shortest path. According to the definition
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Figure 5.20: Calculation of the length of the path Q = P [vi..vj ] when
running the T -test for a path with a plateau.

of local optimality, P is not [2T − w(Pl)]-locally optimal, since there is at
least one path with length ≤ [2T −w(Pl)] which is not a shortest path.

5.9.6 Experimental comparison of these methods

The question is raised whether it is more interesting to use the T-test,
which may find false negatives, or the exact algorithm around a plateau.
For this purpose, we designed an experiment which evaluates running times
as well as the accuracy of the T-test. For five road networks and for 100
random s − t queries for each road network, all plateaus were generated.
For every plateau which is shorter than T and leads to a cycle-free path,
both local optimality tests were run with α = 25%. Table 5.6 shows the
average running time per path. It is clear that the running times are very
similar, and sometimes the T-test is even slower than the exact algorithm.
Furthermore, the success rate for the T-test is also shown. If the success
rate is e.g. 46%, then the T-test returned true for 46% of the paths which
are locally optimal, while the other 54% were false negatives. Typically, the
success rate is around 50%, and for PRT MAX it is even only 12%. Clearly,
it is not worth sacrificing this accuracy if there is no gain in running time,
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so we will use the exact algorithm for testing local optimality around a
plateau.

Road network Plateau exact (ms) T-test (ms) Success rate
CZE MAX 2 3 50%
IRL MAX 5 5 46%
NAVTEQ LUXEMBOURG 4 4 51%
PRT MAX 43 41 12%
NAVTEQ BELGIUM 64 70 55%

Table 5.6: Comparison of the exact algorithm for testing local optimality
around a plateau and the T-test with α = 25%. The average running time
in milliseconds per path is shown. The column “Success rate” shows for
how many locally optimal paths the T-test returns true.

5.10 Strategy for testing plateaus

5.10.1 Motivation

Since testing local optimality requires several Dijkstra runs, it is a bottle-
neck for the algorithm and should be used sparingly. Testing every possible
path for local optimality would generally be too time-consuming. There-
fore, a parameter max is introduced which determines how many paths
will be tested for local optimality. It can be seen as a measure for how
long the user wants the algorithm to keep looking for a better solution.
When max = +∞ every single plateau is converted to its corresponding
path, tested for cycles and tested for local optimality if no cycles were found.
When max = 0, only the plateaus ≥ T are converted to their corresponding
paths and tested for cycles. No local optimality testing is needed for these
paths. However, as was shown in Section 5.7.4, shorter plateaus can lead
to T -locally optimal paths as well. Therefore, it is worthwile to consider
the shorter plateaus too in order to find a better solution, or sometimes in
order to find a solution at all. A typical value for max would be between
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5 and 100. E.g. if max = 20 the algorithm will continue until 20 paths
have been tested for local optimality. Paths which have only been tested
for cycles but not for local optimality, because they had a cycle, do not
count since cycle testing is a lot faster than local optimality testing.
When only such a limited amount of paths are tested for local optimality,
it is very important to make an informed decision on which plateaus to try
first. Therefore, Figures 5.21, 5.22 and 5.23 each show a deep analysis for
two single queries for different values of α. Every single plateau is shown
in the charts. Its position in the chart is determined by its plateau weight
and its corresponding path weight. Both the plateau weight and the path
weight are shown as a percentage of w(SP ). Squares represent locally opti-
mal paths without cycles. Light asterisks show paths which contain cycles.
These paths do not need to be tested for local optimality. Dark asterisks
represent paths which do not contain cycles but are not locally optimal
either. These paths are time-consuming since they need to be tested for
local optimality only to discover that the path cannot be used after all.
Therefore, these paths should be avoided.
On each chart, a vertical line shows the value for T . All plateaus on the
right of this line are guaranteed to correspond to locally optimal paths,
although some plateaus might still result in paths with cycles. On the left
of this line, many more squares can be seen in most charts. These are the
good paths which we aim to find, so a strategy is needed to find as many of
these paths as possible without spending too much time on “bad” paths. It
is clear that the probability of finding a good path decreases with decreas-
ing plateau weight. Especially close to the vertical axis many paths with
cycles or which are not locally optimal can be found, so this area should be
avoided. Therefore, it is clear that it is best to try the plateaus from right
to left. On the other hand, it is also interesting to try the plateaus close
to the horizontal axis first since they correspond to short paths, which is
desirable. Therefore, we present the following strategy.
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(a)

(b)

Figure 5.21: Deep analysis of two queries for NAVTEQ LUXEMBOURG
with α = 10%. For every plateau, both the plateau weight and the corre-
sponding path weight are shown as a percentage of w(SP ). Squares indicate
desirable paths, i.e. locally optimal paths without cycles. Paths on the right
of the vertical line are guaranteed to be locally optimal.

148



5.10. STRATEGY FOR TESTING PLATEAUS

(a)

(b)

Figure 5.22: Deep analysis of two queries for NAVTEQ LUXEMBOURG
with α = 25%. For every plateau, both the plateau weight and the corre-
sponding path weight are shown as a percentage of w(SP ). Squares indicate
desirable paths, i.e. locally optimal paths without cycles. Paths on the right
of the vertical line are guaranteed to be locally optimal.
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(a)

(b)

Figure 5.23: Deep analysis of two queries for NAVTEQ LUXEMBOURG
with α = 50%. For every plateau, both the plateau weight and the corre-
sponding path weight are shown as a percentage of w(SP ). Squares indicate
desirable paths, i.e. locally optimal paths without cycles. Paths on the right
of the vertical line are guaranteed to be locally optimal.
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Figure 5.24: Strategy for testing plateaus. The queues are tried from bot-
tom to top. Within the queues the plateaus are tried from right to left.

5.10.2 Strategy

First, all the plateaus on the right of the vertical line are added to a candi-
date set C from which the solution will be selected eventually. The plateaus
on the left of the vertical line are partitioned into 4 queues as follows:

• The queue queue0020 contains all the plateaus corresponding to paths
which are at most 20% longer than the shortest path.

• The queue queue2040 contains all the plateaus corresponding to paths
which are between 20% and 40% longer than the shortest path.

• The queue queue4060 contains all the plateaus corresponding to paths
which are between 40% and 60% longer than the shortest path.

• The queue queue60+ contains all the plateaus corresponding to paths
which are more than 60% longer than the shortest path.

Each queue corresponds to a horizontal strip in the charts. Figure 5.24
illustrates this partitioning. Each strip will be tested from right to left,
which means that the queues must be sorted by decreasing plateau weight.
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The queue queue0020 is examined first since it contains the shortest paths.
Paths are fetched from the queue and tested until less than 50% of the tried
paths had no cycles and were locally optimal (given that at least 2 paths
had been tried). When this occurs, the success rate is considered too low
and the strategy moves on to the next queue, which is queue2040. Paths
which contain no cycles and are locally optimal are added to the candidate
set C. The same routine is performed for queue4060 and queue60+. After
this, the desired success rate is lowered to 25%. The strategy now continues
to search in a queue until less than 25% of the tried paths had no cycles
and were locally optimal, given that at least 4 paths had been tried. After
having searched in all queues, the success rate is lowered again to 12.5%
and so on. Either way, the algorithm stops when max local optimality tests
have been performed.

5.11 Improved algorithm for finding dissimilar paths:

outline

In the previous sections all the necessary components were described, which
can now be brought together in our improved algorithm for finding dissim-
ilar paths. The pseudocode is shown in Algorithm 5.4 and Algorithm 5.5.
First we describe the input needed from the user:

• the start node s and the target node t for a given road network

• the number of desired paths k

• the parameter for local optimality α

• the maximum number of LO tests max

5.11.1 Phase 1: Generate shortest path trees

A forward shortest path tree SPTOUT is calculated using the algorithm of
Dijkstra from the start node s and a backward shortest path tree SPTIN
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PATHS: OUTLINE

towards the target node t. Both Dijkstra searches are pruned at 1.25 ×
w(SP ) since it was determined in Section 5.7.3 that this is a good pruning
factor. The shortest path weight w(SP ), which needs to be known for
pruning, becomes clear during the execution of the algorithm of Dijkstra.
Once the shortest path weight is known, the value for T = α×w(SP ) can
also be calculated.

5.11.2 Phase 2: Generate plateaus.

Plateaus are generated using Algorithm 5.3, using SPTOUT and SPTIN as
input.

5.11.3 Phase 3: Partition the plateaus.

The plateaus are partitioned into a set of plateaus ≥ T and 4 queues of
plateaus < T depending on their corresponding path weight. This is de-
scribed in Section 5.10.2.

5.11.4 Phase 4: Local optimality testing and p-dispersion

The algorithm examines plateaus shorter than T in the order described in
Section 5.10.2. Each plateau is converted to its correspondig path. This
conversion can easily be done by looking up the shortest path from s to the
plateau in SPTOUT and the shortest path from the plateau to t in SPTIN .
The path is tested for cycles and, if it contains no cycles, is tested for local
optimality. For local optimality testing, the exact method around a plateau
is used (see Section 5.9.4). It was chosen rather than the T-test because our
experiments which are described in Section 5.9.6 showed that the T-test is
not faster and misses many locally optimal paths. Cycle-free paths which
are locally optimal are added to a candidate set C. This continues until
max paths have been tested for local optimality or until there are no more
plateaus.
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Algorithm 5.4 Improved algorithm for finding dissimilar paths

Require: start s, target t, number of desired paths k, parameter for local
optimality α, maximum number of LO tests max, road network

Ensure: solution containing k paths
1: SPTOUT ← run forward Dijkstra from s (prune at 1.25× w(SP ))
2: SPTIN ← run backward Dijkstra from t (prune at 1.25 × w(SP ))
3: T ← α× w(SP )
4: Generate plateaus using Algorithm 5.3
5: Add all plateaus Pl such that w(Pl) ≥ T to C
6: Partition other plateaus in queue0020, queue2040, queue4060,

queue60+
7: For each queue, sort plateaus in order of ascending path weight.
8: nrlotests← 0
9: stopratio← 0.5

10: currentqueue← queue0020
11: while nrlotests < max do

12: add paths to C(nrlotests, stopratio, currentqueue, max, C , T )
13: currentqueue← next queue (circular)
14: if currentqueue is queue0020 then

15: stopratio← stopratio/2
16: end if

17: end while

18: if C.size ≥ k then

19: solution← select dissimilar paths in C using Algorithm 5.1
20: end if
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PATHS: OUTLINE

Algorithm 5.5 add paths to C

Require: nrlotests, stopratio, currentqueue, max, C, T
Ensure: paths added to C, if any are found
1: nrtried← 0
2: nrsuccess← 0
3: while nrlotests < max and currentqueue not empty and (nrtried <

1/stopratio or nrsuccess/nrtried >= stopratio) do
4: nrtried← nrtried+ 1
5: plateau← currentqueue.poll()
6: path← create path from plateau
7: if path contains no cycles then
8: nrlotests← nrlotests+ 1
9: if path is T -locally optimal then

10: add path to C
11: nrsuccess← nrsuccess+ 1
12: end if

13: end if

14: end while
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Finally, the p-dispersion method is called to select a dissimilar set of paths,
given that the number of available paths in C is at least k. For select-
ing a subset of dissimilar paths, a greedy construction heuristic for the
p-dispersion problem is used which always includes the shortest path in
the solution. The pseudocode can be seen in Algorithm 5.1. The objec-
tive function used by the heuristic is the objective function described in
Section 5.8

5.12 Experiments

5.12.1 Experiment: choosing a stop condition

Experimental setup

We have designed an experiment to evaluate the performance of the algo-
rithm for different stop conditions. We have performed the experiments
on five road networks. We have chosen 16 different stop conditions, i.e. 16
different values for max ranging from 0 to +∞. For each road network,
we have selected 100 random s − t queries. For each start-target pair, the
algorithm was run 32 times: twice for each of the 16 stop conditions, once
where the goal is to find a solution consisting of 3 paths (i.e. k = 3) and
once for five paths (i.e. k = 5). The value of α was set to 25%. Table 5.7
shows the results for two road networks, but the results for the other road
networks are similar.
For each stop condition, the average running time and the average quality
of the found solution for the 100 start-target pairs is displayed. Further-
more the tables show how many of the 100 start-target pairs have a better
solution compared to the previous stop condition. The average size of the
improvement, if there is one, is also shown. Improvements of size 0 are not
included in this average. For example, in Table 5.7b, when the algorithm is
run with max = 40, 35 out of 100 start-target pairs have a better solution
than when max = 20 is used. The average size of this improvement is
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max time (ms) Q(S) #improved avg. improvement #no solution
0 164 0.758 3
5 221 0.769 36 0.047 0

10 273 0.778 19 0.049 0
15 302 0.781 8 0.038 0
20 348 0.782 5 0.021 0
40 536 0.788 16 0.033 0
60 645 0.788 3 0.028 0
80 754 0.789 3 0.019 0

100 833 0.790 2 0.054 0
120 984 0.790 1 0.010 0
140 1 089 0.790 1 ǫ 0
160 1 202 0.790 0 / 0
180 1 144 0.790 0 / 0
200 1 312 0.790 1 0.007 0
500 2 700 0.792 3 0.051 0
+∞ 5 738 0.792 2 0.009 0

(a) NAVTEQ LUXEMBOURG, k = 3

max time (ms) Q(S) #improved avg. improvement #no solution
0 115 0.662 17
5 144 0.674 42 0.041 2

10 190 0.685 34 0.040 1
15 210 0.690 18 0.025 1
20 287 0.694 15 0.028 1
40 356 0.703 35 0.025 1
60 454 0.706 12 0.024 1
80 517 0.708 11 0.017 1

100 733 0.710 11 0.019 1
120 751 0.711 5 0.021 1
140 919 0.712 4 0.017 1
160 891 0.712 3 0.024 1
180 1 007 0.712 0 / 1
200 1 040 0.713 4 0.020 1
500 2 173 0.715 11 0.019 1
+∞ 5 574 0.716 5 0.024 1

(b) NAVTEQ LUXEMBOURG, k = 5

Table 5.7: Results for different stop conditions with α = 25%. The average
running time and average quality Q(S) of the result is shown. The number
of queries (out of 100) for which an improvement was found is shown, and
the average size of this improvement if there is one. The last column shows
the number of queries (out of 100) for which no solution was found.
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max time (ms) Q(S) #improved avg. improvement #no solution
0 2 705 0.748 0
5 3 698 0.758 23 0.044 0

10 4 612 0.760 12 0.017 0
15 5 497 0.763 17 0.020 0
20 5 958 0.764 4 0.020 0
40 9 123 0.767 14 0.019 0
60 11 209 0.769 7 0.028 0
80 13 215 0.770 6 0.023 0

100 14 680 0.770 0 / 0
120 16 540 0.771 2 0.041 0
140 17 588 0.771 2 0.011 0
160 18 411 0.771 0 / 0
180 19 992 0.771 0 / 0
200 20 799 0.771 1 0.011 0
500 37 353 0.774 11 0.024 0
+∞ 702 773 0.777 11 0.026 0

(c) NAVTEQ BELGIUM, k = 3

max time (ms) Q(S) #improved avg. improvement #no solution
0 1 647 0.658 4
5 2 329 0.671 39 0.038 1

10 3 008 0.678 27 0.024 0
15 3 433 0.686 31 0.027 0
20 4 015 0.688 14 0.017 0
40 6 292 0.695 23 0.029 0
60 8 283 0.699 17 0.027 0
80 10 086 0.701 12 0.014 0

100 11 902 0.702 6 0.010 0
120 12 972 0.703 4 0.028 0
140 13 774 0.703 3 0.005 0
160 15 238 0.703 2 0.024 0
180 16 275 0.703 1 0.001 0
200 17 686 0.704 5 0.012 0
500 32 761 0.707 23 0.015 0
+∞ 625 568 0.712 29 0.016 0

(d) NAVTEQ BELGIUM, k = 5

Table 5.7: Results for different stop conditions with α = 25%. The average
running time and average quality Q(S) of the result is shown. The number
of queries (out of 100) for which an improvement was found is shown,
and the average size of this improvement if there is one. The last column
shows the number of queries (out of 100) for which no solution was found.
(Continued)
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0.025. Finally, the column “no solution” shows for how many of the 100
start-target pairs no solution was found. This occurs when at the end of
the algorithm, the number of locally optimal cycle free paths is still less
than k. In this case it is impossible to return a solution. For example, in
the same table, no solution was found for 2 out of 100 start-target pairs for
max = 5.

Discussion

The results clearly show that it is worth it to continue searching after ap-
plying the plateau method (i.e. max = 0). Especially for small graphs and
for k = 5, the plateau method is likely not to find a solution at all. This is
because the number of plateaus which generate cycle-free locally optimal
paths is less than k. It is clear that trying even a small amount of extra
plateaus significantly increases the probability of finding a solution. E.g.
in Table 5.7b, the plateau method only finds a solution for 83 of the 100
queries. By trying 5 more paths, a solution can be found for 98 queries,
and by trying 10 more paths a solution can be found for 99 queries. The
algorithm still fails to find a solution for one query, but this is because
there are simply not enough plateaus which lead to a good solution. Even
checking every single plateau does not lead to a solution.
The results also show clear improvement in the quality of the solution by
trying more plateaus. E.g. in Table 5.7d the quality is increased from 0.658
to 0.686 by trying 15 more paths. By trying every plateau, the solution even
increases to 0.712. For the large road network NAVTEQ BELGIUM the al-
gorithm runs in just a few seconds for the smaller values of max. However,
even for these smaller values, solutions of good quality are found. These
running times are definitely acceptable, since the algorithm was tested on
a 2.8 GHz CPU, a CPU which can be found in a basic home computer
nowadays. For the smaller road network NAVTEQ LUXEMBOURG, the
algorithm is even faster and runs within less than 1 second for most of the
tested values of max. For a smaller road network like this, one could even
consider trying every plateau if quality of the solution is important, since
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max time (ms) Q(S) #improved avg. improvement #no solution
0 144 0.717 35 0
5 168 0.719 11 0.018 0
10 174 0.720 7 0.011 0
15 178 0.721 6 0.022 0
20 194 0.723 7 0.031 0
40 225 0.725 14 0.016 0
60 271 0.727 8 0.026 0
80 292 0.728 11 0.008 0
100 353 0.730 7 0.021 0
120 401 0.731 6 0.015 0
140 405 0.731 3 0.006 0
160 467 0.731 3 0.007 0
180 516 0.731 4 0.011 0
200 571 0.731 1 0.004 0
500 1 283 0.734 17 0.014 0
+∞ 3 178 0.735 9 0.017 0

(a) NAVTEQ LUXEMBOURG, k = 5

Table 5.8: Results for different stop conditions with α = 10%. The average
running time and average quality Q(S) of the result is shown. The number
of queries (out of 100) for which an improvement was found is shown, and
the average size of this improvement if there is one. The last column shows
the number of queries (out of 100) for which no solution was found.
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even this takes less than six seconds on average.
Clearly, there is a trade-off between running time and quality of the so-
lution. When speed is most important, max = 5 could be a good stop
condition since the probability of finding a solution is much higher than for
max = 0, the quality of the solution is better, and the solution can still be
found very fast. When quality of the solution and the guarantee of finding
a solution are more important, max could be set to a value of 100. As
a general rule of thumb, we suggest using max = 15 as a stop condition,
since the quality of the solution is clearly much better than for max = 0,
without compromising too much on speed.
Finally, Table 5.8 shows results for the same experiment, but where α =
10% instead of 25%. In this case, the results show that the improvement
is smaller. In all of our experiments a solution could be found for max = 0
and the quality cannot be improved as much by trying more plateaus than
for α = 25%. This can be expected since there are a lot more plateaus with
weight at least α×w(SP ) for α = 10%. However, as we have shown before,
25% proves to be a better value for α.

5.12.2 Experiment: how is the running time divided over different phases

of the algorithm?

Figure 5.25 shows how much time the algorithm spends on the genera-
tion of the plateaus, testing local optimality, the p-dispersion heuristic and
other aspects. Of course, for max = 0, no time is spent on local optimality
testing. Most of the time is spent on the generation of the plateaus. How-
ever, as max increases, local optimality quickly takes over as the biggest
bottleneck of the algorithm. This confirms the importance of an efficient
strategy for testing local optimality. The algorithm definitely benefits from
checking local optimality around a plateau (see Section 5.9.4) rather than
using a brute force algorithm. It is also clear that the time spent on the
p-dispersion heuristic is so small that it can be neglected. Therefore, efforts
to further optimize the speed of the algorithm should definitely be focused
on local optimality testing and not on the p-dispersion heuristic.
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(a) max = 0 (total time: 2 705 ms) (b) max = 5 (total time: 3 698 ms)

(c) max = 15 (total time: 5 497 ms) (d) max = 100 (total time: 14 680 ms)

Figure 5.25: Division of the running time over the different phases of
the algorithm. Running times are averaged for 100 random queries for
NAVTEQ BELGIUM with k = 3 and different stop conditions.
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5.13 Comparison to results in the literature

Abraham et al. [11] present results in terms of quality of the solution as
well as running time for their heuristics which aim to find locally optimal
paths. Akgün et al. [12] present experimental results as well. However,
these methods cannot be compared to our method since they do not aim
for local optimality, since they were proposed before the concept of local
optimality was introduced. All of the paths found by Abraham et al. are
locally optimal for at least α = 29%, which is similar to the 25% used in
our experiments. However, an important difference between the method
by Abraham et al. and our method is the fact that Abraham et al. use
hard constraints on the weight of the paths and the dissimilarity of the
paths. Paths which are more than 25% longer than the shortest path are
eliminated and a solution may not contain paths which share more than
80%. Our method aims to avoid such hard constraints. A path which
is 26% longer than the shortest path, but very dissimilar from the other
paths, can be a better choice than a path which is only 21% longer than
the shortest path but which is very similar to another path in the solution.
Also, these hard constraints can cause failure in finding a solution at all,
while it would have been interesting if the best possible solution was still
returned. Therefore, we have proposed an objective function which takes
the trade-off between dissimilarity and path weight into account, and aims
to optimize both without imposing hard constraints. Another difference is
the fact that we use an exact method for local optimality testing, while
Abraham et al. use the T-test which, as we have shown, is not faster and
fails to find about half of the locally optimal paths.
Abraham et al. evaluate 3 methods which are named X-BDV, X-REV and
X-CHV. The methods X-REV and X-CHV are very fast but also have very
disappointing success rates, e.g. for k = 4 the X-CHV method can only
find a solution in 10.9% of the cases. The X-BDV method is a lot more
time-consuming and has a better success rate, but still only finds a solution
in 81.1% of the cases for k = 3, while our algorithm had a success rate
of 100% for k = 3 in our experiments. We believe that this lower success
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rate can be explained on the one hand by the use of hard constraints, and
on the other hand by the fact that only plateaus Pl such that w(Pl) ≥ T
are considered while there are not always enough such plateaus to find a
solution, and if a solution is found, it is suboptimal and can be improved
by considering the other plateaus as well.
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6
Concluding remarks

With the ever-growing interest in interactive route planning applications,
mobile navigation devices and digital GIS systems, there is also a growing
demand for very fast algorithms which are optimised for use on road net-
works. While many shortest path algorithms exist, there is a need to adapt
these algorithms to the demands of the user. We have seen that, even with
the increasing speed of computer systems nowadays, exact algorithms are
often still too time-consuming for use on large road networks. This justifies
looking for heuristic methods which are much faster. While these heuris-
tic methods do not guarantee to find the optimal solution, we have shown
that results of good quality can be found using heuristic methods. Each
algorithm was developed while constantly comparing our implementation
to other methods of our own and existing methods and we have performed
many experiments to ensure both the efficiency on realistic road networks
and the good quality of the results.
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A first issue which is not addressed by standard shortest path algorithms, is
the fact that realistic road networks usually contain illegal turns and turns
which imply an additional cost. In Chapter 3 we have described three
methods for routing with turn restrictions. Two of these, the line graph
method and the node splitting method, make use of a graph transformation,
after which any shortest path algorithm can be applied to the transformed
graph. A third method, the direct method, can immediately be applied
to the original graph. Different road networks may have different amounts
of illegal turns and available turn costs. We have shown that the nature
of the road network has a significant influence on the performance of the
algorithms. Our experiments showed that for road networks where less than
5% of the turns are forbidden, node splitting is the best method. If more
than 5% of the turns are forbidden, which is very rare, the direct method
is the best choice. For road networks with turn costs, we concluded that
the direct method performs best if no more than 25% of the turns have
a non-zero cost, while the line graph method is a better choice otherwise.
We investigated the possibility of storing additional data in a lookup table,
but found that this is not worth the extra memory. No such study had
been done before, and realistic route planning applications could benefit
from this knowledge for choosing the method which is best suited for their
specific road network.

In Chapter 4 we have presented a heuristic for the k shortest paths problem.
We have described several exact algorithms for this problem, e.g. the algo-
rithm of Yen, and performed experiments which showed that all of these
exact algorithms are too slow for use in an interactive application. The
heuristic is based on the algorithm of Yen. While the algorithm of Yen
performs many shortest path calculations, the heuristic uses a precalcu-
lated backward shortest path tree for looking up these shortest paths. The
shortest paths found in the shortest path tree may or may not lead to paths
which contain a cycle. If such a cycle occurs, the path is simply dropped
by the heuristic. Surprisingly, we have seen that this does not significantly
affect the quality of the result. Our experiments have shown that the k-th
path found by the heuristic is less than 5% longer than the actual k-th path
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in 98.5% of all cases, which is definitely acceptable in road networks. The
experiments have also shown that the heuristic is hundreds to even thou-
sands of times faster than the fastest exact algorithm. Furthermore, the
heuristic can be enhanced to an exact algorithm which is a valid alternative
to the existing exact algorithms, with a speedup of about 10% to 20%.

One of the applications of k shortest paths algorithms is routing with addi-
tional constraints. A k shortest paths algorithm can be used to generate a
ranking of shortest paths, from which the paths that best satisfy the other
criteria are selected. Our heuristic can be very effective for speeding up
these methods. One of the applications mentioned in the literature is the
calculation of dissimilar alternative routes by selecting a small dissimilar
subset from a large set of k shortest paths. Nevertheless, we have shown
that a better set of paths can be generated by making use of plateaus. This
is described in Chapter 5. We aim to find a small set of paths which contain
no cycles and are dissimilar, not too long and locally optimal. First, we
described our initial method which found paths of good quality, but spent
too much time trying to improve the local optimality of the paths and had
no guarantee that two dissimilar paths would not be transformed into the
same path after improving local optimality. We have shown that these is-
sues can be resolved by using plateaus. We can identify paths which are
guaranteed to be locally optimal, and other paths which are likely to be
locally optimal. This information is of great value since local optimality
testing is a bottleneck in the algorithm. It allows us to find as many locally
optimal paths as possible with as little local optimality testing as possible.
Also, the paths containing longer plateaus are likely to be dissimilar and to
contain no cycles. Even though paths can be found which are guaranteed
to be locally optimal, we have shown that it is still useful to test some of
the other paths for local optimality. By testing only 20 additional paths for
local optimality, a solution can be found which is clearly of higher quality
and the probability of not finding a solution can almost be reduced to 0
(given that a solution can be found by trying all plateaus).

We believe that our dissimilar paths heuristic is ready to be used in an in-
teractive route planning application. Therefore, the next logical step would
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be to build such a system. Currently, our software only allows the calcu-
lation of routes between two given node numbers. The software could be
greatly improved by providing an interactive user interface. Users should
be able to enter addresses or choose their starting point and destination by
clicking on a map. For this purpose, the necessary conversions between ad-
dresses or coordinates and node numbers should be implemented. Another
issue arises here due to the fact that not all available road networks contain
address data. However, entering a query by clicking on a map should be
possible for any road network for which coordinates are available.

Such an interactive routing application could also benefit from a user study
to further fine-tune certain parameters, taking the preferences of the user
into account. It would especially be of interest to find out what routes users
consider to be good alternatives. Currently our dissimilar paths heuristic
uses a 50%-50% trade-off between path weight and dissimilarity. By asking
users to rate different sets of alternatives for the same query, we could dis-
cover the importance users attach to path weight compared to dissimilarity
and choose a different value for this trade-off. It would also be interesting
to find out if α = 25% is indeed the value users prefer for local optimality.

Furthermore, the random turn costs should be replaced with real-life turn
costs, which are currently not available. It is indeed not likely that all
turns in a road network will be visited to discover the turn costs anytime
soon. Therefore, realistic estimations should be made. The estimation
method described by Nielsen [53] could be a good starting point. It would
also be interesting to consider the possibility of deriving turn costs and, if
necessary, turn prohibitions from GPS traces.

From an algorithmic point of view, the next logical step would be to in-
clude hierarchical routing in our algorithms. Hierarchical routing methods
use different levels for representing a road network. At the highest level,
the network is very sparse and only the most important nodes (e.g. high-
way nodes) are included. Typically, the more detailed levels are only used
around the starting point and destination, while the higher levels are used
in between. Hierarchical routing has proven to be very efficient for shortest
path calculations. It would be interesting to examine whether a hierarchical
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routing algorithm can be developed for the k shortest paths problem or for
finding dissimilar paths. Furthermore, both our k shortest paths heuristic
and our dissimilar paths heuristic make use of many shortest path calcu-
lations. Existing hierarchical routing methods could be used for speeding
up these shortest path calculations. The dissimilar paths heuristic could
especially benefit from even faster local optimality testing. Hierarchical
routing should definitely be considered for this purpose.

Another challenge for the future will be to develop exact algorithms which
can be run on large road networks. Even though our heuristics produce
good results, it is still ambitious to find an optimal solution within a rea-
sonable amount of time. Perhaps with improving hardware this will become
possible. In this context it would also be interesting to consider parallel
computing. For example, in our dissimilar paths algorithm a major speedup
could be achieved by running the local optimality tests in parallel on dif-
ferent CPUs.

Finally, many other variants on standard shortest path algorithms are possi-
ble. Routing algorithms for public transportation networks (e.g. Huang [41])
are definitely very important as well. Also, algorithms which do not find
a point-to-point route but a tour along certain streets (e.g. Corberán et
al. [23]) are useful. Several ideas have been proposed and a lot of work
remains to be done to combine all these ideas. For example, it would be
interesting to find dissimilar alternatives for a tour along certain streets, or
to combine the ideas from Chapter 4 and Chapter 5 to develop an algorithm
which aims to find the k shortest locally optimal paths.
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A
Supplementary material: Turn

restrictions

In this Appendix additional results are presented for Chapter 3. The results
are presented in tables showing the exact numbers instead of charts and
more road networks are included.

Memory

Table A.1 shows additional results for Figure 3.11 on Page 53. The memory
usage ratio is shown for different percentages of turn costs and turn prohibi-
tions for the direct method (DIR), line graph without lookup table (LINE),
node splitting without lookup table (SPLIT), line graph with lookup table
(LINE*) and node splitting with lookup table (SPLIT*).

171



APPENDIX A. TURN RESTRICTIONS

Strict query time

Table A.2 shows additional results for Figure 3.12 on Page 55. The average
strict query time ratio is shown for different percentages of turn costs and
turn prohibitions for the direct method (DIR), the line graph (LINE) and
node splitting (SPLIT). The average running time for a one-to-one query
of the standard Dijkstra algorithm on the original graph is 254.49 ms.
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Restriction DIR LINE LINE* SPLIT SPLIT*

Turn prohibitions 0.1% 1.0 2.6 5.5 1.0 1.0
Turn prohibitions 0.5% 1.0 2.6 5.4 1.2 1.3
Turn prohibitions 1% 1.0 2.6 5.4 1.2 1.4
Turn prohibitions 5% 1.2 2.5 5.4 2.0 2.7
Turn prohibitions 10% 1.5 2.4 5.3 2.6 3.6
Turn prohibitions 15% 1.7 2.3 5.2 2.9 4.3
Turn prohibitions 20% 1.9 2.2 5.1 3.1 4.7
Turn prohibitions 25% 2.1 2.2 5.0 3.3 4.9
Turn costs 5% 1.2 2.6 5.5 2.1 2.7
Turn costs 10% 1.5 2.6 5.5 2.8 3.8
Turn costs 15% 1.7 2.6 5.5 3.2 4.6
Turn costs 20% 1.9 2.6 5.5 3.5 5.0
Turn costs 25% 2.1 2.6 5.5 3.7 5.4
Turn costs 50% 2.9 2.6 5.5 4.1 6.0
Turn costs 75% 3.6 2.6 5.5 4.2 6.1
Turn costs 100% 4.2 2.6 5.5 4.2 6.2

(a) CZE MAX (original graph: 2.82 MB)

Restriction DIR LINE LINE* SPLIT SPLIT*

Turn prohibitions 0.1% 1.0 2.6 5.5 1.0 1.0
Turn prohibitions 0.5% 1.0 2.6 5.5 1.1 1.2
Turn prohibitions 1% 1.0 2.6 5.4 1.2 1.4
Turn prohibitions 5% 1.2 2.5 5.4 2.0 2.6
Turn prohibitions 10% 1.5 2.4 5.3 2.6 3.7
Turn prohibitions 15% 1.7 2.4 5.2 2.9 4.2
Turn prohibitions 20% 1.9 2.3 5.1 3.1 4.6
Turn prohibitions 25% 2.1 2.2 5.0 3.2 4.8
Turn costs 5% 1.2 2.6 5.5 2.1 2.7
Turn costs 10% 1.5 2.6 5.5 2.8 3.9
Turn costs 15% 1.7 2.6 5.5 3.2 4.5
Turn costs 20% 1.9 2.6 5.5 3.5 5.0
Turn costs 25% 2.1 2.6 5.5 3.7 5.3
Turn costs 50% 2.9 2.6 5.5 4.1 6.1
Turn costs 75% 3.6 2.6 5.5 4.2 6.2
Turn costs 100% 4.2 2.6 5.5 4.3 6.3

(b) LUX MAX (original graph: 3.70 MB)

Table A.1: Memory usage ratio for different road networks.
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Restriction DIR LINE LINE* SPLIT SPLIT*

Turn prohibitions 0.1% 1.0 2.5 5.4 1.0 1.0
Turn prohibitions 0.5% 1.0 2.5 5.4 1.1 1.2
Turn prohibitions 1% 1.0 2.6 5.4 1.2 1.4
Turn prohibitions 5% 1.2 2.4 5.4 1.9 2.5
Turn prohibitions 10% 1.4 2.4 5.3 2.5 3.6
Turn prohibitions 15% 1.7 2.3 5.2 2.8 4.1
Turn prohibitions 20% 1.9 2.2 5.1 3.0 4.5
Turn prohibitions 25% 2.0 2.1 5.0 3.1 4.7
Turn costs 5% 1.2 2.5 5.4 2.0 2.6
Turn costs 10% 1.4 2.5 5.4 2.7 3.7
Turn costs 15% 1.7 2.5 5.4 3.1 4.4
Turn costs 20% 1.9 2.5 5.4 3.4 4.8
Turn costs 25% 2.0 2.5 5.4 3.6 5.1
Turn costs 50% 2.9 2.5 5.4 4.0 5.9
Turn costs 75% 3.5 2.5 5.4 4.1 6.0
Turn costs 100% 4.1 2.5 5.4 4.2 6.2

(c) IRL MAX (original graph: 3.87 MB)

Restriction DIR LINE LINE* SPLIT SPLIT*

Turn prohibitions 0.1% 1.0 2.6 5.4 1.0 1.0
Turn prohibitions 0.5% 1.0 2.6 5.4 1.1 1.2
Turn prohibitions 1% 1.0 2.6 5.4 1.2 1.4
Turn prohibitions 5% 1.2 2.5 5.4 2.0 2.6
Turn prohibitions 10% 1.5 2.4 5.3 2.6 3.6
Turn prohibitions 15% 1.7 2.3 5.2 2.9 4.2
Turn prohibitions 20% 1.9 2.3 5.1 3.1 4.7
Turn prohibitions 25% 2.1 2.2 5.0 3.2 4.9
Turn costs 5% 1.2 2.6 5.5 2.1 2.7
Turn costs 10% 1.5 2.6 5.5 2.8 3.8
Turn costs 15% 1.7 2.6 5.5 3.2 4.5
Turn costs 20% 1.9 2.6 5.5 3.5 5.1
Turn costs 25% 2.1 2.6 5.5 3.7 5.4
Turn costs 50% 2.9 2.6 5.5 4.1 6.0
Turn costs 75% 3.6 2.6 5.5 4.2 6.2
Turn costs 100% 4.2 2.6 5.5 4.2 6.2

(d) PRT MAX (original graph: 19.66 MB)

Table A.1: Memory usage ratio for different road networks. (Continued)
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Restriction DIR LINE LINE* SPLIT SPLIT*

Turn prohibitions 0.1% 1.0 2.7 5.5 1.0 1.0
Turn prohibitions 0.5% 1.0 2.7 5.5 1.1 1.2
Turn prohibitions 1% 1.0 2.7 5.5 1.2 1.4
Turn prohibitions 5% 1.2 2.6 5.4 2.0 2.7
Turn prohibitions 10% 1.5 2.5 5.3 2.6 3.7
Turn prohibitions 15% 1.7 2.4 5.2 3.0 4.4
Turn prohibitions 20% 1.9 2.3 5.1 3.2 4.7
Turn prohibitions 25% 2.1 2.2 5.0 3.3 4.9
Turn costs 5% 1.2 2.7 5.5 2.1 2.8
Turn costs 10% 1.5 2.7 5.5 2.8 3.9
Turn costs 15% 1.7 2.7 5.5 3.3 4.7
Turn costs 20% 1.9 2.7 5.5 3.6 5.1
Turn costs 25% 2.1 2.7 5.5 3.8 5.4
Turn costs 50% 3.0 2.7 5.5 4.1 6.1
Turn costs 75% 3.7 2.7 5.5 4.2 6.3
Turn costs 100% 4.2 2.7 5.5 4.3 6.3

(e) BEL MAX (original graph: 57.72 MB)

Restriction DIR LINE LINE* SPLIT SPLIT*

Turn prohibitions 0.1% 1.0 2.6 5.5 1.0 1.0
Turn prohibitions 0.5% 1.0 2.6 5.5 1.1 1.2
Turn prohibitions 1% 1.0 2.6 5.4 1.3 1.4
Turn prohibitions 5% 1.2 2.5 5.4 2.0 2.6
Turn prohibitions 10% 1.5 2.4 5.3 2.6 3.7
Turn prohibitions 15% 1.7 2.3 5.2 3.0 4.2
Turn prohibitions 20% 1.9 2.3 5.1 3.1 4.7
Turn prohibitions 25% 2.1 2.2 5.0 3.3 5.0
Turn costs 5% 1.2 2.6 5.5 2.1 2.7
Turn costs 10% 1.5 2.6 5.5 2.8 3.8
Turn costs 15% 1.7 2.6 5.5 3.2 4.5
Turn costs 20% 1.9 2.6 5.5 3.5 5.1
Turn costs 25% 2.1 2.6 5.5 3.7 5.5
Turn costs 50% 2.9 2.6 5.5 4.1 6.0
Turn costs 75% 3.6 2.6 5.5 4.2 6.2
Turn costs 100% 4.2 2.6 5.5 4.3 6.3

(f) CHE MAX (original graph: 71.29 MB)

Table A.1: Memory usage ratio for different road networks. (Continued)
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Restriction DIR LINE SPLIT

Turn prohibitions 0.1% 2.0 2.4 1.0
Turn prohibitions 0.5% 1.9 2.2 1.0
Turn prohibitions 1.0% 1.9 2.2 1.1
Turn prohibitions 5% 1.9 2.3 2.0
Turn prohibitions 10% 1.9 2.2 2.6
Turn prohibitions 15% 1.7 1.8 2.7
Turn prohibitions 20% 1.4 1.5 2.4
Turn prohibitions 25% 0.3 0.4 0.6
Turn costs 5% 2.0 2.4 2.1
Turn costs 10% 2.1 2.4 3.0
Turn costs 15% 2.1 2.4 3.5
Turn costs 20% 2.2 2.5 3.8
Turn costs 25% 2.2 2.5 4.1
Turn costs 50% 2.4 2.5 4.7
Turn costs 75% 2.4 2.5 4.7
Turn costs 100% 2.3 2.5 4.7

(a) CZE MAX (normal Dijkstra: 9.92 ms)

Restriction DIR LINE SPLIT

Turn prohibitions 0.1% 2.2 2.2 1.0
Turn prohibitions 0.5% 2.2 2.4 1.1
Turn prohibitions 1.0% 2.2 2.4 1.3
Turn prohibitions 5% 2.0 2.4 2.1
Turn prohibitions 10% 2.1 2.3 2.8
Turn prohibitions 15% 2.0 2.2 3.0
Turn prohibitions 20% 1.6 1.7 2.6
Turn prohibitions 25% 0.2 0.2 0.3
Turn costs 5% 2.0 2.4 2.2
Turn costs 10% 2.1 2.5 3.0
Turn costs 15% 2.2 2.5 3.6
Turn costs 20% 2.3 2.5 4.1
Turn costs 25% 2.3 2.5 4.5
Turn costs 50% 2.4 2.6 5.3
Turn costs 75% 2.5 2.6 5.6
Turn costs 100% 2.5 2.5 5.6

(b) LUX MAX (normal Dijkstra: 13.27 ms)

Table A.2: Strict query time ratio for different road networks.
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Restriction DIR LINE SPLIT

Turn prohibitions 0.1% 2.0 2.4 1.0
Turn prohibitions 0.5% 2.0 2.4 1.1
Turn prohibitions 1.0% 2.0 2.4 1.3
Turn prohibitions 5% 1.9 2.2 2.0
Turn prohibitions 10% 1.9 2.2 2.7
Turn prohibitions 15% 1.8 2.0 2.8
Turn prohibitions 20% 1.0 1.1 1.8
Turn prohibitions 25% 0.4 0.5 0.8
Turn costs 5% 2.0 2.4 2.1
Turn costs 10% 2.0 2.4 2.9
Turn costs 15% 2.1 2.4 3.4
Turn costs 20% 2.2 2.4 3.8
Turn costs 25% 2.2 2.5 4.2
Turn costs 50% 2.4 2.5 5.2
Turn costs 75% 2.4 2.5 5.5
Turn costs 100% 2.4 2.5 5.8

(c) IRL MAX (normal Dijkstra: 12.27 ms)

Restriction DIR LINE SPLIT

Turn prohibitions 0.1% 2.2 2.4 1.0
Turn prohibitions 0.5% 2.2 2.4 1.1
Turn prohibitions 1.0% 2.2 2.4 1.2
Turn prohibitions 5% 2.1 2.9 2.5
Turn prohibitions 10% 2.0 2.6 3.4
Turn prohibitions 15% 1.8 2.2 3.6
Turn prohibitions 20% 1.1 1.4 2.5
Turn prohibitions 25% 0.3 0.5 0.8
Turn costs 5% 2.2 3.0 2.7
Turn costs 10% 2.3 3.1 4.0
Turn costs 15% 2.3 3.1 4.8
Turn costs 20% 2.4 3.1 5.5
Turn costs 25% 2.4 3.1 6.0
Turn costs 50% 2.6 3.2 6.8
Turn costs 75% 2.7 3.2 7.2
Turn costs 100% 2.7 3.3 7.2

(d) PRT MAX (normal Dijkstra: 87.04 ms)

Table A.2: Strict query time ratio for different road networks. (Continued)
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Restriction DIR LINE SPLIT

Turn prohibitions 0.1% 2.3 2.9 1.0
Turn prohibitions 0.5% 2.4 2.9 1.2
Turn prohibitions 1.0% 2.4 2.8 1.3
Turn prohibitions 5% 2.3 2.9 2.7
Turn prohibitions 10% 2.5 2.8 3.7
Turn prohibitions 15% 2.4 2.7 4.4
Turn prohibitions 20% 2.5 2.6 4.9
Turn prohibitions 25% 1.9 1.8 4.2
Turn costs 5% 2.6 3.0 2.8
Turn costs 10% 2.6 3.0 4.1
Turn costs 15% 2.7 3.1 5.0
Turn costs 20% 2.8 3.1 5.6
Turn costs 25% 2.8 3.1 6.1
Turn costs 50% 3.0 3.2 7.0
Turn costs 75% 3.1 3.2 7.1
Turn costs 100% 3.1 3.2 7.2

(e) BEL MAX (normal Dijkstra: 254.49 ms)

Restriction DIR LINE SPLIT

Turn prohibitions 0.1% 2.2 2.9 1.0
Turn prohibitions 0.5% 2.2 2.9 1.1
Turn prohibitions 1.0% 2.2 2.9 1.3
Turn prohibitions 5% 2.1 2.6 2.3
Turn prohibitions 10% 1.9 2.2 3.0
Turn prohibitions 15% 1.7 1.9 3.1
Turn prohibitions 20% 0.4 0.5 0.9
Turn prohibitions 25% 0.0 0.0 0.1
Turn costs 5% 2.2 2.8 2.6
Turn costs 10% 2.3 2.9 3.8
Turn costs 15% 2.3 2.9 4.6
Turn costs 20% 2.4 3.0 5.3
Turn costs 25% 2.4 3.0 5.6
Turn costs 50% 2.6 3.0 6.4
Turn costs 75% 2.7 3.0 6.6
Turn costs 100% 2.7 3.0 6.7

(f) CHE MAX (normal Dijkstra: 328.00 ms)

Table A.2: Strict query time ratio for different road networks. (Continued)
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B
Supplementary material: K shortest

paths

In this Appendix additional results are presented for Chapter 4. The charts
are similar to those in Chapter 4, but more road networks are included.

Path quality

Figures B.1, B.2, B.3, B.4 and B.5 show additional results for Figure 4.8
on Page 83.

179



APPENDIX B. K SHORTEST PATHS

Timing results

Figures B.6, B.7, B.8, B.9 and B.10 show additional results for Figure 4.9
on Page 91.

Detailed timing results

Figures B.11, B.12, B.13, B.14 and B.15 show additional results for Fig-
ure 4.10 on Page 93.
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Figure B.1: Quality of the paths found by the heuristic for CZE MAX.
The exact ranking e(k) and the weight increase δ(k) are shown for different
values of k, each time for 100 random queries.
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Figure B.2: Quality of the paths found by the heuristic for IRL MAX. The
exact ranking e(k) and the weight increase δ(k) are shown for different
values of k, each time for 100 random queries.
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Figure B.3: Quality of the paths found by the heuristic for
NAVTEQ LUXEMBOURG. The exact ranking e(k) and the weight in-
crease δ(k) are shown for different values of k, each time for 100 random
queries.
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Figure B.4: Quality of the paths found by the heuristic for PRT MAX.
The exact ranking e(k) and the weight increase δ(k) are shown for different
values of k, each time for 100 random queries.
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Figure B.5: Quality of the paths found by the heuristic for
NAVTEQ BELGIUM. The exact ranking e(k) and the weight increase δ(k)
are shown for different values of k, each time for 100 random queries.
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(a) CZE MAX, k = 100

(b) CZE MAX, k = 1 000

Figure B.6: Time performance for CZE MAX.
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(c) CZE MAX, k = 10 000

Figure B.6: Time performance for CZE MAX. For each k, the heuristic
was compared, for 100 random queries, to three existing exact algorithms:
Yen [70], Martins et al. [48] and Hershberger et al. [38]. Only the best
of the running times for the exact algorithms is shown. The horizontal
axis represents the 100 random queries. Results for the same query share
their horizontal position. The vertical axis shows the running times in
milliseconds and has a logarithmic scale. Results are sorted by the running
time for the fastest exact algorithm. (Continued)
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(a) IRL MAX, k = 100

(b) IRL MAX, k = 1000

Figure B.7: Time performance for IRL MAX.
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(c) IRL MAX, k = 10 000

Figure B.7: Time performance for IRL MAX. For each k, the heuristic
was compared, for 100 random queries, to three existing exact algorithms:
Yen [70], Martins et al. [48] and Hershberger et al. [38]. Only the best
of the running times for the exact algorithms is shown. The horizontal
axis represents the 100 random queries. Results for the same query share
their horizontal position. The vertical axis shows the running times in
milliseconds and has a logarithmic scale. Results are sorted by the running
time for the fastest exact algorithm. (Continued)
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(a) NAVTEQ LUXEMBOURG, k = 100

(b) NAVTEQ LUXEMBOURG, k = 1 000

Figure B.8: Time performance for NAVTEQ LUXEMBOURG.
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(c) NAVTEQ LUXEMBOURG, k = 10 000

Figure B.8: Time performance for NAVTEQ LUXEMBOURG. For each k,
the heuristic was compared, for 100 random queries, to three existing ex-
act algorithms: Yen [70], Martins et al. [48] and Hershberger et al. [38].
Only the best of the running times for the exact algorithms is shown. The
horizontal axis represents the 100 random queries. Results for the same
query share their horizontal position. The vertical axis shows the running
times in milliseconds and has a logarithmic scale. Results are sorted by the
running time for the fastest exact algorithm. (Continued)
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(a) PRT MAX, k = 100

(b) PRT MAX, k = 1000

Figure B.9: Time performance for PRT MAX.
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(c) PRT MAX, k = 10 000

Figure B.9: Time performance for PRT MAX. For each k, the heuristic
was compared, for 100 random queries, to three existing exact algorithms:
Yen [70], Martins et al. [48] and Hershberger et al. [38]. Only the best
of the running times for the exact algorithms is shown. The horizontal
axis represents the 100 random queries. Results for the same query share
their horizontal position. The vertical axis shows the running times in
milliseconds and has a logarithmic scale. Results are sorted by the running
time for the fastest exact algorithm. (Continued)
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(a) NAVTEQ BELGIUM, k = 100

(b) NAVTEQ BELGIUM, k = 1000

Figure B.10: Time performance for NAVTEQ BELGIUM.
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(c) NAVTEQ BELGIUM, k = 10 000

Figure B.10: Time performance for NAVTEQ BELGIUM. For each k, the
heuristic was compared, for 100 random queries, to three existing exact al-
gorithms: Yen [70], Martins et al. [48] and Hershberger et al. [38]. Only the
best of the running times for the exact algorithms is shown. The horizontal
axis represents the 100 random queries. Results for the same query share
their horizontal position. The vertical axis shows the running times in mil-
liseconds and has a logarithmic scale. Results are sorted by the running
time for the fastest exact algorithm. (Continued)
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(a) CZE MAX, k = 100

(b) CZE MAX, k = 1 000

Figure B.11: Detailed time performance for CZE MAX
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(c) CZE MAX, k = 10 000

Figure B.11: Detailed time performance for CZE MAX. Five algorithms
were tested for 100 random queries and different values of k: the three
existing exact algorithms of Yen [70], Martins et al. [48] and Hershberger
et al. [38], our exact algorithm and our heuristic. The horizontal axis rep-
resents the 100 random queries. Results for the same query share their
horizontal position. The vertical axis shows the running times in millisec-
onds and has a logarithmic scale. Results are sorted by the running time
for Yen’s algorithm. (Continued)
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(a) IRL MAX, k = 100

(b) IRL MAX, k = 1000

Figure B.12: Detailed time performance for IRL MAX
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(c) IRL MAX, k = 10 000

Figure B.12: Detailed time performance for IRL MAX. Five algorithms
were tested for 100 random queries and different values of k: the three
existing exact algorithms of Yen [70], Martins et al. [48] and Hershberger
et al. [38], our exact algorithm and our heuristic. The horizontal axis rep-
resents the 100 random queries. Results for the same query share their
horizontal position. The vertical axis shows the running times in millisec-
onds and has a logarithmic scale. Results are sorted by the running time
for Yen’s algorithm. (Continued)
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(a) NAVTEQ LUXEMBOURG, k = 100

(b) NAVTEQ LUXEMBOURG, k = 1 000

Figure B.13: Detailed time performance for NAVTEQ LUXEMBOURG
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(c) NAVTEQ LUXEMBOURG, k = 10 000

Figure B.13: Detailed time performance for NAVTEQ LUXEMBOURG.
Five algorithms were tested for 100 random queries and different values
of k: the three existing exact algorithms of Yen [70], Martins et al. [48]
and Hershberger et al. [38], our exact algorithm and our heuristic. The
horizontal axis represents the 100 random queries. Results for the same
query share their horizontal position. The vertical axis shows the running
times in milliseconds and has a logarithmic scale. Results are sorted by the
running time for Yen’s algorithm. (Continued)
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(a) PRT MAX, k = 100

(b) PRT MAX, k = 1000

Figure B.14: Detailed time performance for PRT MAX
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(c) PRT MAX, k = 10 000

Figure B.14: Detailed time performance for PRT MAX. Five algorithms
were tested for 100 random queries and different values of k: the three
existing exact algorithms of Yen [70], Martins et al. [48] and Hershberger
et al. [38], our exact algorithm and our heuristic. The horizontal axis rep-
resents the 100 random queries. Results for the same query share their
horizontal position. The vertical axis shows the running times in millisec-
onds and has a logarithmic scale. Results are sorted by the running time
for Yen’s algorithm. (Continued)
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(a) NAVTEQ BELGIUM, k = 100

(b) NAVTEQ BELGIUM, k = 1000

Figure B.15: Detailed time performance for NAVTEQ BELGIUM
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(c) NAVTEQ BELGIUM, k = 10 000

Figure B.15: Detailed time performance for NAVTEQ BELGIUM. Five al-
gorithms were tested for 100 random queries and different values of k: the
three existing exact algorithms of Yen [70], Martins et al. [48] and Hersh-
berger et al. [38], our exact algorithm and our heuristic. The horizontal
axis represents the 100 random queries. Results for the same query share
their horizontal position. The vertical axis shows the running times in mil-
liseconds and has a logarithmic scale. Results are sorted by the running
time for Yen’s algorithm. (Continued)
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C
Supplementary material: Dissimilar

paths

In this Appendix additional results are presented for Chapter 5. The tables
are similar to those in Chapter 5, but more road networks are included.

Conclusion 1: Many plateaus are generated. Most of them

have a zero weight.

Table C.1 shows additional results for Table 5.1 on Page 127.
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Conclusion 2: Paths with short plateaus often contain cycles.

Paths with longer plateaus are unlikely to contain cycles.

Table C.2 shows additional results for Table 5.2 on Page 129.

Conclusion 3: 1.25 is a good pruning factor.

Table C.3 shows additional results for Table 5.3 on Page 130.

Conclusion 4: A path with a plateau P l such that w(P l) < T

can still be T-locally optimal.

Table C.4 shows additional results for Table 5.4 on Page 132.

Experiment: choosing a stop condition

Table C.5 shows additional results for Table 5.7 on Page 158.
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Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 4 698 6 113 7 438 8 054 8 629 9 651 10 540 13 201
]0%,5%] 767 926 1 050 1 104 1 150 1 226 1 288 1 452
]5%,10%] 48 59 68 72 75 82 87 104
]10%,15%] 15 18 21 23 24 26 28 34
]15%,20%] 6 8 9 10 10 11 12 16
]20%,25%] 3 3 4 4 5 5 6 9
]25%,50%] 3 4 5 5 5 6 7 10
]50%,75%] 1 1 1 1 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

100% 1 1 1 1 1 1 1 1
Sum 5 542 7 132 8 597 9 273 9 900 11 009 11 971 14 827

(a) CZE MAX

Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 6 861 8 992 10 862 11 736 12 533 14 002 15 249 19 453
]0%,5%] 687 841 953 1 000 1 044 1 117 1 170 1 337
]5%,10%] 52 62 70 73 76 81 84 94
]10%,15%] 16 19 21 22 22 24 25 30
]15%,20%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]20%,25%] 6 7 8 9 9 9 10 12
]25%,50%] 3 4 4 4 4 4 5 6
]50%,75%] 4 4 4 4 5 5 5 6
]75%,85%] 1 1 1 1 1 1 1 1
]85%,95%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

100% 1 1 1 1 1 1 1 1
Sum 7 630 9 930 11 924 12 850 13 694 15 244 16 550 20 940

(b) LUX MAX

Table C.1: Many plateaus are generated. Most of them have a zero weight.
For different pruning factors (columns) and different plateau weights (rows)
the total number of plateaus is shown. A value very close to zero is repre-
sented by ǫ.
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Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 7 820 10 343 12 348 13 221 14 000 15 264 16 348 20 167
]0%,5%] 646 772 859 891 920 967 1 005 1 127
]5%,10%] 41 50 57 59 62 67 70 83
]10%,15%] 11 13 15 16 16 18 19 23
]15%,20%] 5 5 6 7 7 8 8 11
]20%,25%] 2 3 3 3 3 4 4 5
]25%,50%] 3 4 4 5 5 6 6 8
]50%,75%] ǫ 1 1 1 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

100% 1 1 1 1 1 1 1 1
Sum 8 529 11 191 13 294 14 203 15 015 16 334 17 461 21 428

(c) IRL MAX

Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 6 736 9 158 11 410 12 447 13 463 15 187 16 663 21 654
]0%,5%] 582 734 850 899 945 1 017 1 074 1 237
]5%,10%] 60 74 84 89 93 99 104 119
]10%,15%] 19 23 26 28 29 31 32 36
]15%,20%] 8 10 11 12 12 13 14 16
]20%,25%] 4 5 5 5 6 6 7 7
]25%,50%] 5 6 7 7 7 8 9 11
]50%,75%] 1 1 1 1 1 1 1 2
]75%,85%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]95%,100%[ 0 0 0 0 0 0 ǫ ǫ

100% 1 1 1 1 1 1 1 1
Sum 7 416 10 010 12 395 13 488 14 557 16 364 17 904 23 082

(d) NAVTEQ LUXEMBOURG

Table C.1: Many plateaus are generated. Most of them have a zero weight.
For different pruning factors (columns) and different plateau weights (rows)
the total number of plateaus is shown. A value very close to zero is repre-
sented by ǫ.(Continued)
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Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 32 354 49 570 55 467 57 199 58 706 61 726 65 284 76 725
]0%,5%] 4 638 6 248 6 660 6 767 6 862 7 048 7 280 8 009
]5%,10%] 60 73 84 88 91 96 101 118
]10%,15%] 14 17 20 21 23 24 26 31
]15%,20%] 6 7 8 8 9 10 11 13
]20%,25%] 3 3 4 4 4 4 5 7
]25%,50%] 4 4 5 5 5 6 6 9
]50%,75%] ǫ ǫ ǫ ǫ 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

100% 1 1 1 1 1 1 1 1
Sum 37 080 55 924 62 248 64 094 65 701 68 916 72 715 84 914

(e) PRT MAX

Table C.1: Many plateaus are generated. Most of them have a zero weight.
For different pruning factors (columns) and different plateau weights (rows)
the total number of plateaus is shown. A value very close to zero is repre-
sented by ǫ. (Continued)
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Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 90% 91% 92% 92% 92% 93% 93% 94%
]0%,5%] 30% 33% 35% 35% 36% 38% 39% 42%
]5%,10%] 8% 10% 12% 12% 13% 15% 16% 21%
]10%,15%] 6% 7% 9% 10% 11% 13% 15% 19%
]15%,20%] 3% 4% 6% 7% 8% 9% 11% 16%
]20%,25%] 1% 3% 3% 4% 6% 7% 10% 19%
]25%,50%] 1% 1% 3% 3% 3% 4% 6% 13%
]50%,75%] 0% 0% 2% 3% 3% 6% 7% 12%
]75%,85%] 0% 0% 0% 0% 0% 0% 0% 8%
]85%,95%] 0% 0% 0% 0% 0% 0% 0% 0%
]95%,100%[ 0% 0% 0% 0% 0% 0% 0% 0%
100% 0% 0% 0% 0% 0% 0% 0% 0%

(a) CZE MAX

Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 92% 93% 94% 94% 94% 94% 95% 95%
]0%,5%] 15% 17% 18% 19% 20% 21% 22% 26%
]5%,10%] 3% 4% 4% 5% 5% 6% 7% 9%
]10%,15%] 4% 4% 6% 6% 7% 8% 10% 15%
]15%,20%] 2% 3% 4% 5% 6% 7% 9% 15%
]20%,25%] 1% 2% 3% 3% 4% 5% 6% 15%
]25%,50%] 0% 1% 2% 2% 2% 4% 6% 12%
]50%,75%] 0% 0% 0% 0% 0% 0% 0% 3%
]75%,85%] 0% 0% 0% 0% 0% 0% 0% 0%
]85%,95%] 0% 0% 0% 0% 0% 0% 0% 0%
]95%,100%[ 0% 0% 0% 0% 0% 0% 0% 0%
100% 0% 0% 0% 0% 0% 0% 0% 0%

(b) LUX MAX

Table C.2: Paths with short plateaus often contain cycles. Paths with
longer plateaus are unlikely to contain cycles. For different pruning factors
(columns) and different plateau weights (rows) the percentage of plateaus
which produce cycles is shown. A value very close to zero is represented
by ǫ.
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Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 95% 95% 96% 96% 96% 96% 96% 97%
]0%,5%] 25% 28% 31% 32% 32% 34% 35% 39%
]5%,10%] 5% 7% 9% 10% 11% 12% 14% 18%
]10%,15%] 4% 5% 6% 7% 8% 9% 11% 18%
]15%,20%] 4% 4% 5% 7% 7% 10% 11% 19%
]20%,25%] 2% 3% 3% 4% 5% 7% 7% 13%
]25%,50%] ǫ 1% 2% 3% 3% 5% 6% 15%
]50%,75%] 0% 0% 0% 0% 0% 0% 0% 6%
]75%,85%] 0% 0% 0% 0% 0% 0% 3% 9%
]85%,95%] 0% 0% 0% 0% 0% 0% 0% 0%
]95%,100%[ 0% 0% 0% 0% 0% 0% 0% 50%
100% 0% 0% 0% 0% 0% 0% 0% 0%

(c) IRL MAX

Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 94% 95% 95% 96% 96% 96% 96% 97%
]0%,5%] 22% 24% 26% 26% 27% 28% 28% 31%
]5%,10%] 5% 5% 5% 5% 5% 5% 5% 6%
]10%,15%] 3% 4% 4% 4% 4% 4% 4% 5%
]15%,20%] 1% 1% 2% 2% 2% 3% 3% 4%
]20%,25%] 2% 3% 3% 3% 4% 4% 6% 6%
]25%,50%] ǫ 1% 2% 3% 3% 3% 4% 7%
]50%,75%] 0% 0% 0% 0% 0% 1% 4% 13%
]75%,85%] 0% 0% 0% 0% 0% 0% 0% 0%
]85%,95%] 0% 0% 0% 0% 0% 0% 0% 0%
]95%,100%[ / / / / / / 0% 0%
100% 0% 0% 0% 0% 0% 0% 0% 0%

(d) NAVTEQ LUXEMBOURG

Table C.2: Paths with short plateaus often contain cycles. Paths with
longer plateaus are unlikely to contain cycles. For different pruning factors
(columns) and different plateau weights (rows) the percentage of plateaus
which produce cycles is shown. A value very close to zero is represented
by ǫ. (Continued)
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Plateau weight Pruning factor
% of w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2
0% 90% 92% 93% 93% 93% 93% 93% 94%
]0%,5%] 22% 28% 30% 30% 30% 31% 32% 36%
]5%,10%] 6% 6% 7% 7% 8% 8% 9% 14%
]10%,15%] 5% 5% 6% 6% 6% 6% 7% 12%
]15%,20%] 4% 5% 5% 5% 5% 7% 7% 12%
]20%,25%] 1% 2% 2% 2% 3% 4% 4% 6%
]25%,50%] 1% 1% 2% 3% 3% 4% 5% 9%
]50%,75%] 0% 0% 2% 2% 2% 2% 2% 7%
]75%,85%] 0% 0% 0% 0% 0% 0% 0% 0%
]85%,95%] 0% 0% 0% 0% 0% 0% 0% 0%
]95%,100%[ 0% 0% 0% 0% 0% 0% 0% 0%
100% 0% 0% 0% 0% 0% 0% 0% 0%

(e) PRT MAX

Table C.2: Paths with short plateaus often contain cycles. Paths with
longer plateaus are unlikely to contain cycles. For different pruning factors
(columns) and different plateau weights (rows) the percentage of plateaus
which produce cycles is shown. A value very close to zero is represented
by ǫ. (Continued)
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α
Path weight Pruning factor
×w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2

10%

[1.0,1.1[ 18 18 18 18 18 18 18 18
[1.1,1.25[ 24 25 25 25 25 25 25 25
[1.25,1.5[ 26 31 33 33 33 33 33 33
[1.5,2[ 18 29 38 42 46 50 50 50
≥ 2 0 2 8 11 15 25 35 68

25%

[1.0,1.1[ 5 5 5 5 5 5 5 5
[1.1,1.25[ 4 4 4 4 4 4 4 4
[1.25,1.5[ 5 6 6 6 6 6 6 6
[1.5,2[ 5 8 10 11 11 12 12 12
≥ 2 0 1 3 4 5 9 12 26

50%

[1.0,1.1[ 3 3 3 3 3 3 3 3
[1.1,1.25[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

[1.25,1.5[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

[1.5,2[ 1 1 1 1 1 1 1 1
≥ 2 0 ǫ ǫ 1 1 1 2 5

total # of plateaus 5 542 7 132 8 597 9 273 9 901 11 009 11 971 14 827

(a) CZE MAX

α
Path weight Pruning factor
×w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2

10%

[1.0,1.1[ 29 30 30 30 30 30 30 30
[1.1,1.25[ 31 33 33 33 33 33 33 33
[1.25,1.5[ 28 35 38 39 39 39 39 39
[1.5,2[ 17 28 37 42 46 51 52 52
≥ 2 0 2 7 11 15 25 36 74

25%

[1.0,1.1[ 8 9 9 9 9 9 9 9
[1.1,1.25[ 5 5 5 5 5 5 5 5
[1.25,1.5[ 4 5 5 5 5 5 5 5
[1.5,2[ 3 4 5 6 6 7 7 7
≥ 2 0 ǫ 1 2 2 4 6 13

50%

[1.0,1.1[ 4 4 4 4 4 4 4 4
[1.1,1.25[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

[1.25,1.5[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

[1.5,2[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

≥ 2 0 ǫ ǫ ǫ ǫ ǫ ǫ 1
total # of plateaus 7 630 9 930 11 924 12 850 13 695 15 244 16 551 20 940

(b) LUX MAX

Table C.3: 1.25 is a good pruning factor. For different pruning factors
(columns) and different weights of the paths corresponding to the plateaus
and different values of α (rows), the number of “good” paths is shown, i.e.
paths which are cycle-free and locally optimal. The last row shows the total
number of plateaus for each pruning factor.
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α
Path weight Pruning factor
×w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2

10%

[1.0,1.1[ 20 20 20 20 20 20 20 20
[1.1,1.25[ 21 22 22 22 22 22 22 22
[1.25,1.5[ 19 23 26 26 26 26 26 26
[1.5,2[ 15 24 32 35 39 42 43 43
≥ 2 0 2 6 9 12 19 28 63

25%

[1.0,1.1[ 5 5 5 5 5 5 5 5
[1.1,1.25[ 4 4 4 4 4 4 4 4
[1.25,1.5[ 4 5 5 5 5 5 5 5
[1.5,2[ 4 6 8 8 9 9 9 9
≥ 2 0 1 2 3 4 6 9 21

50%

[1.0,1.1[ 2 2 2 2 2 2 2 2
[1.1,1.25[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

[1.25,1.5[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

[1.5,2[ 1 1 1 1 1 1 1 1
≥ 2 ǫ ǫ ǫ 1 1 1 2 5

total # of plateaus 8 529 11 191 13 294 14 203 15 015 16 334 17 461 21 428

(c) IRL MAX

α
Path weight Pruning factor
×w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2

10%

[1.0,1.1[ 16 16 16 16 16 16 16 16
[1.1,1.25[ 38 41 41 41 41 41 41 41
[1.25,1.5[ 45 55 59 59 59 59 59 59
[1.5,2[ 30 47 64 71 77 84 85 85
≥ 2 0 4 13 18 25 42 60 118

25%

[1.0,1.1[ 4 4 4 4 4 4 4 4
[1.1,1.25[ 6 6 6 6 6 6 6 6
[1.25,1.5[ 9 10 10 10 10 10 10 10
[1.5,2[ 8 11 14 15 16 17 17 17
≥ 2 0 1 4 5 7 12 16 35

50%

[1.0,1.1[ 2 2 2 2 2 2 2 2
[1.1,1.25[ 1 1 1 1 1 1 1 1
[1.25,1.5[ 1 1 1 1 1 1 1 1
[1.5,2[ 1 1 2 2 2 2 2 2
≥ 2 0 ǫ 1 1 1 2 2 6

total # of plateaus 7 416 10 010 12 395 13 488 14 557 16 364 17 904 23 082

(d) NAVTEQ LUXEMBOURG

Table C.3: 1.25 is a good pruning factor. For different pruning factors
(columns) and different weights of the paths corresponding to the plateaus
and different values of α (rows), the number of “good” paths is shown, i.e.
paths which are cycle-free and locally optimal. The last row shows the total
number of plateaus for each pruning factor. (Continued)
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α
Path weight Pruning factor
×w(SP ) 1 1.1 1.2 1.25 1.3 1.4 1.5 2

10%

[1.0,1.1[ 58 74 74 74 74 74 74 74
[1.1,1.25[ 24 25 25 25 25 25 25 25
[1.25,1.5[ 22 30 33 34 34 34 34 34
[1.5,2[ 13 22 31 37 41 46 47 47
≥ 2 ǫ 2 6 8 11 20 31 73

25%

[1.0,1.1[ 46 68 68 68 68 68 68 68
[1.1,1.25[ 3 6 6 6 6 6 6 6
[1.25,1.5[ 4 4 5 5 5 5 5 5
[1.5,2[ 4 5 7 7 8 8 8 8
≥ 2 ǫ 1 2 3 4 6 8 21

50%

[1.0,1.1[ 34 56 56 56 56 56 56 56
[1.1,1.25[ 1 5 5 5 5 5 5 5
[1.25,1.5[ ǫ ǫ ǫ ǫ ǫ ǫ ǫ ǫ

[1.5,2[ 1 1 1 1 1 1 1 1
≥ 2 0 ǫ ǫ 1 1 1 2 5

total # of plateaus 37 080 55 924 62 248 64 094 65 701 68 916 72 715 84 914

(e) PRT MAX

Table C.3: 1.25 is a good pruning factor. For different pruning factors
(columns) and different weights of the paths corresponding to the plateaus
and different values of α (rows), the number of “good” paths is shown, i.e.
paths which are cycle-free and locally optimal. The last row shows the total
number of plateaus for each pruning factor. (Continued)
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Plateau weight α total #
% of w(SP ) 0.1 0.25 0.5 of plateaus
0 13 2 1 8 054
]0 5%] 42 5 1 1 104
]5%,10%] 34 5 ǫ 72
]10%,15%] 20 5 ǫ 23
]15%,20%] 9 3 ǫ 10
]20%,25%] 4 3 ǫ 4
]25%,50%] 5 5 1 5
]50%,75%] 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ

100% 1 1 1 1
Sum 130 29 5 9 273

(a) CZE MAX

Plateau weight α total #
% of w(SP ) 0.1 0.25 0.5 of plateaus
0 17 2 1 11 736
]0,5%] 56 5 1 1 000
]5%,10%] 43 4 ǫ 73
]10%,15%] 20 3 ǫ 22
]15%,20%] 8 3 ǫ 9
]20%,25%] 4 3 ǫ 4
]25%,50%] 4 4 1 4
]50%,75%] 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ

100% 1 1 1 1
Sum 155 25 5 12 850

(b) LUX MAX

Table C.4: A path with a plateau Pl such that w(Pl) < T can still be T-
locally optimal. For different values of α (columns) and for different plateau
weights (rows) the number of cycle-free locally optimal paths is shown. For
example, for PRT MAX, 4 plateaus with a weight between 10% and 15% of
w(SP ) result in a cycle-free path which is locally optimal for α = 0.25. The
total number of plateaus in each weight class is shown in the last column.
The pruning factor was set to 1.25.
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Plateau weight α total #
% of w(SP ) 0.1 0.25 0.5 of plateaus
0 16 3 1 13 221
]0,5%] 36 3 1 891
]5%,10%] 30 3 ǫ 59
]10%,15%] 14 3 ǫ 16
]15%,20%] 6 3 ǫ 7
]20%,25%] 3 2 ǫ 3
]25%,50%] 5 5 1 5
]50%,75%] 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ

100% 1 1 1 1
Sum 112 24 5 14 203

(c) IRL MAX

Plateau weight α total #
% of w(SP ) 0.1 0.25 0.5 of plateaus
0 23 3 ǫ 12 447
]0,5%] 77 7 1 899
]5%,10%] 54 7 ǫ 89
]10%,15%] 26 7 1 28
]15%,20%] 11 5 ǫ 12
]20%,25%] 5 3 ǫ 5
]25%,50%] 7 7 1 7
]50%,75%] 1 1 1 1
]75%,85%] ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ

]95%,100%[ 0 0 0 0
100% 1 1 1 1
Sum 206 40 6 13 488

(d) NAVTEQ LUXEMBOURG

Table C.4: A path with a plateau Pl such that w(Pl) < T can still be T-
locally optimal. For different values of α (columns) and for different plateau
weights (rows) the number of cycle-free locally optimal paths is shown. For
example, for PRT MAX, 4 plateaus with a weight between 10% and 15% of
w(SP ) result in a cycle-free path which is locally optimal for α = 0.25. The
total number of plateaus in each weight class is shown in the last column.
The pruning factor was set to 1.25. (Continued)
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Plateau weight α total #
% of w(SP ) 0.1 0.25 0.5 of plateaus
0 30 28 25 57 199
]0,5%] 72 41 35 6 767
]5%,10%] 38 4 1 88
]10%,15%] 20 4 ǫ 21
]15%,20%] 8 3 ǫ 8
]20%,25%] 4 3 ǫ 4
]25%,50%] 5 5 1 5
]50%,75%] ǫ ǫ ǫ ǫ

]75%,85%] ǫ ǫ ǫ ǫ

]85%,95%] ǫ ǫ ǫ ǫ

]95%,100%[ ǫ ǫ ǫ ǫ

100% 1 1 1 1
Sum 178 88 64 64 094

(e) PRT MAX

Table C.4: A path with a plateau Pl such that w(Pl) < T can still be T-
locally optimal. For different values of α (columns) and for different plateau
weights (rows) the number of cycle-free locally optimal paths is shown. For
example, for PRT MAX, 4 plateaus with a weight between 10% and 15% of
w(SP ) result in a cycle-free path which is locally optimal for α = 0.25. The
total number of plateaus in each weight class is shown in the last column.
The pruning factor was set to 1.25. (Continued)
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max time (ms) Q(S) #improved avg. improvement #no solution
0 44 0.753 3

20 81 0.770 48 0.041 0
40 117 0.775 12 0.040 0
60 153 0.776 4 0.035 0
80 197 0.778 3 0.068 0

100 217 0.780 5 0.035 0
120 249 0.781 4 0.028 0
140 284 0.781 2 0.010 0
160 313 0.781 0 / 0
180 347 0.781 0 / 0
200 478 0.781 0 / 0
500 1 183 0.782 3 0.026 0
+∞ 2 534 0.782 2 0.008 0

(a) CZE MAX, k = 3

max time (ms) Q(S) #improved avg. improvement #no solution
0 70 0.655 15

20 118 0.690 64 0.056 1
40 181 0.694 22 0.021 1
60 219 0.696 9 0.025 1
80 285 0.698 8 0.021 1

100 337 0.698 4 0.024 0
120 359 0.698 3 0.019 0
140 424 0.699 6 0.019 0
160 440 0.699 0 / 0
180 479 0.700 1 0.016 0
200 464 0.700 0 / 0
500 960 0.701 7 0.023 0
+∞ 2 032 0.703 4 0.039 0

(b) CZE MAX, k = 5

Table C.5: Results for different stop conditions with α = 25%. The average
running time and average quality Q(S) of the result is shown. The number
of queries (out of 100) for which an improvement was found is shown, and
the average size of this improvement if there is one. The last column shows
the number of queries (out of 100) for which no solution was found.
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max time (ms) Q(S) #improved avg. improvement #no solution
0 70 0.762 5

20 156 0.790 49 0.067 0
40 240 0.792 7 0.033 0
60 289 0.793 6 0.020 0
80 358 0.795 5 0.035 0

100 440 0.795 0 / 0
120 613 0.796 2 0.060 0
140 646 0.797 1 0.052 0
160 724 0.797 2 0.011 0
180 808 0.797 0 / 0
200 786 0.797 0 / 0
500 2 017 0.797 2 0.011 0
+∞ 4 292 0.797 0 / 0

(c) IRL MAX, k = 3

max time (ms) Q(S) #improved avg. improvement #no solution
0 79 0.650 32

20 168 0.694 57 0.068 0
40 254 0.701 26 0.025 0
60 344 0.706 13 0.036 0
80 448 0.707 7 0.013 0

100 486 0.707 3 0.005 0
120 588 0.708 5 0.022 0
140 630 0.708 1 0.036 0
160 766 0.708 1 0.006 0
180 764 0.709 2 0.014 0
200 828 0.709 0 / 0
500 2 034 0.710 6 0.018 0
+∞ 3 974 0.710 1 0.001 0

(d) IRL MAX, k = 5

Table C.5: Results for different stop conditions with α = 25%. The average
running time and average quality Q(S) of the result is shown. The number
of queries (out of 100) for which an improvement was found is shown,
and the average size of this improvement if there is one. The last column
shows the number of queries (out of 100) for which no solution was found.
(Continued)
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max time (ms) Q(S) #improved avg. improvement #no solution
0 164 0.758 3
5 221 0.769 36 0.047 0

10 273 0.778 19 0.049 0
15 302 0.781 8 0.038 0
20 348 0.782 5 0.021 0
40 536 0.788 16 0.033 0
60 645 0.788 3 0.028 0
80 754 0.789 3 0.019 0

100 833 0.790 2 0.054 0
120 984 0.790 1 0.010 0
140 1 089 0.790 1 ǫ 0
160 1 202 0.790 0 / 0
180 1 144 0.790 0 / 0
200 1 312 0.790 1 0.007 0
500 2 700 0.792 3 0.051 0
+∞ 5 738 0.792 2 0.009 0

(e) NAVTEQ LUXEMBOURG, k = 3

max time (ms) Q(S) #improved avg. improvement #no solution
0 115 0.662 17
5 144 0.674 42 0.041 2

10 190 0.685 34 0.040 1
15 210 0.690 18 0.025 1
20 287 0.694 15 0.028 1
40 356 0.703 35 0.025 1
60 454 0.706 12 0.024 1
80 517 0.708 11 0.017 1

100 733 0.710 11 0.019 1
120 751 0.711 5 0.021 1
140 919 0.712 4 0.017 1
160 891 0.712 3 0.024 1
180 1 007 0.712 0 / 1
200 1 040 0.713 4 0.020 1
500 2 173 0.715 11 0.019 1
+∞ 5 574 0.716 5 0.024 1

(f) NAVTEQ LUXEMBOURG, k = 5

Table C.5: Results for different stop conditions with α = 25%. The average
running time and average quality Q(S) of the result is shown. The number
of queries (out of 100) for which an improvement was found is shown,
and the average size of this improvement if there is one. The last column
shows the number of queries (out of 100) for which no solution was found.
(ContinuedFloat)
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max time (ms) Q(S) #improved avg. improvement #no solution
0 534 0.788 2

20 1 286 0.811 39 0.062 0
40 1 932 0.816 8 0.063 0
60 2 512 0.816 2 0.017 0
80 3 108 0.817 6 0.020 0

100 3 655 0.819 2 0.066 0
120 4 150 0.819 2 0.033 0
140 4 632 0.821 2 0.076 0
160 5 216 0.821 0 / 0
180 5 716 0.821 0 / 0
200 5 978 0.821 0 / 0
500 13 196 0.821 1 0.046 0
+∞ 212 424 0.823 3 0.062 0

(g) PRT MAX, k = 3

max time (ms) Q(S) #improved avg. improvement #no solution
0 514 0.689 27

20 1 143 0.723 52 0.066 4
40 1 717 0.727 27 0.024 2
60 2 257 0.730 13 0.025 1
80 2 828 0.732 10 0.024 1

100 3 364 0.733 4 0.008 1
120 3 830 0.733 3 0.013 1
140 4 362 0.733 1 0.001 1
160 4 732 0.734 3 0.020 1
180 5 543 0.734 2 0.027 1
200 5 956 0.735 2 0.030 1
500 13 422 0.737 9 0.018 1
+∞ 224 043 0.739 8 0.026 1

(h) PRT MAX, k = 5

Table C.5: Results for different stop conditions with α = 25%. The average
running time and average quality Q(S) of the result is shown. The number
of queries (out of 100) for which an improvement was found is shown,
and the average size of this improvement if there is one. The last column
shows the number of queries (out of 100) for which no solution was found.
(Continued)
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max time (ms) Q(S) #improved avg. improvement #no solution
0 2 705 0.748 0
5 3 698 0.758 23 0.044 0

10 4 612 0.760 12 0.017 0
15 5 497 0.763 17 0.020 0
20 5 958 0.764 4 0.020 0
40 9 123 0.767 14 0.019 0
60 11 209 0.769 7 0.028 0
80 13 215 0.770 6 0.023 0

100 14 680 0.770 0 / 0
120 16 540 0.771 2 0.041 0
140 17 588 0.771 2 0.011 0
160 18 411 0.771 0 / 0
180 19 992 0.771 0 / 0
200 20 799 0.771 1 0.011 0
500 37 353 0.774 11 0.024 0
+∞ 702 773 0.777 11 0.026 0

(i) NAVTEQ BELGIUM, k = 3

max time (ms) Q(S) #improved avg. improvement #no solution
0 1 647 0.658 4
5 2 329 0.671 39 0.038 1

10 3 008 0.678 27 0.024 0
15 3 433 0.686 31 0.027 0
20 4 015 0.688 14 0.017 0
40 6 292 0.695 23 0.029 0
60 8 283 0.699 17 0.027 0
80 10 086 0.701 12 0.014 0

100 11 902 0.702 6 0.010 0
120 12 972 0.703 4 0.028 0
140 13 774 0.703 3 0.005 0
160 15 238 0.703 2 0.024 0
180 16 275 0.703 1 0.001 0
200 17 686 0.704 5 0.012 0
500 32 761 0.707 23 0.015 0
+∞ 625 568 0.712 29 0.016 0

(j) NAVTEQ BELGIUM, k = 5

Table C.5: Results for different stop conditions with α = 25%. The average
running time and average quality Q(S) of the result is shown. The number
of queries (out of 100) for which an improvement was found is shown,
and the average size of this improvement if there is one. The last column
shows the number of queries (out of 100) for which no solution was found.
(Continued)
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Routeringsalgoritmen bestaan al zeer lang. Rond 1960 werden al enkele al-
goritmen voorgesteld. Vanaf de jaren ’90 was er een hernieuwde interesse in
routeringsalgoritmen door de opkomst van navigatiesystemen, interactieve
routeplanners en GIS-systemen. Er werden veel efficiënte algoritmen ont-
wikkeld die de kortste route berekenen tussen twee punten. Vaak vereist een
realistische routeplanner echter meer dan enkel het berekenen van een kort-
ste route. Er kan bvb. rekening moeten gehouden worden met wachttijden
aan kruispunten, of de gebruiker wenst soms meer dan één route als resul-
taat te krijgen. Daarom focussen we ons in dit werk op het ontwikkelen
van algoritmen voor een aantal alternatieve routeringsproblemen. Uiter-
aard is de theoretische complexiteit van de algoritmen belangrijk, maar we
besteden ook de nodige aandacht aan de performantie van de algoritmen
in de praktijk. De algoritmen werden uitgebreid met elkaar en met be-
staande methoden vergeleken aan de hand van experimenten op bestaande
wegennetwerken. De resultaten van deze experimenten worden uitgebreid
besproken in dit werk.

In het eerste hoofdstuk wordt een inleiding gegeven. In het tweede

hoofdstuk brengen we de nodige grafentheoretische concepten aan. Een
wegennetwerk wordt voorgesteld als een graaf. Kruispunten en uiteinden
van doodlopende straten worden voorgesteld als toppen. Straten worden
voorgesteld als bogen, die deze toppen met elkaar verbinden. Deze bogen
zijn gericht, waardoor eenrichtingsstraten kunnen voorgesteld worden. Een
route zonder lussen van top s naar top t wordt in de grafentheorie een pad
genoemd. Een zeer bekend algoritme voor het berekenen van het kortste
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pad van s naar t is het algoritme van Dijkstra. Dit algoritme berekent een
kortstepadenboom waarin het kortste pad van s naar t en ook naar een aantal
andere toppen kan opgezocht worden. Het algoritme van Dijkstra kan ook
achterwaarts uitgevoerd worden. In dit geval wordt een achterwaartste
kortstepadenboom berekend. Hierin kan het kortste pad van s naar t en
ook van een aantal andere toppen naar t opgezocht worden. Wanneer het
algoritme van Dijkstra voorwaarts uitgevoerd werd, spreken we van een
voorwaartste kortstepadenboom.

In het derde hoofdstuk beschrijven we het probleem van routering waar-
bij afslagen aan kruispunten verboden kunnen zijn of een bepaalde kost
kunnen hebben, bvb. de wachttijd bij het voorrang verlenen of bij verkeers-
lichten, of de vertraging die ontstaat door het afremmen om de afslag te
kunnen nemen. Standaard kortstepad-algoritmen zoals het algoritme van
Dijkstra houden hier geen rekening mee en gaan ervan uit dat de kost van
een route gelijk is aan de som van de kosten van de bogen op die route.
Nochtans is het zo dat bvb. in Kopenhagen 17% tot 35% van de reistijd be-
steed wordt aan het wachten op kruispunten. In steden met drukker verkeer
is dit wellicht zelfs nog meer. We bespreken drie methoden die hiermee re-
kening houden. Twee methoden maken gebruik van een graaftransformatie,
namelijk de methode gebaseerd op de lijngraaf en de methode gebaseerd
op het splitsen van de toppen. Op deze getransformeerde graaf kan dan een
standaard kortstepad-algoritme uitgevoerd worden. Een derde methode
kan rechtstreeks op de graaf zelf toegepast worden. Deze methode noemen
we de directe methode. We bespreken een aantal implementatiedetails en
geven de resultaten van gedetailleerde experimenten die als doel hebben na
te gaan welke methode op welk type wegennetwerk het best presteert. We
concluderen met een richtlijn voor het kiezen van de juiste methode voor
een bepaald wegennetwerk.

In het vierde hoofdstuk presenteren we een heuristiek voor het bepalen
van de k kortste paden tussen twee toppen. Bij dit probleem is het de be-
doeling niet enkel het kortste pad, maar ook het tweede kortste, het derde
kortste, ..., tot en met het kde kortste pad te bepalen. Aangezien dit voor
de hand ligt in wegennetwerken, beperken wij ons tot de variant van dit
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probleem waarbij de paden geen lussen mogen bevatten. Dit worden de
k kortste simpele paden genoemd. We bespreken een aantal exacte algorit-
men voor dit probleem, maar deze hebben allemaal een hoge theoretische
tijdscomplexiteit, waardoor ze vrij traag zijn. Wij presenteren een heuris-
tiek voor het k kortste paden probleem, die niet noodzakelijk de exacte
oplossing vindt, maar wel veel sneller is. Aan de hand van experimenten
tonen we aan dat de heuristiek honderden tot zelfs duizenden keren sneller
is dan de exacte algoritmen, en daarbij toch in de meeste gevallen een op-
lossing vindt die dicht bij de exacte oplossing ligt. Ook beschrijven we hoe
de heuristiek kan omgezet worden in een relatief snel exact algoritme.

Een ander probleem, dat veel praktische toepassingen kent, is het vin-
den van alternatieve routes. Dit probleem wordt behandeld in het vijfde

hoofdstuk. Een gebruiker van een routeplanner wenst vaak niet enkel de
kortste route, maar ook enkele alternatieven zodat hij een keuze kan maken
rekening houdend met zijn eigen voorkeuren. We beschrijven vier criteria
die bepalen of een set alternatieven goed is. Ten eerste, moeten de routes
voldoende verschillend zijn. We geven verschillende definities voor het “ver-
schillend zijn” van routes, en geven uiteindelijk onze eigen definitie. Ten
tweede, mogen de routes niet te lang zijn. Veel bestaande methoden lossen
dit op door een strikte bovengrens te hanteren en alle routes die langer zijn
dan deze bovengrens te elimineren. Wij willen een dergelijke strikte bo-
vengrens echter vermijden, enerzijds aangezien er zich in sommige gevallen
ook boven die grens nog goede alternatieven kunnen bevinden, en ander-
zijds omdat binnen de routes die wel behouden worden, de kortere routes
vaak nog steeds de voorkeur genieten boven de langere. Daarom kiezen we
voor een objectieffunctie Q die zowel rekening houdt met de lengte van de
routes in een oplossing als met hoe verschillend ze zijn. Ten derde, mogen
er uiteraard geen cykels voorkomen in de oplossing. Tenslotte, eisen wij
ook dat de routes lokaal optimaal zijn. Intüıtief betekent dit dat een route
geen korte onnodige omwegen mag bevatten die niet logisch zijn voor de
bestuurder. Formeel is een pad T -lokaal optimaal, wanneer elk subpad van
dit pad dat korter is dan T zelf ook een kortste pad is. Weinig bestaande
methoden eisen dat de routes lokaal optimaal zijn. Nochtans is dit wel zeer
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belangrijk aangezien onlogische omwegen absoluut niet wenselijk zijn. De
bestaande methoden die hier wel rekening mee houden, gebruiken dan weer
de harde bovengrens voor de lengte van de routes.

We geven een literatuuroverzicht en zetten kort onze oorspronkelijke me-
thode uiteen, die later verbeterd werd. Daarna beschrijven we onze ver-
beterde heuristiek voor het probleem van alternatieve routes. Deze maakt
gebruik van plateaus. Voor een gegeven s − t query wordt zowel de voor-
waartste kortstepadenboom vanuit s berekend als de achterwaartse kort-
stepadenboom vanuit t. Een plateau is dan een maximaal pad dat in beide
kortstepadenbomen voorkomt. Met een v−w plateau kan gemakkelijk een
s−t pad gevormd worden door het kortste pad van s naar v te concateneren
met het v − w plateau, en dit vervolgens te concateneren met het kortste
pad van w naar t. Beide kortste paden kunnen gemakkelijk opgezocht wor-
den in de kortstepadenbomen. Men kan bewijzen dat een dergelijk pad dat
een plateau bevat met een lengte T minstens T -lokaal optimaal is. Dit is
een zeer interessante eigenschap aangezien voor dergelijke paden niet meer
moet getest worden of ze lokaal optimaal zijn, iets wat zeer tijdrovend is.
We beschrijven hoe de plateaus kunnen gevonden worden uit de kortstepa-
denbomen en vervolgens gaan we in detail in op een aantal eigenschappen
van plateaus, die we staven met resultaten van experimenten. We stellen
vast dat voor een gegeven s − t query meestal zeer veel plateaus bestaan,
maar dat het overgrote deel daarvan slechts uit één top bestaat. We stellen
ook vast dat de kans op cykels kleiner is bij langere plateaus, en dat de
kortstepadenbomen best gesnoeid worden op 1.25 × het gewicht van het
kortste pad. Ook stellen we vast dat heel wat paden die een plateau be-
vatten met een gewicht ≤ T toch nog T -lokaal optimaal zijn. Dit is een
belangrijke vaststelling aangezien we deze paden kunnen gebruiken om de
oplossing te verbeteren. We bespreken ook een aantal methoden om te tes-
ten of een pad lokaal optimaal is, en bepalen aan de hand van experimenten
welke methode het meest geschikt is. We stellen vast dat het voor grote
grafen veel te tijdrovend is om alle plateaus uit te proberen. Daarom voe-
ren we een bovengrens max in voor het aantal paden waarvoor mag getest
worden of ze lokaal optimaal zijn, en beschrijven we een strategie om te

230



NEDERLANDSTALIGE SAMENVATTING

bepalen welke plateaus best getest worden en in welke volgorde, wat ook
weer gestaafd wordt met resultaten van experimenten. Tenslotte geven we
een overzicht van het volledige algoritme en geven we experimentele resul-
taten die aantonen hoe snel de heuristiek functioneert voor verschillende
stopcriteria en wat de kwaliteit is van de oplossing die gevonden wordt. We
vergelijken deze resultaten ook met resultaten in de literatuur.

Tot slot concluderen we in het zesde hoofdstuk dat snelle heuristieken
kunnen gevonden worden die een goede oplossing vinden voor routerings-
problemen, maar dat exacte algoritmen toch ambitieus blijven. Dit is een
van de uitdagingen voor de toekomst. Wellicht zou het parallelliseren van
de algoritmen hierbij van pas kunnen komen. Ook zou het interessant zijn
nog andere varianten op routeringsproblemen te bestuderen en combine-
ren. Verder zou het ook nuttig zijn de parameters die in dit werk gebruikt
worden verder te finetunen aan de hand van een gebruikersstudie.
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