
ir. Ward Blondé

Metarel, an ontology facilitating

advanced querying of biomedical knowledge

Thesis submitted in fulfillment of the requirements for the degree of

Doctor of Applied Biological Sciences

Academic year 2011-2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55902851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supervisors: Prof. Dr. Bernard De Baets
Department of Mathematical Modelling,
Statistics and Bioinformatics
Ghent University, Belgium

Prof. Dr. Martin Kuiper
Department of Biology
Norwegian University of Science and
Technology, Trondheim, Norway

Examination committee: Prof. Dr. Ir. Koen Dewettinck (Chairman)
Prof. Dr. Godelieve Gheysen (Secretary)
Prof. Dr. Med. Stefan Schulz
Prof. Dr. Guy De Tré
Prof. Dr. Ir. Tim De Meyer
Prof. Dr. Martine De Cock
Prof. Dr. Peter Dawyndt
Dr. Erick Antezana

Dean: Prof. Dr. Ir. Guido Van Huylenbroeck

Rector: Prof. Dr. Paul Van Cauwenberge

ir. Ward Blondé

Metarel, an ontology facilitating

advanced querying of biomedical knowledge

Thesis submitted in fulfillment of the requirements for the degree of

Doctor of Applied Biological Sciences

Academic year 2011-2012

Dutch translation of the title:

Metarel, een ontologie voor doorgedreven bevraging
van biomedische kennis

Please refer to this work as follows:
Ward Blondé (2012). Metarel, an ontology facilitating advanced querying
of biomedical knowledge, PhD Thesis, Department of Mathematical Mod-
elling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium.

Cover:
Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/

ISBN 978-90-5989-532-4

The author and the supervisor give the authorization to consult and to copy
parts of this work for personal use only. Every other use is subject to the
copyright laws. Permission to reproduce any material contained in this
work should be obtained from the author.

Dankwoord

Het schrijven van deze thesis en de publicaties die eraan voorafgaan is een
werk van lange adem geweest, waarbij de steun van vele anderen onont-
beerlijk is gebleken. In een tijdsspanne van vijf jaar heb ik daarbij aan
vier verschillende universitaire instituten kunnen verblijven. Dat ik al die
tijd aan mijn doctoraat heb kunnen blijven werken, heb ik te danken aan
de ruimdenkendheid van mijn promotoren, Bernard De Baets en Martin
Kuiper, van mijn mentor in Graz, Stefan Schulz en niet in het minst ook
van mijn vader, Johan Blondé, die intussen is overleden, maar die mij op
weg geholpen heeft als werknemer van Blondé Engineering. Ik ben hen
uiteraard ook dank verschuldigd voor alle hulp en goede raad die ze mij
voortdurend hebben gegeven. De leden van de jury, die deze thesis grondig
hebben doorgelezen en beoordeeld, wil ik bedanken voor de vele nuttige
aanmerkingen die tot de verbetering van deze thesis hebben geleid.

De vele collega’s die ik heb gehad tijdens deze omzwervingen wil ik
allemaal bedanken. Daarbij denk ik in het bijzonder aan Erick Antezana
en Vladimir Mironov, die ik in de VIB in Zwijnaarde heb leren kennen en
waarmee ik sindsdien altijd goed heb kunnen samenwerken. Ook Mikel
Egaña was erbij toen het onderwerp van mijn doctoraat eind 2006 werd uit-
getekend. Kenny Billiau wil ik bedanken voor zijn bereidheid om mij weg-
wijs te maken in Unix en Linux. De vele buitenlandse doctoraatsstudenten
aan de VIB mag ik hier niet vergeten, en de ‘Ghent friends’ in het bijzonder,
want zij hebben het verlangen bij mij ontwaakt om zelf ook de wereld in
te trekken en niet in het kleine België te blijven hangen. Martin en Steven
Vercruysse hebben mij heel concreet het goede voorbeeld gegeven door
naar Trondheim te verhuizen. Later werd ik er heel gastvrij ontvangen door
Martin en zijn gezin. Tijdens mijn verblijf daar heb ik Aravind Venkatesan
leren kennen, wiens huwelijk in Indië later een sprookjesachtige ervaring
werd voor mij. Ook de vele onderzoekers die ik leerde kennen op weten-
schappelijke conferenties waren een inspiratiebron voor mij. Sine Zambach

dank ik voor haar gastvrijheid en samenwerking in Kopenhagen.
De collega’s aan de Coupure in Gent wil ik bedanken voor de vele

gezellige activiteiten en de hechte groepsgeest, waar ik een tijdje deel van
mocht uitmaken. Ze zijn met teveel om ze allemaal op te noemen. Karel,
Stijn en Wim waren er altijd om een praatje te maken. Met Tarad, En-
gin, Abhishek en Yingjie kon ik diepzinnige gesprekken voeren over de
Islam en de snelgroeiende Aziatische culturen. Zij hebben mij nog meer
zin gegeven om de wereld te ontdekken. Dankzij al deze mensen moest ik
niet lang aarzelen om aan de slag te gaan bij Stefan in Oostenrijk. Gelukkig
waren Cati Martinez-Costa en André Andrade solidair met deze beslissing
en kan ik met mijn bureaugenoten in het Engels van gedachten wisselen.
Het verblijf aan al deze wetenschappelijke instituten werd natuurlijk ook
mogelijk gemaakt door vele secretariaatsmensen, IT-specialisten en onder-
houdspersoneel.

Mijn vrienden wil ik bedanken omwille van de inspirerende voor-
beelden die ze zijn geweest, zowel degene die ik ken sinds de periode van
’t Sint Lodewijks, de leden van de ‘KKK’, als die van de ingenieursjaren in
Gent. Sam, wiens thesis hier nu naast mij ligt, maakte mij zelfs peter van
zijn zoontje Nolan.

Tenslotte wil ik mijn familie bedanken voor alle morele steun die ze
mij altijd hebben gegeven: papa, mama, Griet, Klaas en ook de gezinnetjes
die jullie hebben gesticht. Hoe jammer papa dat je er niet meer bent op dit
moment, maar jouw geloof in mij blijft ook na je dood nog verderbestaan.

Ward
Graz, 11 juni 2012

Contents

1 Guide for the readers 1

2 Knowledge Management 3
2.1 Introduction . 3
2.2 Knowledge and data . 4
2.3 The vast amount of biomedical knowledge 5
2.4 Knowledge resources in the Life Sciences 6
2.5 Integrated Knowledge Bases 11
2.6 Knowledge in biomedical literature 12
2.7 Open source and open data 13

3 Logic and semantics 15
3.1 Logic in history . 15
3.2 Logic languages . 17

3.2.1 Propositional logic 17
3.2.2 First Order Logic 18
3.2.3 Early Knowledge Representation languages 20
3.2.4 Description Logics 21

3.3 Ontologies . 24
3.3.1 Instances and classes 25
3.3.2 Relations in ontologies 26
3.3.3 An example: the Cell Cycle Ontology 27

3.4 The Semantic Web . 30
3.4.1 Unicode . 30
3.4.2 IRIs . 31
3.4.3 SGML . 33
3.4.4 XML . 33
3.4.5 HTML . 34

i

Contents

3.4.6 RDF . 35
3.4.7 RDFS . 36
3.4.8 OWL . 39
3.4.9 Rule languages 40
3.4.10 Linked Data . 41

3.5 SPARQL tutorial . 42
3.5.1 RDF graphs with triples 42
3.5.2 RDF stores with quads 44
3.5.3 An RDF federation with quintets? 45

3.6 Personal outlook . 47

4 Querying biomedical knowledge representations 49
4.1 Introduction . 49
4.2 Standard queries for browsing and visualization 50
4.3 Querying the Cell Cycle Ontology 53

4.3.1 The DIAMONDS platform 53
4.3.2 Integration through IRIs in a single identifier space 55
4.3.3 SPARQL queries for browsing requests 59
4.3.4 SPARQL queries of biological interest 70

4.4 Benchmarking biomedical SPARQL queries 75
4.4.1 Introduction . 75
4.4.2 The NTNU benchmark 76
4.4.3 Comparing RDF software 81
4.4.4 Analysis and results 82

5 Metarel: an ontology for relations in RDF 89
5.1 The foundation of the Metarel vocabulary 90

5.1.1 RDF graphs versus multidigraphs 90
5.1.2 The idea behind Metarel 91
5.1.3 An MDG as a visualizable ontology representation 93
5.1.4 Relation arcs and relation multi-arcs 94
5.1.5 Relation types 95
5.1.6 The Metarel interpretation: multi-arcs as relations . 96
5.1.7 Relation types as mathematical relations 97
5.1.8 Overview of the terminology 98

5.2 Formalizing logic and semantics through relations 98
5.2.1 Metarelations . 99
5.2.2 Labels for relation types 99
5.2.3 A classification of relations 100

ii

Contents

5.2.4 A classification of relation types 100
5.2.5 A classification of relation type axioms 102

5.3 Metarel in the Semantic Web 102
5.3.1 Internationalized Resource Identifiers for Metarel . 102
5.3.2 Practical usage 103
5.3.3 Engineering Metarel with existing vocabulary . . . 103
5.3.4 Relational vocabulary beyond OWL 106

5.4 Discussion . 107
5.5 Conclusion . 110

6 BioGateway: a Semantic Web Knowledge Base 111
6.1 Introduction . 111
6.2 Cyclic development of RDF models 113
6.3 The architecture of BioGateway 118

6.3.1 The identifier space 118
6.3.2 The division in graphs 119

6.4 Metarel for relation management 121
6.4.1 The Relationship Ontology in the OBO Foundry . 121
6.4.2 Biorel . 122
6.4.3 BioMetarel . 125
6.4.4 Transitive closures 130

6.5 MetaOnto . 133
6.6 The library of queries . 138

6.6.1 Ontological queries for knowledge engineers . . . 139
6.6.2 Biomedical queries for knowledge exploration . . 140

6.7 Visualization of queries 143

7 Computational reasoning with Metarel 145
7.1 Description Logics in three steps 145
7.2 Reasoning on bio-ontologies 146

7.2.1 All-some relations between classes 146
7.2.2 Five closure rules for inferring all-some relations . 147

7.3 Methods . 150
7.3.1 Manual curation of the relation types 150
7.3.2 Translation to the Semantic Web 153
7.3.3 Inferring new knowledge statements 154

7.4 Results . 156
7.5 Conclusion . 159

iii

Contents

8 Conclusions 161

9 Nederlandstalige samenvatting 171

Bibliography 175

A Metarel 195

B Biorel 205
B.1 The OBO format . 205
B.2 OWL 2 DL for validation and reasoning 207

C BioMetarel 211
C.1 The links between Metarel and Biorel 211
C.2 The RDF export . 213

D Reasoner code 215
D.1 The PERL program . 215
D.2 The SQL code . 218

E Scientific CV 221

iv

List of Figures

3.1 The upper level classes of CCO. The dashed boxes repre-
sent external data sources, whereas the continuous boxes
are ontological classes that were specifically minted to in-
tegrate the external data sources in CCO. 28

3.2 The Semantic Web Stack has to be viewed from bottom to
top. The more advanced technologies (RDF and OWL) are
represented on top, as they are sustained by the technolo-
gies on the bottom (IRI and Unicode). 31

3.3 The 0020-00FF range in the Unicode character set, also
known as the Latin Alphabet No 1 character set. The ta-
ble shows the graphic character symbol on the left and the
hexadecimal character value on the right for each charac-
ter record. This range is just a tiny part of the whole range
of the Unicode character set, which has reserved space for
more than a billion characters. 32

3.4 Uniform Resource Identifiers (URIs) as a superset of Uni-
form Resource Locators (URLs) and Uniform Resource Na-
mes (URNs). 33

4.1 The neighborhood (top) and the path to the root (bottom)
for the term CDC55 in CCO, generated with the Ontology
Lookup Service software. The automated generation of fig-
ures that give a clear representation of results on a generic
query is a challenge. Results on biomedical queries are of-
ten too abundant and names of entities are too long for fit-
ting in a clear overview. Some labels are overprinted many
times here. 52

v

List of Figures

4.2 The knowledge visualization applet in the DIAMONDS plat-
form. A query was launched to search the terms that con-
tain WEE1 in the name. WEE1_SCHPO, a class of proteins
in the Schizosaccharomyces pombe organism, was selected
by a mouse click, which launched two other queries to re-
trieve the local neighborhood (visualized on the right) and
the properties (bottom left) of this term. 56

4.3 This screenshot shows some important cell cycle phases in
CCO, together with two protein types. By a series of rel-
evant queries and deletions of irrelevant nodes, users can
select and visualize networks, pathways or protein interac-
tions that are of interest to their particular research. The
visualization is rendered by the Java subroutine that was
written by Steven Vercruysse and integrated later in the DI-
AMONDS platform. The space between the nodes and the
length of the arcs are optimized automatically by the sub-
routine, in order to avoid that labels and nodes overwrite
each other. 60

4.4 The neighborhood of the protein class CDC25A. The colors
of nodes represent the type of visualized term (indicated
as the object in an RDF triple ‘term - rdf:type - object’).
The symbols on the arcs between the nodes represent the
relation type (indicated as the predicate in an RDF triple
‘term1 - relation type - term2’). 65

4.5 The historical development of the NTNU benchmark, rep-
resented in nine steps. The interpretation of the response
times have to be done carefully, since the material for the
benchmark, which consists of RDF data and a library of
SPARQL queries, was developed and optimized on a Vir-
tuoso RDF store. 78

4.6 The time in seconds of queries that were launched ten times
subsequently on ten graphs, compared on a logarithmic sca-
le for five different RDF storage systems. Queries are or-
dered from slow to fast. OWLIM is highly optimized for
fast queries, whereas the apparent good performance of Vir-
tuoso for slow queries reflects the history of the develop-
ment of the NTNU benchmark. 87

vi

List of Figures

5.1 Triples and directed arcs as representations for MDGs and
RDF graphs. The representation with arcs for general RDF
graphs, as shown on the lower right-hand side, is not en-
tirely satisfactory. The number of arcs does not equal the
number of triples and the visualization of two triples (a b
c) and (b a c) will either treat the triples asymmetrically or
either create an infinite number of arcs. 92

5.2 The idea behind Metarel. The OWL/RDF syntax describes
advanced logical patterns whereas Metarel assumes arcs
with subjects (A), relation types (R) and objects (B). . . . 93

5.3 An MDG with 4 nodes, 12 multi-arcs (3 self-multi-arcs)
and 18 arcs (5 self-arcs). For instance, the three arcs from
instance 1 to instance 2 form a single multi-arc. Also single
arcs are counted as one multi-arc. The multi-arcs represent
relations (maximum 16 for 4 nodes) and the arcs represent
instantiations of these relations in relation types (unlimited
number). 94

5.4 Two relation arcs ‘is directly preceded by’ and ‘is preceded
by’ can be derived in the MDG from the classification of
relations and relation type axioms in the Metarel ontology. 101

5.5 Metarel can be loaded in any RDF graph and it can be used
to describe the meaning of those triples that can be inter-
preted as an arc that is logically meaningful within an MDG
that separates classes from instances. 103

5.6 The relation type classification integrated with the RDF-
Based Semantics (OWL-RBS) of the OWL property model.
The instance relation type equates with the Direct Seman-
tics (OWL-DS) for owl:ObjectProperty. The classification
assumes multiple inheritance instead of disjointness. For
instance, some class relation types may be transitive rela-
tion types, others may not be. 105

5.7 A relation in RDF described by Metarel compared to a
complex representation with explicitly modeled quantifiers
in the OWL/RDF syntax. All the information in the com-
plex is also expressed by classifying the URI mrl:isPartOf
as an all-some relation type in a Metarel ontology that be-
longs to the same RDF graph. 109

vii

List of Figures

6.1 The (bio-)gateway from original knowledge sources towards
the end user. 112

6.2 The architecture of BioGateway. The RDF source files
(square boxes) are redundantly loaded into different RDF
graphs (clouds). Every file goes into the big SSB graph
(A) and into a separate small graph (B). SSB_tc and small
graphs with the _tc-suffix contain logically inferred triples
(C and D). 119

6.3 An example of a transitive closure for the term leptotene.
Many new triples are inferred from the two original triples
in the top figure. 132

6.4 An example that shows the generic pattern for querying
BioGateway through SPARQL. 138

6.5 Network of SPARQL query results over BioGateway. The
query shows proteins that are related to ‘insulin’, either by
their function, by the biological process in which they par-
ticipate, or by the protein complex they are located in. . . . 144

7.1 A practical implementation of the three-step process for
reasoning with bio-ontologies through management of rela-
tion semantics. A consistent, validated biorel.owl in OWL
2 DL contains all the relation types. It is the starting point
for applying 5 important closure rules with a basic RDF
tool like SPARQL/Update (SPARUL). 151

viii

List of Tables

3.1 A list of symbols that can be used in DL axioms, and their
meaning. 22

3.2 RDF vocabulary for classes. 37

3.3 RDF vocabulary for properties. Domains (D.) and ranges
(R.) are either rdfs:Resource (R), rdfs:Class (C), rdf:Proper-
ty (P), rdfs:Literal (Lr), rdf:List (Ls) or rdf:Statement (S). . 38

4.1 The statistics of the 10 RDF graphs that are used in the
NTNU benchmark. The graph names ending on ‘_tc’ con-
tain triples that were logically inferred from closure rules,
like the transitivity of subsumption. The depth of a graph
refers to the maximum number of superclasses for a class
in the hierarchy, whereas the average depth is the number
of superclasses averaged over all the classes. 77

4.2 24 queries (Q1 through Q24) were used in the benchmark.
Special SPARQL features for every query are listed in this
table. 80

4.3 Load time - the total time for loading the 10 graphs (11.3
million triples) averaged over the three runs. Total Query
time - The total time for answering the 240 queries (24
queries on 10 graphs) averaged over the three runs. 83

4.4 A cumulative response time in seconds for each query, sum-
med over the 10 graphs, compared for the five RDF storage
solutions. The queries are ordered from fast to slow, based
on the geometrical average performance (Geom. avg.). The
syntax of some queries could not be processed by OWLIM. 84

ix

List of Tables

5.1 Domain and ranges for different types of relation types, as-
signed by two classes cd and cr. 96

5.2 The terminology in Metarel compared with terminology in
RDF, OWL, DL and Mathematics. They are compared on
the basis of a generic Subject-Predicate-Object structure, as
used in RDF. 99

7.1 The number of answers to queries compared on explicit
knowledge (Exp.) and implicit knowledge (Imp.), and on
partial closures where rules for reflexivity (R1), transitivity
(R2), priority over subsumption (R3), super-relations (R4)
and chains (R5) were omitted respectively. The bold type-
face indicates partial loss of logically correct results. . . . 159

x

List of Symbols and Acronyms

∧ and
∀ for all
> everything
⇔ if and only if
u intersection
∈ is element of
= is equal to
≡ is equivalent to
v is subset of or equal to
¬ not (in Logic), or complement (in Set Theory)
! not (in SPARQL)
⊥ nothing
∨ or
∃ there exists
t union
?x (or $x) variable x (in SPARQL)
3D 3-dimensional
A set of relation arcs
A class A
acc accession number
ALC Attributive Concept Language with Complements
alt alternative
API Application Programming Interface
ART Average Response Time
ASCII American Standard Code for Information Interchange
At Arabidopsis thaliana
avg average
B intermediate or target class in a chain of relations
BFO Basic Formal Ontology
bgw BioGateway

xi

List of Symbols and Acronyms

Bio1 Biomedical query 1
BioMetarel Metarel-annotated ontology of biomedical relation types
Biorel ontology of biomedical relation types
BLAST Basic Local Alignment Search Tool
BMC BioMed Central
BSBM Berlin SPARQL Benchmark
BSPO Biomedical Spatial Ontology
c continuant instance
C continuant class
C set of class nodes
C third class in a chain (reasoning)
CBD Computational Biology Division
CCO Cell Cycle Ontology
cd class that represents a domain
CPU Central Processing Unit
cr class that represents a range
CSV Comma-Separated Values
CV Curriculum Vitae
D set of nodes
D5.4 European project deliverable
DAG Directed Acyclic Graph
DAML DARPA Agent Markup Language
db (or DB) Database
dbname Database name
def definition
DL Description Logic
DM Data Management
DNA desoxyribonucleic acid
DOT DOT language for graph representation
DS Direct Semantics
E set of couples E
EL basic Description Logic EL
EU European Union
Exp. Explicit knowledge
EXPSPACE Exponential memory space complexity
EXPTIME Exponential time complexity
Ext(c) set of instance nodes of c
FOL First Order Logic
FP6 Sixth Framework Programme
g graph
Geom. Geometrical
GB Gigabyte
GCI General Concept Inclusion

xii

List of Symbols and Acronyms

GHz Gigahertz
GML Graph Modelling Language
GO Gene Ontology
GOA Gene Ontology Annotations
Hs Homo sapiens
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
I set of instance nodes
id (or ID) identifier
Imp. Implicit knowledge
irt invertible relation type
IRI Internationalized Resource Identifier
is_a ‘is a’ – conjugation of verb ‘to be’ plus indefinite pronoun
ISO/IEC International Organization for Standardiza-

tion/International Electrotechnical Commission
ISS International Space Station
KB Knowledge Base
kg kilogram
KERMIT Knowledge Extraction, Representation and Management

by means of Intelligent Techniques
KM Knowledge Management
KR Knowledge Representation
L Linear time complexity
LOD Linked Open Data
LUBM Lehigh University Benchmark
Max Maximum
MB Megabyte
MDG MultiDiGraph
Metaonto ontology for metadata about ontologies
Metarel ontology for relations and metarelations
mrl Metarel
n1 name 1
N3 Notation 3 – a non-XML-based syntax for RDF
NCBI National Center for Biotechnology Information
NCBO National Center for Biomedical Ontology
NP Non-deterministic Polynomial time complexity
NTNU Norwegian University of Science and Technology
o object
O ontology modelled as MDG
OBO Open Biomedical Ontologies
OBOF Open Biomedical Ontology Format
OBO_REL OBO relationship type
OIL Ontology Inference Layer

xiii

List of Symbols and Acronyms

OLS Ontology Lookup Service
ONTO1 Ontological query 1
ONTO-PERL Perl software package for ontology management
OWL Web Ontology Language
p process instance
P process class
p predicate
P (ontology) process
P (complexity) Polynomial time complexity
PPI protein-protein interaction
PSPACE Polynomial memory space
PubMed Biomedical publication database
Q1 Query 1
r multi-arc (relation)
R set of multi-arcs, or relation type R
R mathematical, binary relation
R (or R) relation type R
(R) Registered Trademark
R1 Rule 1
RBS RDF-Based Semantics
RDBMS Relational Database Management System
RDF Resource Description Framework
RDFS Resource Description Framework Schema
regex regular expression
rel relation type
RIA Role Inclusion Axiom
RIF Rule Interchange Format
RO Relationship Ontology
RPM Revolutions Per Minute
rt relation type
RTC Relation Type Class
s subject
S relation type S
SAS Serial Attached SCSI (hard drive)
Sc Saccharomyces cerevisiae
SDB SPARQL Database
SGML Standard Generalized Markup Language
SNOMED CT Systematized Nomenclature of Medicine - Clinical Ter-

minology
Sp (or SCHPO) Schizosaccharomyces pombe
SPARQL SPARQL Protocol And RDF Query Language
SPARUL SPARQL/Update
SQL Structured Query Language

xiv

List of Symbols and Acronyms

SSB Semantic Systems Biology
Sub(c) set of subclass nodes of c
sup superclasses
SWAT4LS Semantic Web Applications and Tools for the Life Sci-

ences
SWISS-PROT protein database developed by EBI and Swiss Institute

SIB
SWRL Semantic Web Rule Language
syn synonym
t time t
t relation type
T set of relation types, or relation type T
T taxon (term in a taxonomy about organisms)
tc total closures
TDB Triple Database
Turtle Terse RDF triple language
U upper level term
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
UTF8 8-bit Unicode Transformation Format
V set of elements V
W3C World Wide Web Consortium
www World Wide Web
x element x
XML Extensible Markup Language
XPath XML Path Language
XQuery XML Query Language
xref cross-reference
y element y
ZF Zermelo-Fraenkel set theory

xv

List of Symbols and Acronyms

xvi

Chapter 1

Guide for the readers
This thesis describes some advances made in a scientific domain that be-
longs both to Computer Science and to the Life Sciences. More precisely,
it could be called ‘Knowledge Management in the Life Sciences’. The
advances described are of different natures. Whereas the theoretical and
technological advances described are directly related to the pillar of Com-
puter Science, those that relate to the Life Sciences are the advances of a
supportive science, that can assist life scientists in their work.

This short introductory chapter will guide the reader through the
other chapters, seven in total, that constitute the contents of the thesis. The
next two chapters, 2 and 3, are also introductory. The four following chap-
ters, 4, 5, 6 and 7, describe the above-mentioned scientific advances in
detail, and refer each to one or more scientific publications. Chapter 8 con-
tains the conclusions of the thesis, whereas Chapter 9 provides a summary
of the thesis in Dutch.

The bibliography, following the Dutch summary, is in turn followed
by some appendices with code that is useful for computer scientists and
ontologists who want to look into code about Metarel and reasoning. The
last appendix presents the CV of the author and includes the publications
that are relevant to chapters 4 to 7.

Chapter 2 introduces the field of Knowledge Management in the Life
Sciences and presents its state of the art. It acknowledges the many efforts
that were done by other scientists working in this field.

The emergence of the most recent tools for Knowledge Management
is described in Chapter 3. In order to introduce them properly, a short
history of Logic and Ontology is also included there.

The first scientific contributions of the author, described in Chapter
4, relate to CCO, the Cell Cycle Ontology, and RDF, the Resource Descrip-

1

Chapter 1. Guide for the readers

tion Framework. CCO was developed by Erick Antezana during his PhD
research and co-developed at the Computational Biology Division (CBD)
at Plant Systems Biology of the VIB in Ghent. The author joined this group
in September 2006, at a point when CCO, including RDF exports for CCO,
had already been created through ONTO-PERL, an ontology management
software package developed by Antezana [1]. The contributions described
stem from an involvement in the development of the DIAMONDS platform
for presenting CCO. The presentation of the DIAMONDS platform and
therefore also the RDF query layer in CCO’s publication in Genome Biol-
ogy [2] was requested in a review process and has led to the co-authorship
of the author of this thesis. The visualization layer of the DIAMONDS
platform is thanks to Steven Vercruysse, who donated the Java code that he
had developed for an interface called Minemap. The utility of CCO was
published later in Applied Ontology [3]. Chapter 4 also contains a descrip-
tion of the NTNU benchmark, a project led by Vladimir Mironov, which
compares different RDF software solutions on the basis of CCO’s library
of queries that were developed and optimized independently for answering
biomedical questions [4].

Metarel, an ontology for relations described in Chapter 5, stems from
the author’s earliest view on Knowledge Management in the Life Sciences,
namely the investigation of biomedical relations in ontologies. An initial
architecture developed in the OBOF format in 2007, has matured during
the years and gained compatibility with the Semantic Web standards RDF
and OWL. It was presented at the ICBO conference in Buffalo in 2009 [5]
and a final journal publication is currently in preparation.

Chapter 6 presents BioGateway, an RDF Knowledge Base that has
enabled advanced biomedical queries over integrated resources. Metarel is
used in BioGateway for the integration and management of relation types
that stem from different resources. Such knowledge bases may help biomed-
ical experts in creating new hypotheses. BioGateway was presented in
SWAT4LS in Edinburgh in 2008 [6] and published in BMC Bioinformatics
in 2009 [7].

Finally, in Chapter 7, scientific results are presented that combine all
the advances that were made in the previous chapters. A semi-automated
reasoning approach through Metarel in BioGateway has created hundreds
of millions of logical inferences that can be used in answers on the biomed-
ical queries that were previously developed. These results were published
in Bioinformatics in 2011 [8].

2

Chapter 2

Knowledge Management

2.1 Introduction

Little more than half a century after the discovery of DNA by James Watson
and Francis Crick, biotechnology has matured into real life applications
that sustain our health and welfare. Some major breakthroughs that were
made are becoming well known to the broad public: new cures for cancer,
genetically modified crops, biofuels and crime-related DNA analysis, just
to name a few. This fast technological evolution goes hand in hand with an
ever expanding body of detailed knowledge about the molecular machinery
that the 4 billion year long evolution of life has engineered for us. When
I started my PhD studies in the fall of 2006, scientists still thought that a
human DNA string would contain more than 100 000 different genes. Only
a few years later, the estimate was revised to around 21 000 genes. At the
same time the number of proteins was revised from 100 000 to 1 million.
These facts reflect a tremendous increase of knowledge about the human
genome, facilitated by high-throughput methods for DNA analysis. They
imply a huge challenge for the Knowledge Management engineer whose
task it is to maintain clear representations of this knowledge.

Knowledge Management has become a major challenge. We cannot
rely on the limited memory of scientists for knowledge storage. Large li-
braries with thick books are not the most practical solution either. Only
computer systems can deal adequately with the quickly expanding mass
of knowledge. Biomedical scientists want to have detailed and specific
knowledge accessible over the Internet for lookup. They want to see it in-
terconnected in attractive and fast lookup sites. Bioinformaticians need this

3

Chapter 2. Knowledge Management

knowledge to analyze it in automated ways, and to produce newly inferred
knowledge from it. The Knowledge Management engineer has some tools
at hand to deal with this challenge. They are called ontologies, databases,
Web standards, computable logics, controlled vocabularies, representation
languages and query languages. Knowledge Management in the Life Sci-
ences, on this practical level, is what this thesis will be about.

Before we start to take a look at the contributions of this PhD thesis
to the scientific community, we have to make a tour through the landscape
of Knowledge Management that was shaped before. We will do this by
visiting a series of concepts that are of importance in this scientific field.

2.2 Knowledge and data

Let us start first with defining ‘knowledge’. The scientific field of Episte-
mology has investigated the very general question ‘What is knowledge’?
This question is very old, starting with the dialogue between Socrates and
Theaetetus mentioned in the works of Plato [9], and it has resulted in many
controversial philosophical debates throughout the ages. However, within
computer science, a more practical definition is used that relates knowledge
with data: knowledge is data plus an interpretation of its meaning [10].

Knowledge Management (KM) is the field of study that deals with
the representation, preservation, integration, translation, sharing and distri-
bution of knowledge. It thrives by the use of world-wide standards, com-
puter science and the Internet and it is indispensable in domains where very
large amounts of heterogeneous knowledge have to be managed.

An important building block for KM is the so-called knowledge state-
ment. Here is an example: ‘insulin is produced in pancreas’. An integrated
Knowledge Base (KB) will contain more knowledge about both insulin and
pancreas. Such as ‘insulin is a protein’, ‘pancreas is part of abdomen’, etc.

A more precise distinction between knowledge and data can be made
by separating data from meta-data. Just like in the case of data, knowledge
statements can be accompanied by extra data about who created this knowl-
edge statement. When and in which institute was it investigated? In which
journal or KB was is it published first? Which synonyms exist for terms
like ‘insulin’ and ‘pancreas’? Which methods were used to generate this
knowledge statement? This extra data is the meta-data. Data and meta-data
can be considered as information. With the addition of an interpretation of
its meaning, information becomes knowledge.

4

Chapter 2. Knowledge Management

2.3 The vast amount of biomedical knowledge

The amount of knowledge in the Life Sciences is huge. Trillions of knowl-
edge statements are needed to capture all the knowledge that is fundamen-
tal to the architecture of biological life. Let us take a view in the multi-
dimensional space of biomedical knowledge.

DNA contains many genes. Many genes appear in different varieties
called alleles. Closely related species have genes that are closely related
(orthologous), but are still different. Most genes encode for one or multi-
ple RNA transcripts, which can have one or multiple proteins as translation
product. These proteins go through a life cycle during which they will
appear in different varieties by phosphorylations, folding operations and
complex formation with other gene products. It needs no further arguments
that we have a huge variety of genes and proteins to name and describe
in KBs. All these facts have a multiplicative effect on the number of pro-
teins that exist. The number of related knowledge statements multiplies
again considering that every protein has assigned dozens of so-called ‘pro-
tein features’ like mass, length, hydrophobicity, electric conductivity, etc.,
which may assist in analyzing them in laboratory experiments.

Each protein has a certain function in the machinery of a cell. Pro-
teins deriving from very similar genes often have the same function, but
not always. They may have interactions with specific other proteins and
with specific small molecules and hormones. They operate in specific loca-
tions of the anatomy of the cell and they are involved in specific biological
pathways. The presence of every protein in the cell is regulated by specific
cellular processes.

Small molecules, hormones, drugs, pesticides, synthetic and natural
biomolecules all fit in a theoretical space of all the chemicals that could
exist in reality. Different naming systems are used in chemistry, as com-
pared to enzymology. One of the challenges for this space of chemicals is
creating an overarching system for identifying and querying them, as well
as mapping synonyms (different names for the same concepts). Also this is
a sub-task of KM.

Cellular processes stand in connection with environmental condi-
tions. This is especially important for plants and crops, since they cannot
regulate their conditions by hiding or migrating. Plants will react differ-
ently to the presence of sunlight, temperature, humidity, salinity, pollution,
insects, etc. In addition to a certain genotype, the interaction with the en-
vironment will create a broad spectrum of possible phenotypes. Bridging

5

Chapter 2. Knowledge Management

the microscopic knowledge with the macroscopic knowledge is a task of
Systems Biology.

The description of the species that live on Earth is one of the older
disciplines in KM, since it started long before the discovery of cells and
DNA. Carolus Linnaeus published Systema Naturae [11] in 1735 in which
he proposes a taxonomic classification of biological life in kingdoms, clas-
ses, orders, families and species. Millions of species have been identified
today. The custom to give latin names to newly discovered species still
stems from this time. English has taken over this role for the more recent
knowledge domains.

The number of species increases even more by considering all the
micro-organisms on our planet. Scientists keep track of massive num-
bers of bacterial strains that have evolved in special environmental con-
ditions. New organisms are also created in a fast rate by genetic modifi-
cation. Viruses, bacteria and other small organisms evolve spontaneously
under pressure of antibiotics and pesticides.

Another dimension of biological knowledge constitutes the anatomy
of species. Many anatomical features are shared across many species, oth-
ers are species-specific. Certain species may even lack anatomical features,
such as human lacking a tail, even though they are primates.

Diseases are relevant to nearly all of the mentioned knowledge do-
mains. They are often specific to species and anatomical parts. Specific
proteins and cellular processes play a role in their development and the
pharmaceutical industry investigates which molecules may cure or even
cause the disease.

Knowledge Management is indispensable to capture the vast amount
of knowledge that is continuously generated in all these subdomains of the
Life Sciences.

2.4 Knowledge resources in the Life Sciences

Numerous scientists have contributed to Knowledge Management in the
Life Sciences for many decades. Libraries with paper books have turned
into relational databases some thirty years ago, resulting in countlessly
many databases that are still popular today. Many of them cover a very
specialized domain, like FLYBASE [12], a database with the genome of the
fruit fly, p53 [13], a database on the protein type p53, and PolygenicPath-
ways [14], a database about the genes and the risk factors that are involved

6

Chapter 2. Knowledge Management

in Alzheimer’s disease, bipolar disorder and schizophrenia. Within genome
biology, databases are called broad if they apply to many species, like p53,
and deep if they apply to a single species, like FLYBASE. Some databases
hold information about storage systems, called biobanks [15], that store
scientifically interesting biological samples, like StrainInfo [16], which in-
tegrates knowledge about microbial strains, or the Medical Biobank of the
Umeå University Hospital in Sweden [17].

Even for similar content matter, different databases may vary in size,
quality and provenance (the origin of the data). Especially the size can form
a real obstacle for creating computational platforms based on a database.
The technological successes that were achieved for genome analysis have
resulted in a set of notoriously large databases that are still actively devel-
oped:

• DDBJ/EMBL/GenBank contains sequences of nucleotides (genome
sequences), which is basically the DNA code. This code is mapped
to names and identifiers. Some parts within this code constitute the
genes. The database contains also sequences of amino-acids, which
are the building blocks of proteins. Three institutes, DDBJ [18] in
Japan, EMBL [19] in Europe and GenBank [20] in the USA, have
cooperated on this work since 1992. All together, in April 2012 it
featured approximately 412 billion nucleotide base pairs in approxi-
mately 242 million sequence records, from more than 260 thousand
different named organism groups.

• UniProtKB [21] is a KB about proteins that consists of two sections:
Swiss-Prot, which is manually annotated and reviewed, and TrEM-
BLE, which contains DNA sequences, but lacks protein annotations
that are reviewed. The latter section is much larger than the first,
but the quality of the data is much poorer. The UniProt Consortium
was launched in December 2003 as a merger of older resources of
the European Bioinformatics Institute (EBI), the Swiss Institute of
Bioinformatics (SIB), and the Protein Information Resource (PIR).

• PROSITE [22], created in 1988, records protein domains, functional
sites and protein families. The knowledge in this KB is about entities
that are smaller than entire proteins, but larger than the letters in the
sequence code. Protein families are groups of evolutionarily related
proteins.

7

Chapter 2. Knowledge Management

• Entrez Gene [23] is a database about genes that were mostly com-
putationally discovered from the analysis of genome sequences. The
genes were discovered in the sequences of the RefSeq database [24].
New resources have been added since 2003.

• GeneID [25] is a database about genes that have been well investiga-
ted and it provides extra information about these genes. If focuses
only on species whose genome was sequenced entirely and that have
an active research community, like the genome of the fruit fly (Droso-
phila). GeneID version 1 was released in July 2000.

• KEGG Pathway [26], initiated in 1995, consists of networks of pro-
tein interactions in the cell, including also variants that are specific
to particular species.

• IntAct [27], first published in 2004, is a database for molecular and
protein interactions. The knowledge stems entirely from published
literature and is manually annotated by expert biologists. It contains
about 126 thousand binary interactions from 2100 scientific publica-
tions.

• Reactome [28], developed since 2003, is an open source, manually
curated database about biological pathways. This includes informa-
tion about proteins, like where and how they participate in the path-
way. Reactome contains cross-references to many other databases,
including different others in this list.

Large knowledge resources outside the domain of genome biology
typically have a longer history. SNOMED CT [29], the Systematized No-
menclature of Medicine – Clinical Terms, is a medical terminology that
should help physicians and health-care professionals in their communica-
tion about medical practices. It has evolved from SNOMED RT (Reference
Terminology) and the United Kingdom’s Clinical Terms Version 3 in a col-
laboration between the College of American Pathologists (CAP) and the
National Health Service (NHS) in England. SNOMED itself has evolved
from SNOP (Systematized Nomenclature of Pathology), which was started
in 1965. Since 2007 SNOMED CT was adopted by the International Health
Terminology Standards Organization (IHTSDO). The knowledge base con-
tains over 311 000 unique concepts and approximately 1 360 000 semantic
relations between the concepts (October 2011). Each concept is linked to

8

Chapter 2. Knowledge Management

various terms or phrases, called Descriptions. These terms clarify the mean-
ing of the concepts for humans or they might be used in medical texts to
refer to the concept.

The standardization of medical ontologies has been particularly chal-
lenging. Knowledge management in health care is of great practical impor-
tance compared to other domains in the Life Sciences. The exchange of
medical data between hospitals and health care practitioners has led to sev-
eral standards for so-called information models. Taxonomies like the Inter-
national Classification of Diseases (ICD) are designed for enabling efficient
lookup by physicians. Medical ontologies try to create a comprehensive and
consistent representation from a scientific viewpoint, while maintaining in-
teroperability with standards that were designed for the medical practice.

The Internet, the World Wide Web and search engines, have revo-
lutionized the field of Knowledge Management. These technologies have
facilitated a strong tendency to integrate dispersed knowledge resources
into a single, large distributed system. Relational database tables have not
always helped in achieving this integration. Instead, they often appeal to
rigid models that cannot be integrated with other rigid models. The search
for overarching solutions has directed the attention of knowledge engineers
towards Ontology, the philosophical field that investigates the description
of everything. In recent years, most knowledge resources are released as so-
called ‘ontologies’. Many of them also commit to an unambiguous logical
semantics, for example, since 2011, SNOMED CT is formally restricted
to the semantics of the logic EL++ [30]. The theory behind Ontology
and Logic, and behind technologies like XML, OBOF, RDF, OWL and
SPARQL, will be explained in detail in Chapter 3.

Probably the most famous example of an ontology in the life sci-
ences is the Gene Ontology (GO) [31]. It consists of the terminology that is
needed to describe gene products, and therefore also the genes that encode
these proteins. GO provides functions that proteins can have, cell locations
where proteins can do their job, and cellular processes in which proteins can
be involved. Complexes of proteins that are common among many species
are also in GO in the form of cellular locations. GO, being an ontology,
integrates with a classical relational database, called the Gene Ontology
Annotations (GOA) [32]. It is a database in which each row contains an
annotation of a protein with a term in GO, for about 2000 species. GO and
GOA have increasingly been used in the field of Bioinformatics during the
last decade.

9

Chapter 2. Knowledge Management

Other examples of knowledge resources that were developed as on-
tologies include FMA [33], the Foundational Model of Anatomy ontology
for anatomical knowledge of the human body, CHEBI [34], an ontology
about Chemical Entities of Biological Interest, GALEN [35], an ontology
about medicine and NCBI Taxonomy [36], an ontology about organisms.
By adhering to some principles of ontology engineering, these resources
have a more commonly understood semantic foundation and they can be
managed more easily with common tools.

In order to ensure that ontologies in the biomedical domain can in-
teroperate, the Open Biomedical Ontologies (OBO) Foundry [37] was initi-
ated. It collects ontologies that adhere to a common set of ontology design
principles, like openness, identifiers, orthogonality of content, versioning
and more. At least 106 different ontologies were developed as OBO on-
tologies in February 2012, however, only 6 of them have passed the in-
ternal review system of the OBO Foundry (GO, CHEBI, PATO, PR, XAO
and ZFA). Also relations between biomedical entities were assembled and
reviewed in OBO’s Relationship Ontology [38].

The OBO ontologies have a common format, the OBOF format [39],
which makes it easy to treat them generically in a single software system.
The language is very human readable for being a KR language that is also
computer readable. This means that specialized biomedical scientists, who
are not acquainted with computer science formalisms, can easily contribute
by turning their knowledge into OBOF files. The drawback is that pro-
grammers need to do a lot of work to do any advanced KM tasks with
these files. Currently, there is a standardized translation to OWL, called
OboInOwl [40], which is of great use for programmers. However, any new
developments to OBOF remain a heavy burden for software implementers.

Many other computer languages were developed for the represen-
tations of biomedical knowledge resources. SBML, the Systems Biology
Markup Language [41] is a KR language, based on XML, for the repre-
sentation of biological processes, like metabolic networks, cell-signaling
pathways and regulatory networks. Such processes are stored as mathe-
matical models. Also CellML [42] is an XML-based language that stores
mathematical models, which are abundant in cell biology. A language that
has tried to coordinate with different standards for representing biological
pathway data is BioPAX [43]. The use of such languages have facilitated
the modeling of very diverse biological systems in a common format that
can be validated and managed by software tools.

10

Chapter 2. Knowledge Management

2.5 Integrated Knowledge Bases

Modern databases and ontologies are engineered to be interoperable, how-
ever, they are maintained and released separately by groups of scientific
experts. Other knowledge engineers take care of the task to integrate these
separate resources into larger systems, called Knowledge Bases (KB). They
should help scientists to retrieve the knowledge in their domain and to ad-
dress the knowledge resources with broad queries. A semantic technology
is a tool, a language or a standard that supports such KBs.

One of the most useful and best maintained integrated KBs is the
NCBO BioPortal [44]. It provides a nice website for browsing any biomed-
ical ontologies that are open and the system is relatively flexible for submit-
ting new ontologies to it. Apart from search facilities for particular terms
and ontologies, it also provides a graphical browsing interface. It is also
possible to annotate texts with specific terms that are within any of the on-
tologies. A similar system for OBO ontologies is the Ontology Lookup
Service (OLS) [45], which is a spin-off of the PRIDE project (PRoteomics
IDEntifications database). PRIDE is a centralized, public data repository
for proteomics data, which requires a query interface for ontology and con-
trolled vocabulary lookup. OLS uses a relational database back-end for cap-
turing OBO’s Term and Typedef stanzas. Whereas NCBO BioPortal and
OLS excel in user friendliness, Ontobee [46], another service for brows-
ing OBO ontologies, provides good support for semantic technologies like
SPARQL through a PHP enabled web interface. This gives users the chance
to create more advanced queries, starting from the basic browsing queries
that are provided.

Bio2RDF and BioGateway are two RDF KBs that have embraced
semantic technologies for integrating a large number of different knowl-
edge resources. Bio2RDF [47] presents itself as a platform for biomedical
knowledge discovery. It integrates this knowledge by a syntactic and a
semantic normalization in the Semantic Web language RDF. It allows for
queries across the whole platform. BioGateway [7] is an integrated Knowl-
edge Base that integrates all the OBO ontologies, Gene Ontology Annota-
tions for about 2000 organisms, NCBI Taxonomy and Uniprot/SwissProt.
The scope and the basic approach is similar as for Bio2RDF, although Bio-
Gateway facilitates the knowledge discovery process by providing many
prepared queries. Moreover, by the use of Metarel [5], computational rea-
soning was achieved in BioGateway, which provides more useful answers
to the user. Metarel and BioGateway are explained in chapters 5 and 6.

11

Chapter 2. Knowledge Management

All the KBs described above are created by scientists for other sci-
entists. However, Google [48, 49] and Wikipedia [50, 51] are so popular,
also for scientific lookup, that they need no introduction. An interesting
derivation of Wikipedia for genome researchers is Proteopedia [52]. It is
an online encyclopedia that consists of knowledge about proteins and other
molecules. Every page contains a continuously rotating 3D image of the
protein and the whole site is very user friendly. Such websites are very
promising, because the technologies on which they are built are much bet-
ter supported than more specialized technologies. Eventually all the suc-
cessful efforts on KM in the Life Sciences will become accessible through
such kind of user-friendly websites.

2.6 Knowledge in biomedical literature

Apart from classical relational databases and ontologies, there is obviously
a third type of knowledge resource: the scientific publication. They are
expressed in what we call ‘natural language’, which is a very flexible format
for expressing knowledge. Unfortunately, the challenges for integrating this
knowledge become only larger. Millions of publications were made in the
Life Sciences and this number has appeared to grow exponentially during
the last decade [53]. Even biologists with a very narrow field of interest
cannot read every paper that is of use for them. It is another task of KM to
avoid that all this knowledge gets lost.

PubMed [54] collects biomedical literature from MEDLINE [55],
Life Science journals and online books. This resource comprised more
than 19 million citations and more than 2.2 million articles in July 2011.
It is developed and maintained by the National Center for Biotechnology
Information (NCBI). Many knowledge statements in biomedical KBs have
a reference to literature through PubMed identifiers.

An important strategy for using the literature resources is automated
text mining [56]. Software programs try to read and understand scientific
literature in order to transform it to more structured formats that are easier
to handle by other KM tools and search interfaces. Such an effort was
executed by Van Landeghem et al., who used machine learning techniques
to extract terms about genetic interactions from text [57]. Ontologies have
proved to be useful resources for text-mining applications in biomedicine,
by providing a semantic framework to extracted terminologies [58].

An example of an alternative search interface for PubMed is called

12

Chapter 2. Knowledge Management

HubMed [59], which was described as the Swiss Army knife of PubMed
interfaces. Genome experts are served with special search interfaces like
iHOP [60], Chilibot [61] and BioMint [62], which provide special support
for names and synonyms of genes and proteins. Whereas iHOP provides
sentences with their context, Chilibot has extracted relations between pro-
teins, genes and keywords from scientific literature into a giant graph. Just
like BioMint, the interfaces have extracted their knowledge from PubMed,
to which the results are linked. All these technologies make the extant lit-
erature much better accessible in automated ways.

Another strategy for the management of knowledge in literature is
provided by Simplex [63], which is a system that converts literature in-
put about regulatory relations between biomedical entities into differential
equations. These can be imported into a mathematical programming en-
vironment for predicting the behavior of the regulatory system. Simplex
expects manually translated input from literature and is not a text mining
tool.

2.7 Open source and open data

Most software programs and the KBs mentioned in this thesis are open
source. This means that everybody is allowed to see and understand all
the internals of the system, to use it and to integrate it in other (open) soft-
ware systems. The idea to build open systems is fundamental to computer
science. Without open software architectures, programmers and knowl-
edge engineers could not benefit from each other’s efforts. They need each
other’s work as building blocks for the ultimate end-product. World-wide
standards are very important to streamline the cooperation between pro-
grammers of open software. Both open software and world-wide standards
play a key role for KM, just like for any discipline in computer science.

13

Chapter 2. Knowledge Management

14

Chapter 3

Logic and semantics

Because of the rapid growth of biomedical knowledge during the last deca-
de, a lot of recent research in Knowledge Management relates to biology.
Naturally, this has not always been the case. The current research on KM
and semantics (meaning) builds on the age-old study of logic that starts
even more than two thousand years ago with Aristotle [64]. Two domains
of research that sustain modern KM have developed throughout the ages:
Logic and Ontology. Both domains will be introduced in this chapter, fol-
lowed by an introduction on the state of the art, being the Semantic Web.
This will give the reader some acquaintance with logic languages, clas-
ses, instances, decidability, tractability, Description Logics, ontologies and
finally with Semantic Web standards like SPARQL, RDF and OWL. All
these terms are of importance for understanding the following chapters.

3.1 Logic in history

Modern logic starts in the nineteenth century with the publication of The
Mathematical Analysis of Logic [65] of George Boole in 1847. This work
provided a system that could express logical relations in the form of alge-
braic formulas. Boole introduced symbols for selecting objects (elective
symbols) that became the predecessors of the modern truth functions.

The next advancement in the study of logic was the publication of
Begriffsschrift [66] by Gottlob Frege in 1879. Frege proposed a concept
writing (or concept notation) that included symbols for negation, implica-
tion, universal and existential quantification and identity. These symbols
have eventually resulted in the modern variants that are very well known

15

Chapter 3. Logic and semantics

to logicians and mathematicians today. However, the concepts in Frege’s
system have to be considered as naive sets that lead to a paradox that was
discovered by Bertrand Russell in 1901 [67]. These naive sets can contain
themselves as a member, and they also allow to define the set of all the sets
that do not contain themselves. This is known as the Russell paradox: if
this set (the set of all sets that do not contain themselves) contains itself, it
is defined to not contain itself and vice versa.

The Russell paradox was not quickly resolved and led to many at-
tempts to resolve it. A direct result was the development of the Zermelo-
Fraenkel set theory (ZF), which is still considered today as the canonical
foundation for mathematics [68]. Another major consequence was the de-
velopment of the incompleteness theorems by Kurt Gödel in 1931. They
prove that any effectively generated theory capable of expressing elemen-
tary arithmetic cannot be both consistent and complete [69].

With the formulation of the Entscheidungsproblem (‘the Decision
problem’ in English) by David Hilbert in 1928, logicians started to con-
centrate on the decidability of logical and mathematical problems. Hilbert
wondered whether it would be possible to create, in theory, an algorithm
(or a machine) that could decide for any given mathematical or logical hy-
pothesis whether it was true or not. Today, logicians speak about the de-
cidability of formal languages. Any mathematical or logical problem can
be rewritten as a language representation (a series of symbols), for which
the related decision problem is the question whether the representation is
valid in the formal language or not. This way of speaking holds at least for
languages that serve as a syntax. When a language serves as a semantics,
its representations can be considered as expressions for which the decision
problem is whether they are true or false.

Alonzo Church [70] and Alan Turing [71] provided a negative an-
swer to the Entscheidungsproblem in 1936 and 1937 respectively: there
exist general logical problems for which it is not possible to construct an
algorithm that can decide whether a given case of the logical problem is true
or false. Turing also provided an important example: the halting problem.
The halting problem decides for any given computer program (which con-
sists of a general algorithm and a particular problem on which the algorithm
runs) whether this program will either halt or run forever. Turing proved
that it is not possible to construct a general algorithm to solve the halting
problem. This implies that the halting problem is undecidable. We can ex-
trapolate this conclusion for formal languages: some formal languages are

16

Chapter 3. Logic and semantics

decidable, others are not. For undecidable languages, it is impossible to
create a validation service.

Alan Turing made a much bigger achievement by providing the fun-
damental architecture of modern computers [72]. His A-machine (auto-
matic machine, now called Turing machine) consisted of a tape with sym-
bols, a reader that reads a symbol and a table of states that decide which
actions to take, depending on the previous state and the symbol that is read.
Possible actions are reading or writing on the tape.

The effective construction of such computers through electrical tran-
sistors has paved the way for the research to computational complexity
and the tractability of computer programs [73]. The key question in this
research field is no longer whether a computer program will eventually
halt (the question of decidability), but whether it will halt in a reasonable
amount of time and with a reasonable amount of computer memory (the
question of tractability). Computational complexity was defined formally
by considering the behavior of generic algorithms for very large cases (in-
puts) of a logical problem. The relation between the minimally required
computing resources and the size of the input for inputs that go to infin-
ity, is defined as the complexity of a problem. For example, if the relation
between the number of required steps and the size of the input of a prob-
lem is a polynomial function, then we can say that this problem is solvable
in polynomial time. All the polynomial-time problems belong to the com-
plexity class P. Other complexity classes are L (linear time), NP (verifiable
in polynomial time), PSPACE (requiring a polynomial amount of memory
space), EXPTIME (exponential time) and EXPSPACE (exponential mem-
ory space). However, it is not proven yet that all of these classes are really
different. It would be of great practical importance to know for sure that
some problems for which the solution is verifiable in polynomial time, are
not actually solvable in polynomial time. This question, the P versus NP
problem, was introduced by Stephan Cook in 1971 [74].

3.2 Logic languages

3.2.1 Propositional logic

The notion of ‘formal language’ that complexity theorists currently use,
stands quite some distance away from the formal languages that are used
in Knowledge Management. It replaces what is informally understood as
a ‘mathematical problem’, whereas a particular language representation

17

Chapter 3. Logic and semantics

(called a word in complexity theory) replaces ‘a particular case of the math-
ematical problem’. The interest of complexity theorists in languages re-
duces to questions like ‘Is this particular language representation valid in
this language?’ and ‘To which other representations can it be transformed?’

The usage of formal languages within the field of Knowledge Man-
agement is much broader. What it adds to the languages is semantics (or
meaning). A very basic mechanism to add meaning is to consider a valid
language representation as a statement that is true. Such a representation
is what we will call a knowledge statement. It is also called ‘predicate’,
‘sentence’, ‘formula’ or ‘proposition’. It forms the basis of the proposi-
tional logic, also called zeroth-order predicate logic, which allows to infer
new propositions (theorems) from propositions that were defined to be true
(axioms), through a set of inference rules.

Here is an example of propositional logic. From the propositions

• If it is dark, then Leo hunts.

• It is dark.

it follows:

• Leo hunts.

3.2.2 First Order Logic

The next idea that adds meaning is the correspondence between the symbols
that are used in the language and objects that exist in the world that it de-
scribes. This world is called the domain of discourse. Since the objects are
described by classifying them into classes, they can be viewed as instances
(or examples) of such classes. First-Order Logic (FOL) distinguishes itself
from propositional logic by the use of quantifiers, like ‘for all’, ‘there ex-
ists’ or ‘for exactly three’. In FOL, the quantifiers range exclusively over
the instances in the domain of discourse. In higher-order logic, quantifiers
can also range over classes and predicates.

Here is an example of FOL. The class ‘liger’ is defined by quanti-
fying over all elements x in the domain of discourse. From the two FOL
statements:

• For every x it holds that x is a liger if and only if x is the child of a
male lion and x is the child of a female tiger.

18

Chapter 3. Logic and semantics

• Sinbad is a liger.

it follows:

• Sinbad is the child of a male lion.

• Sinbad is the child of a female tiger.

FOL is already quite expressive. The expressivity of a language is
a measure for the number of ideas that can be expressed in the language.
Through its domain of discourse and its quantification over elements in this
domain, FOL is clearly more expressive than propositional logic. There
is, however, a severe drawback: FOL is not decidable [67]. It is called
semi-decidable, because sometimes statements may follow from the ax-
iomatic statements, but there may also exist statements for which it cannot
be decided whether they follow from the axiomatic statements or not. The
undecidability of FOL implies that it is possible to construct paradoxes in
this language. A famous example of a paradox is the barber paradox, which
contains a self-reference [75]. The paradox is about a city where all the men
remain always shaven, in two possible ways: either by shaving themselves,
either by going to the barber. The barber is required to shave exactly those
men who do not shave themselves. We have the following two axiomatic
statements in FOL:

• There exists a barber x.

• For every y it holds that x shaves y, if and only if y does not shave y.

This can be expressed more formally as follows:

• ∃x barber(x)

• ∀y(shaves(x, y)⇔ ¬shaves(y, y))

The paradox emerges by asking who shaves the barber. The truth of
the statement “The barber shaves himself” (or ∃x(barber(x) ∧ shaves(x,
x))) cannot be decided. This paradox is related to the Russell paradox,
which defines the set of all the sets that do not contain themselves.

Another way to formulate the undecidability of FOL is to say that no
inference procedure can be created for FOL that is both sound and com-
plete. A sound inference procedure is correct for all the statements that are

19

Chapter 3. Logic and semantics

inferred by the procedure, but other possible statements, which are not in-
ferred, cannot be claimed to be evaluated by the procedure. An inference
procedure that is both sound and complete can correctly evaluate the truth
of every possible statement.

3.2.3 Early Knowledge Representation languages

In the early 1970s, Prolog was developed as a logic programming lan-
guage [76]. Although it was initially aimed to process natural language,
it was given a formal underpinning through Horn logic, for which sound
and complete inference procedures can be built [77]. Horn logic is a sub-
set of FOL in such a way that it becomes a decidable language. Just like
FOL, Horn logic uses conjunction (∧, the logical AND), disjunction (∨, the
logical OR) and negation (¬, the logical NOT), but in every disjunction of
literals, only a single literal is not negated. This restriction decreases the
expressivity compared to FOL, but it makes Horn logic decidable in poly-
nomial time. As a result, Prolog was one of the first logic programming
languages that could support real applications in computer science. It is
still popular today.

The search for logic languages that were practically useful contin-
ued in the 1980s. KL-ONE was developed as a knowledge representation
language that could give a logical foundation to semantic networks [78]. In
addition to a network with labeled nodes and connecting relations (the ba-
sis of a semantic network), it also provides a structured inheritance system.
For example, if every bird has wings, and every eagle is a bird, then ‘eagle’
inherits the property of having wings from ‘bird’. The usage of logic for the
representation of knowledge was a driving force to increase the expressiv-
ity of the language, however, KL-ONE and other knowledge representation
systems developed in the 1980s, like K-REP, BACK and LOOM, also paid
attention to the tractability of the algorithms for making the logical infer-
ences [79, 80, 81].

These early KR-systems were given inference procedures that oper-
ated in polynomial time, which is considered as tractable in computer sci-
ence (exponential time in contrast is intractable). However, more detailed
research brought to light that some modest extensions, adding only very
little expressivity, resulted in intractable procedures. Even worse, certain
logical queries were proven to be undecidable in KL-ONE [82].

20

Chapter 3. Logic and semantics

3.2.4 Description Logics

The search for expressive logic languages, that were decidable fragments
of FOL and that could be given tractable inference procedures, led to the
birth of Description Logics (DL) [83]. These form a family of languages for
knowledge representation purposes. They all share a common basis, which
is the relatively inexpressive DL language AL (Attributive language). The
terminology used in DL is slightly different. DL uses concepts instead of
classes, roles instead of relations and individuals instead of instances.

The fundamental building block in DL is the axiom. A terminologi-
cal axiom is about concepts and states to which broader concept a concept
belongs (concept inclusion, for instance ‘African animal is an animal that
lives in Africa’). An assertional axiom states to which concept an indi-
vidual belongs (concept assertion, for instance ‘Dolly is a sheep’) or by
which role two individuals are connected (role assertion, for instance ‘Asia
is located in the Northern hemisphere’). Role assertions always connect
individuals. Axioms that involve two concepts and a role are also termi-
nological axioms. Finally there are also axioms about roles and that state
to which broader role a role belongs (role inclusion, for instance ‘regulates
is broader than negatively regulates’). Table 3.1 contains a list of symbols
that can be used in DL axioms. Since all the DLs are decidable, it can be
decided for any other statement whether it can be inferred from the axioms
or not. If the DL is also tractable, this inference can happen in a reasonable
amount of time.

Concepts are divided in primitive and non-primitive (or defined) con-
cepts. For example, if ‘animal’ is a primitive concept, ‘Africa’ an individual
and ‘lives in’ a role, then the non-primitive concept ‘African animal’ can be
defined as any animal that lives in Africa. For non-primitive concepts there
exists a set of necessary and sufficient conditions for individuals to belong
to the concept.

An important DL is ALC (Attributive Concept Language with Com-
plements), which was introduced by Manfred Schmidt-Schauß and Gert
Smolka in 1991 [84]. It has been the basis for many other DLs. Franz
Baader has reformulated the language in a well-known system that is often
used currently [85]. Such a system can be used to delineate different log-
ics, which can be studied and compared together. The system itself is not a
logic and does not warrant decidability of the logics that are expressed with
it. The logic ALC is expressed as follows:

Let NC , NR and NO be sets of primitive concepts, primitive roles

21

Chapter 3. Logic and semantics

> the top concept: the concept containing all the individuals
⊥ the bottom concept: a concept that contains no individuals
u intersection or conjunction of concepts (and)
t union or disjunction of concepts (or)
¬ negation or complement of concepts (not)
∀ universal restriction (for all)
∃ existential restriction (there exists)
v Concept inclusion (is a)
≡ Concept equivalence
=̇ Concept definition
: Assertion of concept (is instance of) or role (is related to)

Table 3.1: A list of symbols that can be used in DL axioms, and their
meaning.

and individuals, let R be a primitive role and let C and D be ALC con-
cepts. Then the following are also ALC concepts:

• > (top is a concept)

• ⊥ (bottom is a concept)

• Every A ∈ NC (all atomic concepts are concepts)

• C u D (the intersection of two concepts is a concept)

• C t D (the union of two concepts is a concept)

• ¬ C (the complement of a concept is a concept)

• ∀ R.C (the universal restriction of a concept by a role is a concept)

• ∃ R.C (the existential restriction of a concept by a role is a concept)

If, for example, human is an ALC concept, then non-human (the
complement of human) is also an ALC concept. If ‘has child’ is a primitive
role, then ‘individual that has a child’ (existential restriction) is an ALC
concept. If also ‘female’ is an ALC concept, then ‘individual that has only
females as children’ (universal restriction) will be an ALC concept as well.
In this manner, by using the ALC concepts in (series of) axioms of the form

22

Chapter 3. Logic and semantics

C v D, called general concept inclusions (GCI), many advanced concepts
can be defined.

More advanced DLs can be defined by including more advanced
types of concept constructors compared to those used in ALC. Also role
constructors and role axioms can be included for creating more expressive
DLs. Number restriction puts a minimum and/or a maximum on the num-
ber of role assertions for a certain role. For example ‘busy parent’ can be
defined as any person that ‘has child’ at least two. Qualified number restric-
tions counts the number of roles towards a certain other concept. If ‘planet’
is a concept and ‘has part’ is a role, then ‘planetary system’ can be defined
as anything that has part at least two planets. Some DLs can define roles
from primitive roles through role constructors, like the inverse, the union,
the complement or the intersection of one or more primitive roles. The role
chain constructor defines roles that always imply the existence of a chain
of two primitive roles. For example, if ‘assists’ and ‘controls engine’ are
roles, then ‘is co-controller of engine’ can be defined as the chain of these
roles. Role axioms are axioms about roles that provide a necessary condi-
tion for a role, without necessarily providing conditions that are sufficient
for defining the role. Examples of role axioms are transitivity and role in-
clusion. For example, the role ‘is preceded by’ includes the role ‘is directly
preceded by’, because it always holds when the latter holds. The usefulness
of the role chain constructor is greatly advanced by using it in combination
with role inclusion, which is called complex role inclusion. For example, it
can be expressed that ‘is located in’ includes the role that is the chain of ‘is
part of’ and ‘is located in’. This implies that ‘is located in’ holds whenever
the chain of ‘is part of’ and ‘is located in’ exists, without implying that this
chain holds whenever ‘is located in’ exists.

The investigation of the tractability of the different DLs, as well as
the need for comparison of DLs with other logical systems, for instance the
Entity Relationship (ER) model [86], has necessitated to distinguish DL
axioms in assertional axioms or A-box assertions and terminological ax-
ioms or T-box assertions. Assertional axioms are either the assertion that
an individual is an instance of a concept or that an individual is related to
another individual by a role. Terminological axioms are GCIs, which are
about concepts. Axioms that are purely about roles, like transitivity or in-
verses, are sometimes distinguished in a separate R-box. The merger of the
A-box, the T-box and the R-box is called a Knowledge Base in DL par-
lance. The tractability of logical questions in DLs is typically investigated

23

Chapter 3. Logic and semantics

with an empty, a small or a large A-box and/or T-box.
The comparison between DL and relational database systems holds

when ER schemes are considered as a DL T-box, and the database contents
are considered as a DL A-box. In this view, database entities correspond to
DL individuals. This way of equating ER schemes with DL T-boxes may
be useful for comparing performance metrics. Conceptual modeling lan-
guages like ER have proven to hold a tight correspondence to DL-Lite [87].
However, as we will see in the next section, such conversions can lead to
knowledge representations that are not ontologically sound. The database
entities of biomedical databases are very often ontological classes that re-
quire a conversion to DL concepts in the T-box instead of individuals in
the A-box. Biomedical ontologies that are translated to DL often have an
A-box that is empty or almost empty, as is shown by the lack of individu-
als in OBO ontologies. Relational database systems on the other hand, for
which all the contents reside in an ER scheme instead of tables, are usually
avoided.

3.3 Ontologies

Just like Logic, Ontology is a domain of study in philosophy that has its
origins in ancient Greece. It is the second pillar that sustains modern KM.
The word ‘ontology’ is derived from the Greek words ontos, which means
‘being’, and logos, which means ‘word’ or ‘study’. Ontology is the study
of everything that exists. This field was also established by Aristotle [88],
who grouped entities into categories and hierarchies. The word ‘ontology’,
however, was probably invented only some centuries ago. The earliest ex-
tant mention of the word stems from 1613 in the Lexicon philosophicum
by Rudolf Gockel [89].

An ontology, in its original meaning, was considered as a descrip-
tion of everything. In more recent times, say the last two decades, the
meaning has evolved by the use of ontologies for knowledge management
in computer science. An ontology is now considered as a description of
a scientific domain. Consequently, there are many ontologies under con-
struction. In theory, by taking them all together, they might be considered
as the description of everything.

An often used definition in computer science is that of T. Gruber in
1993 [90]: an ontology is a formal, explicit specification of a shared con-
ceptualization. However, this definition also includes computer scientific

24

Chapter 3. Logic and semantics

representations for abstract and virtual domains. Such ontologies can even
describe computer programs and terms that are used within the realm of
the computer program. BFO and the OBO Foundry use a more classical
definition by representing only the things that exist in reality [91]. BFO
explicitly excludes the description of all sorts of conceptualizations, like
ideas, representations and non-existing entities like unicorns.

Modern ontologies are typically organized in hierarchies that have
very generic terms at the top levels. For so-called upper-level ontologies,
these can be terms like ‘thing’, ‘object’, ‘process’, ‘continuant’ or ‘func-
tion’. Ontologies about a more specific domain will define their scope by
their most generic term in the hierarchy, also called the root of the onto-
logy. An ontology about proteins will have ‘protein’ as root, an ontology
about living organisms (taxonomy) may use ‘organism’, etc. Below the
root come terms that are less generic, like ‘p53 protein’ and ‘human p53
protein’ in a protein ontology, or like ‘mammal’ and ‘whale’ in an ontology
about organisms.

Every system or framework that represents knowledge needs to make
similar choices concerning its relation to reality and its usage of very generic
terms. The set of these choices is called the ontological commitment of the
system. Systems with a very different ontological commitment are usually
not interoperable.

3.3.1 Instances and classes

An important distinction for ontologies is the distinction between partic-
ulars (also called individuals) and universals [92, 93]. These terms have
often been debated throughout the history of philosophy. However, they
can easily be equated with instances and classes in logics. The distinction
between these two is not anything more mysterious than the distinction
between proper names and nouns. In English, a proper name is written
with a capital whereas a noun starts with a lower case. Therefore we write
‘Jupiter’, but not ‘Planet’.

The distinction between instances and classes is an important onto-
logical commitment that is universally accepted in the field of Ontology.
However, it is often misused by knowledge engineers who are building
practical applications. For instance, in an ontology about cars, they may
be tempted to model the Mercedes car (the class of all cars from the trade-
mark Mercedes) as an instance by giving it the name ‘Mercedes’ and by
claiming that it represents the (individual) trademark, and not a class of

25

Chapter 3. Logic and semantics

cars. This stands in contrast with the principle of representing the things
that exist in reality, which implies that knowledge about this domain should
be expressed as knowledge about the cars instead of the trademark. Every
class can be logically represented as an instance in this way. Problems will
occur if ontologies with arbitrary distinctions between instances and clas-
ses are integrated into a larger knowledge base. For example the question
‘how many cars are ecological in Belgium?’ in an integrated knowledge
base would reveal the problem. An ontology that had chosen trademarks as
instances might return a number lower than ten, which appeals to an arbi-
trary classification of cars into types of cars. An ontology with the cars as
instances might return a number of thousands or larger.

Similar confusions of speech happen in the domain of biology. When
a biological expert claims that his research is concentrated around ‘only
three proteins’, he will surely refer to three classes (or types) of proteins.
Even more specifically, he will refer to three types of proteins that are pro-
duced from an identical (or very similar) genetic code, rather than three
types that are folded in the same way. It may be good to remember that, in
ontologies, two (instances of) physical objects, like two proteins, are only
considered ‘identical’ or ‘the same’, if they share exactly the same three-
dimensional spatial coordinates, as well as the same time coordinates. In
other words, they must be one. It is not sufficient to look indistinguishably
similar.

Individual proteins are so small and there are so many of them, that
they will never get proper names (not speaking of science fiction worlds).
This fact may be very surprising for logicians, database engineers and
object-oriented programmers, who are used to work only with instances
that can be referred to with identifiers. This is why research on biological
ontologies seems often quite alienated from research on ontologies that is
inspired by practical applications in the domain of logics. The absence of
any identified instances in ontologies about microscopic entities calls for
other applications.

3.3.2 Relations in ontologies

There are different formalisms to represent the modern ontologies in com-
puter science. The most important formalisms are logics from the family
of Description Logics. But almost every modern ontology is represented
as a collection of terms (classes and instances) and relations between these
terms.

26

Chapter 3. Logic and semantics

There are different types of relations. The most important relations
are the subsumption relations that constitute the classification hierarchy.
The relation between a class and a subclass is called is subclass of or is
a. The relation between an instance and a class is called is instance of. All
taken together these relations form a graph that cannot have cycles. In other
words, the subsumption relations form a directed, acyclic graph (DAG).

The subsumption relations do not necessarily use single inheritance,
for which every class can have only a single superclass, forming a tree-
shaped hierarchy. In general, ontologies support multiple inheritance. In
that case the ‘Indian elephant’ can be a subclass of both ‘elephant’ and
‘Asian animal’.

Other important relations that form a DAG are the partonomic rela-
tions, which are called is part of. Whereas a subsumption hierarchy would
descend from bird to owl to screech owl, a partonomy will descend from
bird to bird body to wing to feather. Every screech owl is a bird, which can
not be said for feathers. Every feather is part of a bird.

Both the partonomic relations and the subsumption relations are tran-
sitive. This means that if A is a B and B is a C, then also A is a C. These
relations are also reflexive. This means that every A is a A, and also every
A is part of A. From this fact it follows that the subsumption hierarchy is
always a subset of the partonomic hierarchy. If A is a B, then also A is
part of B. This amounts to saying that every owl is part of a bird, simply
because every owl is part of itself.

There are many other types of relations that are used between terms
in ontologies. They are called is located in, is preceded by, activates, regu-
lates, etc. Some of these are transitive, some are subrelations of others (for
instance every activates relation is a type of regulates relation), and some
even form chains (for instance if A is located in B and B is part of C, then
A is located in C).

3.3.3 An example: the Cell Cycle Ontology

Ontologies can generally be subdivided in domain ontologies and applica-
tion ontologies. Domain ontologies describe a certain scientific domain.
The most famous example is the Gene Ontology, describing the domain of
genome biology.

Application ontologies describe more specific domains by reusing
domain ontologies. A good example of an application ontology in the
biomedical domain that is developed with modern techniques is the Cell

27

Chapter 3. Logic and semantics

bi
ol

og
ic

al

en
tit

y

ce
llu

la
r

co
m

po
ne

nt

bi
ol

og
ic

al
pe

rd
ur

an
t

ce
ll

cy
cl

e
ge

ne

ce
ll

cy
cl

e
pr

ot
ei

n

ge
ne

A.
 th

al
ia

na

S.
 p

om
be

S.
 c

er
ev

is
ia

e

H.
 s

ap
ie

ns

O
rg

an
is

m

bi
ol

og
ic

al

en
du

ra
nt

is
_a

is
_a

is
_a

is
_a

is
_a

is
_a

is
_a

ce
ll

cy
cl

e
m

od
ifi

ed

pr
ot

ei
n

is
_a

is
_a

m
od

ifi
ed

pr

ot
ei

n

ge
ne

 p
ro

du
ct

is
_a

pr
ot

ei
n

is
_a

is
_a

ce
ll

cy
cl

e
co

nt
in

ua
nt

is
_a

is
_a

is
_a

Da
ta

 fr
om

 G
O

Da
ta

 fr
om

 G
O

ce
ll

cy
cl

e
(G

O
)

Da
ta

 fr
om

NC

BI

Da
ta

 fr
om

 M
I

Da
ta

 fr
om

Un

iP
ro

t

Da
ta

 fr
om

O

rth
oM

CL

Figure 3.1: The upper level classes of CCO. The dashed boxes represent
external data sources, whereas the continuous boxes are ontological classes
that were specifically minted to integrate the external data sources in CCO.

28

Chapter 3. Logic and semantics

Cycle Ontology (CCO) [2], which was developed at VIB/UGent and is dis-
cussed in more detail in Chapter 4. This ontology integrates recent knowl-
edge about the cell cycle, the process of duplicating a biological cell into
two daughter cells. The cell cycle consists of a series of subprocesses and
hundreds of genes are involved in the entire process. Detailed knowledge
about these genes, like their interactions, their functions and other processes
they involve in, are spread over different knowledge bases. Scientists who
are interested in the cell cycle can use CCO to find all the concepts that are
related to this process, as well as the relations between these concepts.

The most generic class in CCO (the root) is called ‘biological entity’.
This means that the instances in CCO are all the biological entities that
exist in the universe. In practice, not a single instance in CCO is explicitly
identified by a unique identifier or a name. The knowledge about the cell
cycle is entirely represented by classes and relations between classes. The
instances of biological entity form the domain of discourse, but they are not
addressed individually.

For the management of relations, CCO has integrated RO from the
OBO foundry, and has reverted to the inclusion of Biorel later, which will
be introduced in Chapter 6. Some definitions were initially provided by
the developers of CCO itself, like ‘catalyses’, ‘codes for’, ‘degradates’ and
interacts with for biomolecules and ‘has source’ for organisms. Synonyms
were also provided, like ‘catabolises into’ and ‘decomposes into’ as exact
synonyms of ‘degradates’.

Figure 3.1 shows the subclasses to the right of the root. They are
often represented underneath the root, with the leaves (the most detailed
classes) on the bottom. CCO makes a distinction between perdurants (time-
dimensional processes) and endurants (3D objects) that are derived from
formal ontology. Further subclasses, like gene product and organism, are
more comprehensible for biological domain experts. All the links indi-
cated with is_a can be understood as a formal, logical subclass relation.
Multiple inheritance is used for some classes, for instance for ‘cell cycle
modified protein’, which is a subclass of both ‘modified protein’ and ‘cell
cycle protein’. The logical implication is that ‘cell cycle modified protein’
is a subclass of the intersection of both superclasses.

CCO uses the OBO format, however, it is not orthogonal with other
OBO ontologies. Since CCO is an application ontology, it reuses classes
from domain ontologies. For instance ‘cell cycle’ and ‘cellular component’
stem from the Gene Ontology.

29

Chapter 3. Logic and semantics

3.4 The Semantic Web

Many technologies in computer science have evolved very rapidly since
the beginning of the nineties, when more and more computers got con-
nected world-wide to form the Internet (or the web). The cooperation of
HTML [94, 95], a language for linked computer documents, and HTTP [96],
a protocol for transferring computer documents, gave birth to the World
Wide Web. This was established by Tim Berners-Lee in 1990 [97]. The
World Wide Web can be considered as the human readable part of the In-
ternet.

In 1994, the World Wide Web Consortium (W3C) was founded for
designing new standards for the World Wide Web [98]. Tim Berners-Lee,
who became director of the W3C, set ambitious goals for the further de-
velopment of any related technologies. He envisioned the Semantic Web
as an extension of the World Wide Web [99]. This extension would make
documents and data on the Internet also understandable for computers. The
Semantic Web and its technologies facilitate advanced queries and applica-
tions that can reuse and exchange data that was given a meaning.

The Semantic Web technologies are built on the same basis as the
World Wide Web. It is currently viewed as a stack of technologies: the
famous Semantic Web Stack [100] (see Figure 3.2). The bottom of the
stack consists of Unicode [101] for characters and IRIs [102] for identi-
fiers. Above that there is a syntax layer of XML [103]. This in turn sup-
ports RDF [104, 105], a layer for graph-based representations that facili-
tates intuitive queries with SPARQL [106]. RDF supports more expressive
representation languages like RDFS [107] and OWL [108, 109]. The logic-
based sublanguages of OWL (OWL profiles) give a logical meaning to data
and they facilitate reasoning [110]. By the encryption of the data, Internet
users can have some trust in the Semantic Web machinery.

3.4.1 Unicode

The standard for characters used in Semantic Web technologies is the Uni-
code character set [101, 111], which consists of millions of symbols, with
an upper limit of more than 1 billion symbols (see Figure 3.3). Chinese
characters, Arabic script and script symbols from any other language have
their unique place in the Unicode character set. The standard for identify-
ing the correct symbol by a series of bits within a binary text file is given
by the 8-bit Unicode Transformation Format (UTF8) [112]. The architec-

30

Chapter 3. Logic and semantics

Character set: UNICODEIdentifiers: IRI

Syntax: XML

Data interchange: RDF

Taxonomies: RDFS

Querying:
SPARQL

Ontologies:
OWL

Rules:
RIF/SWRL

Unifying Logic

Proof

Trust
C

ryptogra phy

User interface and applications

Figure 3.2: The Semantic Web Stack has to be viewed from bottom to top.
The more advanced technologies (RDF and OWL) are represented on top,
as they are sustained by the technologies on the bottom (IRI and Unicode).

ture of UTF8 is compatible with its predecessors, the ASCII and ASCII-II
tables [113], which identified only 128 and 256 symbols respectively.

3.4.2 IRIs

The use of global identifiers, that can be shared world-wide among infor-
mation systems connected to the Internet, form a very important component
of the Semantic Web. Identifiers are for computers what words in a natural
language are for humans. If two information systems use different iden-
tifiers, they will not be able to communicate successfully, just like people
who are speaking a different language.

The W3C has adopted a generic syntax for identifiers as a compact
series of characters that identify abstract or physical resources. Such identi-
fiers were initially called Uniform Resource Identifiers (URIs) [114]. They

31

Chapter 3. Logic and semantics

Figure 3.3: The 0020-00FF range in the Unicode character set, also known
as the Latin Alphabet No 1 character set. The table shows the graphic
character symbol on the left and the hexadecimal character value on the
right for each character record. This range is just a tiny part of the whole
range of the Unicode character set, which has reserved space for more than
a billion characters.

can identify anything: websites, documents, data, but also things in the real
world like people, buildings, countries, the Earth and the universe. All these
things are called resources.

URIs are more generic than Uniform Resource Locators (URLs),
which identify a unique location on the Internet [115]. They are also more
generic than the Uniform Resource Names (URNs), which are names for
resources that are not necessarily located on the Internet (see Figure 3.4).
Special schemes exist for URLs and URNs, in such a way that URIs have
an identifier space that includes the locator space and the name space that
are specified by the schemes.

In 2005, the Internationalized Resource Identifier (IRI) was specified
as the recommended generalization of the URI [102]. The only difference
with the URI is the allowed set of characters. For IRIs, every Unicode char-

32

Chapter 3. Logic and semantics

URL URN

URI

Figure 3.4: Uniform Resource Identifiers (URIs) as a superset of Uniform
Resource Locators (URLs) and Uniform Resource Names (URNs).

acter can be used, which includes also characters from Chinese, Japanese,
Russian and many other languages. We can notice that every technology in
computer science requires a certain compromise between the understand-
ability for computers and the understandability for human users and devel-
opers.

3.4.3 SGML

The Standard Generalized Markup Language (SGML) [116, 117] is a very
generic computer readable language that is used by HTML and XML. The
textual symbols that are meant to give the computer readable structure to the
text, are called ‘markup’. For example, the tags surrounding the following
title "<title><boldface> On the origin of species. </boldface></title>", are
markup and they indicate that this is a title and it should be represented in
boldface. SGML is useful as a syntax for any structured format, because it
separates the symbols that are used for structuring from the symbols of the
normal text or data. This separation is the basis for any automated analysis
of text by a computer, which is called ‘parsing’.

3.4.4 XML

The Extensible Markup Language (XML) is a sublanguage of SGML. XML
was engineered to facilitate extensions to the set of syntax rules. By adding
more restrictive syntax rules, many sublanguages of XML can be easily cre-
ated. The validity of a representation as XML can be checked with a single
validator (like the W3C Markup Validation Service) whereas the validation

33

Chapter 3. Logic and semantics

of an XML sublanguage will require some extensions to the existing soft-
ware for validating XML. As such, XML is perfectly suited to serve as a
syntax layer for the Semantic Web. Several other Semantic Web languages
were given an XML syntax, which means they are sublanguages of XML.

Technically, XML has the structure of a tree, with a root, branches
and leaves, or even a collection of many trees. XML can be queried with
XPath [118] and XQuery [119].

3.4.5 HTML

The most important technology for representing documents on the Internet
is the Hypertext Markup Language (HTML). The technology is a part of
the World Wide Web and it is used to represent human readable documents,
which are transferred by the HyperText Transfer Protocol (HTTP). In that
sense HTML is not really a part of the Semantic Web, however, it builds
on the same standards. The location of every document on the Internet is
indicated with a URL, and therefore also with an IRI, which is the basis for
the Semantic Web.

HTML was developed in 1991 by Tim Berners-Lee as a sublanguage
of the more generic markup language SGML. It was intended to make sci-
entific text at the CERN institute more accessible. The most important
feature is the linking of different documents through hyperlinks. Every hy-
perlink is presented to the user as a clickable word that hides the URL of
another document. Berners-Lee also created the first browser for HTML
documents, called WorldWideWeb [120]. More features were added to the
HTML language when Microsoft and Netscape started to develop their own
browsers.

Being a markup language, HTML can also represent boldface, ital-
ics, fonts, tables, figures and much more. The W3C has taken care of
new recommendations for HTML, which has evolved rapidly during the
nineties. The last recommendation, HTML 4.01, was released in 1999 [121]
and was followed by the publication of an ISO/IEC international standard
called ‘ISO HTML’ in May 2000.

ISO HTML is a sublanguage of SGML, but it is not a sublanguage
of the more restrictive XML. This way of developing HTML has ended in
favor of XHTML 1.0 [122], which became a W3C recommendation in Jan-
uary 2000. XHTML has remodeled HTML syntactically as a sublanguage
of XML. Between 2000 and 2009, any updates to HTML were all released
as later versions of XHTML.

34

Chapter 3. Logic and semantics

Since September 2009, a new standard called HTML5 has been un-
der development. The final release of this standard is severely hampered by
the pending status for standardization of many related Web technologies,
like audio and video.

3.4.6 RDF

The Resource Description Framework (RDF) is a Semantic Web language
that can store resources and connections between resources as a large set of
so-called triples. RDF/XML [123] is the preferred syntax for RDF, which
is both valid RDF and valid XML.

Every RDF triple consists of a subject, a predicate and an object.
The subject is a resource (represented with an IRI) or a blank node (rep-
resented by a local identifier), the predicate is always a resource and the
object is either a resource, a blank node or a literal (any series of Unicode
characters).

RDF can be queried with SPARQL (SPARQL Protocol And RDF
Query Language), which has a non-verbose, intuitive syntax. Queries are
submitted to a SPARQL endpoint, which is often accessible worldwide on
the internet. The SPARQL query language is quite similar to SQL [124],
the query language for relational databases. It became an official W3C rec-
ommendation on 15 January 2008. The worst-case complexity analysis of
the SPARQL language predicts that queries require a polynomial amount of
memory space (PSPACE) in function of a combined measure of the length
of the query and the size of the RDF store [125]. This is harder than any
NP-complete problem and in the worst case the computation will require
an exponential amount of time in function of this combined measure.

Six months later, on 15 July 2008, SPARQL Update (SPARUL) [126]
was submitted to W3C. SPARUL is an extension of SPARQL for making
modifications (updates) to RDF in a store, instead of only querying RDF.
This tool appears to be very powerful, as will be shown in this thesis. It is
even possible to facilitate semi-automated reasoning with SPARUL, even
though the tool was created for making atomic updates in RDF stores. In
the beginning of 2012, SPARUL was in the last review stages for becoming
a W3C recommendation.

Other syntaxes for RDF exist as well, like the RDF/TURTLE syn-
tax [127] and the RDF/N3 syntax [128], which are much less verbose com-
pared to the standard RDF/XML. The Turtle (Terse RDF Triple Language)
syntax for RDF was accepted as a first working draft by the W3C Work-

35

Chapter 3. Logic and semantics

ing Group in August 2011. The syntax is a subset of the more general N3
(Notation 3) syntax for RDF. Both Turtle and N3 are much more human
readable and easier to use compared to the recommended RDF/XML syn-
tax, which has better options for advanced programming environments.

Many RDF management systems are built on top of relational databa-
se management systems. RDF stores with SPARQL are currently a very
promising candidate for large-scale KM systems that are compatible with
the principles of the Semantic Web.

3.4.7 RDFS

RDF is very useful as a flexible, technical language for validation, querying
and making updates, however, it does not give much clues for a universally
understood logical meaning of its representations. It gives some basic clues
by the indication that the first part of the triple is the subject, that the second
is the predicate and that the third is the object. This makes a clear corre-
spondence to simple natural language sentences with a subject, a verb and
an object. More advanced logics are required by the Semantic Web commu-
nity, which led to the development of the Resource Description Framework
Schema (RDFS). RDFS became a W3C recommendation in 2004.

RDFS consists of a vocabulary for concepts in modern logic, like in-
stances, classes, subclasses, properties and subproperties. It also includes
‘resource’, a central concept of the Semantic Web. Table 3.2 shows the vo-
cabulary for classes of RDF resources like literals, properties and datatypes.
Table 3.3 shows the vocabulary for properties, like ‘is subclass of’ and ‘see
also’, which are used for relating RDF resources.

Unfortunately, there is no unambiguous method to construct a valid
RDFS representation. The RDFS vocabulary does not overcome the prob-
lems and paradoxes that Bertrand Russell encountered more than a century
ago. RDFS is not a decidable logic which means that different implementa-
tions of validator services and reasoners may come to different conclusions.
Whereas several good RDF validator services are available on the Internet,
nothing could be built for RDFS because of this reason. However, the vo-
cabulary is used abundantly in other Semantic Web standards like RDF and
OWL.

36

Chapter 3. Logic and semantics

Class name comment
rdfs:Resource The class resource, everything.
rdfs:Literal The class of literal values, e.g. textual strings

and integers.
rdf:XMLLiteral The class of XML literals values.
rdfs:Class The class of classes.
rdf:Property The class of RDF properties.
rdfs:Datatype The class of RDF datatypes.
rdf:Statement The class of RDF statements.
rdf:Bag The class of unordered containers.
rdf:Seq The class of ordered containers.
rdf:Alt The class of containers of alternatives.
rdfs:Container The class of RDF containers.
rdfs:ContainerMember-
shipProperty

The class of container membership proper-
ties, rdf:_1, rdf:_2, ..., all of which are sub-
properties of ‘member’.

rdf:List The class of RDF lists.

Table 3.2: RDF vocabulary for classes.

37

Chapter 3. Logic and semantics

Property name comment D. R.
rdf:type The subject is an instance of a class. R C
rdfs:subClassOf The subject is a subclass of a class. C C
rdfs:subPropertyOf The subject is a subproperty of a prop-

erty.
P P

rdfs:domain A domain of the subject property. P C
rdfs:range A range of the subject property. P C
rdfs:label A human-readable name for the sub-

ject.
R Lr

rdfs:comment A description of the subject resource. R Lr
rdfs:member A member of the subject resource. R R
rdf:first The first item in the subject RDF list. Ls R
rdf:rest The rest of the subject RDF list after

the first item.
Ls Ls

rdfs:seeAlso Further information about the subject
resource.

R R

rdfs:isDefinedBy The definition of the subject resource. R R
rdf:value Idiomatic property used for structured

values (see the RDF Primer for an ex-
ample of its usage).

R R

rdf:subject The subject of the subject RDF state-
ment.

S R

rdf:predicate The predicate of the subject RDF state-
ment.

S R

rdf:object The object of the subject RDF state-
ment.

S R

Table 3.3: RDF vocabulary for properties. Domains (D.) and ranges (R.)
are either rdfs:Resource (R), rdfs:Class (C), rdf:Property (P), rdfs:Literal
(Lr), rdf:List (Ls) or rdf:Statement (S).

38

Chapter 3. Logic and semantics

3.4.8 OWL

The Web Ontology Language (OWL) is a technology that stands at the top
of the Semantic Web stack. It can serve for representation of knowledge
through a logic-based meaning. Its development has resulted in 19 different
W3C recommendations, ranging from the treatment of datatypes, to the
usage of syntaxes and OWL profiles.

This language is constructed from several earlier languages, like OIL
and DAML [129, 130], and it is compatible with other standards, like XML
and RDF. The computer understandable meaning of OWL is guaranteed by
the research in Description Logics. The first release of OWL in 2004 distin-
guished three sublanguages: OWL Full, OWL DL and OWL Lite. It turned
out quickly that OWL Full suffered from the same problem as RDFS. Since
it is not based on a decidable logic language, it is not even possible to create
a validator for OWL Full. The language is considered as the superlanguage
that contains all the language constructs, which means that OWL Full can
serve as a vocabulary that extends the vocabulary of RDFS. OWL DL was
based on Description Logics from the very start [131]. It is still the most
expressive logic language that was created for the Semantic Web, however,
computational reasoning in OWL DL may not always be efficient. OWL
Lite was developed as a logic-based sublanguage of OWL DL. Every OWL
Lite representation is therefore also a valid OWL DL representation. Con-
sequently, OWL Lite is less expressive compared to OWL DL. The advan-
tage of using OWL Lite should lay in a better performance for reasoning
and queries. OWL Lite is optimal for very specific applications that require
reasoning and querying about identified instances. Such applications lay
mostly outside biomedical knowledge management.

In 2009, OWL was upgraded with a new release to OWL 2. OWL 2
has several sublanguages, called OWL profiles [110]. An important profile
is OWL 2 DL, the successor of OWL DL, which is a superlanguage of
several other OWL profiles. Three new profiles were added: OWL 2 EL,
OWL 2 RL and OWL 2 QL. Especially OWL 2 EL appears promising for
biomedical knowledge management, since it is a sublanguage of OWL 2
DL that facilitates polynomial time reasoning on large data sets [132].

Since the introduction of OWL 2, the language constructs within
OWL, RDF and RDFS can be used in two different semantical contexts.
The first is the Direct Semantics (DS) [133], which suits DL-based profiles
of OWL, like OWL DL and OWL EL. This semantics assumes a proper
distinction of instances and classes. The second semantical context is given

39

Chapter 3. Logic and semantics

by the RDF-Based Semantics (RBS) [134], which is suited for data that is
represented in OWL Full or RDF(S). However, the answer to some logical
questions within RBS cannot be decided unambiguously.

The recommended standard for the syntax of OWL is OWL/RDF/
XML. This syntax builds further on the RDF/XML syntax, which means
that every OWL file in this syntax can be loaded in any RDF store. In
theory, it is possible to query these OWL files with SPARQL (because it
is valid RDF) and even with XPath (because it is valid XML). In practice
it will be very hard to exploit all the logical expressivity of OWL through
these lower query languages. An OWL profile like OWL DL requires a
reasoner for querying. Reasoners that were built for Description Logic lan-
guages, like Pellet [135] and Kaon2 [136], were easily adapted to read the
OWL/RDF/XML syntax. Other reasoners, like SPARQL-DL [137], were
developed specifically for OWL DL and its recommended syntax.

In spite of all the research in all the efforts that are made to create
different OWL profiles and their corresponding reasoners, it remains a great
challenge to create queries for large-scaled OWL applications. First of all,
the engineers of OWL queries need to agree upon the same logical model
as the engineers of the OWL knowledge base. This is often very difficult
to achieve, since the rigidity of logics requires many modeling choices that
are not intuitive to understand. Secondly, the hardness of computational
reasoning is a severe obstacle. OWL DL reasoners require exponential time
for solving the worst cases and even reasoners for OWL profiles that war-
rant polynomial time may respond too slowly.

3.4.9 Rule languages

The Semantic Web Rule Language (SWRL) [138] was developed in 2004
as a combination of the rule language RuleML [139] and OWL. Rules,
which specify logical inferences, can be used to extend the expressivity of
a logic with the risk of loosing decidability. More specifically, SWRL ex-
tends the expressivity of OWL’s decidable sublanguages like OWL DL and
OWL Lite. SWRL has not become a W3C recommendation, unlike the
Rule Interchange Format (RIF) [140], which was endorsed by the W3C in
2010. RIF expresses rules in XML and defines a system that can import
RDF and OWL. Unfortunately RIF is not intuitive for developers who are
acquainted with OWL or RDF and its development was focused on many
other use cases. Moreover, RIF is partially redundant in scope with OWL
profiles, which can also make logical inferences. SPARQL/Update pro-

40

Chapter 3. Logic and semantics

vides an alternative for declaring rules in RDF, which will be shown in this
thesis. The SPARQL Inferencing Notation (SPIN), submitted to W3C in
2011 [141], may complement this approach by providing an RDF syntax
for SPARQL-expressed rules.

3.4.10 Linked Data

The paradigm of Linked Data extends the basic principles of the Semantic
Web with some extra rules. The rules were not officially endorsed by the
W3C, but they can facilitate more integration and accessibility of knowl-
edge and data. Tim Berners-Lee, director of the W3C, has expressed the
ideas in a technical note in 2006 [142]:

• Use IRIs as names for things.

• Use HTTP IRIs so that people can look up those names.

• When someone looks up an IRI, provide useful information, using
the standards (RDF, SPARQL).

• Include links to other IRIs, so that they can discover more things.

The most important difference with the endorsed Semantic Web prin-
ciples is the idea that every IRI should be dereferenceable. This means that
any common web browser (e.g. Firefox) can retrieve information about the
IRI, just like for the URLs of human readable websites. By the endorsed
Semantic Web principles, IRIs are used for identifying resources in RDF
stores and querying with SPARQL, but they are not necessarily supported
by common web browsers.

Linked Data is RDF data that is browsable. One of the reasons why
RDF is often hard to browse with SPARQL is the presence of many blank
nodes that connect nodes identified by IRIs. Tim Berners-Lee defined a
graph G as browsable if the lookup of any IRI node in G returns information
which describes the node, where ‘describing a node’ is defined recursively
as

1. returning all statements where the node is a subject or object; and

2. describing all blank nodes that are attached to the node by one arc.

41

Chapter 3. Logic and semantics

It will certainly cost more investment in software systems to make
IRIs accessible both in SPARQL endpoints and for general web browsers.
Developers of RDF stores are currently working on this.

In 2010, still in the same personal note, the director of the W3C
added a star rating system as a road to good linked data, particularly for
government data. Good Linked Data:

∗ is available on the web (whatever format), with an open li-
cense.

∗ ∗ is available as machine-readable structured data (e.g. Excel
instead of an image scan of a table).

∗ ∗ ∗ uses a non-proprietary format (e.g. CSV instead of Excel).
∗ ∗ ∗ ∗ uses open standards from W3C (RDF and SPARQL) to iden-

tify things, so that people can point at it.
∗ ∗ ∗ ∗ ∗ links the data to other people’s data to provide context.

In spite of the unofficial manner of publishing and standardizing the
paradigm of Linked Data, the idea has become well known in the Semantic
Web community. It reflects the authority of Tim Berners-Lee, the architect
of both the World Wide Web and the Semantic Web. A journal publication
in 2009 has affirmed the success of the ideas [143].

3.5 SPARQL tutorial

3.5.1 RDF graphs with triples

SPARQL has become one of the most popular Semantic Web tools because
of its intuitive syntax for querying that makes it easy to learn. The queries
specify graph patterns by a set of triples, where some places of the triples
are taken by variables.

The following represents a fictitious RDF graph of four triples:
a b c.
a d e.
b d f.
c d g.

where
a is http://www.semantic-systems-biology.org/SSB#P35568

42

Chapter 3. Logic and semantics

b is http://www.semantic-systems-biology.org/SSB#has_function
c is http://www.semantic-systems-biology.org/SSB#GO_0005515
d is http://www.w3.org/2000/01/rdf-schema#label
e is "Insulin receptor substrate 1"
f is "has function"
g is "protein binding"

a, b, c and d are IRI resources, whereas e, f and g are called literals. The
four triples form a typical RDF representation of the intuitive knowledge
statement “Insulin receptor substrate 1 has function protein binding”. The
first triple (a b c.) serves for automated reasoning and knowledge integra-
tion, the other three are used for attaching a human readable label to the
IRIs. The triples can be represented more efficiently by using prefixes and
the Turtle syntax:

@prefix ssb:<http://www.semantic-systems-biology.org/SSB#>.
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.

ssb:P35568 ssb:has_function ssb:GO_0005515.
ssb:P35568 rdfs:label "Insulin receptor substrate 1".
ssb:has_function rdfs:label "has function".
ssb:GO_0005515 rdfs:label "protein binding".

Let us now take a look at how we can query this small RDF represen-
tation through the query language SPARQL. The following SPARQL query
defines a tiny graph pattern that can match (or bind) the triples in the RDF
representation:

PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
SELECT ?x ?y ?z
WHERE {
?x ssb:has_function ?y.
?x rdfs:label ?z.

}

The WHERE-clause of the SPARQL query consists of a graph pat-
tern with two triples. The triples are separated with a point, which rep-
resents the logical ‘AND’. They might also be separated by the UNION
operator, which would represent the logical ‘OR’. There is exactly one pos-
sible binding of this graph pattern on the graph of four triples represented
above. The pattern binds the following two triples:

43

Chapter 3. Logic and semantics

a b c.
a d e.
Variable x binds a, variable y binds c and variable z binds e. The SPARQL
query will return the following answer:

x y z
http://www.semantic-
systems-biology.org/SSB#
P35568

http://www.semantic-
systems-biology.org/SSB#
GO_0005515

Insulin receptor
substrate 1

In theory, there is no restriction on the number of variables in the
SPARQL queries. Many queries will ask only for a single variable, whereas
more advanced queries may consist of ten or even more variables. In prac-
tice, such advanced queries may become quickly unresponsive. Also the
number of answers may be much more than the single result in this exam-
ple. A graph pattern consisting of one triple with three variables (?x ?y
?z), will bind all the triples in the RDF store exactly once, returning the
whole RDF store as an answer. However, many RDF data providers have
put an upper limit on the number of answers that will be returned to avoid
an overload of the server.

3.5.2 RDF stores with quads

RDF stores are sometimes called triple stores by some, and quad stores by
others. Technically, RDF stores consist indeed of quads rather than triples.
This is because the triples are divided over RDF graphs in the store. Each of
the graphs has its own IRI, just like the subject, predicates and objects in the
triples. Therefore RDF stores contain quads that consist of four identifiers:
a subject, a predicate, an object and a graph. An RDF store cannot contain
two quads with exactly the same four identifiers. Just like every triple is
unique within an RDF graph, every quad is unique within an RDF store.

The following represents a fictitious RDF store with four quads:
a b c h.
a d e i.
b d f i.
c d g i.

where
a is http://www.semantic-systems-biology.org/SSB#P35568
b is http://www.semantic-systems-biology.org/SSB#has_function

44

Chapter 3. Logic and semantics

c is http://www.semantic-systems-biology.org/SSB#GO_0005515
d is http://www.w3.org/2000/01/rdf-schema#label
e is "Insulin receptor substrate 1"
f is "has function"
g is "protein binding"
h is http://www.semantic-systems-biology.org/SSB
i is http://www.semantic-systems-biology.org/labels

If we want to write the same query on this RDF store as compared to the
query on the RDF graph in the previous section, we need to address the two
graphs in the store explicitly. SPARQL has a convenient syntax for this:

PREFIX ssb_base:<http://www.semantic-systems-biology.org/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
SELECT *
WHERE {
GRAPH ssb_base:SSB {
?x ssb:has_function ?y.

}
GRAPH ssb_base:labels {
?x rdfs:label ?z.

}
}

This query will return exactly the same answer sheet with one result.
The separation of the fourth term as an RDF graph is not only apparent
in the syntax SPARQL, but even much more so in the system of loading
RDF files into a store and exporting them from the store. The endorsed
RDF/XML syntax for RDF files contains only triples. When an RDF file is
loaded into an RDF store, the triples are always directed into a single RDF
graph. Once they are in the store, it is convenient to redistribute them to
other graphs with SPARQL/Update queries.

3.5.3 An RDF federation with quintets?

On the 7th of June 2011, the W3C published SPARQL 1.1 Federated Query
working draft [144], an extension to the SPARQL 1.1 Query specification.
Federated queries are SPARQL queries that are sent to different RDF stores
(also called RDF services or RDF endpoints). Answers are retrieved from
all the addressed stores and combined to produce a final answer. Since also

45

Chapter 3. Logic and semantics

these RDF services are identified with IRIs, we can already envision RDF
quintets as a way to identify RDF knowledge statements uniquely in an
RDF federation (or simply the Semantic Web). Such a quintet will consist
of a subject, a predicate, an object, a graph and a service.

Let us consider the following four fictitious quintets on the Semantic
Web:
a b c h k.
a d e i k.
b d f j l.
c d g i k.

where
a is http://www.semantic-systems-biology.org/SSB#P35568
b is http://www.semantic-systems-biology.org/SSB#has_function
c is http://www.semantic-systems-biology.org/SSB#GO_0005515
d is http://www.w3.org/2000/01/rdf-schema#label
e is "Insulin receptor substrate 1"
f is "has function"
g is "protein binding"
h is http://www.semantic-systems-biology.org/SSB
i is http://www.semantic-systems-biology.org/labels
j is http://www.metarel.org/biorel
k is http://www.semantic-systems-biology.org/biogateway/endpoint
l is http://www.metarel.org/sparql_endpoint

In this case, k and l should be SPARQL services (which is not actu-
ally the case for l). If a SPARQL query engineer knows that service l con-
tains labels for biomedical relations, he could create the following query:

PREFIX bgw:<http://www.semantic-systems-biology.org/biogate
way>
PREFIX metarel:<http://www.metarel.org/>
PREFIX ssb_base:<http://www.semantic-systems-biology.org/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
SELECT ?subject ?predicate ?object
WHERE {
SERVICE bgw:endpoint {
GRAPH ssb_base:SSB {
?s ssb:has_function ?o.

46

Chapter 3. Logic and semantics

}
GRAPH ssb_base:labels {
?s rdfs:label ?subject.
?s rdfs:label ?object.

}
}
SERVICE metarel:sparql_endpoint {
GRAPH metarel:biorel {
ssb:has_function rdfs:label ?predicate.

}
}

}

Using the short notation with letters, the graph pattern that is defined
in the SPARQL query might be represented as follows:
?s b ?o h k.
?s d ?subject i k.
?s d ?object i k.
b d ?predicate j l.

A federated query engine is supposed to evaluate all the possible sub-
stitutions in the variables (preceded with the ?-symbol), and all their com-
binations, that exist on the whole Semantic Web. If both services respond
well, the following should be among the results:

subject predicate object
Insulin receptor substrate 1 has function protein binding

Federated querying cannot be hard for such a tiny example. The
problem becomes much worse for billions of triples, distributed over sev-
eral RDF stores. The optimization of SPARQL query execution within a
single RDF store is already a major challenge and many queries remain un-
responsive or are even immediately rejected by the SPARQL engine. The
optimization of federated queries, for which large numbers of partial results
may have to be sent back and forth over the globe, will naturally be much
more cumbersome.

3.6 Personal outlook

Expressive DLs have gained the top position of the Semantic Web in the
form of OWL profiles. They can solve certain logical questions in polyno-

47

Chapter 3. Logic and semantics

mial time, which has been identified in computer science as a sweet spot
for computational problem solving. However, it is important not to over-
estimate the value of polynomial time reasoning. Without any doubt, com-
putational tasks like optimizing the profile of airplane wings and the fitting
of many transistors on a small CPU are served by polynomial time solu-
tions. Such computations lead to final results, which are valuable if their
parameters are optimized above a certain threshold.

In KM, not all computational tasks are served by polynomial time
solutions. The response time of queries for browsing and lookup should
not depend on the size of the data that is not of use for the submitter of the
query. Instead, the response time has to fit within the limits of his patience,
or he will look for another system that is better targeted towards his personal
needs. This means that queries for lookup should answer within some sec-
onds, which means in constant time. The building of consistent ontologies,
on the other hand, is very well served by polynomial time reasoners. Onto-
logy engineers need to check the soundness of their ontological frameworks
through advanced reasoners that operate on small modules. They can also
create logical inferences during a heavy computational session, and store
the results for lookup later.

The Semantic Web supports this view on KM very well by provid-
ing RDF for querying and OWL for building consistent ontologies. Tech-
nologies for RDF, like federated querying and SPARUL rules, are currently
being explored. They can be used to modularize RDF stores in such a way
that queries are launched over relevant data and that heavily queried mod-
ules are computationally better supported. Efforts to create better standards
and more convergence for RDF are currently investigated and will be im-
portant to reach this goal [145].

The Semantic Web is much less suited for mathematical computa-
tions and for the management of unprocessed data. Relational database
systems like MySQL [146] and mathematical packages like Matlab [147],
should be preferred for these tasks. Pattern recognition in Semantic Web
data may only be useful for linguists, since all the data is processed and
organized by humans beforehand.

48

Chapter 4

Querying biomedical
knowledge representations

4.1 Introduction

Biologists, the end users of biomedical knowledge bases, are not skilled in
querying knowledge with computer languages. They feel most attracted to
graphical user interfaces for the querying of knowledge. Instead of looking
into numbers, statistical p-values and name codes in spreadsheets, they pre-
fer to see colorful graphs. The knowledge in a good KR system is captured
by the mind and integrates with ideas, as opposed to the original resources,
which may look like a meaningless matrix. In this chapter, we will inves-
tigate the querying of biomedical knowledge through SPARQL, with an
emphasis on queries that are used for visualization and browsing.

Many different querying systems and visualization systems have evol-
ved in the Life Sciences to help the scientists in digesting the knowledge
in very different areas of the biomedical domain. Biomedical scientists
are confronted with e.g. 3D representations of molecules, abstract cell
pictures, graphical sequence representations, biological networks and clus-
tered arrays of expression data. They have often developed a strong sense
of graphical thinking. Knowledge engineers should meet their needs by
presenting new knowledge visually, thus enabling it to integrate with other
visual representations that are already present in the mind of the biologist.

Designing a query system for visualization is a step that is preceded
by a series of knowledge management operations, like annotation, knowl-
edge acquisition, knowledge integration and reasoning. During this process

49

Chapter 4. Querying biomedical knowledge representations

different types of metadata were added to the knowledge: universal identi-
fiers, cross-references, comments, citation information and statistical mea-
sures. A good knowledge representation will not confront the biomedical
scientist with a raw dump of this mixture of knowledge and data. The chal-
lenge consists of using the metadata appropriately for filtering and coloring
just those parts of the knowledge that are useful for the end user.

This tasks constitutes a severe challenge for large integrated systems
with knowledge derived from different areas. In fact there is not a single
graphical view, nor any single query, that suits every need. A good KR
system will force tool builders to provide special support for specific ar-
eas. The tool builder may even be required to learn in-depth about several
aspects of the knowledge in that area. In spite of these issues, the field
of Knowledge Management should also investigate generic methods for
querying and visualizing knowledge. It is the only manageable approach
for presenting large integrated knowledge bases like RDF stores to users.

We will investigate the possibilities of querying and visualizing RDF
by exploiting the semantics of RDF relations. We will derive the theory
by going to the practice with the use of the RDF query language SPARQL.
The scientific domain of the cell cycle, and the Cell Cycle Ontology (CCO)
in particular, will serve as a use case. This investigation will lead to the cre-
ation of a library of SPARQL queries that are suited for visualizing ontolo-
gies represented in RDF. The library, initially developed for visualization,
will evolve into a more generic library for tackling standard query problems
in RDF. This will eventually pave the way for the emergence of BioGate-
way, an RDF store with an RDF data model that was tested and optimized
with this library.

4.2 Standard queries for browsing and visualization

Some requests for visual displays are independent of the scientific area of
interest because they are translations of questions that are universal. We
will distinguish three universal questions that can apply to any term in a
scientific domain:

• What is this term?

• Which other terms are related to this term?

• Are there any more specific examples for this term?

50

Chapter 4. Querying biomedical knowledge representations

The first question, ‘What is this term?’, asks for superclasses of the
term in an ontology. These are also called ‘parents’ for direct superclasses
and ‘ancestors’ for superclasses in general. For instance, if a researcher
wants to know what ‘ubiquitin-protein ligase inhibitor activity’ means, he
may learn from the direct parental term that it is a ‘ubiquitin-protein ligase
regulator activity’. This is however not a very informative answer. For this
reason it may be a better idea to show all the ancestral terms. This will teach
him that ubiquitin-protein ligase inhibitor activity is an ‘enzyme regulator
activity’ and a ‘molecular function’. The collection of all the ancestral
terms of any ontology term is called the path to the root. The root in a
tree-shaped hierarchy of an ontology will typically be a very generic term
like ‘entity’ or ‘thing’.

Another way of answering the first question is by providing a defi-
nition, synonyms and cross-references to similar or equivalent terms. The
researcher may learn that ubiquitin-protein ligase inhibitor activity “stops,
prevents or reduces the activity of a ubiquitin-protein ligase”.

This term, the ubiquitin-protein ligase regulator activity, denotes a
function. It is obviously related to the term ‘ubiquitin-protein ligase’, which
is not a function but a cellular component. It will therefore not show up
as an ancestor of the function, nor will the function be an ancestor of the
cellular component. The term ‘ubiquitin-protein ligase’ should be given as
one of the answers to the second question: ‘Which other terms are related
to this term?’ This standard query is also called get the neighborhood of
the term.

The third question, ‘Are there any more specific examples for this
term?’, asks for either subclasses or instances of the term. This question
will be most useful for very generic and abstract terms. Similarly as for
superclasses, direct subclasses are also called ‘children’ whereas subclasses
in general are called ‘descendants’. The visual representation of all the
descendants is usually not a good idea because there will be too many for
generic terms. Get the children on the other hand is a standard query in a
browsing system that starts with showing only the most generic root term
to the user. Clicking on that term launches a query to get the children of the
root term.

These three basic queries can also be used for the automated gener-
ation of graphical representations. This constitutes an extra challenge that
will however not be treated in this thesis. The automated generation of
figures requires mature software that can interpret and filter the result set

51

Chapter 4. Querying biomedical knowledge representations

Figure 4.1: The neighborhood (top) and the path to the root (bottom) for
the term CDC55 in CCO, generated with the Ontology Lookup Service
software. The automated generation of figures that give a clear represen-
tation of results on a generic query is a challenge. Results on biomedical
queries are often too abundant and names of entities are too long for fitting
in a clear overview. Some labels are overprinted many times here.

52

Chapter 4. Querying biomedical knowledge representations

according to its size. Figure 4.1 shows some of the problems that may be
caused by automatically visualized queries. The figure was visualized with
a local rebuilt of the software of OLS [45], which is based on DOT [148].
Another solution was finally used for the DIAMONDS platform, which is
introduced in the next Section.

4.3 Querying the Cell Cycle Ontology

4.3.1 The DIAMONDS platform

The Cell Cycle Ontology [2] is an application ontology that integrates de-
tailed knowledge about the cell cycle, a key process in biology that is of in-
terest to many genome researchers. CCO was first published in 2006 [149]
as a computational platform that was developed for the DIAMONDS pro-
ject, an EU sixth framework project (FP6) for the life sciences, genomics
and biotechnology for health [150]. The ontology aimed to enable the study
of the cell-cycle process in four well-known model organisms: two yeasts,
Saccharomyces cerevisiae and Schizosaccharomyces pombe, the plant Ara-
bidopsis thaliana and finally human (or Homo sapiens).

ONTO-PERL [1], an Application Programming Interface (API), was
specifically developed for creating and updating CCO. ONTO-PERL can
also be used to create other ontologies in the OBO format. An automated
pipeline coded in PERL uses modules in ONTO-PERL for recreating CCO.
The pipeline was designed with the ambitious idea to recreate CCO fully
automated overnight, including the downloading of original sources from
the Web. However, the practice has showed that new downloads often in-
clude bugs that cause errors in the modules of ONTO-PERL. Many hands-
on work has been done for the creation of ONTO-PERL and for each recre-
ation of CCO.

Several data sources containing cell-cycle related knowledge are mer-
ged into CCO. The cell-cycle branch of the Gene Ontology [31] provides
a hierarchical framework for the conceptual knowledge in CCO; Gene On-
tology Annotations [32] contain relations about locations, processes and
functions between cell-cycle related proteins and this hierarchy; protein-
protein interactions come from IntAct [27] and UniProt [21]; whereas extra
information about the four model species is obtained through adding the
relevant branches of NCBI Taxonomy [36]. The core format of CCO is the
OBO format [39], which is subsequently used for making exports to other

53

Chapter 4. Querying biomedical knowledge representations

formats like OWL-DL [110], RDF [104], GML [151] and DOT [148]. The
OWL export has been used for investigating logical consistency and new
ontology design patterns [152].

The standard queries for visualization – the path to the root, the
neighborhood and the children – only correspond to three interesting ques-
tions that can be visualized relatively straightforward. There is, however,
a myriad of queries that are potentially interesting for biologists who are
querying a knowledge base. Such queries can involve more than one or two
terms and relations. Biologists are interested in advanced and complex re-
lations between entities like proteins, processes, molecules, environmental
conditions, diseases, species and many more. The visual representation of
the results of such queries, and a fortiori the implementation of a graphical
interface for making such queries, is a much harder challenge.

The final goal of the DIAMONDS project was to implement a graph-
ical interface for generic queries about the cell cycle: the DIAMONDS plat-
form, an EU Deliverable (D5.4). The Cell Cycle Ontology was successfully
delivered as a part of the DIAMONDS project in the form of several valid
ontology formats. Noray Bioinformatics S.L. (NorayBio), a commercial
company, was the responsible partner within the EU project for the im-
plementation of the DIAMONDS platform. Apart from the tabs for the
visualization and navigation of CCO, the DIAMONDS platform contained
also a section for the analysis of gene expression profiles.

The OWL-DL format of CCO was investigated in the research group
of Robert Stevens in Manchester in 2007. The original idea, as defined in
the DIAMONDS project, was that OWL-DL would be the preferred for-
mat for launching queries and for enabling any computational or logical
operations. Initial small versions in the OWL-DL format could be handled,
however, operations on larger versions turned out to be hopelessly slow.
Even well-equipped servers could not load the whole CCO in OWL-DL.
The RDF format on the other hand gave much better results. CCO could be
loaded in RDF and queried with SPARQL, the RDF query language.

For this reason OWL reasoners were abandoned and replaced by Vir-
tuoso [153], an RDF database management system, for handling the RDF
format of CCO. In this way, a SPARQL endpoint provides access to CCO
for any graphical query front-end. The endpoint can literally be considered
as a point where the internal computational calculation of queries inside
Virtuoso ends and where results are passed on, either to end-users, or to
higher level software like the graphical interface built by NorayBio. The

54

Chapter 4. Querying biomedical knowledge representations

endpoint provides explicit support for both possibilities: an HTML-format
of the query results for human users and an XML-format for the processing
by other software.

In this stage of the development, the following desiderata were es-
tablished for visualizing CCO in the DIAMONDS platform:

• Terms should be represented by colored, clickable nodes with a name
inside.

• The colors should reflect the type of the term, like protein, gene or
pathway.

• Extra information about a term, like the definition, synonyms and
comments should be given in a side-panel.

• Clicking on a node should return the local neighborhood.

• There should be an option to return the path to the root.

• It should be possible to select multiple nodes to retrieve their closest
connecting path of relations.

The last desideratum was the most problematic one and there were
different ways of defining the exact question. However, it was the only vi-
sualization feature that did not correspond with a standard query. Moreover,
the idea of a closest connecting path holds the promise of computing and vi-
sualizing biologically relevant paths within the protein interaction network
inside CCO. Because of these reasons this desideratum was considered as
experimental and it was investigated separately.

The visualization applet of the DIAMONDS platform was finally
published as part of CCO’s publication in Genome Biology [2]. A screen-
shot is shown in Figure 4.2.

4.3.2 Integration through IRIs in a single identifier space

CCO was designed to exist in the form of five different ontology files, one
for each of the four model organisms (cco_A_thaliana, cco_S_cerevisiae,
cco_S_pombe and cco_H_sapiens) and one integrated file that included all
the other files (cco). In addition, the integrated CCO would contain orthol-
ogy data (this indicates which proteins in the four model organisms were

55

Chapter 4. Querying biomedical knowledge representations

Figure
4.2:T

he
know

ledge
visualization

appletin
the

D
IA

M
O

N
D

S
platform

.A
query

w
as

launched
to

search
the

term
s

thatcontain
W

E
E

1
in

the
nam

e.
W

E
E

1_SC
H

PO
,a

class
of

proteins
in

the
Schizosaccharom

yces
pom

be
organism

,w
as

selected
by

a
m

ouse
click,w

hich
launched

tw
o

otherqueries
to

retrieve
the

localneighborhood
(visualized

on
the

right)
and

the
properties

(bottom
left)ofthis

term
.

56

Chapter 4. Querying biomedical knowledge representations

expected to be evolutionary descendants of the same ancestral protein hun-
dreds of millions of years ago, when the organisms had not yet diverged into
different species). The reason for keeping more than only the integrated file
was partly the specific interest of biologists who were studying just one of
these four model organisms. An obvious other reason was the gain in com-
putational performance for operations on the smaller files. However, the
RDF translations into five graphs for the different files caused a major prob-
lem for querying across the borders of the different graphs with SPARQL.
This problem, and the solutions that were created for it, are explained here.

The bottom layer of the Semantic Web consists of the IRIs, which
identify the resources used. The W3C recommends the use of HTTP-style
IRIs. Initially, the following namespace was used for creating such IRIs:

http://www.cellcycleontology.org

Through the functioning of domain name servers, anybody with a
web browser (like Firefox) that is connected to the Internet could verify
that this namespace was not for sale anymore. Even if the IRI does not
point to any website, this information can be retrieved from the error code
that is returned to the web browser. It provided the opportunity to create
any IRI, starting with http://www.cellcycleontology.org, for the resources
in CCO.

The idea of IRIs is to use only a single IRI per resource. Ideally this
principle of uniqueness applies for the whole world. This theory stands in
contrast to the ease of maintenance of the identifiers in a separate identifier
space that is under control of the software engineers for a certain knowledge
base. This easy solution had been used on different levels for CCO, which
caused the problems for querying the RDF translations.

Querying over CCO and its original sources

All the external resources that are integrated in CCO get a new identifier
assigned that start with the prefix ‘CCO’. For instance

GO:0007049,

the official OBO identifier for the term ‘cell cycle’ in the Gene Ontology,
turns into

57

Chapter 4. Querying biomedical knowledge representations

CCO:P0000066

in the identifier space of CCO. This practice may cause problems for query-
ing. A query system in a knowledge base that contains both these identifiers
cannot address the term ‘cell cycle’ in a unique way. It is possible to launch
a query within the part of the system that uses only the CCO identifiers, or
the part that uses only the original OBO identifiers, but not across the bor-
ders of both identifier spaces. It may be very useful to make such queries,
because CCO integrates only specific sections of the original sources.

It must be mentioned that CCO contains cross-references to the orig-
inal identifiers. In this way there is a formal correspondence between the
two identifier spaces that would – in theory – allow to make queries that
range over both CCO and the original sources. From experimental inves-
tigations with SPARQL, this theory turned out to be infeasible in practice.
Every resource that is addressed in a query would need to be addressed
twice through the use of UNION operators and some extra AND require-
ments to follow the cross-reference. This will make the query hard to write,
hard to understand and especially hard to compute for the query server. On
the other hand, CCO was designed to allow useful queries within itself,
without requiring the parts of the original sources that were not integrated.
This situation called for the construction of SPARQL queries that were pos-
sible within CCO itself.

At the moment that this design decision was taken for CCO, cross-
references were a recommended practice within the OBO community. This
mentality is slowly changing and the OBO Foundry has adopted IRIs as
identifiers. It is one of the future plans of the developers of CCO to aban-
don the CCO-specific identifiers and exclusively use the identifiers of the
original sources.

Querying across the model organisms in CCO

Creating identifiers and identifiers spaces that are unique world-wide is
an ideal that is not easily achieved. Querying and maintaining resources
that integrate knowledge from several more original sources would become
more difficult when many different namespaces are used. This issue has to
be weighed against the problems that arise from cross-referencing to iden-
tical objects. However, the initial RDF exports of CCO had also relied too
much on cross-referencing for queries within CCO.

58

Chapter 4. Querying biomedical knowledge representations

Since CCO consisted of five different ontology files, and since these
were also translated into five different RDF graphs, the challenge remained
to make queries across the borders of different RDF graphs for CCO. This
brings up a very similar problem as the one with the reassigned and cross-
referencing GO identifiers in CCO. The five graphs were all given a dif-
ferent identifier space, with identifiers that include the name of the model
organism for each of the term. For instance, for the term ‘cell cycle’ in the
RDF graph for Homo sapiens:
http://www.cellcycleontology.org/ontology/rdf/Hs#CCO_P
0000066

This made it impossible for SPARQL to consider the five graphs as
one large graph that contained only a single term ‘cell cycle’. However, the
solution for this problem required only a minor change in the ONTO-PERL
code for the translation from OBO to RDF. Provided with this feedback,
CCO’s developers created a single identifier space for the IRIs within CCO.
This would result in identifiers with the following syntax for this term:

http://www.cellcycleontology.org/ontology/rdf/CCO#CCO_
P0000066

This identifier space was an important requirement for enabling que-
ries throughout the RDF graphs of CCO. It installs the bottom piece of
the Semantic Web Stack. The reporting of some other issues and bugs
have increased the quality of the RDF translation tool in ONTO-PERL.
The attempts to query across the RDF sources of all the original sources
would later be succeeded in BioGateway, which is explained in Chapter 6.

4.3.3 SPARQL queries for browsing requests

A good architecture for the identifiers within a namespace, as explained
in the previous section, has enabled the development of SPARQL visual-
ization queries for the DIAMONDS project. The SPARQL queries were
included in the platform’s Java code, which was developed by NorayBio.
The visualization module was based on a Java subroutine that was written
by Steven Vercruysse, who donated his code for this purpose. This sub-
routine did not create static figures, but it optimized the space between the
nodes and the length of the arcs interactively. It enabled that users zoom
in and out, delete nodes and add nodes with clicks or new queries. The
problem of overwriting in a static display like Figure 4.1 are solved in this
way, as can be seen in the figures 4.3 and 4.4.

59

Chapter 4. Querying biomedical knowledge representations

Figure 4.3: This screenshot shows some important cell cycle phases in
CCO, together with two protein types. By a series of relevant queries and
deletions of irrelevant nodes, users can select and visualize networks, path-
ways or protein interactions that are of interest to their particular research.
The visualization is rendered by the Java subroutine that was written by
Steven Vercruysse and integrated later in the DIAMONDS platform. The
space between the nodes and the length of the arcs are optimized automat-
ically by the subroutine, in order to avoid that labels and nodes overwrite
each other.

60

Chapter 4. Querying biomedical knowledge representations

Get the children: the basis for browsing

For launching generic types of visualization queries, like ‘get the children
of a certain term’, it does not suffice to have a list of hard-coded SPARQL
queries. The node that is clicked should appear as a parameter in the
query. The results, the child terms, should be reusable as parameters in
other queries. The IRIs in the unique identifier space that was created for
CCO could perfectly serve as parameters. In fact it was possible to use only
the part of the IRIs that appeared after the #-symbol as a parameter, because
all the relevant, clickable nodes were identified within this identifier space
for CCO. The following query was included in the DIAMONDS software
for retrieving the children of any term:

NAME: get_children
PARAMETER: CCO_U0000000:
The term for which the children will be found
PARAMETER:
http://www.cellcycleontology.org/ontology/rdf/CCO:
The default ontology IRI
FUNCTION: returns the children of the query-term

PREFIX default_ontology:
<http://www.cellcycleontology.org/ontology/rdf/CCO#>
PREFIX query_term_id:
<http://www.cellcycleontology.org/ontology/rdf/CCO#CCO_U0000
000>

SELECT ?child
FROM <http://www.cellcycleontology.org/ontology/rdf/CCO>
WHERE {
?child default_ontology:is_a query_term_id:.

}

Lines that start with the #-symbol are comment lines for SPARQL,
so they could be used to indicate where the parameters occurred in the real
code. The PREFIX-section serves to reduce long parts of IRIs, that are
used several times, to a shorthand notation. Actually even entire IRIs can
be replaced with a shorthand notation through the use of PREFIX. This is
very useful for parameterizing SPARQL queries, because it allows to put all
the Java-coded parameters in the PREFIX section, followed by a block of
SPARQL code after the SELECT statement that was hardcoded in the Java
software code. In the example above, the prefix query_term_id replaces the
whole IRI

61

Chapter 4. Querying biomedical knowledge representations

http://www.cellcycleontology.org/ontology/rdf/CCO#CCO_
U0000000

This is especially useful for queries where the parameter IRI occurs
more than once in the SPARQL code after the SELECT statement. This
practice of parameterizing through prefixes is even indispensable for an in-
vestigation of an RDF knowledge base with manually launched SPARQL
queries. For a human who is copy-pasting IRIs, it is very impractical to
search for all the occurrences of the IRI in the code and replace it every-
where.

The prefix default_ontology shows that this query deals with a poorly
defined identifier space for the IRIs. The is_a-relation type, used for finding
the subclasses of a CCO term here, is supposed to be a universal concept.
Ideally, there should be only a single identifier in the whole world for it.
This query assumes that it might be identified differently even in different
RDF graphs within the same RDF knowledge base. The creation of Bio-
Gateway later on would be the answer to this problem. In the meantime the
fully integrated CCO ontology, comprising all the four model organisms,
would serve as the ‘default ontology’ for querying.

The meaning and use of the query above is very basic. It finds all
the children of a given term. This query is required in a browse system that
presents the most generic term (the root of the ontology) to the user. By
clicking on any term, the children will appear in the form of a list. Every
term in the ontology can eventually be reached in this way.

Get the name and the type for visualization support

Each answer to a user query is visualized in the DIAMONDS platform. A
system of colors is used to distinguish the type of terms that are returned,
like for instance protein, gene, organism or biological process. For each
term in the answer, the name is written over the nodes and the type is used
to give the node a color. This means that the IRI of each term needs to
be passed as a parameter in a query that retrieves the type and the human
readable name of the term.

The graphical representation of the colored nodes can in turn be used
to initiate new queries. Another option is the selection of specific nodes that
are of interest, and delete the other nodes. A graphical representation of the
most important terms that are related to the cell cycle, and the relations

62

Chapter 4. Querying biomedical knowledge representations

between them, can be seen in Figure 4.3.
The following query provides the basis for the visualization support:

NAME: get_name_and_type
PARAMETER:
http://www.cellcycleontology.org/ontology/rdf/CCO:
The default ontology URI
PARAMETER: CCO_B0000000:
The term for which you want the name and the type
FUNCTION: returns the name and the type for a given term

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX query_term_id:
<http://www.cellcycleontology.org/ontology/rdf/CCO#CCO_B0000
000>

SELECT ?name ?type
FROM <http://www.cellcycleontology.org/ontology/rdf/CCO>
WHERE{
query_term_id: rdfs:label ?name.
query_term_id: rdf:type ?type.

}

The separation of the two triples by a point implies the logical ‘AND’.
This choice requires that every term must have a name and a type, indicated
with rdfs:label and rdf:type (see Table 3.3). No results will be returned for
terms that are lacking either the name or the type. On the other hand, if
there is more than one name or more than one type, there would be more
than one result returned, leading to ambiguity at the level of the Java code
for the visualization. The assumption behind this query is that every term
has exactly one name and one type. This holds for CCO and its RDF trans-
lation, but it may not hold for any random RDF knowledge base.

The query might be formulated slightly more generically through the
UNION and the OPTIONAL operators, which would still return some use-
ful results in the case there are some flaws in the RDF graphs. However,
this would not lead to a predictable query system. We must conclude that
constraints and guidelines for creating RDF representations are necessary
in order to create larger interoperable RDF systems. Such guidelines are
provided by the W3C standards and recommendations. They turn out to be
very valuable here for a very basic query. Also the rest of the work in this
thesis will show that standards are of the greatest importance in the field of
Knowledge Management.

63

Chapter 4. Querying biomedical knowledge representations

Get the neighborhood for horizontal browsing

The knowledge base visualization tab of the DIAMONDS platform was
required to show all the neighboring nodes in the ontology graph when a
node was clicked. This action translates to a query for the union of all the
outward relation arcs (outward arrows) and the inward relation arcs (inward
arrows):

NAME: get_neighborhood
PARAMETER:
http://www.cellcycleontology.org/ontology/rdf/CCO:
The default ontology URI
PARAMETER: CCO_B0002494:
The term for which you get the neighboring terms and the
relations to them
FUNCTION: returns the neighborhood of a term

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX query_term_id:
<http://www.cellcycleontology.org/ontology/rdf/CCO#CCO_B0002
494>

SELECT ?outward_arrow ?object_neighbor ?inward_arrow
?subject_neighbor
FROM <http://www.cellcycleontology.org/ontology/rdf/CCO>
WHERE {

{
query_term_id: ?outward_arrow ?object_neighbor.
?object_neighbor rdf:type ?x
}

UNION
{
?subject_neighbor ?inward_arrow query_term_id:.
?subject_neighbor rdf:type ?y
}

}

The query also contains the limitation that the arcs should connect to
other terms and not to metadata like the name, the definition and comments.
This is expressed by requiring that the neighbor nodes should be of a cer-
tain type, indicated with the predicate ‘rdf:type’. This practice was used
for the RDF translations used for CCO. The intended use of ‘rdf:type’ is to
connect an instance with a class to which the instance belongs. However,

64

Chapter 4. Querying biomedical knowledge representations

Figure 4.4: The neighborhood of the protein class CDC25A. The colors of
nodes represent the type of visualized term (indicated as the object in an
RDF triple ‘term - rdf:type - object’). The symbols on the arcs between
the nodes represent the relation type (indicated as the predicate in an RDF
triple ‘term1 - relation type - term2’).

all the terms in CCO are classes instead of instances, which might make the
usage of ‘rdf:type’ not in accordance with the Direct Semantics of OWL.
But since RDF is not a decidable Description Logic, and therefore not be di-
rectly useful for fully automated reasoning anyway, such modelling choices
remain unproblematic. For the purpose of SPARQL querying, this mod-
elling feature proves to be useful for distinguishing the terms in CCO from
other subject and object nodes in the RDF graph. The visualization of a
neighborhood query can be seen in Figure 4.4.

Search the knowledge base on a name

The presentation of the root of the ontology to the user is one method to start
browsing a knowledge base. Another method, that is often more useful for
lay users, is to search for the terms by their name or by a part of the name.

65

Chapter 4. Querying biomedical knowledge representations

SPARQL offers the possibility to query on regular expressions, which are
formal expressions to identify a series of text characters. The following
query was used as an initialization query to give the user access to CCO in
the visualization tab in the DIAMONDS platform:

NAME: search_labeled_terms_on_name
PARAMETER:
http://www.cellcycleontology.org/ontology/rdf/CCO:
The default ontology URI
PARAMETER: cell: the first search-string
PARAMETER: activity: the second search-string
FUNCTION: returns all the labeled terms for which the name
contains ’cell’ and ’activity’

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

SELECT ?term_id ?name ?type
FROM <http://www.cellcycleontology.org/ontology/rdf/CCO>
WHERE {

?term_id rdfs:label ?name.
?term_id rdf:type ?type.
FILTER regex(?name, ’cell’,’i’)
FILTER regex(?name, ’activity’,’i’)

}

The regex operator takes a literal variable as first parameter and a
regular expression as second parameter. If the literal matches the regular
expression, the regex operator returns the boolean value ‘true’ to the FIL-
TER operator. Literals that do not return a ‘true’ via the regex operator do
not bind the FILTER statement and will not appear in the answer set. The
query shown here is case insensitive, which is achieved through the op-
tional third parameter ’i’. This means that the user does not have to know
the correct spelling exactly and whether upper case or lower case is used.
This increases the chance that he will get the desired results.

Get the properties for information

Another important requirement for the knowledge base navigation tab in
the DIAMONDS platform is the query for all the properties (the metadata)
of a certain term. Such a query must be written very specifically on the
RDF model used, which is the OBO to RDF translation of ONTO-PERL in

66

Chapter 4. Querying biomedical knowledge representations

this case. It collects all the different properties as a union of different triple
patterns, one for each property. Some properties consist of parts that are
always required and other parts that are optional. This results in a rather
long query. The number of results is however low for CCO, for instance 30
entries, which makes the series of unions very manageable for the SPARQL
engine. The different sections in the query were also delivered separately
for inclusion in the Java code. This is the query for returning the properties
of a term:

NAME: get_properties
PARAMETER:
http://www.cellcycleontology.org/ontology/rdf/CCO:
The default ontology URI
PARAMETER: CCO_B0002494:
The term for which you want the properties
FUNCTION: returns the properties of a given term

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX default_ontology:
<http://www.cellcycleontology.org/ontology/rdf/CCO#>
PREFIX query_term_id:
<http://www.cellcycleontology.org/ontology/rdf/CCO#CCO_B0002
494>

SELECT ?name ?alt_id ?definition ?dbname_def_xref ?accession_
def_xref
?comment ?synonym ?scope ?dbname_syn_xref ?accession_syn_xref
?dbname_term_xref ?accession_term_xref
FROM <http://www.cellcycleontology.org/ontology/rdf/CCO>
WHERE{
{query_term_id: rdfs:label ?name}

UNION{
query_term_id: default_ontology:hasAlternativeId ?alt_id.
}

UNION{
query_term_id: default_ontology:Definition ?a.
{?a default_ontology:def ?definition.}

UNION{
OPTIONAL{
?a default_ontology:DbXref ?b.
?b default_ontology:dbname ?dbname_def_xref.
?b default_ontology:acc ?accession_def_xref.
}

}
}

67

Chapter 4. Querying biomedical knowledge representations

UNION
{query_term_id: rdfs:comment ?comment}

UNION{
query_term_id: default_ontology:synonym ?a.
?a default_ontology:syn ?synonym.
OPTIONAL{?a default_ontology:scope ?scope.}
OPTIONAL{
?a default_ontology:DbXref ?b.
?b default_ontology:dbname ?dbname_syn_xref.
?b default_ontology:acc ?accession_syn_xref.
}

}
UNION{

query_term_id: default_ontology:xref ?a.
?a default_ontology:dbname ?dbname_term_xref.
?a default_ontology:acc ?accession_term_xref.
}

}

Show the path to the root

The DIAMONDS platform allows to right-click on the terms and show a
limited list of possible queries. One of these possibilities is to show all the
intermediate terms between the clicked term and the root of the ontology.
This is the query that essentially answers the question: “What is this term?”

This is a very challenging query because the path to the root does not
have a fixed length. Moreover, it is possible that multiple paths to the root
exist and all these paths may be useful to show to the users. Handling such
a variability is an easy task for procedural languages like Java or Perl, but
not for SPARQL. An easier query that is related to the query for the path to
the root is to ask for all the ancestors of a certain term. The difference with
the query for the path to the root is that any is_a relations are missing in the
set that only contains all the ancestors. Also an RDF graph that contains all
the logical inferences (containing an is_a relation arc for every ancestor -
descendant pair) is not useful for this query, because we want to show only
the paths that were designed by the ontology engineers. Too many logically
inferred relation arcs result in a chaotic visual representation.

The only solution to this problem is to assume a very long path to the
root with fixed numerical variable names (n1, n2, etc.) for all the interme-
diate terms in the path. However, the query cannot require that such a long
path exists, because shorter paths must also return results. Any trailing part
of the path must be made optional for that reason. This has resulted in a
very long SPARQL query, with many OPTIONAL clauses:

68

Chapter 4. Querying biomedical knowledge representations

NAME: get_labeled_hierarchy_to_root
PARAMETER: The default ontology URI:
http://www.cellcycleontology.org/ontology/rdf/CCO:
PARAMETER: CCO_T0000004:
The term for which you will get the hierarchy to the root
FUNCTION: returns all the possible labeled subsumption
paths to the root

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX default_ontology:
<http://www.cellcycleontology.org/ontology/rdf/CCO#>
PREFIX query_term_id:
<http://www.cellcycleontology.org/ontology/rdf/CCO#CCO_T0000
004>

SELECT *
FROM <http://www.cellcycleontology.org/ontology/rdf/CCO>
WHERE {
OPTIONAL{
query_term_id: default_ontology:is_a ?n1 .
?n1 rdfs:label ?n1_name.
?n1 rdf:type ?n1_subnamespace.

}
OPTIONAL{
?n1 default_ontology:is_a ?n2 .
?n2 rdfs:label ?n2_name.
?n2 rdf:type ?n2_subnamespace.

}
OPTIONAL{
?n2 default_ontology:is_a ?n3 .
?n3 rdfs:label ?n3_name.
?n3 rdf:type ?n3_subnamespace.

}
OPTIONAL{
?n3 default_ontology:is_a ?n4 .

.

.

.
?n36 rdf:type ?n36_subnamespace.

}
OPTIONAL{
?n36 default_ontology:is_a ?n37 .
?n37 rdfs:label ?n37_name.
?n37 rdf:type ?n37_subnamespace.

}
}

69

Chapter 4. Querying biomedical knowledge representations

A number of 37 is the maximum that is accepted by the SPARQL
engine of Virtuoso. This is a reasonable depth for querying ontologies be-
cause they are mostly less than 10 steps deep. CCO has an average depth
of around 8 and a maximum depth of 34 for the long taxonomic branch of
the term ‘Homo sapiens organism’.

Also an inferred model with inferences for transitivity cannot make
this query shorter, nor the support for transitivity in query time. Both of
these solutions would return a mixture of superclasses in parallel paths in
a random order. After all, SPARQL uses a two-dimensional format with
rows and columns for representing the result set. In order to produce the
same results with a shorter query and for arbitrarily many paths of arbitrary
lengths, SPARQL would require an extension that makes also the number of
columns dependent on the outcome of the query, which is done now only for
the number of rows. SPARQL 1.1 has extended SPARQL 1.0, which was
used here, with abilities for reasoning with transitivity in query time for a
single path, but not to a flexible number of columns for recursive queries
over arbitrarily many paths of unknown lengths. The current situation could
be improved by support for path lengths higher than 37.

Many SPARQL queries that contain more than 10 lines become very
slow and often the SPARQL engine even warns immediately that the query
is too heavy to compute. After all, in the worst cases SPARQL requires a
polynomial amount of memory space and an exponential amount of time in
function of the size of the query. However, this query with 37 clauses and
more than 100 lines always responds within some seconds, even for very
long paths. For our human reasoning intelligence, this is not a surprise,
since this query is not a worst case at all. If only the engine starts tackling
the problem from the bottom of the path, it will never need to store anything
in the memory that is not of use for the further calculation. Clearly, the
SPARQL engine of Virtuoso handles this query in such a way.

4.3.4 SPARQL queries of biological interest

The standard queries for visualization in the previous section have the po-
tential to be useful in any scientific area that uses ontologies in RDF for
knowledge representation. However, the final goal of the DIAMONDS
project was the creation of a computational platform that was specifically
oriented towards cell cycle research. Biologist researchers have research
questions that do not translate to such standard SPARQL queries.

70

Chapter 4. Querying biomedical knowledge representations

Find a chain of interactions between two protein types

An important research question for genome biologists is to find interaction
pathways. A biological pathway consists of a series of proteins and protein
complexes that interact with each other in a certain order. This results in a
certain cellular process with a certain function, which can be upregulated
or downregulated by the expression of the genes that encode the proteins
participating in the pathway. The regulation of the whole cell cycle process
happens through a large number of such pathways. By finding and describ-
ing these pathways, cell cycle researchers get a better understanding of the
basic machinery that is shared by most living species on earth.

The basic components of biological pathways are the interactions
between the proteins in the pathway. For this reason the research question
often reduces to the more basic question of finding these protein-protein
interactions (PPI) and chains of protein-protein interactions. In CCO, every
interaction between any protein type A and any other protein type B is
modeled as a separate term, which represents the class of all such A-B
interactions (cfr. any of the terms at the top of Figure 4.1). The following
SPARQL query retrieves all the chains of interactions between a protein
type 1 and a protein type 4, going over two intermediate protein types 2
and 3:

NAME: get_interaction_paths
PARAMETER:
http://www.cellcycleontology.org/ontology/rdf/Sc:
The default ontology URI
PARAMETER: CCO_B0003246: protein 1, one of the proteins
for which you look for a path of interactions
PARAMETER: CCO_B0000427: protein 4, the other protein for
which you look for a path of interactions
FUNCTION: returns all the paths with the structure:
given protein -> interaction1 -> protein2 -> interaction2
-> protein3 -> interaction3 -> other given protein

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX default_ontology:
<http://www.cellcycleontology.org/ontology/rdf/Sc#>
PREFIX protein1: <http://www.cellcycleontology.org/ontology/
rdf/Sc#CCO_B0003246>
PREFIX protein4: <http://www.cellcycleontology.org/ontology/
rdf/Sc#CCO_B0000427>

SELECT *

71

Chapter 4. Querying biomedical knowledge representations

FROM <http://www.cellcycleontology.org/ontology/rdf/Sc>
WHERE {

The path:
protein1: default_ontology:participates_in ?interaction1.
?protein2 default_ontology:participates_in ?interaction1.
?protein2 default_ontology:participates_in ?interaction2.
?protein3 default_ontology:participates_in ?interaction2.
?protein3 default_ontology:participates_in ?interaction3.
protein4: default_ontology:participates_in ?interaction3.

Filtering out false and duplicate paths:
?interaction1 rdf:type default_ontology:interaction.
?interaction2 rdf:type default_ontology:interaction.
?interaction3 rdf:type default_ontology:interaction.
filter(?interaction1!=?interaction2)
filter(?interaction1!=?interaction3)
filter(?interaction2!=?interaction3)
filter(protein1:!=?protein2)
filter(protein1:!=?protein3)
filter(?protein2!=?protein3)
filter(?protein2!=protein4:)
filter(?protein3!=protein4:)

}

The query needs to filter out many false and duplicate paths. This
is because SPARQL does not require that different parameters in the triple
patterns also refer to different identified resources. Indeed, the query with
a triple pattern consisting of a single triple (?s ?p ?o) will return all the pos-
sible triples in the store, also the triples where the subject and the object are
identical. On the other hand, the query consisting of the pattern (?s ?p ?s)
will return just those triples where the subject and the object are identical.
Filter operations are required to retrieve just those triples where the subject
and the object are different. This applies equally to triple patterns that con-
sist of different lines, like for the SPARQL query above. Obviously, we are
not interested in paths where the same protein type occurs more than once.
In order to express this, many filter lines are required.

The problem with this query was the bad performance of the compu-
tation. Four proteins and three intermediate interactions was the maximum
path size that the SPARQL engine could handle. The query consumed a lot
of time, up to one hour, and longer paths caused the immediate rejection
of the query through an error report that announced an expected query time
that was too long. The bad performance of this query is due to the expo-
nential relation between the length of the path and the number of possible

72

Chapter 4. Querying biomedical knowledge representations

paths that have to be investigated. Each extra node in the path multiplies
the number of possible paths with a factor that depends on the sparseness
of the PPI network.

Experiments succeeded only on the smaller CCO files for a single
model species, but not on the integrated CCO. Finally, retrieving the labels
of the terms in the same query increased the number of lines, which made
the performance metrics even worse. These hurdles have made it prac-
tically very difficult to bring the query to a level where expert biologists
could assess the biological relevance of the results. Because of the bad per-
formance, the query could not be included as a standard lookup option for
proteins in the DIAMONDS platform.

An interesting possibility to address this research challenge might
consist of the creation of recursively precomputed relations between any
two proteins that reveal more information about the nature of the interac-
tion chains between them. This could overcome the computational hurdles
for answering queries about protein interactions. However, such investiga-
tions would require substantial insight in PPI networks and more biological
expertise to assess the relevance of the outcome.

Find the orthologs of a protein type

There are – of course – many other research questions that CCO wants to
support. Most of these question do not depend so heavily on the computa-
tional performance of a SPARQL query engine as compared to the question
of finding chains of protein interactions. The creation of information about
orthology is an example of a computational effort that needs to be executed
before the launch of any query. It is computed with BLAST (Basic Local
Alignment Search Tool) [154], which compares genome sequences from
the different species in detail – at the level of the individual base pairs in
the sequences – and by finding regions of local similarities between the se-
quences. An all-against-all BLAST matrix of compared genes is the input
for the clustering algorithm OrthoMCL, which generates clusters of puta-
tive orthologs.

The proteins that were supposedly orthologous with any core cell cy-
cle proteins were integrated in CCO by linking them all to newly created
terms for the orthology clusters. The clusters are generated from a large
amount of input data and they are dependent on the particular settings (de-
fault settings in this case) of the OrthoMCL algorithm. The only reasonable
option was to use a fully automated naming system for them, using num-

73

Chapter 4. Querying biomedical knowledge representations

bers. This practice is not problematic for CCO, because it is considered as
an application ontology, instead of a domain ontology that is supposed to
use only terms that are universally accepted in a certain scientific domain.
The orthology terms are classes of proteins and they are superclasses of all
the typical protein types that are known by biologists through a meaningful
name.

The orthology cluster terms themselves are not supposed to be re-
turned as an answer to a query, because their names will be meaningless
for biologist users. A meaningful query will retrieve the subclasses of these
terms, which are all classes of orthologous proteins. These subclasses are
the protein types with a meaningful name that is known by biologist experts.
They group the proteins that belong to a specific organism. The following
SPARQL query retrieves the orthologs of a given protein (the query term)
together with the organism to which it belongs:

PARAMETER:
http://www.cellcycleontology.org/ontology/rdf/CCO:
The default ontology URI
PARAMETER: CCO_B0002268:
The term for which you want the orthologs
FUNCTION: returns all the orthologs for a given protein
and The organism to which they belong

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX default_ontology:
<http://www.cellcycleontology.org/ontology/rdf/CCO#>
PREFIX query_term_id: <http://www.cellcycleontology.org/
ontology/rdf/CCO#CCO_B0002268>
SELECT ?ortholog_id ?ortholog_name ?organism_id
?organism_name
FROM <http://www.cellcycleontology.org/ontology/rdf/CCO>
WHERE{
query_term_id: default_ontology:is_a ?ortholog_cluster_
protein.
?ortholog_id default_ontology:is_a ?ortholog_cluster_
protein.
?ortholog_cluster_protein rdf:type default_ontology:term.
?ortholog_id rdf:type default_ontology:
protein.
?ortholog_id default_ontology:belongs_to ?organism_id.
?ortholog_id rdfs:label ?ortholog_name.
?organism_id rdfs:label ?organism_name.
FILTER(?ortholog_id != query_term_id:).

}

74

Chapter 4. Querying biomedical knowledge representations

This query is very suited as a standard query in visualization systems
for genome biologists who are comparing genomes of different species.

User-defined queries

It is impossible to present all the expressivity of the SPARQL query lan-
guage through mouse-clickable drop-down menus and tool bars. That is
why the DIAMONDS platform was also given a special tab, separate from
the visualization tab, for launching user-defined SPARQL queries. This
allows, in theory, to query about every biologically relevant aspect of the
knowledge that is integrated in CCO. However, in practice this task can-
not be expected from biologists. The development of the library of queries
and BioGateway later on was inspired by the research problem of bridging
the gap between SPARQL and the users who want answers on biological
questions. The maintenance of the DIAMONDS platform was finally aban-
doned in order to concentrate on the development of BioGateway.

4.4 Benchmarking biomedical SPARQL queries

4.4.1 Introduction

All the queries that were written for the DIAMONDS platform and CCO
were developed within Virtuoso, one of the major RDF stores that have an
open source version. Virtuoso has both a commercial version and an open
source version and these products have been improved and extended with
regular releases during the last years. It has become faster, more scalable
for larger amounts of data and more up-to-date with the latest W3C rec-
ommendations, like SPARQL/Update, federated querying and support for
reasoning. Other server-based software solutions for RDF have been go-
ing through a similar evolution. For this reason, it is important to have an
objective benchmark for comparing the performance of RDF software.

There are several benchmarks for RDF that are testing the latest re-
leases of RDF software at regular intervals:

• The Berlin SPARQL Benchmark (BSBM) [155] has created artifi-
cial RDF data about commercial products as well as a library of
SPARQL queries that customers and salesmen might need for find-
ing the right information. This library reviews all the aspects of
RDF and SPARQL, like UNIONs, OPTIONALs and FILTER op-

75

Chapter 4. Querying biomedical knowledge representations

erations. BSBM compares native RDF stores, Named RDF graphs,
relational databases that expose RDF and SPARQL-wrappers around
other data-structures.

• The Lehigh University Benchmark (LUBM) [156] assesses several
performance metrics through a set of 14 SPARQL queries on an arti-
ficial domain ontology about universities, departments and students,
that is used to annotate customizable, artificial data. The idea is to
evaluate Semantic Web repositories, like RDF and OWL stores.

• The DBpedia SPARQL Benchmark [157] compares the performance
of RDF stores with real data from DBpedia [158], which is a project
that aims to turn data from Wikipedia into RDF.

Artificially created data and benchmarks are very well suited to test
and compare every aspect of W3C’s specification for RDF and SPARQL.
However, there is one obvious disadvantage: in testing all the challenging
features of the language, the benchmark may not be oriented enough on the
real needs of end-users. Moreover, the query needs of biomedical scientists
may not be comparable to the query needs of salesmen and customers. For
these reasons, it would be useful to create a benchmark with real, biomedi-
cal RDF data and queries.

4.4.2 The NTNU benchmark

The RDF format of CCO and the queries that have been developed for
CCO and the DIAMONDS platform were used to create the NTNU bench-
mark [4, 159]. The historical development of the NTNU benchmark is
represented in Figure 4.5. This development started with the engineering
of CCO in the OBO format. The contents of CCO were selected on the
basis of feedback that was provided by biology experts who had questions
about the cell cycle. The RDF format was created later as an export from
the OBO format. This RDF format was loaded in a Virtuoso RDF store,
which has enabled the development of a library of SPARQL queries for
CCO. The export specification for converting the OBO format to an RDF
format has been improved later by feedback stemming from the experiences
of querying CCO in Virtuoso.

Apart from providing a basis for the comparison of the performance
of different RDF software, the library of queries that was engineered and

76

Chapter 4. Querying biomedical knowledge representations

Graph N
um

be
ro

ft
ri

pl
es

N
um

be
ro

fc
la

ss
es

D
ep

th

A
ve

ra
ge

de
pt

h

N
um

be
ro

fr
el

at
io

ns

N
um

be
ro

fr
el

at
io

n
ty

pe
s

cco 2503040 89526 33 7.72 461946 30
cco_tc 3170556 89526 33 7.72 1129462 30
cco_A_thaliana 356903 12578 34 9.11 22132 30
cco_A_thaliana_tc 469484 12578 34 9.11 134713 30
cco_S_cerevisae 842344 35004 34 7.99 171825 30
cco_S_cerevisae_tc 1120545 35004 34 7.99 450026 30
cco_S_pombe 406131 14584 34 8.86 39997 30
cco_S_pombe_tc 533481 14584 34 8.86 167347 30
cco_H_sapiens 836622 29187 34 8.29 121383 30
cco_H_sapience_tc 1076760 29187 34 8.29 361521 30

Table 4.1: The statistics of the 10 RDF graphs that are used in the NTNU
benchmark. The graph names ending on ‘_tc’ contain triples that were log-
ically inferred from closure rules, like the transitivity of subsumption. The
depth of a graph refers to the maximum number of superclasses for a class
in the hierarchy, whereas the average depth is the number of superclasses
averaged over all the classes.

77

Chapter 4. Querying biomedical knowledge representations

Virtuoso

Jena SDB

Jena TDB

SwiftOWLIM

4Store

24 CPUs

132 GB RAM

14 x 500 GB SAS

representation and
interpretation of

statistics in Excel

1) OWLIM
2) 4Store
3) Virtuoso
4) Jena TDB
5) Jena SDB

response time

Virtuoso

SPARQL
library

CCO in
RDF

CCO in
OBOF

biology
experts

1

feed-
back

2

5

feed-
back

load &
run

3 times

3
4 queriesload

convert

7

8

NTNU benchmark6

9

Figure 4.5: The historical development of the NTNU benchmark, repre-
sented in nine steps. The interpretation of the response times have to be
done carefully, since the material for the benchmark, which consists of RDF
data and a library of SPARQL queries, was developed and optimized on a
Virtuoso RDF store.

78

Chapter 4. Querying biomedical knowledge representations

optimized for Virtuoso can also shed light on how well the different soft-
ware implementations have used the same standards for RDF and SPARQL.
For this reason the ten RDF graphs with content from CCO and the library
of SPARQL queries were selected for the NTNU benchmark.

Four graphs contain taxon-specific knowledge about the cell cycle,
corresponding to the four species taxa that were used for CCO. A fifth graph
is the RDF translation of the whole CCO, which integrates the other four
and contains additional orthology data that cross-links the other graphs.
Each of these five graphs has a duplicate that contains inferred knowledge
from logical rules like transitivity of relations, in addition to the original
data. The ten RDF graphs and statistics about them are given in Table 4.1.

All 24 queries of the SPARQL library were selected without any
modifications. These queries were characterized on the basis of nine fea-
tures:

• Filter is used to filter a result set on numerical constraints.

• Having more than 8 triples in the query pattern (> 8 query triples)
was considered as a special feature.

• Optional may return extra variables in an optional query pattern,
without restricting the result set in case the query pattern cannot be
filled in.

• Limit is used to limit the result set to a given number of results.

• Order by is an operator that orders the result set alphabetically on a
given variable.

• The distinct operator reproduces every result only once within a re-
sult set.

• Regex provides a method to filter on regular expressions.

• The union operator combines the result sets of different query pat-
terns.

• Count can be used to count the number of results in the result set.

This characterization is shown in Table 4.2. It should be remarked
again that the queries were never designed to include special combinations
of the nine features, which is a common practice in the design of query

79

Chapter 4. Querying biomedical knowledge representations

Fi
lte

r

>
8

qu
er

y
tri

pl
es

O
pt

io
na

l

Li
m

it

O
rd

er
by

D
is

tin
ct

R
eg

ex

U
ni

on

C
ou

nt

Q1 x
Q2 x
Q3 x x x x x
Q4
Q5
Q6
Q7 x x
Q8 x
Q9 x

Q10 x x x x
Q11
Q12 x
Q13 x x x x
Q14 x
Q15
Q16
Q17 x x
Q18 x x x x x
Q19 x x x
Q20 x x
Q21 x x
Q22
Q23
Q24 x x x

Table 4.2: 24 queries (Q1 through Q24) were used in the benchmark. Spe-
cial SPARQL features for every query are listed in this table.

80

Chapter 4. Querying biomedical knowledge representations

benchmarks. The advantage of this choice is that the NTNU benchmark
reflects the query needs of biologists more realistically.

4.4.3 Comparing RDF software

The selection of the contents of the NTNU benchmark is followed by the
execution of a comparison that uses the benchmark. Four other non-com-
mercial RDF storage software solutions were compared to the performance
of the open source edition of OpenLink Virtuoso:

• Jena SDB

• Jena TDB

• SwiftOWLIM

• 4Store

Jena [160] is an open source software layer that has been implement-
ing the Semantic Web recommendations since the earliest developments of
RDF and OWL. The names ‘SDB’ and ‘TDB’ can be read as SPARQL
Data Base and Triple Data Base, however, the acronyms are chosen as
alphabetic successors of ‘RDB’, the acronym for the classical Relational
Data Base. 4Store [161] and OWLIM [162] have become popular much
later, around 2010. At the time of the comparison presented here, which
was executed in 2010, OWLIM was released both as an open source ver-
sion, called SwiftOWLIM, and a closed source commercial version, called
BigOWLIM. In order to assess the solutions that are available to science,
the open source version of OWLIM was selected for the comparison.

A special procedure was developed for executing the comparison
with the NTNU benchmark. The experience of querying through SPARQL
on Virtuoso has revealed that the response time of a query may be heavily
dependent on the execution of previous queries and the size of the RDF
data that is loaded in the store. Virtuoso contains an optimizer for SPARQL
that decides which search strategy should be performed first. In addition to
that, it also caches results, partial results and RDF triples that are of impor-
tance for producing a quick answer to queries that were launched before.
In order not to be confronted with the unpredictable behavior that stems
from such optimizations, the comparison procedure included three phases

81

Chapter 4. Querying biomedical knowledge representations

for each RDF software solution. Data files that were produced during a cer-
tain phase were deleted and the RDF store was shut down before the start
of the next phase. This implies that also the files with the RDF data about
CCO were deleted each time.

During each phase, all the queries in the SPARQL library were laun-
ched once for each of the ten RDF graphs and always in the same order. The
outline of the testing procedure is formulated more formally as follows:

for each RDF storage system {
repeat 3 times {

delete data files
switch on RDF store
load data
run all queries
switch off RDF store

}
}

The analysis was performed on a Dell R900 machine with 24 Intel(R)
Xeon(R) CPUs (2.66GHz), operated by Unix. The machine was equipped
with 132GB main memory and 14x500GB 15 000 RPM SAS hard drives.
This machine was, however, not a machine that was specifically dedicated
for this task. Other processes, from other computational tools, were also
running on the same server. The three replicated experiments have enabled
to compare differences in the run-to-run reproducibility. For any strate-
gies to improve the performance of the query execution, like indexing, the
defaults suggested by each of the RDF storage systems have always been
selected.

4.4.4 Analysis and results

The loading performance and the total query time required by the 5 storage
systems can be found in Table 4.3. The times for loading the 11 million
triples varies with a factor 15 for the different systems: 4Store could load
the 10 graphs in 2 minutes and 8 seconds, whereas Jena SDB took more
than 33 minutes for this task. Considering the loading time as a criterion for
the performance, we get the following order: 4Store - OWLIM - Virtuoso -
Jena TDB - Jena SDB.

The total time required for answering all the queries in the NTNU

82

Chapter 4. Querying biomedical knowledge representations

benchmark suggests an entirely different assessment. Whereas Virtuoso
uses only 2 minutes and 24 seconds to answer a set of 240 queries, OWLIM
and 4Store need about 4 hours and 13 hours respectively to answer the same
set. Jena SDB on the other hand, being the slowest system for loading,
needs only 12 minutes and 10 seconds for this task. However, the ensuing
analysis will show that the total loading time is not a correct criterion to
assess the performance of the storage systems.

Store Load time Total Query time
4Store 128 s 47567 s

OWLIM 230 s 14258 s
Virtuoso 527 s 204 s

Jena TDB 833 s 1446 s
Jena SDB 2005 s 730 s

AVG 745 s 12841 s

Table 4.3: Load time - the total time for loading the 10 graphs (11.3 million
triples) averaged over the three runs. Total Query time - The total time
for answering the 240 queries (24 queries on 10 graphs) averaged over the
three runs.

The 24 queries of the benchmark were run 3 times on the ten graphs
for 5 RDF storage systems. All the queries were launched from the com-
mand line of the Unix operating system, which gave detailed reports about
the execution time of the queries by comparing precise Unix dates. Each
query was run on the 10 RDF graphs, however, the differences in execu-
tion time for the same query on different RDF graphs have not appeared
to be very interesting nor unpredictable. Since these differences are not of
importance for comparing the 5 storage systems, they were summed to a
single time value. This summation includes any delay time between the
execution of different queries. The run-to-run reproducibility of the exe-
cution time during the 3 phases was very good. Obviously the deletion of
data files and the restart of the system between the phases has guaranteed
this reproducibility. The values were averaged, reducing the result sheet to
120 values that are the basis of the analysis.

These 120 values can be found in Table 4.4, with the queries Q1 to
Q24 as rows and the type of storage system as columns. They are a sum-
mation of time values for a query that has run on ten graphs, expressed in

83

Chapter 4. Querying biomedical knowledge representations

Q
ue

ry

Vi
rtu

os
o

OW
LI

M

4S
to

re

Je
na

TD
B

Je
na

SD
B

G
eo

m
. a

vg
.

Q23 5.630 0.009 1.343 10.454 13.343 1.568
Q16 5.617 0.009 1.346 10.825 13.345 1.579
Q11 5.343 0.011 1.419 10.703 13.339 1.641
Q15 6.163 0.018 1.390 10.544 13.342 1.850

Q4 5.916 0.017 1.539 10.773 13.348 1.859
Q12 7.198 0.030 1.400 10.731 13.373 2.125
Q13 1.658 0.034 1.569 14.156 52.545 2.310

Q8 7.094 0.049 1.577 10.449 13.336 2.380
Q2 7.281 0.052 1.438 10.768 13.337 2.391

Q22 5.170 0.173 1.428 10.981 13.709 2.862
Q5 2.639 0.408 1.526 11.000 13.446 3.000

Q19 2.065 1.326 9.795 13.390 4.353
Q9 5.820 1.067 2.133 10.699 13.711 4.546
Q6 4.054 2.020 1.779 10.573 14.523 4.676

Q21 3.379 1.316 9.818 13.335 4.912
Q17 5.648 1.350 10.119 13.390 5.669

Q1 1.897 8.024 1.647 14.258 18.064 5.781
Q20 6.110 1.315 10.686 13.387 5.822
Q10 4.679 4.664 2.529 11.676 13.757 6.159
Q14 5.775 91.894 1.401 46.433 13.338 13.57
Q24 2.813 27.242 14.366 38.619 24.719 16.007

Q7 2.617 28.996 14.110 39.248 26.519 16.196
Q3 3.358 1121.702 3.654 27.049 30.476 25.761

Q18 22.840 8325.734 24999.569 493.596 76.013 708.373

Table 4.4: A cumulative response time in seconds for each query, sum-
med over the 10 graphs, compared for the five RDF storage solutions. The
queries are ordered from fast to slow, based on the geometrical average per-
formance (Geom. avg.). The syntax of some queries could not be processed
by OWLIM.

84

Chapter 4. Querying biomedical knowledge representations

seconds. This means that, for example, an execution of query Q5 by Jena
TDB on a single of the 10 RDF graphs took about 1.1 seconds (11 seconds
for all the graphs). The geometrical average time value for each query, aver-
aged over the 5 types of storage systems, is represented in the last column.
The benefit of representing the geometrical average instead of the normal
average is that values that are very small compared to others are also taken
into account. This average value has been used for ordering the queries
from fast to slow. Query Q23 has appeared to be the fastest responding
query.

OWLIM was the only storage system that could not interpret the
syntax of some SPARQL queries in the library, namely Q17, Q19, Q20 and
Q21, which are queries that include the COUNT operator. All the other
systems could interpret all the queries that were tested and developed in
Virtuoso. Also the loading of the 10 RDF files into the different systems
had not posed problems. This means that the W3C standards for SPARQL
and RDF were implemented quite well.

The exceptionally long response times for queries Q3 and Q18 sug-
gest that OWLIM and 4Store were not optimized to handle these queries
efficiently. The 25 000 seconds that 4Store needed for query Q18 explains
its long total query time. Four of the five slowest queries contain a FILTER
REGEX operator and two of the five use the ORDER BY operator. Query
Q18, the most problematic query, contains two FILTER REGEX operators,
an ORDER BY and uses more than 8 triples in its query pattern, as can be
seen in Table 4.2. The whole query Q18 reads as follows:

NAME: search terms by properties
PARAMETER: cell: first search-string
PARAMETER: cycle: second search-string
FUNCTION : returns terms with the name, definition,
synonym or comment containing the specified
search strings

BASE <http://www.semantic-systems-biology.org/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb: <SSB#>
PREFIX graph: <CCO>

SELECT ?name ?found_in ?type_of_found_text
WHERE {
GRAPH graph: {
FILTER regex(str(?found_in), ’cell’, ’i’)
FILTER regex(str(?found_in), ’cycle’, ’i’)

85

Chapter 4. Querying biomedical knowledge representations

?term_id rdfs:label ?name .
{
?term_id ?type_of_found_text ?found_in .
?term_id rdfs:label ?found_in .

}
UNION {
?term_id ?type_of_found_text ?a .
?term_id ssb:Definition ?a .
?a ssb:def ?found_in .

}
UNION {
?term_id ?type_of_found_text ?a .
?term_id ssb:synonym ?a .
?a ssb:syn ?found_in .

}
UNION {
?term_id ?type_of_found_text ?found_in .
?term_id rdfs:comment ?found_in .

}
}

}
ORDER BY ?term_id

A graphical representation of the results is shown in Figure 4.6. The
comparison of the performance of the 5 storage systems has to be analyzed
with care, because the queries were optimized to perform well on Virtuoso
and were never tested before on the other systems. However, the execution
time of the 11 fastest queries is very consistent. The five systems always
have the same ranking for these 11 queries. For fast queries, OWLIM re-
sponds 30 to 100 times faster than 4Store, 100 to 500 times faster than
Virtuoso and up to 1000 times faster than Jena SDB and Jena TDB. The
graph shows that OWLIM is the only system that has continued to optimize
the speed of the queries into the range of milliseconds. 4Store got second
place, whereas Virtuoso, the store on which the queries were optimized,
comes third. In the fourth and fifth places come Jena TDB and Jena SDB.

Slow queries are heavily biased in favor of Virtuoso, since the op-
timization process has eliminated all the queries that responded extremely
slow. This is why the profile of Virtuoso, shown in the middle on the graph,
does not show any high peaks for the slow queries on the left side. All
the queries respond within the range of seconds. It may be expected that
such very long response times would be absent for the other RDF storage
systems as well, if the library of SPARQL queries were optimized for these
systems.

86

Chapter 4. Querying biomedical knowledge representations

Q18
Q3

Q7
Q24

Q14
Q10

Q20
Q1

Q17
Q21

Q6
Q9

Q19
Q5

Q22
Q2

Q8
Q13

Q12
Q4

Q15
Q11

Q16
Q23

0.01

0.05

0.5

5

50

500

5000

50000

OWLIM
4Store

Virtuoso
Jena TDB

Jena SDB

Queries from slow to fast

T
im

e
(s

)

Figure 4.6: The time in seconds of queries that were launched ten times sub-
sequently on ten graphs, compared on a logarithmic scale for five different
RDF storage systems. Queries are ordered from slow to fast. OWLIM is
highly optimized for fast queries, whereas the apparent good performance
of Virtuoso for slow queries reflects the history of the development of the
NTNU benchmark.

87

Chapter 4. Querying biomedical knowledge representations

88

Chapter 5

Metarel: an ontology for
relations in RDF

The knowledge in bio-medicine and many other scientific domains consists
of a large number of detailed knowledge statements. These are millions of
statements about classes of proteins, genes, organisms, processes, chem-
icals, diseases, etc. This brings us huge Knowledge Management chal-
lenges. RDF is very suited to represent direct relations between large num-
bers of classes. The use of SQL and RDF query languages on voluminous
RDF data in RDBMS provides very good results for knowledge manage-
ment and continues to be developed with new extensions [163, 164]. Fed-
erated querying over different RDF stores in remote locations on the Web
is a promising technology that is currently explored.

Another important use case for RDF is the integration of triples in
regular websites, in order to specify what the website, or parts of the web-
site, are about. These triples refer to entities in the real world, which are
made available for automated reasoners.

The incorporation of small parts of RDF code, also called RDF snip-
pets, in websites, has been proposed for search engines and the idea is pro-
moted by Google [165, 166]. The uncomplicated syntax and the simple
idea that every triple represents a knowledge statement that is more or less
context independent may lower the threshold for such applications.

In spite of the popularity of RDF, its development in the field of
semantic reasoning has slowed down in favor of OWL. The standard RDF/
XML syntax for OWL has enabled to load OWL ontologies in RDF stores
with great ease. However, RDF has its own benefits for knowledge man-

89

Chapter 5. Metarel: an ontology for relations in RDF

agement and reasoning that is not exploited by OWL and its RDF syntax.
Since OWL is based on DL, it describes relations between instances. The
description of direct relations between classes, which form the backbone of
biomedical knowledge, is not within the scope of OWL. Apart from some
exceptions like subsumption and instantiation, relations that involve clas-
ses are remodeled as indirect chains of relations that are cumbersome to
work with in native RDF tools. The meaning of a single RDF triple be-
comes dependent on other triples through the indirect model. Moreover,
the OWL/RDF syntax model is not intuitive and requires the understanding
of DL.

It is clear, however, that OWL is a valuable technology for reasoning
and KM. Its DL-based semantics is much more expressive than what can
be expressed with direct RDF relations. In this chapter we will explore
how direct relations in RDF can be described semantically, without losing
compatibility with logic-based OWL ontologies.

5.1 The foundation of the Metarel vocabulary

5.1.1 RDF graphs versus multidigraphs

A very short statement consisting of a subject, a predicate and and object, is
a very useful element in Knowledge Representation. This is what is called
a triple in RDF. It is the basis for Metarel, a controlled vocabulary about
relations. The name ‘Metarel’ is derived from meta-relation, which is a
relation between relations.

Every triple could be thought of as a labeled arc that goes from the
subject to the object. The label of the arc is the predicate (typically a verb
with some adverbs). Here follow some examples of triples in the biomedi-
cal domain:

• nucleus is part of cell

• p53 is a protein

• p53 is located in nucleus

• protein is encoded by gene

• heart is part of body

• nerve is connected to muscle

90

Chapter 5. Metarel: an ontology for relations in RDF

• horse is a mammal

• doctor Lisa is employed by UZ hospital

• doctor Lisa takes care of patient Marc

• UZ hospital is located in Ghent

• Ghent is located in Belgium

To clarify the approach used, we have to distinguish RDF graphs,
which are represented by a set of triples, from multidigraphs (MDG), which
are mathematical, directed graphs that can have multiple arcs. Every MDG
can be considered as an RDF graph, but not every RDF graph is an MDG.

In an RDF graph that is an MDG (or an RDF/MDG graph), a triple
consisting of three identifiers (a b c) will be represented as an arc from one
node to another, where the identifiers a and c will be used for the nodes, and
the identifier b for the arc. Whenever an RDF graph is an MDG, we can call
triples simply relation arcs. A graphical representation of RDF graphs and
MDGs can be seen in Figure 5.1.

RDF graphs in general allow that identifiers used in the central place
of a triple are also used in the first or last place of a triple (in the same
triple as well as in other triples). This is not allowed in MDGs. One cannot
visualize (depict) any set of triples with nodes and arcs like in an MDG.
How would we visualize the triple (a a a)? The same problem exists for
the triple (a b c), when a occurs in the central place of many other triples.
Moreover, RDF graphs distinguish blank nodes, which are only identified
within the RDF graph, from URI nodes, which are identified within the
whole Semantic Web. RDF graphs in general are harder for browsing, vi-
sualizing and querying, but they have extra possibilities that can be used to
enhance the expressivity of representations in RDF.

5.1.2 The idea behind Metarel

A relation within Metarel is understood as the entire, directed connection
that holds from one term to another term. Metarel aims to describe the
logical meaning of relations in MDGs by using the full expressive power
of RDF graphs. This is essentially different from the approach of the
OWL/RDF syntax, which requires the full expressive power of RDF graphs,
both for the description of relations as for the relations themselves.

91

Chapter 5. Metarel: an ontology for relations in RDF

a c
b

b

e

d

f

b

b

d

bd

a c

ea b c

b d e

e b c

a b c

c b d

c e fM
D

G
R

D
F

 g
r a

ph

triples directed arcs

Figure 5.1: Triples and directed arcs as representations for MDGs and RDF
graphs. The representation with arcs for general RDF graphs, as shown on
the lower right-hand side, is not entirely satisfactory. The number of arcs
does not equal the number of triples and the visualization of two triples (a
b c) and (b a c) will either treat the triples asymmetrically or either create
an infinite number of arcs.

Figure 5.2 shows the typical OWL/RDF syntax model as compared
to the simple model that Metarel assumes. The OWL/RDF syntax contains
a rather low fraction of meaningful classes and instances and a bigger frac-
tion of metarelations and blank nodes. These metarelations can be logical
relations (like ‘subclass of’ or ‘instance of’), logical quantifiers (like ‘some
values from’ or ‘all values from’) and range indicators (like ‘on property’
or ‘has value’). Metarel on the other hand describes MDGs that consist
entirely of meaningful classes and instances for the nodes and verbal ex-
pressions (or predicates or relation types) for the relation arcs between the
nodes. Such MDGs are very intuitive in use for people who build SPARQL
queries or for biologist annotators. They can use, for example, the triple
‘tongue has function tasting’ instead of a graphical derivative of ‘tongue is
a subclass of the class of all these things that are bearers of a tasting, which
is a function’.

92

Chapter 5. Metarel: an ontology for relations in RDF

A B

metarelation metarelation

metarelation

node or graph
pattern

external meaningful term
or relation type

A B

R

RDF used for generalised
logical axioms that involve
two meaningful terms (class
or instance) A and B.

RDF restricted to
meaningful terms.

Metarel can be used
to describe the
meaning of R.

OWL/RDF

Metarel

Figure 5.2: The idea behind Metarel. The OWL/RDF syntax describes
advanced logical patterns whereas Metarel assumes arcs with subjects (A),
relation types (R) and objects (B).

5.1.3 An MDG as a visualizable ontology representation

In order to set up a vocabulary for describing logical relations in an MDG,
some clarification of terminology is required. Consider an MDG O, which
allows multiple self-loops and in which the arcs have identifiers (see Fig-
ure 5.3). Let us avoid the use of label for identifier, to be able to use it later,
but let it be clear that O is what is known in mathematics as a labeled, di-
rected multigraph allowing multiple self-loops. O consists of a set of nodes
D (identified by identifiers), a set of multi-arcs R, and a set of arcs A. In-
stead of speaking of tail nodes and head nodes for arcs, we will speak of
subject nodes and object nodes, respectively. A multi-arc r ⊆ A denotes

93

Chapter 5. Metarel: an ontology for relations in RDF

Instance ID 1

Instance ID 2

Class ID 1

Class ID 2

relation type ID 1

relation type ID 2

relation type ID ...

relation type ID 3
re

lat
ion

 ty
pe

 ID
 ...

re
lat

ion
 ty

pe
 ID

 ...

rela
tion

 typ
e ID

 ...

r. t. ID ...

Figure 5.3: An MDG with 4 nodes, 12 multi-arcs (3 self-multi-arcs) and 18
arcs (5 self-arcs). For instance, the three arcs from instance 1 to instance 2
form a single multi-arc. Also single arcs are counted as one multi-arc. The
multi-arcs represent relations (maximum 16 for 4 nodes) and the arcs rep-
resent instantiations of these relations in relation types (unlimited number).

the set of arcs between two nodes (from a subject node to an object node).
Therefore, a multi-arc is identified by a pair of identifiers, consisting of a
subject node identifier and an object node identifier. The cardinalities of R
and D are related: #R ≤ (#D)2.

D consists of two disjoint sets of nodes, set I containing the instance
nodes and set C containing the class nodes of the domain of discourse. The
classes are assumed to have a definition outside the MDG. Also labels for
the nodes and the set of relation types T are assumed to exist outside the
MDG.

5.1.4 Relation arcs and relation multi-arcs

We can distinguish four important subtypes for relation arcs: instance rela-
tion arcs, class relation arcs, instance-class relation arcs and class-instance
relation arcs, depending on the types of the nodes where the relation arcs
start and end. An instance relation arc goes from an instance node to an

94

Chapter 5. Metarel: an ontology for relations in RDF

instance node, while an instance-class relation arc goes from an instance
node to a class node. Class relation arcs and class-instance relation arcs
are defined similarly. For relation multi-arcs we can make exactly the same
distinction: instance relation multi-arcs, class relation multi-arcs, instance-
class relation multi-arcs and class-instance relation multi-arcs.

• instance relation arc: Troy is located in Turkey.

• class relation arc: lion eats zebra.

• class-instance relation arc: human lives on Earth.

• instance-class relation arc: ISS is residence of astronaut.

• instance relation multi-arc: Julius Caesar is born in Roman empire
and Julius Caesar extends Roman empire.

These examples are represented by their labels, but the actual relation arcs
consist of identifiers like:

http://en.wikipedia.org/wiki/Troy
http://www.semantic-systems-biology.org/SSB#located_in

http://en.wikipedia.org/wiki/Turkey

5.1.5 Relation types

As every relation arc expresses a relation type that is unique within a rela-
tion multi-arc, it makes sense for relation types to define subtypes, super-
types and disjointness. A relation type t1 is a subtype of a relation type t2
(and t2 a supertype of t1) if all the relation multi-arcs that contain a rela-
tion arc declaring t1, also contain a relation arc declaring t2. Two relation
types t1 and t2 are disjoint if there are no relation multi-arcs that contain
two arcs where one expresses t1 and the other t2. These definitions imply a
hierarchy of relation types, which is known in DL as a role hierarchy.

We can also distinguish four special classes of relation types (Re-
lation Type Classes or RTCs): the instance relation type, the class rela-
tion type, the instance-class relation type and the class-instance relation
type. A relation type t is an instance relation type if only instance relation
arcs express t. Similar definitions apply for the other types.

95

Chapter 5. Metarel: an ontology for relations in RDF

Relation Type Class Domain Range
Class relation type Sub(cd) Sub(cr)

Instance relation type Ext(cd) Ext(cr)

Instance-class relation type Ext(cd) Sub(cr)

Class-instance relation type Sub(cd) Ext(cr)

Table 5.1: Domain and ranges for different types of relation types, assigned
by two classes cd and cr.

Every relation type t ∈ T may have a domain and a range assigned,
defined by two well-chosen class nodes cd, cr ∈ C. If the domain and the
range are set identical, they are defined by only one node cd ≡ cr. Let us
call Sub(c) the set of all the nodes in C that represent a subclass of a certain
class c ∈ C (also c ∈ Sub(c)). We call Ext(c) the set of all the nodes in
I that represent an instance of c. For the class relation type the domain is
Sub(cd) and the range is Sub(cr), for the instance relation type the domain
is Ext(cd) and the range is Ext(cr), for the instance-class relation type
the domain is Ext(cd) and the range is Sub(cr) and for the class-instance
relation type the domain is Sub(cd) and the range is Ext(cr) (see Table
5.1). The domain and the range of a relation type t should be chosen such
that the subject node of any relation arc declaring t is always in the domain
of t and the object node of that relation arc is always in the range of t.

In the triple representation of the MDG, the relation types can only
occur in the central place of the triples.

5.1.6 The Metarel interpretation: multi-arcs as relations

A multi-arc is the set of all the relation arcs that start from a given subject
and end in a given object. The (relation type) identifiers of the arcs within
a multi-arc are unique. Therefore such identifiers can define types of multi-
arcs. The multi-arc is an abstract concept that represents the relation from
the subject to the object, in all its aspects. Relation types are like classes
of multi-arcs that share the same type of relation arcs. We can call the
multi-arcs relation instances or simply relations. Similarly as for natural
language, relations are identified by a subject and an object. This is the
interpretation that will be used for Metarel.

For instance, the mother-baby relation is a ‘feeds’ relation. But the
same relation is also a ‘gives birth to’ relation. That is why the mother-

96

Chapter 5. Metarel: an ontology for relations in RDF

baby relation is better represented by a multi-arc than a single arc. The
baby-mother relation is another relation which instantiates the relation type
‘needs’.

5.1.7 Relation types as mathematical relations

Properties of a relation type t will be defined in this section by using some
well-defined properties of an associated mathematical binary relation R.
The latter is defined by a set of elements V and a set of couples E in V × V .
For the mathematical interpretation of t, let V be the set of graph nodes D,
and let E consist of the relation arcs declaring t. Now t is called transitive
ifR is transitive and t is called symmetric ifR is symmetric. Two relation
types t1 and t2 are called each other’s inverses if their associated binary
relationsR1 andR2 are each other’s inverses (also called converses).

The chosen domain and range of a relation type t do not always cor-
respond with those of its associated binary relationR. For a binary relation
R the domain is defined as follows: an element x is in the domain of R if
there exists an element y such that the couple (x, y) belongs to R. This is
stronger than the definition for the domain of a relation type t, for which
only holds that if a subject s is not in the domain of t, then there will be
no relation arc declaring t with subject s. Similar definitions apply to the
range. We can still conclude that the domain of t must be chosen as a su-
perset of the domain of R and the range of t as a superset of the range
ofR.

The difference in definitions for domain and range accommodates
for a fundamental difference between Mathematics and Ontology. Mathe-
matics can assume perfect knowledge over the domain of discourse, being
the elements and the set of couples. Ontology uses domains and ranges
as semantical properties to make general statements about a domain of dis-
course which is known imperfectly, or too large to describe in all its detailed
exceptions. Let us give an example: if the domain of a relation type ‘has
child’ is set to ‘living organism’, it means that only living organisms can
have children. It does not have to mean that all living organisms actually
do have children.

Also for reflexivity of relation types another definition is needed than
the definition that would follow from the associated binary relation. A re-
lation type t is reflexive if the binary relation Rd is reflexive, where the
domain of t is taken as the set of elements Vd for the binary relation Rd.
When an ontologist states that a relation type ‘is located in’ is reflexive,

97

Chapter 5. Metarel: an ontology for relations in RDF

he means that everything that can be located in something is located in it-
self. Without this special definition it would require that just everything is
located in itself, even immaterial things (like functions or temporal inter-
vals) that do not even have a location. The domain of a reflexive relation
type necessarily equals the domain of its associated binary relation, because
everything in the domain is at least related to itself.

5.1.8 Overview of the terminology

An overview of the terminology is given in Table 5.2. The use of ‘rela-
tion’ in Metarel is compared with RDF, OWL, DL and Mathematics. Arcs
and multi-arc are syntactical artefacts, and are not entities that are itself de-
scribed by Metarel. A multi-arc describes a relation, whereas an arc can be
considered as an axiom that represents the fact that a certain relation is an
instance of a certain relation type.

Apart from ‘couple’, which is interpreted as ordered pair in Mathe-
matics, not many other terms are in use to denote a Metarel relation. Both
‘couple’ and ‘pair’, however, are terms that may be somewhat confusing in
an ontological context. If they come in use in the field of Ontology, they
may be confused with individuals that represent the mereological sum of
two other individuals, or with a class of two individuals. Also in natural
language, the couple John-Mary is viewed as something different than the
relation that John has to Mary. Distinguishing relation from relationship for
solving this issue might create even more confusion. In spite of these con-
siderations, the reader should be well aware that Metarel makes a contro-
versial choice by calling ‘relation’ what is called ‘couple’ in Mathematics.

5.2 Formalizing logic and semantics through rela-
tions

The notion of ‘relation’ was defined within an MDG that has either classes
or instances as nodes. Now a system will be proposed, consisting of three
classifications, to provide a logical meaning to such relations: a classifi-
cation of relations, a classification of relation types and a classification of
relation type axioms. The union of the three classifications is a special type
of relation ontology that will be called a Metarel ontology. It requires RDF
graphs instead of MDGs for its representation. The goal of the Metarel on-
tology is to formalize the logical meaning of relation types. These will be
used as subjects and objects inside the Metarel ontology.

98

Chapter 5. Metarel: an ontology for relations in RDF

(S,P,O) Metarel: relation arc
RDF: triple
DL: assertion

P Metarel: relation type
RDF: predicate
OWL: property
DL: role
Mathematics: relation

(S,O) Metarel: relation
Mathematics: couple

Table 5.2: The terminology in Metarel compared with terminology in RDF,
OWL, DL and Mathematics. They are compared on the basis of a generic
Subject-Predicate-Object structure, as used in RDF.

5.2.1 Metarelations

Obviously certain relation types are related to each other. For example, the
relation type has descendant is a supertype of the relation type has child.
The relations between relation types will be called ‘metarelations’. The
creation of metarelations requires the more general RDF graph instead of
an MDG.

5.2.2 Labels for relation types

Let us analyze now the following two relation arcs, or triples, represented
by their labels: ‘Zeeland is part of The Netherlands’ and ‘province is part
of country’. They seem to be using the same relation type is part of, but
actually their relation types cannot be the same. The first ‘is part of’ must
be an instance relation type, as it connects two instances, and the second
‘is part of’ must be a class relation type. Indeed we are missing some se-
mantics in the sentence ‘province is part of country’. What is meant would
probably be something like: ‘Every province is part of some country’.

Although both relation types may have the same label ‘is part of’,
they are in fact different and they have a different identifier. It would often
be hard to find human readable labels that can serve as identifiers in an RDF
graph, as most quantifiers and modifiers of relations do not fit in a single
triple. Sentences like ‘province all-some class relating part of country’ are

99

Chapter 5. Metarel: an ontology for relations in RDF

not to be preferred. For the virtues of user-friendly browsing, visualizing
and text searching, it is better to hold an intuitive and consistent represen-
tation with labels. A good rule for the creation of such labels is to use a
verb in them, conjugated in the third person singular. Such labels may not
express all the intended meaning but they lay a basis for natural language
representation. The full semantics will be hidden in the identifiers of the
relation types, which are formalized in the Metarel ontology. The identi-
fiers can be used by visualization systems, query systems, reasoners and
for Knowledge Management purposes. Natural language processing sys-
tems can use the semantics of the identifiers to conjugate the verbs in the
labels properly and add quantifiers like ‘every’, ‘a’, ‘some’, etc.

5.2.3 A classification of relations

As was discussed before, relation types can be ordered in a hierarchy, which
has relation types as classes and relation multi-arcs (or simply relations) as
instances. It corresponds to the role hierarchy in DL. This classification
is important for computational reasoners, as it allows to derive supertypes
from subtypes.

The assertion that a relation is an instance of a relation type, does not
belong to the Metarel ontology. This is exactly what a relation arc asserts
in the MDG. Only the subsumption of a relation type by another relation
type needs to be asserted in the Metarel ontology.

An example is the relation between a protein type PAF1 and DNA
recombination. If this relation is classified as a ‘negatively regulates’, then
it is automatically also classified as a ‘regulates’.

5.2.4 A classification of relation types

The classification of relation types is a metaclassification compared to the
classification of relations. An example is the classification of ‘is part of’,
‘is located in’ and ‘is preceded by’ as transitive relation types. Relation
types are instances in this classification. Relation types with common se-
mantic features (like reflexivity or transitivity) can be grouped in classes of
relation types (like ‘reflexive relation type’ and ‘transitive relation type’).
Such classes will be called relation type classes (RTC). The whole classi-
fication is shown in Figure 5.6. Multiple inheritance allows that a certain
relation type instantiates several RTCs. The RTCs ‘instance relation type’,
‘class relation type’, ‘instance-class relation type’, etc. have been discussed

100

Chapter 5. Metarel: an ontology for relations in RDF

Relation type
axiom

is a

has start

is end of

is directly
preceded by

has second
relation type

has firs
t

relation type

has resulting
relation type

Metarel ontology

MDG ontology

is preceded by
is subtype of

breast-
feeding childbirth pregnancy

has
start

is end
of

is directly preceded by

is preceded by

Figure 5.4: Two relation arcs ‘is directly preceded by’ and ‘is preceded by’
can be derived in the MDG from the classification of relations and relation
type axioms in the Metarel ontology.

before. They can be classified as pairwise disjoint here.
An important subtype of relation types are those that are based on

an underlying instance relation type. Such a relation type will be called an
‘instance-based relation type’. Most instance-based relation types will be
instance-class relation types, class-instance relation types or class relation
types, but it could also be a relation type from a more generic RTC. Metarel
acknowledges that other relation types can exist between classes, instances
and classes and between concepts in general. Classifying a class relation
type like ‘has a longer class name than’ would not be an instance-based re-
lation type. For allowing extensions ‘instance-based relation type’ is added
as a sibling of the other metaclasses in the hierarchy, assuming multiple in-
heritance between all of them. This means that any relation type can always
be classified as both an instance-based relation type and for example a class
relation type.

101

Chapter 5. Metarel: an ontology for relations in RDF

5.2.5 A classification of relation type axioms

The semantics of a relation type is defined by relation type axioms. Some
axioms apply to a single relation type (for instance ‘is part of is reflex-
ive’). These axioms can be asserted by creating an appropriate RTC and
classifying the relation type as one of its instances. Other axioms apply
to two relation types (for instance ‘is part of is the inverse relation type
of has part’). These axioms can be asserted with a metarelation between
the relation types. However, there are also axioms that apply to three dif-
ferent relation types, in particular for relation types that form chains. For
instance the relation between two classes A and C is an is directly preceded
by, whenever the relation between A and a class B is a has start and the
relation between B and C is an is end of.

In a graph-based representation format, such axioms require a proper,
identifiable node in the Metarel ontology, which can be connected with the
relation types through metarelations. These metarelations can suffice to
provide the intended meaning to the axiom (see Figure 5.4).

5.3 Metarel in the Semantic Web

5.3.1 Internationalized Resource Identifiers for Metarel

In order to be useful for the Semantic Web, the terms in the Metarel vocab-
ulary need IRIs as identifiers. Because the vocabulary will be used for the
management of RDF stores, the IRIs would better be human readable. They
will show up everywhere in scripts and update queries that are dealing with
the management of the store. Also OWL and RDF(S) use human readable
IRIs for their vocabulary.

The terms in the Metarel vocabulary will get an identifier in the
namespace of http://www.metarel.org/, such as http://www.metarel.org/Re-
lationType, abbreviated metarel:RelationType. The use of http-style IRIs
is a recommended practice for Linked Data on the Semantic Web. Any
web agent can easily verify that the namespace http://www.metarel.org/ is
in use by trying to resolve any IRI in this namespace via Domain Name
Servers. This gives a guarantee that any IRI created in this namespace is
unique worldwide.

102

Chapter 5. Metarel: an ontology for relations in RDF

Metarel ontology

MDG for ontologies,
knowledge and data

describes

RDF graph

Linked Data

Figure 5.5: Metarel can be loaded in any RDF graph and it can be used to
describe the meaning of those triples that can be interpreted as an arc that is
logically meaningful within an MDG that separates classes from instances.

5.3.2 Practical usage

Metarel is released in an RDF format, metarel.rdf1, which can be loaded in
OWL software systems as valid OWL Full, and as an RDF graph in RDF
stores. The Metarel ontology can be exploited by adding it to the same RDF
graph or RDF store that contain Metarel-described relation types. Query
and rule libraries, like libraries of SPARQL and SPARQL/Update queries,
can address both the Metarel ontology and the RDF data. The usage of
metarel.rdf is depicted in Figure 5.5 and will be demonstrated in Chapter 7.

5.3.3 Engineering Metarel with existing vocabulary

We will now analyze which terms in Metarel equate with corresponding
terms in OWL. Since the release of OWL 2, W3C’s most advanced ontology
language consists of different DL-based profiles, like OWL DL and OWL
EL, on the one hand, and an unrestricted combination of all the language
constructs, OWL Full, on the other hand. They all share the same language
constructs, identified with exactly the same URIs, however, their seman-
tics depends on the context in which they are used. OWL profiles use the
Direct Semantics (DS) [133], whereas OWL Full assumes the RDF-Based

1http://www.semantic-systems-biology.org/inhouse/metarel.rdf

103

Chapter 5. Metarel: an ontology for relations in RDF

Semantics (RBS) [134]. This practice has kept the number of metaconcepts
in OWL relatively low so far, although their meaning remains dependent on
the context.

The RDF-Based Semantics suits OWL Full, which was created to
support many database and knowledge representation systems [108]. This
semantics allows RDF tool builders to implement support for important
metaconcepts like owl:inverseOf, owl:sameAs, owl:TransitiveProperty, etc.,
within RDF stores. In order to profit from this support and in order to al-
low compatible support for class relation types, the use of the RDF-Based
Semantics is required. However, the meaning of some metaconcepts in
Metarel will be clarified by equating them with metaconcepts under the
Direct Semantics. In case the Direct Semantics is meant in the ensuing ex-
planation, the URIs will be extended with -DS. Otherwise, the RDF-Based
Semantics is assumed. All the metaconcepts can still be merged in a single
hierarchy, as is shown in Figure 5.6.

The most central RTC in OWL, the root of the metaclassification
that parallels ‘relation type’, is identified as rdf:Property. It has the same
meaning in both OWL-RBS and OWL-DS. Its description as "a relation be-
tween subject resources and object resources" stems clearly from the efforts
to create compatibility with RDF, where everything is considered as a ‘re-
source’ [107]. But within the OWL documentations, the word ‘property’ is
systematically considered as a relation between instances (also called indi-
viduals). Also from the definitions of all the metaconcepts that have a place
lower in the hierarchy, like owl:ObjectProperty, owl:TransitiveProperty,
etc., it follows that properties stand only between instances. This means
that while RDF considers everything (instances, classes, relations, data,
websites) as a resource, OWL-RBS considers all these things as instances.

The root of the hierarchy of the relation type classification, metarel:
RelationType, can be equated with the root of the property model in OWL
Full, rdf:Property. Below that come owl:DataTypeProperty, owl:Annota-
tionProperty and owl:ObjectProperty in the hierarchy of OWL Full. All the
relation types that were discussed for Metarel are object properties since
owl:ObjectProperty is formally equivalent to rdf:Property [167]. metarel:
ClassRelationType and metarel:InstanceRelationType come below owl:Ob-
jectProperty in the hierarchy, as disjoint classes, although neither can equate
with anything in OWL-RBS. metarel:TransitiveRelationType can equate
with owl:TransitiveProperty and metarel:SymmetricRelationType with owl:
SymmetricProperty. rdfs:subPropertyOf can be used between a relation

104

Chapter 5. Metarel: an ontology for relations in RDF

relation type = rdf:Property (OWL-RBS)
owl:ObjectProperty (OWL-RBS)

class relation type
all-some class relation type
invertible instance-based class relation type

all-all class relation type
some-some class relation type
tight class relation type

instance-based relation type
instance relation type = owl:ObjectProperty (OWL-DS)
instance-class relation type
reflexive relation type = owl:ReflexiveProperty (OWL-RBS)
symmetric relation type = owl:SymmetricProperty (OWL-RBS)
transitive relation type = owl:TransitiveProperty (OWL-RBS)

class-instance relation type

Figure 5.6: The relation type classification integrated with the RDF-Based
Semantics (OWL-RBS) of the OWL property model. The instance relation
type equates with the Direct Semantics (OWL-DS) for owl:ObjectProperty.
The classification assumes multiple inheritance instead of disjointness. For
instance, some class relation types may be transitive relation types, others
may not be.

type and its supertype and owl:inverseOf can be used between any relation
types that are each other’s inverses.

The metarelations rdfs:domain and rdfs:range for domains and ran-
ges have a more narrow definition than metarel:hasDomain and metarel:
hasRange. Following the RDFS and OWL documentation, properties that
are assigned a domain, resp. range, cannot have classes as subject, resp.
object [107, 108]. This excludes class relation types from having domains
and ranges in OWL-RBS. However, these OWL constructs can be used for
the instance relation types.

These are the most important terms in OWL that equate with Metarel
terms in the RDF-based semantics, but some more terms equate within
the direct semantics of OWL. The most central of all is the notion of ‘in-
stance’ in Metarel, which can be equated with owl:Individual-DS. This im-
plies a commitment to the same distinction between instances, classes, data
and annotations as for OWL-DS. In this semantics owl:ObjectProperty-DS

105

Chapter 5. Metarel: an ontology for relations in RDF

can be equated with metarel:InstanceRelationType. Metarel:isInstanceOf
equates with rdf:Type-DS and metarel:isSubClassOf with rdfs:subClassOf -
DS. These two relation types might be classified as instances of respec-
tively metarel:InstanceClassRelationType and metarel:ClassRelationType.
Properties like owl:sameAs-DS and owl:differentFrom-DS can be classi-
fied as instances of metarel:InstanceRelationType. The OWL-DS mean-
ing of the metaconcepts that come below owl:ObjectProperty-DS can be
formed through multiple inheritance in Metarel. Owl:TransitiveProperty-
DS, owl:SymmetricProperty-DS and owl:ReflexiveProperty-DS correspond
to transitive instance relation type, symmetric instance relation type and re-
flexive instance relation type, respectively.

Although RTCs like metarel:ClassRelationType, metarel:Instance-
ClassRelationType and metarel:ClassInstanceRelationType still cannot e-
quate with any particular OWL language construct in the Direct Semantics,
they can be represented by a composition of several OWL constructs (as
shown in Figure 5.7 B). They are called property restrictions by value con-
straint in OWL. The different types of class relation types (all-some, all-all,
some-some and tight) are all property restrictions with existential quantifi-
cation. The virtue of Metarel is exactly to have the composed representation
of such property restrictions compacted into a single triple.

By this equalization of the Metarel vocabulary with OWL, it be-
comes possible to use Metarel in RDF together with (any flavor of) OWL
ontologies in an RDF store and have compatible support for the whole store.
It enables the development of reasoners that operate on this union and tools
that create conversions between both types of representation.

5.3.4 Relational vocabulary beyond OWL

The virtue of Metarel is the use of instance based relation types, modeled
as a single triple. These are the relation types for which OWL requires a
complex of several triples.

Probably the most important instance-based relation type is the ‘all-
some class relation type’. If the class relation type ‘is part of’ in the triple
‘province is part of country’, is classified as an all-some class relation type,
it means that ‘all provinces are part of some country’. A metarelation is
used to express that the class relation type ‘is part of’ ‘is based on’ the
instance relation type ‘is part of’.

The inverse of an all-some class relation type is not another all-some
class relation type. It requires another metarelation to relate two all-some

106

Chapter 5. Metarel: an ontology for relations in RDF

class relation types that are both based on a pair of inverse instance relation
types. Such class relation types are each other’s reciprocals [38]. Class
relation types that are each other’s inverses and that are based on a pair of
inverse instance relation types are invertible instance-based class relation
types. The all-all class relation type, the some-some class relation type and
the tight class relation type are distinguished depending on the quantifica-
tion method that is used to base them on instance relation types.

The all-all class relation type is based on an instance relation type
in such a way that every instance of the subject class has a relation arc,
declaring the instance relation type, to every instance of the object class.
This means that every relation arc declaring an all-all class relation type
corresponds in mathematics to a complete relation between two classes.
For instance, the all-all class relation type ‘knows’, based on the instance
relation type ‘knows’, applies between globetrotter and continent. Every
globetrotter knows all the continents. The RTC of some-some class relation
types is defined similarly as those for the all-some and all-all class relation
types. ‘Human eats animal’ will imply that some humans eat some animals,
if this relation type is asserted to be a some-some class relation type. A
double implication follows from asserting that a relation type is a tight class
relation type. An ontology engineer created a relation type ‘is located in’
and asserts it as a tight class relation type, based on the instance relation
type ‘is located in’. Then from ‘city house is located in city’ follows that
every city house is located in some city and that for every city, there is some
city house that is located in this city. The relation type ‘is integral part of’
in RO, the relation ontology the OBO Foundry, was defined as a tight class
relation type, based on the instance relation type ‘is part of’.

The distinction of RTCs of relation types here is not intended to
be exhaustive. Class relation types were also investigated in the Class-
Relationship logic of J.F. Nilsson [168] and as regulatory relations between
classes of molecular entities by S. Zambach [169]. Metarel is however not
a logic, but is provided as a vocabulary that allows to implement different
logics by defining exactly which kind of RTCs and which semantic rules
are used in that language.

5.4 Discussion

Many researchers involved in ontology engineering are only acquainted
with OWL, the official ontology language of the Semantic Web. For this

107

Chapter 5. Metarel: an ontology for relations in RDF

reason it was important to make a correspondence between the vocabulary
for relations used in Metarel and the relational vocabulary used for OWL.

OWL uses RDF as a syntax, without restricting to the use of MDGs.
The vocabulary for OWL will thus necessarily deviate from the Metarel
vocabulary, which describes the logical meaning of relations in MDGs. In-
stead of describing RDF relations directly, OWL uses RDF as a syntax to
describe DL-based relations. This has resulted in OWL representations that
are hard to comprehend at the level of RDF. Because DL bases every re-
lation on relations between instances, only the instance relation arcs are
represented with a single triple in RDF. Other cases, like class relation arcs,
require a complex with a blank node in the OWL/RDF syntax, as can be
seen in Figure 5.7. In spite of this difference, there is the important sim-
ilarity that the central OWL concept ‘object property’ corresponds to the
‘instance relation type’ in Metarel.

In fact, OWL does not use any word that is related to ‘relation’, in-
stead it uses ‘property’. For a knowledge statement in the triple form, like
‘Lea is daughter of Mike’, the OWL vocabulary, as it is used in the OWL
documentation, would say that Lea has the is daughter of -property with
value ‘Mike’. The usage of ‘property’ is fairly natural for properties that
are functional, i.e. properties that can have only a single value: my teacup
has the has color-property with value ‘white’, it has the has weight-property
with value ‘0.2 kg’ etc. This usage is much less natural for properties that
can have many values, for instance: Lea has the has friend-property with
value ‘John’. This sounds as if Lea has only a single friend. Moreover, in
the natural language usage of property, we rather think of a property as the
combination of the OWL property and the value: ‘having a white color’
would be one of the properties of my teacup. For this reason, the relation-
centric vocabulary of Metarel can be useful to clarify the meaning of some
terms in OWL.

RDF is probably the most popular Semantic Web technology. It is
used for large data stores and many classical databases in the Life Sciences
have converted their contents into RDF. The main reason for its success
seems to be the ease of modeling and querying in RDF. Its intuitive seman-
tics, which interprets a triple as a sentence with a subject, a predicate and
an object, allows for an intuitive querying in SPARQL that does not require
any knowledge of logic.

There exists another Semantic Web vocabulary, apart from the OWL
vocabulary, for describing the logical meaning of RDF graphs, namely

108

Chapter 5. Metarel: an ontology for relations in RDF

URI 1

nucleus is part of

URI 2

cell

label label label

IRI mrl:isPartOf

IRI isPartOf

URI 1

nucleus

label

URI 2

cell

label

subClassOf someValuesFrom

is part of

label

onProperty

A. Direct arc in METAREL

B. Indirect complex in OWL/RDF

Figure 5.7: A relation in RDF described by Metarel compared to a complex
representation with explicitly modeled quantifiers in the OWL/RDF syntax.
All the information in the complex is also expressed by classifying the URI
mrl:isPartOf as an all-some relation type in a Metarel ontology that belongs
to the same RDF graph.

RDF(S). Some part of the vocabulary in RDF(S) was even reused in OWL.
Also for RDF(S), some correspondences with Metarel can be identified.
However, some of the terms that are needed in Metarel do not exist in
RDF(S), nor in OWL.

Also the approach of RDF(S) differs, mainly because it does not
make a distinction between instances and classes. RDF(S) interprets the
nodes in RDF as resources. Therefore RDF(S) does not provide a rich vo-
cabulary for describing the semantics of logic-based relations.

Knowledge engineers who are in doubt whether to use OWL, based

109

Chapter 5. Metarel: an ontology for relations in RDF

on DL, or rather MDGs described by Metarel, should weigh two aspects:
expressivity versus queryability. In addition to being less standardized,
MDGs plus Metarel is also less expressive from a logic point of view.
On the other hand, the paradigm subscribed by Metarel guarantees easier
querying through SPARQL, which may be important for many practically
oriented use cases.

5.5 Conclusion

Metarel was presented as a Semantic Web vocabulary for ontologies that
consist mostly of relations between classes. A Metarel framework consists
of an ontology represented as an MDG (multidigraph) in RDF and a relation
ontology (the Metarel ontology). Every statement in the MDG is modeled
as exactly one RDF triple consisting of a subject, a predicate and an object.
This direct, short syntax for knowledge statements has a lot of potential for
Semantic Web representations.

Metarel is based on a formal analysis of relations between instances
and classes, which is compared with relations in mathematics. It distin-
guishes relations from relation types and relation arcs. Relation types cor-
respond to properties in OWL and the relation arcs are the RDF triples.
Relations are instances of relation types.

SPARQL querying on MDGs is much shorter, intuitive and efficient
compared to SPARQL querying on OWL/RDF graphs. Apart from a shorter
RDF syntax for relations between classes, Metarel is maximally compatible
with OWL and can easily be translated with Semantic Web tools for usage
in the existing OWL profiles.

RDF triples appeal to natural language. A consistent manner of as-
signing labels to relation types was proposed in order to allow natural lan-
guage processing systems to build sound sentences from triples. Metarel
can lower the threshold for conversions of RDF triples towards more ex-
pressive logic languages like OWL.

110

Chapter 6

BioGateway: a Semantic Web
Knowledge Base

6.1 Introduction

The practical experiences from developing CCO and the DIAMONDS plat-
form in RDF, as explained in Chapter 4, and the theoretical ideas for mod-
eling RDF with Metarel, discussed in Chapter 5, form a good basis for the
engineering of a knowledge base that brings the theory a step further into
the practice. In this chapter, BioGateway will be introduced, which is the
successor of the DIAMONDS platform.

BioGateway is a protein-centric RDF knowledge base that is oriented
towards genome researchers with questions about genes and proteins, their
functions, interactions, cellular locations and their involvement in cellular
processes and diseases. It allows to generate new hypotheses through ad-
vanced queries within this knowledge area, which might be the input for
further experiments in biotechnological laboratories. BioGateway was first
presented at the Semantic Web Applications and Tools for Life Sciences
(SWAT4LS) conference in Edinburgh in November 2008 and was published
in BMC Bioinformatics in October 2009.

Whereas CCO is a knowledge base that integrates knowledge related
to a specific research topic, namely the cell cycle, and is restricted to only
four species, the size of BioGateway is much larger. It is an RDF knowl-
edge base that integrates all the OBO Foundry candidate ontologies, the
Gene Ontology Annotation files (GOA) with genomics data for about 2000
species, the SWISS-PROT protein set (the best curated part of UniProt) and

111

Chapter 6. BioGateway: a Semantic Web Knowledge Base

GOA

OBO

RDF
docu-
ments

Stored
RDF

graphs

SPARQL

endpoint

User
Interface

Metarel BioGateway

Figure 6.1: The (bio-)gateway from original knowledge sources towards
the end user.

the NCBI taxonomy, containing information about thousands of species in
the tree of life [170]. These original resources, that were already included
partially in CCO, are also translated to RDF with ONTO-PERL [1]. Also
Metarel is integrated in BioGateway, for the management of relations and
relation types, as well as MetaOnto, with information about the ontologies
and the RDF graphs themselves. MetaOnto was specifically developed for
BioGateway and will be explained in more detail later. All these resources
are loaded and queried in a Virtuoso system [153]. The generic architecture
of BioGateway is shown in Figure 6.1.

Except for UniProt, no restrictions were applied to reduce the size
of the knowledge base by loading only a part of the available data. All the
original sources are available either directly through a SPARQL endpoint1,
or indirectly through a web interface that queries this endpoint. Two web
interfaces are available: the SPARQL query interface2 with preconstructed
queries that can be parameterized and the SPARQL-viewer3 with a visual
display of query results.

The projects BioGateway, CCO, ONTO-PERL and Metarel were
identified as belonging to a larger research domain that can be called Se-
mantic Systems Biology (SSB). This domain is an extension of the interdis-
ciplinary research domain of Systems Biology, defined by Hiroaki Kitano
as a cooperative cycle of research efforts in computer science, mathemat-
ics and biology [171]. SSB extends this cycle with a semantics component
by adding the research efforts in knowledge management and logic. This

1http://www.semantic-systems-biology.org/biogateway/endpoint
2http://www.semantic-systems-biology.org/biogateway/querying
3http://www.semantic-systems-biology.org/biogateway/sparql-viewer

112

Chapter 6. BioGateway: a Semantic Web Knowledge Base

idea was first expressed together with the first version of BioGateway in
a paper that was presented for the SWAT4LS conference in Edinburgh in
2008 [6]. It was affirmed in the International Conference on Web Intelli-
gence in Sogndal in 2011 [172].

All the projects falling under the umbrella of SSB were grouped on
the same website4, hosted by the NTNU in Trondheim.

6.2 Cyclic development of RDF models

A suitable data representation is necessary to share and uniformly query
the RDF-integrated repository. Although different means exist to translate
ontologies in the Open Biomedical Ontologies Format (OBOF) into several
formats [173], there is no accepted mapping of OBO ontologies to RDF.
The development of BioGateway, which includes all the OBO ontologies
in RDF, implies the development of a mapping from OBO to RDF. This
mapping was devised to retain a high-fidelity conversion (i.e. no informa-
tion is lost) and facilitate querying. It extends and improves the mapping
from the RDF export function in the ONTO-PERL suite. A very important
method to achieve a high quality for the mapping has been the feedback
through querying of any new mapping proposals. This has resulted in a
cyclic development of the mapping to RDF.

The proposed mapping from OBO to RDF has undergone several
refinements not only to capture all OBO specification elements [174], but
also to have a relatively natural translation, allowing users familiar with
the OBO format to immediately recognize the corresponding tags. More
details about the proposed format conversions can be found within the
ONTO-PERL source code [175], and the entire list of RDF-ied resources
that are integrated into BioGateway can be found on the project download
web page5.

Before any new resources were integrated in BioGateway, a library
with some SPARQL queries was created. These queries could test whether
any newly integrated RDF triples were functioning syntactically and se-
mantically as expected. This library was used already for querying and
browsing through CCO in the DIAMONDS platform. The following queries
were retained for testing BioGateway:

4http://www.semantic-systems-biology.org
5http://www.semantic-systems-biology.org/biogateway/download

113

Chapter 6. BioGateway: a Semantic Web Knowledge Base

get_children
get_comment
get_definition
get_heads_by_relation_type
get_hierarchy_by_relation_type
get_hierarchy_to_root
get_name
get_neighborhood
get_parents
get_properties
get_relation_types_of_ontology
get_relations_to_selection
get_root_of_ontology
get_subnamespace
get_subnamespaces_of_ontology
get_synonyms
get_tails_by_relation_type
get_type_of_uri
get_xrefs
get_1_step_interaction_path
get_2_step_interaction_path
get_3_step_interaction_path
search_terms_on_name
search_terms_on_properties

There are different reasons why feedback through querying is neces-
sary during the construction of an RDF knowledge base. Here are some of
the important feedback practices:

• Test any new mappings on obvious errors.
The RDF syntax validation is obviously a primordial condition for
loading any RDF document in a triple store. But querying through
SPARQL is the only way of testing the usefulness of an RDF knowl-
edge base.

• Present human readable answers on queries.
As RDF works with IRIs, many outputs from random SPARQL que-
ries might be difficult to comprehend. The queries in the library allow
for a clear presentation by using the most comprehensible labels of
the terms in the knowledge base.

• Reduce unnecessary chains and blank nodes.
The XML syntax of RDF invites the creation of many unnecessary
levels that translate into blank nodes and intermediate chains in the

114

Chapter 6. BioGateway: a Semantic Web Knowledge Base

graph. The RDF document may look nice whereas the underlying
graph model is very awkward. It is very hard to predict the structure
of the RDF graph model from within a programming environment
that produces lines in the RDF/XML syntax. This graph model be-
comes immediately clear through SPARQL querying.

• Verify that the recommended practices enable the basic queries.
It may appear that certain basic queries are possible through cross-
references or through labels, but in practice this may turn out to be
infeasible. Sticking to some recommended Semantic Web practices,
like using the IRI’s everywhere, will often suffice. On the other hand,
certain practices only serve advanced automated reasoning, like those
for OWL DL. These may form an obstacle for querying RDF with
SPARQL.

The RDF export tool of ONTO-PERL did not produce a single unique
identifier per term in the first phases of the development cycle. In-
stead, it generated identifiers that were dependent either on the graph
in which the resources were loaded, or on the source file from which
they were derived. Because of that, a single identifier space was
chosen for all the terms in BioGateway, independent of their ori-
gin. Such a space for http-style IRI’s, http://www.semantic-systems-
biology.org/, was created for the SSB project and it could be used
for BioGateway. Any unnecessary additions to this prefixed string,
that would only relate to specific files or graphs instead of universal
terms, were avoided. This practice has established an efficient sys-
tem for identifying the terms in BioGateway, independent of where
the terms are used and where they are first described.

• Establish RDF models that enable more basic queries.
Some queries are only enabled by restricting on the unbounded flex-
ibility of RDF. For instance, the requirement that every term has ex-
actly one label (which may thus be called a mandatory, preferred la-
bel), enables a human readable output for the queries. If some terms
have no labels, or more than one label, the answers to queries may
be incomplete or show up more than once. Many queries also re-
quire a systematic way to distinguish RDF resources that represent
ontology terms from those that represent other things, like relations
or metadata.

115

Chapter 6. BioGateway: a Semantic Web Knowledge Base

• Avoid that the addition of new triples disables other basic queries.
Querying through SPARQL is essentially the reduction of the whole
set of RDF resources in the knowledge base to a much smaller set.
Therefore the inclusion of new sources to the knowledge base may
destroy the functioning of queries that were established previously,
because they can make the answer set unreasonable large or corrupt
the set with results of poor quality, results that are not human read-
able or even false results. For instance, if a newly integrated source
contains proteins that were already present in the knowledge base,
but they contain multiple labels instead of exactly one, then all the
queries that assumed a bijection between proteins and their labels
will return every protein multiple times in the answer set. Even the
addition of a single triple may corrupt many queries, for example
when both the labels is a and is_a would be present for the subsump-
tion relation type.

Another example is the addition of logically inferred triples to the
RDF graph with the original triples. Queries that gave nice results in
the original graph may start to produce masses of uninteresting re-
sults. This has led to the design practice that RDF documents should
be uploaded into two different graphs in BioGateway: a graph con-
taining only the original triples, and a graph containing both the orig-
inal and the inferred triples. The latter was suffixed with _tc, initially
an abbreviation of ‘transitive closure’ and later renamed to ‘total clo-
sure’.

• Keep querying scalable during the growth of the knowledge base.
This practice differs from the previous ones. When many triples are
added to an RDF graph, even if they keep the RDF model intact, cer-
tain queries that gave a quick response may suddenly start to slow
down dramatically. The SPARQL engine has to search longer be-
fore it finds the correct matching of the triple patterns. This observa-
tion was the reason to have the knowledge base partitioned in even
more separate graphs. This is especially necessary for the parts of
the knowledge base that are heavily queried, like the Gene Ontology
and the relation types.

• Allow for a short syntactical expression in SPARQL for interest-
ing queries
This aspect conflicts with the previous one, because integrated que-

116

Chapter 6. BioGateway: a Semantic Web Knowledge Base

ries will expect from the query person that he knows which triples
are stored in which graph. If the query ranges over many graphs, for
instance hundreds of species-specific graphs, he would have to write
hundreds of lines. This problem could be solved by the use of redun-
dancy in BioGateway. All the RDF documents are loaded in separate
small graphs, in graphs of intermediate size and also in one big graph,
called SSB. Depending on the type of query, either the small graphs
or the bigger graphs can be addressed.

• Establish a library of speedy, basic queries for testing.
There are many basic queries, like retrieving labels, subclasses or the
neighborhood of a node, which need to operate correctly and quickly
in order to allow even more advanced queries. As the knowledge base
grows and becomes more advanced, such basic queries will often
break. Every query ability that was enabled for the knowledge base
needs to be represented by a query in the library that serves for testing
any modification during the construction.

• Establish a library of advanced queries that tackle specific re-
search questions.
This is an important achievement for a knowledge base that is built
for hypothesis generation by biological expert users. Such a library
may be the starting point to parameterize, combine or extend the
queries, depending on their outcome.

• Enable quick answers on queries for hypothesis generation.
A relatively quick query answer is always a desirable feature for any
system. A query builder wants to see a quick and sound answer to a
small query pattern or on a small part of the data before he launches a
heavier query. Therefore, the response time was systematically tested
with the library of queries. This quality constraint turned out to be the
biggest challenge during the development of BioGateway. The query
performance is dependent on different factors, making the subject
difficult to investigate. In particular, disk access and the caching of
earlier results, as well as seemingly unimportant details in the query
itself can have a profound impact on the query performance, resulting
in differences of one to two orders of magnitude in query time. Due
to these optimizations, most queries in the library return an answer
within one second, and the chances of getting an answer to a more
complex query within a reasonable time are also better.

117

Chapter 6. BioGateway: a Semantic Web Knowledge Base

• Identify which other sources should be included to tackle a cer-
tain research question.
This aspect requires biological expertise in the first place, and the
knowledge of other biological data sources. But it also requires ex-
perimentation through SPARQL querying in order to see whether the
desired research question can actually be tackled. For instance, the
retrieval of all the proteins involved in a certain (generic) type of dis-
ease was not possible in SWISS-PROT, because the diseases are only
mentioned in a disease description instead of having a dedicated node
in an ontological hierarchy. This could enable only literal searches on
a specific disease. Also the inclusion of biological pathway data was
identified as a desired asset when the retrieval of interaction chains
by the data in SWISS-PROT did not appear to be very obvious.

The quality improvement is a task that can be extended endlessly.
The numerous and diversified improvements that the feedback from query-
ing brings for the quality of an integrated knowledge base underline the
difficulties that will emerge in the querying of distributed RDF resources
that were never engineered to be queried together. By the feedback pro-
cess, BioGateway has reached a better quality compared to RDF stores that
provide an unaltered aggregation of diverse resources.

6.3 The architecture of BioGateway

6.3.1 The identifier space

The feedback from queries resulted in many important architectural deci-
sions for BioGateway. First of all, it resulted in a very manageable treat-
ment of the identifiers. All the imported data sources, when converted into
RDF graphs, share a basic IRI:

http://www.semantic-systems-biology.org

This means that each resource (e.g. each protein from SWISS-PROT,
each taxon from the NCBI taxonomy, each OBO term) has an IRI of the
form:

http://www.semantic-systems-biology.org/SSB#resource

Each of the imported data sources is represented as an individual
graph with a specific IRI, of the following form:

http://www.semantic-systems-biology.org/graph_name

118

Chapter 6. BioGateway: a Semantic Web Knowledge Base

A B

DC

SSB

O1 O2 On

O1

O1 O2

SSB_tc

O1,tc O2,tc On,tc

O2

On

On

O1,tc

O1,tc O2,tc

O2,tc

On,tc

On,tc

Figure 6.2: The architecture of BioGateway. The RDF source files (square
boxes) are redundantly loaded into different RDF graphs (clouds). Ev-
ery file goes into the big SSB graph (A) and into a separate small graph
(B). SSB_tc and small graphs with the _tc-suffix contain logically inferred
triples (C and D).

6.3.2 The division in graphs

An important architectural feature of BioGateway is its division in different
RDF graphs, which can be seen in Figure 6.2.

The loading into graphs with different sizes is inspired by the prac-
tical experience of keeping the queries scalable during the growth of the
knowledge base and allowing for a short syntactical expression in SPARQL
for interesting queries. Apart from the big SSB graph, containing all the
original RDF files, also two intermediate graphs were created: the OBO
graph and the GOA graph, containing all the OBO formatted files and the
GOA files respectively. The GOA graph became obsoleted later because
the GOA files account for up to about 80 percent of the data in SSB. Using
the SSB graph instead of the GOA graph for the same queries did not really
perform less well, since the sizes are similar.

The separation of the graphs with logically inferred triples from the
graphs with the original triples is inspired by the practice of avoiding that
the addition of new triples disables other basic queries. Even though on-
tologies can be considered as logical frameworks, there are many queries

119

Chapter 6. BioGateway: a Semantic Web Knowledge Base

that may relate to the original hierarchy that was deliberately engineered by
ontologists. Also in the data sources that consist of annotations, the original
triples are more accurate and better reviewed compared to those that were
inferred by automated logic techniques.

When inferred triples are loaded in the same graphs as the original
triples, it becomes impossible to make queries that target the original triples
exclusively. One of the ontological queries in the library is designed to find
the closest common ancestor in the hierarchy of an ontology for two given
terms. The idea of a closest common ancestor can best be understood within
the original ontological hierarchy. Indeed, within a framework that contains
all the triples that were inferred through a transitive closure, all the terms
have the root of the ontology as a direct parent. This is the complete query:

NAME : get_common_ancestor
PARAMETER: GO_0002617: the first query-term
PARAMETER: GO_0034125: the second query-term
FUNCTION : returns the closest common ancestor-term in the
hierarchy for two given terms
BASE <http://www.semantic-systems-biology.org/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX term1_id: <SSB#GO_0002617>
PREFIX term2_id: <SSB#GO_0034125>
SELECT distinct ?common_ancestor ?common_ancestor_id
WHERE {
GRAPH <SSB_tc> {
term1_id: ssb:is_a ?common_ancestor_id.
term2_id: ssb:is_a ?common_ancestor_id.
OPTIONAL {
term1_id: ssb:is_a ?direct_child.
term2_id: ssb:is_a ?direct_child.
GRAPH <SSB> {
?direct_child ssb:is_a ?common_ancestor_id.

}
}
?common_ancestor_id rdfs:label ?common_ancestor.

}
FILTER(!bound(?direct_child))

}

For this query we need both the regular RDF ontology in SSB and
its transitive closure in SSB_tc. In fact, the query might be reduced to: find
all the ancestors of both terms that do not have any descendants that are
ancestral to both terms. To find all the terms that are ancestors of both

120

Chapter 6. BioGateway: a Semantic Web Knowledge Base

terms, we need the transitive closure graph, as in that form all the ancestors
are directly linked to their descendants. Two triples in the query are enough
to retrieve their id:

GRAPH <SSB_tc> {
term1_id: ssb:is_a ?common_ancestor_id.
term2_id: ssb:is_a ?common_ancestor_id.

}

We get all common ancestors with this query, while we only want the
closest ones. Therefore, we check for the children of this set of ancestors.
This can be best accomplished in the ontology without transitive closure:

GRAPH <SSB> {
?direct_child ssb:is_a ?common_ancestor_id.

}

Additionally, we check whether these children belong to the same set
of common ancestors as defined before:

term1_id: ssb:is_a ?direct_child.
term2_id: ssb:is_a ?direct_child.

The last two checks go in an optional clause, because we only want
the common ancestors for which these checks fail. In this way, we can filter
the common ancestors for which this kind of ?direct_child does not exist:

FILTER(!bound(?direct_child))

The query shows that it is necessary to keep separate graphs for the
original triples and for the triples that were logically inferred from the orig-
inal triples.

6.4 Metarel for relation management

6.4.1 The Relationship Ontology in the OBO Foundry

The framework for relations that was developed in Metarel was of great use
for facilitating the relational management in BioGateway. Just like other
translation tools, ONTO-PERL was designed for translating the relation
types (called Typedef in the OBO Format) from a single, consistently main-
tained OBO ontology file. ONTO-PERL even provides some extra support

121

Chapter 6. BioGateway: a Semantic Web Knowledge Base

by adding the is_a relation type for subsumption in case it is missing in
the Typedef section of the OBO file. However, a useful translation of the
relation types from the whole set of OBO ontology files to a single RDF
store depends on the quality of every single OBO ontology.

The relation types play a key role in the integration of different data
sources. Many interesting queries (for instance, “which proteins are lo-
cated_in the cell wall, or any part_of it?” or “what regulates the DNA
replication?”) might exploit the information that is contained in the re-
lations connecting the terms. The OBO Foundry has a policy of using a
small set of shared relations for the different ontologies; the implemen-
tation of the policy is, however, far from complete. In order to create a
self-sustaining ontology file, all the relation types need to be included in
the same file, with a name and a unique identifier. This has led to redun-
dant sections for the relations of the 44 imported OBO candidate ontology
files, with several inconsistencies. The Relationship Ontology (RO) within
the OBO Foundry was designed to create the necessary consistency, but
only a fraction of the ontology engineers have considered to use RO. Some
relations with the same unique identifiers had different names (e.g. part_of
and is_part_of). This complicates their usage and in particular the process
of building queries over different resources that should ideally share the
same relation. Moreover, the identifiers cannot serve for the communica-
tion with users, as some of them were not meant to be human readable,
like BSPO_0000095 (Spatial Ontology [176]) or DESCINHERM (Worm
Anatomy Ontology [177]).

6.4.2 Biorel

There is a good reason why many OBO ontology engineers decided not to
use RO for their project. RO contains only a limited number of relation
types that are very generic and often even cryptic. These relation types
are investigated in the Basic Formal Ontology (BFO) project and their def-
initions are very technical. For instance, the distinction between the re-
lation types located in, contained in and is part of, have generated many
discussions, often leading to different conclusions. Moreover, all the iden-
tifiers of the relation types that are used within RO include a strange prefix
OBO_REL that does not fit anywhere in the rest of the OBO Format. In
order to avoid any problems with this, most developers of OBO ontologies
have chosen to create their own relation types.

Biorel (name deriving from: Biomedical relation) was created as an

122

Chapter 6. BioGateway: a Semantic Web Knowledge Base

OBO formatted relation ontology that contains all the relation types that
were defined anywhere within the OBO project (including OBO Foundry
ontologies like GO, OBO Foundry candidate ontologies like NCBI Taxon-
omy and OBO formatted ontologies like CCO). Every relation type appears
just once and is given a consistent name and identifier. The naming system
is one of the primary functions of Biorel within BioGateway, since all the
biomedical relation types in BioGateway could be mapped to relation types
in Biorel. All the relation types were given a name that contains a verb con-
jugated in the third person singular in Biorel. For some reason, most OBO
ontology engineers had not created an appropriate name for the relation
types and they have just copied the identifier into the name tag, including
underscores and cryptic notations. The following section shows how Biorel
has dealt with the names:

[Typedef]
id: binds_to
name: binds to

[Typedef]
id: bounds
name: bounds

[Typedef]
id: branch_of
name: is branch of

[Typedef]
id: broader
name: is broader than

[Typedef]
id: BSPO:0000096
name: is anterior to

Such names are much better suited to be returned as answers to
queries as compared to the cryptic identifiers. The application of this nam-
ing system predominantly involved the addition of the verb is. As a conse-
quence, we can return triples in the form of a pseudo-grammatical sentence,
like blood is located in vein. This rule also prompted the transformation
of names like anatomical_relation into is anatomically related to and sur-
rounding into surrounds. In fact, the meaning of several poorly named re-
lation types became clearer by adhering to this format. Biorel also contains
all the other OBO tags for relation types, with metadata like definitions,

123

Chapter 6. BioGateway: a Semantic Web Knowledge Base

synonyms and comments, as well as the semantic properties, like transi-
tivity, reflexivity, inverses and chains. The following three examples are
relation types that have technical definitions resulting from the discussions
around BFO:

[Typedef]
id: bearer_of
name: is bearer of
def: "A relation between an entity and a dependent
continuant; the reciprocal relation of inheres_in"
[GOC:cjm]
comment: Examples: red eye bearer_of redness
synonym: "has_inherent" EXACT []
synonym: "has_inherer" EXACT []
inverse_of: inheres_in ! inheres in

...

[Typedef]
id: is_a
name: is
builtin: true
def: "For continuants: C is_a C’ if and only if: given
any c that instantiates C at a time t, c instantiates C’
at t. For processes: P is_a P’ if and only if: that given
any p that instantiates P, then p instantiates P’."
[PMID:15892874]
comment: The is_a relationship is considered axiomatic by
the obo file format specification, and by OWL
synonym: "is_subtype_of" RELATED []
xref: rdfs:subClassOf
is_anti_symmetric: true
is_reflexive: true
is_transitive: true

...

[Typedef]
id: part_of
name: is part of
def: "For continuants: C part_of C’ if and only if: given
any c that instantiates C at a time t, there is some c’
such that c’ instantiates C’ at time t, and c *part_of* c’
at t. For processes: P part_of P’ if and only if: given
any p that instantiates P at a time t, there is some p’
such that p’ instantiates P’ at time t, and p *part_of* p’
at t. (Here *part_of* is the instance-level

124

Chapter 6. BioGateway: a Semantic Web Knowledge Base

part-relation.)" [PMID:15892874]
is_reflexive: true
is_transitive: true
inverse_of: has_part ! has part
holds_over_chain: results_in_formation_of ends_during
holds_over_chain:
results_in_complete_development_of starts_during

The translation of the relation types to RDF for BioGateway was
maintained manually through the use of Biorel. The translation of the
Typedef sections in the OBO files was simply skipped in the automated
translation pipeline, and the RDF export of Biorel (biorel.rdf) was loaded
into every graph. Biorel was also loaded in graphs that did not contain
OBO files, because the relation types of the OBO Foundry are designed
to be used within any source containing biomedical knowledge. The GOA-
associations essentially consist of relations between proteins in UniProt and
terms in the Gene Ontology (GO). These relations were easily mapped to
the OBO relation types has function, is located in, and participates in for
the GO molecular functions, GO cellular components and GO biological
processes respectively.

The skipping of the Typedef sections is another example of the prac-
tice to avoid that the addition of triples to the knowledge base disables basic
queries. Before this operation, queries got heavily corrupted due to multi-
ple labels for a single relation type, not to speak of the cryptic labels that
were hard to comprehend.

6.4.3 BioMetarel

Creating user friendly names for the relation types is just a tiny part of
the relation management. A more interesting feature is the exploitation of
the relation type semantics for reasoning. For this reason, Metarel itself
was also translated into RDF. This would enable the management of the
relation types in Biorel. The graph that integrates Metarel and Biorel was
called BioMetarel.

BioMetarel contains a maximum of the semantics that is required
to execute automated reasoning, by a classification of relations, a classifi-
cation of relation types and a classification of axioms about relation types.
The generic sections of these three classifications come from Metarel, whe-
reas the relation types come from Biorel.

The creation of BioMetarel consists of three steps:

125

Chapter 6. BioGateway: a Semantic Web Knowledge Base

• Loading the RDF exports of Metarel and Biorel in the same RDF
graph.

• Loading a manually maintained set of links between Biorel en Meta-
rel, in the form of RDF triples.

• Inferring all the possible directly available conclusions about the se-
mantics of the relation types through automated inference proce-
dures.

The first step is trivial, but the second and the third require some
more explanation. The second step, the loading of a manually maintained
set of links, expresses the fact that not all the semantics of the relation types
in Biorel was properly encoded within the Biorel file. The most prominent
missing information about the relation semantics is the absence of any dis-
tinction between class relation types and instance relation types. The OBO
Foundry works with class relation types, but different semantic rules (for
instance inverses and symmetry) are expressed for the corresponding in-
stance relation type. This practice is not a surprise, since most paradigms
in Logic, like Predicate Logic, DL and OWL, work with instance relation
types (known as roles or properties) exclusively. This has influenced the
work of many ontology engineers working on OBO ontologies.

An adequate treatment of the relation semantics in BioMetarel has
necessitated the manual creation of two sets of relation types, one for the
class relation types and the other for the instance relation types, with links
between them. Another reason for creating such a manually maintained set
of links is to formalize the many informally expressed relation type axioms
that ontology engineers have stated within the ‘comment’ tag of the Type-
def stanzas in their ontologies. At least this was the case for the version of
BioMetarel that was used for the first two publications of BioGateway in
2008 and 2009. Later, when Biorel was translated into OWL 2 DL instead
of plain RDF, the informal rules were formalized immediately in Biorel,
which has reduced the extra utility of BioMetarel mainly to the correct treat-
ment of class relation types. All the links were assembled within a single
RDF file, edited in the turtle syntax, called biometarel_merge.rdf.turtle (see
Appendix BioMetarel).

The third step, the inferring of directly available conclusions within
BioMetarel, consists of the actual classification of relations, relation types
and relation type axioms that are used in BioGateway.

126

Chapter 6. BioGateway: a Semantic Web Knowledge Base

The classification of relations has relations as instances and rela-
tion types as classes. It corresponds to the role hierarchy in Description
Logic. The relation types in this hierarchy are connected by the predi-
cate rdfs:subPropertyOf. This is a transitive predicate: for example ‘acti-
vates’ is a subproperty of ‘positively regulates’ and ‘positively regulates’
is a subproperty of ‘regulates’. This implies that ‘activates’ is a subprop-
erty of ‘regulates’. However, the triple ‘obo:activates rdfs:subPropertyOf
obo:regulates’ is not explicitly present in BioMetarel without the infer-
ring of directly available conclusions in the classification of relations. The
following SPARQL/Update (SPARUL) query creates the inferences of the
subproperty predicate in the classification of relations:

sparql
BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>
INSERT INTO GRAPH <biometarel> {
?node1 rdfs:subPropertyOf ?node3.

}
WHERE {
GRAPH <biometarel> {
?node1 rdfs:subPropertyOf ?node2.
?node2 rdfs:subPropertyOf ?node3.

}
}

This update query has to be iterated recursively until there are no
new triples that can be inferred.

Also the classification of relation types requires extra inference. For
example all the relation types that are transitive should be classified as an
instance of Metarel’s metaclass transitive relation type. We know that the
inverse of a transitive relation type is also transitive. This information is not
always explicitly present in Biorel. For instance, the relation type precedes
is annotated as transitive, but the relation type is preceded by is not. The
following SPARUL update query will create this inference:

sparql
BioMetarel creation: Create a transitive relation
type when the inverse is transitive

127

Chapter 6. BioGateway: a Semantic Web Knowledge Base

BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>
INSERT INTO GRAPH <biometarel> {

?transitive_rt rdf:type metarel:TransitiveRelationType.
}
WHERE {

GRAPH <biometarel> {
?transitive_rt owl:inverseOf ?transitive_inverse.
?transitive_inverse rdf:type owl:TransitiveProperty.

}
}

When an instance relation type is transitive, then also a class relation
type that is based on the instance relation type is transitive. This rule prop-
agates transitivity to the level of class relation types within the relation type
classification:

sparql
BioMetarel creation: Create the transitive relation
types as children of transitive_relation_type
BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>
INSERT INTO GRAPH <biometarel> {
?transitive_rt rdf:type metarel:TransitiveRelationType.

}
WHERE {

GRAPH <biometarel> {
{?transitive_rt rdf:type owl:TransitiveProperty}
UNION {
?transitive_rt metarel:isBasedOn ?transitive_irt1.
?transitive_irt1 rdf:type owl:TransitiveProperty.}

}
}

An example of inference within the classification of relation type ax-
ioms is the propagation of chain rules from the level of instance relation

128

Chapter 6. BioGateway: a Semantic Web Knowledge Base

types to the level of class relation types, and the correct annotation of the
chain rules in Metarel. The chain rules are extracted from the rather com-
plicated OWL/RDF model in biorel.owl and added to the Metarel model in
the BioMetarel graph:

sparql
Propagate chains between instance relation types to the
level of class relation types.
BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>
INSERT INTO GRAPH <biometarel> {
_:construct metarel:hasFirstRelation ?First_RelationType.
_:construct metarel:hasSecondRelation ?Second_RelationType.
_:construct metarel:hasResultingRelation

?Resulting_RelationType.
}
WHERE {
GRAPH <biometarel> {
?Resulting_InstanceRelationType owl:propertyChainAxiom

?node.
?node rdf:first ?First_InstanceRelationType.
?node rdf:rest ?rest.
?rest rdf:first ?Second_InstanceRelationType.
?First_RelationType metarel:isBasedOn

?First_InstanceRelationType.
?Second_RelationType metarel:isBasedOn

?Second_InstanceRelationType.
?Resulting_RelationType metarel:isBasedOn

?Resulting_InstanceRelationType.
?First_RelationType rdf:type

metarel:AllSomeClassRelationType.
?Second_RelationType rdf:type

metarel:AllSomeClassRelationType.
?Resulting_RelationType rdf:type

metarel:AllSomeClassRelationType.
}

}

The creation of BioMetarel in this manner is only a preparation for
the reasoning process. These three steps, the loading, the merging and the
classifications, affect only the set of about 7500 triples in BioMetarel. The

129

Chapter 6. BioGateway: a Semantic Web Knowledge Base

reasoning process itself may affect all the hundreds of millions of triples
in the RDF store. Meanwhile, even without the execution of any reasoning
rules, BioMetarel can also serve to answer questions about the semantics
of the relation types. This is a useful asset for the bioinformatics oriented
users of BioGateway, since the semantics of relation types is heavily de-
bated among ontologists, logicians and even biologist users of the OBO
ontologies.

6.4.4 Transitive closures

The full-scale reasoning approach was not yet established for the first pub-
lication of BioGateway in 2008. There was, however, already an important
step into this direction through the automated inferring of triples that are
implied by the transitivity of relations. The complete inference of triples
by this procedure, up to the point that not any extra triple can be inferred,
is called a transitive closure.

Three methods for creating the transitive closures were taken into
consideration. They can be created with:

• a single SPARUL update query on an engine that uses recursive in-
ferences

• a sufficiently large loop on this SPARUL update query, on an engine
that does not use recursion

• ONTO-PERL, a programming interface in the PERL language

The first method was used for BioGateway on an engine with a ver-
sion of SPARUL that supports the recursion. The second method was also
tested successfully for BioGateway. It takes, however, more time to do the
reasoning in this way, and it may fail to work on ontologies with transitive
chains that exceed the predefined length. The SPARUL update query for
creating the closure for the first two methods is the following:

sparql
BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>

130

Chapter 6. BioGateway: a Semantic Web Knowledge Base

INSERT INTO GRAPH <gene_ontology_edit_tc> {
?class1 ?rel_id ?class3.

}
WHERE {
GRAPH <gene_ontology_edit_tc> {
?class1 ?rel_id ?class2.
?class2 ?rel_id ?class3.

}
GRAPH <biometarel> {
?rel_id rdf:type metarel:TransitiveRelationType.

}
}

The update query searches within the Gene Ontology for all the cases
in which a class1 is connected to a class2 through a transitive relation type
and in which this class2 is connected to a class3 through the same transitive
relation type. It will create a new relation arc, declaring this relation type,
between class1 and class3 in the RDF graph of the Gene Ontology that has
the suffix _tc.

In the case of the term leptotene (GO:0000237), which is originally
only linked to the terms cell cycle phase (GO:0022403) via an is_a re-
lation and meiotic prophase I (GO:0007128) via a part_of relation, the
following implicit relations are added: leptotene is_a biological_process
(GO:0008150), leptotene is_a cellular process (GO:0009987), leptotene
is_a cell cycle process (GO:0022402), leptotene is_a cell cycle phase (GO:
0022403), leptotene part_of meiosis (GO:0007126), leptotene part_of meio-
sis I (GO:0007127), leptotene part_of meiotic prophase I (GO:0007128),
leptotene part_of meiotic cell cycle (GO:0051321) and leptotene part_of M
phase of meiotic cell cycle (GO:0051327) (see Figure 6.3).

There are two possible interpretations of an update query. Either the
update query is applied just once on the original data (atomic updates), or
the update query is executed again after the addition of new triples that were
inferred by the update query. The second interpretation uses recursion and
is slightly more advanced than the first. It is a form of monotonic reasoning,
as long as no triples are ever deleted and as long as no conclusions are ever
derived from the absence of any triples in the store.

The latest releases of the Virtuoso software [153], from Virtuoso 6
and onwards, use only atomic updates and no recursion. This is in accor-
dance with the W3C specification for SPARUL, which was never designed
to execute fully automated reasoning. Earlier versions of Virtuoso, at least
the release of Virtuoso 5.0.8, use the recursive interpretation for certain

131

Chapter 6. BioGateway: a Semantic Web Knowledge Base

leptotene

cell cycle
phase

is_a

meiotic
prophase I

part_of

leptotene

biological_
process

cellular
process

cell cycle
process

cell cycle
phase

is_a

is_a

is_a

is_a

is_a

is_a

is_a

part_of

leptotene

M phase of
meiotic cell

cycle

meiosis

meiosis I

meiotic
prophase I

part_of

part_of

part_of

part_of

part_of

part_of

meiotic
cell cycle

part_ofpart_of

Figure 6.3: An example of a transitive closure for the term leptotene. Many
new triples are inferred from the two original triples in the top figure.

132

Chapter 6. BioGateway: a Semantic Web Knowledge Base

types of update queries. This has been very practical to execute the transi-
tive closure without requiring semi-automated approaches like using a loop
that runs the same update query many times.

A method for creating transitive closures was also developed by Er-
ick Antezana in ONTO-PERL [1]. This subroutine still exists as a solid
building block for more advanced and flexible reasoning through procedu-
ral methods in the Perl programming language. ONTO-PERL creates the
inferences from transitivity and reflexivity in the RDF document before its
upload to the triple store. Because of this, the reasoning abilities are not
limited to the RDF tools that are included in the software layers of the RDF
store. However, the practice turned out to be much slower. Another prob-
lem was the fact that the semantics of the relation types, transitivity in this
case, were hard-coded inside the subroutines of ONTO-PERL, instead of
managing them in an RDF file like in the case of BioMetarel. This has
put a burden on the continuation of this approach to reasoning beyond the
transitivity of the two most important relation types: is_a and part_of. The
usage of BioMetarel within ONTO-PERL has been identified as a possible
solution to overcome this problem.

6.5 MetaOnto

RDF is best known as a representation format that consists of triples and
an RDF store is consequently often called a triple store. However, strictly
speaking, RDF consists of quads instead of triples and many developers
who are acquainted with the lower levels of the architecture of RDF store
speak of quad stores. The fourth identifier that is required in addition to the
first three (the subject, the predicate and the object) is the identifier of the
graph to which a triple belongs. Whereas a triple consisting of a subject,
a predicate and an object is always unique within an RDF graph, a quad,
consisting of a subject, a predicate, an object and a graph, is unique within
an RDF store.

The graphs in the quads can be queried with SPARQL and SPARUL
through a slightly different syntactical expression. All the subjects, predi-
cates and objects in quads that belong to the same graph, are fitted between
curly brackets that are preceded by ‘GRAPH’ and the graph IRI or graph
variable. This results in the next SPARQL query to return all the quads in
the RDF store:

133

Chapter 6. BioGateway: a Semantic Web Knowledge Base

SELECT ?s ?p ?o ?g
WHERE {
GRAPH ?g {
?s ?p ?o.

}
}

Since BioGateway exploits the usage of different graphs, this kind
of queries can be quite important. There is a separate graph for every of
the nearly 2000 species annotated in the GOA project, as well as for about
80 ontologies in the OBO Foundry. In order to enable certain SPARQL
queries, some information about all these graphs in BioGateway was as-
sembled in a separate RDF graph: MetaOnto.

For the OBO ontologies, a little OBO formatted meta-ontology was
created with information about each OBO ontology. The first entries are
shown here:

format-version: 1.2
date: 30:07:2008 15:14
saved-by: wablo
auto-generated-by: OBO-Edit 1.002
remark: MetaOnto is a meta-ontology that has OBO ontologies
as terms.

[Term]
id: METAONTO:0000001
name: OBO ontology
def: "An OBO ontology is a science-based ontology that was
established following a set of principles for ontology
development with the goal of creating a suite of orthogonal
interoperable reference ontologies in the biomedical
domain." [http://www.obofoundry.org/]

[Term]
id: METAONTO:0010001
name: Amphibian gross anatomy
def: "A structured controlled vocabulary of the anatomy of
Amphibians." [http://www.obofoundry.org/cgi-bin/
detail.cgi?id=amphibian_anatomy]
synonym: "AAO" EXACT []
is_a: METAONTO:0000001 ! OBO ontology

[Term]
id: METAONTO:0010002
name: Spatial Ontology
def: "A small ontology for anatomical spatial references,

134

Chapter 6. BioGateway: a Semantic Web Knowledge Base

such as dorsal, ventral, axis, and so forth."
[http://www.obofoundry.org/cgi-bin/detail.cgi?id=spatial]
synonym: "BSPO" EXACT []
is_a: METAONTO:0000001 ! OBO ontology

[Term]
id: METAONTO:0010003
name: Common Anatomy Reference Ontology
def: "The Common Anatomy Reference Ontology (CARO) is being
developed to facilitate interoperability between existing
anatomy ontologies for different species, and will provide
a template for building new anatomy ontologies. CARO will
be described in Anatomy Ontologies for Bioinformatics:
Principles and Practice Albert Burger, Duncan Davidson and
Richard Baldock (Editors)"
[http://www.obofoundry.org/cgi-bin/detail.cgi?id=caro]
synonym: "CARO" EXACT []
is_a: METAONTO:0000001 ! OBO ontology

The OBO formatted meta-ontology was included in the RDF trans-
lation pipeline and uploaded in BioGateway. More information was added
subsequently with SPARUL in the following way:

BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>
INSERT INTO GRAPH <metaonto> {
?graph ssb:instance_of ssb:graph.

}
WHERE {
GRAPH ?graph {
?s ?p ?o.

}
}

This query puts the graph IRI of every BioGateway graph into Meta-
Onto, as an instance of the meta-class ssb:graph. It is followed by the next
SPARUL update query:

BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>

135

Chapter 6. BioGateway: a Semantic Web Knowledge Base

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>
INSERT INTO GRAPH <metaonto> {

?graph ssb:about_taxon ?taxon.
}
WHERE {

GRAPH ?graph {
?term_id ssb:has_source ?taxon.

}
}

This update query adds information about organism taxa. It crawls
through all the graphs to look which taxa are used and adds this informa-
tion to the MetaOnto graph. Naturally, the crawling action should happen
after all the graphs are uploaded. The update query was run after the up-
loading of the original graphs and before the creation of the tc-graphs with
inferred closures. The following SPARQL query is enabled by the contents
of MetaOnto:

NAME : Get list of organisms
FUNCTION : returns all the annotated organisms in the
: knowledge base

BASE <http://www.semantic-systems-biology.org/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
SELECT distinct ?taxon ?graph
WHERE {
GRAPH <metaonto> {
?graph ssb:about_taxon ?taxon_id.

}
GRAPH <ncbi> {
?taxon_id rdfs:label ?taxon.

}
FILTER(?graph != <SSB>).

}
ORDER BY ?taxon

The query returns all the organism taxa in BioGateway and the graphs
in which these taxa are used, except for the big SSB graph that contains all
the contents. Some results are shown in the following table:

136

Chapter 6. BioGateway: a Semantic Web Knowledge Base

taxon graph
’Nostoc azollae’ 0708 http://www.semantic-systems-biology.org/

32899.N_azollae
Abiotrophia defectiva ATCC
49176

http://www.semantic-systems-biology.org/
33964.A_defectiva

Acaryochloris marina
MBIC11017

http://www.semantic-systems-biology.org/
30122.A_marina

Acetobacter pasteurianus IFO
3283-01

http://www.semantic-systems-biology.org/
34577.A_pasteurianus

Acetobacter pasteurianus IFO
3283-03

http://www.semantic-systems-biology.org/
34579.A_pasteurianus_IFO_3283-03

Acetobacter pasteurianus IFO
3283-07

http://www.semantic-systems-biology.org/
34581.A_pasteurianus_IFO_3283-07

. .

. .

. .
Holdemania filiformis DSM
12042

http://www.semantic-systems-biology.org/
33910.H_filiformis

Homo sapiens http://www.semantic-systems-biology.org/
25.H_sapiens

Homo sapiens http://www.semantic-systems-biology.org/
9.C_elegans

Hydrogenivirga sp. 128-5-R1-1 http://www.semantic-systems-biology.org/
32152.H_sp

Hydrogenobaculum sp.
Y04AAS1

http://www.semantic-systems-biology.org/
31481.Hydrogenobaculum_sp

. .

. .

. .
Yersinia pseudotuberculosis
PB1Yersinia rohdei ATCC
43380

http://www.semantic-systems-biology.org/
34113.Y_rohdei

Yersinia ruckeri ATCC 29473 http://www.semantic-systems-biology.org/
34822.Y_ruckeri

Zymomonas mobilis http://www.semantic-systems-biology.org/
20760.Z_mobilis_CP4

Zymomonas mobilis subsp.
mobilis ATCC 10988

http://www.semantic-systems-biology.org/
34234.Z_mobilis_ATCC_10988

Zymomonas mobilis subsp.
mobilis NCIMB 11163

http://www.semantic-systems-biology.org/
34729.Z_mobilis_NCIB_11163

This list may help researchers to run other queries in the library of
BioGateway on more specific graphs that relate to the organism of their

137

Chapter 6. BioGateway: a Semantic Web Knowledge Base

 B
io

re
l

Meta-
onto

Bio-
Meta-

rel B
io

re
l

 B
io

re
l

Uni-
prot ncbi ...

SPARQL results

SELECT * WHERE { GRAPH <metaonto> {pattern1}
 GRAPH <ncbi> {pattern2}
 GRAPH ?any_graph {pattern3}}

Figure 6.4: An example that shows the generic pattern for querying Bio-
Gateway through SPARQL.

interest. Most organism taxa appear only in a single graph, but appar-
ently the graph http://www.semantic-systems-biology.org/9.C_elegans for
Caenorhabditis elegans also contains the human protein NLRP5 with ex-
actly the same annotations as in the graph for Homo sapiens. This is caused
by an irregular annotation in this GOA file.

6.6 The library of queries

The library of queries that was developed for BioGateway consists of two
sections: biomedical queries and ontological queries. They are represented
in that order in the drop-down box on the querying page, where users can in-
vestigate the knowledge in BioGateway through SPARQL queries. Retriev-
ing biomedical knowledge is the primary goal for the users of BioGateway,
however, other knowledge engineers and bioinformatics researchers may
find it useful to find some technical queries that relate to Semantic Web
ontologies in general. These technical queries can be found in the section
with the ontological queries.

The general pattern for querying can be derived from an example
query in Figure 6.4, which integrates the metadata in MetaOnto with taxo-
nomic knowledge from NCBI and with detailed knowledge from any of the
specific graphs in BioGateway.

138

Chapter 6. BioGateway: a Semantic Web Knowledge Base

6.6.1 Ontological queries for knowledge engineers

The ontological queries are listed after the biological queries on the query-
ing page, however, they were developed first. They are more basic and are
presented first here. Every query was given a number preceded by ‘Ont’ for
the ontological queries, as well as a description of the query. Here follows
the list of all the descriptions of the ontological queries:

Ont 1. Query the OBO Foundry: search on names and get their unique id’s.
Ont 2. Get all the neighbor terms of a given term.
Ont 3. Get all the properties, like definition, synonyms, etc., of a given
OBO term.
Ont 4. Get the names of the graphs in BioGateway.
Ont 5. Get a list of all the ontologies in the OBO Foundry.
Ont 6. Get the hierarchy to the root for a given term.
Ont 7. Get a list of all the relation types that are used in the OBO Foundry.
Ont 8. Get the root term(s) of an ontology.
Ont 9. Get all the children of a given term.
Ont 10. Get all the parents of a given term.
Ont 11. Find all the terms from two different ontologies with the same
names.
Ont 12. Get a list of terms in the OBO Foundry that do not have a defini-
tion.
Ont 13. Count the amount of triples in a graph.
Ont 14. Count the amount of terms in an ontology.
Ont 15. Search trough all the content on one or more strings.
Ont 16. Get a limited list of terms from a graph.
Ont 17. Get all the terms that are ‘part of’ a given term.
Ont 18. Get the hierarchy above a certain term for a given transitive relation
type.
Ont 19. Get information about relation types.
Ont 20. Get the closest common parent in the hierarchy.
Ont 21. Compare direct with inferred annotations.
Ont 22. Count the number of triples in BioGateway.

This library is effectively providing an entrance to all the data in Bio-
Gateway, and to the possible ways in which it can be queried. Without the
ontological queries, a knowledge engineer would have to explore BioGate-
way by trial and error. Now she might rearrange pieces of the code in the

139

Chapter 6. BioGateway: a Semantic Web Knowledge Base

query to build new queries. Ont 1, the first query, shows which syntax to
use for making a text-based search in the OBO-ontologies:

NAME : Search terms on name
PARAMETER: blood (see line 8 in the SPARQL code): the name
FUNCTION : returns all the labeled terms for which the
name contains ‘blood’

BASE <http://www.semantic-systems-biology.org/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
SELECT ?name ?unique_id
WHERE {

GRAPH <OBO> {
?unique_id rdfs:label ?name.
FILTER regex(str(?name), ’blood’)

}
}

6.6.2 Biomedical queries for knowledge exploration

The goal of BioGateway is to enable knowledge exploration for expert life
science reseachers. Therefore, the biomedical queries are more important.
It is not an easy task to submit useful queries on a large knowledge base. It
requires knowledge about the query language (SPARQL), but also about the
contents of the resources in the knowledge base. Bridging the gap between
these two domains of expertise is the typical task for a Bioinformatics re-
searcher. With the ontological queries in place, the investigation of the
biomedical content could start. The construction of the biomedical queries
has required discussions with plant systems biologists of VIB in Ghent and
scientists working on human signal transduction networks in the NTNU
institute of Trondheim.

The following library of biomedical queries was retained for Bio-
Gateway:

Bio 0. Get basic information by the unique ID.
Bio 1. Get protein: get the unique ID of a protein by a protein or gene
name.
Bio 2. Get functional, locational, process and literature information from
GOA about a given protein.
Bio 3. Get the proteins that are involved in a given disease (e.g. psoriasis).
Bio 4. Get the proteins that participate in the same process as a given pro-

140

Chapter 6. BioGateway: a Semantic Web Knowledge Base

tein.
Bio 5. Get the proteins that are located in both the nucleus and the endo-
plasmic reticulum.
Bio 6. Get the number of interactors for the proteins in a PPI network.
Bio 10. Get all the proteins that are involved in two specific diseases.
Bio 11. Get the proteins that are involved in many diseases.
Bio 12. Get the proteins with a specific function, location and process for
all the annotated organisms.
Bio 13. Get the proteins that are involved in a given topic (e.g. insulin).
Bio 14. Get the proteins that are involved in a given topic and a given dis-
ease.
Bio 15. Get protein interactors by a given topic and a given disease.
Bio 16. Get the similarities between two proteins.
Bio 17. Get a list of all the organisms in the knowledge base.
Bio 18. Get proteins in protein complexes.
Bio 19. Find the smallest protein complexes.
Bio 20. Get the the proteins that interact in the same protein complex.
Bio 21. Get extracted information from a given publication.
Bio 22. Get the proteins in the nucleus that are involved in diabetes.
Bio 23. Get specifically annotated types of proteins in mammals.

Most of these queries exploit the integration of the Gene Ontology
(GO), the Gene Ontology Annotations (GOA), UniProt/Swiss-prot, NCBI
taxonomy and PubMed annotations. In spite of the fact that many other
OBO ontologies, apart from GO, are present in BioGateway, there are not
any example queries in the library that elicit their contents explicitly. Most
of the OBO ontologies are not so well integrated with other resources com-
pared to GO, and the investigation of all the different scientific subdomains
they represent would not be a fruitful effort. Therefore the queries were
oriented towards genome researchers. Many of them stem from the attempt
to generate hypotheses about the biological meaning of specific protein in-
teractions.

The first two queries, Bio0 and Bio1, are essential for researchers
who are interested in a specific protein type. Bio0 provides extra informa-
tion through the unique identifier of the protein type within BioGateway,
whereas Bio1 can be used to find out the unique identifier through names
that are better known. It is clear that names that are known by scientists
will never be unique within a system that consists of about 2000 organisms,

141

Chapter 6. BioGateway: a Semantic Web Knowledge Base

that all have thousands of protein types.
The use of the library with biomedical queries can be demonstrated

by a series of consecutive queries that a biologist might have. Imagine a
researcher who wants to investigate the diabetes disease. She looks through
the preconstructed queries in the querying page and finds

• Get the proteins involved in a given disease (e.g. psoriasis).

She clicks this query and changes psoriasis into diabetes in the edit box.
After running this query she gets already a lot of information about diabetes
in the disease descriptions that appear. She also finds many proteins that are
involved in diabetes, so she can scout for proteins that she knows from her
previous experience. Some other terms like autoantigen and non-insulin-
dependent diabetes mellitus attract her attention, so she can use these terms
to restrict the query and to take a closer look at these results. As the re-
searcher wants to find out more about the signaling pathways that relate to
diabetes, she chooses another preconstructed query:

• Get the proteins involved in a given topic and a given disease.

She tries first with the keywords pathway and diabetes, for the topic and
the disease respectively. She gets three proteins as the result and a lot of
information about what kind of pathways they are involved in, and how
aberrations of these proteins can cause diabetes. She would also like to
see with which other proteins these proteins interact, so she chooses a third
query from the drop-down box:

• Get protein interactors by a given topic and a given disease.

She chooses the same keywords, pathway and diabetes, to find out that
the protein INSR_HUMAN has two interactors: SRBS1_HUMAN and
PTN1_HUMAN. She chooses the query to get their unique ids to inves-
tigate these proteins further:

• Get the unique ID of a protein by its name.

The ids of the proteins are retrieved after copy-pasting the names in the
correct place in the query, as indicated in the PARAMETER line. For the
PTN1_HUMAN protein, she copies P18031, the UniProt ID, from the re-
sult. Now she can use this query:

142

Chapter 6. BioGateway: a Semantic Web Knowledge Base

• Get functional, locational, process and disease information about a
given protein.

by copy-pasting the unique id as parameter. The results show that this pro-
tein has phosphorylation as function and is also involved in the insulin re-
ceptor signaling pathway.

6.7 Visualization of queries

A SPARQL browser enables querying and visual exploration of the result.
It can be accessed from the SSB website6. With this interface, users can
define a SPARQL query over BioGateway resources, the SPARQL endpoint
could also be customized. After executing a query, a network of results is
displayed (see Figure 6.5). A tabular representation of the result is also
available.

The SPARQL browser was developed using Flex technologies [178],
which provide powerful ways of creating interfaces with dynamic features.
The entire source code is freely available [179].

In spite of being attractive for users, the graphical interface of the
SPARQL browser does not make the querying process easier. Writing
SPARQL code is still required for any query that goes beyond showing
the local neighborhood. Another attempt to make querying in BioGateway
easier was done by Brad Chapman, who wrote a Python API interface that
queries the SPARQL endpoints of both BioGateway and InterMine [180].
The interface is specifically written on the library of biological queries
in BioGateway. However, a generic solution for practical and expressive
querying of RDF knowledge bases is something that deserves to be investi-
gated more in the future.

6http://www.semantic-systems-biology.org/sparql-viewer

143

Chapter 6. BioGateway: a Semantic Web Knowledge Base

Figure 6.5: Network of SPARQL query results over BioGateway. The
query shows proteins that are related to ‘insulin’, either by their function, by
the biological process in which they participate, or by the protein complex
they are located in.

144

Chapter 7

Computational reasoning with
Metarel

7.1 Description Logics in three steps

Description Logics research has kept the hope alive for realizing fully auto-
mated reasoning on bio-ontologies [181]. This research promises that any
ontology that is modeled in a DL language makes unambiguous sense and
that an automated reasoner can answer logical questions about the ontology
correctly. However, applying the fully fledged reasoning approach on large,
integrated bio-ontologies has proven to be overambitious for two main rea-
sons. First of all, the developers of bio-ontologies, often more experienced
in biology than computer science, do not succeed to model all the avail-
able knowledge into the rigid language constructs of logics. Consequently,
bio-ontologies are full of glitches concerning their logic-based rules [182].
Secondly, even if a large bio-ontology succeeds to pass the computational
proof of consistency, current automated reasoners are not fast enough for
answering queries. Although computer performance continues to increase,
the amount of knowledge and data in bioinformatics has been growing even
faster.

Even an ontology with imperfections can be useful by providing sen-
sible answers to many real life questions. In order to better exploit the
available ontologies, we need an approach that benefits from DL as much
as possible, without insisting on the exclusive use of DL at all stages in
constructing a practical query system.

Here, the enabling of large-scale reasoning in the knowledge base

145

Chapter 7. Computational reasoning with Metarel

BioGateway is approached in three steps: 1) define a logic-based represen-
tation language; 2) build a consistent ontology; and 3) create inferences for
enabling queries. DL reasoning is very useful in the first two steps and has
proven already useful for consistency checking of smaller units. However,
it is still problematic to implement DL in a query system on a very large
scale.

The third step for the ontologies in BioGateway is accomplished by
capitalizing on the prior work (by others and ourselves) with respect to
steps one and two. We minimally adjusted this prior work by a manual
curation effort that was restricted to the relation types (types of relations
like is part of, is located in) that were used. This curation effort implies a
certain feedback from the last step to the previous steps. Certain language
constructs, like defined classes, domains and ranges or restrictions on the
number of relations of certain type from a given subject, may turn out to be
very expensive in terms of query time. Alternatively, a relation type used
in a given ontology may turn out to create masses of useless inferences. By
using Metarel as a semantic framework, and SPARQL/Update as inference
tool, we had ample flexibility to engage in a trial and error process to create
only those inferences that were useful and necessary. This is a practical
alternative to the ambitious approach of DL to execute reasoning as a one-
step process without any flexibility for optimization or feedback.

7.2 Reasoning on bio-ontologies

7.2.1 All-some relations between classes

Biological knowledge consists almost always of relations between clas-
ses (groups) of different individual biological entities. When we express
knowledge about cells, proteins or organisms, for instance, we are not re-
ferring to a single cell that we observe under a microscope, or a particular
mouse that was injected yesterday. We rather refer to classes of many en-
tities that behave in similar ways, and these classes are what we name and
identify. In comparison, for example the geographical knowledge domain
is strikingly different, as the Atlantic Ocean, New York and Bermuda are
large and significant enough to be referred to as individuals with a (usually
capitalized) proper name and a proper identifier.

In queries about biological knowledge, we need a logical seman-
tics for relations between classes. The all-some interpretation is the most

146

Chapter 7. Computational reasoning with Metarel

prominent example to illustrate this [38]. When we relate the classes ‘p53-
protein’ and ‘tumor suppression’ with the has function relation, it has to
mean that all p53-proteins have some tumor suppression as function. This
way of using relations provides a very powerful system to infer sound state-
ments of biological knowledge.

Let us look at an example using two statements that have the all-
some interpretation: ‘every p53-protein is some protein’ and ‘every protein
is encoded by some gene’. From these two we can derive logically that
‘every p53-protein is encoded by some gene’. The inferred statement is
sound and it may be the basis for further conclusions.

All the millions of biological classes and the relations between them
can be represented as a large network or graph. Queries can be constructed
by defining a pattern or subgraph that must match one or several segments
of the larger network. Imagine we want to find all the objects that are
encoded by a gene and that have some tumor suppression function. Then
the search pattern will consist of two triples and one subject that we are
interested in: ‘my subject is encoded by gene’ and ‘my subject has function
tumor suppression’. This pattern should match sections of the network,
with the middle part of the triples fitting to the relations and the binding
elements to the biological classes. The subject ‘p53-protein’ is a possible
answer to the query.

This example is useful to demonstrate the importance of reasoning.
What happens if nobody bothered to add ‘every p53-protein is encoded by
some gene’ explicitly? This absence would prohibit finding ‘p53-protein’
among the list of answers, although this statement follows logically from
the two statements described above. It appears that in a good knowledge
system all sound statements that are implicit should be made explicit by
logical inference, thus augmenting the explicit knowledge in the system by
pre-computing. A complete inference of implicit knowledge can be referred
to as a ‘closure’.

7.2.2 Five closure rules for inferring all-some relations

Five closure rules for inferring knowledge statements concerning relations
between biological classes with an all-some interpretation are proposed
here. These five rules together provide the foundation for the reasoning
in step 3 on the current state-of-the-art OBO ontologies and on annotations
with OBO ontologies. Annotations of biological subjects imply that an on-
tology relation and an ontology term are used in the second and third parts

147

Chapter 7. Computational reasoning with Metarel

of a knowledge statement that is represented as a triple.
Let A, B and C be classes and R, S and T be relation types. For

instance, with A = ‘p53-protein’, R = ‘is encoded by’ and B = ‘gene’, the
knowledge statement ARB means ‘Every p53-protein is encoded by some
gene’.

1. Reflexivity
A reflexive closure infers the knowledge statements A R A, where R
is a reflexive relation type. For instance, ‘every body is part of some
body’.

2. Transitivity
A transitive closure infers the knowledge statements A R C, when
the knowledge statements A R B and B R C exist and R is a tran-
sitive relation type. For instance, ‘every kidney is located in some
body’ follows from ‘every kidney is located in some abdomen’ and
‘every abdomen is located in some body’.

3. Priority over subsumption
The priority over subsumption infers the knowledge statement ARC,
if A is a subclass of B and the knowledge statement B R C exists, or
if the knowledge statement A R B exists and B is a subclass of C.
For instance, ‘every API5-protein regulates some cell death’ follows
from ‘every API5-protein regulates some apoptosis’ and ‘every apop-
tosis is some cell death’.

4. Super-relations
A knowledge statement A S B is inferred if S is a super-relation of
R and the knowledge statement A R B exists. For instance, ‘every
API5-protein regulates some apoptosis’ follows from ‘every API5-
protein negatively regulates some apoptosis’.

5. Chains
A knowledge statement A R C is inferred if the knowledge state-
ments A S B and B T C exist and R holds over a chain of S and T .
The relation types R, S and T do not need to be all different. For in-
stance, ‘every API5-protein negatively regulates some apoptosis’ fol-
lows from ‘every API5-protein participates in some anti-apoptosis’
and ‘every anti-apoptosis negatively regulates some apoptosis’.

148

Chapter 7. Computational reasoning with Metarel

These five closure rules allow to infer most of the implicit knowledge
contained in the Gene Ontology (GO), the NCBI Taxonomy, OBO ontolo-
gies that were built similarly to GO, as well as in annotations made with
such ontologies (like GOA), and make it available to querying. They could
be expressed as four rules if transitivity were modeled as a chain where the
three relation types R, S and T are all identical.

Such closure rules for all-some relations between classes follow di-
rectly from rules expressed for (chains of) relations between instances,
which are common for Description Logics and OWL. Indeed, if all in-
stances from class A are related to some instances of class B and all in-
stances of class B are related to some instances of class C, then all instances
of class A are connected by a chain of two instance relations to some in-
stances of class C. The language features corresponding to the closure rules
within step 3 (DL: chains as role constructors; global reflexivity for atomic
roles, transitivity for atomic roles and role inclusions as role axioms; ex-
istential restrictions of atomic concepts by a role as concept constructors;
and concept inclusions with atomic concepts on the left-hand side as ter-
minological axioms) are a subset of those in OWL 2 EL and OWL 2 DL,
which warrants efficient reasoning in a decidable semantics.

The semantics of OBO implies additional rules for inferring new
knowledge statements. A prominent asset is the use of classes that are log-
ically defined from primitive classes (DL: atomic concepts) through neces-
sary and sufficient conditions. Such defined classes are used in most DL
languages, like OWL DL, OWL EL and OWL RL. OBO ontologies have
mostly primitive classes with natural language definitions, although logi-
cal definitions through intersections of classes are also used. However, the
rules in step 3 treat an all-some relation between classes only as a necessary
condition, which is not enough for a logical definition.

Other features in OBO that do not appear in step 3 are domains,
ranges, symmetry, union, disjointness and functionality of relation types,
and union and disjointness of classes. It is inherent to the idea introduced
above (separating reasoning in three steps) that rules for these features were
applied already in step 2 (building a consistent ontology).

Step 3 uses language features that can express knowledge more com-
pactly (DL: logic entailment) and avoids the reasoning problems associated
with consistency checking for logically defined classes (DL: satisfiability).
If for instance the relation type precedes was given the range process and
some annotator or ontology engineer erroneously creates a precedes rela-

149

Chapter 7. Computational reasoning with Metarel

tion to a logically defined class that is disjoint from process, then a reasoner
should detect this problem in step 2.

An issue not mentioned here is the treatment of individuals (DL: as-
sertional axioms), because they are currently not used in OBO ontologies,
nor in the biomedical KBs that are annotated with OBO ontology clas-
ses. The individual geographical entities present in the OBO ontologies
are modeled as singleton classes. In order to model and treat them as in-
dividuals, the five rules would need to be complemented with some extra
rules. Inverses of relation types, which do not have logical consequences
on all-some relations between classes, might also be of use in this exten-
sion. For example, from ‘Ghent is part of Europe’, we can infer ‘Europe
has part Ghent’. A similar conclusion cannot be derived for classes, like in
‘uterus is part of abdomen’. A logical reasoner cannot derive whether every
abdomen has a uterus as part or not.

7.3 Methods

The large-scale inference of biological knowledge statements was achieved
with RDF tools, operating on a merger of Metarel and BioGateway. The
different steps in the entire reasoning pipeline are visualized in Figure 7.1.

The merging was relatively straightforward, as the ontologies in Bio-
Gateway consisted of the simple triple form subject-relation-object. We
curated all the relation types that were used in the OBO ontologies, both
candidates and adopted ones, assembling them in a relation ontology called
biorel.obo. Subsequently, we translated biorel.obo into OWL 2 DL and
merged it as an RDF graph with metarel.rdf. This resulted in the rela-
tion graph biometarel.rdf for use in BioGateway. Finally, we inferred new
knowledge statements as RDF triples by running SPARQL/Update queries
over both biometarel.rdf and the existing RDF graphs in BioGateway, there-
by executing the above-described reasoning approach. The most important
files and software code that were used during the reasoning pipeline are
explained in more detail in the appendices A to D.

7.3.1 Manual curation of the relation types

Most relation types in BioGateway originate from the OBO ontologies. All
OBO ontologies exist in BioGateway as RDF graphs, providing the op-

150

Chapter 7. Computational reasoning with Metarel

82 OBO
ontologies

OBOF

biorel.obo

OBOF

biorel.owl

OWL 2 DL

manual
ONTO-PERL

+
manual

metarel.rdf

OWL Full

biometarel.rdf

OWL Full

BioGateway
Explicit

RDF
SPARUL

BioGateway
Implicit

RDF

5 closures
with

SPARUL

STEP 1 + STEP 2:
Building a consistent DL ontology

STEP 3: Semi-automated reasoning

Figure 7.1: A practical implementation of the three-step process for rea-
soning with bio-ontologies through management of relation semantics. A
consistent, validated biorel.owl in OWL 2 DL contains all the relation types.
It is the starting point for applying 5 important closure rules with a basic
RDF tool like SPARQL/Update (SPARUL).

portunity to transform the relational information available in BioGateway
with RDF tools. However, standard RDF conversion tools do not prop-
erly translate all information embedded in OBO ontologies to RDF, so we
initiated the work with the original OBO files for a more expressive transla-
tion. All Typedef sections for relation types were separated from all OBO
files and through a process of manual curation this long list was reduced
to a single valid, consistent OBO file. Text sorting operations and spread-
sheets were used to compare and select the best annotated and authoritative
relation type entries among the duplicates. In this manner 833 relation
type entries were reduced in a consistent effort to 365 unique, curated rela-
tion types. The resulting OBO file, biorel.obo, is available for download at
http://www.semantic-systems-biology.org/metarel/biorel.

The most crucial step in the curation process, central to the deci-
sion of using the Metarel/RDF framework, was to make a consistent in-
terpretation of the relation types as either object properties (relation types

151

Chapter 7. Computational reasoning with Metarel

between instances) or all-some relation types between classes. Every re-
lation type used between two terms in an OBO file was interpreted as a
metarel:AllSomeClassRelationType and the corresponding relation type in
the Typedef section as an owl:ObjectProperty. Relation types that were an-
notated as ‘metadata-tags’ in the Typedef section were always interpreted as
an owl:AnnotationProperty. This interpretation is entirely consistent with
the current standardized practices of translation between OBO and OWL
DL (OboInOwl) [40], but it is not consistent with the original interpretation
that is still commonly held by many OBO ontology developers. Judging
from definitions and tags in OBO’s Typedef section, the relation types are
most often still viewed as class relation types.

As a consequence, some tags that were introduced in an ad hoc man-
ner to solve this ambiguity, like ‘inverse_of_at_instance_level’ and ‘instan-
ce_level_is_transitive’, were replaced by the standard variants that are cap-
tured better by OBO translation tools.

Six relation types, like has taxonomic rank, is valid for taxon and
is extinct, have OBO’s metadata-tag because they cannot be given an in-
terpretation as object properties. We added this tag to is integral part
of for the same reason. Its semantics is clear as it can always be writ-
ten as a combination of the two all-some relation types is part of and
has part in opposite directions: if ‘A is integral part of B’, then every
A is part of some B and every B has part some A. It is interpreted as
a metarel:InvertibleRelationType, which enables some additional closure
rules. However, it does not fit into the general system and it needs to be
translated into an annotation property for validation in OWL 2 DL.

A consistent naming system was created, by giving every relation
type a name that contains a verb in the third person singular. For instance
the name after was replaced by exists after, as this seemed to be the in-
tended meaning.

Rules that were only poorly formulated as informal comments were
upgraded to sound logic. For instance, the comment that any starts at
end of implies an is preceded by was easily translated into OBO’s logic
by modeling the former as a subproperty of the latter. The new OBO tag
‘holds_over_chain’ for creating property chains was exploited to its fullest
extent and it was added in several cases. For instance, is directly preceded
by holds over a chain of has start and is end of. The ‘transitive_over’ tag
became superfluous through the use of ‘holds_over_chain’.

One informally asserted rule stated: “Gt influences P & Gt variant_of

152

Chapter 7. Computational reasoning with Metarel

G => G influences P". This is a chain rule with one object property in the
inverse direction. Interpreting the object properties as all-some relation
types between classes we will have is variant of from the some-side to the
all-side, which does not result in a sound rule on the class level. Indeed,
as every Gt is a variant of some entity, it would follow that every entity
(everything) influences some P. Implementing such a rule for classes would
corrupt the whole knowledge base. The rule was translated into a formal
chain rule by using an inverse relation. As no inverse was tagged for is
variant of, the following choice was made: is influenced by holds over a
chain of is influenced by and is variant of. This chain goes from the all-side
to the some-side and it retains the intended semantics.

Transitivity was added for all the object properties that were tagged
as the inverse of a transitive object property. For instance is preceded by
was provided with transitivity by the transitivity of precedes.

Apart from the names, some dozens of OBO tags for the semantics
of relation types had to be altered. Contradictions were nowhere found and
the intended semantics could always be retrieved by informal expressions
in the comment section of the OBO format and by the way the relation
types were actually used in the ontologies.

7.3.2 Translation to the Semantic Web

The use of the available Semantic Web tools for inferring and querying
requires a translation to a Semantic Web language. The current standards
are OWL and RDF. BioGateway, an RDF store, does not contain any of
the OWL profiles. By using Metarel/RDF as a target framework for the
translation, we are, however, still using the standards, because Metarel is
valid OWL Full and apart from using class relation types, Metarel is fully
compatible with the language constructs used in OWL. Moreover, Metarel
being valid OWL Full is technically equivalent with it being valid RDF
(http://www.w3.org/TR/owl-ref/). Unlike OWL Full, however, Metarel can
connect the class relation types that reside in the RDF of BioGateway with
the object properties in Biorel.

We translated biorel.obo first into biorel.owl using ONTO-PERL and
adjusted the translated file with some manual curation, which resulted in a
valid OWL 2 DL ontology file for the relation types. We added also the
chains of relation types, a feature novel in OWL 2. In principle, biorel.owl
should contain all the expressivity for the rules in Section 7.2.2, even in
RDF.

153

Chapter 7. Computational reasoning with Metarel

For the purpose of reasoning in BioGateway, biorel.owl was not prac-
tically useful yet, because it contained only object properties, while Bio-
Gateway contained only class relation types. We uploaded biorel.owl into
the relation meta-graph metarel.rdf alongside the other RDF ontologies in
BioGateway. The merged graph is called biometarel and it is this graph that
is used for the reasoning process. With SPARUL updates in the biometarel
graph we could connect the object properties of biorel with the class rela-
tion types of BioGateway and propagate the semantic rules, like transitivity
and chains, to the level of classes.

7.3.3 Inferring new knowledge statements

Each of the five rules that are required for a query system, as discussed in
Section 7.2.2, corresponds to a single SPARUL/Update query type. These
update queries range over BioMetarel and the ontology graphs in BioGate-
way. They need to be operated in a recursive loop until there is no new
knowledge statement left that can be inferred. The update query for infer-
ring reflexive relations in the human disease graph is shown as an example
here:

BASE <http://www.semantic-systems-biology.org/>
PREFIX metarel:<http://www.metarel.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
INSERT INTO GRAPH <human_disease_tc> {
?Class ?RelType ?Class.

}
WHERE {

GRAPH <human_disease_tc> {
?Class rdf:type ?Type.

}
GRAPH <biometarel> {
?RelType rdf:type metarel:ReflexiveRelationType.
?RelType rdf:type metarel:ClassRelationType.

}
}

A PERL script parametrizes the 5 SPARQL/Update query types with
about 2000 graph names. All the inferences from such small graphs are
merged later in the large SSB_tc graph through other update queries. This
practice implies that the entailment of the inferred triples is fully material-
ized on a hard disk and when this is executed on BioGateway with Open-
Link Virtuoso 5.0.8, it shows an acceptable performance. It takes approx-
imately 20 hours to produce 158 million inferred knowledge statements,

154

Chapter 7. Computational reasoning with Metarel

which is reasonable compared to an uploading time of 5 hours for the 401
million original triples. Tens of thousands of SPARQL/Update queries were
run during the reasoning phase, since the closure rules, apart from reflexiv-
ity, need to run several times on each of the 2000 graphs. Reflexivity, which
is executed first, cannot create a part of a chain that triggers the inference
of new triples from other closure rules. The priority over is_a, the super-
relations and the chains, can all fill a missing gap in a chain of transitive
relations, which is why they were run at least three times in a fixed order.

Graphs that did not target each other were only integrated after the
reasoning phase. Some closure rules, especially the priority over is_a, re-
quired too much computational performance for running over a large, inte-
grated graph. The priority over is_a being computationally the most chal-
lenging closure rule, can be understood by realizing that also the is_a rela-
tion is considered as having priority over itself. In other words, the priority
over is_a also executes the transitivity of is_a. The computational demand
for the transitive closure is therefore only a fraction of the demand for the
priority over is_a.

Not all triples are knowledge statements with a meaningful relation
type as a connector. Many triples are used for asserting names, synonyms,
definitions, textual annotations, literature references, etc. As these triples
are often more verbose, we will call them verbose triples as opposed to
knowledge statements. For the Gene Ontology we get the following num-
bers: 54 718 explicit knowledge statements, 643 384 verbose triples and
2 031 247 newly inferred knowledge statements. This implies a multiplica-
tion factor of 38,12 for the number of knowledge statements, but a multipli-
cation factor of only 3,90 for the total number of triples. For the complete
BioGateway we have a multiplication factor of only 1,39.

The relatively low multiplication factor and the high percentage of
verbose triples clearly show that a full materialization does not pose many
extra storage-related problems for bio-ontologies. It makes no sense to start
the reasoning process in a temporal memory only after a query is launched.
It takes 20 hours to generate all the informative knowledge statements,
whereas the majority of typical biologically relevant queries take no more
than some seconds to produce an answer. A quick response time is abso-
lutely required in the knowledge exploration phase that precedes a more
systematic investigation of a new hypothesis. Therefore the materialization
of inferred triples is the preferred practice for bio-ontologies.

155

Chapter 7. Computational reasoning with Metarel

7.4 Results

We inferred about 158 million knowledge statements through semi-auto-
mated reasoning within BioGateway. Most of the time, the inferences are
sound within the intuitive system of all-some relations (an exception: plu-
ral forms in ‘Every Mammalia is some cellular organisms’, following from
an archaic system for defining terms in the NCBI Taxonomy) and they can
be accessed directly for any term through BioGateway’s most basic lookup
query. Most of the inferences are rather trivial if they are considered as
a single statement, however, their effect becomes clear to those who are
querying the knowledge base. Without the inferences, certain queries ei-
ther simply return only a fraction of the answers potentially available in the
knowledge sources, or they require a lot of very specific knowledge on the
architecture of the ontologies in the KB to retrieve full results. The reason-
ing process would need to be done by the query builder and the resulting
queries would become huge and slow.

By precomputing all the inferences, the hardest part of the reasoning
process happens only once in a single although substantial computational
effort, but the results are stored and are available for all subsequent queries.
The query builder can now concentrate solely on the intended meaning of
the relation types that are used, instead of reconstructing this meaning by
his query. He can query over the explicit knowledge statements as well as
over the implicit ones.

Queries on the RDF graphs with inferred knowledge statements are
now short and the answers are more informative and complete. Imagine
a cancer researcher who investigates the ASPP1-proteins (Apoptosis stim-
ulating of p53-protein 1) and she finds in direct manual annotations from
GOA that proteins of this type are located in the nucleus and in the cyto-
plasm and that they participate in the processes ‘induction of apoptosis’ and
‘negative regulation of cell cycle’. Now she would like to see which other
proteins fulfill these conditions within mammals.

This query involves just a pattern of knowledge statements in the
triple form:

• my_subject is located in cytoplasm

• my_subject participates in apoptosis

• my_subject participates in negative regulation of cell cycle

• my_subject has source mammal

156

Chapter 7. Computational reasoning with Metarel

The query will return all the classes of biological entities (proteins in
this case) that can, within BioGateway, be inferred to be located in the cyto-
plasm, to participate in apoptosis, etc., instead of searching only through the
knowledge statements that were once annotated explicitly by an ontology
engineer or a manual curator. ‘Mammal’ is too generic to be chosen as an
annotation for a source species. Also ‘cytoplasm’, ‘apoptosis’ and ‘nega-
tive regulation of cell cycle’ have many sublocations and subprocesses that
are often chosen for annotations. The query returns 36 types of proteins
that actually fulfill all the conditions, but just 29, 29 and 17 respectively if
only the explicit annotations are queried for ‘cytoplasm’, ‘apoptosis’ and
‘negative regulation of cell cycle’. We still get 13 protein types for explicit
annotations on all these three conditions, but none for direct annotations
on ‘mammal’. The relatively high numbers of explicit annotations are due
to the fact that they are abundant and redundant in meaning, though taken
together still incomplete.

The necessity of each of the five closure rules was investigated sep-
arately by recreating the inferred version of BioGateway five times and
omitting one of the rules during each recreation. We detected that many
inferences followed from several different closure rules, which raises the
question whether one of the closure rules can be omitted at all. However,
for all 5 recreations of the implicit KB, some of the inferences were miss-
ing, indicating that all the closure rules have an essential function. Four
specific biological queries in BioGateway illustrate the practical relevance
of each of the closure rules. Queries Bio4 and Bio5 are part of the library
of preconstructed queries in BioGateway:

• Query 1: Which are all the biological processes in which a given
protein (dnaJ in Chlamydophila felis Fe/C-56) is involved, which are
all the other proteins that participate in these biological processes
and which cellular locations were annotated for these other proteins?
(Bio4 in BioGateway)

• Query 2: Which are the proteins that have both the nucleus and the
endoplasmatic reticulum as inferred locations, compared and ordered
for all the organisms in the KB? (Bio5 in BioGateway)

• Query 3: What are the subparts of liver parenchyma?

157

Chapter 7. Computational reasoning with Metarel

• Query 4: Which are the developmental stages preceding the unfer-
tilised egg stage, and that are themselves preceded by oogenesis stage
S6 (the stage during which follicle cell division ceases)?

For each query the number of answers was counted, rendered by
either the KB with only the explicit knowledge, on the KB with all the ad-
ditional inferred knowledge and in each of the KBs that lacked one specific
type of closure. The results can be viewed in Table 7.1.

To demonstrate that the additional answers also make biological sen-
se, we will analyze the queries and the corresponding parts of the KB.
Query 1 asks for proteins that are involved in the same biological process
as a given process. This means that a protein involved in a subprocess is
also a good answer. The query asks generically for proteins in the same
process and/or the subprocesses, but without the reflexive closure proteins
annotated with the exact same process are disregarded (79 answers). With-
out any closure we get only the proteins annotated with the subprocesses
on the level immediately below the original process, but not subprocesses
of subprocesses (2 answers). Query 2 fails to return proteins that are anno-
tated with sublocations of the nucleus and the endoplasmic reticulum when
either the priority over is_a or the chain closure is omitted. This depends
on the particular engineering of the Gene Ontology. We find almost exclu-
sively the is_a relation type below the nucleus and the endoplasmic reticu-
lum, with only nuclear part is part of nucleus and endoplasmic reticulum
part is part of endoplasmic reticulum, for instance ‘germ cell nucleus is a
nucleus’ and ‘ARC complex is a nuclear part’. The priority over is_a prop-
agates is located in over all these is_a’s, but we need a specific chain rule
to propagate is located in over is part of. The priority over is_a generates
extra answers for annotations with terms like ‘germ cell nucleus’ (616 an-
swers). But as no protein was annotated with nuclear part nor endoplasmic
reticulum part, we get only the explicit annotations on nucleus and endo-
plasmic reticulum if the priority over is_a is omitted (593 answers). Only if
both the chain closure and the priority over is_a are in place, proteins with
annotations in the hierarchy below nuclear part and endoplasmic reticulum
part are retrieved (738 answers). Query 3 requires the transitive closure of
is part of for finding the subparts of ‘liver parenchyma’. Without any clo-
sures only ‘liver lobule’, ‘portal lobule’ and ‘portal triad’ are retrieved (3
answers), but not the 6 more specific terms like ‘bile canaliculus’, which
are subparts of the liver lobule and the portal triad. Reflexivity acknowl-
edges that a liver parenchyma is also part of itself (4 answers). Query 4

158

Chapter 7. Computational reasoning with Metarel

Exp. Imp. R1 R2 R3 R4 R5
Query 1 2 118 79 118 118 118 118
Query 2 593 738 738 738 593 738 616
Query 3 3 10 9 4 10 10 10
Query 4 0 19 19 0 19 0 19

Table 7.1: The number of answers to queries compared on explicit knowl-
edge (Exp.) and implicit knowledge (Imp.), and on partial closures where
rules for reflexivity (R1), transitivity (R2), priority over subsumption (R3),
super-relations (R4) and chains (R5) were omitted respectively. The bold
typeface indicates partial loss of logically correct results.

asks for a series of developmental stages. The ontology of developmental
stages uses starts at end of as a relation type to connect subsequent stages.
Starts at end of is a subrelation of the transitive relation type is preceded
by. That is why only answers are found if both the transitive closure and
the super-relation closure are implemented (19 answers).

The results show that every query executed in BioGateway that uses
any of the 365 relation types in biorel.obo benefits from the reasoning pro-
cess that has created the inferences. The answers to such a query are com-
plete and they correspond to the logical meaning of the relation types as
intended by the ontology engineers. This meaning no longer needs to be
simulated in the queries.

7.5 Conclusion

With this work, we have chosen to enable efficient querying with the most
basic semantic features, instead of hampering the query system with ad-
vanced, fully automated reasoning. The division of the reasoning approach
in three steps has the benefit that the consistency of the knowledge base is
more easily achieved after the execution of the third step. Manipulations
of the contents the knowledge base, like insertions, deletions and updates,
are left to step 2, which is done by ontology engineers who are maintaining
the consistency of their ontology. Also the addition of new rules, which be-
longs to step 1, is done by external engineers. Step 3 requires a periodical
integration effort that relaxes many rules and that assumes consistency of
the ontologies that are integrated. After the complete execution of step 3,

159

Chapter 7. Computational reasoning with Metarel

the knowledge base is supposed to remain entirely stable for some time.
The precomputing of relational closures appears to be the only way

to query on logically inferred statements with SPARQL. There is some lim-
ited support for reasoning with transitivity in SPARQL, but this makes the
query harder to write, slower to compute and it does not provide support
for other logical features. RDF triple store developers should provide the
option to define a set of SPARUL rules that are operated recursively during
load time and loaded in a separate graph with a similar name as the graph
with the original contents. This enables to launch the same queries easily
with or without inferences in place, which is currently supported by the
OWLIM triple store.

Many different ontology engineers have collaborated in the coordi-
nated development of more than 80 OBO ontology files. We have brought
consistency to the stack of relation types in these files by gathering all the
relation types in Biorel and translating them to OWL 2 DL. After merging
the OWL translation of Biorel with Metarel in the RDF store BioGateway,
we could infer 158 million previously hidden knowledge statements from
the explicitly asserted knowledge in the OBO ontologies, GOA annotations
for about 2000 species, UniProtKB/Swiss-Prot and the NCBI Taxonomy.
The inferred knowledge statements can be used for biological hypothesis
generation through querying. The success of our methodology is due to the
soundness of the OBO ontologies, the use of Semantic Web tools and the
semi-automated approach of reasoning.

This work shows that a small set of simple rules for bio-ontologies
results in efficient practices for reasoning and querying. As many resear-
chers are involved in building bio-ontologies, more restrictive guidelines
and principles for building bio-ontologies are required in order to obtain
more uniformity and reach more convergence for knowledge management
in the Life Sciences.

160

Chapter 8

Conclusions

The total amount of available knowledge and data in the Life Sciences has
been growing exponentially during the last decade. This is caused by new
techniques for sequencing and analyzing the genome and by an exponential
growth of scientific literature in the biomedical domain. These rapid evo-
lutions call for knowledge management in the Life Sciences with the most
modern techniques in computer science.

Computer science ontologies and the Semantic Web are cornerstones
for modern knowledge management. Many biomedical resources were de-
veloped along the lines of these paradigms in the last decade, for which the
OBO Foundry [37] has been a driving force and OWL [108] a key tech-
nology. Literature resources like PubMed that have been growing exponen-
tially have been taken care of by text-mining applications, which have often
used ontologies as a semantic framework [58].

These modern technologies are based on two old scientific domains
that are rooted in philosophy: Logic and Ontology. The field of Logic
went through a series of developments during the last 150 years, which
has converted it from very ambiguous philosophic discourse towards strict
mathematics and later towards computer science. Ontology seems to be
going in the same direction during the last 15 years. The popularity of
ontology languages like OWL has attracted much attention from computer
scientists and application-oriented knowledge engineers towards the philo-
sophic theories about the representation of reality. This has given a strong
impetus to the development of comprehensive, reality-based ontologies like
BFO [91]. OWL is the ultimate combination of Logic and Ontology, since
it is designed to model ontologies in strictly decidable DLs [131].

161

Chapter 8. Conclusions

The Semantic Web has built a bridge from the modern basis of com-
puter science, like IRIs [102] for identification, HTTP [96] for Internet
transfer, XML [103] for syntactical representation and Unicode [101] for
symbols, towards knowledge management in OWL. The most important
technology that constitutes this bridge is the graph language RDF [104],
that can be queried through SPARQL [106]. It provides a graph model
for OWL, which enables SPARQL queries about OWL ontologies. These
queries can either be logically sound in the sense of DL, or they can query
for modeling choices, like direct superclasses or closest common super-
classes, that cannot be expressed as a DL query. Users of ontologies need
both types of queries, which declares the choice for representing OWL in
RDF. The bridge is completed by the syntactical representation of RDF in
XML. The whole stack of technologies has become known as the Semantic
Web Stack.

RDF is slowly becoming the engine of the Semantic Web. Related
technologies, like SPARUL [126], SPIN [141], federated querying [144]
and Linked Data [143], are currently being developed. SPARUL provides
SPARQL-based rules for updating RDF, which is complemented by SPIN
for writing SPARQL queries as RDF. The combination of both technolo-
gies, SPARUL and SPIN, facilitates RDF stores that contain their man-
agement and reasoning rules internally. Federated querying exploits the
available resources, both storage and computing resources, for executing
SPARQL queries worldwide.

Linked Data is the latest Semantic Web paradigm that promotes sev-
eral ideas like openness of data, browsability of RDF graphs and HTTP-
style IRIs. The combination of these ideas might, ideally within the com-
ing years, enable lay users to browse RDF-formatted data through clicking,
hovering, and drag-and-drop in web browsers like Firefox.

Contributions of the thesis

Chapter 4 describes the engineering of a library of SPARQL queries, and
the benchmarking of the performance of RDF storage systems for query
answering through this library. The library of SPARQL queries was de-
signed as a part of a larger system, the DIAMONDS platform, that fa-
cilitated queries about the cell cycle for biologists. The platform, which
was engineered as a Java application within a browser environment, has
shown nice results, was published and delivered to the funding providers,
and has enabled us to derive some important lessons about Semantic Web

162

Chapter 8. Conclusions

technologies. Unfortunately, the final design of the platform caused severe
instabilities in the browser due to memory overflows deriving from the vi-
sualization module. The Semantic Web related modules were reused in the
BioGateway project later.

RDF and OWL have worked together successfully for CCO, because
RDF was used for querying and OWL for consistency checking. The at-
tempts to query CCO have shown that RDF is perfectly suited for sup-
porting practical applications that browse and retrieve knowledge. Useful
queries on CCO in OWL, that cannot be answered in RDF, could not be
identified. Querying the RDF version of CCO through SPARQL on the
other hand, facilitated queries that addressed the model itself, like retriev-
ing direct super- and subclasses and restricting queries on labels instead of
logical class descriptions. SPARQL can return all the classes in the path to
the root of an ontology and it can even find the closest common superclass
of two classes. E.g. if a biologist wants to see the closest common ancestor
of ‘human’ and ‘horse’, she expects something like ‘mammal’. SPARQL
can return this answer, whereas a DL query in OWL should return the class
that is the union of all humans and all horses. It has to be acknowledged
that the modeling choices of ontology engineers contain a lot of useful in-
formation that is obscured by fully automated reasoning.

The development of CCO in RDF and the creation of a library of
SPARQL queries for CCO, has enabled to compare the performance of
different RDF storage systems. We can conclude that the standards that
were developed for RDF and SPARQL were followed rather well by the
implementers of these stores. OWLIM has optimized the response time
of uncomplicated SPARQL queries on CCO, which consists of millions of
triples, into the range of milliseconds. However, some query constructs,
like filtering results through regular expressions, were not always handled
very optimally by the RDF storage systems.

Chapter 5 introduces the Metarel relation ontology. Metarel sup-
ports RDF modeled as MDGs, which can increase the abilities of SPARQL
even more. RDF/MDG can complement OWL/RDF, the standard syntax
for expressing OWL in RDF. OWL/RDF has the virtue of containing all
the information that is expressed in OWL, however, it is not designed to
be easily queried with SPARQL. RDF/MDG on the other hand can easily
be queried with SPARQL and updated with SPARUL rules, but it is less
expressive than DL-based profiles of OWL.

Metarel has roughly three use cases that complement the OWL/RDF

163

Chapter 8. Conclusions

syntax. First of all, inferences created by OWL reasoners that are ex-
pressible by Metarel as arcs in an MDG, can be materialized explicitly to
make them available for SPARQL querying. Secondly, Metarel can give
a stronger ontological commitment to data with respect to the distinction
between instances and classes, without changing the data itself. This pro-
vides an attractive step towards decidable reasoning with SPARUL (semi-
automated) or OWL (fully automated). Thirdly, new data resources could
immediately be developed as RDF/MDG, annotated with Metarel, provid-
ing a straight-forward conversion to OWL DL.

Linked Data relies on RDF graphs that are browsable. For being
browsable, query systems should be able to follow blank nodes automati-
cally. It is not clear how this can be achieved with SPARQL alone, without
the need for a procedural language like Java. Since RDF/MDG does not
contain any blank nodes, it is highly browsable and it can be queried by
SPARQL without any additions. We can conclude that Metarel works very
well together with this recent evolution in the Semantic Web.

BioGateway, described in Chapter 6, is a resource that has the RDF/
MDG format. It brings the ideas of the Semantic Web into practice by
providing a SPARQL query endpoint for biomedical resources like GOA
and GO for genome annotations, UniProt for proteins, NCBI Taxonomy for
organisms and OBO ontologies for very diverse biomedical domains. The
identifiers of the biological terms in these resources are organized within
the namespace of SSB. This is sufficient to launch integrated queries over
these biomedical resources. UniProt and GOA use the same identifiers for
proteins, GOA uses GO for annotations of proteins, GOA and UniProt use
the NCBI Taxonomy for the annotation of organisms, and so on. This reuse
of terms with the same IRIs is the bottom layer of the Semantic Web, which
appears to be very important for BioGateway. As a result, BioGateway can
answer complex queries like “Which proteins are involved in disease A and
located in cellular component B, that are also interacting with protein C?”

The modeling choices for converting the original biomedical resour-
ces into RDF for BioGateway, have been optimized by feedback from query-
ing the resources with SPARQL. This has made BioGateway in accordance
with the idea of creating direct RDF-links between the terms that are of
relevance, as expressed in Chapter 5 about Metarel. Direct links and the
MDG-format are crucial for acquiring a high queryability in BioGateway.

Querying BioGateway was often hampered by serious performance
bottlenecks. The fundamental reason for these bottlenecks is the worst-

164

Chapter 8. Conclusions

case complexity of SPARQL, which is PSPACE complete. This means
that queries may cost exponential time and polynomial memory space in
function of the size of the data. SPARQL queries that use only the AND,
the UNION and the FILTER operators, excluding the OPTIONAL operator,
are already NP-complete, which is as hard as solving the traveling salesman
problem [125]. This makes the optimization of triple store performance
a very challenging issue. The only practical solution for SPARQL query
engineers is to create queries that are well supported.

BioGateway has assigned new IRIs to the concepts from the ontolo-
gies it integrates, by fitting them all in the IRI-namespace of SSB. This is
not an ideal practice with respect to integration on an even larger scale, for
instance through federated querying. Data providers and the OBO Foundry
in particular, have paid more attention to the standardization of IRIs since
the development of BioGateway in 2008. For this reason, BioGateway
would benefit from an update that uses the more recently developed stan-
dards for IRIs, especially for those that stem from the OBO Foundry. On the
other hand, it is still not entirely clear to what extent integrated knowledge
bases should adopt different IRI schemes from its original sources. For in-
stance, if also the OBO Foundry would accept a different IRI namespace
for every of its ontologies, there would be so many namespace prefixes re-
quired that querying and integration becomes hard. Continuous discussions
on this subject are required in order to reach convergence for recommenda-
tions.

Several ideas were tested in BioGateway, like the redundant load-
ing of the same resources in separate RDF graphs and in integrated RDF
graphs, the inclusion of MetaOnto, an ontology about ontologies, the cre-
ation of transitive closures and the separation of RDF graphs with logical
inferences from RDF graphs with the original resources. The resulting ar-
chitecture of BioGateway has enabled more queries and has decreased their
response times.

The redundant loading of resources over separate RDF graphs was
done in order to deal better with the slowing down of queries as graph are
getting larger. Once an RDF graph was isolated, the responsiveness of the
queries on that graph remained more or less stable and acceptable. We can
conclude from this that triple stores are very scalable as long as more RDF
graphs are created during the growth of the whole store. The addition of
extra graphs with logical inferences did not really affect the responsiveness
of queries on the original graphs.

165

Chapter 8. Conclusions

Another important idea was the creation of BioMetarel for the in-
tegration and the management of relation types in BioGateway. It is not
enough that biomedical resources use the same IRIs for biomedical terms,
but not for relation types. All the relation types in BioGateway were as-
sembled, made consistent and annotated with terms in Metarel. Apart from
facilitating queries, BioMetarel held the promise of facilitating logical rea-
soning.

This logical reasoning has turned out well with the use of SPARUL,
as described in Chapter 7. The reasoning was not achieved in a single
step, which is the approach of fully automated reasoning in DL, but in
three steps: 1) choosing a DL for representing resources, 2) building the
resources while running the DL reasoner on small modules for consistency
checking and 3) creating useful inferences for querying in a less expressive,
tractable logic, that does not fail due to remaining inconsistencies. The less
expressive logic in step 3 was defined as a subset of well-investigated DLs
like OWL EL and OWL DL, which could be algorithmically implemented
through five closure rules that are easily expressed in SPARUL: reflexivity,
transitivity, priority of isa, superrelations and chains.

The work of many others in steps 1 and 2 could be reused by choos-
ing for this approach. They have been building resources and improved
their consistency with the use of DL, whereas the creation of inferences for
querying only required work in step 3. The quality of ontologies was good
enough with respect to the logical consistency of classes in a subsumption
hierarchy, apart from the poor naming convention in NCBI, which uses
plurals in labels. This level of quality does not apply to the relation types,
which were treated too differently in the original resources. The creation
and the validation of Biorel in OWL DL, and the annotation of Biorel with
Metarel, which resulted in BioMetarel, was work that belonged to steps 1
and 2.

Domains and ranges of relation types are advanced logic constructs
that can result in many inconsistencies. They were not considered in step
3 for the creation of inferences, but they were not even included in step 1
for the creation of Biorel. This reflects the fact that the ontological com-
mitment of the original biomedical resources was too different for unifying
them in a logic that includes domain and ranges. The developers of BFO
are currently working towards a stronger ontological commitment for all
biomedical ontologies.

The lessons learned from the reasoning approach, and biorel.obo in

166

Chapter 8. Conclusions

particular, were discussed on the mailing lists that are used by the many
developers of the OBO ontologies: obo-discuss, obo-relations and bfo-
discuss. The differences between biorel.obo and RO.obo, as well as the
translation to OWL, were highlighted in a discussion with Chris Mungall,
the main developer of RO.obo. Biorel has bent a controversy about the
naming of relations in favor of the practice to always use a verb in the
third person singular, like is part of instead of part of. Also the practice
to use human readable IRIs for relations, instead of numerical values, was
discussed in the context of BFO. Unfortunately, in spite of the positive re-
sults with Biorel in BioGateway, and in spite of the flexibility offered by
IRIs, current efforts in the BFO community are centered around the devel-
opment of a small set of non-human readable identifiers that would eventu-
ally replace RO. This evolution will certainly not help the development of
SPARQL libraries that reveal the contents of OBO ontologies. On the other
hand, it provides more flexibility for changing the names for the relations
in the future, without obsoleting the identifiers. It also creates more coher-
ence with the understandable practice to use numerical identifiers for large
sets of classes in rapidly evolving biomedical domains, like genomics and
proteomics. If this practice is compared with IRIs in OWL, we must con-
clude that the IRIs rdf:type and rdfs:subClassOf are somewhat outdated,
but much more useful than IRIs like owl:000123 and owl:000097. In that
sense an updated version of Biorel might fulfill a practical role in the future
as a work-around for the flaws in the theoretical solutions.

Also the results of the benchmarking of different RDF stores has
raised discussions with the developers of OWLIM, which may eventually
lead to better tools. The real contribution of the work in the thesis relates
thus to the field of Knowledge Management itself: the testing of semantic
technologies and the creation of modeling practices that may lead to bet-
ter standards. BioGateway, with logical inferences in place, is mostly of
use for ontology engineers and Semantic Web programmers. Bioinformati-
cians may explore the possibilities that it creates, however, RDF stores like
BioGateway are not mature enough yet to be directly useful for the tar-
get user, the biological expert. Scientists that do not have a background in
computer science need clear interfaces that guide them in their knowledge
exploration. BioGateway should be evaluated as a building block in the
software layers of such a system.

167

Chapter 8. Conclusions

General conclusions

Bio-ontologies and the Semantic Web are two important evolutions for
knowledge management in the Life Sciences. They provide a logical frame-
work, universal identifiers and tools for the integration of knowledge. How-
ever, in order to become really useful for Life Sciences researchers, both
pillars need to mature further and become integrated in the biology toolbox.
As the amount of biomedical knowledge keeps growing exponentially, the
scalability of Semantic Web tools should be a main concern. Slow queries,
intimidating interfaces and immature software form a real obstacle for the
exploitation of biomedical knowledge repositories.

The research in this thesis shows new directions and paves the way
by providing actual software solutions. This is mostly achieved by engi-
neering new technologies (Metarel and reasoning with SPARUL) and by
providing middle-ware (BioMetarel and SPARQL libraries) for end-ware
(the DIAMONDS platform and BioGateway).

RDF stands out as the W3C endorsed standard for the Semantic Web
that is most promising for the integration of biomedical knowledge. It is
complemented by the fully automated solutions provided by OWL, in par-
ticular for the consistency checking of ontologies and formally represented
knowledge resources. However, when it comes down to querying and creat-
ing logical inferences on large-scaled knowledge bases, the Semantic Web
Stack relies on RDF and its query language SPARQL. The engineering of
Metarel, based on notions of Description Logics on the one hand, but RDF-
compatible multidigraphs on the other hand, acknowledges these practical
benefits.

In spite of the benefits, the large and diverse possibilities of querying
RDF demands better browsing and visualization tools to make the tech-
nology more accessible to biologists. Parameterizing and reworking the
SPARQL code is still the best option for acquiring all the expressivity of
the SPARQL query language. The direct relations between classes used
in Metarel and BioGateway may help overcome some of the current short-
comings pertaining to reasoning and browsing.

On the side of the development of bio-ontologies, more efforts are
required: ontology engineers should reuse other bio-ontologies to avoid du-
plication, create appropriate relations, provide identifiers, synonyms, def-
initions and cross-references. The Semantic Web architecture is perfectly
suited for exploiting an orthogonal, cross-linked set of bio-ontologies. Bio-
Gateway, with the inferences that were created through Metarel-based rea-

168

Chapter 8. Conclusions

soning, can be used to identify the glitches in bio-ontologies and to improve
them further in a consistent manner.

The future perspectives of knowledge management on the Semantic
Web depend on recent evolutions like Linked Data and federated querying.
The Semantic Web needs to strengthen from the bottom of its stack, the
IRIs, to the top. When data providers start to release data systematically
with the use of IRIs, that can be put on the Web as Linked Data with little
effort, then the standards that were developed higher in the stack, like RDF
and OWL, will gain in importance. However, more compatibility will have
to be created with classical approaches like relational databases.

Future work

As a future work on BioGateway, the knowledge base would benefit from
the inclusion of more data, like biological pathways, for enabling answers
to a broader range of interesting questions. A graphical interface that is
specifically developed for the library of queries in BioGateway could make
the system more attractive for the intended end users. In-depth queries
on very specific research questions would provide a test for the biological
usefulness of the inferences. For example, the inferences on GO and the
NCBI Taxonomy will allow to compare gene functions across species and
kingdoms.

The work on Metarel might lead to better standards for the usage of
relations in the Semantic Web. It could be of help in bridging Semantic
Web relations in their most simple form (as in Linked Data) and relations
that express more advanced logical statements (as in OWL and formal On-
tology).

169

Chapter 8. Conclusions

170

Chapter 9

Nederlandstalige samenvatting

Het werk dat in deze thesis beschreven wordt, heeft betrekking op een aan-
tal stappen die gezet zijn in een wetenschappelijk domein dat het beste
kan omschreven worden als ‘kennisbeheer in de levenswetenschappen’. Dit
kennisbeheer is van toenemend belang door toedoen van de snelle vooruit-
gang die geboekt wordt in de bioinformatica. Nieuwe technieken in de ont-
rafeling van het DNA en betere computationele verwerking van genoom-
gerelateerde data hebben ervoor gezorgd dat erg gedetailleerde biomedi-
sche kennis in enorme volumes beschikbaar is geworden voor de weten-
schap.

Zoals ook uitgelegd wordt in Hoofdstuk 1, zijn de hoofdstukken 2 en
3 inleidend, terwijl de daaropvolgende hoofdstukken, van 4 tot en met 7,
de wetenschappelijke stappen beschrijven die door de auteur gezet zijn. Ze
houden verband met wetenschappelijke publicaties die gemaakt zijn in in-
ternationale tijdschriften en internationale wetenschappelijke conferenties.
Hoofdstuk 8 bevat de algemene conclusies die uit de thesis kunnen worden
getrokken.

Hoofdstuk 2 geeft een inleiding op kennisbeheer in de levensweten-
schappen als wetenschappelijk onderzoeksdomein. Om te beginnen wordt
het begrip ‘kennis’ er onderscheiden van ‘data’ en ‘informatie’. Informatie
bestaat uit data en meta-data. Kennis kan beschouwd worden als informatie
waarvan de betekenis van een welbepaalde interpretatie is voorzien. De
rest van het hoofdstuk beschrijft de enorme inspanningen die in dit domein
reeds door anderen werden gezet. Biomedische kennis is doorheen de jaren
vervat geweest in allerlei kennisbronnen met soms heel diverse formaten.
Waar dit tot voor tien jaar vooral klassieke relationele databanken waren,

171

Chapter 9. Nederlandstalige samenvatting

maken tegenwoordig ontologieën een sterke opgang. Men heeft de laat-
ste jaren ook veel inspanningen geleverd om kennisbronnen beschikbaar te
maken via het zogenaamde ‘Semantische Web’, dat als een soort computer-
verstaanbare opvolger van het Wereld Wijde Web gepromoot is geworden.
Uiteraard vormen publicaties in natuurlijke taal via tijdschriften en artikels
ook nog steeds een belangrijke component van de beschikbare kennis.

Kennismanagement is een onderdeel van de computerwetenschap-
pen en steunt sterk op de ontwikkelingen die zich hebben voorgedaan in de
gebieden van de Logica en de Ontologie in de vorige eeuw. In Hoofdstuk 3
wordt daarom een inleiding gegeven op deze wetenschappelijke domeinen,
teneinde alle begrippen die in de thesis aan bod komen op een natuurlijke
wijze te introduceren. Begrippen als ‘ontologie’, ‘logische taal’, ‘instance’
(voorbeeld), ‘class’ (klasse), ‘decidability’ (beslisbaarheid) en ‘tractability’
(praktische berekenbaarheid), krijgen daardoor een betekenis. Het hoofd-
stuk sluit af met de moderne technologieën, zoals SPARQL, RDF en OWL,
die een basis vormen voor het wetenschappelijk werk in deze thesis. In
een persoonlijke analyse wordt uitgelegd dat OWL zeer geschikt is voor
het nagaan van de logische consistentie van ontologieën, terwijl RDF meer
geschikt is voor het bevragen ervan.

Hoofstuk 4 beschrijft de ontwikkeling van een bevragingslaag voor
de Celcyclus Ontologie (Cell Cycle Ontology, CCO). Het DIAMONDS
platform is een online software-dienst die gebruikers met specifieke bi-
ologische vragen in verband met de celcyclus in staat stelt om grafisch
doorheen de gedetailleerde kennis in CCO te zoeken. Deze laag omvat
een lijst bevragingstypes (of queries) die zowel elementaire ontologie-ge-
relateerde opzoekingen doet, zowel als meer geavanceerde biologische op-
zoekingen. Het DIAMONDS platform is later vervangen geworden door
BioGateway (‘gateway’ betekent doorgang of tunnel), die ook op deze
bevragingslaag kon verderbouwen.

Een tweede luik in hoofstuk 4 behandelt de vergelijking van de bere-
keningssnelheden van verschillende softwareprogramma’s die RDF opslag-
silo’s kunnen bevragen. De RDF-versie van CCO en de lijst met bevra-
gingstypes die was ontwikkeld voor CCO, zijn daarvoor als ijkingsstan-
daard gebruikt geworden. Samen vormen ze de NTNU ijkingsstandaard
(NTNU benchmark).

In Hoofdstuk 5 wordt Metarel behandeld, een meta-ontologie voor
relaties in biomedische ontologieën. De uitgebreide mogelijkheden die
RDF biedt om logische verbanden te modelleren, hebben het bevragen van

172

Chapter 9. Nederlandstalige samenvatting

RDF-geformatteerde kennisbronnen met behulp van SPARQL bemoeilijkt.
Metarel biedt daarom de mogelijkheid om relaties in een eenvoudiger RDF-
model van een logische betekenis te voorzien. Een dergelijk eenvoudiger
model stemt overeen met een multidigraaf (MDG). In tegenstelling tot de
bestaande technologieën voor het Semantische Web, kunnen met Metarel
rechtstreekse relaties tussen klassen logisch beschreven worden.

BioGateway is een geïntegreerde, RDF-gebaseerde kennisbasis waar-
in geavanceerde opzoekingen mogelijk zijn over biomedische kennis. Haar
architectuur en implementatie, beschreven in Hoofdstuk 6, bouwt verder
op de voorgaande hoofdstukken. De bevragingslaag die ontwikkeld was
in Hoofdstuk 4 is verder op punt gezet en heeft als basis gediend om de
architectuur van BioGateway te optimalizeren. Metarel heeft in BioGate-
way haar eerste concrete toepassing gevonden. Ze werd er samengevoegd
met Biorel, die een lijst van biomedische relaties bevat. Hun product vormt
BioMetarel, dat instaat voor het beheer van de relaties in BioGateway. Een
andere meta-ontologie, MetaOnto, werd ontwikkeld voor de bevraging en
het beheer van meta-informatie over de kennisbronnen die in BioGateway
werden geïntegreerd.

Hoofdstuk 7 levert een bewijs dat de aanpak die in de vorige hoofd-
stukken werd ontwikkeld werkt. Metarel is er gebruikt geworden om enkele
honderden miljoenen nieuwe relaties te leggen tussen de begrippen in Bio-
Gateway, op basis van logische regels die geformuleerd werden met SPAR-
QL/Update. Door te werken met directe relaties tussen klassen, vervat in
een enkele RDF triple met een onderwerp, een predikaat en een voorwerp,
is BioGateway heel aantrekkelijk gebleven om te bevragen via SPARQL.

Tenslotte levert Hoofdstuk 8 een aantal algemene conclusies die uit
het werk in deze thesis kunnen getrokken worden voor het bredere weten-
schappelijke domein van kennisbeheer in de levenswetenschappen. Twee
belangrijke evoluties zijn daarin van belang gebleken: het Semantische
Web en bio-ontologieën. Beide steunpilaren moeten verder rijpen en nog
meer opgenomen worden als standaardtechnieken in de software-omgeving
van biologische wetenschappers. Deze thesis heeft nieuwe methoden on-
derzocht om deze doelen te bereiken. In het bijzonder is het nut van de
Semantische Web taal RDF en en haar bevragingstaal SPARQL voor de
praktische bevraging van biomedische kennisbronnen eruit gebleken. Me-
tarel heeft deze tak van het Semantische Web nog verder ondersteund door
multidigrafen in RDF van een logische betekenis te voorzien, naar analo-
gie van de Beschrijvingslogica (Description Logics) die gebruikt wordt in

173

Chapter 9. Nederlandstalige samenvatting

de Web Ontologie Taal (Web Ontology Language, OWL). Daardoor werd
het ook mogelijk om bio-ontologieën aan een praktische test te onderwer-
pen. De nieuwe relaties die in BioGateway gevormd werden via de logi-
sche regels in Metarel, kunnen gebruikt worden om onvolkomenheden in
bio-ontologieën na te speuren en ze in de toekomst door een beter ontwerp
te vermijden.

174

Bibliography

[1] E. Antezana, M. Egaña, B. De Baets, M. Kuiper, and V. Mironov,
“ONTO-PERL: An API for supporting the development and analysis
of bio-ontologies,” Bioinformatics, vol. 24, no. 6, pp. 885–887, 2008.

[2] E. Antezana, M. Egaña, W. Blondé, A. Illarramendi, I. Bilbao,
B. De Baets, R. Stevens, V. Mironov, and M. Kuiper, “The Cell Cycle
Ontology: An application ontology for the representation and inte-
grated analysis of the cell cycle process,” Genome Biology, vol. 10,
no. 5, pp. R58+, 2009.

[3] V. Mironov, E. Antezana, M. Egaña, W. Blondé, B. De Baets,
R. Stevens, and M. Kuiper, “Flexibility and Utility of the Cell Cycle
Ontology,” Applied Ontology, vol. 6, no. 3, pp. 247–261, 2011.

[4] V. Mironov, N. Seethappan, W. Blondé, E. Antezana, A. Splendiani,
and M. Kuiper, “Gauging triple stores with actual biological data,”
BMC Bioinformatics, vol. 13, no. Suppl 1, pp. S3+, 2012.

[5] W. Blondé, E. Antezana, B. De Baets, V. Mironov, and M. Kuiper,
“Metarel: an Ontology to support the inferencing of Semantic Web
relations within Biomedical Ontologies,” in Proc. of the Interna-
tional Conference on Biomedical Ontologies (ICBO), pp. 79–82,
2009.

[6] E. Antezana, W. Blondé, M. Egaña, A. Rutherford, R. Stevens,
B. De Baets, V. Mironov, and M. Kuiper, “Structuring the life sci-
ence resourceome for semantic systems biology: lessons from the
BioGateway Project,” SWAT4LS, Burger A, Paschke A, Romano, et
al, eds, vol. 435, 2008.

175

Bibliography

[7] E. Antezana, W. Blondé, M. Egaña, A. Rutherford, R. Stevens,
B. De Baets, V. Mironov, and M. Kuiper, “BioGateway: a seman-
tic systems biology tool for the life sciences.,” BMC Bioinformatics,
vol. 10 Suppl 10, no. Suppl 10, pp. S11+, 2009.

[8] W. Blondé, V. Mironov, A. Venkatesan, E. Antezana, B. De Baets,
and M. Kuiper, “Reasoning with bio-ontologies: using relational
closure rules to enable practical querying,” Bioinformatics, vol. 27,
no. 11, pp. 1562–1568, 2011.

[9] D. Bostock, Plato’s Theaetetus. Oxford University Press, USA,
1991.

[10] E. Antezana, M. Kuiper, and V. Mironov, “Biological knowledge
management: the emerging role of the Semantic Web technologies,”
Briefings in Bioinformatics, vol. 10, no. 4, pp. 392–407, 2009.

[11] C. Linnaeus, Systema naturae per regna tria naturae, secundum
classes, ordines, genera, species, cum characteribus differentiis, syn-
onymis, locis. 1st ed., 1735.

[12] R. A. Drysdale, M. A. Crosby, and , “FlyBase: genes and gene mod-
els.,” Nucleic Acids Res, vol. 33, no. Database issue, 2005.

[13] C. Béroud and T. Soussi, “The UMD-p53 database: New mutations
and analysis tools,” Human Mutation, vol. 21, no. 3, pp. 176–181,
2003.

[14] C. J. Carter, “Convergence of genes implicated in Alzheimer’s dis-
ease on the cerebral cholesterol shuttle: APP, cholesterol, lipopro-
teins, and atherosclerosis,” Neurochemistry International, vol. 50,
no. 1, pp. 12–38, 2007.

[15] C. Munthe, “The use of human biobanks. Ethical, social, econom-
ical, and legal aspects,” Journal of Medical Ethics, vol. 29, no. 2,
p. 123, 2003.

[16] B. Verslyppe, B. Slabbinck, W. De Smet, P. De Vos, B. De Baets,
and P. Dawyndt, “StrainInfo.net Web services: enabling microbio-
logic workflows such as phylogenetic tree building and biomarker
comparison,” in IEEE Fourth International Conference on eScience,
(Piscataway, NJ, USA), pp. 603–7, 2008.

176

Bibliography

[17] R. Kaaks, E. Lundin, J. Manjer, S. Rinaldi, C. Biessy, S. Soder-
berg, P. Lenner, L. Janzon, E. Riboli, G. Berglund, and G. Hallmans,
“Prospective study of IGF-I, IGF-binding proteins, and breast cancer
risk, in Northern and Southern Sweden,” Cancer Causes & Control,
vol. 13, no. 4, pp. 307–316, 2002.

[18] S. Miyazaki, H. Sugawara, K. Ikeo, T. Gojobori, and Y. Tateno,
“DDBJ in the stream of various biological data.,” Nucleic Acids Res,
vol. 32, no. Database issue, 2004.

[19] G. Stoesser, W. Baker, A. van den Broek, E. Camon, M. Garcia-
Pastor, C. Kanz, T. Kulikova, R. Leinonen, Q. Lin, V. Lombard,
R. Lopez, N. Redaschi, P. Stoehr, M. A. A. Tuli, K. Tzouvara, and
R. Vaughan, “The EMBL nucleotide sequence database.,” Nucleic
acids research, vol. 30, no. 1, pp. 21–26, 2002.

[20] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L.
Wheeler, “GenBank.,” Nucleic acids research, vol. 36, no. Database
issue, pp. D25–D30, 2008.

[21] A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann,
S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Mar-
tin, D. A. Natale, C. O’Donovan, N. Redaschi, and L.-S. L. Yeh,
“The universal protein resource (UniProt),” Nucleic Acids Research,
vol. 33, no. suppl 1, pp. D154–D159, 2005.

[22] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P. S.
Langendijk-Genevaux, M. Pagni, and C. J. Sigrist, “The PROSITE
database.,” Nucleic acids research, vol. 34, no. Database issue, 2006.

[23] D. Maglott, J. Ostell, K. D. Pruitt, and T. Tatusova, “Entrez gene:
gene-centered information at NCBI.,” Nucleic Acids Res, vol. 33,
no. Database issue, 2005.

[24] K. D. Pruitt and D. R. Maglott, “RefSeq and LocusLink: NCBI gene-
centered resources,” Nucleic Acids Res, vol. 29, no. 1, pp. 137–140,
2001.

[25] G. Parra, E. Blanco, and R. Guigo, “GeneID in drosophila,” Genome
Res, vol. 10, no. 4, pp. 511–515, 2000.

177

Bibliography

[26] M. Kanehisa and S. Goto, “KEGG: Kyoto encyclopedia of genes and
genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27–30, 2000.

[27] H. Hermjakob, L. Montecchi-Palazzi, C. Lewington, S. Mudali,
S. Kerrien, S. Orchard, M. Vingron, B. Roechert, P. Roepstorff,
A. Valencia, H. Margalit, J. Armstrong, A. Bairoch, G. Cesareni,
D. Sherman, and R. Apweiler, “IntAct: an open source molecular
interaction database.,” Nucleic acids research, vol. 32, no. Database
issue, 2004.

[28] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt,
B. de Bono, B. Jassal, G. R. Gopinath, G. R. Wu, L. Matthews,
S. Lewis, E. Birney, and L. Stein, “Reactome: a knowledgebase of
biological pathways.,” Nucleic acids research, vol. 33, no. Database
issue, pp. D428–432, 2005.

[29] K. Spackman and K. Campbell, “Compositional concept representa-
tion using SNOMED: Towards further convergence of clinical Ter-
minologies,” Journal of the American Medical Informatics Associa-
tion, no. S, pp. 740–744, 1998.

[30] S. Schulz, R. Cornet, and K. Spackman, “Consolidating SNOMED
CT’s ontological commitment,” Applied Ontology, vol. 6, no. 1,
pp. 1–11, 2011.

[31] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M.
Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A.
Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C.
Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sher-
lock, “Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium.,” Nature genetics, vol. 25, no. 1, pp. 25–29,
2000.

[32] E. Camon, M. Magrane, D. Barrell, D. Binns, W. Fleischmann,
P. Kersey, N. Mulder, T. Oinn, J. Maslen, A. Cox, and R. Apweiler,
“The gene ontology annotation (GOA) project: implementation of
GO in SWISS-PROT, TrEMBL, and InterPro.,” Genome research,
vol. 13, no. 4, pp. 662–672, 2003.

[33] C. Rosse and J. L. V. Mejino, “A reference ontology for bioinfor-
matics: The foundational model of anatomy,” Journal of Biomedical
Informatics, vol. 36, no. 36, pp. 478–500, 2003.

178

Bibliography

[34] P. de Matos, A. Dekker, M. Ennis, J. Hastings, K. Haug, S. Turner,
and C. Steinbeck, “ChEBI: a chemistry ontology and database,”
Journal of Cheminformatics, vol. 2, no. Suppl 1, pp. P6+, 2010.

[35] B. Trombert-Paviot, J. M. Rodrigues, J. E. Rogers, R. Baud,
E. van der Haring, A. M. Rassinoux, V. Abrial, L. Clavel, and H. Idir,
“GALEN: a third generation terminology tool to support a multi-
purpose national coding system for surgical procedures.,” Int J Med
Inform, vol. 58-59, pp. 71–85, 2000.

[36] E. W. W. Sayers, T. Barrett, D. A. A. Benson, S. H. H. Bryant,
K. Canese, V. Chetvernin, D. M. M. Church, M. Dicuccio, R. Edgar,
S. Federhen, M. Feolo, L. Y. Y. Geer, W. Helmberg, Y. Kapustin,
D. Landsman, D. J. J. Lipman, T. L. L. Madden, D. R. R. Maglott,
V. Miller, I. Mizrachi, J. Ostell, K. D. D. Pruitt, G. D. D. Schuler,
E. Sequeira, S. T. T. Sherry, M. Shumway, K. Sirotkin, A. Souvorov,
G. Starchenko, T. A. A. Tatusova, L. Wagner, E. Yaschenko, and
J. Ye, “Database resources of the national center for biotechnology
information.,” Nucleic Acids Research, vol. 37, no. Database issue,
pp. D5–15, 2009.

[37] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters,
L. J. Goldberg, K. Eilbeck, A. Ireland, C. J. Mungall, N. Leontis,
P. Rocca-Serra, A. Ruttenberg, S.-A. Sansone, R. H. Scheuermann,
N. Shah, P. L. Whetzel, and S. Lewis, “The OBO foundry: coor-
dinated evolution of ontologies to support biomedical data integra-
tion,” Nature Biotechnology, vol. 25, no. 11, pp. 1251–1255, 2007.

[38] B. Smith, W. Ceusters, B. Klagges, J. Kohler, A. Kumar, J. Lomax,
C. Mungall, F. Neuhaus, A. Rector, and C. Rosse, “Relations in
biomedical ontologies,” Genome Biology, vol. 6, no. 5, 2005.

[39] S. Aitken, Y. Chen, and J. Bard, “OBO Explorer: an editor for Open
Biomedical Ontologies in OWL.,” Bioinformatics, vol. 24, no. 3,
pp. 443–444, 2008.

[40] “OboInOwl: Mapping OBO to OWL,” Retrieved on 16 April
2012. http://www.bioontology.org/wiki/index.
php/OboInOwl:Main_Page.

[41] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Ki-
tano, the rest of the SBML Forum:, A. P. Arkin, B. J. Bornstein,

179

Bibliography

D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,
M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman,
J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Krem-
ling, U. Kummer, N. Le Novère, L. M. Loew, D. Lucio, P. Mendes,
E. Minch, E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F.
Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu,
H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and
J. Wang, “The systems biology markup language (SBML): a medium
for representation and exchange of biochemical network models,”
Bioinformatics, vol. 19, no. 4, pp. 524–531, 2003.

[42] C. M. Lloyd, M. D. Halstead, and P. F. Nielsen, “CellML: its future,
present and past.,” Progress in biophysics and molecular biology,
vol. 85, no. 2-3, pp. 433–450, 2004.

[43] E. Demir, M. P. Cary, S. Paley, K. Fukuda, C. Lemer, I. Vastrik,
G. Wu, P. D’Eustachio, C. Schaefer, J. Luciano, F. Schacherer,
I. Martinez-Flores, Z. Hu, V. Jimenez-Jacinto, G. Joshi-Tope,
K. Kandasamy, A. C. Lopez-Fuentes, H. Mi, E. Pichler, I. Rod-
chenkov, A. Splendiani, S. Tkachev, J. Zucker, G. Gopinath, H. Ra-
jasimha, R. Ramakrishnan, I. Shah, M. Syed, N. Anwar, O. Babur,
M. Blinov, E. Brauner, D. Corwin, S. Donaldson, F. Gibbons,
R. Goldberg, P. Hornbeck, A. Luna, P. Murray-Rust, E. Neumann,
O. Reubenacker, M. Samwald, M. van Iersel, S. Wimalaratne,
K. Allen, B. Braun, M. Whirl-Carrillo, K.-H. Cheung, K. Dahlquist,
A. Finney, M. Gillespie, E. Glass, L. Gong, R. Haw, M. Honig,
O. Hubaut, D. Kane, S. Krupa, M. Kutmon, J. Leonard, D. Marks,
D. Merberg, V. Petri, A. Pico, D. Ravenscroft, L. Ren, N. Shah,
M. Sunshine, R. Tang, R. Whaley, S. Letovksy, K. H. Buetow,
A. Rzhetsky, V. Schachter, B. S. Sobral, U. Dogrusoz, S. McWeeney,
M. Aladjem, E. Birney, J. Collado-Vides, S. Goto, M. Hucka,
N. Le Novere, N. Maltsev, A. Pandey, P. Thomas, E. Wingender,
P. D. Karp, C. Sander, and G. D. Bader, “The BioPAX community
standard for pathway data sharing,” Nature Biotechnology, vol. 28,
no. 12, p. 1308, 2010.

[44] N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf, N. Griffith,
C. Jonquet, D. L. Rubin, M.-A. A. Storey, C. G. Chute, and M. A.
Musen, “BioPortal: ontologies and integrated data resources at the

180

Bibliography

click of a mouse.,” Nucleic acids research, vol. 37, no. Web Server
issue, pp. W170–W173, 2009.

[45] R. Côté, F. Reisinger, L. Martens, H. Barsnes, J. A. A. Vizcaino, and
H. Hermjakob, “The Ontology Lookup Service: bigger and better.,”
Nucleic acids research, vol. 38, no. Web Server issue, pp. W155–
160, 2010.

[46] Z. Xiang, C. Mungall, A. Ruttenberg, and Y. He, “Ontobee: A
Linked Data Server and Browser for Ontology Terms.,” Proc. of
the International Conference on Biomedical Ontologies (ICBO),
pp. 279–281, 2011.

[47] F. Belleau, M. Nolin, N. Tourigny, P. Rigault, and J. Morissette,
“Bio2RDF: Towards a mashup to build bioinformatics knowledge
systems,” Journal of Biomedical Informatics, vol. 41, no. 5, pp. 706–
716, 2008.

[48] “Google,” Retrieved on 16 April 2012. http://www.google.
com/.

[49] T. Judd and G. Kennedy, “Expediency-based practice? Medical stu-
dents’ reliance on Google and Wikipedia for biomedical inquiries,”
British Journal of Educational Technology, vol. 42, no. 2, pp. 351–
360, 2011.

[50] “Wikipedia, The Free Encyclopedia,” Retrieved on 16 April 2012.
http://www.wikipedia.org/.

[51] M. Krötzsch, D. Vrandecic, and M. Völkel, “Wikipedia and the Se-
mantic Web - The Missing Links,” in Proceedings of Wikimania -
The First International Wikimedia Conference, Wikimedia Founda-
tion, 2005.

[52] E. Hodis, J. Prilusky, E. Martz, I. Silman, J. Moult, and J. Sussman,
“Proteopedia - a scientific ’wiki’ bridging the rift between three-
dimensional structure and function of biomacromolecules,” Genome
Biology, vol. 9, no. 8, pp. R121+, 2008.

[53] A. E. Jinha, “Article 50 million: an estimate of the number of
scholarly articles in existence,” Learned Publishing, vol. 23, no. 3,
pp. 258–263, 2010.

181

Bibliography

[54] “PubMed,” Retrieved on 16 April 2012. http://www.ncbi.
nlm.nih.gov/pubmed/.

[55] K. Bahaadinbeigy, K. Yogesan, and R. Wootton, “MEDLINE versus
EMBASE and cumulative index to nursing and allied health litera-
ture for telemedicine searches.,” Telemedicine journal and e-health:
the official journal of the American Telemedicine Association, 2010.

[56] R. Feldman and J. Sanger, The Text Mining Handbook: Advanced
Approaches in Analyzing Unstructured Data. Cambridge University
Press, 2006.

[57] S. Van Landeghem, B. De Baets, Y. Van de Peer, and Y. Saeys,
“High-precision bio-molecular event extraction from text using par-
allel binary classifiers,” Computational Intelligence, vol. 27, no. 4,
pp. 645–664, 2011.

[58] I. Spasic, S. Ananiadou, J. McNaught, and A. Kumar, “Text mining
and ontologies in biomedicine: making sense of raw text,” Briefings
in bioinformatics, vol. 6, no. 3, pp. 239–251, 2005.

[59] A. Eaton, “HubMed: a web-based biomedical literature search in-
terface,” Nucleic Acids Research, vol. 34, no. suppl 2, pp. W745–
W747, 2006.

[60] J. M. Fernández, R. Hoffmann, and A. Valencia, “iHOP web ser-
vices.,” Nucleic acids research, vol. 35, no. Web Server issue, 2007.

[61] H. Chen and B. M. Sharp, “Content-rich biological network con-
structed by mining PubMed abstracts.,” BMC Bioinformatics, vol. 5,
no. 1, pp. 147+, 2004.

[62] “BioMinT,” Retrieved on 16 April 2012. http://biomint.
org.

[63] S. Vercruysse and M. Kuiper, “Simulating genetic networks made
easy: network construction with simple building blocks,” Bioinfor-
matics, vol. 21, no. 2, pp. 269+, 2005.

[64] D. Charles, “Aristotle on meaning and essence,” The Review of Meta-
physics, vol. 1, no. 9, pp. 1–410, 2000.

[65] G. Boole, The Mathematical Analysis of Logic. 1847.

182

Bibliography

[66] G. Frege, Begriffsschrift: eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. 1879.

[67] J. van Heijenoort, From Frege To Gödel: A Source Book in Mathe-
matical Logic, 1879-1931. 1977.

[68] A. Fraenkel, Y. Bar-Hillel, and A. Levy, Foundations of Set Theory.
1973.

[69] E. Nagel and J. R. Newman, Gödel’s Proof. New York University
Press, 1958.

[70] A. Church, “A note on the entscheidungsproblem,” Journal of Sym-
bolic Logic, no. 1, pp. 40–41, 1936.

[71] A. Turing, “On computable numbers, with an application to the
entscheidungsproblem,” Proceedings of the London Mathematical
Society, no. 2, p. 230–265, 1937.

[72] A. Turing, “Intelligent machinery,” report for the National Physical
Laboratory, 1948.

[73] L. Fortnow and S. Homer, “A short history of computational com-
plexity,” in The History of Mathematical Logic, 2002.

[74] S. A. Cook, “The complexity of theorem-proving procedures,” in
Proceedings of the third annual ACM Symposium on Theory of Com-
puting, STOC ’71, (New York, USA), pp. 151–158, ACM Press,
1971.

[75] B. Russell, “The philosophy of logical atomism,” The Collected Pa-
pers of Bertrand Russell, no. 8, p. 228, 1914.

[76] I. Bratko, Prolog Programming for Artificial Intelligence. Addison
Wesley, 3rd ed., 2000.

[77] A. K. Chandra and D. Harel, “Horn clause queries and generaliza-
tions,” The Journal of Logic Programming, vol. 2, no. 1, pp. 1–15,
1985.

[78] R. J. Brachman and J. G. Schmolze, “An overview of the KL-ONE
knowledge representation system,” Cognitive Science: A Multidisci-
plinary Journal, vol. 9, no. 2, pp. 171–216, 1985.

183

Bibliography

[79] R. Weida, E. Mays, R. Dionne, M. Laker, B. White, C. Liang, and
F. J. Oles, “The K-Rep System Architecture,” in the Proceedings of
the 1996 International Workshop on Description Logics, 1996.

[80] C. Peltason, “The BACK system - an overview,” SIGART Bull.,
vol. 2, pp. 114–119, 1991.

[81] R. M. MacGregor and R. Bates, “The Loom knowledge representa-
tion language,” Tech. Rep. ISI/RS-87-188, Information Science In-
stitute, University of Southern California, 1987.

[82] M. Schmidt-Schaubß, “Subsumption in KL-ONE is undecidable,”
in Proceedings of the first international conference on Principles
of knowledge representation and reasoning, (San Francisco, CA,
USA), pp. 421–431, Morgan Kaufmann Publishers Inc., 1989.

[83] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.
Patel-Schneider, eds., The Description Logic Handbook: Theory,
Implementation, and Applications, Cambridge University Press,
2003.

[84] M. Schmidt-Schauß and G. Smolka, “Attributive concept descrip-
tions with complements,” Artif. Intell., vol. 48, no. 1, pp. 1–26, 1991.

[85] F. Baader, I. Horrocks, and U. Sattler, “Description Logics,” in
Handbook of Knowledge Representation (F. van Harmelen, V. Lif-
schitz, and B. Porter, eds.), ch. 3, pp. 135–180, Elsevier, 2008.

[86] B. Thalheim, Entity-Relationship Modeling: Foundations of
Database Technology. Springer, 1 ed., 2000.

[87] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Za-
kharyaschev, “Complexity of Reasoning in Entity Relationship Mod-
els,” in Proceedings of the International Workshop on Description
Logics (DL2007), Brixen-Bressanone, vol. 250, 2007.

[88] T. Irwin, “The Science of Being,” Aristotle’s First Principles, vol. 1,
no. 9, pp. 179–199, 1990.

[89] R. Gockel, Lexicon philosophicum, quo tantam clave philosophiae
fores aperiuntur. (reprint: Hildesheim: Georg Olms, 1980), 1613.

184

Bibliography

[90] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowl. Acquis., vol. 5, pp. 199–220, 1993.

[91] W. Ceusters and B. Smith, “A realism-based approach to the evolu-
tion of biomedical ontologies,” AMIA Annual Symposium proceed-
ings / AMIA Symposium, pp. 121–125, 2006.

[92] D. M. Armstrong, Universals: an opinionated introduction. West-
view Press, Boulder, 1989.

[93] M. Woods, “Universals and Particular Forms in Aristotle’s Meta-
physics,” Oxford Studies in Ancient Philosophy, vol. Aristotle and
the Later Tradition, pp. 41–56, 1991.

[94] “HTML 4 – Conformance: requirements and recommendations,”
Retrieved on 16 April 2012.
http://www.w3.org/TR/html401/conform.html.

[95] C. Musciano and B. Kennedy, HTML & XHTML : The Definitive
Guide. O’Reilly, 4 ed., 2000.

[96] R. T. Fielding, J. Gettys, J. C. Mogul, L. Masinter, P. J. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol — HTTP/1.1,” Tech.
Rep. 2616, RFC Editor, Fremont, CA, USA, 1999.

[97] T. Berners-Lee, “Information Management: A Proposal,” tech. rep.,
CERN, 1989.

[98] “World Wide Web Consortium (W3C),” Retrieved on 16 April 2012.
http://www.w3.org/.

[99] “The Semantic Web,” Retrieved on 16 April 2012.
http://www.w3.org/standards/semanticweb/.

[100] I. Horrocks, B. Parsia, P. P. Schneider, and J. Hendler, Semantic Web
Architecture: Stack or Two Towers?, pp. 37–41. No. 3703 in LNCS,
SV, 2005.

[101] “About the Unicode Standard,” Retrieved on 16 April 2012.
http://unicode.org/standard/standard.html.

[102] M. Duerst and M. Suignard, “Internationalized Resource Identifiers
(IRIs).” RFC 3987, 2005.

185

Bibliography

[103] T. Bray, J. Paoli, C. M. Sperberg-Mcqueen, Eve, and F. Yergeau,
eds., Extensible Markup Language (XML) 1.0. W3C Recommenda-
tion, W3C, fourth ed., 2003, Retrieved on 16 April 2012. http:
//www.w3.org/TR/REC-xml/.

[104] E. Miller and F. Manola, “RDF Primer,” W3C Recommendation,
W3C, 2004, Retrieved on 16 April 2012. http://www.w3.org/
TR/2004/REC-rdf-primer-20040210/.

[105] J. J. Carroll and G. Klyne, “Resource description framework (RDF):
Concepts and abstract syntax,” W3C recommendation, W3C, 2004,
Retrieved on 16 April 2012. http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/.

[106] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language
for RDF.” W3C Recommendation, 2008, Retrieved on 16 April
2012. http://www.w3.org/TR/rdf-sparql-query/.

[107] R. V. Guha and D. Brickley, “RDF Vocabulary Description Lan-
guage 1.0: RDF Schema,” W3C Recommendation, W3C, 2004, Re-
trieved on 16 April 2012. http://www.w3.org/TR/2004/
REC-rdf-schema-20040210/.

[108] G. Schreiber and M. Dean, “OWL Web Ontology Lan-
guage Reference,” W3C Recommendation, W3C, 2004, Re-
trieved on 16 April 2012. http://www.w3.org/TR/2004/
REC-owl-ref-20040210/.

[109] D. L. McGuinness and F. van Harmelen, “OWL web ontology
language overview,” W3C recommendation, W3C, 2004, Re-
trieved on 16 April 2012. http://www.w3.org/TR/2004/
REC-owl-features-20040210/.

[110] B. Motik, A. Fokoue, I. Horrocks, Z. Wu, C. Lutz, and B. C. Grau,
“OWL 2 Web Ontology Language Profiles,” W3C recommendation,
W3C, 2009, Retrieved on 16 April 2012. http://www.w3.org/
TR/2009/REC-owl2-profiles-20091027/.

[111] J. D. Becker, “Unicode 88,” tech. rep., Xerox Corp., Palo Alto, CA,
USA, 1988.

186

Bibliography

[112] F. Yergeau, “UTF-8, a transformation format of ISO 10646,” tech.
rep., 2003, Retrieved on 16 April 2012. http://datatracker.
ietf.org/doc/rfc3629/.

[113] American National Standard for Information Systems, “Coded Char-
acter Sets – 7-Bit American National Standard Code for Information
Interchange (7-Bit ASCII), ANSI X3.4-1986,” American National
Standards Institute, Inc., 1986.

[114] T. Berners-Lee, R. T. Fielding, and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” RFC 3986, RFC Editor, Fremont,
CA, USA, 2005.

[115] T. Berners-Lee, “Uniform Resource Locators,” 1994, Retrieved on
16 April 2012. http://www.w3.org/Addressing/URL/
url-spec.txt.

[116] M. Feeney, The Standard Generalized Markup Language (SGML).
London, UK: British Library Research and Development Dept. and
Library & Information Technology Centre, 1988.

[117] C. F. Goldfarb and Y. Rubinsky, The SGML Handbook. Oxford:
Clarendon Press, 1990.

[118] D. Olteanu, H. Meuss, T. Furche, and F. Bry, “XPath: Looking For-
ward,” XML-Based Data Management and Multimedia Engineering
- EDBT 2002 Workshops, pp. 892–896, 2002.

[119] D. Chamberlin, “XQuery: a query language for XML,” in Proceed-
ings of the 2003 ACM SIGMOD international conference on Man-
agement of data, SIGMOD ’03, (New York, NY, USA), p. 682,
ACM, 2003.

[120] T. Berners-Lee, “The WorldWideWeb browser,” 1990, Re-
trieved on 16 April 2012. http://www.w3.org/People/
Berners-Lee/WorldWideWeb.html.

[121] D. Raggett, A. Le Hors, and I. Jacobs, “HTML 4.01 Specification,”
tech. rep., 1999, Retrieved on 16 April 2012. http://www.w3.
org/TR/html4/.

187

Bibliography

[122] S. Pemberton, “XHTML 1.0: The extensible hypertext markup lan-
guage - a reformulation of HTML 4 in XML 1.0,” first Edition of a
Recommendation, W3C, 2000, Retrieved on 16 April 2012. http:
//www.w3.org/TR/2000/REC-xhtml1-20000126.

[123] D. Beckett, “RDF/XML Syntax Specification,” tech. rep.,
2004, Retrieved on 16 April 2012. www.w3.org/TR/
REC-rdf-syntax/.

[124] J. Melton, A. Simpson, and J. Gray, Understanding the new SQL: A
Complete Guide. Morgan Kaufmann, 1993.

[125] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and Complexity
of SPARQL,” pp. 30–43, 2006.

[126] A. Seaborne, G. Manjunath, C. Bizer, J. Breslin, S. Das, I. Davis,
S. Harris, K. Idehen, O. Corby, K. Kjernsmo, and B. Nowack,
“SPARQL Update, A language for updating RDF graphs,” W3C
Member Submission, 2008, Retrieved on 16 April 2012. http:
//www.w3.org/Submission/SPARQL-Update/.

[127] D. Beckett, T. Berners-Lee, and E. Prud’hommeaux, “Turtle, Terse
RDF Triple Language,” W3C Team Submission, 2011, Retrieved
on 16 April 2012. http://www.w3.org/TeamSubmission/
turtle/.

[128] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable RDF
syntax,” W3C Team Submission, W3C, 2011, Retrieved on 16 April
2012. http://www.w3.org/TeamSubmission/n3/.

[129] D. Fensel, F. van Harmelen, I. Horrocks, D. L. Mcguinness, and P. F.
Patel-Schneider, “OIL: an ontology infrastructure for the semantic
web,” Intelligent Systems, IEEE [see also IEEE Intelligent Systems
and Their Applications], vol. 16, no. 2, pp. 38–45, 2001.

[130] D. Connolly, F. Harmelen, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein, “DAML+OIL: Reference descrip-
tion,” W3C Note, 2001, Retrieved on 16 April 2012. http:
//www.w3.org/TR/daml+oil-reference.

[131] I. Horrocks and P. Patel-Schneider, “Reducing OWL entailment
to description logic satisfiability,” in Semantic Web - ISWC 2003

188

Bibliography

(Fensel, D and Sycara, K and Mylopoulos, J, ed.), vol. 2870 of Lec-
ture Notes in Computer Science, pp. 17–29, 2003.

[132] R. Hoehndorf, M. Dumontier, A. Oellrich, S. Wimalaratne,
D. Rebholz-Schuhmann, P. Schofield, and G. V. Gkoutos, “A com-
mon layer of interoperability for biomedical ontologies based on
OWL EL,” Bioinformatics, vol. 27, no. 7, pp. 1001–1008, 2011.

[133] P. F. Patel-Schneider, B. Motik, and B. C. Grau, “OWL 2 Web On-
tology Language Direct Semantics,” W3C recommendation, W3C,
2009, Retrieved on 16 April 2012. http://www.w3.org/TR/
2009/REC-owl2-direct-semantics-20091027/.

[134] M. Schneider, “OWL 2 Web Ontology Language RDF-Based
Semantics,” W3C recommendation, W3C, 2009, Retrieved
on 16 April 2012. http://www.w3.org/TR/2009/
REC-owl2-rdf-based-semantics-20091027/.

[135] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, 2007.

[136] U. Hustadt, B. Motik, and U. Sattler, “Data Complexity of Reason-
ing in Very Expressive Description Logics,” in Proceedings of the
International Joint Conferences on Artificial Intelligence (IJCAI),
pp. 466–471, Professional Book Center, 2005.

[137] E. Sirin and B. Parsia, “SPARQL-DL: SPARQL Query for OWL-
DL,” in 3rd OWL: Experiences and Directions Workshop (OWLED),
2007.

[138] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,
and M. Dean, “SWRL: A Semantic Web Rule Language Com-
bining OWL and RuleML,” W3C Member Submission, W3C,
2004, Retrieved on 16 April 2012. http://www.w3.org/
Submission/SWRL/.

[139] S. T. H. Boley and G. Wagner, “Design rationale of RuleML: A
markup language for semantic web rules,” in Proc. Semantic Web
Working Symposium (I. F. Cruz, S. Decker, J. Euzenat, and D. L.
McGuinness, eds.), (Stanford University, California), pp. 381–402,
2001.

189

Bibliography

[140] A. Paschke, D. Reynolds, G. Hallmark, H. Boley, M. Kifer, and
A. Polleres, “RIF Core Dialect,” W3C Recommendation, W3C,
2010, Retrieved on 16 April 2012. http://www.w3.org/TR/
rif-core/.

[141] H. Knublauch, J. Hendler, and K. Idehen, “SPIN - Overview and
Motivation,” W3C Member Submission, W3C, 2011, Retrieved
on 16 April 2012. http://www.w3.org/Submission/
spin-overview/.

[142] T. Berners-Lee, “Linked Data,” tech. rep., 2006, Retrieved on
16 April 2012. http://www.w3.org/DesignIssues/
LinkedData.html.

[143] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story
So Far,” International Journal on Semantic Web and Information
Systems, vol. 5, no. 3, pp. 1–22, 2009.

[144] E. Prud’hommeaux and C. Buil-Aranda, “SPARQL 1.1 Federated
Query, W3C Working Draft 10 November 2011,” 2011, Retrieved on
16 April 2012. http://www.w3.org/2009/sparql/docs/
fed/service.

[145] A. Venkatesan, W. Blondé, E. Antezana, M. Skillingstad, M. S. Mar-
shall, B. De Baets, V. Mironov, and M. Kuiper, “The RDF foundry:
call for an initiative to build enhanced RDF resources for biologi-
cal data integration,” in Proceedings of the International Conference
on Web Intelligence, Mining and Semantics, WIMS ’11, (New York,
NY, USA), pp. 59:1–59:5, ACM, 2011.

[146] M. Widenius, D. Axmark, and A. B. Mysql, MySQL Reference Man-
ual. O’Reilly Media, Inc., 1 ed., 2002.

[147] D. J. Higham and N. J. Higham, MATLAB Guide. SIAM: Society for
Industrial and Applied Mathematics, 2005.

[148] “The DOT Language,” Retrieved on 16 April 2012. http://www.
graphviz.org/doc/info/lang.html.

[149] E. Antezana, E. Tsiporkova, V. Mironov, and M. Kuiper, “A cell-
cycle knowledge integration framework,” in Proceedings of the Third
international conference on Data Integration in the Life Sciences,
DILS’06, (Berlin, Heidelberg), pp. 19–34, Springer-Verlag, 2006.

190

Bibliography

[150] “DIAMONDS project,” Retrieved on 16 April 2012. http://
www.sbcellcycle.org/.

[151] “Graphlet: The GML File Format,” Retrieved on 16
April 2012. http://www.webcitation.org/
query.php?url=http://www.infosun.fim.
uni-passau.de/Graphlet/GML/&refdoi=10.1186/
gb-2009-10-5-r58.

[152] M. Aranguren, E. Antezana, M. Kuiper, and R. Stevens, “Ontology
Design Patterns for bio-ontologies: a case study on the Cell Cycle
Ontology,” BMC Bioinformatics, vol. 9, no. Suppl 5, pp. S1+, 2008.

[153] O. Erling and I. Mikhailov, “RDF Support in the Virtuoso DBMS
Networked Knowledge - Networked Media,” vol. 221 of Studies
in Computational Intelligence, ch. 2, pp. 7–24, Berlin, Heidelberg:
Springer, 2009.

[154] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology,
vol. 215, no. 3, pp. 403–410, 1990.

[155] C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark,” Inter-
national Journal on Semantic Web and Information Systems, vol. 5,
no. 2, pp. 1–24, 2009.

[156] Y. Guo, Z. Pan, and J. Heflin, “LUBM: A benchmark for OWL
knowledge base systems,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 3, no. 2-3, pp. 158–182, 2005.

[157] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo, “DBpedia
SPARQL benchmark: performance assessment with real queries on
real data,” in Proceedings of the 10th international conference on
The semantic web - Volume Part I, ISWC’11, (Berlin, Heidelberg),
pp. 454–469, Springer-Verlag, 2011.

[158] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives, “DBpedia: A Nucleus for a Web of Open Data The Semantic
Web,” in Proceedings of 6th International Semantic Web Conference,
2nd Asian Semantic Web Conference (ISWC+ASWC), vol. 4825 of
Lecture Notes in Computer Science, ch. 52, pp. 722–735, Berlin,
Heidelberg: Springer, 2007.

191

Bibliography

[159] V. Mironov, N. Seethappan, W. Blondé, E. Antezana, B. Lindi, and
M. Kuiper, “Benchmarking triple stores with biological data,” CoRR,
vol. abs/1012.1632, 2010.

[160] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson, “Jena: implementing the semantic web recommen-
dations,” in WWW Alt. ’04: Proceedings of the 13th international
World Wide Web conference on Alternate track papers, (New York,
NY, USA), pp. 74–83, ACM, 2004.

[161] “4store - Scalable RDF storage,” Retrieved on 16 April 2012.
http://4store.org/.

[162] A. Kiryakov, D. Ognyanov, and D. Manov, “OWLIM – A Pragmatic
Semantic Repository for OWL,” Web Information Systems Engineer-
ing – WISE 2005 Workshops, pp. 182–192, 2005.

[163] A. Chebotko, S. Lu, M. Atay, and F. Fotouhi, “Efficient Process-
ing of RDF Queries with Nested Optional Graph Patterns in an
RDBMS,” International Journal on Semantic Web and Information
Systems, vol. 4, no. 4, pp. 1–30, 2008.

[164] F. Fischer, G. Unel, B. Bishop, and D. Fensel, “Towards a Scal-
able, Pragmatic Knowledge Representation Language for the Web,”
in Perspectives of Systems Informatics. 7th International Andrei Er-
shov Memorial Conference, PSI 2009. Revised Papers, pp. 231–41,
2010.

[165] X. Bai, R. Delbru, and G. Tummarello, “RDF Snippets for Seman-
tic Web Search Engines,” in On the Move to Meaningful Internet
Systems, vol. 5332 of Lecture Notes in Computer Science (LNCS),
pp. 1304–1318, 2008.

[166] “Google Webmaster Central Blog: Introducing Rich Snippets,” tech.
rep., 2009, Retrieved on 16 April 2012.
http://googlewebmastercentral.blogspot.com/
2009/05/introducing-rich-snippets.html.

[167] “Owl web ontology language reference: Properties,” 2004, Retrieved
on 16 April 2012. http://www.w3.org/TR/owl-ref/
#Property.

192

Bibliography

[168] J. F. Nilsson, “Querying Class-Relationship Logic in a Metalogic
Framework,” in Flexible Query Answering Systems (FQAS), pp. 96–
107, 2011.

[169] S. Zambach and J. U. Hansen, “Logical Knowledge Representation
of Regulatory Relations in Biomedical Pathways,” in International
Conference on Information Technology in Bio- and Medical Infor-
matics (ITBAM), pp. 186–200, 2010.

[170] C. Darwin, On the Origin of Species by Means of Natural Selection,
or the Preservation of Favoured Races in the Struggle for Life. J.
Murray, sixth ed., 1872.

[171] H. Kitano, “Systems biology: A brief overview,” Science, vol. 295,
no. 5560, pp. 1662–1664, 2002.

[172] E. Antezana, W. Blondé, A. Venkatesan, B. De Baets, V. Mironov,
and M. Kuiper, “Semantic systems biology: enabling integrative
biology via semantic web technologies,” in Proceedings of the In-
ternational Conference on Web Intelligence, Mining and Semantics,
WIMS ’11, (New York, NY, USA), pp. 58:1–58:5, ACM, 2011.

[173] “Obo ontologies,” Retrieved on 16 April 2012.
http://www.berkeleybop.org/ontologies/.

[174] “OBO specification 1.2,” Retrieved on 16 April 2012.
http://www.geneontology.org/GO.format.obo-1_
2.shtml.

[175] “ONTO-PERL distribution,” Retrieved on 16 April 2012.
http://search.cpan.org/dist/ONTO-PERL/.

[176] “Spatial Ontology,” Retrieved on 16 April 2012.
http://obofoundry.org/cgi-bin/detail.cgi?id=
spatial.

[177] “Worm Anatomy Ontology,” Retrieved on 16 April 2012.
http://www.obofoundry.org/cgi-bin/detail.cgi?
id=worm_anatomy.

[178] “Adobe Flex,” Retrieved on 16 April 2012. http://www.
adobe.com/products/flex/.

193

Bibliography

[179] “Netthreads,” Retrieved on 16 April 2012. http://www.
netthreads.co.uk/.

[180] “Python query interface to BioGateway SPARQL end-
point and InterMine,” Retrieved on 16 April 2012.
http://bcbio.wordpress.com/2010/02/15/
python-query-interface-to-biogateway-sparql-
endpoint-and-intermine/.

[181] S. Koehler, S. Bauer, C. J. Mungall, G. Carletti, C. L. Smith,
P. Schofield, G. V. Gkoutos, and P. N. Robinson, “Improving ontolo-
gies by automatic reasoning and evaluation of logical definitions,”
BMC Bioinformatics, vol. 12, 2011.

[182] B. M. Good and M. D. Wilkinson, “The Life Sciences Semantic Web
is full of creeps!,” Briefings in Bioinformatics, vol. 7, no. 3, pp. 275–
286, 2006.

[183] E. Antezana, Towards semantic systems biology : biological knowl-
edge management using semantic web technologies. PhD thesis,
Ghent University, 2009.

194

Appendix A

Metarel

Metarel was first developed in the OBO format, but was later translated into
the XML syntax of RDF and maintained in that format. This has made it
somewhat less human readable, however, XML provides some flexibility
for creating representations that are easy to read and understand. Since the
RDF representation of Metarel is maintained manually and validated with
RDF parsers, a somewhat readable code could be preserved.

The most important features for each term in Metarel are the follow-
ing:

• The IRI, tagged with rdf:Description.

• The label, tagged with rdfs:label.

• The definition, tagged with rdfs:comment.

• The more generic term, tagged with rdfs:subClassOf.

In this manner, Metarel can be read and ‘understood’ by both human
and computers. The RDF code can be loaded in every RDF store, where it
can be merged with relation types in the RDF representation.

metarel.rdf:
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:metarel="http://www.metarel.org/">
<rdf:Description rdf:about="http://www.metarel.org/AllAllClassRelationType">

<rdfs:label>all-all class relation type</rdfs:label>
<rdfs:comment>An all-all class relation type is a class relation

195

Appendix A. Metarel

type for which all the class relation arcs are total. This kind
of class relation types may be useful to construct from instance
relation types that express a disposition. E.g all the proteins of
protein class A have the disposition to interact with any protein
of protein class B.</rdfs:comment>
<rdfs:subClassOf rdf:resource=
"http://www.metarel.org/InvertibleInstanceBasedClassRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/AllSomeClassRelationType">

<rdfs:label>all-some class relation type</rdfs:label>
<rdfs:comment>An all-some class relation type is an instance-based
class relation type of which all the relation arcs should be total
and are allowed to be not surjective. A class relation arc is total
if all the instances of the source class have at least one
corresponding instance relation arc to the target class. It is
surjective if all the instances from the target class receive at
least one corresponding instance relation arc from the source class.
E.g. ’tusk is part of animal’ is a total arc as every tusk is part
of an animal. ’Animal has part tusk’ is not total and therefore not
allowed for an all-some relation type.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/ClassRelationType"/>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/InstanceBasedRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/ClassDataRelationType">

<rdfs:label>class-data relation type</rdfs:label>
<rdfs:comment>A class-data relation type is a relation type of
which all the relations are from a class to a data type.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectDataRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/ClassRelationType">

<rdfs:label>class relation type</rdfs:label>
<rdfs:comment>Any relation type of which all the relations are
between two classes is a class relation type.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectObjectRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/CompositionalClosure">

<rdfs:label>compositional closure</rdfs:label>
<rdfs:comment>A compositional closure is an inference mechanism
that infers the resulting relation types of relational composites.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalClosure"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/DefiningRelationType">

<rdfs:label>defining relation type</rdfs:label>
<rdfs:comment>A defining relation type is a relation type whose
relation arcs are part of a set of necessary and sufficient
conditions for instances to be an instance of a subject class.
All the defining relation types arcs that point away from a
certain class, form a set of necessary and sufficient conditions
together. This set defines that class.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectObjectRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/FixedComplexComposite">

<rdfs:label>fixed complex composite</rdfs:label>
<rdfs:comment>The first, the second and the resulting relation
type are all different.\nIf the first and the second relation
type change their positions, then it\ndoes not give the same
resulting relation type any longer. E.g. ’is brother of’ +
’is father of’ results in ’is uncle of’. In DL notation
%3A R o S %3C T.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalComposite"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/FixedPriorityComposite">

<rdfs:label>fixed priority composite</rdfs:label>
<rdfs:comment>The resulting relation type is the same as the
second relation type, but different from the first relation type.

196

Appendix A. Metarel

If the first and the second relation type change their positions,
then it does not give the same resulting relation type any
longer. E.g. ’is sibling of’ + ’is child of’ results in ’is child
of’. In DL notation%3A R o S %3C S.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalComposite"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/InferenceMechanism">

<rdfs:label>inference mechanism</rdfs:label>
<rdfs:comment>An inference mechanism describes a systematic
procedure on how relation arcs can be inferred in a Knowledge
Base. This procedure can be formalized with construct queries.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SemanticsProvidingConstruct"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/InstanceBasedRelationType">

<rdfs:label>instance-based relation type</rdfs:label>
<rdfs:comment>An instance-based relation type is a relation type
that is based on an instance relation type by using logical
quantifiers. E.g. if all the instances of the class ’leg’ are
part of some instances of the class ’body’, we can derive the
instance-based relation arc ’leg is part of body’.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectObjectRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/InstanceClassRelationType">

<rdfs:label>instance-class relation type</rdfs:label>
<rdfs:comment>Any relation type of which all the relations are
from an instance to a class is an instance-class relation type.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectObjectRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/InstanceDataRelationType">

<rdfs:label>instance-data relation type</rdfs:label>
<rdfs:comment>An instance-data relation type is a relation type
of which all the relations are from an instance to a data type.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectDataRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/InstanceRelationType">

<rdfs:label>instance relation type</rdfs:label>
<rdfs:comment>Any relation type of which all the relations are
between two instances is an instance relation type.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectObjectRelationType"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/InterchangeableComplexComposite">

<rdfs:label>interchangeable complex composite</rdfs:label>
<rdfs:comment>The first, the second and the resulting relation
type are all different. If the first and the second relation type
change their positions, it still gives the same resulting relation
type. E.g. ’is father of’ + ’is grandfather of’ results in ’is
great-grandfather of’. In DL notation%3A R o S %3C T or S o R %3C
T.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalComposite"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/InterchangeablePriorityComposite">

<rdfs:label>interchangeable priority composite</rdfs:label>
<rdfs:comment>The resulting relation type is the same as the
first or the second relation type, but the first and the second
are different. If the first and the second relation type change
their positions, it still gives the same resulting relation type.
E.g. ’is part of’ + ’is a’ results in ’is part of’ In DL notation
%3A R o S %3C R or S o R %3C R.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalComposite"/>

</rdf:Description>

197

Appendix A. Metarel

<rdf:Description
rdf:about="http://www.metarel.org/InvertibleInstanceBasedClassRelationType">

<rdfs:label>invertible instance-based class relation type
</rdfs:label>
<rdfs:comment>An invertible instance-based class relation type is
an class relation type for which an inverse relation type exists
that uses the same quantification method to base on an instance
relation type. An all-some relation type is not invertible
because it never has an inverse that is also an all-some relation
type.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/ClassRelationType"/>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/InstanceBasedRelationType"/>

</rdf:Description>
<rdf:Property rdf:about="http://www.metarel.org/isClassInstanceRelatedTo">

<rdfs:label>is class-instance related to</rdfs:label>
<rdfs:comment>A relation from an class to an instance is an ’is
class-instance related to’, if the relation is an instance of any
class-instance relation type.</rdfs:comment>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isClassRelatedTo"/>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isInstanceClassRelatedTo"/>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isInstanceRelatedTo"/>
<rdfs:subClassOf rdf:resource="http://www.metarel.org/isRelatedTo"/>

</rdf:Property>
<rdf:Property rdf:about="http://www.metarel.org/isClassRelatedTo">

<rdfs:label>is class related to</rdfs:label>
<rdfs:comment>A relation between two classes is an ’is class
related to’, if the relation is an instance of any class relation
type.</rdfs:comment>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isClassInstanceRelatedTo"/>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isInstanceClassRelatedTo"/>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isInstanceRelatedTo"/>
<rdfs:subClassOf rdf:resource="http://www.metarel.org/isRelatedTo"/>

</rdf:Property>
<rdf:Property rdf:about="http://www.metarel.org/isInstanceClassRelatedTo">

<rdfs:label>is instance-class related to</rdfs:label>
<rdfs:comment>A relation from an instance to a class is an ’is
instance-class related to’, if the relation is an instance of any
instance-class relation type.</rdfs:comment>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isClassInstanceRelatedTo"/>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isClassRelatedTo"/>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isInstanceRelatedTo"/>
<rdfs:subClassOf rdf:resource="http://www.metarel.org/isRelatedTo"/>

</rdf:Property>
<rdf:Property rdf:about="http://www.metarel.org/isInstanceRelatedTo">

<rdfs:label>is instance related to</rdfs:label>
<rdfs:comment>A relation between two instances is an ’is instance
related to’, if the relation is an instance of any instance
relation type.</rdfs:comment>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isClassInstanceRelatedTo"/>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isClassRelatedTo"/>
<owl:disjointWith
rdf:resource="http://www.metarel.org/isInstanceClassRelatedTo"/>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/isRelatedTo"/>

</rdf:Property>
<rdf:Property rdf:about="http://www.metarel.org/isRelatedTo">

<rdfs:label>is related to</rdfs:label>
<rdfs:comment>’Is related to’ is the root term in the relation
classification. This classification corresponds with a role
hierarchy in Description Logics. A relation is the collection of
all the relation arcs that start in the same source-term and end

198

Appendix A. Metarel

in the same target-term. Hence, between two terms, there can be
at most two relations, one per direction.\nA class of relations
is a relation type. ’Is related to’ is the name of such a class.
A relation can be an instance of different relation types. Every
instantiation of a relation type by the relation corresponds with
a relation arc.\nThe relation arcs are the asserted and
visualised elements in ontologies. They are arcs that bear a
label with the name of their corresponding relation type. In good
ontologies often only one relation arc, or none at all, are
asserted per relation. ’Is related to’ would not be asserted in a
good ontology, although much relations can contain a non-asserted
arc with the name of the relation type ’is related to’.
</rdfs:comment>

</rdf:Property>
<rdf:Description rdf:about="http://www.metarel.org/ReflexiveClosure">

<rdfs:label>reflexive closure</rdfs:label>
<rdfs:comment>A reflexive closure is an inference mechanism that
infers all the self-arcs from reflexive relation types.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalClosure"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/ReflexiveRelationType">

<rdfs:label>reflexive relation type</rdfs:label>
<rdfs:comment>A relation type R is a reflexive relation type
when A R A applies for all A in the domain of R.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectObjectRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/RelationalClosure">

<rdfs:label>relational closure</rdfs:label>
<rdfs:comment>A relational closure is a semantics-providing
construct that provides meaning by describing an inference
mechanism that has to be applied, often recursively, until new
inferences cannot be made anymore. The order of the application
of an inference mechanism should not matter among different
relational closures.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/InferenceMechanism"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/RelationalComposite">

<rdfs:label>relational composite</rdfs:label>
<rdfs:comment>Three relation types r1, r2 and r3 (not
necessarily all different) form a relational composite r1_r2_r3
if for all the triples of nodes a, b, c (all different) for
which there is an arc from a to b with the name of r1 and an arc
from b to c with the name of r2, an arc from a to c with the
name of r3 can be inferred. A relational composite is used to
build role inclusion axioms (RIA). E.g. the first relation ’is
brother of’ and the second relation ’is father of’ result in ’is
uncle of’.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SemanticsProvidingConstruct"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/RelationalSubsumptionClosure">

<rdfs:label>relational subsumption closure</rdfs:label>
<rdfs:comment>A relational subsumption closure is an inference
mechanism that infers an arc s from an arc r, where s has the
label of the relation type S, r has the label of the relation
type R, and R is a subrelation of S.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalClosure"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/RelationOverSubsumptionClosure">

<rdfs:label>relation-over-subsumption closure</rdfs:label>
<rdfs:comment>A relation-over-subsumption closure is an
inference mechanism that infers new relation arcs for all the
all-some relation types, as these have priority over the
subsumption relation%3A every all-some relation type forms an
interchangeable priority composite with the subsumption
relation. The relation-over-subsumption closure implies that all
the relation arcs that follow from this mechanism, are inferred.

199

Appendix A. Metarel

</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/CompositionalClosure"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/RelationType">

<rdfs:label>relation type</rdfs:label>
<rdfs:comment>A relation type is a class of relations. Such a
class can have properties like transitivity, symmetry,
reflexivity, invertibility, compositionality with other relation
types, and more. The relation types are instances in the
relation type classification, and are classified on such
properties. Hence, the class named ’relation type’ is a
meta-class, being a class of classes. All the subclasses of
’relation type’ are also meta-classes.</rdfs:comment>
<owl:sameAs
rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/RelevantRelationalSubsumptionClosure">

<rdfs:label>relevant relational subsumption closure</rdfs:label>
<rdfs:comment>A relevant relational subsumption closure is a
relational subsumption closure where only the relation arcs are
inferred that are considered as relevant for queries to the
Knowledge Base. arcs with generic labels like ’is related to’
will not be considered as relevant.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalSubsumptionClosure"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/RelevantRelationType">

<rdfs:label>relevant relation type</rdfs:label>
<rdfs:comment>A relevant relation type is a relation type that
users of a knowledge base might need in their queries or in
answers on queries. E.g. ’is related to’ is not a relevant
relation type.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationType"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/SemanticsProvidingConstruct">

<rdfs:label>semantics-providing construct</rdfs:label>
<rdfs:comment>A semantics-providing construct provides meaning
to relation types in a Knowledge Base by indicating which
relation arcs can be inferred in the Knowledge Base.
</rdfs:comment>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/SomeSomeClassRelationType">

<rdfs:label>some-some class relation type</rdfs:label>
<rdfs:comment>A some-some class relation type is an
instance-based class relation type of which all the relation
arcs are allowed to be not total and are allowed to be not
surjective. A class relation arc is total if all the instances
of the source class have at least one corresponding instance
relation arc to the target class. It is surjective if all the
instances from the target class receive at least one
corresponding instance relation arc from the source class. E.g.
’human eats pig’ is a some-some relation arc as some people do
not eat pork, and not all pigs are cattle.</rdfs:comment>
<rdfs:subClassOf rdf:resource=
"http://www.metarel.org/InvertibleInstanceBasedClassRelationType"/>
<rdfs:comment>The some-some relation type should be avoided in a
good ontology design.</rdfs:comment>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/SubjectDataRelationType">

<rdfs:label>subject-data relation type</rdfs:label>
<rdfs:comment>A subject-data relation type is a relation type of
which all the relations are from a resource to a data type.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationType"/>
<owl:sameAs
rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</rdf:Description>
<rdf:Description

200

Appendix A. Metarel

rdf:about="http://www.metarel.org/SubjectObjectRelationType">
<rdfs:label>subject-object relation type</rdfs:label>
<rdfs:comment>Any relation type of which all the relations are
between two resources is a subject-object relation type.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationType"/>
<owl:sameAs
rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/SymmetricRelationType">

<rdfs:label>symmetric relation type</rdfs:label>
<rdfs:comment>A relation type R is a symmetric relation type
when A R B implies B R A.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectObjectRelationType"/>
<owl:sameAs
rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/TightClassRelationType">

<rdfs:label>tight class relation type</rdfs:label>
<rdfs:comment>A tight class relation type is an instance-based
class relation type of which all the class relation arcs should
be total and surjective. A class relation arc is total and
surjective if there starts at least one corresponding instance
relation arc for every instance in the source class and if there
arrives at least one corresponding instance relation arc for
every instance in the target class. E.g. ’tusk is integral part
of elephant’ is a total and surjective class relation arc as
every tusk is part of an elephant and for every elephant there
is a tusk which is a part of the elephant.</rdfs:comment>
<rdfs:subClassOf rdf:resource=
"http://www.metarel.org/InvertibleInstanceBasedClassRelationType"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/TransitiveClosure">

<rdfs:label>transitive closure</rdfs:label>
<rdfs:comment>A transitive closure is an inference mechanism
that infers the resulting relation types of transitive
composites. It implies the inference of all the relation arcs
that follow from transitive relation types.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/CompositionalClosure"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/TransitiveOverComposite">

<rdfs:label>transitive-over composite</rdfs:label>
<rdfs:comment>The resulting relation type is the same as the
first relation type, but different from the second relation
type. If the first and the second relation type change their
positions, then it does not give the same resulting relation
type any longer. E.g. ’is brother of’ + ’is sister of’ results
in ’is brother of’. In DL notation%3A R o S %3C R.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalComposite"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/TransitiveRelationType">

<rdfs:label>transitive relation type</rdfs:label>
<rdfs:comment>A relation type R is a transitive relation type
when A R B and B R C implies A R C.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/SubjectObjectRelationType"/>
<owl:sameAs
rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/>

</rdf:Description>
<rdf:Description
rdf:about="http://www.metarel.org/TransitivityComposite">

<rdfs:label>transitivity composite</rdfs:label>
<rdfs:comment>The first, the second and the resulting relation
type are all the same for a transitive composite, so this
relation type is transitive. E.g. ’is ancestor of’ + ’is
ancestor of’ results in ’is ancestor of’. In DL notation
%3A R o R %3C R.</rdfs:comment>

201

Appendix A. Metarel

<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalComposite"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.metarel.org/TwinComposite">

<rdfs:label>twin composite</rdfs:label>
<rdfs:comment>The first and the second relation type are the
same for a twin composite, but they differ from the resulting
relation type E.g. ’is father of’ + ’is father of’ results in
’is grandfather of’. In DL notation%3A R o R %3C S.
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/RelationalComposite"/>

</rdf:Description>
<metarel:metarelationType
rdf:about="http://www.metarel.org/hasTransitiveClosure">

<rdfs:label>has transitive closure</rdfs:label>
<rdfs:comment>’Has transitive closure’ is a metarelation between
two relation types. A relation type R is the transitive closure
of a relation type S if and only if R is transitive, S is a R,
there is no transitive relation type T, other than R, for which
S is a T and R is a T.
Then we have S has transitive closure R.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/isMetaRelatedTo"/>

</metarel:metarelationType>
<metarel:metarelationType
rdf:about="http://www.metarel.org/hasResultingRelation">

<rdfs:label>has resulting relation</rdfs:label>
<rdfs:comment>’Has resulting relation’ is a metarelation that
relates a composite with a relation type. Consider the
composite R_S_T, and the relation types R, S and T imply%3A if
A is R-related to B and B is S-related to C, than A is T-related
to C. Than R_S_T has resulting relation T.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/isMetaRelatedTo"/>

</metarel:metarelationType>
<metarel:metarelationType
rdf:about="http://www.metarel.org/hasSecondRelation">

<rdfs:label>has second relation</rdfs:label>
<rdfs:comment>’Has second relation’ is a metarelation that
relates a composite with a relation type. Consider the composite
R_S_T, and the relation types R, S and T imply%3A if A is
R-related to B and B is S-related to C, than A is T-related to C.
Than R_S_T has second relation S.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/isMetaRelatedTo"/>

</metarel:metarelationType>
<metarel:metarelationType
rdf:about="http://www.metarel.org/isReciprocalOf">

<rdfs:label>is reciprocal of</rdfs:label>
<rdfs:comment>A class relation type A is the reciprocal of a
class relation type B if A and B belong to the same type of
class relation types (meaning they are based on instance
relation types by the same quantification method) and if the
instance relation type a is the inverse of the instance relation
type b, where A is based on a and B is based on b.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/isMetaRelatedTo"/>

</metarel:metarelationType>
<metarel:metarelationType rdf:about="http://www.metarel.org/isBasedOn">

<rdfs:label>is based on</rdfs:label>
<rdfs:comment>An instance-based relation type ’is based on’ the
corresponding instance relation type on which it is based. E.g.
’is part of’ (like in ’leg is part of body’) is based on the
instance-’is part of’ (like in ’Belgium is part of Europe’).
</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/isMetaRelatedTo"/>

</metarel:metarelationType>
<metarel:metarelationType
rdf:about="http://www.metarel.org/buildsDefiningConditionFrom">

<rdfs:label>builds defining condition from</rdfs:label>
<rdfs:comment>For every instance-based relation type, it is
possible to build defining relation types. The defining relation

202

Appendix A. Metarel

type ’builds defining condition from’ the original
instance-based relation type.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/isMetaRelatedTo"/>

</metarel:metarelationType>
<metarel:metarelationType
rdf:about="http://www.metarel.org/hasFirstRelation">

<rdfs:label>has first relation</rdfs:label>
<rdfs:comment>’Has first relation’ is a metarelation that
relates a composite with a relation type. Consider the composite
R_S_T, and the relation types R, S and T imply%3A if A is
R-related to B and B is S-related to C, than A is T-related to C.
Than R_S_T has first relation R.</rdfs:comment>
<rdfs:subClassOf
rdf:resource="http://www.metarel.org/isMetaRelatedTo"/>

</metarel:metarelationType>
<metarel:metarelationType
rdf:about="http://www.metarel.org/isMetaRelatedTo">

<rdfs:label>is metarelated to</rdfs:label>
<rdfs:comment>An ’is metarelated to’ is a construct that
relates relation types (the instances of the relation type
classification), that have logical connections with each other.
</rdfs:comment>

</metarel:metarelationType>
<metarel:metarelationType rdf:about="http://www.metarel.org/isInverseOf">

<rdfs:label>is inverse of</rdfs:label>
<rdfs:comment>Relation type A is the inverse of relation type B
if for every relation that is an instance of A, the relation in
the opposite direction is an instance of B.</rdfs:comment>
<rdfs:subClassOf rdf:resource="http://www.metarel.org/isMetaRelatedTo"/>

</metarel:metarelationType>
</rdf:RDF>

203

Appendix A. Metarel

204

Appendix B

Biorel

Biorel is an ontology for relation types. It has assembled all the relation
types that were used in any of the OBO Foundry ontologies, OBO Foundry
candidate ontologies, the Relationship Ontology and CCO (October 2010).
Many entries of relation types that were duplicates were compared and
manually curated via spreadsheets, GNU sorting operations and a text ed-
itor. In this manner, 833 relation type entries were reduced in a consistent
effort to 365 unique, curated relation types.

B.1 The OBO format

The curation effort has resulted directly in a valid OBO file that can be
used in combination with any OBO ontologies that use the relation types in
Biorel. This file, biorel.obo, was also used as an input file for the program-
matic pipeline that creates CCO. The procedure for BioGateway is slightly
more advanced, since biorel.obo was translated into OWL 2 DL before it
was uploaded in the RDF store.

Here are included the first few entries of relation types in the OBO
format, as well as some special cases:

biorel.obo:
format-version: 1.4
date: 05:10:2010 13:45
saved-by: Ward Blondé
auto-generated-by: ONTO-PERL 1.28

[Typedef]
id: activates
name: activates
is_a: positively_regulates ! positively regulates

205

Appendix B. Biorel

[Typedef]
id: acts_on
name: acts on
def: "A relation between a process and a continuant, where the continuant plays
the role of the entity that is changed by that process. Instance: p acts_on c:
exists Quality q, Time t and q inheres_in c at t, such that the continual
unfolding of p results_in changes in q or maintenance of q; Type: all pP, exists
cCt such that p acts_on c" []
comment: DEPRECATED Examples: Organismal growth acts_on organism; neuron
migration acts_on neuron;
synonym: "unfolds_towards" RELATED []
synonym: "has_direct_participant" RELATED []

[Typedef]
id: acts_on_population_of
name: acts on population of
def: "This is a class-level relation only. If P acts_on_population_of C, then:
for all instances p of P, there exists some cp, t such that c instantiates CP at
t, p has_central_participant cp, and CP is equivalent to population_of(C). For
example: T-cell_proliferation acts_on_population_of T-cell - for all instances
of T-cell_proliferation have a population of T-cells as central_participants" []

[Typedef]
id: adheres_in
name: adheres in

.

.

.

[Typedef]
id: is_a
name: is
builtin: true
def: "For continuants: C is_a C’ if and only if: given any c that instantiates C
at a time t, c instantiates C’ at t. For processes: P is_a P’ if and only if:
that given any p that instantiates P, then p instantiates P’." [PMID:15892874]
comment: The is_a relationship is considered axiomatic by the obo file format
specification, and by OWL
synonym: "is_subtype_of" RELATED []
xref: rdfs:subClassOf
is_anti_symmetric: true
is_reflexive: true
is_transitive: true

.

.

.

[Typedef]
id: integral_part_of
name: is integral part of
def: "C integral_part_of C’ if and only if: C part_of C’ AND C’ has_part C"
[PMID:15892874]
is_anti_symmetric: true
is_reflexive: true
is_transitive: true
is_a: part_of ! is part of
inverse_of: has_integral_part ! has integral part
is_metadata_tag: true

.

.

.

[Typedef]
id: part_of

206

Appendix B. Biorel

name: is part of
def: "For continuants: C part_of C’ if and only if: given any c that instantiates
C at a time t, there is some c’ such that c’ instantiates C’ at time t, and c

part_of c’ at t. For processes: P part_of P’ if and only if: given any p that
instantiates P at a time t, there is some p’ such that p’ instantiates P’ at time
t, and p *part_of* p’ at t. (Here *part_of* is the instance-level part-
relation.)" [PMID:15892874]
is_reflexive: true
is_transitive: true
inverse_of: has_part ! has part
holds_over_chain: results_in_formation_of ends_during
holds_over_chain: results_in_complete_development_of starts_during

.

.

.

[Typedef]
id: variant_of
name: is variant of
def: "A’ is a variant (mutation) of A = definition every instance of A’ is either
an immediate mutation of some instance of A, or there is a chain of immediate
mutation processes linking A’ to some instance of A." [SO:immuno_workshop]
comment: Added to SO during the immunology workshop, June 2007. This
relationship was approved by Barry Smith.

B.2 OWL 2 DL for validation and reasoning

The OBO format serves as the original for the translation into a Semantic
Web compatible format. OWL is the best choice for this purpose. It was
created to enable reasoning and it also has an RDF/XML syntax. There
are several sublanguages of the complete set of OWL language constructs
(OWL Full). The largest sublanguage that is still decidable (which is a
warrant for usefulness towards automated reasoning) is OWL 2 DL, the
successor of OWL DL.

The translation was validated with two validator tools on the web:

• http://www.w3.org/RDF/Validator/, a W3C validation service for
RDF documents providing useful feedback on possible flaws in the
RDF/XML syntax

• http://owl.cs.manchester.ac.uk/validator/, the Manchester valida-
tor that can unambiguously decide whether the representation is valid
OWL 2 DL or not.

By choosing for OWL 2 DL, a maximum of logic-based semantics
for the relation types was extracted from the OBO format and made avail-
able to a much wider community. The integration of this file, biorel.owl,
with metarel.rdf in BioGateway will enable the five efficient relation clo-
sure rules for class relation types.

207

Appendix B. Biorel

biorel.owl:
<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:oboInOwl="http://purl.obolibrary.org/obo/oboInOwl#"
xmlns:obo="http://purl.obolibrary.org/obo/"

>
<owl:AnnotationProperty

rdf:about="http://purl.obolibrary.org/obo/oboInOwl#hasURI"/>
<owl:AnnotationProperty

rdf:about="http://purl.obolibrary.org/obo/oboInOwl#hasAlternativeId"/>

.

.

.

<owl:Ontology rdf:about="">
<oboInOwl:hasDate>05:10:2010 13:45</oboInOwl:hasDate>
<oboInOwl:savedBy>Ward Blondé</oboInOwl:savedBy>
<rdfs:comment>Biorel.obo assembles all the relationship types that are used
in OBO ontologies. Many corrections have been carried out, in order to use
Biorel for automated reasoning. The relationship types were given a name that
contains a verb in the third person singular, to get a sound and clear
meaning that can be understood by end-users of a query-system. All the
relationship types in Biorel are assumed to operate between instances
(instance relation types or owl:ObjectProperty’s), except those that have the
tag ’is_metadata_tag: true’ (they are owl:AnnotationProperty’s).
</rdfs:comment>

</owl:Ontology>

<owl:ObjectProperty rdf:about="http://purl.obolibrary.org/obo/activates">
<rdfs:label>activates</rdfs:label>
<rdfs:subPropertyOf
rdf:resource="http://purl.obolibrary.org/obo/positively_regulates"/>

</owl:ObjectProperty>

.

.

.

<owl:AnnotationProperty
rdf:about="http://purl.obolibrary.org/obo/integral_part_of">

<rdfs:label>is integral part of</rdfs:label>
<oboInOwl:hasDefinition>

<oboInOwl:Definition>
<rdfs:label>C integral_part_of C’ if and only if%3A C part_of C’ AND
C’ has_part C</rdfs:label>
<oboInOwl:hasDbXref>

<oboInOwl:DbXref>
<rdfs:label>PMID:15892874</rdfs:label>
<oboInOwl:hasURI
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://PMID#PMID_15892874</oboInOwl:hasURI>

</oboInOwl:DbXref>
</oboInOwl:hasDbXref>

</oboInOwl:Definition>
</oboInOwl:hasDefinition>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#AnnotationProperty"/>

</owl:AnnotationProperty>

.

.

.

208

Appendix B. Biorel

<owl:ObjectProperty rdf:about="http://purl.obolibrary.org/obo/part_of">
<rdfs:label>is part of</rdfs:label>
<oboInOwl:hasDefinition>

<oboInOwl:Definition>
<rdfs:label>For continuants%3A C part_of C’ if and only if%3A given
any c that instantiates C at a time t, there is some c’ such that c’
instantiates C’ at time t, and c *part_of* c’ at t. For processes%3A
P part_of P’ if and only if%3A given any p that instantiates P at a
time t, there is some p’ such that p’ instantiates P’ at time t, and
p *part_of* p’ at t. (Here *part_of* is the instance-level part-
relation.)</rdfs:label>
<oboInOwl:hasDbXref>

<oboInOwl:DbXref>
<rdfs:label>PMID:15892874</rdfs:label>
<oboInOwl:hasURI
rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">
http://PMID#PMID_15892874</oboInOwl:hasURI>

</oboInOwl:DbXref>
</oboInOwl:hasDbXref>

</oboInOwl:Definition>
</oboInOwl:hasDefinition>
<owl:inverseOf rdf:resource="http://purl.obolibrary.org/obo/has_part"/>
<owl:propertyChainAxiom rdf:parseType="Collection">

<owl:ObjectProperty
rdf:about="http://purl.obolibrary.org/obo/results_in_formation_of"/>
<owl:ObjectProperty
rdf:about="http://purl.obolibrary.org/obo/ends_during"/>

</owl:propertyChainAxiom>
<owl:propertyChainAxiom rdf:parseType="Collection">

<owl:ObjectProperty rdf:about=
"http://purl.obolibrary.org/obo/results_in_complete_development_of"/>
<owl:ObjectProperty
rdf:about="http://purl.obolibrary.org/obo/starts_during"/>

</owl:propertyChainAxiom>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#TransitiveProperty"/>

</owl:ObjectProperty>

.

.

.

</rdf:RDF>

<!--
Generated with ONTO-PERL: obo2owl.pl, 21:06:2010 11:17
Debugged and extended manually by Ward Blondé, 04:10:2010 17:15
-->

209

Appendix B. Biorel

210

Appendix C

BioMetarel

The creation of BioMetarel consists of three steps:

• Loading the RDF exports of Metarel and Biorel in the same RDF
graph.

• Loading a manually maintained set of links between Biorel en Meta-
rel, in the form of RDF triples.

• Inferring all the possible directly available conclusions about the se-
mantics of the relation types through automated inference proce-
dures.

C.1 The links between Metarel and Biorel

Metarel contains many terms that can be used to annotate the relation types
in Biorel. These annotations form the links between Biorel and Metarel,
which have to be created manually by somebody who can interpret the se-
mantics of the relation types in Biorel. Metarel also provides the metarela-
tions that can stand in between two relation types. Such manually curated
annotations can be found in the RDF file biometarel_merge.rdf.turtle un-
derneath. The usage of the turtle syntax for RDF, as opposed to the XML
syntax, is very useful for operations in a text editor and it is correctly parsed
and loaded by Virtuoso.

Not every link between Metarel en Biorel is included in this file.
Most semantic features of the relation types are expressed in the OBO for-
mat and translated in the RDF export file biorel.rdf. They form the basis to

211

Appendix C. BioMetarel

create links between Metarel and Biorel that are created automatically with
SPARUL after the loading of the files metarel.rdf and biorel.rdf. The file
biometarel_merge.rdf.turtle is used first of all to create a consistent distinc-
tion between class relation types and instance relation types. It is also used
to formally relate the so-called ‘built-in’ is_a relation type in OBO with
rdfs:subClassOf and owl:sameAs in the realm of the Semantic Web. Some
missing annotations of reflexivity are also added here.

biometarel_merge.rdf.turtle:
@prefix ssb: <http://www.semantic-systems-biology.org/SSB#>.
@prefix metarel: <http://www.metarel.org/>.
@prefix obo: <http://purl.obolibrary.org/obo/>.
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

ssb:activates metarel:isBasedOn obo:activates.
ssb:acts_on metarel:isBasedOn obo:acts_on.
ssb:acts_on_population_of metarel:isBasedOn obo:acts_on_population_of.
ssb:adheres_in metarel:isBasedOn obo:adheres_in.
ssb:adjacent_to metarel:isBasedOn obo:adjacent_to.

.

.

.

ssb:unfolds_around metarel:isBasedOn obo:unfolds_around.
ssb:unfolds_in metarel:isBasedOn obo:unfolds_in.
ssb:unit_of metarel:isBasedOn obo:unit_of.
ssb:variant_of metarel:isBasedOn obo:variant_of.

ssb:activates rdf:type metarel:AllSomeClassRelationType.
ssb:acts_on rdf:type metarel:AllSomeClassRelationType.
ssb:acts_on_population_of rdf:type metarel:AllSomeClassRelationType.
ssb:adheres_in rdf:type metarel:AllSomeClassRelationType.
ssb:adjacent_to rdf:type metarel:AllSomeClassRelationType.

.

.

.

obo:activates rdf:type metarel:InstanceRelationType.
obo:acts_on rdf:type metarel:InstanceRelationType.
obo:acts_on_population_of rdf:type metarel:InstanceRelationType.
obo:adheres_in rdf:type metarel:InstanceRelationType.
obo:adjacent_to rdf:type metarel:InstanceRelationType.

212

Appendix C. BioMetarel

.

.

.

ssb:is_a metarel:isBasedOn owl:sameAs.
ssb:is_a rdf:type metarel:AllSomeClassRelationType.
owl:sameAs rdf:type metarel:InstanceRelationType.
ssb:is_a owl:sameAs rdfs:subClassOf.
ssb:is_a rdfs:label "is".

ssb:integral_part_of metarel:isBasedOn obo:part_of.
ssb:integral_part_of rdf:type metarel:TightClassRelationType.
ssb:integral_part_of rdfs:label "is integral part of".
ssb:has_integral_part metarel:isBasedOn obo:has_part.
ssb:has_integral_part rdf:type metarel:TightClassRelationType.
ssb:has_integral_part rdfs:label "has integral part".

owl:sameAs rdf:type metarel:ReflexiveRelationType.
obo:part_of rdf:type metarel:ReflexiveRelationType.
obo:located_in rdf:type metarel:ReflexiveRelationType.
owl:sameAs rdf:type owl:TransitiveProperty.

C.2 The RDF export

After the loading of metarel.rdf, biorel.rdf and biometarel_merge.rdf.turtle,
followed by the automated inferring of new triples with SPARUL, BioMe-
tarel is created as a graph within the RDF store. Unfortunately it is not
possible to create a nice RDF export that is somewhat human readable.
With the following SPARQL command, Virtuoso can create an export in
the RDF/XML syntax:

BASE <http://www.semantic-systems-biology.org/>
CONSTRUCT {?s ?p ?o.}
WHERE {
GRAPH <biometarel> {
?s ?p ?o.

}
}

Every triple in the graph for BioMetarel is represented as a single
line in the file, without any special formatting or ordering for readability.

213

Appendix C. BioMetarel

This file can be used for the distribution of BioMetarel to other RDF stores.
An abbreviated section is shown here:

biometarel.rdf:
<?xml version="1.0" encoding="utf-8" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#has_quality"><rdfs:
<rdf:Description rdf:nodeID="b1000010675"><rdf:rest rdf:resource="http://www.w3.org/1999/02
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/executed_in"><rdf:type rdf:resou
<rdf:Description rdf:nodeID="b1000010780"><n0pred:hasURI xmlns:n0pred="http://purl.obolibra
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/interacts_with"><rdf:type rdf:re
<rdf:Description rdf:nodeID="b1000010592"><rdfs:label>UBERON:cjm</rdfs:label></rdf:Descript
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/proper_part_of"><rdfs:label>is p
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/exemplar_of"><rdf:type rdf:resou
<rdf:Description rdf:nodeID="b1000010463"><n0pred:hasURI xmlns:n0pred="http://purl.obolibra
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/inversely_associated_with"><rdf:
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#results_in_fusion_o
<rdf:Description rdf:nodeID="b1000010778"><n0pred:hasURI xmlns:n0pred="http://purl.obolibra
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/existence_starts_after"><owl:pro
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#results_in_breakdow
<rdf:Description rdf:nodeID="b1000010537"><rdfs:label>catabolises into</rdfs:label></rdf:De
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/existence_starts_with"><owl:prop
<rdf:Description rdf:nodeID="b1000010776"><n0pred:hasURI xmlns:n0pred="http://purl.obolibra
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/has_relative_magnitude"><rdfs:la
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#transforms_into"><r
<rdf:Description rdf:nodeID="b1000010588"><rdfs:label>UBERON:cjm</rdfs:label></rdf:Descript
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#catalyses"><n0pred:
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/is_measurement_of"><rdfs:label>i
<rdf:Description rdf:nodeID="b1000010587"><n0pred:hasDbXref xmlns:n0pred="http://purl.oboli
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#qualifier"><n0pred:
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#innervates"><rdfs:l
<rdf:Description rdf:nodeID="b1000010586"><rdfs:label>UBERON:cjm</rdfs:label></rdf:Descript
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#has_regexp"><rdfs:l
<rdf:Description rdf:nodeID="b1000010585"><n0pred:hasDbXref xmlns:n0pred="http://purl.oboli
<rdf:Description rdf:about="http://www.metarel.org/DefiningRelationType"><rdfs:label>defini
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/existence_starts_during"><owl:pr
<rdf:Description rdf:nodeID="b1000010773"><n0pred:hasURI xmlns:n0pred="http://purl.obolibra
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#recombined_to"><n0p
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/ends_earlier_than"><rdfs:label>e
<rdf:Description rdf:nodeID="b1000010580"><n0pred:hasDbXref xmlns:n0pred="http://purl.oboli
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/paralogous_to"><rdfs:label>is pa
<rdf:Description rdf:nodeID="b1000010582"><n0pred:hasDbXref xmlns:n0pred="http://purl.oboli
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/results_in_commitment_to"><rdfs:
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#integral_part_of"><
<rdf:Description rdf:nodeID="b1000010863"><n0pred:hasURI xmlns:n0pred="http://purl.obolibra
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#encoded_by"><rdfs:l
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#translates_to"><rdf
<rdf:Description rdf:nodeID="b1000010591"><n0pred:hasDbXref xmlns:n0pred="http://purl.oboli
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/negatively_regulates_timing_of">
<rdf:Description rdf:about="http://purl.obolibrary.org/obo/existence_starts_and_ends_during
<rdf:Description rdf:nodeID="b1000010551"><n0pred:hasDbXref xmlns:n0pred="http://purl.oboli
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#results_in_remodeli
<rdf:Description rdf:nodeID="b1000010741"><rdf:rest rdf:nodeID="b1000010740"/></rdf:Descrip
<rdf:Description rdf:nodeID="b1000010803"><rdfs:label>results_in_targeting_to_from_or_acros
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#results_in"><rdf:ty
<rdf:Description rdf:nodeID="b1000010494"><rdfs:label>Near the outer surface of the organis
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#has_central_partici
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#results_in_transpor
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#has_axis"><n0pred:i
<rdf:Description rdf:nodeID="b1000010545"><n0pred:hasDbXref xmlns:n0pred="http://purl.oboli
<rdf:Description rdf:nodeID="b1000010441"><rdfs:label>x aco y iff x dco y OR x aco z and z
<rdf:Description rdf:about="http://www.semantic-systems-biology.org/SSB#results_in_addition

.

.

.

</rdf:RDF>

214

Appendix D

Reasoner code

This appendix contains the software code (a PERL program and SQL code)
that executes the reasoning on BioGateway with BioMetarel. It also does
the loading of the RDF files into the special architecture of BioGateway, but
it assumes that these RDF files were previously created. This means that it
executes a remodularized part of the Rdfer pipeline that was once written
by Erick Antezana to load BioGateway [183]. The PERL program consists
of only about 1000 lines, but its function is to write SQL code that can be
interpreted by Virtuoso. This SQL code is a large file of around 10 MB in
size and contains the detailed instructions for loading and reasoning.

D.1 The PERL program

The configuration variables for the PERL script below are set to the ideal-
ized practice. In reality, Virtuoso could not handle the full SQL script of
10 MB. By running the PERL script twice and altering the configuration
variables, the recreation of BioGateway could be split into two parts. This
whole process costs about two days and a half.

Vladimir Mironov contributed a lot to this code by creating many
useful modules, which has made my original script much shorter and more
reusable. He also gave it a nicer formatting. Some essential Virtuoso com-
mands were copied from Erick Antezana’s script.

#!/usr/bin/perl -w

use warnings;
use strict;
use Carp;
use DBI;

215

Appendix D. Reasoner code

###
#
Global variables
these variables don’t change in the course of execution
#
###

my $dba_user = "***";
my $dba_pass = "***";
my $connect_string = "dbi:ODBC:VirtuosoSSB";
my $prefix = "http://www.semantic-systems-biology.org/";
my $ns = $prefix . "SSB";

Configuration variables - important to set properly!!!
my $use_dbi = 0; # set to 1 to use DBI for uploading
my $make_cleanup = 1; # set to 1 to clean the RDF store
my $create_inhouse_graphs = 1; # 0 - no biometarel, bfo and spin
my $make_upload = 1; # 0 - skip uploading files into graphs
my $make_upload_tc = 0; # 1 - closures with ONTO-PERL
my $make_transitive_closures = 1; # the number of iterations:

0 - no SPARUL closures
1 - SPARUL’s recursion (Virt 5.0.8)
45 - a safe depth for BioGateway

my $make_reflexive_closures = 1; # 0 - no closures
my $make_superrelation_closures = 1; # 0 - no closures
my $make_priority_over_isa_closures = 1; # 0 - no closures
my $make_compositional_closures = 1; # 0 - no closures
my $make_obo_closures = 1; # 0 - no closures
my $make_ncbi_closures = 1; # 0 - no closures
my $make_goa_closures = 1; # 0 - no closures
my $create_metaonto = 1; # 0 - metaonto is not created

.

.

.

##
#
Main
#
##

my $dbh = DBI->connect($connect_string, $dba_user, $dba_pass, { RaiseError => 1 })
if $use_dbi;

my @obo_graph_names = get_graph_names($obo_data_path);
my @goa_graph_names = get_graph_names($goa_data_path);

.

.

.

if ($make_cleanup) {
chomp(my $date = ‘date‘);
print PIPELINE_LOG "\n\n\n START OF CLEANING THE STORE ($date):\n\n\n";
print PIPELINE_SQL "delete from DB.DBA.RDF_QUAD;\n\n";

}

if ($create_inhouse_graphs) {
Creating the Biorel, Metarel, BioMetarel, bfo and spin graphs
create_inhouse_graphs ();

}

if ($make_upload) {

Uploading the OBO_ontologies graphs:
upload_dir($obo_data_path, ’1’, "", ’SSB’, ’OBO’);
copy_triples(@obo_graph_names, ’biometarel’);

216

Appendix D. Reasoner code

Uploading the NCBI graphs
add_triples($ncbi_file, ’SSB’, ’SSB_tc’, ’ncbi’);
copy_triples(’ncbi’, ’biometarel’);

Uploading the UniProt graphs
add_triples($trembl_file, ’SSB’, ’SSB_tc’, ’uniprot_trembl’); # vlmir
add_triples($biorel_file, ’uniprot_trembl’); # vlmir
add_triples($sprot_file, ’SSB’, ’SSB_tc’, ’uniprot_sprot’);
copy_triples(’uniprot_sprot’, ’biometarel’);

Uploading owl ontologies (merged-obi)
upload_dir($owl_data_path, ’1’, "", ’SSB’, ’OWL’);

Uploading opengalen
upload_dir($opengalen_data_path, ’1’, "", ’SSB’, ’OWL’, ’opengalen’);
upload_dir($opengalen_data_path, ’0’, "", ’opengalen’);

Uploading the GOA graphs
upload_dir($goa_data_path, ’1’, "", ’SSB’) ;
copy_triples(@goa_graph_names, ’biometarel’);

copy_triples(’SSB’, ’SSB_tc’, ’OBO’, ’OBO_tc’, ’biometarel’);
}

Adding closures

Creating closures for OBO ontologies
if ($make_obo_closures) {

upload_dir ($obo_tc_data_path, ’1’, "_tc")
if $make_upload_tc;

upload_dir($obo_data_path, ’1’, "_tc")
if !$make_upload_tc; # no closures yet - vlmir

add_reflexive_closures (@obo_tc_graph_names) if $make_reflexive_closures;
my $count = 3;
while ($count) {
add_transitive_closures ($make_transitive_closures, @obo_tc_graph_names)

if $make_transitive_closures; # the first arg is the number of iterations
add_superrelation_closures (@obo_tc_graph_names)

if $make_superrelation_closures;
add_priority_over_isa_closures (@obo_tc_graph_names, "")

if $make_priority_over_isa_closures;
add_compositional_closures (@obo_tc_graph_names, "")

if $make_compositional_closures;
$count --;
}
map {copy_triples (’SSB_tc’, ’OBO_tc’, $_)} @obo_tc_graph_names;
copy_triples(@obo_tc_graph_names, ’biometarel’);

}

create closures for NCBI taxonomy
if ($make_ncbi_closures) {

upload_dir($ncbi_data_path, ’1’, "_tc"); # no closures yet
add_transitive_closures ($make_transitive_closures, ’ncbi_tc’)

if $make_transitive_closures; # the first arg is the number of iterations
add_reflexive_closures (’ncbi_tc’)

if $make_reflexive_closures;
add_superrelation_closures (’ncbi_tc’)

if $make_superrelation_closures;
add_priority_over_isa_closures (’ncbi_tc’, "")

if $make_priority_over_isa_closures;
add_compositional_closures (’ncbi_tc’, "")

if $make_compositional_closures;
map {copy_triples (’SSB_tc’, $_)} ’ncbi_tc’;
copy_triples(’ncbi_tc’, ’biometarel’);

}

Create closures for GOA
(this does the work also for UniProt - for all proteins that are in GOA)
if ($make_goa_closures) {

upload_dir($goa_data_path, ’1’, "_tc"); # no closures yet
add_compositional_closures (@goa_tc_graph_names, ’gene_ontology_edit_tc’)

if $make_compositional_closures;
add_priority_over_isa_closures (@goa_tc_graph_names, ’gene_ontology_edit_tc’)

217

Appendix D. Reasoner code

if $make_priority_over_isa_closures;
add_priority_over_isa_closures (@goa_tc_graph_names, ’ncbi_tc’)
if $make_priority_over_isa_closures;

map {copy_triples (’SSB_tc’, $_)} @goa_tc_graph_names;
copy_triples(@goa_tc_graph_names, ’biometarel’);

}

Create metaOnto, which contains some meta-information about the loaded store
if ($create_metaonto) {

add_triples ($metaonto_file, ’metaonto’);
copy_triples (’metaonto’, ’biometarel’);
insert_triples8 (’metaonto’);
insert_triples9 (’metaonto’);

}

D.2 The SQL code

The SQL code essentially consists of a series of loading commands and
SPARUL commands that will serve as input for a sequential execution by
the Virtuoso software instance that will later answer the SPARQL queries.
SPARUL is very similar to SPARQL, but it requires different execution
privileges for security reasons.

Included below are the first lines of the SQL file that is used for creat-
ing BioGateway. The first commands serve for the creation of BioMetarel.
After that starts the uploading of OBO ontologies into BioGateway.

delete from DB.DBA.RDF_QUAD;

sparql clear graph ’http://www.semantic-systems-biology.org/biorel’;
sparql clear graph ’http://www.semantic-systems-biology.org/metarel’;
sparql clear graph ’http://www.semantic-systems-biology.org/biometarel’;
sparql clear graph ’http://www.semantic-systems-biology.org/bfo’;

DB.DBA.RDF_LOAD_RDFXML_MT(file_to_string_output(’/norstore/project/ssb/users/
ward/workspace/svn/data/rdf/inhouse/biorel.owl’),’http://www.semantic-systems-
biology.org/SSB’,’http://www.semantic-systems-biology.org/biorel’);

DB.DBA.RDF_LOAD_RDFXML_MT(file_to_string_output(’/norstore/project/ssb/users/
ward/workspace/svn/data/rdf/inhouse/metarel.rdf’),’http://www.semantic-systems-
biology.org/SSB’,’http://www.semantic-systems-biology.org/metarel’);

.

.

sparql
BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>
INSERT INTO GRAPH <biometarel> {

?node1 rdfs:subClassOf ?node3.
}
WHERE {

GRAPH <biometarel> {
?node1 rdfs:subClassOf ?node2.
?node2 rdfs:subClassOf ?node3.

}
}
;

218

Appendix D. Reasoner code

.

.

sparql
Propagate chains between instance relation types to the level of class relation
types.
BASE <http://www.semantic-systems-biology.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl:<http://www.w3.org/2002/07/owl#>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX ssb:<http://www.semantic-systems-biology.org/SSB#>
PREFIX obo:<http://purl.obolibrary.org/obo/>
PREFIX metarel:<http://www.metarel.org/>
INSERT INTO GRAPH <biometarel> {

_:construct metarel:hasFirstRelation ?First_RelationType.
_:construct metarel:hasSecondRelation ?Second_RelationType.
_:construct metarel:hasResultingRelation ?Resulting_RelationType.

}
WHERE {
GRAPH <biometarel> {
?Resulting_InstanceRelationType owl:propertyChainAxiom ?node.
?node rdf:first ?First_InstanceRelationType.
?node rdf:rest ?rest.
?rest rdf:first ?Second_InstanceRelationType.
?First_RelationType metarel:isBasedOn ?First_InstanceRelationType.
?Second_RelationType metarel:isBasedOn ?Second_InstanceRelationType.
?Resulting_RelationType metarel:isBasedOn ?Resulting_InstanceRelationType.
?First_RelationType rdf:type metarel:AllSomeClassRelationType.
?Second_RelationType rdf:type metarel:AllSomeClassRelationType.
?Resulting_RelationType rdf:type metarel:AllSomeClassRelationType.

}
}
;

.

.

DB.DBA.TTLP_MT(file_to_string_output(’/norstore/project/ssb/users/ward/
workspace/svn/data/rdf/inhouse/spin_closures/superrelation_closure.rdf.turtle’),
’http://www.semantic-systems-biology.org/SSB’,
’http://www.semantic-systems-biology.org/spin’);

DB.DBA.TTLP_MT(file_to_string_output(’/norstore/project/ssb/users/ward/
workspace/svn/data/rdf/inhouse/spin_closures/relevant_relation_closure.rdf.turtle’),
’http://www.semantic-systems-biology.org/SSB’,
’http://www.semantic-systems-biology.org/spin’);

.

.

219

Appendix D. Reasoner code

220

Appendix E

Scientific CV

Personal

Name: Ward
Middle names: Arthur Mark Carlo
Last name: Blondé
Citizenship: Belgian
Date of birth: 14 October 1979
E-mail: ward.blonde@ugent.be
Phone: +32/ 494 99.60.81
Dept. of Mathematical Modelling, Statistics and Bioinformatics
Ghent University
Coupure links 653
9000 Gent, Belgium

Research career

September 2011 until present:
Inst. of Medical Informatics, Statistics and Documentation
Medical University of Graz
LKH-Eingangszentrum, 3. and 5. Floor, Auenbruggerplatz 2, 8036 Graz,
Austria

June 2009 - August 2011: continuation of PhD in Ghent, Belgium

221

Appendix E. Scientific CV

February 2009 – May 2009: ESF project at NTNU in Trondheim, Norway.

January 2009: continuation of PhD at KERMIT:
Dept. of Mathematical Modelling, Statistics and Bioinformatics
Coupure links 653, Ghent University, 9000 Ghent

September 2006: start of PhD
Ph.D. student in Applied Biological Sciences
Project: An ontology for biomedical relations in the Semantic Web.
Promotors: Prof. dr. Martin Kuiper and Prof. dr. Bernard De Baets
Computational Biology Division
Plant Systems Biology
VIB/ Ghent University
9052 Zwijnaarde, Belgium

Degrees

2003-2005
Master in Biomedical and clinical engineering techniques
Two years program
Promotor: Prof. dr. ir. Carlos De Wagter
Ghent University

1997-2003
Civil Engineer Physics
Formal degree: Burgerlijk natuurkundig ingenieur
Minor option Biomedical techniques
Five years program
Promotor: Prof. dr. ir. Gert de Cooman
Ghent University

Language skills

Dutch: native tongue
English: excellent
French: good

222

Appendix E. Scientific CV

German: good
Spanish: notions
Norwegian: notions

Experience

My research interests are biomedical relations and data integration with Se-
mantic Web technologies. I have built a hierarchically organized vocabu-
lary for biomedical relation types, Metarel, that builds a bridge between the
OBO format and OWL, the current Semantic Web standard. I engineered
and optimized BioGateway, an RDF repository that integrates biomedical
ontologies like the Gene Ontology with genomic databases, like GOA and
Uniprot. My acquired knowledge of OBO, RDF and SPARQL allowed me
to approach wet-lab biologists to help them solving their problems from the
computational side.
The construction of Metarel directed me towards applying semi-automated
reasoning on RDF stores. This in turn brought me into contact with the
fully automated reasoning approaches of OWL and Description Logics. I
transformed the relation types in all the OBO ontologies to a single valid
OWL2 DL relation ontology, called Biorel.

Journal Publications

V. Mironov, N. Seethappan, W. Blondé, E. Antezana, A. Splendiani, and
M. Kuiper, “Gauging triple stores with actual biological data,” BMC Bioin-
formatics, vol. 13, no. Suppl 1, pp. S3+, 2012.

W. Blondé, V. Mironov, A. Venkatesan, E. Antezana, B. De Baets, and
M. Kuiper, “Reasoning with bio-ontologies: using relational closure rules
to enable practical querying,” Bioinformatics, vol. 27, pp. 1562–1568, 2011.

V. Mironov, E. Antezana, M. Egaña, W. Blondé, B. De Baets, R. Stevens,
and M. Kuiper, “Flexibility and Utility of the Cell Cycle Ontology,” Ap-
plied Ontology, vol. 6, no. 3, pp. 247–261, 2011.

E. Antezana, W. Blondé, M. Egaña, A. Rutherford, R. Stevens, B. De Baets,
V. Mironov, and M. Kuiper, “BioGateway: a semantic systems biology tool

223

Appendix E. Scientific CV

for the life sciences.,” BMC Bioinformatics, vol. 10 Suppl 10, no. Suppl 10,
pp. S11+, 2009.

E. Antezana, M. Egaña, W. Blondé, A. Illarramendi, I. Bilbao, B. De Baets,
R. Stevens, V. Mironov, and M. Kuiper, “The Cell Cycle Ontology: An
application ontology for the representation and integrated analysis of the
cell cycle process,” Genome Biology, vol. 10, no. 5, pp. R58+, 2009.

Submitted

A. Andrade, W. Blondé, J. Hastings, and S. Schulz, “Process attributes in
bio-ontologies: accurate description of heart cycles.,” BMC Bioinformatics

W. Blondé, E. Antezana, V. Mironov, S. Schulz, M. Kuiper and B. De Baets,
“Using the relation ontology Metarel for modelling Linked Data as multi-
digraphs.” Semantic Web Journal, Special Issue

A. Venkatesan, W. Blondé, E. Antezana, S. Marshall, A. Splendiani, M. E-
gaña, J. Malone, V. Mironov and M. Kuiper, “Facilitating integrated analy-
sis of biological data by enhancing interoperability of RDF resources: Prac-
tical Recommendations.” Semantic Web Journal, Special Issue

Conference papers

A. Venkatesan, W. Blondé, E. Antezana, M. Skillingstad, M. S. Marshall,
B. De Baets, V. Mironov, and M. Kuiper, “The RDF foundry: call for an ini-
tiative to build enhanced RDF resources for biological data integration,” in
Proceedings of the International Conference on Web Intelligence, Mining
and Semantics (WIMS ’11), (New York, NY, USA), pp. 59:1–59:5, ACM,
2011.

E. Antezana, W. Blondé, A. Venkatesan, B. De Baets, V. Mironov, and
M. Kuiper, “Semantic systems biology: enabling integrative biology via
semantic web technologies,” in Proceedings of the International Confer-
ence on Web Intelligence, Mining and Semantics (WIMS ’11), (New York,
NY, USA), pp. 58:1–58:5, ACM, 2011.

224

Appendix E. Scientific CV

V. Mironov, N. Seethappan, W. Blondé, E. Antezana, B. Lindi, and M. Kui-
per, “Benchmarking triple stores with biological data,” CoRR, vol. abs/1012.
1632, 2010.

W. Blondé, E. Antezana, B. De Baets, V. Mironov, and M. Kuiper, “Metarel:
an Ontology to support the inferencing of Semantic Web relations within
Biomedical Ontologies,” in Proc. of the International Conference on Bio-
medical Ontologies (ICBO), pp. 79–82, 2009.

E. Antezana, W. Blondé, M. Egaña, A. Rutherford, R. Stevens, B. De Baets,
V. Mironov, and M. Kuiper, “Structuring the life science resourceome for
semantic systems biology: lessons from the BioGateway Project,” in Se-
mantic Web Application and Tools 4 Life Science (SWAT4LS), Burger A,
Paschke A, Romano, et al, eds, vol. 435, 2008.

Presentations and posters at conferences

Metarel, a vocabulary for reasoning with biomedical relations.
From Nucleotides to Networks (N2N), Ghent, May 2011.

Metarel, a relation metagraph for inferences in biomedical ontologies.
European Conference on Computational Biology (ECCB 10), Ghent, Bel-
gium, Sep. 2010.

Metarel: a Meta-Ontology for Reasoning with Biomedical Relations.
Reasoning Web Summer School, Brixen-Bressanone, Italy, Aug. 2009.

Metarel: an Ontology to support the inferencing of Semantic Web relations
within Biomedical Ontologies.
International Conference on Biomedical Ontologies (ICBO), Buffalo, US,
July 2009.

The Cell Cycle Ontology: an application ontology for data integration.
International Conference on Biomedical Ontologies (ICBO), Buffalo, US,
July 2009.

BioGateway: enabling Semantic Systems Biology.

225

Appendix E. Scientific CV

Bioinformatics Forum for Young Scientists (BFYS), Trondheim/Selbu, Nor-
way, Apr. 2009.

BioGateway: integrated RDF for life science queries.
Semantic Web Applications and Tools for Life Sciences (SWAT4LS), Edin-
burgh, Scotland, UK., Nov. 2008.

BioGateway: enabling Semantic Systems Biology.
The 2nd International Workshop on Machine Learning in Systems Biology
(MLSB), Brussels, Belgium, Sep. 2008.

CCO: an application ontology for the cell cycle.
Summer School on Ontological Engineering and Semantic Web (SSSW07),
Madrid, Spain, July 2007.

226

