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SUMMARY 

 

Stuttering is a speech disorder in which the smooth succession of speech sounds is interrupted by 

frequent blocks, prolongations and/or repetitions of sounds or syllables. When stuttering manifests 

itself for the first time during childhood, it is called developmental stuttering. When stuttering is of 

non-developmental origin, it is referred to as acquired stuttering. Acquired stuttering mostly derives 

from damage to the central nervous system which is called neurogenic stuttering. Neurologically, 

stuttering is characterized by alterations in cortical and subcortical brain regions related to speech 

motor planning, initiation, execution and monitoring.  

Neurological research in stuttering contains a plethora of spatial neuroimaging studies (e.g. fMRI) but 

a dearth of neurophysiological studies, especially when it comes to speech motor control. However, 

fluent speech does not only require the appropriate amount of (de)activation of specific brain 

regions, it also needs a timely and precise coordination of these brain regions. Therefore, the present 

thesis aimed to identify neurophysiological characteristics of speech motor control in stuttering by 

the use of electro-encephalography. 

 

First, temporal coordination of motor related activity during a visual word recognition task was 

assessed. Time points of motor related activity during hand action and non-action verb processing 

were compared in a group of fluent speakers and a group of adults with developmental stuttering. 

Secondly, speech motor preparatory activity preceding single word production was measured in real 

time by evoking a contingent negative variation (CNV) during a picture naming task. The CNV is an 

event-related potential reflecting motor preparatory activity in the basal ganglia-thalamo-cortical – 

loop. Speech motor preparation was compared between fluent speakers, and both fluent and 

stuttered words of stuttering speakers. Thirdly, although developmental and neurogenic stuttering 

are suggested to share common neural substrates, both types of stuttering were compared to assess 

whether this also accounts for speech motor preparatory activity. To that purpose, the same CNV 

picture naming task was performed in a case of neurogenic stuttering. 

 

Timing of motor related activation was considerable altered in the stuttering group, even during a 

silent reading task without (speech) movement requirements. The time point of maximal motor 

difference between both verb types was delayed with 100 ms and showed a reversed activation 

pattern compared to that of fluent speakers. This reversal is hypothesized to encompass two 

different motor abnormalities: a general motor hyperactivation, presenting during non-action verb 

processing, and a specific hand motor deficit, causing decreased excitability of this region during 
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hand action verb processing. These findings confirm that temporal alterations in neural motor 

activations in stuttering are not restricted to overt speech production.   

 

Secondly, speech motor preparatory activity generated by the basal ganglia-thalamo-cortical – loop 

was found to have a crucial role in stuttering. Not only has its amount of activation a determining 

role in the actual moment of a stutter, its activation seems also related to the underlying stuttering 

pathology. An important divergence between left and right hemisphere is seen in this respect. When 

motor preparatory activity in right basal ganglia-thalamo-cortical – loop is markedly increased, no 

stutter will occur. The more frequent and/or the more severe a person stutters, the higher this 

increase is or must be to enable fluent speech production. The lower the motor preparatory activity 

preceding a stutter in the left basal ganglia-thalamo-cortical – network, the more this person will 

stutter in general. As such, left basal ganglia-thalamo-cortical – loop is suggested to have a link with 

the stuttering pathology. These findings concur with a growing amount of studies stating that right 

hemisphere alterations are related to (successful) compensation strategies, while the left 

hemisphere would contain the primary cause of stuttering. 

 

Thirdly, important differences emerged when comparing the findings concerning speech motor 

preparatory activity of the developmental stuttering group and the case with neurogenic stuttering. 

Roughly speaking, an increase in stuttering frequency was associated with an increase in CNV slope in 

the developmental stuttering group and a decrease in CNV in the case of neurogenic stuttering. 

Although neurogenic and developmental stuttering are believed to share common neural 

characteristics, these may be restricted to neuroanatomical findings. Both types of stuttering may 

show considerable variation in neurophysiological functioning, probably related to a difference in 

lesion localisation.  

 

Finally, when findings of the present studies are placed within a broader framework, the importance 

of the motor loop of feedforward processing in stuttering is highlighted. All observed motor 

alterations presented without simultaneous deficits in feedback processing or without obvious 

inferences of language impairments. Overall, the present thesis evidences that neurophysiology is 

able to discover interesting and intriguing neural findings that may aid in unravelling the enigma of 

stuttering.   
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SAMENVATTING 

 

Stotteren is een spraakstoornis waarbij de snelle opeenvolging van spraakklanken onderbroken is 

door het frequent voorkomen van blokkades, verlengingen en/of herhalingen van klanken of 

syllabes. Wanneer stotteren zich voor het eerst manifesteert tijdens de kindertijd, spreekt men van 

ontwikkelingsstotteren. Wanneer stotteren geen ontwikkelingsoorsprong heeft, spreekt men van 

verworven stotteren. Verworven stotteren komt het meest frequent voor na een letsel ter hoogte 

van het centrale zenuwstelsel. In dit geval spreekt men van neurogeen stotteren. Vanuit neurologisch 

standpunt wordt stotteren gekenmerkt door afwijkingen in zowel corticale als subcorticale 

structuren die betrokken zijn bij spraak motorische planning, initiatie, uitvoering en monitoring.  

Neurologisch onderzoek in stotteren maakt voornamelijk gebruik van beeldvormingstechnieken. 

Zeker op het vlak van spraak motorische controle is het neurofysiologisch onderzoek bijzonder 

beperkt. Nochtans vereist vloeiende spraak niet alleen de gepaste (de)activatie van specifieke regio’s 

in het brein, het vergt tevens een goed getimede coördinatie van deze hersenregio’s. Het 

belangrijkste doel van deze thesis is het uitbreiden van de neurofysiologisch kennis omtrent spraak 

motorische controle in stotteren door gebruik te maken van elektro-encefalografie.  

 

Ten eerste werd de temporele coördinatie van motorisch gerelateerde activiteit geëvalueerd tijdens 

een spraak perceptie taak. De tijdstippen waarop motorische activiteit optrad tijdens het stillezen 

van hand actie en niet-actie werkwoorden werd vergeleken tussen een groep vloeiende sprekers en 

een groep volwassenen met ontwikkelingsstotteren. Ten tweede werd de mate van spraak 

motorische voorbereidingsactiviteit bij één-woord-uitingen geëvalueerd. Hiervoor werd een 

contingent negative variation (CNV) uitgelokt aan de hand van een prent benoemtaak. De CNV is een 

geëvokeerde potentiaal die de mate van motorische voorbereiding reflecteert die gegeneerd wordt 

door het basale ganglia-thalamo-corticale circuit. De CNV werd gemeten voor vloeiende en 

gestotterde woorden en vergeleken met de CNV bij vloeiende sprekers. Ten derde werd dezelfde 

CNV prent benoemtaak uitgevoerd bij een casus met neurogeen stotteren. Alhoewel neurogeen en 

ontwikkelingsstotteren een gemeenschappelijke neurologische basis zouden hebben, werden beide 

types stotteren vergeleken om te onderzoeken of dit ook geldt voor spraak motorische 

voorbereiding.  

 

De timing van motorisch gerelateerde activiteit bleek aanzienlijk anders te verlopen in stotteren, 

zelfs tijdens stillezen waarbij geen (spraak) bewegingen vereist zijn. Het tijdsstip waarop zich een 

maximaal motorisch verschil tussen beide werkwoorden voordeed, was met 100 ms vertraagd. 
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Hierbij werd tevens een omgekeerd activatiepatroon vastgesteld. Deze omkering zou het gevolg zijn 

van twee verschillende motorische afwijkingen: (1) een algemene motorische overactivatie, die zich 

voordoet bij het verwerken van de niet-actie werkwoorden, en (2) een specifiek deficit in de hand 

motore regio, waardoor er een verminderde excitatie optreedt van deze regio tijdens het verwerken 

van hand actie werkwoorden. Deze bevindingen bevestigen dat temporele veranderingen in 

motorische activiteit bij stotteren zich niet beperken tot spraak productie taken.  

 

Ten tweede werd het belang van spraak motorische voorbereiding in het basale ganglia-thalamo-

corticale netwerk aangetoond. Niet alleen blijkt de hoeveelheid activiteit een determinerende rol te 

spelen in het wel of niet optreden van een stotter, deze activiteit lijkt ook gerelateerd te zijn aan de 

onderliggende pathologie. Een belangrijk onderscheid tussen de linker en de rechter hemisfeer moet 

hierbij gemaakt worden. Wanneer spraak motorische voorbereiding in het rechter cortico-corticaal 

netwerk significant toeneemt, zal er geen stotter optreden. Hoe meer een persoon stottert, hoe 

hoger deze stijging is of moet zijn. Hoe lager de hoeveelheid motorische voorbereidingsactiviteit in 

het linker cortico-corticaal netwerk voordat een stotter optreedt, hoe meer deze persoon in het 

algemeen blijkt te stotteren. Dit suggereert een link met de onderliggende neuropathologie van 

stotteren. Deze resultaten bevestigen de hypothese dat bij stotteren veranderingen in de rechter 

hemisfeer gerelateerd zijn aan (succesvolle) compensatie strategieën terwijl veranderingen in de 

linker hemisfeer de primaire oorzaak van stotteren zouden omvatten. 

 

Ten derde bleken er belangrijke verschillen te zijn op het vlak van spraak motorische voorbereiding 

tussen neurogeen en ontwikkelingsstotteren. Ruw gesteld werd een stijging in stotterfrequentie 

geassocieerd met een stijging in CNV bij de groep met ontwikkelingsstotteren en een daling in CNV 

bij de casus met neurogeen stotteren. De gesuggereerde gemeenschappelijke basis van neurogeen 

en ontwikkelingsstotteren lijkt zich te beperken tot neuroanatomische aspecten. Neurofysiologisch 

kunnen grote verschillen optreden die waarschijnlijk te wijten zijn aan een verschillende lokalisatie 

van het primaire letsel.  

 

Wanneer de bevindingen van deze thesis in een groter kader worden geplaatst, wordt het belang van 

de ‘motor loop’ in feedforward verwerking beklemtoond. Alle geobserveerde motorische 

veranderingen treden op zonder simultane afwijkingen in feedback verwerking of zonder duidelijke 

interferentie van talige problemen. In het algemeen toont deze thesis aan dat neurofysiologisch 

onderzoek in stotteren een belangrijke bijdrage kan leveren tot het ontrafelen van het mysterie rond 

stotteren. 
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Chapter 1: What is stuttering? 

1. Definition 

Stuttering is, according to the World Health Organization (WHO, 2007, F98.5), “speech that is 

characterized by frequent repetition or prolongation of sounds or syllables or words, or by frequent 

hesitations or pauses that disrupt the rhythmic flow of speech. It should be classified as a disorder 

only if its severity is such as to markedly disturb the fluency of speech”.  

Additionally, persons who stutter (PWS) may develop secondary symptoms in an attempt to 

overcome or avoid the primary speech characteristics described in the WHO definition. These 

secondary symptoms are learned behaviours and can be verbal (e.g. changes in pitch and/or 

loudness, incomplete phrases, synonyms, … ) and non-verbal (e.g. frowning, eye blinks, …). Finally, 

stuttering can also evoke negative emotions and cognitions like fear, embarrassment, guilt, … As 

these may have a major impact on life, stuttering is often compared to an iceberg (see figure 1) in 

which the overt features (primary and secondary symptoms) are situated above the surface and the 

covert features (negative emotions and cognitions) below the surface (Bloodstein & Ratner, 2008; 

Guitar, 2006; Van Borsel, 2011).  

 

Figure 1: Dr. Joseph Sheehan’s picture of the iceberg of stuttering showing the overt and covert features of 
stuttering. Source: https://www.mnsu.edu/comdis/kuster/TherapyWWW/intensive/sheehanclinic.html 

 

2. Subtypes of stuttering 

In most cases, stuttering is of developmental origin, manifesting itself for the first time during 

childhood and as such is called developmental stuttering (DS). When stuttering is of non-

developmental origin, it is referred to as acquired stuttering (Van Borsel, 2014). Acquired stuttering 

can be divided in 4 subtypes depending on the aetiology: drug-induced, psychogenic, malingered and 

neurogenic stuttering (NS) (Van Borsel, 2011). In what follows, all types are described in more detail. 

As the present thesis concerns DS and NS, these subtypes will be highlighted.  

In the following chapters, the term stuttering is used to refer to DS unless stated otherwise.  
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3. Developmental stuttering 

3.1. Onset 

Despite a few cases of stuttering emergence during the teens (e.g. Andrews & Harris, 1964; Meltzer, 

1934; Preus, 1981), most studies do not report onset past the age of 9 years (e.g. Ohasi, 1977). About 

95% of children who stutter (CWS) are found to have started stuttering by the age of 4 years (Yairi & 

Ambrose, 2005) with a mean age of onset at 33 months (for a review, see Yairi & Ambrose, 2013). 

Whereas onset has been described as mostly gradual for a long time, it now seems that a substantial 

amount of children (40 % – 53.2 %) experience a rather sudden onset (Buck et al., 2002; Yairi & 

Ambrose, 2005). Repetitions, of both syllables and single-syllable words, are the most frequently 

observed stuttering-like dysfluencies in early stuttering (Ambrose & Yairi, 1999; Van Riper, 1982) and 

are the prime speech characteristics that prompt identification of early stuttering by parents (e.g. 

Yairi, 1983). Prolongations usually appear somewhat later followed by blocks, though some children 

display prolongations and blocks already at or close to stuttering onset (Guitar, 2006). 

 

3.2. Incidence, prevalence and natural recovery 

Many CWS recover spontaneously without any treatment. Percentages vary from 68% to even as 

high as 96% (for a review, see Yairi & Ambrose, 2013). Several factors have been identified that 

increase the likelihood for spontaneous recovery (Bloodstein & Ratner, 2008; Guitar, 2006):  

 

Factor Associated with recovery 

Gender Being a girl 

Age at onset Earlier age at onset 

Family history No relatives who stutter or relatives that have recovered from stuttering 

Linguistic skills Higher receptive and expressive language skills, especially phonological skills 

 

Both incidence and prevalence can vary greatly depending on the age range that is sampled. This is 

due to (1) the high percentage of natural recovery in young children mentioned above, and (2) a 

decrease in percentage of new onsets as the population included becomes older (Preus, 1981). Until 

now, an average life-span incidence of 5% and prevalence of 1% have generally been accepted 

(Bloodstein & Ratner, 2008). Recently, these numbers are suggested to be an under- and 

overestimation respectively. Concerning incidence, 4 out of 6 investigations performed since 2000 

report an average of 8% or higher (Dworzynski et al., 2007; Felsenfield et al., 2000; Månsson, 2005; 

Reilly et al., 2009). Concerning prevalence, a 0.72% life-span prevalence was found with a 

considerably higher prevalence for pre-schoolers and early grades (1.4%) compared to adults (ages 

21-50: 0.78%; ages 51+: 0.37%) (Craig et al., 2002). Stuttering is known to be a worldwide speech 
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disorder afflicting all races and probably all etnic/cultural groups (e.g. Ardila et al., 1994; Riaz et al., 

2005).   

 

3.3. Gender 

Although in general more boys are found to stutter than girls (on average 3:1), this ratio, similar to 

prevalence and incidence, varies according to the age range sampled. The younger the children, the 

smaller the ratio (Bloodstein & Ratner, 2008). It even approaches an equal distribution near 

stuttering onset (e.g. Månsson, 2005). For children aged 6-20 years, a male-to-female ratio of 4.6 was 

found in a large European study (Van Borsel et al., 2006). This increase in sex ratio is either the result 

of an increasing proportion of boys beginning to stutter at later ages (West, 1931) or by a larger 

amount of girls that recover (Yairi & Ambrose, 2005). Several explanations for the gender bias have 

been given varying from hormonal influences (Geschwind & Galaburda, 1985), environmental 

aspects (Johnson & Associates, 1959; Goldman, 1967), slower early language development in boys 

(West & Ansberry, 1968) to genetic factors (Kidd, 1984; Suresh et al., 2006).  

 

3.4. Genetics 

Several lines of evidence point to a genetic component in stuttering. Besides a higher incidence of 

stuttering in first degree relatives of PWS (20 – 74%) than in the general population (1.3 – 42%) 

(Andrews et al., 1991; Felsenfeld et al., 2000; Howie, 1981), also twin studies reveal considerably 

higher concordance levels1 of stuttering in monozygotic (20 – 90%) compared with dizygotic twins (3 

– 19%) (Kidd et al., 1981; Yairi et al., 1996). Recently, several candidate genes have been identified 

that possibly contribute to the transmission of stuttering in families (for a review, see Kraft & Yairi, 

2012). Noteworthy is that none of the twin studies found a concordance of 100% suggesting that 

stuttering is not 100% gene-based. Overall, the current findings suggest that emergence of stuttering 

might include multiple genes and relies on additional factors like environmental influences (Ambrose 

et al., 1997; Ward, 2006; Yairi & Ambrose, 2013) which will impact neurodevelopment (Bloodstein & 

Ratner, 2008). Important environmental influences encompass e.g. other’s reactions, family 

communication style, family expectations, stressful life events (Guitar, 2006). 

 

3.5. Continuity hypothesis 

The continuity hypothesis suggested that the difference between stuttering and normal nonfluency 

in young children is one of degree only. Heavy pressure on the child to speak would increase the 

nonfluency which would then be entitled as stuttering (Bloodstein, 1970). As such, the difference 

                                                           
1
 The presence of a given trait (in this case: stuttering) in both members of a pair of twins.  
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between normal nonfluency and stuttering was hypothesized to be quantitative and not qualitative. 

Currently, stuttering is more often addressed as qualitatively different from normal nonfluency 

(Bloodstein & Ratner, 2008). 

 

4. Acquired stuttering 

4.1. Drug-induced stuttering 

Drug-induced (or pharmacogenic) stuttering refers to stuttering that originates as a side-effect of 

pharmacological agents (Van Borsel, 2014). A large variety of drugs affecting multiple 

neurotransmitter systems (cholinergic, dopaminergic, noradrenergic and serotonergic) have been 

found to induce stuttering (Brady, 1998). The clinical picture is very heterogeneous. While different 

drugs may elicit similar characteristics, one and the same drug may evoke different symptoms in 

different patients (Beck, 2000). In all reported cases, stuttering was resolved by discontinuing the 

offending drug (Brady, 1998). 

 

4.2. Psychogenic stuttering 

When the involuntary appearance of speech dysfluencies is related to a psychological problem, a 

prolonged period of stress, or an emotional trauma, it is referred to as psychogenic stuttering 

(Guitar, 2006; Van Borsel, 2014), previously called hysterical stuttering (Bluemel, 1935; Deal & Doro, 

1987; Freund, 1966). It has sometimes been classified as a conversion reaction (i.e. a physical or 

behavioural expression of a psychological conflict) (Mahr & Leitz, 1992). Due to the varying clinical 

picture on both primary and secondary behaviours as well as on affective reactions towards the 

stuttering (Baumgartner, 1999; Guitar, 2006), the differential diagnosis with NS may be very 

challenging (Lundgren et al., 2010).  

 

4.3. Malingered stuttering 

In malingering, a person fabricates (pure malingering) or exaggerates (aggravation) symptoms of an 

illness or incapacity usually for some sort of personal gain (Van Borsel, 2014). Malingered stuttering 

is a rare condition that has only been reported in a forensic context (Bloodstein, 1988; Seery, 2005; 

Shirkey, 1987). Although it is clearly distinct from psychogenic stuttering, as the dysfluent speech is 

produced consciously and intentionally, the differential diagnosis may be very difficult (Van Borsel, 

2014). At present, no sound test to detect malingered stuttering exists (Van Borsel, 2011).  
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4.4. Neurogenic stuttering  

NS refers to stuttering deriving from damage to the central nervous system (Canter, 1971). It is the 

most common type of acquired stuttering and can arise following a wide variety of disorders of which 

stroke is the most common cause, followed by traumatic brain injury and neurodegenerative 

disorders like Parkinson’s disease (Theys et al., 2008). NS usually refers to a first occurrence of 

stuttering in previously fluent individuals. Several alternative names for NS have been proposed (for 

an overview, see Van Borsel, 2014). ‘Neurogenic stuttering’ remains however the most frequently 

used term.  

 

4.4.1. Incidence and gender ratio 

As the main body of knowledge on NS is based on case descriptions, NS has previously been 

described as an uncommon disorder (Ludlow et al., 1987; Ringo & Dietrich, 1995). The findings of a 

systematic, one-year prospective study in stroke patients contradict this idea. In the acute phase, an 

incidence of 5.3% was found. 17 out of 319 stroke patients presented with more than 3% stuttering-

like dysfluencies during either conversation, monologue or reading of a text. After 6 months, the 

stuttering persisted in half of them, i.e. 2.5% of all stroke patients (Theys et al, 2011). 

NS irrespective of aetiology seems to occur more in men than in women (Bloodstein & Ratner, 2008). 

Gender ratios as high as 15:1 have been reported (Mazzucchi et al., 1981). Interestingly, Theys et al., 

(2011) found an equal male/female ratio in the acute phase following stroke which increased to 3:1 

after 6 months. This finding cautiously suggests that female stroke patients are more likely to recover 

from NS.  

 

4.4.2. Behavioural characteristics 

Previously, NS has been suggested to differ from DS based on some typical speech and non-speech 

characteristics (Helm-Estabrooks, 1999): 

Characteristic  Typical for NS 

Primary speech symptoms  Nearly as frequent on grammatical as on substantive words 

Not only on initial syllables/sounds 

Relatively consistently across different speaking tasks 

Secondary symptoms Not associated with moments of dysfluency 

Emotions and cognitions The person may be annoyed but is not anxious 
 

However, many case studies demonstrated that a substantial amount of NS patients do not conform 

these differential characteristics (e.g. Koller, 1983; Mowrer & Younts, 2001; Sahin et al., 2005; Van 

Borsel et al., 2003b). NS may even be more similar to DS than originally suggested (Theys et al., 2008; 
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Van Borsel & Taillieu, 2001). Reviewing the literature, also Van Borsel (1997) suggested that the 

clinical symptomatology does not enable a safe distinction between NS and DS.  

 

4.4.3. Neurological characteristics   

Case reports have described NS following damage in all cortical lobes as well as in basal ganglia, 

thalamus, cerebellum, brain stem and corpus callosum (for a review, see Van Borsel, 1997; De Nil et 

al., 2009). A recent group study revealed that stroke induced stuttering was associated with a left-

sided cortico-basal ganglia-cortical network encompassing inferior frontal, superior temporal, and 

intraparietal cortex, as well as basal ganglia and their white matter interconnections through the 

superior longitudinal fasciculus and internal capsule (Theys et al., 2012). Many of these structures 

have been found to have a crucial role in DS as well (see chapter 3), suggesting that NS and DS may 

share common neural characteristics (Theys et al., 2012).  

 

Formerly, both types of stuttering were considered to be two different entities (e.g. Helm-

Estabrooks, 1999; Ringo & Dietrich, 1995). The observed overlap in behavioural and neurological 

characteristics triggers the question whether DS and NS really are two distinct types of stuttering. 
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Chapter 2: Neuroanatomical organization of fluent speech production 

Speech production is the result of a complex interaction between linguistic, motor, auditory and 

somatosensory processes involving many cortical and subcortical brain structures. Models on speech 

production belong either to a psycholinguistic tradition, which focuses on higher-level linguistic 

processing (e.g. Dell, 1986; Indefrey & Levelt, 2004), or to a motor control tradition which 

concentrates on lower-level articulatory control (e.g. Directions into Velocities of Articulators (DIVA) 

model by Guenther, 2006; Gradient Order DIVA (GODIVA) model by Bohland et al., 2010). The 

present thesis will focus on the motor part of speech production. Phonological representations are 

suggested to interface higher-level language centres and lower-level motor systems (Bohland et al., 

2010). As such no detailed description of the linguistic processes preceding phonological encoding 

nor their neural correlates will be discussed.  

A substantial part of what follows is based on the GODIVA model (Bohland et al., 2010), which 

addresses the selection, sequencing and initiation of speech movements, and on the DIVA model 

(Guenther, 2006), which addresses the acquisition and execution of sensorimotor speech programs. 

According to the DIVA model (see figure 2), speech motor control encompasses a feedforward and a 

feedback control subsystem. In the feedforward system, speech production is realized by sending 

well-learned speech motor programs from speech motor planning to execution areas. The feedback 

system compares the expected and the actual sensory speech output and guides the articulators in 

case of mismatch. 

 

 

 
Figure 2: Schematic diagram of the DIVA neural network model obtained from Golfinopoulus et al., 2010. 
Abbreviations: aSMg = anterior supramarginal gyrus; Cau = caudate; Pal = pallidum; Hg = Heschl's gyrus; pIFg = 
posterior inferior frontal gyrus; pSTg= posterior superior temporal gyrus; PT = planum temporale; Put = 
Putamen; slCB = superior lateral cerebellum; smCB = superior medial cerebellum; SMA = supplementary motor 
area; Tha = thalamus; VA = ventral anterior nucleus of the cerebellum; VL = ventral lateral nucleus of the 
thalamus; vMC = ventral motor cortex; vPMC = ventral premotor cortex; vSC = ventral somatosensory cortex. 
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All cortical regions discussed in light of feedforward and feedback processing are shown in figure 3.  

 

Figure 3: Schematic diagram of the brain showing in yellow the regions that provide major contributions to 
speech, both perception as production (obtained from Cai et al., 2014b).  
Abbrevations referring to structures mentioned in the text: a = anterior; d = dorsal; p = posterior; v = ventral; 
Caud = caudatum; CGg = cingulate gyrus; IFO = inferior frontal operculum; Ifs = inferior frontal sulcus; MC = 
motor cortex; PMC = premotor cortex; preSMA = pre-supplementary motor area; Put = putamen; SC = sensory 
cortex; SMA = supplementary motor area; STg = superior temporal gyrus; Tha = thalamus 

 

1. Feedforward processing  

After retrieving the phonological codes from the left posterior superior temporal gyrus (STG) 

(Indefrey, 2011), phonological encoding can take place in pre-supplementary motor area (pre-SMA) 

and left posterior inferior frontal gyrus (IFG), i.e. dorsal pars opercularis (Brodmann Area (BA) 44, 

posterior part of Broca’s area) (Bohland & Guenther, 2006; Indefrey & Levelt, 2004; Papoutsi et al., 

2009; Price, 2009, 2012). Both regions are associated with hierarchical sequencing. While pre-SMA 

would contain cells that represent abstract syllable frames, the left dorsal pars opercularis would be 

more related to sequencing discrete units like phonemes (Bohland et al., 2010).  

Next, these phonological words are transferred into articulatory motor programs (Indefrey & Levelt, 

2004). For this purpose, the left ventral premotor cortex (vPMC) and/or the adjacent left ventral pars 

opercularis is/are activated (Papoutsi et al., 2009; Price, 2009, 2012). This region is suggested to 

contain the mental syllabary, as referred to by Levelt and Wheeldon (1994) or the Speech Sound Map 

(SSM), as referred to in the DIVA (Guenther, 2006) and GODIVA model (Bohland et al., 2010). The 

mental syllabary/SSM is a repository for articulatory scores for frequently used syllables and 

phonemes, with syllables being the most typical sound type represented. The best matching 

articulatory scores are selected and compiled so that sensorimotor planning can take place. The 

resulting speech motor programs are sent to the left primary motor cortex (M1) for execution 

(Guenther, 2006).  
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M1 is characterized by a dorso-ventral somatotopic organization for lip, jaw, vocal/laryngeal and 

tongue movements (Grabski et al., 2011). While left M1 is hypothesized to drive the execution of the 

motor programs, right M1 would become active once overt speech is initiated in order to aid in the 

online control of the articulators (Bohland & Guenther, 2006). Corticospinal and corticobulbar tracts 

transport the execution commands from M1 to the cranial and peripheral nerves that control the 

muscles involved in respiration, phonation and articulation (Santens & De Letter, 2010).  

An important subcortical contribution during speech production is known as well. Although basal 

ganglia (BG) do not generate movements themselves, they select and enable them by coordinating 

signal flows throughout the cortical representations (Bohland et al., 2010). Several basal ganglia-

thalamo-cortical (BGTC) loops exist (Alexander & Crutcher, 1990). According to the GODIVA model 

(Bohland et al., 2010; Civier et al., 2013), two BGTC-loops are involved in speech production. The 

planning loop interferes during phonological encoding and involves the caudate nucleus and the 

ventral anterior thalamus. The motor loop interferes during motor execution and passes activity from 

the SMA proper via left putamen and ventrolateral thalamus into M1. BGTC-loops are important for 

biasing cortical competition in favour of the appropriate response and for the properly timed 

initiation and release of the speech motor programs (Cunnington et al., 1996; Mink, 1996; Price, 

2012). Anterior cingulate cortex would aid in the suppression of inappropriate responses (Price, 

2009, 2012).  

Also the cerebellum (CB) is suggested to provide precisely timed motor commands (Bohland & 

Guenther, 2006). CB receives a copy of the feedforward command from the premotor areas and 

projects information back to M1 (Guenther, 2006). CB is hypothesized to subserve the online 

concatenation of syllable-sized motor programs into fast, smooth and rhythmically organized larger 

units such as words and phrases (Ackermann, 2008; Price, 2012).  

 

2. Feedback processing 

Another copy of the feedforward speech motor command is sent to the auditory and somatosensory 

areas. This duplicate, called the efference copy, contains the intended sensory outcome of the 

speech motor command which is compared to the actual outcome as registered by the sensory 

cortical areas (Hickok, 2012; Golfinopoulus et al., 2010). In case of discrepancy, corrective motor 

commands are sent back to the motor areas (Guenther, 2006). In case of a direct match, activity in 

auditory cortex is suppressed. This mechanism is termed speech-induced auditory suppression 

(Christoffels et al., 2007; Curio et al., 2000; Houde et al., 2002; Numminen et al., 1999; Tourville et 

al., 2008). A similar somatosensory suppression might exist in conformity with the motor induced 

somatosensory suppression observed in limb movement research (Blakemore et al., 1998; Miall & 

Wolpert, 1996; Wolpert et al., 1995).  
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Feedback processing is very important during speech acquisition and development. Every mismatch 

results in corrective motor commands that update the articulatory score saved in the mental 

syllabary/SSM. By consequence, feedforward commands become more accurate and less 

mismatches occur. Eventually, feedforward commands are sufficient and speech production will rely 

more heavily on the feedforward than on the feedback subsystem (Guenther & Vladusich, 2012). 

In addition to this external monitoring loop, there is also an internal loop in which an inner 

phonological plan is sent to the speech comprehension system. This monitoring loop is specified in 

psycholinguistic models of speech production (e.g. Levelt et al., 1999). 

 

3. Cortico-cortical communication 

To transfer information from one cortical area to another, cortico-cortical white matter (WM) 

bundles are necessary. For speech production, four important tracts have been identified that are 

part of the so called ‘dorsal stream’ which connects frontal with temporal and parietal regions. They 

encompass the arcuate fasciculus (AF), which directly connects frontal with temporal cortex, and 

three superior longitudinal fasciculi (SLF II, SLF III, SLF-tp) which pass through the parietal cortex 

(Friederici & Gierhan, 2012). A detailed overview of their connections is depicted in figure 4. Because 

these tracts interconnect frontal motor areas (IFG, PMC, M1) with posterior temporo-parietal areas 

(STG, middle temporal gyrus, supramarginal gyrus, angular gyrus, inferior parietal lobule), they highly 

support sensorimotor integration (Friederici & Gierhan, 2012; Gierhan, 2013). 

 

Figure 4: Construction and schematic illustration of the dorsal fiber tracts that form the SLF and AF (obtained 
from Gierhan, 2013).  
Abbrevations: AF (red) = arcuate fasciculus; SLF II (purple), SLF III (light green), SLF-tp (pink) = 
second/third/temporoparietal component of superior longitudinal fascicle. AG = angular gyrus, dPMC = dorsal 
premotor cortex, N. N. = nomen nescio, pSTG/MTG = posterior superior temporal gyrus/middle temporal gyrus, 
PTL = posterior temporal lobe, SMG = supramarginal gyrus, vPMC = ventral premotor cortex, 44 = BA 44. 
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Chapter 3: Neural alterations in developmental stuttering 

Despite decades of research, the enigma of stuttering has still not been unraveled entirely. There is, 

however, compelling evidence that DS arises from genetic determinants (see chapter 1, 3.4. Genetics) 

affecting neurodevelopment during childhood (Bloodstein & Ratner, 2008).  

Just as fluent speech, stuttering has mainly been approached from two different traditions: a 

psycholinguistic and a motor control tradition. It is an ongoing debate whether stuttering is a 

language and/or a motor disorder (Kent, 2000). In this thesis, a method is used that approaches 

stuttering as a deficit in speech motor control. More information on the psycholinguistic theories can 

be found in Bloodstein and Ratner (2008). In what follows, the main neural findings related to speech 

motor control will be addressed. A wide variety of anatomical and functional neural abnormalities 

have been found in PWS suggestive of an impaired dynamic interaction among cortical and 

subcortical systems supporting speech motor planning, initiation, execution and monitoring.  

 

1. Cortical findings 

1.1. Motor hyperactivation 

The first neural signature of stuttering involves the abnormal engagement of the frontal motor areas. 

Overactivation of M1, SMA and cingulate motor area are frequently reported (for a meta-analysis, 

see Brown et al., 2005). Additional overactivations have been described in pre-SMA, IFG and PMC 

(e.g. Chang et al., 2009; De Nil et al., 2008; Fox et al., 2000; Loucks et al., 2011; Lu et al., 2010b). 

Deactivations are reported as well though mostly in left motor areas (Belyk et al., 2014; Neumann et 

al., 2003; Preibisch et al., 2003; Watkins et al., 2008). Overt speech is not a prerequisite to find these 

motor abnormalities. Also during perception tasks, PWS overactivate motor-speech planning and 

execution areas (De Nil et al., 2000, 2001, 2003; Liotti et al., 2010). Thus, even without the 

requirement of overt speech, PWS strongly emphasize articulatory processes (De Nil et al., 2003).  

The implications of these motor abnormalities depend on the areas that are involved. The alterations 

in IFG and vPMC are assumed to be related to deficits in sending feedforward commands to primary 

motor and auditory regions to execute and monitor speech (Brown et al., 2005; Chang et al., 2011; 

Giraud et al., 2008). The hyperactivation in M1 seems to represent a lack of coordination in the 

cortical control of the articulators and the larynx (Belyk et al., 2014). As SMA and pre-SMA are 

important cortical input and projection areas of the subcortical BG, their overactivation is linked with 

an impairment in BGTC- loops (Belyk et al., 2014) causing timing and/or automaticity deficits (see 2. 

Subcortical findings).   

Dysfunctional forward modelling implies that other movements but speech may be affected too. 

Indeed, adults who stutter (AWS) have difficulties in motor skills unrelated to speech. Both non-

speech orofacial and vocal tract gestures as well as upper limb movements show alterations in neural 
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control. Non-speech oral gestures (e.g. cough, sigh, kiss, … ) evoke similar neural differences between 

AWS and fluent speakers (FS) as speech production (Chang et al., 2009). In addition, AWS have an 

imbalanced functional lateralization of the control of finger tapping (Morgan et al., 2008; Neef et al., 

2011) and an abnormal excitability in hand motor representations (Busan et al., 2011).  

Based on these observations, some authors proposed that DS is a general motor disorder involving 

the entire motor system (Chang et al., 2009; Neef et al., 2011). Stuttering would then only be a 

symptom of a subtle and complex motor disorder that becomes evident during speech control due to 

its dynamic complexity (Busan et al., 2011). Speech is, however, also proposed to have evolved from 

hand gesture control (Corballis, 2002; Rizzolatti & Arbib, 1998). If true, a link between hand and 

mouth motor areas might have remained, explaining the subtle deficiencies in manual tasks. In this 

view, DS is primarily a speech motor disorder with secondary hand motor deficits (Saltuklaroglu et 

al., 2009). 

 

1.2. Auditory hypoactivation 

A second neural signature of stuttering is a reduced auditory activation in left (De Nil et al., 2008; 

Watkins et al., 2008) or bilateral STG (Brown et al., 2005). Although auditory processing in itself 

seems to be altered in PWS for tones (Hampton & Weber-Fox, 2008) and speech stimuli (Corbera et 

al., 2005; Jansson-Verkasalo et al., 2014), it is especially the simultaneous auditory cortex 

hypoactivation and speech-motor cortex hyperactivation that has been theorized and examined. 

These studies undoubtedly show that the interaction between auditory and motor cortices is 

abnormal during speech production (e.g. Braun et al., 1997; Chang et al., 2009; Fox et al., 1996; 

Watkins et al., 2008). It remains to be determined, however, which part(s) of the auditory-motor 

integration is(are) altered (Belyk et al., 2014). 

An anthology of some current theories shows that evidence is available for impairments in both 

feedforward and feedback modelling. Concerning feedback processing, one hypothesis suggests that 

auditory errors are inefficiently detected (Jansson-Verkasalo et al., 2014), while another hypothesis 

posits that auditory errors are correctly identified but incorrectly translated into motor corrective 

responses (Cai et al., 2012). Timing related explanations exist as well. In PWS, the rapid integration of 

auditory information with ongoing motor planning and control is impaired (Cai et al., 2014a). During 

speech acquisition and development, this default might impair the creation of stable and accurate 

internal speech sound representations (Beal et al., 2010, 2011). 

Problems in feedforward processing have been hypothesized as well (see 1.1. Motor 

hyperactivation). These defaults would cause an overreliance on feedback processes (Civier et al., 

2010; Max et al., 2004). According to Brown et al., (2005), the overactivation of the motor cortex 
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results in an increased efference copy signal which overly inhibits the auditory cortex activity. This 

hypothesis is contradicted by the findings of Beal et al., (2010, 2011) who reported a normal speech-

induced suppression of the auditory cortex during vowel production in AWS as well as in CWS.  

 

1.3. Impaired white matter connectivity 

The distributed nature of the above mentioned functional differences suggests that anatomical 

abnormalities in stuttering may not be limited to specific cortical damage. Indeed, deviations in WM 

pathways that connect cortical areas involved in speech motor control and monitoring have 

frequently been described though large spatial variation exists among these studies (see figure 5).  

 

 

 

Figure 5: A summary of voxels identified with significantly lower fractional anisotropy (FA) in PWS than in FS 
reported in 6 studies (obtained from Cai et al., 2014b). Only the left hemisphere is depicted. Left panel: left 
view; Right panel: superior view. This figure illustrates the large spatial variation of the FA reductions across 
different studies. Abbrevations: A = anterior, L = lateral, P = posterior, S = superior. 

 

The most consistent finding is a reduced WM density, as measured by fractional anisotropy (FA) 

based on diffusion tensor imaging (DTI), in the region of the left ventral sensorimotor cortex (also 

referred to as left Rolandic operculum). This region is located caudally to Broca’s area and close to 

the M1 representations of the articulators and the larynx (Chang et al., 2008; Connally et al., 2014; 

Cykowski et al., 2010; Sommer et al., 2002; Watkins et al., 2008). As several WM bundles pass 

through this area, the FA decreases might reflect a disruption in one or more of the following 

pathways:  

(1) The largest candidates are the SLF and AF. Because these long-range WM tracts 

interconnect frontal motor areas with posterior temporo-parietal areas, they are of critical 

importance for integrating motor plans and sensory feedback during speech production (Gierhan, 



General introduction |41 

 

 

2013). As such, an AF/SLF impairment provides a structural correlate for the inefficient auditory-

motor integration in stuttering (Connally et al., 2014; Cykowski et al., 2010; Watkins et al., 2008).   

(2) This region also contains small, cortico-cortical u-fibres interconnecting Broca’s area, 

vPMC and M1 representations of the articulators (Connally et al., 2014). As posterior Broca and 

vPMC are suggested to store well-learned speech sensorimotor programs (Guenther, 2006), a 

defective connectivity with M1 may lead to inefficient readout of the selected speech motor 

programs (Cai et al., 2014b; Chang et al., 2011; Neef et al., 2015; Sommer et al., 2002). A disruption 

in this pathway thus provides a structural correlate for the hypothesized weakened feedforward 

system in stuttering (Civier et al., 2010; Max et al., 2004). 

(3) Also the corticobulbar tract is located here, carrying upper motor neurons from M1 to the 

pons where the cranial nerves supporting orofacial movements are innervated (Chang et al., 2008; 

Connally et al., 2014).  

(4) The decreased WM density might also hamper cortico-striatal connectivity (Civier et al., 

2013) interrupting the BGTC-loops (see 2. Subcortical findings). 

Unfortunately, due to inherent limitations of DTI and FA, the contribution of any specific WM tract 

cannot be distinguished (Cieslak et al., 2015). Diffusion spectrum imaging (DSI) allows to overcome 

these limitations (Shin et al., 2012; Wedeen et al., 2008). Using DSI, abnormalities were also found in 

AF, though in different regions than previously reported. A decrease in streamlines was observed in 

left AF, connecting the insula and IFG, and in right AF, connecting inferior temporal gyrus and 

supramarginal gyrus (Cieslak et al., 2015).  

Some other WM bundles that are altered in PWS include corticospinal tract (e.g. Kronfeld-Duenias et 

al., 2014), corpus callosum (e.g. Choo et al., 2011), and the newly identified frontal aslant tract, 

connecting IFG with SMA and pre-SMA (Kronfeld-Duenias et al., 2014).  

 

1.4. Cause? Consequence? Compensation? 

Because DS starts during childhood, neuroanatomical growth and maturation in CWS may follow an 

abnormal trajectory (Beal et al., 2013; Chang, 2011). Structural anomalies will cause functional 

alterations which on their turn may further affect brain networks across development. The SLF for 

example is known to develop up to adolescence (Giorgio et al., 2008; Paus, 1999). Moreover, the 

brain will try to overcome these deficiencies. Neural adaptations and compensatory processes may 

also shape structural development (Chang et al., 2015). As a result, the neural activity and 

morphology pattern observed in adults is a combination of the cause of stuttering on the one hand 

and the consequence of lifelong stuttering and compensation strategies on the other hand. It is an 
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ongoing discussion which neural anomalies are related to the cause and which to 

consequence/compensation. Particularly the relative role of left and right hemisphere has been 

addressed. 

Although not generally believed (e.g. Connally et al., 2014; Kronfeld-Duenias et al., 2014; Watkins et 

al., 2008), left hemisphere abnormalities are more often associated with the basis of stuttering. 

Especially the abnormalities in left inferior frontal regions have been mentioned in this respect. A 

reduction in grey matter volume of left IFG has been found to correlate positively with stuttering 

severity and to be independent from recovery (Kell et al., 2009). Its activation has also been 

described to remain reduced after successful therapy, despite the normalization of other abnormal 

activations due to this therapy (Neumann et al., 2003). These findings suggest that the left inferior 

frontal region is closely related to the origin of stuttering. Indeed, many structural imaging studies 

proposed the reduction in the density of the underlying WM as the core deficit of stuttering (Chang 

et al., 2008; Cykowski et al., 2010; Sommer et al., 2002; Watkins et al., 2008). This reduction has been 

reported to correlate positively with stuttering severity (Cai et al., 2014b). 

The consistently reported overactivation in right IFG (also referred to as right frontal operculum) 

(Brown et al., 2005) is hypothesized to compensate for the planning deficits in its left homologous 

area as it appears to be positively correlated with speech fluency (Lu et al., 2010b; Preibisch et al., 

2003). Right IFG is involved in inhibiting speech acts that are generated in the left IFG (Xue et al., 

2008) and would only interfere when left IFG experiences problems (Lu et al., 2010a).  

Another concept in this regard is ‘state’ versus ‘trait’ stuttering. While ‘trait’ stuttering refers to 

fluent speech in PWS, ‘state’ stuttering encompasses episodes of stuttered speech. Recent meta-

analyses showed that trait and state stuttering are associated with large neural differences e.g. 

dysfluent speech seems related to overactivation of (bilateral) SMA and underactivation of right 

primary auditory cortex while fluent speech would be linked with overactivation of (right) pre-SMA 

and underactivation of left primary auditory cortex (Belyk et al., 2014; Budde et al., 2014). Moreover, 

stuttering frequency/severity correlates with different neural activations than fluent syllable rate 

(Fox et al., 2000; Ingham et al., 2000, 2004). Unfortunately, most studies refer to stuttered speech 

when stutters are embedded in otherwise fluent speech (Braun et al., 1997; Fox et al., 2000, Ingham 

et al., 2004; Toyomura et al., 2011). Making a clear distinction between 100% stuttered and 100% 

fluent speech might elucidate which brain deficit(s) is/are associated with stutters and how the brain 

overcomes a stutter or functions when there is no stutter. 
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2. Subcortical findings 

2.1. Basal ganglia 

PWS generally show BG alterations. Aberrant activation patterns have been described in several BG 

nuclei during a variety of tasks (e.g. Braun et al., 1997; Chang et al., 2009; Ingham et al., 2004; Kell et 

al., 2009; Loucks et al., 2011; Watkins et al., 2008). These activations are found to normalize under 

fluency enhancing conditions (Toyomura et al., 2011, 2015) or to be affected by therapy (Neumann 

et al., 2003, 2005). A decrease in left putamen activity has even been suggested to be predictive of 

successful treatment progress (Ingham et al., 2013). Moreover, activity in BG correlates positively 

with stuttering severity/frequency measures (Braun et al., 1997; Giraud et al., 2008; Ingham et al., 

2012; Kell et al., 2009).  

Besides alterations in BG nuclei, also connectivity abnormalities have been described in the BGTC-

loops connecting BG with cortical areas involved in speech motor planning, execution and monitoring 

(Chang et al., 2011; Lu et al., 2010a, 2010b). The exact consequence of these BGTC-loop dysfunctions 

is not yet clear. While some authors suggest it impairs sequence performance by hampering the 

timed selection and initiation of motor segments (Alm, 2004; Civier et al., 2013), others hypothesize 

it results in deficient sequence learning and automaticity development (Smits-Bandstra & De Nil, 

2007). As BG are known to modulate activity in left motor and temporal cortices (Alexander et al., 

1986), BG dysfunctions might affect auditory-motor synchronization as well (Hove et al., 2013). 

Finally, the BGTC-network, especially on the right, also plays a crucial role in motor response 

inhibition (Boehler et al., 2010; Xue et al., 2008), known to be altered in CWS (Eggers et al., 2013). 

A third confirmation for BG involvement in stuttering comes from research on dopamine, an 

important neurotransmitter in the BGTC-loops. Several studies associate stuttering, at least in part, 

to a hyperdopaminergic state (Maguire et al., 2004). A small positron emission tomography (PET) 

study performed in 3 AWS observed elevated dopaminergic activity in several limbic structures (Wu 

et al., 1997). While dopamine antagonists typically reduce dysfluencies (Lavid et al., 1999; Maguire et 

al., 2000), dopamine agonists worsen stuttering (Anderson et al., 1999; Movsessian et al., 2005). 

Moreover, a strong positive correlation has been observed between the increase in dysfluencies and 

the total cumulative dose of dopaminergic medication in Parkinson’s disease (Tykalova et al., 2015).  

 

2.2. Cerebellum 

The overactivation of the CB is the third and last neural signature of stuttering according to the meta-

analysis of Brown et al., (2005). Even during silent reading, cerebellar activity is increased in AWS (De 

Nil et al., 2003; Van Borsel et al., 2003a). As this overactivation correlates negatively with stuttering 

frequency (Ingham et al., 2012) and decreases to normal levels following therapy (De Nil et al., 2001; 

Lu et al., 2012; Toyomura et al., 2015), it is likely related to compensation (De Nil et al., 2008; Etchell 
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et al., 2014; Watkins et al., 2008). Because the cerebellum contributes to timing and coordination of 

sensorimotor actions, this increased activation probably reflects increased speech motor control (De 

Nil et al., 2001).  

 

2.3. Internally versus externally timed movements 

PWS show a striking distinction between internally and externally triggered events. During tasks on 

response inhibition for example, CWS are as efficient as (to even better than) nonstuttering children 

when the inhibition is exogenously triggered but impaired when the inhibition is endogenously 

triggered (Eggers, 2012). A similar distinction is seen during speech: stutters only occur during self-

paced speech, whereas speaking in unison with an external factor (e.g. another person, a metronome 

beat) improves fluency (Bloodstein & Ratner, 2008). The difference between internally and externally 

guided speech is hypothesized to be related to the reciprocal loops between BG and CB with cortical 

structures supporting motor control (see chapter 2). These loops would work in harmony to produce 

fine-grained timed initiation of speech movements (Alm, 2004). While the BGTC-loop would operate 

during internally timed movements, the cortico-cerebellar network would utilize external timing cues 

to sequence movements (Cunnington et al., 2002; Taniwaki et al., 2006). As self-paced speech is an 

internally timed movement, stuttering is suggested to result from dysfunctions in the BGTC-loop. 

Induced fluency conditions would engage the cortico-cerebellar network and override the defective 

BGTC-loop by providing external timing cues (Alm, 2004; Etchell et al., 2014). 

 

3. Linking cortical and subcortical findings 

Overall, DS is associated with deficient connectivity and aberrant interhemispheric integration among 

neural circuits that underlie forward modelling, auditory-motor integration and precise timing of 

movements. Due to neural plasticity, structural anomalies may affect neuroanatomical development 

by causing new or exacerbating existing alterations. Therefore, it is difficult to determine whether 

cortical or subcortical anomalies are the common basis for stuttering. Two major hypotheses exist:  

3.1. Cortical hypothesis 

The decrease in WM density below the left ventral sensorimotor cortex is believed by many to be the 

primary cause of stuttering (e.g. Cai et al., 2014b; Chang et al., 2008; Cykowski et al., 2010; Sommer 

et al., 2002; Watkins et al., 2008). This decrease hampers motor related functions in inferior frontal 

regions. Consequently, left IFG/motor cortex fails to send sufficient and correct input to BG which 

are, on their turn, unable to project correct timing information to their cortical projection areas. This 

will further negatively impact cortical functions and interactions in IFG, M1 and posterior areas (Alm, 
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2004; Giraud et al., 2008; Lu et al., 2010a). This view has long been supported by many as no 

structural anomalies were found in BG in PWS (Kell et al., 2009).  

3.2. Subcortical hypothesis 

Recently, however, structural alterations have been described in BG (Beal et al., 2013) and their 

connections (Chang & Zhu, 2013). As these disruptions are already present in childhood, they may 

impact speech motor learning (Toyomura et al., 2015). BGTC connectivity deficits may disrupt the 

timing of motor sequences which may result in aberrant auditory-motor matching (Hove et al., 

2013). With development, discrepancies in auditory-motor matching may aggravate, causing 

increased effort and compensatory strategies. These strategies might, on their turn, drive structural 

and functional neuroplastic changes in cortical auditory and motor areas and their connections 

(Chang & Zhu, 2013). Adaptations and compensations are likely to be individual-specific which could 

lead to variable changes in WM development (Chang et al., 2015). As such, the inconsistencies 

observed in some cortical findings might fit in with this hypothesis. Even ‘the most consistent 

structural anomaly’, i.e. the reduced WM density below left Rolandic operculum, shows quite a large 

spatial variation across different studies (see Cai et al., 2014b).  

Overall, no consensus has been achieved on which alteration might provide the primary cause of 

stuttering. However, should there be solely one common neural deficit in all PWS and for all 

stuttering symptoms or is there rather a final common pathway? Toyomura et al., (2015) posited that 

neural deficits in subcortical structures may not be the sole cause of stuttering, but one of many. 

Indeed, several authors suggested there might be subtypes in stuttering (for a review, see Yairi, 

2007). Moreover, different dysfluencies (e.g. blocks/prolongations versus sound/syllable repetitions) 

have been proposed to be associated with different neural deficits (Civier et al., 2013). Jiang et al., 

(2012) succeeded to differentiate more and less typical stuttering symptoms based on brain activity.   
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Chapter 4: Neurophysiology 

1. General aspects 

Chapter 2 and 3 reported on neural functioning in terms of spatial localization. Apart from relying on 

large neural circuits, speech production is also a rapid and dynamic motor process. It takes only 600 

ms to produce a word, from conceptual formulation to articulation (Levelt, 2004; Sahin et al., 2009). 

FS are able to produce six to nine syllables per second, which is faster than any other form of discrete 

motor behaviour (Kent, 2000). Thus, these large neural circuits must respond in a timely, precise and 

sequential manner to ensure fluent speech production (Ludlow & Loucks, 2003). Because 

neuroimaging techniques like positron emission tomography (PET) and functional magnetic 

resonance imaging (fMRI) have poor temporal resolution, they are unable to resolve temporal events 

occurring over periods shorter than several seconds. In order to evaluate timing, order of activation 

and dynamic interactions of different brain regions, neurophysiological tools such as electro-

encephalography (EEG) and magneto-encephalography (MEG) can be used. They enable non-invasive 

measurement of cognitive processes with millisecond precision. EEG is used in the studies presented 

in the current thesis. 

 

1.1.  What is EEG? 

EEG is a non-invasive technique which measures the electrical activity of the brain over time. 

Electrodes are placed on the scalp on fixed positions following an internationally accepted standard, 

the so called 10-20 system (Jasper, 1958) (see figure 6). The first EEG was recorded in 1924 by Hans 

Berger. Because the EEG reflects thousands of simultaneously ongoing brain processes, it is 

impossible to identify an individual neurocognitive process in the pure EEG signal. For this purpose, 

an event-related potential (ERP) should be evoked (Handy, 2005). 

 

 

Figure 6: Illustration of the 10 – 20 system for electrode positions for EEG recordings. 
Source: http://www.bem.fi/book/13/13.htm 

 
 



General introduction |49 

 

 

1.2.  What is an ERP? 

A particular stimulus (e.g. a word, a picture, a sound, …) will elicit a stereotype, electrical response in 

the brain. This response is very small compared to the surrounding brain activity. Therefore, several 

similar stimuli should be presented to evoke this particular response an equal amount of times (see 

figure 7). By averaging all the responses, the surrounding brain activity is averaged out and the 

relevant waveform remains. This waveform is called the ERP. An ERP is thus a time-locked electrical 

brain potential that reflects the average neural activity related to a certain sensory, motor or 

cognitive process. By examining the ERP, the underlying process that is represented by the ERP can 

be evaluated. Its latency (timing of activation), amplitude (amount of neurons that participate), and 

scalp distribution (possible location in the brain) can be assessed (Handy, 2005; Luck, 2005) (see 

figure 8). 

In neurochemical terms, an ERP reflects the postsynaptic potential of the neurons involved in the 

brain process. Each neuron forms a dipole due to a negativity at the dendrites and a positivity at the 

cell body. These dipoles will summate and result in a recordable ERP at the scalp if they occur at 

approximately the same time across thousands or even millions of spatially aligned neurons. The 

orientation of the dipole together with the position of the electrode at the scalp will determine the 

polarity (positive or negative) of the ERP (Luck, 2005). 

 
 

  
 
 
 
Figure 7: Illustrative example of a continuous EEG registration in which stimuli are presented at regular times 
(red dotted line). 

Stimulus Stimulus Stimulus Stimulus 

1000 ms 
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Chapter 4: Neurophysiology 

 
Figure 8: ERP at Cz, the electrode above the vertex. After averaging all EEG responses time-locked to the 
presentation of the stimuli, surrounding brain activity and noise are suppressed and the relevant waveform 
remains. This waveform, called the ERP, can be analysed for a = amplitude, l = latency. 

 

1.3.  What is source reconstruction? 

Ideally, both temporal and spatial information is obtained about the neurocognitive process of 

interest. Source localization (or source reconstruction) refers to a number of non-invasive source 

imaging techniques that allow an estimation of the source of the electrical brain activity by use of 

algorithms. As source localisation is based on EEG data, it provides spatial information on a 

millisecond time basis. Several studies that applied EEG source imaging techniques have revealed 

interesting results for speech related tasks (e.g. Egorova et al., 2013; Möhring et al., 2014). These 

studies clearly evidence the validity of source imaging techniques and how they can clarify 

spatiotemporal aspects of speech related processes.  

 

2. State-of-the-art in developmental stuttering 

Although quite some EEG studies have been performed in PWS since the very first one in 1936 by 

Travis and Knott, neurophysiological studies focusing on speech motor control in stuttering are 

extremely scarce.  

Neurophysiological studies of the previous century can mainly be divided in two groups. A first group 

concentrated on standard, clinical EEG analysis. While some reported essentially normal findings (e.g. 

Busse & Clark, 1957; Graham, 1966), others found large percentages of PWS with pathological 

indications in the EEG tracings, e.g. epileptic changes, maturation defects, diffuse dysrhythmias (e.g. 

Okasha et al., 1974; Sayles, 1971). A second group of studies used EEG to evaluate hemispheric 

lateralization in light of the Cerebral Dominance theory2. Most studies confirmed a higher reliance on 

                                                           
2
 The Cerebral Dominance Theory proposed by Orton and Travis (see Travis, 1931) suggests that PWS do not 

display the normal left over right hemisphere dominance for speech production. By consequence, both 

hemispheres will not function synchronically, which was suggested to be necessary for fluent speech 

production as the speech muscles are bilaterally innervated. As a result, speech dysfluencies would appear.  

a 

l 
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right hemisphere areas during a variety of linguistic tasks (e.g. Boberg et al., 1983; Douglas, 1943; 

Knott & Tjossem, 1943; Moore et al., 1982; Wells & Moore, 1990). Over the last 15 years, EEG 

research in stuttering became more characterized by ERP studies. These particularly focused on 

language (e.g. Maxfield et al., 2010, 2011, 2014; Weber-Fox & Hampton, 2008; Weber-Fox et al., 

2008, 2013) and auditory (e.g. Corbera et al., 2005; Hampton & Weber-Fox, 2008; Jansson-Verkasalo 

et al., 2014; Kaganovich et al., 2010; Özcan et al., 2009) processing and revealed promising results. 

Concerning speech motor control, some older and, to our knowledge, only one recent ERP study 

have been performed. The older reports all used a contingent negative variation (CNV) paradigm. 

The CNV is the first cognitive ERP described (Walter et al., 1964). It is a slow, negative potential that 

would primarily represent motor preparation (Bender et al., 2004; Bares et al., 2007). The first CNV 

reports in stuttering focused on hemispheric lateralization, consistent with the spirit of that time 

(Pinsky & McAdam, 1980; Zimmermann & Knott, 1974). No significant results were reported but 

‘large inter- and intrahemispheric variability, …, that is greater in, …, stutterers than in normal 

speakers’ (Zimmermann & Knott, 1974, p604). Two later studies performed by Prescott and Andrews 

(1984) and Prescott (1988) indicated some minor differences between AWS and FS. AWS showed 

larger CNV amplitudes than FS preceding the production of familiar words. As familiar words are 

highly practiced words and therefore very likely to be completely preprogrammed, AWS were 

suggested to have difficulties in establishing efficient motor programs (Prescott, 1988) (see figure 9). 

 

 

Figure 9: The increased CNV amplitude observed in AWS (dark grey) as compared to FS (light grey) (obtained 
from Prescott, 1988). The CNV is a slow negative potential occurring in between two successive stimuli (S1 and 
S2). The part of the CNV that reflects motor preparation is situated just before the second stimulus (S2). iF3 
and iF4: electrodes situated over left and right inferior frontal sites, Cz: electrode situated above the vertex. 
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The only recent ERP study that described motor related aspects concerned an auditory vowel 

perception task (Liotti et al., 2010). AWS showed an abnormal early (from 50 to 60 ms post-stimulus 

onset) speech-motor activation in the right hemisphere. Other evidence for differences in neural 

timing of the speech motor system comes from two MEG3 studies. Salmelin et al., (2000) observed, 

during a single word reading task, that the normal activation sequence of articulatory planning 

followed by motor execution is not present in stuttering. AWS first activated the left motor cortex 

followed by a delayed activation of the left inferior frontal region. They appear to initiate motor 

programs before preparing the articulatory code. Biermann-Ruben et al., (2005) found different 

timing in left and right motor related activations during a sentence production task. A very early (95 

to 145 ms post-stimulus onset) activation of left inferior frontal cortex and an additional, late (from 

315 ms post-stimulus onset onwards) activation of the right Rolandic operculum was observed. A 

third and final MEG study observed a decreased preparatory activity in or close to bilateral motor 

cortex preceding overt word reading (Walla et al., 2004). 

As in most experimental settings, AWS spoke mainly fluent and as such, all above described results of 

the EEG and MEG studies are based on fluent speech production. To our knowledge, one case report 

has been published which presents electrophysiological information preceding purely stuttered 

speech (blocks), as compared to purely fluent speech (Sowman et al., 2012). By use of MEG, 

activation preceding visually cued vowel production was evaluated in a 24-year-old right-handed 

female. From 300 to 600 ms post-stimulus onset, blocks were associated with a reduced engagement 

of left orbitofrontal and inferior frontal cortices. In later stages, from 600 to 800 ms post-stimulus 

onset, these areas showed increased activation preceding blocks. The findings of this case report 

highlight that depending on the time window, other (even reversed) activation patterns can be 

observed.  

In sum, neurophysiological research focusing on speech motor aspects is very scarce despite 

evidence from these few reports that AWS activate speech motor regions in a different temporal 

sequence than FS. Moreover, electrophysiological research on language and auditory processing 

shows that valuable ERP results can be obtained in stuttering.  

 

                                                           
3
 MEG is a non-invasive neurophysiological technique that measures the magnetic fields generated by neuronal 

activity of the brain. It combines excellent temporal with good spatial resolution.  
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Chapter 5: Research aims 

The stuttering literature contains a plethora of spatial neuroimaging studies (e.g. fMRI) but a dearth 

of neurophysiological studies, particularly when it comes to evaluating motor speech related 

processes. There is, however, clear evidence for alterations in the neural timing of speech motor 

regions. The major aim of this thesis is to identify neurophysiological characteristics of speech 

motor control in stuttering in order to contribute to the neural understanding of this speech 

disorder. Only visual tasks were used to exclude influences from auditory deficits as it remains to be 

determined which aspects of auditory processing and/or auditory-motor integration are altered.  

The following research aims were formulated: 

 

As motor areas are found to contribute to speech perception as well, our first aim was to evaluate 

temporal coordination and sequencing of motor related activity during a visual word recognition 

task. A well-known task from the action literature was used: silent reading of action verbs. The 

selected action verbs denoted movements performed with hands and/or arms as PWS are suggested 

to have an altered neural control of upper limb movements too. The timing of motor related 

activations was first evaluated by use of source reconstruction in a group of healthy FS (chapter 6) 

and subsequently compared to a group of AWS (chapter 7).  

EEG also allows examining specific processing stages in real time by use of ERP analysis. An important 

motor related ERP is the CNV which primarily reflects motor preparation. Our second aim was to 

elicit a CNV by use of a picture naming task to evaluate speech motor preparatory activity preceding 

overt single word production in real time. 

A) First, we aimed to measure the amount of speech motor preparatory activity in AWS with 

DS. For this purpose, the CNV preceding fluently uttered words in AWS was compared to the CNV of 

a group of FS (chapter 9). 

B) Secondly, we aimed to elucidate whether or not the observed alterations in motor 

preparation were related to successful compensation strategies. Therefore, the CNV preceding 

stuttered words (in AWS) was compared to the CNV preceding fluent words of FS and AWS (chapter 

10). By comparing 100% stuttered and 100% fluent speech, a distinction can be made between 

neural deficits associated with stutters and neural alterations related to successful compensation 

strategies. 

C) Thirdly, because PWS are known to show considerable intra-individual variation in 

stuttering severity and frequency, we aimed to explore a possible relationship between speech 

motor preparation and stuttering frequency. For this purpose, the CNV task was administered in a 

case of NS at four points in time associated with differences in stuttering frequency (chapter 8). 
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D) Fourthly, although DS and NS are suggested to share common neural substrates, we aimed 

to assess whether this also accounts for speech motor preparatory activity. The results of the DS 

group (chapter 9) were compared to the results of the NS case-report (chapter 8).   

 

Table I: Chapter overview including research aims, participant variables and paradigms used. 
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Chapter 6: Temporal aspects of motor activation – action and non-action verb processing 

Abstract 

Although action verb processing deficits have been described in diseases affecting the motor system, 

research on temporal processing in this area has not been reported. In this study, action and non-

action verb processing was contrasted in healthy volunteers using electro-encephalography. These 

data may serve as a control condition for further research in motor disorders. Latency and amplitude 

evaluations as well as source reconstruction were applied on event-related potentials. Action verbs 

evoked higher activation in bilateral sensorimotor areas from 155 to 174 ms and in bilateral 

dorsolateral prefrontal cortex (DLPFC) from 219 to 238 ms. Hand action verb processing activates the 

motor programmes of the actions the verbs refer to. This seems not restricted to the core (pre)motor 

cortical areas of the brain. A broad motor brain network is hypothesized to be involved. While 

sensorimotor activation seems essential for action verb understanding, this cannot be concluded for 

DLPFC activation.  

 

 

 

Keywords 

motor cortex, dorsolateral prefrontal cortex, action verb, abstract verb, semantic processing, lexical 

access 
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1. Introduction 

Substantial research has been conducted on the perception of action related linguistic material such 

as action verbs. Besides the classic language areas, also the premotor and primary motor cortex are 

reported to be involved in the processing of action-related words and sentences. Moreover, this 

processing appears to occur in a somatotopic way. Action verbs related to face, arm or leg 

movements elicit the strongest activation close to the cortical motor representation of the face, 

hands or legs respectively (Aziz-Zadeh et al., 2006; Boulenger et al., 2009; Buccino et al., 2005; Hauk 

et al., 2004; Kemmerer et al., 2008; Pulvermüller et al., 2001, 2005; Raposo et al., 2009; Repetto et 

al., 2013; Shtyrov et al., 2004; Tettamanti et al., 2005). Although this somatotopical activation is not 

always found (Arévalo et al., 2012; Postle et al., 2013), a review by Kemmerer and Gonzalez-Castillo 

(2010) showed surprising consistencies among different labs and languages.  

Unfortunately, the underlying mechanism responsible for the motor activation remains a contentious 

issue because conflicting results are found on the processing stage during which this motor activation 

occurs. Some studies revealed somatotopic motor activation after auditory and visual single word 

presentation from 130 to 170 ms (Pulvermüller et al., 2005; Shtyrov et al., 2004) and from 210 to 230 

ms (Hauk & Pulvermüller, 2004b) respectively. In addition, visually presented action words appear to 

interfere with a reaching movement already within 200 ms after word onset (Boulenger et al., 2006). 

Within the first 200 to 250 ms after word presentation, essential lexical and semantic processes are 

known to occur (Federmeier & Kutas, 2001; Hauk et al., 2012; Penolazzi et al., 2007). Thus, actions 

and action semantics related to words apparently share cognitive and neural resources. This is in line 

with theories of embodied cognition which state that all concepts are (partly) modality dependent 

and are grounded in neural action and perception systems (e.g. Barsalou, 1999; Dove, 2009). 

Consequently, motor areas are suggested to be involved in lexical access (Hauk et al., 2008). By 

contrast, other studies found a much later motor cortex modulation around 500 ms post stimulus 

onset (Oliveri et al., 2004; Papeo et al., 2009). At this stage, post-conceptual processes of word 

recognition occur (Marinkovic et al., 2003). Motor strip activation would then follow the 

identification of the action concept, instead of being part of it. This ‘spreading activation’ occurs 

because the word’s concept is associated with the motor system controlling the respective action 

(Hickok, 2010) or because of mental imagery (Tomasino et al., 2008).  

A recent study conducted by Moseley et al., (2013) used excellent equipment to elucidate which 

processing stage is involved. Passive reading of written words was found to evoke maximal brain 

responses at 150 ms post-stimulus onset. Besides widespread activity in perisylvian regions for all 

words, inferior frontal gyrus and precentral cortex were significantly more engaged during action 

compared to abstract word processing. Thus, category-specific semantics seem to be represented in 

the neural systems for perception and action. As these regions were activated within the first 200 
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ms, this representation seems essential for concept understanding. Unfortunately, while the action 

words were mostly verbs, the abstract words were a conglomeration of both nouns and verbs. 

Although grammatical class in itself does not have an influence on the organization of knowledge in 

the brain (Vigliocco et al., 2011), electrophysiological differences between verbs and nouns have 

been reported (Kellenbach et al., 2002; Osterhout et al., 1997). Thus, a possible lexical/grammatical 

confound cannot be excluded to have influenced the results.  

In sum, there is no consensus on the function, timing and necessity of motor cortex activation during 

action related word processing. Diseases affecting the motor system might help in clarifying this 

issue. If the motor cortex contributes to word understanding, action verb processing deficits should 

occur in patients with disturbances of their motor system. Indeed, a large variety of pathologies have 

been shown to evoke disturbances in action verb processing: motor neuron disease (Bak & Hodges, 

1999, 2004; Bak et al., 2001; Grossman et al., 2008), progressive supranuclear palsy (Bak et al., 2006; 

Daniele et al., 1994), frontotemporal dementia (Cappa et al., 1998), aphasia (Saygin et al., 2004), 

apraxia in chronic stroke patients (Buxbaum & Saffran, 2002), lesions in the right frontal area 

(Neininger & Pulvermüller, 2003), and Parkinson’s disease (Fernandino et al., 2012). Unfortunately, 

most of these studies contrasted action verbs with non-action nouns. As mentioned above in relation 

to the Moseley et al., (2013) study, electrophysiological differences between verbs and nouns have 

been reported (Kellenbach et al., 2002; Osterhout et al., 1997). In addition, verbs are inherently more 

difficult than nouns because of more complex semantic and syntactic constraints (for a review, 

Druks, 2002). Therefore, these action verb processing deficits might rather be related to grammatical 

than to semantic aspects. Moreover, no temporal information on action linguistic processing in 

motor pathologies is available. To our knowledge, all studies reported behavioural and neuroimaging 

data with good spatial, but poor temporal resolution like e.g. fMRI. However, by applying 

neurophysiological tools such as electro-encephalography (EEG), one could elucidate which 

processing stage is affected in these motor pathologies and consequently, which processing stage 

relies (partly) on motor related brain areas.  

Therefore, the present study aimed at evaluating motor related brain activations during action verb 

processing in motor pathologies by use of EEG. All action verbs denoted movements performed with 

hand and/or arms to evoke focalized activity in motor cortex. To overcome a grammatical class 

confound, these action verbs should be contrasted with another group of verbs. As contrast 

condition, non-action verbs were chosen instead of action verbs related to another body part 

because these verbs require no or only limited motor involvement. Variability in disease severity will 

cause variability in motor cortex deficiency. If the control condition would rely on motor cortex 

activity, variability in its processing would occur as well. A control condition should however provide 
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a reliable comparison for the measure of interest. If the control condition varies, no straightforward 

conclusion can be made about the measure of interest.  

To our knowledge, no EEG research has been performed in which action verbs were contrasted with 

a group of only non-action verbs, not even in healthy populations. Therefore, the task was first 

administered in a group of healthy control participants. These data are presented in the present 

study. They will be used as a control condition for further experiments in patient populations with 

motor disorders. Therefore, an accessible method to use in a clinical setting was developed.  

 

2. Methods 

2.1. Participants 

30 (male/female: 22/8) healthy, right-handed (Oldfield, 1971) volunteers (mean age ± standard 

deviation: 30.2 ± 10.6; age range: 18 – 57) were included in this study. They were all monolingual 

native speakers of Dutch and reported no history of hearing complaints, dyslexia or other speech-

language problems, neurological or psychiatric disorders, and presented with normal or corrected-to-

normal vision. None of them was on psycho-active drugs. All participants gave their written informed 

consent in accordance with the declaration of Helsinki. This study was approved by the local ethics 

committee.  

 

2.2. Neurophysiological assessment 

2.2.1. Stimuli  

50 action and 50 non-action verbs were selected from WordGen (Duyck et al., 2004), based on the 

CELEX database (Baayen et al., 1995). To evoke focalized activity in sensorimotor cortices, all action 

verbs referred to hand and/or arm movements (e.g. to knead, to sew). The non-action verbs were 

abstract verbs unrelated to actions or body parts (e.g. to believe, to tolerate). A list of all stimuli 

items is provided in appendix A. Both verb classes were as closely matched as possible on several 

psycholinguistic and lexical characteristics as to minimize their possible impact in early 

neurophysiological processing (Dambacher et al., 2006; Federmeier & Kutas, 2001; Hauk & 

Pulvermüller, 2004a; Hauk et al., 2006a, 2006b, 2012; Penolazzi et al., 2007; Takashima et al., 2001). 

An overview of these features can be found in table I.  

Semantic relatedness between verbs and body parts was determined in a pre-test by 11 native 

speakers of Dutch who did not participate in the EEG study. These body areas included (1) head 

(head/face/mouth), (2) arms (arms/hands/fingers), and (3) legs (legs/feet/toes). All verbs were 

scored in relation to these 3 body areas using a 5 point-scale ranging from 1, labelled “highly 

unrelated”, to 5, labelled “highly related”. Word imageability was estimated as well, following the 

same procedure. The question to be rated was: “how easily does this word evoke an image?” with 1 
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labelled “not at all” and 5 labelled “very easily”. The only body part that was supposed to be 

associated with half of the verbs was ‘arms’. This might have been noted by the participants and 

biased their scoring. Therefore, 30 leg and 30 head verbs were added in this pre-test. As these leg 

and head verbs only served as distractors, they were not specifically matched on psycholinguistic 

features to the verbs of the experimental set. They were randomly chosen from WordGen (Duyck et 

al., 2004) with as only requirement being related to legs/head respectively.  

The arm action verbs were significantly more imaginable and more linked to arms than the non-

action verbs. In addition, arm action verbs were more associated with arms than with legs and head. 

A similar finding was seen for the distractor verbs: leg and head verbs were significantly more linked 

with legs and head respectively compared to other body parts and compared to the arm action and 

non-action verbs of the experimental set (Mann – Whitney U test: p < 0.001 for all comparisons).  

 

Table I: Summary of stimuli characteristics.  
Mean ± SD is displayed. The p-value of the Mann-Whitney U test comparing action and non-action verbs is 
shown in the right column. For action verbs, the mutual comparison of the semantic relatedness scores for 
different body parts is shown on the left.  
 

Feature  Action verbs Non-action verbs  P-value 

Word length      

 Letters  7.0 ± 1.3 6.9 ± 1.3  0.77 

 Syllables  2.2 ± 0.4 2.3 ± 0.5  0.36 

Word frequency  1.4 ± 0.6 1.6 ± 0.6  0.18 

Bigramfrequency  12771 ± 3037 13811 ± 3129  0.06 

Orthogr. neighborhood size  4.3 ± 4.0 4.5 ± 4.2  0.90 

Imageability  4.5 ± 0.2 2.4 ± 0.6  < 0.001 

Head relatedness  1.5 ± 0.5 1.7 ± 0.8   

Arm relatedness  4.9 ± 0.1 1.4 ± 0.4  < 0.001
c
 

Leg relatedness  1.6 ± 0.5 1.2 ± 0.2   
a 

Arm action verbs are significantly more related to arms than to head 
b 

Arm action verbs are significantly more related to arms than to legs 
c 
Arm action verbs are significantly more related to arms than the non-action verbs 

 

2.2.2. Procedure 

All arm action verbs and non-action verbs were presented in their infinitive form as single words to 

minimize the interference of syntactic processes. They were shown in black letters (font: Calibri; size: 

96) on a white background in the middle of a computer screen that was placed one meter in front of 

the participant. Stimuli were randomly presented with a stimulus frequency of 0.7Hz (+/- 1428 ms). 

No blank screen was shown in between successive stimuli. Participants were instructed to read each 

of the words mentally and to avoid overt articulation or any other kind of orofacial movement. To 

optimize EEG quality, they were encouraged to reduce eye-blinks as much as possible. 

< 0.001
a 

< 0.001
b 
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2.2.3. Data acquisition and analysis 

EEG data were collected with Neuron-Spectrum-5 (4EPM) registration software (Neurosoft, Moscow, 

Russia). 21 Ag/AgCl electrodes were placed on the scalp according to the international 10/20 system 

(Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, C3, Cz, C4, T3, T5, T4, T6, P3, Pz, P4, O1, Oz, O2). Additional 

reference and ground electrodes were placed on the earlobes and forehead respectively. 

Neurophysiological data were recorded at a sampling rate of 500 Hz (0.01-75Hz band-pass filter). 

Impedance of each electrode was kept below 5kΩ.   

Off-line EEG analysis was performed using BrainVision Analyzer 2 (Brain Products, Munich, Germany). 

After additional filtering (0.5-30 Hz band-pass filter, Notch filter 50 Hz), eye artefacts were excluded 

using Independent Component Analysis. Two components were removed (eye blinks; left-right eye 

movement) based on inspection of the components’ spatial distribution (Mennes et al., 2010; Joyce 

et al., 2004). Next, the continuous EEG data were segmented into epochs of 1100 ms, starting 100 ms 

prior to stimulus onset, and baseline corrected to this pre-stimulus interval. Trials with voltage 

variations larger than 100 µV were manually rejected. By averaging over corresponding epochs, 

event-related potentials (ERPs) were computed for every subject, electrode, and verb category. ERP 

participant averages were then grand-averaged across participants for both verb classes separately.  

 

2.2.4. ERP analysis 

Visual presentation of single words typically evokes an ordered succession of 6 peaks. Whereas P1, 

N2 and P3 are known to be related to primary visual and visual attention processes (e.g. Di Russo et 

al., 2001; Folstein & Van Petten, 2008; Polich, 2007) N1, P2 and N400 (partly) reflect linguistic 

processes (e.g. Dambacher et al., 2006; Duncan et al., 2009; Tarkiainen et al., 1999). Therefore, only 

the latter were subjected to further analyses. Peak latency and mean amplitude were determined for 

both verbs separately. Peaks were semi-automatically determined as the local maximum within 50 – 

200 ms for N1, 100 – 250 ms for P2 and 300 – 500 ms for N400. Mean amplitude was computed for 

the following time windows: N1 (95 – 135 ms), P2 (160 – 210 ms) and N400 (300 – 450 ms). These 

windows were chosen based on the grand averaged waveforms and previous research (Duncan et al., 

2009; Weber-Fox, 2001). To investigate the topographical distribution of the peaks while keeping the 

amount of data limited, subsets of adjacent electrodes were taken together.  

As P2 was observed over the entire scalp, nine clusters with average amplitude/latency of adjacent 

electrodes were calculated: anterior left (F7, F3), anterior midline (Fz), anterior right (F4, F8), central 

left (T3, C3), central midline (Cz), central right (C4, T4), posterior left (T5, P3), posterior midline (Pz), 

and posterior right (P4, T6). Also for the N400, the same nine clusters were created with one 

exception: posterior left and right did not include T5 and T6 respectively, as no N400 was seen over 
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these electrodes. Since N1 was only seen over posterior regions, one left (T5/P3/O1), one midline 

(Pz/Oz) and one right (T6/P4/O2) subset was created.  

Statistical analysis was performed in IBM SPSS Statistics 19.0. Latency and amplitude were analysed 

using repeated measures ANOVAs with three within-subject factors for P2 and N400: hemisphere 

(left, midline, right), region (anterior, central, posterior) and verbs (action, non-action). As N1 only 

occurred over posterior sites, the factor ‘region’ was not included in its analysis. To evaluate whether 

the assumption of homogeneity of covariance was met, Mauchly’s Test of Sphericity was computed 

for all factors with more than one degree of freedom in the numerator. If the assumption was 

violated (α ≤ 0.05), Greenhouse-Geisser (G-G) adjusted p-values were used to determine significance. 

Significance values were set at α ≤ 0.05 for main and interaction effects. All further pairwise 

comparisons were Bonferroni corrected.  

 

2.2.5. Source reconstruction  

The Statistical Parametric Mapping 8 software package (SPM 8: Welcome Department of Cognitive 

Neurology, University College, London, United Kingdom) implemented in MATLAB (the MathWorks, 

Inc., Massachusetts, USA) was used for EEG source reconstruction. To limit the number of 

comparison, a sensor-space analysis was first performed to search for time points at which maximal 

differences between action and non-action verbs occurred. In the sensor-space analysis, the ERP data 

from 0 to 380 ms of every participant was converted into 3D images for every verb category 

separately. This time window encompasses early and late time points described in similar previous 

research at which significant sensorimotor activations during action verb processing occurred (Hauk 

& Pulvermüller, 2004b, Moseley et al., 2013; Pulvermüller et al., 2001). These images were generated 

by constructing 2D, 64 x 64 pixels resolution, scalp maps for each time point (using interpolation to 

estimate the activation between the electrodes) and by stacking the scalp maps over peristimulus 

time, resulting in [64 x 64 x number of time points]-images (Litvak et al., 2011). These images were 

statistically evaluated by paired t-tests. F-contrasts were calculated to test for differences of either 

direction between action and non-action verbs.  

The multiple sparse priors (MSP) algorithm (Friston et al., 2008) was used to reconstruct the source 

activity for every subject and verb category. A 3-layered scalp-skull-brain template head model 

matched to the MNI template was implemented for which the default electrode positions were used. 

8196 dipoles were assumed on a template cortical surface mesh and the “bemcp” method (BEM) 

implemented in FieldTrip (Oostenveld et al., 2011) was used to calculate the forward model. 3D 

images containing the evoked energy of the reconstructed activity for every subject and verb class 

were generated in a time window centred around the significant time point(s) from the sensor-space 

analysis (Litvak et al., 2011). If the time point occurred before 250 ms post-stimulus onset, a time 
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window of 20 ms was chosen, because processes that take place within the first 250 ms are mostly 

characterized by short-lived transient activations. If the time point occurred after 250 ms, a window 

of 40 ms was chosen. Using these images, second level analysis was performed to identify the most 

significant source areas over subjects and verb class. F-contrasts were calculated by performing 

paired t-tests for the main effect of verb. As motor related activity was the primary focus of this test, 

only significant results in frontal and parietal lobe were explored. Because the amount of 

comparisons was already largely reduced by the sensor-analysis and by limiting the analysis to 

fronto-parietal areas, p-value was set at 0.05 at the source level. The resulting MNI coordinates 

holding significant activation differences between verb class, were explored by means of the 

traditional Brodmann categorization and by means of the SPM Anatomy toolbox developed by 

Eickhoff et al. (2007). Despite the seemingly limited spatial resolution inherent to less dense EEG 

recordings, low-density recordings have been established to provide an accurate estimate of ERP 

generators and to be sufficient to fully describe the variance of an ERP data set when compared to 

high-density recordings (Kayser & Tenke, 2006).  

As the pre- and post-central gyrus was the main region of interest (ROI), an additional source analysis 

was performed on the earliest time point with prominent activity above this region. For this purpose, 

the Global Field Power (GFP) was calculated for each verb class separately over all (pre)frontal and 

parietal sensors for all participants. GFP illustrates the time course of the overall signal strength of 

the ERPs. Based on the maps of current estimates that were made for each peak of the GFP, the 

earliest time point with clear activity over pre- and post-central gyrus was identified. Similar second 

level analysis was performed on a time window centred around this time point. Again, depending on 

whether the time point occurred before or after 250 ms post-stimulus onset, a time window of 20 or 

40 ms respectively was chosen. F-contrasts were calculated by performing paired t-tests for the main 

effect of verb. A mask was applied so only activity in pre- and post-central gyrus (BA 4, 6, 3, 1 , 2 and 

43) was evaluated. Because only one ROI was included, the criterion for significance could be set at 

α= 0.05.   

 

3. Results 

3.1. ERP analysis 

The waveforms in figure 1 are characterized by a series of components. At posterior electrodes, a 

very early negative peak around 40 ms was immediately followed by a P1, peaking at around 70 ms, 

and an N1, peaking at around 115 ms. At anterior sites, the P1 was reversed evoking a negative peak 

around 70 ms. No equivalent of the posterior N1 was seen. Next, a P2 could be observed over the 

entire scalp. This wave reached its maximum around 180 ms. The subsequent N2 (peak: 225 ms) and 

P3 (broad wave around 300 ms) were quite small and could only be seen over occipital and T5/T6 
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electrode sites. Finally, a large N400 occurred, most clearly pronounced over anterior electrodes. 

Although this component has a protracted morphology, a peak could be described at around 360 ms. 

Topographic EEG maps for N1, P2 and N400 can be seen in figure 2. 

 

 

Figure 1: Grand average for action and non-action verbs separately at midline electrodes.  
The 100 ms baseline and the first 600 ms of stimulus processing are depicted. Negative is plotted upwards. The 
x-axis represents latency (ms), the y-axis represents amplitude (µV). 

 

 

Figure 2: Topographic EEG maps of N1, P2 and N400. 

 

Statistical analysis revealed a significant interaction of Verb*Region for the N400 amplitude (F(2,58)= 

3.43; ԑ= 0.69; G-G p= 0.05). Action verbs showed a larger N400 than non-action verbs over anterior 

regions (p= 0.007). No other significant main or interaction effect of the factor Verb was found for 

either peak. Furthermore, some distributional amplitude variations were observed. The largest 

……. Action verbs 
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Non-action 
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amplitude for the P2 was seen over midline and central electrodes, especially at Cz 

(Region*Hemisphere: F(4,116)= 3.28; ԑ= 0.80; G-G p= 0.02) and for the N400 over left and anterior 

electrodes (Region*Hemisphere: F(4,116)= 6.01; ԑ= 0.67; G-G p= 0.001). The N1 appeared to be 

smallest (Hemisphere: F(2,58)= 4.62; p= 0.01) and earliest (Hemisphere: F(2,58)= 4.13; p= 0.02) over 

midline electrodes.  

 

3.2. Source reconstruction 

Detailed results of the source reconstruction are shown in table II. The sensor-space analysis found 

maximal differences between action and non-action verbs at 228 ms post-stimulus onset (F(1,29)= 

20.96, p < 0.0001). As this time point occurred within the first 250 ms after stimulus presentation, 

second level source analysis was performed on an epoch of 20 ms centred around this peak (219 – 

238 ms). Statistical analysis revealed a significant stronger cluster of activation during action 

compared to non-action verb processing located in dorsolateral prefrontal cortex (DLPFC) in left (p= 

0.011) and right (p= 0.011) hemisphere (see figure 3).  

 

Table II: Significant results of the source reconstruction for both time windows. 
Reported are the coordinates of local maxima in MNI space which are part of larger clusters as well as the 
number of voxels per cluster (2 mm x 2 mm x 2 mm). A description of the region that contains these 
coordinates (based on both macroscopical parcellation and BA labelling) is added. The last column shows which 
verb type evoked most energy.  
 

Time Macroscopic  Coordinates (MNI)  P Extent Highest 

interval anatomical name BA x y z  value (voxel) activation 

155 – 174  R precentral gyrus BA 6 18 -24 68  0.026 158 Action verb 

 L precentral gyrus BA 4 -14 -28 71  0.027 110 Action verb 

219 – 238  R middle frontal gyrus BA 9 32 28 42  0.011 164 Action verb 

 L middle frontal gyrus BA 9 -26 26 35  0.011 222 Action verb 

 

Figure 4 shows the GFP and the map of current estimates for action and non-action verbs separately. 

The earliest prominent peak activity over pre- and post-central areas occurred at 165 ms for both 

action and non-action verbs. The subsequent analysis was performed from 155 to 174 ms. During this 

time window, source reconstruction of the grand averages revealed for both verbs widespread 

activation in perisylvian regions, including superior temporal cortex and inferior frontal gyrus, 

supramarginal gyrus, pre- and postcentral gyrus. Also prominent activity was seen in occipital, 

inferior temporal and fusiform gyrus (see figure 5). Both left and right hemisphere showed similar 

patterns of activity. Statistical analysis only focused on the sensorimotor cortex (pre- and postcentral 

gyrus). Indeed, a prominent cluster of activation was located in this region. Action verbs evoked 

significantly more activation than non-action verbs in left (p= 0.027) and right (p= 0.026) hemisphere. 
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Figure 3: Result of the sensor-space analysis.  
Source reconstruction for the statistical significant difference between action and non-action verbs in the time window from 219 to 238 ms. An activation focus located in 
bilateral DLPFC can clearly be identified.  

 

 

 

 

 

 

 

 

 

 

Figure 4: GFP calculated over all (pre)frontal and parietal sensors for all participants.  
Non-action verbs are shown on the left, action verbs on the right. The current estimates map at 165 ms post-stimulus onset is presented as well. This is the earliest time 
point with clear activity over pre- and post-central gyrus.  
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Figure 5: Source reconstruction of the grand average ERP’s from 155 to 174 ms.  
Four sagittal slices are shown for non-action verbs (top diagram) and action verbs (bottom diagram). The most 
prominent activation clusters (> 2 standard deviations calculated over the whole volume of reconstructed 
activity) are depicted in red. The two slices on the left are located in the left hemisphere, the two slices on the 
right are located in the right hemisphere. Corresponding MNI coordinates are shown underneath the pictures 
(x, y, z). 

 

4. Discussion 

The present study aimed at evaluating the time point(s) of motor related activity in the brain during 

hand action verb processing. To exclude a possible grammatical class confound, these verbs were 

contrasted with non-action verbs, i.e. verbs not related to a certain body part or movement. 

Following previous research, motor related lexico-semantic differences between verbs were not 

expected in the raw ERP signal (Hauk & Pulvermüller, 2004b; Pulvermüller et al., 2001). Indeed, no 

statistical difference arose between action and non-action verbs within 300 ms based on the ERP 

waveforms. Therefore, source reconstruction was performed in two time windows centred around 

two well-defined time points. Based on the GFP, the earliest, most prominent peak activity over pre-

and post-central areas for both verb classes was identified around 165 ms. A sensor-space analysis 

searched for the time point with maximal difference between action and non-action verbs: 228 ms.  

 

4.1. Motor related activation during action verb processing 

An early semantic category effect was observed in bilateral sensorimotor areas. In line with a similar 

study (Moseley et al., 2013), both action and non-action verb processing evoke the most prominent 

activation peak at 165 ms post-stimulus onset. Besides a clear activation in sensorimotor cortices, a 

widespread bilateral activity was observed in core linguistic brain regions, like superior temporal 

(-51, -64, -18) (-13, -64, -18) (19, -64, -18) (47, -64, -18) 
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gyrus and inferior frontal gyrus, and in other brain areas partly related to linguistic processing, like 

fusiform gyrus and supramarginal gyrus. Statistical analysis revealed a significantly higher activation 

focus in sensorimotor areas during action than during non-action verb processing from 155 to 174 

ms. Action verb perception is confirmed to trigger the sensorimotor areas responsible for the motor 

action the verb refers to. Action verbs and motor action seem to share neuronal representations 

(Hauk et al., 2004).  

The present findings suggest that these neuronal representations contribute essential information to 

hand action verb processing. The significant sensorimotor difference is observed within 200 ms post-

stimulus onset, a time window in which essential lexico-semantic information for concept 

understanding is retrieved (Federmeier & Kutas, 2001; Hauk et al., 2012; Penolazzi et al., 2007). 

Moreover, linguistic regions known to be involved in lexical access and semantic retrieval are 

simultaneously activated (Binder et al., 2009). Finally, since both stimulus categories only included 

verbs, grammatical class will not have confounded the results. The simultaneous activation of 

sensorimotor regions and other linguistic regions illustrates the functional links that are suggested to 

exist between the cortical systems for language and action (Pulvermüller, 2005). This is in line with 

moderate theories of embodied cognition which state that concepts are not only represented in 

specific language brain areas, but are also modality dependent and grounded in neural action and 

perception systems (e.g. Barsalou, 1999; Dove, 2009). In sum, these results provide evidence for an 

early, automatic and functionally relevant role of sensorimotor activation in lexico-semantic 

processing of hand action verbs.  

About 50 ms later, action and non-action verb processing evoked a maximal difference in brain 

activity. From 219 to 238 ms, bilateral DLPFC was significantly more engaged during action than 

during non-action verb processing. DLPFC can be seen as a higher order motor region of the brain as 

it plays an important role in the cognitive control of motor behaviour (e.g. Funahashi, 2001; Miller, 

2000; Miller & Cohen, 2001; Tanji & Hoshi, 2001). It receives motor information from both cortical 

and subcortical motor related brain structures and integrates them for motor control and action 

planning (Hoshi, 2006). Its involvement in language processing is however not new (Binder et al., 

2009; Jeon et al., 2009). Moreover, a comparable study found a right prefrontal activation in the 

same time range. From 210 to 230 ms, hand action verbs evoked higher activations in dorsal DLPFC 

than leg action verbs (Hauk & Pulvermüller, 2004b). Thus, DLPFC is suggested to contribute to hand 

action verb processing around this time point. Motor activation during hand action verb processing 

does not seem to be restricted to the core (pre)motor cortical areas of the brain, but a broad motor 

brain network is hypothesized to be involved.  

Whether DLPFC activation is necessary for action verb understanding cannot be concluded. From 200 

to 300 ms onwards, brain activation can be influenced by conscious processes (Dehaene & Changeux, 



Publications |75 

 

 

2011). Since DLPFC activation occurred on the border of this time range, the present data do not 

allow a straightforward conclusion. Future studies with the present task in motor pathologies might 

address this issue.  

 

4.2. Concreteness/imageability effects 

The present action verbs are significantly more imaginable than the non-action verbs. This argument 

is often used to posit that motor related activations during action verb processing are rather related 

to mental imagery and concreteness effects (Postle et al., 2013; Tomasino et al., 2008). Although 

especially concreteness cannot entirely be excluded to have influenced the present results, several 

arguments are in favour for the embodied cognition point of view.  

Explicit mental imagery can be excluded because this also involves posterior brain regions which 

were not found to be more engaged during action verb processing (Willems et al., 2009). 

Furthermore, effects of mental imagery are reported to occur from 300 (Gullick et al., 2013), 500 

(West & Holcomb, 2000), or even 700 ms (Welcome et al., 2011) onwards.  

A ‘concreteness effect’ is however present in the N400: action verbs evoke a significantly larger N400 

than non-action verbs over anterior brain regions which is compatible with concrete words evoking 

larger N400 amplitudes than abstract words (e.g. Gullick et al., 2013). The N400 is generally accepted 

to reflect semantic processing, more specifically it represents the integration of different kinds of 

information in large scale networks (Hauk et al., 2012; Kutas & Federmeier, 2000). The larger N400 

for action verbs would be related to a larger amount of neural correlates that need to be integrated 

(Xiao et al., 2012). Notwithstanding a concreteness effect can be seen, it does not seem responsible 

for the difference in activation. Post-lexical processing is suggested to be necessary to elicit 

concreteness effects (West & Holcomb, 2000). Indeed, concreteness is typically found to modulate 

ERP results from 250 to 300 ms onwards (Barber et al., 2013; Kanske & Kotz, 2007; Palazova et al., 

2013), just as in the current study. By contrast, sensorimotor and DLPFC activity occurred earlier, at 

165 and 228 ms respectively. Moreover, from 250 ms onwards, no significant difference between 

both verb classes appeared in the source reconstruction. Thus, no significant difference in brain 

activation was found in a time window where a concreteness effect is (1) generally found in previous 

research, and (2) also found in the present N400 results. Consequently, a concreteness influence is 

very unlikely to occur in preceding time windows (Kanske & Kotz, 2007; West & Holcomb, 2000). 

Moreover, the verbs used in the Hauk and Pulvermüller (2004b) study, that observed a comparable 

result, did not significantly differ in concreteness/imageability. Thus even with similar concreteness 

scores, hand action verbs elicited higher DLPFC activity than other verbs.  
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4.3. Bilateral motor related activation  

The significantly higher activation during action verb processing was observed in left and right 

hemisphere for both DLPFC and sensorimotor cortex. The laterality of activation during action word 

processing has been suggested to be determined by language dominance and/or handedness (Hauk 

& Pulvermüller, 2011; Willems et al., 2010). Although only right handed participants were included, 

both uni- and bimanual words were presented which may be responsible for the observed bilateral 

activity. In general, hand action verbs are more often reported to activate left and right motor areas 

than action verbs related to other body parts (Hauk & Pulvermüller, 2004b; Pulvermüller et al., 2001; 

Raposo et al., 2009; Rüschemeyer et al., 2007; Tettamanti et al., 2005). 

 

4.4. Sensorimotor involvement in non-action verb processing 

The source reconstruction of the grand average of the non-action verbs also showed an important 

sensorimotor activity from 155 to 174 ms. Thus, even abstract verbs not related to a certain body 

part or body movement evoke some activity in sensorimotor cortex. Considering the early time point 

of activation and the simultaneous activation of brain regions involved in lexical access and semantic 

retrieval, this activity seems to be related to lexico-semantic processing as well.  

Sensorimotor contribution in lexico-semantic processing of abstract verbs is subject for discussion. 

While some theories claim that only linguistic brain areas contribute to abstract verb processing, 

others propose a reliance on modal (perception and action related) information as well (e.g. Borghi & 

Cimatti, 2010; Fodor, 1998; Louwerse & Jeuniaux, 2010; Paivio, 1986). Most neuroimaging studies 

report activations in language related areas like inferior frontal and middle temporal gyrus (Wang et 

al., 2010). However, some studies also found limited sensorimotor activity (Rodriguez-Ferreiro et al., 

2010; Sakreida et al., 2013). In a recent fMRI study, strong haemodynamic responses to abstract 

emotion words were observed in face- and arm-related motor regions. The authors concluded that 

these abstract words evoked precentral activity because they refer to body internal states. As face 

and arms are used to express emotions, these brain regions are activated when the corresponding 

words are perceived (Moseley et al., 2012). Thus, depending on the semantic associations of a word, 

sensorimotor brain regions can be activated during abstract word processing. The present non-action 

verbs were primarily used as contrast condition and were not controlled for strict semantic features. 

They were a conglomeration of words, not characterized by one strong semantic association. 

Therefore, the diverse semantic networks across non-action items might have resulted in some 

sensorimotor engagement that is however weaker than the one evoked by the action verbs (Moseley 

et al., 2013).  

Other researchers link the sensorimotor activity to the acquisition modality of abstract words. When 

a child obtains language, the meaning of an abstract word has to be explained linguistically. This 
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would be a bodily experience as well which might lead to face-related motor activity during abstract 

word processing (Borghi et al., 2011; Scorolli et al., 2012). This research group also reports arm-

related sensorimotor activity during abstract word processing in a later post-lexical stage (Scorolli et 

al., 2012).  

 

4.5. Early ERP results 

As mentioned above, no statistical differences arose between action and non-action verbs within 300 

ms based on the ERP waveforms. Latency and amplitude of N1 and P2 were similar for both verb 

classes. Besides reflecting early sensory processes, both peaks show important amplitude 

modulations by lexical and psycholinguistic features. As N1 is related to visual word form processes 

(Brem et al., 2006; Salmelin, 2007; Tarkiainen et al., 1999), its amplitude is affected by 

psycholinguistic features like word length and neighbourhood size (Hauk & Pulvermüller, 2004a; 

Hauk et al., 2006a, 2006b). The exact function of the P2 remains unresolved. However, recent studies 

link it with early lexico-semantic and –syntactic processes as its amplitude is modulated by word 

frequency and grammatical class (Dambacher et al., 2006; Palazova et al., 2013; Takashima et al., 

2001). Since stimuli were carefully controlled for these confounds and both stimuli types were verbs, 

no statistical difference in amplitude was expected.   

 

4.6. Additional considerations 

The strength of EEG research concerns its excellent temporal resolution. The major aim of this study 

was to clarify the time points at which significant differences can be found between action and non-

action verbs. To interpret these timing results, one should have a look at their spatial characteristics 

as well. For this purpose, the source reconstruction was performed. Spatial resolution of EEG 

research is however limited and therefore, its results should be interpreted with caution. To meet 

this limited spatial resolution, no fine grained analyses nor interpretations were performed (e.g. 

making a distinction between ventral and dorsal DLPFC) though this might have provided valuable 

information (Hoshi, 2006). 

Two concerns might arise regarding the participants: (1) large age range, and (2) unequal number of 

men and women. Because age is suggested to influence information processing rate (Cerella, 1985; 

Salthouse, 1991) and language differences between men and women have (inconsistently) been 

described (Gölgeli et al., 1999; Swink & Stuart, 2012; Wirth et al., 2007), additional statistical 

analyses were performed to evaluate a possible impact of age and gender on the present results. For 

age, all analyses were performed again without the oldest 6 participants (older than 1 SD above the 

mean age of the entire group). As these results mirrored the original results entirely, the large age 

range can be concluded to not have influenced the present findings.  



78 | 

 

Chapter 6: Temporal aspects of motor activation – action and non-action verb processing 

A possible gender effect was explored by using a linear mixed model approach as this technique is 

preferred if data are not balanced (Field, 2009). Although men and women showed slight differences 

in the ERP analysis, these differences were rather small as there were no significant results when 

men and women were compared to each other. For the source reconstruction, both genders evoked 

similar results in the areas of interest. These findings do not support the suggestion that the results 

of the original group are biased by the results of the men. 

 

5. Conclusion 

Single verb processing evoked the most prominent peak activity at 165 ms after word presentation. 

Besides a clear activation in several linguistic brain regions, also bilateral sensorimotor cortex was 

engaged. This sensorimotor activation was significantly higher during action than during non-action 

verb processing from 155 to 174 ms. This result is suggested to be a word-specific semantic 

difference as (1) a grammatical class confound can be excluded (2) it occurs within 200 ms in which 

essential lexico-semantic information is known to be retrieved, and (3) brain regions involved in 

lexical access and semantic retrieval are simultaneously activated. From 219 to 238 ms, action 

compared to non-action verbs evoked significantly higher DLPFC activations which is a higher order 

motor brain region involved in action planning.  

Hand action verbs thus seem to activate the motor programmes of the actions the verbs refer to. 

This is not restricted to the core (pre)motor cortical areas of the brain. A broad motor brain network 

is hypothesized to be involved. While the sensorimotor activation appears to be automatic and 

necessary for action verb understanding, this cannot be concluded for DLPFC activation. 

Nevertheless, the present results are in line with theories of embodied cognition which state that 

concepts are represented in specific language brain areas ànd in neural action and perception 

systems. Future EEG research in disorders affecting the motor system may contribute to our 

understanding of motor related brain activations during hand action verb processing.  
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Appendix A 

List of all stimuli items: hand- and armrelated action verbs on the left, non-action verbs on the right.  

Action verbs  Non-action verbs 

aaien to stroke  bedriegen to cheat 

aangeven to hand  behoren to belong 

aanraken to touch  beloven to promise 

boetseren to mould  blijken to turn out 

boksen to box  dempen to muffle 

borduren to embroider  dulden to tolerate 

borstelen to brush  dunken to deem 

breien to knit  durven to dare 

duwen to push  eisen to demand 

gieten to pour  ergeren to annoy 

gooien to throw  flitsen to flash 

grijpen to grab  geloven to believe 

haken to crochet  genieten to enjoy 

kammen to comb  gokken to gamble 

klappen to clap  gunnen to grant 

kloppen to knock  haten to hate 

kneden to knead  hopen to hope 

knijpen to pinch  huren to rent 

knippen to cut (with a scissor)  kiezen to choose 

krabben to scratch  kwellen to agonize 

masseren to massage  lenen to lend 

naaien to sew  liegen to lie, as in tell a lie 

pakken to grasp  melden to report 

plukken to pick  menen to mean 

roeren to stir  missen to miss 

schetsen to sketch  mogen to may 

schilderen to paint  onthouden to remember 

schillen to peel  opletten to pay attention 

schrijven to write  pleiten to plead 

schrobben to scrub  raden to guess 

schuren to sand  rijmen to rhyme 

slaan to hit  riskeren to risk 

smeren to butter  roesten to rust 

smijten to fling  schamen to be ashamed 

snijden to cut (with a knife)  schatten to estimate 

stempelen to stamp  scheiden to separate 

strelen to caress  schijnen to shine 

strijken to iron  spijten to regret 

tekenen to draw  stralen to shine 

tikken to tap  treiteren to torment 

timmeren to hammer  treuren to grieve 

trekken to pull  twijfelen to doubt 

typen to type  verlossen to release 

vangen to catch  verstaan to understand 

vasthouden to hold  verwachten to expect 

werpen to cast  verzinnen to make up 

wijzen to point  verzoeken to request 

wrijven to rub  vrezen to fear 

wuiven to wave  wachten to wait 

zwaaien to wave  wensen to wish 
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Abstract 

Temporal aspects of motor activations in stuttering were evaluated during a perception task that 

triggers neural hand motor representations without interference of (speech) movement execution or 

auditory processing. Brain activity of 30 adults with developmental stuttering was registered by use 

of an electro-encephalogram during silent reading of hand action and non-action verbs. Latency and 

amplitude evaluations as well as source reconstruction were applied on event-related potentials. 

These results were compared to previous findings of fluent speakers (Vanhoutte et al., 2015b).  

Temporal aspects of motor activations are considerably altered. The maximal motor difference 

between both verbs was delayed with about 100 ms and showed a reversed activation pattern: non-

action verbs showed more sensorimotor activation than hand action verbs. This reversal is 

hypothesized to encompass two different activation patterns: a general motor hyperactivation and a 

specific hand motor deficit. Neural motor abnormalities in stuttering are confirmed not to require 

(speech) movement execution. 

 

 

 

Keywords 

speech perception, motor, action verb, hand motor, timing, temporal, stuttering 
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1. Introduction 

Overt speech production can be seen as a complex form of movement which requires a dynamic, 

precise and timely coordination of a large brain network. Consequently, disruptions in the fluent 

production of speech may not only relate to dysfunctions in specific brain regions, but may also be 

linked to dynamic alterations in the temporal coordination of these specific brain regions.  

Stuttering is one such possible disruption of the fluency of speech. Stuttering is a speech disorder in 

which the smooth succession of speech sounds is repeatedly interrupted by blocks, prolongations 

and/or repetitions of sounds or syllables (Bloodstein & Ratner, 2008). When stuttering begins during 

childhood, typically before the age of 4 years (Yairi & Ambrose, 2005), it is called developmental 

stuttering (Bloodstein & Ratner, 2008). Although stuttering may resolve in a substantial amount of 

children, still 4% to 32% of them will continue to stutter into adulthood (for a review, see Yairi & 

Ambrose, 2013). Neurologically, stuttering is characterized by alterations in cortical and subcortical 

brain regions related to speech motor planning, initiation, execution and monitoring (Chang et al., 

2009; Ingham et al., 2012; Lu et al., 2010a; Neef et al., 2015; Watkins et al., 2008). Typically, a 

hyperactivation in cortical motor areas and the cerebellum is seen, either bilaterally or lateralized to 

the right hemisphere (for a meta-analysis, see Belyk et al., 2014; Brown et al., 2005; Budde et al., 

2014). These overactivations even present without overt speech demands suggesting that adults who 

stutter (AWS) tend to recruit more neural resources for accomplishing even simple speech related 

tasks. During silent reading, increased activations have been reported in bilateral inferior frontal 

gyrus, left anterior cingulate cortex, right precentral cortex and right cerebellum (De Nil et al., 2000, 

2001, 2003).  

Studies evaluating temporal aspects of these speech motor activations are very scarce. Most 

neurological research in stuttering focuses on spatial evaluations by use of neuroimaging tools like 

functional Magnetic Resonance Imaging. In addition, the majority of neurophysiological research, 

using electro-encephalography (EEG) and magneto-encephalography (MEG) which have excellent 

temporal resolution and are therefore very suitable for timing related evaluations, focuses on 

language (e.g. Maxfield et al., 2010, 2011, 2014; Weber-Fox and Hampton, 2008; Weber-Fox et al., 

2008, 2013) and auditory (e.g. Corbera et al., 2005; Hampton and Weber-Fox, 2008; Jansson-

Verkasalo et al., 2014; Kaganovich et al., 2010; Özcan et al., 2009) processing. The few studies that 

have been performed provide, however, clear evidence for altered timing of motor related 

activations in stuttering. Salmelin et al., (2000) observed in AWS, during a single word reading task, 

an advanced activation of left motor cortex, related to motor execution, and a delayed activation of 

left inferior frontal region, related to articulatory planning. AWS thus appear to initiate motor 

programs before preparing the articulatory code. Biermann-Ruben et al., (2005) found temporal 

alterations in left and right motor activations during a sentence production task. A very early (95 to 
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145 ms post-stimulus onset) activation of left inferior frontal cortex and an additional, late (from 315 

ms post-stimulus onset onwards) activation of the right Rolandic operculum was described. Also 

temporal alterations in motor activations even present without overt speech demands. Liotti et al., 

(2010) reported an abnormal early (20 to 80 ms post-stimulus onset) right-sided speech-motor 

activation. As this was accompanied by a hypoactivation in right auditory regions, the authors 

attributed their findings to an aberrant auditory-motor integration.  

Although auditory related deficits are often reported in stuttering (Cai et al., 2012; Chang et al., 2009; 

Fox et al., 1996; Hampton and Weber-Fox, 2008; Jansson-Verkasalo et al., 2014; Watkins et al., 2008), 

it remains to be determined which aspects are altered (Belyk et al., 2014). Moreover, aberrant 

auditory processing seems no prerequisite for motor alterations to occur as motor hyperactivations 

are also present during silent reading tasks (De Nil et al., 2000, 2001, 2003). Therefore, the present 

study aimed at evaluating temporal coordination of motor related activations without a possible 

influence of aberrant auditory processing. For this purpose, a well-known task from the action 

literature was chosen: silent reading of action verbs.  

Perception of action verbs activates, besides the classic language areas, also motor areas like 

premotor and primary motor cortex. These activations appear to follow a somatotopical 

organization. Action verbs related to face, arm or leg movements elicit the strongest activation close 

to the cortical motor representation of the face, arms or legs respectively (e.g. Hauk et al., 2004; 

Mosely et al., 2013). The time point(s) of these activations reflect(s) the processing stage(s) to which 

the motor areas contribute. In a previous study from our laboratory, perception of hand action verbs 

was contrasted with perception of non-action verbs, i.e. abstracts verbs unrelated to action or body 

parts, in a group of healthy fluent speakers (FS) (Vanhoutte et al., 2015b). Action verbs elicited 

significantly higher activation in bilateral sensorimotor cortex from 155 to 174 ms. This early 

sensorimotor activation is suggested to contribute to early lexico-semantic processing of the action 

verbs as (1) it occurs within 200 ms in which essential lexico-semantic information is known to be 

retrieved (Federmeier & Kutas, 2001; Hauk et al., 2012; Penolazzi et al., 2007) and (2) core linguistic 

brain regions involved in lexical access and semantic retrieval like inferior frontal gyrus (Binder et al., 

2009) are simultaneously activated. These findings confirm previous reports that showed similar 

early motor related activations during action verb processing (Hauk & Pulvermüller, 2004b; 

Pulvermüller et al., 2005; Shtyrov et al., 2004) and are in line with theories of embodied cognition 

which state that all concepts are grounded in neural action and perception systems (e.g. Barsalou, 

1999; Dove, 2009).  

An additional sensor-space analysis revealed that the maximal difference in brain activity between 

action and non-action verb processing was situated around 228 ms in bilateral DLPFC (Vanhoutte et 

al., 2015b). As DLPFC is considered to be a higher order motor region involved in motor control and 
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action planning (Tanji & Hoshi, 2001; Hoshi, 2006), motor activations during hand action verb 

processing do not seem to be restricted to the core (pre)motor cortical areas, but may involve a 

broad motor brain network.  

In the present study, the same task is applied in a group of AWS and compared to the previously 

obtained results of the FS. It is hypothesized that perception of the hand action verbs results in 

disturbed motor recruitment because hand action verbs spark the hand motor representations in the 

brain. Motor alterations in stuttering are known to extend to non-speech movements like finger and 

hand movements. Besides behavioural deficits (Bishop et al., 1991; Smits-Bandstra et al., 2006; 

Webster, 1997; Webster and Ryan, 1991), also neural dysfunctions have been reported like an 

imbalanced lateralization (Morgan et al., 2008; Neef et al., 2011) and a decreased excitability (Busan 

et al., 2011) during manual tasks. As a result, a decreased motor activation during hand action verb 

processing is hypothesized to occur. In sum, the present study aimed to evaluate motor related 

activations during a perception task that triggers hand motor representation in the brain, without 

interference of overt speech requirements, any other movement or aberrant auditory processing. 

The primary focus was put on temporal aspects of these motor activations. 

 

2. Methods 

2.1. Participants 

30 AWS, with persistent developmental stuttering, (mean age ± standard deviation: 30.9 ± 11.8; age 

range: 18 – 57; male/female: 22/8) were included and compared to the 30 healthy, right-handed FS 

(mean age ± standard deviation: 30.2 ± 10.6; age range: 18 – 57; male/female: 22/8) included in 

Vanhoutte et al., (2015b). Both groups did not significantly differ in age (Mann-Whitney U test: p= 

0.863). All AWS had already followed one or more treatments of variable duration and intensity. 

They were right-handed (Oldfield, 1971), monolingual native speakers of Dutch, reported no history 

of hearing complaints, dyslexia or other speech-language problems, neurological or psychiatric 

disorders, and presented with normal or corrected-to-normal vision. None of them was on psycho-

active drugs. All participants gave their written informed consent in accordance with the declaration 

of Helsinki. This study was approved by the local ethics committee.  

 

2.2. Speech assessment 

To collect speech samples, participants engaged in a conversation with the investigator about 

work/school/hobby and performed a reading task. These samples were videotaped using a Canon 

ACV HD (1920 x 1080) camera and audiotaped in PRAAT, a free software program for acoustical 

analysis (Boersma and Weenink, Phonetic Sciences, University of Amsterdam, Amsterdam, The 

Netherlands) using a Samsung CU01 microphone placed 50 cm in front of the participant.  
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Speech samples were analysed for percentage stuttered syllables (%SS) and stuttering severity. %SS 

was counted following the principles of the Stuttering Measurement System (Ingham and Ingham, 

2011), stuttering severity was judged by means of the Stuttering Severity Instrument, fourth edition 

(SSI-4; Riley, 2008). Stuttering was diagnosed by a certified speech-language pathologist based on % 

SS (>3%) and/or the presence of significant speech-related struggle behaviour. Stuttering severity 

varied considerably: 9 AWS presented with very mild, 9 with mild, 3 with moderate, 6 with severe 

and 3 with very severe stuttering.  

All samples were scored off-line. 20% of samples were re-evaluated by a second rater (MC) to assess 

interrater reliability. Both raters are speech therapists specialized in stuttering. An intraclass 

correlation coefficient (ICC) was calculated for overall percentile score on SSI-4 (Riley, 2008), %SS for 

reading and %SS for conversation. ICC’s of 96.3; 99.7 and 99.5 % respectively were obtained, which 

ensured excellent agreement.  

 

2.3. Neurophysiological assessment 

The same task as in Vanhoutte et al., (2015b) was used. To be able to compare the results of the AWS 

with the previous results obtained in the FS, the same analyses were performed.  

 

2.3.1. Stimuli 

50 action and 50 non-action verbs were selected from WordGen (Duyck et al., 2004), based on the 

CELEX database (Baayen et al., 1995). To evoke focalized activity in sensorimotor cortices, all action 

verbs referred to hand and/or arm movements (e.g. to knead, to sew). The non-action verbs were 

abstract verbs unrelated to actions or body parts (e.g. to believe, to tolerate). Both verb classes were 

as closely matched as possible on several psycholinguistic and lexical characteristics as to minimize 

their possible impact in early neurophysiological processing (Dambacher et al., 2006; Federmeier & 

Kutas, 2001; Hauk & Pulvermüller, 2004a; Hauk et al., 2006a, 2006b, 2012; Penolazzi et al., 2007; 

Takashima et al., 2001).  

Semantic relatedness between verbs and body parts was determined in a pre-test by 11 native 

speakers of Dutch who did not participate in the EEG study. These body areas included (1) head 

(head/face/mouth) (2) arms (arms/hands/fingers) and (3) legs (legs/feet/toes). Word imageability 

was estimated as well (for a detailed description, see Vanhoutte et al., 2015b). The action verbs were 

significantly more imaginable and more linked to arms than the non-action verbs. In addition, arm 

action verbs were significantly more associated with arms than with legs and head (Mann Whitney U 

test: p < 0.001 for all comparisons). An overview of all these features can be found in table I.  
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Table I: Summary of stimuli characteristics.  
Mean ± SD is displayed. The p-value of the Mann-Whitney U test comparing action and non-action verbs is 
shown in the right column. For action verbs, the mutual comparison of the semantic relatedness scores for 
different body parts is shown on the left.  
 

Feature  Action verbs Non-action verbs  P-value 

Word length      

 Letters  7.0 ± 1.3 6.9 ± 1.3  0.77 

 Syllables  2.2 ± 0.4 2.3 ± 0.5  0.36 

Word frequency  1.4 ± 0.6 1.6 ± 0.6  0.18 

Bigramfrequency  12771 ± 3037 13811 ± 3129  0.06 

Orthogr. neighborhood size  4.3 ± 4.0 4.5 ± 4.2  0.90 

Imageability  4.5 ± 0.2 2.4 ± 0.6  < 0.001 

Head relatedness  1.5 ± 0.5 1.7 ± 0.8   

Arm relatedness  4.9 ± 0.1 1.4 ± 0.4  < 0.001
c
 

Leg relatedness  1.6 ± 0.5 1.2 ± 0.2   
a 

Arm action verbs are significantly more related to arms than to head 
b 

Arm action verbs are significantly more related to arms than to legs 
c 
Arm action verbs are significantly more related to arms than the non-action verbs 

 

2.3.2. Procedure 

All verbs were presented in their infinitive form as single words in order to minimize the interference 

of syntactic processes. They were shown in black letters (font: Calibri; size: 96) on a white 

background in the middle of a computer screen that was placed one meter in front of the participant. 

Stimuli were randomly presented with a stimulus frequency of 0.7Hz (+/- 1428 ms) and no 

interstimulus interval. Participants were instructed to read each of the words mentally and to avoid 

overt articulation or any other kind of orofacial movement. To optimize EEG quality, they were 

encouraged to reduce eye-blinks as much as possible. 

 

2.3.3. Data acquisition and analysis 

EEG data were collected with Neuron-Spectrum-5 (4EPM) registration software (Neurosoft, Moscow, 

Russia). 21 Ag/AgCl electrodes were placed on the scalp according to the international 10/20 system 

(Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, C3, Cz, C4, T3, T5, T4, T6, P3, Pz, P4, O1, Oz, O2). Additional 

reference and ground electrodes were placed on the earlobes and forehead respectively. 

Neurophysiological data were recorded at a sampling rate of 500 Hz (0.01-75Hz band-pass filter). 

Impedance of each electrode was kept below 5kΩ.   

Off-line EEG analysis was performed using BrainVision Analyzer 2 (Brain Products, Munich, Germany). 

After additional filtering (0.5-30 Hz band-pass filter, Notch filter 50 Hz), eye artefacts were excluded 

using Independent Component Analysis. Two components were removed (eye blinks; left-right eye 

< 0.001
a 

< 0.001
b 
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movement) based on inspection of the components’ spatial distribution (Mennes et al., 2010; Joyce 

et al., 2004). Next, the continuous EEG data were segmented into epochs of 1100 ms, starting 100 ms 

prior to stimulus onset, and baseline corrected to this pre-stimulus interval. Trials with voltage 

variations larger than 100 µV were manually rejected. By averaging over corresponding epochs, 

event-related potentials (ERPs) were computed for every subject, electrode, and verb category. ERP 

participant averages were then grand-averaged across participants for both groups and verb classes 

separately.  

 

2.3.4. ERP analysis 

Visual presentation of single words typically evokes an ordered succession of 6 peaks. Whereas P1, 

N2 and P3 are known to be related to primary visual and visual attention processes, (e.g. Di Russo et 

al., 2001; Folstein & Van Petten, 2008; Polich, 2007) N1, P2 and N400 (partly) reflect linguistic 

processes (e.g. Dambacher et al., 2006; Duncan et al., 2009; Tarkiainen et al., 1999). Therefore, only 

the latter were subjected to further analyses. Peak latency and mean amplitude were determined for 

both verbs separately. Peaks were semi-automatically determined as the local maximum within 50 – 

200 ms for N1, 100 – 250 ms for P2 and 300 – 500 ms for N400. Mean amplitude was computed for 

the following time windows: N1 (95 – 135 ms), P2 (160 – 210 ms) and N400 (300 – 450 ms). These 

windows were chosen based on the grand averaged waveforms and previous research (Duncan et al., 

2009; Weber-Fox, 2001). To investigate the topographical distribution of the peaks while keeping the 

amount of data limited, subsets of adjacent electrodes were taken together.  

As P2 was observed over the entire scalp, nine clusters with average amplitude/latency of adjacent 

electrodes were calculated: anterior left (F7, F3), anterior midline (Fz), anterior right (F4, F8), central 

left (T3, C3), central midline (Cz), central right (C4, T4), posterior left (T5, P3), posterior midline (Pz), 

and posterior right (P4, T6). Also for the N400, the same nine clusters were created with one 

exception: posterior left and right did not include T5 and T6 respectively, as no N400 was seen over 

these electrodes. Since N1 was only seen over posterior regions, one left (T5/P3/O1), one midline 

(Pz/Oz) and one right (T6/P4/O2) subset was created.  

Statistical analysis was performed in IBM SPSS Statistics 19.0. Latency and amplitude were analysed 

using repeated measures ANOVAs with one between-subject factor group (FS, AWS) and three 

within-subject factors for P2 and N400: hemisphere (left, midline, right), region (anterior, central, 

posterior) and verbs (action, non-action). As N1 only occurred over posterior sites, the factor ‘region’ 

was not included in its analysis. To evaluate whether the assumption of homogeneity of covariance 

was met, Mauchly’s Test of Sphericity was computed for all factors with more than one degree of 

freedom in the numerator. If the assumption was violated (α ≤ 0.05), Greenhouse-Geisser (G-G) 
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adjusted p-values were used to determine significance. Significance values were set at α ≤ 0.05 for 

main and interaction effects. All further pairwise comparisons were Bonferroni corrected.  

 

2.2.5. Source reconstruction  

The Statistical Parametric Mapping 8 software package (SPM 8: Welcome Department of Cognitive 

Neurology, University College, London, United Kingdom) implemented in MATLAB (the MathWorks, 

Inc., Massachusetts, USA) was used for EEG source reconstruction. To limit the number of 

comparisons, a sensor-space analysis was first performed to search for time points at which maximal 

differences occurred between groups and verb types. In the sensor-space analysis, the ERP data from 

0 – 380 ms of every participant was converted into 3D images for every verb category separately. 

This time window encompasses early and late time points described in similar previous research at 

which significant sensorimotor activations during action verb processing occurred (Hauk & 

Pulvermüller, 2004b; Moseley et al., 2013; Pulvermüller et al., 2001). These images were generated 

by constructing 2D, 64 x 64 pixels resolution, scalp maps for each time point (using interpolation to 

estimate the activation between the electrodes) and by stacking the scalp maps over peristimulus 

time, resulting in [64 x 64 x number of time points]-images (Litvak et al., 2011). These images were 

statistically evaluated by paired and two sample t-tests for the effect of verb type or group 

respectively. F-contrasts were calculated to test for differences of either direction.   

The multiple sparse priors (MSP) algorithm (Friston et al., 2008) was used to reconstruct the source 

activity for every subject and verb category. A 3-layered scalp-skull-brain template head model 

matched to the MNI template was implemented for which the default electrode positions were used. 

8196 dipoles were assumed on a template cortical surface mesh and the “bemcp” method (BEM) 

implemented in FieldTrip (Oostenveld et al., 2011) was used to calculate the forward model. 3D 

images containing the evoked energy of the reconstructed activity for every subject and verb class 

were generated in a time window centred around the significant time point(s) from the sensor-space 

analysis (Litvak et al., 2011). If the time point occurred before 250 ms post-stimulus onset, a time 

window of 20 ms was chosen, because processes that take place within the first 250 ms are mostly 

characterized by short-lived transient activations. If the time point occurred after 250 ms, a window 

of 40 ms was chosen. Using these images, second level analysis was performed to identify the most 

significant source areas over subjects and verb class. Within the same group, F-contrasts were 

calculated by performing paired t-tests for the main effect of verb. Between groups, F-contrasts were 

calculated by performing two sample t-tests for the main effect of group. As motor related activity 

was the primary focus of this test, only significant results in frontal and parietal lobe were explored. 

Because the amount of comparisons was already largely reduced by the sensor-analysis and by 

limiting the analysis to fronto-parietal areas, p-value was set at 0.05 at the source level. The resulting 
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MNI coordinates holding significant activation differences between verb class, were explored by 

means of the traditional Brodmann categorization and by means of the SPM Anatomy toolbox 

developed by Eickhoff et al. (2007). Despite the seemingly limited spatial resolution inherent to less 

dense EEG recordings, low-density recordings have been established to provide an accurate estimate 

of ERP generators and to be sufficient to fully describe the variance of an ERP data set when 

compared to high-density recordings (Kayser & Tenke, 2006).  

As the pre- and post-central gyrus was the main region of interest (ROI), an additional source analysis 

was performed on the earliest time point with prominent activity above this region. For this purpose, 

the Global Field Power (GFP) was calculated for each verb class separately over all (pre)frontal and 

parietal sensors for all participants. GFP illustrates the time course of the overall signal strength of 

the ERPs. Based on the maps of current estimates that were made for each peak of the GFP, the 

earliest time point with clear activity over pre- and post-central gyrus was identified. Similar second 

level analysis was performed on a time window centred around this time point. Again, depending on 

whether the time point occurred before or after 250 ms post-stimulus onset, a time window of 20 or 

40 ms respectively was chosen. As the same time window emerged in AWS as in FS (see 3.2.), F-

contrasts were calculated by performing a full factorial general linear model with group (FS, AWS) as 

between-subject factor and verb (action, non-action) as within-subject factor. A mask was applied so 

only activity in pre- and post-central gyrus (BA 4, 6, 3, 1 ,2 and 43) was evaluated. Because only one 

ROI was included, the criterion for significance could be set at α= 0.05.   

 

3. Results 

3.1. ERP analysis 

Grand average waveforms for FS and AWS were very similar in morphology, as can be seen in figure 

1. The waveforms are characterized by a series of components. At posterior electrodes, a very early 

negative peak around 40 ms was immediately followed by a P1, peaking at around 70 ms, and a N1, 

peaking at around 115 ms. At anterior sites, the P1 was reversed evoking a negative peak around 70 

ms. No equivalent of the posterior N1 was seen. Next, a P2 could be observed over the entire scalp. 

This wave reached its maximum around 180 ms. The subsequent N2 (peak: 225 ms) and P3 (broad 

wave around 300 ms) were quite small and could only be seen over occipital and T5/T6 electrode 

sites. Finally, a large N400 occurred, most clearly pronounced over anterior electrodes. Although this 

component has a protracted morphology, a peak could be described at around 380 ms.  

No significant difference between FS and AWS emerged for either peak. A significant main effect of 

the factor Verb was observed for the N400 amplitude (F(1,58)= 8.71; p= 0.005). Both FS and AWS 

showed a larger N400 for action than for non-action verbs. No other main or interaction effect of the 

factor Verb was found. Furthermore, some distributional amplitude variations were observed. The 
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largest amplitude for the P2 was seen over midline and central electrodes, especially at Cz 

(Region*Hemisphere: F(4,232)= 11.79; ԑ= 0.80; G-G p< 0.001) and for the N400 over left and anterior 

electrodes (Region*Hemisphere: F(4,232)= 15.57; ԑ= 0.75; G-G p< 0.001). The N1 appeared to be 

smallest (Hemisphere: F(2,116)= 9.40; p< 0.001) and earliest (Hemisphere: F(2,116)= 9.21; p< 0.001) 

over midline electrodes.  

 

 

Figure 1: Grand average for action and non-action verbs separately for FS and AWS at midline electrodes.  
The 100 ms baseline and the first 600 ms of stimulus processing are depicted. Negative is plotted upwards. The 
x-axis represents latency (ms), the y-axis represents amplitude (µV). 

 

 

 

 
Figure 2: Topographic EEG maps of N1, P2 and N400 of the AWS. 

_____ action verbs in AWS 
_____ non-action verbs in AWS 
_____ action verbs in FS 
_____ non-action verbs in FS 

Non-action 

Action 

N1 (95 – 135 ms) P2 (160 – 210 ms) N400 (300 – 450 ms) 
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3.2. Source reconstruction 

Detailed results of the source reconstruction of both FS and AWS are shown in table II. As the results 

of the FS were already addressed in the introduction, they will not be repeated here.  

The sensor-space analysis found a maximal difference in the stuttering group between action and 

non-action verbs at 332 ms (F(1,29)= 19.69; p< 0.0001). As this time point situated after 250 ms post-

stimulus onset, second level source analysis was performed on an epoch of 40 ms centred around 

this peak (313 – 352 ms). Statistical analysis revealed a significant stronger cluster of activation in 

right (F(1,29)= 4.95; p= 0.033) and left (F(1,29)= 4.46; p= 0.042) sensorimotor cortex during non-

action compared to action verb processing (see figure 3). The differences between AWS and FS were 

not strong enough to be significant for the sensor-space analysis.  

 
Table II: Significant results of the source reconstruction for both time windows. 
Reported are the coordinates of local maxima in MNI space which are part of larger clusters as well as the 
number of voxels per cluster (2 mm x 2 mm x 2 mm). A description of the region that contains these 
coordinates (based on both macroscopical parcellation and BA labelling) is added. The last column shows which 
verb type or group evoked most energy.  
 

Time   Macroscopic  Coordinates (MNI)  P Extent Highest 

interval  anatomical name BA x y z  value (voxel) activation 

155 – 174 ms: action vs non-action verbs for the FS (Vanhoutte et al., 2015b) 

 R precentral gyrus BA 6 18 -24 68  0.026 158 Action 

 L precentral gyrus BA 4 -14 -28 71  0.027 110 Action 

155 – 174 ms: FS vs AWS for the non-action verbs 

 R precentral gyrus BA 6 18 -24 68  0.019 189 AWS 

 L precentral gyrus BA 4 -14 -26 70  0.030 65 AWS 

219 – 238 ms: sensor-space analysis for the FS (Vanhoutte et al., 2015b) 

 R middle frontal gyrus BA 9 32 28 42  0.011 164 Action 

 L middle frontal gyrus BA 9 -26 26 35  0.011 222 Action 

313 – 352 ms: sensor-space analysis for the AWS 

 R precentral gyrus BA 6 22 -16 72  0.033 302 Non-action 

 L precentral gyrus BA 6 -10 -8 72  0.042 53 Non-action 

 

Figure 4 shows the GFP and the map of current estimates of the AWS. The earliest prominent peak 

activity over pre- and post-central areas occurred at 166 ms for the action verbs and at 168 ms for 

the non-action verbs. As these situated close around 165 ms, the peak observed in the FS, it was 

decided to evaluate the same time window to enable a comparison between AWS and FS by use of a 

full factorial general linear model.   



Publications |93 

 

 

 

 

 

 

 

 

Figure 3: Result of the sensor-space analysis of the AWS.  
Source reconstruction for the statistical significant difference between action and non-action verbs in the time window 313 - 352 ms. An activation focus located in bilateral 
sensorimotor cortex can clearly be identified.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: GFP calculated over all (pre)frontal and parietal sensors for all AWS.  
Non-action verbs are shown on the left, action verbs on the right. The current estimates maps at 168 ms for the non-action verbs and 166 ms for the action verbs are 
presented as well. This is the earliest time point with clear activity over pre- and post-central gyrus.  
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From 155 to 174 ms, source reconstruction of the grand averages revealed for both verbs 

widespread activation in perisylvian regions, including superior temporal cortex and inferior frontal 

gyrus, supramarginal gyrus, pre- and postcentral gyrus. Also prominent activity was seen in occipital, 

inferior temporal and fusiform gyrus (see figure 5). Both left and right hemisphere showed similar 

patterns of activity. Statistical analysis only focused on the sensorimotor cortex (pre- and postcentral 

gyrus). No significant difference was found between both verbs for the AWS and between both 

groups for the action verbs. A significant result did appear when comparing non-action verb 

processing between both groups. AWS showed significantly more activity than FS in right (p= 0.019) 

and left (p= 0.030) sensorimotor cortex. 

 

Figure 5: Source reconstruction of the grand average ERP’s of the AWS from 155 to 174 ms.  
Four sagittal slices are shown for non-action verbs (top diagram) and action verbs (bottom diagram). The most 
prominent activation clusters (> 2 standard deviations calculated over the whole volume of reconstructed 
activity) are depicted in red. The two slices on the left are located in the left hemisphere, the two slices on the 
right are located in the right hemisphere. Corresponding MNI coordinates are shown underneath the pictures 
(x, y, z). 

 

4. Discussion 

The present study aimed at evaluating the time points of motor related activity in a group of AWS 

during a perception task that triggered hand motor representations of the brain. Silent reading of 

hand action verbs was compared to silent reading of abstract, non-action verbs. A silent reading task 

was chosen to exclude any interference from movement preparation and execution or from aberrant 

auditory processing. The results of the AWS were compared to the previously obtained results from a 

group of healthy FS (Vanhoutte et al., 2015b).  

(-51, -64, -18) (-13, -64, -18) (19, -64, -18) (47, -64, -18) 
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The ERP waveforms of the AWS did not differ from those found previously in FS. Source 

reconstruction revealed that the earliest most prominent peak activity over pre- and post-central 

areas was identified at 166 and 168 ms for action and non-action verbs respectively, which is very 

close to the 165 ms observed in the FS group. The sensor-space analysis found a maximal motor 

related difference between action and non-action verbs at 332 ms.  

 

4.1. Temporal coordination of motor related activation 

The present study confirms that the neural timing of motor activations in stuttering can be 

considerably altered, even during a visual word recognition task. Although the earliest activity over 

pre-and post-central areas was found around the same time, the sensor-space analysis revealed that 

the maximal motor related difference between both verb types was delayed with about 100 ms. 

While FS showed a divergence at 228 ms in bilateral DLPFC, AWS displayed a distinction around 332 

ms in bilateral sensorimotor cortex.  

In stuttering, neural timing alterations in speech motor systems have been observed by Salmelin et 

al., (2000) and Biermann-Ruben et al., (2005) during a single word and sentence production task 

respectively. The present findings show that these timing alterations do not seem to require overt 

speech production, which was also observed by Liotti et al., (2010) during an auditory perception 

task. An early motor hyperactivation together with a late auditory hypoactivation was suggested to 

reflect a disturbed interplay between auditory and motor areas. The present study adds that 

temporal changes in neural motor control during speech perception can also present without 

dysfunctions in auditory processing and/or auditory-motor integration. Overall, neurological research 

in stuttering might focus more on timing aspects of motor control as even simple tasks evoke 

considerable alterations.  

 

4.2. Reversed sensorimotor recruitment 

The present results contribute to a growing amount of evidence for motor abnormalities in stuttering 

(Brown et al., 2005). A reversed motor related activation was observed in AWS from 313 to 352 ms. 

Non-action verbs evoked a significantly higher activation in bilateral sensorimotor cortex. In FS, 

larger activations occurred during action verb processing in bilateral sensorimotor cortex from 155 to 

174 ms and in bilateral DLPFC from 219 to 238 ms. The decreased sensorimotor recruitment during 

hand action compared to non-action verb processing is suggested to be linked with the impaired 

hand motor control in stuttering (Busan et al., 2011). 

Motor impairments in stuttering have been found to extend to non-speech oral movements (Chang 

et al., 2009) and finger movements. Not only behavioural deficits have been described like prolonged 

initiation, execution and reaction times for finger and manual tasks (Bishop et al., 1991; Smits-
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Bandstra et al., 2006; Webster, 1997; Webster and Ryan, 1991), also neural dysfunctions have been 

reported like an imbalanced lateralization during finger tapping (Morgan et al., 2008; Neef et al., 

2011). Of particular interest for the present findings is the decreased excitability of hand motor 

representations. AWS showed reduced motor evoked potentials from hand muscles following 

transcranial magnetic stimulation of the hand motor cortex (Busan et al., 2011). Because the current 

action verbs described hand and/or arm movements, they sparked the upper limb representation in 

the motor cortex (Hauk et al., 2004; Vanhoutte et al., 2015b). Due to the decreased excitability of 

hand motor regions, sensorimotor activation of the hand representation during action verb 

processing will be hampered. Consequently, action verbs will not be able to evoke stronger 

sensorimotor activation than non-action verbs in stuttering. 

The mutual comparison of sensorimotor cortex activation in FS and AWS in the early time window 

155 – 174 ms revealed another interesting finding. No difference was found between both groups 

during action verb processing. Non-action verbs, on the other hand, evoked increased sensorimotor 

activity in AWS compared to FS. At first sight, this observation seems to contradict the previous 

hypothesis of decreased hand motor activation. However, another motor activation system might 

have occurred and resulted in a motor increase during non-action verb processing.   

Motor cortex is generally found to be hyperactive in stuttering during a variety of tasks (Brown et al., 

2005), even during silent reading of nouns not specifically related to motor semantic features (De Nil 

et al., 2000, 2003). This motor hyperactivation can already present within the first 100 ms after 

stimulus presentation (Liotti et al., 2010). The increase in sensorimotor cortex activation during non-

action verb processing at 155 to 174 ms is suggested to be a reflection of the general motor 

hyperactivation typically seen in stuttering, independent of stimulus material or overt speech 

requirements. The hand action verbs are hypothesized not to follow this general motor increase as 

they relied specifically on the impaired hand motor region which is characterized by a decreased 

excitability (Busan et al., 2011). It is hypothesized that these two different activation patterns are at 

the origin of the reversed sensorimotor activation. 

 

4.3. Linguistic processing 

It is an ongoing debate whether stuttering is a language or a motor disorder or a combination of both 

(Kent, 2000). The present study was not designed to make a sound conclusion on this matter, but 

suggests that motor deficits may present without neurophysiological alterations in linguistic 

processing.  

AWS did not differ from FS for any peak, neither for amplitude nor for latency. While N1 is linked 

with visual word form processing (Brem et al., 2006; Salmelin, 2007; Tarkiainen et al., 1999), the 

exact function of the P2 is uncertain. It has been suggested to be related to phonological and early 
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lexico-semantic and -syntactic processes (Dambacher et al., 2006; Palazova et al., 2001; Takashima et 

al., 2001; Zhang et al., 2009). The N400 reflects integration of different kinds of information in large 

scale networks (Hauk et al., 2012; Kutas & Federmeier, 2000). AWS even display the normal N400 

concreteness effect similar to the FS: action verbs evoked a significantly larger N400 than non-action 

verbs which is compatible with concrete words evoking larger N400 amplitudes than abstract words 

(e.g. Gullick et al., 2013). The larger N400 for action verbs would be related to a larger amount of 

neural correlates that require more semantic integration (Xiao et al., 2012). In sum, AWS and FS 

seem to perform similarly on visual and linguistic processing during the present task. 

Previous linguistic EEG studies evaluating reading in stuttering did not report abnormalities in N1 and 

P2 either (Weber-Fox, 2001; Cuadrado & Weber-Fox, 2003; Weber-Fox et al., 2004, 2008). The N400 

on the other hand is frequently reported to be altered. Large methodological differences can explain 

the contradiction with the present N400 finding. Previous studies documenting abnormalities in 

N400 used primed picture naming or picture-word primed (Maxfield et al., 2010, 2011, 2014) and 

sentence processing tasks (Weber-Fox, 2001; Weber-Fox & Hampton, 2008; Weber-Fox et al., 2013). 

The present study encompassed single word reading which is considerably less complex and 

demanding. Indeed, when evaluating rhyming based on word pairs, no amplitude abnormalities 

occurred in children who stutter, neither in the N400 evoked by the prime nor the one evoked by the 

target (Weber-Fox et al., 2008). Overall, it seems that neurophysiological alterations in stuttering 

during language processing only appear during more complex and demanding tasks (Weber-Fox et 

al., 2004). 

 

4.4. Bilateral findings 

The significantly lower sensorimotor activity during action verb processing was found bilaterally 

which is somewhat unexpected as decreased hand motor excitability was only observed over the left 

hemisphere (Busan et al., 2011). The exact origin of the bilateral result cannot be determined, 

though several observations might have contributed to this finding. From a language perspective, 

hand action verbs have frequently been reported to evoke bilateral motor activations (Hauk & 

Pulvermüller, 2004b; Raposo et al., 2009; Rüschemeyer et al., 2007; Tettamanti et al., 2005). Also 

abstract verb processing has been shown to rely on both hemispheres (Rodriguez-Ferreiro et al., 

2010). From a stuttering perspective, motor hyperactivation is most frequently described over right 

hemisphere (Brown et al., 2005) which may cause more pronounced differences between action and 

non-action verbs in this hemisphere. Secondly, left hemisphere is, by most researchers, posited to 

contain the primary structural anomaly for stuttering which would be situated in the neighbourhood 

of the left sensorimotor cortex (Chang et al., 2008; Connally et al., 2014; Cykowski et al., 2010; 
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Sommer et al., 2002; Watkins et al., 2008). This structural anomaly may, however, vary largely among 

individuals which may evoke less consistency in left sensorimotor activity.  

 

4.5. Additional considerations 

The strength of EEG research concerns its excellent temporal resolution. The major aim of this study 

was to evaluate temporal coordination of motor related activations. As motor involvement in the 

present task is not linked to a certain ERP (e.g. Pulvermüller et al., 2001, 2005; Vanhoutte et al., 

2015b), source reconstruction was performed. Spatial resolution of EEG research is, however, limited 

and therefore, its results should be interpreted with caution. To meet this limited spatial resolution, 

no fine grained analyses nor interpretations were performed (e.g. making a distinction between 

premotor and motor cortex) though this might have provided valuable information. 

 

5. Conclusion 

Neural timing of motor activations is altered in stuttering, even during a silent reading task. Although 

the earliest activity over pre- and post-central areas was found around the same time (165 ms), the 

maximal motor related difference between both verb types was delayed with about 100 ms (at 228 

ms for FS in DLPFC, at 332 ms for AWS in sensorimotor cortex). This difference even showed a 

reversed activation pattern: non-action verbs showed more sensorimotor activation than hand 

action verbs. The increased activity during non-action verb processing is suggested to reflect a 

general motor hyperactivation typically seen in stuttering. The hand action verbs are hypothesized 

not to follow this general motor increase as they specifically rely on the hand motor region which is 

suggested to show a decreased excitability. Overall, neural motor abnormalities in stuttering are 

confirmed not to require (speech) movement execution. 
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Chapter 8: CNV amplitude – a case report of acquired stuttering 

Abstract 

A neural hallmark of developmental stuttering is abnormal articulatory programming. One of the 

neurophysiological substrates of articulatory preparation is the contingent negative variation (CNV). 

Unfortunately, CNV tasks are rarely performed in persons who stutter and mainly focus on the effect 

of task variation rather than on interindividual variation in stutter related variables. However, 

variations in motor programming seem to be related to variation in stuttering frequency. The current 

study presents a case report of acquired stuttering following stroke and stroke related surgery in the 

left superior temporal gyrus. A speech related CNV task was administered at four points in time with 

differences in stuttering severity and frequency.  

Unexpectedly, CNV amplitudes at electrode sites approximating bilateral motor and left inferior 

frontal gyrus appeared to be inversely proportional to stuttering frequency. The higher the stuttering 

frequency, the lower the activity for articulatory preparation. Thus, the amount of disturbance in 

motor programming seems to determine stuttering frequency. At right frontal electrodes, a relative 

increase in CNV amplitude was seen at the test session with most severe stuttering. Right frontal 

overactivation is cautiously suggested to be a compensation strategy. In conclusion, late CNV 

amplitude elicited by a relatively simple speech task seems to be able to provide an objective, neural 

correlate of stuttering frequency. The present case report supports the hypothesis that motor 

preparation has an important role in stuttering. 

 

 

 

Keywords 

contingent negative variation, stuttering, stuttering severity, %SS, motor preparation 
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1. Introduction 

Stuttering is a speech disorder primarily characterized by the occurrence of speech blocks, 

prolongations and/or repetitions of sound or syllables. When the disorder begins in early childhood, 

it is called developmental stuttering (Bloodstein & Ratner, 2008). However, an acquired form of 

stuttering following brain damage exists as well. This form is referred to as neurogenic stuttering and 

typically has its onset during adulthood (Van Borsel, 1997; Duffy, 2013). Neurogenic stuttering has 

been associated with a variety of lesions that can be located in all cortical lobes of both hemispheres 

as well as in the basal ganglia, thalamus, cerebellum, corpus callosum and brain stem (for a review, 

see Van Borsel, 1997; De Nil et al., 2009). Many of these areas are also assumed to be involved in 

developmental stuttering (e.g. Chang et al., 2009; Lu et al., 2010a; Watkins et al., 2011; Xuan et al., 

2012). Although originally thought to be two different entities, it now seems that both types of 

stuttering may share common neural characteristics (Theys et al., 2012). 

A neural hallmark of developmental stuttering is abnormal motor programming. Several studies 

found anatomical and functional disturbances in left inferior frontal gyrus (IFG), the core cortical 

region of motor preparation, and its connections. Besides structural anomalies in grey and white 

matter (Sommer et al., 2002; Chang et al., 2008, 2011; Watkins et al., 2008; Kell et al., 2009; 

Cykowski et al., 2010), uni- and bilateral hypo- and hyperactivations have been described in both 

silent reading and overt speech production (Fox et al., 1996; De Nil et al., 2000, 2003; Watkins et al., 

2008). The most recurrent finding is an anomalous engagement of the right frontal operculum (RFO), 

the homologue of Broca’s area (for a meta-analysis, see Brown et al., 2005). Increased activity in left 

IFG has also been observed during rest (Xuan et al., 2012). Magneto-encephalography revealed that 

adults who stutter (AWS) first activate left motor cortex and secondly left IFG during overt reading. 

Thus, AWS seem to initiate motor programmes before preparing the articulatory code (Salmelin et 

al., 2000).  

One of the electrophysiological substrates of motor preparation is the contingent negative variation 

(CNV) .The CNV is an event-related, slow negative potential that occurs between two defined stimuli. 

The first stimulus is the warning stimulus (S1) which announces the imperative stimulus (S2) which 

on his turn requires a response (Walter et al., 1964; Rohrbaugh & Gaillard, 1983; McCallum, 1988; 

Regan, 1989; Golob et al., 2005). This response is typically a motor response though cognitive tasks 

have been reported as well (e.g. Cui et al., 2000; Bares et al., 2007). If the interval between the onset 

of S1 and S2 is ≥ 2 seconds, two CNVs can be distinguished within this interstimulus interval. The first 

one, the initial CNV, is related to orientation and is induced by the warning stimulus. It has its 

greatest amplitude at frontal sites within the first second following S1. The second one, the late CNV, 

occurs before S2 and has a wide cortical distribution with a maximum amplitude at central electrodes 

(Walter et al., 1964; Loveless & Sanford, 1974; Rohrbaugh & Gaillard, 1983; McCallum, 1988; Regan, 
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1989). The late CNV is reported to have multiple cortical and subcortical generators: prefrontal, 

premotor, primary motor, anterior cingulate, somatosensory and parietal regions as well as the basal 

ganglia and thalamus. Hence, the late CNV is generally accepted to measure the neuronal activity 

within the basal ganglia-thalamo-cortical (BGTC) loop (Lamarche et al., 1995; Hamano et al., 1997; 

Gomez et al., 2003; Bares et al., 2007; Fan et al., 2007). This late CNV is suggested to represent 

primarily motor preparation, and, additionally, sensory anticipation for S2 (Bender et al., 2004; Bares 

et al., 2007).  

CNV research mostly implies a motor response from the limbs. Only a few speech related CNV 

studies have been performed (e.g. Michalewski & Weinberg, 1977; Mock et al., 2011) and they rarely 

concerned stuttering. Pinsky & McAdam (1980) found no significant difference in speech CNV 

amplitude between 5 AWS and 5 control participants. Prescott and Andrews (1984), and Prescott 

(1988) evaluated the influence of the complexity of the speech response on the CNV amplitude in 

AWS. In their first study, no significant results were found (Prescott & Andrews, 1984). In the second 

study, AWS displayed larger CNV amplitudes than fluent speakers for familiar words, which are highly 

practiced speech responses and therefore very likely to be completely pre-programmed, suggesting 

that AWS have difficulties establishing efficient motor programs (Prescott, 1988). While these 2 

studies mainly focused on the effect of task complexity on motor preparation, the effect of individual 

variation in stuttering severity has not been explored thus far. Nonetheless, Zimmerman & Knott 

(1974) observed large interindividual variations among stuttering participants in CNV amplitude and 

morphology. Several stuttering frequency and severity measures are repeatedly reported to 

correlate positively with cortical regions (Braun et al., 1997; Fox et al., 2000; Chang et al., 2009; Kell 

et al., 2009; Ingham et al., 2012) and subcortical brain structures like thalamus and basal ganglia 

(Braun et al., 1997; Giraud et al., 2008; Kell et al., 2009, Ingham et al., 2012) known to be involved in 

motor preparation. As on one hand, these regions are part of the BGTC – loop and on the other hand, 

the late CNV is known to measure the activity in this loop (Fan et al., 2007), a positive association 

between CNV amplitude and stuttering frequency/severity may be expected. More specifically, the 

amplitude of the late CNV during a speech production task is hypothesized to increase with 

increasing stuttering severity/frequency.  

The current study presents a case of acquired stuttering following stroke in left superior temporal 

gyrus (STG) and stroke related surgery. A speech related CNV task was administered by use of 

electro-encephalography (EEG) at four points in time with differences in stuttering frequency. Due to 

its excellent temporal resolution, EEG allows one to look at a particular process with millisecond 

precision. Due to its limited spatial resolution however, EEG data can only provide activation 

information of broad neurological areas, not of specific brain regions.  
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2. Method 

2.1. Participant 

2.1.1. General information 

MH is a 28-year-old right-handed, highly educated woman and native speaker of Dutch. At the time 

she suffered a stroke, she was working as a psychologist. There was no history of hearing complaints, 

psychiatric disorders, dyslexia or other speech-language problems prior to her neurological event. In 

addition, there was no family history of recovered or persistent developmental stuttering or 

cluttering. MH has a corrected-to-normal vision and took no medication apart from contraception. 

She gave her written informed consent to participate in this study, in accordance with the 

declaration of Helsinki. The study was approved by the local ethics committee. 

 

2.1.2. Medical history 

At birth, MH suffered from sepsis for which she spent several weeks in an incubator. Her 

psychomotor development, however, was normal. In 2010, after 7 years of complaints of fatigue and 

a regular occurrence of headache, a tentative diagnose of narcolepsy was made based on a 

polysomnography with a Multiple Sleep Latency Test. No cataplexy, sleep paralysis or hypnagogic 

hallucinations occurred. A brain MRI was normal. Methylphenidate, and subsequently modafenil 

were prescribed, however without any adequate effect. At the time of the stroke, fatigue had 

diminished and MH no longer took these medications.  

 

2.1.3. Case report 

Over a period of 2.5 months, MH sustained 5 hemorrhagic strokes from a cavernoma in the left 

temporal area. They were characterized by linguistic disturbances, especially auditory 

comprehension problems, that took on average 60 minutes after which MH recovered completely. 

No other motor or cognitive disturbances were reported. Stuttering symptoms started to appear a 

few days after the third stroke. A detailed time line of the neurologic events, hospitalizations and 

neurophysiologic evaluations can be found in figure 1. 

After this third stroke, MH was admitted to the hospital for the first time. On admission, clinical 

neurologic assessment was normal. An urgent brain MRI revealed a subacute intraparenchymatic 

haematoma in the left STG with moderate perilesional oedema suggestive for a venous cavernoma 

(figure 2A). Conventional angiography showed no abnormalities. Because the linguistic symptoms 

appeared intermittently, a possible epileptic nature was suspected. Therefore, levetiracetam, 2 x 500 

mg/day, was started. A few days after the third stroke, stuttering started to emerge. Since no 

increase in bleeding was seen on a brain Computerized Tomography (CT), an increase in oedema was 

suggested to be the origin of stuttering onset.  
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Figure 1: A detailed time scale of all events. Durations are expressed in number of days (d). 

 

Behavioural assessment revealed no linguistic problems. MH obtained the maximum score on both 

the Token Test of the Aachen Aphasia Test (AAT - Dutch edition; Graetz et al., 1991) and the writing-

on-dictate subtest (test 42) of the Psycholinguistic Assessment of Language Processing in Aphasia 

(PALPA; Kay et al., 1992) – Dutch edition (Bastiaanse et al., 1995).  

After a fourth episode of aphasia, MH was re-admitted. The stuttering now seemed to be worse. 

Clinical neurological examination was normal. CT revealed a slight increase of the intracerebral 

bleeding in the left temporal area. An additional Fluorine-18-Fluorodeoxyglucose Positron Emission 

Tomography (FDG-PET) scan showed hypoperfusion near the left STG. About 10 days later, another 

episode of phatic problems occurred.  

Due to the rapid recurrence of the events, a resection of the lesion was performed. Histopathology 

revealed an arteriovenous malformation (AVM). Initially after surgery, very discrete linguistic 
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problems were noted which normalized rapidly without substantial logopaedic support. A few days 

after surgery the Token Test of the AAT was re-administered. Due to the localization of the lesion in 

the left STG, a more comprehensive evaluation of phonological processing skills was performed as 

well. These phonological processes include detection, identification and discrimination of spoken 

phonemes and the recognition of a spoken word as being part of the mental lexicon (McClelland & 

Elman, 1986; Poeppel et al., 2008). This can be evaluated by subtests 1, 2 and 5 of the PALPA (Kay et 

al., 1992; Bastiaanse et al., 1995). Phoneme discrimination was assessed by having MH judge 

whether aurally presented minimal pairs of pseudowords (subtest 1) and real words (subtest 2) were 

similar or not. Lexical decision was measured by subtest 5 in which 80 real and 80 pseudowords were 

presented aurally. On all these tests, MH obtained the maximum score. Nevertheless, mild stuttering 

persisted. Both selective angiography and MRI showed a favourable post-surgery image with no 

arguments for a residual AVM (figure 2B).   

About 13 weeks after surgery, MH was re-admitted to the hospital due to a sudden increase in 

stuttering severity. Clinical neurological examination was normal. Both angiography and MRI were 

unchanged. No venous anomaly, arteriovenous fistula or AVM could be seen and MH was dismissed. 

Five months after surgery, MH resumed work on a part-time basis. No speech therapy was initiated 

for her stuttering. Anti-epileptic treatment was ultimately stopped.  

 

 

Figure 2: MRI scan, T2-axial, after the third stroke (A) and 2 months after surgery (B).  

 

2.2. Procedure 

The neurophysiological testing was executed once pre-surgery and 3 times post-surgery: (1) after one 

month, (2) after three months, (3) after four months. Each evaluation followed the same procedure. 

First, speech and reading samples were collected. Secondly, the CNV paradigm was performed. 
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Finally, three additional phonological tasks were administered that were presented in a randomized 

order over test sessions. The CNV task was always performed before the phonological tasks to limit 

the influence of fatigue. At the 4th testing, the phonological tasks were not administered. There were 

no differences between test sessions concerning medication status as at all test moments, only 

levetiracetam (2 x 500 mg/day) was taken. 

 

2.2.1. Speech samples 

On each test moment, a conversational and reading speech sample was collected. MH read the 

Dutch translation of the text ‘The north wind and the sun’ (International Phonetic Association, 1974). 

During the conversational speech sample MH engaged a conversation with the investigator about 

work/family/hobby. Due to a sudden increase in stuttering severity, a more extensive speech 

evaluation was done at the 3rd testing. Automatic speech (counting, reciting the days of the week and 

the months of the year) and repetition of words and sentences with increasing length was included 

as well. Speech samples were videotaped using a Canon ACV HD (1920 x 1080) camera and 

audiotaped in PRAAT, a free software program for acoustical analysis (Boersma & Weenink, Phonetic 

Sciences, University of Amsterdam, Amsterdam, The Netherlands) using a Samsung CU01 

microphone placed 50 cm in front of the participant.  

Speech samples were judged for stuttering severity by means of the Stuttering Severity Instrument, 

fourth edition (SSI-4; Riley, 2008) and percent stuttered syllables (%SS) was calculated following the 

principles of the Stuttering Measurement System (Ingham & Ingham, 2011). Part-word 

(sound/syllable) repetitions, prolongations, blocks, broken words and tense pauses (American 

Speech-Language-Hearing Association, 1999; Yaruss, 1997) were counted as stuttered syllables. It is 

an ongoing debate whether or not to count monosyllabic word repetitions as stutters (Einarsdottir & 

Ingham, 2005). In this study, repetitions of monosyllabic words were considered as stuttered 

dysfluencies when they were repeated at a high rate (Bezemer et al., 2010; Guitar, 2006), with 

apparent undue stress, tension or struggle (American Speech-Language-Hearing Association, 1999; 

Van Zaalen & Winkelman, 2009) or when the number of repetition units was 3 or more (Boey et al., 

2009; Gregory, 1993). Because stuttering severity can vary considerably over the course of a 

conversation, long speech samples are recommended to obtain a reliable representation of the 

stuttering pattern (Sawyer & Yairi, 2006). This holds especially true for a single case study. Since the 

shortest conversation sample consisted of 735 syllables, the first 735 syllables of each sample were 

evaluated.  

All samples were scored independently by two speech language pathologists (SLP) specialized in 

stuttering. One of the raters was blind to the sequence of the test sessions. Inter-rater reliability was 
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assessed by calculating the intraclass correlation coefficient (ICC). All ICC’s were high which ensured 

good to even excellent agreement. Any points of disagreement were discussed to reach consensus.  

Stuttering severity was also perceptually judged by three other SLPs specialized in stuttering using 

the scale from the Camperdown Program (O’Brian et al., 2004; Karimi et al., 2013). The latter is a 

nine point scale in which 1 = no stuttering, 2 = extremely mild stuttering, and 9 = extremely severe 

stuttering. Conversation and reading samples were judged separately. Samples were presented in a 

randomized order and scored independently by the judges. The severity of each sample was then 

determined by calculating the mean of the severity scores assigned (table I).  

 

2.2.2. EEG data acquisition  

EEG data were collected with Neuron-Spectrum-5 (4EPM) registration software (Neurosoft, Moscow, 

Russia). By use of an universal EEG cap (Haube S2), 21 Ag/AgCl electrodes (Fp1, Fpz, Fp2, F7, F3, Fz, 

F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2) were placed on the scalp according to the 

international 10/20 system. Two more electrodes were placed above the right side of the upper lip 

and underneath the left side of the lower lip to register the electromyogram (EMG) of the orbicularis 

oris muscle in a bipolar fashion. An additional electrode on the forehead was used as ground. 

Neurophysiological data were recorded against a linked ears reference at a sampling rate of 500 Hz 

(0.01-75Hz band-pass filter). Impedance of each electrode was kept below 5kΩ. During all tasks, MH 

was encouraged to avoid orofacial movements and to reduce eye-blinks as much as possible. MH’s 

performances were also videotaped using a Canon ACV HD (1920 x 1080) camera. 

 

2.2.3. CNV paradigm 

A self-composed picture naming task was administered in which S1 consisted of a picture that was 

shown for 1 second. The S2, in the form of a short, black line, appeared 2 seconds after S1 onset (the 

foreperiod duration was 2 seconds) indicating that MH should name the picture as quickly as 

possible. S2, shown for 2 seconds, was followed by a black screen for another 2 seconds. If MH 

continued to stutter on a word once this black screen appeared, she was instructed to stop speaking 

in order not to contaminate the next trial with muscular artefacts (for a diagram of the CNV task, see 

figure 3A). One hundred and ten black and white pictures were shown on a white background in the 

middle of a computer screen that was placed one meter in front of MH. She was instructed to name 

only one word or to say ‘pass’ if she didn’t know the noun.  

The pictures were selected from a picture naming norms database, provided by the Department of 

Experimental Psychology from the Ghent University, Belgium (Severens et al., 2005). For further 

analysis, speech onset had to be determined. Articulatory movements were shown to precede 

vocalization during a Bereitschaftspotential paradigm. Depending on the initial phoneme, the lips or 
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the tongue were the first source (McArdle et al., 2009). Lip movements are easier to detect than 

tongue movements with EMG. Therefore, pictures were chosen that referred to a noun that had a 

bilabial (/m/, /w/, /b/, /p/) or labiodental (/f/, /v/) initial phoneme. For the 4 sessions, MH correctly 

identified 106, 107, 106, and 107 pictures respectively. Some responses were additionally excluded 

from further analyses because (1) the word was produced before S2 was shown, (2) the produced 

word did not have a labiodental or bilabial initial phoneme, (3) MH swallowed or made an 

inappropriate lip movement within 1500 ms preceding S2 which was judged based on the videotape 

recordings and visual inspection of the EMG signal. Stuttered responses would have been analysed 

separately. However, no stutters occurred. This was judged on-line by the first SLP and off-line based 

on the videotape recordings by the second SLP. In this way, the following number of trials were 

preserved for further off-line EEG analyses: 100, 104, 101, 102 for the 4 sessions respectively.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: (A) Diagram of the picture naming CNV task. The warning stimulus (S1) consists of a picture, the 
imperative stimulus (S2) of a short, black line that prompts the participant to name the picture. Interstimulus 
interval (ISI) is 2 s. (B) EMG signal of the orbicularis oris muscle of one response. The dotted arrows represent 
the onset of the corresponding image in (A). The full arrow represents the onset of the EMG signal. (C) S-locked 
average at Cz at the first test session. Latency (x-axis) is represented in milliseconds (ms) and amplitude (y-axis) 
in microvolts (µV). Negative is plotted upwards. Baseline is the first 200 ms op the epoch i.e. 200 ms before S1 
onset. The 0 ms point is S2 onset. While the blue bar indicates the early CNV, the pink bar highlights the late 
CNV. Again, dotted arrows represent the onset of the corresponding image in (A). 
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These off-line analyses were performed using BrainVision Analyzer 2 (Brain Products, Munich, 

Germany). After additional filtering (0.01-30 Hz band-pass filter, Notch filter 50 Hz), eye artefacts 

were removed by Independent Component Analysis (Mennes et al., 2010). Two components (eye 

blinks; left-right eye movements) were excluded based on inspection of the components’ spatial 

distribution. It is recommended to analyse language related brain activities not only time-locked to 

stimulus onset, but also time-locked to response onset. Activities linked to response execution 

emerge time-locked to the response and might consequently be reduced in analyses time-locked to 

stimulus presentation (Riès et al., 2013). Therefore, data were analysed with respect to S2 and lip 

movement onset, from here on referred to as stimulus and response locked respectively. For the 

stimulus locked analyses, the continuous EEG data were segmented into epochs of 4200 ms, starting 

2200 ms prior to S2, and baseline corrected to the first 200 ms of the epochs (Luck, 2005), which is 

the 200 ms time window before S1 onset. For the response locked analyses, lip movement onset was 

visually determined based on the EMG data. Therefore, the EMG data were separately band-pass 

filtered from 15 Hz to 100 Hz to reduce the contamination by motion artefacts and non-myogenic 

potentials (Van Boxtel, 2001). The continuous EEG data were also segmented into epochs of 4200 

ms, starting 2300 ms prior to lip EMG onset, and baseline corrected to the first 200 ms of the epochs 

(Luck, 2005). The starting point of the segmentation was somewhat different than in the stimulus 

locked analyses due to a reaction time delay. Reaction time was determined as the time between S2 

and lip EMG onset (see figure 3B). For the 4 test sessions respectively, 55 %, 65 %, 40 % and 40 % of 

the responses had an EMG onset occurring after S2. If the segmented epochs started 2200 ms before 

lip movement onset and were baseline corrected to the first 200 ms, on average 50 % of the 

responses would have a baseline that contained a part of the visual evoked potentials elicited by S1. 

This would have added a serious amount of noise to the data since baselines should be as neutral as 

possible and are not allowed to contain any kind of potentials. Therefore, the starting point of the 

segmentation was put 100 ms earlier and thus started 2300 ms prior to lip movement onset. For all 

test sessions, more than 90 % of all responses had a reaction time ≤ 100 ms. All trials containing 

artefacts were manually excluded (Cui et al., 2000; Bares et al., 2007; Mock et al., 2011). By averaging 

over corresponding epochs, the CNV potential could be computed for each test moment. For the 4 

test sessions, the average was based on 92, 96, 91, 99 and 89, 95, 91, 102 trials for the stimulus 

locked and response locked analyses respectively.  

For both stimulus and response locked analysis, mean amplitude was calculated from -500 – 0 ms 

since this time window contained the maximal variation of the CNV potential. This was done for all 

frontal (F7, F3, Fz, F4, F8), central (C3, Cz, C4) and 2 temporal (T3, T4) electrodes. The latter 

electrodes were situated above the lesion site and its contralateral homologue. The other electrodes 

were located near regions important for speech preparation and execution.  
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2.2.4. Phonological assessment 

As mentioned above, a detailed analysis of phonological processing skills was recommended due to 

the localisation of the lesion. As behavioural tests may not be sensitive enough to detect very mild 

language problems, an additional neurophysiological examination was performed at the first three 

test sessions. Tests for this additional examination were selected from Aerts et al., (2013) in which a 

detailed description of the tasks and their analyses can be found. All tasks were auditory oddball 

paradigms in which the proportion of standard vs deviant stimuli was 4/1. Phoneme discrimination 

was evaluated in an attended (P300) and unattended (Mismatch Negativity - MMN) condition. Both 

contained [bә] as standard and [gә] as deviant phonemes. An unattended MMN paradigm was used 

as word recognition task in which real words were presented as standard and pseudowords as 

deviant stimuli. During the P300, MH had to press a button when hearing the deviant stimulus. 

During the MMN tasks, MH was instructed to ignore the stimuli and focus on a silent movie. All 

stimuli were presented binaurally with Apple Inc. earphones, placed directly into the external ear, at 

a comfortable listening level of ca. 70 dB.  

Peak latency and amplitude were measured at Fz/Cz for the MMN wave and at Pz for the P300 wave 

in the unattended and attended phoneme discrimination task respectively. In the word recognition 

task, both real and pseudowords evoked the successive peaks N100, P200 and N400. Peak latency 

and amplitude were calculated at F3/Fz/F4 for P200 and at Cz for N100 and N400. These values were 

compared to the norms obtained in Aerts et al. (2013). Although scores that fall within 2 SD from the 

mean are usually considered normal, scores falling between 1.5 and 2 SD are already borderline 

(Lezak et al., 2004). Therefore, only latency and amplitude values falling within 1.5 SD from the 

averages obtained in Aerts et al., (2013) were considered normal. 

 

3. Results 

3.1. Speech samples 

In table I, an overview of all stuttering related scores is given. According to the SSI-4 (Riley, 2008), no 

stuttering could be diagnosed pre-surgery and a very mild stuttering severity occurred post-surgery. 

Although all post-surgery test sessions showed only minor differences in total score, a large variation 

in %SS during conversation occurred. Based on these scores, MH stuttered moderately during the 3rd 

and mildly during the other test sessions (Onslow, 2000). Conversely, no such variation was observed 

in non-propositional speech. MH rarely stuttered during reading. Moreover, no stutters were noted 

during automatic speech and during repetition of words and sentences at the 3rd testing.  
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Table I: Results of the SSI-4 (Riley, 2008) obtained after consensus. The corresponding ICC’s and the mean severity rating score obtained from 3 clinicians. 

 Stuttering Severity Instrument (SSI-4) Severity Rating 

 Reading  Conversation  Duration Physical Total  Severity  Reading Conversation 

 %SS Score  %SS Score  Average Score concomitants score label    

Pre-surgery 0 0  .8 2  0.6 4 1 7 Not stuttering  1.0 1.7 

1 month post-surgery .5 2  1.4 2  1.2 6 2 12 Very mild  2.0 2.3 

3 months post-surgery 0 0  7.3 6  1.2 6 4 16 Very mild  1.0 5.0 

4 months post-surgery 0 0  2.5 3  0.6 4 6 13 Very mild  1.0 2.5 

ICC 80   98   82  88 90     
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The severity rating by the three judges mirrored the results of %SS for both reading and 

conversation. Only at the 2nd test session, extremely mild stuttering was perceived during reading. 

For conversation, test sessions 1, 2, and 4 gave comparable results, while test session 3 obtained a 

much higher score. 

MH exclusively stuttered at word initial phonemes. No stutters involving entire syllables or longer 

linguistic units were noted. These stutters were mainly blocks and prolongations. Additionally, a 

slight increase in amount of physical concomitants seemed to appear over time. MH sometimes 

nodded her head and frowned. At the 4th evaluation, a glottal fry could be heard occasionally. All 

these behaviours were transient and mostly scored as ‘barely noticeable for a casual observer’.  

Concerning avoidance and escape related secondary behaviours, MH was observed to look for 

synonyms and to break off sentences when a stutter appeared or was anticipated. Remarkably, she 

was scarcely aware of this behaviour herself. When asked whether she applied some tricks to 

avoid/escape a stutter, she mentioned not to do so. MH also underestimated her stuttering severity. 

Both at the 2nd and 4th testing, she said that the stuttering was almost gone, while both speech 

therapists could clearly distinguish several stutters during the conversation. Overall, MH was 

concerned about her stuttering, especially in the beginning, when the stuttering appeared, and at the 

3rd testing, when the sudden increase had occurred.  

 

 

 

Figure 4: Stimulus locked analysis of all electrodes at the first test session. Latency (x-axis) is represented in 
milliseconds (ms) and amplitude (y-axis) in microvolts (µV). Negative is plotted upwards. Baseline is the first 
200 ms op the epoch i.e. 200 ms before S1 onset. The 0 ms point is S2 onset.  
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3.2. CNV paradigm 

A typical CNV wave was evoked, as can be seen in figure 3C and 4. After visual and linguistic 

processing of the pictures (S1), a clear increase in negativity occurred between 700 and 1000 ms 

following S1. This early CNV (blue bar in figure 3C) was seen over (pre)frontal, central and parietal 

electrodes. At 1000 ms, the early CNV was interrupted by a new phase of visual processing because 

at this point in time the picture disappeared from the screen. Shortly hereafter, a steep increase in 

negativity could be observed, peaking around the presentation of S2. This negativity is the late CNV 

(pink bar in figure 3C) and has a wide scalp distribution. The largest CNV was elicited in the pre-

surgery test session (figure 5, 6 and 7). 

 
Figure 5: Mean CNV amplitude (µV) of the response locked analysis at all test sessions. Bars are coloured 
corresponding to % SS during conversation.  

 

 
Figure 6: Mean CNV amplitude (µV) of the stimulus locked analysis at all test sessions. Bars are coloured 
corresponding to % SS during conversation.  

 

Two different activity patterns could be discerned which were most clearly seen in the EMG averaged 

data. Over bilateral and midline central (C3, Cz, C4) and left and midline frontal (F7, F3, Fz) 

electrodes, CNV amplitude was inversely proportional to stuttering severity and frequency during 

conversation. The more MH stuttered, the lower the CNV amplitude became. The remaining 4 
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electrodes (T3, F4, F8, T4) showed a different pattern that was particularly observed in the response 

locked analyses. While the CNV amplitude at the 1st, 2nd and 4th test session did show the inverse 

association with stuttering symptoms, the CNV amplitude measured at the 3rd testing did not. 

Although MH stuttered more at the 3rd than at the 4th testing, the CNV was much higher at the 3rd 

test session. Note that at the 1st, 2nd and 4th testing, 3 out of these 4 electrodes were amongst the 

lowest amplitudes of all electrodes. However at the 3rd testing, T3, F4 and F8 had the highest 

amplitude of all (see figure 5). Thus, the CNV at these electrodes showed a relative increase 

compared to the CNV over central and left frontal areas.  

 

 

Figure 7: The late CNV at Cz for all test sessions, the 700 ms preceding the averaging point are shown. On the 
left, the stimulus locked analysis is displayed in which 0 ms represents S2 onset. On the right, response locked 
analysis is depicted in which 0 ms represents EMG onset. Negative is plotted upwards.   

 

3.3. Phonological evaluation 

All neurophysiological tests evoked clear event-related potentials in which all peaks could be 

distinguished (see figure 8). Only minor deviations were seen in latency measures (table II). These 

deviations solely encompassed faster latencies than average. All amplitude measures were within 

normal limits (table III).  
 

Table II: Latency (ms) values of the neurophysiological assessment of auditory phonological processing.  

 Phoneme   Auditory word recognition 

 discrimination  Words  Pseudowords 

 MMN P300  N100 P200 N400  N100 P200 N400 

Pre-surgery 115 426  98 205 406  98 159 530 

1 month post-surgery 120 372  68 168 416  72 153 392 

3 months post-surgery 140 378  70 181 544  90 155 464 

Norms: M (SD) 
171 

(28.17) 
409 

(37.71) 
 92 

(8.41) 
182 

(18.74) 
494 

(60.02) 
 94 

(16.39) 
170 

(19.40) 
507 

(54.51) 

Latencies not falling within M ± 1.5 SD are italicized and displayed in bold. Norm scores are obtained from Aerts 
et al., (2013). 
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Table III: Amplitude (µV) values of the neurophysiological assessment of auditory phonological processing. 

 Phoneme   Auditory word recognition 

 discrimination  Words  Pseudowords 

 MMN P300  N100 P200 N400  N100 P200 N400 

Pre-surgery -1.37 21.41  -2.15 3.17 -2.05  -1.70 4.67 -3.18 

1 month post-surgery -5.32 16.56  -2.55 3.27 -2.14  -2.06 5.15 -5.33 

3 months post-surgery -1.86 20.67  -1.55 1.44 -2.47  0.55 4.06 -4.40 

Norms: M (SD) 
-4.48 
(2.12) 

13.03 
(5.65) 

 -2.03 
(1.12) 

1.67 
(1.34) 

-3.26 
(1.26) 

 -3.16 
(2.35) 

3.52 
(3.26) 

-4.37 
(2.83) 

All amplitudes fall within M ± 1.5 SD. Norm scores are obtained from Aerts et al., (2013). 

 

 

Figure 8: Event-related potentials (ERP) evoked by the phonological tasks. Latency (x-axis) is represented in 
milliseconds (ms) and amplitude (y-axis) in microvolts (µV). Negative is plotted upwards. Top: the unattended 
and attended phoneme discrimination tasks: (A) MMN at Cz (B) P300 at Pz. Bottom: the word recognition tasks 
evoked the successive peaks N100, P200 and N400: (C) real words at Cz (D) pseudowords at Cz. 

 

4. Discussion 

In the present case report, motor preparation was evaluated by a CNV task at several points in time 

with differences in stuttering severity and frequency. A typical CNV wave was evoked by a picture 

naming task. Besides an early CNV at 700 – 1000 ms following S1, S2 was preceded by a second and 

larger negativity over (pre)frontal, central, parietal and temporal areas. The latter wave is the late 

CNV related to motor preparation.  
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4.1. CNV amplitude related to motor preparation 

Surprisingly, a reversed association appeared between late CNV amplitude and stuttering frequency 

during conversation. The higher the stuttering frequency, the smaller the CNV amplitude. This 

observation was mainly seen in the response locked analysis which highlights the importance of 

taking reaction time into account in stuttering (Smits-Bandstra & Gracco, 2013). As outlined in the 

method section, activities linked to response execution might be reduced in the stimulus locked 

analysis (Riès et al., 2013). The reduction in CNV amplitude was observed over bilateral and midline 

central, and over left and midline frontal electrodes. These electrode sites approximate bilateral 

(pre)motor, somatosensory areas and left IFG, which are known to be responsible for motor 

preparation and execution (Price, 2012). The present study suggests that articulatory preparation has 

an important role in stuttering. The amount of reduction in motor programming activation seems to 

be related to the amount of stutters that will occur during conversation. 

This observation is opposite to the hypothesis put forward in the introduction. Neuroimaging 

research mostly described positive correlations between stuttering severity/frequency and several 

(sub)cortical brain structures that are part of the BGTC – loop (Braun et al., 1997; Fox et al., 2000; 

Giraud et al., 2008; Chang et al., 2009; Kell et al., 2009; Ingham et al., 2012). As the amount of 

activity in this loop is known to be positively associated with the CNV amplitude (Fan et al., 2007), an 

increased amplitude was expected. Indeed, some older CNV reports in stuttering found an enlarged 

CNV amplitude (Prescott & Andrews, 1984; Prescott, 1988). However, all these studies concern 

developmental stuttering. Although neurogenic and developmental stuttering are suggested to share 

common neural substrates (Theys et al., 2012), its translation in CNV amplitude seems to be 

different. The neural network involved in fluent (and stuttered) speech is suggested to be differently 

interrupted causing the opposite observation in MH.  

According to the DIVA (Directions into Velocities of Articulators) speech model, two systems are 

necessary for fluent speech: a feedforward and a feedback system. Motor preparation is provided by 

the so called Speech Sound Map situated in the caudoventral portion of the precentral gyrus. The 

initiation and sequencing of different speech motor programs would depend on activity in the basal 

ganglia and the thalamus. Both are part of the feedforward system (Guenther, 2006). As the CNV is 

related to motor programming and the BGTC – loop, this potential would reflect activity in the 

feedforward loop. Left STG on the other hand, MH’s lesion site, is situated in the feedback system. In 

this system, the expected and the actual sensory speech output are compared and corrected if 

necessary (Guenther, 2006; Golfinopoulus et al., 2010). Thus, MH’s lesion site is primarily affecting 

another subsystem than the one that is measured by the CNV.  

Moreover, developmental stuttering is suggested to have its primary lesion in the proximity of the 

left IFG (Sommer et al., 2002; Chang et al., 2008, 2011; Watkins et al., 2008; Kell et al., 2009; 
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Cykowski et al., 2010) which is located in the feedforward system. This lesion will affect auditory-

motor integration and provide aberrant input to the basal ganglia (Giraud et al., 2008). In the 

presented case, auditory-motor integration will probably be disturbed as well due to the lesion in the 

feedback system. However, since MH’s lesion is located in a different region, and in a different 

subsystem of the DIVA model, than the hypothesized lesion in developmental stuttering, its impact 

on auditory-motor integration, on left IFG activation and consequently on the BGTC – loop, might be 

different as well. Hence, the direction of the CNV amplitude alteration might be reversed.  

Since the present study concerns a case description, no correlation analysis could be performed. 

Future group studies may clarify whether a correlation between CNV amplitude and stuttering 

severity/frequency exists. Moreover, these group studies are recommended to involve 

developmental stuttering to see whether the hypothesized positive correlation based on the 

literature and the alternative explanation for the reversed association found in MH hold true. But 

taken together, late CNV amplitude elicited by a relatively simple speech task is hypothesized to 

provide an objective, neural correlate of stuttering frequency. 

Note that MH did not stutter during the CNV task. Isolated word production usually evokes no or 

very little stuttering (Brown, 1938; Adams et al., 1973) probably because it requires relatively little 

effort by the neural speech motor system (Bloodstein & Ratner, 2008). So, even without stuttered 

speech during task performance, a substantial motor programming dysfunction may be present. This 

observation suggests that when a limited load is put on the speech motor system, motor 

programming disturbances are either not enough to evoke stuttering or are surmountable by 

compensation strategies.  

In the response-locked analysis, the reversed activity pattern was not observed over F4, F8, T3 and 

T4. Late CNV was larger at the 3rd compared to the 4th test session though %SS was larger at the 3rd 

session. At the 1st, 2nd and 4th testing, 3 out of these 4 electrodes were amongst the lowest 

amplitudes of all electrodes. Conversely, 3 out of these 4 (T3, F4 and F8) had the highest amplitude 

of all at the 3rd evaluation. Thus, at the 3rd evaluation, the CNV over these electrodes showed a 

relative increase compared to the CNV over central and left frontal sites. It is tempting to suggest 

that this relative increase at the right-sided electrodes is related to compensation strategies and at 

T3 to the cause of the stuttering worsening since T3 is closely located to left STG, MH’s lesion site. 

This suggestion concurs with a traditional divergence made between left and right hemisphere in 

developmental stuttering. While left hemisphere observations would reflect the primary deficit 

(Sommer et al., 2002; Chang et al., 2008; 2011), right-sided activations would result from 

compensatory processes. Especially right frontal regions are reported in this respect (Braun et al., 

1997; Preibisch et al., 2003). RFO is the most frequently reported brain region to show anomalous 

right activation in AWS (for a meta-analysis, see Brown et al., 2005). Its overactivation is suggested to 
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compensate for a deficient signal transmission in left hemisphere areas for motor preparation and 

execution (Sommer et al., 2002; Watkins et al., 2008; Chang et al., 2011). As F4, F8 and T3 are closely 

located to RFO and to the contralateral homologue of MH’s lesion site, these electrodes might have 

registered this overactivation. However, to substantiate this hypothesis, source reconstruction 

techniques should be applied on the data. Unfortunately, source localization would not provide 

reliable results because the present manuscript concerns a case report in whom data is collected 

with 21 electrodes. In sum, right sided increases in CNV amplitude observed at the 3rd evaluation are 

cautiously suggested to reflect an attempt to deal with the increase in stuttering frequency.  

 

4.2. Stuttering frequency, not severity 

CNV amplitude was inversely proportional to both %SS during conversation and overall stuttering 

severity as measured by the SSI-4 (Riley, 2008). However, the latter measure only showed small 

differences between the post-surgery evaluations. Such small differences are very unlikely to have 

caused such obvious changes in neural activity. Therefore, the pattern in CNV amplitude observed 

over central and left frontal sites is assumed to be related to stuttering frequency during 

conversation rather than to overall stuttering severity. Similarly, previous studies documenting 

associations between neural findings and stutter related variables, mostly found this correlation with 

a measure related to stuttering frequency (Braun et al., 1997; Fox et al., 2000; Giraud et al., 2008; 

Chang et al., 2009; Kell et al., 2009; Ingham et al., 2012). The severity measure differs from stuttering 

frequency in that it also includes ‘physical concomitants’. These secondary behaviours do not belong 

to the primary speech characteristics of stuttering. They are, at least partly, not the result of neural 

disturbances, but rather of the coping behaviour by the speaker to his/her stuttering.  

Also the severity ratings provided by the judges, mirror the %SS scores. This is in line with previous 

research reporting high correlations between %SS and clinician severity rating (O’Brian et al., 2004; 

Karimi et al., 2013).  

 

4.3. Other influencing factors  

Although influences from attention deficits cannot be excluded, the present data provide several 

arguments for stuttering frequency to be the main contributor to CNV changes. First, the reversed 

association pattern is observed over brain regions that are well-known to be primarily involved in 

motor functions (Price, 2012). Secondly, the relative increase during the 3rd testing at right frontal 

areas is a typical compensation strategy for motor difficulties in stuttering (Preibisch et al., 2003). 

Also a retest-effect is very unlikely to have occurred since CNV amplitude measures are shown to be 

reliable and stable (Kropp et al., 2000). Moreover, if there had been a retest-effect, all electrodes 

should have shown a similar, decreasing pattern over consecutive test sessions. Finally, although 
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MH’s neurological condition was not entirely stable over time (after the pre-surgery test session, MH 

experienced one more stroke and the surgery in itself), no variance in neurological condition 

between all three post-surgery sessions was present. Therefore, its influence on the present results 

will be limited to even absent.  

As the left STG is a key area for auditory and phonological processing (Salmelin, 2007; Vigneau et al., 

2006), problems in these domains may arise. However, MH was flawless at behavioural auditory 

language testing. Also neurophysiological examination revealed no particular auditory or language 

deficits. The only observed deviations concerned faster latencies than average which can but be seen 

as an alteration, not as a dysfunction. Even more so because the amplitudes of all peaks were within 

normal limits at all test sessions. Early sensory-perceptual processes and intermediate stages of 

auditory feature analyses are reflected by N100 and P200 (Cooper et al., 2006; Näätänen et al., 

2011). The latter peak also reflects some phonological processing (Zhang et al., 2009). In addition, 

phonological processing was specifically evaluated by the MMN and P300 task which required 

phoneme discrimination (Aerts et al., 2013). As all these peaks were within normal limits, MH can be 

concluded to have normal auditory and phonological processing skills. Finally, following the N400 

results, also lexical processing (pseudo word processing) and semantic integration (real word 

processing) seems to be unaffected (Kutas & Federmeier, 2000; Giaquinto et al., 2007; Hauk et al., 

2012). In conclusion, both behavioural and neurophysiological evaluation revealed no remarkable 

deficits in auditory, phonological and lexico-semantic processing that might have had a modifying 

role in CNV amplitude variation.  

 

4.4. Acquired stuttering 

Stuttering following brain damage may not always be ‘neurogenic’ stuttering. Psychogenic stuttering 

has been described as well and the differential diagnosis may be complex. One of the reasons is that 

literature on their stuttering pattern is characterized by conflicting observations. Even attempts to 

find correspondences between patients with a similar neurogenic aetiology resulted in contradictory 

results (Theys et al., 2008; De Nil et al., 2009). The present case report is no exception to this. MH 

stutters were mainly blocks and prolongations which contradicts the general finding that repetitions 

are the predominant speech characteristic in most neurogenic and psychogenic stuttering patients 

(Theys et al., 2008; Van Borsel, 2011). For the following reasons however, MH was concluded to 

suffer neurogenic and not psychogenic stuttering. Psychogenic stuttering patients (1) typically stutter 

during all speech modalities, (2) are generally found to be indifferent to their stuttering, and (3) often 

had earlier psychosomatic disorders (Van Borsel, 2011). In contrast, MH only stutters during 

conversation, is clearly concerned about her stuttering and had no previous psychogenic related 

complaints. Moreover, stuttering onset is clearly linked with a neurological event. Although 
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stuttering occurred a few days after a stroke with no observed increase in bleeding, neurologists 

suggested the increase in oedema would be the cause of the somewhat delayed appearance. Finally, 

MH’s lesion site, left STG, is well known to have a crucial role in fluent and stuttered speech (Brown 

et al., 2005; Guenther, 2006). 

As mentioned before, no uniformity can be found among neurogenic stuttering patients. This 

accounts for MH as well. Neurogenic AWS would be more likely to stutter during non-propositional 

speech than developmental AWS (Helm-Estabrooks et al., 1986; Helm-Estabrooks, 1993). However, 

MH rarely stuttered during reading, automatic speech and repetition. Her %SS during conversation 

on the other hand, increased to a moderate level. This opposite pattern has been described in some 

cases with neurogenic stuttering following stroke, traumatic brain injury and brain surgery (Theys et 

al., 2008). It is even a recurrent finding after thalamic stroke (Abe et al., 1993; Van Borsel et al., 

2003b).  

Overall, MH’s stutters occurred exclusively in word initial position, which is a typical finding in both 

developmental and neurogenic stuttering (Bloodstein & Ratner, 2008; De Nil et al., 2009). MH’ 

stuttering solely involved sounds, not syllables or longer units. MH displayed only limited secondary 

behaviours that were less elaborate and more transient than typically seen in developmental 

stuttering. Indeed, secondary behaviour is suggested to occur less frequently or to be absent in 

neurogenic AWS because they stutter mostly for a relatively short period of time. Full blown 

secondary behaviour may, as is the case in developmental stuttering, appear after stuttering for a 

significant period of time (De Nil et al., 2009). Note that in line with this suggestion, a slight 

increasing trend in physical concomitants was observed in MH, despite a decrease in stuttering 

frequency at the 4th session.  

One last form of acquired stuttering is pharmacogenic stuttering. Several medicines have been 

described to influence fluency/stuttering (for a review, see Brady, 1998; and Boyd et al., 2011). At all 

test sessions, MH only took levetiracetam, an antiepileptic medicine. Several antiepileptic drugs have 

been found to affect fluency (Sechi et al., 1997; Brady, 1998; Mula et al., 2003). However, 

levetiracetam is consistently described to reduce stuttering (Canevini et al., 2002; Sechi et al., 2006). 

Therefore, MH’s stuttering is very unlikely to have a pharmacogenic origin.  

 

5. Conclusion 

For the case described, CNV amplitude is shown to be inversely related to stuttering frequency 

during conversation. The larger the stuttering frequency, the smaller the CNV amplitude. Thus, the 

amount of disturbance in articulatory preparation seems to be related to the amount of stutters that 

will occur during conversation. During task performance, no stuttering appeared. This observation 

suggests that when only a limited load is put on the speech motor system, motor programming 
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disturbances are either not enough to evoke stuttering or are surmountable by compensation 

strategies. At the test session with most severe stuttering, such a cortical compensatory mechanisms 

was cautiously suggested to be triggered at right frontal electrodes.  

Overall, motor preparation is suggested to have an important role in stuttering. Late CNV amplitude 

elicited by a relatively simple speech task seems to be able to provide an objective, neural correlate 

of stuttering frequency.  
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Abstract 

Abnormal speech motor preparation is suggested to be a neural characteristic of stuttering. One of 

the neurophysiological substrates of motor preparation is the contingent negative variation (CNV). 

The CNV is an event-related, slow negative potential that occurs between two defined stimuli. 

Unfortunately, CNV tasks are rarely studied in developmental stuttering (DS). Therefore, the present 

study aimed to evaluate motor preparation in DS by use of a CNV task. Twenty five adults who 

stutter (AWS) and 35 fluent speakers (FS) were included. They performed a picture naming task while 

an electro-encephalogram was recorded. The slope of the CNV was evaluated at frontal, central and 

parietal electrode sites. In addition, a correlation analysis was performed with stuttering severity and 

frequency measures.  

There was a marked increase in CNV slope in AWS as compared to FS. This increase was observed 

over the entire scalp with respect to stimulus onset, and only over the right hemisphere with respect 

to lip movement onset. Moreover, strong positive correlations were found between CNV slope and 

stuttering frequency and severity. As the CNV is known to reflect the activity in the basal ganglia-

thalamo-cortical – network, the present findings confirm an increased activation of this loop during 

speech motor preparation in stuttering. The more a person stutters, the more neurons of this 

cortical-subcortical network seem to be activated. Because this increased CNV slope was observed 

during fluent single word production, it is discussed whether or not this observation refers to a 

successful compensation strategy.  

 

 

 

Keywords 

contingent negative variation, stuttering severity, stuttering frequency, compensation, motor 

preparation, basal ganglia, dopamine   
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1. Introduction 

Stuttering is a speech disorder primarily characterized by the occurrence of speech blocks, 

prolongations and/or repetitions of sound or syllables. These may be accompanied by accessory 

(secondary) behaviours, i.e. behaviours used to escape and/or avoid these speech events (American 

Speech-Language-Hearing Association, 1999). When the disorder begins in early childhood, it is called 

developmental stuttering (DS) (Bloodstein &Ratner, 2008; Van Borsel, 2014). One of the neural 

characteristics of DS is abnormal motor preparation. Motor preparation contains all processing 

stages in which a phonological word is transferred into concrete, context-specific articulatory motor 

commands. According to some theories, it includes phonological word encoding as well (Peters et al., 

2000; Indefrey & Levelt, 2004; Indefrey, 2011). 

Apart from theoretical arguments for speech motor planning deficits in stuttering (Venkatagiri, 2004; 

Peters et al., 2000; Packman et al., 1996), neurological evidence is available. The most important 

cortical structure for motor preparation is the premotor cortex (PMC) with a distinct role of its 

ventral part (vPMC) for speech (Golfinopoulus et al., 2010). Adjacent to and partly overlapping with 

vPMC is the inferior frontal gyrus (IFG) which includes in the left hemisphere, the well-known Broca’s 

area (Brodmann area 44, 45). Several studies on stuttering reported both anatomical and functional 

disturbances in this region. Uni- and bilateral hypo- and hyperactivations have been described at 

rest, in silent reading and overt speech production (Fox et al., 1996; De Nil et al., 2000, 2003; Watkins 

et al., 2008; Xuan et al., 2012). The most recurrent finding is an anomalous right laterality in activity 

of the frontal operculum, the homologue of Broca’s area (for a meta-analysis, see Brown et al., 

2005). Three magneto-encephalography studies revealed some interesting findings as well. Walla et 

al., (2004) observed in adults who stutter (AWS) a decreased preparatory activity in or close to 

bilateral motor cortex preceding overt word reading. Sowman et al., (2012) showed large differences 

in inferior frontal areas between fluent and stuttered speech. In this case report, blocks, as compared 

to fluent utterances, were associated with decreased activation in left and increased activation in 

right IFG extending into orbitofrontal areas. Finally, Salmelin et al., (2000) found an advanced 

activation of left motor cortex and a delayed activation of left IFG during overt reading. AWS were 

suggested to initiate motor programmes before preparing the articulatory code. This timing deficit 

has been linked with decreased white matter density in tracts connecting Broca’s area and left motor 

cortex (Sommer et al., 2002; Chang et al., 2011). 

When considering motor preparation, subcortical influences must be taken into account as well. The 

GODIVA (Gradient Order Directions Into Velocities of Articulators) model, an extension of the DIVA 

model (Guenther, 2006) provides an explanation on how speech movements are selected, sequenced 

and initiated (Bohland et al., 2010). This model highlights the crucial role of the thalamus and basal 

ganglia in motor preparation. These subcortical structures form a reciprocal loop with vPMC: the 
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basal ganglia-thalamo-cortical (BGTC) loop. An alteration of activation in this loop has repeatedly 

been shown in AWS. Moreover, these altered activations seem to correlate positively with stuttering 

frequency and severity (Braun et al., 1997; Fox et al., 2000; Giraud et al., 2008; Chang et al., 2009; 

Kell et al., 2009; Ingham et al., 2012).  

One of the electrophysiological substrates of motor preparation is the contingent negative variation 

(CNV).The CNV is an event-related, slow negative potential that occurs between two defined stimuli. 

The first stimulus is the warning stimulus (S1) which announces the imperative stimulus (S2) which in 

its turn requires a response (Walter et al., 1964; Rohrbaugh & Gaillard, 1983; McCallum, 1988; 

Regan, 1989; Golob et al., 2005). This response is typically a motor response, though cognitive tasks 

have been reported as well (e.g. Cui et al., 2000; Bares et al., 2007). If the interval between the onset 

of S1 and S2 is larger than 2 seconds, two CNVs can be distinguished within this interstimulus 

interval. The first one, the initial CNV, is induced by and related to orientation to the warning 

stimulus. It has its largest amplitude at frontal sites within the first second following S1. The second 

one, the late CNV, occurs before S2 and has a wide cortical distribution with a centro-posterior 

maximum (Walter et al., 1964; Loveless & Sanford, 1974; Rohrbaugh & Gaillard, 1983; McCallum, 

1988; Regan, 1989). The late CNV is reported to have multiple cortical and subcortical generators: 

prefrontal, premotor, primary motor, anterior cingulate, somatosensory and parietal regions as well 

as the basal ganglia and thalamus. Hence, the late CNV is generally accepted to measure the 

neuronal activity within the BGTC - loop (Lamarche et al., 1995; Hamano et al., 1997; Gomez et al., 

2003; Bares et al., 2007; Fan et al., 2007). This late CNV is suggested to represent primarily motor 

preparation, and, additionally, sensory anticipation for S2 (Bender et al., 2004; Bares et al., 2007).  

CNV research usually requires a motor response from the limbs. Only a few studies required speech 

or a non-speech oral movement (e.g. Michalewski & Weinberg, 1977; Yoshida & Iizuka, 2005; Mock 

et al., 2011). Stuttering is even less concerned and only older reports can be found, some of which 

unfortunately have a poor methodology compared to nowadays’ standards (Zimmerman & Knott, 

1974; Pinsky & McAdam, 1980). Prescott & Andrews (1984), and Prescott (1988) evaluated the 

influence of the complexity of the speech response on the CNV amplitude in AWS. In the former 

study, AWS displayed larger CNV amplitudes than fluent speakers (FS) but not significantly so. In the 

latter study, a significant increase was found, but only for familiar words. As familiar words are highly 

practiced speech responses and therefore very likely to be completely pre-programmed, the authors 

concluded that AWS have difficulties establishing efficient motor programs. This concurs with the 

suggestion of Venkatagiri (2004) that speech motor planning deficits in stuttering may be restricted 

to familiar syllable motor plans as opposed to new or unfamiliar utterance plans. The above studies 

mainly focused on the effect of task complexity on motor preparation, and as such the effect of 
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individual variation as to stuttering severity remained unexplored. Interestingly, Zimmerman & Knott 

(1974) observed large inter-individual variations among stuttering participants.  

Recently, we explored the effect of stuttering frequency/severity in a case of acquired stuttering 

following stroke in left superior temporal gyrus (STG) and stroke related surgery (Vanhoutte et al., 

2014). A speech related CNV task involving picture naming was administered at four points in time 

with differences in stuttering frequency. Late CNV amplitude appeared to be inversely proportional 

to stuttering frequency during conversation, i.e. the larger the stuttering frequency, the smaller the 

CNV amplitude which was opposite to the postulated hypothesis. As on the one hand, mostly 

positive correlations have been described between stuttering severity/frequency and the activity in 

the BGTC - loop (Braun et al., 1997; Fox et al., 2000; Giraud et al., 2008; Chang et al., 2009; Kell et al., 

2009; Ingham et al., 2012) and on the other hand, the CNV amplitude is known to represent the 

amount of activity in this loop (Fan et al., 2007), an increased amplitude with increasing stuttering 

frequency was expected. However, previous studies all concerned DS. We hypothesized that, in this 

patient, the neural network involved in fluent (and stuttered) speech was disturbed differently 

compared to DS, causing the opposite observation. In DS, the hypothesized lesion site is suggested to 

be in the proximity of the left IFG (Sommer et al., 2002; Chang et al., 2008, 2011; Watkins et al., 

2008; Kell et al., 2009; Cykowski et al., 2010), while in our case study the lesion was situated in left 

STG. Both regions will cause aberrant auditory-motor integration and will have an adverse effect on 

the cortical input of the BGTC – loop (Giraud et al., 2008). However, the effect may be different 

because the primary lesion site is different.  

Therefore, the present study aimed at evaluating the late CNV as an index of motor preparation 

activity during overt speech production in AWS with DS. Interactions between structures in the 

BGTC-loop are complex. In general, however, several structures have repeatedly been reported to 

show increased activations in stuttering (e.g. Ingham et al., 2012). As such, AWS are hypothesized to 

show an enlarged CNV amplitude. Secondly, the influence of stuttering severity and frequency was 

explored by a correlation analysis. In case of a correlation, a positive correlation was expected.  

 

2. Method 

2.1. Participants 

Originally, 35 AWS with DS and 41 FS were included in the study. Some participants had to be 

excluded because of (A) technical problems with the microphone (n= 2), (B) abundant EEG artefacts 

due to speech (n= 3), sweating (n= 3), masseter EMG (n= 1) or secondary behaviour (n= 2), and (C) no 

(pure) DS (n= 2). Although 28 AWS remained with good quality EEG data, 3 more participants were 

not included in further analyses because they stuttered on most trials of the experimental task. As is 
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explained further on, only fluently produced utterances were subjected to further analyses in the 

present study.  

Eventually, EEG data of 25 AWS (M/F ratio: 19/6; mean age: 29.9 years; age range: 18 – 57 years) and 

35 FS (M/F ratio: 24/11; mean age: 28.9 years; age range: 18 – 58 years) remained in the sample to 

be analysed. Both groups did not differ significantly for age and educational background (Mann-

Whitney test: p= 0.84 and p= 0.61 respectively). 4 AWS and 3 FS were left-handed (Oldfield, 1971). 

All AWS had already received one or more stuttering treatments of variable duration and intensity. 

None of the control participants had a history of stuttering nor had stuttering relatives. Both AWS 

and FS were monolingual native speakers of Dutch, and reported no history of hearing complaints, 

dyslexia or other speech-language problems, neurological or psychiatric disorders, and presented 

with normal or corrected-to-normal vision. None of the participants was on psycho-active drugs. All 

participants gave their written informed consent in accordance with the declaration of Helsinki. The 

study was approved by the local ethics committee.  

 

2.2. Speech assessment 

In each participant, a conversational speech sample (conversation with the investigator about 

work/school/hobby/family) and a reading speech sample (reading of the Dutch translation of the text 

‘The north wind and the sun’, International Phonetic Association, 1974) was collected. All samples 

were videotaped (Canon ACV HD , 1920 x 1080 camera) and also audiotaped in the software program 

for acoustic analysis Praat (Boersma and Weenink, Phonetic Sciences, University of Amsterdam, 

Amsterdam, The Netherlands) using a Samsung CU01 microphone placed 50 cm in front of the 

participant.  

Speech samples were judged for stuttering severity by means of the Stuttering Severity Instrument, 

(SSI-4; Riley, 2008) and percent stuttered syllables (%SS) was calculated following the principles of 

the Stuttering Measurement System (Ingham & Ingham, 2011). Stuttered syllables included part-

word (sound/syllable) repetitions, prolongations, blocks, broken words and tense pauses (American 

Speech-Language-Hearing Association, 1999; Yaruss, 1997). Repetitions of monosyllabic words were 

considered as stuttered dysfluencies when they were repeated at a high rate (Bezemer et al., 2010; 

Guitar, 2006), with apparent undue stress, tension or struggle (American Speech-Language-Hearing 

Association, 1999; Van Zaalen & Winkelman, 2009) or when the number of repetition units was 3 or 

more (Boey et al., 2009; Gregory, 1993). Stuttering was diagnosed by a certified speech-language 

pathologist based on % SS (>3%) and/or the presence of significant speech-related struggle 

behaviour. Stuttering severity varied considerably between participants. Ten AWS presented with 

very mild, 7 with mild, 3 with moderate, 3 with severe and 2 with very severe stuttering.  
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All samples were scored off-line. 25% of samples were re-evaluated by a second evaluator (MC) to 

assess inter-rater reliability. Both evaluators are speech therapists specialized in stuttering. An 

intraclass correlation coefficient (ICC) was calculated for overall percentile score on SSI-4 (Riley, 

2008), %SS for reading and %SS for conversation. ICC’s of 96.3; 99.7 and 99.5 % respectively were 

obtained, indicating excellent agreement.  

 

2.3. Neurophysiological assessment 

2.3.1. EEG data acquisition  

EEG data were collected with Neuron-Spectrum-5 (4EPM) registration software (Neurosoft, Moscow, 

Russia). By use of an universal EEG cap (Haube S2), 21 Ag/AgCl electrodes (Fp1, Fpz, Fp2, F7, F3, Fz, 

F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2) were placed on the scalp according to the 

international 10/20 system. Two more electrodes were placed above the right side of the upper lip 

and underneath the left side of the lower lip to register the electromyography (EMG) of the 

orbicularis oris muscle in a bipolar fashion. Additional reference and ground electrodes were placed 

on the earlobes and forehead respectively. Neurophysiological data were recorded at a sampling rate 

of 500 Hz (0.01-75Hz band-pass filter). Impedance of each electrode was kept below 5kΩ. The 

participants were encouraged to avoid orofacial movements and to reduce eye-blinks as much as 

possible. Each EEG session was also videotaped using a Canon ACV HD (1920 x 1080) camera. 

 

2.3.2. CNV paradigm 

The same picture naming task was used as in the previously described case report (Vanhoutte et al., 

2014). The pictures were selected from a picture naming norms database, provided by the 

Department of Experimental Psychology from the Ghent University, Belgium (Severens et al., 2005). 

For further analysis, speech onset had to be determined. Articulatory movements were shown to 

precede vocalization during a Bereitschaftspotential paradigm. Depending on the initial phoneme, 

the lips or the tongue were the first source (McArdle et al., 2009). Lip movements are easier to 

detect than tongue movements with EMG. Therefore, pictures were chosen that referred to a noun 

that had a bilabial (/m/, /w/, /b/, /p/) or labiodental (/f/, /v/) initial phoneme.  

The picture was presented as S1 and was shown for 1 second. The S2, in the form of a short, black 

line, appeared 2 seconds after S1 onset (the foreperiod duration was 2 seconds) indicating that the 

participant should name the picture as quickly as possible. S2, shown for 2 seconds, was followed by 

a black screen for another 2 seconds. If the participant continued to stutter on a word once this black 

screen appeared, he/she was instructed to stop speaking in order not to contaminate the next trial 

with muscular artefacts (for a diagram of the CNV task, see Figure 1A). One hundred and ten black 

and white line drawings were shown on a white background in the middle of a computer screen that 
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was placed one meter in front of the participant. Participants were instructed to name the pictures 

using only one word or to say ‘pass’ if they did not know the noun. The percentage of correctly 

identified pictures was determined and evaluated statistically (see further on). 

As the large majority of responses were produced fluently, only fluent utterances were subjected to 

further electrophysiological analyses. Some responses were additionally excluded if (1) the word was 

produced before S2 was shown, (2) the produced word did not have a labiodental or bilabial initial 

phoneme, or (3) the participant swallowed or made an inappropriate lip movement within 1500 ms 

preceding S2, which was judged based on the videotape recordings and visual inspection of the EMG 

signal. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (A) Diagram of the picture naming CNV task. The warning stimulus (S1) consists of a picture, the 
imperative stimulus (S2) of a short, black line that prompts the participant to name the picture as quickly as 
possible. Interstimulus interval (ISI) is 2 sec. (B) EMG signal of the orbicularis oris muscle of one response. The 
dotted arrows represent the onset of the corresponding image in (A). The full arrow represents the onset of the 
EMG signal. Reaction time is the time between S2 onset and EMG onset. (C) Stimulus locked average at Cz for 
the FS. Latency (x-axis) is represented in milliseconds (ms) and amplitude (y-axis) in microvolts (µV). Negative is 
plotted upwards. Baseline is the first 500 ms op the epoch i.e. 500 ms before S1 onset. The 0 ms point is S2 
onset. While the blue bar indicates the early CNV, the pink bar highlights the late CNV. Again, dotted arrows 
represent the onset of the corresponding image in (A). 
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2.3.3. Off-line EEG analysis 

Off-line analysis was performed using BrainVision Analyzer 2 (Brain Products, Munich, Germany). 

After additional filtering (0.01-30 Hz band-pass filter, Notch filter 50 Hz), eye artefacts were removed 

by Independent Component Analysis (Mennes et al., 2010). Two components (eye blinks; left-right 

eye movements) were excluded based on inspection of the components’ spatial distribution. It is 

recommended to analyse speech related brain activities not only time-locked to stimulus onset, but 

also time-locked to response onset. Activities linked to response execution emerge time-locked to 

the response and might be slightly reduced in analysis time-locked to stimulus presentation (Riès et 

al., 2013). This is of particular importance for stuttering as AWS have been described to show slower 

reaction times (RT) than FS (Smits-Bandstra & Gracco, 2013). Therefore, data were analysed with 

respect to S2 and lip movement onset, from here on referred to as stimulus and response locked (S- 

and R-locked), respectively. Lip movement onset was detected by visual inspection of the EMG data 

of each trial (Van Boxtel et al., 1993; Hasbroucq et al., 1999; Carbonnell et al., 2004). Therefore, the 

EMG data were separately band-pass filtered from 15 Hz to 100 Hz to reduce the contamination by 

motion artefacts and non-myogenic potentials (Van Boxtel, 2001). RT was calculated as well. It was 

determined as the time between S2 and EMG onset for every trial in every participant (Figure 1B).  

After segmenting the continuous EEG data into epochs, all trials containing artefacts were manually 

excluded (Cui et al., 2000; Bares et al., 2007; Mock et al., 2011). By averaging over corresponding 

epochs, the CNV potential was computed. The average number of trials that were included in the S-

locked analysis was 97 for the FS and 77 for the AWS, and for the R-locked analysis: 93 for the FS and 

73 for the AWS.  

Due to methodological considerations of baseline correction (Luck, 2005), a slope analysis was 

performed on the CNV which is independent from the baseline (see 2.4. CNV analysis). As such, the 

baseline correction described in this paragraph is only performed for the construction of the figures 

(figure 1, 2 and 3) (Carbonnell et al., 2004). The continuous EEG data was segmented into epochs of 

4500 ms for the S-locked analysis, starting 2500 ms prior to S2, and into epochs of 4600 ms for the R-

locked analysis, starting 2600 ms prior to EMG onset. Baselines were taken from -2500 to -2000 ms 

for the S-locked and from -2600 to -2100 ms for the R-locked analysis. The baseline correction for the 

R-locked analysis was different in order to take a RT delay into account. Average RT was 32.8 ms for 

AWS and 60.9 ms for FS (see 3.1. Behavioural data). If the segmented epochs had been baseline 

corrected from -2500 to -2000 ms prior to EMG onset, a considerable number of trials would have a 

baseline that contained a part of the visual evoked potentials elicited by S1. Therefore, baseline 

correction was performed from -2600 to -2100 ms.  
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2.4. CNV analysis 

The late CNV can be measured by calculating its mean amplitude in the time window that contains its 

maximal variation. The time window of interest (TOI) for the present study was the 500 ms window 

preceding S2 and EMG onset. However, after visual inspection of the grand average event-related 

potential (ERP), mean amplitude appeared rather inappropriate for this data. Instead, a slope 

measure was preferred. Slope analysis has several advantages over classic mean amplitude analysis 

(Carbonell et al., 2004). First, they are independent of the baseline. This was of particular interest for 

the R-locked analysis. As RT varies largely between and even within participants, a fixed baseline 

correction would be performed on a different part of the EEG epoch for every trial and participant. 

Therefore, an ERP analysis that is independent from this varying variable is advisable. Secondly, slope 

measurements are independent of the amplitude level preceding the TOI. If both groups already 

differ in their amplitude at -500 ms, it is impossible to interpret differences in the late CNV. 

To overcome these difficulties, a slope measure was developed. Although peak-to-peak amplitude 

may be very useful for this purpose, mean amplitude is generally preferred above peak amplitude 

(Handy, 2005). Therefore, a mean-to-mean amplitude was used in which the absolute value of the 

difference between the mean amplitude of the first (-500 to -400 ms) and the last (-100 to 0 ms) 100 

ms of the TOI was computed (Luck, 2005). This was done for frontal (F3, Fz, F4), central (C3, Cz, C4) 

and parietal (P3, Pz, P4) electrodes as the late CNV was most pronounced at these sites.  

 

2.5. Statistical analysis 

Statistical analysis was performed in IBM SPSS Statistics 22.0 for both S- and R-locked analysis 

separately. A linear mixed model approach was applied to take the repeated measures design into 

account. Region (frontal, central, parietal) and Hemisphere (left, midline, right) were inserted as 

repeated variable. Both were also inserted as factor, together with Group (FS, AWS) as a third factor. 

Additionally, a correlation analysis was performed between the CNV slope and the following 

stuttering measures: stuttering frequency during reading, during conversation and stuttering 

severity. For the latter variable, the overall percentile score of the SSI-4 was calculated. Two 

behavioural measures were statistically compared between AWS and FS: (1) the accuracy in picture 

naming was evaluated by a Mann-Whitney U test, and (2) RT was assessed by a linear mixed model 

approach with Group (FS, AWS) as factor and Picture as repeated variable. Significance values were 

set at α ≤ 0.05 for main and interaction effects. All further pairwise comparisons were Bonferroni 

corrected.  
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Figure 2: S-locked analysis for all electrodes of interest. Latency (x-axis) is represented in milliseconds (ms) and 

amplitude (y-axis) in microvolts (µV). Negative is plotted upwards. Baseline correction, which is only performed 

for the construction of the figures, is the first 500 ms of the epoch. The 0 ms point is S2 onset. The CNV of the 

AWS is shown in red, the CNV of the FS is presented in black. The EEG signal past 0 ms is not entirely visible 

because the scale of the y-axis was chosen to enable a clear, detailed display of the early and late CNV. 

 
Figure 3: R-locked analysis for all electrodes of interest. Latency (x-axis) is represented in milliseconds (ms) and 
amplitude (y-axis) in microvolts (µV). Negative is plotted upwards. Baseline correction, which is only performed 
for the construction of the figures, is the first 500 ms of the epoch. The 0 ms point is EMG onset. The CNV of 
the AWS is shown in red, the CNV of the FS is presented in black. The EEG signal past 0 ms is not entirely visible 
because the scale of the y-axis was chosen to enable a clear, detailed display of the early and late CNV. 
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3. Results 

3.1. Behavioural data 

No significant difference in RT was observed (F(1,60)= 1.24; p= 0.27). AWS (M= 32.8 ms; SD= 177.7 

ms) even tended to show earlier EMG onsets than FS (M= 60.9 ms; SD= 202.4 ms). Picture naming 

accuracy, however, was significantly lower in AWS (M= 95.0%; SD= 3.3%) than in FS (M= 96.9%; SD= 

2.6%) (p= 0.008). A reduction of on average 2% was seen. 

 

3.2. CNV slope analysis 

A typical CNV wave was evoked, as can be seen in Figure 1C. After visual and linguistic processing of 

the pictures (S1), a clear increase in negativity occurred between 700 and 1000 ms following S1 (i.e. -

1300 to -1000 ms with respect to S2 onset). This early CNV (blue bar in figure 1C) was seen over 

(pre)frontal, central and parietal electrodes. At 1000 ms, the early CNV was interrupted by a new 

phase of visual processing because at this point in time the picture disappeared from the screen. 

Shortly hereafter, a steep increase in negativity could be observed, peaking around the presentation 

of S2. This negativity is the late CNV (pink bar in figure 1C) and has a wide scalp distribution. Because 

the R-locked analysis is time-locked to response execution, activities related to stimulus processing 

are smeared out. As a result, the peaks related to visual and linguistic processing cannot be clearly 

seen in this grand average ERP (Figure 3).  

Although in the S-locked analysis a significant Group*Hemisphere interaction (F(2, 60)= 5.59; p= 

0.006) was seen, AWS were found to show a significantly steeper CNV slope than FS over the entire 

scalp (Left: p= 0.029; Midline: p= 0.004; Right: p=0.013). The significant Group*Hemisphere 

interaction (F(2, 60)= 3.23; p= 0.046) for the R-locked analysis did reveal an important difference 

between hemispheres. AWS had a significantly steeper CNV slope than FS over the right hemisphere 

(p= 0.050), but not over the left hemisphere (p= 0.350) and midline electrodes (p= 0.165). 

For both the S- and R-locked analysis, the CNV slope had a centro-parietal maximum and showed no 

significant differences between left and right hemisphere (S-lock: F(2, 60)= 29.08; Left vs Right: p= 

0.729; R-lock: F(2, 60)= 4.66; Left vs Right: p= 1.000). 

 

3.3. Correlation 

As none of the stutter measures were normally distributed (Kolmogorov-Smirnoff: p< 0.001), a 

Spearman correlation was calculated. A graphical depiction of all correlation analyses can be found in 

Figure 5. For the S-locked data, a correlation was performed with the CNV slope observed at Cz 

because here the largest CNV occurred. A significant and positive correlation was found for all 

variables: %SS during reading (r= 0.58; p= 0.001), during conversation (r= 0.59; p= 0.001), and 

stuttering severity (r= 0.58; p=0.001). For the R-locked data, only over the right hemisphere a 
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significant difference between FS and AWS was observed (see above). Therefore, the occurrence of a 

correlation was explored with the CNV slope at C4. No correlations were found with any variable: 

%SS during reading (r= 0.15; p= 0.24), during conversation (r=0.16; p= 0.22), stuttering severity (r= 

0.12; p= 0.28).  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4: Graph depicting the 95% confidence interval of the CNV slope for all electrodes of interest (y-axis). S-
locked analysis is shown on the left, R-locked analysis on the right. Results are split according to hemisphere (x-
axis). 

 

 

 

Figure 5: Scatter diagram of the correlation analyses between CNV slope (x-axis) and stuttering measures (y-
axis): %SS during reading (A), % SS during conversation (B), and overall severity percentile score (C). The S-
locked based correlations (CNV slope at CZ) are shown on top, the R-locked based correlations (CNV slope at 
C4) are shown below.  
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4. Discussion 

Motor preparation was evaluated in AWS and FS by means of a CNV design during a picture naming 

task. A typical CNV wave was evoked: while an early CNV followed S1, a second and larger negativity 

over (pre)frontal, central, parietal and temporal areas preceded S2. The latter wave was largest over 

centro-parietal regions and is the late CNV related to motor preparation.  

 

4.1. Increased CNV slope 

The present findings show that AWS rely on more neural resources than FS during speech motor 

preparation. The late CNV was more steeply increased in AWS, which confirms previous studies 

reporting enlarged CNV amplitudes (Prescott, 1988; Prescott & Andrews, 1984). The increase was 

significant over the entire scalp for the S-locked analysis and only over the right hemisphere for the 

R-locked analysis. As the CNV reflects the neural activity in the BGTC – loop, the present results show 

that this cortico-subcortical network has markedly increased motor preparatory activity in DS.  

The positive correlation between the CNV slope of the S-locked analysis and stuttering 

frequency/severity highlights that the more a person stutters, the more this network will be 

activated during motor preparation. Several neuroimaging studies have reported positive 

correlations between stuttering measures and neural activity in several structures of the BGTC – loop 

(Braun et al., 1997; Fox et al., 2000; Giraud et al., 2008; Chang et al., 2009; Kell et al., 2009; Ingham et 

al., 2012). Thus, the present results confirm that the more a person stutters, the more the BGTC – 

loop will be activated during motor preparation. As hypothesized, inter-individual variation in 

stuttering severity/frequency is reflected in the CNV slope. 

Several theories on stuttering propose a key role for speech motor preparation (Howell, 2004; Alm, 

2004; Giraud et al., 2008; Civier et al., 2013). Additionally, structural and functional alterations have 

been observed in bilateral cortical and subcortical structures related to motor preparation (e.g. Fox 

et al., 1996; Watkins et al., 2008; Kell et al., 2009). Also other neurophysiological studies evidenced 

the importance of motor preparation alterations in stuttering. A reversed activation pattern of left 

motor preparation and execution areas has been observed during a single word reading task 

(Salmelin et al., 2000). A recent Transcranial Magnetic Stimulation (TMS) study showed that an 

increased excitability in left primary motor cortex, prior to the execution of a speech gesture, is 

absent in AWS (Neef et al., 2015). Although this finding seems to contradict the increased CNV slope 

observed in the present study, some important methodological differences arise. The TMS study 

reports on the primary motor cortex during the transition phase, i.e. the moment when a fixed 

articulatory position moves to a variable subsequent speech movement. The CNV slope, on the 

contrary, reflects activity of the entire BGTC-loop when a participant’s articulators are at rest.  
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4.2. Cause or compensation? 

The present results are based on fluently produced words. As could be expected, the majority of the 

utterances were fluent. Isolated word production usually evokes no or very little stuttering (Brown, 

1938; Adams et al., 1973) probably because it requires relatively little effort by the neural speech 

motor system (Bloodstein & Ratner, 2008). Nonetheless, even during fluent single word production, a 

substantial motor preparation alteration seems to be present in AWS. The lack of stuttered speech 

suggests that these motor programming disturbances can be overcome when only a limited load is 

imposed on the speech motor system. Motor preparation dysfunction alone seems insufficient to 

evoke stuttering. Future CNV studies may consider longer utterances to examine this hypothesis.  

A reverse reasoning is possible as well: the words may have been produced fluently because an 

increase in brain activation was present. Maybe other neural disturbances in AWS are surmountable 

by increased motor preparation activation. These two opposite interpretations are related to a 

typical discussion in stuttering research: which altered neural activations cause stuttering and which 

are the consequence of lifelong stuttering? Several studies suggest that the left hemisphere would 

contain the primary anomaly (e.g. Cai et al., 2014b; Sommer et al., 2002), while right-sided 

alterations would reflect compensation strategies (Preibisch et al., 2003; Brown et al., 2005). The 

findings of the R-locked analysis are in favour of the compensation hypothesis as the significant 

increase in CNV slope was only observed over the right hemisphere. To clarify this cause-

compensation issue, it might be interesting to have a look at the CNV amplitude preceding stuttered 

responses. An exploratory study on this matter is underway from our lab (Vanhoutte et al., under 

review). A recent case report demonstrated that large neural differences in motor preparation areas 

may present when comparing stuttered and fluent speech. Fluent words, as compared to blocks, 

evoked larger activation in left inferior frontal areas. An increase in its right counterpart was linked 

with the production of blocks (Sowman et al., 2012).  

 

4.3. Dopamine  

Dopamine, an important neurotransmitter in the BGTC – loop, may provide another explanation for 

the present results. The late CNV has been found to be modulated by dopamine availability (Kopell et 

al., 1974; Tecce, 1991; Tecce & Cole, 1974; Tecce et al., 1975) and its amplitude could even be a 

dopaminergic biomarker. Linsen et al., (2011) evaluated the CNV during a button press task after 

administration of placebo or 10, 20 or 40 mg of methylphenidate, a catecholamine re-uptake blocker 

which primarily enhances the synaptic concentration of dopamine. The authors reported an increase 

in CNV amplitude with increasing synaptic levels of dopamine. This is in accordance with CNV 

research in Parkinson’s disease (PD), a neurodegenerative pathology characterized by dopamine 
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depletion in the central nervous system. PD patients have a decreased CNV amplitude (Ikeda et al., 

1997) which increases after dopaminergic treatment (Amabile et al., 1986).  

Dopamine is suggested to affect stuttering as well. The excess dopamine theory of stuttering 

hypothesizes that stuttering is related to or influenced by an increased level of dopamine in the 

brain. A three-fold increase was reported in left caudate and right medial prefrontal and auditory 

cortex as well as in some limbic structures (Wu et al., 1997). Moreover, dopamine antagonists have 

been shown to improve fluency (Lavid et al., 1999; Maguire et al., 2000). In this regard, the present 

increase in CNV slope may be a reflection of increased levels of dopamine in the brain of AWS.  

The excess dopamine theory of stuttering is, however, not unequivocally supported by observations 

concerning stuttering-like dysfluencies in PD patients. These dysfluencies do not typically occur more 

frequently while on medication and less frequently while off medication. It rather seems that any 

change in dopamine level, an increase or a decrease, may affect the frequency of stuttering-like 

dysfluencies in both directions (Goberman & Blomgren, 2003; Goberman et al., 2010). This is in line 

with a recent suggestion by Civier et al., (2013) stating that both too low as well as too high levels of 

dopamine can cause stuttering moments.   

The results of the NS case report are very intriguing in this respect. As this patient showed a decrease 

in CNV amplitude with increasing stuttering frequency, it seems that not only a hyperactivation (as 

observed in the present DS group) but also a hypoactivation during motor preparation can be 

associated with stuttering. Again, both too low as well as too high levels of a certain trait seem 

related to stuttering. Because the exact relationship between dopamine levels and stuttering has not 

been clarified, no strong hypothesis on the influence of dopamine on the CNV results can be made. 

Future research will be very interesting to elucidate the role of dopamine in stuttering in general and 

in aberrant motor preparation as measured by the CNV more specifically.  

 

4.4. Reaction time (RT) 

No significant difference was observed between FS and AWS concerning RT, i.e. time between S2 and 

EMG onset. Interestingly, the EMG onsets even tended to spread into earlier latencies in AWS than in 

FS. At first sight, this result contradicts the rather consistently found delayed RT in stuttering (for an 

overview, see Bloodstein and Ratner, 2008). However, an important methodological difference 

arises: previous research determined speech onset by phonation onset while the present study 

focused on EMG onset of the orbicularis oris muscle. McFarlane and Prins (1978) also evaluated RT 

based on the EMG of the orbicularis oris. No significant delay was found when the response cue was 

a visual cue. Moreover, the present RT results are in perfect agreement with Salmelin et al., (2000), 

who used a very similar method. Their participants performed a visual task with a CNV design while 

mouth movement onset was determined by EMG of the orbicularis oris muscle. No significant 
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difference in RT was found and AWS tended to show earlier latencies in EMG onset than FS. Thus, 

task design as well as the measure to determine ‘speech onset’ seem responsible for the lack in RT 

delay.  

The difference in speed of phonation onset and lip movement onset might be a reflection of an 

important neurological observation. A recent meta-analysis showed that during fluent speech AWS 

have a reduced activation in left larynx motor area but an increased activation in right lip motor area 

(Belyk et al. 2014). The decreased larynx activation was suggested to be linked with the slower 

phonation initiation in stuttering. Maybe the increased lip activation can be associated with the 

somewhat faster lip movement onset. 

 

4.5. Other influencing factors 

Although language interference cannot be excluded, several arguments are in favour of the CNV 

results being mainly related to motor preparation. Indeed, AWS performed significantly less accurate 

on picture naming than FS. However, the difference is so small, on average 2%, that one can rightfully 

wonder if such a small difference could cause such large differences in neural activity. Previous 

language research using behavioural tasks evoked inconsistent results in stuttering (e.g. Prins et al., 

1997; Bosshardt and Fransen, 1996). Recently, there is even a growing body of literature reporting 

null results (e.g. Prins et al., 1997; Burger and Wijnen, 1999; Melnick et al., 2003; Weber-Fox et al., 

2004; Hennessey et al., 2008). Neurophysiological evaluation of picture naming on the other hand 

did report several alterations in both lexical-semantic and phonological processes (Maxfield et al., 

2010, 2012, 2014). However, as there is an interstimulus interval of 2 sec in the present study, these 

processing stages occur well before motor preparation. Moreover, a slope analysis was performed 

which enables CNV evaluation independent from the preceding amplitude level. This reduces a 

possible influence from previous processes. Finally, the significant difference in CNV slope was also 

seen in the R-locked analysis which is time-locked to response onset and by consequence has little 

influence from stimulus processing. In sum, language interference is suggested to be small. Future 

CNV research using different language tasks could explore this matter.  

A second possible confounding factor might be anticipation. Although the CNV primarily reflects 

motor preparation, an influence from stimulus anticipation has been reported as well (e.g. Bares et 

al., 2007). The S-locked analysis evoked larger significant results than the R-locked analysis. This 

might suggest that not only an increase in motor preparation, but also an increase in anticipation has 

contributed to the significant difference in the CNV slope. In the present study, EMG onset was 

visually determined. Future research might use a more objective method to evaluate the influence of 

anticipation. In any case, whether the CNV is purely affected by motor preparation or whether there 
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is an additional influence of stimulus anticipation, the present results show an increased BGTC – loop 

activity during fluent single word production in DS.  

 

5. Conclusion 

The present study evidences the presence of altered motor preparation in DS. Brain activity related 

to speech motor preparation was evaluated by use of a picture naming task with a CNV design. A 

significant increase in CNV slope confirms previous observations that report an increased activation 

of the BGTC-loop during speech motor preparation. A positive correlation between the CNV slope 

and stuttering frequency/severity was also observed. The more a person stutters, the more neural 

resources in this cortical-subcortical network seem to be activated. Remarkably, the present results 

are observed during fluent single word production. This suggests that motor preparation alterations 

are either (1) surmountable or insufficient to evoke stuttering or (2) a successful compensation 

strategy to overcome other neural disturbances. The observation that the increase in CNV slope is 

only significant over the right hemisphere in the response locked analysis, is in favour of the latter 

hypothesis. An exploratory study evaluating the CNV slope preceding stuttered responses might 

clarify this issue.  
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Abstract 

Neurological research in developmental stuttering often faces the challenge to distinguish neural 

impairments related to the cause and related to the consequence of stuttering. In a recent electro-

encephalography (EEG) study, speech motor preparatory activity generated by the basal ganglia-

thalamo-cortical (BGTC) – loop was found to be significantly increased in AWS compared to fluent 

speakers (FS) (Vanhoutte et al., (2015a). Remarkably, this increase preceded fluent word production 

suggestive for two opposite explanations: (1) motor preparatory alterations are insufficient to evoke 

stuttering, or (2) enlarged motor preparatory activity enables fluent speech production. To elucidate 

this cause-compensation issue, the present study evaluated speech motor preparation preceding 

stuttered responses of the task reported in Vanhoutte et al., (2015a). 

Speech motor preparation was evaluated by a contingent negative variation (CNV), i.e. a slow 

negative, event-related potential, evoked during a picture naming task. The CNV slope prior to 

stutters was compared to the CNV slope preceding fluent words in AWS and to the CNV slope 

obtained in the FS. The CNV prior to stutters did not differ from the CNV of the FS, but was 

significantly reduced compared to the CNV prior to fluent words of AWS. This confirms the 

compensation hypothesis: the increased CNV slope prior to fluent speech is a successful 

compensation strategy. The words are produced fluently because of an enlarged motor preparatory 

activity, especially over the right hemisphere. The left CNV slope prior to stutters correlated 

negatively with stuttering frequency and severity suggestive for a link between the left BGTC – 

network and the stuttering pathology. Overall, speech motor preparatory activity generated by the 

BGTC – loop seems to have a crucial role in stuttering. An important divergence between left and 

right hemisphere is hypothesized.  

 

 

 

Keywords 

contingent negative variation, stuttering severity, stuttering frequency, compensation, motor 

preparation, basal ganglia  
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1. Introduction 

Stuttering is a speech disorder in which the smooth succession of speech sounds is interrupted by the 

repeated occurrence of prolongations, blocks and repetitions of sounds and/or syllables. When 

stuttering is of developmental origin, manifesting itself for the first time during childhood, it is called 

developmental stuttering (DS) (Bloodstein & Ratner, 2008). About 95% of children who stutter (CWS) 

started stuttering by the age of 4 years (Yairi & Ambrose, 2005). Neurologically, DS is typically 

characterized by a hyperactivation in cortical and cerebellar motor structures and a hypoactivation in 

auditory areas (for a meta-analysis, see Brown et al., 2005). Alterations have also been described in 

several basal ganglia nuclei (e.g. Braun et al., 1997; Chang et al., 2009; Ingham et al., 2004; Kell et al., 

2009; Loucks et al., 2011; Watkins et al., 2008) and their connections with cortical areas (Chang et al., 

2011; Lu et al., 2010a, 2010b). By consequence, DS is characterized by cortical and subcortical 

abnormalities in speech motor planning, initiation, execution and monitoring.  

Most of these neurological findings are based on research conducted in adults who stutter (AWS). 

However, because DS starts during childhood, neuroanatomical growth and maturation of CWS may 

follow an abnormal trajectory (Beal et al., 2013; Chang, 2011). Moreover, the brain will try to 

overcome these deficiencies causing neural adaptation and compensatory processes which will 

further shape structural development (Chang et al., 2015). As a result, the neural activity and 

morphology pattern observed in AWS is a combination of the cause of stuttering on the one hand 

and the consequence of lifelong stuttering and compensation strategies on the other hand. It is an 

ongoing discussion which neural anomalies are related to the cause and which to 

consequence/compensation. Particularly the relative role of left and right hemisphere has been 

addressed. 

The increased cortical motor activations are often lateralized to the right hemisphere. Especially the 

right frontal operculum (RFO) is consistently reported to be overactivated in AWS (Brown et al., 

2005). Anomalous increased brain activity in one hemisphere might reflect a compensation for 

disturbed signal transmission in the other hemisphere. Indeed, right inferior frontal gyrus (IFG) is 

involved in inhibiting speech acts that are generated in the left IFG (Xue et al., 2008) and would only 

interfere when left IFG experiences problems (Lu et al., 2010a). The most consistently reported 

neuroanatomical abnormality in stuttering concerns a decreased fractional anisotropy of the white 

matter underneath left ventral sensorimotor cortex, closely located to left IFG. This white matter 

anomaly will hamper cortical interactions and cortico-subcortical interactions between speech 

related regions (Chang et al., 2008; Connally et al., 2014; Cykowski et al., 2010; Sommer et al., 2002; 

Watkins et al., 2008). Because for a long time no structural deficits were found in subcortical 

structures, this white matter abnormality was suggested by many to be related to the primary cause 

of stuttering (Kell et al., 2009). Recently however, structural alterations have been identified in the 
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basal ganglia (Beal et al., 2013) and their connections, even in CWS close to stuttering onset (Chang & 

Zhu, 2013). Overall, though not generally believed (e.g. Connally et al., 2014; Kronfeld-Duenias et al., 

2014; Watkins et al., 2008), there is increasing evidence for left hemisphere abnormalities to be 

associated with the neural basis of stuttering and right hemisphere deficits to be related to 

adaptation and compensation strategies (Preibisch et al., 2003). There is no consensus on whether 

the cortical or subcortical structures are the common basis for stuttering.  

In a recent electro-encephalography (EEG) study from our laboratory, speech motor preparatory 

activity generated by the basal ganglia-thalamo-cortical (BGTC) loop was found to be significantly 

increased in AWS compared to fluent speakers (FS). This increase correlated positively with stuttering 

frequency and severity (Vanhoutte et al., 2015a). Several theories on stuttering propose a key role 

for speech motor preparation (Howell, 2004; Alm, 2004; Giraud et al., 2008; Civier et al., 2013). 

Additionally, many neuroimaging studies have reported positive correlations between stuttering 

measures and neural activity in several structures of the BGTC – loop (Braun et al., 1997; Fox et al., 

2000; Giraud et al., 2008; Chang et al., 2009; Kell et al., 2009; Ingham et al., 2012). Also other 

neurophysiological studies evidenced the importance of motor preparation alterations in stuttering. 

They especially point at dysfunctions in the transfer of sensorimotor programs to the motor cortex, 

particularly in the left hemisphere (Neef et al., 2015; Salmelin et al., 2000). 

Remarkably, the increase in BGTC – loop activity during speech motor preparation occurred 

preceding fluently produced single words. Two explanations may account for the fluent word 

production: (1) isolated word production is well known to evoke no or only a few stutters (Brown, 

1938; Adams et al., 1973) probably due to its low demands on the neural speech motor system 

(Bloodstein & Ratner, 2008). Thus, when only a limited load is imposed on the speech motor system, 

motor preparation dysfunctions are either not enough to evoke stuttering or can be overcome by 

another system, or (2) the words were produced fluently because an enlarged speech motor 

preparatory activation in the BGTC – network was present.  

These two opposite interpretations are again related to the cause-compensation issue of stuttering. 

The significant increase in speech motor preparatory activity was bilaterally observed with respect to 

stimulus onset, (i.e. stimulus-locked or S-locked analysis), but only over the right hemisphere with 

respect to lip movement onset as measured by electromyography (EMG) of the orbiculatoris oris 

muscle (i.e. response-locked or R-locked analysis). As the R-locked analysis takes reaction time into 

account, activities related to response execution would be more pronounced in the R- than in the S-

locked analysis (Riès et al., 2013). The results of the R-locked analysis are thus slightly in favour for 

the compensation hypothesis. To clarify the cause-compensation issue, it may be very interesting to 

evaluate the speech motor preparation preceding stuttered responses. If the increased motor 

preparation activation prior to fluently produced words is related to successful compensation, the 
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speech motor preparation prior to stutters would be significantly lower than speech motor 

preparation preceding fluent words.  

Neurological research on stuttered speech is extremely scarce because AWS speak mainly fluent in 

experimental settings. Recently, two meta-analyses of neuroimaging studies were performed in 

which stuttered speech was compared to natural fluent speech in AWS (Belyk et al., 2014) and 

natural and induced (e.g. choral speech) fluent speech in AWS (Budde et al., 2014). Both meta-

analyses observed that stuttered speech is associated with an increased cerebellair and SMA 

activation and a decreased superior temporal gyrus activation. Unfortunately, the majority of the 

studies included in these meta-analyses referred to stuttered speech that is embedded in otherwise 

fluent speech with percentage stuttered syllables (% SS) starting from as low as 2.5%.  

To our knowledge, only 4 studies compared 100% stuttered with 100% natural fluent speech in AWS 

(den Ouden et al., 2013; Jiang et al., 2012; Sowman et al., 2012; Whymbs et al., 2013). The findings of 

these studies seem very contradictory. While two case reports associated stutters with a decreased 

activation in left inferior frontal regions (den Ouden et al., 2013; Sowman et al., 2012), a group study 

found that stutters were associated with an increased activation in this region (Jiang et al., 2012). It 

should be noted, however, that the latter study reported on a comparison between typical 

stuttering-like dysfluencies (e.g. blocks and prolongations) and less typical stuttering-like dysfluencies 

(e.g. phrase repetitions). Moreover, the case in den Ouden et al., (2013) showed more activation 

during stuttered than during fluent speech in only a few regions, whereas in Whymbs et al., (2013) 

the majority of significant findings represented an increased activation during stuttered compared to 

fluent speech. Finally, distinctive differences in brain activation during stuttered word production 

were even found across the four participants of the latter study. 

The present study aimed at evaluating speech motor preparatory activity preceding stuttered 

responses of the task reported in Vanhoutte et al., (2015a). By use of a picture naming task, a 

contingent negative variation (CNV) was evoked and recorded with EEG. A CNV is a slow, negative 

event-related potential occurring in between two successive stimuli. The first stimulus (S1) is a 

warning stimulus which precedes the second, called imperative, stimulus (S2). This S2 requires a 

motor response (Walter et al., 1964; Rohrbaugh & Gaillard, 1983; McCallum, 1988; Regan, 1989; 

Golob et al., 2005). When the interstimulus interval (ISI) is ≥ 2 seconds, two CNVs can be 

distinguished. The early CNV occurs within the first second following S1 and is related to orientation. 

The late CNV occurs just before S2 and primarily represents motor preparation (Walter et al., 1964; 

Loveless & Sanford, 1974; Rohrbaugh & Gaillard, 1983; McCallum, 1988; Regan, 1989). The late CNV 

is generally accepted to measure the neural activity within the BGTC – loop (Lamarche et al., 1995; 

Hamano et al., 1997; Gomez et al., 2003; Bares et al., 2007; Fan et al., 2007). 



150 | 

 

Chapter 10: When will a stutter occur? The determining role of speech motor preparation 

Although the stuttering participants in our previous study (in Vanhoutte et al., 2015a) produced the 

majority of the words fluently during the CNV picture naming task, a number of participants 

produced quite some stutters. It is hypothesized that if the increased motor preparation activation 

prior to fluent words is a successful compensation, the CNV prior to stutters would be significantly 

reduced compared to the CNV prior to fluent words. In addition, the CNV of the stuttered words is 

compared to the CNV of the FS included in the previous study as well. To our knowledge, this is the 

first EEG group study that compares brain activation related to pure fluent with pure stuttered 

utterances.  

 

2. Method 

2.1. Participants 

25 AWS with developmental stuttering (M/F ratio: 19/6; mean age: 29.9 years; age range: 18 – 57 

years; left/right handedness: 4/21) and 35 FS (M/F ratio: 24/11; mean age: 28.9 years; age range: 18 

– 58 years; left/right handedness: 3/32) were included in the previous study analysing fluent 

responses (Vanhoutte et al., 2015a). Handedness was determined by the Edinburgh Handedness 

Inventory (Oldfield, 1971). As mentioned before, only a minority of the responses was stuttered by 

most AWS. However, at least 30 artefact free trials should be included to obtain a good signal-to-

noise ratio (SNR) (Handy, 2005). Seven AWS (M/F ratio: 4/3; mean age: 33.4 years; age range: 19 – 57 

years; left/right handedness: 1/6) produced enough stutters to retain a sufficient number of trials 

after all artefact rejections (see further on).  

 

Table I: Detailed overview of the characteristics of the 7 AWS included in the measurement of the CNV slope 

preceding stutters. 

Subject Age Gender %SS Severity Included trials 

   Reading Conversation Percentile Category S-locked R-locked 

DA 27 M 32.3 30.9 97 very severe 31 30 

DM 51 F 22.6 3.4 78 severe 80 79 

DL 57 F 16.4 12.5 83 severe 89 87 

HR 33 F 0.01 2.1 18 mild 32 31 

MS 19 M 42.6 13.6 89 severe 89 85 

VS 24 M 4.8 2.4 12 mild 35 31 

VJ 23 M 1.0 3.4 24 mild 54 46 

 

All AWS had already followed one or more treatments of variable duration and intensity. None of the 

control subjects had a history of stuttering nor had stuttering relatives. Both AWS and FS were 

monolingual native speakers of Dutch, and reported no history of hearing complaints, dyslexia or 

other speech-language problems, neurological or psychiatric disorders, and presented with normal or 



Publications |151 

 

 

corrected-to-normal vision. None of the participants was on psycho-active drugs. All participants 

gave their written informed consent in accordance with the declaration of Helsinki. This study was 

approved by the local ethics committee. 

 

2.2. Speech assessment 

For each participant, a conversational and a reading speech sample was collected. As a reading task, 

the participants were asked to read the Dutch translation of the text ‘The north wind and the sun’ 

(International Phonetic Association, 1974). During the conversation speech sample, every subject 

engaged in a conversation with the investigator about work/school/hobby/family. All samples were 

videotaped using a Canon ACV HD (1920 x 1080) camera and were audiotaped in Praat, a free 

software program for acoustical analysis (Boersma and Weenink, Phonetic Sciences, University of 

Amsterdam, Amsterdam, The Netherlands) using a Samsung CU01 microphone placed 50 cm in front 

of the participant.  

Speech samples were judged for stuttering severity by means of the Stuttering Severity Instrument, 

fourth edition (SSI-4; Riley, 2008) and percent stuttered syllables (%SS) was calculated following the 

principles of the Stuttering Measurement System (Ingham & Ingham, 2011). Part-word 

(sound/syllable) repetitions, prolongations, blocks, broken words and tense pauses (American 

Speech-Language-Hearing Association, 1999; Yaruss, 1997) were counted as stuttered syllables. It is 

an ongoing debate whether to count monosyllabic word repetitions as stutters or not (Einarsdottir & 

Ingham, 2005). In the present study, repetitions of monosyllabic words were considered as stuttered 

dysfluencies when they were repeated at a high rate (Bezemer et al., 2010; Guitar, 2006), with 

apparent undue stress, tension or struggle (American Speech-Language-Hearing Association, 1999; 

Van Zaalen & Winkelman, 2009) or when the number of repetition units was 3 or more (Boey et al., 

2009; Gregory, 1993). Stuttering was diagnosed by a certified speech-language pathologist (SLP) 

based on % SS (>3%) and/or the presence of significant speech-related struggle behaviour. Stuttering 

severity varied considerably between participants. In the group of 25 AWS included in the previous 

study analysing fluent responses (Vanhoutte et al., 2015a), 10 AWS presented with very mild, 7 with 

mild, 3 with moderate, 3 with severe and 2 with very severe stuttering.  

All samples were scored off-line. 25% of samples were re-evaluated by a second rater (MC) to assess 

inter-rater reliability. Both raters are SLPs specialized in stuttering. An intraclass correlation 

coefficient (ICC) was calculated for overall percentile score on SSI-4 (Riley, 2008), %SS for reading and 

%SS for conversation. ICC’s of 96.3; 99.7 and 99.5% respectively were obtained, which ensured 

excellent agreement.  
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2.3. Neurophysiological assessment 

The same picture naming task and the same analysis as in Vanhoutte et al., (2015a) were used.  

 

2.3.1. EEG data acquisition  

EEG data were collected with Neuron-Spectrum-5 (4EPM) registration software (Neurosoft, Moscow, 

Russia). By use of an universal EEG cap (Haube S2), 21 Ag/AgCl electrodes (Fp1, Fpz, Fp2, F7, F3, Fz, 

F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2) were placed on the scalp according to the 

international 10/20 system. Two more electrodes were placed above the right side of the upper lip 

and underneath the left side of the lower lip to register the EMG of the orbicularis oris muscle in a 

bipolar fashion. An additional electrode on the forehead was used as ground. Neurophysiological 

data were recorded against a linked ears reference at a sampling rate of 500 Hz (0.01-75Hz band-pass 

filter). Impedance of each electrode was kept below 5kΩ. The participants were encouraged to avoid 

orofacial movements and to reduce eye-blinks as much as possible. Each EEG session was also 

videotaped using a Canon ACV HD (1920 x 1080) camera. 

 

2.3.2. CNV paradigm 

A picture naming task was made for which the pictures were selected from a picture naming norms 

database, provided by the Department of Experimental Psychology from the Ghent University, 

Belgium (Severens et al., 2005). For further analysis, speech onset had to be determined. Articulatory 

movements were shown to precede vocalization during a Bereitschaftspotential paradigm. 

Depending on the initial phoneme, the lips or the tongue were the first source (McArdle et al., 2009). 

Lip movements are easier to detect than tongue movements with EMG. Therefore, pictures were 

chosen that referred to a noun that had a bilabial (/m/, /w/, /b/, /p/) or labiodental (/f/, /v/) initial 

phoneme.  

The picture was presented as S1 and was shown for 1 second. The S2, in the form of a short, black 

line, appeared 2 seconds after S1 onset (the ISI was 2 seconds) indicating that the participant should 

name the picture as quickly as possible. S2, shown for 2 seconds, was followed by a black screen for 

another 2 seconds. If the participant continued to stutter on a word once this black screen appeared, 

he/she was instructed to stop speaking in order not to contaminate the next trial with muscular 

artefacts (for a diagram of the CNV task, see figure 1A). One hundred and ten black and white line 

drawings were shown on a white background in the middle of a computer screen that was placed 

one meter in front of the participant. Participants were instructed to name the pictures using only 

one word or to say ‘pass’ if they did not know the noun. 

Responses were excluded from further analysis if (1) the word was produced before S2 was shown, 

(2) the produced word did not have a labiodental or bilabial initial phoneme, or (3) the participant 
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swallowed or made an inappropriate lip movement within 1500 ms preceding S2 which was judged 

based on the videotape recordings and visual inspection of the EMG signal. The remaining responses 

were judged as fluent or stuttered by the first author following the same principles as the speech 

samples assessment (see 2.2). Only responses with a stutter on the initial phoneme were taken into 

account. 8 AWS produced more than 30 stuttered responses as required to obtain a satisfying SNR 

(Handy, 2005). Their utterances were re-evaluated by a second rater (MC). Responses that were not 

considered stuttered by both raters were also excluded. Stuttered responses were analysed 

separately from, but following the same procedure as the fluent responses.  

 

 
Figure 1: (A) Diagram of the picture naming CNV task. The warning stimulus (S1) consists of a picture, the 
imperative stimulus (S2) of a short, black line that prompts the participant to name the picture as quickly as 
possible. Interstimulus interval (ISI) is 2 sec. (B) EMG signal of the orbicularis oris muscle of one response. The 
dotted arrows represent the onset of the corresponding image in (A). The full arrow represents the onset of the 
EMG signal. (C) S-locked average at Cz for the FS. Latency (x-axis) is represented in milliseconds (ms) and 
amplitude (y-axis) in microvolts (µV). Negative is plotted upwards. Baseline is the first 500 ms op the epoch i.e. 
500 ms before S1 onset. The 0 ms point is S2 onset. While the blue bar indicates the early CNV, the pink bar 
highlights the late CNV. Again, dotted arrows represent the onset of the corresponding image in (A).  
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2.3.3. Off-line EEG analysis 

Off-line analysis was performed using BrainVision Analyzer 2 (Brain Products, Munich, Germany). 

After additional filtering (0.01-30 Hz band-pass filter, Notch filter 50 Hz), eye artefacts were removed 

by Independent Component Analysis (Mennes et al., 2010). Two components (eye blinks; left-right 

eye movements) were excluded based on inspection of the components’ spatial distribution. It is 

recommended to analyse language related brain activities not only time-locked to stimulus onset, 

but also time locked to response onset. Activities linked to response execution emerge time-locked 

to the response and might consequently be reduced in the analysis time-locked to stimulus 

presentation (Riès et al., 2013). Therefore, data were analysed with respect to S2 and lip movement 

onset, referred to as stimulus (S-) and response (R-) locked respectively. Lip movement onset was 

detected by visual inspection of the EMG data of each trial (Van Boxtel et al., 1993; Hasbroucq et al., 

1999; Carbonnell et al., 2004). The EMG data were separately band-pass filtered from 15 Hz to 100 

Hz to reduce the contamination by motion artefacts and non-myogenic potentials (Van Boxtel, 2001). 

After segmenting the continuous EEG data into epochs, all trials containing artefacts were manually 

excluded (Cui et al., 2000; Bares et al., 2007; Mock et al., 2011). One AWS was additionally excluded 

because not enough artefact free trials remained. Thus, 7 AWS remained to be analysed. By 

averaging over corresponding epochs, the CNV potential was computed.  

Due to methodological considerations of baseline correction (Luck, 2005), a slope analysis was 

performed on the CNV which is independent from the baseline (see 2.4. CNV analysis). As such, the 

baseline correction described in this paragraph is only performed for the construction of the figures 

(figure 1, 2 and 3) (Carbonnell et al., 2004). The continuous EEG data was segmented into epochs of 

4500 ms for the S-locked analysis, starting 2500 ms prior to S2, and into epochs of 4600 ms for the R-

locked analysis, starting 2600 ms prior to EMG onset. Baselines were taken from -2500 to -2000 ms 

for the S-locked and from -2600 to -2100 ms for the R-locked analysis. The baseline correction for the 

R-locked analysis was different in order to take a reaction time delay into account (see figure 1B). If 

the segmented epochs had been baseline corrected from -2500 to -2000 ms prior to EMG onset, a 

considerable number of trials would have a baseline that contained a part of the visual evoked 

potentials elicited by S1. Therefore, baseline correction was performed from -2600 to -2100 ms.  

 

2.4. CNV analysis 

The late CNV is usually measured by calculating its mean amplitude in the time window that contains 

its maximal variation. The time window of interest (TOI) for the present task was the 500 ms window 

preceding S2 and EMG onset. However, as seen in our previous study, mean amplitude appeared 

rather inappropriate for the present data. Instead, a slope measure was preferred. Slope analysis is 

more favourable than classic mean amplitude analysis (Carbonell et al., 2004) because (1) the slope is 
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independent of the amplitude level preceding the TOI and (2) the slope is independent of the 

baseline. This was of particular interest for the R-locked analysis. As reaction time varies largely 

between and within participants, a fixed baseline correction would be performed on a different part 

of the EEG epoch for every trial and participant. Therefore, an ERP analysis that is independent from 

this varying variable is advisable. A mean-to-mean amplitude was used in which the absolute value of 

the difference between the mean amplitude of the first (-500 to -400 ms) and the last (-100 to 0 ms) 

100 ms of the TOI was computed (Handy, 2005; Luck, 2005). This was done for frontal (F3, Fz, F4), 

central (C3, Cz, C4) and parietal (P3, Pz, P4) electrodes as the late CNV was most pronounced at these 

sites. 

 

2.5. Statistical analysis 

Statistical analysis was performed in IBM SPSS Statistics 22.0 for both S- and R-locked analysis 

separately. The CNV slope prior to stuttered words was compared to (1) the CNV slope preceding 

fluent utterances of AWS, and (2) the CNV slope observed in the FS group. Both comparisons were 

separately performed using a linear mixed model approach. The comparison between stuttered and 

fluent responses contained Region (frontal, central, parietal), Hemisphere (left, midline, right) and 

Utterance (fluent, stuttered) as repeated variables. These were also inserted as factor. For the 

comparison between stuttered responses and FS, Region (frontal, central, parietal) and Hemisphere 

(left, midline, right) were included as repeated variable. Both were also inserted as factor, together 

with Group (FS, AWS) as a third factor. Significance values were set at α ≤ 0.05 for main and 

interaction effects. All further pairwise comparisons were Bonferroni corrected. 

An additional correlation analysis was performed between the CNV slope and three stuttering 

measures: %SS during reading, %SS during conversation and stuttering severity. For the latter 

variable, the overall percentile score of the SSI-4 (Riley, 2008) was calculated. 

 

3. Results 

A typical CNV wave was seen preceding stuttered responses (figure 2). After visual and linguistic 

processing of the pictures (S1), a clear increase in negativity occurred between 700 and 1000 ms 

following S1. This early CNV (blue bar in figure 1C) was seen over (pre)frontal, central and parietal 

electrodes. At 1000 ms, the early CNV was interrupted by a new phase of visual processing because 

at this point in time the picture disappeared from the screen. Shortly hereafter, a steep increase in 

negativity could be observed, peaking around the presentation of S2. This negativity is the late CNV 

(pink bar in figure 1C) and has a wide scalp distribution. Since the R-locked analysis is time-locked to 

response execution, activities related to stimulus processing are smeared out. As a result, the peaks 

related to visual and linguistic processing cannot be clearly seen in this grand average ERP (figure 3).  
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Figure 2: S-locked analysis for all electrodes of interest. Latency (x-axis) is represented in milliseconds (ms) and 
amplitude (y-axis) in microvolts (µV). Negative is plotted upwards. Baseline correction, which is only performed 
for the construction of the figures, is the first 500 ms of the epoch. The 0 ms point is S2 onset. The CNV of the 
stuttered words is shown in red, the CNV of the fluent words is presented in black. The EEG signal past 0 ms is 
not entirely visible because the scale of the y-axis was chosen to enable a clear, detailed display of the early 
and late CNV. 
 

 

Figure 3: R-locked analysis for all electrodes of interest. Latency (x-axis) is represented in milliseconds (ms) and 
amplitude (y-axis) in microvolts (µV). Negative is plotted upwards. Baseline correction, which is only performed 
for the construction of the figures, is the first 500 ms of the epoch. The 0 ms point is EMG onset. The CNV of 
the stuttered words is shown in red, the CNV of the fluent words is presented in black. The EEG signal past 0 ms 
is not entirely visible because the scale of the y-axis was chosen to enable a clear, detailed display of the early 
and late CNV. 
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Both the S- and R-locked analysis displayed a main effect of Utterance (S-locked: F(1, 59)= 29.42; p< 

0.001; R-locked: F(1, 70)= 5.75; p= 0.019). The CNV slope preceding stutters was significantly smaller 

than the CNV preceding fluent words in AWS (figure 4). No significant result was obtained when 

comparing the CNV preceding stutters in AWS with the CNV obtained in the FS (S-locked: F(1, 38)= 

0.11; p= 0.746; R-locked: F(1, 41)= 0.93; p= 0.342). However, as can be seen in figure 4, the CNV slope 

of the R-locked analysis is markedly lower in AWS than in FS. The lack of a statistical significant 

difference is suggestive for large variation among the AWS. Therefore, an additional correlation 

analysis was performed between the CNV slope and the stuttering measures. Because the decrease 

in CNV was most pronounced over the left hemisphere, the CNV slope at C3 (R-locked) was used to 

explore a possible correlation. The association between CNV slope at C3 and the stuttering measures 

was best described by an exponential fit which was strongly significant for stuttering frequency 

during reading (R²= 0.893; p< 0.001) and stuttering severity (R²= 0.734; p= 0.007) (figure 5). 

 

 

 

 

 

 

 

 

 

 

Figure 4: Graph depicting the 95% confidence interval of the CNV slope for all electrodes of interest (y-axis). S-
locked analysis is shown on the left, R-locked analysis on the right. Results are split according to hemisphere (x-
axis). 

 

Figure 5: Scatter diagram of the correlation analysis between the R-locked CNV slope at C3 (y-axis) and the 
stuttering measures (x-axis). The correlation was best described by an exponential fit. The goodness of fit (R²) 
and significance value (p) of each correlation are provided.  
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4. Discussion 

The present study evaluated speech motor preparatory activity generated by the BGTC – loop 

preceding stuttered words. To our knowledge, this is the first group study using electrophysiology to 

compare 100% stuttered with 100% fluent speech. Motor preparation was evaluated by a CNV 

evoking picture naming task. A typical CNV could be identified consisting of an early CNV, occurring 

within 700 – 1000 ms following S1, and a late CNV, occurring prior to S2 and reflecting motor 

preparation. The late CNV preceding stuttered words was compared to (1) the CNV slope of the FS, 

and (2) the CNV slope preceding fluent words of AWS obtained in Vanhoutte et al., (2015a). 

 

4.1. Increased CNV slope preceding fluent words: cause or compensation? 

The CNV slope prior to stutters is significantly reduced compared to the CNV preceding fluent words. 

This reduction was observed over the entire scalp, for both the S- and R-locked analysis. Thus, motor 

preparatory activity generated in the BGTC – loops is significantly higher when a fluent words is 

produced compared to when a stutter is produced. This confirms the hypothesis that the marked 

increase in the CNV prior to a fluent word is a successful compensation strategy in AWS. The words 

are produced fluently because of an enlarged motor preparatory activity. The CNV slope prior to 

fluent words was previously found to correlate positively with stuttering frequency and severity 

(Vanhoutte et al., 2015a). Thus, the more a person stutters, the higher the motor preparatory activity 

must be to be successful and result in a fluently produced word. When this motor preparation 

increase does not occur, a stutter will be produced. Overall, the amount of motor preparatory 

activity in the BGTC – loop seems to be a determining factor whether or not a stutter will occur.  

 

4.2. Exponential fit with left CNV slope  

Despite a markedly lower CNV slope in AWS, no significant difference was found between the FS and 

the stuttered words of the AWS. This is suggestive for large variation among AWS. Indeed, an 

additional analysis revealed a negative correlation between the CNV slope at C3 and stuttering 

frequency during reading and stuttering severity. The more a person stutters in general, the lower 

his/her motor preparatory activity in left BGTC – loop preceding a stutter. This observation is in 

perfect agreement with a recent transcranial magnetic stimulation study showing reduced motor 

preparation excitability in left primary motor cortex just before a novel speech gesture was executed 

(Neef et al., 2015). Remarkably, also the magnitude of the excitability showed a negative, 

exponential fit with stuttering frequency. These findings suggest a link between motor preparatory 

activity in the left hemisphere and the stuttering pathology. 
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Alterations in left-sided motor preparation areas have repeatedly been reported in stuttering. Two 

case reports observed an association between reduced left IFG activation and failed initiation (den 

Ouden et al., 2013; Sowman et al., 2012). Left IFG activation has also been described to remain 

reduced after successful therapy, despite the normalization of other abnormal activations due to this 

therapy (Neumann et al., 2003). A reduction in grey matter volume of left IFG has been found to 

correlate positively with stuttering severity and to be independent from recovery (Kell et al., 2009). 

Moreover, the most consistently reported neuroanatomical abnormality in stuttering concerns 

reduced white matter density underneath left ventral sensorimotor cortex, closely located to left IFG 

(Chang et al., 2008; Chang et al., 2011; Connally et al., 2014; Cykowski et al., 2010; Sommer et al., 

2002; Watkins et al., 2008). This reduction in white matter density is more pronounced, the more a 

person stutters (Cai et al., 2014b). All these findings suggest that left-sided motor preparation 

alterations are closely related to the origin of stuttering.  

 

4.3. Left – right asymmetries 

The brain is known to try to compensate deficits in one hemisphere by engaging the homologous 

region(s) in the other hemisphere. If left BGTC – loop has a link with the neural origin of stuttering, 

then compensation may primarily be provided by the right BGTC – network. Previous studies indeed 

suggested an important lateralization aspect in compensation strategies. Stuttering therapy 

especially reduces right-sided overactivations and shifts the activity pattern from a right to a more 

left lateralized engagement during speech production (De Nil et al., 2003; Neumann et al., 2003, 

2005). An important region for compensation would be the RFO (Preibisch et al., 2003; Kell et al., 

2009). RFO is consistently reported to be overactivated in stuttering (Brown et al., 2005). Moreover, 

its overactivation is strictly associated with fluent speech in AWS which confirms its hypothesized 

involvement in successful compensation (Belyk et al., 2014). 

Also the CNV results suggest a more pronounced contribution of the right hemisphere to 

compensation. When comparing the CNV prior to fluent words in AWS to the CNV of the FS, the S-

locked results were significant over the entire scalp while the R-locked results were only significant 

over the right hemisphere (Vanhoutte et al., 2015a). As the R-locked analysis takes reaction time into 

account, activities related to response execution are more pronounced in this analysis than in the S-

locked analysis (Riès et al., 2013). This suggests that especially the increase in right BGTC – loop is 

involved in successful compensation. 

The CNV data are not suited to make more detailed hypothesis on which structure(s) of the motor 

preparation network is(are) affected. Although EEG measures the electrical activity of the cortex, this 

cortical activity is a reflection of an underlying cortico-subcortical network (Fan et al., 2007). As such, 
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the present data neither favour a cortical nor a subcortical hypothesis as the primary cause and/or 

compensation strategy of stuttering. 

 

4.4. Importance of temporal information 

Previous studies on 100% stuttered speech provide conflicting results. These studies mainly focused 

on spatial localization of activations and deactivations (den Ouden et al., 2013; Jiang et al., 2012; 

Sowman et al., 2012; Whymbs et al., 2013). Sowman et al., (2012), using magneto-encephalography, 

found that depending on the time window, a different, even reversed, activation pattern can be 

observed. Stuttered syllables, compared to fluent syllables, were associated with a decreased inferior 

frontal activation from 300 to 600 ms post-stimulus onset and with an increased inferior frontal 

activation from 600 to 800 ms. Also the present EEG study shows that valuable information can be 

obtained by evaluating a particular processing stage of speech production in real time. Temporal 

information might be an important aspect in identifying neural characteristics of stuttered speech.  

 

4.5. Additional considerations 

Although a language interference cannot be excluded, several methodological arguments are in 

favour of the CNV results being mainly related to motor preparation. First, a slope analysis was 

performed which enables CNV evaluation independent from the preceding amplitude level. This 

reduces an influence from previous processes (Carbonell et al., 2004). Secondly, the group difference 

and negative correlation were significant for the R-locked CNV slope. In the R-locked results, 

activities related to response execution are more pronounced while activities related to stimulus 

processing are smeared out and will only have a limited influence (Riès et al., 2013).  

Because isolated word production usually evokes no or only a few stutters (Brown, 1938; Adams et 

al., 1973), neurophysiological studies using single word production generally obtain too little stutters 

to have a satisfying SNR (e.g. Salmelin et al., 2000). Although the relatively high number of stutters in 

some participants in the present study might be surprising, several arguments can be found for their 

occurrence. First, due to its design, a CNV task evokes some time pressure and anticipation for the 

moment to speak which negatively influences fluency (Bloodstein & Ratner, 2008). Secondly, all 

words had a consonant as initial phoneme, a considerable amount of them even a stop consonant, 

which is more likely to evoke stuttering (Brown, 1945). 

Finally, only a small group of AWS produced enough stutters to be included in the present analysis. 

The observed neurological differences between stuttered and fluent words warrant further 

neurological research that focusses on stuttered speech. As only ¼ of the present AWS produced 

enough stutters to obtain a good SNR, further research should include a high number of participants 

to enable a valuable analysis on stuttered speech.  
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5. Conclusion 

To our knowledge, this is the first group study using electrophysiology to compare 100% stuttered 

with 100% fluent speech. Motor preparatory activity in BGTC – loop seems to have a crucial role in 

stuttering. Not only has the amount of activation a determining role in the actual moment of a 

stutter (i.e. proximal origin of stuttering: why does a stutter occur at a particular moment), its 

activation seems also related to the underlying stuttering pathology (i.e. distal origin of stuttering: 

what causes a person to be a stuttering speaker). An important divergence between left and right 

hemisphere is made in this respect. When motor preparatory activity in right BGTC – loop is markedly 

increased, no stutter will occur. The lower the left BGTC motor preparatory activity preceding a 

stutter, the more this person will stutter in general. These findings concur with a growing amount of 

studies stating that right hemisphere alterations are related to (successful) compensation strategies, 

while the left hemisphere would contain the primary cause of stuttering.  

 

 



 

 

 

 

  



 

 

 

 

General discussion 

 

 

 III  



 

 

 

 



General discussion |165 

 

 

 

 

Chapter 11 

 

 

General discussion and future perspectives 

  



166 | 

 

Chapter 11: General discussion and future perspectives 

1. General discussion and conclusion 

Most neurological research on stuttering is restricted to the use of neuroimaging tools (e.g. fMRI), 

especially when it comes to speech motor control. As these tools have excellent spatial resolution, 

they provide important information on altered activations in specific brain regions. Speech 

production is, however, more than activating or deactivating certain brain areas. It is also a rapid and 

dynamic motor process that requires a timely, precise and sequential activation of these specific 

brain regions. These temporal aspects can be evaluated by use of neurophysiological tools like EEG 

and MEG which have excellent temporal resolution. EEG and MEG research on speech motor control 

is stuttering is very scarce. The present thesis aimed to identify neurophysiological characteristics of 

speech motor control in stuttering by use of EEG. Its temporal resolution enables the evaluation of: 

(1) Temporal coordination and sequencing of neural activations 

(2) Specific processing stages in real time by evoking an ERP 

Both aspects were explored in DS. EEG was also applied in a case of NS. To exclude influences from 

auditory deficits, only visual tasks were designed.  

Overall, the present studies evidence that neurophysiological research can reveal important 

neurological deficiencies and alterations related to motor control in stuttering. In what follows, a 

short summary of the present studies is given followed by some general observations and 

considerations. Finally, some suggestions for future work are presented. 

 

1.1.  Summary of research findings 

1.1.1. Perception paradigm 

In the first part of this thesis, the temporal resolution of EEG was used to evaluate the temporal 

coordination and sequencing of motor related activation during a visual word recognition task. For 

this purpose, a well-known task from the action literature was used: silent reading of action verbs. 

Action verbs that denote a body movement (e.g. to throw) are suggested to activate, besides typical 

linguistic brain areas, also frontal motor areas related to the preparation and execution of the 

movement the verb refers to (e.g. Moseley et al., 2013). In the present thesis, action verb processing 

was evaluated from two points of view. From a linguistic perspective, in which the timing of motor 

activations related to hand action verb processing (as compared to non-action verb processing) was 

evaluated in healthy FS (chapter 6). From a motor perspective, in which these results were compared 

to the (timing of the) motor activations observed in AWS performing the same task (chapter 7). An 

overview of the results can be found in table I and II.  

In FS, action verbs evoked stronger bilateral sensorimotor activation than non-action verbs from 155 

to 174 ms post-stimulus onset. This sensorimotor differentiation was interpreted as a word-specific 

semantic difference suggestive for a contribution of sensorimotor cortex to early lexico-semantic  
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Table I: Overview of the ERP results of chapter 6 and 7. 

Peak Linguistic process Action vs non-action FS vs AWS 

N1 Visual word form processes No difference No difference 

P2 Early lexico-semantic and -syntactic processes No difference No difference 

N400 Large scale semantic integration Action > non-action No difference 

 

Table II: Overview of the results of the source reconstruction of chapter 6 and 7. 

Time window Brain area (left + right) Comparison Result 

155 – 174 ms Sensorimotor cortex FS: action vs non-action Action > non-action 

  AWS: action vs non-action No difference 

  Action: AWS vs FS No difference 

  Non-action: AWS vs FS AWS > FS 

    

219 – 238 ms DLPFC Largest motor difference 

within FS group 

Action > non-action 

    

313 – 352 ms Sensorimotor cortex Largest motor difference 

within AWS group 

Non-action > action  

 

processing of hand action verbs. Hand action verbs thus seem to activate the motor programmes of 

the actions they refer to (Hauk et al., 2004). These results are in line with theories of embodied 

cognition which state that concepts are represented in specific language brain areas and in neural 

action and perception systems (e.g. Barsalou, 1999; Dove, 2009).  

In AWS, temporal coordination of motor related activations was considerably altered. Due to motor 

abnormalities, the maximal motor difference between both verb types was delayed with about 100 

ms (228 ms for FS in DLPFC, 332 ms for AWS in sensorimotor cortex). These motor abnormalities are 

hypothesized to encompass two different activation patterns observed in stuttering: a general motor 

hyperactivation and a specific hand motor deficit. Motor cortex is typically found to be hyperactive in 

stuttering (Brown et al., 2005), even during silent reading of nouns not specifically related to motor 

semantic features (De Nil et al., 2000, 2003). The hand motor area on the other hand is characterized 

by decreased excitability (Busan et al., 2011). Both motor characteristics of stuttering seem to 

present during the visual word recognition task. Non-action verb processing in AWS evoked 

increased sensorimotor activation compared to (1) non-action verb processing in FS from 155 to 174 

ms, and (2) action verb processing in AWS from 313 to 352 ms. This sensorimotor increase is 

suggested to reflect the general motor hyperactivation typically seen in stuttering (Brown et al., 

2005) and independent of overt speech requirements (De Nil et al., 2000, 2003). Hand action verb 
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processing is hypothesized not to follow this general motor increase because these verbs spark hand 

motor cortex, a region characterized by decreased excitability in stuttering (Busan et al., 2011). 

Consequently, action verbs cannot evoke stronger sensorimotor activity than non-action verbs in 

AWS. 

In sum, due to motor abnormalities in general and in hand motor processing in particular, temporal 

coordination of motor related activations is altered in stuttering, even during a silent reading task. 

These findings confirm that neural motor abnormalities in stuttering are not restricted to deficits 

during (speech) movement execution (Chang et al., 2009; De Nil et al., 2000, 2003; Morgan et al., 

2008; Neef et al., 2011).  

 

1.1.2. Production paradigm 

In the second part of this thesis, the temporal resolution of EEG was used to examine speech motor 

preparation in real time by use of ERP analysis. A picture naming task was developed to elicit a CNV 

as this ERP primarily reflects motor preparatory activity in BGTC – loops (e.g. Bares et al., 2007; 

Bender et al., 2004; Fan et al., 2007), which are known to be altered in stuttering (e.g. Chang et al., 

2009; Ingham et al., 2004; Kell et al., 2009; Lu et al., 2010a, 2010b; Watkins et al., 2008). Although 

most participants produced the majority of the words fluently, 7 out of 28 AWS produced a 

substantial amount of stutters which allowed a separate analysis. As a result, the CNV preceding 

fluent speech in AWS could not only be compared to the CNV of FS (chapter 9), but also to the CNV 

preceding pure stuttered speech (chapter 10). Studies evaluating neurogenic aspects of stuttered 

speech are very scarce. Moreover, most of them address stuttered speech that is embedded in 

otherwise fluent speech (Braun et al., 1997; Fox et al., 2000; Ingham et al., 2004; Toyomura et al., 

2011). Making a clear distinction between 100% stuttered and 100% fluent speech is, however, 

recommended as dysfluent and fluent speech are associated with different neural findings (Belyk et 

al., 2014; Budde et al., 2014; Fox et al., 2000; Ingham et al., 2000, 2004). To our knowledge, the 

present study is only the third group study which addresses pure stuttered speech and the first to 

evaluate this with EEG. An overview of the results of chapter 9 and 10 can be found in table III. 

To interpret the CNV findings, a distinction should be made between the distal and proximal origin of 

stuttering. The distal origin refers to the aetiology of stuttering as a disorder (why is someone a 

stuttering speaker) whereas the proximal origin is related to the concrete stuttering moment (why 

does someone stutter at a particular moment). The CNV studies are related to both concepts. 

The CNV preceding fluent words was not only significantly higher than the CNV of the FS, it was also 

significantly increased compared to the CNV preceding stutters. As an increase in CNV slope seems to 

be associated with fluent speech production in AWS, increased motor preparatory activity was 

interpreted to be a successful compensation strategy. The positive correlation between the CNV and  
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Table III: Overview of the CNV findings of both the NS case report (chapter 8) as well as the DS group 

(chapter 9 and 10). 

 Speech  CNV observation Interpretation 

DS Fluent  Increased CNV, most pronounced over 

the right hemisphere (compared to FS) 

 Positive correlation with stuttering 

frequency/severity at the vertex 

Compensation:  

 Increased speech motor 

preparation is a successful 

compensation strategy  

 Most pronounced over the right 

hemisphere 

    
 Stuttered  Decreased CNV, over the entire scalp 

(compared to fluent words of AWS) 

 No difference with FS 

 Negative correlation with stuttering 

frequency/severity over the left 

hemisphere 

Causal link:  

 The more (severe) a person 

stutters, the lower his speech 

motor preparatory activity  

 Link with underlying stuttering 

pathology in the left 

hemisphere 

    

NS Fluent   Midline and left-sided electrodes:  

decreasing CNV with increasing 

stuttering frequency during 

conversation 

 Right frontal electrodes:  

relative increase CNV at test moment 

with most severe stuttering  

 Causal link: the amount of 

disturbance in motor 

preparation determines 

stuttering frequency 

 Compensation: right-sided 

compensation for left-sided 

anomaly (in STG) 

 

the stuttering measures suggests that the more a person stutters, the higher this increase is or must 

be to enable fluent speech production. Because the response-locked analysis (evaluation of the CNV 

with respect to lip movement onset) showed only a significant increase over the right hemisphere, 

especially an increase in right BGTC motor preparatory activity was hypothesized to aid fluent word 

production. This compensation strategy is linked to the proximal origin of stuttering: whether or not 

a stutter will occur at a particular moment, depends on the amount of speech motor preparation. 

Although the left CNV preceding stutters was markedly lower than the left CNV of the FS, no 

significant difference was found. This is highly suggestive for large variation among the AWS. Indeed, 

a negative correlation was found between the left CNV preceding stutters and the stuttering 

measures. The more a person stutters, the lower the left BGTC – loop activation. Thus, the decrease 

in left-sided motor preparation prior to a stutter is associated with the general stuttering frequency 

in that person. This suggests a link with the stuttering pathology and thus with the distal origin of 

stuttering. 
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Overall, motor preparation activity in BGTC – loop seems to have a crucial role in stuttering. Not only 

has the amount of activation a determining role in the actual moment of a stutter (proximal origin), 

its activation seems also related to the underlying stuttering pathology (distal origin). An important 

divergence between left and right hemisphere is made in this respect. When motor preparatory 

activity in right BGTC – loop is markedly increased, no stutter will occur. The lower the left BGTC 

motor preparatory activity preceding a stutter, the more this person will stutter in general.  

These findings concur with a growing amount of studies stating that right hemisphere alterations are 

related to (successful) compensation strategies (Preibisch et al., 2003), while the left hemisphere 

would contain the primary cause of stuttering (e.g. Cykowski et al., 2010; Sommer et al., 2002; Kell et 

al., 2009). The present thesis highlights the importance of the BGTC – loop. Although EEG mainly 

measures cortical activity, this cortical activity is a reflection of the underlying cortical-subcortical 

network. As such, the findings of the CNV studies neither favour a cortical nor a subcortical 

hypothesis as primary cause of stuttering. 
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1.2.  Some general observations and considerations 

1.2.1. The origin of stuttering 

Despite decades of research, the origin of stuttering has still not been resolved. Two major 

theoretical perspectives have dominated the literature: theories pointing at deficits in speech motor 

control and theories primarily concerning impairments in linguistic planning. Little effort has been 

done to reconcile one with the other.  

 

A) Speech motor control theories 

Stuttering has been hypothesized to result from an imbalance between feedforward and feedback 

processing (Max et al., 2004). Because of an impaired readout of feedforward models, AWS are 

forced to rely more heavily on auditory feedback. Over-reliance on feedback control would lead to 

production errors which causes the motor system to “reset” and repeat the current syllable (Civier et 

al., 2010). Deficient feedforward modelling in stuttering has previously been suggested from a 

structural (Chang et al., 2011; Sommer et al., 2002), functional (Brown et al., 2005; Lu et al., 2010a) 

and even electrophysiological (Salmelin et al., 2000; Neef et al., 2015) perspective. Because the 

present thesis does not evaluate feedback processing, no statements on the over-reliance hypothesis 

can be made. However, the present studies do confirm that stuttering is associated with impaired 

feedforward processing.  

First, dysfunctional forward modelling implies that other movements than speech are affected too 

(Chang et al., 2009). The perception paradigm shows that hand motor representations in the brain 

have a decreased excitability and thus confirms that motor skills beyond speech show altered neural 

control in AWS (Busan et al., 2011; Chang et al., 2009; Morgan et al., 2008; Neef et al., 2011). 

Secondly, because the CNV reflects motor preparatory activity generated by the BGTC – loop, the 

CNV is solely related to activity in feedforward modelling (Bohland et al., 2010; Guenther, 2006). As 

such, the CNV studies demonstrate the crucial role of feedforward processing in stuttering. Not only 

does it contribute to successful compensation, it also seems to have a link with the stuttering 

pathology. 

Recently, especially the role of the ‘motor loop’, as part of feedforward processing, has been 

highlighted in stuttering. The GODIVA model (Bohland et al., 2010), a recent model on speech motor 

preparation which addresses the selection, sequencing and initiation of speech movements, has 

been adapted to account for stuttering. Two neural characteristics of stuttering have been simulated 

in the model: elevated dopamine levels and deficient WM underneath left precentral gyrus. Both are 

suggested to interfere in the motor loop, i.e. the connection between BG and vPMC (Civier et al., 

2013). This loop has two main functionalities: 1) biasing competition in the cortex to select the 

appropriate syllable, and 2) initiating the next syllable based on contextual signals. It is tempting to 
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suggest that the CNV reflects (partly) motor loop activations. Not only does the CNV reflect activity of 

the neural structures of the motor loop (e.g. Fan et al., 2007), this potential is also related to motor 

preparation (e.g. Bender et al., 2004), the processing stage that is provided by the motor loop. As 

such, the present CNV findings may confirm that stuttering is related to an impairment in the motor 

loop during feedforward modelling. 

Finally, the present thesis shows that these motor impairments in feedforward modelling can occur 

without simultaneous deficits in auditory processing. The repeatedly observed simultaneous 

deactivation of auditory cortices and hyperactivation of motor cortices suggest that auditory-motor 

integration during speech production is altered in stuttering (e.g. Braun et al., 1997; Chang et al., 

2009; Fox et al., 1996; Watkins et al., 2008). Because it remains to be determined which aspects of 

auditory processing and/or auditory-motor integration are exactly altered (Belyk et al., 2014), the 

present thesis solely used visual tasks to exclude an influence from auditory deficits. As motor 

alterations were clearly present, the current thesis proves that abnormal recruitment of motor 

regions does not depend on aberrant auditory input or deficits in auditory-motor integration. 

 

B) Linguistic impairments 

No consensus has been achieved on whether or not PWS exhibit linguistic impairments. It is, 

however, sure that PWS take longer to formulate their utterances. According to the psycholinguistic 

theories, this slowness stems from weaknesses in phonological, lexical and/or syntactic encoding. 

Many psycholinguistic theories on stuttering exist (for an overview, see Bloodstein & Ratner, 2008). 

The most well-known theory is the Covert Repair Hypothesis which attributes fluency failures to 

phonological encoding errors that are detected and repaired in inner speech by an internal 

monitoring system (Postma & Kolk, 1993). Because little experimental evidence is available for the 

Covert Repair Hypothesis, two important alternatives have been proposed. The Vicious Circle 

Hypothesis suggests that dysfluencies do not result from linguistic planning impairments, but can 

only be attributed to an overactive internal monitoring system (Vasić & Wijnen, 2005). The EXPLAN 

theory ascribes dysfluencies to a discrepancy between PLANning (linguistic and/or phonetic planning) 

and EXecution. Because of either a slowness in planning or a high speech rate, speech plans have not 

achieved a sufficient degree of completeness by the time they are executed (Howell, 2004).  

 

How do the CNV findings relate to the psycholinguistic theories? 

The CNV stems from motor research. Only a few speech/oral studies have been performed which 

mainly focused on non-speech oral movements like jaw opening and lip rounding (e.g. Yoshida & 

Iizuka, 2005). To our knowledge, no attempts have been made to link the CNV to speech production 
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models. As a result, it is not clear which processing stages underlying overt speech production are 

reflected in the CNV.  

Based on models of speech production (Bohland et al., 2010; Guenther, 2006; Indefrey, 2011) and on 

neural findings of CNV research in general (e.g. Fan et al., 2007), it is tempting to suggest that 

phonetic encoding (in which a phonological word is transferred into articulatory motor programs) 

and word initial motor initiation (provided by the BG) are reflected in this ERP. Unfortunately, it is 

unclear how the delayed naming design of the task influenced the timing of the different processing 

stages. Only one study compared the sequence and duration of the linguistic processing stages 

during immediate and delayed picture naming (Laganaro & Perret, 2011). Similar encoding processes 

were revealed until 300 – 400 ms post-stimulus onset. From the beginning of phonological encoding 

onwards, the neuronal network diverged. Subjects seemed to prolong this process during delayed 

naming. Unfortunately, the authors did not evaluate the processes later on. Therefore, it remains 

obscure how much the phonological encoding process was altered and prolonged and how this 

influenced phonetic encoding.  

Consequently, it is difficult to interpret the CNV findings in light of the psycholinguistic theories of 

stuttering. However, the CNV might be linked to the EXPLAN theory (Howell, 2004), not in the least 

because this theory also acknowledges the existence of motor deficits. The CNV might reflect atypical 

planning and the deficient interface between planning and execution because the suggested neural 

substrates of both are similar to the neural substrates of the CNV (e.g. Fan et al., 2007). Bilateral IFG 

and right putamen would be related to atypical planning, a weak connectivity between left IFG and 

left PMC would reflect the deficient interface between planning and execution (Lu et al., 2010a). 

EXPLAN is a model for connected speech in which planning and execution occur contiguously. The 

present picture naming task on the other hand allows speakers to plan before execution starts. 

According to EXPLAN, slowness in planning may be overcome due to this extra time. If true, the 

increased CNV slope preceding fluent words may reflect a successful compensation to overcome this 

slowness. Unfortunately, the unknown impact of the delayed nature of the task again prevents 

making clear hypotheses on which processing stage is involved in the CNV. 

 

C) Is stuttering a language, a motor or a multiple-deficit disorder?   

The findings of the present thesis seem to suggest that motor alterations in AWS can present without 

(large) simultaneous linguistic deficiencies. Linguistic impairments did not or only limitedly appear. 

During the perception paradigm, the amplitude and latency of the ERP peaks were evaluated as 

these reflect visual and linguistic processes (e.g. Dambacher et al., 2006; Hauk et al., 2012; Palazova 

et al., 2001; Zhang et al., 2009). No significant difference between FS and AWS was found for any of 

them. Moreover, when comparing action and non-action verbs, FS and AWS obtained similar results 
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for all the peaks (see table I). In the CNV task, FS and AWS showed a picture naming accuracy of 97% 

and 95% respectively. This 2% difference is, though significant, extremely small. Additionally, several 

adaptations in the analysis were performed to limit the influence of preceding linguistic processes 

(e.g. both stimulus- as response-locked analysis, slope instead of amplitude measurement). Overall, 

interferences of possible language impairments on the present tasks seem to be small to even 

absent.  

In general, there is at present insufficient evidence to argue strongly for or against the motor or the 

psycholinguistic origin of stuttering. It is, however, a fact that stuttering ultimately presents itself as a 

disruption of the speech motor system through its primary speech characteristics (Max et al., 2004). 

Any cause of stuttering will finally result in a disruption of the muscular contractions and the 

movements required for speech. Moreover, extensive neurological evidence exists for deficits in 

brain structures related to speech motor control. Finally, the psycholinguistic theories can often not 

explain some motor characteristics of stuttering (Lickley et al., 2005). How, for example, can 

alterations in manual movements be related to a linguistic encoding problem? 

This does not exclude any influence from or interaction with other processes. On the contrary, note 

that although a strong significant correlation was observed between the CNV slope preceding fluent 

words and the stuttering frequency/severity, the stuttering measures can ‘only’ explain 34 - 35% of 

the variance. Still 65% of the variance remains unknown which may reflect the impact of other 

factors. As such, the motor impairments might be seen as a final common pathway shared by all 

PWS, but affected by other factors. Their influence may differ from person to person explaining the 

large clinical variability typically seen among stuttering speakers.  

Emotional and linguistic variables are two important influential factors in stuttering. Linguistic and 

articulatory processing cannot be seen as two separate, successive aspects of overt speech, but 

rather as interacting and influencing one another (Hickok, 2012). Indeed, the occurrence of a stutter 

appears to be determined by several linguistic variables like grammatical complexity and word 

frequency (Bloodstein & Ratner, 2008). Moreover, from a neurological point of view, there is a 

growing body of literature suggesting a functional interaction between language and motor systems 

(Pulvermüller & Fadiga, 2010; Watson & Chatterjee, 2011). As shown in chapter 6 for example, motor 

related areas aid in the lexico-semantic processing of action verbs, and maybe even in the linguistic 

processing of non-action verbs.  

Emotional arousal is another important factor in stuttering (Bloodstein & Ratner, 2008). Depending 

on the speaking situation and/or the collocutor(s), large intra-individual differences in stuttering 

frequency may occur. This highlights that the motor control findings of the present thesis should be 

placed in a broader perspective. Whether or not a stutter occurs, also depends on the emotional 

arousal of a person. As several studies obtained conflicting results, it remains to be determined how 
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emotional arousal and speech motor control interact (Dietrich et al., 2012; Hennessey et al., 2014; 

van Lieshout et al., 2014).   

 

1.2.2. Neurogenic versus developmental stuttering 

The attempts to describe distinguishing features of NS and DS are challenged by studies showing 

considerable overlap in both behavioural (for a review, see Van Borsel, 1997) and neurological 

characteristics (Theys et al., 2012). To our knowledge, the present case report is the first study on NS 

which evaluated a specific neurophysiological process by use of EEG (chapter 8). An overview of the 

results of this case report and the DS group can be found in table III. Concerning the CNV slope 

preceding fluent words, a remarkable difference is seen between the NS case report and the DS 

group. While in DS an increase in CNV with increasing stuttering frequency was seen, the NS case 

report displayed a decrease in CNV with increasing stuttering frequency. These results suggest that 

NS and DS may have inverse neurophysiological functions.  

However, when taking the interpretation of the CNV results into account, it seems that this assertion 

should be slightly nuanced. In DS, the increased CNV preceding fluent word production is interpreted 

as a compensation strategy which is most pronounced over the right hemisphere. Also the NS case 

report showed at the moment of most frequent stuttering an increase in CNV amplitude over the 

right hemisphere which was cautiously suggested to be a compensation attempt. The negative 

association between CNV amplitude over left and midline electrodes and stuttering frequency in the 

NS case report is suggestive for a causal link. Indeed, MH’s lesion site is located in the left 

hemisphere, namely left STG. Also in the DS group, a decrease in left CNV slope (preceding stutters) 

is observed with increasing stuttering frequency. This decrease is hypothesized to be related to the 

stuttering pathology as well. In sum, the CNV results of NS and DS seem not entirely opposite when 

the interpretation of the CNV changes are taken into account. However, important differences 

remain e.g. the decrease in left CNV is associated with stuttered speech in DS and with fluent speech 

in the NS case report.  

Although NS and DS are related to disturbances in the same brain network (Theys et al., 2012) which 

may result in a non-distinguishable phenotypical appearance (Van Borsel, 1997; Van Borsel & Taillieu, 

2001), large differences in the neurophysiological processes that precede overt speech may still be 

present. The underlying brain network shows different abnormalities in motor preparation, probably 

due to a difference in lesion localisation (left STG for the NS case report, somewhere in left BGTC – 

loop for the DS group). These results suggest that the ‘common neural characteristics of DS and NS’ 

(Theys et al., 2012) may be limited to neuroanatomical findings. DS and NS may show considerable 

variation in neurophysiological functioning.  
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1.2.3. Natural recovery and male/female ratio 

Although a large percentage of CWS (68 % to 96%) will recover spontaneously (for a review, see Yairi 

and Ambrose, 2013), only a few neurological studies compared persistent and recovered PWS. These 

studies attributed recovery to 1) SMA maturation (Forster & Webster, 2001), 2) structural anomalies 

in left IFG that are restricted to grey matter (while persistent CWS also showed WM anomalies 

underneath this region) (Chang et al., 2008), and 3) increased activation in left frontal operculum (BA 

47/12) (Kell et al., 2009). Both the SMA and IFG are part of the BGTC – circuit and important 

contributors to speech motor preparation and initiation (Bohland et al., 2010). These studies seem to 

confirm the importance of the BGTC – network in stuttering. Besides having a role in the distal and 

proximal origin of stuttering, this circuit also seems to support spontaneous recovery in stuttering.  

Spontaneous recovery is also suggested to occur more frequently in girls than in boys (Yairi & 

Ambrose, 2005). At onset, the male/female ratio is nearly 1:1 (Månsson, 2005), while in adults this 

ratio increases to on average 3:1 (Bloodstein & Ratner, 2008). If the BGTC – loop has a role in natural 

recovery, gender related differences may be expected in this loop. In the general population, girls are 

found to show an earlier maturation of the BG than boys (Lenroot & Giedd, 2010). Also in DS, gender 

related differences in subcortical structures are reported. Stuttering rate was found to correlate 

positively with BG activity in women and with CB activity in men (Ingham et al., 2004). These findings 

suggest that a difference in the BGTC – network may contribute to gender differences in natural 

recovery. Unfortunately, no clear hypothesis can be formulated because gender studies in the 

general population show large inconsistencies (Giedd et al., 2012) and neural differences between 

men and women are only rarely explored in DS. Also the present thesis did not perform gender 

comparisons. Because the typical male/female ratio found in adulthood was reflected in our group of 

participants, the group of women was much smaller than the group of men. Future research might 

include larger groups and more women to evaluate potential gender differences in stuttering 

concerning neurophysiological functioning. 

 

1.2.4. Why adults as participants and not children? 

Neurological research is always more challenging in children than in adults. One of the major 

problems is to keep them sit still. For EEG specifically, another challenge concerns the analysis and 

interpretation of the EEG as the EEG of children is fundamentally different than the EEG of adults. 

Variability is the rule. This applies to the background rhythmic activity as well as to the presence of 

generalized irregular slow waves (Rowan & Tolunsky, 2003). For these reasons, electrophysiology 

would be quite challenging in children at stuttering onset. As we were a new research group and 

electrophysiology focusing on speech motor control in stuttering is a rather unexplored area, it was 

decided to avoid these problems and focus on adults instead of children at stuttering onset.  
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From the age of 7 – 8 years onwards, the EEG becomes more similar to an adult EEG. However, 

another difficulty in this age range concerns the duration of stuttering (since stuttering onset). This 

may vary largely and might have an (unknown) impact on the brain. E.g. a child of 7 years old that 

has stuttered for 4 – 5 years versus a child of 7 years old that has stuttered for 1 year. As the brain is 

very plastic, especially during childhood, one would expect that these 4 years difference will have an 

impact on the brain. The first child might have developed much more compensation strategies than 

the second child.  

Moreover, the advantage of including adults is that it allowed finding a compensation strategy. This 

confirms that certain alterations found in neurological studies are related to compensation and not 

to the cause of stuttering.  

 

1.3.  Concerns and limitations 

As mentioned in more detail in the separate research chapters, some concerns raise about the tasks 

used in the present thesis. For the perception paradigm, the main concern regards the limited spatial 

resolution of the source reconstruction. As motor involvement during verb processing is not linked to 

a certain ERP (e.g. Pulvermüller et al., 2001, 2005), source reconstruction had to be performed to be 

able to evaluate motor activations. The strength of EEG research is however its excellent temporal, 

not its spatial resolution. To meet this concern, no fine grained analyses nor interpretations were 

performed.  

For the CNV task, the main concern involves the potential influence of other factors on the CNV like 

anticipation and linguistic processing. From a psycholinguistic point of view, it is not clear which 

processing stage(s) is(are) reflected in this ERP. Also the influence of the delayed nature of the task is 

unclear. Future research is necessary to address this issue. 

A little elaboration is necessary on the statement that the CNV may be a neural correlate of 

stuttering frequency and severity. First, it should be noted that the stuttering measures were not 

performed during the CNV task itself. They were based on speech samples recorded before the EEG 

registration. Unfortunately, EEG is very sensitive to muscular artefacts making it difficult to analyze 

EEG trials during overt connected speech. Stuttering frequency/severity determined on a single-word 

production task is, however, not a valuable estimate of an individual’s speech fluency abilities. 

Therefore, stuttering measures had to be determined based on speech samples not related to the 

experimental task similar to previous studies (Chang et al., 2009; Giraud et al., 2008; Kell et al., 2009; 

Preibisch et al., 2003). These studies also reported important correlations with neural activations. 

The single-word design of the CNV study is not without advantage. Although studies evaluating 

neural activity during discourse may give a reliable estimate of neural activity in daily life situations 

(e.g. Fox et al., 2000; Ingham et al., 2004, 2012), they present neural activity related to fluent ànd 
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stuttered speech which may be very different (e.g. Sowman et al., 2012). A single-word production 

task allows the comparison of pure fluent and pure stuttered speech without contaminating one with 

the other.  

Secondly, stuttering is known to vary across speaking tasks and situations (Bloodstein & Ratner, 

2008). By following the SSI-4 (Riley, 2008) and restricting the analysis to a reading and a conversation 

sample, the present stuttering measures cannot fully reflect an individual’s stutter variability. 

Stuttering may also vary in time, with periods of more fluent or disfluent speech even within the 

same day (Bloodstein & Ratner, 2008). Therefore, speech samples and EEG were registered one after 

the other, within about an hour. As such, the stuttering measures provide a reflection of stuttering 

frequency/severity around the moment that the CNV was evaluated. 

In general, even though EEG is not yet able to reflect stuttering frequency/severity measured online, 

it seems it will have the capacity to provide valuable information on stuttering measures in the 

future. The NS case report already showed that the CNV is able to reflect even small intra-individual 

differences in stuttering frequency. Moreover, as technology improves daily, some of the inherent 

EEG weaknesses like muscular artefact sensitivity may be overcome. Algorithms can be created 

which detect and delete speech muscle artefacts, even in the context of stuttering (Tran et al., 2004). 

Cortico-muscular coherence (CMC), a measure of efficient cortex-muscle neurocommunication, is 

recently suggested to be able to provide information on neural functioning during speech. CMC is a 

correlation measure between oscillatory signals like EEG and EMG. CMC is a rather unexplored 

electrophysiological measure in the context of speech production. Only recently, it has been 

cautiously investigated (Caviness et al., 2006; Ruspantini et al., 2012).  

 

1.4.  Conclusion 

Based on the research aims of the present thesis, we can conclude: 

(1) Considerable alterations in the temporal coordination of motor related activations occur 

in DS, even during a silent reading task in which no overt speech or any other movement is required. 

Neural motor abnormalities in DS are not restricted to deficits in overt speech production.  

(2) Motor preparatory activity generated in the BGTC – loop has a crucial role in DS. Large 

differences occur preceding fluent and stuttered speech. While the amount of activation in right 

BGTC – loop seems to have a determining role in the actual moment of a stutter, the left BGTC – loop 

activity preceding a stutter seems to be related to the underlying stuttering pathology.  

(3) The NS case report shows that intra-individual variability in stuttering frequency has a 

strong association with speech motor preparation. The results of the DS group add that the same 

accounts for inter-individual variability in stuttering measures. 
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(4) The proposed common neural characteristics of DS and NS seem to be limited to 

neuroanatomical findings. Both types of stuttering may show considerable variation in 

neurophysiological functioning.  

 

Additionally, the present studies suggest that the observed motor alterations are related to 

deficiencies in the motor loop of feedforward processing. These motor alterations can present 

without simultaneous deficits in feedback processing or without obvious inferences of language 

impairments. In general, the present thesis evidences that neurophysiology is able to discover 

interesting and intriguing neural findings that may aid in unravelling the enigma of stuttering. 
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2. Future directions 

The present thesis is a general plea to use neurophysiological tools more often in stuttering research. 

Due to its excellent temporal resolution, it is a very promising field of research to enlarge the 

neurological knowledge on stuttering.  

 

2.1. CNV research 

More fundamental research on the CNV in speech production tasks is necessary to elucidate which 

processing stages are reflected in this ERP. Moreover, the impact of the delayed nature of this kind of 

task should be clarified as well. For stuttering specifically, future research may focus more on the 

impact of other factors on speech motor control. Fluent speech does not only depend on normal 

motor processes. Emotional and linguistic variables may disturb these processes as well. The CNV can 

be of help in exploring these influences. By varying tasks and task demands, the effect on the CNV 

and on the difference in CNV between FS and AWS can be evaluated. 

 

2.2. Stuttered speech 

In research, collecting enough stuttered samples to perform a valid analysis is challenging as the 

majority of PWS mainly speak fluent in experimental settings. Many studies obtained too little 

stuttered speech and excluded these trials from further analysis. The present thesis, however, 

illustrates the importance of evaluating pure stuttered speech. Stuttered and fluent speech in PWS 

can be associated with very different neural findings. In this thesis, the inclusion of a large number of 

PWS and many trials per participant enabled a separate analysis for stuttered speech. Therefore, 

future neurological research might consider expanding their subject group and enlarging their tasks. 

Even if only one participant produced enough stutters to perform a valid analysis, it might be very 

interesting to report them in a case report, just as in Sowman et al., (2012).  

 

2.3. Children who stutter 

The neural activity and morphology pattern observed in adults reflects, besides core dysfunctions 

related to stuttering onset and development, also neuroplastic changes associated with 

compensatory and coping strategies that were developed over the years. This is shown in the present 

thesis as well, as the increased CNV slope preceding fluent speech production is hypothesized to be a 

successful compensation strategy. Because CWS show less to even none of these neuroplastic 

changes, research in children is of great importance to unravel the neurogenic cause of stuttering. 

Although neurophysiological research in CWS is still in its infancy, promising results have been 

obtained and most importantly, the feasibility of EEG and MEG studies in CWS has been 

demonstrated. Unfortunately, these studies have been limited to language (e.g. Weber-Fox et al., 
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2008) and auditory processing (Jansson-Verkasalo et al., 2014). It might be of great interest to use 

neurophysiological tools to evaluate speech motor control in CWS as well. 

 

2.4. Neurogenic stuttering 

A final recommendation is to implement neurophysiological evaluations in research concerning 

acquired stuttering, and especially NS. Not only would this enlarge our knowledge on these other 

forms of stuttering and how they relate to DS, it would also provide information on which 

neurophysiological alterations can be associated with stuttering. Moreover, as the lesion site can 

usually be identified in NS patients, information on the neurophysiological impact of this lesion on 

the brain network involved in speech can be obtained.  
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