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Samenvatting

Informatie over ruimtelijke of temporele bodemvochtpatronen is vereist als in-
put in de modellering van processen of fenomenen in een ruime waaier van toe-
passingsdomeinen. Een van deze domeinen is het modelleren van de ruimtelijke
verspreiding van Culicoides imicola, een insect dat als vector optreedt in de over-
dracht van verschillende pathogenen, waaronder het blauwtongvirus. Alle onvol-
wassen stadia van de levenscyclus van dit insect ontwikkelen zich in de boven-
ste paar centimeter van de bodem. Het bodemvochtgehalte in deze laag wordt
dan ook verondersteld de ruimtelijke verspreiding van C. imicola te beinvloeden.
Ruimtelijke verschillen in bodemvocht worden, bijvoorbeeld, algemeen geacht het
patroon van de verspreiding van C. imicola te bepalen in Calabrig, Italié. De soort
komt hier voor aan de oostkust van het schiereiland, maar is afwezig aan de wes-
telijke zijde. Tot op heden werd informatie omtrent bodemvocht echter niet recht-
streeks geintegreerd in ruimtelijke verspreidingsmodellen voor deze soort. Een van
de redenen hiervoor is dat het opmeten van bodemvocht door middel van veld-
waarnemingen duur en tijdrovend is, en dus ongeschikt om te gebruiken op de
schaal vereist voor verspreidingsmodellen. Teledetectie door satellieten laat wel
toe om processen aan het aardoppervilak waar te nemen met geschikte ruimtelijke
en temporele resolutie. Observatie van processen of toestandsvariabelen onder het
aardoppervlak, zoals bodemvochtgehalte, is echter niet evident.

Verschillende satellieten verzamelen data in het zichtbare, nabij-infrarode en
thermisch infrarode deel van het elektromagnetisch spectrum. Analyse van ruim-
telijke en/of temporele patronen in beelden genomen door deze satellieten leverde
in eerder onderzoek reeds informatie op over evapotranspiratie of het daaraan ge-
koppelde bodemvochtgehalte. Twee technieken die gebruik maken van deze data-
bronnen werden verder onderzocht in dit proefschrift. De eerste techniek bekomt
informatie over het ruimtelijke patroon van evapotranspiratie of bodemvocht uit
de analyse van contextuele informatie van een vegetatie-index en oppervlaktetem-
peratuur. De tweede relateert verschillen in de dagelijkse amplitude van de opper-
vlaktetempertuur aan temporele variaties in thermische inertie of bodemvochtge-
halte. Beide technieken slaagden erin bepaalde ruimtelijke of temporele verschil-
len in bodemvocht te detecteren. Hun toepasbaarheid bleek echter wel beperkt te
zijn door een aantal factoren zoals het seizoen of de bedekking van de bodem door
vegetatie. Bovendien zijn technieken die gebruik maken van data in het zichtbare
en infrarode deel van het spectrum ongeschikt onder bewolkte omstandigheden.
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Door gebruik te maken van informatie in het microgolfdomein van het elek-
tromagnetisch spectrum kunnen mogelijk betere bodemvochtschattingen bekomen
worden. Microgolven uitgezonden door een synthetic aperture radar (SAR) drin-
gen doorheen eventuele wolken, alsook door de bovenste bodemlaag. De fractie
van de uitgezonden straling die terugkaatst naar de sensor is indicatief voor het
vochtgehalte van de bodem. De sterkte van het waargenomen signaal wordt ech-
ter ook beinvlioed door bodemruwheid en door vegetatie. De invloed van deze
twee factoren kan deels uitgeschakeld worden door gebruik te maken van change
detection technieken. Hierbij worden temporele verschillen in radarterugkaatsing
gerelateerd aan verschillen in bodemvochtgehalte. Deze studie valideerde een der-
gelijk change detection algoritme voor een driejarige tijdsreeks van SAR beelden
van Calabrié. De aldus verkregen bodemvochtschatting bleek gecorreleerd te zijn
met gemodelleerd bodemvochtgehalte, doch eerder beperkt in gebieden met dichte
vegetatie. Operationele SAR bodemvochtproducten gegenereerd door deze metho-
des kunnen de volgende jaren verwacht worden, eens de nodige datasets beschik-
baar worden. Ondanks de goede resultaten behaald met deze change detection
techniek bleken seizoenale verschillen in vegetatiebedekking de nauwkeurigheid
van de bodemvochtschattingen te verminderen. Jaarlijkse variaties in vegetatie
bleken de afhankelijkheid van de terugkaatsing op de invalshoek van het micro-
golfsignaal te beinvlioeden. In deze studie werd echter een multitemporele bena-
dering voorgesteld die in staat bleek om deze seizoenaliteit te compenseren.

Het laatste deel van dit proefschrift behandelt de modellering van de ruimte-
lijke verspreiding van C. imicola. Verschillende modelleringstechnieken werden
hiervoor reeds gebruikt, doch weinig studies vergeleken de prestaties van verschil-
lende modellen. Random forests, een recente ensemble machine learning tech-
niek, werd hier vergeleken met de vaak gebruikte lineaire discriminantanalyse.
Verspreidingsmodellen gebaseerd op random forests bleken in staat om de aan-
of afwezigheid van het insect beter te voorspellen dan deze gebaseerd op lineaire
discriminantanalyse. Als verklarende variabelen worden in C. imicola versprei-
dingsmodellen gebruikelijk ofwel klimatologische data ofwel data uit teledetectie
gebruikt, of een combinatie van beide. Deze studie onderzoekt de nauwkeurig-
heid die bekomen wordt door klimatologische variabelen, dan wel vrij beschik-
bare teledetectievariabelen, te gebruiken. Er werd aangetoond dat klimatologische
variabelen kunnen vervangen worden door data uit teledetectie, tegen de kost van
een beperkt doch significant verlies in nauwkeurigheid. Dit biedt de mogelijk-
heid om deze ruimtelijke verspreidingsmodellen toe te passen over gebieden waar
de kwaliteit van klimatologische data onbetrouwbaar is door de afwezigheid van
meteorologische stations, of in regio’s waar klimaatsverandering mogelijk verant-
woordelijk is voor een uitbreiding van het leefgebied van C. imicola. Tot slot werd
onderzocht of het toevoegen van de eerder berekende bodemvochtschattingen als
verklarende variabelen de nauwkeurigheid van de ruimtelijke verspreidingsmodel-
len verbeterde.



Summary

Information on the spatial or temporal pattern of soil moisture is required in mod-
elling studies over a wide variety of domains. One of these domains is the mod-
elling of the spatial distribution of Culicoides imicola, an insect vector of several
pathogens, including the bluetongue virus. Since all the immature stages of this
insect’s life cycle occur in the top few centemetres of the soil, the moisture con-
tent in this soil layer is expected to constrain the spatial distribution of C. imicola.
Spatial soil moisture differences are assumed to be responsible for the pattern of
C. imicola occurrence in Calabria, Italy, where it is present at the eastern coast
but absent at the western coast. Until now, however, information on soil moisture
has not yet been integrated in spatial distribution models for this species. Acquisi-
tion of soil moisture through ground measurements is costly and time-consuming,
and hence impractical for application at the spatial and temporal scales required in
species distribution modelling. Satellite remote sensing does allow the observation
of processes at the earth’s surface at various spatial and temporal scales. Obser-
vation of sub-surface state variables such as soil moisture content is, however, not
straightforward.

Several spaceborne sensors collect data in the visible, near infrared and ther-
mal infrared part of the electromagnetic spectrum, with spatial and temporal reso-
lutions allowing integration in C. imicola distribution models. Analysis of spatial
and/or temporal patterns in images acquired at these wavelengths has previously
yielded information on evapotranspiration or soil moisture content. Two tech-
niques integrating these types of datasets were further investigated in this disserta-
tion: one technique relating contextual patterns of surface temperature and a veg-
etation index to evapotranspiration or soil moisture content, the other relating the
daily surface temperature amplitude to soil thermal inertia or soil moisture. Both
techniques were able to detect certain spatial or temporal soil moisture changes,
respectively. Their applicability was, however, found to be restricted by, amongst
others, season and vegetation cover. Furthermore, satellite remote sensing in the
visible and infrared wavelengths can be severely hampered by cloud cover.

Improved soil moisture retrieval can be expecting when using information ob-
tained in the microwave part of the electromagnetic spectrum. The microwave ra-
diation emitted by a synthetic aperture radar (SAR) can penetrate cloud cover and
even the top layer of the soil. The fraction of radiation reflected back to the sen-
sor, called backscatter, is proportional to the surface soil moisture content. SAR
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backscatter is, however, also influenced by vegetation cover and surface rough-
ness. One way to eliminate these latter two influences is by employing a change
detection approach, where temporal changes in surface backscatter are related to
changes in soil moisture. This study validated a change detection soil moisture
algorithm for a 3-year time series of SAR data over Calabria. The remotely sensed
soil moisture product was found to be correlated to modelled soil moisture, al-
though only moderately over densely vegetated terrain. Operational soil mois-
ture products from SAR, generated by change detection approaches, are therefore
within reach once large SAR datasets become available the following years. De-
spite the strong performance of the SAR change detection technique, seasonally
changing vegetation was observed to influence the accuracy of soil moisture pre-
dictions. Vegetation phenology was found to influence the dependence of SAR
backscatter on the incidence angle of the microwave signal. A multitemporal ap-
proach developed in this study was, however, able to account for this seasonal
variability.

The final part of this dissertation focuses on the modelling of the spatial dis-
tribution of C. imicola. During the past decades, several modelling techniques
have been used to this end, but few studies compared different techniques. Here,
a novel ensemble machine learning technique called random forests is compared
to the established linear discriminant analysis. Species distribution models based
on random forests were found to be superior to those based on linear discriminant
analysis. Species distribution modelling is usually performed using as predictive
variables either climatic data, remotely sensed data or both. This study investi-
gated the performance of models based on climatic variables versus those using
remotely sensed variables. It was shown that climatic variables could be replaced
by routinely produced and freely available remotely sensed data, with only a lim-
ited, though significant, decrease in prediction accuracies. This offers opportuni-
ties for the application of species distribution models in regions where climate data
is unreliable due to the absence of meteorological stations, or in regions where cli-
mate change allows the range of C. imicola to expand. Finally, it was investigated
whether the inclusion of remotely sensed soil moisture products as predictive vari-
ables increased the accuracy of the spatial distribution modelling.



Introduction

Soil moisture is one of the key parameters in the global energy and water balance
at the interface between the atmosphere and the land surface, through its control on
evapotranspiration. Evapotranspiration, the sum of surface evaporation and plant
transpiration, is the process through which water at the land surface is returned to
the atmosphere. The solar energy used in this process can no longer be used for the
heating of the land surface and the near-surface atmosphere. Spatially and tempo-
rally distributed soil moisture information is therefore required in many weather
and climate models (Dirmeyer, 2000; Albergel et al., 2010). Furthermore, infor-
mation on soil moisture is used in a wide variety of domains, ranging from flood
forecasting (e.g. Javelle et al., 2010), over agricultural applications (e.g. Bolten
et al., 2010; McNairn et al., 2012) to pest control (e.g. Liu et al., 2008).

The most basic techniques for obtaining information on the spatiotemporal be-
haviour of soil moisture are in situ measurements, by ground sampling or elec-
tronic probing. Although these techniques allow an accurate derivation of the
gravimetric or volumetric soil moisture content at the sampling point, their lim-
itations are evident. In situ techniques only provide point measures, while op-
erational applications mostly demand spatially distributed soil moisture informa-
tion. The spatial variability of soil moisture can be large due to variations in to-
pography or soil type. Representative area-wide estimates can thus only be ob-
tained from many individual in situ observations. The cost associated with in situ
observations makes that they are only useful in small scale applications. Alter-
natively, soil moisture can be modelled based on a conceptual framework (e.g.
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Sheikh et al., 2009) when sufficient meteorological, topographical, pedological
and/or other datasets are available. The availability of these datasets, however, is
the Achilles’ heel of these models, rendering them useless in regions where one or
more of them are unavailable.

Remote sensing from planes or satellites provides alternative means of repeat-
edly observing hydrological state variables over large areas. Today, several op-
erational products provide global soil moisture estimates at near-daily frequency
(Wagner et al., 1999b; Njoku et al., 2003; Owe et al., 2008; Naeimi et al., 2009).
These products have in common that they are obtained from remote sensing data
with a coarse spatial resolution, in the order of tens of kilometres, restricting their
applicability to global or continental-scale applications. At the other end of spec-
trum, significant efforts have been made to obtain remotely sensed soil moisture at
resolutions in the order of a metre (e.g. Lievens and Verhoest, 2011). Techniques
developed for applications at these resolution, however, often demand controlled
conditions, e.g. an absent or invariant vegetation cover of the terrain under inves-
tigation, and/or ancillary in situ datasets.

In between these extremes, many applications require information on soil mois-
ture at intermediate spatial resolution (from tens of metres to a kilometre) over
extents of several hundreds of kilometres. At this scale, landcover is often het-
erogeneous and the acquisition of ancillary in situ datasets is costly. The research
presented here is situated in this context, and aims at deriving remotely sensed soil
moisture-related information at approximately 1 km resolution, without requiring
specific ancillary datasets. To this end, different sources of remote sensing prod-
ucts are used. This research aims at deriving soil moisture proxies, or indices
that are related to spatial or temporal soil moisture patterns, rather than absolute
gravimetric or volumetric soil moisture content. These soil moisture products are
sufficient for many applications.

One field in which soil moisture proxies are expected to be useful is the distri-
bution modelling of the Culicoidesimicola biting midge. This species is the major
vector of the bluetongue virus in Mediterranean Europe and Africa (Mellor et al.,
2000) and is a vector of several other viruses. A detailed knowledge of the spatial
distribution of this species can thus assist in curtailing the spread of bluetongue.
Soil moisture is one of the factors generally assumed to restrict the spatial distri-
bution of C. imicola, since all immature stages of the species can be found in the
top few centimetres of the soil. Until now, however, information on soil moisture
has not yet been integrated in C. imicola distribution models, or only indirectly
through variables assumed to be related to soil moisture. Part of this research
therefore investigates whether the soil moisture proxies retrieved here can be used
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to improve the species distribution modelling for the Italian region of Calabria.

This dissertation in divided into two main parts (Fig. 1.1). The first, and largest,
part deals with the derivation of remotely sensed soil moisture proxies and starts
with a general overview of the principles of spaceborne remote sensing and an in-
troduction of soil moisture retrieval through remote sensing (Chapter 2). Chapter 3
introduces the study site and the remote sensing and ancillary datasets used in this
study. A soil moisture model for Calabria is also discussed in this chapter. The fol-
lowing chapters, (4, 5 and 6) are parallel chapters discussing different techniques
to derive soil moisture proxies from different types of remotely sensed imagery.
Chapter 7 provides a brief discussion on the anticipated utility of these soil mois-
ture proxies for species distribution modelling. The smaller second part of the
document is dedicated to the species distribution modelling. This part consists of
a single chapter (Chapter 8), in which different sources of information from which
C. imicola distribution can be modelled are compared. Finally, Chapter 9 summa-
rizes the conclusions of this research and discusses open issues and pathways for
further research.

[ 1: Introduction J

Part I: Remotely sensed soil moisture proxies

[ 2: Observation of soil moisture patterns through remote sensing J

[ 3: Study site and data collection ]
4: A soil moisture change) (5: MODIS apparent 6: Contextual surface
i | detection algorithm for| |thermal inertia as a soil temperature information | :
1| ASAR Wide Swath time| |moisture indicator as a soil moisture|:
' | series indicator :

[7: Soil moisture proxies for species distribution modelling: conclusion]

Part II: Spatial distribution modelling

8: Modelling the spatial distribution of C. imicola
using climatological and remote sensing data

[ 9: Conclusions and outlook J

Figure 1.1: Overview of the research structure.

The research presented here was initiated in the framework of the EPIDE-
MOIST (Improving epidemiological modelling using satellite derived soil mois-
ture proxies) project (project number SR/02/124) funded by the STEREO Il pro-
gramme of the Belgian Science Policy (BELSPO). This 2-year project was a col-
laboration between different research groups of Ghent University and a private
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partner (Avia-GIS), and its goal was twofold. The first aim was to investigate
whether machine learning techniques could replace the popular and frequently
used statistical methods in species distribution modelling. The second objective
was to validate a number of operationally derivable remote sensing products that
could act as a proxy for soil moisture. Additional funding allowing the completion
of the doctoral research was granted by the Research Foundation Flanders (FWO)
as part of the project G.0837.10, and by the Special Research Fund (BOF) of Ghent
University.



Part I
Remotely sensed soil moisture proxies






Observation of soil moisture patterns
through remote sensing

2.1 Imaging the earth from space through electro-
magnetic radiation

Remote sensing can be described as the technique of acquiring information on an
object or phenomenon through a device without making any physical contact with
the object or phenomenon under investigation. Probably the most familiar remote
sensing device, though not always perceived that way, is the human eye. The eye
allows humans to detect objects at a distance thanks to the visible light originat-
ing from the sun, a lamp or another light source that is reflected on the objects
and directed towards the eye. Unlike the human eye, man-made remote sensing
devices can be constructed to detect a much wider range of forms of radiation or
energy than merely visible light. Some of these well-known forms of radiation are
ultraviolet (UV) and infrared (IR) waves, heat, microwaves and radio waves. All
these forms of energy are in essence very similar and have in common that they
are all types of electromagnetic waves.

2.1.1 Propertiesof electromagnetic radiation

In accordance with wave theory, electromagnetic energy can be described as a har-
monic, sinusoidal electric field and a perpendicular magnetic field, propagating
in a direction perpendicular to these two fields at the velocity of light (c = 3 x
108ms~1). The most common property to categorize electromagnetic waves, al-
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Figure 2.1: The electromagnetic spectrum (after Lillesand et al. (2004)).

lowing to situate the wave in the electromagnetic spectrum (Fig. 2.1), is the wave-
length or frequency (Lillesand et al., 2004). The wavelength A is the distance
between two successive peaks of the sinusoidal wave, and is typically expressed in
units as a fraction of a metre (from nm over um to cm and beyond). The frequency
v is the number of sinusoidal wave cycles passing a fixed point per unit of time
and is expressed in Hertz (Hz or, often, in GHz). Wavelength and frequency are
related through the velocity of light as:

cC=VA. (2.1)

A second property of an electromagnetic wave, or any sinusoidal function, is
its amplitude. The amplitude is an indicator of the amount of energy contained in
the wave. Although electromagnetic waves are composed of both an electric field
and a magnetic field, it is common to consider only the amplitude of the electric
field in remote sensing applications, since only this field is altered when electro-
magnetic waves interact with natural substances (Woodhouse, 2006).

A last property is the polarization of the electromagnetic wave. The polar-
ization defines the plane, perpendicular to the direction of propagation, in which
the wave oscillates (Woodhouse, 2006). As will be discussed later, polarization is
mainly considered in radar applications. Two specific conditions of polarization
can however be mentioned here: when the vibrations of the electric field are either
in a plane horizontal to the earth’s surface, or in a plane vertical to the surface.
Not surprisingly, these specific conditions are termed horizontal polarization and
vertical polarization, respectively.

2.1.2 Sourcesof electromagnetic radiation

As mentioned earlier, the sun or a lighting bulb are sources of electromagnetic
energy. However, the surface of each object, or body, with a temperature above the
absolute zero (OK or —273,15°C) radiates electromagnetic waves. The amount
of energy that is radiated by a body, or the total radiant exitance M [Wm~?2], is



OBSERVATION OF SOIL MOISTURE BY REMOTE SENSING 9

expressed by the Stefan-Boltzmann law:
M=ocT*, (2.2)

where G is the Stefan-Boltzmann constant (5.670 x 108 Wm~2K~4) and T is the
temperature of the body [K]. Not only does the total energy emitted by an object
change as a function of its temperature, so does the spectral distribution of the
emitted energy. The total radiant exitance of a body in a specific wavelength M (1)
[Wm~—2m~1] is expressed by Planck’s Law:

~2hc 1

M(L -
M=k

(23)

with h the Planck constant (6.626 x 10~3*Js) and k the Boltzmann constant
(1.381 x 1072 JK1).

It should be noted that Egs. 2.2 and 2.3 are only valid for a blackbody, i.e. a
theoretical, ideal radiator that absorbs and reemits all energy incident upon it. Real
materials, however, only approach this ideal behaviour and emit only a fraction
of the energy emitted by a blackbody of the same temperature. This fraction is
function of the material, as well as wavelength specific, and called the material’s
emissivity (e(A), [-]):

_radiant exitance of an object at T
~ radiant exitance of a blackbody at T

e(d)

(2.4)
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Figure 2.2: Spectral distribution of radiant exitance for blackbodies at 6000 K and
300K.
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The temperature of the sun is approximately 6000 K, that of the earth’s surface
approximately 300 K. The spectral radiant exitance M (1) for blackbodies at these
temperatures is given in Fig. 2.2. It is observed that the energy emitted by the sun
is over all wavelengths higher than the earth’s and that the peak of the solar radiant
exitance is shifted towards the shorter wavelengths. For a given temperature, the
spectral radiance as defined by Eq. 2.3 peaks at a wavelength Ayax defined by

Wien’s displacement law:
W

T )
where W is Wien’s displacement constant (2.898 x 10~>mK). Given the peak of
solar radiant exitance in the visible and adjacent wavelengths (around 0.5 um),
many remote sensing instruments capturing the solar energy reflected by the earth
will be designed to operate in this part of the electromagnetic spectrum. Sensors
aiming at recording radiation emitted by the earth itself can observe the highest
amount of energy at wavelengths around 10 pm.

lmax<T) = (2-5)

2.1.3 Interaction of electromagnetic radiation with objects

When electromagnetic energy, emitted by the sun or another source, with a wave-
length A is incident on body, the incident energy (E;(A), [Wm~2]) is either ab-
sorbed, transmitted or reflected (also termed ’scattered’), where these three com-
ponents sum up to the total incident energy (Lillesand et al., 2004). The way in
which incident energy is split into absorbed energy (Ea(A)), transmitted energy
(Er())) and reflected energy (Er())), all in Wm~—2, is determined both by the
properties of the body and by the wavelength itself. When ratioing these three
components into which incident energy is split, the spectral absorptance (a.(A), [-
1), reflectance (p(A), [-]) and transmittance (t(A), [-]) are obtained (Lillesand et al.,
2004):

_Ea) _ Er(}) _Er(
M=gm PM-gm W-gm (2.6)

so that
aM)+pM)+1(h)=1. 2.7)

According to Kirchhoff’s radiation law, a body’s spectral absorptance equals its
spectral emissivity:

a(A) =¢(Ar) . (2.8)

For opaque bodies (t(A) = 0), such as the earth’s land surface, combining
Egs. 2.7 and 2.8 defines the relationship between spectral reflectance and spec-
tral emissivity:

e(M)+p(r)=1. (2.9)
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Apart from the amount of incident radiation that is reflected or scattered, the
direction in which it is reflected is also of importance, since only the part of the
radiation reflected towards the sensor can be captured. In this respect, a distinction
is made between specular reflection and diffuse (or Lambertian) reflection, with
gradations between these extremes (Fig. 2.3). Specular reflection is the mirrorlike
behaviour that can be observed, in the visible spectrum, in the reflection of the
sun on a flat water surface or polished piece of metal. The incoming radiation is
here reflected under an angle equal to the angle of incidence. Conversely, diffuse
reflectors reflect uniformly to all angles, as for example a dry soil, again in the
visible wavelengths. In reality, however, most objects will display a behaviour
somewhere in between specular and diffuse reflectance.

VARV,

Ideal specular reflector Intermediate reflector Ideal diffuse reflector

Figure 2.3: Specular versus diffuse reflectance

The geometric character of reflectance on a medium or surface is also described
in terms of roughness, where rough surfaces exhibit a more diffuse reflection and
smooth surfaces a specular reflection. It should be noted that roughness is depen-
dent on the wavelength of the incident radiation, so that a surface can be rough
with respect to shortwave visible or infrared radiation, but smooth with respect to
microwave radiation.

A final remark concerning scattering is the distinction between surface scatter-
ing and volume scattering. Volume scattering will occur when the electromagnetic
wave penetrates into the medium on which it is incident and scatters on the in-
dividual elements inside the medium (Woodhouse, 2006). In the case of surface
scattering, on the other hand, the wave will not penetrate into the medium but re-
flects off its surface. Again, whether a medium will behave as a surface scatterer
or as a volume scatterer depends on the wavelength. A single leaf, for example,
will act as a volume scatterer for near infrared radiation, with the infrared wave
reflecting at the interfaces of cell walls and intracellular spaces. An entire canopy
can also act as a volume scatterer, but then for microwave radiation, with the dif-
ferent stems, branches and leafs making up the individual scatterers.
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2.1.4 Atmospheric attenuation

In spaceborne remote sensing, it is evident that information contained in electro-
magnetic radiation reflected from, or emitted by, the earth’s surface must penetrate
the atmosphere surrounding the earth. Therefore, the atmosphere’s transmittance
(t(1)) must approach unity or, as a consequence, the absorptance (o.(A)) and re-
flectance (p(A)) along the path of the electromagnetic wave should be minimal.

2.14.1 Absorptance

A well-known type of atmospheric absorption is the blocking of ultraviolet radi-
ation (0.1 um-0.4 um) by the ozone layer, protecting the human skin against skin
cancer. Ozone is only one of the gases in the atmosphere that absorb electro-
magnetic radiation. Other efficient absorbers are water vapour, carbon dioxide and
oxygen. Each of these block the electromagnetic radiation at specific wavelengths,
making them useless for remote sensing applications. The wavelength ranges in
which energy is not absorbed (ai(A) = 0), and thus allow remote sensing systems
to ’see through’ the atmosphere, are called atmospheric windows. Obviously, if
one is interested in atmospheric composition or processes, the wavelengths in the
absorption bands are to be employed.

2.1.4.2 Reflectance

Like all objects, atmospheric particles will reflect electromagnetic radiation in
function of the wavelength. Reflection or scattering processes in the atmosphere
are grouped based on the relative size of the scattering particles relative to the
wavelength of the electromagnetic energy. As such, three processes are discerned:
Rayleigh scattering, Mie scattering and nonselective scattering.

Rayleigh scattering A first type of scattering occurs when the size of the par-
ticles on which the electromagnetic radiation is incident is much smaller (about
a factor 10) than the wavelength, and is called Rayleigh scattering. The effect of
this type of scattering is inversely proportional to the fourth power of the wave-
length, and thus drops quickly with increasing wavelength. Rayleigh scattering
is responsible for the blue appearance of a clear sky, since in the visible part of
the spectrum (0.4 um-0.7 um) the shorter blue wavelengths are reflected much
stronger than others on the tiny atmospheric particles.

Nonselective scattering A different type of scattering occurs when the size of
the particles on which the electromagnetic radiation is incident is much larger
(about a factor 10) than the wavelength. In this case, the particle will appear as
a surface to the electromagnetic wave and scatter all wavelengths about equally,
hence the name nonselective scattering. This type of scattering can be observed
when visible or infrared waves interact with water droplets, with diameters from
5um to 100 um, formed in clouds. The equal scattering of all visible wavelengths
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causes the white color of clouds, and prevents radiation in the shorter wavelengths
to reach the earth’s surface or the spaceborne sensor. Microwaves (1 mm-1m),
however, have a wavelength much longer than the diameter of these droplets, and
will thus not be scattered nonselectively by clouds.

Miescattering An intermediate type of scattering, when the wavelength is about
the size of the particles, is called Mie scattering. This type of scattering can occur
when visible light is incident on atmospheric dust particles, or shorter microwaves
are incident on raindrops. The scattering behaviour is complex, and very sensitive
to changes in particle size and wavelength (Woodhouse, 2006).

2.1.5 Influence of surface properties

This section discusses the influence of soil surfaces and vegetation canopy cover
on electromagnetic radiation, with emphasis on the effects of (changes in) soil
moisture. Interaction with artificial surfaces will not be discussed here since this
goes beyond the scope of this research. Given the very different effect of surface
properties on electromagnetic radiation with different wavelengths, a distinction
is made between the effects on shortwave (visible (0.4 um-0.7 um), near infrared
(NIR, 0.7 um-1.4 um) and shortwave infrared (SWIR, 1.4 um-3 um)), thermal in-
frared (TIR, 3 um-15 um), and microwave (1 mm-1 m) radiation.

2.1.5.1 Visble near infrared, shortwaveinfrared

Baresoil The darkening of soils when water is added is a familiar phenomenon
that can be observed by the human eye. A large number of laboratory studies in-
vestigated the moisture effect on a wide range of soils and all found a decrease of
soil reflectance with increasing moisture content for the entire shortwave spectrum,
although specific for each soil and each wavelength (Bowers and Hanks, 1965; Vis-
carra Rossel and McBratney, 1998; Muller and Décamps, 2000; Liu et al., 2002;
Lobell and Asner, 2002; Liu et al., 2003; Whiting et al., 2004; Dematté et al., 2006;
Haubrock et al., 2008a; Liu et al., 2009). When water is added to a dry soil, the
first water is attracted to the soil particles. This change of the medium surrounding
the particles from air to water changes the direction in which light is scattered, and
increases the absorptance of the soil (Twomey et al., 1986). Additional water that
starts to fill the micro- and macropores in the soil has only limited effect on the
visible reflectance. Strong absorption by water in the SWIR however causes p(\)
in these wavelengths to decrease even further. The high SWIR reflectance of dry
soils enhances the contrast between dry and wet soils (Lobell and Asner, 2002).
Two regions especially sensitive to soil water content are centered around 1.44 um
and 1.99 um and form distinct water absorption features in the reflectance spectra
of wet soils (Bowers and Hanks, 1965; Somers et al., 2010).

Vegetation canopy Electromagnetic waves in the visible, NIR and SWIR wave-
lengths are largely reflected or absorbed by the top few millimetres of the surface.
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Therefore, in the case of vegetated surfaces, the signal reaching the sensor will
be dominated by the contribution of the canopy cover, and the soil signal will
only contribute marginally. Direct observation of the soil and estimation of topsoil
moisture content thus becomes impossible. However, spatial or temporal patterns
in root zone soil moisture can, in some cases, be estimated indirectly from the
influence of soil moisture on the vegetation canopy, since well-water and water-
stressed vegetation reflect the shortwave solar radiation differently. The low re-
flectance of green leaves in the visible part of the spectrum in general, and in the
red wavelength in particular, is caused by the absorption of this light for photosyn-
thesis (Gamon et al., 1992). The large reflectance in the near infrared is caused
by volume scattering in the leaves (Gausman, 1974). Low soil moisture levels
over a period of time will cause plants to reduce water loss through transpiration
and photosynthetic activity, while reducing the intercellular spaces in the leaves.
This results in an increase in reflectance of red light and a reduced reflectance in
the near infrared. Towards the longer wavelengths, the SWIR part of spectrum
of vegetation is very sensitive to changes in moisture content through the strong
absorption by leaf water (Gao, 1996).

2.15.2 Thermal infrared

Baresoil The temperature of a bare soil surface, which can be obtained from the
total radiant exitance from the surface (Eq. 2.2), is determined by, amongst others,
the moisture content in the top layer. Two moisture-related properties influencing
surface temperature are thermal inertia and evaporation (Price, 1980). The ther-
mal inertia of a material or surface determines its response to external temperature
variations and is function of the material’s bulk density, specific heat capacity and
thermal conductivity, all of which are material specific. The thermal inertia of a
material expresses itself in its diurnal temperature variation, with high thermal in-
ertia resulting in small temperature variations, and vice versa. As a result of the
high thermal inertia of water, the diurnal temperature variation of a water body
is much lower than that of dry soil. Given all other soil properties constant over
space and time, dry soils will therefore exhibit higher temperature variations than
wet soils.

Evaporation over bare soil surfaces controls the surface temperature through
the surface energy balance, which partitions the net radiation at a surface (R,)
into a sensible heat flux (J), latent heat flux (LE) and ground heat flux (G), all in
Wm~2:

Ri=LE+J+G, (2.10)

where the latent heat flux is the product of the amount of evaporated water and the
latent heat of vaporization. An increase in evaporation, and hence the latent energy
term in the energy balance, results in a decrease of energy availably to heat the soil
surface. Since evaporation requires the availability of moisture in the top layer of
the soil, well-watered soil surfaces will therefore be cooler than dry surfaces.
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Vegetation canopy Much like the shorter infrared and visible wavelengths, ther-
mal infrared radiation is unable to penetrate a dense vegetation canopy cover. Sur-
face temperature observed by satellites will therefore reflect the temperature of the
top layer of the canopy in case the soil is covered by vegetation, and thus be in-
fluenced by the intensity of transpiration from the canopy (Lambin and Ehrlich,
1996). Canopy transpiration, soil evaporation and direct evaporation from plants
combine into evapotranspiration. When plants can draw water from the root zone
unlimitedly, evapotranspiration will allow the daytime canopy temperature to re-
main close to air temperature (Lambin and Ehrlich, 1996). When access to soil
moisture is limited, however, the reduction of transpiration by stomatal closure
will cause the canopy temperature to increase above air temperature.

2.1.5.3 Microwaves

Baresoil  Soil moisture content is related to the surface reflectance and emissiv-
ity in the microwave part of the spectrum through the (relative) electric permittiv-
ity. The permittivity describes how a medium is influenced by a magnetic field, and
is composed of a real part and an imaginary part. While the real part determines
the propagation characteristics through the medium, the complex part determines
the absorption as the electromagnetic wave travels through the medium. The real
part of the electric permittivity of water is high as a result of the capability of water
molecules to align with the electric field in the microwave region, a phenomenon
also applied in microwave ovens. Dry soils, on the other hand, are characterized
by a low real and imaginary component of the permittivity, which both rise when
the moisture content increases (Woodhouse, 2006). The electric permittivity de-
termines £(A) of the bare soil surface and hence, following Eq. 2.8, p(A).

Surface emissivity and reflectance are also influenced by the geometric char-
acteristics of the soil surface, or the roughness. The geometric characteristics will
determine to which degree the surface will act as a specular or a diffuse reflector.
This has as a result that e(A) and p(L) may be very different for a tilled and an
untilled bare soil surface with the same moisture content.

Vegetation canopy A vegetation canopy can, in the microwave part of the spec-
trum, be seen as a volume of individual scattering elements of different sizes and
orientation (Woodhouse, 2006). The degree in which microwave radiation will
be able to penetrate the canopy cover is function of the wavelength. While the
shorter wavelengths of a few millimetres will be scattered by elements as small as
the leaves and twigs, wavelengths in the order of a metre will only interact with
the larger elements such as tree trunks and will therefore more easily penetrate the
canopy cover. As for dry soils, the moisture content in the vegetation canopy also
influences the reflectance and emissivity.
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2.2 Remote sensing systems

Since the launch of the first Sputnik satellite in 1957, numerous earth observation
space missions have been undertaken. Data from several types of satellites have
been used to infer information on spatial and/or temporal soil moisture patterns.
Remote sensing systems can be classified based on the range of wavelengths of
electromagnetic radiation that is observed. Additionally, a distinction can be made
between passive and active systems. While passive systems observe the radiation
emitted by an external energy source, i.e. the sun or earth, active systems provide
their own source of electromagnetic radiation. As such, spaceborne remote sensing
systems can be classified into three broad categories: multispectral optical systems,
active microwave or radar systems and passive microwave systems (Fig. 2.4). It
should be noted that other types of earth observing systems (such as lidar, an active
system operating in the shortwave spectrum) exist, though these are not discussed
here since they are seldomly used for the monitoring of soil moisture.

¢

]

A=3-15um 2=0.4-2.5um A=1mm-1m A=1mm-1m

Figure 2.4: Basic principles of (a) optical sensors, (b) radars, (c) passive mi-
crowave sensors, with indication of wavelengths (A).

The following sections provide a brief overview of the main characteristics of
these three groups of sensors. A number of past, present-day and future satellite
missions, relevant to this research and/or mentioned throughout this document, are
listed.

2.2.1 Multispectral scanners

Systems operating in wavelengths ranging from UV to TIR (0.3 um-14 um) are
also called optical sensors since in this range optical instruments such as lenses
and mirrors can be used to reflect and refract electromagnetic radiation. These sen-
sors are passive systems, capturing the amount of incident solar radiation reflected
by the earth’s surface or the amount of radiation emitted by the surface. This is
typically done in a number of different spectral bands with a certain width, hence
the name multispectral. When the number of spectral bands used is increased, and
the width of the wavelength bands thus becomes smaller, the term hyperspectral is
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used.

2.2.1.1 Imageacquisition principles
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Figure 2.5: Across-track scanner characteristics.

A two-dimensional image acquired by a spaceborne sensor is formed by a line-
by-line scanning of the earth’s surface. The scanning of the different scan lines
is done either by across-track scanning or by along-track scanning. In across-
scanning (Fig. 2.5), a rotating mirror is used to successively scan along lines per-
pendicular to the direction of propagation of the sensor. The width of these scan
lines is referred to as the swath. The second dimension is then added by the for-
ward motion of the sensor. Along-track scanners also use the forward motion of
the sensor to obtain the second dimension in an image. The different scan lines are
in this case obtained by a linear array of detectors, rather than by a rotating mirror
(Lillesand et al., 2004).

It should be noted that scanning of the surface using the forward motion of the
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spacecraft is not possible in the case that the sensor is at a fixed position in space
relative to the surface, i.e. a geostationary sensor. These instruments are therefore
designed to scan in two dimensions.

2.2.1.2 Spectral characteristics

Surfacereflectance As seen in Fig. 2.2, solar exitance peaks in the visible part
of the spectrum. Since this region corresponds to a wide atmospheric window, it
is used in most multispectral sensors designed for land surface applications. Simi-
larly, the near-infrared region is characterized by a high solar exitance and contains
large atmospheric windows in between the atmospheric water vapour absorption
regions at 0.94 um and 1.12 um. In the shortwave infrared, two atmospheric win-
dows are roughly situated between 1.5um and 1.8 um and between 2.0 um and
2.5um (Vermote and Vermeulen, 1999).

The information that is electronically recorded by the sensor is the total radi-
ance reaching the sensor. In order to transform this at-sensor radiance to surface
reflectance, the total incoming radiation on the object or irradiance must be known,
as well as the path radiance, or the radiance observed by the sensor that is reflected
by the atmosphere itself (Lillesand et al., 2004). Both irradiance and path radiance
are function of the atmospheric conditions. Additionally, irradiance is function of
the solar elevation and its distance to the earth.

Surface temperature Complementary to measuring the spectral reflectance of
the earth’s surface, some multispectral sensors include thermal scanners that mea-
sure the earth’s surface temperature (Ts). The derivation of surface temperature is
based on the Stefan-Bolzmann law (Eq. 2.2), which defines the relation between
blackbody temperature and total radiant exitance. From Fig. 2.2, we know that the
earth’s surface emits maximally in the thermal infrared region between 3 um and
15 um, with a peak at 10 um. The atmospheric window between 8 um and 14 um
is therefore the region of preference for determining surface temperature. Since
the peak of radiant exitance shifts towards the shorter wavelengths with increasing
temperature, the spectral window between 3 um and 5pm is sometimes included
in multispectral sensors with the aim of monitoring of high-temperature phenom-
ena such as forest fires or volcanoes.

The thermal radiation observed by a spaceborne sensor contains, in addition
to the land surface signal, a contribution of the atmosphere. Furthermore, as men-
tioned in the previous section, the earth’s surface emits only a certain fraction of the
energy that a blackbody of the same temperature would emit, characterized by the
emissivity €. These two aspects have to be accounted for in order to obtain reliable
surface temperature estimates. Among the methods used to derive surface temper-
ature from the observed infrared radiation are the split-window method (Wan and
Dozier, 1996) and the day/night algorithm (Wan and Li, 1997). The split-window
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method exploits the difference in atmospheric absorption of thermal infrared radi-
ation in adjacent spectral bands, combined with emissivities estimated from land
cover type (Snyder et al., 1998) The day/night algorithm retrieves day- and night-
time surface temperature and emissivity simultaneously from pairs of daytime and
nighttime data in seven TIR bands.

2.2.1.3 Spatial and temporal resolution

The spatial resolution of the sensor, defined by the size of the ground resolution
element, is determined by the distance between the sensor and the surface and by
the instantaneous field of view (IFOV) of the senor (Lillesand et al., 2004). The
IFQV is the cone angle within which the incident energy is detected by the sensor.
Since the IFOV of an across-track scanner remains constant, the spatial resolution
at nadir will be higher (smaller ground resolution element) than towards the sides
of the swath. Depending on the design of the sensor and the altitude at which it is
flown, spatial resolutions in this group of sensors vary greatly, from as high as one
metre to as low as a few kilometres.

Temporal resolution, or the time between two consecutive observations of the
same place on earth, is generally restricted by the trade-off between spatial and
temporal resolution, since higher spatial resolutions will usually result in smaller
swaths. For geostationary satellites, the temporal resolution is only confined by
the time of the sensor to scan the (half) earth disk. The temporal resolution for
non-geostationary orbits is defined by the image swath and the orbit pattern. An
important concept in this respect is the repeat cycle or the time for the satellite to
return to the same ground track.

Since electromagnetic radiation in this part of the spectrum is scattered nonse-
lectively by small water droplets, this type of remote sensing systems are rendered
useless for land surface applications under conditions of cloud cover. The effect of
cloud cover can be mitigated by image compositing. This process comprises the
detection and filtering of cloud cover in a number of multitemporal images, and
the assignment of a representative value based on the data collected under non-
clouded conditions. Inevitably, this results in a decrease of the temporal resolution.

2.2.1.4 Past, present and future missions

An interesting category of multispectral scanners for application in species distri-
bution modelling are the polar-orbiting medium resolution sensors, which provide
spatial resolutions in the order of 1 km at revisit times of a few days.

NOAA AVHRR The family of Advanced Very High Resolution Radiometer
(AVHRR) sensors is carried onboard the different National Oceanic and Atmo-
spheric Administration (NOAA) satellites since 1978. The polar-orbiting satellites
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operate at a heliosynchronous orbit, indicating that the ground path of the sen-
sor crosses the equator at a fixed local solar time. The number of spectral bands
in which the AVHRR sensor operates has increased over the years from four to
six, with bands in the visible, NIR, SWIR and TIR part of the spectrum. Cur-
rently, five NOAA AVHRR sensors are operational. The AVHRR instrument is
also carried onboard the MetOp (Meteorological Operational satellite programme)
platforms operated by the European Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT).

Aqua/TerraMODIS The two Moderate Resolution Imaging Spectroradiometer
(MODIS, NASA, 2013) instruments can be seen as a follow-on of the AVHRR sen-
sors. MODIS is mounted on the Terra and Aqua spacecrafts, launched in 1999 and
2002, respectively. The daytime equatorial crossing time for these two heliosyn-
chronous platforms, with a repeat cycle of 16 days, is 10:30a.m. in descending
orbit (north to south) for Terra, and 1:30 p.m. in ascending orbit for Aqua. Due to
the large swath of the instrument (2330 km cross-track), each of the two sensors
provides a near-global daily coverage day and night.

The MODIS instrument acquires information on reflected and emitted radia-
tion in 36 narrow bands in the shortwave and thermal part of the spectrum. Spatial
resolution ranges from 250m for two bands in the red and near-infrared, over
500 m for 5 bands in the shortwave spectrum, to 1000 m for the remaining bands
throughout the shortwave and thermal spectrum. Although designed for a lifetime
of six years, both sensors are still operational.

Envisat MERIS The Medium Resolution Imaging Spectroradiometer (MERIS),
carried by the European Space Agency’s (ESA) Envisat platform, was designed
to observe solar reflectance in fifteen spectral bands in the reflective part of the
spectrum, programmable by ground control. MERIS can either operate in Full
Resolution mode, with a spatial resolution of 300 m, or in Reduced Resolution
mode of 1200 m. The sensor was operational until contact with Envisat was lost
on April 8, 2012.

2.2.2 Radar
2.2.2.1 Imageacquisition principles

Being an active system, a radar (radio detection and ranging) supplies its own
source of electromagnetic radiation. Radar systems consist of an airborne or
spaceborne antenna emitting short pulses of microwave energy sideways of the
flight path (Fig. 2.6), hence the name side-looking radar (SLR). The radar image
is formed, line by line using the forward motion of the platform, by measuring
the strength of the returned signal together with the time required for the signal to
travel towards the surface and back. The proportion of energy that is returned to-
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Figure 2.6: Side-looking radar characteristics.

wards the sensor is reflected in the backscatter coefficient (6°) which is expressed
in dB.

2.2.2.2 Spectral characteristics

Radars operate in the microwave part of the spectrum (1 mm to 1 m), which coin-
cides with a large atmospheric window. These wavelengths are much longer than
the diameter of water droplets in clouds, making them insensitive to nonselective
scattering. In contrast to radiation in the visible, infrared and thermal wavelengths,
microwaves can thus penetrate cloud cover. Since radar systems provide their own
source of electromagnetic energy, they can also be operated day and night.

Contrary to multispectral optical systems, radar systems typically use only a
single wavelength. The wavelength or frequency bands are referred to using a
letter, originating from the military use of microwaves (Table. 2.1). While a main
advantage of microwaves is that they can penetrate cloud cover, the shorter K and
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X wavelengths can be severely attenuated by rainfall, when the drops become large
with respect to wavelength.

Table 2.1: Radar band designations (Lillesand et al., 2004).

Band Wavelength A [cm]
Ka 0.75-1.1
1.1-1.67
u 1.67-2.4
2.4-3.75
3.75-7.5
7.5-15
15-30
30-100

Trrunuo XXX

Radars emit electromagnetic radiation with a certain polarization, typically in
the vertical (V) or horizontal (H) plane with respect to the earth’s surface. Simi-
larly, the returning signal can be received in one of these planes. This results in
four possible polarization schemes: two co-polarized (HH of VVV) and two cross-
polarized (HV or VH).

2.2.2.3 Spatial and temporal resolution

The spatial resolution of SLR is characterized by a range resolution, in the direc-
tion of the emitted wave, and an azimuth resolution, in the direction of the flight
line. The range resolution is proportional to the duration of the emitted electro-
magnetic pulse. The azimuth resolution, defined by the beam width, is directly
proportional to the wavelength and inversely proportional to the length of the an-
tenna. This implies that large antenna lengths are required to obtain high spatial
resolutions. This problem is circumvented by the use of synthetic aperture radar
(SAR) systems. These systems, opposed to real aperture radars, simulate the effect
of long physical antennas by using the motion of the antenna in space.

As for optical systems, the temporal resolution of radar imagery is generally
related to radar swath, with a trade-off between temporal and spatial resolution.
Given the all-weather capabilities of microwaves, the temporal resolution of sur-
face observations is not restricted by cloud cover. However, the fact that these are
active systems might in some cases limit the temporal resolution due to the high
power demand.

2.2.24 Pagt, present and future missions

ERS Scatterometer The Wind Scatterometer (hereafter simply Scatterometer)
was a real aperture radar system operating in C-band (5.6 cm, 5.3 GHz) in VV
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polarization (European Space Agency, 2013). It was flown on the two European
Remote Sensing (ERS) satellites ERS-1 (launched in 1991 and decommissioned
in 2000) and ERS-2 (launched in 1995 and decommissioned in 2011). During a
period of time, ERS-1 and ERS-2 flew in tandem, i.e. following the same path
with exactly one day between the overpasses of the two satellites.

The Scatterometer emits and records sideways electromagnetic pulses in three
beams (forward, transverse and backwards), allowing the observation of a single
place on earth at three different incidence angles at virtually the same time. This
design was initially developed to monitor wind speed and direction at the sea sur-
face. The sensor covered a swath of approximately 500 km to the right of the
satellite track, with a spatial resolution of approximately 50 km in the range and
azimuth direction.

MetOp ASCAT The Advanced Scatterometer (ASCAT), the successor of the
two ERS Scatterometers, functions much by the same principles and at the same
frequency (Gelsthorpe et al., 2000). Its 500 km twin swaths, to the left and right of
the satellite’s ground track, double the coverage, effectively doubling the temporal
resolution. In addition to the nominal 50 km spatial resolution mode, the high-
resolution mode offers 25 km spatial resolution, although at reduced radiometric
resolution. The ASCAT instrument is flown as part of the payload on the polar-
orbiting MetOp satellites.

ERS SAR Both ERS satellite were equipped with a C-band (5.6 cm, 5.3 GHz)
SAR in VV polarization (European Space Agency, 2013). These sensors were de-
signed to observe a swath of 100 km at the right of the track under a fixed look
angle of 23° in the middle of the swath. The spatial resolution of ERS SAR data
is approximately 30 m in the range and azimuth direction. Due to the high power
usage, operation time was limited to maximum 12 minutes per orbit (of approxi-
mately 100 minutes).

Envisat ASAR The Advanced Synthetic Aperture Radar (ASAR) onboard En-
visat is the successor of the ERS SAR missions, and possesses enhanced func-
tionalities (European Space Agency, 2007). Unlike the ERS SAR instruments,
the C-band ASAR can operate in different polarizations and in five programmable
modes: Image (IM) mode, Wave (WV) mode, Alternating Polarization (AP) mode,
Wide Swath (WS) mode and Global Monitoring (GM) mode. While the first three
of these are high resolution (30 m) modes with narrow swaths (10 km—100 km),
the latter two provide wider swaths (450 km) at reduced spatial resolution of 150 m
(WS mode) or 1 km (GM mode). Both WS and GM mode can operate in VV po-
larization and HH polarization. Apart from their spatial resolution, the two modes
differ in their radiometric accuracy, which is 0.65dB in WS mode and approxi-
mately double of that in GM mode.



24 CHAPTER 2

Data availability in a given mode is constricted by the mutual exclusivity of
acquisition in the five different modes. Furthermore, the high data rate modes
(IM, AP and WS) only allow operation time of 10 minutes per orbit. The low data
rate modes (WV and GM) have an operational capability of 100 % of the orbit, and
were therefore programmed as global background missions (the operation mode in
absence of user demand) over ocean and land, respectively. The ASAR instrument
was operational during the 10-year lifespan of Envisat, between 2002 and 2012.

Radarsat SAR The first Radarsat-1 was constructed by a consortium of Cana-
dian and US public and private partners and was launched in 1995. It is equipped
with a C-band radar operating in HH polarization, and is operational in differ-
ent modes of varying swath and spatial resolution. Radarsat-2 was launched in
2007 and provides enhanced functionalities, including a full range of polarizations
(Canadian Space Agency, 2011).

Sentinel-1 In the framework of the European Union’s and ESA’s Global Mon-
itoring for Environment and Security (GMES) programme, a series of Sentinel
satellites is to be launched during the following decade. Sentinel-1 (Attema et al.,
2007; Berger et al., 2012; Torres et al., 2012), a constellation of two satellites of
which the first is to be launched in 2013, carries a C-band (5.405 GHz) SAR op-
erational in different modes. In Inferrometric Wide Swath mode, global coverage
at least once every twelve days for each of the satellites is expected, increasing to
four to two days for high priority areas.

2.2.3 Radiometers
2.2.3.1 Imageacquisition principles

Radiometers are passive scanners, operating in the microwave part of the elec-
tromagnetic spectrum. The image acquisition principles of a traditional imaging
radiometer are very similar to those of scanners in the optical domain. While the
forward motion of the sensor creates one dimension, a scanning transverse to this
direction creates the second dimension. The main difference with optical sensors
is that radiometers use antennas to detect the radiation emitted or reflected by the
earth’s surface. Some recent sensors employ different imaging techniques, which
are briefly discussed later (in 2.2.3.4).

2.2.3.2 Spectral characteristics

Radiometers operate in the same spectral domain as radars, with the same band
nomenclature. As seen in Fig. 2.2, the spectral exitance of the earth’s surface in
the microwave region is very low, although all object will still radiate faintly at
these wavelengths. Since also the atmosphere has a temperature above 0 K, the
signal received at the sensor will include contributions emitted by the earth’s sur-
face, emitted by the atmosphere and emitted by the sun and reflected by the surface
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or the atmosphere.

An important source of noise in passive microwave observations are microwave
emissions caused by human activity (Njoku et al., 2005). Given the very low level
of natural radiation emitted by the earth’s surface, even small anthropogenic radar
emissions can result in Radio Frequency Interference (RFI).

2.2.3.3 Spatial and temporal resolution

Since the earth’s surface emits only faintly in the microwave part of the spectrum,
large antenna beamwidths are required to obtain a detectable signal, resulting in
a low spatial resolution. Typically, spatial resolutions of spaceborne microwave
radiometers are in the order of several tens of kilometres. On the other hand, the
low spatial resolution results in temporal resolutions of one to a few days.

2.2.34 Past, present and future missions

AMSR-E The Advanced Microwave Scanning Radiometer - Earth Observing
System (AMSR-E), an instrument onboard the Aqua platform and operated by the
Japan Aerospace Exploration Agency (JAXA), operates in six different spectral
bands in the microwave part of the electromagnetic spectrum. The spatial resolu-
tion decreases with increasing wavelength, and ranges from approximately 5.4 km
to 56 km. AMSR-E ceased operating in 2011.

SMOS The Soil Moisture and Ocean Salinity (SMOS) mission is the first mis-
sion dedicated specifically to the monitoring of soil moisture. In contrast to tradi-
tional radiometers, the Microwave Imaging Radiometer with Aperture Synthesis
(MIRAS) instrument of the SMOS mission is a two-dimensional, Y-shaped, in-
strument containing an array of 69 L-band receivers (Kerr et al., 2010). SMOS
was launched as part of ESA’s Living Planet programme in November 2009.

SMAP NASA’s Soil Moisture Active and Passive (SMAP) mission, planned for
launch in 2014, combines a radiometer and a SAR, both operating at L-band (En-
tekhabi et al., 2010). In a specific design, radar and radiometer share a rotating
6 m diameter antenna system conically scanning the surface. The instrument is
designed specifically to monitor soil moisture and freeze-thaw state.

2.3 Soil moistureretrieval

A plethora of techniques to infer information on spatial or temporal soil moisture
values and/or patterns from information in the optical and microwave part of the
spectrum have been suggested during the previous decades. This section reviews
some of these methods, with focus on those most relevant for application in species
distribution modelling. In this context, soil moisture proxies should preferably be



26 CHAPTER 2

derived using only remote sensing data, and limit the necessity of ancillary in situ
data.

2.3.1 Multispectral scanners
23.1.1 Empirical relationshipsand band ratioing

Several laboratory studies empirically established non-linear, wavelength-specific
and soil-specific relationships between soil moisture and soil reflectance (Lobell
and Asner, 2002; Liu et al., 2002; Whiting et al., 2004). The longer wavelengths
in the SWIR, and specifically around 1990nm, were found to be most suitable
for determining soil moisture content (Lobell and Asner, 2002; Liu et al., 2003).
Notwithstanding the clear relationship between soil moisture and reflectance, op-
erational applications of these empirical approaches using a single wavelength are
limited, given the need for vast amounts of in situ soil moisture data, needed for
calibration, and prior knowledge of soil type. Multiband approaches try to bypass
this problem by combining information from different parts of the soil reflectance
spectrum. Band differencing approaches are popular due to their simplicity and,
in general, use two spectral bands of which one wavelength is more sensitive to
changes in the feature of interest and the other is less sensitive. Indices can then
be derived by applying a simple ratio or normalized difference of the two wave-
lengths. Haubrock et al. (2008a) developed a soil moisture proxy by pairwise
computation of normalized differences of soil samples’ reflectances in the visible,
NIR and SWIR. The reflectance in the SWIR at 1800nm and 2119nm resulted in
an optimal linear regression with soil moisture and was used to define the Nor-
malized Difference Soil Moisture Index. Validation of this index (Haubrock et al .,
2008b) yielded promising results over terrain with sparse vegetation cover. Other
multiband approaches include Gaussian models (Whiting et al., 2004) or multiple
regression models (Chang et al., 2001; Dematté et al., 2006; Hummel et al., 2001).
All of these techniques, however, remain of limited utility for operational estima-
tion of soil moisture content over heterogeneous landscapes throughout the year,
given the necessity for bare soil conditions. Additionally, many of these require
spectral bands unavailable in present-day high temporal resolution sensors.

An alternative for soil moisture estimates based on the soil reflectance spec-
trum are vegetation indices which, in general, reflect the state of the vegetation
cover. Vegetation indices are influenced by several factors, including landcover,
climate, soil composition, but can also indicate vegetation water stress and can
thus be used as a proxy for soil moisture. An important difference between esti-
mates derived from reflectances of bare soils and those of vegetation canopies is
the depth of the soil layer for which soil moisture is estimated. For bare soils this
depth is only a few micrometers, while for a canopy this is the entire root zone,
which in turn is vegetation specific. The most popular vegetation index is the Nor-
malized Difference Vegetation Index (NDVI), derived from the reflectance in the
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red (preq) and near-infrared (pnir):

NDVI — PNIR ~Pred (2.11)
PNIR + Pred

where the red and NIR bands are centered around approximately 650nm and
860nm, respectively. NDVI is usually used as an indicator of vegetation density,
vegetation status or photosynthetic activity, its strength resulting from the large dif-
ference in reflectance for the two wavelengths over vegetation. Since high NDVI
values will only occur at places where soil moisture allows vegetation to grow, the
index can be used a soil moisture proxy in the widest sense. There is, however, an-
other and more useful relation between soil moisture and NDVI. Low soil moisture
levels over a certain period of time will cause plants to reduce water loss through
transpiration and photosynthetic activity. This results in a slight increase of preq
and a drastic decrease of pyjr caused by a reduced scattering in the intercellular
spaces of the leaf, and thus a decrease in NDVI. Several studies have established a
link —albeit sometimes weak— between remotely sensed NDVI and soil moisture
content at different depths (Wang et al., 2007; Gu et al., 2008).

NDVI is possibly not the best indicator of plant water stress or soil moisture
content since a certain period of drought stress is required before plants reduce
their photosynthetic activity. Several authors (Gao, 1996; Ceccato et al., 2001;
Fensholt and Sandholt, 2003; Chen et al., 2005; Yi et al., 2007; Wang et al., 2008)
suggest the use of a normalized difference of SWIR wavelengths to assess foliage
water content and associated root zone soil moisture. The Normalized Difference
Water Index (NDWI) uses a SWIR wavelength (pswir) as water-sensitive band and
the NIR as insensitive band, resulting in:

NDWI — PNIR — PSWIR . 2.12)
PNIR + PsSwWIR

Different SWIR wavelengths have been suggested for use in Eq. 2.12, located
either near the liquid water absorption feature of 1.2 um on the high reflectance
plateau (Gao, 1996; Fensholt and Sandholt, 2003), or either around 1.6 um (Fen-
sholt and Sandholt, 2003; Yi et al., 2007) and 2.2 um (Yi et al., 2007), in the
atmospheric windows between the water-absorption features. Reflectance in all
these wavelengths will rise significantly with decreasing leaf water content, pnir
will remain relatively stable or drop slightly, resulting in an increasing NDWI with
increasing moisture. Although most comparative studies found NDWI to be a bet-
ter predictor of soil moisture (Jackson et al., 2004; Chen et al., 2005), other found
no increased performance of NDWI compared to NDVI (Gu et al., 2008). The
superiority of NDWI is attributed to the early saturation of NDVI with increasing
soil moisture (Jackson et al., 2004). At a certain moisture level vegetation will no
longer increase leaf water content or photosynthetic activity, thus stabilizing the
vegetation indices.
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Both NDWI and NDVI will be mainly influenced by the absence or presence
and phenological phase of vegetation. Changes in a clear soil moisture signal
could, however, be detected at the later stages in a winter wheat growing cycle (Yi
et al., 2007). A way to derive soil moisture proxies from vegetation indices over a
changing phenology consists of subtracting a seasonal average derived from multi-
year time series (Rulinda et al., 2010). Adegoke and Carleton (2002) could relate
a deseasoned NDVI with deseasoned soil moisture measurements, while Jackson
et al. (2004) did the same using NDWI. The use of deseasoned time series is only
applicable with stable seasonal patterns. In the case of, e.g., shifting crop rotation
systems, deseasoned time series are rendered useless. Limitation of vegetation in-
dices also clearly arise over bare soils, as vegetation indices are largely insensitive
to changes in moisture content (Wang et al., 2008).

2.3.1.2 Contextual surfacetemperature patterns

Several studies could empirically relate spatial changes in soil moisture to spa-
tial changes in land surface temperature (Katra et al., 2006; Boulet et al., 2007;
Giraldo et al., 2009). While this offers opportunities of operational soil moisture
mapping for certain applications, e.g. for precision agriculture, the use of Ts alone
as a soil moisture proxy is limited to areas with homogeneous canopy cover. Over
more heterogeneous landscapes, thermal data need to be combined with infor-
mation from the reflected wavelengths in order to account for changes in canopy
cover.

The complementary nature of information in the visible/near infrared and in the
thermal infrared part of the electromagnetic spectrum has been studied intensively
for the parameterization of evapotranspiration and soil moisture status during the
past decades. A consistent negative relationship between remotely sensed vege-
tation indices (V1) and surface temperature (Ts) was observed by several authors
(Nemani and Running, 1989; Friedl and Davis, 1994; Moran et al., 1994b; Pri-
hodko and Goward, 1996; Goward et al., 2002). The reasons for the decrease in
surface temperature with increasing vegetation cover are manifold and an overview
of these driving mechanisms is provided by Lambin and Ehrlich (1996), among
others. In general, an increase in green biomass is associated with an increase in
evapotranspiration, thus a decrease in surface temperature. The slope of the VI-Tg
relationship was found to be dependent on the general moisture conditions. While
under arid conditions soils are capable of retaining a considerable part of the en-
ergy absorbed from sunlight and reach temperatures that exceed air temperature by
several tens of degrees, the bulk temperature of a dense canopy remains close to air
temperature, resulting in a strong decrease of surface temperature with increasing
vegetation index. Under uniform wet conditions, on the other hand, both bare and
fully vegetated surfaces will fully control surface temperature by evaporation and
transpiration, resulting in only a weak decrease of surface temperature with in-
creasing vegetation index. The slope of the VI-Ts relationship has been related to
regional surface resistance to evaporation or soil wetness or dryness, but was also
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found to be controlled by land cover and local meteorological conditions (Nemani
and Running, 1989; Nemani et al., 1993; Friedl and Davis, 1994; Goward et al.,
2002; Higuchi et al., 2007).

The concept of the VI-Ts relationship was further developed to accommodate
for larger areas with wide ranges in moisture and land cover conditions (Moran
et al., 1994a; Carlson et al., 1995). The hypothesis is that a triangular or trape-
zoidal shape appears when a scatterplot of vegetation index and surface tempera-
ture is derived for a remotely sensed image over an area covering a full range of soil
moisture and vegetation cover conditions. This concept is illustrated in Fig. 2.7.
Vertices A and B of the trapezoid represent entirely dry and wet soil, C and D
represent water-stressed and well-watered vegetation, respectively. The line AC
connects the pixels with the highest surface temperature —or driest conditions—
for a given vegetation cover and is hence called the dry edge or hot edge. Simi-
larly, the line BD is called the wet or cold edge, connecting fully evaporating or
transpiring pixels.

—>

Surface temperature

Wet edge

Vegetation index

Figure 2.7: Conceptual representation of the trapezoidal VI-Ts space.

The wet edge is often, as in Fig. 2.7, represented as a constant Ts value, equal
to air temperature (Sandholt et al., 2002; Vicente-Serrano et al., 2004). A sloped
wet edge is however probably more universally applicable (Moran et al., 1994a).
The range of Ts decreases with increasing VI due to the relative insensitivity of
leaf temperature to soil water content. Ts will be close to air temperature at max-
imum VI, irrespective of soil moisture. The concept is therefore often simplified
by combining C and D into a single vertex, thus producing a triangle and giving
the concept its popular name "triangle method" (Carlson, 2007).

Estimates of soil moisture content can be made for each pixel from its position
within the trapezoid or triangle, by linearly scaling its surface temperature between
the corresponding values of the wet and dry edge for that pixel. The position of
the dry and wet edge can be determined either empirically from the VI-Tg scatter-



30 CHAPTER 2

plot itself (Sandholt et al., 2002; Patel et al., 2009), or modelled using ancillary
meteorological data (Carlson, 2007). As such, several indices have been presented
that are based on the VI-Ts relationship, including the Water Deficit Index (Moran
et al., 1994a), Temperature-Vegetation Dryness Index (Sandholt et al., 2002), Veg-
etation Temperature Condition Index (Wan et al., 2004; Sun et al., 2008), Modified
Temperature-Vegetation Dryness Index (Kimura, 2007), Temperature-Vegetation
Wetness Index (Hassan et al., 2007) and Soil Wetness Index (Mallick et al., 2009).
This multitude of indices reflects the large number of variations on the same con-
cept (Petropoulos et al., 2009), which may consist of differences in input data (e.g.
Dupigny-Giroux and Lewis, 1999; Carlson, 2007), the method to derive the dry
and wet edge (e.g. Verstraeten et al., 2005; Tang et al., 2010) or the amount of
ancillary data used (e.g. Kimura, 2007).

2.3.1.3 Temporal surfacetemperature patterns

Several spaceborne sensors measure the surface temperature of a single location
on earth at different moments throughout the day. This provides the opportunity
to infer information on the surface’s thermal inertia. As mentioned earlier, the
thermal inertia of a material or surface determines its resistance to temperature
variations and is function of the material’s bulk density, specific heat capacity
and thermal conductivity. Although neither of these three properties can be de-
rived from remote sensing, related information can be derived from multitemporal
surface temperature observations. As materials with higher thermal inertia will
experience smaller temperature changes than materials with low thermal inertia,
given identical external driving forces, the night/day or pre-sunrise/midday tem-
perature differences in remote sensing images can be used to discriminate between
materials (Hardgrove et al., 2009) or soil moisture levels (Idso et al., 1975). The
first physically-based models to derive thermal inertia for geologic mapping of the
earth’s surface including remote sensing data originate from the early and mid 70s
(Watson, 1973; Kahle et al., 1976). More formulations for the computation of ther-
mal inertia were suggested in the subsequent years (Idso et al., 1976; Price, 1977,
1980; Pratt et al., 1980; Abdellaoui et al., 1986). However, these all assume the
availability of meteorological and/or other ancillary data, and are thus of limited
use.

In contrast to these earlier models, Xue and Cracknell (1995) developed a
methodology that required only a single ground measurement, being the time of
maximum surface temperature in the daytime. Applying a Fourier series solution
on the temperature diffusion equation, respecting a set of boundary conditions,
they obtained a second-order expression of surface temperature Ts in function of
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the time of day t [s]:
cos(ot — )

\OTIZ + V20BCTI + B2
cos(2mt — )
V20TI2 +2/0BTI+ B2’

Ts(t) = —g—z + (1 00) S TamAr

(2.13)
+ (1 —00)SHTatmA2

where Tl is thermal inertia [Jm—2s1/2K~1], A. and B are the linearization coeffi-
cients of the linearized boundary condition, oy is the surface albedo [-], & is the
solar constant (1367Wm*2), Tatm 1S the atmospheric transmittance in the visible
spectrum [-], A; and A, coefficients of the Fourier series, o is the angular velocity
of rotation of the earth [rads~1], and 1 and v are phase angles [rad]. A further
discussion of these factors is given by Xue and Cracknell (1995). When the dif-
ference in surface temperature at two overpasses (ATs) is available, as well as the
respective times of observation t; and tp, Eq. 2.13 can be solved for thermal inertia:

(1—00)SoTatm | Asf[cos(otz — 1) — cos(mt — 1))

ATsy/o /1+%+ﬁ

+Ag [cos(2mty —yrp) — cos(2mt; — 2]
V2T R+

b tan (ot (Tsmax)) ’ (2.15)
1—tan(ot(Tsmax))

with t(Tsmax) the time of maximum surface temperature [s]. For operational use,
Xue and Cracknell (1995) suggest to replace this parameter by the time of maxi-
mum air temperature. This meteorological information may however not always be
available. Furthermore, the time of maximum air temperature can differ from the
time of maximum surface temperature. Sobrino and El Kharraz (1999a) therefore
adapted this methodology by obtaining the time of maximum surface temperature
from the remote sensing data itself. As such, a method to derive thermal inertia
requiring only remotely sensed surface temperature and albedo was obtained.

Tl =

(2.14)

and

A very basic approximation of thermal inertia, solely requiring surface albedo
and a night-day surface temperature pair, was obtained by simplification of the
Price (1977) model. This approximation was originally applied on Heat Capacity
Mapping Mission (HCMM) data and named apparent thermal inertia (ATI) (Short
and Stuart, 1982):
1—o0p

ATs '
where C is a solar correction factor dependent on latitude and solar declination.
Apparent thermal inertia was initially found to be of limited use in areas with

ATl =C

(2.16)
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strong evapotranspiration (Price, 1985). Wet surfaces allow considerable evapora-
tion and/or transpiration during the daytime, thus reducing daytime surface tem-
peratures through evaporative cooling and introducing errors in apparent thermal
inertia. Nevertheless, apparent thermal inertia received renewed interest since the
last decade for mapping of both geology (Mitra and Majumdar, 2004) and soil
moisture (Tramutoli et al., 2000; Verstraeten et al., 2006; Veroustraete et al., 2012)
because of its simple formulation requiring remote sensing data only.

The coupling between apparent thermal inertia and soil moisture is not straight-
forward. True thermal inertia can be converted to soil moisture when soil proper-
ties are known (Lu et al., 2009; Minacapilli et al., 2009). Apparent thermal inertia
might be directly related to soil moisture for areas with limited extent so that only a
single soil and land cover type are present (e.g. individual fields). Over areas with
varying geology or land use, however, soil moisture can only be extracted using
a multitemporal approach (Tramutoli et al., 2000; Verstraeten et al., 2006). Since
geology and soil composition in general change only over very long time scales,
short-term changes in (apparent) thermal inertia can be linked to changes in soil
moisture.

2.3.2 Radar

2.3.2.1 Physical and semi-empirical models

Physical models, of which the Integral Equation Model (IEM, Fung et al., 1992;
Fung, 1994; Fung and Chan, 2004) is one of the most widely applied, theoretically
describe the radar backscattering coefficient for a given set of sensor characteris-
tics (wavelength, polarization), surface characteristics (soil dielectric permittivity,
roughness) and incidence angle. The dielectric permittivity, and consequently soil
moisture, can then be derived by inverting this relationship. Evidently, this in-
version requires that the set of sensor characteristics is known, as well as the soil
roughness. The latter is generally expressed in terms of a root mean square height,
a correlation length and an autocorrelation function. The in situ collection of this
information is a tedious process, preventing the operational applicability of these
physical models. Furthermore, roughness parameters are difficult to characterize,
and different sets of roughness parameters can be obtained over the same terrain
when different measurement techniques are applied (Verhoest et al., 2008).

Semi-empirical models are still based on a theoretical description of the be-
haviour of radar backscatter, but model parameters are derived from large sets of
experimental data. Two examples of this type of models are the model developed
by Oh et al. (1992) and that by Dubois et al. (1995). The experimental derivation
of the model parameter limits the model applicability to conditions similar to those
for which the parameters were obtained.

The physical models and semi-empirical models mentioned here have in com-
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mon that they are to be applied on bare soil fields in the absence of vegetation. Both
physical (e.g. Lang and Sidhu, 1983) and semi-empirical (e.g. Attema and Ulaby,
1978) vegetation backscatter models have been suggested as additions to the soil
backscatter models for vegetated conditions. These vegetation backscatter models
are, however, affected by the same limitations as the physical and semi-empirical
soil backscatter models.

2.3.2.2 Empirical and change detection models

When abundant soil moisture information is available, radar backscatter can em-
pirically be linked to ground measurements using (linear) regression models. Sev-
eral studies observed spatial and temporal correlations of varying strength between
in situ soil moisture and radar backscatter over different environments across the
globe. Paloscia et al. (2008) found (spatial) R? values ranging from 0.45 to 0.65
for soil moisture content and backscatter values from Envisat ASAR in AP mode.
Moisture and backscatter for 20 selected agricultural fields in northern Italy were
averaged per field prior to the establishment of the linear regression. When data
acquired on different dates was combined, an R? of 0.82 was obtained. Medium to
strong linear correlations (R=0.48 to R=0.77) were also found over sandy and
rocky Sahelian sites in Mali (Baup et al., 2007), using ASAR WS images. Over
grassland and wetland sites at the Tibetan Plateau, van der Velde et al. (2008)
observed determination coefficients between 0.43 and 0.50 for ASAR WS images,
when backscatter values averaged over different areas were compared to in situ soil
moisture values. In the Canadian arctic, a spatial correlation yielding R? = 0.431
was found by Wall et al. (2010) for a late season Radarsat-1 C-band image. Sat-
urated conditions earlier in the season, however, resulted in a poor correlation
between backscatter and in situ soil moisture (R> = 0.038). Other studies found
determination coefficients ranging from 0.13 to 0.72 using a linear relationship
(Baghdadi et al., 2007), or from 0.81 to 0.92 using an exponential relationship
(Loew et al., 2006), for different land-use types in Europe. Lievens and Verhoest
(2012) analysed a time series of Radarsat-2 images and observed different linear
relationships for bare fields categorized in different roughness classes. Also, radar
polarization influenced the relationship between soil moisture and backscatter. The
use of multiple polarizations, however, was not found to improve soil moisture es-
timation accuracy (Baghdadi et al., 2006).

Given the dependency of the relationship between backscatter coefficient and
soil moisture on a variety of factors including land cover and roughness, empiri-
cal relationships derived from one site cannot be transferred to another site. This
constrains the applicability of this type of empirical models. The consistently ob-
served (linear) relationship between soil moisture and backscatter, however, offers
perspectives for the operational monitoring of soil moisture patterns using multi-
temporal change detection methods.

One of the key advantages of microwave remote sensing is its ability to cap-
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ture information irrespective of weather conditions and both day and night, thus
allowing the creation of long and regular time series. The multitemporal approach,
which has received a lot of attention, starts from the assumption that the temporal
variability of roughness and vegetation is in general at a much longer time scale
than that of soil moisture, allowing to consider roughness and vegetation as con-
stants while relating changes in backscatter coefficient to changes in soil moisture.

Shoshany et al. (2000) suggested the use of a simple ratio or a normalized
difference of backscatter measurements at two different times. Both resulted in a
strong linear correlation (R? > 0.85) with relative soil moisture when applied on
ERS-2 SAR over two bare study sites in Israel. Moran et al. (2000) used a similar
technique but introduced a reference level by subtracting a dry season backscatter
from the other VV polarized images of an ERS-2 SAR time series. While soil
moisture and backscatter resulted in a poor correlation (R2 = 0.27), soil moisture
change and backscatter change relative to the dry season values resulted in a strong
correlation with R2 = 0.93. The same differencing technique was applied on Evisat
ASAR VV and HH dual-polarized data over a semi-arid site in Niger, resulting in
R? = 0.70 (Zribi et al., 2007). This technique was further refined (Thoma et al.,
2006) by normalizing the difference with the dry reference image. All these stud-
ies were executed over a period of one to a few months, or in areas with little
variations in natural vegetation, for which the assumption that soil roughness and
vegetation cover can be considered as constant over time holds true. As this pe-
riod extends to a year or several years it can be expected that changing roughness
and/or vegetation will have an effect on the high resolution SAR backscatter.

An operational soil moisture change detection was developed for ERS Scat-
terometer data (Wagner et al., 1999a,b). The Scatterometer measures the backscat-
ter from three viewing directions by a fore-beam, a mid beam and an aft-beam,
resulting in three backscattering coefficients c°(0,t) at approximately the same
time t for the same place on earth, corresponding to three incidence angles 6 [rad].
The three backscatter values and their corresponding incidence angles are used to
assess the incidence angle dependence of 6°(8). This is done by deriving the slope
o’(6,t) [dB deg'] and the curvature ¢” (t) [dB deg—?], being the first and second
derivative of 6%(6,t) with respect to 0, respectively. The high temporal resolution
of ERS Scatterometer allows to study the seasonal behaviour of the derivatives,
which were found to be related to seasonal variations in vegetation canopy cover
(Wagner et al., 1999a). A backscatter coefficient normalized to a reference inci-
dence angle set at 40°, can subsequently be obtained from ¢°(8,t) and the slope
and curvature:

O(40°,1) = 6%(6,) — ' (40°,1)(6 — 40°) — %G”(t)(e a2 (217

With long time series of normalized backscatter measurements, c®(40,t) can
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be transformed to a relative soil moisture content ms(t) [-]:

B c°(40°,t) — 6, (40°,1)
et (40°,1) — 65, (40°,1)

(2.18)

where ogry(40°,t) and o0 (40°,t) are the backscatter corresponding to entirely
dry and wet conditions, respectively. Since the backscatter at entirely dry and
wet conditions varies throughout the year in response to vegetation phenology,
Ogry(40°,1) and oy (40°,1) are also function of time (Wagner et al., 1999a,c).

The ERS Scatterometer soil moisture product was validated using in situ data
over various regions, including the Ukrainian plains (Wagner et al., 1999a), the
Canadian prairies (Wagner et al., 1999b), a Western African vegetation transi-
tion zone (Wagner and Scipal, 2000) and the Duero Basin, Spain (Ceballos et al.,
2005). The soil moisture algorithm was also applied on the Scatterometer’s suc-
cessor ASCAT (Bartalis et al., 2007), and several improvements in the derivation
of the model parameters (c'(40°,t), 6 (t), 69 (40°,t) and og,, (40°,1)) were im-
plemented (Naeimi et al., 2009).

The Scatterometer/ASCAT change detection method has been adapted to be
applied on higher spatial resolution ASAR GM data (Pathe et al., 2009; Mladenova
et al., 2010; Doubkova et al., 2012), ASAR WS data (Wagner et al., 2008) and
Radarsat-2 data (Lievens and Verhoest, 2012). A major problem in adapting the
change detection method to SAR data is that these sensors lack the multi-angular
capabilities of Scatterometer and ASCAT. As a consequence, the derivation of the
model parameters at high temporal resolution is no longer possible. Soil moisture
change detection methods for SAR data thus suffer from errors introduced by the
neglect of vegetation phenology or other seasonal influences (Doubkova et al.,
2012).

2.3.3 Radiometers

Until the launch of the SMOS mission in 2009, the passive microwave radiometer
AMSR-E was, together with the Scatterometer and ASCAT, the main data source
for global soil moisture products. Several soil moisture retrieval algorithms were
developed based on radiative transfer functions, differing in their physical formu-
lations, parameters and ancillary data used. Four of the most commonly used
algorithms are those developed by NASA (Njoku et al., 2003), by JAXA (Koike
et al., 2004), by the US Department of Agriculture (USDA), also called the single-
channel algorithm (Jackson, 2003), and the algorithm developed by the Vrije Uni-
versiteit Amsterdam (VUA) in collaboration with NASA, also called the Land
Parameter Retrieval Model (LPRM, Owe et al., 2001, 2008). Several of these
products can derive soil moisture from either AMSR-E’s X-band or its C-band.
Although C-band radiation is theoretically more suitable for the monitoring of soil
moisture given the larger penetration depth, X-band soil moisture is, globally, less
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influenced by RFI (Njoku et al., 2005). The importance of X- and C-band RFI
should be considered in function of the study site.

Several studies compared accuracies of the different AMSR-E soil moisture
products, sometimes including the active microwave product (Wagner et al., 2007,
Draper et al., 2009; Gruhier et al., 2010; Jackson et al., 2010; Brocca et al., 2011).
The accuracies of the different products varied strongly over the different study
sites, with different accuracies for the nighttime and daytime overpasses. Overall,
accuracies decrease with increasing vegetation cover.

Soil moisture retrieval from SMOS data is based on physical models, taking
advantage of the multi-angular capabilities of the instrument (Kerr et al., 2012).
Further product development and initial validation (e.g. Al Bitar et al., 2012; Pan
et al., 2012) are currently ongoing. RFI remains an issue in the SMOS soil mois-
ture retrieval, even though the L-band is an internationally protected wavelength
(Olivia et al., 2012).



Study site and
data collection

3.1 Study site

The Italian region of Calabria is situated in the southwestern tip of mainland Italy
(Fig. 3.1). The peninsula measures approximately 250 km in length and 30 km to
100 km from the Thyrrenian coast in the west to the lonian Sea in the east, and
is dissected longitudinally by the Calabrian Apennines. Elevations of the highest
peaks in this mountain range exceed 2000 m, thus creating strong altitudinal dif-
ferences over relatively short horizontal distances.

The topography of Calabria is reflected in the general land use pattern, with
agricultural land dominating the lower plains and deciduous and coniferous forests
covering the hillsides and higher elevations (Fig. 3.1). Arable land consist mostly
of cereal crops and is dominant in the Crotone province in the eastern part of the
peninsula. Due to the Mediterranean climate, agriculture at the lower elevations is
rainfall limited and crops exhibit a winter growing season. At the higher elevations,
crops cultivated at the plateaus or in some wider valleys may be characterized by

Parts of this chapter have been published as: Van doninck J., Peters, J., Lievens, H., De Baets,
B., Verhoest, N. (2012). Accounting for seasonality in a soil moisture change detection algorithm
for ASAR Wide Swath time series. Hydrology and Earth System Sciences, 16(3), 773-786, DOI:
10.5194/hess-16-773-2012.
Peters, J., Conte, A., Van doninck, J., Verhoest, N., De Clercqg, E., Goffredo, M., De Baets, B., Hen-
drickx, G., Ducheyne, E. (2013). On the relation between spatio-temporal soil moisture dynamics and
the geographical distribution of Culicoidesimicola. Ecohydrology, submitted.
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different growing cycles as a result of lower temperatures and hence energy lim-
ited vegetation growth. Permanent crops are abundant around the city of Rosarno
in the southeastern part of Calabria where these mainly consist of citrus and olive
groves. Permanent crops in other parts of the region include, among others, vine-
yards.

Soil texture varies strongly over the peninsula (Fig. 3.1), with a clear east-
west transition in texture. While sandy soils dominate the western coast and most
higher elevations, higher silt and clay fractions are found in the plains and valleys
along the eastern shoreline. Soil texture variability can be assumed to influence
soil moisture content and its variability.

3.2 Elevation data

The digital elevation model (DEM) of Fig. 3.1 was created from Shuttle Radar
Topography Mission (SRTM) data. This mission, flown onboard the space shut-
tle Endeavour in February 2000, collected elevation data for most part of earth’s
land surface using a C- and X-band radar (Farr et al., 2007). The data used here
is the 3arcsec (approximately 90 m) DEM, version 4.1, obtained from the Interna-
tional Center for Tropical Agriculture - Consortium for Spatial Information web-
site (http://srtm.csi.cgiar.org/).

In addition to SRTM, the 10 m resolution TINITALY/01 DEM (Tarquini et al.,
2012) was obtained for Calabria (http://tinitaly.pi.ingv.it/). This DEM, available
for the entire Italian territory, was created from heterogeneous vector datasets and
is freely available for scientific purposes.

3.3 Insitudata

3.3.1 Soil moisturedata

Two independent datasets of in situ soil moisture data were used in this study. A
first dataset is obtained from permanent measurement stations. The second dataset
was collected during a dedicated field campaign.

3.3.1.1 Continuous soil moisture measurements

Five permanent in situ measurement stations, operated by the Centro Funzionale
Multirischi della Calabria (http://www.cfcalabria.it), are installed in Calabria (in
Fitterizzi, Mongrassano, Torano, Chiaravalle and Satriano, labeled F, M, T, C and
S in Fig. 3.2, respectively). At these stations, soil moisture measurements are
recorded since 2001 at hourly intervals by Time Domain Reflectometers (TDR)
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installed at 30, 60 and 90 cm depth (Brocca et al., 2011). These data are provided to
the scientific community through the International Soil Moisture Network (Dorigo
etal., 2011).

3.3.1.2 Field campaign

Additional soil moisture data was collected during a field campaign from Septem-
ber 16, 2009 until October 8, 2009. The initial goal of this field campaign was
to obtain data that could be used as validation of remotely sensed soil moisture
proxies. A major challenge in the validation of remotely sensed soil moisture us-
ing in situ measurements is bridging the scale gap between both (Brocca et al.,
2009). Since soil moisture can vary strongly over space due to variations in topog-
raphy or soil composition, point-based in situ measurements are not necessarily
representative for the area-averaged soil moisture content that is observed by re-
mote sensing. A specific in situ measurement framework was set up to overcome
this scale gap, where each in situ measurement site consists of a square grid of
nine point measurements with a grid interspacing of 150 m (Fig. 3.2). As such,
a spatial average and spatial variability of soil moisture can be assessed for each
grid point, while maintaining a balance between accuracy and acquisition costs.
Denser and/or larger in situ measurement grids would result in more reliable esti-
mates of spatial averaged soil moisture and its variability, but would require more
manpower. The consequence of this framework is that only a limited number of
sites can be sampled each day and that, as a consequence, the temporal resolution
of sampling is low. Therefore, a limited number of additional sites were selected
that consisted of only a single measurement location but were sampled at higher
temporal resolution. This would allow to obtain information on both spatial and
temporal soil moisture patterns.

Between September 16 and September 29, 2009, 30 in situ measurement sites
were selected, and coordinates of the grid points were recorded using a hand-held
GPS (Garmin eTrex H). Sites were concentrated around the Crotone province in
the eastern part of the peninsula and the Vibo Valencia province in the west, and la-
beled 1A to 10 (for Crotone) and 2A to 20 (for Vibo Valencia) in Fig. 3.2. A vari-
ety of land cover types were selected as sampling site, including croplands, forests,
citrus and olive groves and grass- and shrubland. Often, a single site would contain
various land cover types. Due to accessibility issues (mainly due to rugged terrain
or fenced properties), some sites consist of fewer than nine grid points, with one
site containing as few as four. Volumetric TDR measurements (TRIME-PICO64
probe, IMKO GmbH, Germany) and soil samples (converted to gravimetric soil
moisture content) were acquired at all grid points during this first period, with
exception of a few points where no TDR measurements could be made due to bat-
tery failure or dried-out soil. Both gravimetric and volumetric measurements were
made over a depth of 10cm.

All points were revisited during a second and third sampling period from 30/09
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Figure 3.2: Location of in situ sites with sampling setup (inset), main cities and
provinces of Vibo Valentia (green) and Crotone (red).

to 3/10/2009 and 7/10 to 8/10/2009, respectively. During the second period, only
volumetric measurements were made, during the third period both volumetric and
gravimetric soil moisture were collected. Soil moisture observations at the differ-
ent grid points for all clusters, as well as their geographic coordinates, are given
in Appendix A. The three additional individual points (labeled X1, X2 and X3 in
Fig. 3.2) were selected in function of their accessibility and were sampled volu-
metrically and gravimetrically every one or two days, and occasionally multiple
times per day.
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3.3.2 Meteorological and pedological data

A dense network of meteorological stations is installed in Calabria by the Agen-
zia Regionale per la protezione dell’Ambiente della Calabria (ARPACAL). The
stations record, at daily or higher resolution, several meteorological variables, in-
cluding precipitation, temperature, wind velocity and direction and atmospheric
pressure and humidity. From the online database (www.arpacal.it), daily mean
temperature and daily precipitation for the period 2000-2012 were obtained for
108 meteorological stations, of which 80 register temperature and all but one reg-
ister precipitation (Fig. 3.1). It should be noted that not all of these stations were
installed during the entire period 2000-2012 and that acquisitions may be missing
for several days or months during which they were installed.

Soil mapping in the region of Calabria was performed by the Agenzia Re-
gionale per lo Sviluppo e per i Servizi in Agricoltura (ARSSA). A digital soil map
consisting of 2166 map polygons was developed based on more than 7000 soil
samples (ARSSA, 2003). In addition to a general map of soil types, maps of sev-
eral derived soil characteristics are provided. These include soil texture (sand, soil
and silt fractions), fraction of soil organic matter, fraction of calcium carbonate
and pH value.

3.4 A soil moisture model for Calabria

Although different sources of in situ soil moisture data were obtained in this study,
these remain limited in both space and time. Therefore, a hydrological model
was constructed to derive modelled soil moisture from meteorological and pedo-
logical data. Model outputs were validated using the different in situ soil mois-
ture datasets, and can in turn be used as validation of remotely sensed soil mois-
ture products. The validation of remotely sensed soil moisture using hydrological
models is common practice to avoid the costly process of in situ data collection
(Sandholt et al., 2002; Pellarin et al., 2006), and also helps to bypass the scale gap
between in situ and remote sensing data.

3.41 Mode structure

A spatially distributed soil moisture model, inspired by the hydrological BEACH
model of Sheikh et al. (2009), was used here to estimate the soil moisture content
of the topsoil. This particular model was selected because the soil moisture model
needed to (1) run on a limited amount of readily available input data, (2) explicitly
account for soil texture, (3) be spatially distributed, and (4) provide soil moisture
estimates on a daily basis. The basic processes incorporated in the model are
precipitation, infiltration, transpiration and evaporation (Fig. 3.3). The soil water
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balance at location i is calculated as:

p2% _p_0-ET-Qq. (3.)
At
where D is the depth of soil moisture simulation [mm], © is the soil moisture
content [m®m—3], P is precipitation [nm day—!], O is runoff [mmday—], ET is
evapotranspiration [mm day ], Q is percolation to deeper soil layers [mm day 1],
and At is the model time step [day].

RN 2
ET|

D{ l [r
o

Figure 3.3: Processes incorporated in the hydrological model.

Runoff was estimated by a bucket model assuming that infiltration
(I, [mmday—1]) proceeds until the infiltration capacity of the topsoil has been
reached (Sheikh et al., 2009):

O =B -1 if B>1I, 3.2
where the infiltration during a time step of one day was defined as:
liAt = min [PAt, (Os; — ©i) D], (3.3

where the soil moisture content at saturation (Os,t, Soil water potential of —0.1 kPa)
was estimated through its empirical relationship with soil texture and soil organic
matter content (Saxton and Rawls, 2006).

Daily evapotranspiration was estimated as a soil moisture dependent fraction
of its potential rate (ETp;); Hamon, 1963):

and
ET| = Kr ETp7| 5
with
0, if O < Ogy,
I‘<I’ = %, |f @dryi < ®| < ®fCi 9 (35)

1, if © > O,
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where L is day length [hours], psat(T) [g m~3] the saturated absolute humidity at
the mean daily air temperature T. Of and Ogry are the soil moisture content at
field capacity (soil water potential of —33 kPa) and air dryness (soil water poten-
tial of —22 000 kPa), respectively, and K; is a dimensionless reduction constant,
depending on the actual soil moisture content. If the actual soil moisture content
is higher than the soil moisture content at field capacity, then evapotranspiration is
at its potential rate. If the soil moisture content is lower, then the actual evapotran-
spiration is lower than its potential rate. This reflects the two evapotranspirative
stages: an energy limiting stage (K =1) and a soil moisture limiting stage (K; < 1)
(Sheikh et al., 2009, and references therein).

The percolation during a time step of one day was estimated as (Raes, 2002):

O .
QiAt = Dy (Osa; — Of;) W’ if © > Of;, (3.6)

where y is a dimensionless drainage characteristic that is related to the saturated
hydraulic conductivity (Ksat, [mm day—1]) as:

% = 0.0866 8053 100 Ksai 3.7

3.4.2 Moded inputs

The digital soil map provided by ARSSA and gridded to a raster of 1 km resolution
was used as a modelling basis. Soil texture and organic matter were transformed
to maps of O, Of, Odry and Ksgt, following Saxton and Rawls (2006). Daily
precipitation and mean air temperature observations obtained from all available
meteorogical stations were interpolated to this 1 km grid using inverse distance
weighting (IDW). Because air temperature shows a strong negative linear corre-
lation with elevation (R = —0.83, on average), this trend was removed using the
SRTM DEM prior to interpolation. After interpolation, the trend was again added
to the interpolated values.

In order to define the value of the power parameter required in IDW in an
objective way, interpolation was executed using 15 values of the power parameter,
ranging from 0.25 to 5. The accuracy of interpolation was assessed by means of the
Root Mean Square Error (RMSE) for an independent validation set of 10 % of the
meteorological stations, selected randomly for each day separately. The RMSE,
averaged over all the days in the time series, in function of the power parameter
is given in Fig. 3.4. It is observed that the RMSE reaches a minimum at a power
parameter of 1.5 and 2 for temperature and precipitation, respectively.

The power parameters corresponding to the minimal RMSE were used for IDW
of temperature and precipitation, now using all available meteorological stations.
As such, time series of spatially interpolated daily precipitation and temperature
for the period 2000-2012, at the 1 km grid of the pedological data, were obtained.
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Figure 3.4: RMSE for interpolated values of temperature (crosses) and precipita-
tion (diamonds) in function of IDW power parameter.

Precipitation and temperature could then, together with the fractions sand, silt,
clay and soil organic matter, be used to solve the soil moisture balance (Eg. 3.1).
The hydrological model was run for depths of the soil layer of 10 cm and 30 cm.

3.4.3 Moded validation

Validation of the hydrological model, ran for a depth of 10 cm, was performed
using the data obtained during the field campaign from September 16 until Oc-
tober 8, 2009. A first validation is based on the 30 sampling sites with clustered
soil moisture observations. For each site, the different volumetric soil moisture
observations were averaged to a representative value, and the standard deviation
was computed. The scatterplot of the thus obtained in situ soil moisture versus
the modelled 10 cm soil moisture of the corresponding days is given in Fig. 3.5(a).
This validation results in a poor correlation (R = 0.03) between measured and
modelled soil moisture. One reason for the poor correlation is the temporal gap
between both. While most in situ observations were collected during the morn-
ing or early afternoon, the hydrological model provides daily soil moisture esti-
mates based on the precipitation of the entire day. Rainfall during late afternoon
or evening will thus introduce errors, as is the case for some of the low in situ soil
moisture observations (< 0.1 m3m~23) which were acquired after a period without
rainfall but abundant precipitation occurred later that day. To avoid these effects,
modelled soil moisture was also validated with a time lag of one day (Fig. 3.5(b)).
This drastically increased the coefficient of determination to 0.21. Nevertheless,
the predictive capacity of the hydrological model remains low, especially for soil
moisture levels around 0.3 m3m~3. This can be due to intra-day moisture fluctu-
ation, simplifications in the model structure (e.g. the neglect of vegetation cover,
which is different for all in situ sites) or uncertainties in the soil moisture map and
the derivation of the soil water characteristics.
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Figure 3.5: Validation of modelled soil moisture over 10cm at 30 in situ sites
(dots are site-averaged soil moisture, bars indicate standard deviations), based on
meteorological input data of the day itself (a) and with one day time lag (b).
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Figure 3.6: Validation of modelled soil moisture over 10 cm at in situ sites X1(top),
X2 (middle) and X3 (bottom).
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A multitemporal validation for the three additional sampling points reveals the
same problem of the time gap between in situ observations and model predictions
(Fig. 3.6). Furthermore, systematic errors in absolute soil moisture content are ob-
served, most notably for point X2. Some distinct increases and decreases in mod-
elled soil moisture are, however, also observed in situ. The temporal behaviour of
modelled soil moisture, however, corresponds to that of the in situ measurements.

The soil moisture generated for a surface layer of 30 cm depth was validated us-
ing the data provided by the International Soil Moisture Network. To this end, the
hourly soil moisture measurements of the five in situ measurement stations were
aggregated to daily averages. The temporal behaviour of modelled and in situ soil
moisture for the years 2008 and 2009 is given in Fig. 3.7. It is observed that the
hydrological model is unable to accurately reproduce the absolute soil moisture
content of the in situ measurements. For all five stations, the dynamic range of
soil moisture is overestimated. This is partly due to the fact that the hydrological
model provides an average over the 30 cm top layer, while in situ measurements
reflect the soil moisture content at a depth of 30 cm only. Additionally, soil mois-
ture is systematically underestimated for the Mongrassano and Torano sites. This
might be caused by local topography, which is not incorporated into the model,
or by uncertainty on the soil map or on the conversion of soil texture and organic
matter fractions to the soil water characteristics. Notwithstanding these discrep-
ancies between modelled and in situ soil moisture, correlations between both are
strong (R? of 0.79, 0.70, 0.80, 0.85 and 0.78 for Fitterizzi, Mongrassano, Torano,
Chiaravale and Satriano, respectively). When scaling both measured and modelled
soil moisture between minimum and maximum values of the time series, a much
stronger similarity between the two relative soil moisture contents is observed.
Some gaps remain due to errors in the estimation of the soil water characteristics
or as a result of incorrect interpolation of precipitation observations between me-
teorological stations.

Overall, it can be concluded that the basic hydrological model applied here
is unable to correctly produce absolute soil moisture content for either the 10 cm
or 30cm top soil layer. The temporal dynamics of soil moisture, however, are
well captured for both soil layer depths. It is therefore advisable to validate the
remotely sensed soil moisture products temporally rather than spatially, and to use
relative soil moisture content rather than absolute volumetric soil moisture content.
A reference depth of 10 cm is chosen for the validation of remote sensing products,
since modelled soil moisture over thinner layers could not be validated. Ideally,
a soil moisture model with smaller time steps, e.g. hourly, would be used for
validation in order to avoid errors introduced by varying meteorological conditions
throughout the day. This would, however, drastically increase processing time.
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3.5 Remotesensing data

3.5.1 Optical data

Standard preprocessed MODIS products for land applications are distributed
through the Land Processes Distributed Active Archive Center (LP DAAC), lo-
cated at the U.S. Geological Survey (USGS) Earth Resources Observation and
Science (EROS) Center (http://Ipdaac.usgs.gov). Products are either derived for
Terra and Aqua separately or for both combined, and provided at different grid
spacings and temporal compositing periods. Table 3.1 summarizes the products
and datasets used in this study. For Calabria, these are all at 1 km resolution. Ad-
ditionally, some global 0.05° (5600 m) products were acquired.

Table 3.1: MODIS products used in this study ("MxD’ stands for "MOD’ and
MYD’, indicating Terra and Aqua products, respectively, ’MCD’ indicates com-
bined products).

Product name  Description Spat. res.  Temp. res.
MCD43B3 albedo 1000 m 16 day
MCD43B3 albedo 0.05° 16 day
MxD11A1 land surface temperature and emissivity 1000 m daily
MxD11A2 land surface temperature and emissivity 1000 m 8 day
MxD11C1 land surface temperature and emissivity ~ 0.05° daily
MxD13A2 vegetation indices 1000 m 16 day
352 SAR data

Although the Global Monitoring mode of ASAR was selected as the global back-
ground mission over land surfaces, only limited GM acquisitions over Europe are
available due to different acquisition priorities over this continent. Wide Swath
mode data over Calabria is more abundant. This study uses 130 WS images in VV
polarization acquired during both ascending (42 images) and descending (88 im-
ages) overpasses between January 2008 and August 2011. This corresponds to, on
average, 4 acquisitions per month. Descending mode images are acquired around
9:00a.m., ascending mode images at 8:45 p.m. ASAR WS images are provided by
ESA under a Category-1 proposal at level 1B preprocessing, which includes slant
range to ground range corrections and resampling to a 75 m pixel spacing.

3.5.3 Low resolution remote sensing soil moisture products

Three operational coarse resolution soil moisture products are used as reference
datasets. Two products are derived from AMSR-E data, each by applying a dif-
ferent algorithm. AMSR-E soil moisture products derived using the algorithm
developed by NASA (Njoku et al., 2003) are distributed by the National Snow
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and Ice Data Center (Njoku, 2008). For this study, Level 3 descending mode soil
moisture was acquired. The second AMSR-E product, the LPRM (Owe et al.,
2008) developed by VUA/NASA, is provided through the ADAGUC web portal
(http://geoservices.falw.vu.nl/adaguc_portal_dev/). Both AMSR-E products are
distributed in 0.25° pixel grids. Descending orbit soil moisture products were
selected since these are assumed to provide more accurate estimates (Draper et al.,
2009; Jackson et al., 2010), although this was contradicted in a recent compar-
ative study (Brocca et al., 2011). The third coarse resolution product used for
comparison is the TU Wien-EUMETSAT ASCAT surface soil moisture product
(Bartalis et al., 2007; Naeimi et al., 2009), based on a change detection algorithm.
ASCAT data were provided by the TU Wien Institute of Photogrammetry and Re-
mote Sensing (IPF) in a Discrete Global Grid with grid spacing of approximately
12.5km.






A soil moisture change detection
algorithm for ASAR Wide Swath
time series

4.1 Introduction

SAR systems can reach much higher spatial resolutions than the currently op-
erational coarse resolution passive and active microwave soil moisture products,
making them attractive for applications on watershed and field scale. Despite the
large volume of research conducted on the derivation of soil moisture from SAR,
routinely produced soil moisture maps are not yet available (Kerr, 2007). The dif-
ficulty of mapping soil moisture from SAR lies in the nature of the reflected sig-
nal, which is, apart from soil moisture, also influenced by terrain properties such
as topography, vegetation cover and soil roughness. Separating the soil moisture
contribution to the backscatter signal from the roughness and vegetation contri-
bution has been attempted using physical backscatter models in combination with
multiple-polarized and/or multi-angular data (Zribi et al., 2005, 2007; Baghdadi
et al., 2006; Rahman et al., 2008; Gherboudi et al., 2011) or by using effective

This chapter is based on: Van doninck J., Peters, J., Lievens, H., De Baets, B., Verhoest, N.E.C.
(2012). Accounting for seasonality in a soil moisture change detection algorithm for ASAR Wide
Swath time series. Hydrology and Earth System Sciences, 16(3), 773-786, DOI: 10.5194/hess-16-773-
2012.

Van doninck, J., Wagner, W., Melzer, T., De Baets, B., Verhoest, N.E.C. (2013). Seasonality in the
angular dependence of ASAR Wide Swath backscatter. |EEE Geoscience and Remote Sensing Letters,
submitted.
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roughness parameters (Su et al., 1997; Baghdadi et al., 2002; Rahman et al., 2007,
Lievens et al., 2011; Lievens and Verhoest, 2011). However, the satellite and/or
ancillary data required in these models are seldom readily available.

Alternatively, the modelling or description of vegetation and soil roughness
has been circumvented using a multitemporal approach. When comparing two or
more images over the same site, obtained over a time frame in which only minor
vegetation or soil roughness variations occur, changes in backscatter can be at-
tributed to changes in soil moisture (Narayan et al., 2006). Shoshany et al. (2000),
for example, suggested to use a normalized difference of SAR backscatter of two
images as an indicator of soil moisture changes between the times of image ac-
quisition. On a larger time series of 10 SAR images over one month time, Wickel
et al. (2001) found high correlations between soil moisture change and backscat-
ter change for wheat stubble fields. Pathe et al. (2009) presented a methodology,
based on the ERS scatterometer and ASCAT soil moisture retrieval algorithm de-
veloped at the TU Wien (Wagner et al., 1999b), to derive a 1km soil moisture
index from Envisat ASAR in GM mode and applied it to 697 ASAR GM images
over Oklahoma. The same product was validated using in situ and airborne soil
moisture data over an area in southeastern Australia (Mladenova et al., 2010).

These kinds of multitemporal approaches offer opportunities for routinely map-
ping soil moisture at high spatial resolution with the upcoming Sentinel-1 mission
(Attema et al., 2007). Given the large data volume to be provided by Sentinel-1,
soil moisture change detection techniques developed for ASAR are likely to be
applicable and improved for Sentinel-1 data. One big challenge in a multitemporal
soil moisture retrieval, however, remains the characterization of the influence of
seasonally changing vegetation on the backscatter signal (Wagner et al., 2009).

In this chapter, a change detection method is applied on a 3 year time se-
ries over Calabria, Italy, to infer a soil moisture index from ASAR Wide Swath
data. The change detection is preceded by an angular correction to be able to
compare images with different viewing geometries and validated using a hydro-
logical model. Additionally, the influence of vegetation phenology in the different
processing steps is assessed using a simple vegetation index from optical remote
sensing.

4.2 Study site and data

This part of the research is performed on 80 descending mode ASAR Wide Swath
images, completely or partially covering Calabria and acquired between January
2008 and December 2010. Preprocessed level 1B ASAR WS images were fur-
ther preprocessed using Next ESA SAR Toolbox (NEST) software and included
geometric correction by a Range-Doppler orthorectification (Small and Schubert,
2008), using the SRTM DEM and DORIS precise orbit files, and radiometric cal-
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ibration. Because of the relatively low resolution of the SRTM DEM, ASAR WS
images were resampled to 1 km resolution prior to incidence angle normalization.
Downscaling to 1km resolution was also performed to be able to compare the
ASAR data with the coarser resolution MODIS NDVI data and the soil moisture
data obtained from the hydrological model, even though this implies a reduction
of the spatial resolution to that of ASAR in Global Monitoring mode.

MODIS NDVI images were used in order to obtain information on seasonal
vegetation dynamics. Since NDVI changes only slowly over time (Fensholt and
Sandholt, 2003), 16-day composite images at 1 km resolution were considered
to be adequate to describe the yearly vegetation behaviour. The accuracy of the
ASAR WS soil moisture index derived in this study is compared to accuracies of
three operational coarse resolution soil moisture products: the AMSR-E NASA
and AMSR-E LPRM products and the TU Wien-EUMETSAT ASCAT product.

4.3 Multitemporal soil moistureretrieval

4.3.1 Change detection model

As a first step of the change detection model, effects on backscatter due to varying
incidence angle were corrected by a pixel-wise multitemporal incidence angle nor-
malization (Loew et al., 2006; Zribi et al., 2007; Wagner et al., 2008; Pathe et al.,
2009). Using a linear model, which is sufficient for the range of incidence angles
covered in Wide Swath mode, the angular dependence of backscatter is expressed
as:

c°(6) =v+6, (4.1)

where ¢%(8) is the backscatter coefficient [dB] at incidence angle 6 [deg], and
v [dB] and B [dB deg—] are polynomial coefficients. These polynomial coeffi-
cients are found through linear regression between 6 and ¢°(8) for all the observa-
tions over an image pixel. The angular correction coefficient 3 can subsequently
be used to normalize the backscatter observation to a common incidence angle of
30° (c°(30°)):

c°(30°) = o) — B(6 — 30°), (4.2)

Since the linear model is not necessarily valid for the range of incidence angles
found over sloped terrain, pixels with terrain slopes higher than 20° (27.69 % of
all pixels) were masked and discarded for further analysis. Slopes higher than this
threshold are also likely to be affected by radar layover.

The change detection model initially developed for ERS scatterometer and
MetOp ASCAT (Wagner et al., 1999b; Naeimi et al., 2009), and subsequently
applied on ASAR Global Monitoring (Pathe et al., 2009; Mladenova et al., 2010)
and Wide Swath (Wagner et al., 2008) data, was adopted in this chapter. In this
multitemporal model, a relative surface soil moisture index (@asar) is expressed
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as: 0 0
6°(30°) — 04,(30°)

S )
where Ggry(SO") is the dry reference backscatter [dB], the pixel’s backscatter co-
efficient at entirely dry conditions, and Sis the sensitivity of the backscatter coef-
ficient to soil moisture variations [dB]. The sensitivity is defined as the difference
between Ggry(BOO) and o,(30°), the wet reference backscatter [dB], the pixel’s
backscatter at entirely wet conditions:

OasArR = (4.3)

S = ouer(30°) — 64,(30°) . (4.4)

Dry and wet reference backscatter are extracted from ¢°(30°) time series per
pixel, where Ggry(30°) is defined as the average of the 5 % lowest backscatter coef-

ficients in the time series and 69,,;(30°) is the average of the 5% highest backscat-
ter coefficients. The 5% averages are used to reduce possible noise effects. Al-
though the dry reference and sensitivity can be expected to change seasonally as
a result of vegetation phenology, cg,y(soO) and Sare here initially treated as con-
stants. Effects of neglecting the seasonal variations of vegetation are discussed
later. Since ©asar is a value between zero (under entirely dry conditions) and one
(under fully saturated conditions), the modelled soil moisture is also rescaled to
this range using the extreme values in the time series for each pixel. This way,
both ®asar and the rescaled modelled soil moisture (©moger) can be considered to
represent the soil’s degree of saturation and can be mutually compared. This also
helps to reduce the effects of systematic errors in the hydrological model (Chap-
ter 3).

4.3.2 Model parameters

The model parameters (angular correction coefficient 3, dry reference backscatter
cgry(300) and sensitivity S) for the study site are displayed in Fig. 4.1. All three

parameters reflect the general land cover pattern, with low Ggry(300) and B and
high Sover arable land, and an inverse pattern for forested and urban areas. This
has been observed in previous studies over different areas (Wagner et al., 1999c,
2008; Pathe et al., 2009).

Dry reference ranges from approximately -14 dB over arable land to -8 dB for
forests, while the sensitivity varies between 1 dB and 6 dB for forests and arable
land, respectively. Sensitivity values are notably smaller than those found by Wag-
ner et al. (2008) for 73 ASAR WS images over the REMEDHUS soil moisture
network in the Duero basin, Spain, where sensitivity ranged from 3 dB for forests
and settlements to 12 dB over agricultural areas. In the latter study, dry and wet
reference, and thus sensitivity, were obtained using the mean backscatter and stan-
dard deviation over a time series, assuming a normal distribution of backscatter
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Figure 4.1: Angular correction coefficient B for each pixel in the study site (a); dry
reference backscatter (b); sensitivity of the backscatter to soil moisture changes,
derived as the difference between dry reference and wet reference backscatter (c).

values. This can explain the difference in the retrieved model parameters. Also,
the number of images used in the present study might not be sufficient to correctly
identify extreme dry and wet conditions, which will result in an underestimation
of S This is enhanced by the selection of dry and wet reference based on the 5%
lowest and highest backscatter coefficients. Longer and denser time series can be
expected to result in more stable dry reference and sensitivity estimates.

High sensitivity values, relative to the sensor’s radiometric accuracy, are a pre-
requisite to obtain reliable soil moisture estimates (Mladenova et al., 2010). The
low sensitivity values found over much of the study site thus might introduce high
retrieval errors. The preprocessing step, however, included an averaging of the
backscatter observations at 75 m pixel spacing to a 1 km grid. The noise reduc-
tion accompanying this averaging allows these low sensitivity pixels to be further
processed.

4.3.3 Vegetation and soil moisture dynamics

Figures 4.2(a) and 4.3(a) show the temporal behaviour of ©megel, @asar and NDVI
for two 1 km pixels, one over arable land (cereal) at low elevation in the eastern
part of the study site, the other over high elevation deciduous forests in the central
southern part. The arable land pixel clearly exhibits a winter growing season, lim-
ited by the availability of soil moisture. The NDVI misses short-term changes in
soil moisture and the seasonal cycle lags behind on the soil moisture cycle, which
is typical for the conservative response of NDVI to soil moisture changes (Fen-
sholt and Sandholt, 2003). The correlation of 16-day NDVI and ©nogel, averaged
over the 16-day compositing period (Fig. 4.2(b)), is therefore limited (R=0.55).
ASAR soil moisture shows a similar seasonal pattern for the arable land pixel, al-
though the correlation with modelled soil moisture (Fig. 4.2(c)) is much stronger
(R=0.80).
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Figure 4.2: Temporal behaviour of modelled soil moisture (black line), NDVI
(thick green line) and ASAR soil moisture (crosses) for a pixel over arable land (a);
scatterplot of modelled soil moisture, averaged over 16 days, and 16-day NDVI for
the same pixel (b); scatterplot of modelled soil moisture and ASAR soil moisture
for the same pixel (c).

For the forest pixel, the NDVI cycle is in antiphase with the soil moisture cycle
(Fig. 4.3(a)). This is because at this elevation, vegetation growth is energy limited
rather than moisture limited, resulting in a summer growing season and a strong
negative (R=—0.60) correlation between NDVI and soil moisture (Fig. 4.3(b)).
ASAR soil moisture for this pixel remains in phase with the modelled soil mois-
ture, although the correlation (Fig. 4.3(c)) is much weaker (R=0.50) than for the
arable land.

Figure 4.4 shows the correlation coefficient between ©moqer and NDVI (Fig.
4.4(a)) and Onogel and Oasar (Fig. 4.4(b)) for all pixels in the study site, and
confirms what was observed in Figs. 4.2 and 4.3. NDVI shows a moderate to
strong positive correlation with soil moisture for the lower elevations, both over
arable land and over permanent crops (citrus and olive plantations), and a strong
negative correlation over forest pixels at high elevations. For arable land at the
higher elevations, the correlation coefficient for NDVI is close to zero. Correlation
coefficients for ASAR soil moisture are in general much higher, with R values
over 0.6 for most of the arable land areas. In regions with permanent crops, R
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Figure 4.3: Temporal behaviour of modelled soil moisture (black line), NDVI
(thick green line) and ASAR soil moisture (crosses) for a pixel over deciduous
forest (a); scatterplot of modelled soil moisture averaged over 16 days and 16-day
NDVI for the same pixel (b); scatterplot of modelled soil moisture and ASAR soil
moisture for the same pixel (c).

values for @asar are lower and even slightly lower than those for NDVI. Over
forests, ©asar is weak to moderate positively correlated with ©mogel.

Regions where NDVI is positively correlated with modelled soil moisture cor-
respond to regions with a strong correlation between ASAR soil moisture and
modelled soil moisture. This might suggest that the change detection algorithm,
as applied on the ASAR Wide Swath data, does not as such reflect changes in sur-
face soil moisture, but rather changes in vegetation phenology. However, ©asar
is in general correlated much stronger with ®meger than NDVI is, and even in
many locations where NDVI is negatively correlated with soil moisture, the ASAR
change detection method still results in moderate positive correlations. It can thus
be assumed that soil moisture dynamics have a much stronger influence on SAR
backscatter than vegetation dynamics, and the backscatter signal is influenced by
soil moisture even under relatively dense canopies.

Figure 4.4(b) shows a strong correspondence with the spatial pattern of sensi-
tivity to soil moisture (Fig. 4.1(c)), resulting in a correlation coefficient between
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Figure 4.4: Correlation coefficients between modelled soil moisture averaged over
16 days and 16-day NDVI (a) and modelled soil moisture and ASAR soil mois-
ture (b), for each pixel of the study site for the 3-year time series.

both images of 0.55. This confirms the presumption that a high Sis required to
obtain reliable soil moisture estimates. However, correlations of 0.5 and higher
are observed for many pixels with sensitivities below 3 dB.

4.4 Seasonality effects on model parameters

In the preceding, changes in vegetation and surface roughness throughout the year
have been ignored in defining the model parameters j3, cg,y(soO) and S and in
the derivation of the ASAR soil moisture index. Nevertheless, all three model
parameters are possibly influenced by seasonality effects.

4.4.1 Seasonality effectson 3

Influences of vegetation cover on the multitemporal incidence angle correction co-
efficient § can be observed in Fig. 4.1(a), where vegetated areas in general have
a higher (less negative) B. This is caused by the lower angular dependence of
the radar backscatter for vegetation compared to bare soils. The angular depen-
dence can thus be expected to vary seasonally over vegetated surfaces. In the ERS
and ASCAT retrieval algorithm, this seasonality was incorporated using the multi-
angular capabilities of these sensors (Wagner et al., 1999b). For SAR systems,
Loew et al. (2006) derived the parameter [ for the winter and summer season sep-
arately, and found higher values for the summer over a variety of landcover classes
in a study area in Germany. This was consistent with the higher vegetation cover
during the summer growing season.
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Here, seasonality effects on 3 are assessed by performing the linear regression
(Eq. 4.2) for the summer months (41 images between April and September) and the
winter months (39 images between October and March) separately, corresponding
to the months of minimum, respectively maximum, average rainfall, and roughly
corresponding to the yearly vegetation patterns observed in Figs. 4.2a and 4.3a.
This partitioning is somehow arbitrary since the seasonal vegetation cycle varies
over the study site, depending on terrain altitude and land cover. Ideally, the par-
titioning should use smaller time intervals to fully capture vegetation phenology
and/or include information on vegetation dynamics to define the endpoints of these
intervals. This is, however, not feasible in this study due to the limited size of the
image dataset.

The correction coefficient for each pixel in the study site for summer (Bsummer)
and winter (Bwinter) months, and the difference between both, is given in Fig. 4.5.
As expected, the largest differences are observed over arable land pixels. Con-
tradictory, however, B is lower (more negative) over arable land in winter than in
summer, while less negative values would be expected due to overall higher vege-
tation cover during the winter growing season.

®
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Figure 4.5: Angular correction coefficient for the summer months Bsymmer (a),
winter months Bwineer (b) and the difference between Bsymmer and Buwinter (C).

When considering the incidence angle and backscatter coefficient scatterplot
(Fig. 4.6) of the arable land pixel discussed earlier in Fig. 4.2, it is observed that,
for a given incidence angle, backscatter coefficients are, as expected, generally
higher during the wet winter than during the dry summer period. The range in
c°(0) is small (approximately 3dB) at high 8, with small differences between
summer and winter backscatter coefficients, and increases to approximately 5dB
at low incidence angles, causing the regression line of the winter images to be
much steeper than the one of summer. A possible explanation for this apparent
contradiction is that NDVI is not necessarily a good indicator of wet vegetation
biomass, which is the physical property influencing radar backscatter. The time
gap between the maxima of NDVI and the slope of the regression line has been
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observed earlier for ERS scatterometer (Wagner et al., 1999c) and was attributed
to a later yearly peak of wet biomass in comparison to NDVI. An alternative ex-
planation is that, apart from vegetation phenology, the seasonal variability of soil
moisture also has an influence on B, although this contradicts previous findings
and the basic assumptions of the change detection model (Wagner et al., 1999b).
Further research on the angular dependence of backscatter on soil moisture and
vegetation cover and their interaction is required to clarify this.
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Figure 4.6: Angular behaviour of ASAR backscatter for an arable land pixel.
Crosses depict observations during summer months, triangles observations dur-
ing winter months. Linear regression lines for summer and winter are in solid and
dashed, respectively.

Differences between Bsymmer and PBuwinter are up to 50 % of the correction coeffi-
cient derived using all data combined for several pixels in the study site. Incidence
angle normalization was therefore performed for the two periods separately, after
which 6J,,(30°) and Sand the soil moisture index were redefined. The temporal
correlation with modelled soil moisture was then determined again for each pixel
in the study site. The increase in R, relative to the method using a single incidence
angle normalization, is given in Fig. 4.7. Although the average correlation coeffi-
cient increases only slightly (Fig. 4.8), local R increases up to 0.2 are observed at
some places in the study site.

Pixels with a strong increase in correlation coefficient do not necessarily cor-
respond to pixels with large differences between Bsymmer and Bwinter. This results
from the propagation of uncertainties, as presented by Pathe et al. (2009) and
Mladenova et al. (2010), which is proportional to the ratio of the uncertainty on
B to S Consequently, small changes in  can result in significant soil moisture
accuracy changes when Sis low. For higher sensitivity values, even large changes
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Figure 4.7: Increase in correlation coefficient (AR) for the change detection using
a seasonal derivation of [3 relative to the method using a fixed {3 for the entire year.

do not manifestly influence model performance. A good description of the sea-
sonal angular behaviour of SAR backscatter should therefore be incorporated in
(future) multitemporal SAR soil moisture algorithms. Estimates of this behaviour
at a monthly frequency can be derived when larger image databases become avail-
able.

4.42 Seasonality effectson og,(30°) and S

In addition to influences on the angular behaviour of SAR backscatter, seasonality
can also be expected to influence the dry reference and sensitivity parameters. For
a soil with a constant moisture content, backscatter will change in function of veg-
etation cover and soil roughness parameters. Both vegetation and roughness can
be expected to change seasonally, the former through vegetation phenology and
crop growth or harvest, the latter through agricultural practices such as ploughing.
Both are likely to perturb the multitemporal soil moisture retrieval, especially over
agricultural areas. An example of this can be seen in Fig. 4.2, where the ASAR
soil moisture remains high towards the end of the growing season, during the same
period in which the decrease in vegetation cover lags behind on the decrease in
modelled soil moisture. Also, as a result of NDVI being in phase with arable land
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Figure 4.8: Box plots of correlation coefficients between modelled soil moisture
and ASAR soil moisture using a single angular correction (ASAR), ASAR soil
moisture using a seasonal angular correction (ASAR*), TU Wien-EUMETSAT
ASCAT surface soil moisture (ASCAT), AMSR-E soil moisture derived using the
algorithm developed by Njoku et al. (2003) (AMSR-E NASA) and AMSR-E soil
moisture derived using the LPRM of Owe et al. (2008) (AMSR-E LPRM), for all
pixels of the respective products over the study site. Crosses indicate the arithmetic
means.

over most low elevation arable land pixels, sensitivity values for these pixels might
be expected to be overestimated. Conversely, Smight be underestimated when the
vegetation cycle is in antiphase with the soil moisture cycle, e.g. over the high el-
evation forest pixels.

While roughness changes are nearly impossible to assess without multi-angular
and/or multi-polarized data or in situ measurements, vegetation dynamics can be
easily incorporated using remotely sensed data. In the following, an approach is
suggested to incorporate NDVI in the ASAR change detection algorithm. Vegeta-
tion phenology is here accounted for using a vegetation index rather than a seasonal
description of dry reference and sensitivity, as by Wagner et al. (1999c), because
the latter assumes a constant crop behaviour over different years. This might not
always be valid, e.g. in the case of crop rotation or when the onset of the growing
season varies with the time of rainfall.

In the scatterplot of 6°(30°) and the corresponding NDVI (Fig. 4.9) of the
arable land pixel, a general positive relationship is observed which is consistent
with both NDVI and ASAR backscatter being in phase with the seasonal soil mois-
ture cycle. When considering the modelled soil moisture it is observed that, for low
soil moisture levels, radar backscatter increases with increasing vegetation cover.
A lower envelope line describing the backscatter behaviour in function of NDVI,
by analogy with the concept applied by Moran et al. (2000), can thus be fitted to



SOIL MOISTURE CHANGE DETECTION FOR ASAR WS 65

the data. Instead of scaling °(30°) using a fixed cgry(300) and S these can now
be replaced by a dry reference and sensitivity changing in function of NDVI.

B

|

»
@)
I

Backscatter coefficient 6° [dB]

00 02 04 06 08 10
NDVI [-]

Figure 4.9: Scatterplot of NDVI and ASAR WS backscatter for a pixel time series
over arable land; the size of the dots represents Omegel (large dots indicate high
moisture levels). Dotted lines represent the average values of the 5% highest,
respectively lowest, backscatter coefficients, the full line indicates the vegetation
dependence of ASAR WS backscatter at low moisture levels.

When comparing the thus derived soil moisture index for this pixel with the
index ignoring seasonality, only minor changes in performance are observed. In
terms of correlation coefficient between Omgdel and Oasar, there is a deteriora-
tion from 0.80 to 0.78, while the RMSE improves slightly from 21 % to 19 %.
This marginal change in accuracy might be due to a number of reasons. First, the
hydrological model’s accuracy is likely too low to evaluate small changes in the
soil moisture index. Secondly, changes introduced by vegetation phenology might
be too small compared to the total sensitivity to soil moisture to improve results,
or NDVI might be a bad indicator for effects of vegetation change on backscat-
ter. Finally, effects of soil roughness changes, which are not accounted for in this
methodology, might be more important over arable land than changes in vegetation
cover. Additionally, incorporating vegetation indices in the derivation of cgry(SOO)
and S as suggested here, is only possible when entirely dry conditions are present
over the full range of vegetation phenology stages. This is only valid for few pixels
in the study site, since this requires long time series at high temporal resolution in
order to capture these extreme and possibly rare events.
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45 Comparison with coar seresolution soil moisture
products

The accuracy of the ASAR WS soil moisture was compared to accuracies obtained
for coarse resolution soil moisture products (Fig. 4.8). Validation was performed
using the 1 km hydrological model for the 2008-2010 period, averaged to the spa-
tial resolution of the coarse resolution products. The AMSR-E NASA product,
which produced estimates for 25 coarse resolution pixels, was not correlated with
modelled soil moisture for this region (R= —0.18 and R= —0.05 for the lower
and upper quartile, respectively), while AMSR-E LPRM soil moisture (R= 0.63
and R = 0.68 for the lower and upper quartile, respectively) and the TU Wien-
EUMETSAT ASCAT surface soil moisture product (R = 0.62 and R = 0.68 for
the lower and upper quartile, respectively) both produced equally strong correla-
tions. It should however be noted that the VUA-NASA AMSR-E product provides
soil moisture estimates for only 10 pixels, all lying in the northern, wider part of
the Calabrian peninsula, whereas the ASCAT surface soil moisture provides esti-
mates at 202 grid points distributed over the entire study area. These results are in
agreement with the findings of Brocca et al. (2011), who reported superior results
for AMSR-E LPRM and ASCAT in comparison to AMSR-E NASA over two in
situ stations in Calabria. The change detection algorithm applied on ASAR WS
data results in R values in the same range as those of the latter two coarse reso-
lution products for most pixels in the study site (R= 0.47 and R = 0.73 for the
lower and upper quartile, respectively, based on 9647 estimates using the method
incorporating seasonality on [3).

4.6 A further analysisof theinfluence of seasonality
on the angular dependence of backscatter

In the previous sections, it was shown that vegetation phenology can significantly
alter the angular dependence of radar backscatter, and that ignoring this seasonal-
ity can hence degrade soil moisture retrieval accuracies by SAR systems. While in
Section 4.4 a first attempt was made to circumvent influences of vegetation phe-
nology on the the angular dependence of ASAR backscatter by dividing the year
in a high-vegetation and a low-vegetation season, this section proposes a method-
ology to assess the effects of seasonality at monthly resolution and higher. This is
achieved by combining ASAR WS data with low spatial resolution ASCAT data.
This methodology assumes a linear dependence of ASAR WS backscatter on inci-
dence angle, an assumption that is validated first.
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4.6.1 Linearity of ASAR angular dependence

This part of the study is performed on the full time series of 130 ascending and
descending mode ASAR WS images. In order to better exploit the high resolution
of the Wide Swath mode, topographic correction (including masking of regions af-
fected by radar shadow and/or layover) and radiometric calibration are performed
using the 10 m resolution TINITALY/01 DEM, and the images are resampled to
a grid of 0.0025° (approximately 300 m) resolution. The angular dependence of
c°(8) on 6 can then again be assessed using Eq. 4.1, and normalization to a com-
mon incidence angle can be performed following Eq. 4.2. Equations 4.1 and 4.2
can obviously be easily adapted to account for possible non-linearity of the angular
dependence of backscatter by adding a higher-order term in 6 (Baup et al., 2007).

Several studies performed the angular normalization of ASAR backscatter as-
suming a linear relationship between 6 and ¢°(8) (Loew et al., 2006; Wagner
et al., 2008; Pathe et al., 2009). The rationale behind this is that although the rela-
tion between incidence angle and backscatter is typically not linear (Ulaby et al.,
1982), it can be considered as such for the limited incidence angle range in which
the ASAR instrument operates. When using both ascending and descending mode
images, however, the incidence angle range will extend beyond the typical range
of 20°-40° for pixels over sloped terrain. For a slope of 20°, for example, the
incidence angle range can increase to 0°-60°, a range for which the linear approx-
imation of the angular dependence of backscatter is not necessarily valid.

The validity of the linear assumption is here investigated by fitting both a linear
and a second order polynomial function to the multitemporal (8,6°(8)) observa-
tions for each pixel individually. Figure 4.10(a) shows three examples of these
linear and quadratic fits. For the top figure of Fig. 4.10(a), the incidence angle
range is relatively small and the linear and quadratic fits result in a nearly iden-
tical coefficient of determination (RZ, and Rauad, respectively). With increasing
incidence angle range (middle figure of Fig. 4.10(a)), it becomes apparent that the
incidence angle-backscatter relationship is non-linear, although the difference be-
tween Rﬁuad and R2_ remains small. The bottom figure of Fig. 4.10(a), however,
shows that this relationship can become strongly non-linear when the incidence
angle range becomes large. It is observed here that the typically negative relation-
ship between 6 and c%(8) is inverted for low values of 6.

The R? of the second order polynomial fit will, by definition, be larger than that
of the first order fit. The difference between both can be interpreted as a measure
of the validity of the linear assumption of the angular dependence of backscatter.
This difference in R? is shown, for each pixel of the study site, in Fig. 4.10(b). Al-
though non-linearity results in high differences in R? for many pixels in the study
site, the majority is characterized by differences below 0.1 (Fig. 4.10(c)). Strong
non-linear relationships between 6 and ¢°(0) are dominantly found over sloped
terrain covered by dense vegetation (Fig. 3.1).
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Figure 4.10: Scatterplot of 6°(8) versus @ for three example pixels, crosses and
boxes representing acquisitions during descending and ascending overpasses, re-
spectively, full lines and dashed lines representing linear and quadratic fits, respec-
tively (a). Difference in R? of quadratic and linear fit for each pixel of the study
site (b). Frequency distribution of difference in R? of quadratic and linear fit (c).

In the remainder of this section, only those pixels where the angular depen-
dence of ASAR backscatter can be approximated by a linear relationship are re-
tained. These are (subjectively) selected as those pixels where the difference in
R? is below 0.1, or 74.7% of the total number of pixels in the study site. For nor-
malization of ASAR images over terrain with significant topography, however, the
non-linear nature of the angular dependence should not be ignored.

4.6.2 Monthly dynamics of ASAR and ASCAT angular depen-
dence

As mentioned earlier, the derivation of B using images from all dates pooled ig-
nores possible seasonal effects of vegetation. A possible solution to incorporate
effects of seasonality on B is by applying Eq. 4.1 using a sliding time window.
Here, the slope values (hereafter denoted as Basar) are derived on a monthly ba-
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sis, fitting Eq. 4.1 to the (8,6°(8)) couples of a 3-month window over all the years,
i.e. Pasar for the month of January is derived using observations during Decem-
ber, January and February from 2008 to 2011. For larger datasets, the size of this
temporal window could be reduced in order to increase the temporal resolution of
the slope estimates.

The validity of the methodology is tested by comparing the monthly ASAR
slopes to the slopes derived for ASCAT. Since both ASAR and ASCAT are C-
band instruments operating at V'V polarization, they can be assumed to be affected
by the same seasonal vegetation patterns, and a correlation between the angular
dependences of the two sensors is expected. To this end, Pasar Vvalues are re-
sampled to the spatial resolution of ASCAT by averaging over a circular 12.5 km
radius footprint centered at the ASCAT grid points:

Basar = ml(A) { / Basar(x,Y)dxdy, (4.5)

where Basar represents the spatial average of Basar at locations x,y over the
area A.

As a by-product of the global soil moisture retrieved by the change detection
algorithm for Scatterometer and ASCAT, slope and curvature values for the angu-
lar normalization are derived. The slope at 40° incidence angle and the curvature
are generated for each day of the year (366 days), in the same discrete global grid
(DGGQG) as the soil moisture product. Since the angular normalization technique
for ASAR, discussed previously, produces only a slope and no curvature, the AS-
CAT curvature is used to convert, for each day, the ASCAT slope at 40° to an
incidence angle of 30°, since this lies approximately halfway the range of ASAR
WS incidence angles. The ASCAT slope at 30° is hereafter denoted as Bascar.
Additionally, in order to be able to compare ASCAT slopes to those derived for
ASAR temporally, the temporal resolution of Bascar is reduced to the temporal
resolution of Bagar. This is done by degrading Bascar to monthly averages:

R N
Bascar = % Y Bascar(d) (4.6)
d=1

where Bascar represents the temporal average of Bascar over N days.

The angular dependence of backscatter, expressed as the slope Basar and de-
rived using the entire multitemporal dataset of ASAR WS images, is given in
Fig. 4.11(a). The general land cover pattern of Calabria is reflected, with strong
negative values of Basar over agricultural areas and values closer to zero over
areas with a denser vegetation canopy cover. When including the effects of sea-
sonal vegetation change by deriving the slope on a monthly basis, large seasonal
differences in Basar are observed. Differences between the second largest and the
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second lowest monthly slope per pixel (ABasar, Fig. 4.11(b)) are approximately
in the order of magnitude of the values of Basar for the pooled data. The second
highest and second lowest monthly values are selected here instead of the extreme
values in order to reduce the effect of possible outliers in the monthly estimates
of Basar. These might be introduced through chance effects resulting from the
smaller size of the datasets that are used to produce the monthly slopes. On aver-
age, 32.5 images are available for each 3-month sliding time window. When, by
chance, all near-range (low incidence angle) or far-range (high incidence angle)
acquisitions during a 3-month window are obtained during wet conditions (result-
ing in higher backscatter for these acquisitions), the resulting Basar will be more
negative or less negative, respectively, than would be expected. This source of er-
rors can be reduced by including longer time series, e.g. the full 10-year ENVISAT
ASAR archive instead of the current 3.5-year period.
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Figure 4.11: Slope parameter (Basar) derived using all available data (a) and sea-
sonal range of slopes derived on monthly basis (ABasar) (b). Pixels characterized
by non-linearity of the angular dependence have been masked.

The large difference observed between Basar obtained using the pooled data
and Basar for the individual months implies that errors will be introduced when
this seasonality is ignored in an angular normalization. When backscatter is nor-
malized to an incidence angle of 30° according to Eq. 4.2 and using the value of
Basar as displayed in Fig. 4.11(a), the maximum error on normalized backscatter
Ac®(30°)max can be expressed as:

A60(3oo)max == ‘ABmax| |Aemax| . (47)

In Eq. 4.7, |APmax| is the maximum absolute difference between Basar Obtained
for all multitemporal data pooled and Basar Obtained for monthly intervals. As
before, the second largest and second lowest value of the slope are used here in
order to avoid effects of outliers. |ABmax| is the maximum incidence angle range
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over which backscatter has to be normalized, and is thus function of the terrain’s
slope and orientation. The value of Ac®(30°)max for each ASAR WS pixel is
given in Fig. 4.12(a), its frequency distribution in Fig. 4.12(b). It is observed that
Ac®(30°)max is especially high over arable land, and lower over permanent crops
and forests. For a large fraction of the (nonmasked) pixels over this study site,
AG®(30°)max is in the order of, or higher than, 0.65 dB, the radiometric accuracy
of the ASAR sensor in WS mode.
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Figure 4.12: Maximum error on normalized backscatter introduced by neglecting
seasonal variability of Basar (a). Frequency distribution of this maximum error
(b). Pixels characterized by non-linearity of the angular dependence have been
masked.

When aggregating the ASAR WS slopes to the spatial resolution of ASCAT
for each grid cell, and aggregating the ASCAT slopes to the monthly temporal res-
olulion of the ASAR slopes, the correspondence between the temporal behaviour
of Bascar and BASAR can be investigated. This is done for three example points
of the DGG in Fig. 4.13(a). The top profile of this figure represents a grig point
dominated by arable land. This results in a strong seasonal signal, with Bascar
and Basar during the summer months being much higher than during the winter
months. BASAR displays the same seasonal trend as EASCAT, for this grid cell, re-
sulting in a high R? and relatively low root mean square error (RMSE). Unlike
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for arable land, where aboveground biomass, and hence the angular dependence
of backscatter, changes considerably throughout the year, the main scattering ele-
ments of a forest canopy (stems and branches) are present during the entire year.
Bascar and Basag for a grid cell dominated by deciduous forest (middle figure
of Fig. 4.13(a)) therefore eihibit much smaller seasonal fluctuations. The limited
range of both Basar and Bascar, combined with even small retrieval errors in
Basar, results in an intermediate R?, even though the RMSE s low. The bottom
figure of Fig. 4.13(a), finally, shows a grid cell over mixed landcover chgracterized
by a low R? and high RMSE. For this grid cell, Basag cOrresponds to Bascar for
the period November—May, but they differ strongly for the period June—October.
Possibly, the difference for these latter months is caused by the smaller size of the
datasets on which the monthly values of Basar were derived, as discussed earlier.
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Figure 4.13: Temporal behaviour of Basar (full line) and BASCAT (dashed line) for
three grid points dominated by (top to bottom) arable land, deciduous forest and

mixed landcover (a). R? between monthly values of Bagag and EASCAT for all grid
points of the DGG, blue and red indicating low and high values, respectively (b).

Scatterplot of EASCAT and Bsar for all grid points pooled (c).
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Figure 4.13(b) shows that, for most grid points of the DGG, the correlation
between BASAR and Bascar is intermediate to strong. Nevertheless, some low R?
values can be found for several grid points, especially in the western half of the
study site. It should be noted that ASAR WS pixels masked due to non-linear be-
haviour of the angular dependence were not used to calculate Bagar. Comparison

of BASAR and EASCAT therefore implies that the masked ASAR WS pixels are rep-
resentative for the general land cover within the ASCAT footprint, and not that,
e.g., all forest pixels are masked while grassland pixels are unmasked. This might
partly have caused some of the lower R? values. Grid points for which more than
half of the ASAR WS pixels were masked were not further processed. This was
the case for two grid points in the south of the study site.

The scatterplot of EASCAT and Basar for all grid points pooled (Fig. 4.13(c))
shows that the observations are scattered around the 1:1 relation that might be ex-
pected given the similar characteristics of both sensors. Strong deviations from
this line, caused by processes discussed earlier, results in only an intermediate R?
and relatively high RMSE. The existence or non-existence of a universal 1:1 rela-
tion between EASCAT and EASAR could be clarified by further study over different
sites. In general, however, it can be concluded that the linear regression of 6%(8)
versus 6 over monthly windows seems an adequate technique to capture the tem-
poral dynamics of the angular dependence of ASAR WS backscatter over a variety
of land cover types, and results are consistent with the angular dependence of AS-
CAT backscatter.

4.6.3 Towardshigh temporal resolution angular normalization
of ASAR WS

Given the similar seasonal behaviour of the ASAR and ASCAT slope, a time-
invariant or temporally stable (linear) relationship might exist between the high

spatial resolution Basar and the low spatial resolution Bascar:

Basar = as+ bsBASCAT . (4.8)

The scaling coefficients as and bs can easily be estimated for each ASAR pixel
from the monthly slope Basar and the ASCAT slope, aggregated to monthly reso-
lution, of the nearest ASCAT grid point. The concept of temporal stability implies
that regional scale temporal dynamics of surface properties are characteristic of
local or point scale dynamics, and vice versa. One such surface property that is
found to be characterized by temporal stability is soil moisture (Cosh et al., 2008;
Brocca et al., 2009). Although soil moisture content can vary strongly within a
few metres as a result of soil type or topography, the processes explaining its tem-
poral dynamics, namely precipitation and evapotranspiration, are typically large
scale processes. The temporal stability of surface soil moisture is reflected in the
temporal stability of SAR backscatter (Wagner et al., 2008), which in turn offers
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prospects for the spatial disaggregation of coarse resolution remotely sensed soil
moisture estimates.

In this study, the assumption of temporal stability between ASCAT and ASAR
slope parameters in Eq. 4.8 implies that regional scale and local scale vegeta-
tion dynamics are similar. In other words, the assumption is valid when all land
cover types within a low resolution ASCAT footprint exhibit a similar seasonal
behaviour. Since in the Mediterranean climate of Calabria vegetation growth is
strongly rainfall dependent, this would seem a realistic assumption. However, the
heterogeneous land cover of the study site, combined with the strong topography
and associated temperature regimes, might cause different regions within one AS-
CAT footprint to be characterized by different temporal vegetation dynamics. The
validity of the linear temporal stability model can be expressed in terms of a coef-
ficient of determination or a standard error of estimate. A strong correlation can be
expected when the vegetation cover of the high resolution pixel footprint is similar
to the overall coverage of the low resolution footprint. In that case, the scaling co-
efficients can be used, together with the daily ASCAT slope Bascar, to interpolate
the monthly Basar to daily resolution.

Figure 4.14(a) indicates the validity of the assumption of linear temporal stabil-
ity in terms of R? for each ASAR WS pixel in relation to the nearest ASCAT grid
point, Fig. 4.14(b) its frequency distribution. Althcygh R? is overall low, strong
temporally stable relationships between Basar and Bascar exist over many crop-
land pixels. Lower coefficients of determination over dense vegetation are due to
the small dynamic range of Basar at these pixels (Fig. 4.11(b)). Combined with
even small errors on the monthly estimates Basar, this results in a low R2.

The differences in R? magnitudes in Fig.A4.13 and Fig. 4.14 can be explained
by the fact that the aggregated BASAR and Bascar correspond to the same land
surface footprint, while Basar derived for a single pixel and BASCAT might reflect
the effects of entirely different land covers. For instance, the seasonal behaviour
of angular backscatter dependence for a high resolution pixel dominated by forest
will differ greatly from that of an ASCAT grid point if the greater region is domi-
nated by cropland, or vice versa.

For those ASAR pixels with strong temporal stability between Basar and

EASCAT, this linear relationship can be used, together with the high temporal reso-
lution of Bascar, to improve the temporal resolution of Basar:

Basar.d = @s+ bsPascar , (4.9)

where Basar.d indicates the angular dependence of ASAR WS backscatter at daily
resolution, and the scaling coefficients as and bs are derived according to Eq. 4.8.
This interpolation of the monthly Basar estimates allows to avoid discontinuities
between consecutive months in the angular normalization of ASAR WS images.



SOIL MOISTURE CHANGE DETECTION FOR ASAR WS 75

Frequency (x1000)

0.0 02 04 0.6 0.8
R[]

=
=)

Figure 4.14: Validity of the assumption of temporal stability, expressed as coef-
ficient of determination (a). Frequency distribution of the coefficient of determi-
nation (b). Pixels characterized by non-linearity of the angular dependence have
been masked.

An example of this can be seen in Fig. 4.15 for an ASAR cropland pixel. It is
observed in this example that the interpolated Basar 4 deviates from the original
Basar during some months. The Bascar product is, however, more stable than
Basar, given the multi-angular capabilities of ASCAT and the number of obser-
vations on which both are based. The interpolation algorithm based on temporal
stability can therefore be assumed to filter out some of the errors introduced by the
smaller number of images on the basis of which Basar is computed.

Overall, the applicability of the interpolation based on temporal stability is
somehow limited for this study site due to the strong fragmentation of land cover.
Over more homogeneous terrain, however, this method is expected to be useful to
increase the temporal resolution of monthly Basar.
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Figure 4.15: Bascar (full line), BASCAT (dashed line), Basar (dotted line) and
Basar.d (dashdotted line) for an example ASAR WS pixel over cropland and the
nearest ASCAT grid point.

4.7 Conclusions

In this chapter, a change detection technique was applied to infer a soil moisture
index from a time series of 80 ASAR Wide Swath images over Calabria, Italy.
Backscatter coefficients, normalized to an incidence angle of 30°, were scaled be-
tween the highest and lowest values in a time series of 3 years. Strong linear
correlations with modelled soil moisture (R~ 0.6 to R~ 0.8) were found for most
arable land pixels, while correlation coefficients for forests were moderate to low
(R~0.2t0 R~ 0.5).

Additionally, an effort was undertaken to account for seasonality effects in
the derivation of the three change detection model parameters: angular correction
coefficient, dry reference and sensitivity. In the multitemporal incidence angle
correction, seasonality was incorporated by deriving the angular correction coeffi-
cient for the summer months and winter months separately. Especially for arable
land, this resulted in large differences between the summer and winter correction
coefficients. When applying the seasonal coefficients in the angular correction,
validation with the modelled soil moisture resulted in increases in correlation co-
efficients between 10 and 20 % for many pixels in the study site, thus stressing the
importance of an appropriate angular correction. In the derivation of dry reference
and sensitivity, seasonality was integrated using MODIS Normalized Difference
Vegetation Index. Unfortunately, no significant increase in soil moisture estima-
tion accuracy was found. This is possibly because errors introduced by vegetation
phenology in the derivation of dry reference and sensitivity are small relative to
errors from other sources, such as soil roughness or sensor noise.
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A further study of the angular correction coefficient, performed on the full time
series of 130 ASAR images in ascending and descending mode showed that the as-
sumption of a linear relationship between backscatter and incidence angle was not
valid for a number of pixels, especially over sloped terrain. For those pixels where
this assumption was true, the angular dependence of ASAR WS backscatter was
found to vary strongly over cropland and moderately over terrain with permanent
vegetation cover, consistent with the angular dependence obtained for ASCAT.
The relationship between these can, applying the concept of temporal stability, be
used to interpolate the monthly ASAR angular angular correction coefficients to
daily estimates. When ignoring this seasonal variability in an angular normaliza-
tion, errors in the order of the radiometric accuracy of ASAR WS and higher can
be introduced.

Overall, change detection algorithms of high to medium spatial resolution
and high temporal resolution SAR data, such as Envisat ASAR or the upcom-
ing Sentinel-1 mission, offer promising approaches to routinely map surface soil
moisture dynamics over a wide range of land cover types. These can be usable ad-
ditions to low resolution soil moisture datasets from active and passive microwave
sensors. Nevertheless, change detection algorithms should not neglect influences
of seasonality in the derivation of the model parameters, especially the multitem-
poral angular correction coefficient.






MODIS apparent thermal inertia
as a soil moisture indicator

5.1 Introduction

Changes in apparent thermal inertia have already been related to changes in soil
moisture content (Tramutoli et al., 2000; Verstraeten et al., 2006). Sensors on sun-
synchronous polar orbiting satellites such as NOAA/AVHRR or Aqua and Terra
MODIS provide day- and nighttime land surface temperature measurements on
a near-daily basis at approximately 1 km resolution, which allows for the deriva-
tion of time series of daily apparent thermal inertia. However, these sensors suffer
from the disadvantage, compared to lower resolution geostationary sensors, that
the time of observation of a position on the ground may differ between two con-
secutive days. Aqua’s equatorial crossing time, for example, is approximately 1:30
pm in ascending mode and 1:30 am in descending mode. Due to the wide swath
width of the MODIS instrument (2330 km), however, the local solar time of obser-
vation at a particular point at the earth’s surface can be considerably earlier or later
than the time at nadir, resulting in possibly large differences in time of observa-
tion for two consecutive days. Additional heating or cooling will occur during this
time span, hampering meaningful comparison of apparent thermal inertia images
of different dates. A second limitation of most (apparent) thermal inertia methods
up to present is that they use only two surface temperature observations as (ap-

This chapter is based on: Van doninck J., Peters, J., De Baets, B., De Clercq, E.M., Ducheyne,
E., Verhoest, N.E.C. (2011). The potential of multitemporal Aqua and Terra MODIS apparent thermal
inertia as a soil moisture indicator. International Journal of Applied Earth Observation and Geoinfor-
mation, 13(6), 934-941, DOI: 10.1016/j.jag.2011.07.003.
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proximations of) the diurnal temperature range, except for the method of Sobrino
and El Kharraz (1999a) which requires four daily measurements. When one of
these observations is lacking —due to cloud cover or because the area of interest
lies between sensor swaths, which is common in regions near the equator— the
(apparent) thermal inertia for that day can obviously not be derived.

In this chapter we propose a methodology to derive apparent thermal inertia by
a multitemporal approach, using Aqua and Terra MODIS data of a full year. The
method is based on a sinusoidal approximation of the diurnal surface temperature
curve, where a sinusoid is fitted to either four, three or two MODIS land surface
temperature observations, depending on the number of available observations. The
methodology allows for a certain flexibility and exploits the full amount of infor-
mation gathered by the MODIS instrument.

5.2 Study area and datasets

This part of the study is initially performed on the part of continental Africa south
of the parallel of 15° South. This area comprises the countries of South Africa,
Namibia, Botswana, Zimbabwe and parts of Mozambique. This study site is cho-
sen to cover a variety of climate conditions, which vary significantly within the
region from extremely arid along the Atlantic coast of Namibia to a Mediterranean
climate around the Cape and humid at the eastern coast of Mozambique. A strong
seasonality is present due to the proximity to the Tropic of Capricorn. In a second
phase, the Calabria study site is included.

For the southern Africa study site, for reasons of data volume, the global 0.05°
level 5 products MCD43B3 (Terra+Aqua 16-day albedo), MOD11C1 (Terra daily
land surface temperature) and MYD11C1 (Aqua daily land surface temperature)
were used in this study for the period January—December 2009. This way, the
study area is covered by images of 600 by 400 pixels. Over the Calabria study site,
the corresponding 1 km products are used, and this for the period 2008-2009. The
0.05° and 1 km surface temperature products differ from each other in the way the
times of land surface temperature observations are provided. While for the 1 km
product these are given in local solar time, they are in Coordinated Universal Time
(UTC) for the M*D11C1 products. Transformation to local solar time t; [s] is done
by:

t :ti(UTC)+£, (5.)

where tj(UTC) is the Coordinated Universal Time [s] and v is the local longitude
[rad].

Since no in situ or modelled soil moisture reference data were available for the
entire southern Africa study site, AMSR-E soil moisture was used as a reference.
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The (descending mode) soil moisture product at 0.25° resolution developed at the
Vrije Universiteit Amsterdam (VUA) in collaboration with NASA (Owe et al.,
2008) was selected here over other products, given its superior retrieval capabili-
ties in comparative studies (Draper et al., 2009; Gruhier et al., 2010; Wagner et al .,
2007). The region of southern Africa is only weakly influenced by radio frequency
interference (Njoku et al., 2005), which makes the AMSR-E soil moisture product
for this region a reliable reference dataset. A 7-day running temporal average filter
was applied on the soil moisture images of 2009 in order to fill data gaps and to
reduce temporal noise. For Calabria, the modelled soil moisture was used as ref-
erence data.

5.3 Sinusoidal approximation of the diurnal surface
temperature cycle

5.3.1 Methodology

The diurnal temperature cycle can be approximated as a sinusoid of the form:

- A
Ts(ti) = Ts+ 5 cos(ti — ) , (52)
where Ts(t;) is the surface temperature [K] at time of day t; [s], Ts the diurnal av-
erage surface temperature [K], A the amplitude of the diurnal temperature cycle,
[K], o the angular velocity of rotation of the Earth [rads~], and  is the phase
angle [rad].

Considering the phase y known, e.g. from in situ measurements, then Eq. 5.2
contains two unknowns: Ts and A. The amplitude and average temperature can
thus be derived for each pixel for each day with two observations (t;,Ts(t;)) or with
more (n) observations using a least squares approach. The solutions for Aand T
then become, denoting T; = Ts(t;):

A _ nxl,cos(of —y)Ti — 3L, cos(ot —y) XL, T

5.3
2~ 5] cos2(ah ) (315 0os(t, )2 9
and N N
TS _ Zi=1Ti — (A/2) %i:l COS((,!)ti - W) ) (54)
With n = 2, the exact solution for the diurnal amplitude is:
A TI—T 55)

2 cos(wt; — ) — cos(ot; — )

The MODIS sensor onboard Aqua and Terra can provide up to four land sur-
face temperature observations each day. A maximum number of observations can
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be used to derive the diurnal temperature amplitude from Egs. 5.3 or 5.5. In the
case of only two temperature measurements, it is advisable to derive the diurnal
amplitude using day-night pairs only, since two daytime or two nighttime obser-
vations would result in small differences in both numerator and denominator of
Eqg. 5.5.

In the derivation of Egs. 5.3-5.5 we have assumed the phase v, corresponding
to the time of maximum surface temperature, to be known. We suggest a variation
on the method of Sobrino and El Kharraz (1999a) to derive this value. Starting
from Eq. 5.2 and taking the difference between Ts(t;) at two satellite overpass
times and dividing this by the difference at two other overpass times, we obtain:

y=arctan(§) +n (5.6)
with

(T1 — T3)(cos(omtp) — cos(mts)) — (T — Ta) (cos(oty ) — cos(wtsz))
(T, — Ty)(sin(wty) —sin(wtz)) — (Ty — T3) (sin(mtp) —sin(wts))

E= (5.7)

While Sobrino and EI Kharraz (1999b) used only three temperature observa-
tions with NOAA/AVHRR data, we use Eq. (5.7) with four MODIS observations
in order to optimally approximate the sinusoidal fit on four data points and to min-
imize the probability that a phase angle is derived on days with cloud cover. y can
thus be derived for a time series of MODIS images for all days with four surface
temperature measurements. On the resulting time series of phase angle values
we performed additional interpolation and smoothening. The reasons for this are
twofold. The first is to eliminate day-to-day meteorological influences and influ-
ences of measurement errors. Second, the number of days with four daily MODIS
(ti, Ts(ti)) observations will be low on certain places on Earth. Interpolating y
values allows for pixels on days with fewer than four observations to be further
processed. The smoothening and interpolation are done by a harmonic analysis
of time series (Verhoef, 1996). This algorithm basically calculates a Fourier se-
ries based on time series of y for each pixel in a scene. After selecting a limited
number of frequencies, outliers in the original dataset relative to the modeled har-
monic are discarded and a new Fourier series is calculated based on the remaining
data points. This process is repeated iteratively until a predefined fit to the data
is reached or until a predefined minimum number of y values remain. Given the
potential seasonal variation of the time of maximum daytime temperature with so-
lar declination or vegetation phenology, a single harmonic with a frequency of one
year is likely to be sufficient. The interpolated value of y can then be retrieved for
every pixel for every day of the year.
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5.3.2 Resultsand validation

For each pixel in the study site, the phase angle y was computed according to
Egs. 5.6 and 5.7 for all calendar days of the year 2009 where four observations —
i.e. a sequence of Aqua night, Terra day, Aqua day and Terra night images— were
available. This was the case for on average 130 days, with a standard deviation of
30 days. These phase angle values were smoothened and interpolated for days with
fewer than four observations by the harmonic analysis of time series using a single
harmonic with a frequency of one year (Fig. 5.1). In general, the amplitude of the
harmonic was found to be low, with an average of 0.81, indicating a difference in
time of maximum surface temperature of 37 minutes over a full year. It should
be noted that large gaps can occur in the original time series of y, which reduces
the reliability of the constant and harmonic term estimates and causes a speckled
effect on the maps of these terms (Fig. 5.1). This could possibly be mitigated by
applying the harmonic analysis to a time series covering multiple years. In areas
with multiple rainfall or growing seasons, e.g. in regions closer to the equator,
the harmonic analysis using a single harmonic is likely to fall short. This can be
solved by adding harmonic terms with higher frequencies.
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Figure 5.1: Left: Two examples of harmonic analysis of phase angle (y) time se-
ries, one with a strong seasonality (top) and one with a weak seasonality (bottom)
of y. Boxes are estimates of y derived for days with four surface temperature
observations. The resulting interpolation (full line) is calculated on the checked
boxes only. Right: Map of the amplitude of the harmonic term.

The derivation of the diurnal surface temperature amplitude, using the interpo-
lated values of y and at least one daytime and one nighttime observation, assumes
a sinusoidal behaviour of the surface temperature. To validate this assumption,
the fit of the modelled temperature curve to the observations can be checked for
pixels for the days where four observations are available. This results for each of
these days in a root mean square error (RMSE). For a longer period of time, e.g. a
full year, the average RMSE for each pixel in an image can thus be derived. The
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performance of the sinusoidal model is compared to the advanced thermal inertia
model of Xue and Cracknell (1995), further developed by Sobrino and EI Khar-
raz (1999a), who used a second order approximation of the surface temperature
(Eq. 2.13), and which can easily be rewritten in a way very similar to Eq. 5.2:

Ts(ti) = ap + a1 [Cy cos(wt; — ) + Cy cos(2mt; — f(y))] (5.8)

with

C1 = f1(8,0,v) and Cy = f2(8,0,v) . (5.9)

The coefficients ag and a; in Eq. 5.8 can be found similarly as in Egs. 5.3 and 5.4,
after which an average RMSE can be derived for days with four (tj, Ts(t;)) obser-
vations in a similar way.

The validation of the sinusoidal approximation of the diurnal surface temper-
ature behaviour (Eq. 5.2) is displayed in Fig. 5.2, which shows the spatial distri-
bution of the average RMSE for the year 2009. This lies between 1 K and 2 K for
most pixels in the study site (spatial average of 1.51 K and standard deviation of
0.22 K). Inland water bodies and wetlands show up clearly in Fig. 5.2 because of
their low root mean square errors. These can be explained by the flat diurnal tem-
perature behaviour of water, which makes them well described by a constant term
only. Regions with high temperature amplitudes on the other hand will in general
be characterized by larger errors on the temperature estimates. To eliminate these
amplitude effects, a relative root mean square error (rRMSE) was derived by di-
viding the RMSE of each day by the amplitude of that day. The resulting map of
the average rRMSE (Fig. 5.2), with most values between 5 percent and 15 percent
of the diurnal temperature amplitude, indicates that the surface temperature be-
haviour of the more arid western part of the study site is relatively well described
by the sinusoidal function. Large rRMSE’s at the more vegetated eastern coast
however show that the sinusoidal approximation is not valid for these pixels, and
that the apparent thermal inertia will there likely be of limited utility.

The validation of the advanced thermal inertia model of Xue and Cracknell
(1995) (Eq. 5.8) resulted in a spatial average for the study site of 1.95K with a
standard deviation of 0.31 K. Notwithstanding its simplicity, the sinusoidal method
thus seems to result in a better fit to the data than the more complex, physically-
based model of Xue and Cracknell (1995). This could be due to a number of as-
sumptions in the latter, including flat topography and a temperature range between
280 and 310K, which are not imposed on the empirical sinusoidal approximation.
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Figure 5.2: Left: Average RMSE for the year 2009, derived from days with four
surface temperature observations. Right: Average rRMSE, derived for the same
period.

5.4 Apparent thermal inertia and soil moisture pat-
ternsover southern Africa

With the diurnal surface temperature amplitude derived from Eq. 5.3, apparent

thermal inertia images are derived as (Short and Stuart, 1982):

1—0(0
A

ATl =C (5.10)

with

1/2

C =sinsind (1 —tan? ptan®§)Y/2 4 cos pcosdarccos(—tanptand) ,  (5.11)

where ATI is apparent thermal inertia [K 1], o, the surface albedo [-], C the solar
correction factor, ¢ the latitude [rad], and & is the solar declination [rad].

ATI thus is a measure of the temperature increase caused by the proportion of
radiant energy that is absorbed by the Earth’s surface. The solar correction factor
C changes over space and time to normalize for solar flux variations with latitude
and solar declination. The solar declination 9, required for the calculation of C, is
found using the method of Igbal (1983):

8 =0.006918 — 0.399912cos(T") 4+ 0.070257 sin(T")
—0.006758cos(2I") +0.000907sin(2T") (5.12)
—0.002697 cos(3r") +0.00148sin(3I)
with
2n(nd — 1)
T 36525
where T" is the day angle [rad] and nq is the day number [-].

(5.13)
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Figure 5.3: Left: MODIS apparent thermal inertia for March 26, 2009, with indi-
cation of locations of temporal profiles (Fig. 5.5). Right, top: Number of observa-
tions used to derive apparent thermal inertia on March 26, 2009. Right, bottom:
VUA-NASA AMSR-E soil moisture for March 26, 2009, interpolated using a 7-
day temporal average.

5.4.1 Spatial ATI patterns

Fig. 5.3 shows the ATl image at 0.05° resolution for March 26" and the corre-
sponding AMSR-E soil moisture image at 0.25°. Comparison of both products
shows that the apparent thermal inertia largely reflects the regional soil moisture
pattern, with low values along the Atlantic coastline and higher values towards the
East and North. Some specific dry or wet features can also be recognized in both
images. The scatterplot of AMSR-E soil moisture versus MODIS apparent ther-
mal inertia, downscaled by a 5 by 5 pixel averaging, for this date (Fig. 5.4) shows
aclear, nearly linear, relation at the lower soil moisture ranges (below 0.3m?/m3).
Above this level, a large amount of high-end noise is present with ATl values up
to 0.6 K~ (the ordinate in Fig. 5.4 has been limited to 0.25 K~ for clarity), which
limits the overall R? for this date to 0.32.

Two possible reasons for this high end noise are unmasked water bodies and
cloud cover in between surface temperature observations. These will both result
in lower surface temperature amplitudes, hence unrealistically large ATI values. A
third reason for the deviation of the best fit, especially in the higher soil moisture
ranges, is the propagation of errors through the derivation of the apparent thermal
inertia. Given a relationship of the type y = f(x1,X2,...,%n), the uncertainty on
the dependent variable (Ay) is expressed in a first order Taylor approximation as a
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Figure 5.4: Scatterplot of AMSR-E soil moisture and apparent thermal inertia for
March 26, 2009.

function of the uncertainties on the independent variables (Axi,AX, ..., AXp):

ay

Ay - aXl

AXy . (5.14)

ady ady

The propagation of uncertainties on surface albedo and diurnal surface temper-
ature amplitude through Eq. 5.10 is thus expressed as:

1—o0p

2| AA, (5.15)

AATI = ‘i‘Aoco—i— ’c

where AATI is the uncertainty on apparent thermal inertia [K~1], Ao the uncer-
tainty on surface albedo [-], and AA is the uncertainty on amplitude [K].

The (squared) amplitude in the denominator of both terms of Eq. 5.15 indicates
that in wet regions, hence with low temperature amplitudes, ATl will be very sen-
sitive to errors on Aand, to a lesser extent, on op. This large sensitivity of thermal
inertia to measurement errors at low day-night temperature differences was also
acknowledged by other authors (Cai et al., 2007; Verstraeten et al., 2006) and is
inherent to all formulations using temperature differences in the denominator.

Some sharp delineations appear in the ATl image (Fig. 5.3) which clearly do
not correspond to sudden changes in soil moisture or land cover but are artefacts of
the followed methodology. It can be observed that some of these (e.g. a triangular
wedge running north northeast to south southwest in the western half of the study
site) correspond to the different (t, Ts(tj)) combinations used (Fig. 5.3). This is
clearly a trade-off for the flexibility of our method which allows for any number
and combination of surface temperature observations to be fitted to the sinusoidal
approximation. Forcing the method to use only a fixed set of observations would
eliminate these artefacts, but would also result in a large amount of missing data in
the regions between 30° north and south where consecutive MODIS swaths have
no overlap. It can also be seen that some different input combinations result in
seamless transitions in the ATl map. Other artefacts do not correspond to different
(ti, Ts(ti)) combinations used, but are already introduced in the derivation of v
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(Fig. 5.1) and can also be clearly discerned in Fig. 5.2. These originate from the
16-day repeat cycle of the Aqua and Terra spacecrafts and the associated fixed
swath delineations at the one hand, and the limited thematic resolution of the time
field of the M*D11CL1 products of 12 minutes at the other hand.

54.2 Temporal ATI patterns

As mentioned before, (apparent) thermal inertia is not only function of surface soil
moisture, but also of surface geology and land cover. To eliminate these effects
of geology it is useful to consider temporal ATl profiles on individual locations.
By doing so, the signal can be considered to be mainly function of soil moisture,
although changes in land cover, in particular vegetation phenology and agricultural
practices, should not be ignored. Assuming a linear relationship between AMSR-
E soil moisture and apparent thermal inertia, ATl can be converted to volumetric
soil moisture estimates using the intercept and slope of linear regression between
both. This way, the potential of ATl as a soil moisture indicator can be quantified
in terms of a standard error of estimate (SEE).
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Figure 5.5: Temporal profiles of MODIS apparent thermal inertia (crosses) and
VUA-NASA AMSR-E soil moisture (full line) for 2009. Right axis (AMSR-E soil
moisture) has been scaled for each sub-figure separately for clarity. Sub-figures
represent desert (a), savannah (b), cropland (c,d), wetland (e) and closed shrub-

land (f).
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Fig. 5.5 displays a number of temporal ATl and AMSR-E soil moisture pro-
files of 0.25° resolution pixels at different locations in the study site (marked
in Fig. 5.3), indicating the capabilities and limitations of the method used. A
first time series for a pixel located in the Namib desert (a) shows a permanently
low apparent thermal inertia, consistent with the passive microwave estimates
(SEE=0.018m3/m?3). The lack of a seasonal ATl signal indicates that the solar
correction factor C effectively corrects for differences in surface temperature am-
plitude induced by day length. Note that apparent thermal inertia will never be-
come zero even at entirely dry soil, since that would require an infinite temperature
amplitude. Low day-to-day noise may be caused by measurement uncertainty or
different meteorological conditions (e.g. air temperature, wind velocity or air hu-
midity).

A second profile (b) was taken over savannah pixels in the northwestern part
of the study site where seasonal rains result in an increased soil moisture in the
first part of the year. This increase is also visible in the ATI, although only few
estimates are available between February and mid-March due to persistent cloud
cover. ATI values are furthermore strongly scattered with spurious high outliers,
likely caused by cloud cover in between surface temperature observations result-
ing in erroneous temperature amplitude estimates. An initial drying period in the
second half of March is reflected in the ATI, as well as the gradual drying from
May to October, including a dip in early August. For the remainder of the year the
behaviour of ATl weakly reflects that of AMSR-E soil moisture, resulting in a SEE
of 0.059m3/m3.

The two following transects are taken over cropland, one in the vicinity of Cape
Town (c, SEE=0.093m3/m®), the other southwest of Johannesburg (d,
SEE=0.043m3/m?), with different wet seasons. In both transects, it can be seen
that under wet (and vegetated) conditions, ATI only poorly reflects soil moisture
conditions. During dryer and less clouded periods, however, some short-term wet-
ting and drying events can be clearly discerned, including a drying, sudden wet-
ting and consecutive drying sequence in October-November at site (¢) and three
wetting-drying events in May, June and August at site (d).

The next profile (e) is over the wetlands of the Okavango delta. Some strik-
ing correspondences to AMSR-E data here are a sudden increase in soil moisture
early June, followed by a decrease in ATl until September. A drying sequence
in the second half of March is also clearly reflected. For the remaining part of the
year, correspondence is weak, especially between April and June. The overall SEE
for the year 2009 is 0.033m3/m?.

A last time series (f) is over a closed shrubland site at the northeastern part of
the study site. Here the apparent thermal inertia method fails completely during
the largest part of the year (SEE=0.106 m®/m?). Only during the dryer periods
(October-November) a weak relationship between ATl and AMSR-E behaviour is
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visible. It should be noted that the VUA-NASA algorithm produces no soil mois-
ture estimates for a large part of the year for this pixel.

Most striking in the temporal profiles is that for relatively high soil moisture
levels a large amount of noise is present in the ATI estimates, while this noise is
absent at lower moisture levels. Also, ATl seems to perform poorly over vegetated
surfaces, this in contrast to the findings of Verstraeten et al. (2006) who obtained
good soil moisture estimates from apparent thermal inertia from Meteosat over
European forests. This latter study, however, included the transformation of ATI
to profile soil moisture over a depth of 1 m. The time lag and buffering associ-
ated with this conversion to profile soil moisture is likely to result in a filtering of
noise on the original ATI estimates. The poor performance over vegetated terrain
was already noticed in the poor fit of the surface temperature observation to the
sinusoidal model (Fig. 5.2). Possibly a higher order model for the approximation
of the surface temperature should be used over these areas, although the second
order model of Xue and Cracknell (1995) provided a poorer fit to the data than the
sinusoidal model. An alternative explanation is that persistent cloud cover or over-
passing clouds between observations perturbate the expected temporal behaviour.
A decisive answer to this can, however, not be provided without information with
higher temporal resolution, e.g. from meteorological stations or geostationary sen-
sors.

Over arid and semi-arid environments, apparent thermal inertia can clearly
detect long-term and short-term soil moisture changes, although ATI declines at
different rates than AMSR-E soil moisture in drying period. This can, amongst
others, be observed in the drying period from May onwards in Fig. 5.5(b) and after
the mid-June wetting event in Fig. 5.5(d). This is possibly caused by the depth
of soil on which ATI and AMSR-E soil moisture depend. The microwave obser-
vations used to derive the AMSR-E soil moisture product is sensitive to moisture
in approximately the top 1cm of soil (Njoku et al., 2003). The thermal infrared
used in the derivation of land surface temperature and ATI, on the other hand, is
only influenced by the first few millimetres of bare soil, which explains the faster
decrease of ATI. Over vegetated soils, comparison of ATl and AMSR-E soil mois-
ture becomes even more complex, since the algorithm to derive the latter separates
influences of soil moisture and vegetation water content in the microwave signal.
Apparent thermal inertia on the other hand does not discriminate between canopy
cover and soil and will therefore be influenced by vegetation evapotranspiration.
It will therefore also be influenced by the vegetation root zone moisture content,
thus causing more discrepancies between ATl and AMSR-E soil moisture.
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5.5 Apparent thermal inertia and soil moisture pat-
ternsover Calabria

ATI was derived for Calabria in a similar way, with the exception that only days on
which four surface temperature observations were available were withheld. Since
Calabria lies beyond the range of latitudes in which consecutive MODIS swaths
do not overlap, the lack of (t;, Ts(t;) observations indicates cloud cover, and thus a
disturbance of the anticipated sinusoidal temperature behaviour.

@

Correlation coefficient (R) Correlation coefficient (R)
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Figure 5.6: Correlation coefficients between modelled soil moisture and appar-
ent thermal inertia for the entire 2-year time series (a) and for the months April-
September in the 2-year time series (b).

Figure 5.6(a) shows the (temporal) correlation coefficient between modelled
soil moisture and ATI for each pixel of the Calabria study site. It is observed that
correlations are poor or, for many pixels, even negative. This could be expected
based on the results for the southern African site, which indicated poor correla-
tions over densely vegetated surfaces and during winter. When considering only
the warmer and dryer months from April to September, it is observed that the cor-
relation coefficient increases overall (Fig. 5.6(b)). Nevertheless, R values remain
low when compared to those obtained using ASAR images and, for cropland pix-
els, even to those obtained for NDVI (Chapter 4).

5.6 Conclusions

A flexible method is presented for deriving apparent thermal inertia (ATI), and as-
sociated soil moisture related information, from Aqua and Terra MODIS optical
and thermal data. In a first step, two, three or four daily temperature observations
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are used to estimate the diurnal temperature amplitude in a sinusoidal approxi-
mation. The sinusoidal approximation provided a fit to the observations which
approximates the estimated error on the MODIS land surface temperature mea-
surements. The diurnal amplitude is then used in combination with surface albedo
to produce daily ATl images. Temporal ATl profiles showed in general good cor-
respondence with soil moisture derived from coarse resolution AMSR-E data over
southern Africa, especially in arid and semi-arid environments. Over the more
temperate study site of Calabria, correlations between ATl and soil moisture were
found to be weak. Overall, apparent thermal inertia is a poor predictor of surface
soil moisture over yearly time spans over vegetated areas. Short term changes
of soil moisture are, however, well captured, especially under limited vegetation
cover and during warmer periods.

The specific strength of the proposed methodology in comparison to other
methods for deriving (apparent) thermal inertia is that there are no strict limita-
tions on the number and time of day of land surface temperature observations.
This considerably increases the number of ATI estimates that can be computed
daily, especially in regions around the equator where swaths of medium spatial
resolution sensors have in general no overlap.

An important limitation of the methodology is the vulnerability to noise intro-
duced by meteorological conditions, which is inherent to the use of remote sensing
data only. Spatial and/or temporal postprocessing algorithms could largely reduce
this noise, e.g. by using the fact that meteorological influences will be strongly
correlated spatially but only weakly correlated temporally. A second line of post-
processing is by coupling apparent thermal inertia to data from coarse resolution
microwave radiometers (AMSR-E, SMOS) in data fusion models. This way the
high spatial resolution information contained in ATI time series can be combined
with relatively accurate low resolution soil moisture. Disaggregation of coarse
resolution soil moisture with optical and thermal data has already been applied
successfully (Chauhan et al., 2003; Merlin et al., 2009). The incorporation of
thermal inertia into these kind of models seems a promising approach.



Contextual surface temperature
information as a soil moisture indicator

6.1 Introduction

Contextual information of remotely sensed surface temperature and vegetation in-
dices have been used to infer information on spatial soil moisture patterns, usually
through the so-called triangle method (Chapter 2). Remotely sensed soil mois-
ture proxies generated by these methods have previously been applied success-
fully in species distribution modelling (Liu et al., 2008; Berger et al., 2013). A
large number of variations on the triangle method have been suggested in litera-
ture. Notwithstanding these variations, almost all of these methods are based on a
number of assumptions imposed on the study sites to which they are applied. First,
these sites must be large enough to allow for a full range of vegetation cover and
soil moisture conditions to be present, in order to be able to correctly define the
dry and wet reference lines. On the other hand, they must be sufficiently small to
avoid that surface temperature is influenced by other factors than fractional veg-
etation cover and soil moisture, such as latitude, elevation or spatially varying
meteorological conditions. While it is debatable whether there are many places on
earth where all these assumptions on the study site are valid, it is obvious that for
a large number of places they are not. Until present, most authors deriving soil
wetness status from the VI-Ts space confined the method to relatively flat areas

This chapter is based on: Van doninck J., Peters, J., De Baets, B., De Clercq, E.M., Ducheyne,
E., Verhoest, N.E.C. (2012). Influence of topographic normalization on the vegetation index-surface
temperature relationship. Journal of Applied Remote Sensing, 6, 063518, DOI: 10.1117/1.jrs.6.063518.
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(e.g. Stisen et al., 2008) or simply ignored topography (e.g. Han et al., 2010). In
a few studies, however, an attempt was made to incorporate topographic data into
the VI-Ts method (Vicente-Serrano et al., 2004; Hassan et al., 2007) using either
an analytical or an empirical normalization approach. The performance of these
normalization methods was, however, never validated.

Land surface temperature is the outcome of the equilibrium between incoming
and outgoing energy balance components (Price, 1982). Topography influences
the energy balance components in two fundamental ways. A first is through the
orientation of the terrain, which controls the incoming solar radiation. Secondly,
altitude differences affect the energy balance components that depend on air tem-
perature, due to the general decrease of air temperature with elevation. A full
topographic normalization thus needs to incorporate both terrain orientation and
elevation above sea level.

This chapter therefore investigates the effects of terrain elevation and orienta-
tion on surface temperature, and more specifically on the VI-Ts relationship for
MODIS imagery over the region of Calabria. A new topographic normalization,
a stratified linear regression approach, is presented and compared to two existing
normalization methods. Additionally, the effect of the topographic normalization
on a VI-Ts-based soil dryness index is evaluated.

6.2 Study area and datasets

For this part of the research, performed on Calabria, 1 km Aqua daily land surface
temperature products (MYD11A1) for the entire year 2009 were used, as well as
the 16-day Normalized Difference Vegetation Index (NDVI) products covering the
same period. The SRTM DEM was used as the source of elevation data. Three
relatively unclouded days in the summer (July 8), autumn (October 8) and winter
(December 31) of 2009 were selected to illustrate some of the discussed phenom-
ena.

NDVI was converted to fractional vegetation cover (F) following Carlson and
Ripley (1997):

. 2
FC:( NDVI — NDVI yin ) 7 6.1)

NDWVI max — NDV min
where NDVI in and NDVI yax are the NDVI of bare soil and full vegetation cover,
respectively. NDVIin and NDVInax are set to 0.25 and 0.90, corresponding re-
spectively to the 1t and 99" percentile of the pooled NDVI values over a full year.
Fc for an NDVI below NDVI i, is set to 0, while an NDVI larger than NDVI pax
will result in a F; larger than 1.

The choice for the fractional vegetation cover in the abscissa of the VI-Ts space
instead of the often used NDVI is slightly subjective. Despite the large body of re-
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Figure 6.1: Frequency distribution of NDVI (shaded) and F; (bold) for the images
acquired on July 8 (a), October 8 (b) and December 31 (c) 2009.

search published on the topic, no comprehensive studies comparing both variables
as input could be found. In this study, however, F; is selected based on the fre-
quency distribution of NDVI and F; (Fig. 6.1). As can be seen in this figure, NDVI
values are highly concentrated around 0.70, especially for the winter image. The
empirical determination of the dry and wet edges requires a full range of moisture
conditions over the complete range of the used vegetation index, which could be
problematic in the case of a strongly peaked frequency distribution. The fractional
vegetation cover is more evenly distributed throughout the [0,1] interval, allowing
a better determination of the dry edge and wet edge.

The VI-Ts-based soil dryness index is validated for the autumn image of Octo-
ber 8, using data collected during the field survey on October 7 and 8 2009. Given
the poor spatial consistency of the hydrological model (Chapter 3), this cannot be
used in a spatial validation of the derived index. Since VI-Ts-based dryness es-
timates only provide values relative to other points of the same remotely sensed
image of the same day, temporal validation of this method is irrelevant.

6.3 Normalization for terrain elevation

6.3.1 Normalization approaches

The influence of the air temperature lapse rate on the energy balance components
has previously been simplified by applying a lapse rate of 0.65K per 100m on
land surface temperature observations (Vicente-Serrano et al., 2004). This number
is based on the value of the idealized tropospheric lapse rate in a column of air
(Brunt, 1933). This method has the disadvantage that the standard dry lapse rate
of 0.65 K per 200 m is only an average value which may vary strongly in space and
time (Stone and Carlson, 1979). Furthermore, this lapse rate refers to the decrease
in air temperature in a vertical column of air which is heated from underneath by
the land surface. In the topographic normalization problem, the near-surface air
temperature is permanently influenced by heat exchange with the underlying land
surface.

As an alternative, several authors have suggested a basic empirical approach,
where the surface temperature gradient is estimated through linear regression be-
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tween remotely sensed surface temperature and elevation (H) (Warner and Chen,
2001; Jain et al., 2008; Hais and Kucera, 2009). An empirical regression to es-
timate surface temperature lapse rates, which can subsequently be used in topo-
graphic normalization, has the advantage that it can account for changes in surface
temperature lapse rates in time, while no in situ data are required. However, this
method assumes that all factors influencing surface temperature, apart from eleva-
tion and orientation, can be treated as constant over the study site, or are indepen-
dent of topography. Amongst these other factors affecting surface temperature are
soil texture, soil moisture and vegetation cover, all of which might in some way
be influenced by topography. Ideally, a topographic normalization should thus in-
clude information on these factors, in addition to a digital elevation model.

While it is difficult, if not impossible, to obtain soil moisture and texture in a
heterogeneous terrain without in situ data, information on vegetation cover can be
obtained easily through remote sensing. In the following, soil texture and moisture
will thus be assumed to be independent of topography, while a new topographic
normalization method will account for changes of vegetation cover with eleva-
tion. Changes in vegetation cover are customary in regions with strong topog-
raphy, given the altitudinal zonation of vegetation and the suitability of different
elevation ranges for different agricultural crops. The new normalization method
introduced here bypasses the problem of altitudinal vegetation cover zonation by
stratifying images over the study site into small intervals of fractional vegetation
cover. Strata with a F; width of 0.5, 0.2 and 0.1 are used in this study. Linear
regressions between elevation and surface temperature are then performed on each
stratum separately.

6.3.2 Resaults

Figure 6.2 shows the elevation-land surface temperature scatterplots for three rel-
atively cloud-free days in summer (July 8), autumn (October 8) and winter (De-
cember 31), along with the regression lines for the unstratified images and for the
images stratified in F intervals of width 0.1. A clear negative relation is appar-
ent on all three dates, although temporal variations exist. The summer and autumn
images consistently show lower temperatures with increasing fractional vegetation
cover. This causes regression lines of the unstratified images for these dates to be
much steeper than those of the small intervals.

Slopes of regression lines between elevation and surface temperature for the
unstratified images and for the images stratified in 0.5, 0.2 and 0.1 intervals are
given in Table 6.1. Again, summer and autumn show a similar behaviour, with in
general decreasing (less negative) temperature gradients with decreasing stratum
width. For the summer, the temperature gradient changes from -1.11 K per 100 m
for the unstratified image, to an average of -0.73, -0.53 and -0.49 K per 100 m for
the 0.5, 0.2 and 0.1 strata, respectively. In autumn, this decrease is less pronounced
but still changes from -0.58 to -0.45, -0.39 and -0.38 K per 100 m for the unstrat-



CONTEXTUAL SURFACE TEMPERATURE AS SOIL MOISTURE INDICATOR 97

(@ 320
3

300

310§
305§

w
o
a1

N
©
o

295
290

Surface temperature [K] =
w
o

Surface temperature [K] &

Surface temperature [K

N
©
o

1000 1500 2000
Elevation [m]

1000 1500 2000 0 500
Elevation [m]

Fractional vegetation cover [-]

0 500 1000 1500 2000 0 500
Elevation [m]

0 02 04 06 08 >1

Figure 6.2: Scatterplots of elevation and land surface temperature on July 8 (a),
October 8 (b) and December 31 (c) 2009. Full lines indicate linear regression over
the unstratified images; dotted lines are regression lines calculated on fractional
vegetation cover strata of 0.1 width.

Table 6.1: Slopes of regression lines between elevation and land surface temper-
ature, given different fractional vegetation cover stratum widths. Missing values
indicate strata with fewer than 500 pixels and are not included in further analysis.
Fc values larger than 1 are used for the unstratified image but not for the different
stratum widths.

Stratum Slope [K/100m]

Width Endpoints Jul.8 Oct. 8 Dec. 31
Unstratified -1.11  -0.58 -0.29

0.5 [0.0,0.5] -0.86  -0.43 -0.31
[0.5,1.0] -0.61  -0.47 -0.21

0.2 [0.0,0.2] -0.58  -0.32 -0.42
[0.2,0.4] -0.59  -0.40 -0.29

[0.4,0.6] -0.55  -0.42 -0.21

[0.6,0.8] -0.49  -0.43 -0.21

[0.8,1.0] -0.45  -0.38 /

0.1 [0.0,0.1] -0.39  -0.30 /
[0.1,0.2] -047  -0.34 -0.39

[0.2,0.3[ -0.56  -0.38 -0.34

[0.3,0.4] -0.56  -0.40 -0.25

[0.4,0.5] -0.57  -0.41 -0.22

[0.5,0.6] -0.52  -0.40 -0.21

[0.6,0.7] -0.48  -0.42 -0.22

[0.7,0.8] -0.46  -0.42 /

[0.8,0.9] -0.45  -0.38 /

[0.9,1.0] -0.41 / /
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ified image and the 0.5, 0.2 and 0.1 strata, respectively. For both the July 8 and
October 8 images, variability of regression slopes within a given stratum width is
small, and intercepts increase with decreasing ;. This is apparent in the virtually
parallel regression lines in Fig. 6.2. The winter image behaves differently, with
very similar slopes for the unstratified image (-0.29 K per 100 m) and for the dif-
ferent stratum widths (averages of -0.26, -0.28 and -0.27 K per 100 m for 0.5, 0.2
and 0.1, respectively).

Stratification based on fractional vegetation cover manifestly influences the
empirical topographic normalization, most obvious for the images acquired during
the warmer months. For these two images, the large differences between the slope
of regression lines for the unstratified datasets on the one hand and those for the
different intervals on the other hand can be explained as the combined effect of
the VI-Ts relationship and the land cover pattern in Calabria. During the warmer
post-harvest months, most fields at the lower elevations are barren, while the for-
est canopies at the higher elevations are fully developed. The general decrease
of surface temperature with elevation is thus enhanced by the general increase in
fractional vegetation cover with elevation and the decrease of surface temperature
with increasing fractional vegetation cover. A simple empirical correction based
solely on surface temperature and elevation would therefore overcompensate the
decrease of surface temperature with elevation. This overcompensation is avoided
by stratifying in increasingly smaller intervals of R, since this minimizes the effect
of decreasing surface temperature with increasing vegetation cover, which is seen
in the decreasing average slope with decreasing interval width. Given the limited
decrease in slopes from the 0.2 to the 0.1 strata, further stratification in smaller in-
tervals is considered inappropriate, since this may cause certain Fc strata to contain
insufficient pixels or an insufficient range in elevation. Since the lapse rates —i.e.
the negative of the slopes of linear regression— for the different F; intervals for a
given date are independent of the value of F;, a representative stratified lapse rate
can be derived by averaging the lapse rates of the individual strata of 0.1 width.
This way, effects of possible outliers on the individual regressions are minimized.

As mentioned earlier, the stratified linear regression method assumes soil mois-
ture and soil type to be independent of elevation. An elevation-dependence of these
factors will introduce errors in the derivation of the surface temperature lapse rate.
Under full canopy cover, however, the influence of soil type and topsoil moisture
content on remotely sensed surface temperature and its lapse rate can be expected
to be minimal. Since lapse rates for the bare soil strata and the full vegetation cover
strata differ only slightly, the errors introduced by the assumptions of uniform soil
properties are small compared to the differences in lapse rates between the three
methods.

The lapse rates for all days of the year 2009 with sufficient cloud-free pixels,
derived from the unstratified and the stratified linear regression models, are dis-
played in Fig. 6.3, together with the standard lapse rate of 0.65 K per 100 m. This
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confirms the findings for the three selected days, with large differences between
stratified and unstratified lapse rates during the summer months and very similar
lapse rates during the winter months. Apart from a few exceptions, the stratified
lapse rate is always lower than or equal to the unstratified lapse rate. Overall, a
large day-to-day fluctuation of both the stratified and unstratified lapse rate is ob-
served, while the stratified lapse rates are mostly below 0.65 K per 100 m and the
unstratified lapse rates are in general above this number. Given the large day-to-
day lapse rate variations, it should be advised against the use of a standard lapse
rate of 0.65 K per 100 m in the normalization of land surface temperature.
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Figure 6.3: Lapse rates derived using the unstratified regression method and the
stratified regression method for the days of the year 2009 with sufficient (at least
5000) cloud-free pixels over Calabria. The standard lapse rate of 0.65 K per 100 m
is displayed as a horizontal line.

An assessment of the performance of different topographic normalization meth-
ods as such is difficult, since topographic normalization is never an objective in
itself, but only a means to a higher goal. One way of evaluating these methods
—at least those based on linear regression— is by comparing the observed surface
temperatures with those obtained using the regression equation Ts = a+ bH + &g,
where the coefficients a and b are derived using the two linear regression methods
mentioned above, and g is an error term including systematic and random errors.
In the case of stratified linear regression, a was found to be function of F;, so that
the equation becomes Ts = ap + a1 + bH + &g, where ay and a; are obtained
using the nearly linear increase of intercepts with increasing fractional vegetation
cover (Fig. 6.2). The coefficient of determination (RZ) of both linear regression
methods is a measure of the magnitude of the systematic errors and can thus be
used as an indicator of the performance of the topographic normalization (Hais
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and Kucera, 2009).

The R? values for both methods for all cloud-free days of the year 2009 are
shown in Fig. 6.4. Systematic errors for the unstratified regression method are
notably higher than those for the stratified regression method during the summer
months, resulting in much lower R? values for the former. During winter, differ-
ences in R? are much lower. The periods with large R? differences correspond to
the periods with large differences between the stratified and unstratified lapse rates
(Fig. 6.3). The systematic errors are clearly reduced by incorporating information
on fractional vegetation cover in the stratified regression method.
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Figure 6.4: Determination coefficient between observed surface temperature and
surface temperature estimated using coefficients derived from unstratified and
stratified regression and elevation (and vegetation index in the case of the stratified
regression method) for the days of the year 2009 with sufficient (at least 5000)
cloud-free pixels over Calabria.

6.4 Normalization for terrain orientation

6.4.1 Normalization approaches

In the reflective part of the spectrum, normalization for terrain orientation is based
on the solar incidence angle, which can be derived from the terrain slope and aspect
on the one hand, and solar position at the time of image acquisition on the other.
Several normalization methods using the solar incidence angle have been devel-
oped and studied intensively (Riafio et al., 2003; Zhang et al., 2011). A few stud-
ies (Warner and Chen, 2001; Vicente-Serrano et al., 2004; Hais and Kucera, 2009)
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tried to integrate illumination, or terrain orientation into an empirical topographic
normalization. Here, the influence of terrain orientation is assessed through linear
regression between Ts and the quotient of the cosine of the local solar incidence
angle (i) and the cosine of the solar zenith angle (2), an approach previously fol-
lowed by Vicente-Serrano et al. (2004). Ts used here is the surface temperature
normalized for terrain elevation using the stratified regression, since this method
provided the most realistic estimates. Normalization of the cosine of the incidence
angle by the cosine of the zenith angle is done to obtain unity for horizontal terrain.

As for the elevation normalization, the empirical normalization for terrain ori-
entation is performed using both the unstratified and the stratified approach. For
the stratified linear regression, the same F; of width 0.5, 0.2 and 0.1 are used.

6.4.2 Results

Figure 6.5 shows the (cos(i)/ cos(z))-land surface temperature scatterplots for the
three days mentioned earlier, along with the regression lines for the unstratified
images and for the images stratified in F intervals of width 0.1. Slopes of regres-
sion lines for the unstratified images and for the images stratified in 0.5, 0.2 and
0.1 intervals are given in Table 6.2. Again, it is observed that stratification based
on fractional vegetation cover influences the linear regression, most obvious for
the July 8 and October 8 images. Again, this can be attributed to the biased land
use, where croplands are concentrated in flat or slightly sloping areas and strong
slopes are in general heavily vegetated.

It is observed for the autumn image that the slope is no longer constant for the
different strata within a given width, but that the dependency of surface tempera-
ture on illumination decreases with increasing vegetation cover. This is due to the
ability of a full canopy cover to maintain a skin temperature close to air temper-
ature, irrespective of the amount of incident solar radiation (Lambin and Ehrlich,
1996). Surface temperature in the July 8 image is hardly related to illumination,
as indicated by the regression coefficients being close to zero for the 0.1 strata.
This is partly due to the high elevation of the sun at the time of image acquisition,
resulting in a small range of cos(i)/cos(z). Secondly, using the incidence angle
as a proxy for the integrated solar heating ignores the antecedent heating during
the day, which can be important during summer. Alternatively, Aqua MODIS data
could be replaced by Terra data. The late-morning acquisition of the Terra satellite
will result in a smaller perturbation by antecedent heating than the early-afternoon
acquisition of Aqua (Warner and Chen, 2001). However, early-afternoon images
will enhance the contrast between the surface temperature of dry soils and moist
soils, making them more suitable for this specific application. Because of the
complexity introduced by antecedent heating, topographic normalization will in
the following be restricted to the influence of elevation of the terrain above sea
level, ignoring terrain orientation.
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Figure 6.5: Scatterplots of elevation and land surface temperature on July 8 (a),
October 8 (b) and December 31 (c) 2009. Full lines indicate linear regression over
the unstratified images; dotted lines are regression lines calculated on fractional
vegetation cover strata of 0.1 width.

Table 6.2: Slopes of regression lines between illumination (cos(i)/cos(z)) and
land surface temperature, given different fractional vegetation cover stratum
widths. Missing values indicate strata with fewer than 500 pixels and are not
included in further analysis. F; values larger than 1 are used for the unstratified
image but not for the different stratum widths.

Stratum Slope [K]
Width  Endpoints Jul. 8 Oct.8 Dec. 31
Unstratified 20.74 3.69 2.18

05 [0.0,05[  11.18  3.39 2.24
[0.5,1.0] 184 187 1.99

0.2 [0.0,0.2[ 495 424 2.34
[0.2,0.4 060  3.08 2.23
[04,06[  -0.74 234 2.07
[0.6,0.8[ 066  1.60 2.14
[0.8,1.0] 217 131 /

0.1 [0.0,0.1] 056  4.78 /
[0.1,02]  -0.85  4.04 2.29
[02,03[  -111 320 2.30
[0.3,0.4] 122 284 217
[04,05]  -1.20 231 217
[0506]  -1.68  2.13 1.94
[0.607]  -0.07 181 2.12
[0.7,0.8] 078 151 /
[0.8,0.9] 074  1.30 /
[0.9,1.0] 3.66 / /
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6.5 Influenceof normalization ontheVI-Tgrelation-
ship

Effects of topography and the different topographic normalization methods on the
VI-Ts relationship are shown in Figs. 6.6 to 6.8 for the three aforementioned dates.
The scatterplot of fractional vegetation cover and uncorrected land surface tem-
perature exhibits a clear negative relationship for the summer and autumn images,
while this is absent in the winter image. The absence of a negative relationship
during the winter months supports the findings of Sun and Kefalos (2007) and
Karnieli et al. (2010) that a negative correlation only exists in areas and seasons
when moisture, and not energy, is the limiting factor for evaporation and vegeta-
tion growth (e.g. in arid and semi-arid regions and in temperate regions during the
warmer months).
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Figure 6.6: Scatterplots of F; and Ts on July 8, derived using unnormalized surface
temperature (a), and surface temperature normalized using the standard lapse rate
(b), unstratified regression model (c) and stratified regression model (d). Full lines
are empirical dry and wet edges.

Visual inspection of the scatterplots using land surface temperature normal-
ized with the standard lapse rate and the unstratified regression shows that, for the



104 CHAPTER 6

_
&
w
=3
o
—
=
2
w
=3
o

< <

o 30 o 305

2 2

© <

g g

£ £

2 2

5] 8

£ & 205 ]
> >

7] 7]

. . ! 290 . . . . .
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Fractional vegetation cover [-] Fractional vegetation cover [-]
© ()

310 T T T T T

Surface temperature [K]
Surface temperature [K]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Fractional vegetation cover [-] Fractional vegetation cover [-]

Elevation [m]

<0 500 1000 1500 >2000

Figure 6.7: Scatterplots of F;, and Ts on October 8, derived using unnormalized
surface temperature (a), and surface temperature normalized using the standard
lapse rate (b), unstratified regression model (c) and stratified regression model (d).
Full lines are empirical dry and wet edges.

summer and autumn images, these normalization methods seem to overcorrect the
influence of elevation. This results in systematically higher temperatures at higher
elevations and a decrease of the slope of the VI-Ts relationship. For the win-
ter image, unstratified regression seems to provide a correct normalization, while
the standard lapse rate seriously overcorrects elevation. The topographic normal-
ization based on stratified linear regression visually results in the clearest VI-Tg
relationship for the summer and autumn images. A nearly identical scatterplot as
for unstratified regression is found for the winter image, which could be expected
from the very similar lapse rates for these methods (0.29 K and 0.27 K per 100 m
for unstratified and stratified regression, respectively). The visual interpretation
of the VI-Ts scatterplots corresponds to the findings of Fig. 6.4 that the stratified
linear regression method yields better results for the warmer months, while strat-
ified and unstratified regression produce similar results during the colder months.
The standard lapse rate of 0.65 K per 100 m is inferior to the stratified regression
method for all three dates.

The overcorrection observed during the warmer months for the unstratified
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Figure 6.8: Scatterplots of F; and Ts on December 31st, derived using unnormal-
ized surface temperature (a), and surface temperature normalized using the stan-
dard lapse rate (b), unstratified regression model (c) and stratified regression model
(d). Full lines are empirical dry and wet edges.

regression method (Figs. 6.6(c) and 6.7(c)) can clearly be attributed to the over-
estimation of the unstratified lapse rate, which in turn is caused by the negative
VI-Ts relationship and the increase of vegetation cover with elevation during this
period. The stratified regression method does incorporate possible effects of the
VI-Ts relationship, resulting in an overall much lower lapse rate (Fig. 6.3) and a
visually realistic topographic normalization (Figs. 6.6 to 6.8). During the winter
months, the stratified regression method loses its advantage over the unstratified
one due to the absence of a negative VI-Ts relationship.

6.6 Influence of normalization on soil dryness esti-

mation

The different topographic correction methods can also be validated by studying
their influence on the derivation of a Temperature-Vegetation Dryness Index
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(TVDI). TVDI is derived as (Sandholt et al., 2002; Wang et al., 2004):

TS - TSwa (Fc)
TS,dry(FC) — Tswet (Fe)

where Tsary(Fe) and Tswet (Fc) are the maximum and minimum (normalized) sur-
face temperature, respectively, given the pixel’s F; and thus correspond to the dry
and wet edges. The sloped wet and dry edges are derived through linear regres-
sion on the minimum, respectively maximum, Ts values within F; intervals of 0.01
width (Patel et al., 2009). The different normalization methods are validated by
comparing the TVDI they generate with in situ soil moisture measurements.

TVDI = (6.2)

6.6.1 Visual analysis

The Temperature-Vegetation Dryness Index was derived for the October 8 image,
since this date coincides with in situ soil moisture measurements. Given the lim-
ited amount of in situ soil moisture data in the study area, and the limited amount
of in situ data in regions with strong topography in general, this part of the vali-
dation is more illustrative. Topographic normalization clearly changes the shape
of the fraction vegetation cover-land surface temperature scatterplot, as well as the
position of the empirically derived dry and wet edges (Figs. 6.6 to 6.8). It is there-
fore not surprising that the resulting TVDI is also strongly affected by the type of
topographic normalization (Fig. 6.9). The TVDI image derived using the uncor-
rected land surface temperature (Fig. 6.9(a)) strongly reflects the topography of
Calabria, with low TVDI values at high elevations and vice versa. These patterns
are no longer present in the TVDI images derived using the standard lapse rate and
unstratified regression (Fig. 6.9(b)—(c)), although the overcorrection of elevation
that was visible in the scatterplots (Fig. 6.7) is also apparent in some extreme low
values at high elevations. This overcompensation is not observed in the TVDI im-
age based on stratified regression (Fig. 6.9(d)).

6.6.2 In situ soil moisture

Validation of the Temperature Vegetation Dryness Index with in situ volumetric
soil moisture content (Fig. 6.10) shows a clear negative relation for all three topo-
graphic normalization methods. The relation between uncorrected TVDI and soil
moisture is much weaker. Although stratified regression, out of the three normal-
ization methods, results in the largest R?2 (0.32 versus 0.25 and 0.28 for the standard
lapse rate and the unstratified regression method, respectively), the differences be-
tween the R? values are not significant (at p = 0.05). These absolute values and
relative differences should be treated with the necessary reservation because of a
number of reasons. First, there is the discrepancy between the moment of image
acquisition (October 8) and the in situ soil moisture collection (October 7 and 8).
A second point of caution is that the depth of in situ soil moisture collection (0—
10.cm) does not correspond to the depth of the soil in which moisture influences
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Figure 6.9: Temperature Vegetation Dryness Index for October 8, derived using
unnormalized surface temperature (a), and surface temperature normalized using
the standard lapse rate (b), unstratified regression (c) and stratified regression (d).
Missing values indicate cloud cover.

surface temperature through evaporative or transpirative control. This depth ranges
from a few millimetres to centimetres over bare soil to the root zone under fully
developed vegetation. Finally, validation is hampered by the limited range of in
situ soil moisture content (mostly between 0.25 and 0.40 cm3/cm?®). Nevertheless,
it appears that the topographic normalization based on stratified regression is a
suitable method to allow VI-Ts-based methods to be applied in regions with varia-
tions in elevations, and is superior to applying a standard lapse rate of 0.65 K per
100 m or a lapse rate derived through simple linear regression.
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Figure 6.10: Validation of the Temperature Vegetation Dryness Index for October
8, derived using unnormalized surface temperature (a), and surface temperature
normalized using the standard lapse rate (b), unstratified regression (c) and strati-
fied regression (d), with indication of regression lines and coefficients of determi-
nation (all significant at p=0.05).

6.7 Conclusions

The utility of the vegetation index-surface temperature space for the derivation
of evapotranspiration and soil wetness status is severely restricted in areas with
strong topography. This is because surface temperature is influenced by terrain el-
evation and orientation, as well as by soil moisture. EXisting strategies to account
for altitudinal effects include topographic normalization of remotely sensed land
surface temperature based on a standard lapse rate of 0.65K per 100m or on a
lapse rate derived through linear regression of elevation and surface temperature.
In this study, it was shown that lapse rates of Aqua MODIS land surface tempera-
ture vary strongly between consecutive days. Using a fixed standard lapse rate in
topographic normalization ignores this variability and will therefore result in a sub-
optimal correction. While applying a lapse rate based on linear regression is useful
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in case of homogeneous landcover or under conditions where spatial differences in
evaporative cooling are negligible, it becomes problematic when vegetation cover
changes with elevation. The latter is the case in regions like Calabria where lower
elevations are occupied by croplands and forests are found at higher elevations,
combined with different periods of the growing season over the different elevation
ranges. Simple linear regression between elevation and land surface temperature is
here affected by the negative VI-Ts relationship, and causes strong overestimations
of the surface temperature lapse rate.

A new topographic normalization was proposed in this chapter, based on strat-
ified linear regression. In this approach, the study site is first stratified in small
vegetation fraction intervals. A separate linear regression between elevation and
surface temperature is then performed for each interval. It was found that, for a
given date, the slopes of regression lines where approximately equal for all vege-
tation fraction intervals. The average value of these slopes can thus be used in the
topographic normalization. Although the new topographic normalization method
is here only tested for Calabria, similar behaviour may be expected when applied
to other regions where vegetation type shifts with elevation.

Visual interpretation of VI-Ts scatterplots derived using the different normal-
ization techniques showed a clearer and less elevation-dependent VI-Ts relation-
ship for the stratified regression normalization for different periods throughout the
year. The dryness index derived using this normalization method resulted, for a
limited reference dataset, in a slightly stronger negative correlation with in situ
soil moisture than the other methods.

In addition to the decrease of temperature with elevation, topography also in-
fluences Ts through the terrain orientation relative to the sun. A normalization
based on the solar incidence angle showed that, under some conditions, the rela-
tionship between solar incidence angle and surface temperature is function of veg-
etation cover. A stratified regression therefore also seems a promising approach
for this type of normalization. However, antecedent heating of the surface limits
the use of the solar incidence angle as the independent variable in the regression.
Further study of the effect of antecedent heating on the normalization for terrain
orientation is therefore required.

It can be concluded that the choice of a topographic normalization method
can strongly alter the vegetation index-surface temperature relationship. Using
an appropriate normalization widens the applicability of the VI-Ts relation for the
derivation of soil wetness or dryness status in mountainous terrains, although other
influences on surface temperature, such as atmospheric forcing, terrain orientation
or soil texture, still impose restrictions on the methodology. The topographic nor-
malization and soil dryness status estimation are not restricted by the availability of
any sort of ancillary data, except for a (remotely sensed) digital elevation model.
The validation of the influence of topographic normalization on the soil dryness
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index in this study used only a limited amount of reference data. Future valida-
tion should include a larger amount of in situ data. Unfortunately, in this respect,
most extensive in situ soil moisture networks are, to our knowledge, located over
flat or gentle topographies. Additionally, spatial validation of medium resolution
remotely sensed soil moisture products using in situ data remains difficult due to
the scale gap between both data sources.



Soil moisture proxies for species
distribution modelling:
conclusion

In this first part, three selected remotely sensed soil moisture proxies were stud-
ied and further developed, and their temporal or spatial correlation with in situ or
modelled soil moisture was assessed. This chapter discusses the anticipated utility
of these soil moisture proxies when integrated in species distribution models.

Two proxies were derived from MODIS visible, near infrared and thermal in-
frared data. The popular contextual surface temperature methods (Chapter 6) have
the advantage that they provide relative spatial differences in soil moisture. In
other words, they identify which regions are, at a given moment in time or over
a given range of time, wetter or dryer than other regions in the satellite image.
While Chapter 6 derived a soil dryness index for daily surface temperature obser-
vations, there is no reason why temporally averaged surface temperature should
not be used. In theory, proxies obtained through this method could thus be useful
for species distribution modelling, and indeed have been integrated in the mod-
elling of desert locust (Liu et al., 2008) and blacklegged tick (Berger et al., 2013)
habitat. However, these contextual 'triangle’ methods are often applied without
much consideration of the specific circumstances under which they are to be ap-
plied, e.g. by ignoring the effect of elevation on surface temperature, which can be
severe in regions like Calabria. Nevertheless, it was shown in Chapter 6 that the
limitations imposed by topography can be easily circumvented by a topographic
normalizing. A second issue is that this method is only to be used under conditions
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when evapotranspiration is energy limited. During winter, indices derived through
this methods can thus be assumed to be poorly correlated to surface soil moisture.

Apparent thermal inertia, a second proxy using MODIS shortwave and thermal
data, was also found to be correlated to soil moisture content spatially and tempo-
rally (Chapter 5). This correlation might partly be induced by a vegetation signal,
since also NDVI was found to be correlated to soil moisture (Chapter 4). Neverthe-
less, ATl showed to be able to detect short-term wetting and drying events. As for
the contextual surface temperature methods, ATl can be assumed to be of limited
utility during winter months and over dense canopy cover. Given these restrains,
the utility of this proxy in species distribution modelling is questionable.

By far the best temporal correlation with modelled soil moisture was found
for the ASAR WS soil moisture index (Chapter 4), and this for a variety of cover
types and without restriction with regard to the season. An important issue for
applicability of this proxy in species distribution models is that it only reflects a
degree of saturation. One pixel can have a higher degree of saturation than another
while having a lower volumetric soil moisture content. Nevertheless, this proxy
allows to detect which pixels remain relatively wet, or dry, during certain periods,
and at which speed surface wetness decreases after a precipitation event. The main
restriction of this ASAR product, like for all SAR systems up to date, is the limited
temporal resolution. This can be expected to improve with the launch of the first
Sentinel satellite.

The aim of the previous chapters was to derive soil moisture proxies with-
out requiring abundant ancillary datasets. This was important for the proxies to
be applicable in distribution models over a variety of regions. The only ancillary
dataset used was the remotely sensed SRTM digital elevation model. This DEM is
available for all land surfaces between 60° N and 56° S and should thus not pose
restrictions for most applications. For operational applications, different postpro-
cessing methods could be applied on the soil moisture proxies investigated in the
previous chapters. The include the identification and filtering of outliers and the
spatial and/or temporal interpolation of missing data. These postprocessing steps
are, however, outside the scope of this dissertation.



Part 11:
Spatial distribution modelling






Modelling the spatial distribution of
C. imicola using climatic and
remote sensing data

8.1 Introduction

8.1.1 History of bluetonguevirusin the Mediterranean Basin

Bluetongue is a disease, listed by the World Organisation for Animal Health,
caused by the bluetongue virus (BTV), a species of the Orbivirus genus (Wilson
and Mellor, 2009). BTV is capable of infecting any type of ruminant, including
cattle, deer, goats and camelids, but mainly affects populations of sheep. Although
most infected animals develop no detectable signs, symptoms of bluetongue are
manifold, including the death of the animal. The blue tongue giving the disease its
name is only seldomly developed.

Until halfway the twentieth century, BTV was only observed in parts of Africa
and Cyprus (Wilson and Mellor, 2009). From the 1950s onwards, outbreaks of
bluetongue were observed in Israel (1951), the USA (1952), Spain and Portugal
(1956-1960), Asia (1961) and Australia (1975). By the end of the century, BTV
had spread to roughly all the land masses from approximately 35° S to 40° N, with

This chapter is based on: Van doninck, J., De Baets, B., Peters, J., Hendrickx, G., Ducheyne,
E., Verhoest, N.E.C. (2013). Modelling the spatial distribution of Culicoides imicola: climatic ver-
sus remote sensing data. International Journal of Applied Earth Observation and Geoinformation,
submitted.
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different serotypes of the virus occurring in different locations. On the old con-
tinent, BTV started to spread rapidly from 1998 onwards, first being detected on
several Greek islands and reaching mainland Greece and Kosovo in 2001. Mean-
while, at the other side of the Mediterranean, another BTV serotype spread from
Tunisia, Algeria and Morocco to the Balearic islands, Corsica, Sardinia, Sicily and
southern Italy by the end of the year 2000. In August 2006, an outbreak of blue-
tongue was reported in the Netherlands and rapidly spread to Belgium, France,
Luxembourg and, the following years, Denmark, Switzerland, the Czech Republic
and the UK (Saegerman et al., 2008).

The bluetongue virus has sporadically been observed to be transmitted orally
between animals, or transplacental between mother and offspring (De Clercq et al .,
2008). Overall, however, BTV is a vector-borne disease, spread by female adults
of several species of biting midges of the genus Culicoides.

8.1.2 Culicoidesimicola life cycle and habitat characteristics

Culicoides (Diptera: Ceratopogonidae) is a genus within which more than 1400
species have been identified worldwide (Mellor et al., 2000), all measuring from
1 mm to 3mm in size. The life cycle of Culicoidesincludes three immature stages,
egg, larva and pupa, and a mature or imago stage. Breeding sites of the immature
stages vary greatly for the different species, ranging from rotting vegetation and
animal dung over different types of soil to tree holes.

The vast majority of Culicoides species are blood sucking, attacking mammals
and birds. Blood feeding by adult females is required for the maturation of the
eggs. Since most Culicoides species are crepuscular, the peak activity of blood
feeding is around sunset and sunrise. It is during these blood meals that viruses
can be transmitted from Culicoidesto host animal and vice versa. Apart from BTV,
several other viruses affecting non-human mammals can be transmitted, the most
important being African horse sickness virus, epizootic hemorrhagic disease virus,
equine encephalosis virus, Akabane virus, bovine ephemeral virus and the Palyam
virus. The only significant virus affecting humans transmitted by Culicoides s the
Oropauche virus (Mellor et al., 2000). Each of these viruses is transmitted by only
a fraction of the 1400 different Culicoides species.

In the Mediterranean Basin, a single species, C. imicola, is considered as the
main vector of BTV. The recent northward spread of bluetongue indicates that
species other than C. imicola also act as vectors, since the spatial distribution of
this species is confined to Africa and Mediterranean Europe. Climate change may,
however, be responsible for an expansion of the territory of C. imicola in the fringe
of the Mediterranean Basin, although Conte et al. (2009) found no geographic ex-
pansion of this species in Italy.

Given the economic consequences of diseases transmitted by Culicoidesspp. in
general, and C. imicolain particular, several laboratory and field studies have been
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conducted in order to determine the habitat characteristics of the different species.
Additionally, modelling studies tried to derive these habitat characteristics using
data from of in situ Culicoides trapping sites and meteorological, remote sensing
and other datasets. The main environmental factors identified to constrain the
distribution of Culicoides spp., and more specifically C. imicola, are listed here.

8.1.2.1 Temperature

Air temperature is considered as one of the major limiting factors of C. imicola
distribution on a continental scale, although the precise biological basis of this
dependency is unclear. For several Culicoides species, correlations between air
temperature and species activity, larval survivorship and adult mortality were ob-
served in trapping or laboratory studies (Mellor et al., 2000). In a laboratory study,
\eronesi et al. (2009) observed that the period required for blood-feeding C. imi-
cola females to produce adult progeny occupied 34-56 days at 20°C, 15-21 days
at 25°C and 11-16 days at 28°C. Additionally, freezing temperatures are known
to kill adult midges, thus reducing catch abundances at sites affected by frost (\en-
ter et al., 1997).

This dependency on air temperature was confirmed in several C. imicola mod-
elling studies using climatic data. Purse et al. (2007) found C. imicola in the
Mediterranean Basin to occur in warm (annual mean 12-20°C) regions with low
seasonal variations. A model developed by Wittmann et al. (2001) identified three
temperature variables (minimum of the monthly minimum temperatures, maxi-
mum of the monthly maximum temperatures and number of months per year with a
mean temperature above 12.5°C) as significant determinants for the Iberian penin-
sula.

8.1.2.2 Soil moisture

A second important variable is soil moisture, since a large part of the life cycle of
Culicoides species (the development from egg to larva and pupa) is completed in
the upper soil layer, with highest concentrations of immature Culicoidesin the first
5cm (Blackwell and King, 1997; Uslu and Dik, 2006). C. imicola has been ob-
served to prefer semi-moist breeding sites, and has been found in drainage canals
and puddles created by leakage from water pipes (Braverman et al., 1974; Mellor
and Pizolis, 1979). Foxi and Delrio (2010) state that C. imicola was found to breed
preferentially in mud 20 cm above the pond shoreline, where soils are not subject
to flooding. While Delrio et al. (2002) (cited in Foxi and Delrio (2010)) observed
C. imicola larvae in saturated soils, its pupae drown on immersion in water (Nevill,
1967, cited in Veronesi et al. (2009)).
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8.1.2.3 Land use/land cover

Land use and vegetation cover conditions under which C. imicola preferably live
and breed are poorly understood. From modelling studies, Conte et al. (2007a)
state that C. imicola can be classified as heliophilic, favouring less vegetated shrub
and grassland. This is in accordance with a number of observations of breeding
sites in moist grasslands (Braverman et al., 1974; Mellor and Pizolis, 1979). The
preferred land use or land cover for adults is, however, less documented.

8.1.2.4 Topography

Topography as such is not a limiting factor in the distribution of C. imicola, but
clearly affects the three above factors. It is therefore not surprising that terrain el-
evation, slope and/or orientation were found as determining factors in distribution
models (Conte et al., 2007a). While elevation mainly controls air temperature, the
slope will influence drainage of the soil and thus the soil moisture level. Terrain
slope, combined with orientation, will also influence the amount of sunlight re-
ceived. All three topographic factors will furthermore affect natural and cultural
land use and land cover.

8.1.25 Others

Other factors found to determine the species’ distribution include wind, soil prop-
erties (soil organic matter, soil texture) and the availability of hosts. Where wind
speed affects adult Culicoidesactivity, by suppressing activity above certain thresh-
olds (Mellor et al., 2000), soil properties determine the suitability of breeding sites.
The importance of soil texture can be related to the soil moisture factor, where
clayey soils can retain water for longer periods than more sandy soils. Differences
in soil texture are assumed to be responsible for the peculiar pattern of C. imicola
occurrence in Calabria, Italy (Conte et al., 2007b; Peters et al., 2013), where it
is present at the eastern, lonian, seaboard and absent at the western, Tyrrhenian,
coastline. Soil organic matter is essential for larval growth Kettle (1977), and ru-
minant hosts are required for the blood-feeding of adult females and the production
of progeny (Mellor et al., 2000).

8.1.3 C.imicoladistribution modelling

Numerous studies tried to model the spatial distribution of the occurrence and/or
abundance of C. imicola or Culicoides spp. at different study sites and over dif-
ferent spatial scales. In an early study, Baylis et al. (1998) compared C. imicola
abundances at 28 trapping sites in Morocco with data from meteorological sta-
tions installed at the trapping sites (wind speed, humidity, air temperature and
soil temperature) and remotely sensed data (NDVI). Linear correlations between
the different climatic variables and abundance yielded the highest correlations for
wind speed and for average annual minimum NDVI. It was, however, noted that
the correlation between C. imicola abundance and wind velocity is problematic in
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the application in predictive models, given the difficulty to interpolate this prop-
erty between meteorological stations. A model operationally applicable was de-
veloped by Wittmann et al. (2001), where C. imicola of 30 trapping sites in the
Iberian peninsula were used to train a logistic regression model based on 10 cli-
matic variables for the period 1931-1960 and altitude. The trained model resulted
in a percentage of correctly classified trapping sites of 85 % in an internal valida-
tion, meaning that the validation dataset was the same as the training dataset. The
trained model parameters were then used to extrapolate the results over the entire
Mediterranean Basin. Calistri et al. (2003), however, validated these parameters
for Italy, and Calabria in particular, and found that the trained model was unable
to classify C. imicola presence and absence sites.

An alternative method was introduced by Baylis et al. (2001), who used a com-
bination of 40 remote sensing variables derived from temporal Fourier processing
of AVHRR data, topographic data and vapour pressure deficit in a model based on
discriminant analysis. The model, trained on 44 C. imicola trapping sites in Portu-
gal, Spain and Morocco resulted in 93.2 % correctly classified sites in an internal
validation. Similar models, but based on remote sensing data only, were applied
to 87 trapping sites in Portugal (Tatem et al., 2003) and 248 sites in Sicily (Purse
et al., 2004), resulting in, respectively, 95.4 % and 87 % correctly classified pixel,
again in an internal validation.

Most C. imicola distribution models are based on either logistic regression or
discriminant analysis, although the used data sources may vary strongly. Guis
et al. (2007), for example, included landcover variables, as well as landscape met-
rics derived from high resolution imagery in a logistic regression model for Cor-
sica. Conte et al. (2003) included the amount of running water to meteorological
and topographic data for a model for Italy based on 546 trapping sites, resulting
in 75 % correctly classified sites in and internal validation. Acevedo et al. (2010)
included the availability of host species, as well as landcover, climatic and pedo-
logical variables, for a model based on trappings during the period 2005-2008 in
Spain.

Few studies investigated the difference in performance between different mod-
elling techniques. In a study by Peters et al. (2011), discriminant analysis and
logistic regression were compared to a novel ensemble learning technique called
random forests. In a study over the Iberian peninsula using trapping data from
2004 until 2006 and both climate and remote sensing data, the random forests
model was found to be superior to the other models when no preprocessing of the
trapping data was performed. This preprocessing consisted of the reduction of the
entomological data records, in order to reduce uncertainty associated with the field
data. After an appropriate data reduction, accuracies of predictions based on dis-
criminant analysis and logistic regression were found to increase significantly.

While the studies mentioned in this section employ either climatic data, re-



120 CHAPTER 8

mote sensing data or both, no studies compared the accuracies of the predicted
distributions based on climatic versus remote sensing data. Yet, the use of remote
sensing data can be assumed to offer some advantages over climatic data. First of
all, spaceborne remote sensing offers global coverage at a fixed spatial resolution,
while area-covering climatic data must be interpolated between meteorological
stations. The accuracy of the interpolated values is therefore dependent on the
density of the meteorological network. Furthermore, climatic datasets, e.g. those
developed by Hijmans et al. (2005), provide monthly values based on averaging
over long time spans of up to 50 years. This prevents to assess the influence of cli-
mate change during this period, rendering meteorological observations from dy-
namic into static variables. The long records of remote sensing products allow
assessing changing climate and landcover conditions, while providing temporal
resolutions higher than the monthly resolutions of climatic datasets. It should be
noted, however, that many studies undo the advantages of remote sensing by using
multi-year averages. Calvete et al. (2008), for example, tried to model the distri-
bution of Culicoides from trapping data from 2004 to 2006, while using monthly
averaged NDVI data from 1981 to 2003. Similarly, Baylis et al. (2001) used re-
mote sensing data acquired between 1982 and 1994 in combination with trapping
data between 1993 and 1995, and Tatem et al. (2003) used trapping data from 2000
and 2001 with remote sensing data from 1992 to 1996.

Clearly, the use of solely remote sensing entails some disadvantages. Some
environmental variables, such as air temperature, air humidity or precipitation, are
much easier to measure from in situ stations than from remote sensing, if mea-
surable at all. This part of the study therefore aims at comparing the accuracies
of C. imicola distribution modelling based on solely climatic data records versus
solely some routinely produced remote sensing products. The random forest mod-
elling technique is used to this end, and is compared to results obtained from the
more commonly used linear discriminant analysis.

Notwithstanding the assumed influence of soil moisture on the suitability of
Culicoides spp. breeding sites, information on soil moisture has, as yet, not been
used in distribution models. This is due to the absence of routinely produced high
to medium spatial resolution remotely sensed soil moisture products, and due to
the difficulty of interpolation soil moisture point measurements over large areas.
Some authors (e.g. Baylis et al., 2001) argue that remotely sensed variables, such
as NDVI, can be interpreted as soil moisture proxies and therefore allow the iden-
tification of C. imicola presence and absence sites. Others (Conte et al., 2007b)
linked the distance of trapping sites from fine textured soil to the water holding
capacity of the soil, and thus the suitability for breeding sites. This chapter there-
fore additionally investigates whether the soil moisture proxies discussed in the
previous part can improve accuracies when adding them to models based on the
routinely produced remote sensing products.
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8.2 Study siteand datasets

This part of the study is performed over the peninsula of Calabria (Fig. 3.1), and
uses some the of remotely sensed datasets employed and derived in the previous
part, which are again briefly discussed here. Additionally, climatic and C. imicola
trapping data over the site were acquired.

8.2.1 Culicoidestrapping data

# catches

° 1-10

11-100
101 - 1000
1001 - 10000

> 10000

Figure 8.1: Locations and abundances of C. imicola catches.

Since 2000, the Entomological National Surveillance Programme monitors the
spatial and temporal dynamics of the C. imicola population in Italy using Onder-



122 CHAPTER 8

stepoort-type blacklight traps in accordance with standardized surveillance proce-
dures (Goffredo and Meiswinkel, 2004). Captures are examined to determine the
total number of insects, the total number of Culicoides and the total number of
C. imicola. For this study, the dataset consists of the total number of C. imicola
collected during the months of highest abundance (August—October) of the years
2000 and 2001, at 169 trapping sites throughout Calabria (Fig. 8.1). C. imicola
abundances were transformed to absences (zero catches) and presences (non-zero
catches), resulting in 102 absence records and 68 presence records. Data from two
trapping sites were omitted since these sites were situated outside the region for
which climatic and remote sensing datasets were obtained.

8.2.2 Climatic data

The WorldClim dataset (Hijmans et al., 2005) is a set of raster layers of climatic
variables at 30” (approximately 1 km) resolution, covering all land masses except
Antarctica. The available layers contain monthly values of minimum, maximum
and mean temperature and total precipitation, representative for the period 1950-
2000, derived from interpolation of monthly values recorded at meteorological
stations. Data accuracy is restricted by the density of the meteorological stations,
which is especially low in parts of Asia, Africa and South-America (Hijmans et al .,
2005). For Europe, a relatively dense network of stations is used to produce the
climatic variables.

The 48 climatic data layers for Calabria are freely availably for academic
and other non-commercial use, and downloadable through the WoldClim web-
site (www.worldclim.org). No further preprocessing on the climatic variables was
performed.

8.2.3 Remote sensing data

Routinely generated remote sensing products used in this part of the study are the
Aqua MODIS 8-day daytime and nighttime land surface temperature (MYD11A2)
and the monthly NDVI (MYD13A3) at 1 km resolution. Images from 2002 until
2010 were acquired and combined into representative monthly averages for this
period of daytime and nighttime surface temperature and NDVI, resulting in a total
of 36 data layers. Remotely sensed data representative for the period 2002-2010
can, for Calabria, be used in combination with C. imicola trapping data from 2000
and 2001, since no expansion of the geographical range of C. imicola was detected
during the first decade of this century (Conte et al., 2009). MODIS Aqua datasets
were preferred over those of Terra, since Aqua’s equatorial crossing times are at
1:30a.m. and 1:30 p.m., while Terra’s are at 10:30a.m. and 10:30 p.m. Daytime
and nighttime surface temperatures observed by Aqua will thus be closer to maxi-
mum and minimum temperatures, respectively, which are relevant in the C. imicola



MODELLING THE SPATIAL DISTRIBUTION OF C. IMICOLA 123

life cycle.

The three remotely sensed soil moisture proxies discussed in the previous part
of this dissertation are, in an adapted form, included in the species distribution
modelling. ASAR Wide Swath relative soil moisture (Chapter 4), resampled to
1 km resolution, was produced for the entire time series of 130 images. Since it
was observed that the assumption of a linear angular dependence of backscatter is
not necessarily valid when both ascending and descending mode ASAR WS im-
ages were used, angular correction was performed here following a second order
polynomial fit. The soil moisture retrieval model ignoring seasonality of the differ-
ent model parameters (angular correction coefficients, dry reference and sensitiv-
ity) is used here. In contrast to the product validated in Chapter 4, areas with strong
topography are not masked, since the species distribution modelling requires full
coverage of the study site by all variables. Nevertheless, it can be expected that
soil moisture retrieval at these pixels performs poorly. The relative soil moisture
estimates at the dates of image acquisition are combined to multiyear monthly av-
erages.

In contrast to the apparent thermal inertia product at daily resolution developed
in Chapter 5, the ATl used here is based on 8-day composite surface temperature
data from 2002 until 2010. The reason for this is twofold. First, the use of 8-day
composites allows the amount of data to be processed for a period of 9 years to re-
main manageable. Second, 8-day composites reduce the amount of noise that can
be present due to insufficiently masked cloud cover. The temperature amplitude
required in the derivation of ATI (Eq. 5.10) is therefore replaced by the difference
between the 8-day daytime and nighttime surface temperature, rather than using
a sinusoidal approximation. Subsequently, 8-day ATI values are combined into
twelve monthly multiyear averages.

Twelve Temperature-Vegetation Dryness Index images (Chapter 6) are derived
using the monthly multiyear surface temperature and NDVI images discussed ear-
lier in this section. Monthly daytime Ts images were normalized for influences
of elevation using the stratified normalization technique introduced in Chapter 6.
The monthly TVDI can then be interpreted as representing the long-term availabil-
ity (or shortage) of soil moisture for evapotranspiration, relative to other places in
the study site.

8.3 Description of modelling techniques

Random forests (RF, Breiman, 2001) is a data-driven modelling technique, assign-
ing observations with unknown class membership based on a model trained using
observations with known class membership. This machine learning technigque gen-
erates many classification trees, each of which is grown using a randomly drawn
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subset of the original dataset. The nodes of the different classification trees are
grown using the best split variable selected out of a randomly selected subset of
predictive variables (Liaw and Wiener, 2002). The number of trees grown and
the number of predictive variables used to split the nodes are two user-defined
parameters, here set to 300 and 3, respectively, following Peters et al. (2011). Once
all classification trees of the random forest are trained, the predictive variables of
observations with unknown class membership are classified by each classification
tree, resulting in a unique class label (absence or presence) for each tree. The
proportion of trees assigning a presence label is interpreted as the probability of
occurrence. Random forests have been applied successfully in ecological distribu-
tion modelling (Peters et al., 2007, 2011; Sehgal et al., 2011).

An additional feature of random forests is the assessment of the predictive
variable’s importance, where the effect of a random permutation of a variable on
the classifier performance is investigated. The decrease in classifier performance
can be interpreted as a measure of the variable’s importance. The permutation of
informative variables will thus result in a strong decrease in the classifier’s perfor-
mance, while non-informative variables will cause a minor change in performance
when permuted.

The random forests classifier is compared to the more traditional linear dis-
criminant analysis (LDA, Venables and Ripley, 2002). LDA aims at finding a
discriminant function, or a linear combination of the predictive variables, by as-
signing coefficients to the predictive variables in such a way that the resulting
function optimally discriminates between absence and presence classes. As for
random forests, linear discriminant analysis requires training observations with
known membership to compute the discriminant function. A threshold set on
the discriminant function then allows to classify observations with unknown class
membership. In contrast to RF, the statistical LDA makes some simplifying as-
sumptions, such as normality of the predictive variables. Both RF and LDA clas-
sifiers are implemented in the statistical software environment Rr.

8.4 Modédlingof C.imicolain Calabriausingclimat-
ic data

The 48 climatic variables were, together with the C. imicola presence/absence in-
formation, used to train and validate the species distribution models based on RF
and LDA. Model performance was assessed by a threefold cross validation. In this
validation, the dataset is split randomly in three disjoint subsets of equal size, and
each subset is used to validate the model trained on the remaining two subsets. As
a result, each record in the original dataset will be assigned a predicted probabil-
ity of C. imicola occurrence, which can be classified into an absence or presence
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using a certain threshold. Additionally, the three trained models are applied on the
area-covering dataset of climatic variables to produce habitat suitability maps for
Calabria.

Three different accuracy measures are used in this study to mutually validate
the different modelling techniques: the percentage correctly classified sites (PCC),
the kappa index of agreement (k) and the area under the Receiver Operating Char-
acteristic (ROC) curve (AUC). PCC is the most basic accuracy measure defined
as:

PCC — 100 oreet ©8.1)
Ntotal

where Neorrect 1S the number of correctly classifies sites and gy is the total number
of classified sites. The « statistic (Cohen, 1960) includes an adjustment for the
percentage correctly classified sites by chance agreement (PCCy):

. Pcc—pece
~ 100—PCCe

Both PCC and « require the predicted probabilities to be transformed into a pres-
ence or absence using some threshold. This threshold is here set to 0.5. A thres-
hold-independent accuracy measure is the area under the ROC curve (Fawcett,
2006). In ROC graphs, the true positive rate (fraction of observations that are
predicted correctly) is plotted versus the false positive rate (fraction of observed
absences that are predicted incorrectly), for all possible threshold values between
zero and one. The AUC, which ranges between zero and one, thus describes the
likelihood that a presence site is assigned a higher modelled probability than an
absence site, with a value higher than 0.5 when the model performs better than
random guessing.

(8.2)

Table 8.1: Accuracy measures of C. imicola distribution models (using random
forests or linear discriminant analysis) for different input datasets.

PCC (st. dev.) [%] K (st. dev.) [%] AUC (st. dev.) [%]
RF LDA RF LDA RF LDA
WorldClim  87.7 (1.4) 84.3(2.2) 76.0(29) 67.1(45) 925(12) 89.2(1.8)

mobls  85.9(L6) 86.3(L8) 70.4(3.3) 71.3(37) 91.2(L4) 89.9(L.3)
+Omar 853 (L4) 841(21) 69.2(3.0) 66.7(4.3) 90.7(1.3) 87.7(L7)
+ATI 857 (1.4) 84.0(21) 69.9(3.0) 666(43) 90.9(1.3) 885 (L6)
+TVDI 84.7(15) 85.1(20) 68.1(3.1) 687(43) 90.8(L5) 89.4(L8)

The 3-fold cross validation, and computation of the accuracy statistics, is per-
formed for 100 runs, each with a random selection of the training and validation
folds, in order to minimize chance effects introduced by this random selection.
This results in 100 values of PCC, x and AUC, for both the RF and LDA tech-
nique. The average value and standard deviation for the three accuracy measures
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are given in Table 8.1. Additionally, since each trapping site will be assigned a pre-
dicted absence of presence during each run, the spatial distribution and number of
misclassifications can be displayed. This is done for the random forests technique
in Fig. 8.3. Besides the predictions at the trapping sites, this figure also displays
the probability of C. imicola occurrence for the entire Calabrian peninsula, derived
from averaging the RF outputs over the different runs and different folds.

Random forests performs significantly better (p < 0.0001) than linear discrimi-
nant analysis for all three performance measures when modelling C. imicola based
on the WorldClim dataset. Nearly 88 % of the sites are correctly classified using
RF, compared to 84 % with LDA. These accuracies are close to the 87.5 % obtained
by Conte et al. (2007a) over the same study site with an LDA model trained us-
ing meteorological data, topography, landcover, NDVI and aridity and Culicoides
trapping data from 2000 until 2004. Fig. 8.3 shows that the climatic data allow to
capture the general east-west distribution of C. imicola, with probabilities close to
100 % along the eastern coast and low values at the western coastline and the cen-
tral mountain ranges. Misclassification of absence and presence sites are located
in regions with intermediate probabilities and often in regions where presence and
absence locations are found over short distances, e.g. near the city of Rosarno at
the western coast.

When comparing the misclassifications in Fig. 8.3 with the catch abundances
in Fig. 8.1, it is observed that many of the misclassified presence sites are char-
acterized by low (< 10) C. imicola catch abundances, with sometimes as few as a
single catch over the two-year period. This can either indicate a very small popu-
lation of C. imicola in these regions, and might result in the failure of trapping the
species at neighbouring sites, even though it might also be present there. In this
case, the absence sites can represent false absences. Alternatively, these presence
sites might represent false presences, where the trapped individual was transported
to this region by the wind, but was unable to establish a population. Finally, the
possibility of a misclassification of a different species of Culicoidesas C. imicola
cannot be excluded.

The importance of the different climatic variables, as identified by the RF
model, is given in Table 8.2 and Fig. 8.2. The variable importance of the dif-
ferent precipitation variables is much higher than the temperature variables. These
numbers should, however, be treated with caution, since the different temperature
variables can be expected to be strongly correlated, both between Tnin, Tmean and
Tmax mutually as between the different months. Strongly correlated variables are
known to result in lower variable importances (Genuer et al., 2010). Nevertheless,
the total amount of precipitation in the months of May and April seems to influ-
ence the distribution of C. imicola. When considering the spatial pattern of total
precipitation for the month of May (Fig. 8.4(a)), it is observed that this pattern
corresponds strongly to the predicted probability of C. imicola presence (Fig. 8.3).
Absence sites correspond to regions with high precipitation amounts, while pres-
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Table 8.2: Relative importance of the different variables (x100) in the RF model

based on climatic data.

Variable importance

03[

0.2

Tmin Tmean  Tmax P
Jan 034 027 040 0.37
Feb 030 033 055 287
Mar 031 032 054 0.24
Apr 024 025 042 517
May 0.28 025 054 752
Jun 028 059 184 337
Jul 0.27 048 135 0.83
Aug 028 042 135 3.79
Sep 026 040 1.08 254
Oct 023 034 047 1.28
Nov 027 036 058 0.56
Dec 039 031 048 0.35
Dec
 Nov .
Sep
W Aug
1 Jul
W Jun
May
W Apr
W Mar
M Feb
M Jan

min

Tmean R Tmax
Variable

Figure 8.2: Relative importance of the different variables in the RF model based

on climatic data.
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ence sites receive much less rainfall. A similar pattern is found for the month of
April, albeit with much higher absolute precipitation totals. The east-west gradient
of rainfall can be explained by the predominant westerly winds in this part of the
Mediterranean (Abulafia, 2012), which causes precipitation to fall at the western
side of the mountain range dissecting the peninsula.

Precipitation [mm] I -
- — S
25 50 ‘&1EIL_;_,.":

Figure 8.4: Total precipitation for the month of May in the WorldClim (Hijmans
et al., 2005) dataset (a) and multiyear averaged MODIS NDVI for the month
July(b).

The high amount of precipitation at C. imicola absence sites might support the
hypothesis that these sites are unsuitable because the species’ pupae will drown
due to the high rainfall, thus interrupting the species’ life cycle. At the eastern
coast, C. imicola might survive due to dryer conditions in spring. This would be
an alternative, or complement, to previous assumptions (Conte et al., 2007b) that
C. imicola survives where fine-textured soils are capable of retaining sufficient
moisture during summer. The rainfall-based assumption, however, can explain the
absence of the species in the northwestern part of the study site where fine-textured
soils can be found (Fig. 3.1) which should support populations of C. imicola ac-
cording to the texture-based assumption.

The overall importance of the 36 temperature variables is low, even though
temperature is known to restrict C. imicola distribution at global scale and is in
Calabria probably largely responsible for its absence at higher elevations. As
mentioned earlier, these low importances are partly due to the strong correlations
between the different variables. A reduction or transformation of the variables
(e.g. through a temporal Fourier analyses as performed by Baylis et al. (2001))
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will possibly result in an entirely different view.

8.5 Muodelling of C.imicolain Calabriausing remote
sensing data

In a first instance, the distribution model was trained solely on the standard MODIS
products (daytime and nighttime surface temperature and NDVI), averaged over
multiple years to representative monthly values. The accuracy measures (Ta-
ble 8.1) indicate no significant difference between performance of the RF and
LDA models in terms of PCC and . In terms of AUC, RF performs significantly
(p < 0.0001) better than LDA. When comparing accuracies of the models based
on remotely sensed input data versus those using climatic data, it is observed that
the RF predictions using climatic data are significantly better (p < 0.0001 for all
accuracy measures) than these using remote sensing data. The percentage cor-
rectly classified sites decreased by approximately two percent when replacing cli-
matic variables by remotely sensed variables. The opposite is observed for the
LDA models, with the PCC increasing by two percent when using remotely sensed
data. Both threshold-dependent measures differ significantly (p < 0.0001) for the
LDA models using different input data, as does the threshold-independent AUC
(p=0.0019).

The predicted C. imicola distribution map (Fig. 8.3) obtained from the RF
model using remotely sensed data strongly resembles the one obtained from the
WorldClim dataset. The misclassified trapping sites also occur in the same regions.
Climatic datasets can thus be replaced by remotely sensed datasets for C. imicola
distribution modelling without compromising prediction accuracies. Furthermore,
remotely sensed data might be preferred for modelling studies in other regions than
Calabria, where the meteorological stations between which the climatic data is in-
terpolated are sparse, or where the spatial distribution of C. imicola is expected
to expand due to climate change. Finally, a different preprocessing of the higher
temporal resolution remotely sensed datasets might reveal information that is lost
when using monthly averaged variables.

A study of the variable importance (Table 8.3 and Fig. 8.5) reveals that the
most important remotely sensed variables are the daytime surface temperature dur-
ing the months of June, July and August. This is in agreement with the variable
importances obtained for the climatic variables, where the maximum temperature
during these three months were identified as the most important temperature vari-
ables. The months of June, July and August also yield the highest importances
among the different NDVI variables. The multiyear averaged NDVI for the month
of July (Fig. 8.4(b)) partly reflects the general landcover and topography of Cal-
abria (Fig. 3.1). The NDVI during summer, however, also shows a clear corre-
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Table 8.3: Relative importance of the different variables (x100) in the RF model
based on standard Aqua MODIS products.

Tsday Tsnigt NDVI
Jan 2.29 0.68 0.33
Feb 1.10 0.86 0.39
Mar 0.36 0.58 0.47
Apr 0.09 0.65 0.16
May 1.20 0.65 0.56
Jun 3.67 1.06 2.90
Jul 4.39 1.31 3.01
Aug 2.71 0.63 2.04
Sep 1.01 0.89 1.29
Oct 0.56 0.82 0.60
Nov 0.87 0.79 0.03
Dec 0.87 0.75 0.14

0.20
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M Nov
H Oct
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M Aug
= Jul
M Jun

May
W Apr
= Mar
W Feb
M Jan

0.15-

Variable importance

TS,day TS',ni ht
Variable

NDVI

Figure 8.5: Relative importance of the different variables in the RF model based
on standard Aqua MODIS products.
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spondence to the total rainfall during the month of May (Fig. 8.4(a)). This is not
surprising, since abundant rainfall during late spring and early summer allows veg-
etation to grow throughout the dryer summer season. High NDVI values here cor-
respond to C. imicola absence sites. This contradicts the findings of Baylis et al.
(1998), who linked the species’ abundance in Morocco to soil moisture through
NDVI proposing that “areas in Morocco with high levels of soil moisture in late
summer or autumn provide more, larger and/or more enduring breeding sites for
C. imicola, as well as supporting more photosynthetically active vegetation and
hence having higher NDVIt't’". This link has subsequently been used to extrapo-
late trained models to Mediterranean-wide predictions (Baylis et al., 2001). The
present study, however, demonstrates that conclusions drawn for one region of the
Mediterranean Basin cannot simply be extrapolated to others.

The final part of this study aimed at improving the C. imicola distribution mod-
els by integrating the three remotely sensed soil moisture proxies. From Table 8.1,
however, it is observed that none of the proxies improves the modelling accuracies
when adding them to the standard MODIS products, for any of the three accuracy
measures or the two modelling techniques. This does not mean that soil mois-
ture content has no influence on the spatial distribution of C. imicola. Rather, this
could indicate that soil moisture is already accounted for in the distribution model
indirectly through the standard MODIS products. The relationship between the
total rainfall during spring and NDVI during summer was already discussed in this
section. In fact, NDVI observed at a certain place and time is function of a number
of factors such as vegetative cover, climate, and soil properties including moisture
content. The links between remotely sensed surface temperature and evapotranspi-
ration, and hence soil moisture, were discussed in the first part of this dissertation.
It is therefore not surprising that remotely sensed soil moisture proxies derived
using MODIS Ts and/or NDVI (in casu ATl and TVDI) provide no additional in-
formation beneficial for the species distribution modelling. The ASAR-derived
soil moisture product adds an entirely different source of information and could be
expected to improve modelling results, given the stronger correlation to soil mois-
ture over a variety of cover types than the MODIS products. The low temporal
resolution, however, apparently restricts the utility of this product.

8.6 Conclusions

This chapter aimed at comparing C. imicola distribution modelling accuracies us-
ing climatological data versus standard remote sensing data. Additionally, the
influence of including remotely sensed soil moisture proxies, discussed in the pre-
vious part of this dissertation, was investigated. Two modelling techniques were
employed: the established linear discriminant analysis and random forests, a novel
ensemble learning technique. The importance of the different input variables was
assessed using the random forests technique.
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For the models based on climatic data, RF outperformed LDA for all inves-
tigated accuracy measures. Analysis of the variable importance revealed that the
C. imicola distribution is largely determined by the amount of precipitation dur-
ing spring. It is unclear whether this dependence is causal, where intense rainfall
might interrupt the species’ life cycle by drowning one of its immature stages, or
merely coincidental or linked through other processes.

Replacing the climatic variables by standard MODIS products resulted in a sig-
nificant, although limited, reduction of the predictive capability of the RF model,
while slightly increasing the accuracies of the LDA model. The most important
remotely sensed variables could be linked to meteorological variables. Given the
restrictions of climatic data with respect to temporal and spatial resolution, the use
of remotely sensed datasets in species distribution modelling is advisable.

The addition of remotely sensed soil moisture to the standard MODIS products
did not result in improved modelling accuracies. Possibly, spatial soil moisture
patterns are already accounted for indirectly through the surface temperature and
vegetation index variables. Alternatively, the accuracy and/or temporal resolution
of the soil moisture proxies produced in this study might be insufficient.






Conclusions and outlook

The aim of this research was to derive surface soil moisture from remotely sensed
imagery, in order to integrate this into species distribution models. In function of
this specific application domain, a number of prerequisites were imposed on the
soil moisture product. Firstly, its spatial resolution should be in the order of 200 m
to 1km, covering areas in the order of 100 km to 1000 km. Secondly, it should
provide information on soil moisture content over a variety of landcover types and
throughout the entire year. Finally, the soil moisture should be derived without
requiring the integration of ancillary in situ or meteorological datasets, in order to
be globally applicable. Apart from these restrictions, the species distribution mod-
els do not require actual gravimetric or volumetric moisture content, but rather an
index, or proxy, that is correlated temporally or spatially to soil moisture.

The study was performed on the peninsula of Calabria, a region in the south-
western tip of mainland Italy characterized by a pronounced topography and a
variety of landcover conditions. Different sources of reference data were collected
in order to validate the remotely sensed soil moisture products (Chapter 3). A dedi-
cated field survey was set up to collect repeated in situ soil moisture measurements
at thirty sites. Additionally, soil moisture collected at five permanent measuring
stations was obtained. Given the large extent of the study site, the in situ measure-
ments were deemed insufficient as a reference dataset. A soil moisture model was
therefore constructed, using a soil texture map of Calabria in combination with
daily temperature and precipitation observations at a large number of meteorologi-
cal stations in Calabria. The soil moisture generated by this model was found to be
poorly correlated with the in situ measurements spatially, but strongly correlated
temporally. Since soil moisture products are generally validated temporally rather
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than spatially, it was concluded that the modelled soil moisture could be used as a
reference validation dataset.

Notwithstanding its adequate performance, some improvements might be made
to the hydrological model. First of all, the simple model based on the model of
Sheikh et al. (2009) was constructed to produce soil moisture at daily time steps.
However, precipitation at the meteorological stations was available at hourly time
steps. A conversion of the model to hourly time steps would allow to compare
remotely sensed soil moisture to modelled soil moisture at the time of satellite
overpass. Secondly, the evapotranspiration in the model is derived using a very
basic formulation, including only the mean daily temperature. The meteorological
dataset, however, supplies both daily minimum temperature and daily maximum
temperature, as well as the wind velocity and direction and the atmospheric humid-
ity and pressure. This would, together with information on land cover from, e.g.,
Corine Land Cover or NDVI products, allow to produce more reliable estimates of
evapotranspiration.

9.1 Remotely sensed soil moisture proxies

Two data sources, meeting the required spatial resolution and coverage, were
used to infer soil moisture proxies. The first is an active microwave sensor, En-
visat’s Advanced Synthetic Aperture Radar, operated in Wide Swath mode. Radar
backscatter is linked directly to soil moisture content through the dielectric con-
stant of water molecules, which is much higher than that of dry soil. Apart from
soil moisture, radar backscatter is also influenced by surface roughness and vegeta-
tion cover, which hampers the retrieval of soil moisture through physical backscat-
ter models. This problem was circumvented using a change detection technique,
based on the method developed by Wagner et al. (1999b) for the low resolution
ERS Scatterometer, where changes in soil moisture are assumed to take place at
much shorter timescales than changes in roughness and vegetation cover. This
technique has previously been applied successfully on higher resolution ASAR
data (Wagner et al., 2007; Pathe et al., 2009). Until now, however, the influence of
seasonally changing vegetation cover on the change detection model parameters
for high resolution imagery has been ignored. The research in Chapter 4 therefore
focuses on the influence of vegetation phenology on the model parameters, in par-
ticular on the angular correction coefficient. It was found that temporal variations
in the angular dependence of ASAR backscatter could be in the order of magni-
tude of the value of the parameter itself, and should therefore not be ignored in
soil moisture change detection algorithms. Relative soil moisture content derived
using this change detection was found to be strongly correlated to modelled soil
moisture over areas with limited vegetation cover, and moderately correlated over
densely vegetated regions.
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The results obtained in this chapter are encouraging with respect to soil mois-
ture retrieval from Sentinel-1, a constellation of two SAR sensors of which the
first is to be launched shortly. In comparison to ASAR, Sentinel-1 will be char-
acterized by acquisitions at a low number of fixed incidence angles, thus elimi-
nating the issue of incidence angle normalization (Hornacek et al., 2012) and its
seasonal variability. Nevertheless, seasonality will continue to affect the other
model parameters: dry reference backscatter and sensitivity. For Scatterometer
data, Wagner et al. (1999c) observed that the seasonal variation of the dry refer-
ence can be linked to the seasonal variation of the angular dependence. Given the
fixed acquisition angles of Sentinel-1, soil moisture retrieval algorithms for this
sensor will be unable to employ this link. Further study of the 10-year archive of
Envisat ASAR images can, in preparation of Sentinel-1 data processing, provide
an insight into the influence of vegetation phenology on change detection model
parameters.

The second type of remotely sensed data in this research is imagery in the
optical domain (visible, near-infrared and thermal infrared part of the spectrum)
obtained by the MODIS sensor. Unlike for the microwave part of the spectrum,
there is no direct relationship between reflectance in the shorter wavelengths and
the soil’s dielectric constant or moisture level. Instead, soil moisture content is
linked to surface temperature observed in the thermal wavelengths, through its
link with evaporative cooling and thermal inertia. Chapter 5 discusses the utility
of apparent thermal inertia as a soil moisture indicator. Apparent thermal inertia
is derived from the difference between maximum daytime and nighttime temper-
ature, its temporal behaviour is generally considered to be correlated to temporal
changes in soil moisture. One prerequisite for a multitemporal analysis of appar-
ent thermal inertia, however, is that the different nighttime and daytime surface
temperature observations are made at a fixed time. This is not the case for most
sun-synchronous sensors such as MODIS. As an alternative, the diurnal temper-
ature behaviour was here approximated as a sinusoidal function fitted to up to
four surface temperature observations. The amplitude of the sinusoidal was sub-
sequently used as the day-night temperature difference to derive apparent thermal
inertia. Apparent thermal inertia was found to be a good indicator of surface soil
moisture content for semi-arid conditions and sparse canopy cover. Under dense
canopy cover or wet conditions, however, apparent thermal inertia was found to be
of limited use.

One of the main weaknesses of the apparent thermal inertia as estimated here
is that clear-sky conditions are assumed in between the different surface tempera-
ture observations. Clearly, this is not necessarily so, and cloud cover may severely
add noise to the thermal inertia estimates. One way to avoid this is by integrating
data from geostationary satellites, which have temporal resolutions up to a few
minutes and could therefore easily detect temporal cloud dynamics. Furthermore,
their high temporal resolution could allow a better characterization of the diurnal
surface temperature behaviour than the simple sinusoidal approximation.
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A final soil moisture proxy (Chapter 6) was derived from contextual informa-
tion in the thermal infrared, combined with a vegetation index. This is a popular
method to infer information on spatial differences in evapotranspiration or soil
moisture content, although it is subject to a number of preconditions. One of these
preconditions is that the area under investigation is flat, so that surface temperature
will only be influenced by differences in fractional vegetation cover and availabil-
ity of soil moisture for evapotranspiration, and not by topography. Topography in
Calabria severely influences surface temperature. This chapter therefore concen-
trates on the topographic normalization of surface temperature. A new empirical
topographic normalization was suggested, containing a correction for the terrain
elevation and a correction for terrain orientation. Both of these corrections con-
sisted of a stratification of the study site based on fractional vegetation cover. The
dependence of surface temperature on elevation was found to be independent of
fractional vegetation cover, while the dependence on orientation was found to be
dependent on vegetation cover. A soil dryness index obtained from normalized
surface temperature resulted in a better correlation than indices using the original
surface temperature or surface temperature normalized using different approaches.

The empirical normalization of surface temperature for terrain orientation em-
ployed the solar incidence angle at time of image acquisition as the independent
variable. This, however, ignores the effect of antecedent heating, which is de-
pendent of the solar incidence angle during a number of minutes or hours prior
to image acquisition. The effect of antecedent heating was found to be important
during summer. Further research on topographic normalization of remotely sensed
surface temperature should focus on this issue.

All three soil moisture proxies were able to, to a certain extent, reflect spa-
tial and/or temporal soil moisture patterns. This offers opportunities for the use
of these proxies in spatial disaggregation models. These models aim at retrieving
high spatial resolution soil moisture from coarse resolution soil moisture obtained
from active or passive microwave sensors and moisture-related variable at high
resolution (e.g. Chauhan et al., 2003; Merlin et al., 2008; Piles et al., 2011).

9.2 Spatial distribution modelling

The second part of this research investigated the use of remote sensing products,
and in particular remotely sensed soil moisture proxies, in C. imicola distribution
modelling. C. imicola is the main vector of the bluetongue virus in the Mediter-
ranean Basin. Two modelling techniques were compared, and species distribution
models based on random forests were superior to those based on linear discrim-
inant analysis. Also, it was shown that remotely sensed data could be used as
predictive variables instead of climatic data, with only a limited decrease in pre-
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diction accuracies. This offers opportunities for the application of species distri-
bution models in regions where climatic data is unreliable due to the absence of
meteorological stations, or in regions where climate change allows the range of
C. imicola to expand. The inclusion of remotely sensed soil moisture proxies as
predictive variables did not increase model performance. This might be because
soil moisture is already, indirectly, integrated in the standard remote sensing prod-
ucts.

The region of Calabria is characterized by a peculiar spatial distribution of
C. imicola biting midges. In the central mountain range, the absence of the species
can be attributed to the overall lower temperatures. The temperature regime of
the eastern and western shorelines are, however, similar, while the species can be
found at the former, but is absent at the latter. This difference is usually attributed
to the difference in soil texture, and hence water holding capacity and soil mois-
ture, where high soil moisture content allows the immature stages of C. imicola
to survive through summer. This study points at the importance of rainfall during
spring, with C. imicola presence sites being characterized by low rainfall. It is un-
clear whether the relation between these variables and the occurrence of the midge
is coincidental or causal.

Further study of C. imicola could focus on the type of remote sensing data to
be included, and in particular the preprocessing of remote sensing products. In
this study, multiyear monthly averages are used, which can be strongly correlated
mutually. The input variables thus contain redundant information, while other
information is lost through this averaging. This loss of information is reduced
when using techniques like temporal Fourier transforms. The effect of predictive
variable preprocessing on prediction accuracy deserves further investigation.
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In situ soil moisture
measurements

The following tables provide the geographic coordinates of the in situ measure-
ment locations in Calabria that were visited during the field campaign. In gen-
eral, each point was visited three times, and gravimetric (g/g) and/or volumetric
(cm3/cmd) soil moisture measurements were made using an auger and TDR, re-
spectively.
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Site 1A
ID Latitude Longitude 16/09/2009 30/09/2009 7/10/2009
g/lg  cmilcm® glg cm¥em® | glg  cmd/cm®
1.1 38°56'31,7” 16°45'08,6” 0.0770 0.0310 0.2975 0.4167 0.4467
1.2 38°56'27,7" 16°45'11,9" 0.0725 0.2446 0.3527 0.3337
1.3 38°56'23,3" 16°45'14,6” 0.0120 0.0373 0.0613 0.0913 0.0793
2.1 38°56'35,8” 16°45'11,8” 0.0279 0.0643 0.1170 0.1937 0.1660
2.2 38°56'30,8” 16°45'15,1" 0.0544 0.0657 0.2188 0.4040 0.2993
2.3 38°56'26,8" 16°45'18,9" 0.0097 0.0383 0.2762 0.4567 0.3010
3.1 38°56'37,9” 16°45'15,3” 0.0285 0.0210 0.1010 0.1217 0.1187
3.2 38°56'34,2" 16°45'19,5” 0.0780 0.0273 0.0877 0.1183 0.0660
3.3 38°56'30,4" 16°45'23,4" 0.0785 0.0877 0.2571 0.3517 0.3720
Site 1B
1D Latitude Longitude 16/09/2009 30/09/2009 07/10/2009
g/g  cmd/cm® g/g  cmiem® | glg cm3/cm®
11 39°0'37.6” 16°54740.6" 0.2323 0.3337 0.5430 0.6080 0.5880
1.2 39°0'35.1" 16°54'46" 0.2103 0.3093 0.4587
1.3 39°0'32.8” 16°54'51.5" 0.2077 0.3287 0.3273
2.1 39°0'29.9” 16°54'37" 0.0979 0.0813 0.4238 0.5283 0.6473
2.2 39°0'29.1" 16°54'43.2" 0.0662 0.1703 0.4633
2.3 39°0'28.2" 16°54'49.4" 0.0379 0.0747 0.3233
3.1 39°0'42" 16°54'42.8" 0.1165 0.1660 0.4050
3.2 39°0'39.5” 16°54'48.2" 0.1336 0.2580 0.5405 0.6913 0.4747
3.3 39°0'37.1" 16°54'53.7" 0.0704 0.2627 0.3323
Site 1C
ID Latitude Longitude 16/09/2009 01/10/2009 07/10/2009
glg cmdem® | glg cmd/cmd g/lg cmi/cm?
11 39°17.5” 17°9'5.1" 0.0646 0.0387 0.3750 0.2931 0.3837
1.2 39°1'2.6” 17°9'5.1" 0.0516 0.0333 0.3743 0.2583 0.3317
1.3 39°0'57.7" 17°9'4.9" 0.0541 0.0500 0.3656 0.2854 0.3870
2.1 39°1'7.1" 17°9'11.3” 0.0559 0.3487 0.2560 0.3517
2.2 39°1'2" 17°9'10” 0.0660 0.0540 0.3727 0.3123 0.3877
2.3 39°0'57.2" 17°9'11.2" 0.0632 0.0537 0.3808 0.3385 0.4317
3.1 39°1'6.7” 17°9'14.8" 0.0691 0.0740 0.3760 0.2051 0.3343
3.2 39°1'2.1” 17°9'16.7" 0.1576 0.2603 0.4009 0.2946 0.5440
33 39°0'57.4" 17°9'17.4" 0.0687 0.1147 0.4129 0.3354 0.4670
Site 1D
ID Latitude Longitude 18/09/2009 30/09/2009 07/10/2009
glg cm¥fem® | glg  cm3/cm® g/lg  cmi/cm®
11 39°6'2.9” 16°46'2" 0.2337 0.1203 0.2720 0.5736 0.2760
12 39°6/1.7" 16°46'0.9” 0.1429 0.1623 0.3013 0.4396 0.2913
2.1 39°6'2" 16°46'4.1" 0.2209 0.2023 0.3137 0.2078 0.3063
2.2 39°6'1.1" 16°46'2.2" 0.1620 0.1670 0.2793 0.1552 0.2847
2.3 39°6'0.2" 16°46'0.3” 0.1301 0.2243 0.2920 0.2004 0.2717
3.1 39°6'3.2" 16°46'0.1" 0.2311 0.1390 0.2960 0.5086 0.2957
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Site 1E
1D Latitude Longitude 18/09/2009 30/09/2009 07/10/2009
g/g  cmiem® | glg cm3/cm? glg cm¥/cm®
11 39°4'25" 16°52'23.8" 0.1817 0.3160 0.3890 0.3142 0.3657
1.2 39°4'22.6" 16°52'18.4" 0.1943 0.2390 0.3783 0.2076 0.3240
1.3 39°4'19.7" 16°52'13.4" 0.2150 0.2667 0.3267 0.2328 0.2927
2.1 39°4/21.6" 16°52/28.2" 0.2475 0.2880 0.3710 0.2149 0.3820
2.2 39°4'19.8" 16°52'20.7" 0.1255 0.3243 0.3983 0.2161 0.3357
2.3 39°4'15.8" 16°52'17.2" 0.1616 0.1967 0.3787 0.2034 0.3090
3.1 39°4'20" 16°52'31.7" 0.1959 0.3030 0.4213 0.2010 0.3420
3.2 39°4'17.5" 16°52'24" 0.1282 0.2350 0.4207 0.2569 0.4337
33 39°4/13.5" 16°52/20.5" 0.2323 0.3200 0.3850 0.2435 0.3383
Site 1F
1D Latitude Longitude 18/09/2009 01/10/2009 07/10/2009
glg cmdem® | glg cmd/cmd g/lg cmi/cm®
11 39°5'20.1" 17°4'11.4" 0.0997 0.2017 0.3300 0.1685 0.3087
12 39°5'20.3" 17°4'17.7" 0.0728 0.1407 0.2305 0.0819 0.1777
13 39°5'21.5" 17°4'23.8" 0.1729 0.1633 0.3377 0.2146 0.3333
2.1 39°5'23.6" 17°4'9.6” 0.1199 0.3619 0.2194 0.3360
2.2 39°5'25.4" 17°4'15.8" 0.0764 0.2365 0.1090 0.2420
2.3 39°5'26.2" 17°4'22" 0.1082 0.1217 0.2903 0.1488 0.3223
31 39°5/'27.4" 17°4'8.4" 0.1126 0.3143 0.1946 0.2817
3.2 39°529.9” 17°4'13.9" 0.0685 0.2140 0.1181 0.2320
3.3 39°5'30.8" 17°4/20" 0.1121 0.2343 0.2672 0.1590 0.2667
Site 1G
1D Latitude Longitude 21/09/2009 01/10/2009 07/10/2009
glg cmifem® | glg cmdfem® | g/g  cmi/cm®
11 38°59'57.4" 16°57'2.5" 0.2470 0.2893 0.3113 0.4367
1.2 38°59'52.6" 16°57'2.5" 0.2124 0.3783 0.4264 0.5193
1.3 38°59'48.6" 16°57'4.7" 0.2251 0.2653 0.3562 0.3250
2.1 38°59'57.6" 16°57'8.7" 0.2047 0.3007 0.2899 0.3180
2.2 38°59'53” 16°57'9.9” 0.2033 0.2420 0.3483 0.3500
2.3 38°59'48.4" 16°57'11" 0.2154 0.3343 0.3898 0.3550
31 38°59'58.4" 16°57'14.9” 0.2112 0.2757 0.3449 0.3273
3.2 38°59'53.6" 16°57'16” 0.1442 0.1393 0.3583 0.4380
3.3 38°59'48.8" 16°57'17.2" 0.2220 0.2103 0.3749 0.3017
Site 1H
ID Latitude Longitude 21/09/2009 01/10/2009 07/10/2009
g/lg  cmilem® | glg  cm3/cm? glg cm¥/em®
11 39°9/25" 16°55'8.4" 0.2344 0.3593 0.3459 0.2500 0.3443
1.2 39°9/30.5" 16°55'6.6" 0.1645 0.2953 0.4048 0.1652 0.3197
1.3 39°9/35.1" 16°55'4.7" 0.1977 0.2997 0.4081 0.3079 0.4160
2.1 39°9'23.1" 16°55'2.9” 0.2451 0.3507 0.3828 0.2402 0.3467
2.2 39°9/28.2" 16°55'1" 0.2696 0.3383 0.3335 0.2938 0.3800
2.3 39°9/34.5" 16°54'58.4" 0.2095 0.3477 0.3399 0.2453 0.3670
3.1 39°9/21.5" 16°54'56.8" 0.1894 0.3080 0.3621 0.1970 0.3317
3.2 39°9/26.3" 16°54'55.3" 0.2576 0.3800 0.4379 0.3212 0.4613
3.3 39°9'30.8" 16°54'53.5" 0.3519 0.2712 0.3877
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Site 11
1D Latitude Longitude 24/09/2009 02/10/2009 07/10/2009
g/g  cmiem® | glg cm3/cm? glg cm¥/cm®
11 39°14'4.4" 17°4'47" 0.2529 0.4107 0.3553 0.2049 0.3528
12 39°14'7.9” 17°4'50.6" 0.2680 0.5613 0.5413 0.1747 0.3886
1.3 39°14'11.6" 17°4'54.7" 0.2446 0.3587 0.3567 0.1677 0.2664
2.1 39°14'7" 17°4'39.9” 0.2772 0.3507 0.5437 0.1553 0.3394
2.2 39°14'9.9” 17°4'43.8" 0.3216 0.4060 0.3113 0.2171 0.3226
2.3 39°14'15.4" 17°4'50.8" 0.2201 0.3597 0.3760 0.1403 0.2911
3.1 39°14'12.7" 17°4'35.9” 0.3169 0.3870 0.3540 0.2127 0.3281
3.2 39°14'15.6" 17°4'41.2" 0.2997 0.4570 0.4120 0.1980 0.3258
33 39°1418.7" 17°4'46" 0.2248 0.3970 0.4793 0.1886 0.3651
Site 1J
1D Latitude Longitude 26/09/2009 03/10/2009 07/10/2009
g/g  cmiem® | glg cm¥em® | gig  cmi/cmd
11 39°0'25.2” 17°0'8" 0.2548 0.4197 0.4400 0.3743
1.2 39°0'20.3” 17°0'8.1" 0.3090 0.3900 0.3340 0.3347
1.3 39°0'15.5” 17°0'8.2" 0.3040 0.4843 0.4537 0.3620
2.1 39°0'25.2" 17°0'14.2" 0.3201 0.5590 0.4857 0.3277
2.2 39°0'20.3” 17°0'14.4" 0.2837 0.4673 0.4273 0.3587
2.3 39°0'15.5” 17°0'14.5" 0.2729 0.3977 0.3663 0.3470
31 39°0'25" 17°0'20.4" 0.3507 0.6070 0.5097 0.3710
3.2 39°0'20.1” 17°0'20.6" 0.3027 0.5497 0.4420 0.3427
3.3 39°0'15.3" 17°0'20.7" 0.3462 0.5830 0.3313 0.2287
Site 1K
1D Latitude Longitude 26/09/2009 02/10/2009 07/10/2009
g/lg  cmilem® | glg  cm3/cm? glg cmd/em®
11 39°3'20.9” 16°55'50.7" 0.2997 0.4643 0.4953 0.2391 0.3470
12 39°3'18.5” 16°55'56.1" 0.3358 0.5670 0.4193 0.2698 0.3640
1.3 39°3/15.7" 16°56'1.2" 0.3212 0.5803 0.5380 0.3064 0.4323
2.1 39°3'16.7" 16°55'47.5" 0.3177 0.5525 0.5430 0.2920 0.3870
2.2 39°3'14.3" 16°55'52.9” 0.3279 0.6033 0.2271 0.3457
2.3 39°3'11.5” 16°55'58.1" 0.3113 0.5283 0.2805 0.4593
3.1 39°3'12.4" 16°55'44.7" 0.2949 0.4427 0.2240 0.3423
3.2 39°3'10.3" 16°55'49.5" 0.3312 0.6143 0.4343 0.2519 0.3473
3.3 39°3'7.5” 16°55'54.6" 0.3888 0.6743 0.3960 0.2201 0.3397
Site 1L
ID Latitude Longitude 29/09/2009 03/10/2009 07/10/2009
g/g cmilem® | glg  cm3/em?® g/lg cmi/em®
1.1 39°13'7.6” 16°52'1.8" 0.2114 0.3157 0.3646 0.1531 0.3148
1.2 39°13'11.5” 16°52'2.1" 0.2254 0.4063 0.3688 0.1856 0.3759
1.3 39°13'15.7" 16°52'0.4" 0.3021 0.3960 0.4110 0.2495 0.3851
2.1 39°13'7.5" 16°52/9.3" 0.1462 0.2997 0.3199 0.3233
2.2 39°13'12.2" 16°52'8" 0.1691 0.3117 0.3415 0.3156
2.3 39°13'16.9” 16°52'6.9” 0.2652 0.4147 0.4424 0.3685
3.1 39°13'8.2"” 16°52'15.5” 0.1581 0.3190 0.3148 0.2890
3.2 39°13'13" 16°52'14.6" 0.2299 0.3520 0.3848 0.1840 0.3544
33 39°13'17.7" 16°52/12.9” 0.2477 0.4317 0.4214 0.2451 0.3885
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Site 1M
ID Latitude Longitude 29/09/2009 03/10/2009 07/10/2009
g/g cmilem® | glg  cmifem® glg cmd/cm®
11 39°18722" 16°49'52.8" 0.2011 0.2827 0.3978 0.1816 0.2448
1.2 39°18'24.8" 16°49'57.9" 0.2138 0.3450 0.3499 0.2055 0.3289
1.3 39°18'26.9” 16°50'3.6” 0.2279 0.3397 0.3626 0.1764 0.3313
2.1 39°18'18.2" 16°49'56.7" 0.1710 0.3203 0.3619 0.1794 0.3346
2.2 39°18'20.4" 16°50'1.9” 0.2742 0.4073 0.3759 0.3176 0.3988
2.3 39°18'22.8" 16°50'7" 0.1686 0.2963 0.2126 0.1418 0.3071
31 39°18'14" 16°49'59.8" 0.2219 0.3410 0.3834 0.2283 0.3608
3.2 39°18'16.3” 16°50'5.3" 0.2395 0.4023 0.3304 0.1756 0.3439
3.3 39°18'18.6” 16°50'10" 0.2074 0.3590 0.3700 0.1770 0.3452
Site IN
ID Latitude Longitude 29/09/2009 03/10/2009 07/10/2009
g/lg cmilem® | glg  cm¥cm® glg  cmi/em®
1.1 39°1450.1” 16°48'56.3" 0.2017 0.3397 0.3772 0.2275 0.3562
1.2 39°14/50.2" 16°49'2.5" 0.2388 0.3417 0.3792 0.2317 0.3487
13 39°14'49.2" 16°49'8.6" 0.1809 0.2967 0.3428 0.1674 0.3138
2.1 39°14'45.2" 16°48'56" 0.3287 0.3293 0.3715 0.2687 0.3318
2.2 39°14'45.5" 16°49'1.2" 0.2074 0.3560 0.3645 0.2182 0.3189
2.3 39°14'44.4" 16°49'7.3" 0.2455 0.3247 0.3252 0.1921 0.3213
31 39°14/40.7" 16°48'53.4” 0.2008 0.2750 0.3219 0.1727 0.3059
3.2 39°14'40.8" 16°48'59.8” 0.2270 0.3147 0.3169 0.2500 0.3152
33 39°14'39.7" 16°49'6" 0.2553 0.3860 0.3952 0.2270 0.3950
Site 10
ID Latitude Longitude 29/09/2009 02/10/2009 07/10/2009
g/lg cmilem® | glg  cmd/cm® glg  cmi/em®
1.1 39°140" 16°5941" 0.2640 0.3627 0.4340 0.3432
1.2 39°14'3.2" 16°59'36.3” 0.2446 0.3440 0.4053 0.2815 0.3725
13 39°14'6.8” 16°59'32.1" 0.3230 0.3880 0.5507 0.3041 0.3686
2.1 39°14'3.3” 16°59'45.6” 0.2604 0.3307 0.4077 0.2463 0.3227
2.2 39°14'6.6” 16°59'40.7" 0.2090 0.2560 0.3030 0.1705 0.3101
2.3 39°14'10.1" 16°59'36.7" 0.2481 0.3643 0.3913 0.3199
31 39°14'6.6” 16°59'50.2"” 0.2551 0.3320 0.4980 0.2416 0.3643
3.2 39°14'9.7" 16°59'45.4" 0.2406 0.3143 0.3603 0.1841 0.2967
3.3 39°14'13.3" 16°59'41.3" 0.2706 0.3247 0.3447 0.2486 0.3838
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Site 2A
1D Latitude Longitude 17/09/2009 30/09/2009 08/10/2009
g/lg  cmilem® | glg  cm3/cm? glg cmd/cm®
1.1 38°37'49.2" 16°8'21.7" 0.2996 0.2967 0.3883 0.2760 0.3370
12 38°37'51.1" 16°8'27.6" 0.2525 0.2833 0.2783 0.2545 0.3500
13 38°37'52.5" 16°8'33.8" 0.2876 0.3387 0.2533 0.3016 0.2823
2.1 38°37'53.8" 16°8'19.9” 0.2164 0.3193 0.2910 0.2212 0.3070
2.2 38°37'55" 16°8'26.4" 0.2791 0.3077 0.3224 0.2814 0.3103
2.3 38°37'57.1" 16°8/31.9” 0.2925 0.3143 0.2216 0.2574 0.3287
3.1 38°37'58.4" 16°8'18.5" 0.2828 0.3277 0.2917 0.2614 0.2910
3.2 38°37'59.4" 16°8'24.5" 0.2305 0.2393 0.2831 0.1783 0.2413
3.3 38°38'1.7" 16°8'29.8" 0.2610 0.2823 0.3204 0.2906 0.3123
Site 2B
ID Latitude Longitude 17/09/2009 30/09/2009 08/10/2009
g/g cmiem® | glg cm3/cm® g/lg  cmd/ecm®
1.1 38°36'50.6” 15°5772.7" 0.2500 0.2977 0.3008 0.1904 0.3247
12 38°36'46.1" 15°57'0.4" 0.2648 0.3497 0.3533 0.2738 0.3343
1.3 38°36'41.2" 15°56'59.6" 0.3450 0.2427 0.3060 0.2448 0.2350
2.1 38°36'48.6” 15°57'8.4" 0.2597 0.3253 0.3169 0.2489 0.1627
2.2 38°36'44" 15°57'6.5" 0.3266 0.3740 0.2672 0.2391 0.3187
2.3 38°36/39.3" 15°57'4.9" 0.3687 0.2460 0.2740 0.2178 0.1607
3.1 38°36'48.3" 15°57'14.7" 0.4222 0.2837 0.2272 0.4006 0.2980
3.2 38°36'43.8"” 15°57'12.5" 0.4562 0.2653 0.2380 0.3881 0.2633
33 38°36'39.2"” 15°57'10.5” 0.5224 0.2353 0.2439 0.4498 0.2853
Site 2C
1D Latitude Longitude 17/09/2009 30/09/2009 08/10/2009
glg  cmiem® | glg  cm3/cm? glg cmd/cm®
11 38°39'9.5” 16°8'54.6” 0.2188 0.2690 0.3700 0.2715 0.3380
12 38°39'13.5” 16°8'58” 0.2525 0.3173 0.3878 0.2545 0.3633
13 38°39'17.9” 16°9'0.9” 0.2799 0.2787 0.3686 0.2486 0.3547
2.1 38°39'11.7" 16°8'48.9” 0.2488 0.2907 0.3528 0.3566 0.3780
2.2 38°39'16.2" 16°8'51.2" 0.2204 0.3147 0.3622 0.3039 0.4283
2.3 38°39'21.5" 16°8'56.6" 0.2072 0.2887 0.2947 0.2766 0.3027
3.1 38°39'15.6” 16°8'44.8" 0.2532 0.2650 0.3008 0.3149 0.3433
3.2 38°39'22.5" 16°8'47.5" 0.3035 0.2270 0.2815 0.3100 0.3097
3.3 38°39'25.2" 16°8'52.7" 0.2101 0.3103 0.3806 0.2440 0.3393
Site 2D
ID Latitude Longitude 19/09/2009 01/10/2009 08/10/2009
g/g cmilem® | glg cm3/cm® g/lg cmd/ecm®
1.1 38°2321.17 15°59'22.9” 0.2684 0.1887 0.3190 0.3458 0.3172
1.2 38°23'24.8" 15°59'23.2" 0.2942 0.2113 0.2153 0.3149 0.2613
2.1 38°2321.6" 15°59'20.5" 0.2615 0.2590 0.2947 0.3428 0.4117
2.2 38°23'25.1" 15°59'20.9” 0.2823 0.2670 0.1937 0.3233 0.2971
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Site 2E
ID Latitude Longitude 19/09/2009 01/10/2009 08/10/2009
g/g cmilem® | glg cm3/em® g/lg cmi/em®
1.1 38°35'7.9” 15°55'19” 0.1117 0.2173 0.1977 0.1362 0.2387
1.2 38°35'9.2"” 15°55'25" 0.2270 0.2407 0.2110 0.0947 0.2227
1.3 38°35'12.6” 15°55'9.6" 0.1360 0.2580 0.1267 0.1023 0.1713
2.1 38°35'14.6" 15°55'18.4" 0.3759 0.3130 0.2290 0.1212 0.1657
2.2 38°35'13.9” 15°55'25.5" 0.1189 0.1923 0.1643 0.1996 0.2317
2.3 38°35'17.3" 15°55'12" 0.1182 0.1173 0.1440 0.0981 0.1660
3.1 38°35'19.5” 15°55'20.3" 0.1479 0.2193 0.1857 0.1063 0.1833
3.2 38°35'18.8" 15°55'26.4" 0.1483 0.1650 0.0773 0.1336 0.1403
3.3 38°35'21.7" 15°55'14.6" 0.1415 0.1460 0.1977 0.1203 0.1437
Site 2F
1D Latitude Longitude 19/09/2009 02/10/2009 08/10/2009
g/g  cmilem® | glg  cm3/cmd glg cm¥/em®
11 38°33'33.1” 16°5'1.5" 0.1614 0.3367 0.4111 0.2228 0.3393
12 38°33'36.6” 16°5'5.8" 0.1744 0.2893 0.3497 0.1885 0.2853
13 38°33/40.2" 16°5'9.9” 0.1724 0.3177 0.4209 0.2894 0.2737
2.1 38°33'29.8” 16°5'5.1" 0.2376 0.2863 0.3685 0.2651 0.2997
2.2 38°33'32.3" 16°5'8.7" 0.2175 0.2917 0.3882 0.2642 0.3240
2.3 38°33'36.2" 16°5'13.3" 0.2276 0.3573 0.4034 0.2625 0.3913
3.1 38°33'26.3" 16°5'10” 0.1712 0.2700 0.2889 0.2590 0.3187
3.2 38°3329.1" 16°5'12.1" 0.2189 0.3257 0.3829 0.2454 0.3293
3.3 38°33'32.2" 16°5'16.9” 0.2087 0.2850 0.3921 0.2642 0.3387
Site 2G
ID Latitude Longitude 23/09/2009 01/10/2009 08/10/2009
g/g cmilem® | glg cm3/em® g/lg cmi/em®
1.1 38°29'42" 16°14'23" 0.3482 0.2517 0.2537 0.2320 0.3834
1.2 38°29'37.3" 16°14'21" 0.6592 0.2510 0.2160 0.5995 0.4055
1.3 38°29'32.8" 16°14'18.7" 0.6474 0.2100 0.2343 0.2574 0.3045
2.1 38°29'43.2" 16°14'17" 0.4860 0.2153 0.2917 0.3684 0.3986
2.2 38°29'40.1" 16°14'12.3" 0.4338 0.1810 0.1690 0.9634 0.3668
2.3 38°29'35” 16°14'13.1” 0.3676 0.2047 0.1913 0.2960 0.3393
3.1 38°29'45.7" 16°14'11.5" 0.3605 0.2530 0.2127 0.6407 0.3904
3.2 38°2940.9” 16°14'9.7" 0.4232 0.2470 0.2297 0.8089 0.6693
33 38°29'36.6" 16°14'7.3" 0.5639 0.2543 0.4007 0.2414 0.3455
Site 2H
ID Latitude Longitude 23/09/2009 01/10/2009 08/10/2009
g/g cmilem® | glg  cm3/em?® g/lg cmi/em®
1.1 38°29'39.7" 16°10'54.6” 0.3392 0.2207 0.2317 0.3275 0.3169
1.2 38°29'35.1" 16°10'56.7" 0.5204 0.2383 0.2767 0.5014 0.3647
1.3 38°2930.3"” 16°10'58.2" 0.5552 0.3337 0.2950 0.6013 0.4092
2.1 38°29'37.9" 16°10'48.7" 0.4931 0.2780 0.2623 0.4123 0.3537
2.2 38°29'34.1" 16°10'50.8" 0.4661 0.2753 0.3223 0.5313 0.3190
2.3 38°29'29” 16°10'52.3” 0.4939 0.2683 0.2900 0.4888 0.2152
3.1 38°29'36.8” 16°10'42.8" 0.4298 0.2487 0.2677 0.5340 0.2784
3.2 38°29/'32.5" 16°10'46.5" 0.5730 0.2313 0.2457 0.4483 0.2773
33 38°29'27.6" 16°10'46.3” 0.3415 0.1827 0.2003 0.3115 0.2371
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Site 21
1D Latitude Longitude 23/09/2009 02/10/2009 08/10/2009
g/g  cmiem® | glg cm3/cm? glg cm¥/cm®
11 38°31'35.1” 16°2'41.3" 0.3385 0.2250 0.2639 0.3278 0.2675
12 38°31'37" 16°2/35.6" 0.3349 0.2593 0.2415 0.2893 0.1895
1.3 38°31'38.9" 16°2'29.9” 0.2124 0.3023 0.2918 0.2073 0.2774
2.1 38°3130.5” 16°2/39.1” 0.2942 0.2597 0.3816 0.2425 0.2775
2.2 38°31'32.4" 16°2'33.3" 0.2324 0.2703 0.3040 0.1903 0.2243
2.3 38°31'34.4" 16°2'27.7" 0.2066 0.1640 0.2495 0.1743 0.2017
3.1 38°31'25.1" 16°2'36.5" 0.2477 0.3167 0.3087 0.2309 0.3210
3.2 38°31'27.9" 16°2'31.2" 0.2406 0.2673 0.3714 0.2440 0.3434
33 38°31'29.8” 16°2/25.5" 0.1674 0.2797 0.2485 0.3021
Site 2J
ID Latitude Longitude 25/09/2009 03/10/2009 08/10/2009
g/g cmilem® | glg  cm3/em® g/lg cmi/em®
1.1 38°37'32.3" 15°59'29.8” 0.2697 0.2927 0.3437 0.2500 0.3227
1.2 38°37'33.9” 15°59'23.9” 0.3713 0.3087 0.3760 0.3800 0.3620
1.3 38°37'35.6” 15°59'18.1" 0.2495 0.3500 0.4460 0.3076 0.3540
2.1 38°37'36.4" 15°59'32.8" 0.3431 0.3640 0.4990 0.2634
2.2 38°37'38.5" 15°59'25.6" 0.3400 0.3337 0.3940 0.3794
2.3 38°37'40.3" 15°59'19.8” 0.3634 0.3160 0.3997 0.3315 0.3180
3.1 38°37'41.5" 15°59'33.9” 0.2922 0.3290 0.4723 0.3529
3.2 38°37'43.2" 15°59'27.7" 0.2545 0.3593 0.3350 0.1981
33 38°37'44.9" 15°59'21.9” 0.1972 0.3193 0.3977 0.1942
Site 2K
ID Latitude Longitude 25/09/2009 03/10/2009 08/10/2009
g/g cmilem® | glg cm3/em® g/lg cmi/em®
1.1 38°40'8" 15°57'22.5" 0.3212 0.3063 0.2630 0.4067
1.2 38°40'13" 15°57'22.2" 0.3341 0.3033 0.3050 0.2661
1.3 38°40'17.7" 15°57'21.6" 0.3994 0.2620 0.2730 0.3824
2.1 38°40'8.2" 15°57'16.3" 0.4349 0.2333 0.2297 0.2888
2.2 38°40'13.2" 15°57'16" 0.3673 0.2410 0.2453 0.3428
2.3 38°40'18.1" 15°57'15.5" 0.3750 0.3003 0.2993 0.3850
3.1 38°40'8.3" 15°57'10.1" 0.4164 0.2913 0.2013 0.3617
3.2 38°40'13.1" 15°57'9.8" 0.2366 0.3163 0.1934
33 38°40'18" 15°57'9.3" 0.2407 0.2797 0.2953 0.1784
Site 2L
1D Latitude Longitude 25/09/2009 02/10/2009 08/10/2009
g/lg  cmilem® | glg  cm3/cm? glg cm¥/em®
11 38°31'47.9” 16°0'53.2" 0.2476 0.3187 0.3786 0.1881 0.3060
12 38°31'50.4" 16°0'47.9” 0.2552 0.3653 0.3947 0.2281 0.3547
1.3 38°31'52.3" 16°0'42.1" 0.2634 0.3923 0.3874 0.2806 0.3980
2.1 38°31'44.1" 16°0'49.4” 0.2396 0.3207 0.3453
2.2 38°31'46.8" 16°0'43.9” 0.2640 0.3563 0.4225
2.3 38°31'48.5” 16°0'38.2" 0.1867 0.3000 0.3260 0.2189 0.2943
3.1 38°31'40.3"” 16°0'45.6" 0.2743 0.3027 0.3993
3.2 38°31'43.2" 16°0'39.6" 0.2085 0.3287 0.3543
3.3 38°31/45.1" 16°0'33.8” 0.2347 0.2473 0.3603 0.2831 0.3757
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Site 2M
ID Latitude Longitude 28/09/2009 03/10/2009 08/10/2009
g/g cmilem® | glg  cm3/em?® g/lg cmi/em®
1.1 38°39'16.9” 16°12'25.9” 0.2395 0.1587 0.1730 0.0404 0.0543
12 38°39'14" 16°12'20.9” 0.2529 0.3237 0.3267 0.1634 0.2813
1.3 38°39'11.1" 16°12'15.9” 0.3363 0.3537 0.4140 0.4346 0.4577
2.1 38°39'20.8" 16°12/'22.3" 0.2386 0.3140 0.3490 0.2071 0.2867
2.2 38°39'17.8" 16°12'17.1" 0.1688 0.2273 0.2117 0.0816 0.1197
2.3 38°39'15” 16°12'12.2" 0.2382 0.3280 0.3533 0.2000 0.2953
3.1 38°39'25.3" 16°12'19.8" 0.1907 0.3123 0.3080 0.1553 0.2757
3.2 38°39'22.4" 16°12'14.9” 0.2357 0.2963 0.3247 0.1885 0.2157
33 | 38°39'19.1" | 16°12'9" 01883  0.2413 02477 | 01667  0.2690
Site 2N
ID Latitude Longitude 28/09/2009 03/10/2009 08/10/2009
g/g cmilem® | glg cm3/em?® g/lg cmi/ecm®
1.1 38°41'8" 16°10'39.6” 0.2281 0.3450 0.4127 0.2061 0.3210
12 38°41'3.4"” 16°10'37.6" 0.2719 0.3853 0.3830 0.2426 0.3430
1.3 38°40/58.8" 16°10'36.1" 0.2700 0.3873 0.4093 0.1990 0.2960
2.1 38°41'5.8” 16°10'44" 0.2837 0.3637 0.4477 0.2388 0.3677
2.2 38°41'1.6” 16°10'43" 0.2281 0.3220 0.3873 0.2519 0.3870
2.3 38°40'57.5" 16°10'42" 0.2959 0.3547 0.3847 0.2247 0.3167
3.1 38°41'5.5” 16°10'50.5" 0.3123 0.3207 0.4113 0.2509 0.3150
32 | 38°41'0.6" | 16°10'49.6" | 02937  0.3760 03257 | 02251  0.0920
33 | 38°40'56" 16°10'47.9" | 0.2477  0.3370 04007 | 01792  0.3380
Site 20
1D Latitude Longitude 28/09/2009 02/10/2009 08/10/2009
glg cmilem® | glg  cmi/cm® glg cm®/cm®
11 38°28'2.7" 16°0740.6” 0.1362 0.1887 0.2500 0.1270 0.2147
1.2 38°28'4.4" 16°0'43.5" 0.2098 0.2900 0.3460 0.2312 0.3350
1.3 38°28'6.7" 16°0'46.5" 0.2664 0.3467 0.3868 0.2729 0.4104
2.1 38°28'5.6" 16°0'38.3” 0.1308 0.1923 0.2716 0.1331 0.2462
2.2 38°28'7.1" 16°0'41.2" 0.2545 0.3153 0.3101 0.2369 0.3393
2.3 38°28'9.6” 16°0'44.8" 0.2222 0.2837 0.3075 0.2195 0.2989
3.2 38°28'10.2" 16°0'39.4" 0.1490 0.2557 0.2961 0.1875 0.3297
3.3 38°28'11.8" 16°0'41.5" 0.2071 0.2753 0.3107 0.1930 0.2953
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