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  1
LITERATURE!REVIEW!ON!MICROBIAL!ECOLOGY!

 
 

Chapter partially redrafted after:  

• De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T & Boon N (2013) 

Synthetic microbial ecosystems: an exciting tool to understand and apply microbial 

communities. Environmental Microbiology (in press) 

• Wang Y, Hammes F, De Roy K, Verstraete W & Boon N (2010) Past, present and 

future applications of flow cytometry in aquatic microbiology. Trends in 

Biotechnology 28: 416-424 

1. Introduction#

Microorganisms are ubiquitous on earth, with an estimated amount of 106 bacterial species 

(Lopez-Garcia & Moreira, 2008) and 4×1030 microbial cells globally (Horner-Devine et al., 

2004). Their genetic and physiological diversity result in an enormous metabolic potential. 

They contribute to nearly all biogeochemical cycles as they are the drivers of global and local 

nitrogen, oxygen, carbon, sulphur and phosphorus cycles (Schmidt, 2006), what makes them 

essential for maintaining the earth’s biosphere and for the survival of plants and animals.  

Most of these processes are accomplished by joint effort of microorganisms with different 

functional roles. These microorganisms do not act as individuals, but rather as a dynamically 

changing microbial community, where all cells interact and communicate with one another 

(Little et al., 2008; Klitgord & Segre, 2010). They influence each other’s behaviour and 

possibly alter the biochemical phenotypes of the participating strains (Wintermute & Silver, 

2010). 

Understanding the factors that shape and influence these microbial ecosystems is essential 

from a microbiological, ecological and biotechnological point of view. According to Prosser 

et al. (2007), this knowledge can be achieved by using a theory driven approach: theories are 
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generated based on existing observational data, after which they are verified using 

quantitative research. A deliberate choice of the experimental setup, methodology and 

microbial model systems is indispensable for optimal hypothesis testing. Pure cultures and 

complex microbial communities are conventionally used, however synthetic ecosystems with 

intermediate complexity and high controllability are becoming increasingly popular. 

The knowledge on the behaviour of microbial communities will allow us to predict and 

possibly counteract the negative effects caused by environmental changes like global climate 

change. Furthermore, this knowledge can be used to better understand ecological processes 

and steer microbial communities in biotechnological applications, this concept is better know 

as “Microbial Resource Management” or MRM (Verstraete et al., 2007; Read et al., 2011).  

2. Microbial#resource#management#

Microorganisms that are working together in a microbial community require management as 

much as humans do that are working together in an organisation or company. Similar to 

human resource management, we could also introduce microbial resource management 

(MRM) for microorganisms. This MRM was suggested the first time by Verstraete et al. 

(2007). The key purpose is to control and steer microbial communities and microbial 

processes in different environments to improve the environment, human health and 

biotechnological applications in the most sustainable way (Read et al., 2011). In order to 

manage a microbial community, different questions need to be answered: Who is present? 

How many of them are there? Are they equally abundant? Who is interacting with whom? 

Who is doing what? etc. Different microbiological techniques and molecular tools exist to 

analyse microbial communities (see Chapter 1, section 4) and different methodologies and 

experimental procedures have been developed to get an understanding of microbial 

communities (see Chapter 1, section 3). In order to deal with all this information and to allow 

interpretation of the obtained data, a set of MRM tools was developed by Marzorati et al. 

(2008). These MRM parameters are range-weighted richness (Rr), dynamics (Dy) and 

community organisation (Co). They were initially developed for data obtained from 

molecular fingerprinting techniques like DGGE, but the tools have been extended to other 

techniques like pyrosequencing (Read et al., 2011; Marzorati et al., 2013).  
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2.1. RangeGweighted#richness#

The range-weighted richness (Rr) gives an indication of the genetic diversity and the species 

richness of an ecosystem. For DGGE, which uses a denaturating gradient to separate DNA on 

a gel according to its GC-content, the number of bands (N) corresponds to the number of 

species or species richness. The denaturating gradient (Dg) that is required to separate the 

DNA is used to describe the genetic diversity. The Rr is calculated as follows: 

 !" = !"#$%#&!!"#ℎ!"##!×!"#"$%&!!"#$%&"'( 

 !!!!!!= !!×!! 

High Rr-values indicate an environment with a high carrying capacity, this means that the 

environment is able to host several genetically diverse species (Marzorati et al., 2008).  

Even though Rr gives information on both species richness and genetic diversity, it is often 

only species richness that has been studied. The relation between richness and the invasion of 

non-native species has been studied in disparate terrestrial and aquatic environments, however 

there is no consensus on the this relation, both positive and negative correlations have been 

described (Stachowicz et al., 1999; Jiang & Morin, 2004; Simberloff et al., 2012). Next to 

invasion, also the relation between community functionality and species richness has been 

studied in different environments. Bell et al. (2005) used synthetic microbial ecosystems to 

show a positive relation between species richness and community functionality. A richness of 

18 species result in high functionality, the addition of additional species only had a minor 

effect on community functionality. 

2.2. Dynamics#

The second MRM parameter, community dynamics, is used to determine how much a 

community changes over fixed time intervals. It is visualised by a moving window analysis 

(Figure 1-1). This shows the percentage of change within a microbial community between 

consecutive time points (Marzorati et al., 2008). This concept can be interpreted as the 

number species that on average come to dominance (Read et al., 2011). Communities with 

low dynamics are regarded as closed, as they do not allow other species to become dominant. 

While in a highly dynamical community a lot of species can become dominant or leave the 

community.  
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Figure 1-1. Visualisation of the dynamics (A) and community organisation (B). A. The dynamics is 
visualised by a moving window analysis. This shows the percentage of change of a microbial 
community between two consecutive time points. B. The community organisation is visualised by a 
Lorenz curve and the corresponding Gini coefficient. The Lorenz curve is constructed by plotting the 
cumulative number of species on the x-axis and the cumulative relative abundance on the y-axis. The 
surface between the perfect evenness line (red line) and the Lorenz curve (blue line) corresponds to 
the Gini coefficient and gives an indication of the community evenness. 

2.3. Community#organisation#

The third MRM parameter is community organisation (Co) or community evenness and is a 

measure of the organisation and structure within a microbial community. It describes the 

difference between the relative abundance of different species and can be visualised by 

Lorenz curves (Lorenz, 1905; Mertens et al., 2005). These Lorenz curves are constructed by 

plotting the cumulative relative abundance of species, ranked from high to low abundance, on 

the y-axis and the cumulative number of species on the x-axis (Figure 1-1). For DGGE, the 

relative abundance of species is obtained from the relative band intensities on the DGGE-

profile (Marzorati et al., 2008). Lorenz curves deviating more from the diagonal, which is the 

complete evenness line, indicate more uneven structured microbial communities. In this case, 

a small number of species are dominant, while many others are resilient. This evenness is 

quantified by the Gini coefficient and is the surface between the Lorenz curve and the perfect 

evenness line. As such, high Gini coefficients correspond to uneven communities and low 

Gini coefficient to even communities. 

Community evenness has been shown to be a key factor in preserving the functional stability 

of an ecosystem. By the use of more than 1000 synthetic ecosystems, it was shown that 

uneven communities are less resistant to stress, resulting in a decreased community 

functionality, compared to even communities (Wittebolle et al., 2009). 
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3. Understanding#microbial#communities#

3.1. Pure#cultures#

Culture-dependent methods allow the isolation of single microbial community members for 

in-depth analysis of their genetic and physiological characteristics. The body of literature on 

research with single microorganisms is tremendous (Jessup et al., 2005). While such single 

microorganisms are the simplest microbial experimental systems in ecology, they are still not 

fully understood. Since the –omics era, a lot of knowledge on these simple model systems is 

gained. Over 4000 complete microbial genomes have been sequenced, while more than 12000 

are in progress (www.genomesonline.org). Transcriptomics, proteomics and metabolomics 

gave further insight into their functionality, resistance to stress and adaptation. This increased 

understanding on how microorganisms function, led to the urge to steer and manipulate them. 

Synthetic biology, which is the application of engineering methodology to biology, was 

proven to be very useful (Endy, 2005; Leonard et al., 2008). Microorganisms have been 

engineered to improve their resistance to stress, to have a higher productivity, to degrade toxic 

and recalcitrant compounds, to synthesize new chemical compounds or to have other 

particular – unnatural - characteristics (Benner & Sismour, 2005). The numerous capacities of 

both genetically engineered and wild-type microorganisms make them interesting for different 

applications. They are used as probiotics in the medical and food industry (Steidler et al., 

2000; Huibregtse et al., 2012), as cell factories for valuable products in the food, 

pharmaceutical, chemical and agriculture industry, with products ranging from anticancer 

drugs to biofuels (Du et al., 2011; Waegeman & Soetaert, 2011).  

The fact that (i) only a small fraction of the microorganisms present in a microbial community 

can be cultured and (ii) the behaviour of microorganisms as pure cultures is different from 

their behaviour in a microbial community has caused a shift from single-organism studies to 

whole community studies. 

3.2. TopGdown#approaches##

Molecular fingerprinting and high-throughput sequencing techniques are used to characterise 

these microbial communities. These techniques use a top-down approach and target microbial 

communities as a whole. Metagenomics, metatranscriptomics and metaproteomics give 

information on the taxonomic and functional diversity, the population structure, the presence 

of genes as well as their expression levels and levels of translation into proteins 
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(VerBerkmoes et al., 2009; Temperton & Giovannoni, 2012). A drawback is the complex 

post-processing of the big amount of data obtained by these high-throughput techniques (Raes 

& Bork, 2008). Even with the most advanced bioinformatics tools and sequencing 

technology, it is almost impossible to assign the (expressed) genes and proteins, and thus the 

functionality, to specific species (Temperton & Giovannoni, 2012; Zengler & Palsson, 2012). 

Furthermore, it is not possible to fully map and understand the microbial interactions, which 

are often the driving force of a community. All this makes that microbial community research 

mainly encompasses observational studies, while for more fundamental studies, like studying 

metabolic interactions, less complex systems are required. 

3.3. Synthetic#ecosystems#

Compared to the amount of literature available on single organisms and complex microbial 

communities, only a small fraction of microbial ecology research makes use of synthetic 

microbial communities. Synthetic microbial ecology is a collective noun for all assembled 

ecosystems that are created by a bottom-up approach where two or more defined microbial 

populations are assembled in a well-characterised and controlled environment (Figure 1-2). 

These synthetic ecosystems have a lower complexity, higher controllability, higher 

reproducibility and are a simplified representation or simulation of natural ecosystems. 

Synthetic ecosystems are used (i) to gain insight in fundamental principles such as metabolic 

processes, interactions, networking, diversity-functionality relation and nutrient cycling and 

(ii) to create interactions and communities with desired characteristics and functionality. 

Alternative terms for similar experimental setups are microcosms or artificial ecosystem, 

while other terms have been mistakenly used for synthetic ecology: (i) synthetic biology, 

which is the engineering of cells and (ii) systems biology, which considers the use of a top-

down approach to understand a system by characterising the different parts.  

3.3.1. Ecological#relevance#

While a microbial community as such is already complex, numerous environmental factors 

further increase the level of complexity (Figure 1-3). Microorganisms live in close contact 

with each other as they continuously interact and communicate (A) with one another (Little 

et al., 2008; Klitgord & Segre, 2010). These interactions may be unidirectional or 

bidirectional (West et al., 2006). Molecules are produced that can be beneficial or detrimental 

for both the actor and recipient. Different kinds of interactions and cooperation are present in 
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nature: mutualism, syntrophy or cross-feeding (beneficial to the actor/beneficial to the 

recipient; +/+), selfishness or parasitism (beneficial to the actor/costly to the recipient; +/-), 

spite (-/-) and altruism (-/+) (West et al., 2007a; Faust & Raes, 2012). Microorganisms can 

communicate with one another through mechanisms like quorum sensing, which allow them 

to express certain genes under favorable conditions in a coordinated manner (Manefield & 

Turner, 2002). Next to the abundant microorganisms that actively contribute to the 

functionality of the ecosystems, numerous species are present in lower abundance. They are 

regularly categorized as redundant and are responsible for the resilience (E) of the 

community (Bissett et al., 2013). Abiotic factors (C) like temperature, salinity and pH can 

alter the environment in such a way that most of the abundant microorganisms cannot 

perform their role in the community anymore (Wu & Conrad, 2001; Sharma et al., 2006). 

Under these circumstances, redundant species can take over and guarantee the ecosystem 

functionality. The resilience of a community is thus also strongly dependent on the 

community diversity (B) (Loreau et al., 2001). Both the number of microorganisms 

(richness) and their relative abundance (evenness) influence the resistance to stress, invasion 

and predation (Wittebolle et al., 2009; Saleem et al., 2012; De Roy et al., 2013). Next to the 

microbial diversity, also the spatial organisation (F) as it exists in a biofilm, can be of 

importance (Tolker-Nielsen & Molin, 2000). It allows only those species that are located in 

close proximity to interact and communicate with each other; furthermore, it provides 

microenvironments and niches for specific microbes.  
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Figure 1-2. Flow chart of how to create synthetic ecosystems. Synthetic communities are created by a 
bottom-up approach, this means one bacterial species at a time. For this, microorganisms first get 
isolated from their natural environment and grown in liquid medium. Subsequently they get measured 
by flow cytometry and diluted to the desired cell numbers. Synthetic communities are created by 
mixing the microbial species in correct proportions, the desired conditions are applied and the 
synthetic ecosystems get incubated. Eventually, all parameters of interest, like functionality and cell 
count, get analysed. 
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Figure 1-3. Synthetic ecosystems for research purposes. Natural ecosystems are complex: different 
factor that influence and shape microbial communities are present and cannot be controlled. These 
factors are: A) Metabolic interactions, signalling and communication B) Diversity, C) Abiotic or 
environmental factors, D) Biotic factors like invasion and predation, E) Resilience and redundancy 
and F) Architecture and spatial organisation. Research with pure cultures provides a lot of 
information on individual population‘s genetic, physiological and morphological characteristics (a) 
and resistance and sensitivity to stress (b). However, they do not allow researchers to investigate the 
factors shaping and influencing microbial communities. For this, synthetic ecosystems are a powerful 
tool, they have a reduced complexity and higher controllability compared with natural ecosystems. 
They allow focusing on one of the parameters of interest while excluding other influencing factors.  
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All these factors shape, characterise and influence an ecosystem and its functioning. By 

interfering with one of these parameters, a complete ecosystem might collapse. However, also 

the opposite might happen as an ecosystem may perform better or new functions can be 

introduced. By doing research and gaining knowledge on these fundamental principles, it will 

become possible to steer, manage and create ecosystems to optimise their performance. 

 

In situ or in vivo models are complex systems in which nearly all of the above-mentioned 

influencing factors are present, thus giving a good representation of the real situation. The 

complexity of the microbiota in these systems is useful for the validation of different products 

or treatments, but may also be a confounding factor for research purposes, as most of the 

influencing factors cannot be controlled. Intrinsic system effects and reciprocal interactions 

may even lead to opposite conclusions on the role of a specific parameter in closely related 

ecosystems (Wilsey & Polley, 2002; Emery & Gross, 2007). For this reason, synthetic 

ecosystems are a powerful tool to investigate fundamental principles in natural and 

engineered systems. They limit the influencing factors to a minimum, allowing their 

management and tracking of the effects of the above-mentioned parameters. Furthermore, 

fully characterised microorganisms with a well-defined genetic background can be used in 

synthetic ecosystems. In the following paragraphs, we provide several examples of how 

synthetic microbial ecosystems have been used to study the role of specific influencing 

factors. 

3.3.2. Ecological#theory#testing#

The first synthetic ecosystems were used to study microbial interactions and signalling, as 

reviewed by Yu et al. (2012). For this type of research, communities mainly consist of only 

two or three microbial species, which are often also being genetically engineered to create the 

interaction of interest or to simplify tracking of the parameters of interest. In this way, 

hypotheses can be tested that would otherwise not be accessible (Wintermute & Silver, 2011). 

Next to creating an interacting community by genetically engineering the organisms, Klitgord 

and Segre (2010) showed it is also possible to create interactions by changing the 

environment: for every two species-consortium, a cooperation-inducing environment could be 

identified. Environmental factors, like the availability of nutrients, temperature, presence of 

toxic compounds and oxygen-level not only influence microbial interactions, but also 

influence the resilience of a community, which on its turn is influenced by the microbial 
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diversity. To get insight in the biodiversity-productivity relationship along different kinds of 

stress, researchers also opted for synthetic microbial ecosystem experiments. This allows 

controlling the evenness and richness, the applied stress and the follow up of the 

functionality, which is not possible in natural environments. Doing so, Wittebolle and 

coworkers investigated the effect of community evenness on the functionality of a 

denitrifying bacterial community in the presence and absence of salinity stress. They created 

over 1000 synthetic ecosystems in 96-well plates with the same 18 denitrifying strains, but 

with different levels of initial evenness. It was concluded that highly uneven communities 

(low biodiversity) are less resistant to environmental stress than even communities (high 

biodiversity). The latter could better retain their functionality under stress conditions 

(Wittebolle et al., 2009). In another study regarding the effect of richness on resistance to 

cadmium pollution, 330 synthetic ecosystems differing in the number of algal species were 

created. It was shown that the conservation of biodiversity (richness) may reduce the future 

impacts of increasing environmental stresses (Li et al., 2010). A positive relationship between 

richness and functionality was also shown by Bell et al. (2005) by using synthetic 

microcosms with up to 72 bacterial species. Finally, Gravel et al. (2011) showed that the loss 

of specialists - strains that exploit only few resources - has a stronger effect on ecosystem 

functioning, compared to loss of generalists, which are able to use a spectrum of substrates.  

The effect of trophic interactions - such as predation - on ecosystem functioning was 

investigated by altering the predator and prey richness. Predators were simulated by three 

bacterivorous protists, while five bacterial strains were used as model organisms of the prey. 

It was shown that the presence of multiple predators resulted in increased bacterial diversity, 

which had a positive effect on bacterial yields (Saleem et al., 2012; Saleem et al., 2013).  

Finally, the spatial organisation and architecture of microbial community is also crucial to 

maintain a stable and functional community. By combining FISH with a digital image 

analysis software that quantifies the spatial localisation patterns of microorganisms in 

complex samples, it was shown that functionally linked species cluster together in a microbial 

community (Daims et al., 2006). Kim et al. (2008) controlled the spatial organisation of a 

community by using a microfluidic device that controls the distance between three wild type 

soil bacterial populations with syntrophic interactions. In this community each species is 

required for the survival of the community. It was shown that spatial organisation is necessary 

to balance competition and beneficial interactions to create a stable community (Kim et al., 

2008). Brenner et al. (2011) used two genetically engineered E. coli populations to study the 
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benefits of the formation of physical structures like biofilms. Species associated in a biofilm 

were shown to be more productive than non-associated community members.  

In conclusion, the use of synthetic ecosystems increased our knowledge regarding factors that 

shape and influence microbial communities. Such advances would have been almost 

impossible to obtain in natural ecosystems due to the presence of confounding factors that 

cannot be controlled or measured. As a result, the research regarding synthetic ecosystems 

initiates many opportunities to manage ecosystems. By changing one of the parameters, the 

community can be steered and a desired effect can be created.  

4. Analysing#microbial#communities#

In order to be able to perform MRM and to allow the management of microbial ecosystems, 

more information about the current status of the microbial community, like its composition, 

structure and physiological characteristics, is required. Numerous techniques are available, all 

with their advantages and disadvantages. Conventionally, culture based and molecular 

methods are used, which are time-consuming and labor intensive. Therefore, the potential of 

flow cytometry as a fast and accurate methodology to study microbial communities is being 

investigated. 

4.1. Conventional#techniques#

Techniques to analyse microbial communities can be subdivided into two categories: culture-

dependent and culture-independent techniques. Cultivation on general or selective solid media 

is a technique commonly used to assess the composition of microbial communities in 

environmental samples (Prakash et al., 2013). It owes its widespread use to its user 

friendliness: it is easy to use and cheap. Nevertheless, it has some important disadvantages, 

the long incubation times (two to three days) make it a time-consuming technique. 

Furthermore it is highly selective, only about 1% of the microorganisms can be cultivated 

(Allen et al., 2004). Although a lot of effort has been done to improve the cultivation 

efficiency by mimicking the original sample matrix and optimising the incubation conditions 

(Andreote et al., 2009), the discrepancy between the culturable and total microbial fraction 

remains, plating still greatly underestimates microbial diversity. Therefore, culture-

independent techniques, which do not require cultivation or isolation of microorganisms, 

became increasingly important. They can be categorized into two groups, direct and indirect 

methods (Dahllöf, 2002).  
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Figure 1-4. Overview of different techniques to study microbial communities (Adapted from Dahllöf 
(2002)). Black boxes indicate preparatory steps and the product that is analysed by the detection 
techniques. Boxes with a coloured frame indicate detection techniques to analyse the sample, 
extracted nucleic acids or amplicons. 

With direct methods, the sample itself can be analysed directly. Prior to analysis, cells can be 

(selectively) labelled with fluorescent stainings or probes (FISH, fluorescent in situ 

hybridisation). This, however, does not require isolation of DNA and samples are analysed as 

such by cytometric techniques like microscopy (Amann, 1995). 

Indirect methods require preparatory steps, like the extraction of nucleic acids and polymerase 

chain reaction (PCR) of target genes. The 16S rRNA gene is currently the gene mostly 

applied for this, however also functional genes can be used (Dahllöf, 2002). It is not the 

sample as such that is being analysed, but the extraction- or PCR-product (Figure 1-4). 

Molecular techniques like Denaturating Gradient Gel Electrophoresis (DGGE), Temperature 

Gradient Gel Electrophoresis (TGGE) and Terminal Restriction Fragment Length 

Polymorphism (T-RFLP) are DNA-based fingerprinting techniques. Following PCR, the 

amplicons are separated based on different intrinsic properties, which depend on the 

technique used. For T-RFLP this is the length of the terminal fragments after restriction. 

DGGE and TGGE apply respectively a denaturing and temperature gradient to separate the 

amplicons based on the GC-content of the sequences (Muyzer et al., 1993). The obtained 

band- or peak pattern serves as a qualitative and semi-quantitative fingerprint of the microbial 

community. Each band corresponds to a different phylotype. The number of bands is thus a 
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measure for the community richness (i.e. the number of species present in a microbial 

community) (Marzorati et al., 2008; Read et al., 2011). Molecular fingerprinting techniques 

are especially useful for making an estimate of the diversity of a microbial community and to 

detect changes within or differences between microbial communities. Identification of the 

microbial species is however not directly possible. For this cloning and sequencing are 

required (Dahllöf, 2002).  

The decreased cost and technological advances of high-throughput sequencing techniques 

such as 454 pyrosequencing and Illumina, greatly increased the popularity of sequencing 

approaches the last few years. They can be used to analyse the community structure and 

diversity and to identify individual species (Temperton & Giovannoni, 2012; Parkhill, 2013).  

An important disadvantage of these DNA and RNA based fingerprinting techniques is the 

need for isolation of the nucleic acids, followed by PCR. Both steps introduce bias in the 

analysis of microbial communities (Becker et al., 2000; Guo & Zhang, 2013). Furthermore, 

all these techniques are time-consuming. In the light of MRM, there is need for fast 

fingerprinting techniques that allow immediate intervention in case of problems or 

irregularities. The potential of flow cytometry was investigated in this context. 

4.2. Flow#cytometry##

4.2.1. Flow#cytometric#measurement#

Flow cytometry is an established technique in microbial ecology, it allows the analysis of 

microbial communities at community and single-cell level. To obtain this single-cell analysis, 

liquid samples are guided to the laser by hydrodynamic focusing in such a way that the 

particles pass the centre of the laser beam one by one. Each particle that passes the laser will 

cause scattering of the light in all directions. A part of this light is collected in the same 

direction as the laser beam at a low angle and is known as forward scatter (FSC). The 

intensity of the FSC is a measure of cell size. Another detector is positioned perpendicular to 

the laser beam and detects the light at an angle of 90°, which is known as sideward scatter 

(SSC). The intensity of the SSC is in relation with the internal complexity and granular 

structure of the particles (Diaz et al., 2010). Fluorescent molecules present in the cell will 

absorb light energy of a specific wavelength and emit light of a longer wavelength. The 

excitation and emission wavelength vary between fluorochromes. This fluorescent light is 

detected by sensitive photomultiplier tubes (PMT) after it has been sorted by different 
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dichroic mirrors and optical filters. These mirrors and filters separate light with different 

wavelength and guide it to the correct PMT. This process of single-cell analysis is performed 

at a rate of thousands events per second.  

For each particle, all parameters - being FSC, SSC and the different fluorescent signals - are 

recorded and analysed. These datasets are graphically visualised by the use of 

monoparametric histograms and biparametric dot plots.  

 

 
Figure 1-5. Scheme of the working mechanism of a standard flow cytometer. A liquid sample is 
guided in a single beam of particles to the centre of a laser beam by hydrodynamic focusing. Each 
particles causes scattering of the light. Forward scatter light (FSC) is detected in the same direction 
as the laser, light in a 90° angle is detected by the sideward scatter detector (SSC). Fluorescent light 
is transported to different detectors by dichroic mirrors and filters. All signals are sent to a computer 
and processed. 

4.2.2. Fluorescent#labelling#

Abiotic particles, such as crystals and dust, also induce light scattering, just like prokaryotic 

and eukaryotic cells. Because of the small size of bacteria, it can be hard to discriminate them 

from these background signals. Therefore, bacteria are often labelled with fluorescent 

molecules. Fluorochromes allow performing cell differentiation based on morphological, 

structural or functional cell properties, such as membrane integrity, membrane potential and 

enzyme activity (Figure 1-6).  
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Membrane permeant nucleic acid stains like SYBR Green and SYTO 9 are conventionally 

used to stain all microbial cells, regardless of their physiological state (Wang et al., 2010). 

They passively diffuse through the membrane of most cells and become fluorescent (SYTO) 

when bound to nucleic acids or their fluorescence is enhanced (SYBR Green) (Gregori et al., 

2001; Diaz et al., 2010). The fluorescent intensity of a single cell is correlated to the amount 

of nucleic acids present in the cell. As such high nucleic acid (HNA) and low nucleic acid 

(LNA) bacteria can be distinguished (Wang et al., 2009). 

Membrane impermeant nucleic acid stains such as propidium iodide (PI) are not able to 

penetrate cells with an intact membrane, only cells with damaged membranes get stained. PI 

is the most commonly used dye to evaluate the membrane integrity and, as such, the viability 

of bacterial cells. Frequently, this type of stain is used in combination with the general stains 

SYBR Green or SYTO 9. These combinations are often erroneously called live/dead 

stainings, while they only differentiate between cells with damaged and intact cytoplasmic 

membranes (Berney et al., 2007). 

Membrane potential also provides information about the viability. It is a measure of the health 

of bacterial cells, as it is directly linked to ATP formation. Cells that are not able to maintain 

the potential get depolarised, have a decreased cell activity and are regarded as dead (Shapiro, 

1994). DiBAC4 is an anionic dye that accumulates in depolarised cells and stains cells that are 

not able to maintain the cell potential (Diaz et al., 2010). 

Enzyme activity can be used as a measure for metabolic activity. Non-fluorescent substrates 

passively diffuse through the membrane and are converted into membrane impermeable 

fluorescent products by intracellular enzymes. Carboxyfluorescein diacetate (CFDA) is used 

to evaluate esterase activity and gets converted into the fluorescent carboxyfluorescein 

(Hoefel et al., 2003). 

Next to this wide variety of fluorescent dyes to differentiate cells based on functional cell 

properties, fluorescent labelled probes and antibodies can be used to stain specific groups of 

microorganisms. Fluorescent in situ hybridisation (FISH) is mostly targeted towards 16S 

rRNA, it can however also be targeted to functional genes. Like this, specific taxonomic 

groups or cells with certain functionality can be detected (Amann, 2000; Porter & Pickup, 

2000). Labelled antibodies can be used to detect specific microbial antigens (Hammes & Egli, 

2010). 
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Figure 1-6. Fluorescent labelling of bacterial cells. This scheme gives an overview of different types 
of fluorochromes, their working mechanisms and target sites (Adapted from Diaz et al. (2010)). 

4.2.3. Flow#cytometry#to#date#

The attractions of flow cytometry for the use in microbial ecology include the rapid analysis, 

increased accuracy and the availability of numerous types of fluorescent labelling methods. 

Furthermore, microbial cells can be detected irrespective of their culturability and no major 

pre-treatment steps like DNA extraction or PCR are required. Therefore, there is an increasing 

interest in using flow cytometry in different industries, like drinking water production and 

distribution (Hammes et al., 2010), wastewater treatment (Guenther et al., 2012), quality 

control of food and drinks (Ruszczynska et al., 2007) and fermentation processes (Andorra et 

al., 2011). 

To date, flow cytometry is mainly used to count and differentiate cells based on their 

physiological and morphological characteristics. This can only be obtained by post-processing 

of the flow cytometry data. Conventionally, this is done by a visual interpretation of the 

histograms and dot plots. Approximated polygons are drawn around cells with specific 
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characteristics, in data-analysis terms: particles with higher or lower light intensities in the 

different scattered or fluorescent light channels. This process is not only very subjective 

(Maecker et al., 2005), it also requires experienced personnel and is time consuming in case 

of a high number of samples. Furthermore, the combination of fluorescent dyes requires 

multi-parametric analysis. Three parameters can be visualised on a 3D dot plot, but more 

dimensions cannot be displayed on a single graph and multiple dot plots need to be created 

and analysed. Efforts have been done to create automated algorithms to analyse flow 

cytometry data, this involves automatic gating and feature extraction (Bashashati & 

Brinkman, 2009). But the comparison of different samples and detection of changes within a 

microbial community is still done manually.  

4.2.4. The#road#to#go:#flow#cytometric#fingerprinting#

Microbial communities are subjected to changes in various parameters in their environment, 

such as temperature, oxygen and pH. The short-term effects of these changes cannot be 

detected by standard molecular methods because the microbial response is not at the genetic 

level. Under such circumstances, flow cytometry in combination with fluorescence dyes and 

statistical analyses can provide fast and accurate assessment of physiological and functional 

changes in a community. During flow cytometric measurement, multiple parameters, such as 

fluorescence intensity and scattered light signals, are collected for individual cells. For 

example, for analysis of four separate parameters in one bacterial sample comprising 10000 

cells, statistical analysis of the resultant 40,000 data points will generate a fingerprint for the 

bacterial community. Hence, each bacterial community under a certain condition could have a 

unique fingerprint signature and subtle changes might be detectable according to changes in 

these fingerprints. This method could serve as a sensor in treatment processes for drinking 

water, reused water and wastewater, or as a reliable tool for microbial resource management 

in the future (Marzorati et al., 2008).  

5. Objectives#and#outline#of#this#research#

Knowledge is power! Knowledge of microbial ecosystems will allow us to predict and 

possibly counteract the negative effects caused by environmental changes like global 

warming. Knowledge of microbial ecosystems will allow us to perform microbial resource 

management and to steer microbial communities in numerous biotechnological applications. 

To make this possible, more research on the factors that are known to influence microbial 
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communities is necessary. In a first part of this thesis, synthetic microbial communities are 

used to investigate the effect of biological invasion and salt stress on the functionality of the 

community (Chapter 2). The establishment and progression of microbial interactions within 

such a community is investigated in Chapter 3. The results obtained in Chapter 2 and 3 allow 

us to better understand microbial communities. They bring us one step closer to the 

management of microbial communities. To allow this management approach, microbial 

community analysis techniques are required that are able to provide more information about 

the current status of the microbial community, like its composition, structure and 

physiological characteristics. In the second part of this thesis, the potential of flow cytometry 

as a fast and accurate methodology to study microbial communities is being investigated. A 

flow cytometric fingerprinting technique that is able to detect changes between and shifts 

within microbial communities is developed (Chapter 4). In chapter 5, the applicability of this 

technique is tested in a water distribution network. 

 

 
Overview of the different chapters 
In Chapter 2, biological invasion of non-native species in a microbial community was 

investigated under fully controlled starting conditions. We evaluated the degree of invasion 

and the effect on the community functionality in relation to the initial community evenness in 

presence of specific environmental stressors. We did this by using synthetic microbial 

communities consisting of 17 denitrifying bacterial species and a gfp-tagged invader. 

Denitrification was used as a measure of functionality, the number of invaders was measured 

by flow cytometry. 

 

In Chapter 3, the effect of interspecies relatedness on the establishment of a mutualistic 

interaction was investigated. Synthetic microbial communities were created that were only 

able to survive upon the establishment of mutualism. For this, an ampicillin resistant strain 

auxotrophic to tyrosine was grown in combination with closely related and distantly related 

ampicillin sensitive species. The total fitness of the auxotroph was used as a measure of 

cooperation. 

 

In Chapter 4, a flow cytometry based approach was developed for a fast and objective 

comparison of microbial communities based on the physiological status of single cells within 

these communities. Firstly fingerprint data was generated by the flow cytometric analysis of 
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different brands of bottled water and water that was exposed to different kinds of stress. 

Secondly a novel statistical pipeline for the analysis of flow cytometric data was developed.  

 

In Chapter 5, the flow cytometric fingerprinting technique developed in chapter 4 was 

applied in the water distribution network. The water used during the rinsing procedure of 

water pipes was sampled and analysed every hour. Subsequently, the fingerprinting technique 

was used to determine the minimal rinsing time required to obtain water of the desired 

quality.  

 

Finally, in Chapter 6, the obtained results are discussed in the framework of the research 

objective and conclusions are drawn. 
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Abstract 

Biological invasion is widely studied, however conclusions on the outcome of this process 

mainly originate from observations in systems that leave a large number of experimental 

variables uncontrolled. Using a system, consisting of assembled bacterial communities, that 

controls the environmental factors and the initial community composition, we evaluate the 

degree of invasion and the effect on the community functionality in relation to the initial 

community evenness under specific environmental stressors. We show that evenness 

influences the level of invasion and that the introduced species can promote functionality 

under stress. The evenness-invasibility relationship is negative in the absence and neutral in 

the presence of stress. Under these stress conditions, the introduced species is able to maintain 

the functionality of uneven communities. These results indicate that communities, initially 

having the same genetic background, in the presence of the same invader, react in a different 

way with respect to invasibility and functionality depending on specific environmental 

conditions and community evenness. 

 

 

 

 

Chapter redrafted after:  

De Roy K, Marzorati M, Negroni A, Thas O, Balloi A, Fava F, Verstraete W, Daffonchio D 

& Boon N (2013) Environmental conditions and community evenness determine the outcome 

of biological invasion. Nature Communications 4:1383.  
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1. Introduction#

Biodiversity has been shown to significantly influence invasion in disparate aquatic and 

terrestrial environments (Stachowicz et al., 1999; Simberloff et al., 2012). Biodiversity 

correlates positively (Jiang & Morin, 2004), negatively (Wilsey & Polley, 2002) or neutrally 

(Emery & Gross, 2007) with the capacity of species to invade resident communities. Many 

factors, such as nutrient availability (Jiang & Morin, 2004), scale (Dunstan & Johnson, 2006), 

functional niches (Tilman et al., 1997), environmental stressors (Kneitel & Perrault, 2006), 

facilitation or competition (Bruno et al., 2003) and biodiversity (Davis, 2009) can co-occur, 

driving the invasion process and influencing the final outcome. The available studies, mainly 

based on observations, do not take into account intrinsic system effects and a large number of 

non-controlled variables are present (climatic conditions, soil type, soil microbial community, 

presence of symbiotic or antagonistic partners, etc.) (Rout & Callaway, 2009; Andonian et al., 

2011). These confounding factors and the reciprocal interactions may lead to opposite 

conclusions on the role of a specific parameter, even in closely related ecosystems (Wilsey & 

Polley, 2002; Emery & Gross, 2007). Experiments conducted under controlled conditions 

give the opportunity to target some of these confounding factors, eventually explaining the 

inter-system variability, despite the fact that this approach is a simplification of the reality. In 

this study, we applied the approach used by Wittebolle et al., which is well suited for 

validating ecological theories (Naeem, 2009) and can be run under controlled conditions. The 

effect of an introduced species (termed the ‘invader’) on ecosystem functionality was 

investigated in relation to the initial evenness of the native community. We decided to focus 

on evenness and to maintain a high level of richness because natural and anthropogenic 

activities primarily influence the relative abundance of species long before a species is 

threatened by extinction (Chapin et al., 2000; Bell et al., 2005).  

2. Material#and#methods#

2.1. Experimental#design##

In this study, we used 210 mixtures with different evenness values, corresponding to unique 

Gini and dominant species combinations. These mixtures were created following a stochastic 

exchange search algorithm for D-optimal designs (Atkinson et al., 2007) according to the 

following procedure. The first step was the random construction of a design. The relative 
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abundances of the 17 species were randomly assigned. Five 96-well plates were randomly 

filled with the mixtures, with adjacent duplicates of each mixture. Negative controls were 

positioned in the centre and the corners of each plate to assess potential row, column and plate 

effects. We computed the D-optimality criterion for this random design and a linear model, 

with factor effects for the row, column, invader and salt stress, a random effect for the plate, 

and a linear and quadratic effect for the Gini. In the next step, the mixtures were randomly 

exchanged between positions and plates, and the D-optimality criterion was computed for 

each new design; this procedure was repeated 1,000 times. The best design with the largest D-

optimality criterion was selected as the quasi D-optimal design. The complete procedure, 

starting from the construction of the random design, was also repeated 10,000 times. From the 

10,000,000 evaluated designs, the design with the largest D-optimality criterion was selected 

for this study. During the optimisation process, the convergence of the D-optimality criterion 

was monitored to ensure that the final selected design was sufficiently well converged. 

 

-- Information box statistics -- 

Optimising the experimental design using the D-optimality criterion  

The aim of the experiments is to model the effects of the Gini coefficient, salt stress and invader 
concentration on the response variables invasion, functionality and cell count community. Since only a 
limited number of experimental tests can be performed, it is important that the tests are designed in the 
most optimal way to allow (1) efficient estimation (i.e. small variance of estimators) of the parameters 
for the stress, invader and Gini effects and (2) large power of the related statistical tests. With a not 
optimal design, more runs would be required to obtain parameter estimates with the same precision 
and tests with the same power. 

But next to the parameters of interest, also other parameters are present that can have an effect on the 
response variables, like row, column and plate effects. If, for example, all mixes with a high Gini 
would be positioned in one plate, while mixes with a low Gini are positioned in another plate, it would 
not be possible to determine if the observed effect is attributed to a plate or Gini effect (i.e. 
confounding between plate and Gini effects). Therefore, the design should guarantee that all 
parameters can be estimated (estimable). 

So, to get an optimal design, both the composition of the mixes and the positioning within a plate and 
the distribution over the different plates need to be optimised so as to guarantee estimability and 
maximise efficiency and power. 

The optimality of an experimental design depends on the statistical model, which is a linear model 
with effects for plate, row, column, invader, salt stress and Gini. The optimality is measured by a 
statistical criterion, in this case the D-optimality criterion. If only one parameter would be present, this 
criterion aims at minimising the variance of the estimator, which is equivalent to maximising the 
information. In the case of multiple parameters, as it is in this experimental setup, the D-optimality 
criterion is the determinant of the information matrix, which is the inverse of the variance-covariance 
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matrix of the vector of the parameter estimators. As such, the D-optimality criterion needs to be 
maximised, resulting in a design with overall the smallest variances and covariances of the parameter 
estimators. Because of the relation between variance and power, this design will also result in the 
largest overall power.  

In a first stage of the experimental design, mixes with different relative abundance (and thus different 
Gini) are randomly created. These mixes are then randomly distributed over multiwell plates and the 
D-optimality criterion is calculated for the linear model. In the next step, the positions of the same 
mixes were randomly changed and again the D-optimality criterion calculated. The step of random 
position change was repeated 1,000 times and every time the criterion was calculated. Since also the 
composition of the mixes is of importance, the complete procedure of randomly creating the mixtures 
and shuffling the positions was repeated 10,000 times. Eventually 10,000,000 designs were evaluated 
and the design with the highest D-optimality criterion was retained and used for the experiment. This 
algorithm is a variation of a Federov algorithm for searching for optimal experimental designs.  

2.2. Laboratory#methods#

A chromosomally gfp-tagged fermentative Pseudomonas sp. and seventeen denitrifying 

strains (Table 2-1) were stored in ready-to-use aliquots at -80°C. For each experiment, the 

strains were cultured for 48 h and subcultured for 40 h in Trypticase Soy Broth (TSB) at 28°C 

under aerobic conditions to obtain actively growing microorganisms. The denitrifying strains 

were diluted to 107 cells mL-1 and the invader to 1.5x107 cells mL-1, as measured by flow 

cytometry (CyAn ADP LX, Dako, Heverlee, Belgium). Communities with different degrees 

of initial evenness were created by mixing the diluted denitrifying strains in different 

proportions. Each mixture was divided into three aliquots. No cells of the invader were added 

to the first aliquot (0% invader); to the second and third aliquot, the invader was added so that 

the number of invader cells in the mixtures was 0.1% and 1% of the total number of cells, 

respectively. These mixtures were used to assemble microcosms of 200 µL in duplicate in 

multiwell plates, according to the design, using a BioRobot 3000 (Qiagen, Venlo, The 

Netherlands). The mixtures were 1:1 diluted in TSB supplemented with 12 mM nitrite and 

optionally supplemented with 4% (w/v) NaCl (for the salinity stress) to obtain a final 

concentration of 6 mM nitrite and 2% NaCl. The final volume in each well of the plates, 

which have a maximum volume of 300 µL, was 200 µL. The plates were incubated anoxically 

in jars for 20 h at 28°C. Anoxic conditions were created by the Oxoid™ AnaeroGen™ 

Compact system (Oxoid, Basingstoke, UK).  

After incubation, the optical density (620 nm) was measured and the residual nitrite 

concentration determined with the Montgomery reaction (Montgomery & Dymock, 1961) 

(Figure 2-1). The relative abundance of the invader cells and the total cell count of the 
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invaded communities were determined by flow cytometry. Since oxygen is required for the 

maturation of the Green Fluorescent Protein (GFP), the plates were incubated aerobically at 

4°C prior to flow cytometric analysis. It was shown that a period of 2 hours resulted in an 

increase in fluorescence intensity of the invader cells to a level similar to aerobically grown 

invader cells (results not shown). As such the relative abundance of the invader cells was 

measured by flow cytometry after the plates were incubated at 4°C for 2 hours. 

In order to identify a potential niche overlap for the electron donor, an anaerobic metabolic 

fingerprint (using 95 different carbon sources of the Biolog AN microplate (Hayward, USA) 

and 6 mM nitrite as electron acceptor) was made for 17 uneven communities (each with one 

different dominant strain), the perfectly even community and the invader. For each mix, we 

determined the unique available carbon sources for the invader by subtracting the carbon 

sources used by a single mix from those used by the invader itself.  

 
Table 2-1. List of strains used to create the microcosms. ★ This strain was used as invader and was 
obtained from Sternberg et al. (1999). All other strains were obtained from Heylen et al. (2006). 

 
 

Phylum Collection 
code 

ID Functionality Special 
characteristics 

Reference 

Firmicutes R-32851 Bacillus sp. denitrifier  Heylen et al. (2006) 

α Proteobacteria R-27049 Paracoccus sp. denitrifier  Heylen et al. (2006) 

 R-24665 Paracoccus sp. denitrifier  Heylen et al. (2006) 

 R-26895 Brucella sp. denitrifier  Heylen et al. (2006) 

 R-25018 Ochrobactrum sp. denitrifier  Heylen et al. (2006) 

 R-25203 Ochrobactrum sp denitrifier  Heylen et al. (2006) 

β Proteobacteria R-24607 Acidovorax sp. denitrifier  Heylen et al. (2006) 

 R-25212 Acidovorax sp. denitrifier  Heylen et al. (2006) 

 R-24610 Diaphorobacter sp. denitrifier  Heylen et al. (2006) 

 R-26815 Diaphorobacter sp. denitrifier  Heylen et al. (2006) 

 R-26829 Comamonas sp. denitrifier  Heylen et al. (2006) 

 R-28220 Comamonas sp denitrifier  Heylen et al. (2006) 

 R-25060 Comamonas sp denitrifier  Heylen et al. (2006) 

 R-28413 Comamonas sp denitrifier  Heylen et al. (2006) 

ϒ Proteobacteria R-25061 Pseudomonas sp. denitrifier  Heylen et al. (2006) 

 R-26828 Pseudomonas sp denitrifier  Heylen et al. (2006) 

 R-25343 Pseudomonas sp denitrifier  Heylen et al. (2006) 

 

/ Pseudomonas 
putida SM1699★ 

Non- denitrifier/ 
Fermentor 

Gfp labeled: 
gfpmut3b-gene 
randomly inserted 
in the chromosome 

Sternberg et al. 
(1999) 
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Figure 2-1. Overview of the experimental setup 

 

Strains conserved at -80°C in ready to use aliquots !

Strains cultured for 48h and subcultured for 40h under 
aerobic conditions at 28°C in TSB medium!

Denitrifying strains diluted to 107 cells mL-1 as 
measured by flow cytometry!

Invader diluted to 1.5 x 107 cells mL-1 as 
measured by flow cytometry!

Preparation of the mixes in triplicate with 
different degrees of initial evenness but the 
same richness !

No invader added to mixes!
!
!
!

Invader added to the mixes to 
a final concentration of 0.1% 
of invader cells!

Invader added to the mixes to 
a final concentration of 1% of 
invader cells!

Anoxic incubation for 20h at 28°C !
!

Assembling of microcosms in duplicate in 
multiwell plates by diluting the mixes in TSB 
medium supplemented nitrite!

Assembling of microcosms in duplicate in 
multiwell plates diluting the mixes in TSB 
medium supplemented with nitrite and NaCl!

Montgomery reaction and spectrophotometric evaluation of nitrite removal at 540 nm!
!

0% invader 
No salt 

0.1 % invader 
No salt 

1 % invader 
No salt 

0% invader 
2% salt 

0.1 % invader 
2% salt 

1 % invader 
2% salt 

Analysis of the amount of invader cells by flow cytometry!

Measurement of the optical density at 620 nm!
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2.3. Statistical#analysis#

Each of the response variables (functionality, invasion and CCcommunity) has been analysed 

with additive quantile regression models (Koenker, 2005). A separate analysis was performed 

for each invader/salt combination. The Gini effect was modelled non-parametrically using a 

smoother spline, either unconstrained or with a monotonicity constraint (increasing or 

decreasing). The smoothing parameter was optimised by minimising the Akaike’s 

Information Criterion (AIC). All hypothesis tests were based on generalised likelihood ratio 

tests performed at the 5% level of significance. For forward model selection the testing 

sequence was: (1) no Gini effect versus a monotonic Gini effect (increasing or decreasing, 

depending on the AIC), (2) monotonic Gini effect versus an unconstrained Gini effect. 

Additive quantile regression models have been used to analyse the response variables at the 

50%, 10% and 90% quantiles. Quantile regression extends ordinary regression models in the 

sense that a particular quantile of the conditional response distribution is modelled instead of 

the mean (Elsner et al., 2008). The choice for this method is motivated by the variable shapes 

of the conditional response distributions as a function of the Gini coefficient. Results of the 

Gini effects are only reported for the analyses at the 50% quantile (median), unless Gini 

effects were only established at the 10% or 90% quantiles. Analyses were conducted with the 

quantile set at either 50% (invasion and CCcommunity) or 10% (functionality). The partial 

residuals, shown in the graphs of the model fits, were always constructed relative to the 50% 

quantile regression model that corrects for row, column and plate effects. The axis of the 

residuals of the functionality and invasion response variables were rescaled to obtain values 

between 0 and 1, with 0 the lowest and 1 the highest measured value. 

 

-- Information box statistics -- 

Additive quantile regression analysis 

Regression analysis is performed for estimating the relationship between the independent variable, 
which is here the Gini coefficient (the regressor), and the response variables, being invasion, 
functionality and cell count community. The regression models help us to understand how the 
response variables change when the Gini changes. Such a regression analysis is performed for each 
invader/salt combination for each of the response variables.  

In conventional linear regression analysis, the mean of the response variable distribution is modelled 
as a linear function of the regressors. Quantile regression makes use of a different characteristic of 
the response variable distribution, for example the 50% quantile, which corresponds to the median. 
Quantile regression was shown to be very useful for ecology research, because the shape of the 
distribution of ecological data often changes with changing environmental conditions. As a 
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consequence, there may only be a weak or no predictive relationship between the mean of the response 
variable distribution and the regressor, while other quantiles might give more information (Box Figure 
2-1)(Cade & Noon, 2003). 

 

Box Figure 2-1. Conventional regression analysis makes use of the mean of the response variable (red), while 
quantile regression uses a different characteristic of the response variable distribution (shown with dotted lines), 
like the 10% quantile (green) or the 90% quantile (orange). While there is only a weak predictive relationship 
between the mean of the response variable and the regressor, the 10% quantile is more sensitive to changes in 
the Gini.  

Non-parametric models do not make any assumptions regarding the relationship between the regressor 
and the response variable, unlike parametric models, such as linear regression models, which assume a 
linear relation between the regressor and the mean or quantile of the response variable.  

The effect of the Gini coefficient was modelled non-parametrically. By design, the regression model 
also includes terms for row (R), column (C) and plate (P) effects, which are all additive to the Gini-
effect.  

 !"#$%&!!"#$%:!! !|! = !! + !!!! + ! + ! + ! +⋯ 

 !""#$#%&!!"#$%:!! !|! = !! + !! !! + ! + ! + ! +⋯  

where f1(X1) is a smooth function of the X1 regressor, but no analytical expression for f1 need to be 
specified by the data-analyst. Non-parametric statistical methods (e.g. smoothing splines) can be used 
for the estimation of the regression function f1. Smoothing splines require one tuning parameter that 
has to be specified by the data-analyst. This tuning parameter specifies the smoothness of the 
estimated regression function (Box Figure 2-2B).  

Three types of relationship can occur between the Gini coefficient and the response variable: (i) 
constant, (ii) monotonic (either increasing or decreasing) and (iii) unconstraint (Box Figure 2-2A). For 
each of these non-parametric models, the tuning parameter of the smoother spline needs to be 
optimised. This tuning parameter is optimised by the Akaike’s Information Criterion (AIC), which is a 
measure of the quality of the model predictivity. Optimising the AIC results in a compromise between 
the quality of the fit and the complexity of the model fit (Box Figure 2-2B). 

Once the tuning parameter of each of the models is optimised, the models are compared and the 

0 

0,2 

0,4 

0,6 

0,8 

1 

0 0,2 0,4 0,6 0,8 1 

10%$quan)le$
90%$quan)le$
mean$Re

sp
on

se
$v
ar
ia
bl
e$

Regressor$(e.g.$Gini$coefficient)$



Environmental conditions and community evenness determine the outcome of biological invasion 

 33 

C
H

A
PTER

 2 

optimal model selected by forward model selection. Therefore, a constant Gini effect is initially 
compared to a monotonic Gini effect. If p>0.05 (based on likelihood ratio tests performed at the 5% 
level of significance), the constant model is the best. If p<0.05, the monotonic model was the best and 
needs to be compared to the unconstraint model. If in this comparison p>0.05, the monotonic model is 
the best, if p<0.05, the unconstraint model is the best. 

 

Box Figure 2-2. A. Smoother splines of three different models: constant (red), monotonic increasing (orange) 
and unconstraint (green). In this example, the unconstraint model would be selected by forward model selection. 
B. Smoother splines of the unconstraint model using different tuning parameters. The optimal tuning parameter 
is selected using the Akaike’s Information Criterion (AIC), which looks for a compromise between complexity 
and goodness of fit. In this case, the tuning parameter of the green spline is optimal. 
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3. Results#

3.1. Rationale#of#the#experimental#setup#

The impact of initial community evenness on invasibility and the effect of the invader on the 

functionality of the resident community, i.e. denitrification, were assessed by the use of 

assembled denitrifying bacterial communities. To exclude other confounding factors that 

could influence invasion, our tests were conducted with (i) a complex medium to avoid 

nutrient limitation, (ii) an assembled community composed of bacteria occupying the same 

functional niche (the capability for nitrite respiration), isolated from the same sample of 

homogenised activated sludge and without prior history of adaptation to prevailing 

environmental conditions, and (iii) an invader incapable of denitrification but able to grow 

under anaerobic conditions by fermentation, it uses organic compounds as electron acceptor 

(Figure 2-2 and Figure 2-3). As such resident species from one niche are used against an 

invader from another niche to test the effect of the evenness of the resident community on 

invasion and the effect of invasion on functionality. The use of an invader within the same 

functional niche of the resident community would only increase the richness of the 

community, without being able to pinpoint the effect of evenness. Besides, it would not have 

been possible to investigate how invasion influences the functionality of the resident 

community, since the invader would then have contributed to this functionality. 

 
Figure 2-2. Functionality of the individual strains in the absence and presence of salt stress. The 
bars show the relative amount of nitrite removed after20 hours anaerobic incubation in the presence 
of 6 mM nitrite. 1.0 corresponds to complete nitrite removal and 0,0 to no removal. (mean ± SD, n=2) 
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Figure 2-3. Growth of the individual strains in the absence and presence of salt stress. The bars 
show the optical density (620 nm) of the denitrifiers and the invader after 20 hours of anaerobic 
growth in the presence of 6 mM nitrite. (mean ± SD, n=2) 

A total of 17 denitrifying strains from four phyla (Table 2-1) were mixed in different 

proportions to create 3192 microcosms with different levels of initial evenness but with the 

same richness. This number of strains represents a high richness, which ensures a good 

functionality (Bell et al., 2005); the complete range of evenness, expressed by the Gini 

coefficient (i.e. 0 being a complete even community and 1 the most uneven community), was 

covered (Figure 2-4). 

 
Figure 2-4. Lorenz curves of the mixes used in the experiment. The curves span the entire region 
between high evenness and high dominance. Each curve can be numerically described by a Gini 
coefficient, being the area between the Lorenz curve and the line of the perfect evenness. 
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The microcosms were arranged in 96-well plates and incubated under two distinct conditions: 

no stress and salinity stress. Salinity stress was chosen because it cannot be readily altered by 

the microorganisms. Furthermore, it was shown to have a significant impact on the 

functionality (Figure 2-2) and growth (Figure 2-3) of the individual strains. The impact of salt 

stress on community functionality was also shown before by Wittebolle et al. (2009). An 

open ecosystem (i.e. a system that has an input of matter, e.g. microorganisms (McArthur, 

2006)) was simulated by challenging the assembled community with an introduced gfp-

tagged, salt-resistant, non-denitrifying, fermentative species - the invader - at a concentration 

of 0.1% and 1% of the initial total cell number (Figure 2-1). In contrast, the control 

experiment with no introduced species simulated a closed ecosystem. After 20 hours of 

anaerobic incubation, the percentage of nitrite removal was used as a measure of functionality 

of the community. The total number of cells and the number of gfp-tagged invader cells were 

analysed by flow cytometry to determine the invasion coefficient and the resident community 

cell number. The invasion coefficient, ranging from 0 (not invaded) to 1, corresponds to the 

proportion of invader cells to the total cell count, while the community cell count 

(CCcommunity) is equal to the total number of cells subtracted by the number of invader cells. 

Each of the response variables - functionality, invasion and CCcommunity - has been analysed 

with additive quantile regression models (Koenker, 2005). By design, all of the models 

included terms for the row, column and plate effects. The effect of the Gini coefficient was 

modelled non-parametrically with a smoother spline, either unconstrained or with a 

monotonicity constraint (increasing or decreasing) (Table 2-2). 

3.2. Invasion#in#the#absence#of#stress#

Under different environmental conditions, the intrinsic characteristics of a microbial 

community influence its susceptibility to invasion and its functional stability. In the absence 

of salt, invasion increased with an increasing Gini coefficient (Figure 2-5a) and was observed 

both at a low and high initial concentration of the invader: 0.1% (p<0.001) and 1% (p<0.001) 

of the total cell count, respectively (Table 2-3). A higher initial concentration of the 

introduced strain produced a higher level of invasion (p<0.001). Since the total number of 

invader cells was always higher than the number initially added to the communities, the 

differential invasion was not the result of differential die-off but due to differential growth. 

The presence of the invader affected the performance of the community by lowering the 

overall denitrifying functionality (p<0.001), independent of the degree of evenness (Figure 
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2-5b) without influencing the growth of the community (Figure 2-5c). Therefore, under 

conditions of no stress, the Gini coefficient was positively correlated with the degree of 

invasion and neutrally correlated with the CCcommunity. 

 
Table 2-2. Model selection for the three response variables. The effect of Gini on the τ=0.5 or the 
τ=0.1 quantile of each response variable was modelled non-parametrically. Forward model selection 
was based on likelihood ratio tests performed at the 5% level of significance (p). A constant Gini 
effect (C) was tested versus a monotonic Gini effect (M), either decreasing (MD) or increasing (MI). If 
p>0.05, the constant model was the best, and the model selection was completed. If p<0.05, the 
unconstrained model (UC) was compared with the monotonic model (M vs UC). In the latter case: if 
p>0.05, the monotonic model was selected; the unconstrained model was selected if p<0.05.  
“n/a”: not applicable because no invader was added in the control, “-“: statistical test not conducted 
because the previous model was selected. Upper line percentages are initial invader concentrations 

 

3.3. Invasion#in#the#presence#of#stress#

In the presence of salt (Figure 2-5d), the degree of evenness did not influence the invasibility 

of the community (p=0.86 and p=0.99 for 0.1% and 1% invader, respectively). However, the 

functionality of the community was strongly influenced by the introduction of the invader 

(p<0.001) (Figure 2-5e). Under salinity stress and in the absence of invasion, nitrite was only 

partially reduced by the denitrifying communities with a high Gini coefficient. This data 

confirmed what was previously shown, that communities with a high initial evenness have a 

higher potential to counteract the effect of a sudden selective stress than communities with a 

low initial evenness (Wittebolle et al., 2009). If the same communities were exposed to an 

invader, no negative correlation between functionality and the Gini coefficient was observed. 

Response variable Model 0% 

No Salt 

0.1% 

No Salt 

1% 

No Salt 

0% 

Salt 

0.1% 

Salt 

1% 

Salt 

Invasion 

(τ=0.5) 

p (C vs M) n/a 0 0 n/a 0.86 0.99 

p (M vs UC) n/a 0.07 1 n/a - - 

Selected model n/a MI MI n/a C C 

Functionality 

(τ=0.1) 

p (C vs M) 0.29 0 0.15 0 0 0.16 

p (M vs UC) - 0.03 - 0 0.97 - 

Selected model C UC C UC MD C 

Log CCcommunity 

(τ=0.5) 

p (C vs M) n/a 0.30 0.74 n/a 0 0 

p (M vs UC) n/a - - n/a 0.14 0 

Selected model n/a C C n/a MD UC 
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The functionality was maintained at a high level over the complete range of evenness if the 

communities were challenged with the highest invader concentration. Similar to the effect 

observed under the conditions without salt, the presence of the invader under the stress 

condition had no effect on community growth (p=0.365) (Figure 2-5f). The functionality of 

invaded communities was always lower under non-stressed conditions compared to stress 

conditions (p<0.001), while invasion was higher under non-stressed conditions and 

community growth was similar, all independently of the degree of evenness. 
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4. Discussion#

Several previous studies attempted to correlate invasion with the composition of the invaded 

community and some of these studies experimentally addressed the effect of invasion on 

ecosystem functioning (Sousa et al., 2011). In our work, the degree of evenness was 

negatively correlated with the susceptibility of the community to invasion in the absence of an 

external stress, as previously shown in grassland communities (Wilsey & Polley, 2002; Tracy 

& Sanderson, 2004; Fink & Wilson, 2011). However, under stress conditions, the evenness-

invasibility relationship became neutral, and the invasion potential was only associated with 

the initial amount of the invader. The effect of invasion on the functionality depended 

strongly on the environmental conditions: the functionality at a high Gini coefficient was 

enhanced under stress and lowered under non-stress conditions. 

The diversity-invasibility hypothesis states that a high species richness confers a high degree 

of invasion resistance (Kennedy et al., 2002). However, it has also been reported that a 

positive relationship between diversity and invasibility can occur (Jiang & Morin, 2004; 

Dunstan & Johnson, 2006; Davis, 2009). In the present study, we found that, even at a fixed 

high richness, the relative abundance of the species (i.e., evenness) is an essential factor that 

determines the invasibility of the community (Figure 2-5a). This effect can be explained by 

the potential niche overlap for carbon sources (electron donor) between the community and 

the invader. As shown in Figure 2-6, the niche overlap (consumption of carbon sources) was 

much higher with an even community as compared to most of the uneven mixes. This means 

that with an uneven community in a nutrient rich environment with a lot of different carbon 

sources, like TSB, more carbon sources are present that can solely be used by the invader. 

Therefore, invasion is facilitated in uneven communities.! In addition to biodiversity, 

environmental stress influenced the invasion potential. In fact, the level of invasion in two 

identical communities (same richness, evenness and species composition) in the presence of 

the same resources depended strictly on the presence of a stress. 
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Figure 2-6. Niche overlap of the available carbon sources. Number of carbon sources available for 
the invader that are not used by the even (grey bar)/uneven (black bars) mixes. The grey dotted line 
represents the level of carbon consumption of the even mix. The amount of available carbon sources 
for the invader – which was able to use 40 out of 95 carbon sources - was much lower with an even 
community as compared to most of the uneven mixes. 

Current debate also focuses on the effect of the invasion of an ecosystem on the functioning 

of the system (Davis et al., 2011; Lambertini et al., 2011; Simberloff et al., 2013). In this 

study, we confirmed that the degree of evenness is a key element for preserving the overall 

functionality in a closed community (Wittebolle et al., 2009). In fact, the functionality of an 

even community could be maintained under both stressed and non-stressed conditions. 

Conversely, the functional stability of a highly uneven community is endangered by salinity 

stress (Figure 2-5e, black line). The same effect on functionality was also observed in an open 

community. In this situation, however, the overall functionality of an uneven community was 

preserved at high levels of the invader, although the introduced species, a non-denitrifier, 

made no direct contribution to the existing functionality (Figure 2-5e, red line). This result 

suggests that a closed system is sensitive to functionality loss when exposed to fluctuating 

environmental conditions (Curtis & Sloan, 2004; Naeem, 2009) (Figure 2-7, bottom right). 

An open system in which non-native species have the ability to invade the resident 

community may be more resistant to stress than a closed system and can maintain or even 

improve its functionality when an invader is present.  
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Figure 2-7. Graphical summary of the main observations. Microcosms, composed of seventeen 
denitrifying strains (blue cells, different shapes), have been assembled with different levels of initial 
evenness (different proportion of cells), from a low to high Gini coefficient. These microcosms were 
challenged with a non-denitrifying invader (green cells) under stressed and non-stressed conditions. 
The ecosystem functionality (size of circles) and invasibility (number of green cells) were measured. 
Invasion was generally lower in the presence of salt stress than in the absence of salt. Under no-stress 
conditions, the presence of the invader negatively affected the community and its functionality, 
whereas the same relationship was positive under stress conditions. 

5. Conclusions#

Our aim was to evaluate what could be the impact of human activities - that tend to modify 

the composition of natural communities - on invasibility and functionality under different 

environmental conditions. We showed that the same community, with the same genetic 

background, in the presence of the same invader behaved differently depending on specific 

environmental conditions and its evenness. Despite our conclusions rising from these 

observations are firstly pertinent to our ecological system, we suggest to consider it as a 

possible interpretation model that could have analogies in other systems including the macro-

ecology systems. Under stress conditions an invasive species can preserve the indigenous 

functionality, while under non-stress conditions the functionality can be threatened. In the 

latter case evenness plays a crucial role in determining the community resistance to 

invasibility and in preserving ecosystem functionality. Thus, on the one hand, invasion can 

support ecosystem resilience and services (Davis et al., 2011), while on the other hand, it can 

be considered negative towards conservation biology (Lambertini et al., 2011; Simberloff et 
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al., 2013). Hence, in case of putative imposition of ecological management, both potential 

impacts of invasion warrant careful consideration. 
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CHAPTER!

  3
SPECIES!RELATEDNESS!DETERMINES!THE!SUCCESS!OF!

MICROBIAL!MUTUALISTIC!INTERACTIONS!
 
Abstract 

Relatedness has been shown to be a key reason for individuals to perform an altruistic 

behaviour, both for microorganisms and higher organisms. Its importance in mutualistic 

interactions - which is a two-way beneficial interaction - has however never been studied in 

microbial communities. In this study, synthetic microbial communities were used to test the 

importance of interspecies relatedness during the establishment of mutualism between 

previously non-interacting microorganisms. Obligatory mutualism was created by making 

pairwise combinations of an ampicillin resistant, tyrosine auxotrophic E. coli and ampicillin 

sensitive strains. Initially, no cooperation could be detected in any of the mixes. Closely 

related species were able to adapt their phenotype after two transfers and successfully 

established mutualisms, while distantly related species were not able to support growth of the 

other strain and were consequently threatened with extinction. 
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1. Introduction#

Microorganisms are the main drivers of numerous biogeochemical cycles on earth (Schmidt, 

2006). These processes are established by the joint effort of microorganisms with different 

functional roles. They cooperate and are often dependent on each other for survival or growth. 

By interacting, microorganisms are able to occupy niches that would not be accessible 

otherwise (Stolyar et al., 2007). They can provide each other with (essential) metabolites, e.g. 

amino acids and siderophores (West & Buckling, 2003), or with nutrients (Bull & Harcombe, 

2009; Estrela et al., 2012) or metabolise antibiotics like ampicillin (Dugatkin et al., 2005). 

When such an act is costly to the actor but beneficial to the recipient this is called altruism, 

while mutually beneficial acts are beneficial to both the actor and recipient (West et al., 

2007a). Mutualism is especially important when multiple species are involved in the 

degradation of organic compounds (Stolyar et al., 2007). A more stringent form of mutualism 

is obligatory mutualism, meaning that species rely on each other for growth. This mainly 

occurs among anaerobic bacteria (Schink, 2002). However, more mutualistic interactions may 

evolve due to environmental fluctuations (Klitgord & Segre, 2010). Environmental changes, 

like antibiotics in the human gut or toxins in the soil, may require microorganisms to start 

cooperating for survival.  

The development of mutualism has mainly been studied between mutants and genetically 

engineered populations of the same strain. It has been shown both with auxotrophs of 

Escherichia coli (Hosoda et al., 2011) and auxotrophs of Saccharomyces cerevisiae (Shou et 

al., 2007) that organisms have the potential to adapt their phenotype after the first encounter 

with another organism to establish mutualism before extinction. Furthermore, some 

auxotrophic pairs were shown to be metabolically complementary, while others were not able 

to survive (Wintermute & Silver, 2010). The effect of relatedness between non-interacting 

microorganisms on the development and establishment of a mutualistic cooperation has 

however never been studied, while relatedness has been shown multiple times to be the key 

reason for an individual to perform a costly altruistic behaviour that is beneficial to another 

individual (Griffin et al., 2004; West et al., 2007b): by helping a related individual reproduce, 

it is indirectly passing on its own genes to the next generation (Hamilton, 1963; Hamilton, 

1964; West et al., 2006).  

To explore the effect of phylogenetic relatedness on the development of a mutualistic 

interaction, obligatory mutualism was created between a tyrosine auxotrophic, ampicillin 

resistant E. coli and a set of closely and distantly related ampicillin sensitive strains.  
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The ampicillin resistant tyrosine auxotrophic E. coli carries the plasmid pAK5 that contains 

the blaTEM-1 gene that confers the ampicillin resistance (Lee & Keasling, 2005). It encodes ß-

lactamase TEM-1, this enzyme cleaves the ß-lactam ring of ampicillin, and this way 

inactivates ampicillin. ß-Lactamases produced by Gram-negative bacteria are generally 

retained in the periplasm, such that only the cells producing it or cells in close vicinity are 

protected from ampicillin. However, membrane permeability can cause ß-lactamase to leak 

out of the cells, causing a declined ampicillin concentration in the environment and as such, 

protect all cells (Petrosino et al., 1998; Dugatkin et al., 2005). 

Tyrosine is an aromatic amino acid that is required for bacterial growth. Bacteria have the 

metabolic potential to synthesize this aromatic compound from simple carbon sources. As the 

biosynthesis of tyrosine and other aromatic amino acids is metabolically costly, bacterial cells 

do not over-produce these compounds naturally. They have a regulatory mechanism for 

producing only the amount necessary for bacterial growth. The enzyme chorismate 

mutase/prephenate dehydrogenase, encoded by the tyrA gene, has two enzymatic functions in 

the biosynthesis pathway and is essential for the synthesis of tyrosine (Lutke-Eversloh & 

Stephanopoulos, 2007; Chavez-Bejar et al., 2012). Next to the ability to produce tyrosine, 

bacteria can also take up tyrosine using two systems: the general aromatic transport system 

(AroP), encoded by the aroP gene, and the specific transport system (TyrP), encoded by the 

tyrP gene. However excretion of tyrosine is limited, it can happen by simple diffusion or by 

the aromatic amino acid transporter YddG (Burkovski & Kramer, 2002; Doroshenko et al., 

2007). The auxotrophic knockout mutant used within this study is lacking the tyrA gene and is 

not able the produce tyrosine. For growth, it is dependent on the supply of tyrosine from its 

environment.  

Pairwise combinations of the tyrosine auxotroph and ampicillin sensitive strains were made in 

minimal medium with ampicillin but lacking tyrosine. In this environment, the ampicillin 

sensitive strain provides the auxotroph with tyrosine, while the auxotroph degrades ampicillin 

and thus protects the sensitive strains. Only when cooperating, both strains are able to survive. 

2. Material#and#methods#

2.1. Strain#info#

E. coli Y3 (K12 ΔtyrA::kanR intC::yfp pAK5) is a tyrosine auxotrophic knockout mutant 

lacking the tyrA gene and chromosomally tagged with yfp, this strain originates from E. coli 
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K12. The pAK5 plasmid carries the blaTEM-1 gene that confers ampicillin resistance (Kerner et 

al., 2012). This plasmid originates from plasmid pPRO24 (Kerner et al., 2012), which was 

derived from the plasmid pBAD24 (Lee & Keasling, 2005). pBAD24 is a commercial 

expression vector and does not contain an origin of transfer or transfer genes. No plasmid 

transfer has been reported within earlier works. 

The partner strains, all soil isolates indicated with P and a number, are ampicillin sensitive. 

For all strains, partial 16S rRNA gene was amplified using 27F and 1492R primers 

(Hendrickx et al., 2006a). PCR was performed as previously described and PCR products 

were sequenced using Sanger sequencing (Hendrickx et al., 2006a) (Table 3-1). The strains 

were identified using BLAST and the phylogenetic distance to the auxotroph calculated using 

maximum likelihood. All strains were stored in ready-to-use aliquots at -80°C. 

2.2. Growth#experiments#

The strains were cultured for 48 hours and sub-cultured for 40 hours in Luria Bertani medium 

(10 g L-1 trypton, 5 g L-1 yeast extract and 5 g L-1 NaCl) under aerobic conditions at 28°C to 

obtain actively growing microorganisms. After cultivation, the strains were washed three 

times with physiological solution (5000 × g, 7 minutes) and the pellet was suspended in 

minimal M9 medium (48 mM Na2HPO4, 22 mM KH2PO4, 8 mM NaCl, 19 mM NH4Cl, 2 mM 

MgSO4, 0.1 mM CaCl2 and 5 mM glucose). The number of intact cells was measured by flow 

cytometry (Accuri C6, BD) after a viability staining with propidium iodide and SYBR® 

Green I. Dilutions were made to obtain 107 intact cells mL-1. Subsequently, pairs were made 

by mixing each partner strain with the auxotroph in equal abundances. These pairs and the 

individual strains were used to assemble microcosms in microwell plates, they were 1:1 

diluted in M9 medium, optionally supplemented with double concentrations of ampicillin 

and/or tyrosine. The initial cell count in each mixture was thus 5×106 cells mL-1. The final 

volume in each well, with a maximum volume of 300 µL, was 200 µL. The plates were 

incubated at 28°C, every hour the optical density (620 nm) was measured. After incubation, 

the proportion of auxotrophic (yellow fluorescent cells) and partner cells was determined by 

flow cytometry with an Accuri C6 flow cytometer (BD Biosciences). This flow cytometer was 

equipped with a 488 nm solid-state laser and signals were detected in fluorescent channels 

FL1 and FL2, respectively equipped with a 510/15 nm and 540/20 nm bandpass filter. Prior to 

flow cytometric analysis, the mixtures were diluted 100 times in physiological solution (8.5 g 

L-1 NaCl) to obtain cell numbers within the detection range of the flow cytometer.  
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Subsequently, pairs were made by mixing each partner strain with the auxotroph in equal 

abundances. These pairs and the individual strains were used to assemble microcosms in 

microwell plates, they were 1:1 diluted in M9 medium, optionally supplemented with double 

concentrations of ampicillin and/or tyrosine. The initial cell count in each mixture was thus 

5×106 cells mL-1. The final volume in each well, with a maximum volume of 300 µL, was 200 

µL. The plates were incubated at 28°C, every hour the optical density (620 nm) was 

measured. After incubation, the proportion of auxotrophic (yellow fluorescent cells) and 

partner cells was determined by flow cytometry with an Accuri C6 flow cytometer (BD 

Biosciences). This flow cytometer was equipped with a 488 nm solid-state laser and signals 

were detected in fluorescent channels FL1 and FL2, respectively equipped with a 510/15 nm 

and 540/20 nm bandpass filter. Prior to flow cytometric analysis, the mixtures were diluted 

100 times in physiological solution (8.5 g L-1 NaCl) to obtain cell numbers within the 

detection range of the flow cytometer. 

For the partnership tests, microcosms with only the auxotrophic strain and microcosms with 

the partner-auxotrophic pairs, created as described above, were incubated during 47 hours at 

28°C. After incubation, the number of auxotrophic and partner cells was analysed by flow 

cytometry and 10% of the liquid cultures was transferred to fresh medium supplemented with 

ampicillin and again incubated. This procedure was repeated five times. 

 

Sensitivity of the partner strains to ampicillin 

After culturing and sub-culturing, the partner strains were grown in M9 medium 

supplemented with 0, 1, 5, 10, 20 or 100 mg L-1 ampicillin in multiwell plates. The plates 

were incubated at 28°C, every hour the optical density (620 nm) was measured.  

2.3. Supernatant#tests#

Supernatant of the partner strains 

The partner strains and auxotroph were grown respectively in M9 and LB medium after being 

cultured and sub-cultured. After 40 hours incubation, the partner strains were centrifuged 

(5000 × g, 7 min) and the supernatant filtered (0.22 µm). The auxotroph was washed three 

times with physiological solution and the pellet was suspended in M9. The filtered 

supernatant of the partner strains was supplemented with glucose and ampicillin to a final 

concentration of 5 mM and 100 mg L-1, respectively. The partner supernatant was (i) 

inoculated with the yfp-tagged auxotrophic strain, (ii) not inoculated (negative control) and 
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(iii) supplemented with different concentrations of tyrosine, ranging from 0.01 µg mL-1 to 100 

µg mL-1 and inoculated with the auxotrophic strain (positive controls). Growth curves were 

made in duplicate for all these supernatant cultures and after incubation, cell numbers were 

determined by flow cytometry. 

 

Supernatant of the auxotroph 

After culturing and sub-culturing, the partner strains and auxotroph were respectively grown 

in LB medium and M9 medium. The M9 medium was supplemented with 100 mg L-1 

ampicillin. After 15 hours, 20 hours and 40 hours of incubation, the auxotroph was 

centrifuged (5000 × g, 7 min) and the supernatant filtered (0.22 µm). These time-points 

correspond to the logarithmic, early stationary and late stationary phase of the auxotroph. 

After 40 hours incubation, the partner strains were washed three times with physiological 

solution and the pellets suspended in M9. The filtered supernatants of the three time-points 

were supplemented with glucose to a final concentration of 5 mM and (i) inoculated with the 

partner strains or (ii) not inoculated (negative control). Growth curves were made in duplicate 

for all these supernatant cultures. 

3. Results##

3.1. Characterisation#of#the#auxotroph#and#partner#strains#

The ‘auxotroph’, which is a yfp-tagged, ampicillin resistant and tyrosine auxotrophic E. coli, 

was not able to grow in absence of tyrosine. A minimal concentration of 0.5 µg mL-1 tyrosine 

was necessary to obtain growth. A logarithmic relation between tyrosine concentration and 

maximal optical density was observed, with saturation at higher tyrosine levels. 

Concentrations higher that 20 µg mL-1 did not result in additional growth (Figure 3-1).  
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Figure 3-1. Growth curves of the auxotrophic strain. (A) Growth curves of the auxotrophic strain at 
different tyrosine concentration, ranging from 0 µg mL-1 to 100 µg mL-1. The optical density (OD620) 
was measured every hour during 40 hours. (B) The relation between the maximum OD at different 
tyrosine concentration in relation to the tyrosine concentration. All tests were performed in duplicate 
(n=2), standard deviations are indicated by error bars. 

 
Figure 3-2. Phylogenetic tree based on the 16S rRNA gene of the partner strains and the auxotroph. 
Phylogenetic distances are calculated using maximum likelihood. 
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Ten ampicillin sensitive strains (referred to as partner strains) were selected based on the 

genetic relatedness to the auxotroph, five are closely related to the auxotroph, while five are 

more distantly related (based on the similarity of the 16S rRNA gene) (Table 3-1) (Figure 

3-2). None of these partner strains were able to grow in minimal medium with 100 mg L-1 

ampicillin. Growth in presence of 5 mg L-1 ampicillin was already significantly lower for all 

strains (except for P6) compared to the situations without ampicillin. All strains, except P6, 

are approximately as sensitive to ampicillin. The growth of P6 is not affect by a concentration 

lower than 20 mg L-1 (Figure 3-3). 

 
Figure 3-3. Partner growth M9 medium with different concentrations ampicillin. The bars show the 
optical density (620 nm) of the different partner strains after 42 hours incubation in (i) minimal 
medium supplemented with 0 mg L-1 ampicillin ( ), 1 mg L-1 ampicillin ( ), 5 mg L-1 ampicillin ( ), 
10 mg L-1 ampicillin ( ), 20 mg L-1 ampicillin ( ) and 100 mg L-1 ampicillin ( ). (mean ± SD, n=2) 

To determine if the auxotroph degrades a sufficient amount of ampicillin to allow growth of 

the partner strains, the supernatant of the auxotroph was sampled at three time points and was 

inoculated with the partner strains. It was tested if the partner strains could grow in this 

supernatant. After 15 hours, which corresponds to the logarithmic growth phase of the 

auxotroph, already enough ampicillin was removed by the auxotroph to allow growth of all 

partner strains. This growth was higher when supernatant was sampled at later time points 

(Figure 3-4). Surprisingly, the growth of partner strain 7 and 8 was higher in the supernatant 

sampled at later time points compared to M9 without ampicillin. This indicates that the 

ampicillin concentration was below the inhibitory concentration and growth-promoting 

compounds were produced by the auxotroph. 
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Figure 3-4. Partner growth in supernatant of the auxotroph and minimal medium. The bars show 
the optical density (620 nm) of the different partner strains after 42 hours incubation in (i) minimal 
medium supplemented with 100 mg L-1 ampicillin ( ), (ii) supernatant of the auxotroph sampled after 
15 hours ( ), 20 hours ( ) and 40 hours incubation ( ) and (iii) minimal medium ( ). (mean ± SD, 
n=2) 

 
Figure 3-5. Auxotroph growth in supernatant of the partner strains. The bars show the optical 
density (620 nm) of the auxotroph after 42 hours incubation in (i) supernatant of the different partner 
strains ( ), (ii) supernatant of the partner strains supplemented with 40 µg mL-1 tyrosine ( ) and (iii) 
minimal medium supplemented with 40 µg mL-1 tyrosine ( ).(mean ± SD, n=2) 

The auxotroph was not able to grow in the supernatant of any of the partner strains, which 

was supplemented with additional glucose to prevent a lack of carbohydrates. Addition of 
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tyrosine to the supernatant resulted in growth similar to the growth in M9 supplemented with 

tyrosine (Figure 3-5). Thus, the supernatant of all partner strains neither contains enough 

tyrosine to allow growth of the auxotroph, nor does it contain compounds that inhibit growth. 

3.2. Partnership#growth#

In minimal medium, lacking tyrosine but supplemented with 100 mg L-1 ampicillin, the 

auxotroph was washed out of the system when after incubation 10% of the liquid cultures was 

transferred to fresh medium. There was the expected 10 times decrease of the number of 

auxotrophic cells during each transfer (Figure 3-6). After three transfers, the cell count was 

below the detection limit of the flow cytometer, which is 105 cells mL-1.  

 
Figure 3-6. Log cell count (cells mL-1) of the auxotroph after 47 hours incubation after the different 
transfers. Each transfer, 10% of the liquid culture was transferred to fresh medium and incubated. 
Cell counts were measured by flow cytometry. Tests were performed in quadruplicate (n=4). 
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Figure 3-7. Log cell counts of the auxotroph and closely related partner strains after pairwise 
incubations. Pairwise combination of the closely related partner strains and auxotroph were 
incubated in quadruplicate (n=4) after which 10% was transferred to fresh minimal medium and the 
number of partner (!) and auxotrophic cells (!) analysed by flow cytometry. The process of 
incubation and transfer was performed five times. 

Pairwise combinations of the auxotroph and the partner strains were made in the same 

environment (Figure 3-7 and Figure 3-8). During the first incubation period, before the first 

transfer, the auxotroph did hardly grow in any of the mixes. The cell number of the auxotroph 

was for all pairs below 107 cells mL-1, while the initial cell count was 2.5×106 cells mL-1. 

Most partner strains were however able to grow within this period. The cell counts of the 

auxotroph were lower after the second incubation period compared to the first incubation 

period for all mixes. Taking into account the ten-fold dilution, this corresponds to minor or no 

growth. During the third incubation period, an increase of auxotrophic cells could be detected 

for the mixes with partner 1, 3, 6, 7, 8 and 10. For partner 10, this was however still very low. 

For partner 2, 4, 5 and 9 growth was always less than ten-fold, resulting in a decreasing cell 

number over the different transfers, eventually followed by a washout of the auxotroph.  

 



Species relatedness determines the success of microbial mutualistic interactions 

 59 

C
H

A
PTER

 3 

 
Figure 3-8. Log cell counts of the auxotroph and distantly related partner strains after pairwise 
incubations. Pairwise combination of the distantly related partner strains and auxotroph were 
incubated in quadruplicate (n=4) after which 10% was transferred to fresh minimal medium and the 
number of partner (!) and auxotrophic cells (!) analysed by flow cytometry. The process of 
incubation and transfer was performed five times. (Data points for partner 5 after the third transfer 
are missing due to analytical problems) 

3.3. CooperationGrelatedness#

The fitness of the auxotroph over the five transfers was used as a measure of the cooperation 

potential of the partner strains. The fitness equals the reproduction capacity; the total fitness is 

thus calculated by making the summation of the produced biomass during the different 

incubations and transfers:  

!"#$%!!"#$%&& = !"##!!"#$%! − 2.5×10! + (!
!!! !"##!!"#$%! − !"##!!"#$%!!!

!" ) 

At the 5% level of significance, cooperation with strains closely related to the auxotroph 

resulted in a significantly higher fitness than with strains distantly related (p<0.0001 with the 

two-sided Wilcoxon rank sum test, Figure 3-9). Indicating that cooperation is more successful 

between closely related species. 
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#

Figure 3-9. Boxplots of the total fitness of the auxotroph. The boxplots are shown for the auxotroph 
incubated with closely or distantly related partner strains. 

4. Discussion#

In this paper, the role of phylogenetic relatedness on the establishment of a mutualistic 

interaction was investigated. For this, synthetic obligatory mutualistic communities were 

created with on the one hand ampicillin sensitive strains and on the other hand a tyrosine 

auxotrophic ampicillin resistant E. coli. In an environment lacking tyrosine, the auxotroph is 

dependent on the other strain for the supply of the amino acid tyrosine, as this strain is not 

able to produce it itself. Thus, only when both strains cooperate they will be able to survive 

and grow in an environment with ampicillin and lacking tyrosine. Therefore growth was 

followed over several serial passages and the final cells counts measured by flow cytometry. 

The total fitness of the auxotroph was used as a measure of cooperation. 

The auxotroph was shown to need a minimal concentration of 0.5 µg mL-1 tyrosine to allow 

growth. It was not able to grow in the supernatant of any of the partner strains and thus, none 

of the partner strains produced or secreted a sufficient amount of tyrosine when grown 

individually in the absence of ampicillin. A monoculture of the auxotroph on the other hand 

degraded sufficient ampicillin to make it possible for the partner strains to grow. 

Consequently, the partner strains are here the limiting factor in the evolution of a mutualistic 

interaction. Only the presence of the partner strains is not enough for the auxotroph to grow. 

The partner strains need to adapt their phenotype and produce/secrete more tyrosine to 
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support growth of the auxotroph (Hosoda et al., 2011). If not, the auxotroph will be washed 

out of the system and the ampicillin concentrations will remain too high for the partner strains 

to grow, leading to extinction of both the auxotroph and partner strain. On possible way to 

alter their phenotype is by a stringent response to environmental stress (Miethke et al., 2006; 

Kümmerli et al., 2009; Persky et al., 2009). The stringent response is a regulatory mechanism 

that enables bacteria to adapt to stress by the production of signal molecules, called 

alarmones. These alarmones increase the transcription of genes involved in the biosynthesis 

of amino acids (Manuel et al., 2012). The overproduction of tyrosine as a stringent response 

to stress has already been reported in E.coli (Santos et al., 2012). Other possibilities for 

bacteria to overproduce tyrosine is by eliminating the transcriptional regulation of genes 

involved in the tyrosine production. For example by deletion or mutation of the tyrR gene. 

This gene encodes the tyrR protein which regulates the transcription of the tyrA gene (Lutke-

Eversloh & Stephanopoulos, 2007).  

Five strains that are closely related to the auxotroph and five that are distantly related were 

examined for their ability to establish a mutualistic interaction with the auxotroph. Pairwise 

combinations were made and followed over serial passages. During the first encounter, none 

of the partner strains were able to provide the auxotroph with sufficient tyrosine to allow its 

growth. Over several passages, some strains were able to support growth of the auxotroph, 

while others were not. The fitness or the number of offspring of the auxotroph determines the 

level of cooperation of each partner strain. Cooperation with strains closely related to the 

auxotroph resulted in a significantly higher fitness than with strains distantly related. For 

some distantly related strains, no cooperation could be detected causing extinction of both the 

auxotroph and partner strains. Phylogenetic relatedness was shown here to be a key factor in 

the partner choice. Within-species relatedness was already shown to be an important factor for 

partner choice in the evolution of mutualism with higher organisms (Frank, 1994). Also for 

altruistic behaviours in microbial communities, relatedness is a key factor (Griffin et al., 

2004; West et al., 2006; West et al., 2007b; Chuang et al., 2010). As such, the observed 

positive relation between relatedness and mutualism could be expected. However, as related 

species are more likely to use the same resources, also a higher degree of competition is 

expected between closely related species (Hibbing et al., 2010). Both strains are therefore 

expected to converge to a stable situation in which cooperation and competition are balanced 

(Allen & Nowak, 2013; Sanchez & Gore, 2013). The cell counts of the auxotroph over the 

different transfers gives a first indication of this spiralling to a stable situation, however this 

needs to be confirmed by long-term experiments. 
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The obtained knowledge is important from an ecological point of view. It was shown before 

that new mutualistic interactions might arise more readily due to environmental fluctuations 

(Klitgord & Segre, 2010). Environmental changes and stress in different ecosystems, like the 

human gut, soil or wastewater treatment plant, may require the formation of mutualistic 

interactions for the microbial community to remain operational and functionally stable. 

The results presented here also have important implications for the development of different 

applications. Synthetic microbial ecosystem with two or multiple populations have been 

proposed a number of times as a highly controllable and tuneable system for different 

applications, like biodegradation or fermentation (Dunham, 2007; Shou et al., 2007; Kerner et 

al., 2012). By splitting the complex multiple pathways over a number of species, there is a 

division of labour. Furthermore, pathways can be more easily manipulated and problems of 

feedback-loops are circumvented. The knowledge gained within this work can be used for 

development of such synthetic systems, which are more likely to succeed when closely related 

species are used. 

5. Conclusions#

Using synthetic microbial communities with obligatory mutualism, interspecies relatedness 

between previously non-interacting species was shown to be an important factor for the 

establishment of a successful mutualistic interaction. Closely related species resulted in a 

mutualistic interaction with a high fitness of the auxotroph, while most distantly related 

species were threatened with extinction after a few generations.  
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Abstract 

Characterising the microbial communities is important in different domains, ranging from 

food and beverage production to wastewater treatment. Conventional methods, such as 

heterotrophic plate count, selective plating and molecular techniques, are time consuming and 

labour intensive. A flow cytometry based approach was developed for a fast and objective 

comparison of microbial communities based on the distribution of cellular features from 

single cells within these communities. The method consists of two main parts, firstly the 

generation of fingerprint data by flow cytometry and secondly a novel statistical pipeline for 

the analysis of flow cytometric data. The combined method was shown to be useful for the 

discrimination and classification of different brands of drinking water. It was also 

successfully applied to detect changes in microbial community composition of drinking water 

caused by changing environmental factors. Generally, the method can be used as a fast 

fingerprinting method of microbial communities in aquatic samples and as a tool to detect 

shifts within these communities. 
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1. Introduction##

The microbial community of water can serve as an indicator of the general microbiological 

quality (Bartram et al., 2003; WHO, 2011). Characterisation of this microbial community is 

conventionally done by heterotrophic plate counts (HPC) and selective plating to test the 

presence of so called “indicator organisms” of pathogens (Dufour, 2003; Allen et al., 2004). 

The main disadvantages of these quantitative techniques are the long incubation times (two to 

three days) and the discrepancy between the number of cultivable and non-cultivable cells, 

since less than 1% of the bacteria present in aquatic environments are culturable (Amann et 

al., 1995). Therefore, cultivation independent techniques like the fingerprinting technique 

DGGE has become more popular. These techniques are generally more qualitative; they 

provide extra information about the species present and their relative abundance, furthermore 

changes in community composition can be detected by these techniques. But they are less 

quantitative than HPC, since no cell numbers are obtained. Besides, also the molecular 

techniques are time consuming and labour intensive (Amann et al., 1995; Dewettinck et al., 

2001; Seurinck et al., 2005). An easy method that is increasingly used in drinking water 

analysis, is the quantification of adenosine tri-phosphate (ATP), the energy-carrier in viable 

cells (Kucnerowicz et al., 1982). It is a very fast and straightforward method, but an in depth 

interpretation is not possible (Hammes et al., 2008).  

Hence, there is need for a rapid, cultivation independent, objective and easy to use method to 

characterise the microbial community of drinking water. A promising tool is flow cytometry. 

This method has already been successfully used for the analysis of total bacterial cell counts in 

water treatment processes (Hammes et al., 2008) and the assessment of the bacterial viability 

in drinking water (Berney et al., 2008). The short analysis times are the main advantage of this 

method. For some applications they can even drop below 20 minutes post sampling. Besides, a 

wide range of fluorescent dyes is available for analysing different bacterial features (Vives-

Rego et al., 2000; Wang et al., 2010). The main disadvantage is however the interpretation of 

the flow cytometry patterns. The more flow cytometric parameters that are taken into account, 

the harder it gets to analyse the results. Three parameters are possible to be visualised using a 

3D dot plot, but higher dimensional problems can no longer be displayed on a single graph. 

Multiple lower dimensional projections have to be used to represent the data. Another 

limitation is the subjective handling of the results. In many contributions, approximated 

polygons are drawn to distinguish between bacterial groups (Li et al., 2007; Wang et al., 2009; 

Hammes & Egli, 2010). 
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 In the last decade, a large body of flow cytometry literature is dedicated towards automated 

algorithms for FC data analysis. For a review we refer to Bashashati and Brinkman (2009). 

The data analysis procedures for FC data can be divided into two distinct parts: 1) 

Preprocessing and feature extraction from the multivariate distribution spanned by the FC 

variables, i.e. outlier removal and automatic gating. 2) Interpretation: comparison and 

classification of flow cytometric profiles from multiple samples. Within this context, 

clustering and classification methods are often used. Most contributions, however, focus on 

automatic procedures for fingerprinting and gating, they provide algorithms that automatically 

extract relevant features from a multivariate FC distribution, e.g. (Lo et al., 2009; Luta, 2011). 

But the interpretation based on the extracted features between multiple samples (FC profiles) 

is mostly done manually (Bashashati & Brinkman, 2009). Rogers et al. (2008) developed an 

algorithm for cytometric fingerprinting that provides an efficient representation of the 

multivariate FC data and facilitates quantitative comparisons between samples. In this paper, 

we build upon the work of Rogers et al. (2008) and provide an automated method for 

comparing FC profiles across different treatments. We use their algorithm for establishing the 

FC fingerprint for each sample and extend their approach to deal with the multiple class 

problem and to provide statistical hypothesis testing for assessing differences between groups. 

Our tool also provides an efficient visualisation of the results and allows an interpretation of 

the observed differences between treatments in terms of the original components of the 

multivariate FC distribution. 

The method is illustrated in two case studies: 1) a comparison of the flow cytometric 

fingerprints of six brands of bottled water, which is used to tune the parameters of the pipeline 

and 2) a flow cytometric assessment of the effect of specific treatments influencing the water 

microbiota. In the latter case study, the results of our flow cytometric method were also 

compared with the DGGE fingerprint method.  

2. Material#and#methods##

2.1. Sampling#and#treatment#

Six commercially available brands of natural mineral water were used: Chaudfontaine, Evian, 

Spa, Mont Calm, Romy and Vittel. From each brand, 6 bottles were purchased and sampled.  

In a second experiment, two types of treatments were conducted on Evian water to simulate 

changing physico-chemical conditions: temperature and nutrient treatment. For the heat 
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treatment, 1 L bottles were incubated for 3 and 24 hours at 37°C. For the nutrient treatment, 1 

mL of water was replaced by 1 mL of a 1/10 dilution of autoclaved Luria Bertani broth (10 g 

tryptone, 5 g yeast extract and 10 g NaCl per L) to a final TOC of 0.65 mg L-1. The bottles 

were incubated for 3 and 24 hours at room temperature. Incubations were started at different 

time points so all incubations finished at the same time and samples could be analysed 

together.  Next to the treatments, the control without nutrient or heat treatment was kept at 

4°C. All 4 treatments and the control were conducted in 6 replicates, each replicate being a 

different 1 L bottle Evian water. Finally, six different bottles (330 mL) of Evian water were 

sampled and analysed each day for 5 consecutive days, each day 6 new bottles from the same 

batch were used. 

2.2. Staining#procedure#and#flow#cytometric#measurements#

Two fluorescent dyes, SYBR® Green I and Propidium Iodide (PI), were used in combination 

as a viability indicator that differentiates between cells with intact and damaged cytoplasmic 

membranes (Berney et al., 2007). The staining solution was prepared as follows: PI (20 mM in 

dimethyl sulfoxide (DMSO), from the LIVE/DEAD BacLight Kit, Invitrogen) was diluted 50 

times and SYBR® Green I (10 000 times concentrate in DMSO, Invitrogen) was diluted 100 

times in 0.22 µm filtered DMSO. Water samples were stained with 10 µL mL-1 staining 

solution and 10 µL mL-1 EDTA (pH 8, 500 mM) for outer membrane permeabilization. Before 

staining, all 1 mL samples were kept at room temperature for 30 minutes to minimize the 

effect of staining temperature. Prior to flow cytometric analysis, the stained samples were 

incubated for 15-20 minutes in the dark at room temperature. 

Flow cytometry was performed using a CyAn™ ADP LX flow cytometer (Dakocytomation, 

Heverlee, Belgium) equipped with a 50 mW Sapphire solid-state diode laser (488 nm). The 

stability and performance of the flow cytometer was checked and controlled prior to the 

experiment by the use of Cyto-Cal Alignment Beads and Cyto-Cal multifluor Fluorescent 

Intensity Calibrator (Distrilab, Leusden, The Netherlands). Green and red fluorescence were 

collected with photomultiplier tubes using 530/40 and 613/20 bandpass filters, respectively. 

Forward (FSC) and side light scatter (SSC) were collected with a 488/10 bandpass filter. Milli-

Q water was used as the sheath fluid. All samples were collected as logarithmic signals and 

were triggered on the green fluorescence channel. For each sample run, data for 20 000 events 

were collected. 
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2.3. Total#bacterial#community#analysis#by#PCRGDGGE#

Prior to PCR-DGGE, bacteria were first concentrated by filtering the water sample (1 L) over 

a 0.22 µm cellulose based filter (MilliPore) and stored at -20°C until further processing. DNA 

extraction was carried out using the UltraClean® Water DNA Isolation Kit following 

manufacturers instructions (Mo Bio Laboratories, Inc). Following the DNA extraction, the 

DNA was concentrated 10 times and purified using the Wizard® DNA Clean-Up System 

(Promega). The 16S rRNA genes for all bacteria were amplified by PCR using the Taq-

polymerase kit (Fermentas) with general bacterial primers P338F and P518R and a GC-clamp 

of 40 bp on the forward primer (Muyzer et al., 1993). DGGE was performed using the Bio-

Rad D gene system (Bio-Rad, Hercules, CA) according to Boon et al. (2002). Clustering was 

based on the densitometric curves. 

2.4. Statistical#analysis#of#flow#cytometric#data#

Our contribution presents a data analysis pipeline for an automated comparison of FC profiles 

originating from K different treatment groups. The data analysis pipeline consists of the 

following steps: 1) Creating a quantitative fingerprint from the multivariate distribution, 2) 

Extracting features from the fingerprint that are informative for the differences between the 

treatment groups, 3) Perform statistical hypothesis tests for finding significant differences 

across treatment groups within the reduced feature space and interpreting these results with 

respect to the original characteristics of the multivariate FC distributions (Figure 4-1).  
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Figure 4-1. Flow chart of the flow cytometric fingerprinting technique. After flow cytometric 
analysis, the data is extracted and used for flow cytometric fingerprinting. The first step is creating the 
fingerprint model by probability binning en determining the relative abundance of cells in each bin for 
all samples (64 dimensional fingerprint). The second step is a dimension reduction by principal 
component analysis followed by a second dimension reduction and discrimination between treatment 
groups by Fisher discriminant analysis (2 dimensional discriminating fingerprints). As a result, a data 
reduction was achieved from more than 10 000 data points per sample to a few discriminant values 
with minimal loss of information. The last step is statistical hypothesis testing to detect significant 
differences between treatment groups. All statistical methods are explained in more detail in the 
individual statistical information boxes at the end of material and methods section. 
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In the first step, a p-dimensional quantitative fingerprint is derived from the multivariate FC 

distribution using the recursive probability binning (PB) algorithm for flow cytometry data 

that is implemented in the BioConductor package FlowFP (Rogers & Holyst, 2009). At the 

first level of the algorithm, the population is divided into two bins. Then, each of the two 

“parent” bins is divided into two “daughter” bins, and so forth. The final number of bins nbin is 

determined by the number of recursive subdivisions l, such that nbin = 2l. Note, that the 

algorithm constructs the bins in such a way that they contain a nearly equal number of cells 

from the FC samples that were used to build the PB model. This provides an efficient 

representation of the structure in the multivariate data space by hyper-rectangular regions 

(bins) of varying size and shape. We pool the data of all samples together for constructing the 

PB model. The obtained PB model is then applied to each individual sample, which results in 

a feature vector of counts for each bin of the model. The latter is also referred to as the 

fingerprint. More details on the PB algorithm can be found in Rogers et al. (2008) and Rogers 

and Holyst (2009). 

In step 2, a dimension reduction of the fingerprint is obtained by using Fisher discriminant 

analysis (FDA). FDA aims at understanding how K groups differ from one another in terms of 

a p-dimensional variate X. FDA is not based on any distributional assumptions and interprets 

the difference among the K-groups by projecting the input variables onto discriminants. In one 

dimension a good discrimination is obtained when the between class variance of the K 

experimental groups is large with respect to their within class variance. The discriminants are 

exactly those linear combinations of the input variables, which maximise the between class 

variance with respect to the within class variance after projecting the data onto the particular 

discriminant. It can be shown that K group means in the p-dimensional feature space of the 

fingerprints span at most a K-1 dimensional subspace of orthogonal discriminants. Hence, a 

huge dimension reduction is realised when K<< p. Quantitative measures exist for the relative 

potential of the i-th discriminant function to discriminate the K-groups. They are often used 

for deciding how many discriminant functions are really necessary to get a good 

discrimination and can provide a further dimension reduction. Because discriminants are linear 

combinations of the input variables, they often provide a very useful interpretation within the 

original data space. We will use this property for displaying the leading differences in the 

multivariate distributions of the FC profiles.  

Principal component analysis (PCA) is another method that is often used for the purpose of 

dimension reduction. In the result section we show that a dimension reduction with PCA prior 

to FDA is beneficial and reduces the influence of spurious features in the fingerprint. PCA 
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performs a rotation of the input variables without loss of information and essentially provides 

a decomposition of the variance-covariance matrix of the input variables. It allows for 

dimension reduction as q PCs contain more information than any q of the original variables or 

linear combinations thereof. We establish the dimension reduction by retaining the q principal 

components (PC) so that the portion of the variance that is explained by them exceeds a 

certain threshold δ. As both PCA and FDA are essentially linear combinations of input 

variables, the resulting discriminants after dimension reduction with PCA maintain their 

interpretation feature within the original multivariate FC data space.  

The original K-1 dimensional discriminant space or any of its reduced d-dimensional 

subspaces (d < K-1) can also be used for classification purposes: a new sample is classified to 

the class, which has the centroid with the lowest distance to the new sample after projecting its 

fingerprint in the considered discriminant space. We exploit this link for calibrating the tuning 

parameters that are involved in step 1 and 2.  

In step 3, statistical hypothesis tests are performed after dimension reduction. Within the 

discriminant space pairwise tests are used for assessing if the observed differences between the 

groups are significant. The Holm procedure is used to address the problem of multiple 

hypothesis testing. As the data was already used within the dimension reduction procedure, 

standard statistical hypothesis testing in the discriminant space does control the type I error of 

the statistical tests at their nominal significance level, α=0,05. Therefore we adopt 

permutation-based procedures for deriving the null distribution of the test statistics. For more 

details on permutation tests we refer to Good (2005). 

The following procedure is used for deriving the permutation null distribution: 

a) Permute class labels, 

b) Adopt the PCA and FDA dimension reduction procedure from step 2 to the permuted data, 

c) Construct the permutation based pairwise test statistics t* within the discriminant space 

established in b, 

d) Repeat steps a)-c) B times. 

Permutation based p-values are then defined as the fraction of the permuted test statistics that 

are more extreme than observed test statistic: ! = #[! !∗ >! ! !]
! . 

2.5. Statistical#analysis#of#DGGE#fingerprints#

The DGGE profiles were digitized according to Zhang and Fang (2000). Hence, the results of 

the DGGE analysis can be summarized in a matrix, say Ykl, with k=1, …, m*g rows, with g the 
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number of groups and m the number of replicates within each group, and l=1, …, L  columns 

that correspond to L distinct bands that were identified from the m*g samples. The matrix Y 

can be used as input of a Fisher discriminant analysis (FDA). Score plots in the discriminant 

space may reveal differences between the g groups and again the discriminants can be 

interpreted in terms of the bands in the DGGE fingerprint.  

Similar to the proposed analysis for flow cytometric data, permutation tests are used to test the 

null hypothesis that the fingerprints of the g groups are equal and for a pairwise comparison 

between the groups. The reported p-values are based on 10 000 random permutations. 
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-- Information box statistics -- 

Creating quantitative fingerprints 

The objective of creating a quantitative fingerprint is to transform the information that is captured 
within the multidimensional flow cytometry data (which is a matrix with the signals of the scattered 
and fluorescent light from each channel for every cell within a sample) to a form that enables 
quantitative comparison among samples. As such, each flow cytometric sample in transformed into a 
simplified fingerprint (Rogers et al., 2008).  

Probability binning model 

The first step in creating a quantitative fingerprint is creating a fingerprinting model. The model is the 
core of the algorithm that transforms the raw data to the fingerprints.  As the model needs to be able to 
capture most of the variability between samples, all samples are combined into one big sample to 
create the fingerprinting model. The same fingerprinting model is then used for creating the 
fingerprints of all individual samples. 

The fingerprinting model is created by probability binning (Box Figure 4-1). This algorithm divides the 
multivariate flow cytometry space in (hyper)rectangular regions or bins. In case when only two 
parameters are of interest, for example FL1 and FL3, these regions are rectangles. When multiple 
parameters are of interest, for example FL1, FL2, FSC and SSC, these bins are hyperrectangular 
regions.  

In the initial step of this algorithm, all data points (i.e. cells) are within a single rectangle which spans 
the full space. During the first recursion (l=1) of the algorithm, this rectangle (or bin) is split in two 
daughter bins in such a way that each daughter bin contains an equal number of cells. During the 
second recursion (l=2), each of these two daughter bins is again divided into two, resulting in four bins 
with an equal number of cells but with varying size and shape. This is repeated six times (l=6) 
resulting in 64 bins. After the final recursion, the fingerprint model is obtained and used to create the 
fingerprints of each individual sample. 

 

Fingerprints 

Once the fingerprint model is created, the model can be applied to each individual sample. For a single 
sample, the model transforms the raw data into a vector of 64 cell counts, corresponding to the 64 
bins. These cell counts get transformed to relative abundances to allow comparison between samples 
with an unequal number of cells. As such, a fingerprint is obtained for each sample with relative 
abundances for each bin (Box Figure 4-2). 
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Box Figure 4-1. Recursive probability binning. All data is initially contained within one bin. This parent bin in 
divided in two daughter bins in such a way that each bin contains an equal number of cells. Each of these two 
daughter bins is again split in two daughter bins during the second recursion resulting in 4 bins. This is 
repeated l times, resulting in 2l bins with an equal number of cell but with different size and shape. 

 

 

Box Figure 4-2. Creating fingerprints for each individual sample. To obtain the fingerprint, the relative 
number of cells within each bin is determined. 
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-- Information box statistics -- 

Dimension reduction and discrimination 

Principal Component Analysis (PCA) 

PCA is a tool used for dimension reduction. It transforms p variables to p principal components (PC) 
without loss of information. Although this does not look like a dimension reduction, the PCs are 
constructed in such a way that q (< p) PCs always contain the largest variance that can be contained in 
q linear combinations of the original variables. As such a dimension reduction can be performed by 
only using q PCs.  

PCA transforms possibly correlated variables into uncorrelated PCs. It searches for the directions in 
the data that have the largest variance and subsequently project the data onto it. The first PC is the 
direction along which projections have the largest variance. This PC is the eigenvector of the 
covariance matrix corresponding with the highest eigenvalue. The second PC is the direction that 
maximizes variance among all directions orthogonal to the first and is the eigenvector of the second 
largest eigenvalue, etc. (Box Figure 4-3) 

 

Box Figure 4-3. Graphical representation of PCA transformation in only two dimensions.  

In case of our flow cytometric fingerprinting method, the fingerprint dataset contains a set of 64 
variables, corresponding to the bins. A dimension reduction is established by retaining the q PCs so 
that the proportion of variance that is explained by them exceeds the threshold value of δ=0,95. Box 
Figure 4-4A shows the variance that is explained by the each PC, and Box Figure 4-4B shows the 
cumulative proportion of variance that is explained by the PCs. In this example, it can be seen that by 
retaining 11 PCs, more than 95% of the variability is captured. By performing PCA, the dataset can be 
reduced from 64 variables to 11 (Box Figure 4-5). 
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Box Figure 4-4. Variance (A) and cumulative variance (B) that is explained by the different PCs. 95% of the 
variance is explained by the first q PCs. A dimension reduction is established without loss of much information if 
these q PCs are retained. 

 

Box Figure 4-5. Example PCA applied to the fingerprinting data. The fingerprinting dataset consisting of 64 
bins is reduced by PCA from 64 to 11 dimensions. 

 

Fisher Discriminant Analysis (FDA) 

FDA is another method used for dimension reduction. Just like PCA, the data is transformed to a new 
coordinate system, called the discriminants. But for FDA these discriminants, which are again linear 
combinations of variables, are defined in another way than principal components. While PCA is an 
unsupervised technique that searches for the directions in the data that has the largest variance without 
taking into account label information, FDA is a supervised technique that includes label information 
(for example different treatment groups) and aims at maximising the variance between the treatment 
groups while minimising the variance within the treatment groups (Box Figure 4-6). In case of K 
treatment groups, K-1 orthogonal discriminants can be found.  When K<<p, a huge dimension 
reduction is realised. As such, FDA can be used for dimension reduction while maximally 
discriminating between different treatment groups. 
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Box Figure 4-6. Comparison between FDA and PCA. While PCA looks for the directions with the largest 
variance, FDA looks for the directions that maximises the between class variance and minimises the within class 
variance. 

In the fingerprinting method, FDA is performed after PCA. Initially PCA is performed to remove the 
“noisy” directions and remove spurious features from the fingerprinting data. The principal 
components are the new variables and are subsequently transformed into discriminants by FDA. In the 
example in Box Figure 4-7, it can be seen that a dimension reduction from 11 PCs to two discriminants 
is performed, which allows discrimination between the three treatment groups. 

 

Box Figure 4-7. Example of FDA applied to PCs obtained after PCA of the original fingerprinting dataset. 
The q dimensional dataset is reduced to a K-1 dimensional dataset that is able to discriminate between K 
treatment groups. 

 

Classification 

The K-1 dimensional discriminant space can also be used for classification purposes. A new sample is 
projected onto the same discriminants and classified to the group which has the lowest distance to the 
new sample 
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-- Information box statistics -- 

Statistical hypothesis test 

To test if treatment group means are significantly different, the test statistic t is calculated for each 
pairwise combination of groups.  

! = !! − !!
!!!!!!

 

In a classical statistical t-test, the p-value corresponding to each test statistic t is obtained from the 
theoretical null distribution of the test statistic (Box Figure 4-8), which is only correct if the data 
satisfies a set of assumptions (e.g. normality). The p-value is the probability of obtaining a test statistic 
t that is at least as extreme as the observed test statistic t, given that the null hypothesis is true. When p 
is smaller than the nominal significance level α=0.05, it is highly unlikely that the null hypothesis is 
true. It this case, the groups are regarded as significantly different. 

 

Box Figure 4-8. Theoretical null distribution of the test statistic with the test statistic t and the corresponding 
p-value (shaded area under the curve) for a two-sided t-test. 

For many classical statistical tests, a permutation version exists. The permutation based statistical t-
test uses the same test statistic t as for the classical test, but it does not make any stringent 
distributional assumptions about the data. Without such assumptions, not theoretical null distribution 
can be found (for finite sample sizes). The null distribution of the test statistic is now obtained by 
repeatedly calculating the test statistic t* when the group labels of the data points are randomly 
rearranged. When the null hypothesis is true, which states that data does not depend on the group 
label, it is allowed to randomly rearrange (i.e. permute) the group labels. After permutation of the 
group labels, the test statistics t* is calculated (Box Figure 4-9). This is repeated B times (B must be 
large), the set of these t* forms a good approximation to the exact null distribution of the test statistics 
under the null hypothesis that the class labels do not matter (Box Figure 4-10). The p-value is 
calculated as the proportion of permutations for which the permuted test statistic t* is larger than the 
test statistic t calculated from the original dataset: 

! = #[! !∗ > ! ! !]
!  

When p is smaller than the nominal significance level α=0.05, it is highly unlikely that the null 
hypothesis is true. It this case, the group means are regarded as significantly different. 
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Box Figure 4-9. Permutation of the group labels. After permutation, the test statistic t of the corresponding to 
the original group labels and the test statistic t* corresponding to the permuted group labels can be calculated 
and compared. A higher value for the test statistic indicates a better separation between the treatment groups. 

 

 

Box Figure 4-10. Permutation null distribution. This distribution is obtained by making a density plot of the B 
test statistics t*, which were obtained after permutation of the group labels. The original test statistic t and the 
corresponding p-value are shown in the figure. 
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3. Results#

The goal of this research was to develop a statistical tool that uses flow cytometric data to 

quickly compare fingerprints of microbial communities. The application of the statistical 

pipeline for flow cytometric evaluation should allow us to detect differences between 

microbial communities. The proposed pipeline consist of 3 stages: 1) creating a quantitative 

fingerprint from the multivariate distribution, 2) Extracting features from the fingerprint that 

are informative for the differences between the treatment groups, 3) Perform statistical 

hypothesis tests for finding significant differences across treatment groups within the reduced 

feature space and interpreting the results. 

The probabilistic binning algorithm (PB) that is used in stage 1 and the dimension reduction 

with PCA and FDA of stage 2 involve two parameters that needs to be tuned: the number of 

recursions in the PB algorithm and the percentage of the variability that is explained by the 

first q PCs. This task is performed in section 3.1. In Section 3.2 the tuned data analysis 

pipeline is used for assessing changes in the microbial community structure related to 

environmental factors. Finally the robustness of the proposed method is assessed in section 

3.3. 

3.1. Analysis#of#microbial#communities#in#different#brands#of#bottled#water##

The microbial communities of 6 different brands of water were analysed by flow cytometry: 

i.e. Chaudfontaine, Vittel, Evian, Spa, Mont Calm and Romy and raw FC data are presented in 

Figure 4-2. The communities were stained with a viability indicator consisting of propidium 

iodide and SYBR Green and data were recorded for 20 000 cells in the SSC, FL1 (530/40 nm) 

and FL3 (613/20 nm) channel. Six independent replicates (different bottles) were analysed for 

each water brand. 
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Figure 4-2. Flow cytometric dot plot of one replicate of 6 different water brands: A. Chaudfontaine, 
B. Evian, C. Mont Calm, D. Romy, E. Spa and F. Vittel after straining with SYBR Green I and 
Propidium iodide. The different colours represent the density of cells at a given position, with each 
red dot representing one cell and an increasing number of cells from red to yellow, green and blue. 
Cells with high intensity in FL1 and low intensity in FL3 are intact cells (indicated by a green 
polygon), cells with high intensity in FL3 en low intensity in FL1 are cells with a damaged 
cytoplasmic membrane (indicated with a red polygon).  

The multivariate density of the flow cytometric measurements in the FL1, FL3 and SSC 

channel were used for calibrating the tuning parameters of the first two stages of the pipeline 

that impact the discrimination and dimension reduction with FDA. We will exploit the link 

between FDA and classification: i.e. optimal parameters values are selected that minimize the 

misclassification error estimated by leave-one-out cross validation. Differences in the 

microbial population across water brands have already been established with other microbial 

fingerprinting methods (Dewettinck et al., 2001). Hence, it is a good setting to train our 

method for applications on microbial fingerprinting of microbial communities in bottled water. 

With several parameter combinations a perfect classification could be obtained. We have 

chosen the combination with the lowest number of bins to obtain a parsimonious model that 

also favors a more efficient visualisation. The optimal parameter values were respectively 64 

bins and 96%. A dimension reduction is needed for efficient discrimination between the FC 

fingerprints for the different water brands. The results of the feature extraction with 

intact&

damaged&

FL1&log& FL1&log& FL1&log&

FL1&log& FL1&log& FL1&log&

FL
3&
lo
g&

FL
3&
lo
g&

FL
3&
lo
g&

FL
3&
lo
g&

FL
3&
lo
g&

FL
3&
lo
g&

A.#Chaudfontaine# B.#Evian# C.#Mont#Calm#

D.#Romy# E.#Spa# F.#Vi<el#



Flow cytometry for fast microbial community fingerprinting 

 83 

C
H

A
PTER

 4 

discriminant analysis are given in Figure 4-3. The first discriminant accounts for 64.5% of the 

discrimination potential and allows discrimination between Spa, Vittel and the remaining 

brands. The second discriminant discriminates Romy from MontCalm, Evian and 

Chaudfontaine and the third discriminant allows for a further discrimination between the latter 

3 brands. Hence, all brands could be discriminated from one another based on three 

discriminants. 

The FDA can also be used for classifying unknown water samples to one of the 6 brands. The 

corresponding classification rule is evaluated by leave-one-out cross validation (CV). The 

estimated misclassification rate is 0%. 

 
Figure 4-3. Functional discriminant analysis on flow cytometric measurements of different water 
brands. The scores on the first three discriminants are displayed. (Chaudfontaine: black circles, 
Vittel: purple triangles, Evian: red triangles, Spa: light blue diamonds, Mont Calm: green + and 
Romy: blue x) 

3.2. Analysis# of# microbial# communities# in# bottled# water# under# different#

treatments#

Our method is illustrated on a study that assesses changes within a community that were 

caused by different environmental factors. We evaluate if the method can quickly detect shifts 

in microbial community composition. Effects of temperature and nutrients on the bacterial 

community of bottled Evian water were evaluated: a control treatment (c); 3 hours (h3) and 24 
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hours (h24) of incubation at 37°C; 3 hours (n3) and 24 hours (n24) incubation after addition of 

nutrients (0.65 mg L-1 TOC). The impact of five different treatments were both assessed by 

flow cytometry and validated by Denaturing Gradient Gel Electrophoresis (DGGE), which is a 

commonly used fingerprinting technique. For flow cytometric analysis, six independent 

biological replicates were analysed for each treatment (Figure 4-4). PI-negative cells with 

intact cytoplasmic membranes are clearly separated from PI-positive cells with damaged 

cytoplasmic membranes.  

 
Figure 4-4. Flow cytometric dot plot of one replicate of Evian after different treatments: A. control, 
B. heat treatment 3h, C. heat treatment 24h, D. nutrient treatment 3h, E. nutrient treatment 24h and 
straining with SYBR Green I and Propidium iodide. The different colours represent the density of cells 
at a given position, with each red dot representing one cell and an increasing number of cells from red 
to yellow, green and blue. Cells with high intensity in FL1 and low intensity in FL3 are intact cells 
(indicated by a green polygon), cells with high intensity in FL3 en low intensity in FL1 are cells with a 
damaged cytoplasmic membrane (indicated with a red polygon). 

A functional Fisher Discriminant Analysis (FDA) was performed after dimension reduction of 

the FC fingerprint with PCA. Again the SSC, FL1 and FL3 channel are considered. 64 bins 

were used for constructing the fingerprint and δ is set at 0.96. The result of the discriminant 

analysis is displayed in Figure 4-5. The first discriminant discriminates between three groups: 

i) c and h24, ii) h3 and n3, iii) n24 and it captures 54.6% of the discrimination potential. The 

second discriminant discriminates between n24 versus the remaining conditions and accounts 
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for 27.3% of the discrimination potential and the third discriminant separates h3. Significant 

differences between each treatment and the control are assessed by the use of contrasts 

(average distances) in the discriminant space. There is a significant difference between the 

control and heat treatment of 3 hours, Δ1,c-h3 and the control and both nutrient treatments, Δ1,c-

n3 and , Δ1,c-n24 based on the first discriminant (p-values are p = 0.001; p = 0.001 and p = 0.01). 

On the second discriminant, only the difference between, Δ2,c-h3 is significant (p = 0.002). 

None of the contrasts involving the control and the heat treatment of 24 hours were significant. 

 
Figure 4-5. Functional discriminant analysis on flow cytometric measurements of Evian after 
different treatments. The scores on the first three discriminants are displayed. (c: control, black 
circles; h24: 24 hours temperature treatment, light blue triangles; h3: 3 hours temperature treatment, 
blue +; n24: 24 hours with nutrient treatment, red x; n3: 3 hours with nutrient treatment, brown 
diamonds) 

The scores of the discriminants are linear combinations of the original features of the 

fingerprint. Therefore, the contrasts can also be used for the interpretation of the original FC 

distribution. The graph for the significant contrast c-n3 is shown in Figure 4-6. The graphs 

display the regions with cells that contribute to the discriminant by a) a blue colour if the 

region contains less cells in the bin than the control and b) a red colour for regions that contain 

more cells than the control. The intensity of the colouring of the bins is proportional to the 

magnitude of their contribution to the first discriminant (note: the colouring intensity is not 

proportional to the number of cells in the bins, this can be derived from the fingerprint plot). 

The top-panels and the left bottom panel correspond to 2D projections of the multivariate 
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distribution spanned by SSC, FL1 and FL3. The right-bottom-panel displays the contrast 

between the average fingerprint of the treatment and the control. Negative contributions 

correspond to bins with a lower cell density than the control and positive contributions 

correspond to bins with more observations than the control. We first concentrate on the 

contrast plots of the fingerprint. For all significant contrasts, bin numbers 16-26 seem to 

contribute to the first discriminant. In this region, the h3, n3 and n24 share the property that 

there are less cells in their average FC profile than for the control. In the FL1-FL3 plot it can 

be seen that these bins correspond to the regions around 0.4-0.6 in the FL1 channel and 0.15-

0.3 in the FL3 channel. The density mass of the cells in these regions is shifted to towards the 

higher bins, which correspond to high FL1 and FL3 intensities. For n3 the density mass is also 

partly shifted towards bins 13-16, which correspond to the higher intensities in the FL3 

channel and the lower intensities of the FL1 channel, i.e. to more damaged cells. 

 
Figure 4-6. Interpretation of the first functional discriminant of the n3 treatment. The blue and red 
regions display the regions with cells that contribute to the discriminant. Blue regions have a lower 
number of cells compared to the control, red regions a higher number. The intensity of the colours is 
proportional to the magnitude of their contribution to the first discriminant. The bottom-right-panel 
displays the contrasts between the average fingerprint of the control and the treatment. 
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The results obtained by flow cytometry were confirmed by the use of DGGE (Figure 4-7). For 

each treatment three independent replicates were analysed. A total of 35 different bands were 

detected in the DGGE analysis.  

 
Figure 4-7. Cluster analysis of the DGGE profile of Evian water after nutrient and temperature 
treatment. 

Based on these DGGE results, a discriminant analysis was performed for dimension reduction 

and the same method as for the FC data was used for hypothesis testing. The results of the 

discriminant analysis are given in Figure 4-8. The first discriminant differentiates between c-

h24 versus h3, n3 and n24 and accounts for 76.8% of the discrimination potential. The second 

discriminant allows further discrimination between h3, n3, and n24 and it captures 14.4% of 

the discrimination potential. Similar to the analysis on flow cytometric data, tests on contrasts 

between the control and the treatments in the discriminant space were performed. The 

contrasts based on the first discriminant Δ1,c-h3, Δ1,c-n3 Δ1,c-n24 are again very significant (all p-

values are smaller than p < 0.01). The contrasts based on the second discriminant Δ2,c-h3 and 

Δ2,c-n3 are also significant (p < 0.01 and p < 0.04 respectively). The contrasts between the 

control and the heat treatment of 24 hours, Δ1,c-h24 and Δ2,c-h24, are not significant (both values 

equal to p=1). The discriminant analysis shows a remarkable resemblance to the functional 

discriminant analysis on flow cytometric data. It confirms that the bacterial population of h3, 

n3 and n24 diverge from the control sample and it also cannot discriminate between the heat 

treatment h24 and the controls. The interpretation of the contrasts for the DGGE analysis is in 

terms of the influential bands. The difference based on the first discriminant is dominated by 

the impact of the band that is located on position 32.1%. The relative intensity of this band in 
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the control and the heat treatment of 24 hours fluctuates around 50%, which indicates that this 

organism dominates the bacterial population in these samples. For the other treatments, 

however, the relative intensities for this band lays within the range of 3-19% indicating that 

this organism is much less dominant in the samples of the h3, n3 and n24 treatments. The 

contrasts on the second discriminant are again highly influenced by band 32.1%. But, the 

bands on 41.8%, 39.0%, 14.0% and 11.9% also contribute considerably and allow for 

discriminating among h3, n3 and n24. 

 
Figure 4-8. Discriminant analysis on DGGE of Evian water after nutrient and heat treatment. The 
scores on the first two discriminants are displayed. c: control, black circles; h24: 24 hours heat 
treatment, red triangles; h3: 3 hours heat treatment, green +; n24: 24 hours with nutrient treatment, 
blue x; n3: 3 hours with nutrient treatment, light blue diamonds. 

3.3. Robustness#evaluation:#dayGtoGday#variation#

A daily variation experiment was also performed in which untreated water samples were 

analysed on 5 consecutive days. On each day 6 independent water samples were analysed by 

flow cytometry. The results of the treatment experiment and the daily variation experiment 

were jointly analysed by FDA. The samples in the daily variation experiment originated from 

a different water batch than the water used in the treatment experiment. The first three 

discriminants capture 72.5%, 16.1% and 6.25% of the discrimination potential, respectively. 

The water samples from the daily variation experiment (c1-c5) clearly cluster together and are 

different from the samples of the treatment experiment that originate from a different water 
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batch. Contrasts among the samples from the daily variation experiment were not significant 

(with p-values between p ∈ [0.9; 1]). The contrasts based on the first discriminant between the 

daily variation experiment (c1-c5) and the treatment experiment (c, n3, n24, h3, h24) were all 

significant (all p-values are p << 0.01). Based on the first discriminant a significant difference 

was observed between the control treatment (c) and the 24 hours nutrient treatment, Δ1,c-n24 (p 

=0.01). On the second discriminant differences between the control treatment (c) and 3 hour 

heat treatment, Δ2,c-h3, and the control and both nutrient treatments, Δ2,c-n3 and Δ2,c-n24 are 

significant (all p-values are p << 0.01). The contrasts between the control treatment and the 24 

hour heat treatment, Δ1,c-h24 and Δ2,c-h24, were non-significant (p = 1 and p=0.54). 

4. Discussion#

In this paper, we developed an objective method to quickly and automatically create and 

compare fingerprints of microbial communities. These fingerprints are based on cellular 

features of the single cells in a microbial community using flow cytometry with a tailored 

statistical data analysis pipeline. Based on the similarities and differences between the 

microbial fingerprints, we were able to discriminate different brands of bottled water, classify 

unknown samples and detect shift of microbial communities caused by changing physico-

chemical conditions.  

The last few years, the potential of flow cytometry as a fast methodology for investigating the 

microbial community in aquatic samples has been explored (Hoefel et al., 2005; Wang et al., 

2010). It is used for the routine analysis of aquatic samples or pure cultures (Pinder et al., 

1990). The total cell number is the most commonly used parameter for characterising the 

microbial community of water samples. But also cell size, DNA and RNA content, viability 

and enzyme activity of the bacterial cells are used (Hammes & Egli, 2010). These 

characteristics are also used for creating the FC fingerprint. Prior to flow cytometric analysis, 

the samples are stained with a suited dye or a combination of dyes to visualise cellular 

features of single cells. The post-processing of the FC data used to consist of several steps: It 

starts with the selection of the FC parameters of interest. Histograms with one parameter 

and/or dot plots with two or three parameters are made. These figures are then used for the 

interpretation of the data. Groups of cells are selected based on the density distributions, gates 

are made to focus on a certain group of cells and cell numbers are measured (Diaz et al., 

2010). Selection of the cells is done manually by the formation of regions which is very 

subjective (Bashashati & Brinkman, 2009). Subjective handling of the data is one of the main 
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drawbacks of flow cytometry, the interlaboratory variability can go up to 44% (Maecker et 

al., 2005). Comparison of microbial communities in environmental samples is done visually 

by comparing dot plots or is based on absolute or relative cell numbers. Changes or shifts in 

community structure are hard to detect by conventional flow cytometry software.  Recently, 

many efforts have been made for providing automated and more objective preprocessing and 

gating (Lo et al., 2009; Luta, 2011). However, the interpretation of FC profiles is mostly done 

manually. With the new method there was no need for any subjective post-processing of the 

data. The raw data were loaded into the statistical data analysis pipeline to create an automatic 

comparison and discrimination of different fingerprints of the microbial community across K 

treatment groups. The data collection and analysis could be done within 30 minutes and 

allowed an objective comparison of a sample with other samples or a database of previously 

analysed samples.  

In this research, the number of parameters was set at three to create a multi-dimensional 

fingerprint. The first two channels, FL1 and FL3, were selected based on the emission 

wavelength of the used dyes, here propidium iodide and SYBR Green (Berney et al., 2008). 

These dyes reflect the viability of the bacterial cells. The third parameter, the sideward 

scatter, reflects the morphological characteristics of the cells. These three parameters are most 

relevant for the used staining. Lowering of the number of parameters to two for the statistical 

analysis did not change the main conclusions of the analysis (results not shown). The viability 

staining can be substituted by other staining methods to make a fingerprint based on other 

cellular features (Wang et al., 2010).  

The concept of using flow cytometry in combination with the developed statistical tool for 

comparing FC fingerprints of the bacterial communities in different aquatic samples needs to 

be confirmed by a fingerprinting method that is accurate, reproducible and sensitive. PCR-

DGGE is a suitable method for this, it has been successfully used for bacterial community 

profiling of groundwater, bottled mineral water (Dewettinck et al., 2001) and wastewater 

treatment plants (Boon et al., 2002; Ding et al., 2011). Nutrient supplementation and elevated 

ambient temperatures were selected in this research to look at changes in the microbial 

community of drinking water due to environmental factors. The availability of nutrients is 

often the cause of regrowth (Morton et al., 2005) and nitrification (Zhang & Edwards, 2010) 

in water distribution systems and elevated ambient temperatures (37°C) represent optimal 

growth conditions for a wide range of microorganisms. Both treatments were conducted for 3 

and 24 hours to compare short and long-term effects. FC fingerprints were created with the 

aim of detecting changes within a microbial community and a second set of fingerprints were 
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made that differentiate between six brands of bottled mineral water for tuning the parameters 

of the data analysis pipeline. For both experiments visual discrimination of the flow 

cytometric dot plots of the samples (Figure 4-2 and Figure 4-4) was difficult and was prone to 

subjective interpretation. The statistical data analysis pipeline was used for differentiating 

between the FC fingerprints. In the treatment experiment, a significant separation between the 

control samples and three out of four treatments could be observed (Figure 4-5). The presence 

of nutrients in water and a temperature treatment caused only after 3 hours a change in the 

microbial community that was detectable by our method. Although there is a significant 

difference between the control and the heat treatment of 3 hours, the control treatment and the 

heat treatment of 24 hours were not significantly different. This could also be observed in the 

discriminant analysis of the DGGE (Figure 4-8) and the DGGE itself (Figure 4-7). 

Consequently, the lack of significant results between the control and the heat treatment of 24 

hours is not because of the insensitivity of the system but probably due to the growth of some 

species. This might be explained by the so-called r/K selection theory. In unstable 

environments, r-strategist are known to become more dominant because of their fast growth 

(Reznick et al., 2002). After a longer time of incubation, the environment gets more stable 

again, which benefits the K-strategists. This can cause the community to revert back to its 

initial situation. This phenomenon of intermediary situation and reversions to the original 

community was already seen before (Boon et al., 2003).  

The similarity between the discriminant analysis of the FC results and DGGE for all 

treatments confirms that our method can be used as a fast fingerprinting method for detecting 

changes in the microbial community of drinking water. DGGE was already successfully used 

to show that failure of the ammonia oxidation process in wastewater treatment plants can be 

linked to shifts in bacterial communities (Wittebolle et al., 2005) and that stagnation of tap 

water in water pipes induces microbial growth and changes in community composition 

(Lautenschlager et al., 2010b). This is an indication that our fingerprinting method can also be 

used for a fast detection of problems in wastewater treatment plants or water distribution 

systems. Experiments that confirm this are necessary. The experiment with the different water 

brands showed a clear and significant separation between the brands of bottled water (Figure 

4-3). These differences in community composition were already seen by Dewettinck and 

coworkers by the use of DGGE (Dewettinck et al., 2001). In case of a trained system with an 

internal database, the method can also be used for the classification of samples of unknown 

origin. This was shown by leave-one-out cross validation, as all samples were classified 

correctly.  
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Reproducibility and stability of the system are important characteristics that need to be 

guaranteed. With the aim of using the tool for the follow up of setups or quality control of 

products, the variability introduced needs to be negligible. One needs to be sure that changes 

detected by the method can be ascribed to changes in the microbial community and are not 

caused by i) changing laboratory procedures or ii) the variability of the equipment or the 

system. To prevent changes because of changing laboratory conditions or procedures, a 

standardised protocol needs to be followed during the preprocessing of the samples. The daily 

variation experiment, where water samples originating from the same batch were analysed on 

5 consecutive days, shows the stability of the system. All water samples from the same batch 

cluster together, although they were analysed on different days, while the samples of the 

treatment experiment are clearly separated.  A poor discrimination between the samples of the 

daily variation experiment and the control of the treatment experiment was expected, however 

this is not the case. This can possibly be explained by the difference in bottle volume used for 

both experiments. This “volume effect” was shown before to influence the bacterial 

community of bottled water (Hunter, 1993).  

The use of our flow cytometry pipeline is not restricted to the analysis of drinking water. 

Automated flow cytometry systems, like the flow injection flow cytometer (Zhao et al., 

1999), make it possible to automatically sample, pre-process and analyse bioreactors. The 

developed data analysis method also allows the comparison of new samples with results of 

previous samples that are stored in an internal database. This opens new opportunities for 

building completely automated objective on-line warning systems for bioreactors, which are 

susceptible to contamination. Such systems are useful in different industries in which 

processes follow up and product quality control are important. Flow cytometry is already used 

within this context, e.g. for the evaluation of the quality of lactic acid bacteria starter cultures, 

raw materials and the production processes itself in the dairy industry (Riis et al., 1995; 

Ruszczynska et al., 2007), for the follow up of fermentation processes during the production 

of beer (Hutter, 2002), quality control in winemaking (Couto & Hogg, 1999) and in the 

different stages of drinking water production (Hammes et al., 2010) or waste water treatment 

(Forster et al., 2003). Our data analysis pipeline can contribute to optimising these 

applications. 

The development of portable flow cytometers will make it possible to go from the laboratory 

to the field for the analysis of samples (Song et al., 2011). This allows a real-time analysis at 

the place of sampling (Diaz et al., 2010). Fast objective data analysis pipelines will boost 

portable flow cytometers to give an indication of the microbial quality within one hour so that 
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they can be used as an early warning system. This will enable an immediate intervention in 

case of problems and will provide clear economic benefits. 

5. Conclusions#

Flow cytometry followed by our statistical data analysis pipeline can be used as a fast 

objective method for the construction, interpretation and comparison of microbial community 

fingerprints of aquatic samples. The results were confirmed with DGGE, which resulted in a 

similar discrimination between the water samples. 
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Abstract 
After reparation or maintenance works in a water distribution network, it is required to rinse 

these water pipes to ensure that only save and clean drinking water reaches the consumer. The 

conventional procedure consists of disinfection by the addition of chlorine, followed by 

rinsing with a quantity of water that equals three times the volume of the water pipe. This is a 

time consuming and costly process that water companies would like to reduce. Therefore, the 

flow cytometric fingerprinting approach was used to determine the time needed for the rinse 

water to be again of the same quality as the clean and safe reference water. It was shown that 

the rinsing time could be drastically reduced and that flow cytometry fingerprinting is a 

valuable technique for the follow up of this rinsing procedure. 
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1. Introduction#

Before water pipes in a water distribution network are put back into use after reparation 

works, maintenance or installation, the pipes are rinsed to ensure that only save and clean 

water reaches the consumer. This rinsing process consists of several steps; first chlorine is 

added in high concentrations to the pipes for disinfection. Next, the pipes are filled with water 

and rinsed with a volume equal to three times the pipe-volume (De Gusseme & Van de Velde, 

2013). Known that the average diameter of such a pipe is 1 m, 2.4 m3 water is needed per 

running meter. The length of the pipe can go up to 2000 m, what brings the total rinsing 

volume to 4800 m3 and a water cost of € 4800. The time of rinsing is generally between 15 

and 20 hours. To make sure that water meets the quality standards after rinsing, a water 

sample is taken and different chemical and biological parameters are analysed (WHO, 2011). 

For example, no coliforms, E. coli and enterococci can be detected in 100 mL of water to 

meet the standards. Due to the long incubation times of heterotrophic plate counts, the process 

of quality control takes at least 18 hours (Allen et al., 2004). After confirmation of the water 

quality, the pipes can be put back into use. This makes that the total rinsing procedure, 

including quality control, takes at least 30 hours. During this period, the water pipe cannot be 

used and an alternative water supply has to be organised for all consumers in the network. 

Water distribution companies raised the concern of this time demanding rinsing procedure 

and its high cost (De Gusseme & Van de Velde, 2013). Whereas it is not possible to get 

around or replace the standard procedure for quality control, it could be possible to reduce the 

rinsing time and volume by testing when the water reaches the desired quality. The flow 

cytometric fingerprinting method (developed in Chapter 4) - which was shown to be able to 

differentiate between different brands of bottled water and to detect changes within a 

microbial community (De Roy et al., 2012) - was used in a field study to evaluate when 

‘dirty’ rinse water was again of the same quality of the ‘clean’ water that was used to rinse.  

2. Material#and#methods#

2.1. Rinsing#and#sampling#

After reparation works on a main water pipe in the Ghent water distribution network, the pipe 

was disinfected with chlorine. This was done by adding 10 L of a sodium hypochlorite 

solution (15% active chlorine) to the point where the reparation works were performed. After 
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the addition of chlorine, the pipe was filled with water. Once full, water samples were taken 

every hour during 19 hours upstream of (reference water) and downstream of (rinse water) the 

location of the reparation works (Figure 5-1).  

Prior to sampling, the tap was opened for 5 minutes to rinse the tap and to ensure the sampled 

water originates from the main water pipe and not the tap. Residual chlorine in the water 

samples was quenched by the addition of 100 mM sodium thiosulfate. Samples were stored at 

4°C and analysed within 30 minutes after sampling. This procedure of sampling, chlorine 

neutralisation and storage is identical to the procedure applied and optimised by the water 

company (De Gusseme & Van de Velde, 2013).   

 
Figure 5-1. Rinsing procedure of the main water pipe after reparation works. The pipe was filled 
with water after addition of chlorine (orange plug). From the moment the pipe was full, the pipe was 
rinsed during 19 hours. To investigate if the rinsing time (indicated in green) could be reduced, 
samples of the reference and rinse water were taken every hour during the rinsing process and 
analysed by flow cytometry. 

2.2. Flow#cytometric#analysis#

The water samples were stained with a viability staining containing propidium iodide (PI) and 

SYBR Green I. The staining solution was prepared by diluting SYBR® Green I (10 000 times 

concentrate in DMSO, Invitrogen) 100 times in 0.22 µm filtered DMSO and adding PI 

(Invitrogen) to a concentration 400 µM. Water samples were stained in triplicate with 10 µL 

mL-1 staining solution and incubated for 13 minutes at 37°C in the dark (Hammes et al., 2012). 

For each replicate, a volume of 100 µL was analysed with the Accuri C6 flow cytometer (BD 
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Biosciences), equipped with a 488 nm solid-state laser. Measurements were performed at high 

speed (66 µL min-1, 22 µm core size), the threshold settings for FL1 and FSC were 

respectively 500 and 3000. Green and red fluorescence were collected with photomultiplier 

tubes using 533/30 nm (FL1) band pass and 630 nm (FL3) long pass filters, respectively. 

Forward (FSC) and side scatter (SSC) were detected by diodes. Milli-Q water was used as the 

sheath fluid.  

Cell counts of damaged and intact cells were done by measuring the number of particles in 

each region after gating on green versus red fluorescence plots in the BD CSampler software 

(Van Nevel et al., 2013b).  

2.3. Flow#cytometric#fingerprinting#

For flow cytometric fingerprinting (Figure 5-2), all data was exported as fcs-files and 

imported in the R-fingerprinting program. To create a multi-dimensional fingerprint, the most 

relevant parameters FL1, FL3 and SSC were selected based on the emission wavelength of 

SYBR® Green I and PI and the morphological characteristics of the cells.  

The training dataset, initially only consisting of the data of the reference water (clean water) 

and rinse water (dirty water) sampled at the first time point, was pooled and used to create the 

initial fingerprinting model by probabilistic binning (De Roy et al., 2012). The number of bins 

was set at 64. For each sample in this training dataset, a fingerprint was created by 

determining the relative abundance of cells in each bin of the fingerprinting model. Each 

fingerprint was assigned to one of two groups, ‘clean’ or ‘dirty’, according to the origin of the 

sample. A dimension reduction was performed by principal component analysis (PCA, 

threshold 96%), followed by Fisher discriminant analysis (FDA) that extracts those features 

from the fingerprints that are most important to differentiate between the two groups. The 

resulting discriminants are linear combinations of the input variables. By projecting the 

fingerprints of new flow cytometry samples in the same discriminant space, this discriminant 

space can be used for classification purposes. Therefore, fingerprints were created for the 

rinse water of the next time point and classified using cross-validation.  

Because in a real situation it is required to classify a new sample as clean or dirty when only 

the results of earlier time points are available, not all samples of the reference water were 

directly added to the training dataset. This was done sequentially according to the different 

time points. The complete procedure of model development, fingerprinting, dimension 

reduction, discrimination and classification was therefore repeated for every time point.   
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3. Results##

3.1. Cell#counts#

The number of damaged and intact cells in the reference and rinse water was measured after 

the samples were stained in triplicate with a viability staining. The number of intact cells in 

the reference water varied between 15 000 and 20 000 cells mL-1 during the first three 

sampling hours and reached a stable value of 15 000 cells mL-1 after 4 hours (Figure 5-3A). 

After 17 hours, there was again an increase of the number of viable cells. From the moment 

the pipe was full (time 0) until two hours of rinsing, the number of viable cells in the rinse 

water was 22-45% higher compared to the reference water, which was analysed and sampled 

at the same time as the rinse water. From 4 hours of rinsing on, the number of viable cell in 

the rinse water was lower than in the reference water. 

 

 
Figure 5-3. Number of intact (A) and damaged (B) cells in the reference water (black circles) and 
rinse water (red triangles) throughout the rinsing procedure of the water pipe (mean ± SD, n=3). 
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The number of damaged cells (Figure 5-3B) was the same in the reference and rinse water and 

was about ten times higher than the number of intact cells. It varied over time, with the lowest 

number at the start of the rinsing process and the highest after 9 hours rinsing. 

3.2. Fingerprinting#

The rinsing time required for the rinse water to become of the same quality as the reference 

water was determined by flow cytometric fingerprinting. The reference and rinse water at 

time 0, when the pipe was filled, are respectively considered as clean and dirty water and are 

used to create the training dataset. Every hour, the reference water was added to the ‘clean’ 

group of the training dataset. Because every hour the training dataset is getting bigger and for 

each time point the complete fingerprinting procedure is repeated, different discriminant 

values are obtained over time for the reference and dirty water. 

The only discriminant, which accounts for 100% of the discrimination potential, was able to 

discriminate between the ‘clean’ water (Figure 5-4, black circles) and ‘dirty’ water (Figure 

5-4, red triangles) at all time points. The variability within the ‘clean’ group did however 

become bigger. The rinse water that had to be classified is indicated with a dashed line. After 

1 hour of rinsing, the water could not be classified as either clean or dirty based on the 

discriminant score. After 2 hours, the water was still qualified as dirty (indicated with a red 

rectangle), while it was clean after 3 hours and 4 hours (indicated with a green rectangle). 

From 5 hours of rinsing on (result only shown until 8 hours of rinsing), the discriminant score 

of the rinse water was again different from the clean water. However it remained more similar 

to the clean water than the dirty water, no clear conclusions can be made. 
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Figure 5-4. Functional discriminant analysis. For each hour of rinsing, PCA and FDA were 
performed to differentiate between the reference water (clean) and initial dirty rinse water ‘dirty’. The 
rinse water after x hours that requires classification was projected in the same discriminant space and 
indicated with dashed lines on the discriminant plot. Red, green and blue rectangles respectively 
classify the rinse water as dirty, clean or none of both. (n=3) 

4. Discussion#

To determine when rinsing water was again of the desired quality, this water was compared to 

water sampled earlier in the distribution network, which is known to be of good quality. As 

drinking water was shown before to remain stable throughout the water distribution network 

(Lautenschlager et al., 2013), samples taken earlier in the distribution network can be 

compared to samples taken further on. 

The number of intact cells in the rinse water was higher compared to the reference water 

during the first two hours of rinsing. From three hours of rinsing on, there were less intact 
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cells in the rinse water than in the reference water. These cell counts are a first indication that 

from three hours of rinsing on, the rinse water is of the desired quality to allow consumption 

(Hammes et al., 2008). Subtle, but important differences in the community composition can 

however not be detected by looking only at cell numbers. Moreover, the used post-processing 

method is subjective and experienced personnel are needed because it requires the drawing of 

gates to differentiate between cells with different physiological characteristics and to remove 

background signals. Therefore, the fingerprinting technique that (i) takes into account the 

complete multivariate distribution of the flow cytometric measurements and (ii) does not 

require any subjective post-processing, was used as an alternative. As it was the aim to 

determine when the rinse water is again similar to the reference water, a training dataset 

consisting of two groups was created. The first group contained the reference water, which 

was known to have the required quality, and was therefore named ‘clean’. Every hour, new 

reference samples were added to this group of the training dataset. A higher number of 

samples within the training dataset benefits the reproducibility and stability of the system and 

captures the variability within the microbial community of the reference water. This 

variability is also detectable in the cell counts. At the beginning and the end of the rinsing 

procedure, a higher number of intact cells was present in the reference water. These samples 

were respectively taken at noon and in the early morning of the next day. The variable cell 

count can have several causes like (i) stagnation within pipes, reservoirs or water towers 

(Lautenschlager et al., 2010b), (ii) water of different origin, (iii) use of different water sources 

for the production of water and (iv) altering residual chlorine concentrations (Hwang et al., 

2012). 

The second group in the training dataset contained the water samples that were regarded as 

‘dirty’. Only the first rinse water samples were added to this group, what makes this group 

rather small in comparison with the ‘clean’ group. The small number of replicates within this 

group impedes the classification. Therefore, the results need to be interpreted carefully. 

Classification of the rinse water at different time points shows that the rinse water is similar to 

the reference water after three hours of rinsing. From this point on, the rinse water could be 

regarded as clean. After 5 hours of rinsing, the water is however again different from the 

reference, but still more similar to the clean water than the dirty water. This difference can 

also be seen in the cell numbers: after three hours, more cells are present in the reference 

water than in the clean water. This can be caused by attachment of the cells to the water pipes 

or by the residual concentrations of chlorine from the disinfection procedure at the beginning 

of the rinsing process.  
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5. Conclusion#

Based on the cell counts and fingerprinting results it could be concluded that a rinsing time of 

three hours is sufficient. This however needs to be confirmed by the conventional plate count 

techniques. This would generally mean that the rinsing procedure could be reduced by more 

than 12 hours, what corresponds to a reduced water cost. Furthermore, the water pipes could 

be put back into use sooner.  

Rinsing times can however vary dependent on the performed works, length of the pipes, type 

of pipes, etc. Therefore no fixed minimal rinsing time can be assigned. A proposed procedure 

is the follow up of the rinsing water with flow cytometry. When the water is predicted to be of 

the desired quality by the fingerprinting technique, the rinsing procedure can be stopped and 

samples can be taken for quality control with the compulsory conventional techniques. 

It is important to mention that this fingerprinting technique is not able to replace the 

compulsory quality control done by conventional plating. This is still required to assure the 

absence of possible pathogens by showing the absence of their indicator organisms. The 

method can only be used to decrease the rinsing time and not the time required for quality 

control. 
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Chapter partially redrafted after:  

• De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T & Boon N (2013) 

Synthetic microbial ecosystems: an exciting tool to understand and apply microbial 

communities. Environmental Microbiology (in press). 

1. General#research#outcomes#

1.1. Positioning#of#this#research#

Microbial resource management or MRM has been defined as the optimal management of 

microbial resources in order to develop novel products and to optimise and steer microbial 

processes. Its final aim is to improve the environment, human health and biotechnological 

applications in the most sustainable way (Verstraete et al., 2007; Read et al., 2011). 

Management may occur at the level of single cells, i.e. engineering of individual microbial 

populations to improve their resistance to stress, to have a higher productivity or to degrade 

toxic compounds (Benner & Sismour, 2005). Furthermore, management may also occur at the 

level of the complex microbial community, which inhabits natural and anthropogenic 

environments and whose final functionalities often result from metabolic networking among 

the different members. Despite the potential of MRM, the road to translate MRM into practice 

is still long. Several aspects require further investigation, like the factors that influence and 

shape microbial communities. Synthetic microbial communities were proposed in Chapter 1 

as a useful tool for the controlled study of ecological theories. In Chapter 2 and 3, synthetic 

microbial communities were used to investigate biological invasion and the establishment of 

microbial mutualism. 
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Another aspect that impedes MRM is the characterisation of microbial communities. 

Microbial community analysis techniques are required that are able to provide more 

information about the current status of the microbial community, like its composition, 

structure and physiological characteristics. Conventional techniques are generally time 

consuming. Flow cytometry was proposed in Chapter 1 as a fast and promising alternative. In 

Chapter 4, a flow cytometric fingerprinting technique was developed for the analysis of 

microbial communities. In Chapter 5, the fingerprinting technique developed in Chapter 4 

was applied for the follow up of water quality in a water distribution network (Figure 6-1). 

 

 
Figure 6-1.Schematic research overview for locating the different chapters. 
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1.2. Main#research#outcomes#

In the first part of this dissertation, ecological theories were tested by the use of synthetic 

microbial communities to characterise and investigate factors that influence and affect 

microbial communities.  

In Chapter 2, we evaluated the degree of invasion and the effect on the community 

functionality in relation to the initial community evenness under the influence of specific 

environmental stressors. We showed that evenness influences the level of invasion and that 

the introduced species can promote functionality under stress. In the absence of stress, 

invasion was higher in an uneven community compared to an even community and invasion 

had a negative effect on the community functionality. On the other hand, the evenness-

invasibility relationship was neutral in the presence of stress. Under these stress conditions, 

the introduced species was able to maintain the functionality of uneven communities, which 

was lower in the absence of invasion. These results indicate that communities, having the 

same genetic background, in the presence of the same invader, react in a different way with 

respect to invasibility and functionality depending on specific environmental conditions and 

community evenness.  

In Chapter 3, the effect of interspecies relatedness on the establishment of a mutualistic 

interaction was investigated. Synthetic microbial communities were used to test the 

importance of interspecies relatedness during the establishment of mutualism between 

previously non-interacting microorganisms. Obligatory mutualism was created by making 

pairwise combinations of an ampicillin resistant, tyrosine auxotrophic strain and ampicillin 

sensitive strains. At the initial encounter, no cooperation could be detected in any of the 

mixes. Closely related species were able to adapt their phenotype after longer contact times 

and successfully established mutualisms. While distantly related species were not able to 

establish mutualism and were consequently threatened with extinction.  

 

In the second part of this dissertation a flow cytometric based approach for the fast and 

objective characterisation and classification of microbial communities was developed, tested 

and applied. 

In Chapter 4, a flow cytometry based approach was developed for a fast and objective 

comparison of microbial communities based on the distribution of cellular features from 

single cells within these communities. The method consists of two main parts, firstly the 

generation of fingerprint data by flow cytometry and secondly a novel statistical pipeline for 
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the analysis of flow cytometric data. The combined method was shown to be useful for the 

discrimination and classification of different brands of drinking water. It was also 

successfully applied to detect changes in the microbial community composition of drinking 

water caused by changing environmental factors. Generally, the method can be used as a fast 

fingerprinting method of microbial communities in aquatic samples and as a tool to detect 

shifts within these communities. 

In Chapter 5, the applicability of the flow cytometric fingerprinting technique developed in 

Chapter 4 was tested in a full-scale water distribution network. It was used for the follow up 

of the water quality during the rinsing process of water pipes. The conventional procedure 

consists of disinfection by the addition of chlorine followed by rinsing. The flow cytometric 

fingerprinting approach was used to determine the minimal rinsing time, this is the time 

needed for the rinse water to be again of the same quality as the clean and safe reference 

water. It was shown that the rinsing time could be drastically reduced and that flow cytometry 

fingerprinting is a valuable technique for the follow up of this rinsing time. 

2. Synthetic#microbial#ecosystems#

2.1. Concerns#and#future#perspectives#of#synthetic#microbial#ecology#research#

The majority of synthetic ecosystems consist of only two to four species. Although being very 

useful to study ecological theories, the resemblance with natural ecosystems and potential for 

practical applications is limited. Therefore, a next step in synthetic ecology is to create 

synthetic ecosystems with increasing resemblance to natural ecosystem. The better a model 

can simulate the actual complexity of nature, the higher is its scientific value. Firstly, this can 

be achieved by using sophisticated experimental models that better simulate the 

environmental factors. An example of a sophisticated model is a high-pressure reactor to 

simulate the deep-sea environment (Zhang et al., 2011). Secondly, synthetic ecosystems can 

be optimised by increasing the number of species and optimising their composition, structure 

and functionality. It will however be impossible to use as many species as present in a natural 

ecosystem. Dependent on the ecosystem, very high numbers of species are present, soil can 

contain up to 30 000 species (Curtis et al., 2002). But most communities examined to date 

feature a species abundance distribution in which the majority of species is found in low 

abundance, while a limited number is found in high abundance (Figure 6-2) (Nemergut et al., 

2013). As such, synthetic ecosystems can be created focusing on the most abundant species. 
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Figure 6-2. Typical rank-abundance plot. Each point represents the abundance of one species within 
the community. A common feature of many microbial communities is that only a limited number of 
species is present in high abundance, while the majority is present in low abundance (Nemergut et al., 
2013). 

Studies using synthetic ecosystems with a high number of species have mostly been restricted 

to short-term experiments, due to stability issues of synthetic communities. It was 

theoretically shown by ecological models that some species and specific mixtures of agonistic 

and mutualistic interactions between species are necessary to obtain a stable ecosystem 

(Boyd, 2012; Mougi & Kondoh, 2012). The integration of such models in microbial ecology 

would be of high value. Research with synthetic microbial ecosystems created an enormous 

amount of complementary data, in addition, the genomes of numerous microorganisms have 

been sequenced. By combining these data and information, in silico models making use of 

‘digital microorganisms’ can be created and used for the construction of synthetic ecosystems 

with desired characteristics (Figure 6-3) (Yedid et al., 2009). Furthermore, these models can 

be used to predict an ecosystem’s behaviour like stability, resistance and functionality. The 

problem with many ecological models is the lack of validation and overparameterisation. 

Therefore, we argue to use real ecosystem, in vivo models, sophisticated in vitro models or 

synthetic ecosystems for the validation of in silico theoretical models and correct for possible 

overparameterisation. But also to use real ecosystems to check the relevance of synthetic 

ecosystems, since numerous important factors could be missed. Only when this is done, 

models can really contribute to the understanding, prediction and management of ecosystems. 
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Figure 6-3. The future of synthetic ecosystem research. Research with synthetic ecosystems 
drastically increased the knowledge on microbial ecosystems. All this information could be used to 
create in silico models that can predict an ecosystem‘s behaviour. After validation and correction for 
possible over- or underparameterisation, these models could be used to understand, predict, manage 
and create ecosystems. 

2.2. The#applied#use#of#synthetic#microbial#communities#

Synthetic microbial communities were used in the first part of this thesis for testing different 

ecological theories. The use of these synthetic communities is however not restricted to 

research. Synthetic ecology has been shown numerous times to be important in the 

development of specific applications, representing a good balance in terms of complexity, 

relevance and manageability. 

Synthetic communities can be used, for instance, to recycle waste products. The European 

Space Agency (ESA) designed MELiSSA (Micro-Ecological Life Support System 

Alternative), a bioregenerative life support system for the complete recycling of gas, liquid 

and solid wastes during long distance space exploration (Fulget et al., 1999; Hendrickx et al., 

2006b). In MELiSSA, cyanobacteria and plants were use as food sources. As both 

cyanobacteria and plants preferentially take up nitrogen as nitrate, the ammonium-enriched 

liquid waste derived from human activities needs to be nitrified to nitrate to create the most 

optimal recycling system. Therefore, ammonia is oxidized to nitrite by ammonia-oxidizing 

bacteria (i.e. genera Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, and 

Nitrosovibrio, currently a coculture of Nitrosomonas europaea ATCC 19178 and Nitrobacter 
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winogradskyi ATCC 25391 is used) and then nitrite to nitrate by nitrite oxidizers (i.e. genera 

Nitrobacter, Nitrococcus, and Nitrospira). Considering that MELiSSA has been designed for 

space exploration, the stability of the system is a key aspect in order to assure long-term 

functionality. In this respect, the choice of a synthetic community should assure both a 

functional and compositional stability as the environment is well defined and the required 

metabolic conversions are not complex. In fact, according to Pimm (1984), the more the 

functionality of one species depends on the activity of another species, the fewer species will 

be necessary to maintain ecosystem stability. Moreover, as the loss of a species would lead to 

the disruption of the whole ecosystem, the designed synthetic community should be also 

resilient to perturbation (Pimm, 1984). 

Synthetic communities also play a key role in the industrial fermentation and production of 

chemical compounds. In industrial bioethanol production, most ethanol is produced by the 

fermentation of glucose or sucrose from corn, sugar cane or beets. Because this competes with 

food production, alternative sources of sugar are investigated, such as lignocellulosic 

biomass. Glucose and xylose are the two dominant sugars. But current approaches are 

inefficient, since no native microorganisms can convert all sugars into ethanol at high yield. 

Therefore co-cultures of strains that have a high yield for different sugars are used (Chen, 

2011). Patle and Lal (2007), showed that a very simple community composed of Zymomonas 

mobilis and Candida tropicalis was able to transform enzymatically hydrolysed 

lignocellulosic biomass into ethanol with a yield of 97.7%. Mixed-culture fermentation from 

lignocellulosic biomass for ethanol production can increase ethanol yield and production rate 

and reduce process cost. 

Synthetic microbial communities consisting of Ketogulonicigenium vulgare and Bacillus 

megaterium have been used in industry to produce 2-keto-gulonic acid (2-KGA), the 

precursor of vitamin C (Ma et al., 2011). By means of quantitative systems biology analysis, 

it was shown that the cell lysis of B. megaterium provided key elements necessary for K. 

vulgare to grow better and produce more 2-KGA, as compared to the production as a pure 

strain.  

Another field of application for synthetic communities is the bioremediation of contaminated 

areas. This approach often relies on the addition of microorganisms with the metabolic 

potential to degrade a specific contaminant, i.e. bioaugmentation. Given the high complexity 

of some contaminants, bioaugmentation of single strains may not be sufficient to achieve a 

good ‘removal efficiency’, as demonstrated in the case of the pesticide linuron (Dejonghe et 

al., 2003). Variovorax sp. strain WDL1 could degrade linuron using it as C, N and energy 
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source. Conversely, Delftia acidovorans WDL34 and Pseudomonas sp. strain WDL5 were 

not able to use linuron but only some intermediate of its degradation. When these strains were 

mixed in a synthetic community, the rate of linuron degradation improved due to the 

synergistic interaction of the strain WDL1 with the other bacteria. A similar case is 

represented by the degradation of 4-chlorosalicylate (4-CS). This compound can only be 

degraded if Pseudomonas reinekei (MT1), Wautersiella falsenii (MT2), Achromobacter 

spanius (MT3) and Pseudomonas veronii (MT4) work together (Pawelczyk et al., 2008). 

A final example is the application of synthetic microbial communities as a safe alternative for 

human faecal transplants. Because the human gut contains a dense (1013-1014 microbial cells) 

and diverse microbial community (Eckburg et al., 2005), consisting of several hundreds of 

microbial species, severe disturbances of this ecosystem are unlikely to be resolved by the 

administration of a single probiotic strain. Indeed, recurrent Clostridium difficile-associated 

diarrhoea (Khoruts et al., 2010; Guo et al., 2012), which is thought to result from persistent 

disruption of the commensal gut microbiota, was cured upon transplantation of a complex 

faecal microbiota derived from a healthy human donor (Shahinas et al., 2012). This approach 

is however only applied in severe cases given the high complexity of a human faecal sample, 

which is inherently associated with a certain risk for transmitting disease. As a result, there is 

a large potential for synthetic ecology to mix a well-characterised and safe set of gut 

microorganisms. Petrof et al. (2013) synthesized a synthetic microbiota consisting of 33 

individual microbial species and indeed demonstrated the potential of such synthetic 

microbiota in the eradication of Clostridium difficile infections. Such approaches may result 

in a replacement of commonly used antibiotics. 

All the cases described in this section demonstrate the potential for synthetic communities in 

practical applications.  

3. Cooperation#and#interactions#in#microbial#communities#

Chapter 2 and 3 both deal with the microbial interactions at play in a microbial community 

and how these interactions are crucial for the survival and functionality of a community. In 

both chapters, the interactions were investigated at a different level of complexity. In chapter 

2 microbial interactions were investigated on community level using synthetic communities 

with a high richness and different levels of initial evenness. While the development of 

mutualistic interactions was studied on species level using co-incubations of only two strains 

in chapter 3.  
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3.1. Satellite#populations#supporting#the#core#population#

‘Invasion’, which is the introduction of non-native species to a community, is generally 

considered as negative. In this thesis, the outcome of microbial invasion was shown to be 

greatly dependent on the environmental conditions and community structure. The invader was 

able to improve an ecosystem’s functionality under stress, while the functionality was 

strongly impeded in the absence of the invader. As such, the invader had a supportive role 

within the stressed community. In a way, the invader helped the community to maintain its 

functionality. This supportive effect was also reported in an activated sludge bioreactor: a 

bioaugmented reactor could better protect the native community its structure and function 

compared to not bioaugmented reactors (Boon et al., 2003). The mechanism of these 

supportive interactions is however still unclear and lot of new questions are raised: How does 

the invader improve the functionality? Are specific microbial interactions involved? Does 

every functional community require a supporting population? etc. These questions could be 

further investigated by the use of synthetic communities to create a ‘collaborome’ that 

consists of a functional ‘core population’ and a supporting ‘satellite population’. By (i) using 

fully characterised species, (ii) gradually increasing the number of species within the 

‘collaborome’, (iii) analysing the performance of the communities in the presence and 

absence of stress (e.g. growth and functionality) and (iv) performing proteomics, 

metabolomics and transcriptomics, it will be possible to fully map the microbial community 

and the interactions involved in this community. Transcriptomics and proteomics allow the 

identification of crucial genes and proteins that are being up- or down-regulated under 

specific conditions. Metabolomics allows the identification of small molecules that can serve 

as signal or communication molecule and that possibly alter the gene expression and 

consequently the phenotype of the participating strains. Like that, a better insight into the 

invasion process and its effect on the microbial community could be obtained. 

3.2. Invasion#in#disparate#ecosystems#

Next to the supporting role that an invader can have on a microbial community, it was also 

shown that the composition of the native community is a key factor that determines invasion 

success. This information can be used to perform MRM in environments where invasion 

should be avoided or where it should be enhanced. In different environments, such as 

drinking water and the human gut, invasion of bacteria, such as pathogens, should be avoided. 

According to the results obtained in this thesis, this would mean that the microbial 
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communities should have a high evenness. This was also confirmed by a recent study in 

which the invasion in sewage and drinking water was compared. In sewage water, which was 

shown to have a higher evenness than drinking water, the invasion of a pathogen was less 

than in drinking water (Van Nevel et al., 2013a). Situations in which invasion is desirable are 

e.g. bioaugmentation of polluted ecosystems with bacteria that are able to degrade the toxic 

compounds or the supplementation of probiotics to the human gut via food to have a health 

benefit. According to our findings, invasion can be improved in these ecosystems by stressing 

it and giving it a more dominant community structure.   

3.3. Establishment#of#mutualistic#interactions#

In chapter 3, phylogenetic relatedness was shown to be very important in the development of 

mutualistic interactions. Apparently, distantly related species prefer to die than to cooperate. 

However, this is probably not a matter of ‘preferring’ but rather a matter of ‘having the 

ability’ to cooperate. Distantly related species are possibly not able to communicate with each 

other in a proper way or do not have the ability to react properly to the signals. This is 

however not yet clearly understood and the answers given in this chapter raises again some 

questions: Why do some species cooperate and others not? How do species cooperate? Is it 

possible to manage and steer the communication and collaboration between microorganisms? 

How do species adapt their phenotype? etc. To answer all these questions and unravel the 

underlying mechanisms of microbial interactions, in depth studies are required. Performing 

co-incubations of two species followed by in depth analysis of the phenotype and genotype 

can provide more information. Metabolomics will allow the identification of signal molecules 

such as alarmones, which are hypothised in this work to be important in the establishment of 

mutualism and which are shown to be an important warning system for bacteria (Rowbury, 

2001). The effect of these alarmones on gene expression of closely and distantly related 

species and the importance in the establishment of mutualistic interactions could be tested and 

the knowledge used for microbial resource management. This will also provide an 

explanation why closely related species are better cooperators than distantly related species. 

Once some of the important factors in the establishment of interactions are identified, this 

information can be used to enhance microbial interaction. Or to do the opposite, quench 

interactions. Furthermore, the information can be used to construct functionally stable 

microbial consortia with desired characteristics (Kerner et al., 2012).  
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4. Flow#cytometric#fingerprinting#

4.1. General#considerations#

The flow cytometric fingerprinting technique was developed as a diagnostic tool for the 

characterisation of microbial communities to allow MRM. This method was developed and 

optimised using drinking water. This liquid matrix allows easy flow cytometric analysis 

without the requirements of any sample pre-treatment. Furthermore, lot of information is 

available on this ‘easy environment’ (Hammes & Egli, 2010; Van Nevel et al., 2013a). 

Therefore, drinking water was a suited environment and good showcase for development of a 

diagnostic tool.  

On the other hand, drinking water is a very stable environment and does not require MRM, 

unlike many other environments such as wastewater in a wastewater treatment plant, soil, etc. 

(Verstraete et al., 2012). The applicability of the flow cytometric fingerprinting technique for 

these ‘difficult environments’ still needs to be investigated. These environments are regarded 

as difficult due to the limitations of flow cytometry. Flow cytometry requires a liquid matrix 

with suspended cells and without particles larger than 50 µm, which can cause clogging of the 

system. Pre-treatment steps for the extraction and purification of cells are therefore essential 

for soil, sediments, plant, biofilms, etc. (Amalfitano & Fazi, 2008). All these pre-treatment 

steps need optimisation and standardisation to allow the comparison of samples by the flow 

cytometric fingerprinting techniques. Therefore, it will be challenging to use and apply flow 

cytometry and the fingerprinting technique in the different ecosystems. 

4.2. Comparison#with#alternative#flow#cytometric#fingerprinting#techniques#

4.2.1. Alternative#fingerprinting#techniques#

Since the development of our flow cytometric fingerprinting technique (De Roy et al., 2012), 

two alternatives have been proposed by Koch and coworkers (Koch et al., 2013a; Koch et al., 

2013b; Koch et al., 2013c). All these methods have clear advantages and disadvantages, 

which are summarised here:  

The first method of Koch et al. (2013c) creates a fingerprint based on the number of cells in 

cell clusters, which are defined by gates. The gates comprise mixed cell compositions and are 

regarded as subcommunities. These fingerprints were correlated with abiotic parameters. This 

way, they were able to identify activity hot spots in microbial communities and detect 



Chapter 6 

 120 

C
H

A
PT

ER
 6

 

functional rather than phylogenetic subcommunities. The main disadvantage of this method is 

the subjectivity of the gating procedure, which is minimized by the use of a gating template. 

The position of the gates is dependent on the type of instrument, its settings, the type of 

staining and the staining procedure. Furthermore, a flow cytometric pattern is different for 

every environment. Therefore, new gating templates need to be created once one of these 

parameters is changed. The most important advantage of this fingerprinting method is the 

ability to link the flow cytometry pattern to the functionality of the microbial community. By 

correlating the fingerprints with abiotic data, they are able to make a prediction on the 

functional outcome of microbial communities in a specific environment. This is very 

interesting with the eye on microbial resource management.  

In the second method they have developed, they tackled the gating problem. They did this by 

exporting the flow cytometric dot plots to image analysis software that compares the plots by 

comparing single pixel values (Koch et al., 2013a). This procedure is called “Cytometric 

Histogram Image Comparison” or CHIC. This is an easy and straightforward method that is 

person independent. The main problem of this method is the loss of very informative data. 

Because the method is image-based there is no more information on cell counts and 

fluorescence intensities. The main advantage compared to our method is that no model is 

needed to create the fingerprints.  

4.2.2. Limitations#of#the#developed#fingerprinting#technique#

The main limitation of the flow cytometric fingerprinting technique is the importance of the 

training dataset, which is a complete database that contains all samples of an experiment or a 

part of this database. The training dataset is used in the initial step of the fingerprinting 

technique: the probabilistic binning algorithm pools the samples of the training dataset to 

create the fingerprinting model. This training dataset needs to represent an ecosystem and the 

expected variability within this ecosystem and therefore requires a sufficient amount of 

samples. Only when this is the case, a reliable model can be made that generates fingerprints, 

which are sensitive enough to detect minor changes in a microbial community or differences 

between microbial communities. For samples originating from a different environment or 

stained with another dye, a new model needs to be created. Therefore, a new way of creating 

the fingerprinting model that does not require a training dataset is proposed in the future 

perspectives of this chapter. 
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A second part of the fingerprinting procedure in which the database is of importance is the 

dimension reduction and discrimination. The linear projection of the variables that is 

performed by PCA and FDA is data driven. This means that a different dataset will lead to 

different projections (explaining the differences in discriminant values between the different 

time points in Chapter 5). Therefore, the dataset and the number of samples within each 

treatment group needs to be sufficiently big, so small changes within the database only have a 

small influence on the PCA and FDA. This is however strongly dependent on the research 

question of the experimental setup. A sufficiently big database is also required to allow good 

classification of unknown samples. 

4.3. Future#perspectives#

4.3.1. Optimising#flow#cytometric#fingerprinting#

As discussed above, the different fingerprinting techniques used to characterise and compare 

microbial communities have distinct advantages and disadvantages. Therefore, an ‘optimal 

fingerprinting technique’ that is based on our own fingerprinting technique and that combines 

the advantages of all three methods is proposed here.  

The first step in our original fingerprinting procedure was the development of the 

fingerprinting model using the probabilistic binning algorithm. For this, a training dataset that 

represents the ecosystem and in which all samples were analysed and stained in an identical 

way, was necessary. For each ecosystem and each type of staining, a new training dataset and 

fingerprinting model had to be created. Therefore, it would be interesting to create a model 

that is (i) independent of the ecosystem or type of staining and (ii) for which no training 

dataset needs to be created. Instead of using the probabilistic binning algorithm, we propose 

using an n-dimensional grid with bins that all have the same size and shape. In case two 

parameters are of interest, the model would be a 2D-grid in which the bins are squares of 

equal size, for three parameters this is a 3D-grid with cubes, etc. And thus, the number of bins 

will depend on the number of parameters of interest. As the method should be able to detect 

subtle changes or differences in fluorescence intensity, FSC or SSC, this number will 

probably be much larger then the number of bins we conventionally work with.  

In the next step, the fingerprint will be created. This will be done as previously described, by 

determining the number of cells in each region. Also the statistical pipeline used to look for 

differences between microbial communities does not require changes. This pipeline is a 
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combination of FDA and PCA and is a supervised technique for which the samples are first 

ascribed to groups. Subsequently, the method looks for the most important features to 

differentiate groups and it allows classification of unknown samples to one of the groups. 

Although the method does not require a training dataset to create the fingerprinting model, for 

classification of unknown samples there is of course still need for a training dataset. The 

bigger this dataset, the more variability is included and the more reliable the classification 

will be. The statistical pipeline also allows going back to the initial flow cytometry 

dimensions and locate those bins that are most important to differentiate groups and to see 

how microbial communities change.  

As this method requires to first define groups, some basic things like a simple comparison 

between a few samples can become too complicated. Therefore we propose to create an 

additional statistical pipeline to perform a simple comparison between fingerprints, that is 

also able to localise the differences. 

 

As mentioned earlier, correlating fingerprints with abiotic and biotic factors, like done by 

Koch et al. (2013c), might be very interesting in view of MRM. It enables the identification 

of activity hotspots in microbial communities, but might also allow the detection of specific 

kinds of environmental stress, invasion, interactions, etc. Factors that have been shown in 

Chapter 2 and 3 to be import for microbial communities’ functionality. Therefore it is useful 

to create a deeper understanding of the correlation between flow cytometric fingerprints and 

different abiotic and biotic factors. 

4.3.2. Flow#cytometry#based#MRM#parameters#

As an alternative to linking the fingerprints to abiotic and biotic factors, the flow cytometry 

data and fingerprints can also be used to develop “flow cytometric MRM parameters”. The 

conventional MRM parameters, being range-weighted richness (Rr), dynamics (Dy) and 

functional organisation (Fo), were developed by Marzorati et al. (2008). They were 

introduced as a conceptual interpretation of molecular fingerprinting patterns like DGGE, 

TGGE and T-RFLP. The parameters provide an ecological and predictive value for the 

analysis of the structure and diversity of microbial communities in a certain environment. The 

MRM parameters have been proven useful in different environments, including drinking 

water (Lautenschlager et al., 2010a), microbial fuel cells (Aelterman et al., 2008), wastewater 

treatment (Vlaeminck et al., 2009) and the human gut (Possemiers et al., 2010; Van den 



General discussion and perspectives 

 123 

C
H

A
PTER

 6 

Abbeele et al., 2010). Therefore it is useful to redefine the MRM parameters based on flow 

cytometry data. This idea was first raised by Wang et al. (2010) and was applied a first time 

in the doctoral dissertation of Koch (2013). There, the MRM parameters were defined after 

the flow cytometric data was converted using the CHIC-procedure and are based on pixel 

values. Here we propose similar MRM parameters based on our fingerprinting technique and 

how to interpret these parameters. 

 

 
Figure 6-4. New MRM parameters based on flow cytometric data and fingerprints. 

Phenotypic richness 

The range-weighted richness, or species richness in more general, is conventionally calculated 

based on the number of bands in a DGGE-profile. In a DGGE, sequences are separated 
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according to the GC-content of the DNA. Theoretically, one band corresponds to one species 

and the number of bands is used as a measure of species richness. In flow cytometry, 

microorganisms with similar physiological and morphological characteristics will create 

signals with similar fluorescence intensity, FSC and SSC. They will be positioned closely 

together in dot plots and create peaks in 2D histograms (Figure 6-4A). The more peaks are 

present, the more microorganisms with clearly different characteristics are present. A peak 

with a big surface area contains more species with slightly different characteristics, while 

small peaks all contain very similar microorganisms. Therefore, a combination of peak 

surface area (Si) and the number of peaks (n) is proposed as a measure of phenotypic richness: 

!ℎ!"#$%&'(!!"#ℎ!"## = !!
!

!!!
 

The surface area within this equation is used when the phenotypic richness is based on only 

two parameters, like FL1 and FL3, as shown in Figure 6-4A. In case of three or more 

parameters, this surface area will become a volume or hypervolume and the equation needs to 

be changed accordingly. 

It is important to mention that this richness does not correspond to the species richness, but to 

the phenotypic and thus the physiological and morphological richness of a microbial 

community. This is because identical strains can create a different pattern if they are under 

stress, dying, dividing, metabolically active or inactive, etc.  

 

Phenotypic evenness 

The functional organisation (Fo), lately more frequently referred to as community 

organisation (Co) or community evenness (Read et al., 2011), is visualised by Lorenz 

evenness curves. It describes the difference between the relative abundance of different 

species and is a measure for the organisation of the community. For DGGE, the Lorenz 

curves are based on the relative band intensities. The bands are ranked from high to low 

intensity and the cumulative relative band intensities form the y-axis, while the cumulative 

normalized bands are used as the x-axis. The surface between the Lorenz curve and the 

diagonal is know as the Gini coefficient and describes the evenness. A high evenness 

corresponds to a low Gini coefficient, while a low evenness has a high Gini coefficient. 

For flow cytometry, the Lorenz curves can be drawn in a very similar way, by ranking the 

bins from the fingerprint from high to low relative cell abundance (Figure 6-4B). The 
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cumulative relative abundance forms the y-axis and the ordered bins the x-axis. The Gini 

coefficient is calculated as before. 

The phenotypic evenness is a measure of the difference in relative abundance of 

microorganisms with specific morphological and physiological characteristics. If the Gini is 

high, the community is dominated by microorganisms with specific phenotypic 

characteristics, while microbial communities with a low Gini have a wide variety of cells.  

 

Phenotypic dynamics 

The dynamics determines how much a microbial community changes over time and is 

visualised by a moving window analysis, which shows the percentage of change (= 100 - 

%similarity) between two consecutive time points. When applied to DGGE, it refers to the 

number of species that are detected to be of significance in a given habitat at a certain time 

point (Marzorati et al., 2008; Read et al., 2011). 

For flow cytometry, the percentage of change can be determined by comparing two 

fingerprints (Figure 6-4C). It shows how much the microbial community phenotypically 

changes over time. This can have multiple causes: (i) some microorganisms may become 

more dominant, while others are disappearing, (ii) they can become active or inactive, (iii) 

they can start growing, (iv) change morphologically, etc. As such, the dynamics is a good way 

to follow microbial communities over time. 

 

When these MRM parameters are created using the original fingerprinting model, the 

fingerprints and thus the MRM parameters are dependent on the training dataset that is used. 

When this dataset is sufficiently big, this will only have a minor influence on the fingerprints. 

Furthermore, the same model will be used for all samples, what makes the importance of the 

training dataset limited for the flow cytometry based MRM parameters.  

When the new proposed fingerprinting model is used, no training dataset is required for 

making the fingerprint model and thus the fingerprints and the flow cytometry based MRM 

parameters.  

4.3.3. Integration#of#flow#cytometry#with#established#microbiological#tools#

Flow cytometry is a very fast method to study microbial communities and is for this reason 

interesting for fast screening of microbial communities. It has been shown multiple times that, 

with the correct staining, flow cytometry can give more information on the phenotypic status 
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of bacterial cells. With the development of the flow cytometry based MRM parameters and 

the fingerprinting technique, flow cytometry could even help understanding microbial 

communities and their behaviour. But giving an in depth interpretation of flow cytometry data 

remains difficult. It is for example not possible to easily identify species, follow gene 

expression or analyse microbial interactions. Established microbiological and molecular tools, 

such as sequencing, plating, DGGE etc. have the ability to provide all this information.  

Therefore, flow cytometry should not be regarded as a stand-alone-tool, but should be used in 

combination with conventional and well-understood techniques.  

By analysing microbial communities by flow cytometry, changes within the microbial 

community can be easily detected, but not explained. Transcriptomics, proteomics and 

metabolomics can give a better insight into this. They provide information on the taxonomic 

and functional diversity, the population structure, the presence of genes as well as their 

expression levels and levels of translation into proteins (VerBerkmoes et al., 2009).  

5. Conclusions#

In this thesis, synthetic ecosystems were used to test different ecological theories to improve 

our knowledge on microbial communities and the processes involved within these 

communities. Factors like community composition, stress and invasion were shown to 

influence the behaviour, resilience and functionality of a microbial community. A flow 

cytometric fingerprinting technique was developed to analyse and compare microbial 

communities. New MRM parameters based on this fingerprint technique were proposed to 

quickly determine the current status of a microbial community. By combining the knowledge 

gained on microbial communities and the flow cytometric fingerprinting method to analyse 

the current status of a microbial community, it will become possible to predict the behaviour 

of a microbial community, localise possible problems and respond in a suitable way, and thus 

perform MRM. 

However we shortened the road to MRM, we are not there yet. There is room for 

improvement for both the synthetic ecosystems and the flow cytometric fingerprinting 

technique. For synthetic ecosystem research, we propose to work in parallel with in silico and 

in vivo methods to be able to model and predict the behaviour of microbial communities. We 

also recommend doing this by using the fingerprinting technique in parallel with other 

established techniques. For flow cytometric fingerprinting, we opt for optimising the 

fingerprinting technique, to further develop the flow cytometry based MRM parameters and 



General discussion and perspectives 

 127 

C
H

A
PTER

 6 

to apply these MRM parameters to different environments to see how they correlate with 

stress resistance, functionality, etc. Eventually, the combination of the knowledge on 

microbial communities and the technique that quickly provides information on the current 

status of a microbial community will allow us to perform MRM. 
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Microorganisms contribute to nearly all biogeochemical cycles on earth and play a crucial 

role in biotechnological processes such as wastewater treatment, production of food and 

pharmaceuticals, digestion, cleaning of chemically contaminated sites and production of 

bioenergy. Their genetic and physiological diversity result in an enormous metabolic 

potential, which makes them essential for life on earth. Most of the processes they are 

involved in are accomplished by joint effort of microorganisms with different functional 

roles. They influence each other’s behaviour and possibly alter the biochemical phenotypes of 

the participating strains. Understanding the factors that shape and influence these microbial 

ecosystems is essential from a microbiological, ecological and biotechnological point of view. 

It will allow us to predict the response of microbial communities to perturbations and 

environmental changes. Eventually, this knowledge will make it possible to manage, steer and 

optimise microbial processes, an approach that is better known as “Microbial Resource 

Management” or MRM. Its final aim is to improve the environment, human health and 

biotechnological applications in the most sustainable way. Despite the potential of MRM, the 

road to translate MRM into practice is still long. Several aspects require further investigation, 

like the establishment of microbial interactions, resistance to stress and perturbations, etc. 

Furthermore, there is need for a fast and objective technique that provides more information 

on the current status of the microbial community, like its composition, structure and 

physiological characteristics. 

In Chapter 1, a theory driven approach was proposed to study the aspects that influence 

microbial communities. This theory driven approach encompasses the generation of 

ecological theories based on existing observational data and its verification using quantitative 

research. A deliberate choice of the experimental setup, methodology and microbial model 

systems is indispensable for optimal hypothesis testing. Synthetic microbial ecosystems with 

intermediate complexity and high controllability were shown to be very useful for this. These 

synthetic communities were used in Chapter 2 to investigate a first ecological phenomenon: 

biological invasion. Invasion is widely studied in the animal and plant kingdom, however 

conclusions on the outcome of this process mainly originate from observations in systems that 
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leave a large number of experimental variables uncontrolled. These confounding factors and 

the reciprocal interactions lead to opposite conclusions on the role of specific parameters. In 

this dissertation, a fully controlled system, consisting of assembled bacterial communities, 

was used to investigate how community evenness and salinity stress influence invasion of 

non-native species in a microbial community and the effect this invader has on the microbial 

community. In the absence of stress, invasion was higher in uneven communities compared to 

even communities and resulted in a small decrease of the community functionality. In the 

presence of salinity stress, community evenness had no effect on invasion. Under these stress 

conditions but in the absence of invasion, uneven communities had a lower functionality 

compared to even communities. The invader on the other hand, which did not contribute to 

the community functionality, was able to maintain the functionality at a maximum and thus 

supported the community. These results indicate that communities, having the same genetic 

background, in the presence of the same invader, react in a different way with respect to 

invasibility and functionality depending on specific environmental conditions and community 

evenness. 

The second ecological theory tested in this thesis was the role of species relatedness on the 

establishment of mutualistic interactions. Relatedness is regarded as one of the key reasons 

for microorganisms to perform an altruistic behaviour that is costly to the actor but beneficial 

to the recipients. However, its importance during the establishment of mutualistic 

interactions, which are beneficial to both the actor and recipient, remains unclear. Here, 

synthetic communities, consisting of two species, were used to create obligatory mutualism. 

Pairwise combinations of previously not interacting strains were made. One was an ampicillin 

resistant, tyrosine auxotrophic strain, the other one an ampicillin sensitive strain. Ten 

ampicillin sensitive strains were selected based on their relatedness to the auxotroph. At the 

initial encounter, no cooperation could be detected in any of the mixes. After three transfers, 

closely related species were able to adapt their phenotype and successfully established 

mutualism, while distantly related species were not able to establish mutualism and were 

consequently threatened with extinction.  

The results observed in Chapter 2 and 3 bring us one step closer to a complete understanding 

of microbial communities and its management. Furthermore, synthetic microbial ecology has 

been proven to be a valuable tool for the study of microbial communities and the interactions 

involved within these communities.  

The second part of this dissertation focused on the development of a new methodology for the 

fast characterisation and comparison of microbial communities. In Chapter 1, flow cytometry 
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was shown to be a promising tool for the substitution of conventional time consuming 

techniques. However, some issues, like the subjective handling of the flow cytometry results, 

still had to be tackled before flow cytometry could be used for community analysis. 

Therefore, an objective method to quickly and automatically create and compare fingerprints 

of microbial communities was developed in Chapter 4. The method consists of two main 

parts. Firstly fingerprints are created out of the flow cytometry data. These fingerprints are 

based on cellular features of the single cells. In a second step, the fingerprints are analysed 

with a tailored statistical data analysis pipeline. This method was first applied on different 

brands of bottled water and on water that was treated with different kinds of environmental 

stress. Based on the similarities and differences between the microbial fingerprints, we were 

able to discriminate the different brands of bottled water, classify unknown samples and 

detect shift of microbial communities caused by changing physico-chemical conditions. This 

opened opportunities for the real-time follow up of microbiological processes like wastewater 

treatment, fermentation processes and the production and distribution of drinking water. One 

of these opportunities was further investigated by using the fingerprinting method for the 

follow up of the rinsing procedure in a full-scale water distribution network (Chapter 5). After 

reparation works, the water pipes are conventionally rinsed with an amount of water equal to 

three times the volume of the water pipe, which is a long and expensive procedure. By the 

follow up of the microbial community of this rinsing water, it was investigated if the rinsing 

procedure could be shortened. Therefore, the fingerprints of the rinsing water were compared 

every hour with the fingerprints of the reference water. After three hours of rinsing, no 

difference could be detected between these two fingerprints, and the rinsing water could be 

regarded as clean and safe. As such, the rinsing time could be drastically reduced by real-time 

flow cytometry in combination with the fingerprinting pipeline. Furthermore, it confirms the 

potential of flow cytometry for the characterisation of microbial communities. 

In conclusion, new tools were developed and used to study and characterise microbial 

communities with the eye on bringing MRM into practice. A newly developed flow cytometric 

fingerprinting tool was proven useful for the characterisation of microbial communities, while 

synthetic microbial ecosystems were used to study the factors that influence and shape 

microbial communities. Environmental stress, community evenness, invasion and relatedness 

were shown to partly determine the fate of microbial communities. 
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Micro-organismen dragen bij tot bijna alle biochemische kringlopen op aarde en spelen een 

cruciale rol in biotechnologische processen zoals afvalwaterzuivering, productie van 

voedingsstoffen en farmaceutica, spijsvertering, reiniging van chemisch verontreinigde sites 

en productie van bio-energie. Hun genetische en fysiologische diversiteit resulteert in een 

enorme metabolische potentieel die hen essentieel maken voor het leven op aarde. De meeste 

processen waarin ze betrokken zijn komen tot stond door een gezamenlijke inspanning van 

micro-organismen met verschillende functies. Zij beïnvloeden elkaars gedrag en wijzigen 

mogelijk het elkaars fenotype. Het begrijpen van de factoren die deze microbiële 

gemeenschappen vormen en beïnvloeden is daarom belangrijk vanuit zowel een 

microbiologische, ecologisch als biotechnologisch oogpunt. Deze kennis zal ons toelaten om 

de reactie van microbiële gemeenschappen op verstoringen en omgevingsveranderingen in te 

schatten. Dit zal het uiteindelijk mogelijk maken om microbiële processen te managen, sturen 

en optimaliseren. Deze aanpak is beter bekend als “Microbial Resource Management” of 

MRM en heeft als uiteindelijk doel om op de meest duurzame manier het milieu, de 

gezondheid van de mens en biotechnologische toepassingen te verbeteren. Ondanks het 

potentieel van MRM is de weg naar de omzetting in de praktijk nog lang. Verschillende 

aspecten dienen verder onderzocht te worden, zoals de ontwikkeling van microbiële 

interacties, resistentie tegen stress en verstoringen. Bovendien is er nood aan een snelle en 

objectieve techniek die informatie verschaft over de actuele toestand van de microbiële 

gemeenschap, zoals zijn samenstelling, structuur en fysiologische eigenschappen. 

In hoofdstuk 1 werd een theorie-gedreven aanpak voorgesteld voor het bestuderen van de 

aspecten die microbiële gemeenschappen beïnvloeden. Deze theorie-gedreven aanpak houdt 

in data ecologische theorieën geformuleerd worden op basis van waargenomen data die 

vervolgens geverifieerd worden door het uitvoeren van kwantitatief onderzoek. Een 

weloverwogen keuze van de experimentele setup, methodologie en de microbiële model 

systemen is noodzakelijk voor het optimaal testen van hypotheses. Het werd aangetoond dat 

synthetische microbiële gemeenschappen met een intermediaire complexiteit en een hoge 

controleerbaarheid hiervoor heel nuttig kunnen zijn. Deze synthetische gemeenschappen 
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werden in hoofdstuk 2 gebruikt voor het onderzoeken van een eerste ecologisch fenomeen: 

biologische invasie. Invasie is sterk bestudeerd in het rijkdom van plant en dier, maar de 

conclusies omtrent de effecten van invasie zijn meestal afkomstig van observaties in systemen 

die een groot aantal variabelen ongecontroleerd laten. Deze verstorende factoren leiden vaak 

tot tegengestelde conclusies omtrent de rol van specifieke parameters. Daarom werd in deze 

thesis gebruik gemaakt van een volledig gecontroleerd systeem bestaande uit synthetische 

microbiële gemeenschappen om te onderzoeken hoe de gelijkheid of evenness van een 

microbiële gemeenschap en zoutstress de invasie van uitheemse stammen in deze microbiële 

gemeenschap beïnvloedt en wat het effect ervan is op de microbiële gemeenschap. In 

afwezigheid van stress was de invasie groter in ongelijke gemeenschappen vergeleken met 

gelijke gemeenschappen en resulteerde de invasie in een kleine daling van de functionaliteit. 

Gelijkheid had in de aanwezigheid van stress geen effect op invasie. Onder deze stress 

omstandigheden, maar in de afwezigheid van invasie, hadden ongelijke gemeenschappen een 

verlaagde functionaliteit vergeleken met gelijke gemeenschappen. De invader, die niet 

bijdroeg tot de functionaliteit, was echter in staat om de functionaliteit van ongelijke 

gemeenschappen de onderhouden en maximaal te houden en had dus een ondersteunende rol 

voor de gemeenschap. Deze resultaten tonen aan dat gemeenschappen die initieel dezelfde 

genetische achtergrond hebben, in de aanwezigheid van dezelfde invader, op een andere 

manier reageren op het vlak van invasibiliteit en functionaliteit afhankelijk van de 

omgevingsomstandigheden en de gelijkheid van de gemeenschap. 

De tweede ecologische theorie die getest werd in deze thesis is de rol van verwantschap 

tussen stammen bij de ontwikkeling van mutualistische interacties. Verwantschap wordt 

beschouwd als een van de belangrijkste redenen voor micro-organismen voor het uitvoeren 

van een altruïstische daad die kostelijk is voor zichzelf, maar voordelig voor anderen. Het 

belang bij de ontwikkeling van mutualistiche interacties die voordelig zijn voor zowel de 

uitvoerder als de ontvanger is echter niet gekend. Om dit te onderzoeken werd in deze thesis 

synthetische gemeenschappen met twee stammen ontwikkeld met verplicht mutualisme. 

Hiervoor werden gepaarde combinaties gemaakt van een ampicilline resistente, tyrosine 

auxotrofe stam en telkens één van de tien ampicilline gevoelige stam. Deze ampicilline 

gevoelige stammen werden gekozen op basis van hun verwantschap met de auxotroof. Bij de 

initiële ontmoeting kon bij geen enkele van de paren een samenwerking worden 

waargenomen. Na drie overentingen waren de nauw verwante stammen echter in staat om hun 

fenotype aan te passen en werd er succesvol een mutualistische interactie ontwikkeld. Terwijl 
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ver verwant stammen niet in staat waren om deze mutualistische interactie te ontwikkelen, 

waardoor de stammen binnen deze combinaties met uitsterven werden bedreigd.  

De resultaten uit hoofdstuk 2 en 3 brengen ons een stap dichter bij het managen en volledig 

begrijpen van microbiële gemeenschappen. Bovendien werd aangetoond dat synthetische 

microbiële ecologie een waardevolle methode is voor het bestuderen van microbiële 

gemeenschappen en de interacties die er een rol in spelen. 

In het tweede deel van deze thesis werd er gefocust op de ontwikkeling van een nieuwe 

methodologie voor de snelle karakterisatie en het vergelijken van microbiële 

gemeenschappen. In hoofdstuk 1 werd flow cytometrie voorgesteld als een veelbelovende 

techniek voor het vervangen van tijdrovende conventionele technieken. Maar hiervoor 

dienden eerst enkele problemen, zoals de subjectieve behandeling van de flow cytometrie 

resultaten, verholpen te worden om het gebruik van flow cytometrie mogelijk te maken voor 

de analyse van microbiële gemeenschappen. Daarom werd in hoofdstuk 4 een objectieve 

methode ontwikkeld om snel en automatisch fingerprints van microbiële gemeenschappen te 

maken en vergelijken. Deze methode bestaat uit twee delen. Eerst worden fingerprints 

gemaakt uit flow cytometrie data. Deze fingerprints zijn gebaseerd op de cellulaire 

eigenschappen van individuele cellen. In een tweede stap worden deze fingerprints 

geanalyseerd met een nieuw ontwikkelde statistische data analyse pipeline. Deze 

fingerprinting methode werd eerst toegepast op verschillende merken flessenwater en water 

dat behandeld werd met verschillende soorten stress. Op basis van de gelijkenissen en 

verschillen tussen de microbiële fingerprints was het mogelijk om de verschillende merken 

flessenwater van elkaar te onderscheiden, onbekende stalen te classificeren en verschuivingen 

binnen een microbiële gemeenschap veroorzaakt door veranderde fysico-chemische 

omstandigheden vast te stellen. Dit opende mogelijkheden om de methode te gebruiken voor 

het real-time opvolgen van microbiële processen zoals afvalwater zuivering, fermentaties en 

de productie en distributie van drinkwater. Één van deze mogelijkheden werd verder 

onderzocht door de fingerprinting techniek te gebruiken voor het opvolgen van het 

spoelproces van waterleidingen in een full-scale water distributie netwerk (hoofdstuk 5). Na 

reparaties aan waterleidingen worden deze normaal gespoeld met een hoeveelheid water 

gelijk aan drie maal het volume van de waterleiding. Dit is een tijdrovende en dure procedure, 

daarom werd onderzocht of dit spoelproces kan worden ingekort door het opvolgen van de 

microbiële gemeenschap met de fingerprinting methode. De fingerprints van het spoelwater 

werden elk uur vergeleken met deze van het propere referentiewater. Na drie uur spoelen 

konden geen verschillen meer worden waargenomen tussen deze twee fingerprints en kon het 
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spoelwater aanzien worden als proper en veilig. Deze resultaten tonen aan dat het spoelproces 

van waterleidingen drastisch kan worden ingekort door real-time flow cytometrie te gebruiken 

in combinatie met de fingerprinting methode. Bovendien bevestigt dit het potentieel van flow 

cytometrie voor de karakterisatie van microbiële gemeenschappen. 

In conclusie, nieuwe methodes voor het bestuderen en karakteriseren van microbiële 

gemeenschappen werden ontwikkeld en toegepast met als doel om MRM in de praktijk te 

brengen. Het werd aangetoond dat de nieuw ontwikkelde flow cytometrische fingerprinting 

methode nuttig is voor de karakterisatie van microbiële gemeenschappen. Synthetische 

microbiële ecosystemen werden gebruik voor het bestuderen van de factoren die microbiêle 

gemeenschappen vormen en beïnvloeden. Omgevingsstress, de gelijkheid van de 

gemeenschap, invasie en verwantschap zijn hierbij belangrijke factoren die het lot van 

microbiële gemeenschappen bepalen. 
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Active participations in (inter)national scientific conferences 

De Roy K, Clement L, Thas O, Wang Y. & Boon N. Flow cytometry community 
fingerprinting to detect quickly stress in drinking water systems. Proceedings of the First 
International Conference on Microbial Diversity 2011 – Environmental Stress and 
Adaptation, Milan, Italy October 26-28 2011. Oral presentation 

De Roy K, Clement L, Thas O, Wang Y. & Boon N. Flow cytometry for fast microbial 
community fingerprinting.  17th symposium on applied biological sciences, Leuven, Belgium, 
February 10, 2012. Poster presentation. 

De Roy K, Marzorati M, Negroni A, Thas O, Balloi A, Fava F, Verstraete W, Daffonchio D 
& Boon N. Environmental conditions and community evenness determine the outcome of 
biological invasion. 5th Congress of European Microbiologists, Leipzig, Germany, July 21-
25, 2013. Poster presentation. 
 
Contributions to participations in (inter)national scientific conferences  

Clement L, De Roy K, Thas O, Wang Y. & Boon N. Flow cytometry for fast microbial 
community fingerprinting. 23rd Annual Conference of the International Environmetrics 
Society, Anchorag, Alaska, USA, June 10-14, 2013. Invited oral presentation. 

Van Acker H, Sass A, De Roy K, Boon N, Mahenthiralingam E, Nelis HJ & Coenye T. 
Persistence in Burkholderia cenocepacia j2315 biofilms. BSM-meeting “Life, Death and 
Survival of Micro-organisms”, Brussels, Belgium, November 16, 2011. Oral presentation 

Van Acker H, Sass A, De Roy K, Boon N, Mahenthiralingam E, Nelis HJ & Coenye T. 
Transcriptome analysis of persister cells in Burkholderia cepacia complex biofilms. 15th 
International Burkholderia cepacia Working Group Meeting, Prague, Czech Republic, April 
13-16, 2011. Oral presentation 
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Van Nevel S, De Roy K & Boon N. Bacterial invasion potential in water is determined by 
nutrient availability and the indigenous community. 3rd BeNeLux Young Water Professionals 
Conference, Belval, Luxembourg, October 2-4, 2013. Oral presentation 

Boon N & De Roy K. Synthetic microbial communities: high throughput models to test new 
ecological hypothesis, at the Département de Protéomique et de Microbiologie (PROTMIC) 
de la Faculté des Sciences de l'Université de Mons, Mons, Belgium, August 31, 2012. Invited 
oral presentation. 

Boon N, De Roy K, Clement L, Thas O, Wang Y. Flow cytometry community fingerprinting 
to detect quickly stress in drinking water systems” at the Annual Meeting of the German 
Society for Cytometry, Bonn, Germany, October 10-12, 2012. Keynote lecture 

Boon N & De Roy K. Microbial Resource Management: from high throughput models to 
pilot reactors. Swiss Federal Institute for Environmental Science and Technology (EAWAG), 
Department of Microbiology and Molecular Ecotoxicology, Dübendorf, Switzerland, 
December 18, 2012. Invited oral presentation 

Boon N, De Roy K, Marzorati M, Negroni A, Thas O, Balloi A, Fava F, Verstraete W & 
Daffonchio D. The role of evenness and invading populations to preserve microbial 
community functionality. Royal Netherlands Institute for Sea Research, Yerseke, The 
Netherlands, February 28, 2013. Invited oral presentation 

Boon N & De Roy K. Microbial Resource Management: from high throughput models to 
pilot reactors. Taida College, Nankai University, Tianjin, China, April 18, 2013. Invited oral 
presentation 

Boon N, De Roy K, Clement L, Thas O, Wang Y. µ-workshop on flow cytometry community 
fingerprinting. School of Life Science and Biotechnology, Shanghai Jiao Tong University, 
Shanghai, China, April 22, 2013. Invited oral presentation 

Boon N & De Roy K. Microbial Resource Management: from high throughput models to 
pilot reactors. School of Life Science and Biotechnology, Shanghai Jiao Tong University, 
Shanghai, China, April 24, 2013. Invited oral presentation 

Boon N & De Roy K. Microbial Resource Management – new tools and explorations. 
College of Environment and Resources, Jilin University, Changchun, China, April 25, 2013. 
Invited oral presentation 

Evens R, De Schamphelaere KAC, Wang Y, De Roy K, Balcaen L, Vanhaecke F, Boon N & 
Janssen CR. The use of liposomes for dietary toxicity studies. SETAC Europe 20th Annual 
Meeting, Seville, Spain, 23-27 May, 2010. Poster presentation 

Gözdereliler E, De Roy K, Aamand J, Boon N & Sørensen S. Molecular and physiological 
fingerprinting of herbicide-degrading microbial communities in response to different 
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herbicide concentrations. Nordic Environmental Nucleotide Network (NENUN) Workshop, 
Reykjavik, Iceland, September 8-10, 2011. Oral presentation 

Gözdereliler E, De Roy K, Aamand J, Boon N & Sørensen S. Comparison of low nucleic acid 
(LNA) and high nucleic acid (HNA)-content bacterial communities enriched from a 
groundwater aquifer using herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA). 2011 
Symposium of The Danish Microbiological Society, Denmark, November 7, 2011. Oral 
presentation 

Gözdereliler E, Boon N, Aamand J, De Roy K, Granitsiotis M, Albrechtsen HJ & Sørensen 
SR. Enrichment and characterization of high- and low-affinity herbicide-degrading bacteria 
from a groundwater aquifer. 14th International Symposium on Microbial Ecology (ISME 14), 
Copenhagen, Denmark, August 19-24, 2012. Poster presentation 

  
Participation to international workshops 

3rd workshop on the biological stability of drinking water, May 25, 2012, Delft, the 
Netherlands.  
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DANKWOORD!

 
 

Eindelijk toegekomen aan de laatste en waarschijnlijk meest gelezen bladzijden van mijn 

boekske. Hoewel enkel mijn naam vooraan op de cover staat, is dit geen werk van mij alleen, 

in tegendeel! Daarom wil ik deze laatste bladzijden heel graag gebruiken om enkele mensen 

van harte te bedanken. 

All members of the examination committee, thank you for your time and effort for critically 

evaluating my PhD manuscript: Prof. Monica Höfte, Prof. Hauke Harms, Prof. David Gillan, 

Dr. Tom Defoirdt, Prof. Daniele Daffonchio, Prof. Colin Janssen and Prof. Els Van Damme. I 

think all your comments greatly improved my final manuscript. 

Dan wil ik de twee belangrijkste mensen in heel dit doctoraat bedanken, de twee meest 

complementaire promotoren die een doctoraatsstudent zich kan voorstellen bedanken, Prof. 

Boon en Prof. Thas. Nico, bij jou kon ik altijd terecht voor alles wat met microbiële ecologie 

te maken had en je hebt me meteen de liefde voor de flow cytometer doorgegeven. Olivier, jij 

stond dan weer paraat voor alles omtrent statistiek. Ik moet toegeven, mijn liefde voor de 

statistiek heeft misschien toch iets langer op zich laten wachten. Het was altijd heel 

aangenaam om met jullie samen te werken, de vele uurtjes die we samen in het vergaderlokaal 

doorbrachten om de data steeds opnieuw en opnieuw te bekijken, om elk woord in het ‘nature 

paper’ te wikken en te wegen, ... En als ik het over dat artikel heb, dan kom ik automatisch 

terecht bij Massimo en Andrea. Massimo, I had the honour to work further on your previous 

research and to use all your experience. The meetings we had were always relaxed and fun, 

but intensive and productive at the same time. Andrea, I want to thank you so much for your 

help during the three tough months of the invasion experiments. We made a good team: you 

reading the mixes composition, me pipetting like crazy. In line of the same experiments, I 

would also like to thank Prof. Daffonchio, Prof. Verstraete, Prof. Fava and Annalisa for their 

contributions. 

Verder zou ik graag Lieven Clement en Yingying Wang enorm willen bedanken. Samen 

kwamen we op het idee van de flow cytometrie fingerprinting en hebben we dat verder 

uitgewerkt. Lieven, ik blijf nog altijd versteld staan van uw ongelofelijke kennis en briljante 

ideeën. Opvolging voor het fingerprinting verhaal is ondertussen verzekerd: Benjamin, heel 
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veel succes en plezier. Voor alles wat met flow cytometrie te maken heeft, wil ik ook Sam 

Van Nevel bedanken die me na enkele ‘eenzame flow cytometrie jaren’ gezelschap kwam 

houden aan de flow cytometer. Ons labo in de watertoren met panoramisch zicht over heel 

Gent zal me altijd bij blijven. 

 

Naast de mensen waar ik heel intensief mee heb samen gewerkt, wil ik ook iedereen van het 

technische personeel (Siska, Tim, Greet, Mike, Jana, René en Robin) en secretariaat 

(Christine, Regine en Annelies) bedanken. Geen vraag was te kort of te lang voor jullie en 

jullie stonden altijd meteen paraat om te helpen. We zeggen het misschien niet voldoende, 

maar alles wat jullie doen en gedaan hebben, wordt enorm geapprecieerd. Tim, jou wil ik ook 

nog eens expliciet bedanken voor al de mooie figuurtjes in mijn boekje. 

 

En dan kom ik toe aan al de mensen die ik wil bedanken om het hele doctoraat-gebeuren zo 

aangenaam te maken. Als kersvers doctoraatsstudentje kwam ik terecht in de bureau beneden. 

Ik heb heel veel leuke momenten beleefd met iedereen die over de jaren heen in onze bureau 

heeft gezeten: Pieter VdA, Pieter V, Beatriz, Jan, Carlos, Hannele, Varvara, Irene, Jianyun, 

Ramiro, Kim, Floor en Sofie. De wijnclusters, weddenschappen (die uiteraard allemaal door 

mij gewonnen werden), etentjes, de véééle koffiepauzes, ... zal ik niet snel vergeten.  

Toen ik aan het bedenken was wie ik zeker niet mocht vergeten te bedanken en waarom, 

kwam ik er al snel achter dat ik de meeste moet bedanken om me te vergezellen tijdens mijn 

pauzekes door de dag heen: de koffietjes, de lunch, vieruurtje, een pintje na het werk,  

verschillende pintjes na de werkweek, ... Voor de koffietjes: Nikki, Jan A, Sam, Eva en 

uiteraard de bureaugenootjes. De lunch: Annelies, Jo, Jan, Eva, Jana, Marlies, Eline, 

Rosemarie, Pieter, David, Joan, Liesje, de rotonde, ... De vieruurtjes: Alexander. De pintjes en 

spelletjes darts na het werk: Sam. Bedankt iedereen om er te zijn voor zowel de leuke als de 

moeilijke momenten. Ik heb heel wat goede vrienden over gehouden aan mijn LabMET-

avontuur!! En voor de vele gezellige drinks, spring walks, culturele en team building 

activiteiten, winterweekends met sauna, ...: bedankt LabMET!!!  

Verder wil ik nog al mijn vrienden, zowel uit Gent als Londerzeel bedanken voor de vele 

aangename spelletjesavonden, etentjes, drinks, ... Samengevat, bedankt voor alles wat me 

mijn doctoraat even deed vergeten. 
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And last but no least: mijn familie. Mama en Papa, Sofie, Katrien en Sam, Pieter en Desi, en 

uiteraard, Axl en kleine ??? : bedankt voor alles wat jullie voor mij hebben gedaan (en vooral, 

wat jullie nog voor mij gaan doen ;) ). Voor de zorgeloze weekends, de taxi-dienst, de auto-

uitleen-dienst, de shop-uitstapjes, de goede zorgen, .... Kortom, bedankt voor alles! Zonder 

jullie was er zeker geen doctoraat geweest! Dit doctoraat is voor een groot deel ook jullie 

werk! 
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