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Samenvatting

Lerende systemen

Het herkennen van spraak, afbeeldingen en handgeschreven tekst zijn ty-
pische voorbeelden van toepassingen waarin het niet meer mogelijk is om
een competitief systeem te ontwerpen dat geen gebruik maakt van data sets
met geluidsopnames, digitale fotos of ingescande bezorgadressen. Dit zijn
vaak domeinen waarin wij zelf goed presteren zonder in detail weten hoe
we dat doen. Deze details zijn echter vaak wel noodzakelijk om een goed
computersysteem te ontwerpen dat onze eigen prestatie evenaart of overtreft.
Machinaal Leren gaat over het ontwikkelen en onderzoeken van systemen die
leren om problemen op te lossen door het observeren van data. Dit gebeurd
doorgaans met behulp van methoden uit de statistiek. Een belangrijke ei-
genschap van dergelijke systemen is dat zij de data niet simpelweg opslaan
maar belangrijke regelmatigheden en structuur extraheren die het mogelijk
maakt om voorspellingen te toen over nieuwe data waar het systeem nog
geen toegang toe heeft gehad.

Naarmate de rekenkracht van computers en computernetwerken toe-
neemt, wordt het ook steeds interessanter lerende systemen te creëeren op
basis van geavanceerdere en grotere statistische modellen. Vooral omdat ook
de hoeveelheden beschikbare data om modellen op te trainen ook zeer snel
toeneemt. Helaas zijn veel soorten statische modellen al vrij snel te complex
om nog op wiskundige wijze de exacte waarden van de parameters van deze
modellen te kunnen bepalen. Ook het beantwoorden van gangbare vragen
over de variabelen die deze modellen beschrijven is vaak niet meer mogelijk.
Mijn onderzoek gaat over het schatten en ontwerpen van modellen die te
complex zijn om nog gebruik te kunnen maken van exacte methoden. Ik
richt mij met name op het verbeteren van benaderingsmethoden en het zoe-
ken naar alternatieven voor standaard methoden die de juiste balans hebben
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van praktische toepasbaarheid en theoretische correctheid. De focus van de
praktischere modellen die ik heb ontwikkeld is het verwerken van tijdsreek-
sen zoals de opnames van motion capture sensoren en spraak. De specifieke
toepassingen van deze modellen zijn het invullen van ontbrekende waarden
en het verwijderen van ruis uit spraak opnames teneinde de prestatie van
spraakherkenningssystemen te verbeteren.

Efficiëntere MCMC voor RBMs
Veel optimalisatie methoden voor onberekenbare modellen maken gebruik
van stochastische benaderingen. Restricted Boltzmann Machines (RBMs)
zijn populaire onberekenbare modellen en worden vaak getraind met be-
hulp van een steekproefmethode om de gradiÃ«nten te benaderen die nodig
zijn voor optimalisatie van hun parameters. De drijvende veer achter de
benadering is een Markov Chain Monte-Carlo (MCMC) methode. MCMC-
methoden hebben echter het nadeel dat ze er vaak te lang over doen om een
betrouwbare schatting te genereren. Een verbeterde versie van deze methode
simuleert meerdere Markovketens in parallel onder verschillende temperatu-
ren teneinde grotere sprongen door de steekproefruimte te kunnen nemen.
Voor mijn onderzoek heb ik twee uitbreidingen voor deze verbeterde methode
onderzocht die afkomstig zijn uit de physica literatuur. De eerste uitbreiding
laat meer onderlinge communicatie tussen de Markovketens toe. De tweede
uitbreiding gebruikt de informatie van meerdere ketens bij het schatten van
de gradient informatie voor het trainen van de RBMs. De eerste uitbreiding
blijkt het toe te laten om een groter aantal ketens te gebruiken. Wanneer
beide uitbreidingen worden toegepast blijkt dat dit ook leidt tot betere pres-
taties voor het trainen van RBMs op een data set van handgeschreven cijfers.
Wel zijn deze methoden computationeel gezien nogal intensief en het hangt
waarschijnlijk van de specifieke toepassing af hoe waardevol ze zijn in de
praktijk.

Alternatieve schatters

De meest aannemelijke schatter of maximum likelihood estimator (MLE),
is een zeer populaire methode voor het schatten van statistische modellen.
Theoretisch is het de zuivere schatter met de laagst mogelijke variantie.
Helaas is het echter vaak niet mogelijk om de MLE exact toe te passen voor
complexere modellen. In deze thesis kijk ik naar alternatieve schatters uit
de literatuur die doorgaans theoretisch minder sterke garanties bieden maar
vaak practisch beter toepasbaar zijn dan de MLE. Uiteindelijk combineer ik
enkele ideeen van bestaande schatters om via het raamwerk van de Bregman
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divergenties een schatter af te leiden die computationeel efficiënt is en relatief
simpel om te implementeren. Ik laat empirisch zien dat de schatter consistent
is. Dit betekent onder meer dat de schatter naar de correcte parameter
waarden convergeert naarmate de hoeveelheid beschikbare train data groeit.
Ook laat ik zien dat de schatter instaat is om kenmerken van afbeeldingen
te vinden die lijken op de resultaten van bestaande schatters.

Modellen voor het invullen van ontbrekende waar-
den
Vaak is het niet mogelijk om complexe modellen te schatten die dienst kun-
nen doen als generatieve verdeling voor de data. Eerder onderzoek heeft
echter laten zien dat een generatief model voor het oplossen van veel pro-
blemen niet nodig is en er directere manieren zijn om complexe modellen
te trainen die vaak wel haalbaar zijn. Ik breid deze ideeën uit naar andere
typen modellen en laat zien dat die gebruikt kunnen worden om ontbrekende
waarden in tijdsreeksen in te vullen. Om dit te tonen, beschrijf ik drie typen
neurale netwerk modellen die geschikt zijn voor het verwerken van tijdsreek-
sen en toon hoe deze direct voor het invullen van ontbreken getraind kunnen
worden. De modellen halen betere prestaties dan wanneer ze geschat worden
met gangbare benaderingsmethoden. Ik heb de modellen toegepast op hand-
geschreven karakters, motion capture data en sensor data van een robot. Ik
laat ook zien dat de modellen nog altijd generatief gebruikt kunnen worden
om steekproeven te genereren, wanneer ze om worden gezet in zogenaamde
Generatieve Stochastische Netwerken.

Toepassing in spraakverwerking
Om te onderzoeken of de structuur van het meest praktische model om ont-
brekende waarden in te vullen ook bruikbaar was voor andere problemen,
heb ik experimenten gedaan waarbij de taak was om ruis uit geluidsopnames
te verwijderen voor spraakherkenningstoepassingen. Na wat kleine aanpas-
singen had dit type model de vorm van een Recurrent Neuraal Netwerk dat
informatie in twee richtingen tegelijk verwerkt. Ik heb ook een versimpelde
versie van dit model onderzocht die computationeel gezien efficiÃ«nter is. De
precieze taak was om additieve achtergrond ruis, afkomstig van bijvoorbeeld
een metro station of een druk café, te verwijderen uit opnames van gespro-
ken zinnen. Vervolgens werden de opnames aangeboden aan een standaard
spraakherkenningsysteem en werd de prestatie gemeten als het aantal fouten
dat het systeem maakte op woordniveau. De twee varianten van de model
structuur haalden een betere prestatie dan vergelijkbare neurale netwerk mo-
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dellen uit de literatuur. De modellen werkten echter niet goed wanneer de
ruissoort bij het testen erg verschilde van de ruissoorten die gebruikt werden
tijdens het trainen.



Summary

Learning systems

The recognition of speech, images, and handwritten text are typical examples
of applications for which it is not possible anymore to design competitive sys-
tems that don’t make use of data sets with audio recordings, digital pictures
or scans of delivery addresses. These are often domains in which we perform
very well without knowing the full details about the ways in which we do so.
However, these details are often necessary to design a good computer system
that rivals or surpasses our own performance. Machine Learning deals with
the development and investigation of systems that learn to solve problems
by observing data. This often involves methods with origins in statistics.
An important property of such systems is that they don’t simply store the
data, but extract important regularities and structural properties that make
it possible to do predictions about new data to which the systems never had
access before.

As the computational power of computers and computer networks in-
creases, it also becomes more interesting to create learning systems that
incorporate larger and more advanced statistical models. Especially because
the amounts of available data to train statistical models increases at a high
rate as well. Unfortunately, many types of statistical models quickly become
too complex to determine the values of their parameters with exact math-
ematical methods. Answering common questions a statistician might ask
about the variables described by these models is often not possible either.
My research is about the estimation and design of models that are too com-
plex to allow for the application of analytical methods. I focus especially on
the improvement of approximate methods and the search for alternatives to
standard methods that provide a good trade-off between practical usefulness
and theoretical correctness. The aim of the more practical models I devel-
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oped is to process time-series like the recordings of motion capture sensors
and speech. The specific applications of these models are the imputation of
missing values and the removal of noise from speech recordings to improve
the performance of speech recognition systems.

More efficient MCMC for RBMs
Many optimization methods for intractable models make use of stochastic
approximations. Restricted Boltzmann Machines (RBMs) are popular in-
tractable models and their training often involves a sampling method to ap-
proximate the gradients that are required to optimize their parameters. The
backbone of the approximation is a Markov Chain Monte-Carlo (MCMC)
method. However, MCMC-methods can often take very long to provide re-
liable estimates. An improved version of this method simulates multiple
Markov chains in parallel that operate under different temperatures to make
it possible to take bigger steps through the sample space. For my research,
I investigated two extensions of this improved method that were proposed
in the physics literature. The first extension allows for more communication
among the Markov chains. The second extension uses information about
multiple chains to estimate the gradient information for training the RBMs.
It turns out that the first extension makes it possible to use a larger num-
ber of chains. When both of the extensions are applied, this also leads to
better performance for training RBMs on a data set of handwritten digits.
However, these methods also increase the computational costs of the learn-
ing algorithm and their practical value probably depends on the specific
application.

Alternative estimators

The Maximum Likelihood Estimator (MLE), is a very popular method for
the estimation of statistical models. Theoretically, it is the unbiased estima-
tor with the lowest possible variance. Unfortunately, it is often not possible
to apply the MLE exactly for models that are more complex. In this dis-
sertation, I look at alternative estimators from the literature that typically
provide weaker theoretical guarantees but who’s application is often more
feasible in practice than the MLE. Finally, I combine some ideas derived
from existing estimators to use the framework of Bregman divergences to
derive an estimator that is computationally efficient and relatively simple to
implement. I show empirically that the estimator is consistent. This means,
among other things, that the estimator converges to the correct parameter
values as the amount of available train data grows. Subsequently, I show
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that the estimator is able to learn features of images that look similar to
those found by more established estimators.

Models for missing-value imputation
Often, it is not possible to estimate complex models to serve as generative
distributions of the data. However, earlier work has shown that for many
problems a generative model is not required and that there are more direct
ways to train complex models that are often more feasible. I extend these
ideas to other types of models and show that they can be used to impute
missing values in time-series data. To demonstrate this, I describe three
types of neural network models that are suitable for processing time-series
and show how they can be trained directly for imputing missing values.
The models perform better than when they are estimated with common
approximate methods. I applied the models to handwritten digits, motion
capture data, and sensor recordings of a robot. Finally, I also show that the
models can still be used to generate samples when they are used as so-called
Generative Stochastic Networks.

Applications in speech processing
To investigate whether the structure of the model that performed best at
missing value imputation could also be applied to other types of problems,
I did experiments in which the task was to remove noise from audio record-
ings for speech recognition applications. After some small adjustments, this
model took the form of a Recurrent Neural Network that processes infor-
mation in two directions at the same time. I also investigated a simplified
version of this model that is more computationally efficient. The precise
task was to remove additive background noise, for example caused by a
metro station or a busy pub, from recordings of spoken sentences. After
that, the recordings were provided to a standard speech recognition system
and the performance was measured as the number of mistakes made by this
system on the word-level. The two variants of the model structure performed
better than similar neural network models from the literature. However, the
models did not perform well when the noise type during test time was very
different from the ones that were used during training.
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1
Introduction

The research in this thesis deals with subjects that can all be considered part
of the research fields statistics and Machine Learning. More precisely, the
research focusses on methods for statistical models that are too complicated
to be trained with standard methods. The term ‘statistical model’ is very
general and most of the work is about undirected graphical models, artificial
neural networks or combinations of the two. The first half of the thesis is
mainly concerned with the estimation/training of generative models for data
sets when normalization of these models is not computationally feasible. The
second half is about methods that circumvent generative training by opti-
mizing models directly for the specific task they would be used for, merely
using a generative model with the same structure as a source of inspiration.

This introduction will briefly introduce the field of Machine Learning
and some of the most relevant basics of statistics and probabilities to quickly
delve more deeply in the required background knowledge about energy mod-
els and statistical estimation. This part of the text also aims to provide
enough general information about my work to form a more intuitive under-
standing of it for those who are not familiar with the field and perhaps less
interested in the mathematical details.

1.1 Machine Learning

Machine Learning is a scientific field that is concerned with computer sys-
tems that are able to learn from information. How to design such systems
and how to train them to solve certain problems, are major areas of re-
search in this field. The idea behind Machine Learning is to program a
computer to learn by itself what would be too complicated to program it
to do with explicitly written instructions. Examples of such skills would be
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language comprehension, face recognition, and motor control. Skills that we
humans are such experts in that it may be easy to forget how complicated
they actually are. Nowadays, the presence of machine learning algorithms
is ubiquitous. Most people own cell phones with applications for speech
recognition, visit web pages that employ face recognition, and receive mail
packages that have been sorted by machines that are able to read handwrit-
ten address information. This presence of systems that learned to do their
jobs from data can only be expected to increase in the near future.

Many of the ideas and algorithms in Machine Learning have their roots
in statistics and information theory. An important reason for this is that
many types of learning can be seen as a search for regularities in information
that is either incomplete or of questionable quality. In other words, one is
trying to find relations and structures while dealing with uncertainty. A
problem domain that statistics and information theory deal with as well.
Noticeable differences between Machine Learning and statistics seem to be
the amount of data and the complexity of the models that are used. Research
in statistics tends to deal with smaller data sets and simpler models to
provide evidence for claims about the underlying processes that generated
the data. Machine Learning typically deals with larger data sets and more
complex models; interpretation of the modelled underlying processes is often
less important. Nonetheless, the research areas of statistics and machine
learning display significant overlap and perhaps the most profound difference
is in the connotations people have with the two terms.

Many machine learning tasks can be interpreted as the search for func-
tions. Figure 1.1 shows some common problems in statistics and machine
learning for which the goal is to find some function that can be used to
make predictions on the basis of a limited number of observed points. The
examples in Figure 1.1 are regression, classification and density estimation.
These tasks will be explained in more detail in Section 1.1.1. In all of the
examples, many different functions could describe the available data and the
most challenging task is to select that function that is expected to be most
useful for describing data points that have not yet been observed. Of course
these problems become far more interesting when we start talking about the
prediction of stock prices, the classification of pictures of animals and den-
sity models that provide a ranking of the most plausible translations of this
sentence into some other language.

Many models in machine learning and statistics provide families of func-
tions from which a specific function can be selected by tuning certain param-
eters. In such models, optimization methods are used to find those values for
the parameters that give the desired function according to some objective
of loss functional. For parametric models, the number of parameters is fixed



(a) Regression

(b) Classification

(c) Density estimation
Figure 1.1: Many machine learning problems can be inter-
preted as the search for some function. In Fig. 1.1a the goal
is to find function that predicts the hight of the points given
some value of the x-axis. In Figure 1.1b the task is to find the
line that separates the blue dots from the red dots. In Figure
1.1c the goal is to predict the likelihood of that points will be
found in certain regions of the 2 dimensional xy plane, where
red indicates a high probability density and blue a low probability
density.



4 1 Introduction

regardless of the amount of data that is used to estimate them. For non-
parametric models, the number of parameters (despite the name they still
have them) grows as more data becomes available. The terms ‘variable’ and
‘parameter’ can sometimes lead to some confusion. Unless explicitly stated
otherwise, ‘variables’ are typically assumed to be stochastic and ‘parame-
ters’ are values that are typically found using optimization to determine the
predictions a model makes about these variables.

I will now explain a couple of aspects of machine learning research in
detail. First I will talk about the most common types of machine learning
problems and elaborate on the types of problems that appear in this thesis.
Subsequently, I will talk about common remedies for the overfitting problem
that can plague machine learning experiments. Finally I will talk about how
the actual learning takes place, or more precisely: how the parameters of
many machine learning models are optimized.

1.1.1 Types of Learning Problems

Machine learning is concerned with several specific types of learning prob-
lems. The type of learning problem is determined by a couple of factors
like the amount of information that is available and the type of information.
The most relevant types of learning for this dissertation are supervised and
unsupervised learning.

The most common types of supervised learning tasks are regression and
classification. Examples of regression tasks are the prediction of house prices
based on their sizes and the prediction of someone’s weight based on variables
like age and daily calorie intake. As Figure 1.1a shows, the aim is to find
a function that captures a certain relation between two or more variables.
In classification problems, the goal is to assign the correct class label to a
certain data point. As Figure 1.1b shows, the goal is now to find a line or
plane that separates points from different categories (in this case red dots
and blue dots). Practical examples of classification are the identification
of people based on fingerprints and the categorization of text documents
under categories that represent their content (e.g., politics, sports, et cetera).
More formally, given some vector of input values x, a supervised system
is also presented with some desired target output value t. In the case of
classification, this value t is the desired class label. For a regression problem,
t takes a continuous value. The goal for the system is now to learn to predict
the value t as well as possible given some input pattern x that has possibly
not been observed before.

Most of the research in this dissertation is about unsupervised learning.
Since the annotation of data sets with labels is a task that often has to
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be performed by humans (and this tends to be a tedious endeavour), the
amount of available labelled data is many orders of magnitudes smaller than
the amount of unlabelled data. Unsupervised learning is involved with the
search for useful structure in data for which no or insufficiently many labels
are available. A good example of unsupervised learning is clustering, the
task of grouping data points together based on some kind of similarity. An
unsupervised algorithm may still recognize that news articles about politics
have more with each other in common than they have with news articles
about sports, without ever being told that these classes exist. Other common
examples of unsupervised learning are data compression and dimensionality
reduction. From a statistical point of view it can also be interesting to train
generative models of a data set. These are models that learn to assign a
higher probability mass (or density in the case of continuously valued data)
to data that is similar to data points they have seen before while assigning
a low probability to observations that are very different. Language models,
for instance, are trained to assign higher probabilities to sentences that are
likely to occur in that language than to sentences that are grammatically
incorrect, sound very strange, or are from a different language. Language
models are used to select the most plausible sentences from sets of candidates
that have been suggested by speech recognition and automatic translation
systems.

Several other types of learning problems like semi-supervised learning
and reinforcement learning exist but are not the focus of this work. Since
new Machine Learning applications are still being developed, the number of
different types of learning problems is also still growing.

1.1.2 Preventing Overfitting

An important goal of most Machine Learning algorithms is to learn proper-
ties of data that can be generalized to data that has not yet been observed.
This necessity to generalize is what separates learning from simple storage.
If the goal was just to remember information, one would simply store it in a
database. A system that learns too many specific properties of a data sam-
ple without learning much information that is generalizable to unseen data
is said to be overfitting. This principle is similar to how the memorization of
the answers of a math exam doesn’t teach one much about the math itself.

If the amount of training data is limited, the complexity of a model can
be controlled using various regularization methods. Typically, these methods
control the complexity of the model by, for example, constraining the mag-
nitude certain parameters can take or the thoroughness of the optimization
procedures used to train the model. If the regularization settings are chosen
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well, a model may perform a bit worse on the train data, but it will make
better predictions about new data. Of course it is important to know how
to choose the settings for these regularization methods as well as possible
based on the data that is available. The most common trick is to pretend
that some of the data is new while determining the regularization settings.

A first step, is to divide a dataset into a train and test set. The model of
interest should only be trained on the train set, while its performance should
be evaluated on the test set. Simply storing the train data will not suffice to
perform well on the test data so the model is now forced to learn more about
the structure in the data for solving the task. Unfortunately, this approach
does not eliminate the overfitting problem completely. If a researcher keeps
on looking for settings of a model that work well on the test data, he or she
may still find settings that capture particular characteristics of this sample
of test data that don’t generalize to new data. A possible solution is to
split the data into three parts: a train set on which the model is trained, a
validation set on which the performance as a function of different settings
for the model and its training procedure is evaluated, and a test set on which
the final performance is evaluated after it has been decided that the settings
will not be altered any further.

When there is not much data available, splitting the data into separate
train, validation and test sets may be too wasteful. A popular solution
to this problem is cross-validation. To perform cross-validation, the train
data is split into a number of so called folds. The model is now trained as
many times as there are folds. For every fold, a model is trained on all the
data except for the data in that particular fold. Subsequently, the model’s
performance is evaluated on that fold and in the end the performance scores
of the different models are averaged. To provide an even more reliable result,
a separate test set is still used to evaluate the performance of the model after
good settings have been identified using cross-validation.

Finally, several alternatives to cross-validation exist that may have cer-
tain relative disadvantages and advantages given the amount of available
data. Examples of these methods are bootstrapping and Bayesian approaches
to model selection.

1.1.3 Optimization

Given a certain model and a task we want the model to learn, finding good
parameters for the model is an optimization problem. An optimization prob-
lem is defined by an objective function (or functional) of both the model
parameters and the data, for which we want to find an extreme value (i.e., a
maximum or a minimum). For a probabilistic model this may be a value for
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which the parameters describe the distribution of the data as well as possi-
ble. Optimization methods can be classified into those that are global and
those that are local. These terms refer to the fact that an objective can have
many optima that can be either local or global. As the name implies, local
optima are the best solutions in a local region of the search space. The global
optima (or optimum if there is only one) are the subset of local optima that
are also the optima of the entire objective function. In other words, they
are the best local optima. An intuitive analogy for an optimization problem
with many optima is the search for the lowest point in a desert landscape
with many dunes and valleys. When we are at the bottom of a valley that
is surrounded by dunes, we know that we are in a local optimum because
we only see higher elevated soil around us, but there is no way of knowing
whether this valley is also the deepest one in the whole desert.

That said, the divide between global and local methods is sometimes
vague because some of the methods that are commonly considered to be
global may still use local information and are not guaranteed to find a global
optimum either. I will only discuss optimization methods that don’t assume
the objective function to be convex.

Global optimization methods often assume that we only have access
to the value of the objective function itself and nothing else. The simplest
global optimization method is a brute-force search. One simply tries as many
different values for the parameters as possible and uses those that lead to
the best value of the objective function. Assuming that good values of the
parameter are located near each other, one can choose a certain location
in the parameters space, search in its neighbourhood for better values, and
keep searching in directions that look promising. Approaches that are based
on this last principle are simulated annealing (Kirkpatrick et al., 1983) and
genetic algorithms (Goldberg, 1989). Other examples of global optimization
methods are particle swarm optimization (Kennedy and Eberhart, 1995) and
Bayesian optimization (Pelikan et al., 1999).

Local optimization methods start at a certain location in the parameter
space and try to find the steps that are required to find an optimum as
quickly as possible. These methods generally use more knowledge about
the objective function, like first and second order derivatives. A widely
used local optimization method is gradient descent. This algorithm finds a
minimum of a function by evaluation its gradient at a certain location and
taking a small step in the negative direction of this gradient. This process
is repeated until either the objective is not decreasing anymore or a pre-
specified number of steps has been carried out. More advanced methods
for local optimization also use second order information. Most of these
are based on Newton’s method in which a quadratic approximation of the
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objective function is constructed at a certain location and a step into the
direction of the minimum of this quadratic function is taken. Examples of
second order optimization methods are quasi-Newton methods like BFGS
and truncated Newton or Hessian-free methods (Nocedal and Wright, 2000).
A downside of local optimization methods is that if the objective function
contains multiple optima, the actual optimum that will be found depends
heavily on the location at which the optimization algorithm is initialized.

One of the most widely used optimization methods that falls somewhat
in between global and local optimization methods is Stochastic Gradient
Descent (SGD). This method is similar to the standard gradient descent
algorithm, but instead of computing an exact gradient for a data set, only
a small part of the dataset is used at each step. This causes the gradient
estimates to be quite noisy but allows for many more updates of the pa-
rameters each time the data set is processed. A nice feature of SGD is that
the noisy updates may allow the optimization algorithm to jump out of bad
local optima to (hopefully) find better optima instead.

1.2 Statistical Models and Energy Func-
tions

After stating that many machine learning and statistical estimation prob-
lems can be seen as the searches for functions, it is important to clarify what
kind of functions one should think of. In principle any function can be used
as a statistical model but the more popular families of functions tend to
have some properties in common. I will first take a function oriented look
at statistical models in general. After that, I will get into the estimation of
models using loss functions and in particular the commonly used method of
maximum likelihood estimation. The intention is not to provide a thorough
introduction to statistics but to review the most relevant theory and termi-
nology. Finally, I will describe some classes of parameterized functions like
neural networks and undirected graphical models in more detail.

1.2.1 Properties of Probability Distributions

In the same way that a mathematical model describes the relations between a
set of variables, a statistical model describes the relations between stochastic
variables. The most commonly used statistical models describe distributions
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of discrete and continuous variables.1 Discrete variables can be described by
probability mass functions that assign a certain probability mass to all possi-
ble values of the variables. Continuous variables are described by probability
density functions that allow the probability masses of certain regions of val-
ues to be computed by integrating the density functions over these regions.
The integral of a probability density function is called the cumulative dis-
tribution function. The set of all possible values a set of random variables
can take, is the sample space. The term event is often used to refer to any
possible subset of the sample space. In case the sample space is uncountably
infinite, events are typically restricted to be subsets of the sample space that
are Lebesgue measurable (i.e., subsets for which measures comparable to a
volume or length can be computed).

The sum of the masses corresponding to all possible outcomes should
be equal to one for a valid probability mass function. All individual mass
values should also be positive. Similarly, probability density functions should
integrate to one with respect to the sample space.

Given two variables x and y, p(x|y) is the conditional distribution of
x given y, p(x, y) is the joint distribution of x and y. We say a variable
has been observed when there is no more uncertainty about its value. The
distribution p(x) is sometimes referred to as the marginal distribution of x
to emphasize that it doesn’t depend on any other variables. The process
of integrating or summing over all values of certain variables to obtain the
marginal distribution for one of them is called marginalization. Marginaliz-
ing y out of the conditional or joint distribution refers to the application of
the identity p(x) =

∑
y p(x, y) =

∑
y p(x|y)p(y).

The term inference is very general and refers to the answering of ques-
tions about the model and the variables it describes. Examples of inference
are the determination of the likelihood of a specific state of all the variables
or the determination of the variable state for which the probability assigned
by the model has the highest value. When inference in a model is said to
be intractable, this generally means that it is not computationally feasible
to compute either a normalized density or to compute the most likely state
of the variables in a model.

A term that will be used very often is the log-likelihood of a data set.
This is the logarithm of the probability mass or density that a model assigns
to the available data. For a data set S = {x1, . . . ,xN}, the log-likelihood is
given by the joint probability of all its N data points p(x1, . . . ,xN ). When
it is assumed that the points in a data set are independent and sampled from
the same distribution (often abbreviated as iid), the log-likelihood of a data

1More complex distributions may assign probabilities to functions or other dis-
tributions for example.
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set is simply the sum of the log likelihoods of the individual data points:∑
i ln p(xi).
Restricting the discussion to probability density functions for a moment,

many arbitrary non-negative functions can be forced to integrate to 1 by
rescaling the functions by dividing them by their integrals. This obviously
requires that the integral over the sample space of such a function converges.
A popular way to map an arbitrary function f(.) to a density function is
to make it positive by taking the exponential of it and to normalize it by
dividing the result by the integral of the exponential of this function:

p(x) = ef(x)∫
ef(x∗) dx∗

. (1.1)

As a matter of fact, many common density functions can be written this
way. A good example is the normal distribution given by

N (x, µ, σ) = e−
(x−µ)2

2σ2

√
2πσ2

, (1.2)

where σ is the standard deviation and µ the mean parameter. Equation 1.2
can be written as Equation 1.1 by noting that f(x) = − 1

2σ
−2(x − µ)2 and∫

exp(f(x)) dx = (2πσ2)− 1
2 . Functions that can be transformed to proba-

bility density functions in this way are often called energy functions because
of their origin in statistical physics. In that case, high energy represents
low probability so the exponential of the negative energy is used. The next
section discusses energy functions in more detail.

1.2.2 Energy Functions and Undirected Graphs

An Energy-Based Model (EBM; LeCun et al., 2006) defines a function E(·)
that maps an observation vector xn or matrix Xn to an energy value. This
energy value represents a measure of the ‘goodness’ of a configuration of the
input variables. Most models for regression and classification can be seen as
energy models. For a classifier, for example, the variables might be the pixels
of an image and a binary class label. A well-trained model should assign a
lower energy to the image when it is combined with the correct class label
than when it is combined with the incorrect one. Inference in energy-based
models is done by minimizing the energy function and predictions are defined
as

X̂(i,j)∈Ω ← arg min
X(i,j)∈Ω

E(X; θ), (1.3)
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where θ is the set of model parameters. The set Ω contains the indices of
the values in X to perform the minimization over.

Undirected graphical models, often called Markov Random Fields, pro-
vide a convenient way for visually depicting and mathematically representing
a large class of energy models. Undirected graphical models are defined as
graphs in which edges represent symmetric dependencies between variables.
An example of an undirected graphical model is given in Figure 1.2. Using
the graphical representation of a Markov Random Field it is easy to extract
various independence properties of the model. Two vertices are independent
if there exists no connection between them or no path of other vertices that
correspond to unobserved variables. Figure 1.3 shows an undirected graphi-
cal model that is popular in image processing where the edges represent the
prior intuition that nearby pixels in an image are strongly correlated with
each other.

The joint distribution of a vector of multiple variables x defined by an
undirected graphical model is written as a product of so-called potential
functions ψC(·) given by:

p(x) = 1
Z

∏
C

ψC(xC). (1.4)

The sets of variables defined by C are so-called maximal cliques which are
defined as groups with a maximum number of vertices under the constraint
that all vertices are connected to each other. The normalization constant Z
is called the partition function and defined as

Z =
∑

x

∏
C

ψC(xC). (1.5)

In the case that x is continuous, the summation in Equation 1.5 is replaced
by an integral. To ensure that all the potential functions are positive, they
are often defined as the exponentials of energy functions E(·) in the form

ψC(xC) = e−E(xC). (1.6)

The fact that the individual potential functions of an undirected graph
don’t need to be normalized makes them somewhat more flexible than the
functions in a directed graphical model which are constrained to be nor-
malized conditional distributions. Theoretically, any energy function can be
represented by an undirected graphical model because one can assume that
none of the variables are independent.

A particularly well-known type of undirected graphical model is the Bolz-
mann Machine (Hinton and Sejnowski, 1986). In the original definition of



x1 x2

x3 x4

Figure 1.2: Example of a simple undirected graphical model
with four variables. The maximal cliques of this graph are
{x1, x2, x3} and {x2, x4}. The variables x1 and x4 are inde-
pendent when x2 is observed.

Figure 1.3: A typical grid structured Markov random field suit-
able for capturing local pixel correlations in images.
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the Boltzmann Machine, all the variables in the model are binary and from
{0, 1}. All the potential functions involve either one or two variables (i.e.,
the maximal cliques are never greater than two). These potential functions
are defined as:

ψi(xi) = exp(bixi), (1.7)
ψij(xi, xj) = exp(wijxixj), (1.8)

where bi is the bias parameter of the variable with index i and wij is a
connection weight between the variables with indices i and j. Equivalently,
a Boltzmann Machine has the following energy function:

E(x) = −
∑
i<j

wijxixj −
∑
i

bixi. (1.9)

Nowadays, the terms Boltzmann Machine and Markov Random Field dis-
play considerable overlap because many models that are called ‘Boltzmann
Machines’ don’t model all possible second order interactions, include vari-
ables that are not binary or do include higher order interactions between the
variables.

To model complex processes, it is common practice to introduce latent or
‘hidden’ variables that represent interactions between the observed variables.
This leads to an energy function of the form E(X,H), where H is the set
of hidden variables, which need to be marginalized out to obtain the energy
value for X. To discriminate between the value E(X,H) and the sometimes
intractable value E(X), I will often refer to the former as the energy and
the latter as the free energy. This summation (or integration) over hidden
variables can be greatly simplified by designing models for which the hidden
variables are conditionally independent given an observation. A model that
satisfies this independence condition is the Restricted Boltzmann Machine
(RBM) (Freund and Haussler, 1994; Hinton, 2002), which is often used to
build deep belief networks (Hinton et al., 2006). The energy function of an
RBM is given by:

E(x,h) = −
Nh∑
i=1

Nx∑
j=1

Wijhixj −
Nh∑
i=1

hiai −
Nx∑
j=1

xjbj , (1.10)

where a is a vector with bias parameters for the visible units.
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1.2.3 Energy-Based Learning
Energy-based learning (LeCun et al., 2006) is a rather general framework
for describing a broad class of learning algorithms. It can be interesting to
represent existing methods in terms of the energy-based learning framework
to improve them or to come up with new approaches. A downside of the gen-
eral nature of this framework is that it can lead to a loss of interpretability.
The energy-based learning framework is more general than that of proba-
bilistic graphical models in the sense that a probabilistic interpretation is
not necessary; other objectives than the likelihood can be used as well. In
practice, one is rarely interested in the likelihood a model assigns to data
but just in solving some task like regression or classification.

What defines the energy-based learning framework, is a separation be-
tween the energy function that defines the ‘goodness’ of a set of variable
values, and the objective function that is used to optimize the parameters of
the energy function. Any model that defines a proper energy function with
a converging integral can be trained as a probabilistic model by setting the
objective to be the log likelihood.

1.2.4 Loss Functionals
The goal of a loss functional (a functional is a ‘function of a function’) is
to reward energy functions that assign low energy values at desirable vari-
able values and ideally also punish low energy values at undesirable values.
Common objectives for energy-based learning other than the log likelihood
are the generalized perceptron rule and functions that maximize a margin
between the energy values of the desired and undesired configurations of
variables (LeCun and Huang, 2005). In general, given some dataset S of N
sample vectors, a loss functional is defined as

L(E,S) = 1
N

N∑
n=1

L(E(xn; θ)) +R(θ)), (1.11)

where E(·) is an energy function, θ the vector with parameters that deter-
mines the shape of that function and R(·) a function of the parameter vector
that acts as a regularizer to promote energy functions that are compatible
with prior intuitions we may have. The functional L(·) is defined for indi-
vidual data points and L(·) can be seen as an estimation of its expectation
under the data distribution. In most cases, these functionals can be written
as normal functions by making them a function of the parameter vector θ
instead of a functional of E. In the remaining discussion I will refer to loss
functionals that are defined per data point xn to make the distinction with
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energy functions more explicit.
Not all combinations of energy functions and loss functionals work well

in practice. While energy-based models do not necessarily need to be nor-
malized, a so called contrastive term in the loss functional is still needed to
prevent the model from learning trivial solutions. To illustrate this problem,
I ran a couple of small experiments very similar to those in LeCun et al.
(2006).

I trained two types of energy models using two different loss functionals:
the energy loss and the negative log likelihood loss. The first of these two
loss functionals only pulls the energy down for the correct examples, while
the second of these also tries to push the energy up for bad answers. The
point was to show that certain combinations of loss functionals and models
don’t work at all.

Let x be from [−2, 2] and the mapping to learn be t = x2. The goal is to
train an EBM to learn this mapping. Figure 1.4a shows an EBM for this task
in which x is processed by a neural network (see Section 1.3) and the energy
is defined as the L1 norm of the difference between the output of the network
and some target value y. I will refer to this model as EBM1. Figure 1.4b
shows an EBM that consists of two neural networks; each network processes
one of the two variables x or y. The energy for this second EBM is defined
as the L1 norm between the outputs of the two neural networks. Let’s refer
to this model as EBM2.

The training was done with gradient descent. The EBM1 model had 30
hidden units and the EBM2 two times 6 hidden units.2 The log likelihood
and its gradient were approximated with importance sampling (a method
that works reasonably well for problems with such a low dimensionality).

While the two energy models in Figure 1.4 look similar, they behave quite
differently depending on the loss functional that is used for training them.
Figure 1.5 shows plots of the energy landscapes for different combinations
of energy models and loss functionals. As Figure 1.5a shows, the parabola
y = x2 is clearly visible as a region of low energy after training EBM1
with the energy loss. The EBM2 model however, does not learn an energy
landscape that makes much sense at all, when the energy loss is used to
train it (see Figure 1.5b). Finally, the EBM2 does learn a suitable landscape
when the negative log likelihood loss is used (see Figure 1.5d). When the
EBM1 is trained using the negative log likelihood loss, it learns an energy
surface that is very similar to when it was trained using the energy loss.
Note that in Figure 1.5d the height of the energy is also strongly related to

2The EBM1 could also get good results with far fewer hidden units but this
made the optimization procedure more time consuming. Since this is not a per-
formance comparison between models but between loss functionals, the difference
between the numbers of parameters between the models is not relevant.
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(a) Single network EBM
(EBM1).
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(b) Double network EBM
(EBM2).

Figure 1.4: Two examples of EBMs for matching a pair of
variables.

the relative density of the data points (i.e., there are more y values near the
origin because x was sampled uniformly).

The EBM1 could be used with both the energy loss and the negative log
likelihood loss. However, the EBM2 fails to learn the task when the energy
loss is used. This so called collapse of the energy function is caused when
there is no constraint preventing the energy function to be low everywhere.
The EBM2 can easily learn to ignore its input such that both of the neural
networks always produce the same constant as their output. The contrastive
term in the negative log likelihood term prevents this from happening be-
cause the model is forced to increase the energy for all locations of the input
space that are different from the data. The EBM1 did not suffer from this
problem because the subset of input values that can be assigned a low en-
ergy is limited in size. As pointed out in LeCun et al. (2006), the energy as
a function of y given a certain value of x is constrained to be a V-shaped
function with fixed slopes and single minimum. Placing the apex of the V
shape on a certain value of y, minimizes the energy there and automatically
causes all other possible values of y to be larger.

Another way in which the optimization of a loss functional may fail, is
if the margin between correct and incorrect answers becomes zero (LeCun
et al., 2006). The generalized perceptron loss pushes the energy down at the
correct answer and pushes it up at the answer the model itself would have
given. For a binary classification, the gradient of this loss would be zero if
the energy scores of both of the possible answers are always identical. While



(a) EBM1 with energy
loss.

(b) EBM2 with energy
loss.

(c) EBM1 with negative
log likelihood.

(d) EBM2 with negative
log likelihood.

Figure 1.5: Energy landscapes obtained after two types of loss
functionals and two architectures. The scale of the z-axis differs
wildly between the plots because the negative log likelihood
tends to drive the energy to infinity for values that are not in
the data.
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Table 1.1: Examples of loss functionals for energy-based learn-
ing. The symbol x̂ is in this case the so-called least offending
answer : the value of x that leads to the lowest energy value
but is not identical to xn. All loss functionals are defined for as
single data point.

Loss functional Equation Margin

energy E(xn) none
neg. LL E(xn) + ln

(∫
e−E(x) dx

)
> 0

perceptron E(xn)−min
x

(E(x)) 0
hinge max (0,m+ E(xn)− E(x̂)) m

this situation is not very likely to happen, it can be completely prevented
from happening by ensuring that there is always a finite margin between
the energy values of the correct answer and the answer the model is inclined
to give. In their tutorial paper, LeCun et al. (2006) give some sufficient
conditions for good loss functionals of which a detailed description is beyond
the scope of this dissertation. Table 1.1 shows some common loss functionals
and the margin they create between desired and undesired answers.

In summary, energy-based learning involves two optimization problems:
minimization of the energy with respect to certain variables for inference
and minimization of the loss with respect to the parameters. Good loss
functionals limit the volume of the variable space that can be assigned very
low energy values and care should be taken when loss functionals are used
that can result in a collapse of the energy function.

I think that the most important lesson to learn from energy-based learn-
ing is that suitable objectives can be constructed using a good loss functional
in combination with a suitable family of energy functions. While the frame-
work is so general that there is still plenty of room for constructing bad
models, it allows one to combine existing models and optimization methods
in new ways.

1.2.5 Statistical Estimators
An estimator is a method or rule for determining a certain quantity on
the basis of available data. In practice this involves the prediction of the
parameters of a statistical model as a function of the samples in a data set.
Important properties of a statistical estimator are its bias, variance and mean
squared error. All these properties are defined as expectations of the different
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estimates with respect to the data distribution. The bias of an estimator is
the difference between its expected value and the true parameters, which can
be written as Ep(S)[θ̂(S)]− θ. Similarly, its variance is the expected squared
difference from the mean of the estimates and represents how wildly the
estimator changes as different data samples are provided. The MSE of an
estimator is given by Ep(S)[(θ− θ̂(S))2], where θ̂ is the estimate as a function
of the data sample in its argument. The MSE is related to the bias and the
variance in that it is the sum of the square of the bias, the variance, and a
third term that represents the noise variance of the data itself. A reduction
of either the bias or the variance should lead to a lower MSE but in practice
there is often a trade-off such that a lower bias leads to a higher variance
and vice versa.

There are a couple of other properties of statistical estimators that are
relevant with respect to the work described in this dissertation. These prop-
erties are an estimator its consistency, whether or not it is efficient, and
whether it is asymptotically normal.

An estimator is consistent if it converges in probability as a function of
the sample size. Being consistent also implies that the estimator is asymp-
totically unbiased. In other words, as the number of data points grows, the
estimator becomes more accurate. An estimator is efficient if it is, among
the unbiased estimators of a model, the estimator with the lowest variance.
Finally, an estimator is asymptotically normal if it is consistent and the
estimates (as functions of samples from the data distribution) approach a
normal distribution around the correct value of the parameters.

Maximum Likelihood estimation is probably the most popular method
for estimating the parameters of statistical models. The Maximum Like-
lihood Estimator (MLE) is both consistent, efficient and asymptotically
normal. All in all, these are good theoretical reasons for using maximum
likelihood estimation when this is possible.

Let pmodel(·) be some trainable density function that we want to make
as similar as possible to some distribution pdata(·) we don’t know but can
obtain samples from. Formally, the maximum likelihood estimator (MLE)
for a certain set of N independent identically distributed data points S =
{x1, . . . ,xN} sampled from pdata(·), is defined as

θMLE = arg max
θ

N∑
n=1

ln pmodel(xn; θ), (1.12)

where θ is the set of trainable model parameters. When the number of data
points goes to infinity, the sum in Equation 1.12 becomes an integral over the
sample space weighted by the distribution pdata(x) we try to approximate.
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Figure 1.6: Density plot of the empirical data distribution of
a collection of points sampled from a Gaussian.

The estimator is now defined as

θMLE = arg max
θ

∫
pdata(x) ln pmodel(x; θ) dx. (1.13)

The objective which is maximized, is identical to the negative of the so-called
cross entropy between the two distributions. Minimization of cross entropy is
also equivalent to a minimization of the Kullback-Leibler divergence between
the distributions.

A weakness of the maximum likelihood estimator is that it is very vul-
nerable to the over-fitting problem when the number of data points is finite.
This is easy to understand considering that the empirical data distribution,
is actually a set of point masses (see Figure 1.6). Unless the flexibility of the
approximating model is constrained in a proper way, MLE will aim to make
the density zero nearly everywhere instead of interpolating between the data
points.

1.3 Artificial Neural Networks

The term artificial neural network (ANN) refers to models in fields as diverse
as statistics, cognitive science and computational neuroscience. In machine
learning, ANNs are first and foremost nonlinear functions who’s shape is
determined by a set of trainable parameters. Most of the models I worked
with can be seen as neural networks or hybrids of neural architectures and
undirected graphical models.

What most ANNs have in common, is that computations are carried
out in a largely parallel fashion using computational units called neurons.
This naming is obviously inspired by observations about the structure of
the human brain. In general, learning in an ANN takes place by adapting
the values of the connections between those neurons in order to learn some
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Figure 1.7: Schematic depiction of the computational graph
of a feed-forward neural network with two hidden layers and a
single output unit.

desired mapping from the input to the output units.
The most common type of ANN is the feed-forward neural network (see

Figure 1.7). Feed-forward neural networks implement a certain mapping f :
x 7→ y, where x is a vector of features and y is some (possibly multivariate)
desired output value. The mapping f(x) itself is a weighted sum of functions
φix given by

f(x) =
∑
i

wiφi(x) + b, (1.14)

where each function φi(x) itself can also be composed of linear combinations
of other functions of x and wi represents a vector (or matrix) of trainable
connection weights. Typically, each linear combination of functions or vari-
able values, is followed by a non-linear transformation h(·). The parameter
b represents a bias parameter. In practice, the bias parameter is often in-
cluded in the weights by appending a 1 to the vector of feature functions.
The depth of this recursion determines the number of layers of the network.
Feed-forward neural networks can model arbitrarily complex functions, given
that the number of hidden units is large enough. The algebraical definition
of this network would be

f(x) = h
(
uTh (Vh (Wx + c) + b) + a

)
, (1.15)

were u, V and W are a vector and two matrices that contain the connection
weights and h is applied in an element wise fashion. The vectors b and c
and the scalar a are bias parameters. In a feed-forward neural network there
are no connections among units that are in the same layer.
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The nonlinear functions h(·) are often chosen to have a sigmoid shape.
Common examples of sigmoid activation functions are the hyperbolic tan-
gent and the logistic sigmoid given by sigm(x) = (1+exp(−x))−1. Functions
of this type are nearly linear for input values that are close to 0 while very
large and very small values are squashed within a certain range.

ANNs are typically trained with gradient based optimization methods.
The reason for this is that due to their structure, the gradient of some
loss defined as a function of the outputs of an ANN with respect to the
parameters can be easily computed using the chain rule. The application of
the chain rules to compute the loss gradient for a neural network is called
backpropagation. This name refers to the way error values that are computed
at the output units of the network are sent back through the weights to
determine the gradients of the previous layers. This computational process
is to a large extent the reverse of the process that was used to convert the
input of a network to its output prediction. Let’s say that the loss function
of interest is the binary cross entropy:

L(t,x) = −t ln f(x)− (1− t) ln(1− f(x)), (1.16)

where f(x) is the neural network defined in Equation 1.15 and t is from
{0, 1}. The gradient of the loss with respect to the output before the sigmoid
function is applied is now given by

∂L(t,x)
∂o

= f(x)− t, (1.17)

where o = uTsigm (Vsigm (Wx + c) + b) + a. This is enough information
to compute the gradient of the loss with respect to the weight vector u as it
is given by

∇uL(t,x) = ∂L(t,x)
∂o

h, (1.18)

where h = sigm (Vsigm (Wx + c) + b). Now the gradient with respect to
hidden unit hi is given by

A nice property of ANNs is that while many methods use certain hand
engineered feature functions to represent the data, ANNs are able to learn
those feature functions themselves. Another nice property of ANNs is that
it is relatively efficient to apply them to the task of interest after they have
been trained. Furthermore, only the values of the weight parameters need
to be stored after training. This is in contrast to methods that require the
availability of the whole training set during testing and makes ANNs more
suitable for processing very large data sets. This follows from the fact that
ANNs are parametric models that don’t grow in size as they are trained
on larger data sets. Finally, the neural network framework makes it easy to
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design large models with many layers and connection structures that capture
prior intuitions about the data.

1.3.1 Neural Networks for Time-Series
Modelling time-series can be a challenging task, especially if those time-series
are high dimensional and contain nonlinear dependencies. Since two chapters
contain neural architectures that are applied to time-series problems I will
describe two very common ways of adapting neural networks to time-series
data: convolutions and recurrent connections.

Convolutional Networks

A simple way to allow a neural network to process time-series data is by
concatenating neighbouring data points in a sliding window fashion. For
a time-series {x1,x2, . . . ,xT } and a window size of 3, this means that the
neural network will be presented with a transformed set of data vectors
{(xT

1 ,xT
2 ,xT

3 )T, (xT
2 ,xT

3 ,x4)T, . . . , (xT
T−2,xT

T−1,xT
T )T}, where (·, ·, ·) signifies

the concatenation of three vectors. In other words, the network will still
assume that the data points it is processing are independent, but the data
has been transformed to take the time related dependencies into account to
some extent. This way of presenting the data to a neural network can also be
seen as a 1-dimensional convolution. Networks of this type are often referred
to as convolutional networks or time-delay networks (Waibel et al., 1989).

This approach is easy to implement and easy to parallelize, but it has a
couple of drawbacks. First of all, the size of the context that is taken into
account by the network is directly limited by the number of time frames in
each window. If there is an important dependency between two frames that
are four time steps apart, this relation cannot be captured by a model that
uses windows of three frames. Another downside is that the order of the con-
catenated frames is irrelevant. When a network receives the concatenated
vectors from the first three time series as input, it will not assume that x1
and x2 are likely to be more related than x1 and x3. Last but not least,
the number of parameters that are required to process longer dependencies
grows linearly with the number of concatenated input frames. This is espe-
cially problematic for high dimensional input data like, for example, video
recordings.

Recurrent Neural Networks

Unlike standard feed-forward neural networks, recurrent neural networks
(RNNs) also contain feedback connections that use activation values from
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Figure 1.8: RNN

the previous time-step to determine the current values of the units they
connect to. This also means that units can be connected to themselves
(see Figure 1.8). These feedback connections add a time dimensions to the
simulation of the network because the values of the neurons now depend on
the values of the neurons at the previous time step.

I will now give a more formal example of a recurrent neural network.
Let Xn be a sequence of d dimensional column vectors {x1,x2, . . . ,xT } that
represent features of a d dimensional time-series. A typical recurrent neural
network is now defined as

yt = Woutht + Wdirxt + bout (1.19)
ht = tanh(Wrecht−1 + Winxt + brec), (1.20)

where Wout, Wdir, Wrec and Win are matrices with trainable connection
weights and bout and brec represent vectors with trainable bias parameters.
As Equation 1.20 shows, the value of a hidden state vector ht is a function
of both the current input vector xt and its own value at the previous time
step.

A well-trained RNN should be able to use its hidden states to represent
a summary of the history of its input that is relevant for solving the task of
interest. A nice property of RNNs is that, in contrast to methods that use a
fixed number of previous input values, the networks should be able to learn
by themselves how far back they should look to find relevant information.
However, in practice the length of the time related dependencies RNNs can
learn is limited (Bengio et al., 1994). Computing gradients through RNNs
requires many multiplications that can drive their value to very small or
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very large values. Moreover, small changes in the recurrent weights can
have a very large effect on the behavior of the system. Recently however,
some promising long dependency learning has been demonstrated with RNNs
that were trained using second order optimization methods (Martens and
Sutskever, 2011). Other ways for learning long term dependencies are with
gated memory units as done in long short-term memory networks (Hochre-
iter and Schmidhuber, 1997) or appropriately adapted reservoir computing
methods (Jaeger, 2012).

1.3.2 Deep Learning

The recent success of the so-called deep learning approach (Bengio, 2009),
has led to a revival of interest in neural network models for solving ma-
chine learning problems. Deep neural networks, consisting of many layers
of processing units, have claimed state-of-the-art performance on various
benchmark problems in areas such as speech recognition (Dahl et al., 2012),
handwritten digit recognition (Hinton et al., 2006), and most notably image
recognition (Krizhevsky et al., 2012).

Initially, this success was largely attributed to mechanisms for pre-training
deep neural networks in a layer by layer fashion to solve the vanishing gradi-
ents problem that plagues RNNs as well. However most of the more recent
successes seem to be attributable to other factors including new types of acti-
vation functions, computing machinery that allows for much larger networks
to be used and regularization methods like dropout (Hinton et al., 2012).
Nonetheless, the initial surge of interest in unsupervised methods for train-
ing neural networks has led to many new ideas for training and developing
complex neural network based generative models.

The underlying idea of deep learning is that many real world modelling
problems can be solved more efficiently by models that learn a series of trans-
formations of the data that lead to representations that become increasingly
abstract. In image processing, for example, the task of object recognition
may benefit from a feature extraction process that generates a code that
contains the presence and locations of edges in various orientations (i.e.,
horizontal, vertical and diagonal). At the next level, combinations of these
features could be used to construct a coding of slightly more complex shapes
like curves and geometrical shapes. At the highest level, features may even
code for entire objects. Theoretically, a sufficiently large neural network
with a single layer of hidden units can learn any desired mapping but deeper
architectures may require fewer processing units to learn the types of map-
pings that are suitable for real-world phenomena. Recent theoretical work
about networks with rectified linear units showed that deep networks can
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represent more complex functions (more precisely, functions with a larger
number of distinct linear regions) than a network with a single large hidden
layer (Pascanu et al., 2013b).

As most of the work on deep learning involved neural network archi-
tectures, it felt natural to discuss it in a section about neural networks.
However, the principles behind deep learning are not limited by the precise
architecture that is used and many other types of models have been investi-
gated as multi-layer feature processing mechanisms. An interesting case of
this is for example the work on deep kernel functions (Cho and Saul, 2009).
Finally, deep learning principles have also successfully been applied to neu-
ral time-series architectures like RNNs (Graves et al., 2013; Hermans and
Schrauwen, 2013).

In this thesis I don’t investigate deep learning itself. However, many
of the models I will discuss could potentially be applied in a deep learning
setup. Some of the more complex time-series architectures were also inspired
by models that come from the deep learning research field.

1.4 Approximate Inference

While for some probabilistic models inference is tractable, there are many
types of architectures for which this is not the case. To do inference for such
models or to train them, approximate inference methods are needed. As the
name implies, these methods are not exact and each of them comes with
certain advantages and disadvantages.

Since most of the work in this dissertation deals with models for which
exact inference is not possible, approximations for inference or learning are
a very important part of the research involved and sometimes the direct
subject of it. In this section I will talk about some of the most commonly
used stochastic and deterministic methods for approximate inference.

1.4.1 Sampling Methods

Often, one is not directly interested in the exact distribution over some of
the variables of a probabilistic model but rather in some expectation with
respect to that distribution. Expectations of variables can be used to make
predictions. Other useful quantities that can be written as expectations are
the partition functions of undirected graphical models and their gradients.

For a continuous distribution p(x), the expectation of some function f(·)
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with respect to that distribution is given by

E[f ] =
∫
f(x)p(x) dx. (1.21)

Assuming that one can obtain samples from the distribution p(x), the ex-
pectation of f(x) can be approximated as

1
L

L∑
l=1

f(x̃l), (1.22)

where {x̃l}Ll=1 are L samples from p(x).
In many situations however, it is not possible to obtain samples from

p(x) directly. Often, it is only possible to evaluate p(x) or a function that is
proportional to it. In other situations it is only possible to obtain samples
for a subset of the variables x conditioned on the remaining variables, but
not for all the variables at the same time. Factors like these determine which
sampling method is the best choice.

A common method for approximating expectations when it is not pos-
sible to sample from the distribution of interest directly, is importance sam-
pling. In importance sampling, samples are taken from a so-called proposal
distribution that is as similar as possible to the distribution to approximate.
To compensate for the fact that one is sampling from the wrong distribution,
the samples are re-weighted by the ratio of the densities they have under the
target and proposal distributions q. The formula used in importance sam-
pling is very similar to Equation 1.22 and given by:

1
L

L∑
l=1

f(x̃l)γl, (1.23)

where γl = p(x̃l)/q(x̃l) are so-called importance weights If p or q are not
normalized, the importance weights are often rescaled to sum to 1 over all
samples and the multiplication with 1

L is removed. This corresponds to
a rescaling with the ratio of the partition functions of the distribution as
approximated by the importance sampling algorithm itself.

Unfortunately, importance sampling is very vulnerable to the curse of
dimensionality. As the dimensionality of the sample space increases, it be-
comes exponentially more likely that samples from the proposal distribution
have a very low density under the target distribution if the proposal dis-
tribution is just slightly higher in variance. This means that the computed
average will be dominated by a very small number of samples with far higher
weights than the others. In other words: the number of samples required for
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a reliable approximation grows very fast as the dimensionality grows.
If the goal is not just to compute expectations but to actually generate

samples from a distribution for which this is not directly possible, a similar
algorithm called rejection sampling can be used. In this algorithm, a sample
x̃ is again generated from some proposal distribution q(x). Subsequently, a
uniform sample ũ from the interval (0, 1) is generated. Now it should hold,
that the proposal distribution times a certain constant α is always larger
than p(x). Now the sample x̃ is accepted if ũ < p(x̃)

αq(x̃) . As is the case with
importance sampling, rejection sampling is also very sensitive to differences
between the proposal and targets distributions when the dimensionality of
the data is high.

When the dimensionality of the sample space is high and it is not possible
to sample from the target distribution directly, it may be a better idea to
resort to Markov chain Monte Carlo (MCMC) methods. MCMC methods
suffer less from a higher dimensionality of the sample space and some variants
can also be used when it is not even possible to compute values of the target
density (or a function that is proportional to it). However, unlike many
other Monte Carlo methods, the samples from MCMC methods are not
independent of each other anymore because each sample directly depends
on the previous state of the chain. The usability of a MCMC method is
therefore directly related to the rate at which consecutive samples become
less dependent on each other. MCMC methods will be discussed in more
detail in Section 2.2.

1.4.2 Approximate Variational Inference

Variational approximate inference methods are a deterministic alternative
for sampling methods that can be computationally more efficient. The idea
behind variational inference is to turn the inference problem into an op-
timization problem. An objective is defined in terms of a functional that
reaches an optimum when a function is found that is identical to the target
distribution p(x). One way to obtain an approximate method is by con-
straining the set of functions one can choose from to solve the optimization
problem. In practice, this is often done by selecting a set of probability
density functions over x that are still tractable. Examples of approximate
variational inference methods are loopy belief propagation, mean-field and
expectation propagation (Wainwright and Jordan, 2008; Minka, 2001). In
this section I will only introduce the variational mean-field method.

A popular variational approximate inference method that has origins in
statistical physics, is variational mean-field (Wainwright and Jordan, 2008).
In variational mean-field, the objective to be optimized is defined to be the
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Kullback-Leibler divergence between the distribution to approximate p(x)
and some tractable approximating distribution q(x), given by

DKL(q(x)||p(x)) =
∫
q(x) ln

(
q(x)
p(x)

)
dx. (1.24)

As one can see, Equation 1.24 is zero if and only if the distributions p(x)
and q(x) are identical.

When a model contains latent variables h and approximations of p(x)
and p(h|x) are sought, an approximate distribution q(h|x) can be defined
to provide the following lower bound on the log likelihood:

ln p(x) ≥ ln p(x)−DKL(q(h|x)||p(h|x)) (1.25)
= Eq(ln p(x,h)) +H(q),

where Eq is the expectations with respect to q and H is the entropy func-
tional.

It follows from the above, that given an approximating distribution q

that is flexible enough, the bound can be made identical to the true log-
likelihood. Obviously, finding the parameters of such a distribution is as
difficult as inference in the original distribution and in practice a form of q
has to be chosen that is tractable. The most common choice for q is a fully
factorized distribution. If p(h|x) is for instance a joint distribution over a set
of binary variables, the choice for q(h|x) may be chosen to be a product of one
dimensional Bernoulli distributions given by q(h|x) =

∏Nh
i=1 µ

hi
i (1−µi)1−hi .

Expectations with respect to this distribution are easy to compute. When
a fully factorized distribution q is used, the method is referred to as naive
mean-field.

The next step is to optimize the bound in Equation 1.25 with respect to
the parameters of the approximating distribution q. In general, the bound
can be differentiated with respect to these parameters. Setting the gradient
to zero leads to a coordinate ascent algorithm that will converge to a local
optimum.

Variational mean-field has a couple of weaknesses. First of all, the qual-
ity of the approximation depends heavily on the choice of the family of
approximating distributions. If the distribution we want to approximate
is for example multi-modal, a unimodal approximating distribution will, at
best, only be able to identify one of the modes of this distributions. Another
problem is that mean-field methods can be very sensitive to the initializa-
tion of the parameters of the approximating distribution and that they might
get stuck in bad local optima. Nonetheless, variational mean-field can be a
useful tool when sampling methods are too expensive and the number of
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dependencies in a graphical model is too large to efficiently perform other
approximate inference methods.

1.5 Evaluating Intractable Models

While the evaluation of models and methods in Machine Learning is already
a task that requires great care, evaluating intractable models is even more
problematic. When approximations are required to train a model, this often
means that the evaluation of this model will need to be approximated as
well. This can make it difficult to assess the quality of new models and ideas
in a systematic way. It is often a good idea to evaluate a model with a couple
of different methods to ensure that the result is not caused by the particular
evaluation method itself.

There are roughly two ways to evaluate intractable generative models
that have been trained using some approximation to maximum likelihood
learning:

1. The model is evaluated on some other task than density estimation
for which it will also be used in practice. Examples of such tasks are
denoising, feature extraction, classification and the initialization of the
parameters of a supervised model.

2. The likelihood (or some measure that correlates with it) is approxi-
mated with, for example, sampling methods.

The first of these two methods has the advantage that the model is evalu-
ated on a task for which it will be used but this is obviously only possible if
that task itself is tractable. From a scientific perspective, this method also
gives no true insight into the quality of an approximate maximum likelihood
learning method. The second method can provide more insight in approx-
imate likelihood learning methods, but should never be trusted completely
because it is based on approximations itself. The quality of these approxi-
mations could be sensitive to the specific training methods or models that
are being compared.

Another option that is sometimes sensible, is to make the model tractable
by reducing its complexity. It can sometimes be insightful to see how a
downsized version of a model behaves to get a better intuition about the
behavior of the intractable model as well. However, it should always be kept
in mind that statistical models and their learning algorithms may behave
very differently when the model changes in size.

I will now discuss some approximate quantitative methods for the eval-
uation of intractable models. I will also discuss some qualitative methods
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for evaluation that can be useful when the approximate methods prove to
be very unreliable.

1.5.1 Annealed Importance Sampling
A relatively popular method for estimating normalization constants of in-
tractable models is the Annealed Importance Sampling algorithm (AIS; Neal,
1998a). This algorithm can be seen as a combination between MCMC and
importance sampling, in which the ratio between the normalization con-
stants of two distributions is estimated. As the name implies, AIS is based
on importance sampling (see Section 1.4.1). The idea is that one of these
two distributions is tractable and that samples are taken using MCMC from
a series of models that interpolate between the tractable and the intractable
model; this gradual settling to the model of interest is the annealing process.
In practice, this is done by setting the tractable model equal to a version
of the intractable model where some of the parameters are set to zero. The
interpolation is done by setting the energy equal to a linear combination of
the two models where a scaling parameter determines their relative weights.
Running an MCMC chain until it is annealed only provides a single impor-
tance weighted estimate of the ratio of normalization constants. In practice,
many chains have to be simulated in parallel to obtain a reliable estimate.
AIS is suitable for evaluating RBMs (Salakhutdinov, 2008) for which MCMC
sampling is relatively efficient.

A nice property of the AIS method, is that the MCMC method is likely
to mix quite well during the early stages of annealing. Another nice property
is that no information is thrown away and that all intermediate samples of
the MCMC method contribute to the final estimate.

To apply AIS, one has to be able to evaluate the energy function with
respect to the samples produced by the MCMC method. This is not always
possible. Another downside is that AIS tends to be too optimistic when the
MCMC sampler doesn’t mix well. Since an estimate of the partition function
is sought, this estimate will be too low if the Markov chain misses a mode
of high probability density. This is especially undesirable when one wants
to compare the likelihood scores with those of other models. Moreover, the
estimates of the sampler may be sensitive to the shape of the distribution.

1.5.2 Evaluating Samples
Another branch of sampling methods aims to define an evaluation metric
that is a lower bound on the log likelihood (Breuleux et al., 2011; Bengio
and Yao, 2013). The idea is to use samples from the intractable model to con-
struct a density estimator. The evaluation metric is now the log likelihood
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this density estimator assigns to the test set. Estimates can be expected to
be relatively conservative if the sampling method is sub-optimal. A prop-
erty that is desirable when comparing intractable models with the true log
likelihood of a tractable baseline.

A commonly used non-parametric density estimation method for real-
valued data, is the Parzen window kernel density estimator with Gaussian
kernel. Let Y be a set of K samples {y1, . . . ,yK}, taken from the model of
interest. The density of some point x is now defined as

1
K

K∑
k=1
N (x|yk, σ2I), (1.26)

where N (·|yk, σ) is a Gaussian probability density function with mean yk
and variance σ2. This density estimator has the nice property that as the
number of samples goes to infinity, it converges to the true distribution
(in this case the distribution of the intractable model). The parameter σ
determines the so-called kernel width and needs to be determined with a
method like cross-validation.

In practice, this method suffers from large variance. In other words,
many samples are needed to obtain reliable estimates. This is unfortunate
because the evaluation of the kernel density estimator becomes more com-
putationally demanding as the number of samples grows. The fact that
the parameter σ needs to be determined using some validation set or cross-
validation is a nuisance as well.

Recently, an interesting variant of this approach was proposed in which
no kernel bandwidth parameter has to be determined and lower variance can
be expected. The method only works for models in which Gibbs sampling
provides samples of latent variables and for which the density over the visible
variables is tractable given that the latent variables are known. Say some
collection of latent variable samples {h1, . . . ,hK} has been obtained and
p(x|h) is easy to compute, the density estimator is now defined as

1
K

K∑
k=1

p(x|hk). (1.27)

This density estimator is also a more natural choice for discrete probability
distributions for which a Parzen density estimator doesn’t make sense. See
Bengio and Yao (2013) for a proof that the expected value of this estimator
is a lower bound on the true test log likelihood.

A nice property of evaluation metrics based on non-parametric density
estimators is that it is never required to compute the energy of the model.
This makes these methods particularly useful for models for which it is
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straightforward to obtain samples from both the latent and visible variables
using MCMC but not to compute the actual free energy of a sample.

A downside of these methods is still that many samples will be needed
to reduce the variance of the estimator and that this directly leads to a more
computationally demanding density estimator. In practice, this may lead
one to discard many of samples that are too similar. When MCMC is used,
this may mean that only samples are used that are far away from each other
in the chain. Recall that this is not an issue with an algorithm like AIS.

1.5.3 Qualitative Evaluation Methods
In addition to the evaluation methods described so far, it can be useful to
choose a modelling problem that makes a qualitative evaluation of the model
possible. This can be done by choosing a task that is visually interpretable
by nature or by choosing a task that is simple enough that certain values of
the parameters or the energy landscape can be visualized (i.e., can be shown
in three or fewer dimensions).

If, for example, one chooses to use easily recognizable image data like
handwritten digits, a visual representation of the parameters of a model
may be easier to interpret. This situation is most obvious when some of the
parameters are applied to the data in a way that can be seen as a comparison
operation. Figure 1.9a show 100 samples from the MNIST handwritten
digits database and Figure 1.9b shows some of the weight parameters of a
Restricted Boltzmann Machine that was trained on this dataset. While the
features don’t look like the data, they do appear to describe some of the
more common shapes of the images. Doing a visual feature inspection of
this kind is not as straightforward for features learned from audio data or
network traffic.

Another way to asses the quality of a model visually, is by using a simple
two dimensional data set so that the values of the model can be evaluated
over a coarse grid of x and y coordinates. Again, this allows the structure
learned by the model to be compared with the original data or the distribu-
tion the data was sampled from.

While qualitative assessments should not be used to draw strong conclu-
sions about the behavior of a model or training method, they can provide
insight into its weaknesses and strengths. When inference is difficult, one
can still see if a training method is able to find features that are varied and
somewhat similar to those found by more established methods. As with
downsized models however, it is important to keep in mind that results on
low dimensional data sets do not necessarily generalize to higher dimensions
at all.



(a) MNIST digits.

(b) Features from an RBM trained on MNIST.
Figure 1.9: Some data sets make a visual inspection of the
parameters of a model possible.
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1.6 Research Contributions

In this section I will outline the main research contributions of this disser-
tation. The goal of the research was to find new or better ways to make use
of complex statistical models for which normalization is not possible. The
contributions involve both new training methods for existing model archi-
tectures and the investigation of new architectures.

The first part of the thesis is about improved or new methods for training
generative models. Concerning stochastic methods for optimizing unnormal-
ized models, I showed that two tricks from the statistical physics literature
can be used to improve the training of restricted Boltzmann machines us-
ing parallel tempering. Subsequently, I showed how ideas from a couple
of different statistical estimators and training techniques can be combined
to construct a new estimator that displays potential as an alternative for
existing methods.

The second part is more about the design of new model structures to
solve problems inspired by methods for inference for generative models. I
showed that backpropagation of error gradients through the steps that are
normally taken to perform inference can be used to train various complex
neural networks to perform missing-value imputation in time series data. I
also showed that these models can be used to generate samples when they
are used as so-called Generative Stochastic Networks. Finally I showed that
a recurrent neural network architecture inspired by the way mean field in-
ference iterations are carried out can be used to perform speech denoising.
The systems I proposed outperformed previous neural network approaches
to the task in question and some of the most common denoising techniques.

1.7 List of Publications

Journal Publications
1. Philémon Brakel, Dirk Stroobandt and Benjamin Schrauwen. Train-

ing energy-based models for time-series imputation. Journal of Ma-
chine Learning Research, Vol. 14, pp. 2771-2797 (2013)

2. David Verstraeten, Benjamin Schrauwen, Sander Dieleman, Philémon
Brakel, Pieter Buteneers and Dejan Pecevski. Oger: modular learning
architectures for large-scale sequential processing. Journal of Machine
Learning Research, Vol. 13, pp. 2995-2998 (2012)
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Conference Publications
1. Philémon Brakel, Dirk Stroobandt and Benjamin Schrauwen. Bidi-

rectional Truncated Recurrent Neural Networks for Efficient Speech
Denoising. INTERSPEECH, (2013)

2. Philémon Brakel and Benjamin Schrauwen. Energy-based temporal
neural networks for imputing missing values. ICONIP, (2012)

3. Philémon Brakel, Sander Dieleman and Benjamin Schrauwen. Train-
ing Restricted Boltzmann Machines with multi-tempering: harnessing
parallelization. Proceedings of the 22nd international conference on
Artificial Neural Networks and Machine Learning (ICANN), (2012)

4. Sander Dieleman, Philémon Brakel and Benjamin Schrauwen. Audio-
based music classification with a pretrained convolutional network.
12th International Society for Music Information Retrieval Conference
(ISMIR-2011), (2011)

5. Philémon Brakel, Stefan Frank. Strong systematicity in sentence pro-
cessing by simple recurrent neural networks. CogSci, (2009)



2
Monte Carlo Methods for

Training RBMs

In this chapter I will discuss optimization methods for Restricted Boltzmann
Machines (RBMs) that are based on Monte Carlo methods. I will also de-
scribe some of my own research in this area and touch on some ideas for
future work. While the discussion focusses on RBMs, one should keep in
mind that most of the methods can be used for many other types of models
as well; RBMs just happen to be the model of choice in many publications
about stochastic optimization methods for unsupervised learning. To be
more specific, this chapter is about optimization methods in which sampling
methods are used to approximate the gradient of the normalization constant
of a model. This distinguishes the methods in this chapter from other types
of stochastic optimization like genetic algorithms, vanilla stochastic gradi-
ent descent and some of the methods that will be discussed in Chapter 3.
The main contribution is a more efficient sampling method for gradient es-
timation. This should potentially lead to higher quality models when other
sampling methods are not accurate enough.

2.1 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs; Hinton, 2002; Freund and Haussler,
1994) are bipartite graphs in which a layer of latent (hidden) variables is
connected to a layer of observed (visible) variables. As is shown in Figure 2.1,
there are no connections among the variables that are in the same layer. This
means that the hidden variables are independent when the visible variables
are observed and vice versa.

Being part of the family of undirected graphical models with latent vari-
ables, RBMs are typically trained in an unsupervised way to explain a certain
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h1 h2 h3 h4 h5 h6

x1 x2 x3 x4

Figure 2.1: Graphical model structure of a Restricted Boltz-
mann Machine. The bipartite structure makes the hidden vari-
ables (top) independent given that the visible variables (bottom)
have been observed and vice versa.

set of data samples as well as possible. Typically, this does not mean that
the RBM is used to provide actual likelihood values for tasks like model
comparison, but merely as an unsupervised feature extractor like PCA.

While RBMs have been around for more than a decade, they became
a popular subject of research after it was shown that they can be used to
find good initializations for supervised neural networks with multiple layers
of processing units known as Deep Belief Networks (DBNs; Hinton et al.,
2006). When it was shown that DBNs were successful at tasks including
handwritten character recognition (Hinton et al., 2006), speech recognition
(Dahl et al., 2012), information retrieval (Salakhutdinov and Hinton, 2009a),
3D object recognition (Nair and Hinton, 2009) and natural language pro-
cessing (Deselaers et al., 2009), RBMs gained even more popularity. Finally,
RBMs have also been used to perform some tasks directly without being part
of some bigger system. RBMs have for example been used to perform ma-
trix factorization for building recommender systems (Salakhutdinov et al.,
2007). They have also been trained discriminatively to perform classification
(Larochelle and Bengio, 2008).

The energy function that captures the structure of an RBM in which
both the visible variables x and the hidden variables h are binary, is given
by

E(x,h) = −
Nh∑
i=1

Nx∑
j=1

Wijhixj −
Nh∑
i=1

hiai −
Nx∑
j=1

xjbj , (2.1)

where Nh and Nx are the number of hidden and the number of visible vari-
ables, respectively. The symbols W , a and b denote trainable weight and
bias parameters. The likelihood of a configuration of the variables x and h
is now given by the following Gibbs distribution:

p(x,h) = e−E(x,h)∑
x′
∑

h′ e
−E(x′,h′) . (2.2)
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The hidden units can be summed out analytically to define the energy as a
function of the visible values only, often referred to as the free energy, given
by

E(x) = − ln
(∑

h

e−E(x,h)

)
, (2.3)

E(x) = − ln

 ∑
h1,...,hNh

e

∑Nh

i=1

∑Nx

j=1
hiWijxj+ai+xjbj

 , (2.4)

= − ln

 ∑
h1,...,hNh

Nh∏
i=1

e

∑Nx

j=1
hiWijxj+ai

− Nx∑
j=1

xjbj , (2.5)

= − ln

Nh∏
i=1

∑
hi∈{0,1}

e

∑Nx

j=1
hiWijxj+ai

− Nx∑
j=1

xjbj , (2.6)

= −
Nh∑
i=1

ln
(

1 + e

∑Nx

j=1
Wijxj+ai

)
−

Nx∑
j=1

xjbj . (2.7)

Due to the independence properties of the RBM model, it is possible to
compute the probabilities of the visible variables conditioned on the hidden
variables using

p(xj = 1|h) = e
∑Nh

i=1
hiWij+aihi

e
∑Nh

i=1
aihi + e

∑Nh

i=1
hiWij+aihi

, (2.8)

= e
∑Nh

i=1
hiWij

1 + e
∑Nh

i=1
hiWij

, (2.9)

= sigm
(
Nh∑
i=1

hiWij

)
, (2.10)

where sigm(·) is the logistic sigmoid function given by sigm(x) = (1 +
exp(−x))−1. Due to the independence of the variables, the conditional prob-
ability of the whole vector x is p(x|h) =

∏
j sigm(

∑
i wijhi + bi). Similarly,

the probability of the hidden variables given the visible variables is given by
p(h|x) =

∏
i sigm(

∑
j wijxj + aj).

Like any other energy-based model, when an RBM is trained to optimize
the likelihood of a certain data set, it will aim to assign low energy to values
of the visible variables that are similar to values it has seen before and high
energy to values that are very different. The hidden variables allow the RBM
to model correlations among the visible variables.
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An RBM is not inherently limited to binary variables. The conditional
distributions of the visible variables given the hidden variables and the hid-
den variables given the visible variables can be other univariate distributions
depending on the type of data one wants to model and the type of hidden
variables one expects to be most suitable for modelling the structure of the
data. Especially RBMs with Gaussian visible units and binary hidden units
have been the subject of research (Wang et al., 2012; Cho et al., 2011a).
Furthermore, it was found that RBMs with hidden units that approximate a
rectified linear mapping work better than binary units for modelling image
data (Nair and Hinton, 2010). There are also models that include second
order interactions between the visible units conditioned on the hidden units
as well like the mean covariance RBM (Ranzato and Hinton, 2010) and the
spike and slab RBM (Courville et al., 2011). Note that these are not RBMs
in the strict sense because they do not1 follow the required conditional in-
dependence properties of the visible and hidden units.

After they have been trained, RBMs can be used as feature extractors
by treating the expected value of p(h|x) as a mapping from the data points
to features that (hopefully) capture important structural properties. When
RBMs are used to initialize Deep Belief Networks, the encoded data is used
to train another RBM that tries to find regularities in the extracted features
themselves. This process can be repeated to obtain a set of parameters that
can be used to initialize a Deep Belief Network of many layers of hidden
units.

An energy function can be used to define a Gibbs probability distribution
of the form p(x; θ) =

∑
h e
−E(x,h;θ)/Z(θ), where θ = {W,a,b} and Z(θ)

is the partition function which is given by Z(θ) =
∑

h,x e
−E(x,h;θ). The

gradient of the logarithm of this likelihood function is given by

∂ln p(x; θ)
∂θ

= −
∑

h

p(h|x; θ)∂E(x,h; θ)
∂θ

+
∑
x,h

p(x,h; θ)∂E(x,h; θ)
∂θ

, (2.11)

where θ is an element in the set of parameters {W,a,b}. The first term
of this gradient can be evaluated analytically in RBMs but the second term
needs to be approximated. This second term is the gradient of the partition
function and will be referred to as the model expectation. When the hidden
units are summed out analytically to obtain the free energy, the likelihood

1The spike and slab RBM is actually a borderline case because the visible units
are independent when both the values of the spike variables and the slab variables
are known.
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gradient becomes

∂ln p(x; θ)
∂θ

= −∂E(x; θ)
∂θ

+
∑

x
p(x; θ)∂E(x; θ)

∂θ
. (2.12)

For a binary RBM, the gradient ∂E(x;θ)
∂θ can be computed using the following

identities:

∂E(x; θ)
∂W = −sigm(Wx + a)xT, (2.13)

∂E(x; θ)
∂a = −sigm(Wx + a), (2.14)

∂E(x; θ)
∂b = x. (2.15)

When h is known, it is also possible to compute the gradient of E(x,h; θ)
by replacing −sigm(Wx + a) with h in Equations 2.13 and 2.14.

2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are based on simulating a
Markov chain that has the desired distribution as its equilibrium distribu-
tion. This means that given an infinite number of steps in the Markov chain,
the samples obtained after each step of the chain will be distributed accord-
ing to some target distribution p(x), regardless of the starting location of
the chain. Many Markov chains with this property are defined as random
walks but more sophisticated methods exist as well (Berg and Billoire, 2004).
Intuitively one can think of most MCMC methods as a random walk that
spends more time in regions where the probability density is higher. The
samples can be used to approximate expectations of p(x).

One of the most important reasons for the popularity of MCMC methods
is that they are not as severely affected by the curse of dimensionality as
many other sampling methods. If the regions of higher density lie on some
narrow low dimensional manifold of the sample space, sampling these areas
with some global method is incredibly unlikely to happen. MCMC methods
on the other hand, are able to explore such a manifold by taking small steps
without wandering away from it too often. Intuitively, this is somewhat
comparable to playing the game battleship and trying locations near the
last hit as opposed to random guessing.

Because every step in a Markov chain depends on the previous step in the
chain, the samples obtained from an MCMC algorithm are not independent.
Two successive samples are likely to be highly correlated. For this reason,



42 2 Monte Carlo Methods for Training RBMs

it is often necessary to run the chain for many steps to obtain a sample
that is practically independent of the starting location of the chain. Another
problem with MCMC methods is that if the probability distribution contains
multiple modes that are separated from each other by regions of very low
probability density, it can take very long for a Markov chain to leave one
of the modes and visit another one. The efficiency at which MCMC chains
obtain independent samples and visit all important regions of the sample
space, is called the mixing rate of the Markov chain.

One MCMC method of which many other MCMC methods are spe-
cific cases, is the Metropolis-Hastings algorithm (Hastings, 1970), which is
a generalization of the original Metropolis algorithm. Let g(x 7→ x̂) be the
probability density function of the event that a Markov chain jumps from
some location x to a new location x̂. This density function defines a so-
called proposal distribution. The Metropolis-Hastings algorithm now starts
by taking a sample from this distribution. This new sample will be accepted
with a probability that is given by

paccept = min
(

1, p(x̂)g(x̂ 7→ x)
p(x)g(x 7→ x̂)

)
. (2.16)

If the example is accepted, the new location of the chain becomes x̂ and x̂
is added to the set of collected samples. If the sample is rejected, the chain
stays at location x and an extra observation of sample x is added to the set
of collected samples. Note that because the distribution p(·) appears in both
the denominator and numerator of Equation 2.16, its normalization constant
cancels so it only has to be proportional to the desired density function; this
makes the method applicable to unnormalized models like RBMs. The size
of the steps proposed by the proposal distribution plays a large role in the
behavior of the Metropolis-Hastings algorithm. If the steps are very small,
many of proposed samples will be accepted but the chain will also behave
very much like a random walk and stay in the same regions for a long time.
If the steps are very big, the chain has a bigger chance to move to some
distinct mode of the distribution but most of the samples will be rejected
so it will take very long to collect enough samples for computing reliable
expectations.

The acceptance criterion in Equation 2.16 ensures that the Markov chain
satisfies the detailed balance condition. Detailed balance is a sufficient condi-
tion to ensure that a Markov chain has p(x) as its equilibrium distribution.
When the proposal distribution is symmetric so that g(x̂ 7→ x) = g(x 7→ x̂),
its occurrences in the numerator and denominator cancel out and Equation
2.16 becomes the acceptance criterion of the Metropolis algorithm.

If the proposal distribution is defined as the distribution of a subset of
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the variables in x conditioned on the remaining variables, one obtains the
Gibbs sampling algorithm. In this case, the fraction in Equation 2.16 is
always equal to 1, so all samples will get accepted. This sampling method
of course requires that for every variable of x, we can obtain a sample given
that we know the values of the remaining variables. A nice property of the
Gibbs sampler is that one doesn’t need to be able to evaluate a function that
is proportional to the target density.

2.2.1 MCMC for Optimization

Now that it is clear how MCMC methods can be used to approximate ex-
pectations with respect to their equilibrium distribution, the next question
is how to combine those methods with optimization techniques. To an-
swer this question, it may be useful to have a look again at the gradi-
ent of one of the most common objectives in statistical estimation: the
log likelihood. The gradient of the log likelihood of a Gibbs distribution
p(x; θ) = exp(−E(x; θ))/

∫
exp(−E(x; θ)) dx, with respect to the parame-

ters θ, is given by

∇ ln p(x; θ) = Epmodel [∇E(x; θ)]− Epdata [∇E(x; θ)] . (2.17)

The stochastic approximation will need to estimate the first term, often
referred to as the model expectation. The second term is often called the data
expectation and can be computed using a sample average. Since the model
distribution and the expectations that depend on it are a function of the
parameters of the model, the model expectation should be re-estimated every
time the parameters are updated during training. Typically, the gradient
estimates will be used to do parameter updates using the stochastic gradient
descent method.

A naive algorithm for optimizing Equation 2.17 would first compute the
data expectation, run a sampling method (like MCMC) until enough samples
have been created to obtain a reliable estimate of the second expectation,
update the parameters using this gradient estimate and repeat the whole
procedure to obtain the next parameter update. This method is shown in
Algorithm 1 for the specific case that the Metropolis algorithm with spherical
Gaussian proposal distribution is used for sampling and gradient descent for
updating the parameters of the model. Obviously, this puts the sampling
procedure at the inner loop of the optimization algorithm. For most models
and sampling algorithms this method would be far too slow to be of any
practical use. However, it serves as the inspiration of many of the more
practical methods I will discuss below.



Algorithm 1 Naive stochastic optimization algorithm using gradient
descent and the Metropolis algorithm with spherical Gaussian pro-
posal distribution.

Define data set {x1, . . . ,xN} and model E(x; θ)
Initialize parameter vector θ0, learning rate λ
for l = 1 to L do
Initialize chain state variables x̂0
{Generate K samples}
for k = 1 to K do
Sample ŷ ∼ N (ŷ|x̂k−1, σ

2I)
Sample r ∼ Uniform(r|0, 1)
if r < exp(E(x̂k−1; θl−1)− E(ŷ; θl−1) then

x̂k ← ŷ
else

x̂k ← xk−1
end if

end for
{Update parameters}
θl = θl−1 + λ

(
1
K

∑K
k=1∇E(x̂k; θl−1)− 1

N

∑N
n=1∇E(xn; θl−1)

)
end for
return θL
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Contrastive Divergence

A simple stochastic method that has been shown to work quite well for
certain models is the Contrastive Divergence (CD; Hinton, 2002) algorithm.
During training, an MCMC sampler is initialized at a data point and run
for a just a couple of iterations. The data-based gradient is estimated using
small batches of data points. The last sample of the chain is used to replace
the intractable model expectation. In other words, CD training is a form of
stochastic gradient descent where the model expectation is estimated using
a Markov Chain that is only run for a small number of steps rather than
until a reasonably independent sample has been obtained. The algorithm
can be obtained from Algorithm 1 by setting the number of sampling steps
K to some low value like 5 and using only a single randomly chosen data
point xn to estimate the model expectation in the parameter update. It
is also important that x̂0 is initialized at a data point (typically the same
data point xn as used to compute the data expectation). Keep in mind that
the Metropolis algorithm is typically replaced with a Gibbs sampler or if
necessary the Hamiltonian Monte Carlo algorithm from Section 2.2.2. It is
also common practice to generate batches of samples in parallel and also use
batches of data points to estimate the data expectations but the benefit of
these alterations of the algorithm are very application specific. This strategy
assumes that many of the low energy configurations, that contribute most
to the model expectation, can be found near the data itself.

CD is easy to implement and computationally efficient but it has some
drawbacks. While it is likely that much of the probability mass is located
near the data, it is also very likely that there are many other valleys of low
energy that will not be reached by a Markov Chain that is only run for
a couple of steps. Furthermore, the algorithm does not optimize the true
maximum likelihood criterion and may even diverge (Fischer and Igel, 2010;
Sutskever and Tieleman, 2010). That said, there is an interesting connection
between single step CD and the pseudo-likelihood (Hyvärinen, 2007a).

Persistent Contrastive Divergence

In Persistent Contrastive Divergence learning (PCD; Tieleman, 2008), a
Markov chain is updated after every parameter update during training and
used to provide samples that approximate the model expectation. The dif-
ference with normal CD is that the chain is not reset at a data point after
every update, but keeps on running so it can find low energy regions that
are far away from the data. Given infinite training time and a learning rate
that goes to zero, this algorithm optimizes the true likelihood. The PCD
algorithm can be obtained from Algorithm 1 by removing the outer loop,
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placing the parameter update inside the sampling loop and again use only
a single data point for estimating the data expectation. This optimization
method is shown in Algorithm 2. For brevity, I replaced the Metropolis
sampling step with a more general MCMC transition distribution written as
pmcmc(x̂k|x̂k−1)

Algorithm 2 Persistent Contrastive Divergence with stochastic gra-
dient descent
Define data set {x1, . . . ,xN} and model E(x; θ)
Initialize parameter vector θ0, learning rate λ
Initialize chain state variables x̂0
for k = 1 to K do
{Generate K samples}
Sample xk uniformly from the data
Sample x̂k ∼ pmcmc(x̂k|x̂k−1)
θk = θk−1 + λ (E(x̂k; θk−1)−∇E(xk; θk−1))

end for
return θK

Typically, a far lower learning rate should be used for PCD than is
common for standard CD learning. This makes sense since the gradient is
based on the difference between the energy gradient at the data and the
sampled values. In the case of a persistent chain these gradients should be
expected to differ more than for samples obtained using CD.

2.2.2 Improving the Mixing Rate
In practice, training time is not infinite and it is important to consider the
behavior of the PCD algorithm after a finite amount of time. As training
progresses and the model parameters get larger, the energy landscape tends
to become more rough. This is a direct result of the shape of the empirical
data distribution we try to model. Ultimately, the empirical data distribu-
tion is a collection of point masses, a distribution in which many MCMC
methods wouldn’t work at all. This increased ‘roughness’ will decrease the
size of the steps the chain takes and increase the time that the chain gets
stuck in local modes of the distribution.

On the one hand, the parameter updates will improve the mixing rate
during training by increasing the energy of regions that are visited very often
by the Markov Chain. On the other hand, if the mixing becomes too slow,
the estimated likelihood gradient may become so different from the true
likelihood gradient that the training algorithm may fail to converge at all
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(Fischer and Igel, 2010).
A common method from the literature for improving mixing times is

over-relaxation (Neal, 1998b). The idea behind over-relaxation is to decor-
relate the individual variables because the step size of the Gibbs sampler will
be determined by the lowest value of the covariance of the variables. This is
done by doing a Gibbs update and subsequently correlating the new variable
value negatively with its previous value. Say a specific component xi of a
variable vector x would be updated using p(xi|x/i) which has a Gaussian
distribution with mean µi and variance σ2

i , the over-relaxed update for the
new x̂i would be

x̂i = µi + α(xi − µi) + σi(1− α2) 1
2 η, (2.18)

where η is a normally distributed variable with zero mean and unit variance.
The parameter α should be between -1 and 1 and its optimal value depends
on the specific problem. Intuitively, the method adds some memory about
the previous value of the variable to increase the consistency of a series of
steps. Unfortunately, over-relaxation can only be used if all the conditional
distributions that are used during Gibbs sampling have a Gaussian distribu-
tion; this is typically not the case for RBMs. The remainder of this section
will describe three more popular methods for improving the mixing rate of
MCMC methods applied to RBMs: fast weights, Hamiltonian Monte Carlo
and tempering.

Fast Weights

To obtain better mixing rates for the sampling chains in PCD, the Fast PCD
algorithm was proposed (Tieleman and Hinton, 2009). This algorithm uses
an additional set of parameters that are trained using a high learning rate
and using a very aggressive decay penalty that drives them to zero. The
idea behind this algorithm is to get the faster mixing that is caused by high
learning rates that cause the energy to rise in regions that are often reached
during sampling so one can move on to other modes of the distribution.

The data dependent expectation is still computed using only the actual
parameters of the model. However, the sampling updates and the model
dependent expectation are computed using the sum of the normal weights
and the fast weights. Due to the strong decay of the fast weights, they
should go to zero as the model parameters approach an optimum. While the
learning rate for the normal parameters is decreased during training like in
standard PCD training, the learning rate for the fast weight stays constant.
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Hamiltonian Monte Carlo

When the distribution to be modelled is continuous, it may also be possible to
use gradient information to obtain better mixing rates. A popular method
that uses this strategy is called Hamiltonian Monte Carlo (HMC; Duane
et al., 1987; Neal, 2011), sometimes also referred to as Hybrid Monte Carlo.
The HMC algorithm is especially useful when efficient Gibbs sampling is not
possible because it is often far more efficient than the standard Metropolis
algorithm.

HMC simulates a particle that moves over an energy surface according
to Hamiltonian dynamics. The Hamiltonian is a quantity that is defined as
the sum of the kinetic energy of the system and its potential energy. The
simulation keeps track of both the position of a particle and its momentum.
To simulate the dynamics for a probability distribution, the position cor-
responds to a location in the sample space and the potential energy is the
same as the energy of the model at that location (i.e., proportional to the
negative log density). The momentum variables are introduced artificially
as some vector p and the kinetic energy is defined as ‖p‖

2

2m where m is the
mass of the particle.

Intuitively, one can think of Hamiltonian dynamics as the simulation
of a frictionless puck sliding over a surface where the potential energy is
proportional to the hight of the surface. When the surface is flat, the puck
will move at a constant velocity. When the hight of the surface increases, the
puck will slow down until the kinetic energy becomes zero and it start sliding
back again. By using these dynamics to generate proposals for a Metropolis
sampler, the idea is that larger steps can be taken for which a decrease in
energy (or at least a similar level of energy can be expected) than would be
the case with a random walk.

Formally, Hamiltonian dynamics are defined by the following equations:

dp
dt

= −∂H
∂q , (2.19)

dq
dt

= ∂H
∂p , (2.20)

where q is the position2 of the particle. The Hamiltonian H is defined as
H(p,q) = U(q) + K(p), where U and K are the potential energy and the
kinetic energy respectively. Since we will use the potential energy given by
the model defined over x, the Hamiltonian will often be defined as H(p,x) =
E(x) + 1

2‖p‖
2.

2Normally the symbol x would be used for this variable but I chose to use
notation that is more consistent with other papers about Hamiltonian Monte Carlo.
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The continuous movement of the particle is approximated using a certain
number of discrete time “leap frog” steps in a way that is similar to gradient
descent with momentum. After this, the Hamiltonian at the start of the
simulation is compared with the Hamiltonian at the end to determine the
acceptance probability of the new location. Like in the Metropolis algorithm,
a rejection of the newly proposed location entails a duplication of the last
accepted sample. A precise description of the Hamiltonian Monte Carlo
algorithm is shown in Algorithm 3.

Algorithm 3 Hamiltonian Monte Carlo.
Initialize x̂0
for k = 1 to N do
Sample η ∼ N (η|0, I)
q0 ← x̂k−1
p0 ← η − 1

2ε∇E(x̂k−1)
{Perform K leap frog steps.}
for i = 1 to L do

qi ← qi−1 + εpi−1
pi ← pi−1 − ε∇E(qi)

end for
pL+1 ← pL + 1

2ε∇E(qL)
Hold = E(q0) + 1

2‖η‖
2

Hnew = E(qL) + 1
2‖pL+1‖2

Sample r ∼ Uniform(r|0, 1)
{Metropolis acceptance decision.}
if r < exp(Hold −Hnew) then

x̂k ← qL
else

x̂k ← x̂k−1
end if

end for
return {x̂0, · · · , x̂K}

One of the downsides of the HMC algorithm is that it can only be applied
to continuous sample spaces. Another weakness of the algorithm is that it
introduces two new hyper-parameters that need to be chosen: the step size
ε and the number of leapfrog steps to take L. It is common practice to
make the step size adaptive to achieve a certain desired acceptance rate.
This is especially important for trained models in which the optimal step
size can vary a lot during training. Finally, the HMC algorithm can be
computationally expensive if the gradient of the energy with respect to the



50 2 Monte Carlo Methods for Training RBMs

input variables is expensive to compute. This is why Gibbs sampling may
sometimes still be preferred over HMC. If however, Gibbs sampling is not
possible, the computational overhead caused by the gradient computations is
often still to be preferred over the slow random walk behavior of the standard
Metropolis algorithm. Examples of research in which HMC was used to train
energy models are the work about the mean covariance RBM (Ranzato and
Hinton, 2010) and energy models of multiple layers of nonlinear processing
units (Ngiam et al., 2011).

Tempering Methods

Another way to improve the mixing rate is Replica Exchange Monte Carlo
(Swendsen and Wang, 1986), also commonly referred to as Parallel Tem-
pering (PT), a member of the family of extended ensemble Monte Carlo
methods (Iba, 2001). Recently, PT has been applied to RBM training as
well (Desjardins et al., 2010b; Cho et al., 2010). This algorithm runs var-
ious Markov chains in parallel that sample from replicas of the system of
interest that operate under different temperatures. Chains that operate at
lower temperatures can escape from local modes by jumping to locations
of similar energy that have been proposed by chains that operate at higher
temperatures.

Another method, that is based on a similar principle, is to run one
Markov chain that occasionally is forced to transition through various tem-
peratures (Salakhutdinov, 2009). In other words, at certain time intervals,
Gibbs sampling is done while progressively increasing the temperature, sub-
sequently it decreases again to the original temperature and the new sample
is accepted using a criterion that takes the temperature changes into account.

One downside of PT for training energy-based models is that the num-
ber of parallel sampling chains that can be used by this algorithm is limited.
One can use many chains in PT to cover more temperatures. This will cause
more swaps between neighbouring chains to be accepted because they are
closer together. However, it will also take more sequential updates before
a certain replica moves back and forth between the lowest and the highest
temperatures. Another disadvantage of PT is that only the chain with the
lowest temperature is actually used to gather statistics for the learning al-
gorithm. The serial tempered transitions method doesn’t suffer from this
problem but using more temperatures will directly lead to longer simulation
times for this algorithm as well.
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2.3 Training Restricted Boltzmann Ma-
chines with Multi-Tempering

I will describe two methods for improving both the mixing rate of an MCMC
sampler and the quality of the gradient estimates at each sampling step.
These two methods are extensions for the PT algorithm and were originally
proposed for statistical physics simulations (Athènes and Calvo, 2008). The
first extension allows every possible pair of replicas to swap positions to
increase the number of sampling chains that can be used in parallel. The
second extension is to use a weighted average of the replicas that are sim-
ulated in parallel. The weights are chosen in a way that is consistent with
the exchange mechanism. The goal of my experiments was to see if these
methods from statistical physics can also be used to improve the training of
energy-based models like RBMs.

2.3.1 Parallel Tempering
The idea behind PT is to run several Markov chains in parallel and treat
this set of chains as one big ensemble chain that generates samples from a
distribution with augmented variables. Transition steps in this combined
chain can now also include possible exchanges among the sub chains. Let
X = {x1, · · · ,xM} be the state of a Markov chain that consists of the states
of M sub chains that operate under inverse temperatures {β1, · · · , βM},
where β1 = 1 and indicative of the model we want to compute expectations
for. The combined energy of this system is the weighted sum given by
E(X) =

∑M
i=1 βiE(xi).

The difference in total energy that results from switching two arbitrary
sub chains with indices i, j, is given by

E(X̂(i, j))− E(X) = (βi − βj)(E(xj)− E(xi)) , (2.21)

where X̂(·) denotes the new state of the combined chain that results from
the exchange indicated by its arguments3. If i and j are selected uniformly
and forced to be neighbours, the Metropolis-Hastings acceptance probability
is given by rij = exp(E(X) − E(X̂(i, j))). This is the acceptance criterion
that is used in standard Parallel Tempering.

In the case of a binary RBM, the conditional probabilities of x and h

3So X̂(i, j, k) would mean that i is first swapped with j and subsequently, the
sample at position j is swapped with the one at position k.
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depend on the inverse temperature in the following way:

p(x|h;βi) =
∏
r

sigm
(
βi

(∑
q

wqrhq + bq

))
, (2.22)

p(h|x;βi) =
∏
q

sigm
(
βi

(∑
r

wqrxr + ar

))
. (2.23)

In other words, running a Gibbs sampling chain at a certain inverse temper-
ature βi simply involves a multiplication of the connection weights and bias
parameters with that value. Note that this means that a chain is simulated
for the energy function βiE(x,h) and not βiE(x). Since for E(x) the energy
differences are not linear in the inverse temperatures anymore, they need to
be computed explicitly, a reason why the use of E(x,h) is more computa-
tionally efficient. Finally, note that when βi goes to zero, the distribution
defined by the RBM becomes uniform.

From Equation 2.21 it is clear that jumps from one chain to another are
more probable when the energy values of the models corresponding to the
two corresponding temperatures are similar. At the same time, most MCMC
algorithms are unlikely to travel far through regions where the energy is
very high if there is a region of lower energy nearby. This means that the
choice of the temperatures presents a trade-off: when the temperatures of
two chains are nearly identical, many jumps between the chains will occur
but the chance to visit additional modes has not increased much; vice versa,
when the temperatures are far apart, the chain with the highest temperature
will be more likely to visit additional modes but may never exchange this
information with the chain running at a lower temperature. A graphical
illustration of this effect is shown in Figure 2.2.

2.3.2 Multi-Tempering

To increase the number of parallel chains that PT can effectively use, I pro-
posed to use Multiple Replica Exchange methods for RBM training. These
methods have already been shown to work well in statistical physics (Brenner
et al., 2007; Athènes and Calvo, 2008). To prevent the use of very different
names for similar algorithms, I will refer to this method as Multi-Tempering
(MT).

In Multi-Tempering (Athènes and Calvo, 2008), an index i is selected
uniformly and an index j is selected with a probability that is based on the
difference in total energy the proposed exchange would cause (as given in
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Figure 2.2: Overlapping plots of two component mixtures of
Gaussians with different variance parameters. The plot illus-
trates that it is easier for a MCMC algorithm to visit both of
the modes when the variance (and for that reason also the tem-
perature) is higher. A particle has a higher chance to jump to
a different temperature if the log densities are similar so a jump
between the green and blue distributions is more likely than a
jump between the red and blue distributions.
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Equation 2.21):
p(j|i) = rij∑M

j′=1 rij′
. (2.24)

To ensure that the Markov chain is ergodic, the acceptance probability is
chosen such that the detailed balance criterion is satisfied. In this case, the
Metropolis-Hastings acceptance probability is given by

A(i, j) = min
{

1, p(i, j|X̂(i, j))p(X̂(i, j))
p(j, i|X̂)p(X̂)

}
(2.25)

= min
{

1,
∑
j′ e
−E(X̂(i,j′))e−E(X̂(i,j,i))p(X̂(i, j))∑
k e
−E(X̂(i,j,k))e−E(X̂(i,j))p(X̂)

}
(2.26)

= min
{

1,
∑
j′ e
−E(X̂(i,j′))e−E(X̂)e−E(X̂(i,j))∑

k e
−E(X̂(i,j,k))e−E(X̂(i,j))e−E(X̂)

}
(2.27)

= min
{

1,
∑
j′ e
−E(X̂(i,j′))∑

k e
−E(X̂(i,j,k))

}
. (2.28)

The chance of two particles to trade places is still dependent on the change
in energy this operation causes, but the selection procedure is now able to
identify ‘lucky shots’ of chains that are further away in the temperature
ranking as candidates for the exchange.

2.3.3 Using a Weighted Average of the Chains

While the Multi-Tempering algorithm has the potential to allow more of the
sampling particles to contribute to the approximation of the model gradient
indirectly, the way the different candidates for the exchange are selected
suggests that more information can be extracted from the computed samples
and their corresponding energy values.

Given the selection probabilities p(j|i) from Equation 2.24 and the accep-
tance probabilities A(i, j|X), one can compute a weighted average over the
particles of all the Markov chains to estimate the gradient of the intractable
likelihood term. This average is given by

〈g〉1 =
M∑
j=1

[(1−A (1, j)) g(x1) +A(1, j)g(xj)] p(j|1) , (2.29)

where g(·) is short for ∂E(·)
∂θ . This extension is originally called Information

Retrieval but this term might lead to confusion in a Machine Learning con-
text. I will refer to this version of the algorithm as Multi-Tempering with
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weighed averaging (MTw).

2.3.4 Experiments

Three experiments were done using the MNIST dataset. This dataset is a
collection of 70, 000 28× 28 grayscale images of handwritten digits that has
been split into a train set of 50000 images and test and validation sets of
each 10000 images. The pixel intensities were scaled between 0 and 1 and
interpreted as probabilities from which binary values were sampled whenever
a datapoint was required.

First, it was investigated how the MT and the PT algorithms behave for
different numbers of parallel chains by looking at the rate at which replicas
travel from the highest temperature chain to the one with the lowest tem-
perature. Ten RBMs with 500 hidden units were trained with PCD using a
linearly decaying learning rate with a starting value of .002 for 500 epochs.
Subsequently, both sampling methods were run for 10000 iterations and the
number of times that a replica was passed all the way from the highest to
the lowest temperature chain was counted. This experiment was done for
different numbers of parallel chains. The inverse temperatures were uni-
formly spaced between .8 and 1. In preliminary experiments, I found that
almost no returns from the highest to the lowest temperature occurred for
any algorithm for much larger intervals.

The second experiment was done to get some insight in the mixing rates
of the sampling methods and their success at approximating the gradient
of the partition function. A small tractable RBM with 15 hidden units was
trained on the MNIST dataset using the PCD algorithm. The different
sampling methods were now run for 20000 iterations while their estimates
of the gradient were compared with the true likelihood gradient which had
been computed analytically. Because the success of the samplers partially
depends on their random initialization, I repeated this experiment 10 times.

In the third experiment, to see how the different sampling algorithms
perform at actual maximum likelihood training itself, a method called an-
nealed importance sampling (AIS) (Neal, 1998a; Salakhutdinov and Murray,
2008) was used to estimate the likelihood of the data under the trained mod-
els. PCD, PT, MT, and MT with weighted averaging (MTw) were each used
to train 10 RBM models on the train data for 500 epochs. Each method used
100 chains in parallel. The inverse temperatures for the Tempering methods
were linearly spaced between .85 and 1, as expected, a slightly more conser-
vative temperature range would be needed to make PT competitive. I used
no weight decay and the order of magnitude of the starting learning rates
was determined using a validation set. The learning rate decreased linearly
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Figure 2.3: Number of returns for parallel tempering and mul-
tiple replica exchange as a function of the number of parallel
chains that are used.

after every epoch.

2.3.5 Results
Figure 2.3 displays the results of the first experiment. The number of returns
is a lot higher for MT at the start and seems to go down at a slightly slower
rate than for PT. This allows a larger number of chains to be used before
the number of returns becomes negligible.

As Figure 2.4 shows, the MT estimator was most successful at approx-
imating the gradient of the partition function of the RBM with 15 hidden
units. To my surprise, the MT estimator also performed better than the
MTw estimator. However, it seems that the algorithms that used a single
chain to compute the expectations (MT and PT), fluctuate more than the
ones that use averages (MTw and PCD).

Table 2.1 displays the AIS estimates of the likelihood for the MNIST test
set for each of the training methods. MTw outperforms all other methods

Table 2.1: Means and standard deviations of the AIS estimates
of the likelihood of the MNIST test set for different training
methods. Means are based on 10 experiments with different
random initializations.

Epochs MTw MT PT PCD

250 −82.25(10.33) −92.59(7.79) −93.48(11.54) −94.43(1.71)
500 −65.09(7.66) −83.74(6.76) −84.18(7.79) −80.45(11.36)
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Figure 2.4: Mean Square Error (MSE) between the approx-
imated and the true gradients of the partition function of an
RBM with 15 units as a function of the number of samples.

on this task. The standard deviations of the results are quite high and
MT, PT and PCD don’t seem to differ much in performance. The fact that
MT and PT use only a single chain to estimate the gradient seems to be
detrimental. This is not in line with the results for the gradient estimates for
the 15 unit RBM. It could be that larger RBMs benefit more from the higher
stability of gradient estimates that are based on averages than small RBMs.
The results suggest that PCD with averaged parallel chains is preferable to
Tempering algorithms that use only a single chain as estimate due to its
relative simplicity but that MTw is an interesting alternative. Note that
the results in Table 2.1 are better than in most other papers where RBMs
are trained on the MNIST dataset. While RBM training is sensitive to
certain hyper parameters like the learning rate and the weight initialization,
the most important reason for the high likelihood scores is that a 250K
weight updates is a big number compared to, for example, the 4700 updates
used in Cho et al. (2011b) or the 30K updates used in Schulz et al. (2010).
Unfortunately I cannot directly compare with the results of the original PCD
paper (Tieleman, 2008) because the training time in that work is reported
in seconds rather in epochs or number of weights updates.

During MT training, I also recorded the transition indices for further
inspection. There are clearly many exchanges that are quite large as can
be seen in Figure 2.5a, which shows a matrix in which each entry {i, j}
represents the number of times that a swap occurred between chains i and
j. While there seems to be a bottleneck that is difficult to cross, it is clear
that some particles still make it to the other side once in a while. In Figure
2.5b, one can see that occasionally some very large jumps occur that span
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(a) Matrix of exchange
frequencies cut off at 100.

(b) Binarized matrix of
exchanges.

Figure 2.5: Plot of inter chain replica exchanges for MT.

almost the entire temperature range.

2.4 Conclusion

I proposed two extensions to improve Parallel Tempering training for RBMs
and showed that the combination of the two methods leads to improved
performance on learning a generative model of the MNIST dataset. I also
showed that the MTw algorithm allows more chains to be used in parallel
and directly improves the gradient estimates for a small RBM. While the
weighted average didn’t seem to improve the rate at which the estimate of
the gradient improved, it seemed to stabilize training.

Another advantage of Multi-Tempering methods over standard PT is
that, given enough computational resources, one has to be less careful about
choosing the temperature values. Because more chains can be used, a finer
range of values can be chosen without sacrificing too much efficiency.

Limitations
A limitation of this work is obviously that I only evaluated the likelihood
scores using the AIS method, which is of course itself a stochastic estimation
procedure that suffers from weaknesses similar to those of MCMC methods.
While I tried to reduce the variance of the likelihood estimates by running
many AIS chains in parallel, one should keep in mind that the method may be
sensitive to the roughness of the energy landscapes of the estimated models.
If this is the case, it could be that the likelihood of a model with many very
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sharp modes is overestimated compared to a model that is more smooth.
At the moment, it is still difficult to beat the vanilla PCD algorithm

because it can use so many chains in parallel. It is also by far the most
computationally efficient method discussed because the other methods can
be seen as extensions of it. It remains to be seen if the improved mixing
rate of parallel tempering based methods will compensate for their higher
computational complexity.





3
Alternatives to Maximum

Likelihood Estimation

When maximum likelihood training is not tractable, it is possible to use
stochastic approximations or to avoid the training of a generative model al-
together but these are not the only solutions. This chapter delves deeper into
methods for training generative models with alternative objectives, objec-
tives that theoretically lead to similar or perhaps identical solutions as max-
imum likelihood learning but avoid the need for complex sampling schemes
like MCMC.

Recall that the goal of maximum likelihood learning is to make some
parametric density function equal to the distribution of a dataset. The con-
sistency of the maximum likelihood estimator is a very important property
because it guarantees that, as the number of available train samples in-
creases, the estimator converges in probability to the data distribution. Even
if an estimator is not efficient in that it achieves the Cramér-Rao bound (like
the maximum likelihood estimator does), or isn’t asymptotically normal, it
may still be a consistent estimator. In situations where maximum likelihood
learning is simply not possible without the use of elaborate approximation
schemes, estimators that are easier to compute and can promise at least
consistency, may be viable alternatives.

I will first discuss a couple of existing methods. These include quasi-
likelihood methods, score matching and noise contrastive estimation. After
that, I will shortly discuss recent work that relates many estimators to the
Bregman divergence. Finally, I will discuss and evaluate a new statistical
estimator that aims to combine some of the positive aspects of score matching
and noise contrastive estimation. The section about Bregman divergences
is basically a summary of the ideas introduced by Gutmann and Hirayama
(2011) that help to understand the motivation behind the new estimator.
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3.1 Quasi-Maximum Likelihood

An important class of estimators of this type are the so-called quasi-maximum
likelihood estimators (Wedderburn, 1974), a class of methods that includes
the pseudo likelihood (Besag, 1975) and the more general composite likelihood
(Lindsay, 1988). Given certain sufficient conditions, some quasi-maximum
likelihood estimators are both consistent and asymptotically normal, mak-
ing them interesting alternatives for maximum likelihood learning. Unfortu-
nately, this is not necessarily true for all types of models as pointed out in
Hyvärinen (2005).

As the name suggests, the composite likelihood objective is a composition
of objectives that only look at subsets of the sample space (often referred to
as events). Let x be a set of stochastic variables with indices S = {1, . . . , D}
and {A1, . . . , AK} and {B1, . . . , BK} be subsets of S, with corresponding
likelihood functions Lk(x; θ) ∝ p(xAk |xBk ; θ) and Ak ∩ Bk = ∅ for any k.
The symbol θ refers to the set of trainable model parameters. The composite
likelihood1 is now given by

CL(x; θ) =
K∏
k=1

Lk(x; θ)wk , (3.1)

where {w1, . . . , wK} are non-negative weights.
Composite likelihood objectives may differ in the precise way in which

the index subsets Ak and Bk and the corresponding weights wk are chosen.
If there is only a single subset A1 that contains all the indices, B1 = ∅,
and w1 = 1, Equation 3.1 is equal to the standard likelihood. Two com-
monly used versions of the composite likelihood are the composite marginal
likelihood where Bk = ∅ and the composite conditional likelihood for which
Bk = S\Ak. The pseudo likelihood is the special case in which all component
functions Lk(x; θ) are equal to conditional likelihoods in which each individ-
ual variable is conditioned on all the other variables on which it depends. In
other words, only one-dimensional distributions are considered.

While quasi likelihood estimators have some nice properties, there are
still many models for which they are impractical to use. Even in models as
simple as RBMs, the pseudo likelihood is already quite intensive to compute
because the hidden variables make the computation of the required con-
ditional distributions more involved. For this reason, they are often more
interesting to get more insight in other approximation methods. As discussed

1See Lindsay (1988) or Varin et al. (2011) for more detailed descriptions of the
composite likelihood and its properties.
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in Hyvärinen (2007a), there are interesting connections between the pseudo
likelihood, and methods like contrastive divergence and score matching.

3.2 Score Matching

The estimation method called Score Matching (Hyvärinen, 2005) is consis-
tent and in some cases easy to compute. The basic idea behind it is to train
a model to match the gradient of its log likelihood with respect to the input
variables ∇pmodel(x; θ) with the gradient of the data distribution ∇pdata(x).
Intuitively, normalization is not an issue when one trains a model to have
the same slope as the target density everywhere. When two unnormalized
density functions have the exact same shape, they will describe the same
density function after normalization. Because the gradient with respect to
the input variables is required, score matching can only be applied to mod-
els for continuous data. An extension of the algorithm to discrete data was
introduced under the name ‘ratio matching’ (Hyvärinen, 2007b).

Formally, score matching aims to minimize the mean squared error be-
tween the ‘scores’ of the model one wants to estimate and the data distribu-
tion. The score is a term used to refer to the gradient of the log likelihood
(or an unnormalized version of is) with respect to the input. This leads to
the following objective function:

J(θ) = 1
2

∫
pdata(x)

D∑
i=1

(
∂pmodel(x; θ)

∂xi
− ∂pdata(x)

∂xi

)2
dx, (3.2)

where θ is the set of trainable parameters of the model distribution function
pmodel. While the score doesn’t depend on the normalization constant, the
new problem is now to estimate the score of the data distribution. This
could possibly be done with a non-parametric method, but Hyvärinen (2005)
showed that partial differentiation can be used to arrive at an expression of
Equation 3.2 that does not require any approximation of this kind. The
objective that is used in practice is given by

J(θ) =
∫
pdata(x)

D∑
i=1

(
∂2pmodel(x; θ)

∂x2
i

+ 1
2

(
∂pmodel(x; θ)

∂xi

)2
)

dx. (3.3)

The practical usefulness of score matching varies. Since Equation 3.3
requires the computation of second and third order derivatives, not all types
of models may be suitable for score matching. For simple RBM-like models
however, score matching seems to perform quite well (Swersky et al., 2011).
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3.3 Noise Contrastive Estimation

Another approach to model estimation is called Noise Contrastive Estima-
tion (NCE; Gutmann and Hyvärinen, 2010). The idea behind NCE is to
turn density estimation into a classification problem. Given a chosen noise
process that meets certain demands, a classification function is trained to
discriminate between samples from the data distribution and the noise dis-
tribution. When unnormalized models are used, the normalization constant
can be cast as an additional trainable parameter.

The objective used in NCE is very similar to the maximum likelihood
objective of binary logistic regression and given for a single data sample xn
by

J(xn,yn, θ) = ln(h(xn; θ)) + ln(1− h(yn; θ)), (3.4)

where y is sampled from the chosen noise process and the function h(·; θ) is
defined as

h(u; θ) = sigm
(

ln
(
pmodel(u; θ)
pnoise(u)

))
, (3.5)

where sigm(·) is the standard logistic sigmoid function.
By inspecting Equations 3.4 and 3.5, one can see that the model will be

trained to assign higher likelihood values to the data than the noise distri-
bution does. Vice versa, it will also be trained to assign a lower likelihood
to noise samples than the noise distribution does. Gutmann and Hyvärinen
(2010) show that the estimator is consistent and that the model will learn the
data distribution, given that the noise process assigns a non zero probability
to all regions that are non zero in the data distribution.

NCE has a couple of nice properties that distinguish it from some other
estimation methods like score matching and contrastive divergence. First,
and like score matching, the method will eventually converge to the desired
estimate (unlike contrastive divergence). Second, no higher order derivatives
need to be computed like is necessary for score matching. This may allow
NCE to be used for training more complicated models. NCE has been shown
to be able to estimate models of natural images that consist of multiple layers
of representation.

A weakness of NCE is that it is not very clear how the noise generating
process should be chosen. While in the limit of infinitely many samples from
both the data distribution and the noise distribution, NCE should converge,
the number of samples that are required in practice probably depends on
the choice of noise distribution. Gutmann and Hyvärinen (2010) claim that
the noise distribution should ideally be as similar to the data distribution as
possible. Obviously, the noise distribution should also be easy to sample from
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and evaluate. For these reasons, Gutmann and Hyvärinen (2010) suggest the
use of simple distributions like for example, a Gaussian that has the same
mean and covariance as the data.

3.4 Bregman Divergences for Estimation

Some more insight into the estimation methods discussed so far was provided
by a paper in which both score matching and NCE were written as specific
cases of Bregman divergences (Gutmann and Hirayama, 2011). It turns out
that many new estimators can be designed by choosing different types of
Bregman divergences and, potentially, auxiliary noise distributions.

Bregman divergences (Bregman, 1967) are similar to metrics but with-
out necessarily satisfying the triangle inequality or symmetry. Common dis-
tance measures and divergences that can be written as a Bregman divergence
are the squared Euclidean distance and the generalized Kullback-Leibler di-
vergence. The relevance of Bregman divergences for statistical estimation
problems is that they can be used to define objective funtions for match-
ing probability distributions. The general Bregman divergence between two
vectors a and b is defined as

dΨ(a,b) = Ψ(a)−Ψ(b)−∇Ψ(b)T(a − b), (3.6)

where Ψ(·) is a differentiable function that is strictly convex. When Ψ(·) is
set equal to ‖·‖2, one obtains the squared Euclidean distance from Equation
3.6 in the following way:

d‖·‖2(a,b) = ‖a‖2 − ‖b‖2 − 2bT(a − b), (3.7)
= aTa − bTb− 2bTa + 2bTb, (3.8)
= (a − b)T(a − b), (3.9)
= ‖a − b‖2. (3.10)

Gutmann and Hirayama (2011) proposed to use the so-called separable
Bregman divergence (Grünwald and Dawid, 2004), to measure the divergence
between two vector valued functions f and g as

D(f ,g) =
∫
dΨ(f(x),g(x))µ(dx) =

∫
dΨ(f ,g) dµ, (3.11)

where µ is a nondecreasing weighting function (for all practical purposes a
cumulative probability mass function). Since probability density functions
are scalar functions, I will follow Gutmann and Hirayama (2011) in using
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a notation that splits the terms from the separable Bregman divergence
that depend on the target distribution and those that don’t in two separate
groups:

D(f, g) =
∫

(S0(g)− S1(g)f) dµ, (3.12)

S0(g) = −Ψ(g) + Ψ′(g)g, (3.13)
S1(g) = Ψ′(g). (3.14)

This last form was also proposed as a generalization of NCE in Pihlaja
et al. (2010). Noise contrastive estimation can be constructed by setting
Ψ(g) = g ln(g)−(1+g) ln(1+g) and setting µ to be the cumulative probability
mass function of the noise process. The function g should also be defined
as g(x; θ) = pmodel(x; θ)/pnoise(x) and similarly the target function f is
given by f(x) = pdata(x)/pnoise(x). I will often omit the dependence of the
function g on the parameters θ to avoid notational clutter and write the loss
L directly as a functional of g. The NCE criterion can now be obtained from
the negative Bregman divergence as follows:

S0(g) = ln(1 + g), (3.15)
S1(g) = ln(g)− ln(1 + g), (3.16)

−Dnce(f, g) = −
∫ (

S0(g(x))− S1(g(x)) pdata(x)
pnoise(x)

)
pnoise(x) dx, (3.17)

=
∫
S1(g(x))pdata(x) dx−

∫
S0(g(x))pnoise(x) dx, (3.18)

= Epdata(x)pnoise(y) [S1(g(x))− S0(g(y))] , (3.19)
= E [ln(g(x))− ln(1 + g(x))− ln(1 + g(y))] , (3.20)
= E [ln(sigm(ln(g(x)))) + ln(1− sigm(ln(g(y))))] , (3.21)

where the last step uses the identity sigm(ln(x)) = x/(1 + x).

Another interesting algorithm, that can be written as the minimization
of a separable Bregman divergence, is the Importance Sampling algorithm as
a method for estimating the partition function (Pihlaja et al., 2010). When
S0(g) = g and S1(g) = ln g or equivalently, when Ψ(g) = g ln g − g, we get
the following objective:

L(θ) =
∫
pmodel(x; θ)
pnoise(x) pnoise(x) dx−

∫
ln(pmodel(x; θ))pdata(x) dx, (3.22)

≈
K∑
k=1

pmodel(x̂k; θ)
pnoise(x̂k) −

N∑
n=1

ln(pmodel(xn; θ)), (3.23)
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where {x̂1, . . . , x̂K} are samples from the noise distribution. In this case,
there is no weighting function µ and the objective has been split in two
expectations: one with respect to the data distribution and one with respect
to the noise distribution. In practice, the objective in Equation 3.23 is very
unstable because of the division of densities and the curse of dimensionality.
Nonetheless, it may give some insight into the reasons why NCE may be
more successful.

3.5 Data Dependent Noise Contrastive
Estimation

While promising results have been obtained using NCE for applications in
both image and natural language processing (Gutmann and Hyvärinen, 2010,
2012; Mnih and Kavukcuoglu, 2013), it remains interesting to see how sensi-
tive the method is to the choice of the auxiliary noise distribution. Gutmann
and Hyvärinen (2010) show that the MSE of the NCE estimator (between
the parameters of the estimated distribution and the true distribution) is
twice the Cramér-Rao bound when the noise distribution is equal to the
data distribution. This does indeed indicate that more complicated noise
distributions than simple Gaussians or uniform densities may lead to better
results.

It would theoretically be possible to train a separate parametric model to
function as a noise model for NCE but this could lead to a noise model that
is not as convenient to evaluate and obtain samples from. Non-parametric
density estimators, like the Parzen Density Estimator (PDE), may provide a
better starting point because they are often easy to sample from even though
in general the computation of the likelihood scores of the estimators is costly.
A PDE has the nice property that it converges to the true distribution in the
limit of infinitely many samples (Parzen et al., 1962) (i.e., it is consistent).

The biggest limitation of non-parametric models for NCE-like training
algorithms is that they are very costly to evaluate. It would be far more
practical if it would only be required to sample from the non-parametric
distribution without the need to evaluate density values directly. The ideas
about Bregman divergences for estimating statistical models suggest some
approaches that may solve this problem.

Gutmann and Hirayama (2011) suggested a possible estimator in which
the noise distribution is conditioned on the data itself. They define the
noise distribution as pnoise(x) = αpdata(Bx + v) + (1 − α)pdata(x), where
α is from the interval [0, 1]. The matrix B is assumed to be orthonor-
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mal (for mathematical simplicity) and v is some random perturbation vec-
tor. The idea behind this noise distribution is that it is a mixture of
both the data distribution itself and its density for a perturbed version of
the data. The target function is given by f(x) = pdata(x)/pnoise(x) and
the weighting function µ is set equal to the cumulative distribution func-
tion of the noise distribution. The function to train is given by g(x) =
pmodel(x)/(αpmodel(Bx + v) + (1 − α)pmodel(x)). Finally, after combining
these definitions with the definition of the separable Bregman divergence for
scalar functions in Equation 3.12, the objective to optimize is given by

J(g) = Epdata(x)
[
αS0(g(BTx−BTv)) + (1− α)S0(g(x))− S1(g(x))

]
,

(3.24)
where the fact is used that z = BTx−BTv has the distribution pdata(Bx+v).
To my knowledge, the objective in Equation 3.24 has not been investigated
directly but was only used to show relations between the Bregman divergence
and algorithms like score matching and ratio matching.

To obtain a practical estimator that is based on NCE and a non-parametric
noise distribution I first simplified the objective in Equation 3.24 by set-
ting B = I and replacing the mixture noise distribution with pnoise(x) =
pdata(x + v). This corresponds to a specific version of the noise mixture
distribution in which α = 1. Naturally, the target and trainable functions
become f(x) = pdata(x)/pdata(x + v) and g(x) = pmodel(x)/pmodel(x + v),
respectively. The NCE definitions of S0 and S1 were used because of their
numerical robustness (many other functions suffer from multiplications with
exponential numbers):

S0(x) = ln(1 + x), (3.25)
S1(x) = ln(x)− ln(1 + x). (3.26)

By choosing µ to be the cumulative distribution function of the noise distri-
bution again and combining these definitions with Equation 3.12, one obtain
the following integral:

J(g,v) =
∫

(S0(g(x))− S1(g(x))f(x))pdata(x + v) dx, (3.27)

=
∫

(S0(g(x− v))− S1(g(x)))pdata(x) dx, (3.28)

= Epdata(x) [S0(g(x− v))− S1(g(x))] , (3.29)

= Epdata(x)

[
ln
(

1 + eg(x−v)
)
− ln (g(x)) + ln

(
1 + eg(x)

)]
. (3.30)

Note that the objective in Equation 3.27 is still defined as a function of the
perturbation vector v. Since the original motivation for the objective was
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to do NCE with a noise distribution in the form of a PDE, the vector v was
assumed to be a stochastic variable with a spherical Gaussian distribution.
To take this definition into account, the final objective was defined as the
expectation of Equation 3.27 with respect to v:

J(g) = Ev∼N (0,σ2I)

[
Epdata(x)

[
ln
(

1 + eg(x−v)
)
− ln(g(x)) + ln

(
1 + eg(x)

)]]
.

(3.31)
In practice, the expectation over the data distribution can be approximated
using the sample average. The expectation over the perturbation vector
can be approximated by generating samples from a Gaussian distribution.
To avoid overly long acronyms I will simply refer to this estimator as Data
Dependent Contrastive Estimator (DDCE).

3.5.1 Relation to Other Methods

Since the DDCE objective will be minimized when pmodel(x)
pmodel(x+v) = pdata(x)

pdata(x+v) ,
the method will only make pmodel proportional to the data distribution.
This makes the method somewhat similar to score matching. Likewise, if the
functions are perfectly proportional, they should define the same distribution
after normalization.

An important difference between the objective in Equation 3.31 and
standard NCE is that it is not necessary to evaluate the noise distribution
directly. It is only required that samples from the perturbation distribution
can be obtained efficiently. Another difference is that NCE also tries to learn
the partition function when it is added as an additional parameter. Finally,
the variance of the perturbation distribution has a similar role as the kernel
width of a PDE; it is a hyper-parameter that should ideally be tuned using
techniques like cross-validation.

Another estimation method that has some interesting similarities with
DDCE is the training procedure for Denoising Autoencoders (Vincent et al.,
2008). In a recent paper, it was shown that the act of training a neural
network with a single hidden layer to reconstruct its input after applying
Gaussian noise to it, is (under some circumstances) equivalent to a mini-
mization of the distance between the gradient of the energy function of the
model and the gradient of a PDE (Vincent, 2011). This is very similar to
score matching. The method doesn’t require an explicit evaluation of the
gradient of the PDE because this gradient can be approximated by sampling
from the PDE and averaging the local gradients. Unfortunately, this trick
cannot be used for NCE because NCE also needs the density of the noise
model, a quantity that cannot be approximated as easily as the gradient.
What makes this approach interesting, is that it should be possible to apply



70 3 Alternatives to Maximum Likelihood Estimation

it to other models than standard autoencoders. By sampling a data point,
adding noise to it, and minimizing the MSE between the gradients with
respect to the data point itself and the noisy version, this method should
work for any model for which the gradient of the energy with respect to the
input variables can be computed. DDCE has the advantage that it doesn’t
require the evaluation of energy gradients with respect to the input but it
does require the energy of the model itself to be evaluated. The denoising
autoencoder trick can also be used for model for which one can only compute
the gradient of the energy and not the energy itself.

Finally, the method has some of the characteristics of Contrastive Diver-
gence. Both methods use a corruption process to find locations near the data
to alter the shape of the energy function of the model locally. The methods
are also similar in that they only required evaluation of the energy gradient
with respect to the parameters and not evaluation of the energy itself or its
gradient with respect to the input variables. The applicability of Contrastive
Divergence depends on the possibility to perform Gibbs sampling efficiently.

3.5.2 Consistency of the Estimator

To investigate the consistency of the DDCE empirically, I did experiments
that were similar to those designed by Gutmann and Hyvärinen (2012) to
illustrate the consistency of NCE. The goal of the experiments was to learn
the parameters of a 5 dimensional zero-mean Gaussian distribution. The log
probability density function to train is defined as ln p(x) = − 1

2xTΛx + Z,
where Λ is a positive definite precision matrix and Z is the normalization
constant of the distribution given by − 1

2 ln |det Λ| − D
2 ln(2π). The model

to be trained was assumed to be unnormalized.
To evaluate the rate of convergence of the estimated parameters Λ̂ to the

true parameters Λ of the target model, 150 random target precision matrices
were created in the same way as described by Gutmann and Hyvärinen
(2012): For each precision matrix, a set of 5 eigenvalues {λ1, . . . , λ5} was
sampled uniformly from the interval [0.1, 0.9]. Subsequently, a set of random
eigenvectors E was created by sampling a random matrix M from a standard
normal distribution and projecting it onto the space of orthonormal matrices
using E = (MMT)− 1

2 M. The matrix defined by this set of eigenvalues
and eigenvectors was used as the target precision matrix to learn. Note
that it is by definition positive definite and symmetrical. The 150 precision
matrices were used to define multivariate distributions from which samples
were taken to generate data sets of various sizes. For comparison, the models
were trained using both the NCE and DDCE objectives. These objectives
were optimized with the BFGS algorithm. Finally, the results from the
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Figure 3.1: Line plots of the MSE between the parameters
provided by the estimators and the true parameters for various
sample sizes. The points in the graph represent the log of the
average of 150 experiments.

analytically available maximum likelihood estimator (simply the inverse of
the covariance matrix of the samples) were used for comparison as well. The
performance of the estimators was evaluated by measuring the MSE between
the estimated parameters and the true parameters of the model.

Figure 3.1 displays the logarithm of the averaged MSE values between
the true parameters and the DDCE, NCE and MLE predictions as a function
of the logarithm of number of available samples. As is clear from the graph,
the MSE scores go down linearly as a function of the number of data points;
this is indeed an indication that all the estimators are consistent. The MLE
prediction, being an efficient estimator, displays the lowest MSE, followed
by the DDCE and NCE predictions.

3.6 Learning Features for Image Patches
with DDCE

It has been affirmed that the DDCE method can provide consistent estimates
for a low dimensional toy example, the next step is to see if it can be applied
to real world data. To this end, a Product of Student-t distributions (PoT;
Welling et al., 2003) was trained to represent a data set of small natural
image patches (i.e., randomly selected squares of neighbouring pixels). The
goal of these preliminary experiments was simply to inspect the learned
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parameters of the models visually and not to make any claims about the
relative performance of the estimation methods involved.

3.6.1 Products of Student-t Distributions

I chose to use a Product of Student-t distributions because it is a rela-
tively simple energy-based model for images that I found to be relatively
robust to different settings of its hyper-parameters with standard CD train-
ing. PoT models and especially Fields of Experts (Roth and Black, 2005)
models (which are basically PoT models that employ 2D convolutions similar
to convolutional neural nets) have been applied to various image processing
tasks like denoising and inpainting. A reason for this may be that Student-t
distributions have fatter tails than Gaussians distributions. Besides the ro-
bustness against potential outliers, this may also aid optimization because
the gradient of the energy function is likely to have less extreme values.

A PoT model with K Student-t distributions has an energy function
given by

E(x) =
K∑
i=1

γi ln
(

1 + 1
2(wT

i x)2
)
, (3.32)

where wi and γi are trainable parameters and γ > 0. To enforce the positiv-
ity constraint on γ it will in practise be defined as γi = ezi such that zi will
be the actual trainable parameter. Note that the hidden units don’t appear
in the energy function because they have already been marginalized out.

The PoT can also be seen as a quadratic RBM in which the hidden
units are Gamma distributed conditioned on the visible units and the visible
units are Gaussian distributed given the hidden units. The energy for this
interpretation of the model is

E(x,h) =
K∑
i=1

hi

(
1 + 1

2(wT
i x)2

)
+ (1− γi) ln hi. (3.33)

Unlike an RBM however, the visible units are not independent conditioned
on the hidden units; the weights and hidden units define a covariance matrix
that allow second order interactions to be modelled directly (as opposed
to being implicitly available by summing over the hidden variables). The
distribution of the visible variables conditioned on the hidden variables is
defined as p(x|h) = N (x|0, (WTΛW)−1) where Λ is a diagonal matrix with
Λii = hi.
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3.6.2 Qualitative Evaluation
The data consisted of 200, 000 patches of 16× 16 pixels from the collection
of 4000 gray-scale images taken by Hans van Hateren (Hateren and Schaaf,
1998). The patches were represented as 256 dimensional vectors which were
reduced to 142 dimensions using PCA whitening. The data samples were
split in a set of 150, 000 samples used for training and a set of 50, 000 samples
for validation purposes.

PoT models were trained as density models of the image patches us-
ing different training methods. One model was trained using persistent
contrastive divergence implemented through Gibbs sampling. Because each
sampling step requires the inversion of a D ×D matrix this was done with
only a single Markov chain. Two other models were trained with NCE but
with either a standard normal distribution or a PDE as the noise distribu-
tion. The last model was trained using DDCE. All models had 400 hidden
units. Unlike previous work on PoT model, the weights of the models were
not constrained to have unit norm. The noise distributions for NCE had a
standard deviation or kernel width of 1. For DDCE a perturbation standard
deviation of 0.1 was used.

Gradient descent was used to optimize the parameters of the models
because of its computational efficiency for larger data sets and the ease with
which new samples from the noise distributions can be integrated in the
optimization scheme. Except for the model trained with PCD, all models
were trained for 300 iterations over the data set using batches of 50 data
points for each weight update. Learning rates were chosen such that the
measurable objectives decreased as much as possible on the validation set.
For PCD training, the choice of learning rate was simply based on monitoring
a visualization of the model weights during the early iterations. Because
PCD used single samples for each weight update it was only trained for 15
iterations over the dataset, resulting in more than twice as many weight
updates for the PCD algorithm compared to the other methods. All models
were trained with linearly decreasing learning rates. DDCE also seemed to
benefit somewhat from the addition of a momentum term. All these setting
were found in a rather ad hoc interactive way largely using prior intuitions
about the behavior of the optimization procedure and should not be expected
to be optimal for practical applications.

As both Figure 3.2 and Fig. 3.3 show, weights learned by the different
optimization methods look quite similar. This visual inspection suggests
that all of the algorithms could be viable alternatives to each other. The
only visible difference seems to be that the features learned by the NCE
algorithm with a Gaussian noise distribution look somewhat messier than
those of the other methods. The features seem to implement edge detectors



(a) NCE with Gaussian noise

(b) NCE with PDE noise
Figure 3.2: Visualizations of the connection weights of the
PoT models trained with NCE training using either a Gaussian
distribution or a PDE as the auxiliary noise distribution.



(a) PCD

(b) DDCE
Figure 3.3: Visualizations of the connection weights of the PoT
models trained with standard PCD training and those obtained
using DDCE.
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and high frequency detectors that look somewhat like Gabor filters.

3.7 Discussion

In this chapter, a new statistical estimator was introduced that combines
ideas from Noise Contrastive Estimation, Bregman divergence minimization
and non-parametric density estimators. Preliminary results indicate that the
estimator is consistent and is able to learn image features that look similar
to those obtained by more common optimization methods like Persistent
Contrastive Divergence.

The estimator is relatively efficient from a computational perspective
because no densities of noise distributions need to be computed and sampling
from a spherical Gaussian is relatively cheap as well. However, the method
does require the gradient of the energy of the model with respect to the
parameters to be computed three times. All in all, the estimator seems most
suitable for models for which Markov Chain Monte Carlo is impractical and
second order gradients are tricky to compute. This rules out PCD and score
matching, making NCE and the DDCE more viable alternatives.

An important weakness of the new estimator is its numerical behavior.
The BFGS method, that was used for the consistency experiment, failed to
find a good minimum of the objective when single precision floating point
numbers were used. This is unfortunate because the optimization of big
energy models often benefits from parallel processing units that are at this
moment far more optimized for single precision computations. The NCE
method seemed to suffer from this problem as well and of course it may have
been a problem inherent in the specific task of estimating the parameters
of a multivariate Gaussian using gradient methods. In general, I found that
it helped to train relatively long with a small value for the variance of the
corruption process to keep the gradients more stable. As more samples
become available, the required perturbation variance should be allowed to
become smaller, presumably making optimization easier.



4
Missing Value Imputation

with Temporal EBMs

This chapter is about energy-based models for time-series that are trained
directly to provide predictions for tasks that would typically be solved with
generative models. The bottom line is that when maximum likelihood is not
possible or highly impractical, it may be better to train models to provide
good predictions directly. This can be done by considering the inference
procedure that is used to be part of the model itself. The chapter focusses
on inference procedures based on gradient descent and mean-field iterations.
The proposed methods are used to estimate models that would be very
difficult to train with maximum likelihood learning. The models are applied
to missing value imputation tasks.

4.1 Optimizing Predictions

While the likelihood objective is defined in terms of the joint configuration
of the observed variables in a model, it is also possible to define objective
functions over values of variables after some form of inference has been per-
formed. This means that unlike in energy-based learning, an objective is
directly defined as a function of the predictions made by the model. In
other words, we don’t care about the likelihood a model assigns to a certain
state of the variables as long as inference in the model leads to the values we
want to see. While this is a normal state of affairs for discriminative models,
where, for example, the loss is defined as a function of the predictions made
by a classifier or a regression model, it may be less obvious that this principle
can be generalized to many energy-based models that are normally used in
a generative fashion.

Recall that inference in energy-based models is defined as the search for
the lowest value of a function and can be seen as an optimization problem
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of the form:
X̂(i,j)∈Ω ← arg min

X(i,j)∈Ω

E(X; θ). (4.1)

It is analogous to state that in a probabilistic model, one searches for the
configuration of variables with the highest likelihood with, for example, mes-
sage passing algorithms like the Viterbi algorithm.

Given some initial set of values Xn, and a subset of these indicated
by a set of indices Ω, we can define the optimization in Equation 4.1 as
a parameterized function F(X; θ) = X̂(i,j)∈Ω, where θ refers to the same
parameters as those that define the energy function of the model. Say we
want to minimize some loss objective that is defined as a function of the
values predicted by the optimization mapping L(F(X; θ)), the chain rule now
allows us to compute the gradient of this loss with respect to the parameters
as

∂L(F(X; θ))
∂θ

= dL(F(X; θ))
dF(X; θ)

∂F(X; θ)
∂θ

. (4.2)

The point is, that if the derivative of F can be computed with respect to θ,
it becomes possible to train the model to provide predictions that minimize
the loss L directly.

It is important to note that methods of this type train a model for one
specific task. While a very reliable generative model can be used for many
different tasks like classification, data generation, and denoising, a model
trained to optimize the outcome of an inference procedure for one specific
task cannot necessarily be used for other applications. However, in Section
4.7 I will discuss an interesting exception to this rule.

4.2 Truncated Inference

In some cases, one wants to solve the optimization problem in Equation 4.1
with respect to a large number of variables. When the variables of interest
are continuous, this optimization problem can be solved with gradient-based
optimization methods (among others). Unfortunately, it can take many
iterations to reach the nearest local minimum of the energy function. Since
this optimization problem needs to be solved to compute the gradient of the
loss function, it is within the inner loop of the training procedure and very
likely to be the computational bottleneck. For this reason, the computational
efficiency of the optimization algorithm is very important.

Since the model is trained to improve the quality of the answers that are
found by the energy minimization procedure, one may wonder how harmful
it is when this optimization is not entirely accurate. In fact, it has been
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shown that, in some cases, this is not much of a problem as long as the
limitations of the inference procedure are taken into account during training,
(Wainwright, 2006). This strategy was probably first proposed in Barbu
(2009) to perform very fast image denoising. More recently, similar strategies
have been applied to other tasks as well (Domke, 2012; Stoyanov et al., 2011).
I will refer to this strategy as truncated inference. A proper name for its use
in predictive modelling would be truncated empirical risk minimization, to
clarify the relation to the term used in Stoyanov et al. (2011) for training
models directly for prediction.

In truncated inference, the optimizer is not necessarily run until conver-
gence and a prediction is now given by

X̂(i,j)∈Ω ← opt-alg
X(i,j)∈Ω

E(X; θ). (4.3)

In other words, the operator F has been simplified. Provided that this oper-
ator is differentiable, we can use the chain rule to construct backpropagation
algorithms for it.

Keep in mind that this optimizer can take the form of message pass-
ing, gradient steps, coordinate descent and many other methods for energy
based models. To choose the most appropriate optimization algorithm, one
needs to consider both the limitations of the model and the properties of the
prediction task we try to solve.

4.3 Missing Value Imputation for Time-
Series

A common problem in statistical modelling, is that some measurements may
be missing. Missing values can for example occur due to noise, malfunction-
ing sensors or data loss. Time-series can also suffer from this problem, but
their temporal structure may be helpful for recovering missing values when
this temporal structure is modelled properly. However, this can be a very
challenging task when the time series of interest are generated by complex
non-linear processes.

Simple techniques like nearest neighbour interpolation treat the data
as independent and ignore temporal dependencies. Linear, polynomial and
spline-based interpolation techniques tend to fail when variables are missing
for extended periods of time. It appears that more complicated models are
needed to make good predictions about missing values in high dimensional
time-series.
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4.3.1 Previous Work on Imputation
Given a set of observed variables, one can try to define a function that returns
a set of predictions for the values that are missing. Models of this type be-
long to the discriminative family and are for example linear regression, sup-
port vector machines and multi-layer perceptrons (Bishop, 2006). Neural
networks are interesting candidates for time-series tasks because their con-
nection structure can be designed to capture prior beliefs about the temporal
dependencies. Examples of neural networks that are able to deal with tem-
poral sequences are Recurrent Neural Networks and one-dimensional Con-
volutional Neural Networks (Waibel et al., 1989). However, most models
of the discriminative type assume that the ordering of known and unknown
variables is fixed. It is not always clear how to use them if a variable that
was known for one data point has to be predicted for another and vice versa.

Nonetheless, there has been some work on training neural networks
for missing value recovery in a discriminative way. Nelwamondo et al.
(2007) trained autoencoder neural networks to impute missing values in non-
temporal data. They used genetic algorithms to insert missing values that
maximized the performance of the network. Unfortunately it is not straight-
forward to apply this method to high dimensional time-series as the required
models would be too large for genetic algorithms to remain computationally
feasible. Gupta and Lam (1996) trained neural networks for missing value
imputation by using some of the input dimensions as input and the remain-
ing ones as output. This requires many neural networks to be trained and
limits the available datapoints for each network to those without any missing
input dimensions. This method is especially difficult to apply to high dimen-
sional data with many missing dimensions. Convolutional neural networks
have been trained to restore images (Jain et al., 2007) in a supervised way
but in that work the task was not to impute missing values but to undo the
effects of a contaminating process in a way that is more similar to denoising.

4.3.2 Generative Models for Time-Series
Probabilistic graphical models (Koller and Friedman, 2009) have often been
used to model time-series. Examples of probabilistic graphical models for
time-series are Hidden Markov Models (HMM) and Linear Dynamical Sys-
tems. For simple tractable models like these, conditional probabilities can
be computed analytically. Unfortunately, these simple models have trouble
with the long range dependencies and nonlinear structures in many of the
more interesting datasets. HMMs have trouble modelling data that is the
result of multiple underlying processes because only a single hidden state
variable is used. The number of states that is required to model information
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about the past, grows exponentially as a function of the number of bits to
represent. More complicated directed graphical models often suffer from the
so-called explaining away phenomenon (Pearl, 1988).

Undirected graphical models (also known as Markov Random Fields)
have been used as well but tend to be intractable. An example of an in-
tractable model for high dimensional non-linear time series is the Condi-
tional Restricted Boltzmann Machines (CRBMs; Taylor et al., 2007), which
was used to reconstruct motion capture data.

There are some less conventional approaches to model nonlinear time
series in a generative way as well. A combination of the expectation maxi-
mization algorithm and the Extended Kalman Smoother can be used to train
certain classes of nonlinear dynamical systems (Ghahramani and Roweis,
1999). The difficulty with this approach is that fixed radial basis func-
tions need to be used for approximating the nonlinearities to keep the model
tractable. It is not clear how these would scale to higher dimensional state
spaces where radial basis functions become exponentially less effective.

Non-parametric models like the Gaussian Process Latent Variable Model
(Lawrence, 2004) have also been used to develop models for sequential tasks
like synthesizing and imputing human motion capture data. A continuation
of this work is the Gaussian Process Dynamical Model (Wang et al., 2008).
While models of this type tend to display nice generalization properties for
small datasets, their application to larger datasets is limited because of the
need to invert a great number of kernel matrices that grow cubicly with
the number of data points. There has been some work on improving the
computational efficiency of these models by introducing sparsity (Lawrence,
2007) but parametric graphical models tend to remain more practical for
larger datasets.

I argue, that while graphical models are a natural approach to time-series
modelling, training them probabilistically is not always the best strategy
when the goal is to use them for prediction tasks, especially, if the model is
intractable.

• By trying to model the whole joint distribution of a data set, a large
part of the flexibility of generative models is used to capture relation-
ships that might not be necessary for the task of interest. A model
might put too much effort into assigning low likelihoods to regions in
the sample space that are very different to the patterns of observed val-
ues that will be encountered during the imputation task. An energy
model with a deterministic inference method can make predictions
that are directly optimized for the task of interest itself.

• Since the normalization constant of many generative models is in-
tractable, inference needs to be done with methods like sampling or
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variational inference. Deterministic models circumvent this problem.

• Training is intractable as well for many generative graphical models
and algorithms that approximate maximum likelihood learning have
to be used.

There are some generative architectures that can handle sequential data
with non-linear dependencies. Certain types of Dynamical Factor Graphs
(Mirowski and LeCun, 2009) are still tractable when the energy function is
designed in such a way that the partition function remains constant. An-
other tractable non-linear dynamical system is based on a combination of
a recurrent neural network and the neural autoregressive distribution esti-
mator (Larochelle and Murray, 2011; Boulanger-Lewandowski et al., 2012).
Overall, however, discriminative energy-based models allow for a broader
class of possible models to be applied to missing value imputation while
maintaining tractability.

4.3.3 Training for Missing Value Imputation
I will mainly discuss the situation in which one wants to train a model on
a train set in which no values are missing but missing values are expected
to appear during test time. In this case, artificial missing values can be
created by defining some probability distribution that selects values that
will be considered absent during training. The ideal situation would be that
this distribution over missing value locations is identical to the one that
will be encountered during testing. This is not very likely to be the case
so one would hope that a good imputation method that uses artificially
selected missing values during training is robust to an inaccurate missing
value selection procedure. When we select a distribution for the locations of
the missing values, this distribution should represent our domain knowledge
but a good model should learn enough about the internal structure of the
data to not be fully reliant on the accuracy of this distribution.

The other possible situation is that there are also values in the train
data itself that are missing. In this case a model should know how to do
something sensible with the variables that represent these values and not
simply set them to some arbitrary value. The models I proposed can also
handle this problem but most of my research deals with ‘healthy’ train data
in which no values are missing.

Given a sequence Xn, represented as a matrix of data vectors {x1, · · · ,xT },
let Ω be the set of tuples of indices (i, j) that point to elements of data vec-
tors that have been labelled as missing. For real-valued data, a sound error
function to minimize is the sum of squared errors between the values we
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predicted X̂n and the actual values Xn:

L = 1
2
∑

(i,j)∈Ω

((Xn)ij − (X̂n)ij)2. (4.4)

Note that this loss function is only defined for a single data sequence.
Since Ω will be sampled from some distribution, the actual objective that is
minimized during training is the expectation of the sum squared error under
a distribution over the missing values as defined for Ndata sequences by

O = 1
2

Ndata∑
n=1

∑
Ω
P (Ω)

∑
(i,j)∈Ω

(
(Xn)ij − (X̂n)ij

)2
. (4.5)

All models will be trained to minimize this objective.
The selection of P (Ω) during training is task dependent and should re-

flect prior knowledge about the structure of the missing values. If it is known
that missing values occur over multiple adjacent time steps for example, this
can be reflected in the choice of P (Ω). For tasks that contain missing values
due to malfunctioning sensors or asynchronous sampling rates, this pattern
is likely to be present. I expect that a good choice of P (Ω) is important but
that the objective is robust to P (Ω) being somewhat imprecise.

4.4 Models for Imputation

The first model I propose is based on a convolution over the data that is cou-
pled to a set of hidden variables, as shown in Figure 4.1a. The second model
is shown in Figure 4.1b and is a recurrent neural network that is coupled to
a set of hidden variables as well. In both of these models, inference is done
with gradient descent. The third model is a Markov Random Field with
distributed hidden state representations for which the inference procedure
consists of mean-field iterations. This model is shown in Figure 4.1c.

The first two models I will describe have a tractable free energy function
E(X) and I chose to use gradient descent to optimize it. The third model
has no tractable free energy E(X) and I chose to use coordinate descent to
optimize a variational bound on the free energy instead.

4.4.1 The Convolutional Energy-Based Model

I will call the first model the Convolutional Energy-Based Model (CEBM).
The CEBM has an energy function that is defined as a one dimensional
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(a) Convolutional structure.

(b) Recurrent structure. (c) Undirected structure.
Figure 4.1: The three model structures that are used in this
paper. The wavy circles represent the hidden units, the circles
filled with dots the visible units and empty circles represent
deterministic functions. The time dimension runs from the left
to the right and each circle represents a layer of units.

convolution over a sequence of data combined with a quadratic term and is
given by

E(X,H) =
T∑
t=1

(
‖xt − bx‖2

2σ2 − hT
t gconv(X, t; W)− hT

t bh
)
, (4.6)

where bx is a vector with biases for the visible units and H is a set of binary
hidden units. The function gconv(·) is defined by

gconv(X, t; W) = W[xt−k ⊕ · · · ⊕ xt ⊕ · · · ⊕ xt+k], (4.7)

for k < t < T − k and equal to zero for all other values of t. The matrix W
contains trainable connection weights and the operator ⊕ signifies concate-
nation. The value k determines the number of time frames that each hidden
unit is a function of and σ is a parameter for the standard-deviation of the
visible variables which will be assumed to be 1 in all experiments. The set of
trainable parameters is given by θ = {W,bx,bh}. This model has the same
energy function as the convolutional RBM (Desjardins and Bengio, 2008;
Lee et al., 2009) and the main difference is the way training and inference
are done.

The motivation behind this energy function is similar to that of regular
RBM models. While correlations between the visible units are not directly
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parametrized, the hidden variables allow these correlations to be modelled
implicitly. When they are not observed, they introduce dependencies among
the visible units. The quadratic visual bias term serves a similar role to that
of the mean of a Gaussian distribution and prevents the exponential of the
negative energy function from being unbounded with respect to X.

To compute the free energy of a sequence X, one has to sum over all
possible values of H. Fortunately, because the hidden units are binary and
independent given the output of the function gconv(·), the total free energy
can efficiently be calculated analytically and is given by

E(X) =
T∑
t

‖xt − bx‖2
2σ2 −

∑
j

log
(

1 + exp
(
gconvj(X, t; W) + bh

)) .

(4.8)
The index j points to the jth hidden unit. See Freund and Haussler (1994)
for a derivation of the analytical sum over the hidden units in Equation 4.8.

The gradient of the free-energy function with respect to the function
value gconvj(X, t; W) is given by the negative sigmoid function:

∂E(X)
∂gconvj(X, t; W) = −

(
1 + exp

(
gconvj(X, t; W) + bh

))−1
. (4.9)

The chain rule can be used to calculate the derivatives with respect to the
input of the network. The derivative of the free energy with respect to the
input variables is defined as

∂E(X)
∂xt

= ∂E(X)
∂gconv(X, t; W)

∂gconv(X, t; W)
∂xt

+ xt − bx
σ2 . (4.10)

4.4.2 The Recurrent Energy-Based Model

The second model I proposed, is the Recurrent Energy-Based Model (REBM).
In this model, the energy is based on the dynamics that the data elicit in a
non-linear dynamical system. In this case the non-linear dynamical system
is instantiated as a Recurrent Neural Network (RNN).

RNNs are interesting models for time-series because they can process
sequences of arbitrary length. Unlike Hidden Markov Models, RNNs have
hidden states that are high dimensional distributed representations of the
previous input patterns.

The energy function of the REBM is again defined by Equation 4.6 but
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gconv is replaced by

grec(X, t; θRNN) = Art + Bxt
rt = tanh(Crt−1 + Dxt + br) 1 < t ≤ T,

where A, B, C and D are matrices with network connection parameters
and br is the bias vector of the recurrent state variables R. The total set
of trainable parameters for this model is given by θ = {bh,bx} ∪ θRNN with
θRNN = {A,B,C,D,br}.

In most situations, predictions by an RNN only depend on the previ-
ous input patterns. For the REBM however, the energy function depends
on the full input sequence. This allows predictions to be based on future
observations as well.

This model is similar to the Recurrent Temporal Restricted Boltzmann
Machine (Sutskever et al., 2008) but in the proposed model the units that
define the energy are in a separate layer and the visible variables are not in-
dependent given the hidden variables. It is also similar to the Recurrent Neu-
ral Network Restricted Boltzmann Machine (Boulanger-Lewandowski et al.,
2012) that will be used as a baseline in our experiments.

4.4.3 The Discriminative Temporal Boltzmann Ma-
chine

The third model is inspired by the work on Deep Boltzmann Machines
(Salakhutdinov and Hinton, 2009b) and variational inference. In this model,
the hidden units are connected over time in a way that is similar to an
undirected version of the factorial Hidden Markov Model (Ghahramani and
Jordan, 1997). Unlike the factorial Hidden Markov Model however, the
hidden variables are not just connected in temporal chains that would be
independent given the input (note that this statement is only true for undi-
rected graphs). In this model, every hidden unit at a certain time step t is
connected to every hidden unit at time t + 1 and time t − 1. This allows
the model to use distributed representations that are highly interconnected.
The hidden units are again binary and take values from {−1, 1}. The energy
of the model is defined by the following equation:

E(X,H) =
T∑
t=1

(
‖xt − bx‖2

2σ2 − hT
t−1Wht − hT

t Axt − hT
t bh

)
, (4.11)

where h0 is defined to be 0. Note that this energy function is very sim-
ilar to Equation 4.6, but the convolution has been replaced with a matrix
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multiplication and there is an additional term that parametrizes correlations
between hidden units at adjacent time steps. This model can also be seen as
a Deep Boltzmann Machine in which every layer is connected to a different
time step of the input sequence. Because this model has the structure of a
Boltzmann Machine time-series model and will be trained in a discriminative
way, I will refer to the model as the Discriminative Temporal Boltzmann Ma-
chine (DTBM). This model is very similar to the one proposed in Williams
and Hinton (1991) for discrete data but the way in which I trained it is very
different.

Inference in the DTBM

Since the hidden units of the DTBM are not independent from each other,
I was not able to use the free energy formulation from Equation 4.8. Even
when values of the visible units are all known, inference for the hidden units
is still intractable. For this reason, I used variational mean-field inference
to minimize the free energy. Compared to other approximate inference al-
gorithms like loopy belief propagation, variational mean-field is relatively
computationally efficient as the number of messages to compute is equal
to the number of variables rather than their pairwise interactions. In the
DTBM the number of pairwise interactions is very large compared to the
actual number of variables.

The mean-field approximation can be motivated with ideas from varia-
tional inference. In the variational inference framework, inference is cast as
an optimization problem (Wainwright and Jordan, 2008). Approximations
can now be constructed by relaxing the optimization problem in some way.
In the mean-field approach, the optimization is simplified by limiting the
set of functions that are used to approximate the function of interest. For
probabilistic models, this often means that a simple, tractable, distribution
is optimized to be as close as possible to the more complicated, intractable
distribution. This is done by optimizing a lower bound on the log likeli-
hood. Optimizing this bound is equivalent to minimization of the Kullback-
Leibler divergence between the approximating and target distributions. The
simplest way of selecting an approximating distribution, is by dropping all
dependencies between the variables. In other words, the approximating dis-
tribution takes the form of a product of one-dimensional distributions. This
is commonly referred to as naive mean-field.

In the original training procedure for the Deep Boltzmann Machine
(Salakhutdinov and Hinton, 2009b), the free energy is replaced by a vari-
ational lower-bound on the log likelihood. Given a set of known variables x



88 4 Missing Value Imputation with Temporal EBMs

and a set of unknown variables y, this bound can be written as

ln p(x) ≥
∑

y
q(y|x; u) ln p(x,y) +H(q), (4.12)

where q(·) is an approximating distribution with parameters u and H(·) is
the entropy functional.

If the approximating distribution is chosen to be a fully factorized Bernoulli
distribution of the form

q(H) =
T∏
t=1

Nh∏
j=1

q(hjt|ujt), (4.13)

q(hjt = 1|ujt) = 1
2(ujt + 1), (4.14)

q(hjt = −1|ujt) = 1
2(1− ujt), (4.15)

where Nh is the number of hidden units, a simple algorithm can be derived
that optimizes the set U ∈ (0, 1)Nh×T of variational parameters to maxi-
mize the variational bound. While the Deep Boltzmann Machine is origi-
nally trained by approximating the free energy component of the gradient
with the variational method and the term of the gradient that comes from
the partition function with sampling methods, I only used the variational
optimization as an inference algorithm.

Because the distribution will now also be defined over some of the visi-
ble units that have been labelled as missing, the variational distribution is
augmented with the appropriate number of one-dimensional Gaussian dis-
tributions of unit variance of the form q(v|û) = N (v|û, 1). The lower bound
now has the following form:

ln p(X\Ω) ≥ B(Ū) =
T∑
t=1

(
−
‖xt − bx‖2\Ω

2σ2 + uT
t−1Wut + uT

t bh

− ‖ût − bx‖2Ω
2σ2 +

∑
k,i∈Ω

Akiuktûit +
∑
k,i 6∈Ω

Akiuktvit

−
Nh∑
j=1

(
ujt + 1

2 ln ujt + 1
2 + 1− ujt

2 ln 1− ujt
2

))

+ 1
2Nû ln(2πeσ2)− lnZ(θ),

(4.16)
where Ω is the set of indices that point to the variables that have been
labelled as missing, Nû is the number of Gaussian variables to predict (i.e.,
the number of missing values) and Ū is the set of all mean field parameters
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U ∪ Û. Note that an upper bound on the free energy is now defined as

E(X\Ω) ≤ −B(Ū)− lnZ(θ) . (4.17)

Optimizing this bound will lead to values of the variational parameters that
approach a mode of the distribution in a similar way that a minimization
of the free energy by means of gradient descent will. Setting the gradient of
this bound with respect to the mean-field parameters to zero, leads to the
following update equations:

ut ← tanh(WTut+1 + Wut−1 + bh + Aût) (4.18)
ût ← bx + ATut . (4.19)

Note that only the variables û that correspond to missing values get updated.

Ideally, the variational parameters for the hidden units should be up-
dated in an alternating fashion. The odd units will be mutually indepen-
dent given the visible variables and the even hidden variables and vice versa.
Results about coordinate descent (Bertsekas, 1999) show that the algorithm
is guaranteed to converge to a local minimum of the free energy surface be-
cause every individual update achieves the unique minimum for that update
and the updates are linearly independent.

The model will be trained to make the variational inference updates more
efficient for imputation. The naive mean-field iterations will approach a local
mode of the distribution and the values of the parameters û can be directly
interpreted as predictions. Note that Salakhutdinov and Larochelle (2010)
proposed a method that hints in this direction by training a separate model
to initialize the mean-field algorithm as well as possible. Independently,
a variation of the same idea was proposed for training Deep Boltzmann
Machines using a composite likelihood criterion (Goodfellow et al., 2013).

4.5 Training the Models

To train the models above, it is necessary to compute the gradient of the loss
function with respect to the parameters. The loss gradients of both the mod-
els that use gradient descent inference can be computed in the same way: by
doing backpropagation through the gradient descent steps. Since the DTBM
uses mean-field iterations, its loss gradient is computed by backpropagating
loss gradients through these mean-field updates instead.
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4.5.1 Backpropagation Through Gradient De-
scent

To train the models that use gradient descent inference (i.e., the convolu-
tional and recurrent models), I backpropagated loss gradients through the
gradient descent steps like in Domke (2011). Given an input pattern and a
set of indices that point to the missing values, a prediction was first obtained
by doing K steps of gradient descent with step size λ on the free energy.
Subsequently, the gradient of the mean squared error loss L, as defined in
Equation 4.4 with respect to the parameters was computed by propagating
errors back through the gradient descent steps in holder variables X̄ and θ̄
that in the end contained the gradient of the error with respect to the input
variables and the parameters of the models (we use θ as a place holder for
both the biases and weights of the models). Note that this procedure is
similar to the backpropagation through time procedure for recurrent neural
networks. The gradient with respect to the parameters was used to train
the models with stochastic gradient descent. Hence, the models were trained
to improve the predictions that the optimization procedure came up with
directly.

Backpropagation is an application of the chain rule to propagate the error
gradient back to the parameters of interest by multiplication of a series of
derivatives. A single gradient descent inference step over the input variables
is given by

X̂k+1 ← X̂k − λ∇XE(X̂k; θ) . (4.20)

By application of the chain rule, the gradient of the loss with respect to the
parameters θ is given by

∂L

∂θ
=

K∑
k=1

∂L

∂X̂k

∂X̂k

∂θ
. (4.21)

Assuming a value of k that is smaller than K − 1 the gradient of the loss
with respect to one of the intermediate states of the variables X̂k is given by

∂L

∂X̂k
= ∂L

∂X̂K

∂X̂K

∂X̂K−1
· · · ∂X̂k+1

∂X̂k
. (4.22)

To propagate errors back one needs to know ∂X̂k+1/∂X̂k. Differentiating
Equation 4.20 with respect to X gives

∂X̂k+1

∂X̂k
= I− λ∂

2E(X̂k; θ)
∂X∂XT . (4.23)
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Similarly, to complete the computation in Equation 4.21, one also needs to
know ∂X̂k+1/∂θ to propagate the errors back to the model parameters. This
partial derivative is given by

∂X̂k+1

∂θ
= −λ∂

2E(X̂k; θ)
∂θ∂XT . (4.24)

Since gradients of gradients are used, one needs to compute second order
derivatives. Both of these second order derivatives are matrices that contain
a very large number of values but fortunately there are methods to compute
their product with an arbitrary vector efficiently. It is never required to
explicitly store these values.

One way to compute the product of the second order derivative with a
vector is by finite differences using

df
dyT x ≈ 1

2ε (f(y + εx)− f(y− εx)) . (4.25)

The error of this approximation is O(ε2). Another way to compute these val-
ues is by means of automated differentiation or the R operator (Pearlmutter,
1994). In software for automated differentiation like Theano (Bergstra et al.,
2010), the required products can be computed relatively efficiently by taking
the inner product of the gradient of the energy with respect to the input and
the vector to obtain a new cost value. The automated differentiation soft-
ware can now be used to differentiate this new function again with respect
to the input and the parameters.

I found that, even when applied recursively for three steps in single pre-
cision floating point arithmetic, the finite differences approximation was very
accurate. For the CEBM, the mean squared error between the finite differ-
ences based loss gradients and the exact gradients was of order 10−3, while
the variance of the gradients was of order 102. In preliminary experiments,
I didn’t see any effect of the approximation on the actual performance for
this model.

Since the finite difference approximation was generally faster than the
exact computation of the second order derivatives, I used it for most of the
required quantities. For the REBM I used finite differences with ε = 10−7

in double precision. For the CEBM I found that automatic differentiation
for the second order derivative with respect to the parameters was faster so
for this quantity I used this method instead of finite differences. The CEBM
computations were done on a Nvidia Geforce GPU card so I had to use single
precision with ε = 10−4.

See Algorithm 4 for more details about the backpropagation through
gradient descent procedure. In the algorithm I omitted the missing value



92 4 Missing Value Imputation with Temporal EBMs

1 1

2 3 3 2 11

3

Figure 4.2: Flow of information due to mean-field updates.
The numbers represent the separate iterations at which both
the hidden units and the unknown visible units are updated.

indicator indices Ω that determine which variables should be updated at
every iteration.

Algorithm 4 Compute the error gradient through gradient descent
Initialize X̂0

for k = 0 to K − 1 do
X̂k+1 ← X̂k − λ∇X̂E(X̂k; θ)

end for
X̄K ← ∇L(X̂K) = X̂K −X
θ̄ ← 0
for k = K − 1 to 0 do
θ̄ ← θ̄ − λ∂

2E(X̂k;θ)
∂θ∂XT X̄k+1

X̄k ← X̄k+1 − λ∂
2E(X̂k;θ)
∂X∂XT X̄k+1

end for
Return ∇θL = θ̄

4.5.2 Backpropagation Through Mean-Field
Computing error gradients for the mean-field based model is possible by
backpropagating errors through the mean-field updates. Intuitively, this
model can be seen as a bi-directional recurrent neural network with tied
weights. The derivatives of the update Equations 4.18 and 4.19 are easy to
compute using the derivatives of the hyperbolic tangent function and linear
operations:

∂ tanh(Wz)
∂z = WT(1− tanh(Wz)2) . (4.26)

However, to make it easy to experiment with the number of mean-field iter-
ations, I used automated differentiation for this.

While the number of gradient descent steps for the convolutional model
and the recurrent neural network model can be very low, the number of



4.6 Imputation Experiments 93

mean-field iterations has a more profound influence on the behavior of the
model. This is because the number of mean-field iterations directly de-
termines the amount of context information that is available to guide the
prediction of the missing values. If for example, five iterations of mean-field
are used, the activation in the hidden variables at a certain time frame ht
will be influenced by the five frames of visible variables to the left and right
of it and by the known values of xt; every vector of hidden units now de-
pends on eleven frames of visible units. So a greater number of mean-field
iterations increases the range of the dependencies the model can capture.
This flow of information is displayed for three iterations in Figure 4.2.

Using backpropagation through variational optimization updates is re-
ferred to as variational mode learning (Tappen, 2007). In Tappen (2007),
Fields of Experts were trained by backpropagating loss function gradients
through variational updates that minimized a quadratic upper bound of the
loss function. This specific approach would not work for the type of model
I defined here.

4.6 Imputation Experiments

I did experiments on three datasets. The first dataset consisted of concate-
nated handwritten digits, the second dataset contained marker positions
from motion capture recordings and the third dataset sensor readings from
a mobile robot. The last experiment also investigated the robustness of the
models when there were not only missing values in the test set but also in the
train data. To compare my approach with generative methods, I also trained
a Convolutional RBM with the same energy function as the Convolutional
Energy-Based Model for all these datasets. Between these two models, the
training method is the only thing that makes them different. Furthermore,
I also trained a Recurrent Neural Network Restricted Boltzmann Machine
(RNN-RBM; Boulanger-Lewandowski et al., 2012). This model is quite sim-
ilar to the REBM as it also employs separate sets of deterministic recurrent
units and stochastic hidden units. The structure of the RNN-RBM is the
same as the architecture in Figure 4.1b but the hidden units are connected
to the next time step instead of the current one and those connections are
undirected. This makes it possible to use Contrastive Divergence learning
but also renders the model unable to incorporate future information during
inference because the information from the recurrent units is considered to
be fixed. Training a recurrent model that incorporates this kind of infor-
mation with Contrastive Divergence would require something like Hybrid
Monte Carlo (Duane et al., 1987). Unfortunately, Hybrid Monte Carlo re-
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quires careful tuning of the number and size of leap frog steps and is known
to be less efficient than block Gibbs sampling.

For the Energy-Based models I used the same inference procedure as
during training. For the Convolutional RBM and RNN-RBM I used mean-
field iterations that were run until the MSE changed less than a threshold
of 10−5. For the RNN-RBM this was done by initializing the missing values
of a single time step with the values of the corresponding dimensions at the
previous time-step, running mean-field to update them, passing these new
values through the recurrent neural network and repeating this procedure
for all remaining time-steps. This procedure proved to be more accurate
than Gibbs sampling which was originally used to generate sequences with
this model (Boulanger-Lewandowski et al., 2012).

4.6.1 Concatenated Handwritten Digits
To provide a qualitative assessment of the reconstruction abilities of the
models, I used the USPS handwritten digits data set (http://www.cs.nyu.
edu/~roweis/data/usps_all.mat). While the task we trained the models
for is of little practical use, visual inspection of the reconstructions allows
for an evaluation of the results that may be more insightful than just the
mean squared error with respect to the ground truth.

Data

The USPS digits data set contains 8-bit grayscale 28 × 28 pixel images of
the numbers ‘0’ through ‘9’. Each class has 1100 examples. To turn the data
into a time-series task, I randomly permuted the order of the digits and
concatenated them horizontally. This sequence of 28 dimensional vectors
was split into a train set, a validation set and a test set that consisted of
respectively 80% and two times 10% of the data.

Training

Good settings of the hyper-parameters of the models were found with a
random search1 over 500 points in the parameter space, followed by some
manual fine-tuning to find the settings that led to minimal error on the
validation set. After this, the models were trained again on both the train
and the validation data with these settings. Since the CEBM, DTBM and

1The set of hyper-parameters included the variances of the Gaussian distribu-
tions from which initial weight matrices were sampled, initial learning rates. The
numbers of units in each layer were searched over in multiples of 50 up till 300
units.

http://www.cs.nyu.edu/~roweis/data/usps_all.mat
http://www.cs.nyu.edu/~roweis/data/usps_all.mat
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Table 4.1: Parameter settings for training the models on the
USPS data. The learning rates were always divided by the
lengths of the sequences during training.

Inference iterations Learning rate Hidden units

CEBM 3 0.005 300
REBM 5 0.001 50
DTBM 15 0.0005 500
Conv. RBM N/A 0.0005 300
RNN-RBM N/A 1.8 100

Convolutional RBM are very parallel in nature, I used a GPU for their sim-
ulations. All models were trained for 100, 000 epochs on randomly selected
mini batches of 100 frames. Linearly decaying learning rates were used. Ta-
ble 4.1 shows the settings of the hyper-parameters. After some preliminary
experimentation I found that I got better results for the CEBM by initial-
izing the biases of the hidden units at -2 to promote sparsity. I used a step
size of .03 for the gradient descent inference algorithm of the CEBM. The
REBM had 200 recurrent units and I used a step size of .2 for the gradient
descent inference. The CEBM and the Convolutional RBM had a window
size of 7 time frames. The RNN-RBM had 200 recurrent units. Note that
the best RNN-RBMs also had more hidden units than the best performing
REBMs.

The Convolutional RBM was trained with the Contrastive Divergence
algorithm (CD; Hinton, 2002). I found that I got better results with this
model if I increased the number of CD sampling steps over time. Initially a
single CD step was used. After 20, 000 iterations this number was increased
to 5, after 50, 000 to 10 and after 75, 000 to 20. I did not find any benefits
from stimulating sparsity in this model. For the RNN-RBM I found that a
fixed number of 5 CD sampling steps gave the best results.

Missing values were generated as 20 square shaped gaps in every data
sequence. The gaps were positioned at uniformly sampled locations. The
size of each square was uniformly sampled from the set {1, 2, . . . , 8}. Figure
4.3a shows an example of missing values that were generated this way for six
sequences. Figure 4.3c shows an example of data that has been corrupted
by this pattern of missing values.

For this experiment, the Energy-Based Models that required missing
values during training were provided with missing values from the same dis-
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Table 4.2: Means and standard deviations of the results in
mean squared error on the USPS data.

Train Test

CEBM 0.48(0.0082) 0.49(0.0089)
REBM 0.47(0.01) 0.48(0.0067)
DTBM 0.44(0.011) 0.45(0.0088)

Conv. RBM 0.66(0.011) 0.66(0.0085)
RNN-RBM 0.71(0.0056) 0.73(0.0062)

tribution that was used during training. To control for the random initial-
ization of the parameters and the randomness induced by stochastic gradient
descent, I repeated every experiment 10 times.

Results

Quantitatively, the DTBM achieved the best performance as can be seen in
Table 4.2. The CEBM and REBM performed on a similar level, while the
Convolutional RBM and the RNN-RBM performed far worse. Figure 4.4
shows how the models reconstructed six damaged sequences from the test
data. The reconstructions by the Convolutional RBM in Figure 4.4d seem
to be of a lower quality than those from the other models and look more
blurry. This is consistent with the MSE scores. However, just looking at
the MSE scores does not seem to give the full picture as the reconstructions
of the CEBM look more smeared out and blurry than those of the REBM
even though the MSE scores of these models are similar. The DTBM pro-
vided reconstructions that look similar in quality to those of the REBM.
The RNN-RBM has a very bad MSE score while its reconstructions look
very sharp when they are correct. Somehow, this model seems to be too
sure in cases where it is not able to fill in the data well. This may be due
to the fact that the reconstructions are generated on a frame-by frame ba-
sis while the deterministic models and the Convolutional RBM can update
their predictions from previous iterations. This causes bad predictions to be
propagated and possibly amplified. Unfortunately this problem is intrinsic
to the choice to keep sampling tractable by treating the recurrent mapping
as fixed context information.



(a) Mask (b) Original data

(c) Corrupted data
Figure 4.3: A visual depiction of the handwriting imputation
task.



(a) CEBM

(b) REBM (c) DTBM

(d) Conv. RBM (e) RNN-RBM
Figure 4.4: Visual representations of the reconstruction of six
sequences of handwritten digits. The reconstructions are pro-
duced by the CEBM, the REBM, the DTBM, the Convolutional
RBM and the RNN-RBM.
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4.6.2 Motion Capture
For the second experiment I applied the models to a motion capture dataset.
In visual motion capture, a camera records movements of a person wearing a
special suit with bright markers attached to it. These markers are later used
to link the movements to a skeleton model. Missing values can occur due to
lightning effects or occlusion. Motion capture data is high dimensional and
generated by a non-linear process. This makes motion capture reconstruction
an interesting task for evaluating more complex models for missing value
imputation.

In previous work (Taylor et al., 2007), a Conditional Restricted Boltz-
mann Machine (CRBM) was trained to impute missing values in motion
capture as well. For comparison I also trained a CRBM but note that a
direct comparison of performance is not fair because the CRBM only uses
information from a fixed number of previous frames to make predictions.

Data

The data consisted of three motion capture recordings from 17 marker po-
sitions represented as three 49-dimensional sequences of joint angles. The
data was down sampled to 30Hz and the sequences consisted of 3128, 438,
and 260 frames. The first sequence was used for training, the second for val-
idation and the third for testing. The sequences were derived from a subject
who was walking and turning and come from the MIT dataset provided by
Eugene Hsu.2 The data was preprocessed by Graham Taylor (Taylor et al.,
2007) using parts of Neil Lawrence’s Motion Capture Toolbox.

Training

Again, good settings of the hyper-parameters of the models were found with
a random search on the parameter space, followed by some manual fine-
tuning to find the settings that led to minimal error on the validation set.
The models were trained on mini batches of 140 frames. Table 4.3 shows the
hyper-parameter settings of the models. Note that the best RNN-RBMs had
again more hidden units than the best REBMs. Additionally, the inference
step sizes of the CEBM and the REBM were both set to .2. The CEBM
and the Convolutional RBM had a window size of 15 time frames. All
models were trained for 50, 000 iterations. The REBM had 200 recurrent
units. To train the Convolutional RBM, single iteration CD training was
used during the first 10, 000 epochs. Five iterations of CD were used during
the remaining training epochs. The CRBM was trained with single iteration

2http://people.csail.mit.edu/ehsu/work/sig05stf/

http://people.csail.mit.edu/ehsu/work/sig05stf/
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Table 4.3: Parameter settings for training the models on the
motion capture data.

Inference iterations Learning rate Hidden units

CEBM 3 0.5 200
REBM 5 0.001 50
DTBM 10 0.002 200
CRBM N/A 0.0001 200
Conv. RBM N/A 0.001 200
RNN-RBM N/A 2.14 100

CD. Finally, the RNN-RBM had 200 recurrent units and was trained with 5
CD iterations. All models were trained for a total of 50, 000 epochs.

The CEBM, REBM and DTBM were again trained by labeling random
sets of dimensions as missing. The number of missing dimensions was sam-
pled uniformly. The specific dimensions were then randomly selected without
replacement. The duration of the data loss was sampled uniformly between
60 and 125 frames. This adds some bias towards situations in which the
same dimensions are missing for a certain duration. This seems to be a sen-
sible assumption in the case of motion capture data and it is an advantage
of the training method that it is possible to add this kind of information. To
control for the influence of the randomly initialization of the parameters, I
repeated every experiment 10 times.

Finally, Nearest Neighbour interpolation was performed by selecting the
frame from the train set with minimal Euclidean distance to the test frame
according to the observed dimensions. The distances were computed in the
normalized joint angle space.

Evaluation

To evaluate the models, a set of dimensions was removed from the test data
for a duration of 120 frames (4 seconds). This was done for either the markers
of the left leg or the markers of the whole upper body (everything above the
hip). Because the offset of this gap was chosen randomly and because the
CRBM had a stochastic inference procedure, this process was repeated 500
times to obtain average mean squared error values for both the train and the
test data. Note that this distribution of missing values was quite different
from the one that was used during training.
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Table 4.4: Means and standard deviations of the results in
mean squared error on the motion capture data.

Left leg Upper body

Train Test Train Test

CEBM 0.18(0.0036) 0.29(0.011) 0.47(0.023) 0.46(0.017)
REBM 0.22(0.0047) 0.33(0.017) 0.47(0.014) 0.42(0.014)
DTBM 0.17(0.0069) 0.28(0.017) 0.43(0.021) 0.45(0.011)

CRBM 0.25(0.0036) 0.44(0.014) 0.51(0.023) 0.49(0.0065)
Conv. RBM 0.16(0.0038) 0.36(0.027) 0.48(0.015) 0.68(0.035)
RNN-RBM 0.18(0.0055) 0.36(0.023) 0.45(0.017) 0.60(0.055)
Nearest neighb. N/A 0.45 N/A 0.76

The CRBM was used in a generative way by conditioning it on the
samples it generated at the previous time steps while clamping the observed
values and only sampling those that were missing as was done in Taylor et al.
(2007). Preliminary results showed that this led to similar results to the use
of mean-field or minimization of the model’s free energy to do inference.

Results

Table 4.4 shows the mean squared error between the reconstructed dimen-
sions of the data and their actual values. The convolutional and recurrent
models clearly outperform the CRBM and nearest neighbour interpolation
on the reconstruction of the left leg. The CEBM and the DTBM have the
best performance but a comparison of the train and test error scores suggests
that the REBM might display better generalization properties. The CRBM
seems to suffer most from overfitting. The results of the Convolutional RBM
are only slightly worse than the CEBM and better than those of the REBM
for the reconstruction of the left leg, but far worse for the upper body where a
greater number of variables were missing. The RNN-RBM performed similar
to the Convolutional RBM when reconstructing the markers of the missing
leg. It performed slightly better at reconstructing the missing upper body
than the Convolutional RBM but still a lot worse than the three determin-
istic models. Figure 4.5 shows plots of the predictions made by the DTBM
for two of the markers for a sequence from the test data.
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Figure 4.5: Plots of two dimensions reconstructed by the
DTBM next to the actual data. For this sequence the markers
of the left leg were missing in the region between the vertical
striped lines.

4.6.3 Missing Training Data
So far, all experiments were done by training on data without actual missing
values; values were only truly unknown during testing. In practice, a useful
model for missing value imputation should also be able to deal with actual
missing values in the train set. For generative models, missing values in
the train data shouldn’t pose a problem because they can be marginalized
out. For intractable models like RBMs however, this marginalization can
easily become infeasible. For the models I proposed, missing values in the
train data are easily dealt with. During training, the energy is optimized
with respect to the true missing variables for which no ground truth value is
available and artificial additional missing values. In other words, the models
will try to predict the true missing values during training. The loss however,
is only computed for the artificially created missing values for which the
actual value is known. A very similar method has been used in earlier work
to train neural networks for classification when missing values are present
(Bengio and Gingras, 1996).

To see how well the models deal with missing training data, I conducted
an additional series of experiments.

Data

The data I used to investigate the effect of missing training data consists
of the measurements of the 24 ultrasound sensors of a SCITOS G5 robot
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Table 4.5: Parameter settings for training the models on the
robot data.

Inference iterations Learning rate Hidden units

CEBM 3 0.65 300
REBM 3 0.0007 100
DTBM 5 0.002 300
Conv. RBM N/A 0.00012 300
RNN-RBM N/A 0.15 50

navigating a room (Freire et al., 2009; Frank and Asuncion, 2010). The 5456
sensor readings were sampled at a rate of 9Hz and the robot was following
the wall of the room in a clockwise direction, making four trips around the
room. I used 80% of the data for training and split the remaining 20% up
in a validation set and a test set.

Training

In the first experiment, I trained the models on fully intact training data to
get an estimate of the optimal performance the models could achieve on it.
In this experiment I also compare the results with those of the Convolutional
RBM and the RNN-RBM. In the second experiment, I generated a mask for
the whole train set. The mask was divided in regions of 100 frames and
at each of these regions a randomly selected set of dimensions was labelled
as missing. To train the models, I selected random batches of 100 frames
from the train data and selected another set of variables as missing that
were not already truly missing in the data. This way, the models never
had access to the values that were labelled as missing by the training data
mask. To investigate the robustness of the models, I varied the amount of
data that was damaged in the train set. In both experiments, the number
of dimensions that I pretended to be missing in order to train the models
was uniformly sampled from {1, . . . , 5}. All models were trained for 100, 000
epochs.

The hyper-parameter settings were obtained in the same way as in the
previous experiments and are displayed in Table 4.5. Additionally, the Con-
volutional RBM and CEBM had a window size of 5 and the REBM had 200
recurrent units. The step sizes for the CEBM and REBM were respectively
.016 and .7. The CEBM and the Convolutional RBM had a window size of 5
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Table 4.6: Results in mean squared error on the wall robot
data without missing dimensions during training.

Train Test

CEBM 0.27 0.43
REBM 0.41 0.39
DTBM 0.29 0.34

Conv. RBM 0.53 0.47
RNN-RBM 0.38 0.54

time frames. The Convolutional RBM was trained with the same Contrastive
Divergence scheme as in the handwritten digits experiment. The RNN-RBM
had 250 recurrent units and was trained with 5 iterations of Contrastive Di-
vergence. Somehow the best performing RNN-RBMs had this time fewer
hidden units than the best performing REBMs. I used these settings for all
the experiments, regardless of the number of missing training dimensions.

Results

Table 4.6 shows the results for the experiment without missing train data.
The DTBM had the best performance, followed by the REBM, the CEBM,
the Convolutional RBM, and the RNN-RBM respectively. Surprisingly, the
CEBM has a far better score on the train data than the REBM while its
test error is higher. This seems to be a sign of overfitting. The REBM is
probably slightly underfitting as its training error was even a little bit higher
than its test error. The RNN-RBM obtained a slightly better score on the
train data than the REBM but performed a lot worse on the test set.

Figure 4.6 shows the error scores for the three energy-based models as
a function of the number of missing input dimensions. Obviously, as more
dimensions are missing, there is less data available to train on and the error
scores of all the models are rising. For the DTBM and REBM, the error
seems to increase at a modest pace initially and when just a single value
is missing, the performance is similar to the first experiment. The CEBM
has more trouble with missing values and is not learning to reconstruct the
data well any more after about 10 dimensions are missing. I interpret these
results as an upper bound on the error scores one could potentially achieve
by doing more extensive hyper-parameter tuning for each individual level of
data corruption.
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Figure 4.6: Mean square error as a function of the size of the
interval from which the number of missing train data dimensions
was sampled.

All in all, the training methods seem to handle missing training data
quite well until

4.7 Imputation and Denoising for Train-
ing Generative Models

While the imputation models of this chapter are not trained as generative
models, it is clear that they still need to learn some properties of the data
to perform well. Even though the motivation for the training procedure was
to perform imputation without the need for maximum likelihood learning, it
is interesting to learn more about the potential overlap of the two methods.
This may also provide more insight into the sensitivity of the models to a
misspecification of the corruption process that selects the missing values.

First of all, Goodfellow et al. (2013) trained Deep Bolzmann Machines
with a method that turns out to be nearly identical to the training algorithm
of the Discriminative Temporal Boltzmann Machine. Their goal however,
was to use the model for other tasks than imputation and they arrived at the
method from the motivation to optimize a variational version of the so-called
composite likelihood (see Section 3.1 and Lindsay, 1988). Pseudo likelihood
and some other variants of the more general composite likelihood, have the
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interesting property that they are consistent estimators. However, when
the composite likelihood and the standard likelihood have not been fully
optimized, they tend to behave quite differently. The composite likelihood
tends to converge faster to models that perform well at conditional queries
of the variables, as is the case in missing value imputation. Optimization of
the true likelihood, on the other hand, tends to lead faster to models that
provide samples that look similar to the data they have been trained on
(Goodfellow et al., 2013).

Secondly, the imputation models can be seen as so-called Generative
Stochastic Networks (GSN; Bengio and Thibodeau-Laufer, 2013). Unlike
most conventional parametric generative models, GSNs are not trained to
learn the data density directly, but to learn a transition operator of a Markov
chain that has the data density as its ergodic distribution. GSNs do this by
learning the shape of the data distribution locally, conditioned on variables
that are sampled from a certain noise distribution. This means that many
denoising and imputation methods can be used to construct GSNs. It was
shown that when models are trained with variational composite likelihood,
they are able to provide better looking samples of the data when they are
employed as GSNs rather than as standard density models. As pointed out
by Yoshua Bengio during personal communication, the models I trained for
imputation can also be used as GSNs to generate samples.

Drawing samples from a GSN is done by running a Markov chain that
samples from the noise distribution and the denoising distribution in an
alternating fashion. This works in the following way: First, the chain is ini-
tialized at some random location. Subsequently, this ‘sample’ is corrupted
by the noise distribution. Finally, the model provides a denoised sample
conditioned on the noisy input. These last two steps are repeated to run a
Markov chain. If the denoising distribution is accurate enough, this Markov
chain converges to an equilibrium distribution that should be close to the
data distribution. Formally, if the denoising model provides a distribution
p(x|x̂), where x̂ is the corrupted data, created by a corruption process q(x̂|x)
(I used a different symbol to emphasize the fact that these conditional dis-
tributions don’t need to match), the algorithm is defined by the following
steps:

1. Start with some arbitrary value of xt.

2. Sample x̂t from the corruption process q(x̂t|xt).

3. Sample xt+1 from p(xt+1|xt).

4. Repeat steps 2 and 3 to obtain as many samples as desired.

To investigate whether the imputation method is able to learn a good
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Figure 4.7: A collection of samples generated from the REBM
model using the GSN sampling method. The samples are sorted
in a column major fashion.

GSN, I drew samples from an REBM trained3 with the settings that per-
formed best on the handwritten digits task according to the GSN principle.
The REBM provided the denoising distribution p(x|x̂,Ω), conditioned on
both the corrupted data and the locations of the missing values; the corrup-
tion process was simply the same as the one used during training, selecting
squares of varying size to be marked as missing. Since the model was not
trained to predict the variance of the distribution p(x|x̂,Ω), I performed de-
terministic updates for the denoising process. I took 100, 000 MCMC steps
and stored a sample after every 5000 updates.

Figure 4.7 displays 18 of the samples created with the GSN process.
The process does not seem to mix very well. This is probably due to the
deterministic updating and the relatively small proportion of the variables
that is reconstructed at each step. However, the model does indeed generate

3A new model had to be trained because some of the input variables were never
selected by the corruption process. For evaluation of the imputation performance
this was no issue, but a GSN needs a corruption process that reaches all the
variables.
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samples that look like the data it was trained on. Moreover, the samples
suggest that the model is invariant to horizontal (i.e., temporal) shifts of
the data because samples that are relatively near each other in the sampling
chain often contain very similar symbols that have been shifted a couple of
pixels to the left or the right. Unfortunately, the model seems biased to
generate the same patterns near the left and right edges of the sequences.

4.8 Discussion

In all the experiments I did, the discriminatively trained models outper-
formed the baseline methods. The most interesting result is that the CEBM
often performed much better than the Convolutional RBM. This indicates
that the proposed training strategy is more suited for missing value impu-
tation than the Contrastive Divergence algorithm. The REBM also outper-
formed the RNN-RBM. While this comparison is less valid because the two
models are not entirely the same, it still suggests that our training method
also works better for recurrent architectures. The DTBM outperformed all
other methods in all of the experiments except for reconstructing the upper
body markers of the motion capture dataset where the REBM performed
better. Given that it is also the easiest model to implement and gener-
ally (depending on the required context size) more computationally efficient
than the REBM, this model seems to be the most promising candidate for
practical applications.

I didn’t show that my method outperforms maximum likelihood learn-
ing because Contrastive Divergence is not optimizing the actual likelihood
of the model. However, it seems to be the most popular method for training
these kind of models when true maximum likelihood learning is intractable.
I actually suspect that, compared to other approximate maximum likeli-
hood methods, Contrastive Divergence is still one of the best candidates for
missing value imputation because it optimizes the energy landscape locally
by pushing up wrong predictions that are near the data itself. When the
number of missing values is not too large, inference would start near one of
the regions in which the energy landscape has a shape that promotes good
predictions. When the number of missing values is too high however, the
inference algorithm might start in a region that was not explicitly shaped
by the learning algorithm because it was too far away from the data. This
might explain the bad performance of the Convolutional RBM when the
whole upper body was missing in the motion capture task. The CRBM and
(to a lesser extent) the RNN-RBM were more robust in this situation.

Finally, I also showed that it is possible to use at least one of the models
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in a generative setup as well by using it as a Generative Stochastic Network.
While the samples looked decent, the mixing seemed to be rather slow.
This is probably because of the relatively small number of variables that
is reconstructed at each sampling step. The fact that the model had no
parameters for modelling the variance is likely to have been detrimental as
well but this was obviously no real priority for solving the original imputation
tasks the model was optimized for.

4.8.1 Relation to Other Work

The idea of training Markov Random Fields in a discriminative way by using
a simple deterministic inference procedure is not new and has been used in
image and natural language processing. In image processing, the inpainting
(Bertalmio et al., 2000) or denoising (Barbu, 2009) of pictures are thoroughly
studied problems. Barbu (2009) proposed Active Random Fields for denois-
ing images. Active random fields are Fields of Experts (Roth and Black,
2005) that are trained by doing inference with a couple of iterations of gra-
dient descent. The model parameters are optimized to make the gradient
descent inference procedure more efficient. In a more recent paper (Domke,
2012), this approach was extended to more advanced optimization methods
like heavy ball (Polyak, 1964) and BFGS. In a similar fashion, gradients
have been computed through message passing to train Conditional Random
Fields more efficiently (Domke, 2011; Stoyanov et al., 2011). I extended
their approaches to models for time-series and missing value imputation.
To my knowledge, models that were used for image inpainting were either
trained in a probabilistic way, or to do denoising. I showed that models can
be trained for imputation directly and that the approach is not limited to
gradient based optimization or loopy belief propagation. It can also be ap-
plied to models for which approximate inference is done using the mean-field
method. Furthermore, I showed that quite complex models with recurrent
dependencies, that would be very difficult to train as probabilistic models,
can be learned this way.

This work is also related to the training of Dynamical Factor Graphs
(DFG; Mirowski and LeCun, 2009). DFGs are used as generative models,
but the way they are trained is more similar to the energy-based learning
framework. The types of DFGs that have been studied so far are similar to
the REBM model in that they employ both recurrent connections and latent
variables. An important difference is that in the REBM the latent variables
are not involved in the recurrent part of the model. By constraining the
latent states of a DFG to operate under Gaussian noise with fixed covariance,
the partition function of the model becomes constant so that a minimization
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of the energy for a certain state will automatically push up the energy values
of all other possible states. The model is not fully probabilistic as it aims to
align its maximum a posteriori hidden states with the observed data instead
of the sum over all their possible values.

Inference for missing values in DFGs is done with gradient descent to
find the minimum energy latent state sequence, ignoring the missing values
in the gradient computations. Subsequently, the missing values are predicted
as a function of this latent state sequence. There are a couple of important
differences with my approach:

• The models I proposed don’t aim to provide generative models of the
data.

• The CEBM and REBM models use only a limited number of gradi-
ent descent updates while for DFGs this minimization is run until
convergence.

• In the CEBM and REBM, energy minimization only takes place with
respect to the missing values and not with respect to the latent vari-
ables which are marginalized out analytically.

It seems that some of the ideas behind DFGs are orthogonal to the proposed
approaches and may be combined to design new interesting models.

Recently, a generative model called NADE (Larochelle and Murray,
2011) was proposed in which the mean-field algorithm inspired a model
similar to the Restricted Boltzmann Machine (Freund and Haussler, 1994;
Hinton, 2002), but with a tractable inference algorithm. In this model, a
single iteration of mean-field is used to approximate a set of conditional dis-
tributions that are combined into a generative model. My mean-field based
model is substantially different in that it doesn’t try to learn a joint distri-
bution over all the variables and that mean-field is also used to estimate the
influence of connections between the hidden variables. NADE has been com-
bined with a recurrent neural network to construct a sequential model for
note patterns in music (Boulanger-Lewandowski et al., 2012). This model
is practically the same as the RNN-RBM I used as a baseline but with the
RBM replaced by the NADE model.

Adding artificial corruption to the data and training a model to recon-
struct it is similar to the way denoising autoencoders are trained (Vincent
et al., 2008). An important difference with traditional denoising autoen-
coders that the proposed models only focus on recovery of the missing val-
ues given the observed variables and not on reconstructing both. Of course,
autoencoders could also be parameterized to perform a 1-to-1 mapping for
the uncorrupted input variables.
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The way the DTBM model dealt with missing training data in Section
4.6.3, is very similar to a method for dealing with missing values in neural
networks that was presented more than a decade ago (Bengio and Gingras,
1996). In this method, missing values are also filled in by updating them as
if they are part of a recurrent neural network. An important difference with
my work is that in Bengio and Gingras (1996) the goal was not to predict
the missing values themselves, but to perform better on classification tasks
when missing values in the inputs are present.

It turns out that the architecture of the DTBM has also been proposed
for learning to discriminate between sequences (Williams and Hinton, 1991).
In this work, a version of the mean field algorithm that is inspired by simu-
lated annealing is ran until convergence and the training algorithm aims to
maximize the lower bound on the likelihood for one class of sequences, while
lowering it for the remaining classes. Running mean-field iterations until
convergence can make training very inefficient so it might be interesting to
see how backpropagation through mean-field performs for tasks of this type.

4.8.2 Limitations

A downside of my models is that they can take quite long to train. For
the CEBM and the DTBM, this problem can be alleviated by using GPU
parallelization but unfortunately this is not possible for the REBM. It would
probably not have been feasible to train this model with a more generic ap-
proach in which the energy optimization would have to be executed until
convergence for every training sample during training. However, once train-
ing is done, inference for new sequences of data is quite fast. The models took
far less time to evaluate than the Convolutional RBM for which mean-field
had to be run until convergence to make predictions.

Another downside of my approach is that it introduces new hyper-
parameters to tune. These are the number of inference iterations and for the
CEBM and the REBM also the step size of the gradient descent algorithm.
Because of this, I found it easier to find good settings for the DTBM than
for the CEBM and REBM. This problem could be solved to some extent by
using an optimizer for inference in the CEBM and the REBM that doesn’t
need a step size parameter. LBFGS has been shown to work quite well for
optimization based inference (Domke, 2011) but is a lot more complicated
to implement.

The REBM was the most difficult model to train even though it some-
times performed better than the CEBM. It seems to be more sensitive to
the initial hyper-parameter settings than the other models. As more hidden
units were used, these models became more difficult to optimize and this
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explains why the optimal number of hidden units was generally lower than
for the other models. I think this problem occurs because the energy gra-
dient is computed with backpropagation through time over relatively long
sequences. The gradients of recurrent neural networks are known to be
prone to exponential growth or decay and a single bad gradient can lead
to a divergence of the learning algorithm.4 Larger numbers of hidden units
tend to lead to larger values in the gradients, making problematic weight
updates more frequent. In preliminary results I found that this problem can
be solved to some extent by normalizing the loss gradient before updating
the weights. The DTBM might suffer less from this problem because the
number of backpropagation steps that are used is smaller.

Since the number of mean-field iterations of the DTBM is directly related
to the length of the temporal dependencies it can model, it might not be
very suitable for problems in which these dependencies are very long. That
being said, this model benefits a lot from parallel computing machinery
like GPUs. As the performance of parallel computing hardware increases,
the computational time required to model dependencies that are as long as
the sequence itself might become more comparable to simulating a regular
recurrent neural network. It remains to be seen what kind of effect this has
on the quality of the computed gradients.

4There are some remedies to this problem like clipping gradient values that
become too large (Pascanu et al., 2013a).



5
Speech Enhancement

Speech processing (and audio processing in general) is an interesting do-
main for investigating complex temporal machine learning models. First,
audio data is temporal, which makes it less straightforward to process than
data that consists of instances of a fixed size. Second, audio recordings can
contain multiple sources of both signals of interest and noise. Speech is in-
teresting in particular because the temporal structure of the audio signal
is also determined by the language involved, the voice of the speaker, and
emotional content of the utterance among many other factors. Finally, there
are many practical applications for speech processing like speaker identifica-
tion, speech synthesis and speech recognition. In this chapter I will describe
how some of the ideas from the previous chapters can be used for feature
enhancement applications in speech recognition.

5.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR), is the task of translating spoken lan-
guage into text. ASR systems are becoming more and more ubiquitous due
the advent of mobile devices and increasing computing power. Speech recog-
nition is a complicated task that requires both knowledge about language
and advanced audio processing abilities. Most contemporary ASR systems
consist of various modules that can often be split into acoustic models and
language models. During processing, these modules work together to predict
the final sequence of words.

Language models provide an ASR system with predictions for words
given their context (i.e., the previous words). The term ‘word’ should inter-
preted in a very general way because language models may also be used to
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predict shorter chunks like syllables. The simplest type of language model
that is still very commonly used, is the n-gram model.

Acoustic models assign likelihood scores to audio signals. While this
by itself is a generative task, acoustic models are often trained on chunks
of speech from specific classes (like words, syllables or phonemes). When
a new chunk of speech is presented, model comparison can be used to see
which model assigns the highest likelihood to it and to predict to which class
the chunk of speech is most likely to belong. HMMs are the most popular
acoustic models in ASR (Gales and Young, 2008). Even if other models, like
neural networks, are used to provide acoustic information, HMMs nearly
always form the backbone of the final ASR system.

One other problem that needs to be solved by an ASR system for con-
tinuous speech, is the segmentation of the speech signal. Chunks of speech
cannot simply be assigned to phonemes, syllables or words without knowing
at what point in time one symbol ends and another symbol starts. Even
if train data like the TIMIT dataset (Garofolo et al., 1993) is used, where
humans went through the tedious process of annotating the speech signal
directly, the test data will still need to be segmented by the system itself.
One of the reasons that HMMs are such an important component of ASR
systems is that they provide a tractable distribution over all possible seg-
mentations of a sequence. In many systems, a hierarchy is used in which
lower level HMMs represent sub-word level units like phones (or more com-
monly triplets of phones called triphones) while higher level HMMs represent
longer units of which there typically more classes like words.

If the scores provided by both the language models and the acoustic
models are all properly normalized likelihood values, they can be combined
directly to make a prediction that takes both properties of the language and
the speech signal into account. In practice, heuristics may be required to
combine the different components of the system.

Representing Audio

Acoustic models rarely work with raw audio waveforms directly. Especially
HMMs with Gaussian Mixture emission densities tend to work better with
data that is represented in the frequency domain and has been decorrelated.
Hence, the raw audio signal is commonly first converted into a spectrogram
that contains the powers of frequencies taken over small overlapping time
windows of the signal. This processing step is commonly followed by a
logarithmic transformation. This step is often preceded by a mapping of the
frequencies to the so called Mel scale, which is based based on knowledge
about the human ear (Stevens et al., 1937). If this is indeed done, and
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the discrete cosine transform is taken afterwards, one obtains the commonly
used Mel-frequency Cepstral Coefficients (MFCCs). While many other audio
features for speech processing exist, like Linear Predictive Coding analysis
(Tremain, 1982) and Linear Discriminant Analysis on the Mel-frequency
features, a discussion of those feature extraction methods is beyond the
scope of this dissertation.

In practice, MFCCs are often combined with a couple of other features.
Among those are often the log-energy of the signal, the derivatives of the
MFCCs (deltas) and the derivatives of those (delta-deltas). The derivatives
are added to supply later processing modules with more context informa-
tion about the neighbouring frames. In many speech related applications,
this leads to a dataset of vectors of between roughly 15 and 150 elements
(depending on the number of MFCCs chosen) that represent time windows
with an order of magnitude of tens of milliseconds. It is important to keep
in mind that most of these feature extraction steps have been optimized
for systems that work with HMMs and Gaussian Mixtures with diagonal
covariance matrices.

5.2 Speech Enhancement

While the performance of state-of-the-art ASR systems has reached very
high levels under controlled circumstances, there is still plenty of room for
improvement under suboptimal recording conditions. One of the key features
of a robust system for automatic speech recognition (ASR) is the ability to
handle background noise. Methods for improving noise robustness either try
to improve the quality of the features that are presented to the recognition
system (ETSI, 2007), or to improve the robustness of the recognition system
itself (Gales, 1995). In this dissertation I focus on the first of these two
approaches.

To enhance the quality of features that have been derived from a speech
signal, one can either use expert knowledge about the characteristics of hu-
man speech or resort to data-driven systems. As more data is becoming
available, the latter approach seems to become increasingly viable.

The most direct approach to feature enhancement, is to train a system
that filters the noise out of the signal directly. Statistical denoising meth-
ods can be roughly divided in discriminative and generative approaches.
Discriminative methods try to learn a distribution over clean sequences con-
ditioned on noisy sequences. Generative models try to model both the clean
data and the noise in order to decompose a noisy signal. Generative meth-
ods tend to generalize better because they are more robust when the noise
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model is unreliable but require good models of clean speech data, which can
be more difficult to learn than conditional noise characteristics. Which type
of approach will work best also depends on the nature of the noise and how it
has been combined with the input signal. If the noise is for example known
to be additive, this greatly simplifies the construction of generative models.

A successful data driven approach to speech denoising is the Stereo-based
Piecewise Linear Compensation for Environments (SPLICE) method (Deng
et al., 2001), which models the joint distribution between clean and noisy
utterances. In this approach, the clean signal is modelled as a piecewise
linear function of the noisy signal. This function is constructed from models
that have been separately trained on different types and levels of noise.

Neural Networks for Speech Enhancement
Another method that is gaining popularity for speech enhancement problems
is non-linear regression using artificial neural networks. What makes neural
networks interesting for speech processing tasks, is that they can be applied
to large datasets and that they can process information relatively fast after
they have been trained. When both noisy and clean versions of utterances
are available, neural networks can be trained to perform speech denoising
directly (Tamura and Waibel, 1988).

Recently, there has been a revival of interest in neural networks for
speech processing in general due to the success of the so-called deep learn-
ing approach (Bengio, 2009) on a variety of machine learning tasks. Most
importantly, deep architectures have been shown to perform very well as
acoustic models for automatic speech recognition (Dahl et al., 2012). The
idea behind deep learning is to use neural networks with multiple layers of
hidden units that learn increasingly complex representations of the input
patterns.

A neural network architecture that is particularly interesting for speech
processing is the Recurrent Neural Network (RNN). RNNs are able to process
information over time by updating a set of state variables that are a function
of both their previous state and the current input pattern. One of the
first applications of RNNs in speech recognition was phoneme prediction
(Bengio, 1991; Robinson et al., 1994). Recently there have also been good
results on both phoneme recognition and large vocabulary continuous speech
recognition tasks with very large reservoir computing networks (Triefenbach
et al., 2010, 2014), which are RNNs for which only the output weights are
trained using a linear solver.

For speech enhancement, it has recently been shown that a combination
of deep learning with RNNs (Maas et al., 2012) can outperform well-known
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noise reduction methods like the SPLICE algorithm (Deng et al., 2001) and
the ETSI2 advanced front-end (ETSI, 2007). It was also shown that RNNs
can improve robust speech recognition in a Tandem setup (Vinyals et al.,
2012).

5.3 Bidirectional Truncated RNNs

As datasets are becoming increasingly large and parallel processing units like
GPUs are getting more commonly available, it becomes increasingly bene-
ficial for computational methods to perform computations in parallel. Un-
fortunately, RNNs are quite slow and the computations involved cannot be
parallelized when the recurrent computations are the bottleneck. Moreover,
they are difficult to train because of the so called vanishing gradients prob-
lem (Bengio et al., 1994). The vanishing gradients problem occurs because
the backpropagation of gradients through time includes a large number of
multiplications which have a tendency to either drive the gradients towards
zero so learning occurs very slowly, or to make them very large so learning
can become unstable.

I proposed two variants of a recurrent neural network architecture that
inherits some of the properties of RNNs but allows for more parallelization.
The models can also use information from future speech frames and seem to
be easier to optimize because the number or required backpropagation iter-
ations is smaller. The way the models process information is similar to the
type of information processing in deep neural networks. I demonstrated their
performance on the Aurora2 robust ASR task when they are trained with
an advanced second order optimization method to remove noise from MFCC
speech features. Under matched noise conditions, my models outperformed
the SPLICE method and the ETSI2 advanced front-end.

5.3.1 Model Architecture
Let Xn be a matrix that represents a noisy input sequence of column vectors
{x1,x2, . . . ,xN}, where N is the length of the sequence, and let Y be the
corresponding clean sequence we want to predict. The goal is to learn a
function X 7→ Ŷ with a minimal difference between the predicted sequence
Ŷ and the true clean sequence Y as measured in the squared error given by

‖Ŷ−Y‖2, (5.1)

where ‖ · ‖ is the Frobenius norm.
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(a) BTRNN (b) PBTRNN

Figure 5.1: The two variants of the bidirectional truncated
recurrent neural network for two iterations of hidden unit up-
dates. Each circle represents a layer of neural network units.
Grey shading indicates that a unit is part of the input pattern.
Black shading signifies output units. Time goes from the left
to the right so each input unit represents an MFCC vector at a
different time step.

The architecture I proposed, processes information in two directions
through time. Unlike a standard recurrent neural network, it also uses in-
formation about future frames. I chose to call the architecture ‘truncated’,
because the number of iterations that is carried out to process information
is much smaller than the length of the input sequence.

Like a multilayer perceptron, the bidirectional truncated recurrent neural
network computes a sequence of hidden unit activations H and maps these
activations to a prediction sequence Ŷ. The activation of a hidden unit is
computed as a weighted sum of the activations of the units it is connected to,
followed by a non-linear transformation (in this case the hyperbolic tangent
function).

The temporal component is introduced in the computation of these hid-
den unit activations. For a predetermined number of iterationsK, the hidden
units are updated with the information they receive from both their neigh-
bours and the input pattern X (see Figure 5.1a). At the start of an iteration,
the odd hidden state vectors {hm|m ∈ 2N + 1} receive a weighted sum of
the activations of their neighbours with an even index and the current input
frame. Subsequently, the even units are updated based on the activations
of the odd ones. Algorithm 5 shows this procedure in detail. The trainable
parameters of the model are the input connection weights Win, the recur-
rent weights Wrec, the output weights Wout and the bias parameters for the
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recurrent and output layers brec and bout.
The two inner for-loops in Algorithm 5 can both be replaced by two ma-

trix multiplications. On parallel computing architectures, this modification
can lead to significant speedups. This kind of parallelization is not possi-
ble for standard recurrent architectures where N −1 matrix-vector products
are required. The architecture of this first variant of the model is shown
in Figure 5.1a. From now on I will refer to this model as the bidirectional
truncated recurrent neural network (BTRNN).

Algorithm 5 Predict clean sequence Ŷ given noisy sequence Xn

Initialize H← 0
Define H.,0 = H.,N+1 = 0
A←WinXn + brec1T

for k = 1 to K do
for j = 1 to N step 2 do

H.,j ← tanh(WrecH.,j−1 + WT
recH.,j+1 + A.,j)

end for
for j = 2 to N step 2 do

H.,j ← tanh(WrecH.,j−1 + WT
recH.,j+1 + A.,j)

end for
end for
Ŷ←WoutH.,1..N + bout1T

Updating the odd and even units separately was motivated by the mean-
field algorithm for Markov Random Fields (Wainwright and Jordan, 2008).
If the hidden units would be stochastic variables, this updating scheme would
be equivalent to a mean-field approximation of their posterior distribution
given the data.

A nice property of this equivalency is that the updates are guaranteed to
converge to a fixed point that is a local optimum of an optimization problem
that aims to approximate the distribution over the hidden units given the
data. To see if this alternating updating is actually necessary, I also looked
at a simpler version of the model in which all hidden units are updated
in parallel. Updating the hidden units in parallel is computationally more
efficient but theoretically this could lead to oscillations. However, since the
number of iterations I intended to use was quite small, I didn’t expect this
to be a problem. The architecture of this second variant of the model is
shown in Figure 5.1b. I will refer to this model as the parallel bidirectional
truncated recurrent neural network (PBTRNN).

Note that the way the models process information from both previous
and future frames is not the same as was done in previous work where the
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term bidirectional RNN was used (Schuster and Paliwal, 1997; Graves and
Schmidhuber, 2005). In these approaches, two different hidden states cap-
tured past and future information separately while the models I proposed
directly integrate future and past information into a single state representa-
tion.

The number of previous and future frames that are taken into account
is determined by the number of iterations K. The prediction for a frame
receives information about 2K + 1 frames from the input sequence. The
number of iterations to use presents a trade-off between context size and
computational efficiency. It is also clear that as the models run for a greater
number of iterations, the number of times that information flows through a
non-linear activation unit increases. At every iteration, the information can
be said to pass through an additional layer of a deep neural network with
tied weights and a sparse connection structure. This is similar to the way
convolutional neural networks process information.

5.4 Experiments

To evaluate the RNN models for speech denoising, I used the Aurora2 dataset
(Pearce et al., 2000). This is a well-known benchmark for robust ASR. The
dataset is a collection of connected digits from the TIDigits corpus. The
train set contains 8, 440 clean sentences of which duplicates exist that have
been corrupted by four noise types at seven different levels of signal to noise
ratio (clean, 20dB, 15dB, 10dB, 5dB, 0dB, -5dB). The test set consists of
56, 056 corrupted and clean sentences and is divided in three subsets. Test
set A contains the same four noise types as the train data. Test sets B and C
contain different types or noise and can be used to evaluate the performance
of a model under mismatched training and testing conditions. All systems
were trained to map the noisy train sentences to their clean counterparts.
Since the train data only contains a small number of noise types, I did not
expect models that were trained on this data to perform very well on new
noise types in general. For this reason I will focus on the results on test set
A for which the noise types are identical to those in the train set.

A recognition system was trained on the clean train data only. Subse-
quently, the noisy utterances from the test set were processed by the various
denoising models I compared and these denoised features were presented to
the recognizer during testing. To generate MFCC features, I used the stan-
dard HTK scripts that were supplied with the Aurora2 dataset (Pearce et al.,
2000). The models were trained on 13 dimensional vectors that contained
12 MFCC features and the log energy of the speech signal. First and second
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order derivatives (delta and delta-delta features) were appended after the
denoising process during testing. To keep my results comparable with those
in Pearce et al. (2000) I did not apply cepstral mean normalization to the
signals. The recognizer was also trained and evaluated with the standard
Aurora2 scripts for HTK. This means that whole-word HMMs with 16 states
and for each state a Gaussian mixture with 3 components were used.

5.4.1 Model Settings
The BTRNN and PBTRNN both had 500 hidden units. I set the number
of iterations at which the hidden units were updated to 6. This gave each
model an input context size of 13 frames and 263, 513 trainable parameters.

I compared the proposed models with a deep recurrent denoising auto-
encoder (DRDAE), a model which has been shown to work well for this task
(Maas et al., 2012). This model is a neural network with three layers of hid-
den units of which the second layer of hidden units has recurrent connections.
Like in the paper by Maas et al. (Maas et al., 2012), I set the number of
units in each hidden layer to 500 and presented the network with small time
windows of three frames: the current time frame and its two neighbours.
The number of trainable parameters for this model was 777, 513.

To investigate the importance of the recurrent data processing in the
networks I proposed, I also trained a standard multi-layer perceptron with
roughly the same number of trainable parameters. This network had a single
layer of 1450 hidden units. To make the comparison as fair as possible, I
presented this network with time-windows of 13 frames so that it received
the same amount of context information as the truncated recurrent neural
networks at each time step. The number of trainable parameters of this
model was 265, 363.

Finally, I compared the models with the features generated by the ETSI2
advanced front-end (AFE) and the SPLICE algorithm. (ETSI, 2007). The
WER scores of these methods were not replicated but taken from the results
reported by the authors who also used the standard AURORA scripts.

5.4.2 Training
The neural network models were trained to minimize the mean squared error
(MSE) between their predictions and the actual clean utterances in the train
set. All utterances were normalized by subtracting the mean and dividing
by the square root of the variances of the noisy utterances from the train
set.

To train the models I used Hessian-Free optimization (Martens, 2010).
This is a second order optimization method which has been shown to be ef-
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Table 5.1: Mean squared error for the neural network models
on the train and validation data. The scores are averaged over
all different levels and types of noise.

Model Train Validation

DRDAE 17.30 17.55
MLP 16.35 17.62
BTRNN 15.38 16.39
PBTRNN 15.18 16.89

fective for training deep neural networks and RNNs (Martens and Sutskever,
2011). Earlier results about Hessian-Free optimization also suggest that it
is not that important anymore to use any form of unsupervised pre-training
when this optimization method is used (Martens, 2010). Because there
doesn’t seem to be a straightforward way to apply pre-training to the mod-
els, this property of the optimization algorithm seems to be particularly
appealing.

The Hessian-Free optimizer is a truncated Newton method and needs the
gradient of the error objective with respect to the parameters of a model. It
also needs a function that provides it with the product of the Gauss-Newton
matrix of the model with an arbitrary vector. If the objective is twice differ-
entiable these gradients and matrix vector products can easily be obtained
by means of automated differentiation. I used the Theano toolbox (Bergstra
et al., 2010) for python for this and to simulate the more parallelizable mod-
els with a GPU. I used the standard settings for the Hessian-Free algorithm
as described in the original paper by James Martens (Martens, 2010). In
preliminary experiments, I found that this algorithm outperformed LBFGS
and stochastic gradient descent.

The dampening parameters λ was initialized at 100. The number of
sequences to use for computing the matrix vector products was set to 300.
All weight matrices where initialized with values sampled from a zero mean
Gaussian with variance .01. All bias parameters were initialized at 0.

I reserved 20% of the train data for validation. I applied early stopping
and selected the parameters that achieved the lowest MSE scores on the
validation data after 100 iterations of training for denoising the MFCCs of
the test set. I did not apply any form of weight decay during training.
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5.4.3 Results
Table 5.1 displays the MSE scores for the models on both the sentences
from the train set and those that I left for validation. The BTRNN and
PBTRNN have the lowest validation scores. The train error of the PBTRNN
is slightly lower than that of the BTRNN but it performs slightly worse on
the validation set. Interestingly, the MLP suffers more from early overfitting
than the DRDAEmodel as its train error is quite a bit lower but its validation
error is slightly higher. Table 5.2 shows the word error rates (WER) scores
for test set A. This test set had the same types of noise as the train set.
Except for the clean utterances, where the AFE got the best performance,
the BTRNN and the PBTRNN outperformed all other methods for all noise
conditions. The PBTRNN performed slightly better under moderate noise
conditions while the BTRNN a performed a little bit better under heavier
noise conditions.

It is surprising how badly the MLP performed on the clean data. This
indicates that either recurrent or deep processing, or a combination of them,
is important for good neural denoising models. The performance of the
DRDAE was worse than the BTRNN and the PBTRNN but the rate at which
its performance decreases as a function of increasing levels of noise seems
similar. I suspected that it should be able to achieve similar performance to
my models but is more difficult to optimize.

I also averaged across noise conditions while leaving out the clean and
-5dB scores as described in the ETSI standard. The BTRNN now achieves a
WER of 9.59% and the PBTRNN aWER of 10.03%. These results are better
than the WER rates reported for the AFE (ETSI, 2007) and the SPLICE
algorithm (as reported by Droppo et al. (Droppo et al., 2002)) which are
12.26% and 11.67%, respectively. The DRDAE gives a WER of 11.57%,
which is higher than the result reported by Maas et al. (Maas et al., 2012) of
10.85%, which is still higher than the WER scores of both of the proposed
models. Finally, the MLP gives an average WER of 13.09%, performing
worse than the AFE baseline.

While it was not my intention to construct models for mismatched noise
conditions, I also report the averaged results for test set B. As expected
and like in earlier work (Maas et al., 2012), the results of the neural models
are a lot worse for the mismatched noise types. The BTRNN and PBTRNN
achieved WER scores of 25.50% and 24.66%, respectively. This is worse than
the SPLICE algorithm which gives a WER of 12.25% on this test set. The
MLP and DRDAE gave WER scores of 19.84% and 18.29%, respectively. All
models still improved on the raw MFCC features which lead to a WER of
44.42%. It seems that the models that performed worse on the matching test
set suffer less from the mismatching conditions but are still worse than the
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Table 5.2: Word error rate scores for the neural models and
the ETSI2 advanced front-end on test set A. The results are
averaged over the four different noise types.

SNR MFCC AFE DRDAE MLP BTRNN PBTRNN

Clean 1.06 0.77 1.36 4.14 1.37 1.41
20dB 5.02 1.70 1.85 3.04 1.82 1.68
15dB 13.11 3.08 2.93 3.77 2.36 2.19
10dB 32.81 6.45 5.14 6.08 3.91 4.03
5dB 60.74 14.16 12.49 14.00 9.87 10.31
0dB 82.98 35.92 35.45 38.59 29.98 31.97
-5dB 91.62 68.70 73.70 72.79 65.37 67.42

SPLICE baseline. This indicates that the BTRNN and PBTRNN learned to
represent the noise in the train data very well but did not have enough noise
data available to generalize well to other noise types. Note that the ability
of the SPLICE algorithm to perform well on mismatched noisy data may
be caused by the fact that separate models are used for each type of noise
and noise condition. During testing, a special routine was used to select the
most probable noise environment type. The fact that the splice algorithm
knew which noise was from which type and condition during training can be
seen as an additional annotation that may have helped for generalization.

5.4.4 Computational Efficiency
It is difficult to perform a fair assessment of the computational efficiency
of the models because this is implementation dependent. Nonetheless, I
measured the time it took for the models to process the first 1000 utterances
from the train set. The simulations were done on a system with an Intel i7
quadcore CPU and a Geforce GTX 480 GPU card installed. For all models, I
report the computation time for both the GPU and the CPU. Computations
on the CPU made use of the Intel MKL BLAS library with multi-threading
enabled. Since all methods were implemented in the Theano toolbox, their
efficiency depends on the optimizations this software is able to perform for
the various computational graphs. These implementations could probably
be made more efficient by optimizing them manually.

As Table 5.3 shows, the BTRNN and PBTRNN benefit a lot more from
the use of the GPU than the DRDAE model. A direct comparison is not fair
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Table 5.3: Time in seconds it took for each model to process
the first 1000 utterances of the train set using either the CPU
or a GPU to perform computations.

Model CPU GPU

DRDAE 15.4 20.6
MLP 7.7 1.2
BTRNN 56.0 10.2
PBTRNN 25.1 5.1

because of the different numbers of parameters but these results still suggest
that the truncated RNNs may scale better when larger numbers of units are
used.

5.5 Discussion

I introduced two variants of a bidirectional truncated recurrent neural net-
work architecture for speech denoising that shares properties with deep learn-
ing and convolutional neural networks. The two models outperform similar
neural architectures and the ETSI2 advanced front-end for noise types that
were present in the training data. Since the deep recurrent denoising auto-
encoder I compared my models with can use more context information, I
suspect that my models performed better because they are easier to opti-
mize.

In contrast to more common recurrent architectures that only have access
to information about the past, the proposed models also use information
about future frames. The models could still be applied in a setup where the
speech frames arrive in an online fashion but in that case it would probably
be best to re-update the hidden units after more information has become
available.

The fact that the models were overfitting on the specific noise types
suggests that their generalization properties could be improved by extending
the training data with more types of noise at the potential cost of performing
slightly worse on test set A. It should be straightforward to construct such a
dataset. I also showed that the models I proposed are more computationally
efficient than similar architectures. This increases their potential to scale to
larger datasets.





6
Conclusion and Future

Work

In this final chapter I will summarize the most important research conclu-
sions and discuss some of the limitations and ideas for future research. First
I will discuss my personal view on what the most interesting directions for
future research are in general, followed by more specific research ideas that
are directly related to my own work.

6.1 Summary

As data sets are becoming larger and the problems we want to solve in
statistical modelling are getting more complicated, it may also be necessary
to use more complicated statistical models. Unfortunately, many of the
more complicated types of models cannot be normalized analytically. In
this dissertation I investigated ways to improve the practical applicability of
unnormalized models.

After giving a brief overview of some of the most popular contemporary
stochastic approximate maximum likelihood methods for training unnormal-
ized models, I investigated ways for making the underlying sampling methods
more efficient. Taking ideas from the statistical physics literature, I was able
to show that the mixing time of Markov Chain Monte Carlo methods used
for training Restricted Boltzmann Machines (RBMs) can be improved by
extending a method called Parallel Tempering. Parallel Tempering employs
a collection of interacting Markov chains that operate at different temper-
atures to improve the efficiency at which the Markov chain with the lowest
temperature visits separated regions of the sample space. This strategy is
wasteful with computational resources in that only a single chain is providing
useful samples while multiple chains have to be simulated and kept track of
in memory. I proposed to use a larger set of possible interactions between the
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chains and to use a weighted average of the different chains during training.
The first method did improve the mixing behavior and the combination of
the two seemed to lead to better performance when integrated in a training
algorithm. Unfortunately, the methods also introduced additional computa-
tional costs and it is still difficult to say how much practical value they have
compared to more conventional training methods.

Subsequently, I looked at methods that serve as alternatives to maxi-
mum likelihood estimation. Examples of these are quasi-likelihood methods,
score matching and noise contrastive estimation. The idea behind such al-
ternative estimators is that they may still posses some of the most desirable
properties of maximum likelihood estimation while potentially circumvent-
ing some of its computational difficulties. I showed how ideas from previous
work about Bregman divergences for training unnormalized models can be
used to construct a new estimator that combines some of the properties of
score matching and noise contrastive estimation. The estimator is some-
what comparable to a version of noise contrastive estimation in which a
non-parametric noise distribution is used to be more similar to the data dis-
tribution than generic parametric models tend to be. I demonstrated that
the estimator appears to be consistent when trained on synthetic problems.
When used to train Products of Student-t distributions on natural image
data, the estimator seemed to find features that look very similar to those
found by other estimation methods. This indicates that the estimator pro-
vides a viable alternative when the goal is to estimate models for which other
methods turn out to be impractical.

In the second part of the dissertation, I looked at methods that abandon
the generative aspect of the training procedure entirely. When the goal is
to solve some specific prediction task (e.g., regression) and a approximate
inference method is used, it may be a better idea to train the model such
that the inference method provides the desired predictions rather than train-
ing the model to model the data generatively. I applied previous ideas in
this direction to the specific case of missing value imputation for time-series
where inference was done using either gradient-based method or naive mean
field. I was able to show that these methods allowed relatively complex
unnormalized energy models to be trained to do missing value imputation
and outperform several other methods on this task. Even though gener-
ative modelling was not the purpose of these models, I found they could
still be used to generate interesting looking samples when used as so-called
Generative Stochastic Networks (Bengio and Thibodeau-Laufer, 2013).

Finally, I took the architecture that seemed most practical for the impu-
tation tasks and applied it to a speech processing task. Instead of missing
value imputation, the model was now trained for supervised regression but
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the computational structure of the model was still inspired by the compu-
tations involved in naive mean field inference. This led to an architecture
that can be seen as a bidirectional recurrent neural network. The architec-
ture turned out to be more computationally efficient on hardware specialized
for parallel processing. Two versions of the architecture were compared on
a speech denoising task and outperformed both standard and other neural
network based methods. However, the models did not generalize very well
to noise types that were very different from those used during training.

6.2 Future Perspectives

The estimation of unnormalized statistical models is a quite general problem
and one with a lot of potential for future research. In this dissertation, most
of the more conceptual research was done using small synthetic problems
and image modelling tasks. The more application based research mainly
involved time-series problems because they seem to require architectures
that quickly become too complex to remain tractable. Generally speaking,
most of the ideas that have been tested on small problems should be tested on
larger more realistic problems. For the models that were used for time-series
problems, the emphasis of future research in this area should be more on the
potential improvements that can be obtained by improving the architectures
and the specific data processing pipelines.

6.2.1 Multi-Tempering
The Multi-Tempering method, may prove to be more interesting for very
large and complex problems than for the problems on which it has been
tested so far. After all, the number of models and the roughness of the
energy landscape are important causes of potential mixing problems. For
relatively simple problems, the mixing problem may not be severe enough
to reward computationally demanding tempering methods.

In the experiments about multi-tempering for RBMs one could see that
there was often a very distinct location in the range of temperatures where
transitions were very rare. This suggests that adapting the temperature
values can greatly improve the return time of any PT-based algorithm. It has
indeed been shown that RBM training can be improved using a temperature
adaptation algorithm that aims to optimize return times directly (Desjardins
et al., 2010a). It would be interesting to see how the application of such an
adaptation method influences the comparisons between different tempering
algorithms.
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A general problem for MCMC methods for maximum likelihood training
is that the number of modes may be so high, that even a relatively fast
mixing chain will never be able to visit all of them (Bengio, 2013). If this
turns out to be the case, it may be difficult to verify because most methods
for evaluating intractable energy-based models would suffer from the same
problem. However, if this means that only the modes that are easy enough
to reach by approximate inference algorithms are adapted to the data, the
approximations used for evaluating these models may still have practical
usefulness. An interesting experiment would be to train an RBM on a real-
world data set, run an efficient MCMC sampler for a very long time and
investigate the robustness of the estimated expectations over time.

Some recent work (Bengio et al., 2013) showed that MCMC sampling
mixes more efficiently for deep models if it takes place at higher level vari-
ables. In other words, the idea is that models with multiple layers of rep-
resentations learn to map the input space to a space in which the data is
probably distributed more uniformly. Conceptually this is comparable with
the way in which PCA whitening transfers the data to a space in which it
has a simpler distribution. Perhaps it is more fruitful to investigate how
models and perhaps their parameters can be altered in such a way that they
either become easier to sample from in general or remain easier to sample
from during later stages of training.

There is clearly plenty of work to be done to improve sampling methods
for training unnormalized models like RBMs but it will be interesting to see
how prominent MCMC methods will be in the future when new types of
hardware are available. This applies especially to recent work on hardware
that allows for efficient parallel computation based on quantum annealing
(Johnson et al., 2011). Future research should investigate both how quantum
annealing based algorithms can be used to train interesting models and focus
on parallel methods for approximating expectations in general.

Finally, it would be very useful to have better measures of the quality of
sampling algorithms. This would obviously make comparisons for research
purposes more reliable and conclusive. Furthermore, it could be very useful
to have ways to predict during which stages of training the mixing rate starts
to become problematic so that one can switch to a slower training algorithm
with better mixing properties.

6.2.2 Alternative Estimators

The proposed data dependent contrastive estimator its most promising asset
seems to be that it can be applied to models for which Gibbs sampling is
not possible and for which it is not practical to apply methods like score
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matching either. For this reason it would be interesting to see how this
method compares with noise contrastive estimation for models that are very
large and trained on relatively large data sets. I foresee that both methods
would have numerically stability issues during training. This provides yet
another subject for possible improvement and research.

As mentioned before, the qualitative validation of the estimator de-
scribed in this thesis should be regarded as a preliminary sanity check. There
is still a lot of work to be done to learn more about its practical value. A
first step would be to investigate its ability to learn features that prove to be
useful for classification. Evaluating estimators of this type using measures
like AIS may prove to be problematic because a measure of the likelihood
score may not be optimal for estimators that may behave quite differently
for finite amounts of data and training time. A more thorough comparison
with vanilla NCE is also needed.

Since a Parzen density estimator with a Gaussian kernel served as the
inspiration for the estimator, only continuous data has been considered. An
estimator for discrete distributions would require a Parzen density estimator
with a suitable smoothing kernel.

Finally, there is also more theoretical work to be done. A theoretical
proof of the consistency of the estimator would provide additional reason
to investigate it empirically as well. Other properties, that have not been
investigated yet, are the efficiency of the estimator and the distribution of its
variance. Since it has been formally shown that NCE is both consistent and
normally distributed (Gutmann and Hyvärinen, 2012), there is some reason
to expect that the proposed estimator can be formally shown to posses these
properties as well.

6.2.3 Backpropagation-Through-Inference
The backpropagation-through-inference based training ideas that were used
for the imputation already seem to work quite well on some practical prob-
lems. Of course the size of these problems could still be increased to provide
more substantial evidence for the practical usefulness of the methods but
it would be more interesting to look at more conceptual properties. One
example of this would be to investigate the relative performance of differ-
ent inference algorithms and their sensitivity to the number of iterations for
which they are ran. As Justin Domke also pointed out on his weblog1, meth-
ods of this kind are turning the inference algorithm in some sort of black
box and it would be interesting to see to what extent the inference iterations

1At this moment online at http://justindomke.wordpress.com and certainly
worth a visit.

http://justindomke.wordpress.com
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need to be identical to those of the original inference algorithm or whether
they still work if they are only loosely based on them or even are applied to
different sets of parameters at each iteration.

Future work should investigate the performance of different inference
methods. Interesting candidates would be variants of loopy belief propa-
gation, expectation propagation and structured mean-field. It would also
be interesting to see if models of this type can be designed for other task
domains like image inpainting.

The use of energy-based imputation models as Generative Stochastic
Networks is an interesting venue for future research as well. First it should be
investigated if the mixing behavior of the sampling process can be improved.
Possible options for this would be to include variance parameters and train
with a larger average number of missing values. The walk-back algorithm
might help as well (Bengio and Thibodeau-Laufer, 2013).

Finally, the relation of the imputation learning framework with compos-
ite likelihood learning suggests that in the limit of infinitely many training
examples, a misspecification of the noise process may become less influential.
This is an assumption that requires both more theoretical foundation and
empirical validation.

6.2.4 Speech Denoising
The models I proposed for speech denoising worked quite well for the task
they were trained on. The over fitting on the specific noise types used during
training seems more inherent to the task than a problem with the models
themselves. Future work should investigate the applicability of these models
on larger datasets for which the training data has been augmented with
artificially generated noise as has been done in other work on robust speech
recognition (Gemmeke and Virtanen, 2010). It would also be interesting to
combine this approach with other techniques for noise robust ASR. It was
beyond the scope of this work to investigate the influence of the number of
iterations for which the hidden units are updated. The value we chose was
based on prior intuitions about the task and the influence of this parameter
on the performance of the models should be investigated in more detail.

6.3 Final Notes

This thesis presented a variety of approaches for training unnormalized sta-
tistical models. Now it would of course be interesting to know which of the
presented ideas is the most useful one to use for practical applications. Or,
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if that question cannot be answered, what kind of properties of a modelling
problem determine which approach should be preferred in that situation.
Should one always prefer to turn generative models into deterministic black-
box methods because this eliminates the need to approximate partition func-
tions? Should one use sampling methods or alternative estimators when a
generative model is required but inference is intractable? These are difficult
questions to answer because the number of types of possible modelling prob-
lems is virtually infinite but I will try to present what I personally think are
some of the more important considerations to keep in mind when choosing
how to train a model and what kind of model to use.

First, I think it is important to get a very precise idea about the kind
of task the model is supposed to be used for. If it is necessary to obtain a
generative model, one may either try to approximate maximum likelihood
learning or to use suitable alternative estimator. If the goal is to make direct
predictions, it may be a better idea to abandon the whole idea of generative
training altogether and use a more direct training approach. The bottom
line is that it is important to keep alternatives to generative modelling in
mind instead of choosing it out of habit.

Given that a generative model is desired, there are still many options
to choose from. Approximate methods for maximum likelihood estimation
may be most suitable when it is relatively easy to obtain samples from the
model. When MCMC methods need to be used, this means that one needs
to consider how efficient this method is going to be for the specific model. If
it is computationally demanding to do a single sampling step, or if one has
reasons to believe that the model distribution contains many modes that are
separated by regions of very low probability density, it may be a better idea
to look at alternative estimators instead. Again, it is important to keep in
mind what the final application of the model will be. Is it important that
the model can answer precise questions about a couple of its modes, or is it
important that samples from the model are very similar to the true data?
Given that the data to train on is finite, different estimators can provide
models with very different strengths and weaknesses. Maximum likelihood
may be preferred when one is looking for a model that provides high quality
samples while certain alternative estimators may lead to models that are
better for denoising because they put more effort into optimizing the shape
of the distribution around the data while caring less about distant modes.

Finally, when models are trained to be components of a bigger system, as
is done in deep learning approaches, the number of considerations to keep in
mind increases even further. Component models that are very good at pro-
viding representations that have to be interpreted by other models are not
necessarily those with the best likelihood scores. Different training methods



134 6 Conclusion and Future Work

may lead to models that produce very different types of representations in
this setting. To find out what kind of approaches lead to good represen-
tations for deep learning models is not only an interesting venue for future
research, but illustrates why I don’t think any of the research directions
I’ve discussed should be abandoned in favor of one that appears to be more
practical at first sight.
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